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Editorial on the Research Topic
Adenosine pathways in cancer immunity and immunotherapy

Adenosine signalling represents a critical metabolic pathway involved in regulating
tumour immunity, being co-opted by tumours to promote their growth, and impair
immunity. Adenosine is produced at high tumour microenvironment (TME) levels in
response to hypoxia. It is a broadly immunosuppressive metabolite that regulates innate
and adaptive immune responses. Inhibition of adenosine-generating enzymes represents
one strategy for promoting antitumor immunity by enhancing T cell and NK cell
functionality and suppressing the pro-tumorigenic effects of myeloid cells and other
immunoregulatory cells. Research into immunotherapeutic targeting various aspects of
adenosine signalling is already underway, with several agents counteracting the adenosine
axis have been developed. Pre-clinical studies have demonstrated anti-tumour activity
alone and in combination with other immunotherapies, though more research is needed to
understand their viability as a treatment option.

Extracellular adenosine activates cellular pathways through one of four known G-
protein-coupled adenosine receptors: A;, Asa, Asp, and Aj. The A, 4 receptor is a high-
affinity receptor expressed on T cells and natural killer T (NKT) cells, monocytes,
macrophages, DCs, and natural killer (NK) cells. In contrast, the A, receptor is a
relatively low-affinity receptor most highly expressed by macrophages and DCs (1).
Many factors that favour adenosine generation-tissue disruption, hypoxia,
ectonucleotidase expression, and inflammation-are highly characteristic of TME.
Significant work has thus been done in targeting various aspects of tumour-associated
adenosine signalling to enhance the immune response to malignancy (2).

Adenosine is an immunosuppressive metabolite produced at high levels within TME.
Hypoxia, increased cell turnover, and expression of CD39 and CD73 are essential factors in
adenosine production. Adenosine pathway blockade in immunotherapy for cancer is of
great importance for cancer patients. Targeting of the adenosine pathway has generally
focused on two primary aspects of immunosuppressive adenosine through (1) inhibition of
adenosine production in the TME through targeting CD73 and CD39 and (2) the blockade
of adenosine signalling through targeting the A, and A,p receptors (3). Therefore,
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targeting the A,p receptor as an immunotherapeutic target in
pancreatic cancer (Strickland et al.).

Combined with novel biomarkers, immune checkpoint
inhibition may provide alternative pathways for treating
chemotherapy-resistant triple-negative breast cancer (TNBC).
Adenosine A,, receptor is associated with aggressive clinical
outcomes and reflects an immunosuppressive TME in human
breast cancer. Also, zoledronate, the standard of care for high-risk
early breast cancer patients, -induced growth inhibition and
enhanced B and T lymphocyte infiltration into the orthotopic
tumours with down-regulated CD73 (Petruk et al.). Because
CD155 and CD73 expression was associated with a poor response
to NAC and poor prognosis in this chemotherapy-resistant TNBC
cohort, supporting additional immune checkpoint receptor
inhibitor therapy (Cabioglu et al.).

Gastric cancer (GC) is one of the most common malignancies
and a leading cause of cancer-related deaths worldwide. GC patients
are usually in the advanced stage at first diagnosis and miss the best
opportunity for treatment. The accumulation of extracellular
adenosine inhibits the normal function of immune effector cells
and facilitates the effect of immunosuppressive cells to enhance GC
cell proliferation and migration. Wang et al. provided a
comprehensive review that adenosine signalling can be an optimal
target for GC immunotherapy.

The clinical benefit of immune checkpoint blockade in cancer
therapy and the promising preclinical activity of adenosine pathway
blockade is pivotal for cancer therapy. Several agents that block
distinct targets along the adenosinergic pathway are presently in
early-phase clinical trials.

Zohair et al. found that A,, receptor could be a promising
therapeutic target to overcome immune evasion prevailing within
the TME of breast cancer patients. We encourage researchers to

References

1. Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol
(2016) 16:177-92. doi: 10.1038/NRIL.2016.4

2. Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas
contains immunosuppressive concentrations of adenosine. Cancer Res (1997)
57:2602-5.

Frontiers in Immunology

10.3389/fimmu.2023.1298487

investigate the blockage of natural bioactive compounds to
adenosine pathways in preclinical and clinical phases due to their
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Gastric cancer (GC) is one of the most common malignancy and leading cause
of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific
early symptoms, GC patients are usually in the advanced stage at first diagnosis
and miss the best opportunity of treatment. Immunotherapies, especially
immune checkpoint inhibitors (ICls), have dramatically changed the
landscape of available treatment options for advanced-stage cancer patients.
However, with regards to existing ICls, the clinical benefit of monotherapy for
advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore
an optimal target for the treatment of GC. In this review, we summarize the
expression profiles and prognostic value of 20 common immune
checkpoint-related genes in GC from Gene Expression Profiling Interactive
Analysis (GEPIA) database, and then find that the adenosinergic pathway plays
an indispensable role in the occurrence and development of GC. Moreover, we
discuss the pathophysiological function of adenosinergic pathway in cancers.
The accumulation of extracellular adenosine inhibits the normal function of
immune effector cells and facilitate the effect of immunosuppressive cells to
foster GC cells proliferation and migration. Finally, we provide insights into
potential clinical application of adenosinergic-targeting therapies for
GC patients.

KEYWORDS

gastric cancer, CD39, CD73, adenosine, immunotherapy

Abbreviations: GC, gastric cancer; ICI, immune checkpoint inhibitor; AGC, advanced gastric cancer;
GEPIA, Gene Expression Profiling Interactive Analysis; EGC, early gastric cancer; HER2, human epidermal
growth factor receptor 2; CAR, T-cell chimeric antigen receptor-modified T cell; CTLA-4, cytotoxic T
lymphocyte-associated antigen 4; PD-1/PD-L1, programmed cell death receptor 1/programmed cell death
ligand 1; OS, overall survival; PFS, progression-free survival; eAMP, extracellular adenosine
monophosphate; eADP, extracellular adenosine diphosphate; eATP, extracellular adenosine
triphosphate; TME, tumor microenvironment; NK, natural killer cell; Tregs, regulatory T cells; DC,

dendritic cell.
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Introduction

Gastric cancer (GC) is a major source of global cancer
mortality with limited treatment options and poor patient
survival. It is the fourth most commonly occurring cancer in
men and the seventh in women (1). For patients with early
gastric cancer (EGC) and low risk of lymph node metastasis,
endoscopic submucosal dissection (ESD) or radical surgical
resection alone is potentially curative (2, 3). Unfortunately,
due to no apparent symptom or only indigestion-like clinical
manifestations, such as inappetence, gastroesophageal reflux,
and belching, patients with EGC often miss the best treatment
opportunity because of negligence (2). Although endoscopic
screening significantly increases the detection of EGC and
improves prognosis (4). Skill among endoscopists varies
greatly, and numerous patients are still missed for various
reasons (5). As the disease progresses, hemorrhage,
perforation, obstruction, cachexia, and other symptoms of
advanced cancer gradually appear. GC is already in the
advanced stage once detected in patients, which has a poor
ending due to ineffective therapies and multiple resistance (6).
Therefore, accurately diagnosing EGC and effectively treating
advanced gastric cancer (AGC) patients who have lost the
chance of radical surgical resection are two serious health
problems all over the world.

For the patients who are suffering from GC, the treatments
are mainly surgical excision, chemotherapy, targeted therapy,
immunotherapy, and other comprehensive strategies (7).
Among them, radical gastrectomy with D2 lymphadenectomy,
with or without neoadjuvant therapy, is the only potentially
curative treatment option (8). However, increasing numbers of
studies have shown that surgery cannot benefit patients with
unresectable AGC and post-operative complication is a negative
predictor of long-term survival outcomes for them (9). Systemic
chemotherapy with multiple drug regimens is the main therapy
choice to further prolong the survival of post- or non-operative
AGC patients (10). Despite relevant progress, the impact of
chemotherapy on AGC patients’ survival is still unsatisfactory,
especially patients with multiple distant metastases (1).
Additionally, as an emerging, attractive, and effective
treatment, targeted therapy has shown promising effects in a
part of GC patients, even if the beneficiary degree not definite
(11). As the most common target in GC, the frequency of human
epidermal growth factor receptor 2 (HER2) overexpression
ranges from 4.4% to 53.4%, with a mean of 17.9% (12).
Coupled with drug resistance developed during treatment,
management of AGC patients by targeted therapy remains a
challenge. Despite new therapeutic options, AGC remains
associated with a poor prognosis compared with other cancers,
on account of inactive immunogenicity and vast heterogeneity
represent a barrier to disease management (13, 14).

Frontiers in Immunology

10.3389/fimmu.2022.1027838

Immunotherapies, especially immune checkpoint inhibitors
(ICIs) and chimeric antigen receptor-modified T (CAR T) cell
therapies, have been used continuously for decades, as lifesaving
procedures for millions of patients with hematological
malignancy (15). As the most extensively used ICIs at present,
checkpoint inhibitor-based immunotherapies that target the
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and
the programmed cell death receptor 1/programmed cell death
ligand 1 (PD-1/PD-L1) pathway have achieved impressive
success in the treatment of different cancer types (16).
Nevertheless, there still exists various challenges that have
severely limited the clinical application of immunotherapies in
AGQC, for instance, the ineffectiveness and serious side effects (6).
For AGC patients, anti-CTLA-4 and anti-PD-1/PD-L1
monoclonal antibodies cannot acquire satisfactory curative
effect without the assistance of other cancer treatments (17—
20). Some clinical trials have shown positive effects on overall
response and disease control in combination with ICIs and other
therapies, yet responses are slight and heterogeneous (17).
Therefore, it is urgent to explore a more effective
immunotherapy method to prolong the survival of
AGC patients.

In this review, we find that CD73 is the most important
immune checkpoint affecting the prognosis of GC patients by
analyzing the Gene Expression Profiling Interactive Analysis
(GEPIA) database. In addition, we also describe the mechanism
of CD39-CD73-adenosine signaling pathway in immune
regulation of cancers and discuss its role in the occurrence and
development of GC. At the end of the article, we also put forward
some prospects about treating GC with the help of targeting
CD39-CD73-adenosine axis.

CD73 is an optimal target for
GC immunotherapy

ICI, especially inhibition of PD-1/PD-L1 axis, is a new
standard of immunotherapy in the treatment of advanced or
metastatic GC and is represented in various combinations with
and without other treatments within clinical trials (21).
However, its curative effect is related to individual differences
to a certain degree. For example, in a randomized, open-label,
phase 3 trial (NCT02370498), the PD-1/PD-L1 blockade cannot
significantly improve overall survival (OS) and progression-free
survival (PFS) versus paclitaxel for PD-L1-positive GC (all P >
0.6) (22). In another phase 3 randomized clinical trial
(NCT02494583), the PD-1/PD-L1 blockade plus chemotherapy
was not superior to chemotherapy for OS (12.3 vs. 10.8 months;
HR, 0.85; 95% CI, 0.62-1.17; P = 0.16) (19). Collectively, the
immunotherapy of GC needs a more appropriate immune
checkpoint to obtain superior efficacy.
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To further confirm which target plays the most
indispensable role in GC, we input 20 common immune
checkpoint-related genes into the GEPIA server for in-depth
analysis (Table 1). Among them, we found that 9 genes were
confirmed to have significant differential expression in GC
(Figure 1). Moreover, the expression levels of PDCD1 (encode
PD-1), CD274 (encode PD-L1), and CTLA-4 genes in GC not
change compared with adjacent tissues, which was consistent
with the above-mentioned treatment results.

Furthermore, we investigated whether the expression of
various immune checkpoint-related genes was correlated with
prognosis in GC patients (Figure 2). The results of GEPIA
analysis showed that only the high expression of NT5E
(encode CD73) is more likely to encounter GC patients death
earlier and shorten survival time (p<0.05). Additionally, with the
help of immunohistochemistry, single-sample gene set
enrichment analysis and flow cytometry, extensive related
studies have reported that CD73 expression is upregulated in
GC which is proved to be an independent adverse prognosticator
for the patients (61-63).

Ecto-5’-nucleotidase (NT5E), also known as CD73, is a
cytomembrane protein linked to the cell membrane via a
glycosylphosphatidylinositol (GPI) anchor that regulates the
conversion of extracellular adenosine monophosphate (eAMP)
to adenosine contributing to immunosuppression (64). CD39,
also termed ectonucleoside triphosphate diphosphohydrolase-1
(ENTPDI1), catalyzes the hydrolysis of extracellular adenosine
triphosphate (eATP) and adenosine diphosphate (eADP) into
eAMP to provide raw materials for CD73 (65). As the end
product of CD39-CD73 axis, adenosine mediates
immunosuppression within the tumor microenvironment
(TME) through triggering adenosine receptors on the
membrane surface, including A1R (encoded by ADORAL),
A2AR (encoded by ADORA2A), A2BR (encoded by
ADORAZ2B), and A3R (encoded by ADORA3) (66).

Based on these, we analyzed the associations between 20
common immune checkpoint-related genes and survival
contribution in GC by GEPIA database. In general, compared
with other immune checkpoints, CD73 showed the most obvious
detrimental role in GC patients (Figure 3A). In addition,
according to the analysis of corresponding genes expression
and the TNM stage, we also found that the expression of CD39
and CD73 was higher in GC patients with clinic stage II, stage
III, or stage IV than that in stage I, which revealed that these
upregulated genes might be associated with tumor progression
positively (Figure 3B). However, the role of adenosine receptors
in GC patients still needs to be further evaluated (Figure 3C).

Taken together, the CD39-CD73-adenosine signaling
pathway, as the most important immune checkpoint in GC,
mediates the immunosuppressive mechanism by which tumors
escape immunosurveillance and impede anti-tumor immunity
within the TME. Thereinto, CD73 is an optimal target for the
immunotherapy of GC.
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The CD39-CD73-adenosine
signaling pathway in cancers

eATP and immune response

Under normal circumstances, ATP is almost exclusively
present inside cells as the main energy currency, participating
in virtually all biological processes (67). eATP, as an extracellular
messenger, is set by both passive and active release mechanisms
and degradation processes (68, 69). Measurement of eATP levels
in different biological context reveals that healthy tissues present
very low levels (10-100 nanomoles per liter) of this nucleotide in
the pericellular space, while in sites of tissue damage,
inflammation, hypoxia, ischemia or TME it can reach high
levels (100-500 micromoles per liter) to promote
inflammatory responses (Figure 4) (70, 71).

There are two families of P2 purinergic receptors (P2Rs) for
eATP: ATP-gated ion channels known as P2X receptors (P2X1-
7) and G protein—coupled P2Y receptors (P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11b, P2Y12, P2Y13, P2Y14c) (69). Among them, the
P2X7 receptor (P2X7R), as the most structurally and
functionally distinct P2R subtype, appears to be a main player
in host-tumor cell interactions because of involvement in
apoptotic, inflammatory, and tumor progression pathways (72,
73). During innate immune responses, the key role of P2X7R is
to activate the assembly of nucleotide-binding domain (NOD)
like receptor protein 3 (NLRP3) inflammasome rapidly, which
could consecutively facilitate caspase-1 meditated maturation
and release of the pro-inflammatory cytokines interleukin-1§
and interleukin-18 to participate in both defense and
inflammatory responses (74, 75). For adaptive immune
responses, eATP signals via P2X7R to boost the activation,
proliferation, and chemotaxis of immune cells with consequent
stimulation of CD8" and CD4" T cell mediated anti-tumor
responses (74, 76, 77). The production of pro-inflammatory
cytokines, such as interleukin-1B and interleukin-18, are
involved in the activation of B and NK cells (78). Additionally,
the stimulation of P2X7R inhibits the tissue-specific
immunosuppressive potential of regulatory T cells (Tregs) and
facilitated their conversion to T helper 17 (Th17) cells during
chronic inflammation (79). On the contrary, P2X7R antagonism
increases Tregs and reduces clinical and histological
graft-versus-host disease in a humanized mouse model (80).
Overall, eATP can provide a variety of strategies to enhance the
ability to eliminate malignant cells.

The CD39-CD73-adenosine axis

The human body always keeps a delicate balance between
injury and repair to avoid overcorrection. Over time eATP
becomes less inflammatory or even anti-inflammatory due to
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TABLE 1 The characteristics of 20 immune checkpoint-related genes.

Gene
Names

SIGLEC15

VTCN1

HHLA2

FGL2

ENTPD1

PVR

CD24

CD200

TNFRSF14

LGALS9C

NT5E

LAG3

TIGIT

Cl0orf54

BTLA

PDCD1

Frontiers in

Protein Names

sialic acid-binding Ig-like

lectin 15

V-set domain-containing
T-cell activation inhibitor

1

human endogenous
retrovirus-H long
terminal repeat-
associating protein 2

fibroleukin

ectonucleoside
triphosphate
diphosphohydrolase 1
(CD39)

poliovirus receptor
(CD155)

signal transducer CD24

OX-2 membrane
glycoprotein

tumor necrosis factor
receptor superfamily
member 14 (CD270)

galectin-9C

5’-nucleotidase (CD73)

lymphocyte activation
gene 3 protein (CD223)

T-cell immunoreceptor
with immunoglobulin
and ITIM domains

V-type immunoglobulin

domain-containing
suppressor of T-cell
activation (VISTA)

B- and T-lymphocyte
attenuator (CD272)
programmed cell death
protein 1 (PD-1)

Immunology

Subcellular
Location

plasma
membrane

plasma
membrane

plasma
membrane

extracellular
region and
exosome

plasma
membrane

cytoplasm, cell
surface and
extracellular
space

cell surface

cell membrane

cell membrane

cytosol and
nucleus

cell membrane

cell membrane
and extracellular
region

cell membrane

cell membrane

cell membrane

cell membrane

Normal
Tissue
Specificity

macrophage and/
or dendritic cells
of spleen and
lymph nodes

activated T- and
B-cells, monocytes,
and dendritic cells

colon, kidney,
testis, B-cells, and
dendritic cells

cytotoxic T-cells

activated lymphoid
cells and
endothelial tissues

widely expressed

B-cells

widely expressed

lung, spleen, and
thymus

widely expressed

activated lymphoid
cells and
endothelial tissues

activated T-cells
and NK cells

T-cells and NK
cells

placenta, spleen,
plasma blood
leukocytes, and
lung

lymph node

induced at
programmed cell
death

Cancer Types

lymphoma, leukemia,
thyroid cancer, and
renal cell cancer

breast cancer, ovarian
cancer, and renal cell
cancer

colorectal cancer,
pancreatic cancer,
and gastric cancer

leukemia and
lymphoma

glioma, gastric
cancer, and renal cell
cancer

esophageal
carcinoma,
adrenocortical
carcinoma, and colon

carcinoma

Breast cancer,
colorectal cancer, and
gastric cancer

pheochromocytoma,
paraganglioma and
renal cell cancer

melanoma,
lymphoma, and lung
cancer

head and neck
squamous cell
carcinoma, and
colorectal cancer

thyroid cancer,
gastric cancer,
sarcoma, and glioma

leukemia and
testicular germ cell
tumors

leukemia and lung
adenocarcinoma

leukemia and
pancreatic cancer

lymphoma and
leukemia
lymphoma,
melanoma, and lung
cancer

10

10.3389/fimmu.

Function

TAM-associated Siglec-15 has a potent
immune suppressive effect on T-cell responses

negatively regulates T-cell-mediated immune
response by inhibiting T-cell activation,
proliferation, cytokine production and
development of cytotoxicity

inhibits CD8" T and NK cell function and
killing

induces CD8 * T cell apoptosis to limit T cell
immunity through the inhibitory Fc receptor
FcyRIIB

hydrolyzes eATP and eADP into eAMP to
provide raw materials for CD73

provides tumors with a mechanism of
immunoevasion from NK cells

regulates the proliferation of B-cells and
prevents their terminal differentiation into
antibody-forming cells

inhibits T-cell proliferation

synergistically inhibits the function of
lymphocytes with BTLA

interacts with multiple molecules to regulate
immune cells proliferation and death

hydrolyzes eAMP into immunosuppressive
adenosine

negatively regulates the proliferation,
activation, effector function and homeostasis of
both CD8"* and CD4" T-cells

suppresses T-cell activation by promoting the
generation of mature immunoregulatory
dendritic cells

immunoregulatory receptor which inhibits the
T-cell response

inhibitory receptor on lymphocytes that
negatively regulates antigen receptor signaling

plays a critical role in induction and
maintenance of immune tolerance

2022.1027838
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TABLE 1 Continued

Gene Protein Names Subcellular Normal Cancer Types Function References
Names Location Tissue
Specificity
CD276 CD276 antigen cell membrane  peripheral blood sarcoma, glioma, lung inhibits T-cell-mediated immune response and (55, 56)
lymphocytes or cancer, and prostate  NK cell-mediated lysis
granulocytes cancer
CTLA4 cytotoxic T-lymphocyte  cell membrane, ~ widely expressed ~ lymphoma, leukemia  inhibitory receptor acting as a major negative (57, 58)
protein 4 Golgi apparatus, melanoma, and lung  regulator of T-cell responses
cytoplasm cancer
CD274 programmed cell death 1 cell membrane,  lung, heart, lymphoma, as a ligand for the inhibitory receptor PD-1, (53, 54)
ligand 1 (PD-L1) nucleoplasm, placenta, and melanoma, and lung  modulates the activation threshold of T-cells
and extracellular ~ kidney cancer and limits T-cell effector response
exosome
CD47 leukocyte surface antigen  cell surface and ~ widely expressed ~ leukemia, ovarian prevents maturation of immature dendritic (59, 60)
CD47 extracellular cancer, lung cancer, cells and inhibits cytokine production by
exosome and pancreatic cancer mature dendritic cells

TAM, tumor-associated macrophage; NK, natural killer cell; eAMP, extracellular adenosine monophosphate; eADP, extracellular adenosine diphosphate; eATP, extracellular adenosine
triphosphate; ITIM, immunoreceptor tyrosine-based inhibitory motif.

the recruitment of Tregs and induction of ectoenzymes such as immunosuppressive adenosine (81). Moreover, another
CD39 and CD73 (Figure 4) (69). As the critical components of pathway generating adenosine involves participation of
the extracellular adenosinergic pathway, CD39 converts eATP extracellular nicotinamide adenine dinucleotide (NADY),

and eADP to eAMP, and then CD73 converts eAMP to CD38, CD203a, and CD73 (82). Like CD39 and CD73,
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FIGURE 1

The analysis of immune checkpoint-related genes expression in GC by GEPIA database. The results revealed that 9 genes were confirmed to
have significant differential expression in GC compared to the normal tissues. Among them, higher expression was observed in HHLA2, ENTPD1,
PVR, CD24, NT5E, TIGIT, CD276, and CD47 and lower expression was observed in LGALS9C. Red color represents tumor tissue (n=408), and
gray color represents normal tissue (n=211). STAD, stomach adenocarcinoma. * P < 0.05.
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FIGURE 2

&
Months Months

Kaplan-Meier survival curves comparing the high and low expression of immune checkpoint-related genes in GC by GEPIA database. The results
showed that only the high expression of NT5E (encode CD73) was correlated with poor prognosis of GC patients (p<0.05). The red line
indicates the high expression group of genes (n=192) and the blue line represents the low expression group of genes (n=191).

alkaline phosphatase (ALP) and prostatic acid phosphatase
(PAP) also can catalyze the conversion of eATP to adenosine
(83, 84). Furthermore, the high concentration of intracellular
adenosine can be transported outside the cell via equilibrative
nucleoside transporters (ENTs) and concentrative nucleoside
transporters (CNTs) to maintain balance (85).

The levels of extracellular adenosine are regulated by
adenosine-converting enzymes such as adenosine kinase
(ADK) and adenosine deaminase (ADA). Among them, ADK
adds the residue of phosphoric acid to adenosine and converts it
into AMP and ADA separates an amino group from adenosine
with the formation of inosine (86). However, in the TME, high
concentrations of adenosine binding to the corresponding
receptors to inhibit the activation and expansion of various
immune cells and promote the immune escape of cancers (86).
The four known subtypes of adenosine receptors (A1R, A2AR,
A2BR, and A3R), all of which are G-protein coupled receptors

Frontiers in Immunology

12

(GPCRs), have distinct expression patterns and mediate diverse
signaling pathways (87). Regarding the respective role of
adenosine receptors, it has been demonstrated that among the
four subtypes, adenosine binding to A2AR and A2BR causes an
increase in intracellular cyclic adenosine monophosphate
(cAMP) and consequently the functional inhibition of immune
cells, while AIR and A3R activation leads to tumor growth, cell
proliferation and survival in some cases (88-90).

Immunosuppressive adenosine and TME

Adenosine accumulated in the TME is a major cause of
immunosuppression (Figure 4). As the main force to eliminate
malignant cells, the impairment of CD8" T cells function and
metabolic fitness are mediated by the A2AR/PKA/mTORCI1
pathway as the main axis, due to the persistent high
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FIGURE 3

The analysis of adenosinergic pathway-related genes expression in GC by GEPIA database. (A) The risk assessment of 20 common immune
checkpoint-related genes affecting the prognosis of GC patients. By comparing the survival contribution of multiple genes via Mantel-Cox test,
we found that NT5E (encode CD73) showed the most obvious detrimental role in GC patients (n=383). (B) The expression levels of ENTPD1 and
NT5E in different tumor stages of GC. With the progression of GC, the expression of ENTPD1 and NT5E also increased. (C) The expression levels
of adenosine receptors in GC patients. The analysis showed that only ADORA2B expression (encode A2BR) increased in GC compared to the
normal tissues and only ADORA2A (encode A2AR) was positively correlated with the progression of GC. Red color represents tumor tissue
(n=408), and gray color represents normal tissue (n=211). STAD, stomach adenocarcinoma; HR, hazard ratio. * P < 0.05.
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concentration of adenosine (91). Blocking the interaction of
receptor with adenosine by a small-molecule A2AR antagonist
can increase the recruitment of CD8" T cells into the tumor and
broaden the circulating T cell repertoire (92). Similarly, existing
studies also indicate that immunosuppressive adenosine can
impair the parenchymal CD4" T cell and B cell response and
infiltration (93, 94). Although NK cells rarely infiltrate cancers,
their presence in tumor biopsies has been shown to positively
associate with increased survival (95). As an intrinsic negative
regulator of NK-cell maturation and anti-tumor immune
responses, A2AR-mediated adenosine signaling can obviously
limit tumor-infiltrating NK cells proliferation and activation
(96). At the interface between the innate and adaptive immune
system, dendritic cells (DCs) play key roles in inflammation and
tumor immunity (97). However, adenosine and cAMP signaling
can not only prevent DC maturation and development of
effector functions but also skew DC differentiation towards a
tolerogenic phenotype with defective CD8" T cell priming
capacity (98).

Extensive literature shows that eATP-mediated activation of
purinergic receptor is necessary for the maturation and release of
interleukin-1B by activated macrophages (99). Nevertheless,
adenosine generated by eATP likely contributes to the

10.3389/fimmu.2022.1027838

differentiation and recruitment of tumor-associated
macrophages (TAMs) which further amplify adenosine-
dependent immunosuppression via additional ectonucleotidase
activity of cancer cells (100). Myeloid-derived suppressor cells
(MDSCs) are considered to be an important contributor to the
immunosuppressive TME and thus an obstacle for many cancer
immunotherapies. The metabolite adenosine plays a vital role in
MDSCs mobilization through several mechanisms to inhibit T
cell functions and promote cancer progression (101). In
addition, elevated adenosine upregulates CD73 on cancer
associated fibroblasts (CAFs) via A2BR-mediated pathway,
thereby inciting the adenosine-A2BR-CD73 feedforward
circuitry, which further augments immunosuppression by
activating the non-redundant adenosine-A2AR pathway in
immune cells to inhibit immune activation (102). For
mesenchymal stromal cells (MSCs), the modulation of the
adenosine overall promotes a more aggressive phenotype of
cancers and more serious immunosuppressive function (103).
Recently, Abhishek Tripathi et al. found a strong correlation
between CD73, CD39 and A2AR expression, and Treg gene
expression signature. Adenosine activates the high-affinity
A2AR receptor, which in turn inhibits infiltrating NK cells and
cytotoxic T lymphocytes (CTLs) activity and increases Tregs
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P2Rs.
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promote immune responses.

Immune regulation of adenosine signaling in the TME. Cell stress promotes eATP production and contributes to chronic inflammation via P2Rs.
Within the TME, accumulated eATP can be degraded to ADO by the sequential action of the ectonucleotidases CD39 and CD73 or other
alternative pathways such as ALP or PAP-mediated process. In addition, the sequential catabolism of NAD* by CD38, CD203a and CD73 also
can generate ADO and the high concentration of intracellular ADO can be transported outside the cell via ENTs or CNTs to maintain balance.
The bioavailability of extracellular ADO is regulated by adenosine-converting enzymes such as ADK and ADA, which converts ADO into AMP and
inosine respectively. High concentrations of ADO binding to adenosine receptors to inhibit the activation of immune cells and stimulate
immunosuppressive cells to promote the immune escape of cancers. eATP, extracellular adenosine triphosphate; eAMP, extracellular adenosine
monophosphate; NK cell, natural killer cell; DC, dendritic cell; Treg, regulatory T cell; TAM, tumor-associated macrophage; CAF, cancer
associated fibroblast; MDSC, myeloid-derived suppressor cell; MSC, mesenchymal stromal cell; ADO, adenosine; NAD*, nicotinamide adenine
dinucleotide; ADPR, adenosine diphosphate ribose; ADA, adenosine deaminase; ADK, adenosine kinase; ENT, equilibrative nucleoside
transporter; CNT, concentrative nucleoside transporter; P2Rs, P2 purinergic receptors; PAP, prostatic acid phosphatase; ALP, alkaline

phosphatase; cAMP, cyclic adenosine monophosphate.
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proliferation to further promote immunosuppression (104).
Beyond the task of providing an immune-tolerant TME by
helping to determine the activity of immune and inflammatory
cells, the adenosine system directly regulates cancer growth and
metastatic dissemination through specific receptors that are
expressed on cancer cells (105).

Overall, in the context of cancer, the accumulation of
extracellular adenosine inhibits the normal function of immune
effector cells and facilitate the effect of immunosuppressive cells to
foster malignant cells proliferation and migration.

Adenosine signaling in GC

Extracellular release of the central cellular energy metabolite
ATP has although evolved as a natural signal for cellular distress,
immunogenic cell death (ICD) and the recruitment and
activation of immune cells (106). Ectonucleotidases which up-
regulated in many types of cancer, such as CD39 and CD73,
rapidly metabolize eATP to immunosuppressive adenosine,
thereafter exacerbating immunosuppression in the TME (107).

Similar to other malignancies, the expression of CD39 and
CD73 is synergistically increased in GC, causing a poor outcome
for patients (61, 108). Under the dysfunction of mitochondria,
GC cells preferentially utilize both glycolytic and pentose
phosphate pathways rather than electron transport chains to
desperately generate ATP, classically recognized as the Warburg
effect, to provide substrates for adenosine production (109).
Importantly, CD73 is also a hypoxia-responsive gene and
promotes the Warburg effect of GC dependent on its enzyme
activity to further amplifying adenosine signal transduction
(110). Immunosuppressive adenosine can enhance the
stemness of GC to resist treatment and promote the
expression of epithelial-mesenchymal transition-associated
genes to stimulate GC cell invasion and metastasis via
interaction with A2AR and subsequent activation of the PI3K/
AKT/mTOR pathway (111, 112). Furthermore, pathway and
gene set enrichment analysis of transcriptome data revealed the
modulation role of adenosine in RICS/RhoA signaling, which
subsequently inhibited phosphorylation of LIMK/cofilin and
promoted B-catenin activation to induce metastasis of GC (63).

Long-term accumulation of adenosine in GC helps to
establish the immunosuppressive TME and promote tumor
development through its interaction with tumor parenchyma
and stromal cells (113). For immune cells, tumor-associated
Tregs express more CD39 and CD73 in GC tissue. They also
can decompose eATP to adenosine and in turn not only induce
apoptosis and inhibit the proliferation of CD8" T cells through the
A2AR pathway but also prevent the infiltration of effector T cells
into the TME (114, 115). Moreover, Hanyuan Liu et al. found that
CD?73 high expression GC showed a specific microenvironment
with more CD8" T cell infiltration via recruiting 902 GC patients
to examine CD73 expression and immune contexture, but these
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CD8" T cells displayed a dysfunctional phenotype for anti-tumor
immunity (62). As a bypass pathway for adenosine production,
restraining the conversion of NAD" to adenosine can improve the
function of effector CD8" T cells and induce the apoptosis of GC
cells simultaneously (116).

Though lots of systemic and in-depth researches on the role
of the CD39-CD73-adenosine axis in diseases have been
implemented, such as cardiovascular diseases, autoimmune
disease, gut inflammation, and other cancers, immune
checkpoint therapy targeting adenosine pathway in GC is still
in the early phase (113, 117-119). With the use of small molecule
inhibitors and monoclonal antibodies targeting adenosine
pathway, an increasing number of clinical trials designed for
GC treatment are ongoing, yet few successful experiences have
been identified thus far (Table 2). Therefore, further exploration
is still needed to complement the deficiencies of this
immunotherapy method for GC patients.

Prospects

The considerable heterogeneity and immunosuppressive
TME represent major obstacles to accurate diagnosis and
effective treatment in GC patients, leading to ineffective
immunotherapy (120). For tumor heterogeneity, the molecular
classification of GC extends the potential for personalized
treatments to benefit each patient and fulfill the concept of
precision medicine (121). The development of GC is a complex
process displaying polytropic cell and molecular landscape
within the TME, which supports tumor growth, metastasis,
and recurrence, and function as the soil for gastric
tumorigenesis (122). There is increasing evidence that
reprogrammed energy metabolism contributes to the
development of tumor suppressive immune microenvironment
and influences the course of GC (123).

As a common metabolite, immunosuppressive adenosine has
been intensively studied in many benign and malignant diseases,
nevertheless, few researchers are currently exploring this avenue
in GC. Although the efficacy of multiple small-molecule
antagonists and antibodies of CD39-CD73-adenosine signaling
pathway are being verified in a variety of diseases, deficiencies
such as inefficacy and excessive inflammation cannot be ignored.
Based on both, further research should mainly focus on the
following aspects to obtain better curative effect:

Develop new drugs targeting adenosine
pathway with higher specificity, less side
effect and better efficacy.

Adenosine signaling, as one of the key components in

regulating normal immune responses, induces immune
tolerance to prevent an overreaction with self and the
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TABLE 2 The clinical trials of blocking adenosine signaling in patients with advanced solid tumors.

Target Status Drug names Combination Trial phase Clinical trial number
CD39 Recruiting SRF617 Gemcitabine Phase 1 NCT04336098
Albumin-Bound Paclitaxel
Pembrolizumab
Active TTX-030 Nab-paclitaxel Phase 1 NCT04306900
Gemcitabine
Recruiting ES002023 None Phase 1 NCT05075564
Not yet recruiting ES014 None Phase 1 NCT05381935
Recruiting JS019 None Phase 1 NCTO05374226
Not yet recruiting PURO001 None Phase 1 NCT05234853
CD73 Recruiting IPH5301 Chemotherapy Phase 1 NCT05143970
Trastuzumab
Recruiting PT199 Anti-PD-1 monoclonal antibody Phase 1 NCT05431270
Recruiting Sym024 Anti-PD-1 monoclonal antibody Phase 1 NCT04672434
Active L1Y3475070 Pembrolizumab Phase 1 NCT04148937
Not yet recruiting HLX23 None Phase 1 NCT04797468
Recruiting AK119 Anti-PD-1/CTLA-4 bispecific antibody Phase 1 NCT04572152
Recruiting 1BI325 Anti-PD-1 monoclonal antibody Phase 1 NCT05119998
Terminated GS-1423 mFOLFOX6 Regimen Phase 1 NCT03954704
Not yet recruiting JAB-BX102 Anti-PD-1 monoclonal antibody Phase 2 NCT05174585
Active MEDI9447 Anti-PD-L1 monoclonal antibody Phase 1 NCT02503774
Recruiting INCA00186 Anti-PD-1 monoclonal antibody Phase 1 NCT04989387
Recruiting TJ004309 None Phase 2 NCT05001347
Completed BMS-986179 Anti-PD-1 monoclonal antibody Phase 2 NCT02754141
A2AR Not yet recruiting 1LB2109 None Phase 1 NCT05278546
Recruiting EOS100850 None Phase 1 NCT05117177
Recruiting M1069 None Phase 1 NCT05198349
A2BR Not yet recruiting TT-4 None Phase 2 NCT04976660

development of autoimmune disease (124). Due to the clinical
experience with adenosine pathway inhibitors in oncology is
limited, long-term exposure to these drugs and their association
with other anti-tumor treatments could potentially lead to the
emergence of systemic multiorgan toxicity (125). Therefore, the
development of new drugs should also pay attention to its safety.

Simultaneously target multiple
adenosinergic pathway components to
acquire synergistic efficacy.

Multiple pathways can contribute to the production of
adenosine, some of them by traditional CD39/CD73-dependent
mechanisms, others by alternative pathways. In order to disrupt
the adenosine production, Nathalie Bonnefoy et al. generated two
antibodies, IPH5201 and IPH5301, targeting human membrane-
associated and soluble forms of CD39 and CD73, respectively,
and efficiently blocking the hydrolysis of immunogenic ATP into
immunosuppressive adenosine. Their results suggested that the
concomitant blockade of both CD39 and CD73
immunosuppressive enzymes can limit adenosine-mediated T
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cell inhibition, thereby enhancing anti-tumor immunity (126).
Similarly, the simultaneous inhibition CD39 and CD73 cell
surface ectonucleotidases by small molecular inhibitors can
enhance the mobilization of bone marrow residing stem cells
by decreasing the extracellular level of adenosine (127). In
addition, co-targeting CD73 and A2AR strategy is also a
promising novel therapeutic strategy for future hepatocellular
carcinoma management (128). More interestingly, the alternative
pathways can compensate the lack of adenosine production when
the CD39/CD73/adenosine axis is blocked (129). Hence, a strong
rationale exists for combining several inhibitions with the aim of
more completely blunting adenosine production and signaling,
but no similar research has been conducted on GC. It is worth
noting that the combination therapy may improves the treatment
outcome but it also carries more side-effect burden.

Combine adenosinergic pathway
inhibitors with other cancer treatments.

Systemic immunosuppression greatly affects the
chemotherapeutic anti-tumor effect. CD39 cell-surface
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expression and activity is increased in patients with acute
myeloid leukemia (AML) upon chemotherapy compared with
diagnosis, and enrichment in CD39-expressing blasts is a marker
of adverse prognosis in the clinic (130). Furthermore,
extracellular vesicles from B cells through CD39 and CD73
vesicle-incorporated proteins hydrolyze eATP from
chemotherapy-treated tumor cells into adenosine, thus
impairing CD8" T cell responses (131). As receptor for
adenosine signaling, elevated A2AR expression was also
detected in recurrent tumor tissues with induction
chemotherapy (132). These phenomena offer a preclinical
proof for the administration of adenosine signaling inhibitors
in combination with chemotherapy in cancers, possibly
including GC. Notably, the addition of HER2-targeted
therapies to first-line chemotherapy has improved the OS of
patients with HER2-positive GC, and has become the standard-
of-care treatment for this group of patients (133). In breast
cancer, high levels of CD73 gene expression are associated
significantly with poor clinical outcome and promote
resistance to HER2 antibody therapy (134). However, whether
inhibitors of adenosinergic signaling pathway can be used to
increase the efficacy of HER2-targeted therapy in GC needs to be
further demonstrated. Various forms of immunotherapy are
proving to be effective at restoring T cell-mediated immune
responses that can lead to marked and sustained clinical
responses, especially ICIs and CAR T-cell therapy. However,
the efficacy of various immunotherapies for solid tumor is still
mediocre because of immunosuppression in the TME. Hypoxia
and cell damage, as common phenomena in solid tumors, are
strongly linked to hallmarks of cancers and facilitate the
production of immunosuppressive adenosine. The studies
revealed that targeted blockade of CD73 can enhance the
therapeutic activity of anti-PD-1 and anti-CTLA-4 monoclonal
antibodies and may thus potentiate therapeutic strategies
targeting ICIs for colorectal cancer, breast cancer, and prostate
cancer (126, 135). Previous studies have shown that adenosine
generated by tumor cells potently inhibits CAR T-cell responses
through activation of A2AR. Therefore, using either A2AR
antagonists or genetic targeting of A2AR using short hairpin
RNA can profoundly increase CAR T-cell efficacy, particularly
when combined with PD-1 blockade (136). In addition,
disrupting A2AR gene in human CAR T-cell with CRISPR-
Cas9 increased the anti-tumor function and prevented the
exhaustion of CAR T-cells (137). Mechanistically, human
A2AR-edited CAR T-cells are significantly resistant to
adenosine-mediated transcriptional changes, resulting in
enhanced production of cytokines including interferon-y and
tumor necrosis factor-o., and increased expression of JAK-STAT
signaling pathway associated genes (138). The purpose of
combination therapy is to combine separate mechanisms of
action that will make malignant cells more sensitive to
therapeutic agent and acquire better curative effect, but no
similar research has been conducted on GC.
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Promote adenosine metabolism to
attenuate the immunosuppressive ability
of TME

In addition to the above methods, accelerating the
metabolism of adenosine within TME also can restore an anti-
tumor immune competence. Emanuele Sasso et al. encoded
adenosine deaminase (ADA)into an oncolytic targeted herpes
virus to improve enzyme secretion for the metabolism of
adenosine, and the clearance of adenosine within the TME
reversed HER2-positive breast cancer resistance to
trastuzumab (139).

Conclusion

The growth and progression of solid tumors are strongly
affected by adenosine metabolic changes and interplay with the
TME that sustain tumor development and immune escape. We
explored the expression pattern and prognostic value of common
immune checkpoints in GC patients via GEPIA database.
Compared with other targets, adenosinergic pathway plays an
indispensable role in the occurrence and development of GC,
especially CD73. The components of adenosinergic pathway on
both GC cells and immune cells sustains immunosuppressive
TME by affecting multiple aspects of the immune response.
Furthermore, some emerging antagonists of adenosinergic
pathway show therapeutic potential in the preliminary studies
of other malignancies. Therefore, these findings uncovered a
mechanism by which immunosuppressive adenosine participates
in the immune tolerance of GC, implying the potential of
adenosinergic pathway as a therapeutic target or predictive
marker for GC patients. However, On the basis of the limited
evidence available as of now, elaborate clinical evaluation is
further warranted to confirm whether the adenosinergic-
targeting therapies are suitable for GC patients.
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Simultaneous editing of TCR,
HLA-1/1l and HLA-E resulted in
enhanced universal CAR-T
resistance to allo-rejection

Wuling Li*?, Xiuxiu Zhu™?, Yanmin Xu®, Jun Chen?,
Hongtao Zhang®, Zhi Yang?, Yanan Qi®, Juan Hong?,
Yunyan Li*, Guixue Wang'*, Junjie Shen* and Cheng Qian**

tKey Laboratory for Biorheological Science and Technology of Ministry of Education, College of
Bioengineering, Chongqing University, Chongging, China, 2Center for Precision Medicine of Cancer,
Chonggqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized
Treatment, Chongqing University Cancer Hospital, Chongging, China, *Chongqing Key Laboratory of
Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongging Precision
Biotech Co., Ltd., Chongging, China, “Key Laboratory for Biorheological Science and Technology of
Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongging University, Chongqing, China

Introduction: The major challenge for universal chimeric antigen receptor T
cell (UCAR-T) therapy is the inability to persist for a long time in patients leading
to inferior efficacy clinically. The objective of this study was to design a novel
UCAR-T cell that could avoid the occurrence of allo-rejection and provide
effective resistance to allogeneic Natural Killer (NK) cell rejection, together with
the validation of its safety and efficacy ex vivo and in vivo.

Methods: We prepared T-cell receptor (TCR), Human leukocyte antigen (HLA)-1/II
triple-edited (TUCAR-T) cells and evaluated the anti-tumor efficacy ex vivo and in
vivo. We measured the resistance of exogenous HLA-E expressing TUCAR-T
(ETUCAR-T) to NK rejection by using an enhanced NK. Furthermore, we
established the safety and efficacy of this regimen by treating Nalm6 tumor-
bearing mice with a repeated high-dose infusion of ETUCAR-T. Moreover, we
analyzed the effects of individual gene deficiency CAR-T on treated mice and the
changes in the transcriptional profiles of different gene-edited T cells via RNA-Seq.

Results: Data showed that HLA-II editing didn't impair the anti-tumor efficacy of
TUCAR-T ex vivo and in vivo and we found for the first time that HLA-II deficiency
could facilitate the persistence of CAR-T. Contrastively, as the most commonly
eliminated targetin UCAR-T, TCR deficiency was found to be a key disadvantageous
factor for the shorter-term anti-tumor efficacy in vivo. Our study demonstrated
ETUCAR-T could effectively resist allogeneic NK rejection ex vivo and in vivo.

Discussion: Our research provided a potential and effective strategy for
promoting the persistence of UCAR-T cells in clinical application. And it
reveals the potential key factors of the poor persistence of UCAR-T along
with new insights for future development.

KEYWORDS

universal CAR, CRISPR/Cas9, ETUCAR-T, natural killer cell, HLA-E
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Introduction

Revolutionary advances in cancer treatment by chimeric
antigen receptor T-cell (CAR-T) therapy have been achieved,
especially in hematological malignancies (1). Hundreds of
preclinical and clinical trials on CAR-T therapy have been
conducted worldwide. Up to now, six CAR-T products have
been approved by the Food and Drug Administration (FDA) for
the clinical treatment of hematological tumors. Nevertheless,
this therapy has not been widely applied in cancer treatment due
to the high cost and the long time consumption of individualized
manufacturing in the production of autologous CAR-T cells.
The development of off-the-shelf universal CAR-T (UCAR-T)
therapy is considered as an attractive direction. However,
UCAR-T therapy also faces the challenges of uncertain gene-
editing operation regimes and a wide gap in clinical efficacy
compared to traditional unedited autologous CAR-T.

By now, the reported strategies for UCAR-T therapy are
based on the combination of knocking out the T-cell receptor
(TCR) and clearing lymphocytes by the CD52 monoclonal
antibody or simultaneously eliminating B2 microglobulin
(B2M) and/or programmed cell death protein 1 (PD-1) by
means of zinc finger nucleases (ZFNs) and transcription
activator-like effector nucleases (TALENSs) as well as clustered
regularly interspaced short palindromic repeats/Cas9 protein
(CRISPR/Cas9) (2). CRISPR/Cas9 is considered as a more
favorable selection because of the superiority in single-target
and higher editing efficiency. Since the first clinical study on
UCAR-T therapy, which started in 2015, reported the
achievement of molecular remission within 28 days in two
cases of infantile leukemia (3), increasing clinical studies
focusing on UCAR-T therapy have ensued (4, 5).

HLA-II molecules, which are mainly expressed on the
surface of antigen-presenting cells (APCs), play an important
role in organ transplantation. In the field of UCAR, Kagoya et al.
found that HLA-IT expression on activated T cells would rise to a
varying level, by up to 50% (6). Importantly, our prior clinical
studies also found that up to 90% of HLA-II was detected in
ready-to-infuse autologous CAR-T. The inconsistent HLA-ITP**
may be attributed to the different activation and stimulation

Abbreviations: CAR-T, chimeric antigen receptor T cell; UCAR-T, universal
chimeric antigen receptor T cell; DUCAR-T, conventional TCR and HLA-I
double gene-edited universal chimeric antigen receptor T cell; TUCAR-T,
TCR, HLA-I/II triple gene-edited universal chimeric antigen receptor T cell;
ETUCAR-T, TCR, HLA-I/II triple gene-edited universal chimeric antigen
receptor T cell with an exogenous expression of HLA-E; NK, NK cells isolated
from the peripheral blood of a healthy donor; NK™5 ) NK with an
exogenous expression of membrane-bound IL15; NR4A3, nuclear receptor
subfamily 4 group A member 3; EGR3, early growth response 3; POLR2L, NA
polymerase II, I, and III subunit L; GvHD, xenogeneic graft-versus-host

disease; GVHR, graft-versus-host reaction; HvGR, host-versus-graft reaction.
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approach during T-cell production. However, both findings
support the necessity of HLA-II elimination (6). We then
restrained the expression of HLA-II by editing the class II
transactivator (CIITA) with CRISPR/Cas9 (7) and successfully
obtained TCR/HLA-I/HLA-II triple-deficiency UCAR-T
(TUCAR-T) cells. Interestingly, HLA-II deficiency was found
to improve rather than attenuate the efficacy of CAR-T cells.
Furthermore, we exogenously delivered an HLA-E gene, a
member of HLA-I family, and generated ETUCAR-T that
could escape from the attack of host NK cells (8, 9). The safety
and efficacy of ETUCAR-T cells were fully tested both ex vivo
and in vivo, and the results of multiple dosing in mice have been
provisionally provided as a reference for clinical application.

Despite the improvements in several aspects, our data
suggested that ETUCAR-T showed unsatisfactory persistence
in NOD.CgPrkdcscidIl2rgtm1Sug/JicCrl (NOG) mice. We thus
further investigated and obtained some novel insights about the
differential impacts of the deficiencies of TCR, HLA-I, and HLA-
IT on CAR-T cells by whole transcriptional profiling using RNA-
seq. To sum up, discoveries in our research provided significant
evidence for revealing the key factors affecting UCAR-T function
and provided us with new countermeasures for UCAR-T
therapy in the future.

Materials and methods
Cells and culture conditions

PBMC:s were isolated from healthy volunteer donors using a
human peripheral blood lymphocyte separation solution
(TBDscience Tianjin, China). Primary human T cells were
isolated by the Pan T Cell Isolation Kit, human (Miltenyi
Biotech, Bergisch Gladbach) and stimulated with D‘ynabeadsTM
CD3/CD28 (Invitrogen, USA) at a density of 2 x 10° cells/ml in
an immunocell medium (TBDscience Tianjin, China) with 10%
fetal bovine serum (FBS) (Biological Industries Beit-Haemek,
Israel), 50 IU/ml IL7, 50 IU/ml IL15, and 50 IU/ml IL21
(Peprotech, USA). Dynabeads were removed with a magnetic
holder at 2~3 days after activation. CAR-T cells were
cryopreserved at day 9 postactivation in a lab-created
cryoprotectant for injection at 1 x 10° cells per vial. NK cells
were isolated from PBMCs using human CD56 MicroBeads
(Miltenyi Biotech, Bergisch Gladbach) and LS Columns
(Miltenyi Biotech, Bergisch Gladbach) by the manufacturer’s
instructions (Miltenyi Biotech, Bergisch Gladbach) and cultured
at a density of 1 x 10° cells/ml in an immunocell medium
(TBDscience Tianjin, China) supplemented with 10% FBS
(Biological Industries, Israel), 50I U/ml IL18 and 50 IU/ml IL2
(Peprotech, USA). NK was transduced with a lentiviral
expression of membrane-bound IL15 at 2 ~ 3 days of
activation, and experiments were performed at 9 days of
NK activation.
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All cell lines were STR-fingerprinted and validated to be
mycoplasma-free by PCR. The human acute lymphoblastic
leukemia cell line CD19" Nalmé, human chronic myeloid
leukemia cell line CD19" K562, and human carcinoma cell line
A549 were purchased from ATCC (Virginia, USA). The A549 cell
line was transduced with CD19 antigen in the Pcdh vector using the
lentiviral vector to create a new CD19" A549 cell line. Nalm6 and
K562 cell lines were transduced with Luc-2A-GFP in the Pcdh
vector using the lentiviral to create the new cell line Nalmé6-Luc-
GFP. Nalmé6 and K562 were cultured in RPMI 1640 (Gibco, USA),
and 293T and A549 were cultured in DMEM (Gibco, USA). All cell
lines were cultured with a medium supplemented with 10% FBS and
100 IU/ml penicillin/streptomycin (Beyotime Shanghai, China).

Generation of constructs

CD19 CAR was synthesized and/or amplified by PCR as
published based on sequencing information and subcloned into
a lentiviral vector (10). Mutant HLA-E was a fusion protein
consisting of a codon-optimized signal peptide of P2-
microglobulin (Genscript, Nanjing, China) and HLA-E Cdna
Open Reading Frame (ORF) Clone in Cloning Vector, Human
(Sinobiological, China). The following primers were used in
overlap PCR: B2-microglobulin forward (5'-
GCTCTAGAATGAGCAGAAGCGT-3") and reverse (5'-
TACTTCAAGGAGTGGGAGCCCATGCTAGGA
ATTCGCTTCC-3’), HLA-E Cdna ORF forward (5-GGCTCC
CACTCCTT GAAGTATTTCCACACTTCCGTGTCCC-3)
and reverse (5-GGGTGTACATTACAAGCTGT-3').

Flow cytometry

Flow cytometry (FCM) results were acquired on a
LSRFortessa (Becton, Dickinson and Company, USA) or
Quanteon (Agilent, USA) and analyzed by FlowJo_v10.6.2 or
NovoExpress 1.4.1. Non-transduced T cells (Ctrl-T) and isotype
antibodies were used as controls. The Human Leukocyte Antigen
(HLA)-DR antibody is used to detect HLA-II expression levels on
the cell surface, and the 32-microglobulin or HLA class I antibody
is used to detect HLA-I expression levels on the cell surface.
Information on the antibodies used in this study is shown in the
Supplementary Material. CD3, HLA-I, and HLA-DR triple-
negative UCAR-T cells were isolated by the flow cytometry
instrument FACSAria III (BD) on day 7 postactivation.

Clustered regularly interspaced short
palindromic repeats design

The following genome targeting sequences were used in the
study: TRAC: 5'-AGAGTCTCTCAGCTGGTACA-3’, B2M: 5'-
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GGCCGAGATGTCTCGCTCCG-3’, CIITA: 5'-
GATATTGGCATAAGCCTCCC-3'. Primary human T cells
were transduced with the CD19 CAR lentivirus at 24 h of
activation and electroporated using 4D-NucleofectorTM X
(Lonza, Germany) with RNP that was separately mixed by
Cas9 protein (Gibco, USA) and chemically synthesized no-
annealing-needed sgRNA (Genscript, China, bearing 2'-O-
methyl at three first and last bases, 3’ phosphorothioate-
modified bounds between three first and last bases) at a 1:1:1:3
mole ratio for 10-15 min at room temperature at
48 h postactivation.

Lentivirus production

Lentiviruses were collected from the supernatants of 293T
cells transduced with the lentivirus vector and helper plasmids
(PMD2.G, pMDLg/Prre, and Prsv-Rev) as we described
previously (11). After harvesting the supernatant, the lentivirus
was mixed with 50% Polyethylene Glycol (PEG) and 4M NaCl at
a 6:2:1 ratio and centrifuged at 10,000 x g at 4°C for 1 h. The
supernatant was discarded following centrifugation, and the
precipitate was dissolved in an appropriate volume of saline.
For all experiments related to lentiviral transduction, the
multiplicity of infection used was 2 MOL

On-target and predicted off-target
Sanger sequencing

The genome of UCAR-T cells from three healthy donors was
extracted, the on-targets or predicted off-targets fragments were
amplified separately with their corresponding primers, and the
fragments were ligated to the T vector (Takara, Japan) for
sequencing. The on-target and predicted off-target primers for
PCR amplified are listed in Supplementary Experimental Methods.

Luciferase-based Cytotoxic T
Lymphocyte (CTL) assay

In a 96-well, U-bottom plate (NEST, USA), CAR-T cells
(effectors) and Nalmé6-Luc-GFP (targets) or K562-Luc-GFP
(targets) were cultured together at 37°C for 24 h at various
effector- to-target ratios (E:T or E/T); the targets were 1 x 10%/
well. Supernatants were harvested for cytokine secretion
detection following the centrifugation of the plate. Avoiding
the unequal transduction of CAR-positive in T cells, non-
transduced Ctrl-T cells were supplemented to adjust both the
number of CAR" T cells, and the total number of T cells
remained consistent in all groups. The substrate was added
with the DPPIV-Glo' " Protease Assay (Promega, USA) and
immediately centrifuged and detected. The results are reported
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as the percentage of killing based on the luciferase activity in the
wells with tumor cells but without T cells [% killing=100—((RLU
from well with effector and target cell coculture)/(RLU from well
with target cells) x100)].

Real-time cell analysis CTL assay

A cytotoxicity assay to test CAR-T cells with adherent target
cells was operated using an electrical impedance-based
approach, namely, xCELLigence real-time cell analysis (RTCA)
SP/MP Analyzer (Roche, Switzerland). The cell index represents
the relative change of the cell proliferation rate for several days of
continuous monitoring. Firstly, the baseline measurement was
operated by adding 50 ul of DMEM per well to E-plates (Roche,
Switzerland). Then, 100 pl of DMEM containing 1x10* CD19""
A549 target cells were added in E-plates per well, and electrical
impedance was measured throughout the cultivation period with
15 min intervals throughout the culture period until the target
cells were in logarithmic growth (total time: 12 h). Next, CAR-T
cells (effectors) were plated at a 1:1 E/T ratio in E-plates in a
volume of 100 pl per well, following by discarding 50 pl of the
medium. Negative control was described above.

ELISA assays

The incubation supernatant was stored at -80°C. Samples
were diluted in an appropriate ratio (the standard curve ranges
from 30 to 300 pg/ml), and each sample was assayed in duplicate
or triplicate using an IFN gamma Human Uncoated ELISA Kit
(Invitrogen, USA). Data analysis was conducted according to the
related protocol and algorithm by Varioskan LUX (Thermo
Fisher Scientific). All data were within the range of the
calibrated curves.

Allogeneic rejection analyzed

Donor CAR-T cells were cocultured with freshly isolated
allogeneic PBMC:s at the specified E/T ratios in a 200 pl RPMI
1640 medium supplemented with 10% FBS in U-bottomed, 96-
well plates. To generate primed alloreactive T cells in a host-
versus-graft reaction (HvGR), donor CAR-T cells were treated
with mitomycin C (BioVision, USA) in 10 ug/ml and then
stained with the 2 mM CellTrace CFSE Cell Proliferation Kit
(CFESE) (Thermo Fisher Scientific), mixed with fresh allogeneic
PBMC:s that were stained with a 2 mM CellTrace Violet Cell
Proliferation Kit (CTV) (Thermo Fisher Scientific) at a 1:1 ratio.
Cell stimulation was analyzed by FCM on day 0 and 7 days later.
On the contrary, fresh allogeneic PBMCs were treated with
mitomycin C (BioVision, USA) in 10 pg/ml mixed with donor
CAR-T cells at a 1:1 ratio in an RPMI 1640 medium
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supplemented with 10% FBS in a graft-versus-host
reaction (GvHR).

Mouse xenograft studies

The Nalmé6 tumor model established: 8~10-week-old NOG
mice line NOD. Cg-PrkdcscidIl2rgtm1Sug/JicCrl
(GemPharmatech, China) was transplanted intravenously with
5 x 10° Nalm6-Luc-GFP tumor cells in the tail vein. CAR-T cells
(2 x 10% activation for 9 days) were infused 3 days later.
Euthanasia was administered when necessary. In Figures 3F, G
and Figures S2E, F, tumors were established in NOG mice (n =3
per group) by the intravenous injection of 5 x 10> Nalm6- Luc-
GFP cells on day -3. Beginning on day 0, UCAR-T cells (2 x 10°)
were infused with a single injection. Ctrl-T cells were injected as
the control group. NK™'* was injected 6 h before UCAR-T
cell injection; the same volume of saline was injected into the T-
cell-only infusion groups. The ratio of NK™™'°: UCAR-T is 1:1
(by total cell count). All mice passed the qualifying quarantine a
week before the experiment was conducted. To evaluate the
development of xenogeneic graft-versus-host disease (GvHD),
T-cell infused mice were monitored at least three times a week
for clinical symptoms. In parallel, we have followed the proper
previous reports of the performance of xenograft GvHD in
mice (12).

Real-time PCR

Blood samples or the spleen and bone marrow were obtained
according to the trial procedure for CAR copy number detection.
Genomic DNA was extracted from the samples using a QIAamp
DNA Blood Mini Kit (Qiagen, Germany) and following the
protocol as per instructions. We applied SYBR and TaqgMan
probes for qPCR in an ABI QuantStudio (Thermo Fisher
Scientific). For CAR copy number detection, the TagMan
primers of forward 5'-CAGAAGAAGAAGAAGGAGGATGTG-
3" and reverse 5'- TACTCCTCTCTTCGTCCTAGATTG -3" were
used. The probe used was 5'-FAM- CTGAGAGTGAAGTTC-3'.
The TagMan method was performed in accordance with the
published protocol (10). PCBP2 was used as a control, and a
correction factor (CF) was generated to correct for the DNA copy
number. DNA samples from healthy donors were detected as
negative controls. A lower limit of quantification (LLOQ) of five
copies per microliter of genomic DNA was determined.

Total RNA was extracted from cells using the RNeasy Mini Plus
Kit (Qiagen, Germany) following the instructions and was reverse-
transcribed to cDNA by PrimeScript RT reagents (TaKaRa, Japan).
The following primers were used: NR4A3 forward 5-GCAAG
GGCTTTTTCAAGAGAACA-3" and reverse 5-TTTGG
AAGGCAGACGACCTC-3', EGR3 forward 5-TGCTATGA
CCGGCAAACTCG-3’" and reverse 5-CCGATGTCCATT
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ACATTCTCTGT-3', CD70 forward 5-GTCACTTGGGTG
GGACGTAG-3" and reverse 5-GATGGATACGTAGCTGCC
CC-3/, POLR2L forward 5-TACGCTGCTTCACTTGTGGC-3’
and reverse 5'-AGCGCATCCCCC TCGGT-3', ID2 forward 5'-
ATCCTGTCCTTGCAGGCTTC-3" and reverse 5-ACCGCTT
ATTCAGCCACACA-3’, FHL2 forward 5'-TCAGTG
CAAAAAGCCCATCAC-3" and reverse 5'-GCAGTAGG
CAAAGTCATCGC-3’, HSPA5 forward 5'-GGACCAC
CTACTCCTGCGTC-3" and reverse 5-TCAAAGACCGTGTTC
TCGGG-3'.

RNA-seq

Total RNA was extracted from cells using the RNeasy Mini
Plus Kit (Qiagen, Germany) on day 9 of activation, followed by
fragmentation into small pieces with a fragment buffer at an
appropriate temperature. The RNA library was constructed by
the MGIEasy RNA Directional Library Preparation Kit (MGI,
China) prior to standard quality control for sequencing via the
BGIseq500 platform (BGI, China). The fastq files were
preprocessed using fastp <0.23.1>, and gene alignments were
performed using the software sTAR <2.7.9a> to Human
GRCh38 (hg38); then, gene expression was calculated using
HTSeq software. Differential gene analysis was obtained by
DESeq2 < v1.4.5>, and the entry criteria for differential genes
was (padj < 0.1 and abs(log2FoldChange)>=1).

Statistical analysis

Statistical analyses were performed with GraphPad Prism 8.0
software using one-way ANOVA with Tukey’s correction for
multiple comparisons, paired or unpaired Student’s ¢-tests (two-
tailed), and the log-rank (Mantel-Cox) test as appropriate and
indicated in each figure. Significant differences were marked on
figure legends as *<0.05, **<0.01, **<0.001, and ***<0.0001.
Two biological replicates at least per experiment, each of which
has at least three technical replicates. Experiments with a single
biological replicate are in vivo experiments.

Results

Efficient generation of triple gene—edited
universal chimeric antigen receptor T
cell with CRISPR/Cas9

Off-the-shelf CAR-T cells using a gene-editing technique to
obtain TCR™® and/or HLA-I"® have been extensively reported
(13, 14), and relative clinical trials have been conducted (4, 5,
15). As a common gene cluster that mediates acute immune
rejection in organ transplantation (16, 17), HLA-II had not
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drawn sufficient attention in UCAR-T applications. This could
be attributed to the low basal expression level of HLA-II in
resting T cells. Nonetheless, we have noticed in our previous
human clinical studies that HLA-DR was highly presented in
autologous CAR-T cells for reinfusing (Figure S1A). Further
exploration revealed that the expression of HLA-DR molecules
increased along with the continued activation of T cells, rising up
to 90% on day 9 (Figure 1A). Considering this hazard, we aimed
to obtain a new UCAR-T cell by eliminating HLA-II, in addition
to the elimination of TCR and HLA-I, which was expected to be
more resistant to the rejection of the host (Figures S1B, C). The
CIITA is the master regulator of MHC II expression, which
could potentially lead to the accelerated rejection of infused
allogeneic T cells (18); CIITA disruption produced a high level of
HLA-II deficiency (7). Accordingly, a guide RNA (gRNA)
targeting the exon3 of the CIITA gene was designed
(Figure 1B). Based on our previously reported CD19-targeted
CAR (10), we further utilized sgRNA in complex with Cas9
protein (RNP), which was a newly emerging technique with less
cellular toxicity for industrial demands after plasmids and
viruses. RNP complexes were obtained by incubating sg-
TRAC, sg-B2M, and sg-CIITA with Cas9 protein at a molar
ratio of 1:1:1:3.

Compared with a continuous high expression of HLA-DR
on unedited activated CAR-T cells (Figure 1C), over 99% of the
CAR-T cells lost CD3, 99% lost HLA-I, and 98% lost HLA-II
(Figures S1D, E). We also excluded the potential effect of the
electroporation stimulus on the expression of HLA-II (Figure
S1F). The successful elimination of HLA-II on TUCAR-T was
further confirmed by continuing the low expression of HLA-II
upon T-cell activation (Figure 1C). The occurrence of insertions
or deletions (indels) in the targeting region of the CIITA gene
were established by clonal sequencing (Figure S1G).
Importantly, there was no predicted off-target events observed
in tested TUCAR-T cells (Table S1). The mixed lymphatic
reaction (MLR) assays were then performed by mixing
TUCAR-T donor cells and host PBMCs from allogeneic
healthy volunteers, and our data showed that TUCAR-T cells
did not induce detectable allogeneic rejection both in GvHR and
HvGR compared to unedited CAR-T (Figures 1D, E).

Triple gene—edited universal chimeric
antigen receptor T cell has comparable
antitumor efficacy with unedited
chimeric antigen receptor T cell in vivo
but exhibited less persistence

To test whether CRISPR/Cas9 gene editing would affect the
efficacy of CAR-T cells, CD19-specific cytotoxicity and the
corresponding interferon-gamma (IFN-y) secretion of
TUCAR-T cells were examined. The results showed that
TUCAR-T cells exhibited comparable cellular efficacy in
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was expressed continuously with the activation of T cells (n = 3). (B)

Schematic diagram of the designed sgRNA targeting the human CIITA. (C) HLA-DR gene expression monitoring in TUCAR-T and unedited CAR-T

cells with continued activation (n = 3). (D) (n = 3) and (E) (n = 3) Alloreactivi

ties between donor TUCAR-T cells and PBMCs from the allogeneic

donor were analyzed by the MLR assay. In GvHR, we showed the percentages of host PBMCs that died by rejection lysis (D). In HVGR, the cells in
the box represented host PBMCs proliferating from allogeneic CAR-T cell stimulation (E). All data represent the mean + SD with individual donors.
Statistical significance was determined using one-way ANOVA with Dunnett's correction for multiple comparisons (A), two-way ANOVA with Sidak's

correction for multiple comparisons (C), and two-tailed, paired or unpaired
(*), p<0.001 are indicated by 3 asterisks (***), p<0.0001 are indicated by 4 a

killing CD19" Nalmé6-Luc-GFP tumor cells to unedited CAR-T
cells ex vivo (Figure 2A). Both TUCAR-T and unedited CAR-T
were effective in controlling tumor growth within 3 weeks of
treatment for Nalmé6 tumor-bearing mice. However, TUCAR-T
failed to keep the effect afterward, while unedited CAR-T worked
much better (Figure 2B). Consistently, CAR-T cells were
undetectable in peripheral blood, the spleen, and bone marrow
in the TUCAR-T group but were persistent in the unedited
CAR-T group (Figure 2C). These results indicated that there was
still a certain gap in persistence between TUCAR-T and
unedited CAR-T cells.

A previous study had shown that TCR and HLA-I double-
edited UCAR-T (DUCAR-T) had comparable antitumor
efficacy with unedited CAR-T in vivo (14). We thus
wondered whether the compromised in vivo efficacy of
TUCAR-T cells could be due to the knockout of CIITA. To
test this conjecture, DUCAR-T cells were produced by the
electroporation transduction of the sg-TRAC and sg-B2M RNP
mixture. Both TUCAR-T and DUCAR-T showed robust tumor
cell lytic capacity and equivalent IFN-y secretion ex vivo
(Figure 2D). Furthermore, they showed equivalent antitumor
capability (Figure 2E), similar levels of the CAR copy number
in blood on dayl4 after CAR-T injection (Figure 2F), and
comparable survival rates in Nalmé tumor-bearing mice
(Figure 2G). All these demonstrated that knocking out
CIITA in addition to TRAC and B2M did not affect the
antitumor ability and persistence of CAR-T cells.
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Student'’s t-test (D, E). Significances of p<0.05 are indicated by 1 asterisk
sterisks (****),

Introduction of HLA-E into exogenous
HLA-E expressing triple gene—edited
universal chimeric antigen receptor T
cell avoided rejection from host NK cells

The recognition of HLA-I by receptors on the surface of NK
cells is an important mechanism of immune protection in
organisms (8). Therefore, the CD52 monoclonal antibody is
commonly adopted for lymphatic clearance prior to the infusion
of HLA-I eliminated UCAR-T in clinic to help TUCAR-T cells
escape from the rejection of host NK cells, while avoiding lymphatic
clearance with anti-CD52 antibodies, which has many adverse
effects in clinic. A fusion protein B2M and HLA-E, a non-
classical conservative member of HLA-I family, was exogenously
constructed to compensate for the elimination of HLA-I
(Figures 3A, B). Recently, Guo had reported that the introduction
of a mutated HLA-E or HLA-G in CAR-T cells along with HLA-I
deficiency could help to avoid such rejection (19). However, the
study failed to provide in vivo evidence to demonstrate its efficacy,
and the mutation design of HLA-E was neither uncovered (19).
Another report published excellent research in this area but only
directly demonstrated ex vivo that UCAR-T could resist NK
rejection effectively (20). In this study, we introduced mutants at
the signal peptide region of wild-type B2M in fusion protein B2M
and HLA-E to avoid recognition and cleavage by CRISPR-Cas9
targeting B2M. We confirmed that mutated HLA-E was successfully
coexpressed with CAR on the surface of cells (Figure 3C).
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TUCAR-T has comparable antitumor efficacy in vivo with unedited CAR-T cells but exhibited less persistency. (A) (Top) Cytotoxicity of CAR-T
and TUCAR-T cells was assessed by measuring the percentage of tumor cell lysis using the luciferase assay. (Bottom) IFN-vy release was
analyzed by ELISA (n=3). (B) BLI of mice receiving different treatments (n=5). (C) Peripheral blood, spleen, and bone marrow from Nalm6-
bearing NOG mice treated with different CAR-T cells were obtained on day 42 after CAR-T infusion for the presence of the copies of the CAR
transgene by RT-PCR (BBz) (TUCAR-T: n=5, CAR-T: n=3). (D) (Top) Cytotoxicity of DUCAR-T and TUCAR-T cells was assessed by measuring the
percentage of tumor cell lysis using the luciferase assay. (Bottom) IFN-vy release was analyzed by ELISA (n=3). (E), BLI from each group of mice
(n = 5). (F), Peripheral blood from Nalm6-bearing NOG mice treated were obtained on day 7 and 14 for the presence of copies of the CAR
transgene by and RT-PCR (BBz) after CAR-T cell injection (n = 5). (G), Survival curve of mice (n=5). All data represent the mean + SD. Statistical
significance was determined with two-tailed, unpaired Student’s t-test (C) and one-way ANOVA with Tukey's correction for multiple
comparisons (A, B, D, E, F), or the log-rank (Mantel-Cox) test (G). Significances of p<0.01 are indicated by 2 asterisks (**), p<0.001 are indicated

by 3 asterisks (***), p<0.0001 are indicated by 4 asterisks (****).

To verify the protective role played by the expression of HLA-E,
we used an armed NK that expresses membrane-bound IL15
(NK™P™%) 5 enhance the function of NK (Figures S2A-C) (21).
First, UCAR-T cells were cocultured with NK™™1°, Approximately
20% of TUCAR-T was lysed by NK™"'%, while the ETUCAR-T
expression of additional HLA-E was successfully escaped from
killing (Figure 3D). Furthermore, we assessed the tumor-killing
function of ETUCAR-T in the presence of NK™'° to emulate the
circumstances of CAR-T infused into patients. First, we confirmed
that the efficacy of TUCAR-T against Nalmé6 tumor cells was
significantly attenuated in the presence of NK™'°, Then, after
HLA-E was introduced, the antitumor efficacy of ETUCAR-T
remained and performed as well as unedited CAR-T and
exogenously introduced HLA-E CAR-T(ECAR-T) (Figure 3E).
Therefore, the expression of mutated HLA-E indeed endowed
UCAR-T with the ability to resist alloimmune rejection mediated
by NK. We then performed in vivo assessment by the coinfusion of
ETUCAR-T or TUCAR-T at a 1:1 ratio with NK™*™** into Nalmé
tumor-bearing mice. We demonstrated beforehand in the tumor
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model that NK ™"* did not exhibit a specific antitumor activity
(Figure S2D). Consistent with the ex vivo results, the antitumor
efficacy of ETUCAR-T-treated mice was maintained (Figures 3F,
S2E), while the antitumor efficacy of TUCAR-T-treated mice was
decreased significantly (Figures 3G, S2F). These findings indicated
that exogenously constructing an HLA-E could help UCAR-T cells
escape from the cell lysis of host NK and benefit for cell persistence
in vivo. Our data thus offer an additional possibility for universal
CAR clinical applications.

Multiple infusions of high dose of
exogenous HLA-E expressing triple
gene—edited universal chimeric antigen
receptor T cell could be used as a
clinical indication for dosing

Given that UCAR-T cells have an inferior clinical efficacy in
comparison to unedited autologous CAR-T, we then further tested
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whether we could overcome this disadvantage by increasing the
dosage and frequency of infusions in mice (Figure 4A).
Furthermore, the UCAR-T transfusion dose was tended as more
than three times the autologous CAR-T in clinical trials (1, 22).
Nalmé tumor-bearing mice were established by inoculating Nalmé6
and were treated with a single dose of ETUCAR-T or unedited
ECAR-T and a single high dose of ETUCAR-T"' or multiple high
doses of M-ETUCAR-T"P. Thereafter, peripheral blood was
collected every 7 days to detect the existence of CAR-T. As we
predicted, the increased dose and times of infusion significantly
enhanced the antitumor efficacy and prolonged the survival of
tumor-bearing mice (Figures 4B-D). More importantly, daily
observation and weight measurement showed that no accidental
death or obvious weight loss was observed in mice treated with a
repeated high dose of CAR-T (Figures 4E, S3). Thus, this indicated
that the dosage regimen was safe and effective for treatment.
Unfortunately, even though the M-ETUCAR-T"® exhibited
better antitumor efficacy, the mice suffered tumor recurrence on
day28, approximately 2 weeks after the last treatment (Figure 4C).
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p<0.0001 are indicated by 4 asterisks (****). Significance of p>0.05 are indicated by

This phenomenon was consistent with the absence of CAR-T cells
at this time point (Figure 4F). In contrast, the unedited ECAR-T
showed higher persistence accompanied by the significant weight
loss of mice (Figures 4E, F). In conclusion, these results
prospectively offered some useful information for the future
clinical application of off-the-shelf CAR-T cells. Aiming to
advance the clinical use of UCAR-T products and explore the
causes and solutions to the industry’s dilemma based on this
foundation, the data would serve as an important guideline for
clinical trials that need to be done in a short time to facilitate the
drug development process in a quicker manner.

T-cell receptor deficiency in universal
chimeric antigen receptor T cell is the
primary factor for the inferior efficacy

Other research has indicated that the antitumor efficacy of
CAR-T cells was correlated with viability, proliferative capacity,
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T-cell subset distribution, and the CD4/CD8 ratio and could be
represented by the expression of exhaustion markers (23-27).
Before comparing these indicators, we first excluded the effects
of electric shock operation on T cells by a comparative
experiment (Figure S4). We found that ETUCAR-T was
equivalent to unedited ECAR-T in the proliferative capacity
and distribution of cell subpopulations or cell exhaustion
(Figures 5A-F). In addition, representative data showed that
they had similar efficacy, which was demonstrated by tumor cell
lysis and IFN-vy secretion at different E/T ratios (Figure 5G).
With these results, neither the HLA-II deficiency nor the
CAR-T subset distribution reflected the key issue, which was
responsible for the inferiority of UCAR-T efficacy. To further
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unravel the crucial factor affecting the efficacy of UCAR-T, we
then focused on TCR and HLA-I, the other two genes eliminated
in UCAR-T. Despite the fact that the primary function of TCR
had been mimicked or replaced by our CAR gene, the
endogenous TCR was reported to be involved in many
important biological processes (28-32), and HLA-I has also
been proven to participate in a diverse range of ways in T cells
(31, 32). We thus performed a series of ex vivo and in vivo
comparative studies to explore the differences between the
individual or triplex gene-edited CAR-T cells and the unedited
CAR-T (Figure 5H). We firstly compared the ex vivo antitumor
capacity of CAR-T utilizing an exogenous construct of CD19"""
A549 by a real-time cell analysis (RTCA) system, which could
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classification criteria are as shown in Figure S4. (D, E), Proportion of CD4/CD8 T cells (n = 8). (F), Cell surface expression of exhaustion markers,
programmed cell death protein 1 (PD-1), lymphocyte activation gene-3 (LAG3), and T-cell immunoglobulin and mucin domain-containing
protein 3 (TIM-3) (n = 8). (G), Representative data of cell lysis (top) and IFN-y secretion (bottom) in different E/T ratios (n=3). All data represent
the mean + SD. Statistical significance was determined with two-tailed, unpaired Student's t-test. (H), Flow chart of the generation of UCAR-T
cells and the time nodes of other experiments. (I), Cytotoxicity of different UCAR-T cells was assessed by measuring the normalized cell index
using RTCA (n = 3). (J), Survival curve of mice (n = 4). (K), Peripheral blood and spleen from mice treated with CAR-T cells was obtained on day
30 for the presence of copies of the CAR transgene by RT-PCR (BBz) (top) and the Fluorescence-activated Cell Sorting (FACS) assay (CD45
(+)/CD3(+) CAR-T cells) (bottom). Data from two mice were shown. All data represent the mean + SD. Statistical significance was determined by
two-way ANOVA with Tukey's correction for multiple comparisons (A) or two-tailed, unpaired Student's t-test (C, E, F), log-rank (Mantel-Cox)
test (J), or one-way ANOVA with Tukey's correction for multiple comparisons (G, |, K)

provide a real-time and informative view of CAR-T killing
capacity continuously (33). The data showed that all tested
CAR-T exhibited robust and indistinguishable antitumor
efficacy ex vivo (Figure 5I). Next, we further explored their
therapeutic efficacy and CAR-T persistence in vivo. We found
that HLA-I or HLA-II elimination did not affect the antitumor
efficacy of CAR-T, and these groups showed the comparable
survival rate to the unedited CAR-T (Figure 5]). Of note, the
deficiency of TCR showed the worst therapeutic effect
(Figure 5]). In contrast, the CAR-T persistence result revealed
a different landscape. The HLA-II"® group showed a markedly
high number of CAR-T persistence in blood and spleen after 30
days of treatment, followed by the unedited group, and CAR-T
cells were undetectable in either the TCR"*® or HLA-I"® group
(Figure 5K). Collectively, the result suggested that the deficiency
of both TCR and HLA-I caused poor CAR-T persistence, but,
different from HLA-I, which did not impair the survival rate of

Frontiers in Immunology

31

treated mice, TCR deficiency was more likely the primary factor
leading to the inferior efficacy of UCAR-T.

Poor efficacy of universal chimeric
antigen receptor T cell is associated with
a unique transcriptional profile in the
absence of T-cell receptor

So far, targeting the TCR and HLA-I is the dominant scheme
of research on UCAR-T therapeutic strategies. However, the
corresponding change of the transcriptional profiles of gene
editing is little known. We thus explored the global
transcriptional profiles of TCR, HLA-I, or HLA-II deficiency T
cells as well as unedited control T cells from two independent
donors to investigate the key genes responding to the poor
efficacy of ETUCAR-T. Firstly, the overview of the differential
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gene expression profile hinted that, unlike TCR™® T, the
unedited Ctrl-T and HLA-II"°® T were much closer
(Figure 6A), which implied that HLA-II deficiency had less
impact on T cells compared to the other two genes.
Furthermore, we verified the dramatic downregulation of
gene-editing related genes, including TCR spliceosomes in
TCR"® T and B2M in HLA-I"*® T, as well as HLA-II isoforms
or its invariant peptide chain CD74 in HLA-II"*® T, respectively,
and all of them in ETUCAR-T. Of note, previous studies have
shown that NR4A3 and EGR3 are critical in T-cell survival and
differentiation (34-39), but they both showed obvious
downregulation in TCR"™® T compared to the others
(Figures 6A, B). These findings may explain the poor in vivo
efficacy of both TCR™® CAR-T and TUCAR-T, compared to
unedited CAR-T (Figures 5], K). Considering the outstanding
performance of the in vivo persistence of HLA-II"® CAR-T, we
analyzed the differences between HLA-II"*® T and others. We
interestingly found that CD70 and POLR2L were significantly
upregulated in the HLA-II"® group (Figures 6A, C). CD70 has
been known to positively regulate T-cell proliferation (40),
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whereas the upregulation of POLR2L could also promote T-
cell expansion (41). Together, the upregulation of them may
facilitate the proliferation and persistence of HLA-I["*® CAR-T
in vivo. Additionally, we noticed that both genes in HLA-I"®
were consistent with their TCR", which might be related to
undetectable CAR-T persistence in HLA-1"® (Figure 6A).

To explore the comprehensive impact on genes edited in
ETUCAR-T, we further analyzed the altered transcriptional
profiles compared with CAR-T expressing HLA-E alone. There
were 209 upregulated and 244 downregulated genes in
ETUCAR-T (Figures 6D, E). Moreover, we found a subset of
significantly upregulated genes involved in controlling cellular
functions, including the negative regulation of cell proliferation
such as ID2, LATS2, and PTCHI; the negative regulation of
transcription including FHL2, the positive regulation of cell
proliferation such as PRKCZ and ERBB3; and the positive
regulation of glycolytic processes as PFKFB2 (Figures 6F, G).
These genes may collectively result in the weakened persistence
of ETUCAR-T cells in vivo. We also compared the gene panel of
ETUCAR-T with TUCAR-T to further to investigate the effects
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Poor efficacy of ETUCAR-T cells is associated with a unique transcriptional profile. (A), Differential expression gene among Ctrl-T cell
transduction with Cas9 protein, TCR™9 T, HLA-I"®9 T, and HLA-11"®9 T cells was analyzed by RNA sequencing. Heat map of differential
expression gene between Ctrl-T and single-gene-deficiency T cells (n = 2). (B, C, G), RT-PCR results for analyzing the expression of
representative differential expression genes in T cells (n = 3). (D), Volcano diagram of differential expression genes of ETUCAR-T cells compared
with unedited ECAR-T cells (n = 2). (E), Downregulation expression genes between ECAR-T transduction with Cas9 protein and ETUCAR-T cells
were analyzed by RNA sequencing (n = 2). (F), Upregulation expression genes between ECAR-T transduction with Cas9 protein and ETUCAR-T
cells were analyzed by RNA sequencing (n = 2). Data represent the mean + SD. Statistical significance was determined with two-tailed,
unpaired Student'’s t-test. Cells were collected after being activated for 9 days. Differential gene entry criteria were (padj < 0.1 and abs

(log2FoldChange)> 1).
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of expressing HLA-E and got a similar transcriptional pattern
(Figure S5). This suggested that the expression of HLA-E was
safe and HLA-E was not the crucial factor for the impaired
function of CAR-T. In the summary of these results, the
simultaneous editing of all three genes on T cells produced a
double-edged result, which reminded us that what we have seen
through our experiments was only the tip of the iceberg of the
effects of gene editing, and additional information needs to be
further explored in-depth. Briefly, these results highlighted the
necessity of identifying the potential safety risks of the multiple
impacts produced by gene deficiencies when utilizing gene-
edited cells as therapeutic transplants in the future.

Discussion

Allogeneic universal CAR-T therapy has been continuously
researched and explored for the benefit of cancer patients who
failed to meet the criteria of traditional autologous CAR-T (2).
However, the clinical results of universal CAR-T-cell therapy did
not reach a parallel level to the autologous CAR-T therapy (4, 5,
15). Currently, the recognized contributors of the struggle for the
field have been focusing on poor UCAR-T expansion and
survivability in vivo (4).

It is known that the risk of HvGR and GvHR in allografts is a
key determinant of success, and HLA matching is an important
consideration in assessing these risks. Up to now, clinical
regimens pay main attention to the elimination of HLA-I,
whereas HLA-II was neglected. Herein, we designed a novel
universal CAR-T cell called ETUCAR-T, which is designed using
CRISPR/Cas9 to eliminate TCR, HLA-I, and HLA-II and
incorporates exogenous expression of HLA-E simultaneously.
On one hand, ETUCAR-T was more tolerant to host rejection
owing to the absence of main MHC molecules. On the other
hand, the presentation of HLA-E could assist them to escape the
recognition and lysis from allogeneic NK. Multiple infusions of
high-dose ETUCAR-T cells in tumor-bearing mice showed no
obvious safety issue, suggesting that this regimen was relatively
safe and feasible. It was noteworthy that on the research journey
of UCAR-T, for the first time, we found that the critical factor for
the poor efficacy was the TCR deficiency, and we also found that
the HLA-II-knockout improved the persistence of CAR-T in
vivo. We also revealed the possible key molecules with the RNA-
seq analysis of the individual or comprehensive impact of these
edited genes.

On the other hand, in this article, no significant difference in
antitumor efficacy or T-cell persistence ex vivo and in vivo were
found between reported DUCAR-T and our TUCAR-T, which
had the additional elimination of HLA-II (Figure 2F).
Intriguingly, we found that HLA-II"® CAR-T cells showed
superior efficacy and well persistence in vivo than TCR"™® or
HLA-1"® CAR-T (Figure 5). Beyond that, the whole
transcriptional profile of HLA-II"®® T cells is much more
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similar with unedited Ctrl-T cells (Figure 6A). Again, these
results supported the necessity and feasibility of HLA-II
elimination. It has been suggested that HLA-II expression on
T cells could mediate apoptosis through a variety of intracellular
signaling pathways (42). Owing to the highly polymorphic
characteristics of the HLA-II gene, it was a relatively feasible
way to obtain HLA-II-deficient cells by the knockout of CIITA.
In addition, previous studies indicated that the DNA
methylation of CIITA promoter III in T cells had a great
potential for HLA-II deficiency (42), which may bring a new
choice for HLA-II elimination. Furthermore, we verified the
necessity of HLA-E presence for UCAR-T cells in resisting
rejection by allogeneic NK cells both ex vivo and in vivo.
Nonetheless, subsequent clinical trials are essential to validate
the role of the exogenous expression of mutant HLA-E in
UCAR-T therapy.

With a similar RNP gene-editing scheme, we have
successfully produced CDI19-targeting UCAR-T cells that
could be applied to at least 10 patients by our clinical
manufacturing methods. With the rapid development of RNA
vaccines in recent years, the large-scale production of RNA has
become more sophisticated; thus, this may further support the
wide usage of RNP-based gene-editing strategies. Equally
important, the data from allogeneic rejection tests and the
evaluations of high-dose antitumor infusion demonstrated that
simultaneously editing three genes was still safe and feasible.
Some researchers in industry now begin to engage in this
practice, and our data could provide some support in this area.
There is also a trend in the field to conduct gene editing by
transducing a single RNA consisting of multiple sgRNAs or
siRNAs in a tandem fashion. In addition, the production of RNP
complexes manufactured directly by bacteria may become an
industry trend (43). However, we should mention that the safety
of gene-editing technology remains highly controversial (44).
Currently, we have difficulty in claiming whether a large number
of gene transcriptional profile changes (Figure 6) are caused by
gene editing itself or the genes being edited, and whether it is a
superimposed effect of both. The two early-starting UCAR-T
teams have been urgently suspended by the FDA for safety issues
like the occurrence of a clinically lethal event and a report of a
chromosomal abnormality in a patient, respectively. These
reminded us that more far-reaching impacts caused by gene
editing in UCAR-T therapies should be explored in-depth
to uncover.

It is well known that endogenous TCR is non-essential for
CAR function exertion in CAR-T therapy; nonetheless, in almost
all UCAR-T studies reported to date, it has been eliminated by
gene editing as a key gene involved in GvHR. Previously
published reports barely investigated the irreversible effects of
TCR deficiency on T cells; the statements reported to date were
in dispute (28, 45). In contrast to Yang (28), as with Stenger (45),
our study found that the TCR deficiency contributed to the poor
survivability of CAR-T cells, and the lack of effectors would
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result in the failure of effectively controlling the tumor in vivo. It
should be noted that the role of TCR deficiency on T-cell
persistence might be amplified in a mice model. It had been
reported that human TCR could cross-react with MHC
molecules in mice, to which T-cell expansion and persistence
may benefit (46). We indeed found that some of the mice
receiving unedited CAR-T cells developed xenogeneic GvHD
at the experiment endpoint. We thus could not exclude the
possibility that the inferior persistence of TCR editing CAR-T
was a consequence of the elimination of such cross-reaction
from mice. Accordingly, better applicable models are needed for
the evaluation of treatment efficacy in future studies.

With further exploration, TCR deficiency was found to lead
to significant transcriptional profile changes, including the
downregulation of NR4A3 and EGR3. NR4A3 is a member of
the nuclear receptor subfamily 4, which has been identified as a
downstream gene of TCR signaling (34). Previous studies have
reported that the NR4A family is essential for maintaining
immune homeostasis (36), and NR4A3 regulates Treg cell
development (35). EGR3 is a member of the zinc-finger
transcription factor in the early growth response gene family
that is involved in the development of T cells (37). Previous
findings suggested that the EGR3 gene defect in mice accelerated
T-cell death as it is involved in the regulation of T-cell antigen
recognition (39). Moreover, it has been shown that the lack of
EGR2 and EGR3 in lymphocytes led to a fatal autoimmune
syndrome and decreased the proliferation of antigen receptor-
induced B and T cells (38). For the next investigations, we will
systematically validate the functions of these genes to further
elucidate the molecular mechanisms involved and reassess the
safety risks of gene editing in future studies.

In summary, we have constructed a more effective UCAR-T
and provided some new insights into the gene editing of off-the-
shelf UCAR-T therapy. Current research on UCAR-T therapy
mainly focuses on hematological tumors, such as targeting
CD19, CD20, and BCMA while it focuses less on solid tumors,
such as targeting NKG2DL and GD2 (2). Actually, UCAR-T
would have great advantages in treatment of other diseases that
only require short-term effects, such as systemic lupus
erythematosus and cardiac disease (47, 48). Joel et al.
developed a CAR-T cell for the generation of transient
antifibrosis by the lipid nanoparticle (LNP) delivery of CAR’s
mRNA in vivo and showed that treatment with modified
mRNA-targeted LNPs reduced fibrosis and restored cardiac
function after injury (48). Comparing the early stage of the in
vivo manufacture of CAR-T, we believe that UCAR-T could
serve the same purpose in the treatment of such diseases. In the
flood of UCAR-T against tumors, what we need to do first is to
address the poor persistence of UCAR-T, pay attention to the
safety risks, and struggle on the development of safe and effective
clinical application regimens. We have obtained some hints from
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RNA-Seq analysis, and with this information, we intend to
explore the manifestations of immune rejection-related genes’
absence in the signal pathway of T-cell proliferation and
apoptosis. Next, we need to determine the effects of gene
editing using CRISPR/Cas9 on cells by comparing the
knockout of other genes that are irrelevant to T-cell immune
rejection. Additionally, to avoid safety issues that gene editing
may bring, we have also focused on non-editing methods for
UCAR preparation to acquire inspiration for developing more
safe and effective products. For instance, taking advantage of
induced pluripotent stem cells, CAR-T can be generated from
genomic background-defined clones to overcome the safety
issues of gene editing (49). More interestingly, a recent study
has successfully prepared universal CAR-T cells by utilizing the
mechanism where HIV-1-infected host cells evaded the host
immune response by regulating membrane trafficking and
achieved the downregulation of MHC-I (50); a combination
almost perfectly illustrates the wonders of the life sciences. Up to
now, most of the studies in the UCAR industry have been
devoted to the development of new products, ignoring the
potential pitfalls of gene editing and the genes being edited
themselves. In the principle of safety first, we need to pay more
attention to mechanism studies, which are indispensable for
collaboratively driving the clinical application of the off-the-shelf
CAR-T industry.
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Serious adverse events and
coping strategies of CAR-T
cells in the treatment of
malignant tumors

Xiujin Chen, Peng Li, Bin Tian and Xin Kang*

Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi‘an, China

Chimeric antigen receptor T (CAR-T) cells technology has been successfully
used in the treatment of B cell-derived hematological tumors and multiple
myeloma. CAR-T cells are also being studied in a variety of solid tumors.
Current clinical reports on CAR-T cells in the treatment of malignant tumors
are abundant. The tumor-killing activity of CAR-T cells and the unique adverse
effects of CAR-T cells have been confirmed by many studies. There is evidence
that serious adverse events can be life-threatening. CAR-T cells therapy is
increasingly used in clinical settings, so it is important to pay attention to its
serious adverse events. In this review, we summarized the serious adverse
events of CAR-T cells in the treatment of malignant tumors by reading
literature and searching relevant clinical studies, and discussed the
management and treatment of serious adverse events in an effort to provide
theoretical support for clinicians who deal with such patients.

KEYWORDS

CAR-T, serious adverse events, lymphoma, leukemia, multiple myeloma, solid tumor,
CRS, ICANS

1 Introduction

Immunotherapy has become a mainstay of cancer treatment, in addition to standard
surgery, chemotherapy and radiation (1). The discovery of tumor-mediated
immunosuppression and its relationship to malignant tumor progression laid the
foundation for the application of T cells therapy strategies (2). Thus, gene-edited T cells
immunotherapy has been rapidly developed in recent years. Chimeric antigen receptor T
cells (CAR-T) are genetically reprogrammed T cells that express antibody fragments that
bind specifically to tumor-surface antigens (3). The mechanism of tumor killing is that
CAR-T cells bind to tumor antigens and induce a potent antitumor immune response (4,
5). Recently, CD19-targeting CAR-T cells have shown significant efficacy in patients with
relapsed/refractory (R/R) CD19+ B cell malignancies (6-10). Targeting BCMA or CD22
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CAR-T cells has also demonstrated potent antitumor activity in
clinical studies of multiple myeloma and acute lymphoblastic
leukemia (11-15). Moreover, CAR-T cells are being studied in
solid tumors, although they have shown limited efficacy so far
(16-21).

Immune system activation-related toxicities have been shown
in clinical studies involving CAR-T cells (22). The toxic symptoms
experienced after CAR-T cells therapy are mainly caused by
cytokine release syndrome (CRS) and immune effector cell
associated neurotoxicity (ICANS) (23). Currently, although the
safety profile of CAR-T cells therapy is generally acceptable, the
incidence of serious adverse events (SAEs) is high among clinical
trials using CAR-T cells (24-26). Therefore, it is crucial to
systematically evaluate the toxicity characteristics and life-
threatening potential of CAR-T cells therapies. In this article, we
downloaded CAR-T cells related clinical study data from the
Clinical Trials Database (www.clinicaltrials.gov). In combination
with published clinical studies, the clinical manifestations of SAEs
of CAR-T cells in the treatment of solid and hematological tumors
were summarized. Finally, the management and treatment
measures of SAEs were discussed to lay a theoretical foundation
for the better application of CAR-T cells in clinical practice.

2 Clinical presentation of SAEs
associated with CAR-T cells therapy

Clinicians should be aware of the serious and potentially
fatal toxicity associated with CAR-T cells therapy, although they
hold promise for the treatment of certain cancers (27). In this
study, 24 clinical studies (1208 cases) in hematological tumors
and 7 clinical studies (92 cases) in solid tumors were
downloaded from the clinical trial database (www.clinicaltrials.
gov), and the trial results data were available for all the
downloaded clinical studies (Table 1-4). In addition, the data
of SAEs from the included clinical studies were analyzed, and the
occurrence of SAEs in the treatment of malignant tumors with
CAR-T cells was systematically summarized in combination
with the relevant published literature. Numerous clinical
studies have shown that CAR-T cells can cause SAEs in the
treatment of both hematological and solid tumors (Figure 1).
The SAEs can affect any organ system of the body, and can
develop into multiple organ failure in severe cases,
endangering life.

2.1 SAEs of CAR-T cells in the treatment
of hematological tumors
2.1.1 Immune system toxicities

This study found that 141 patients (11.67%) had immune
system SAEs, and the incidence of SAEs from high to low was
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the CRS (137 cases), graft versus host disease (2 cases), etc
(Table 2). As a result of the high production of cytokines during
CAR-T cells therapy, CRS is the most common SAEs of immune
system (28). It was found that 128 cytokines may be closely
related to CRS, among which IL6, IFN-y, TNF-a, ICAM-1,
VCAM-1, VEGFA and other important factors may be the key
factors to predict CRS (29). Additionally, it causes SAEs
throughout the body in a variety of systems (30). Cytokines
are a double-edged sword in the process of CAR-T cells therapy,
which can stimulate immune cells to kill tumor cells while also
causing damage to normal organs of the body (31, 32).

Z. Ying et al. (33)conducted a meta-analysis involving 27
studies (1687 patients) to evaluate the safety of CD19-targeted
CAR-T cells in patients with diffuse large B-cell lymphoma
(DLBCL). Severe CRS and severe neurotoxicity were found in
6% (95%CI: 3-10%) and 16% (95%CI: 10-24%), respectively.
Moreover, studies have shown that neurological SAEs are
associated with CRS (34, 35). This suggests that CRS may
contribute to neurological adverse events. Furthermore, M.
Shao et al. (36) retrospectively analyzed the adverse events of
37 R/R MM patients treated with BCMA-targeted CAR-T cells.
All of the 37 patients had CRS, and 34 (91%) had at least one
coagulation parameter abnormality. The values of coagulation
parameters were positively correlated with the severity of CRS, as
well as with the levels of cytokines such as IL-6, IL-10 and IFN-y.
The findings suggest that these factors may play an important
role in CRS-related coagulopathy as well as a connection
between coagulopathy and CRS. In addition, J. Zhou et al. (37)
retrospectively analyzed 133 patients with R/R lymphoma who
received CAR-T cells therapy. Studies have found that severe
neutropenia, anemia, and thrombocytopenia frequently occur
after CAR-T cells infusion. Further studies found that both
neutropenia and severe thrombocytopenia in severe patients
were associated with the incidence of CRS and the levels of
associated inflammatory factors. The above studies all reflect
that CRS is an adverse events and a initiating factor causing
various SAEs.

2.1.2 Nervous system toxicities

In this study, 244 patients (20.20%) developed nervous
system SAEs. The incidence of clinical symptoms from high to
low was encephalopathy (94 cases), speech impairment (33
cases), seizure (24 cases), somnolence (20 cases), confusion (11
cases), syncope (8 cases), and brain oedema (8 cases), headache
(8 cases), etc (Table 2). The most common life-threatening
neurological adverse event is encephalopathy, probably due to
the significant effects of CAR-T cells on cerebral vessels.
Secondly, the high incidence of severe speech complications
found in this study suggests that the language center may also be
an easy target for CAR-T cells. Seizures are also very common,
indicating that CAR-T cells disrupt brain neuronal
electrical activity.
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TABLE 1 The incidence of clinically serious adverse events of CAR-T in hematological tumors.

NCT Conditions  Interventions Characteristics countrys Adverse Enrollment  All-
Number event Cause
assessment Mortality
criteria (n/Total)
NCT03958656 Myeloma;Multiple  Anti-Signaling; Phase 1 United CTCAE v5.0 10 0/10
Myeloma lymphocytic States
activation
molecule F7
(SLAME?);
chimeric antigen
receptor(CAR) T
cells
NCT03287804 Multiple Myeloma ~ AUTO2 Phase 1 United CTCAE v4.0 11 8/11
Phase 2 Kingdom
NCT03289455 B-cell Acute AUTO3 Phase 1 United CTCAE v5.0 15 9/15
Lymphoblastic (CD19/22 CAR-T Phase 2 Kingdom
Leukemia cells
NCT00924326 Primary Anti-CD19-CAR- Phase 1 United CTCAE 3.0 46 2/46
Mediastinal B-cell T cells Phase 2 States
Lymphoma;
Diftuse, Large B-
cell; Lymphoma
NCT03019055 Lymphoma;Non- CAR-20/19- Phase 1 United CTCAE v4.0 22 0/22
Hodgkin, T cells States
Lymphoma, B-Cell;
Small Lymphocytic
Lymphoma
NCT02659943 Lymphoma;B-Cell,  Anti-CD19-CAR- Phase 1 United CTCAE v5.0 21 0/21
Lymphoma, Non- T cells States
hodgkins
NCT02794246 Multiple Myeloma  Anti-CD19-CAR- Phase 2 United CTCAE v4.03 6 0/6
T cells States
NCT01747486 Relapsed or Anti-CD19-CAR-  Phase 2 United CTCAE v4.0 42 12/42
Refractory CLL or T cells States
SLL
NCT02215967 Myeloma-Multiple ~ Anti- BCMA- Phase 1 United CTCAE 4.0 26 0/26
Myeloma CAR-T cells States
NCT02535364 Acute Anti-CD19-CAR-  Phase 2 United CTCAE v4.0 38 24/38
Lymphoblastic T cells States
Leukemia
NCT01593696 B Cell Lymphoma,  Anti-CD19-CAR- Phase 1 United CTCAE v4.0 53 29/53
Leukemia T cells States
NCT01593696 Recurrent Plasma ~ BCMA CAR-T Phase 1 United CTCAE v4.0 25 7125
Cell Myeloma Cells States
NCT01593696 Lymphoma; Anti-CD30 CAR- Phase 1 United CTCAE v5.0 22 0/22
Lymphoma, Large T Cells States
B-Cell, Diffuse;
Lymphoma,
Extranodal NK-T
Cell;Lymphoma, T-
Cell,Peripheral
NCT03318861 Relapsed/Refractory BCMA-CAR-T Phase 1 United CTCAE v 4.03 14 7/14
Multiple Myeloma  cells(KITE-585) States
NCT01593696 ALL;B Cell Anti-CD19-CAR- Phase 1 United CTCAE v 4.0 53 29/53
Lymphoma; T cells States

Leukemia;Large
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Serious
adverse
events
(n/
Total)

3/10

6/11

6/15

29/46

22/22

17/21

2/6

32/42

13/26

23/38

14/53
21/25

10/22

1/14

14/53

10.3389/fimmu.2022.1079181

Other
(Not
Including
Serious)
Adverse
Events(n/
Total)

10/10

11/11

15/15

46/46

22/22

21/21

1/6

35/42

26/26

38/38

53/53
25/25

22/22

14/14

53/53

(Continued)
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TABLE 1 Continued

10.3389/fimmu.2022.1079181

NCT Conditions  Interventions Characteristics countrys Adverse Enrollment  All- Serious  Other
Number event Cause  adverse (Not
assessment Mortality events Including
criteria (n/Total) (n/ Serious)
Total)  Adverse
Events(n/
Total)
CellLymphoma;
Non-Hodgkin
Lymphoma
NCT03624036 Relapsed/Refractory Anti-CD19-CAR- Phase 1 United CTCAE v 5.0 16 3/16 7/16 16/16
Chronic T cells(KTE-X19) States
Lymphocytic
Leukemia and
Relapsed/
Refractory Small
Lymphocytic
Lymphoma
NCT02030847 Patients With B CD19-CAR-T Phase 2 United CTCAE v 4.0 30 30/30 30/30 30/30
Cell ALL, Relapsed States
or Refractory
NCT02614066 Relapsed/Refractory Anti-CD19 CAR- Phase 1 United CTCAE v 4.0 125 65/125 80/125 125/125
Bprecursor Acute T Cells Phase 2 States
Lymphoblastic
Leukemia
NCT03761056 B-cell Lymphoma anti-CD19 CAR-  Phase 2 United CTCAE v5.0 40 6/40 18/40 40/40
T States,
Australia
and France
NCTO01865617 Recurrent Adult anti-CD19 CAR-  Phase 1 United CTCAE v 4.0 197 115/197 189/197 196/197
Acute T Phase 2 States
Lymphoblastic
Leukemia;Recurrent
Chronic
Lymphocytic
Leukemia;Recurrent
Diffuse Large B-
Cell Lymphoma
Recurrent Mantle
Cell Lymphoma
NCT02348216 B-Cell Lymphoma;  anti-CD19 CAR-  Phase 1 United CTCAE v 4.0 292 115/292 153/292 292/292
Transformed T Phase 2 States
Follicular
Lymphoma (TFL)
NCT02926833 Refractory Diffuse  anti-CD19 CAR-  Phase 1 United CTCAE v 4.0 34 11/34 23/34 34/34
Large B Cell T Phase 2 States
Lymphoma
NCT02706405 B Cell Lymphoma  anti-CD19 CAR-  Phase 1 United CTCAE v 4.03 29 13/29 19/29 29/29
T States
NCT03568461 Follicular anti-CD19 CAR-  Phase 2 United CTCAE v 4.03 97 7/97 42/97 94/97
Lymphoma T States

All clinicaltrials can be downloaded from www.clinicaltrials.gov (accessed October 02, 2022).

Neurotoxicity caused by CAR-T cells, also known as ICANS,
is the primary cause of these complications (38). Similarly,
studies have demonstrated that the most common ICANS
with CAR-T cells include encephalopathy, headache, tremor,
dizziness, aphasia, delirium, insomnia, and anxiety (39, 40). L. Lv
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et al. (41)explored the safety of CAR-T cells for central nervous
system lymphoma (CNSL). A total of 63 patients were included
in 8 studies in the meta-analysis, and the incidence of grade 3 or
above neurotoxicity was found to be 12%. Besides, A. Gajra et al.
(42) investigated adverse neurologic events associated with
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TABLE 2 Summary of clinical serious adverse events of CAR-T in hematological tumors(Patients Number/symptom).

NCT General Infections and Cardiac Nervous system Immune Blood and Respiratory, Gastrointestinal Vascular
Number complications  infestations complications complications system lymphatic thoracic and  complications complications
(Patients complications system mediastinal
Number) complications complications
NCT03287804  2/Pyrexia 1/Lung infection 1/Acute myocardial 1/Hedache 1/Dyspnoea
1) infarction
NCT03289455  1/Pyrexia 1/Cellulitis 1/Encephalopathy;1/Seizure 3/Anaemia;3/
(15) Neutropenia; 3/
Thrombocytopenia;2/
Febrile neutropenia
NCT00924326  3/Fever 1/Pneumonia 2/Arrhythmia. 12/Speech impairment; 10/ 6/Febrile 4/Hypoxia; 1/Colitis;2/Dysphagia  5/Hypotension;2/
(46) Supraventricular Confusion; 9/Somnolence, neutropenia; 2/Dyspnea Thrombosis
tachycardia;1/ depressed level of consciousness; 1/Lymphopenia
Supraventricular and 4/Neuropathy,motor; 2/Seizure; 2/
nodal arrhythmia;1/ Ataxia;2/Cognitive disturbance; 1/
Atrial fibrillation;1/Left CNS cerebrovascular ischemia;1/
ventricular systolic Encephalopathy
dysfunction
NCT03338972  11/fever 1/lung infection;1/ 1/CRS 8/febrile neutropenia; 1/nausea I:hypotension
(25) upper respiratory 2/neutropenic fever
infection
NCT02535364 1/Asthenia; 2/Sepsis;1/ 1/Atrial fibrillation; 8/Encephalopathy; 5/Brain 8/CRS 1/Febrile neutropenia 1/Neutropenic
(38) 1/Pyrexia Bacteraemia 1/Myocardial infarction oedema; 2/Seizure colitis;1/Abdominal
pain
NCT03049449  2/Fever 3/Sepsis 3/Sinus tachycardia 1/Encephalopathy 1/Anemia 1/Dyspnea; 1/Diarrhea; 4/Hypotension
(22) 1/Hypoxia 1/Nausea
NCT03318861  1/Chest pain 1/Hypoxia
(14)
NCT01593696 3/Fever 3/Sinus tachycardia;2/ 4/Nervous system complications; ~ 9/CRS 2/Hypoxia; 2/Hypotension;1/
(53) Left ventricular systolic ~ 2/Seizure; 1/Dysphasia; 1/ 1/Pulmonary Hypertension
dysfunction; Headache; 1/Hydrocephalus; edema;
1/Cardiac arrest; 1/Somnolence 1/Respiratory
1/Heart failure failure
NCT03624036  2/Pyrexia; 1/Sepsis; 1/Systemic ~ 1/Tachycardia 1/Aphasia; 1/Confusional state 4/CRS 1/Abdominal pain 3/Hypotension;1/
(16) 1/Malaise candida Embolism
NCT02030847 3/Sepsis;2/ 1/Haemorrhage intracranial; 1/ 21/CRS 1/Febrile neutropenia 1/Hypoxia 1/Constipation
(30) Pneumonia;1/ Headache;1/Seizure
Meningitis;1/
Staphylococcal
infection
(Continued)
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TABLE 2 Continued

NCT
Number
(Patients
Number)

NCT02614066
(125)

NCT03019055
(22)

NCT03761056
(40)

NCT01865617
(195)

NCT02659943
@n

NCT02348216
(292)

NCT02926833
(34)

General

complications

20/Pyrexia;2:
Fatigue; 1:Chills;
1:Multiple organ
dysfunction
syndrome;1:Face
oedema

1/Fever;1/Multi-
organ failure

3/Pyrexia;2/Non-
cardiac chest pain

17/Fever;3/Multi-
organ failure

1/Fever

25/Pyrexia

3/Pyrexia;1/
Multiple organ
dysfunction
syndrome;1/
Localised oedema

Infections and
infestations

9/Bacteraemia;7/
Sepsis;6/
Pneumonia;1/
Cellulitis

1/Upper respiratory
infection

3/infection;1/Covid-
19;1/Covid-19
pneumonia;1/
Cytomegalovirus
infection
reactivation

9/Infections and
infestations-Other,
specify;6/Lung
infection; 3/Sepsis

1/Lung infection

7/Lung infection; 3/
Bacteraemia;2/
Adenovirus
infection;2/Covid-19;
1/Covid-19
pneumonia

1/Lung infection;
1/Sepsis

Cardiac
complications

9/tachycardia;1/
Cardiomyopathy

1/Atrial fibrillation; 1/
Sinus bradycardia; 1/
Supraventricular
tachycardia

3/Atrial fibrillation; 3/
Sinus tachycardia; 2/
Cardiac arrest; 2/Heart
failure;

2/Left ventricular
systolic dysfunction

1/Cardiac arrest;
1/Sinus tachycardia

4/Atrial fibrillation; 4/
Cardiac arrest; 2/Atrial
flutter; 2/Cardiac
failure

1/Supraventricular
tachycardia

Nervous system
complications

15/Encephalopathy;7/Aphasia;5/
Seizure;2/Cerebrovascular
accident;1/Immune effector cell-
associated neurotoxicity
syndrome;1/Brain oedema; 1/
Facial paralysis 1/Headache

1/Nervous system complications -
Other, specify

5/Encephalopathy;1/
Neurotoxicity;1/Dysarthria;1/
Memory impairment; 1/
Haemorrhage intracranial

18/Encephalopathy;4/Seizure; 4/
Depressed level of
consciousness;2/Edema
cerebral;2/Nervous system
complications;1/Dysphasia

3/Syncope;1/Encephalopathy;1/
Tremor

29/Encephalopathy;10/Aphasia;8/
Somnolence;5/Seizure;3/
Headache;3/Syncope;2/Depressed
level of consciousness; 2/
Haemorrhage intracranial; 1/
Immune effector cell-associated
neurotoxicity syndrome;

10/Encephalopathy;2/Seizure;1/
Aphasia

42

Immune
system
complications

1/Drug
hypersensitivity;1/
Graft versus host
disease;

5/CRS

41/CRS

1/
Haemophagocytic

lymphohistiocytosis

Blood and
lymphatic
system
complications

6/Febrile
neutropenia;
2/Pancytopenia;2/
Disseminated
intravascular
coagulation;
1/Cytopenia;
1/Neutropenia
4/Blood and
lymphatic system
complications;
1/Febrile neutropenia

1/Anaemia;1/
Neutropenia

132/Febrile
neutropenia;
2/Disseminated
intravascular
coagulation;

1/Anemia;1/
Neutrophil count
decreased

12/Febrile
neutropenia;
5/Neutropenia;5/
Pancytopenia;2/
Thrombocytopenia;
2/Bone marrow
failure

2/Anaemia;1/

Neutropenia;1/
Febrile neutropenia

Respiratory,

thoracic and
mediastinal
complications

13/Hypoxia;5:
Respiratory
failure; 4:ARDS;3/
Dyspnoea;1/
Pulmonary
embolism

1/Pleural effusion;
1/Pneumonitis

1/Acute
pulmonary
oedema

8/Respiratory
failure;6/
Hypoxia;3/Pleural
effusion; 3/
Pulmonary
edema;2/ARDS;1/
Dyspnea
3/Hypoxia

7/Hypoxia;2/
Acute respiratory
failure;

2/Pleural effusion

3/Hypoxia;1/
Respiratory
failure; 1/Pleural
effusion

Gastrointestinal
complications

2/Colitis;2/Ileus;1/
Diarrhoea;1/Gastritis

1/Diarrhea

1/Abdominal pain

2/Abdominal pain;2/
Nausea

2/Diarrhea;1/
Abdominal pain; 1/
Tleus

3/Abdominal pain;3/
Pancreatitis;2/
Dysphagia

1/Abdominal pain;1/
Diarrhoea;1/
Obstruction gastric

Vascular
complications

31/Hypotension;1/
Hypertension;1/
Shock

1/Hypertension;1/
Hypotension

34/Hypotension

6/Hypotension

13/Hypotension

2/Hypotension

(Continued)
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TABLE 2 Continued

NCT General Infections and Cardiac Nervous system
Number complications  infestations complications complications
(Patients
Number)
NCT02215967 2/Fever 2/Lung infection; 2/ 4/Sinus tachycardia; 1/ 1/Encephalopathy
(25) Upper respiratory Supraventricular
infection tachycardia
NCT02706405  5/Fever;1/Multi- 1/Bacteremia 2/Sinus tachycardia 2/Encephalopathy;1/Somnolence
(29) organ failure
NCT03958656  1/Fever 2/Sinus tachycardia
(10)
NCT03568461  3/Pyrexia 8/Pneumonia;6/ 1/Ventricular 2/Encephalopathy;1/Headache;1/
97) encephalitis;1/ fibrillation Immune effector cell-associated
Bacteraemia;1/ neurotoxicity syndrome;1/
COVID-19;1/ Syncope
COVID-19
pneumonia; 1/Lower
respiratory tract
infection;1/Sepsis
NCT02794246 1/Upper respiratory
(6) infection
NCT01747486  10/Pyrexia;1/ 2/Pneumonia;2/ 1/Encephalopathy;1/Syncope

(42) Fatigue Upper respiratory
tract infection;

1/Sepsis

Immune
system
complications

9/CRS

1/CRS

19/CRS;1/Graft
versushost disease
in gastrointestinal
tract

1/CRS

18/CRS

Blood and
lymphatic
system
complications

1/Disseminated
intravascular
coagulation

3/Febrile neutropenia

6/Febrile
neutropenia;
2/Neutropenia;1/
Anaemia

8/Febrile
Neutropenia

Respiratory,

thoracic and
mediastinal
complications

6/Dyspnea;3/
Hypoxia

1/Dyspnea;1/
Pleural effusion

2/Pleural effusion;
1/Acute
respiratory
failure;1/
Dyspnoea;1/
Pneumothorax

1/Hypoxia;1/
Pneumonitis;1/
Pulmonary
oedema

Gastrointestinal
complications

2/Diarrhea

2/Abdominal pain;1/
Duodenal
hemorrhage

1/Gastrointestinal
ulcer;1/Nausea;1/
Vomiting;1/Stomatitis

1/Abdominal Pain;1/
Diarrhoea

Vascular
complications

6/Hypotension

1/Hypotension

All clinicaltrials can be downloaded from www.clinicaltrials.gov (accessed October 02, 2022).
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TABLE 3 The incidence of clinical serious adverse events of CAR-T in solid tumors.

NCT
Number

NCT02664363

NCT03330834

NCT01454596

NCT01583686

NCT01218867

NCT02761915

NCT02706392

Conditions Interventions Characteristics Country Adverse

Glioblastoma;
Gliosarcoma

Advanced
Lung Cancer

Malignant
Glioma;
Glioblastoma;
Brain Cancer;
Gliosarcoma

Cervical
Cancer;
Pancreatic
Cancer;
Ovarian
Cancer;
Mesothelioma;
Lung Cancer

Metastatic
Cancer;
Metastatic
Melanoma;
Renal Cancer

Relapsed or
Refractory
Neuroblastoma

Hematopoietic
and Lymphoid
Cell Neoplasm;
Malignant
Solid
Neoplasm;
Metastatic
Lung Non-
Small Cell
Carcinoma;
Metastatic
Triple-
Negative
Breast
Carcinoma;
Recurrent
Acute
Lymphoblastic
Leukemia;
Recurrent
Mantle Cell
Lymphoma;
Refractory
Chronic
Lymphocytic
Leukemia

EGFRVIII CAR-T  Phase 1
cells

PD-L1 CAR-T Phase 1
cells

EGFRVIII CAR-T Phase 1
cells Phase 2
Anti-mesothelin ~ Phase 1
CAR-T cells Phase 2
Anti-VEGFR2 Phase 1
CAR-T cells Phase 2
Genetic/1RG- Phase 1
CAR-T cells

RORI1 CAR-T Phase 1
cells

United
States

China

United
States

United
States

United
States

United

Kingdom

United
States

All clinicaltrials can be downloaded from www.clinicaltrials.gov (accessed October 02, 2022).
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event
assessment
criteria

CTCAE v5.0

CTCAE v4.0

CTCAE v4.0

CTCAE v4.0

CTCAE v3.0

CTCAE v4.0

CTCAE v4.0

Enrollment/

n

18

15

22

12

21

10.3389/fimmu.2022.1079181

All-
Cause
Mortality
(n/Total)

3/3
11

1/18

1/15

1/22

6/12

12/21

Serious  Other (Not
adverse  Including
events Serious)

(n/ Adverse

Total) Events(n/
Total)

13 3/3

11 171
2/18 18/18
5/15 15/15
5/22 21/22
5/12 12/12
17/21 21/21
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TABLE 4 Summary of clinical serious adverse events of CAR-T in solid tumors(Patients Number/symptom).

NCT
Number
(Patients
Number)

NCT03330834
()
NCT02664363
3)
NCT01583686
(15)

NCT01218867
(22)

NCT01454596
(18)

NCT02706392
(e2))

NCT02761915
(12)

General complications

1/Generalized muscle weakness

1/Pain;3/ALT, SGPT (serum glutamic pyruvic
transaminase);3/AST, SGOT (serum glutamic
oxaloacetic transaminase);3/Bilirubin
(hyperbilirubinemia)

1/Multi-organ failure

13/Fever
1/Non-cardiac chest pain;1/Myalgia

1/Pain;5/Pyrexia

Infections and infesta- Nervous Immune
tions system com-  system com-
plications plications
1/Confusion

1/Infection

1/Encephalopathy  3/CRS

1/Post procedural cellulitis;1/
Pseudomonal bacteraemia;1/
Pseudomonal sepsis;1/Urinary
tract infection

All clinicaltrials can be downloaded from www.clinicaltrials.gov (accessed October 02, 2022).
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Blood and
lymphatic
system com-
plications

1/Anemia
1/Platelet count
decreased;2/
Lymphocyte count
decreased

3/Febrile
neutropenia

1/Febrile
neutropenia;

Respiratory,

thoracic and

mediastinal
complications

1/linterstitial
pneumonia disease

1/Hypoxia

2/Hypoxia

1/Dyspnea (shortness
of breath);1/Hypoxia

2/Dyspnea
3/Hypoxia
1/Respiratory failure
1/Laryngeal
haemorrhage

Gastrointestinal
complications

1/Constipation

1/Nausea;1/Vomiting

Vascular
complications

3/Hypotension
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CAR-T cells therapy in patients with R/R large B-cell lymphoma.
There are a lot of neurologic adverse events associated with
CAR-T cells therapy in the real world, which is a testament to
the truthfulness of clinical trial reports. Although real data on
CAR-T cells-associated neurotoxicity are limited, one study
found an inverse association between grade 3-4 neurotoxicity
and OS (43). According to these studies, neurological
dysfunction is universal and important in the clinical
application of CAR-T cells therapy.

2.1.3 Respiratory, thoracic and
mediastinal toxicities

In this study, 103 patients (8.53%) developed respiratory,
thoracic and mediastinal SAEs. The incidence of clinical
symptoms from high to low were hypoxia (45 cases),
respiratory failure (18 cases), dyspnea (12 cases), pleural
effusion (10 cases), pulmonary edema (6 cases), ARDS (6
cases), pneumonitis (2 cases), etc (Table 2). The most
common SAEs of the respiratory system is hypoxemia, and the
disease can progress to respiratory failure. Common co-
symptoms are dyspnea, pleural effusion, pulmonary edema,
ARDS, and pneumonia.

Researchers have found that respiratory SAEs are a leading
cause of death associated with CAR-T cells therapy. J. Pan et al.
(44) evaluated the safety of anti-CD7 CAR-T cells in 20 patients
with R/R T cells acute lymphoblastic leukemia (NCT04689659).
The results of the study found that all adverse events were
reversible, except for one patient who died from a related fungal
pneumonia. Similarly, in the study of R. Benjamin et al. (45), two
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treatment-related deaths occurred. One was caused by
neutropenic sepsis complicated by CRS, and the other by
pulmonary hemorrhage with persistent cytopenia. K. Rejeski
et al. (46) described the clinical course of a 59-year-old patient
with R/R large B-cell lymphoma who received Axicabtagene-
Ciloleucel. Severe pneumonia eventually leads to respiratory
failure and death. Furthermore, respiratory adverse events may
be affected by CRS. A. Goldman et al. (47) retrospectively
analyzed adverse events in 2657 patients who received CD19-
targeted CAR-T cells therapy. Cardiopulmonary adverse events
occurred in 546 patients (20.5%). Ultimately, the mortality rate
for cardiopulmonary adverse events was 30.9%. Studies have
shown associations between CAR-T cells and various
cardiopulmonary adverse events, including rapid respiratory
failure, hypoxemia, arrhythmias, cardiomyopathy, pericardial
and pleural diseases. In addition, the overlapping reports of
cardiopulmonary adverse events and CRS were found in 68.3%
of the cases. CRS may also be involved in the pathogenesis of
severe cardiopulmonary adverse events, which should be
considered in the multidisciplinary evaluation and monitoring
of CAR-T cells recipients.

2.1.4 Cardiovascular toxicities

In this study, 116 patients (9.60%) had vascular SAEs, and
the main clinical SAEs were hypotension (109 cases), thrombosis
(3 cases), hypertension (3 cases), etc (Table 2). 68 patients
(5.63%) had cardiac SAEs. The incidence of SAEs from high to
low are sinus tachycardia (28 cases), atrial fibrillation (10 cases),
cardiac arrest (8 cases), and supraventricular fibrillation
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tachycardia (5 cases), left ventricular systolic dysfunction (5
cases), heart failure (5 cases), myocardial dysfunction (2 cases),
etc (Table 2). Studies have found that the main SAEs of vascular
complications is hypotension, the pathogenesis may be due to
the occurrence of inflammation in the body produces a large
number of inflammatory cytokines released into the blood,
resulting in peripheral vascular dilatation (48, 49).
Arrhythmias occur in the cardiovascular system to compensate
for hypotension, so the most common arrhythmias are sinus
tachycardia and atrial fibrillation. Severe arrhythmias can
progress to cardiac arrest and eventually lead to heart failure
(50). In addition, symptoms of left ventricular dysfunction have
been seen in clinical studies (48, 51). Therefore, the occurrence
of adverse cardiovascular events may be due to the massive
cytokine release during CAR-T cells therapy.

Cardiovascular toxicity is not uncommon in patients
receiving CAR-T cells therapy (52). Adam Goldman et al. (47)
found that the occurrence of tachyarrhythmia was a major
adverse effect of the heart. Atrial fibrillation is the main
tachyarrhythmia, followed by ventricular arrhythmia. Studies
have also shown an association between CAR-T cells and
symptoms such as tachyarrhythmia, cardiomyopathy,
pericardial and pleural disease. Additionally, 10-30% of
patients also exhibit decreased left ventricular ejection function
(48). R. M. Alvi et al. (53) also reported a new reduction in
ejection fraction in 8 of 137 patients, 5 patients also experienced
arrhythmias, and 6 patients experienced cardiovascular death.
To examine cardiovascular adverse events associated with CAR-
T cells, A. Guha et al. (54) used the U.S. Food and Drug
Administration Adverse Event Reporting System (FAERS) to
observe 996 cases in which the most commonly reported
cardiovascular adverse event was arrhythmia (77.6%). This was
followed by heart failure (14.3%) and myocardial infarction
(0.5%). Cardiovascular adverse events associated with CAR-T
cells therapy were also associated with higher mortality.
Therefore, the use of CAR-T cells in tumor therapy should be
vigilant for cardiovascular events.

2.1.5 Gastrointestinal toxicities

In this study, 48 patients (3.97%) had gastrointestinal SAEs.
The incidence of SAEs from high to low were abdominal pain
(13 cases), diarrhea (9 cases), nausea (5 cases), colitis (4 cases),
dysphagia (4 cases), pancreatitis (3 cases), etc (Table 2). The
adverse events of CAR-T cells on the digestive system are
relatively less, and SAEs are mainly caused by gastroenteritis
leading to abdominal pain, diarrhea and other clinical
manifestations. A small number of adverse events of
pancreatitis were also observed. These results suggest that
CAR-T cells may be mainly through its cytokines acting on
gastrointestinal mucosa, leading to impaired barrier function
and the progression of mucositis (55). The incidence of SAEs in
the digestive system is significantly less than that in the nervous,
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immune, cardiovascular and respiratory systems. Moreover, the
severity of adverse effects is relatively mild, and no serious life-
threatening adverse events have been reported.

2.1.6 Infections and infestations

Infection-related SAEs occurred in 116 patients (9.60%). The
incidence of SAEs from high to low were lung infection (33
cases), upper respiratory infection(7 cases), sepsis (22 cases),
bacteraemia(15 cases), Covid-19(4 cases), and Covid-19
pneumonia(3 cases), etc (Table 2). The most common
infection is a respiratory tract infection, which can involve the
lungs in severe cases. Telli Dizman et al. (56) conducted a
systematic review and meta-analysis of the incidence of severe
infections in hematological malignancies treated with CAR-T
cells. The severe infection rate was 16.2%, with the respiratory
tract being the most common site of infection. This also
confirms the above views. The common pathogen is bacteria,
but it can also be seen in clinical studies of COVID-19 infection.
Besides, severe bacteremia and septicemia are often seen. The
immune barrier function may be impaired during CAR-T cells
therapy, allowing opportunistic pathogens to flourish (57).

Most infections after CAR-T cells therapy occur after
neutropenia and/or severe CRS, indicating a greater degree of
immune impairment (58, 59). Furthermore, most CAR-T cells
recipients had previously received other antitumor therapies,
including autologous and allogeneic hematopoietic cell
transplants. Preexisting cytopenia and hypogammaglobulinemia
increase the likelihood of infection (60, 61). The occurrence of
CRS co-infection may lead to a greater impact on the body, which
may not respond well to antimicrobial therapy. In the study
conducted by J. A. Hill et al. (58), 80% of patients had their first
infection within the first 10 days after CAR-T cells infusion, mainly
with gram-negative bacterial infections. Besides, 42% of patients
had predominantly viral infections within 30 days of infusion,
including respiratory viral infections and cytomegaloviremia and
pneumonia. Later infection may reflect a state of immunoglobulin
deficiency and lymphocytopenia (58). These studies suggest that
serious infection-related adverse events associated with CAR-T cells
therapy are not only related to CRS, but also to the patient’s
immunocompromised physical condition, posing a serious threat
to patient health.

2.1.7 Blood and lymphatic system toxicities
Blood and lymphatic system SAEs were found in 228
patients (18.87%). The incidence of SAEs from high to low is
febrile neutropenia (187 cases), neutropenia (12 cases), anaemia
(9 cases), pancytopenia (8 cases), thrombocytopenia (5 cases),
and disseminated intravascular coagulation (DIC) (5 cases), etc
(Table 2). The most common SAEs of hemolymph system is
neutropenia. As an important immune cell, neutrophils play an
important role in preventing the invasion of pathogenic
microorganisms. However, neutrophil depletion during CAR-T
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cells treatment may account for the susceptibility of the body to
infection-related diseases. Besides, the study found that patients
also had a decrease in various blood cells and platelets (62),
which indicates that the blood system may be seriously damaged
during the treatment.

When injected into the bloodstream to kill tumors, CAR-T
cells have been shown to be hemotoxic (62). L. Wang et al. (63)
retrospectively studied the characteristics and risk factors of
new-onset severe cytopenia after CAR-T cells infusion in 76
patients with R/R acute lymphoblastic leukemia. A high
incidence of new severe cytopenia was found, including severe
neutropenia (56,70%), severe anemia (66,53%), and severe
thrombocytopenia (64,48%). The study also found that people
with higher levels of CRS had higher incidence and longer
duration of severe cytopenia. Multivariate analysis showed that
the occurrence of CRS and higher grade of CRS were risk factors
for prolonged hematotoxicity. These observations lead to the
conclusion that the occurrence of CRS is associated with the
incidence of severe cytopenia, suggesting that CRS may be a
direct or indirect cause of hemotoxicity.

2.1.8 General toxicities

General SAEs occurred in 133 patients (11.01%). The
incidence of SAEs from high to low was pyrexia (116 cases),
multi-organ failure (7 cases), fatigue (3 cases), etc (Table 2). The
most common adverse effect of the body is pyrexia, which is
mainly caused by the massive release of inflammatory factors
into the blood during CRS, but the possibility of subsequent
infection after the immune system is compromised cannot be
ruled out (57). Therefore, it is difficult to distinguish CRS or
infection from fever alone during CAR-T cell therapy.

2.2 SAEs of CAR-T in the treatment of
solid tumors

In this study, nervous system SAEs occurred in 2 cases
(2.17%) during the treatment of solid tumors. Confusion (1 case)
and encephalopathy (1 case) were the SAEs (Table 4). There
were 3 cases (3.26%) of SAEs in Immune system and the main
SAEs was CRS (Table 4). The type of SAEs of CAR-T cells in the
treatment of solid tumors is basically similar to that of the
hematological tumors. However, no cardiovascular adverse
events were found in the included studies. In addition, this
study have found that the incidence of neurological SAEs and
CRS in solid tumors is lower than that in hematological tumors
(Figure 2). Similarly, a clinical study (NCT03874897) conducted
by C. Qi et al. (64) evaluated the safety and efficacy of CAR-T
cells targeting CLDN18.2 in the treatment of gastric cancer.
Results of 37 patients treated, 94.6% had grade 1 or 2 CRS.
However, no deaths have been reported. Besides, Y. Liu et al.
(65) conducted a phase I trial (NCT01869166) to evaluate the
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safety and efficacy of autologous anti-EGFR CAR-T cells in
patients with metastatic prostate cancer in 14 patients. No SAEs
such as cardiovascular system, nervous system, blood system and
CRS were found. Furthermore, Y. Zhang et al. (66) also
evaluated the safety of EGFR-targeted CAR-T cells in the
treatment of small cell lung cancer. The most common
adverse events were grade 1 to 3 fever. No patients had grade
4 adverse events or severe CRS. The tumor-Kkilling sites of CAR-
T cells are different in hematological tumors than in solid
tumors. Solid tumors are more limited to tumor tissues due to
targeted guidance, while hematological tumors cover the entire
blood system due to tumor cells dispersed in the blood system.
Therefore, some SAEs of CAR-T cells in hematological tumors
may be more severe than those in solid tumors.

In this study, Respiratory, thoracic and mediastinal SAEs,
Infection-related SAEs, Blood and lymphatic system SAEs,
General SAEs occurred in 13 cases (14.13%), 5 cases (5.43%),
8 cases (8.70%) and 33 cases (35.87%) respectively (Table 4).
Similarly, Z. Zhao et al. (55) conducted a meta-analysis involving
10 studies (94 patients) that reported the occurrence of adverse
events during the treatment of digestive system tumors with
CAR-T cells. The study found that the five most common side
effects were fever, lymphadenia, pain other than abdominal pain,
thrombocytopenia and fatigue. The specific SAEs types were
basically the same as those of hematological tumors.
Interestingly, these findings suggest that CAR-T cells SAEs in
solid tumors and hematological tumors are similar.

3 The pathological mechanism of
SAEs in the treatment of malignant
tumors by CAR-T cells

It has been established that CRS and ICANS are the two major
causes of all complications associated with CAR-T cells therapy (31,
42, 67, 68). In light of this, understanding the pathological
mechanism of CRS and ICANS is of theoretical importance when
dealing with patients with severe complications.

CRS is a systemic inflammatory response, and current
studies have shown that it can be induced by a variety of
factors, including severe infection, followed by drugs, such as
CAR-T cells and monoclonal antibodies (69-74). Severe viral
infections such as influenza and COVID-19 can also trigger CRS
through massive immune and non-immune cell stimulation
(75). CRS is usually associated with tumor load and usually
occurs between day 1 and week 2 after CAR-T cells infusion (76,
77). All systems of the body are affected by CRS, including fever,
myalgia, anorexia, hypotension, tachycardia, arrhythmia,
shortness of breath and hypoxia, coagulopathy, respiratory
failure, shock and organ dysfunction etc (42, 46, 48, 57, 78).

Upon interaction of CAR-T cells with the corresponding
target antigen, inflammatory cytokines and chemokines such as
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interferon (IFN) v, tumor necrosis factor (TNF)o,, granulocyte
macrophage colony-stimulating factor (GM-CSF), interleukin
(IL)-6, IL-10 are released (79-82). High secretion of these
cytokines can lead to systemic inflammatory response-CRS.
However, not all of these cytokines were secreted by activated
CAR-T cells. Activating peripheral immune and non-immune
cells such as monocytes, macrophages, dendritic cells, and
endothelial cells is accomplished by CAR-T cells binding to
antigens on tumor cells (83, 84). It has been shown that
xenogeneic models emphasize the role of host immune cells in
CRS pathogenesis, suggesting that IL-6 is primarily released by
monocytes, macrophages, and dendritic cells, not CAR-T cells
(82, 85, 86). Since IL-6 plays a key role in CRS, depleting
macrophages (87) and eliminating monocytes (86) may reduce
its severity. Further, inhibiting GM-CSF signaling alleviates
symptoms of CRS (88, 89).

ICANS was another cause of SAEs during CAR-T cells
therapy (40, 76, 90-92). In addition to CD19, CAR- T cells
targeting CD22, BCMA, and other hematopoietic antigens have
also been observed for neurotoxicity (11, 13, 93-95). Other
treatments involving immune effector cells have also been
reported to cause similar neurotoxic effects (96, 97). Therefore,
the neurotoxicity of CAR-T cells was renamed ICANS (80,
98).ICANS can occur in conjunction with or independently of
CRS (83, 99, 100). ICANS occurs independently and the general
neurological symptoms tend to be mild (35). Typically, ICANS
appear 4-5 days after CAR-T cells therapy, but delayed ICANS
have also been reported after CAR-T cells therapy (26, 34, 98).

ICANS typically manifest as disturbances in attention and
consciousness, and expressive aphasia is considered a fairly
specific early sign of ICANS (26). ICANS can further develop
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into low levels of consciousness, coma, epilepsy, motor
weakness, and cerebral edema. All cases of fatal cerebral
edema are associated with CRS (34, 35), and severe CRS has
been shown to be associated with severe ICANS (92, 101, 102).
At present, relatively little is known about the pathophysiology
of ICANS. ICANS have been associated with CAR-T cells
transport in the central nervous system (98, 103, 104), passive
diffusion of cytokines into the central nervous system (26, 34,
105), endothelial activation with impaired blood-brain barrier
(26, 34), activation of microglia and myeloid cells in the central
nervous system with secretion of IL-1 and IL-6 (85, 86).

4 Strategies to deal with SAEs of
CAR-T cells therapy

The primary cause of CAR-T cells-associated SAEs is CRS
and ICANS (31, 42, 67, 68), so treating SAEs involves preventing
CRS and ICANS, as well as alleviating symptoms (67, 106). The
specific measures were on one hand to optimize the CAR-T cells
structure to reduce cytokine release. On the other hand, clinical
management should be strengthened to find and correct CRS
and ICANS in time to reduce the occurrence of related SAEs.

4.1 Optimization of CAR-T cells structure
Stable proliferation and activation of CAR-T cells in the

tumor microenvironment are the prerequisite for tumor killing,
but safety is also crucial (107). Endogenous non-effector
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immune cells are also expanded during CAR-T cells therapy. In
studies on CRS, monocytes and macrophages were found to be
the major source of cytokines associated with severe
manifestations (31, 108). A large number of preclinical studies
have demonstrated that different CAR-T cells structures and
scFv sequences can produce different tumor killing efficacy (17,
109-112). Additionally, CAR-T cells must be positively
regulated by a large number of cytokines in order to Kkill
tumors. Therefore, CAR-T cells constructs were designed to
activate and maintain CAR-T cells while attenuating monocyte
and macrophage activation. The structure of CAR-T cells is
correlated with the incidence of CRS. To reduce the risk of CRS,
newly designed next-generation CAR-T cells therapy is being
developed for hematopoietic malignancies and solid tumors. S.
Balagopal et al (113) have discussed Six interesting approaches
to control cytokine production in CAR-T cells therapy: adaptor-
based strategies, orthogonal cytokine-receptor pairs, regulation
of macrophage cytokine activity, autonomous neutralization of
key cytokines, kill switches and methods of reversible
suppression of CARs. With these strategies, future CAR-T cells
therapies will be designed to preemptively inhibit CRS,
minimizing patient suffering and maximizing the number of
patients who benefit.

Furthermore, the selection of different costimulatory
domains by CAR-T cells affected the occurrence of ICANS.
Approximately 45% of patients treated with CAR-T cells
containing CD28 as a costimulatory domain develop high-
grade ICANS (39, 91, 92, 114, 115). However, ICANS was less
common during treatment with CAR-T cells using 4-1 BB as the
co-stimulatory domain, with 13% of patients experiencing severe
ICANS (76, 77). W. Luo et al. (116)conducted a meta-analysis
involving 52 studies including 2,004 patients. Hematotoxicity
analysis of CD19 CAR-T cells subsets demonstrated that 4-1BB,
as a costimulatory domain, had less hematotoxicity than CD28.
Therefore, it is of great significance to optimize the selection of
co-stimulatory domain to avoid the occurrence of ICANS.

The development of relatively specific targets for solid
tumors is also crucial. It is well known that specific targets
have not been found in the treatment of solid tumors, and only
tumor-associated targets are used in CAR-T cells (117, 118).
This leads to the possibility that CAR-T cells targeting such
targets may cause cytotoxicity outside the tumor. R. A. Morgan
et al. (119) reported that CAR-T cells targeting HER-2 in the
treatment of colorectal cancer, because CAR-T cells
simultaneously targeted and killed the patient’s pleural cells,
the patient eventually died of respiratory failure. The above case
report indicates that it is crucial to select relatively specific
targets in the treatment of solid tumors with CAR-T cells.
Therefore, the treatment of solid tumors with CAR-T cells
should first optimize the selection of targets, and then design
more optimal CAR frames to reduce the occurrence of CRS
while killing tumors.
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4.2 Clinical management and medication

The management of SAEs in CAR-T cells therapy is actually
primarily about controlling CRS. Standardized grading of
clinical adverse events was first required using the common
terminology criteria for adverse events (CTCAE) (120) and
CAR-T cells therapy-related toxicity (CARTOX) scoring
systems. If CRS is suspected, the patient should be graded at
least twice a day as the patient’s condition changes (121).
Management of CRS should be determined on a hierarchical
basis, and low-grade CRS can be managed mainly through
supportive care. The anti-IL-6 receptor antagonist tocilizumab
and/or corticosteroids are considered when high-grade CRS and
persistent refractory fever or fluid-refractory hypotension occur
together (98).

The use of steroids for the suppression of excessive
inflammatory responses and CRS has been proven in clinical
experience (67). Several views exist regarding when and how
corticosteroids should be administered. Some choose to use
corticosteroids as a first-line agent, while others don’t (83). It
is important to recognize that corticosteroids have general effects
on the immune system, which may also affect the antitumor
efficacy and the amplification and persistence of CAR-T cells in
vivo (122). Therefore, steroids should be avoided as first-line
treatment, but used when ablating CAR-T cells is necessary in
patients with severe CRS and who are resistant to other
treatments. Furthermore, steroids are recommended for
patients who are experiencing adverse neurological effects.

Tocilizumab is a humanized monoclonal antibody to the IL-
6 receptor that inhibits the IL-6 signaling pathway (76, 123). It
was approved by the FDA in 2017 as the first treatment for CRS-
related toxicity following CAR-T cells infusion. Tocilizumab
controlled CRS but did not significantly reduce CAR-T cells
activity. The favorable effect of a single injection in patients with
CRS induced by CAR-T cells therapy strongly suggests that IL-6
blocking may constitute a novel therapeutic approach for the
treatment of severe systemic inflammatory responses. In patients
who respond, fever and low blood pressure improve within a few
hours, while in some patients supportive treatment is needed for
several days. H. Liu et al. (124) evaluated the antitumor effect
and safety of PD-L1-targeted CAR-T cells in patients with non-
small cell lung cancer through a phase I clinical study. One
patient in the trial developed severe CRS with symptoms of
pneumonia and respiratory failure. The patient was given
oxygen and treated with intravenous tocilizumab and
methylprednisolone. The patient’s symptoms improved quickly
and the lung inflammation gradually subsided. Besides, K. Qi
et al. (125) analyzed the adverse events after treatment in 126
patients with hematologic malignancies who received CAR-T
cells therapy. The results showed that cardiac adverse events
associated with CAR-T cells therapy were common and related
to the development of CRS. For patients with grade 3-5 CRS,
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timely administration of corticosteroids and/or tocilizumab can
effectively prevent the occurrence and development of cardiac
disease. However, a large number of patients are resistant to
tocilizumab (98). Another therapeutic agent is a monoclonal
antibody targeting IL-6, siltuximab, which has a higher affinity
for IL-6 than tocilizumab for the IL6 receptor, making it a
potential smoke screen for CRS treatment (126). Siltuximab is
encouraged in patients who do not respond to tocilizumab
and corticosteroids.

Clinically, because the clinical manifestations of infection
and CRS are very similar (28, 127). Thus, diagnosis of infection
becomes difficult when CRS are present. However, the treatment
of CRS and infection is different (83, 98). CRS can be successfully
improved with IL-6 receptor inhibitors and corticosteroids,
whereas infection requires immediate initiation of antibiotic
therapy (83). Therefore, it is necessary to distinguish between
infections and CRS for appropriate treatment in CAR-T cells
therapy. H. Luo et al. (49) selected 109 cases from three clinical
trials (ChiCTR-OPN-16008526, ChiCTR-OPC-16009113,
ChiCTR-OPN-16009847) to analyze the characteristics of
infection events within 30 days after CAR-T cells infusion.
The “IL-6 double peak” was found in most patients with life-
threatening infections. Secondly, the prediction model
constructed by IL-8, IL-1B and IFN-y has high sensitivity and
specificity for predicting life-threatening infections. This study
indicates that the selection of effective markers during CAR-T
cells therapy is very important for the diagnosis of life-
threatening infections during CAR-T cells therapy and helps
to reduce the risk of infection-induced death.

In addition, the classification and management of ICANS is
also particularly important. It is recommended to have a
neurological assessment prior to starting CAR-T cells therapy
and to have one every day for the first 10 days following the
infusion of CAR-T cells (128). Most commonly used tools for
detecting and monitoring ICANS are the ICE score and ICANS
grading system. The management of patients with grade 3 or
greater ICANS should be conducted in the ICU, including the
provision of airway support if the patient is not conscious
(38, 128).

Corticosteroids are the mainstay of treatment for ICANS.
While corticosteroids may reduce the antitumor effects of CD19
CAR-T cells (122, 129), they are appropriate for the treatment of
moderate to severe ICANS due to their ICANS reversal effect.
Generally, patients with low initial consciousness level are
recommended to use dexamethasone for 1-3 days. The
treatment for grade 4 ICANS includes 1000 mg of
methylprednisolone, as the patient may not be able to wake
up, may be epileptic, or may exhibit imaging characteristics of
cerebral edema (128, 130). For patients with severe ICANS
characterized by cerebral edema, some groups advocate
supportive measures to manage elevated intracranial pressure,
including the use of intracranial pressure monitors, decreasing
intracranial pressure, etc (38, 128).
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Tocilizumab can be used to treat ICANS, with the greatest
benefit when ICANS occurs early and/or in conjunction with
CRS (38, 98). It may be due to the increased permeability of the
blood-brain barrier in the early stages, which facilitates
tocilizumab ‘s entry into the brain (98). Studies have shown
that tocilizumab may aggravate neurotoxicity, and the proposed
mechanism is that blocking IL-6 receptors with tocilizumab may
lead to increased circulating IL-6 in the central nervous system.
Therefore, treatment with a monoclonal antibody (siltuximab)
directly binding to IL-6 is recommended (38, 131, 132).
Siltuximab directly bound to IL-6 may be more beneficial in
isolated ICANS cases (38). Preclinical studies suggest that future
therapies such as monoclonal antibodies targeting IL-1 may
benefit ICANS, although clinical evidence is unproven for the
time being (86, 130, 133). In early trials, when ICANS appeared,
antiepileptic drugs were prophylactically administered to the
clinic. The benefits of prophylactic use of antiepileptic drugs,
which have not been proven to reduce epilepsy complications
definitively, remain controversial (26, 38, 105). The use of
benzodiazepines to treat sudden seizures is effective in most
cases, although refractory or prolonged seizures may also occur
(26, 105). Levetiracetam appears to be the preferred antiepileptic
agent for ICANS patients, possibly because of its low incidence
of drug interactions and good safety (38, 98).

Based on available evidence and clinical experience, the
NCCN Guidelines for management of immunotherapy-related
complications also provided recommendations on monitoring
patients receiving CAR-T cells therapy (22). Patients
with underlying organ dysfunction may have additional
adverse events when receiving CAR-T cells therapy, and
multidisciplinary intervention is particularly important for
these patients when SAEs occur. Since SAEs caused by CAR-T
cells can be seen in various organs of the body, the importance of
multidisciplinary collaboration in CAR-T cells therapy is
emphasized finally.

5 Discussion

CAR-T cells technology is a major breakthrough in the field
of cancer, as the star of tumor immunotherapy has brought light
to patients with advanced tumors, especially B cell-derived
hematological tumors and multiple myeloma (134-136). More
and more studies have shown its efficacy in a variety of cancers,
and a large number of clinical studies on hematological tumors
and solid tumors are ongoing. However, data from a growing
number of clinical trials indicate that all CAR-T cells therapies
have unique adverse events, such as CRS and ICANS (67, 137).
Its adverse events can cause clinical symptoms in many systems
of the whole body, manifested as a high incidence, serious can
endanger life (68, 138). Therefore, it is important to pay
attention to the occurrence of SAEs during CAR-T cells
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therapy for advancing the treatment of advanced
malignant tumors.

In this review, we summarize a subset of studies in the
treatment of hematological malignancies and solid tumors and
analyze the occurrence of clinical SAEs in the included studies.
In combination with published clinical studies, CRS was found
to be associated with SAEs in all major systemic systems. In
addition, all cases of severe ICANS were found to be associated
with CRS (34, 35).Thus, we found that CRS may be a major
cause of life-threatening adverse events in the treatment of
malignant tumors with CAR-T cells. In fact, cytokines play a
dual role in CAR-T cells therapy. On the one hand, they activate
CAR-T cells to kill tumor cells (110, 111, 139, 140). At the same
time, it activates the non-effector immune cells and then
produces a large number of negative cytokines, which leads to
the damage of the body (81, 85, 141). Therefore, to be widely
used in the treatment of malignant tumors in the future, CAR-T
cells technology must be further optimized in the design process
to activate CAR-T cells while reducing the impact on non-
effector immune cells.

This review also provides an overview of the management
and treatment of SAEs during CAR-T cells therapy. In view of
the high incidence of SAEs in the clinical application of CAR-T
cells (67, 142), it is necessary to closely monitor the vital signs of
patients in clinical application, timely evaluate the CRS grade,
and timely give standardized treatment according to the grade
(67, 138). Most SAEs can be reversed (137), and patients will
benefit most from timely multidisciplinary consultation.

In addition, the comparison of SAEs after CAR-T cells
therapy for hematological and solid tumors included in this
review may be different. Firstly, cardiac SAEs were not found in
the solid tumor study. Secondly, the incidence of SAEs of
nervous system and CRS in solid tumors is lower than that in
hematological tumors (Figure 2). W. Lei et al. (143) included a
total of 2592 patients in 84 studies for meta-analysis, and
analyzed the differences in the incidence of CRS and ICANS of
CAR-T cells in different tumor types. The results showed that
the incidence of CRS and ICANS in hematologic malignancies
was significantly higher than that in solid tumors. Our findings
are confirmed by this study. CAR-T cells mainly exist in tumor
tissues during the treatment of solid tumors because of the
targeted guidance. Nevertheless, CAR-T cells need to be
disseminated throughout the blood system in the treatment of
hematological tumors, so the cytokines produced may be more
readily disseminated in the body, which may be the reason for
the difference in the incidence and severity of some adverse
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events during the treatment of hematologic and solid tumors
with CAR-T cells therapy.

6 Conclusion

In conclusion, CAR-T cells technology can produce a variety
of SAEs in the treatment of malignant tumors, which can occur
in various systems of the body and can be life-threatening in
severe cases. Studies have shown that CRS and ICANS may be
the main causes of the above clinically SAEs. Therefore, through
strict clinical grading and management of CRS and ICANS, most
of the adverse events can be alleviated.
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Background: TMEM59L is a newly discovered transmembrane protein; its
functions in cancer remain unknown. This study was designed to reveal the
prognostic value and the functional role of TMEM59L in cancer.

Methods: The gene expression profiles, methylation data, and corresponding
clinical data of TMEM59L were retrieved from The Cancer Genome Atlas (TCGA)
and the Genotype-Tissue Expression database. Survival analysis was employed
to calculate the pan-cancer prognostic value of TMEM59L. The correlation
between TMEM59L expression and tumor immune microenvironment, as well
as DNA methylation dynamics and genomic heterogeneity across cancers were
assessed based on data from TCGA.

Results: Our findings revealed that distinct differences of TMEM59L mRNA
expression were observed in different cancer types and that higher TMEM59L
expression was observed in the advanced pathological stage and associated
with worse prognosis in kidney renal papillary cell carcinoma, bladder urothelial
carcinoma, colon adenocarcinoma, and kidney renal clear cell carcinoma.
Pathway analysis indicated that TMEM59L exerted a key influence in cancer
development and in immune- and cancer-associated pathways such as
epithelial-mesenchymal transition and TGF-B signaling. Moreover,
correlation analysis hinted at a negative correlation of TMEM59L expression
with CD8 T cells, activated CD4 T cells, and several immunomodulators,
including IDO1, TIGIT, PD-L1, CTLA-4, and BTLA in various cancers. Survival
analysis indicated that the hypermethylation of TMEM59L gene was associated
with longer survival times. A significant correlation was also observed between
TMEM59L expression and immunophenoscore, homologous recombination
deficiency, loss of heterozygosity, tumor stemness score, and neoantigens in
various cancers. Importantly, we also identified numerous potential agents that
may target TMEM59L.
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Conclusion: Our study revealed the prognostic value as well as the genomic
and immunological characteristics of TMEM59L in cancers, highlighting the
promising potential for TMEM59L as a prognostic cancer biomarker and a
therapeutic target.

KEYWORDS

TMEMBS59L, pan-cancer, prognosis, tumor microenvironment, methylation

1 Introduction

The global incidence and mortality of cancer remain on the
rise, with breast cancer, lung cancer, and colorectal cancer being
the most common types of cancer with the highest mortality rates
worldwide (1, 2). Cancer is a major cause of global mortality and a
significant impediment to increasing life expectancy in the global
population (3). Despite research efforts to improve cancer
diagnosis and treatment, the associated clinical outcome and 5-
year survival rate generally remain unfavorable, largely due to the
complexity of this disease (4-8).

A large body of evidence has confirmed that the tumor
microenvironment (TME) can determine abnormal tissue
functions, alter the malignant behavior of tumor cells, and play
vital roles in the consecutive evolution of malignant cancers and
tumor resistance to anticancer drugs (9-11). The TME,
characterized by hypoxia, oxidative stress, and abnormal levels
of multiple cytokines and growth factors, induces dysplasia, which
is defined as the emergence of heterogeneous tumor cell
populations with distinct genetic and phenotypic characteristics
(8, 12, 13). During cancer progression, tumor heterogeneity is
exacerbated by the maturation of both cellular and acellular
components of the TME (14, 15), enabling cancer stem cells
(CSCs) to survive and proliferate — a principal attribute that
underlies therapeutic resistance as well as tumor maintenance and
recurrence (16-20). Multiple studies have indicated that genomic,
epigenomic, and transcriptomic features are causally linked to the
regulation of cancer pathways that support tumor cell growth and
proliferation, and the phenomenon of cancer stemness (21-23).
For these reasons, the outcome of current cancer chemotherapy,
radiotherapy, and immunotherapy is far from satisfactory, and
treatment regimens require further optimization.

DNA methylation signatures that are highly sensitive, specific,
and analyzable have an enormous potential as clinical cancer
biomarkers that play a non-negligible role in cancer diagnosis
and prognosis, providing new technical means for early detection
of different cancer types (24-27). Nevertheless, there is a need to
explore new potential targets or cancer biomarkers to ensure that
novel treatment regimens and appropriate combination therapy
strategies can be specifically tailored to individual patients.
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Transmembrane protein 59-like (TMEMS59L), also known as
brain-specific membrane-anchored protein BSMAP, was first
discovered in 1999 (28). In 2006, using reverse transfection cell
array technology, Mannherz et al. found that TMEMS59L produced
pro-apoptotic effects through an unknown mechanism (29).
TMEMS59L can regulate the N- and O-glycosylation steps that
occur during Golgi maturation and is associated with glycosylation
modifications of the amyloid precursor protein APP by inhibiting
APP maturation, trafficking, and shedding (30). Recent studies have
demonstrated that the downregulation of TMEM59L can protect
neurons from oxidative stress, and that TMEM59L interacts with
ATGS5 and ATGI6LI, partially activating LC3 and triggering
autophagy (31, 32). Moreover, the homologue of TMEM59L,
transmembrane protein 59 (TMEMS59), is hypomethylated in
late-onset Alzheimer’s disease, and methylation is involved in the
transcriptional regulation and thus protein expression of TMEM59
(33). However, there is currently a lack of in-depth reports on the
functional mechanism of TMEMS59L, especially in the context of
cancer research.

In this study, we comprehensively explored TMEM59L gene
expression signature, its prognostic value, as well as its
association with immune cell infiltration and cancer-associated
pathways in various cancer types. Moreover, our study
underscores the importance of TMEMS59L as a prognostic
biomarker and a treatment target and identified in TMEM59L
a molecule to be further explored.

2 Materials and methods

2.1 Datasets

The gene expression profiles, methylation data, and
corresponding pan-cancer clinical data were downloaded from
The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/), the Genotype-Tissue Expression (GTEx) dataset
was downloaded from UCSC-hosted genomics platform (https://
xenabrowser.net/). The cancer type abbreviations are listed
in Table 1.
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TABLE 1 The cancer type abbreviations are as above.

10.3389/fimmu.2022.1054157

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

COADREAD Colon adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma
ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

GBMLGG Glioma

HNSC Head and Neck squamous cell carcinoma
KICH Kidney Chromophobe

KIPAN Pan-kidney cohort (KICH+KIRC+KIRP)
KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma
LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

ov Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

STAD Stomach adenocarcinoma

SKCM Skin Cutaneous Melanoma

STES Stomach and Esophageal carcinoma
TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

UCEC Uterine Corpus Endometrial Carcinoma

2.2 Integrated network and
enrichment analysis

Each patient was divided into a high-expression or a low-
expression group based on the median of TMEMS59L expression.
We used the GSVA R package to conduct the gene set enrichment
analysis (GSEA) to evaluate pathway enrichment for high- and
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low-TMEMS59L expression groups (34). Hallmark gene sets
(h.all.v7.2.symbols) were collected from GSEA database (http://
www.gsea-msigdb.org/gsea/downloads.jsp). Reverse phase protein
array (RPPA) data from TCPA database (https://www.tcpaportal.
org/tcpa/index.html) were also used to assess pathway activity
score (PAS). The evaluated pathways included apoptosis, cell cycle,
DNA damage response, epithelial-mesenchymal transition (EMT),
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as well as hormone androgen receptor (AR), hormone estrogen
receptor (ER), tuberous sclerosis complex-mammalian target of
rapamycin (TSC-mTOR), receptor tyrosine kinase (RTK),
Ras/MAPK (mitogen-activated protein kinase), and PI3K/AKT
signaling pathways, all of which are notably associated with cancer.
The difference of PAS was evaluated using Student’s ¢-test, and the
resulting p-value was adjusted for false discovery rate (FDR), with
FDR < 0.05 being considered significant. When PAS (TMEM59L
High expression) > PAS (TMEMS59L Low expression), we
considered TMEM59L to have an activating effect on a specific
pathway; in the opposite case TMEMS59L was considered to have
an inhibitory effect on a pathway.

2.3 Estimation of immune cell infiltration

The correlation of TMEM59L expression with the immune
infiltration level was assessed using the CIBERSORT algorithm
(https://cibersort.stanford.edu) (35). The stromal, immune, and
ESTIMATE scores for each patient were calculated using the
ESTIMATE algorithm (36). The immunophenoscore (IPS) for
each patient was calculated according to the method reported by
Charoentong (37). We also extracted the expression data of 155
immunomodulators including chemokines, receptors, MHC,
immune-inhibitors, and immune-stimulators from each
patient based on the study of Charoentong et al. (37) as well,
and correlation analyses were subsequently conducted to assess
the association between immunological characteristics and
TMEMS59L across cancer types.

2.4 Methylation analysis

We downloaded the methylation data from TCGA database. In
total, 14 cancer types were selected and analyzed including Colon
adenocarcinoma (COAD), Colorectal carcinoma (COADREAD),
Thyroid carcinoma (THCA), Cholangiocarcinoma (CHOL), Liver
hepatocellular carcinoma (LIHC), Kidney renal papillary cell
carcinoma (KIRP), Pan-kidney cohort (KIPAN), Adrenocortical
carcinoma (ACC), Ovarian serous cystadenocarcinoma (OV),
Uterine Corpus Endometrial Carcinoma (UCEC), Rectum
adenocarcinoma (READ), Stomach and Esophageal carcinoma
(STES), Breast invasive carcinoma (BRCA), Bladder Urothelial
Carcinoma (BLCA), Kidney renal clear cell carcinoma (KIRC),
Prostate adenocarcinoma (PRAD), Stomach adenocarcinoma
(STAD), Lung squamous cell carcinoma (LUSC), Lung
adenocarcinoma (LUAD), Pancreatic adenocarcinoma (PAAD),
Glioma (GBMLGG), Esophageal carcinoma (ESCA), Kidney
Chromophobe (KICH), and Head and Neck squamous cell
carcinoma (HNSC). The cohort included more than 10 paired
cancer and adjacent non-cancer samples. Spearman correlation
analyses were performed to identify whether TMEM59L
expression was associated with methylation levels.
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2.5 Drug analysis

We recorded the drug sensitivity data from Genomics of
Drug Sensitivity in Cancer (GDSC) database (38) and the
Genomics of Therapeutics Response Portal (CTRP) database
(39). Spearman correlation analysis was carried out to identify
the association between gene mRNA expression and
drug response.

2.6 Statistical analysis

We computed the statistical analyses in the R (version 4.1.1).
Hazard analyses were carried out using Cox regression. Survival
curves were analyzed by log-rank test. Correlation coefficients
were obtained using the Spearman correlation method. Any p-
value less than 0.05 was considered statistically significant.

3 Results

3.1 TMEM59L mRNA expression in
human cancers

The TIMER online database (https://cistrome.shinyapps.io/
timer/) was first used to identify the expression of TMEMS59L
mRNA transcripts in different types of cancer (Figure 1A).
Compared with corresponding normal tissues, TMEM59L
mRNA expression was significantly increased in six human
cancers, specifically BRCA, CHOL, LIHC, LUAD, PRAD, and
THCA. In contrast, TMEM59L expression was evidently lower in
BLCA, COAD, KICH, KIRC, KIRP, and STAD than that in the
normal tissues. Subsequently, a pan-cancer analysis demonstrated
that TMEMS59L expression was decreased across most cancer types,
such as GBM, GBMLGG, KIRP, COAD, KICH, KIRC, LGG,
KIPAN, COADREAD, STAD, UCEC, READ, STES, and BLCA
(Figure 1B). Considering the small number of normal samples in
TCGA database, we integrated the data of normal tissues from the
GTEx database with the data of TCGA tumor tissues to determine
the expression characteristics of TMEM59L across the pan-cancer
cohort. The results were similar; compared with its expression in
normal samples, TMEMS59L was significantly downregulated in
most cancer types (Figure 1C).

3.2 TMEM59L expression profile at
different clinical stages or in different
cancer subtypes

We further analyzed TMEM59L mRNA expression tendency

at different clinical stages and in different cancer subtypes
(Figure 2A). Distinct differences could be observed in varying
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FIGURE 1

TMEMS59L mRNA expression in different types of human cancers. (A) TMEM59L mRNA expression in different tumor types compared with normal
tissues in the TIMER database. (B) TMEM59L mRNA expression in different tumor types compared with normal tissues from TCGA database.
(C) mMRNA expression of TMEM59L across tumor types using TCGA and GTEx data. (*P < 0.05, **P < 0.01, ***P < 0.001), ****p < 0.0001.

clinical stages in several cancer types, including KIRP, BLCA,
COAD, and KIRC. Remarkably, in KIRP, BLCA, COAD, and
KIRGC, later pathological stage showed higher TMEM59L mRNA
expression (Figures 2B-F). Furthermore, TMEM59L mRNA
expression in LUAD, GBM, HNSC, BRCA, KIRC, and STAD
was also significantly different based on the molecular specific
subtype (Figures 2G-M). To increase the reliability of our study,
we verified the protein expression level of TMEM59L. Based on
the HPA database (https://www.proteinatlas.org/), we further
explored the protein level of TMEM59L in normal tissues and
human cancers. Figure S1A showed the protein expression level
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of TMEMS59L in normal tissues. The immunohistochemical
results showed that the expression level of TMEMS59L is not
high in most tissues except for the pituitary gland; Subsequently,
we also explored the expression of TMEM59L in cancer tissues.
As shown in Figure S1B, TMEMS59L has a relatively high protein
expression level in colorectal cancer, pancreatic cancer, kidney
cancer, and liver cancer. These results were consistent with our
previous results that the later the stage, the higher mRNA level of
TMEM59L in COAD and KIRP. Figure S1C further showed the
representative IHC images of TMEMS59L in colorectal and renal
cancer based on HPA database.
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TMEM59L expression at different clinical stages or subtypes of different cancers. (A) The difference of TMEM59L mRNA expression between

pathologic stages in the specific cancers. (B) Heatmap presents the TMEM59L mRNA expression profile among stages in the specific cancers.
(C—F) TMEM59L mRNA expression in pathologic stage of KIRC, KIRP, BLCA, and COAD. (G) The associations between subtypes and TMEM59L
expression. (H=M) TMEM59L mRNA expression in subtypes of BRCA, LUAD, GBM, KIRC, HNSC, and STAD. (ns: not significant, *P < 0.05, **P <

0.01, ***P < 0.001, ****p < 0.0001).

3.3 Prognostic value of TMEM59L
MRNA expression

To further identify the prognostic value of TMEM59L, we
then performed a survival analysis on the data retrieved from the
TCGA database. Cox regression indicated that a high TMEM59L
expression was associated with shorter overall survival (OS) and
progression-free interval (PFI) of KIPAN, KIRP, BLCA, COAD,
COADREAD, OV, ACC, HNSC, and STAD (Figures 3A, B). In
contrast, higher TMEM59L expression predicted longer OS and
PFI in GBMLGG, LGG, and PAAD (Figures 3A, B). Further
survival curves also indicated that high TMEMS59L expression
was associated with worse OS (Figures 3C-F) and PFI in BLCA,
COAD, KIRC, and KIRP (Figures 3G-J). Meanwhile, there was
no significant association between TMEMA59L expression and

clinical outcome in other cancers.
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3.4 Association between TMEM59L
MRNA expression and cancer-related
pathways

To better understand the relevance and potential functions
of TMEMS59L in cancer pathogenesis, we performed functional
enrichment analysis on the low and high TMEMS59L expression
groups across several cancer types (Figure 4A). The results
indicated that TMEMS59L expression was closely correlated
with cancer-related hallmarks, including epithelial-
mesenchymal transition (EMT), P53 pathway, E2F target, cell
cycle regulation at G2-M, KRAS signaling, WNT beta-catenin
signaling, and immune-related pathways, such as TGF-f, IL2-
STATS5, and TNFa signaling via NF-kB. Moreover, the pathway
activity analysis suggested that TMEM59L was significantly
involved in 10 salient cancer-related pathways, namely DNA
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damage response, apoptosis, RTK, cell cycle, Hormone AR,
Hormone ER, TSC-mTOR, Ras/MAPK, EMT and PI3K/AKT
signaling pathways (Figure 4B). The main pathway activated by
TMEMS59L was EMT (28% activation vs. 3% inhibition),
especially in BLCA, BRCA, COAD, ESCA, OV, READ, STAD,
TGCT, and THCA (Figure S2), whereas the pathways inhibited
by TMEMS59L included apoptosis (31% inhibition vs. 0%
activation) and cell cycle (22% inhibition vs. 0% activation).
When compared with low TMEMS59L expression group, the
activities of EMT and estrogen receptor (ER) pathways were also
higher, whereas a lower pathway activity in cell cycle and DNA
damage response was observed in the high TMEMS59L
expression group for patients with COAD (Figures 4C-F). The
above results suggested that TMEMS59L exerts a key influence on
cancer pathogenesis and development.
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3.5 Interaction network of TMEM59L

Based on the GeneMANIA database, the 20 proteins most
closely correlated with TMEMS59L expression, namely
TMEMS59, GABRA3, ITM2B, AK5, CAMK2B, HMGB4,
BPIFB4, REEP2, ATP1B4, DNM1, RAB6B, GSTT1, PTPRN,
CPLX2, MUCI, GDAPIL1, CORO2B, KCNS2, ASCL1, and
KIF5A, were analyzed to construct a protein-protein
interaction network (Figure 5A). Subsequently, these
interacting genes were subjected to functional enrichment
analysis, and consistently with the previous results, these genes
were significantly enriched in the activation of EMT signaling
pathway and in the inhibition of apoptosis and cell cycle
signaling pathway (Figure 5B). Relative network analysis also
indicated that TMEM59L and its interacting genes were involved

frontiersin.org


https://doi.org/10.3389/fimmu.2022.1054157
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shi et al.

10.3389/fimmu.2022.1054157

XENOBIOTIC_METABOLISM . . . . . O . O ] . . . . . .
WNT_BETA_CATENIN_SIGNALING . L] . . . . . . . . . . . . . .
UV_RESPONSE_UP e s e e+ .+ e . @ e e o e e + @
UV_RESPONSE_DN' e © © ¢ o 0 o e @ + o O O o o
UNFOLDED_PROTEIN_RESPONSE{ + . e - . . e .
TNFA_SIGNALING_VIA_NFKB . Qo o - @ - 0 @ - o o o N )
TGFBETASIGNALNG] + © o @ o =+ ® =+ ® e o o+ @ © o e o
SPERMATOGENESIS{ . . . . ) . [} . . . . . . . .
REACTIVE_OXYGEN_SPECIES_PATHWAY c e e e . e . e e o - . . DN
PROTEIN_SECRETION{ L] . . . . [ ] . . . . . .
PISK_AKT_MTOR_SIGNALING| ~ + . . s <« e . . o . . .
PEROXISOME Ce e . IR e e e . .
PANCREAS BETACELLS| ® ® ® o o o o o+ o o o @ O ¢ - o o
P53_PATHWAY{ + ® o . e - @ - e - ® '+
OXIDATIVE_PHOSPHORYLATION ) . ® . . .
NOTCHSIGNAING = @ © ® o < - o o o T
MYOGENESIS| @ I ) - 90 0 e 0 o - @ o
MYC_TARGETS_V2 o o . ¢ = ° . .
MYC_TARGETS_V1 . . . . .
MTORC1_SIGNALING . L] . . .
MITOTIC_SPINDLE ° . . .. . o
KRAS_SIGNALING_UP o o O @ o 0 ©o 0 o e ® ° 0 O o , .
KRAS_SIGNALING DN ® o o 0 O e o @ e o o o+ @ O °
INTERFERON_GAVIMA_RESPONSE | o o . . e o -
INTERFERON_ALPHA_RESPONSE | TN ) .. . . .
INFLAMMATORY_RESPONSE { ° @ o . . e o o @ -
IL6_JAK_STAT.SIGNALING] ® ©® @ o o o . e + o o .
IL2_STATS_SIGNALING | @ = « o o . . ® o - o o o @ -
YPOXA] © ® o @ ® o ° @ o c e o o @ o ® -
HEME_METABOLISM]| -+ - ¢« . s . e ¢« o« o o o o
HEDGEHOGSIGNALNG] @ © ® ® © ® s+ ©® o o o e ® o o @ o - o
Gcoysisf + - e @ - - @ - e - o ° - . - N
G2M_CHECKPOINT . ° - - @ - @ : .
FATTY_ACID_METABOLISM{ =+ =« =« ® =« « .+ e ° . v e °
ESTROGEN RESPONSELATE{ + ® + @® + + ® + ® ©® o ® o =+ ® o + - @ -
ESTROGEN_RESPONSE_EARLY{ = o . ° . . * ° * . . L] ° . 3 -
EPITHELIALMESENCHYMAL_TRANSITION | @ @ @ ) * () ‘ ) ’ ®:0-.000 o0
E2F_TARGETS L () ® .
ONA_REPAIR| - - .+ . v . .
COMPLEMENT{ @ - . ‘ . - @ e o + @ o - o @ - .
COAGULATION| ® @ o @ . e @ o o T ® - © 0 o .
CHOLESTEROL HOMEOSTASIS| + = =+ o + =« & < o . o @ =« - o o = .
BILEACID_METABOLISM| « o o @ + + o« + o . o o e o e o+ e
OPTOSIS{ ¢ + <+ ® o - @ - @ ® o @ : o o+ o - @ -
APICALSURFACE{ ¢ o + ® ® ® o - o e ® © + o+ o+ e @ .
APCALIUNCTON| @ @ ® ©@ ® © © @ © e 0 - o - o ' ® 0 o
ANGIOGENESIS1 @ ® ® ©® ® + ©& o o e o . L] . * . . .
ANDROGEN_RESPONSE{ =+ - ® - - - R « - e c e
ALLOGRAFT REJECTION| @ K ) ®@ °o 000 - - 1
ADPOGENESIS] + o o o o . © . © H : . - e .
FFEF P FNEREREPE PP S F &
B TETL LI IS I ELE LI F ¢
Pathway (A: Activate; I: Inhibit) 0g10FOR) + 00 @ 25 @ 50 @75 e
= a-2-101 2
Percents, 0 28 C
" Inhibit Activate Activity of EMT pathway Activity of CellCycle pathway
Tl ° o o
%, ]
G, % z" z,
%o/o Xy ° s, Expr. group H 3 Expr. group
o, I ¢ N e = =y0iach
> BTV T E3 Lower expr. > =g e E3 Lower expr.
2 g o g
"t > § 5 E:Fi g, ;
= £ £
9 2 £ £
% > o Higher expr. Lower expr. a Higher expr. Lower expr.
%, 7 I Eror. goup o group
o
%, %0 s ©
%;:os 13 ©
NN e
ols 5 D F
ﬁ’m;% - Activity of Hormone ER pathway , Activity of DNADamage pathway
(e ®
R, o £ S
%ﬁ;q > 8 Wf  FoReziew E
4*,)_\/ it ? 2 Expr. group 3 Expr. group
NG w g r E3 Higher expr. ] ES Higher expr.
(e g i i g
S o £ £
%, © & Figher exr Lower orpr. & Higher expr Lower oxp.
o Expr. group Expr. group

FIGURE 4

Association between TMEM59L and pathways in cancers. (A) Enrichment analysis for cancer signaling between high and low TMEM59L
expression tumor tissues. NES is the normalized enrichment score in the GSEA algorithm. (B) The combined percentage of the effect of
TMEM59L on pathway activity indifferent types of human cancers. (C—F) The differences of epithelial mesenchymal transition (EMT), Cell Cycle,
Hormone estrogen receptor (ER), and DNA damage pathways activity between high and low TMEM59L expression groups in COAD.

in cancer-related pathways, such as TSC/mTOR, RTK, EMT,
Ras/MAPK, and PI3K/AKT signaling, particularly in ACC,
BLCA, COAD, READ, STAD, KIRP, KIRC, KICH, and
PAAD (Figure 5C).

3.5.1 Association of TMEM59L expression with
the tumor immune microenvironment

As the pathway enrichment analysis revealed that TMEM59L
was closely related to inflammation and immune function, we
further investigated the link between TMEMS59L expression and
immune cell infiltration levels using the CIBERSORT algorithm.
The results demonstrated that TMEMS59L expression was distinctly
negatively correlated with immune infiltration levels in LUSC,
SARC, COADREAD, LUAD, HNSC, CESC, BRCA, and TGCT,
especially with the levels of CD8 T cell and activated CD4 T cells
(Figure 6A and Table S1). We then further assessed Spearman’s
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correlation coefficient of TMEM59L and immune scores across
distinct cancer types using the ESTIMATE algorithm. A
significantly positive correlation between TMEMS59L and stromal
scores was detected, yet a negative correlation with immune scores
across many cancer types (Table S2). IPS has been shown to
effectively predict the response rate to anti-CTLA-4 and anti-PD-1
therapy. For this reason, we investigated the link between
TMEMD59L expression and the IPS across various cancer types.
Figure 6B showed that TMEM59L expression was evidently
negatively correlated with IPS in several types of cancers,
including GBMLGG, LGG, OV, CESC, KIRC, SKCM, KIRP, and
KIPAN. Moreover, IPS analysis demonstrated that TMEMS59L
expression was positively associated with immune checkpoints
(CP) and suppressor cells (SCs) but was negatively correlated with
MHC, average Z-score (AZ), and effector cells (ECs) in most
tumors, all the p-values are less than 0.05.
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FIGURE 5

Association between interaction genes of TMEM59L and pathways in cancers. (A) Interaction Network of TMEM59L constructed by GeneMANIA.
(B) The combined percentage of the effect of interaction genes of TMEM59L on pathway activity in different types of human cancers, the
number in each cell means that the percentage of cancer types, in which TMEM59L showed significant association with the specific pathway,
among the selected cancer types. (C) Association between interaction genes of TMEM59L and known pathways in ACC, BLCA, COAD, READ,
STAD, KIRP, KIRC, KICH and PAAD. (solid line: activation; dashed line: inhibition), the different colors of the lines represent different types of

cancer.

We also demonstrated that TMEMS59L expression was
negatively linked with the expression of many immune
modulators, including PD-L1, IDOI1, TIGIT, CTLA-4, and
BTLA in various cancers (Figure 6C). TMEM59L also showed
a negative correlation with tumor mutational burden (TMB) in
many cancers, such as HNSC, LUAD, LIHC, KIRC, BRCA,
THCA, BLCA, KIRP, LGG, ESCA, PAAD, UCEC, and STAD
and a negative correlation with microsatellite instability (MSI) in
UCEC, ACC, ESCA, LAML, and STAD, which suggest that
TMEMS59L may reflect cancer immunogenicity in these cancer
types (Figures 6D-E and Table S3). Subsequently, based on the
IMvigor210 cohort, we also found a link between the high
expression of TMEMS59L and poor clinical response to
immune therapy (Figure 6F). These observations may hint at
an intricate interplay between TMEM59L and the immune

Frontiers in Immunology
65

microenvironment, although more in-depth investigations are
needed to unveil the specific molecular mechanisms.

To further clarify the possible role of TMEMS59L in the
tumor microenvironment, we analyzed single-cell sequencing
data from BRCA-GSE148673 dataset through the TISCH
database (a scRNA-seq database that provides extensive cell
type annotations at the single-cell level, allowing TME
exploration across various cancers). The results of UMAP
showed that 28 clusters were identified in the BRCA-
GSE148673 dataset (Figure S3A), and then the corresponding
clusters were labeled into nine different cell subpopulations,
including B cell, CD4 T conv, CD8 T cell, endothelial, epithelial,
fibroblasts, malignant, mono/macro, and Tprolif (Figure S3B).
For the BRCA-GSE148673 data set, TMEM59L is mainly
expressed in fibroblasts (Figures S3C, D). Previous studies
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cancer types. CP, immune checkpoints; SC, suppressor cells; EC, Effector cells; AZ, Average Z-score. (C) Correlation between TMEM59L and 155
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expression have a worse clinical response to immune therapy in IMvigor210 cohort. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

have shown that fibroblasts are mainly involved in the activation
of the EMT pathway to promote metastasis (40-42), and
functional enrichment analysis subsequently conducted further
confirmed our speculation that the activity of the EMT and
angiogenesis pathways in TMEMS59L high-expressing cell cluster
(fibroblasts) was significantly increased (Figures S3E, F). All the
above results indicated that TMEM59L participates in tumor
invasion and metastasis through the activity EMT pathway,
which was consistent with our previous results.

We also performed GSEA analysis using TCGA-BRCA bulk
RNA-seq data to compare the expression level of TMEM59L
concerning related signaling pathways. The cancer-associated
pathway signatures were extracted from Jiao Hu et al. (43), the
cancer-immunity cycle reflects the anticancer immune response
(44), and the activation levels cancer-immunity cycle were
retrieved from tracking tumor immunophenotype (TIP) (45)
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(http://biocc.hrbmu.edu.cn/TIP/). And as shown, TMEM59L
was significantly positively correlated with oncogenic pathways
(such as Ta_pathway, EMT_differentiation, and Myofibroblasts
pathway) (Figure S4A). Interestingly, we further found that
TMEMS59L is negatively correlated with cancer immunity cycle
pathways which further confirmed that TMEMS59L is related to
the immunosuppressive microenvironment (Figure S4B).

3.6 DNA methylation alterations
across TMEM59L gene across
different human cancers

Epigenetic changes such as DNA methylation play key roles in

modulating the behaviors of cancer cells and immune tolerance
(46), thus we explored whether epigenetic regulation is involved in
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TMEMS59L mRNA expression. As shown in Figure 6A, the
methylation levels of TMEMS59L gene in distinct cancers were
highly heterogeneous (Figure 7A). The TMEMS59L gene was
hypermethylated in most cancers, including COAD (Figure 7B),
BRCA (Figure 7C), PAAD (Figure 7D), HNSC (Figure 7E), BLCA,
UCEC, KIRC, and LUSC, whereas it was hypomethylated in KIRP,
LUAD, and THCA (P < 0.05, Figure S5). Spearman correlation
analysis indicated that TMEM59L expression correlated negatively
with its gene methylation level in BLCA, BRCA, COAD, UCEC,
HNSC, LUAD, PAAD, and THCA (FDR < 0.05; Figure 7F and
Figure S6). Subsequently, survival analysis also showed that the
hypermethylation of the TMEMS59L gene correlated with longer
survival times than the survival times associated with the
hypomethylation of TMEMS59L gene (P < 0.05, Figure 7G),
especially in COAD, KIRC, and KIRP. The hypermethylation of
TMEMS59L was significantly correlated with longer OS and PFI
(Figures 7H-M). No association was found between TMEM59L
methylation and survival in other cancer types.

A Methylation difference in each cancer

10.3389/fimmu.2022.1054157

3.7 Correlation analysis of TMEM59L
expression with stemness index and
genomic heterogeneity across cancers

Stem cell-like characteristics have been established as the
main cause of chemoresistance (47, 48) and the key drivers of
tumor progression (49-51). In the present study, we conducted
correlation analyses to identify the association between
TMEMS59L expression and tumor stemness scores (RNA and
DNA stemness scores). A significant negative correlation
between DNA stemness score and TMEM59L expression in
most tumors was observed in LGG, ESCA, SARC, STES,
GBMLGG, STAD, COAD, LIHC, BRCA, TGCT,
COADREAD, BLCA, PRAD, and KICH (Figure 8A). Similar
results were seen when assessing the correlation between RNA
stemness score and TMEMS59L expression in most cancers,
except for GBM, GBMLGG, LGG, and PCPG (Figure 8B).
Homologous recombination is a critical pathway for double-
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FIGURE 7

DNA methylation alterations of TMEM59L across different human cancers. (A) The methylation difference between tumor and normal samples of
TMEMS59L in different human cancers. (B—E) TMEM59L methylation in COAD, BRCA, HNSC, and PAAD. (F) The correlation between methylation
and mRNA expression of TMEM59L in different human cancers. (G) The OS and PFS difference between higher and lower TMEM59L methylation
groups in different human cancers. (H—M) The prognosis analysis of TMEM59L methylation in COAD, KIRC and KIRP.
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(LOH) and Neoantigens (NEO) in different types of cancer.

strand break repairs (52, 53), thus homologous recombination
deficiency would result in a high level of genomic instability,
leading to a loss of heterozygosity and ultimately cell death (52,
54). Homologous recombination deficiency cancers have been
shown to be markedly correlated with sensitivity to platinum-
based chemotherapeutic drugs and PARP inhibitors (55, 56). In
the current study, the expression of TMEMS59L was closely
related to homologous recombination deficiency status in most
tumors (Figure 8C), and further loss of heterozygosity analysis
showed a significantly positive association between loss of
heterozygosity status and TMEMS59L expression in several
cancers, such as COAD, COADREAD, LAML, KIRP, PRAD,
HNSC, LIHC, TGCT, and BLCA but a negative association with
GBM, GBMLGG, LUAD, BRCA, SARC, and THCA (Figure 8D).
Neoantigens were reported to be critical targets of
immunotherapy and were correlated with improved clinical
outcome and response rate to immune checkpoint blockade in
several cancers, such as non-small cell lung cancer and
melanoma (57-61). Our study discovered that TMEMA59L
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expression was linked with neoantigens in only a limited
number of cancers, such as COAD, COADREAD, GBM,
UCEC, while no link was evident in other cancers (Figure 8E).

3.8 Drug sensitivity analysis

Genomic aberrations would impact the sensitivity of
malignant tumors to drug therapy (including chemotherapy
and targeted therapy) (62). Since TMEM59L expression was
closely associated with the genomic heterogeneity of various
cancers, we then performed the drug sensitivity analysis on the
GDSC (38) and CTRP databases. The results indicated that
patients with high TMEMS59L expression were more susceptible
to AG-01469, BMS-754807, SB 505124, CIL70, DBeQ, ML162,
ML210, axitinib, alisertib, olaparib, PYR-41, GMX-1778, BMS-
195614, and B52334 (negative correlation with IC50, p < 0.05;
Figures 9A, B). This implied that the dysregulation of TMEM59L
could lead to anti-tumor drug resistance.
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4 Discussion

Transmembrane proteins (TMEMs) are proteins that span the
entirety of the cell membranes (63), and many of such proteins play
an important role in cancer development and cancer cell
dissemination (64, 65), by mediating signal transduction between
the cytoplasmic proteins and extracellular environment (66).
Therefore, TMEMs represent attractive drug targets for cancer
therapy (64). TMEMS59L is a newly discovered brain-specific
membrane-anchored protein that has been reported to act as a
pro-apoptotic protein (29, 31). TMEM59L downregulation protects
neurons from oxidative stress (31). Recent studies have also shown
that TMEMS59L can also regulate autophagy-related biological
processes (32). However, there is currently a dearth of systematic
studies in the literature on the TMEMS59L regulation of tumor
pathophysiology across cancer types.

In the present research, we assessed the pan-cancer
expression of TMEMS59L and the correlation of dysregulation
of TMEMS59L expression with clinical outcome of patients. The
results indicated that TMEMS59L expression was altered in
different types of cancer and associated with the clinical
TMEMS59L expression was
evidently downregulated across most cancer types compared

outcome of cancer patients.

to its expression in the corresponding normal tissues. Further
analysis demonstrated that distinct differences was observed in
different clinical stages of several cancer types, such as KIRP,
BLCA, COAD, and KIRC, where advanced tumor stage
correlated with higher TMEM59L mRNA expression.
Therefore, in these specific cancer types TMEMS59L may serve
as a tumor promoting factor. Additionally, survival analysis
confirmed that TMEMS59L was a risk factor in patients with
KIRP, BLCA, COAD, and KIPAN (KIRC+KIRP+KICH).
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The mechanism by which TMEMS59L regulates tumorigenesis
and cancer pathophysiology remains unclear, but the relationship
we observed between TMEMS59L and the hallmarks of cancer could
improve our understanding of the functional roles of TMEMS59L.
GSEA analysis demonstrated that TMEM59L expression was strictly
linked with hallmarks of malignancy and immune-related pathways
in most cancers, such as EMT, P53, apoptosis, cell cycle, WNT, IL-6-
JAK-STATS3, IL2-STAT5 and TGF- signaling pathways.

Genetic and epigenetic changes play key roles in immune
tolerance and cancer development (46). In our study, the abnormal
hypermethylation of TMEM59L was associated with decreased
mRNA levels and better clinical outcomes for several cancers, such
as KIRP, KIRC, and COAD, suggesting that hypermethylation of
TMEMS59L gene may be key regulatory mechanism for TMEMS59L
expression in these cancers. Interestingly, in line with our previous
findings, high TMEMS59L expression were associated with poor
prognosis in COAD, KIRC, and KIRP. Thus, we speculated that
the epigenetic changes of TMEMS59L gene may promote the
occurrence of KIRC, KIRP, and COAD in some cases.

Tumor immunotherapy has made remarkable achievements in
cancer treatment (67). Immune checkpoint blockade therapy has
significantly prolonged the survival in many cancers typically
associated with poor prognosis, such as melanoma and non-small
cell lung cancer (68). However, immunotherapy is still only
available for a subset of patients, and immunotherapy response
rates vary widely across cancer types (69, 70). Our study found that
in addition to regulating pathways involved in cancer progression,
TMEMS59L was also involved in immune regulatory pathways such
as [L6-JAK-STATS3, IL2-STATS, and TGF-B signaling. Correlation
analysis showed that TMEMS59L expression negatively correlated
with activated CD4 T cells and CD8 T cells in most cancer types,
and further IPS analysis also replicated the same trend; TMEM59L
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expression was negatively related to IPS score, AZ, and ECs, while
being positively associated with SCs, indicating that TMEM59L
could play a key role in the immunosuppressive microenvironment.
At the same time, the close association of TMEMS59L with most
immunomodulators and immune checkpoints also implied that
TMEMS59L could predict the clinical response of patients to
immune checkpoint blockade, and this was validated in the
IMvigor210 cohort, as high expression of TMEMS59L correlated
with a worse clinical response to PD-L1 therapy. Taken together, all
of the results presented above suggested that TMEM59L may exist
in an ‘immune-excluded” TME, consistent with higher stromal
scores and activation of TGF-B signaling pathways. Despite the
currently unclear role of TMEM59L in T cell suppression, our study
indicated that TMEMS59L could represent a potential novel immune
target, and the application of anti- TMEM59L antibodies after other
therapeutic interventions may be an effective therapeutic strategy.

The study bears few limitations. First, the bioinformatic
analysis needs to be corroborated by experimental validation via
immunostaining of the normal and tumor tissues. Then,
mechanistic investigation is required to confirm the functional
association between TMEMS59L and cancer- and immune
pathways, as well as the epigenetic regulation of TMEMS59L
expression in specific cancers.

In conclusion, by combining a multi-omics approach, we
comprehensively explored TMEMS59L gene expression signature,
its prognostic value, as well as its association with immune cell
infiltration and cancer-associated pathways in various cancer types.
Our findings revealed that TMEM59L expression was correlated
with poor prognosis across multiple tumor types, especially in
COAD, KIRP, and KIRC. Moreover, our study also indicated that
TMEMS59L may represent a potential novel immune target and
could play an immune-regulatory role in tumors. This study
underscores the importance of TMEMS59L as a prognostic
biomarker and a treatment target and identified an area to be
explored further in the future.
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FIGURE S1

The expression of TMEMS59L in normal and cancer tissues based on the
HPA database. (A) The expression of TMEM59L in healthy tissues. (B) The
expression of TMEM59L in human cancer tissues. (C) The representative
IHC images of TMEM59L in colorectal and renal cancer based on HPA
database .(Scale bar: 100 pm).

FIGURE S2

The differences of EMT pathway activity between high and low TMEM59L
MRNA expression in different types of cancer. (A) BRCA, (B) BLCA, (C)
COAD, (D) ESCA, (E) READ, (F) OV, (G) TGCT, (H) THCA, () STAD.

FIGURE S3

The single-cell RNA sequencing analysis exhibits the expression pattern as
well as the signal pathway of TMEM59L. (A, B) The UMAP projection of all
clusters and cell subpopulations. (C, D) TMEM59L expression from BRCA-
GSE148673; (E) GSEA showed the the activity of the hallmark EMT
pathways in different cells based on TISCH database; (F) GSEA showed
the enriched upregulated hallmark pathways in different cells based on
TISCH database.

FIGURE S4

Correlations between TMEM59L and enrichment scores of cancer-
associated pathways. (A) Correlations between TMEM59L and the
enrichment scores of cancer-associated pathways. (B) Correlations
between TMEM59L and the steps of the cancer immunity cycle. Solid
lines represent a positive correlation, dashed lines represents a negative
correlation, and the the colors represent significant P-values.

FIGURE S5

The methylation difference between tumor and normal samples of
TMEM59L in different human cancers. (A) BLCA, (B) KIRC, (C) KIRP, (D)
UCEC, (E) LUSC, (F) LUAD, (G) THCA.

FIGURE S6

The correlation between methylation and mRNA expression of TMEM59L
in different human cancers. (A) BLCA, (B) BRCA, (C) COAD, (D) HNSC, (E)
LUAD, (F) PAAD, (G) THCA, (H) UCEC.
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Safety and feasibility of
toripalimab plus lenvatinib
with or without radiotherapy
in advanced BTC

Yunchao Wang', Nan Zhang', Jingnan Xue', Chengpei Zhu',
Yanyu Wang, Longhao Zhang, Xu Yang, Hao Wang,
Shanshan Wang, Jiashuo Chao, Xiaobo Yang* and Haitao Zhao*

Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China

Background: Toripalimab shows antitumor efficacy in cholangiocarcinoma.
Radiotherapy (RT) may enhance systemic responses of PD-1 inhibitors and
lenvatinib. This study was designed to assess the safety and feasibility of
toripalimab plus lenvatinib with or without RT in advanced BTC.

Methods: This study involved 88 patients with advanced BTC receiving toripalimab
plus lenvatinib with or without RT from the clinical trials (NCT03892577).
Propensity score matching (PSM) (1:1) analysis was used to balance potential
bias. The overall survival (OS), progression-free survival (PFS), objective response
rate (ORR), and adverse events (AEs) were evaluated.

Results: After PSM, the final analysis included 40 patients: 20 receiving toripalimab
plus lenvatinib without RT (NRT); 20 receiving toripalimab plus lenvatinib with RT.
The AEs were more frequent in the RT group than in the NRT group without
treatment-associated mortality. The addition of RT did not cause specific AEs. The
median PFS was significantly longer with RT (10.8 versus 4.6 months, p<0.001). The
median OS was 13.7 months with RT versus 9.2 months in the NRT group
(p=0.008). The ORR was 35% (95% Cl: 12.1-57.9) in the RT group versus 20%
(95% Cl: 0.8-39.2) in the NRT group.

Conclusions: The addition of RT may enhance the efficacy of toripalimab plus
lenvatinib. Toripalimab plus lenvatinib with RT have a good safety profile without an
increase in specific toxicities in advanced BTC patients.

KEYWORDS

advanced biliary tract cancer, PD-1 inhibitor, lenvatinib, radiotherapy, synergic effect

Abbreviations: PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; BTCs, biliary
tract cancers; ECC, extrahepatic cholangiocarcinoma; ICC, intrahepatic cholangiocarcinoma; GBC, gallbladder
cancer; Lenvatinib, tyrosine kinase inhibitors; OS, overall survival; PFS, progression-free survival; ORR,
objective response rate; DCR, disease control rate; SD, stable disease; PD, progressive disease; CR, complete
response; PR, partial response; HR, hazard rate; RECIST, response evaluation criteria in solid tumors; AEs,

adverse events; CTCAE, Common Terminology Criteria Coastocellular Group; RT, radiotherapy.
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Introduction

Biliary tract carcinoma (BTC), including intrahepatic
cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma
(ECC), and gallbladder cancer (GBC), are aggressive malignancies
(1). Most patients are diagnosed at an advanced stage with a poor
prognosis (2, 3). Chemotherapy has been the mainstay of treatment
for patients with advanced BTC (2, 4). However, conventional
chemotherapy is often accompanied by side effects and the limited
survival benefit, necessitating an evaluation of alternative drug
combinations (5).

PD-1/PD-L1 inhibitors have exhibited encouraging therapeutic
effects. However, the response rates of either PD-1/PD-L1 inhibitors
alone or PD-1/PD-L1 inhibitors with targeted therapies remain less
than ideal in BTC (6, 7). Continuous exploration has been made to
improve the response of PD-1/PD-L1 inhibitors, including PD-1/PD-
L1 inhibitors combined with chemotherapy (8) or locoregional
treatment approaches (9-11). The phase III TOPAZ-1 study
showed that the combination of durvalumab plus gemcitabine and
cisplatin significantly improved the survival of patients with advanced
BTC (12). Recently, durvalumab plus gemcitabine and cisplatin
proved as first-line treatment by FDA and NCCN guidelines. New
data have emerged that radiotherapy work in synergy with
immunotherapies to increase patient response (13, 14). A study
showed that adding RT into the combination of PD-1/PD-L1
inhibitors and targeted therapy was feasible and could improve
treatment outcomes (15). However, combination of immunotherapy
plus radiotherapy may lead to more AEs. Data on
immunomodulatory effects of RT in BTC remains limited.

Toripalimab, a humanized programmed death-1 (PD-1)
antibody, has shown a manageable safety profile and has promising
antitumor activity in patients with advanced gastric cancer and
metastatic mucosal melanoma (16, 17). Toripalimab shows
antitumor efficacy in cholangiocarcinoma (18).

Considering the different anti-malignancy mechanisms of
lenvatinib, toripalimab, and RT, combining these three modalities
may show a potential synergic effect and promising preliminary
efficacy results in advanced BTC. In this study, we assessed the
safety and feasibility of RT plus toripalimab and lenvatinib in
patients with advanced BTC.

Materials and methods
Patient characteristics and matched cohorts

This retrospective study assessed the safety and feasibility of non-
first-line toripalimab plus lenvatinib with RT in advanced BTC.
Advanced BTC was defined as initially diagnosed unresectable BTC
(histologically confirmed ECC, ICC, or GBC by biopsy or surgical
specimen). Other eligibility criteria included a good physical status
with an Eastern Co-operative Oncology Group (ECOG) performance
status score of 0-1, Child-Pugh A or B liver function status, at least
one measurable or evaluable tumor lesion according to the Response
Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1). The
study protocol was compliant with the Declaration of Helsinki and
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was approved by the Institutional Review Board and Ethics
Committee at Peking Union Medical College Hospital.

A total of 113 patients were initially enrolled. Twenty-five patients
have excluded: 2 patients received other target therapy; 14 patients
received other PD-1/L1 inhibitors; 9 patients had no measurable
lesion. Finally, 37 patients who received toripalimab plus lenvatinib
with RT and 51 patients who received toripalimab plus lenvatinib
without RT remained. Consecutive PSM was conducted by 1:1
matching with a caliper of 0.05 to balance potential bias. Finally, 40
patients with advanced BTC who received toripalimab plus lenvatinib
with RT (RT group) or without RT (NRT group) were included for
statistical analysis as a matched cohort (Figure 1).

Treatment

In the NRT group, lenvatinib was administered at a dosage of 12
mg (for patients with a body weight>60 kg) or 8 mg (for patients with
a body weight <60 kg) orally once a day. The PD-1 dose included a
fixed dosage of 200 mg (240 mg for toripalimab) every three weeks or
3 mg/kg every three weeks.

In the RT group, patients received intensity-modulated radiation
therapy (IMRT) plus lenvatinib and toripalimab. Lenvatinib plus
toripalimab was not discontinued before or after each RT session. The
radiation dose was prescribed to the isocenter or 95% planning target
volume as 24.0-60.0 Gy in 6-25 fractions, a single dose between 1.8
and 6.0 Gy for tumor sites at the physician’s discretion, no more than
five times a week. RT was given during PD-1 inhibitors no later than
six weeks (19).

Assessments

The overall response was assessed using enhanced computed
tomography (CT) or magnetic resonance imaging (MRI) according
to RECIST 1.1 after the patient’s treatment. Professional radiologists
evaluated the imaging examinations.

The therapeutic efficacy assessment included the objective
response rate (ORR) [the percentage of patients with a confirmed
complete/partial response (CR/PR)], progression-free survival (PFS)
(the time from receiving toripalimab to disease progression at any site
or death), the overall survival (OS) (the time from receiving
toripalimab to the date of death), the disease control rate (DCR)
(the proportion of patients who achieved an objective response or
SD), and the safety. The adverse events (AEs) were collected and
graded according to the National Cancer Institute Common
Terminology Criteria for Adverse Events, version 4.0 (CTCAE 4.0).

Statistical analysis

The Data cut-off was June 1, 2022. We performed propensity
score matching (PSM) in a 1:1 fashion to further reduce selection bias.
We used a caliper (i.e., the maximum distance that two cases can be
apart from each other based on their estimated propensity scores) of
0.05 to prevent matches with very dissimilar estimated propensity
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113 patients with advanced BTC received
immunotherapy plus targeted therapy with or without RT
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88 patients received toripalimab plus lenvatinib
with or without RT
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plus lenvatinib with RT
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lenvatinib without RT (NRT)

FIGURE 1
Study workflow.

scores. Variables used for PSM include age, sex, ECOG, subtype, and
tumor stage. The Kaplan-Meier and bilateral log-rank tests were used
to generate PFS and OS curves. The two treatment groups’ baseline
characteristics, efficacy, and AEs were compared using the chi-square
test or Fisher’s exact test. The hazard ratios of each clinicopathological
feature for the OS were estimated by Cox proportional hazard
modeling. All statistical analyses were undertaken using SPSS 22
(vision 22.0, SPSS, Inc., Chicago, IL) and R (version 4.0.3).

Results

The patient demographics and
baseline characteristics

From March 19, 2019, to June 1, 2022, 40 patients with advanced
BTC were included in this study: 20 in the NRT group and 20 in the
RT group. The median duration of follow-up was 21.3 months. The
demographics and baseline characteristics of the two groups are
summarized in Table 1.

The two groups were well-balanced regarding demographics and
characteristics. The median age of the patients was 61.5 years.
Cholangiocarcinoma, including ICC and ECC, is the primary tumor
type (75%). Most patients had a better ECOG performance status.
The two groups did not differ significantly concerning differentiated
histology, previous antitumor therapy, TNM stage, tumor diameter,
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or sites of metastases. The pathological differentiation types of 18
patients were unknown due to a lack of further pathological tissue
analyses. The liver and lymph nodes were the common metastatic
sites, and other metastatic lesions included uterine metastasis (one
patient) and adrenal metastases (one patient).

The radiotherapy sites were mainly distributed in the liver (70%)
and soft tissue or lymph nodes (60%). The median radiation dose
delivered was 45 Gy (range 24 to 60 Gy) in 6-25 fractions with IMRT.
13 (65%) patients received one course, and 7 (35%) two courses.

Efficacy

At the time of analysis, 17 patients had disease progression, and
17 patients had died in the NRT group, while 12 patients had disease
progression and 10 patients had died in the RT group. The median
PES was 10.8 months (95% CI: 6.2-15.4) in the RT group versus 4.6
months (95% CI: 3.3-5.8) in the NRT group (HR 0.21 [95% CI: 0.09-
0.49], p<0.01, Figure 2A). Likewise, the median OS was significantly
longer in the RT group (13.7 months, 95% CI: 7.8-19.6) than that in
the NRT group (9.2 months, 95% CI: 6.5-11.8) (HR 0.36 [95% CI:
0.16-0.80]; p=0.008, Figure 2B).

No patient achieved a complete response (CR) in the two groups.
In the RT group, 4 patients achieved a partial response (PR), 11
patients had SD, and 5 patients exhibited progressive disease (PD)
(Table 2). The ORR was 20% (4/20; 95% CI: 0.8-39.2), and the DCR
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TABLE 1 Baseline characteristics.

Characteristics Toripalimab plus lenvatinib with RT

Toripalimab plus lenvatinib P-value
(n=20) (n=20)

Age, years 1
<65 13(65) 13(65)
>65 7(35) 7(35)

Gender, n (%) 1
Male 10(50) 11(55)

Female 10(50) 9(45)

Tumor subtype, n (%) 0.76
Cholangiocarcinoma 14(70) 16(80)

Gallbladder cancer 6(30) 4(20)

ECOG performance status, n (%) 1
0 10 9
1 10 11

Differentiated histology, n (%) 0.08
Well 0 2(10)

Moderately 1(5) 4(20)
Poorly 6(30) 5(25)
Moderately-poorly 4(20) 1(5)
Well-moderately 0 1(5)
Unsure 9(45) 7(35)

Previous antitumor therapy, n (%)

Radical surgery resection 7(35) 8(40) 1
Systemic chemotherapy 5(25) 6(30) 0.50
Targeted therapy 14(60) 14(70) 0.48

Site of metastases, n (%)

Intrahepatic 17(85) 12(60) 0.08
Lymph nodes 18(90) 14(60) 0.12
Lung 2(10) 2(10) 1
Bone 4(20) 2(10) 0.69
Other (Uterus, adrenal glands, brain) 2(10) 1(5) 1

Radiotherapy dose (Gray)

Median(range) 45(24-60) - -

Radiotherapy technique

intensity-modulated radiation 20(100) - -
TNM stage, n(%) 0.33
111 10 14
v 10 6
Tumor diameter, mean + SD(cm) 4.7 £ 3.7 56+ 3.7 0.90

Radiotherapy site

(Continued)
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TABLE 1 Continued

Characteristics

10.3389/fimmu.2023.1084843

Toripalimab plus lenvatinib with RT Toripalimab plus lenvatinib P-value
(n=20) (n=20)
Liver 14(70) - -
Bone ‘ 2(10) - -
Soft tissue or lymph nodes in the abdominal cavity ‘ 12(60) - -

was 75% (15/20; 95% CI: 54.2-95.8) in the NRT group. However, in
the RT group, 7 patients achieved a partial response (PR), 10 patients
had SD, and 3 patients exhibited progressive disease (PD), the ORR
was 35% (7/20; 95% CI: 12.1-57.9), and the DCR was 85% (17/20; 95%
CI: 67.9-102.1). The survival benefits in the RT group were observed.
Among the two cohorts, the RT group showed a higher DCR than the
NRT group but did not find a significant difference.

Univariate and multivariate analyses were performed to identify
independent prognostic factors associated with OS. Potential
predictors include age, sex, ECOG, method of treatment, and
metastasis. Univariate and multivariate analyses found ECOG and
treatment methods were associated with OS (Figure 3). Figure 4A
shows a waterfall plot of the target lesions from baseline in the RT
group: 13 of the 20 (65%) patients exhibited a decrease. In
comparison, 7 of the 20 (35%) patients showed a decrease in the
NRT group (Figure 4B). Three patients exhibited a decrease in tumor
size from baseline after analysis of nine measurable non-target lesions
in the RT group (Figure 4C).

In the RT group, one patient achieved a PR, who had been PD
before radiotherapy; two patients had achieved PR, who had been SD
before radiotherapy; five patients achieved SD, who was PD
before radiotherapy.

Safety

All patients experienced >1 adverse event (AE), and no
treatment-related deaths occurred in this study (Table 3). The
adverse events were more frequent in the RT group than in the
NRT group, especially hypothyroidism [8 (5.6%) versus 1, p = 0.008].
The most common AEs (any grade) in the RT group were fatigue

(70%), ALT or AST elevation (60%), and bilirubin elevation (50%),
while fatigue (65%), AST or ALT increased (50%) in NRT group. The
RT group had a higher incidence of grade 3-4 AEs than the NRT
group. The most frequent grade 3 AEs were rash, with an incidence of
20%. One patient experienced grade 4 severe AEs (SAEs)
(gastrointestinal hemorrhage). All the recorded any-grade AEs
were reversible.

Discussion

This is the first reported study that assessed the efficacy and safety
of toripalimab plus lenvatinib with or without RT in advanced BTC
patients and represents a potentially shifting approach to improve
immunotherapy response. The combination of PD-1 inhibitor plus
lenvatinib with RT was promising. Patients who received toripalimab
plus lenvatinib with RT have significantly longer OS (13.7 versus 9.2
months, p=0.008) and PFS (10.8 versus 4.6 months, p<0.01) than
patients who received toripalimab plus lenvatinib without RT. The
risk of death was reduced by 64% in the RT group compared with the
NRT group. Importantly, we found that toripalimab plus lenvatinib
with RT were well tolerated.

In this study, patients accepting toripalimab plus lenvatinib with
RT achieved approximately 35% ORR and 85% DCR, which were
higher than the toripalimab plus lenvatinib regimen in our study and
previous studies (7, 20, 21). The response rates of toripalimab with
targeted therapies in BTC are not satisfactory. Previous studies
showed that lenvatinib plus pembrolizumab has an ORR of 10% to
25% in advanced BTC (7, 20). Recently, a retrospective study of 74
patients who received PD-1 inhibitor plus lenvatinib revealed that the
ORR was 20.27% (95% CI: 10.89%-29.65%), and the DCR was 71.62%

== RT group

100%
mPFS:10.8months
® =+~ NRT group
£ 75% .
2 mPFS:4.6months
>
3 P<0.01
% Cl-
F I3 [ N HR 0.21(95% C1:0.09-0.49)
£
o
0
2 25%
= p=0.008
D
<4
a
0%
0 5 10 15 20 25
Time(months)
No.at risk
RT group{ 20 20 16 5 3 1
NRT group{ 20 20 8 3 1 0
0 5 15 20 25

10
Time(months)

FIGURE 2

Kaplan—Meier curves for progression-free survival (A) and overall survival (B) for patients receiving PD-1 inhibitors plus lenvatinib with or without RT.

Frontiers in Immunology

77

== RT grouj
100% growp
mOS:13.7months
=~ NRT group
75%
mOS:9.2months
g P=0.008
g 50%] =--------fs-----T77 HR 0.36 (95% C1:0.16-0.80)
Iz
T
o 25%
3 p<0.001
' '
0% ' '
0 5 10 15 20 25
Time(months)
No.at risk
RT group 20 18 8 2 0 0
NRT group { 20 8 3 0 0 0
0 5 10 15 20 25
Time(months)

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1084843
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

TABLE 2 Tumor response to treatment in each treatment group.

Toripalimab plus lenvatinib with

RT
(n=20)

10.3389/fimmu.2023.1084843

Effect size (95% Cl)

Toripalimab plus
lenvatinib

(n=20)

(21). A pool analysis showed that pembrolizumab plus RT
significantly increased responses and outcomes in patients with
metastatic non-small-cell lung cancer (22). A growing body of
evidence suggests that the addition of RT to PD-1 inhibitor may
improve the efficacy of immune checkpoint inhibitors (ICIs) (23, 24),
where RT is administered before ICIs or concurrently with ICIs (25).

The addition of RT represented an encouraging response: one
patient converted from PD to PR, two patients achieved PR from SD,
and five from PD to SD. In addition, we observed that both target and
non-target lesions in three patients were reduced, indicating that RT
may have a synergistic effect with PD-1 inhibitors and lenvatinib.
Evidence has revealed that radiation can exert potent
immunomodulatory effects (26). Previous studies have
demonstrated that radiation could induce immunogenic cell death

No. of Hazard ratio . P-value

patients 95%Cl
RN

Wi% (0.4312'172.33) '——l—' 0.731
Age ?]\9214) ‘ ‘ ‘ . ‘

?ﬁizﬁ) (0.6311'§83.93) '—.—' 0.33
ECOG - ‘ ‘ ‘ . ‘

2N=21) (1.66§'-512v50) ———— 0003
Stage [(III\I=24) f ‘ ‘ ‘ . ‘

I(X/:m) (0.4715'?7339) '—I—' 0.635
Sites ?N=6) ‘ ‘ ‘ . ‘

2N2=6) (0.093'§54.67) L 0.669

7!3:28) (0.3113‘§28.3a) ‘ ‘ } L } 0.565
Size ?,3=17) .

?A5I=23) (0.4111‘932.55) ‘ ‘ rJ‘—I—“—' 0.956
Therapy (RALZO) .

P;\IEEO) (0.06%170.46) ‘ '—IJ‘—' ‘ ‘ <0.001 ***

0.05 02 05 1 2 5 10
FIGURE 3
Univariate and multivariate analyses based on the Cox regression model were performed to identify independent prognostic factors associated with OS.

Objective response rate (95% CI) 35(12.1-57.9) 20(0.8-39.2) 0.48 -
Complete response (n, %) 0 0 - -

Partial response (n, %) 7 4 - -

Stable disease (n, %) 10 11 - -
Progressive disease (n, %) 3 5 - -

DCR (n, %), 95% CI 85(67.9-102.1) 75(54.2-95.8) 0.70 -

Medi ion-f] ival, ths (95%

c1§ fan progression-free survival, months (95% 10.8(6.2-15.4) 46(3.8-5.3) <0.01 HR:0.21(0.09-0.49)
Median overall survival, months (95% CI) 13.7(7.8-19.6) 9.2(6.5-11.8) 0.008 HR:0.36(0.16-0.80)

(ICD), release tumor antigens and promote T-cell-mediated immune
response against antigens derived from dying cells (23, 27-29).

The optimal radiotherapy dose, fractionation, timing, and target
selection currently lack a consensus (30, 31). To choose the optimal
radiation dose and fractionated dose, on the one hand, it is necessary
to ensure that antitumor immunity is fully activated. On the other
hand, the occurrence of adverse reactions should be minimized.
Likewise, there is no clear framework for whether RT should be
performed before or after PD-1/PD-L1 inhibitors (32). The sequence
of radiotherapy and immunotherapy still needs further study
and comparison.

Although the incorporation of RT into immunotherapy caused
more AEs, they were generally manageable. The adverse events in the
RT group were consistent with previous reports: fatigue was the most
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FIGURE 4
Best percentage change in the RT group. The best percentage change in the sum of the diameters of the target lesions from baseline (A) in the RT group
and non-target lesions from baseline for nine patients in the RT group (C). (B) shows the maximum percentage change in the sum of the diameters of
the target lesions from baseline in the NRT group.

common all-grade adverse event (33). One patient experienced grade  be very cautious. Prospective studies are needed to validate the
4 severe AEs (SAEs) (gastrointestinal hemorrhage). Gastrointestinal ~ findings further. Second, some selection biases, including recall,
hemorrhage was controlled after drug discontinuation and active  observation, and selection biases, arose from the limited sample size
management. No death-related adverse effects occurred. The and a retrospective study. A heterogeneous population of patients
combination of RT plus non-first-line toripalimab and lenvatinib  cannot be ruled out. Third, this study lacks evidence of synergy
could have a good safety profile. between radiation and immunotherapy, such as immune cell

We acknowledge that this study has some limitations. First, as a infiltration and transcriptional changes in tumor cells before and
single-center retrospective study, the interpretation of the efficacy and  after radiotherapy. Although the study has certain limitations, these
safety of the combination of RT plus toripalimab and lenvatinib must ~ “real” data are still helpful for prospective follow-up studies.

TABLE 3 Safety summary.

Toripalimab plus lenvatinib with RT Toripalimab plus lenvatinib
(n=20) (n=20)
Any grade Grades 3-4 Any grade Grades 3-4 Any grade Grades 3-4
Fatigue 14(70) 1(5) 13(65) 1(5) 0.74 1
Nausea 8(40) 2(10) 6(30) 0 0.52 0.16
Vomiting 7(35) 2(10) 4(20) 0 030 0.16
Proteinuria 5(25) 0 6(30) 0 073 -
Stomatitis 4(20) 2(10) 1(5) 0 0.16 0.16
Arthralgia 3(15) 0 1(5) 0 031 -
Rash 10(50) 4(20) 5(25) 1(5) 0.11 0.16
Abdominal pain 9(45) 1(5) 8(40) 0 0.76 033
Diarrhea 4(20) 0 5(25) 0 071 -
(Continued)
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TABLE 3 Continued

Toripalimab plus lenvatinib with RT

10.3389/fimmu.2023.1084843

Toripalimab plus lenvatinib

(n=20) (n=20)
Any grade Grades 3-4 Any grade Grades 3-4 Any grade Grades 3-4
Fever 2(10) 0 15) 0 0.56 -
Anorexia 4(20) 0 2(10) 0 0.39 -
Gastrointestinal hemorrhage 3(15) 2(10) 2(10) 15) 0.64 0.56
Epistaxis 3(15) 1(5) 1(5) 0 031 033
Hypertension 9(45) 2(10) 8(40) 1(5) 0.76 0.56
Headache 3(15) 0 1(5) 0 031 -
Myocarditis 0 0 1(5) 0 033 -
AST or ALT increased 12(60) 165) 10(50) 1(5) 0.54 1
Bilirubin elevation 10(50) 2(10) 5(25) 2(10) 0.108 1
Hypothyroidism 8(40) 1(5) 1(5) 0 0.008 033
Hypoproteinemia 2(10) 0 3(15) 0 0.64 -
Thrombocytopenia 7(35) 15) 4(20) 0 0.3 033
Leukopenia 3(15) 0 4(20) 0 0.69 -
Conclusions Funding

Toripalimab plus lenvatinib with RT are safe and well tolerated in
advanced BTC. Toripalimab plus lenvatinib with RT may prolong the
survival of patients with previously treated advanced BTC. The
addition of RT may enhance the efficacy of toripalimab and
lenvatinib. Further research on prospective larger cohorts is needed.
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Extracellular adenosine (eADO) signaling has emerged as an increasingly important
regulator of immune responses, including tumor immunity. eADO is mainly
produced from extracellular ATP (eATP) hydrolysis. eATP is rapidly accumulated
in the extracellular space following cell death or cellular stress triggered by
hypoxia, nutrient starvation, or inflammation. eATP plays a pro-inflammatory role
by binding and activating the P2 purinergic receptors (P2X and P2Y), while eADO
has been reported in many studies to mediate immunosuppression by activating
the P1 purinergic receptors (Al, A2A, A2B, and A3) in diverse immune cells.
Consequently, the hydrolysis of eATP to eADO alters the immunosurveillance in
the tumor microenvironment (TME) not only by reducing eATP levels but also by
enhancing adenosine receptor signaling. The effects of both P1 and P2 purinergic
receptors are not restricted to immune cells. Here we review the most up-to-date
understanding of the tumor adenosinergic system in all cell types, including
immune cells, tumor cells, and stromal cells in TME. The potential novel
directions of future adenosinergic therapies in immuno-oncology will
be discussed.

KEYWORDS

adenosine, machinery and mechanisms, cancer, therapy, EADO

Introduction

Adenosine (ADO) is a metabolic intermediate involved in the ATP catabolism pathway
and the synthesis of some important signaling molecules, such as cyclic adenosine
monophosphate (cAMP) (1). Extracellular nucleotides, including purines and pyrimidines,
have been unequivocally reported as signaling molecules involved in several systems such as
blood pressure regulation, platelet activation, cardiovascular system remodeling,
neurotransmission, anti-cell death, promotion of cell growth, and immunoregulation (2).
Under physiological conditions, both ATP and ADO are usually at low levels in the
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extracellular space (3). Several cell conditions and stresses like cell
membrane damage, ischemia, inflammation, and cancer could trigger
the massive release of endogenous ATP in controlled manners such as
regulated vesicular exocytosis and ion channel/transporter-mediated
release but also in a direct cell-lytic way through cell destruction
(Figure 1) (4-6). Thus, the accumulation of extracellular ATP (eATP)
actually functions as a danger sign or nominated Danger-Associated
Molecular Pattern (DAMP) to attract phagocytic cells to immigrate to
the inflammatory sites and caution the whole immune system about
the presence of pathogen-associated molecules and cell/tissue damage
(7, 8). The activation of inflammation achieved by eATP is notably
mediated through P2 purinergic receptors, including ligand-gated
receptors (P2X) and metabotropic nucleotide-selective receptors
(P2Y) (9, 10). Most family members of P2Y receptors promote
oncogenic processes directly in tumor cells, while P2Y receptors in
immune cells regulate these processes indirectly (11). Recent studies
suggested that eATP activates P2X purinoceptor 7 (P2X7) expressed
on macrophages, dendritic cells (DCs), granulocytes, T cells, and B
cells to promote the formation of the NLRP3 inflammasome and the
release of inflammatory cytokines such as IL-1f3 and IL-18 to enhance
anti-tumor immunity (12-14). However, eATP is rapidly hydrolyzed
to extracellular adenosine (eADO) in the tumor microenvironment
(TME) since solid tumors normally have higher levels of
ectonucleotidases than non-tumor tissues (15, 16).
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eADO is primarily derived from the sequential hydrolysis of
eATP mediated by several established ectonucleotidases (5). In a
canonical route, eATP is hydrolyzed to extracellular ADP and AMP
sequentially by CD39, which is known as ectonucleoside triphosphate
diphosphohydrolase 1, and AMP is finally hydrolyzed to eADO by
CD73, which is known as 5’-nucleotidase (17). However, the fate of
eAMP is not limited to producing eADO; eAMP can also be
phosphorylated sequentially to eATP by secreted or membrane-
associated adenylate kinase (ecto-AK) and nucleoside diphosphate
kinase (NDPK) (18).

The non-classical eADO production pathway is mediated by
CD38, which is known as NAD" ectohydrolase, and CD203a, which
is known as ectonucleotide pyrophosphatase (19). Extracellular
nicotinamide dinucleotide (NAD) released via gap junction protein
connexin 43 (Cx43) regulation can be hydrolyzed to nicotinamide
and ADP-ribose (ADPR) by CD38 (20, 21). Then CD203a consumes
the ADPR to generate inorganic pyrophosphate and AMP, which are
hydrolyzed by CD73 to eADO as mentioned above (19). In addition
to CD73, prostatic acid phosphatase (22) and tissue-non-specific
alkaline phosphatase (TNAP) were reported to hydrolyze eAMP to
eADO (23, 24).

Analogous to eATP, in the extracellular space, the half-life of
eADO is very short. The eADO molecule can be catalyzed directly
into inosine by adenosine deaminase (ADA) and then into
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FIGURE 1
eADO metabolic pathways: production, degradation, and signaling.
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hypoxanthine by purine nucleoside phosphorylase (PNP) on the cell
surface (25). eADO could also be transported into cells via
concentrative nucleoside transporters (CNT1/2) or equilibrative
nucleoside transporters (ENT1/2) (26). Inside cells, adenosine also
has several metabolic pathways. The fundamental route is that
intracellular ADO is phosphorylated by cytosolic adenylate kinase
(ADK) to AMP, followed by conversion to ATP (27). Intracellular
ADO could also be converted by cytosolic ADA (cADA) into inosine
or by S-adenosyl-homocysteine hydrolase (SAHH) into S-adenosyl-
homocysteine (SAH) involved in the methionine cycle (28). In
conclusion, the eATP-CD39-CD73 pathway is the fundamental
factor determining the concentration of eADO, but alternative ecto-
enzymes also regulate metabolism, counteracting ATP-
regenerating regulation.

Although the half-life of eADO is short, the concentration of
eADO could remain high in TME. Cancer cell death due to rapid
growth or chemotherapy contributes to ATP release and then eADO
accumulation in the extracellular space (29). In addition to cancer
cells, Treg cell deaths also provide ATP and CD39/CD73 to supply
eADO production for immunosuppression in TME (30). Other than
immune cells, cancer-associated fibroblasts (CAFs) in TME were
reported to highly express CD73 induced by A,y receptor activation
to sustain a high level of eADO concentration in colorectal cancer
(31). Under physiological conditions, ADO plays a role in balancing
the immune system’s activation and overreaction. However, in TME,
all cell types are also regulated by adenosine signaling and involved in
eADO production, which ultimately builds up the role of eADO as a
tumor cell growth supporter.
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Adenosine receptor pathways

eADO has its own specific receptors, which are P1 purinergic
receptors. The P1 receptor family is composed of four G protein-
coupled receptors: Aj, Aya, Asp, and A; (15, 32). These four receptors
have different affinities for eADO. According to affinity, they can be
roughly divided into two groups: A;, A4, and Aj; have affinities for
eADO in the nanomolar range (100-310 nM), while A, has a
comparatively low affinity for eADO in the micromolar range (15
uM) (33). The common primary function of P1 receptor family
members is to regulate adenylate cyclase activity, which means
modulating the intracellular cAMP concentration (34). A; and As,
which are Gi/o(Gi/Go)-coupled adenosine receptors, implement
inhibition of adenylate cyclase to decrease the intracellular level of
cAMP. In contrast, A, and A,p, as Gq/s(Gq/Gs)-coupled adenosine
receptors, increase the intracellular level of cAMP, which could
potently dampen the immune response in some immune cells (35).
A, 5 receptor is generally expressed on most immune cells—
monocytes, macrophages, DCs, neutrophils, natural killer (NK)
cells, T cells, and natural killer T (NKT) cells; meanwhile, A,p
receptor is primarily highly expressed on macrophages and DCs (7).

In T cells (Figure 2), the pioneering work that provided evidence
on the role of A,,-mediated immunosuppression in cancer can be
traced to 20 years ago (36, 37). eADO binds to the A,, receptor to
stimulate the accumulation of cAMP, leading to the activation of the
cAMP-dependent protein kinase A (38) signaling pathway, which
negatively regulates the activation of T-cell receptor (TCR)-
dependent transmembrane signaling via providing an OFF signal to
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activated immune cells (36). In addition to the cAMP/PKA pathway,
eADO receptors can also function through cAMP-independent
pathways such as DAG/PKC, MAPK (ERK and/or p38), and PI3K/
AKT/mTOR pathways (39). In T cells, the eADO-activated A,
receptor signaling-cAMP/PKA cascade triggers the direct inhibition
of TCR activation via non-receptor tyrosine kinase (CSK). In
addition, CSK inhibits CD28-mediated PI3K/AKT/mTORC
pathways to decrease T cell protein synthesis, proliferation, and
survival (40). PKA also phosphorylates the cCAMP response element
binding protein (CREB) to dampen the transcription activity of TCR
downstream NF-xB (41, 42). In addition, PKA could activate SHP-2
and EPAC to impair T cell IL-2 receptor downstream signaling by
inhibiting STATS5 and JAK, respectively, to suppress T-cell activation,
survival, proliferation, and cytokine production (43-45). PKA
inhibits KCa3.1 potassium channels, which causes extracellular Ca2
+ cannot flux in through the calcium release-activated channels
(CRAC) to suppress the upregulation of NFAT regulated genes
which encode factors such as granzyme B (GzmB), IFNy, TNF, IL-
6, IL-17, IL-2, and IL-2R which are crucial to T-cell function and
expansion (46). A,, receptor activation was also reported to
upregulate the expression of T-cell suppressive receptors such as
programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte
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antigen 4 (CTLA4), and T cell immunoglobulin and mucin domain-
containing protein 3 (TIM3) so that T-cell immunosuppression is
potentially enhanced (47, 48).

In other immune cells (Figure 3), such as B cells, NF-xB, the
downstream factor of the B cell receptor (BCR), and Toll-like receptor
4 (TLR4), are suppressed by PKA from activated A,, receptor
signaling, hence disrupting B cell survival (49). PKA from A,s
receptor signaling decreases production of IFNy and perforin,
which is the Fas ligand, to dampen the maturation and activity of
NK cells (50, 51). A, 4 receptor activation reduces IFNy production in
NKT cells and inhibits NKT cell activation (52). In non-professional
antigen-presenting cells (APCs), such as fibroblasts, A,p receptor-
induced cAMP can suppress IFNy-stimulated STAT1 activity and
inhibit CIITA through upregulating TGFP. The combined effects of
this A,p receptor signaling lead to a decrease of MHC II transcription,
which attenuates tumor immune response (53). In macrophages, the
expression level of both A,, and A,p receptors is promoted by Toll-
like receptor signaling (54, 55). Activation of both A,, and Ajp
receptor signaling favors the shift of macrophages towards a
tolerogenic tumor-promoting “M2” phenotype polarization
accompanied by increased production of immunosuppressive IL-10,
IL-6, and VEGF as well as a decrease in pro-inflammatory IL-12 and
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THF (38, 56). Similarly, in dendritic cells (DCs), both A, and Ajg-
mediated cAMP/PKA signaling enhance the production of IL-10, IL-
6, VEGF, and TGFp plus indoleamine 2,3-dioxygenase (IDO),
cyclooxygenase 2 (COX2), and arginase 1/2 (ARG 1/2), which
meanwhile dampen the expression of IL-12 and TNF (57). Based
on most currently known data, in a sense, the A,, receptor elicits
immunosuppression in both lymphocytes and myeloid cells. In
contrast, the A,p receptor elicits immunosuppression mainly from
myeloid cells.

In cancer cells: In the extracellular space of solid tumor TME, the
concentration of eATP is considerably high due to both the passive
release from tumor cell necrosis and the active secretion from tumor
cells and other TME cells. Many factors, such as mechanical stress,
starvation, hypoxia, and chronic inflammation, could induce this
active secretion of ATP (12, 58). eATP binds to both P2X and P2Y,
notably P2X7 expressed in immune cells in TME such as DCs,
macrophages, B cells, and T cells (6, 12). The activation of P2X7
could promote calcium influx to enhance NLRP3 inflammasome
formation, leading to antitumor immunity promotion (29, 59). In
this regard, TME seems to provide a strategy to promote the
inflammatory response, which could potentially contribute to
antitumor activity. In fact, tumor cells express a higher level of
ectonucleotidases such as CD39 and CD73 to execute the hydrolysis
of eATP to eADO. In addition to the most reported transcription
factor, hypoxia-inducible factor 1 (HIF1), several proteins such as
TGEFp, TNF, IL-2, and IL-6 could enhance the expression of CD39
and CD73 (16, 60). As mentioned above, CD39 and CD73 are also
generally expressed in immune cells; thus, ectonucleotidases from
both tumor cells and immune cells together produce a large amount
of eADO in the TME niche.

HIF1 as a transcription factor was found to increase the
expression of CD39, CD73, A,4, and A,p as well as suppress the
expression of both ENTs and adenylate kinase, leading to eADO
accumulation in solid tumor TME, which is normally hypoxic (61-
66). The upregulation of CD39, CD73, and A,y in various cancers was
reported to positively correlate with poor prognosis in patients (60,
67). In particular, there have already been tremendous studies
showing that high expression of CD39 and CD73 consistently
correlated with poor prognosis in patients with those high
incidence rates and malignant cancers such as ovarian, gastric,
rectal, breast cancers (including TNBC), hepatocellular carcinoma
(HCC), and non-small-cell lung cancers (NSCLCs) (68-73). This is
the rationale that supports many current and ongoing clinical trials
targeting CD39 and CD73.

More studies uncovered the molecular mechanisms involved in
CD73 upregulation in cancer cells in addition to the regulation of
HIF1 and TGFp. Epithelial-to-Mesenchymal Transition (EMT)
factors such as WNT/B-catenin pathway activators and TWIST
were found to upregulate the expression of CD73 in human tumors
(74). Mutations or upregulation of TP53, KRAS, BRAF, and EGFR
also positively correlated with increased expression of CD73 in
various human tumors (73, 75-77). In tumor cells, especially those
with an EMT phenotype, CD73 and some factors like TGFf form a
positive feedback loop in that TGFP signaling increases CD73
expression and CD73 produces more eADO stimulating A, and
A,p receptor pathways to favor TGFp production and secretion; thus,
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CD73/eADO receptor signaling contributes to EMT promotion in
cancer cells (78). Since the high concentration of extracellular NAD*
is present in the TME niche in some cancer types, probably due in
part to the altered metabolism in cancer cells, the non-classical eADO
production pathway mediated by CD38 also plays an influential role
in eADO signaling in several solid tumors (22, 79).

The effects of eADO are not limited to immune cells to implement
immunosuppression but also on cancer cells directly to regulate
tumor proliferation, growth, anti-apoptosis, and metastasis. The
PI3K/AKT/mTORC signaling pathway could be promoted upon
eADO-mediated A,, receptor signaling to promote cell
proliferation, tumor progression, and metastasis in melanoma,
hepatocellular carcinoma, and gastric cancer (80-82). The A,p
receptor was found to stimulate different downstream signaling
compared to A, in cancer cells. In TNBC cells, activation of the
A,p receptor occurs notably via the ERK1/2-MAPK pathway.
Knockdown of the A,p receptor in TNBC cells suppresses cancer
cell proliferation and lung metastasis (67). A,p receptor signaling
could activate FOS-related antigen 1 (FRA-1) and the small GTPase
RAP1B to enhance TNBC cells’ lung metastasis in mouse models (83,
84). An intriguing finding is that A,p receptor signaling is
constitutively activated in prostate cancer cells to promote cancer
cell proliferation in vitro. However, activation is not dependent on the
availability of the A,p receptor ligand, eADO. This study suggested
potential adenosine-independent signaling under the A, receptor in
cancer cells (85). The EMT process has an unequivocal interaction
with adenosine signaling. Enhancing EMT levels leads to increased
CD73 expression and thus eADO receptor signaling, which in turn
promotes the EMT process in ovarian cancer (68, 78). Cancer cells
with an EMT phenotype usually exhibit cell stemness, which is
suggested as a potential cancer stem cell. In breast cancer and
glioblastoma, hypoxia-induced A,y receptor activation results in the
maintenance of self-renewing tumor cells in the mouse model (86,
87). In a hepatocellular carcinoma study, CD73 was found to be
upregulated, leading to A,, receptor activation, which results in
cancer cells EMT and stemness promotion through increasing
SOX9 expression and activity (88).

Therapy for cancer targeting adenosine
signaling pathway

Not surprisingly, drugs designed to target the adenosine signaling
pathway have been blooming vigorously for the last decade. Strategies
for targeting adenosine signaling pathway could generally be classified
into two groups: @ inhibition of adenosine production and prevention
of ATP degradation simultaneously in TME via targeting CD73 and/
or CD39; and @ interruption of adenosine signaling through blocking
A,5 and A,p receptors. According to ongoing pre-clinical research
and clinical trials, drugs targeting the CD73 and A, 4 receptors are the
mainstream adenosine pathway inhibitors. Most CD73 inhibitors are
monoclonal antibodies for potential pharmacological application,
whereas small-molecule inhibitors are currently the only available
clinical drugs targeting A,, and A,p receptors since they are G
protein-coupled receptors (GPCRs) with specific conformations
notoriously difficult for antibody binding.
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Targeting A2A and/or A2B in cancer: A,, antagonists were
initially developed for neurological disorders such as Parkinson’s
disease or adult attention deficit hyperactivity disorder (ADHD) (89,
90). Their evaluations in clinical trials suggested a great tolerability
and safety profile. The available preliminary data of several A,x
antagonists in clinical trials with cancer patients showed good
tolerability and exhibited some effects. They are CPI-444 (Corvus),
PBF-509 (Novartis/Pablobiofarma), EOS100850 (iTeos), MK-3814
(Merck), AZD4635 (AstraZeneca/Heptares), and a dual A,, and
A,p antagonist AB928 (Arcus) (91-96). PBF-1129 (Pablobiofarma),
a selective A, antagonist, has also been developed and is being tested
in a clinical trial involving NSCLC cancer patients. In two clinical
trials, CPI-444 was administered alone and in combination with
Atezolizumab (PD-L1 antibody, Genentech) in patients with renal
and advanced metastatic castration-resistant prostate cancer (91).
Most common adverse events are in grades 1-2, including fatigue,
pruritus, nausea, diarrhea, rash, vomiting, and anemia as well as
several in grades 3-4, such as decreased appetite, anemia, arthralgia,
and peripheral edema. A better outcome (median progression-free
survival of 5.8 months versus 4.1 months and overall survival of 90%
versus 55% at 20 weeks) was observed with the A,, antagonist CPI-
444 plus the anti-PD-L1 antibody atezolizumab compared to CPI-444
alone in patients with advanced-stage renal cell carcinoma (91).
Similar results have been reported in patients with mCRPC: 57% of
patients (eight of 14) experienced disease control, with five partial
responses and two stable disease responses.

Targeting CD73 and/or CD39: There are several anti-CD73
monoclonal antibodies in phase I/II clinical trials currently,
including MEDI9447 (MedImmune), BMS-986179 (BMS), NZV930
(Novartis), and CPI-006 (Corvus), as well as a small molecule
inhibitor, AB680 (Arcus) (97-99). In these clinical trials, CD73
inhibitors were administered alone and in combination with PD-1/
PD-L1 monoclonal antibodies. Most adverse events were mild, and
most outcomes indicated a decreased primary tumor expansion rate,
less metastasis formation, and an improved survival rate (99). In

10.3389/fimmu.2023.1111369

addition to CD73, monoclonal antibodies and small-molecule
antagonists to CD39 and CD38 are also under development (22, 99).
Targeting drugs are listed in Table 1.

Cautions in the adenosine targeting therapy

The existing controversial effects of adenosine blockage in cancer: The
prevalent view is that eADO production and eADOA/ARs signaling
activation are associated with poor clinical outcomes. However, it is not
substantial for every type of cancer. A group found that in endometrial
carcinoma, CD73 played a critical role in tumor suppression (100),
whereas another group reported that in endometrial carcinoma, the loss
of CD73 is essential for tumor progression (101). Although several
studies found a link between A,, expression or activation and poor
outcomes in breast cancer, Vasiukov et al. revealed a positive correlation
between A, 4 receptor gene expression and better survival data in basal-
type breast cancer and TNBC patients (102). In addition, adenosine
receptors (ARs) also exhibit both stimulatory and inhibitory effects in
melanoma (80). A similar contradictory effect of adenosine receptors on
hepatocellular carcinoma progression has also been reported (103).
More mechanisms and pre-clinical studies are necessary to provide
fundamental knowledge for adenosine targeting therapy.

Specificity issue in adenosine receptor blockage: As mentioned,
adenosine receptors are members of the GPCR family. The
conformational complexity of GPCR gives rise to the difficulty of
developing antibodies to target the receptors. The currently available
pharmacological inhibitors of ARs are small molecules that have the
notorious disadvantage of engaging of multiple targets (poly-
pharmacology). Several compounds, which were previously confirmed
as binding interactors of A;, A,, and A; receptors, were found to have
intracellular binding targets (104, 105). In addition, the putative selective
A,p receptor agonist BAY 60-6583 was reported to have other binding
molecules to increase CAR-T cell activity independently of the A,p
receptor (106).

TABLE 1 Representative eADO pathway-targeting drugs which were involved in the most recent clinical trials.

Target Cancer Type Drug Name Company
A, receptor Advanced solid tumors, non-Hodgkin lymphoma CPI-444 Corvus

A, receptor Non-small cell lung cancer PBF-509 Novartis/Pablobiofarma
A4 receptor Adult solid tumor EOS100850 iTeos

A, receptor Advanced solid tumors MK-3814A Merck

A4 receptor Advanced solid tumors AZD4635 AstraZeneca/Heptares
A,p receptor Non-small cell lung cancer PBF-1129 Pablobiofarma

A,4 and A,p receptors dual antagonist Metastatic castrate resistant prostate cancer AB928 Arcus

CD73 Solid tumors MEDI9447 MedImmune

CD73 Advanced solid tumors BMS-986179 BMS

CD73 Advanced solid tumors NZV930 Novartis

CD73 Advanced solid tumors, non-Hodgkin lymphoma CPI-006 Corvus

CD73 Healthy volunteers AB680 Arcus

CD38 Lymphoma Prostate, Non-small cell lung cancer Isatuximab/SAR650984 Sanofi
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There is still a large amount of work to be done to pursue better
safety and efficacy in adenosine signaling targeting therapy.

Conclusion

Both eATP and eADO are important signal molecules in the
physiological processes of cells and tissues. Tissue damage or various
cell stresses such as hypoxia, starvation, and mechanical stress, which are
common in the TME niche, could stimulate eATP accumulation and
rapid hydrolysis to eADO. This would lead to dramatically increased
eADO. This eATP-eADO metabolic pathway is involved in pathological
shifts in several aspects: rapid eATP degradation dampens the
inflammatory response; accumulation of eADO triggers
immunosuppression; and it promotes tumor cell proliferation and EMT.

In adenosine signaling, pre-clinical studies suggested the CD39-
CD73-A,4 receptor pathway is an attractive and tractable therapeutic
target for cancer treatment. Inhibitors targeting the CD73 and A,
receptors exhibited good tolerability and achieved some therapeutic
effects in some clinical trials. However, several knowledge gaps are
worthy of exploring to assist further pre-clinical and clinical trial
design (1): What are the potential compensation pathways for the
inhibition of eADO signaling? They are probably not limited to
intracellular ADO release and ADO-independent adenosine receptor
activation. (2) More combined therapies, such as immune checkpoint
blockers and adenosine signaling inhibitors, have shown better efficacy.
(3) What are reliable biomarkers to indicate which patient subgroups
have a higher chance of benefiting from treatments targeting eADO
signaling? In conclusion, the adenosinergic system offers new therapeutic
strategies aimed at limiting immunosuppression and potentiating
antitumor immune responses.
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Tumor immunity is a growing field of research that involves immune cells within
the tumor microenvironment. Neutrophil extracellular traps (NETs) are
neutrophil-derived extracellular web-like chromatin structures that are
composed of histones and granule proteins. Initially discovered as the
predominant host defense against pathogens, NETs have attracted increasing
attention due to they have also been tightly associated with tumor. Excessive
NET formation has been linked to increased tumor growth, metastasis, and drug
resistance. Moreover, through direct and/or indirect effects on immune cells, an
abnormal increase in NETs benefits immune exclusion and inhibits T-cell
mediated antitumor immune responses. In this review, we summarize the
recent but rapid progress in understanding the pivotal roles of NETs in
tumor and anti-tumor immunity, highlighting the most relevant challenges in
the field. We believe that NETs may be a promising therapeutic target for
tumor immunotherapy.

KEYWORDS

neutrophil extracellular traps, anti-tumor immunity, immunotherapy, tumor
microenvironment, tumor progression

1 Introduction

Recent studies have shown that strategies that increase anti-tumor immune responses
play important roles in the fight against cancer (1, 2). Although neutrophils are the first line
of defense in innate immunity, tumour-associated neutrophils (TANs) could promote
tumor progression (3). Moreover, under certain circumstances, the tumor
microenvironment (TME) can attract neutrophils to tumor tissue and functionally
modulate them to release web-like structures to form neutrophil extracellular traps
(NETs) (4). NETs are composed of DNA fragments coated with histones and toxic
granule proteins, such as citrullinated histone H3 (H3Cit), myeloperoxidase (MPO),
neutrophil elastase (NE), cathepsin G (CG), matrix metalloproteinase 9 (MMP-9), which
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were first discovered by Volker Brinkmann (5). NETs can capture
and kill pathogens such as bacteria (6), fungi (7), viruses (8) and
parasites (9). However, dysregulated NET's are harmful to the host.

Extensive studies have confirmed that uncontrolled and excessive
NETs are involved in the pathogenesis of autoimmune disease (10,
11), cardiovascular disease (12), inflammatory disease (13) and
cancer (14). It is worth mentioning that the function of NETSs in
tumors is gradually expanding. NETs are related to detrimental
outcomes in breast cancer, pancreatic cancer, and hepatocellular
carcinoma (15-17). NETs can promote tumor growth, invasion,
metastasis, and drug resistance (18-20). Although accumulating
evidence has clarified how NETs contribute to tumor progression,
the role of NETs in anti-tumor immune responses is less clear.
Therefore, further studies are necessary to elucidate the effects of
NETs on tumor immunity. This review primarily focuses on the
function of NETs in tumor and anti-tumor immunity, and highlights
their application in tumor immunotherapy.

2 NET structure and formation

NETs are large, extracellular, web-like structures composed of
DNA fibers coated with histones and granule proteins. Various
stimuli trigger NET formation, such as lipopolysaccharides (LPS),
phorbol 12-myristate 13-acetate (PMA) (5), high mobility group box
1 [HMGBI] (21), tumor-associated stimuli (tumor-associated antigen,
granulocyte-colony stimulating factor [G-CSF] (22), C-X-C motif
chemokine ligands [CXCLs] (23), cathepsin C (24), amyloid B (18),
tissue inhibitor of metalloproteinases-1 [TIMP1] (16)), different
immunological stimuli (interleukin [IL]-8/CXCLS8, interferon [IFN]-
o/IFN-y/C5a, granulocyte-macrophage [GM-CSF/C5a), IL-1B, IL-17,
IL-18, TL-33, immune complex (5, 20, 25-30), and other pathogen-
associated molecular pattern molecules(PAMPs) (31, 32),
autoantibodies (33), activated platelets (34), bacteria (35, 36), viruses
(37), fungi, calcium ionophores (38), cigarette smoke (39), free fatty
acids (40), and bleomyci (41) (Table 1). These stimuli activate the cell
surface receptors of neutrophils; for example, HMGBI recognizes
advanced glycation end products (RAGE) receptor and toll-like
receptor 4 (TLR4) (42), C3a recognizes C3a receptor (C3aR) (43),
Cb5a recognizes C5a receptor (C5aR) (44), CXC chemokines recognize
CXC chemokine receptors (CXCRs) (23), immune complex activate
the FcyRIIIb receptor (45), LPS and platelets activate the toll-like
receptor (TLR) (46, 47), bacterial products recognize G protein-
coupled receptors (48), fungi recognize the Dectinl and Dectin 2
receptor (49, 50). After the stimuli activate the receptors of the
neutrophils, different intracellular signaling mechanisms are further
activated, leading to the formation of two types of NETs. The classical
form is lytic NETosis, which is considered a type of slow cell death.
Besides, this process depends on the NADPH oxidase-mediated
generation of reactive oxygen species (ROS), as evidenced by chronic
granulomatous disease patients with mutations in the NADPH oxidase
that fail to form NETs (51). Many reactive oxygen species (ROS)-
inducing factors, including PMA, C5a, LPS, TLR-4, immune
complexes, IL-8, cathepsin C, calcium ionophores activate NOX via
different molecular pathways that cause ROS generation (24, 25, 30,
52-55). Accumulation of ROS triggers the escape of MPO and NE

Frontiers in Immunology

10.3389/fimmu.2023.1135086

from the granules (56). MPO first activates NE to degrade the
cytoskeleton in the cytoplasm (57). Subsequently, NE translates to
the nucleus to cleave histones that contributes to chromatin
decondensation (56). Blocking NE by NE inhibitor or serum
leukocyte protease inhibitor (SLPI) disrupts NET formation (56),
suggest that NE is required for chromatin extrusion. Moreover, in
the late stage of chromatin decondensation, MPO binds to chromatin
to promote further decondensation (56). In parallel, ROS synthesis also
leads to the activation of peptidyl arginine deiminase 4 (PAD4), a
calcium-dependent enzyme, which catalyzes histone citrullination,
thereby promoting chromatin decondensation (58). Further study
showed that inhibition of PAD4 in vitro greatly reduced the process
of NETosis, and PAD4 knockout mice failed to produce NETs in vivo,
indicated that PAD4 is critical for NET formation (6). Recently, Amulic
et al, have added on another critical step in NET formation: the
activation of cyclin-dependent kinases (CDKs) 4 and 6 (59). Although
the mechanism is still unclear, this study suggested CDK4/6 likely

TABLE 1 Stimuli that induce NET formation.

LPS 5)
PMA (5)
HMGBI @1
G-CSF (22)
CXCLs (23)
Cathepsin C (24)
Amyloid B (18)
TIMP1 (16)
CXCLB8/IL-8 (5)
[IFN]-0/IFN-y/C5a (25)
GM-CSF/C5a (25, 26)
IL-1B (27)
IL-17 (20)
IL-18 (29)
IL-33 (28)
Immune complexes (30)
Pathogen-associated molecular pattern molecules (PAMPs) (31, 32)
Autoantibodies (33)
Activated platelets (34)
Bacteria (35, 36)
Viruses 37)
Fungi (38)
Calcium ionophores (38)
Cigarette smoke (39)
Free fatty acids (40)
Bleomyci (41)
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function downstream of MAPK and ROS, and CDKG6 is required, while
CDK4 is partially required for NET formation (59, 60). Finally, nuclear
membrane breakage, nuclear DNA and proteins are released. Released
DNA further decorated with NE, MPO and cytosolic proteins, followed
by plasma membrane rupture and NET extrusion and eventually lysis
(56, 58). Besides, there are also noncanonical signaling triggers NET
formation independently of ROS and PAD4, which mediated by a
pore-forming protein gasdermin D (GSDMD) (36, 61). The second
type of NET is a non-cell-death form in which NET are rapidly released
from live cells without nuclear membrane disruption or loss of
membrane disruption, which accompanied by granule proteins; this
is known as nonlytic NET formation (25, 32, 34, 62). In this process,
NETs were also found to include mitochondria DNA (mtDNA) when
neutrophils are stimulated with LPS or C5a (25). Besides, it has been
confirmed that some pathogens, such as S. aureus and C. albicans
induce a rapid nonlytic NET formation by activating TLR2 and C3
(62). Moreover, this type of nonlytic NET formation is critical to acute
invasive infection (62). Additionally, LPS-stimulated platelets could
also promote nonlytic NETosis by activating platelet TLR4 (31, 34).
However, the molecular mechanisms of nonlytic NETosis are still
poorly understood. It can be ROS dependent or independent. A
summary of NETosis induced by various stimuli is shown in Figure 1.

Apart from the physiological roles in host defense against
pathogens, uncontrolled NET formation has been found to play a
pivotal role in atherosclerosis (63, 64), coronary artery disease (65),

10.3389/fimmu.2023.1135086

autoimmune disease (66, 67), sepsis (68), metabolic disease (69),
coronavirus disease 19 (COVID-19) (37, 70), and cancer (71).

3 Evidence of NETs promoting tumor
progression

Accumulating evidence suggests that the TME can induce NET
formation in various types of cancer, including hematologic
malignancy (72-74) and solid tumors, such as breast cancer (75),
ovarian cancer (76), gastric cancer (77), hepatic carcinoma (78),
lung cancer (79), and colon cancer (80, 81). In particular, studies
have revealed that NETSs are increased in the peripheral blood and
tumor tissues of patients with cancer (16, 76, 82). To date, NET
formation in tumors may be partly due to tumor cells interacting
directly and indirectly with neutrophils via the production of
cytokines, chemokines, proteases, extracellular vesicles. Recent
studies have shown that NETs can promote tumor progression
via different mechanisms (Table 2).

3.1 NETs in tumorigenesis and growth

NETs have been shown to participate in tumor initiation and
growth. For instance, non-alcoholic steatohepatitis (NASH) is a risk

IL-8,IFN-a/IFN-y/C5a,
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Schematic representation of NET formation. Different stimuli, such as PMA, tumor-associated stimuli, immunological stimuli, IL-1f, IL-17, IL-18, IL-
33, LPS, PAMPs, some antibodies, activated platelets, bacteria, viruses, Ca2+ can induce NET formation. For lytic NETosis, external stimuli produce
different kinds of ROS-inducing receptors, activating neutrophils to produce intracellular ROS, ROS further activates MPO and PAD4, then MPO

activates NE and PAD4 citrullinates H3, therefore, leads to nuclear envelope disintegration, chromatin decondensation, cell membrane breakdown,
NET formation. For non-lytic NETosis, some stimuli, such as Staphylococcus aureus and Candida albicans-associated LPS and HMGBL1 can induce

NET formation through a non-lytic manner.
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TABLE 2 The roles of NETs in the cancer progression.

10.3389/fimmu.2023.1135086

Cancer type Detected NETs Formation Relevance to cancer progression Potential Mechanisms  Ref.
NETs marker Mechanism
Hepatocellular MPO-DNA/ Cancer cell-derived IL-8 Promote tumor invasiveness and metastasis; Activate TLR4/9-COX2; (77,
carcinoma H3cit predict a poor prognosis increase cathepsin G; oxidize 83, 84)
(HCC) mtDNA
Breast cancer MPO-DNA/ Cancer cell-derived Promote tumor metastasis Regulate CCDC25-ILK-B- (15,
H3cit cathepsin C parvin pathway; NF-«xB 24)
pathway
Pancreatic cancer MPO-H3cit Cancer cell-derived Promote cancer cells migration and invasion; Activate (16,
DDRI; TIMP1 promote tumor metastasis; induce immunotherapy IL-1B/EGFR/ERK pathway; 19, 20,
resistance inhibit CD8+ T cell function 85)
Ovarian cancer MPO-H3cit Cancer cell-derived Promote tumor metastasis and chemotherapy Unclear (75)
inflammatory factors resistance
Gastric cancer MPO-DNA/ Cancer cell-derived Promote tumor proliferation, invasion, migration, EMT, (76,
(GO) cfDNA/NE/ TME/Postoperative and metastasis Activates TGF-f pathway 86)
MPO-H3cit abdominal infectious
complication
Colon cancer H3cit Cancer cell-derived IL-8 Promote cancer proliferation and metastasis EMT; Releases HMGB1 and (79,
activates TLR9 80)
pathways
Human melanoma MPO-H3cit Cancer-associated Promotes tumor proliferation Unclear (18)
fibroblasts- derived
Amyloid B
Bladder cancer NE-H3cit Tumor immune Promotes tumor radioresistance Unclear (87)
microenvironment-
derived HMGB1
Lung cancer Unclear Unclear Promotes cancer invasion, metastasis Interaction of TGF-f, IFN-B, (78,
and NE-pathways; 88)
trap CTCs
Glioma MPO-H3cit 1L-8 Promotes tumor proliferation and invasion HMGB1/RAGE/IL-8 axis (53)
Acute MPO-DNA/ Activated Increases bleeding burden Damage the integrity of (71)
Promyelocytic H3cit platelets endothelial cells
Leukaemia (APL)
Hodgkin H3cit Unclear Correlates with concurrent fibrosis and Unclear (72)
Lymphoma inflammation
Diffuse large B-cell MPO-DNA/ IL-8 Promotes tumor proliferation and migration TLR9-NFkB-STAT3-p38 (89)
lymphoma H3cit
(DLBCL)
Myeloproliferative H3cit JAK2 Promotes thrombosis Unclear (73)
neoplasms

factor for hepatocellular carcinoma (HCC), and elevated levels of
NETs contribute to the progression of NASH to HCC (90). Further
study indicated that NASH-associated free fatty acids stimulate
NET formation, which increased monocyte-derived macrophages
and production of inflammatory cytokines, that contribute to HCC
initiation (90). Furthermore, gut-derived LPS induced NET
formation through activating TLR4 pathway, which further
promoted alcohol-related HCC in mice model (91).Besides, Silvia
Guglietta et al., demonstrated that C3aR-dependent NET formation
induced protumorigenic neutrophils polarization, and promoted
intestinal tumorigenesis (92). Subsequently, in a PAD4 knockout
mouse model genetically incapable of NET formation, both
subcutaneous tumors and hepatic metastases using murine
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colorectal (MC38) cells grew significantly more slowly than the
WT mice (93). Similarly, human colorectal and hepatocellular
cancer cell lines injected subcutaneously in the nu/nu mice
treated with DNAse also grew slower (93), suggesting that
inhibition of NETosis by preventing NET formation or degrading
NETs is correlated with decreased tumor growth in vivo.
Mechanistically, NETs-associated protein, NE, directly act TLR-4
on the cancer cells, leading to activation of the p38-PGC-lo
pathway, followed by increased tumor mitochondrial function
and increased tumor growth (93). The direct role of NETs in
regulating the metabolism of cancer cells might provide a
therapeutic opportunity to effectively halt tumor growth. Another
study showed that subcutaneous injection of Lewis lung carcinoma
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(LLC) cells reduced tumor growth while the B16 melanoma growth
was not affected in PAD4-deficient mice (94). Further study showed
that G-CSF released from LLC tumor increased more activated
CD11b"€" neutrophils and NETs than B16 tumor, and B16 tumors
in WT mice grew faster than the tumors in PAD4-deficient mice
after G-CSF treatment (94). This highlights that, different tumors
generate different TMEs, which affect the formation of NETs. In
addition, it has been reported that increased NETs facilitated cell
proliferation and tumor growth in diffuse large B-cell lymphoma
(DLBCL) and were correlated with poor prognosis (89). The exact
mechanism was that lymphoma cells secreted IL-8 induced NET
formation, which depended on the Src and MAPK pathways, in
turn, NETs directly activated of the TLR9-NFxB-STAT3-p38
pathway to promote tumor progression (89). In glioma, NETs-
derived HMGBI increased cell proliferation by binding to RAGE
and activating the NF-xB signaling pathway (53). Moreover, a
recent study demonstrated that DNA released from NETs
enhances pancreatic tumor growth (95). And, the mechanism of
the pro-tumorigenic effect was not directly through effects on
cancer cells, but rather the through NET-DNA induced
autophagy-dependent activation of pancreatic stellate cells,
causing increased MMP-2 and -9 production to promote cancer
progression (95). Hafsa et al. demonstrated that cancer-associated
fibroblasts are important factors mediators of NET formation. They
found that cancer-associated fibroblast-induced NETSs contribute to
tumor proliferation in Bladder cancer and pancreatic
adenocarcinoma (18). Although further investigation is needed,
there is a plenty of in vitro and in vivo evidence that inhibition of
NETs decreased tumor growth in several different cancer types.

3.2 NETs in tumor metastasis

Metastasis is a hallmark of advanced stage cancer, which is the
primary cause of cancer-related mortality. Moreover, metastasis is a
multistep process, including the detachment of cancer cells from the
primary tumor, the dissemination of tumor cells to surrounding
tissues and distant organs (96). There is also evidence that NETs
result in the metastasis cascade of animal and human tumors (97, 98).
Epithelial-mesenchymal transition (EMT) is critical for tumor cells
to physically disseminate from the primary site, which is the first step
in distant metastasis (99). In breast cancer, after treatment with
NETs, MCF?7 cells gained a migratory and mesenchymal phenotype,
accompanied by EMT induction (100). Moreover, the EMT program
further upregulated the expression of cancer stem cells (CSCs)
markers, such as CD44, and induced a pro-inflammatory response
in breast cancer cells (100). These results show that NETs might
contribute to breast cancer metastasis through the activation of EMT
program. In another study, NETs promoted gastric cancer cells
migration through EMT, inhibition of NETs by DNAse-1/GSK-484
upregulated the epithelial marker, E-cadherin, while downregulated
the mesenchymal marker (77). Consistently, Jin et al. found that
NETs facilitated cell migration and invasion, and EMT in pancreatic
cancer. Besides, NETs-mediated EMT is dependent on the activation
of IL-1B/EGFR/ERK pathway (85). Following this study, NETs
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decreased expression of epithelial markers E-cadherin (CDHI),
epithelial cell adhesion molecule (EPCAM) and increased
expression of mesenchymal markers vimentin (VIM), fibronectin
(FN1), which initiates EMT transcriptional programs in colon cancer
(80).This EMT-like phenotype increased cell motility and the
migration of colorectal cancer cells, which further promoted local
invasion and metastasis (80). In non-small cell lung cancer, NETs
induced EMT through activating NF-kB/NLRP3 inflammasome
pathway by downregulating the expression of long non-coding
RNA MIR503HG, which further enhanced tumor cell metastasis
(101). Additionally, one study showed that NETs could induce
pancreatic cancer cells migration, invasion and EMT through
activating the IL-1B/epidermal growth factor receptor (EGFR)/
extracellular signal-regulated kinase (ERK) pathway (85). Taken
together, there is increasing evidence that NETs can support tumor
metastasis through inducing EMT program. In addition to EMT,
NETs also increased cancer cell migration and invasion through other
molecular signaling pathways. For example, NET markers, such as
MPO-DNA and H3Cit were increased in patients with HCC and
predicted a poor prognosis (83). Further studies revealed that NETs-
associated Cathepsin G promoted HCC cell invasion through
decreasing E-cadherin expression, which promoted HCC metastasis
(83). Moreover, HCC cells not only stimulated NET formation, but
also modified its composition by increasing the oxidized
mitochondrial DNA, which increased HCC cells invasion and lung
metastasis in vitro and vivo (84). In breast cancer, NETs could
promote cell migration and invasion by activating nuclear factor
(NF)-xB pathway (75). Another study found that NETs facilitate
gastric cancer cell migration, invasion and metastasis by activating
the transforming growth factor (TGF)-f pathway (86). Besides,
recent research demonstrated that the receptor tyrosine kinase
discoid domain receptor 1(DDRI1) induces CXCL5 production to
recruit neutrophils to stimulate NET formation, leading to pancreatic
cancer cell invasion and metastasis (19). Taking into account the
above findings, NETs might contribute to metastasis initiation that
includes detachment of cancer cells from primary tumor, EMT and
increased cell migration and invasion.

Primary cancer cells acquired the migration and invasion ability
through EMT or other molecular signaling pathway, then invaded
into the surrounding tissues. These cancer cells further intravasate
to enter the circulation, where they are termed as circulating tumor
cells (CTCs) (96). CTCs must overcome fluid shear stress, immune
cells and oxidative stress to colonize distant organs (102). It has
been reported that NET's can protect CTCs from cytotoxic immune
cells with NETs-mediated physical barrier (103), thus increased
metastatic seeding. Furthermore, localized degradation of NET's by
photoregulated release of DNase I abolished the NET-mediated
capture and colonization of metastasizing colorectal cancer cells in
the liver (103). Besides, NET's were also found to promote adhesion
of tumor cells to distant organ sites by trapping circulating lung
carcinoma cells within DNA webs, which further increased
formation of hepatic metastasis (88). Inhibition of NETs
attenuated the development of hepatic metastases, suggest that
NETs were responsible for lung cancer metastasis. In another
study, NETs could interact with, trap (CTCs), which further
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contributed to tumor metastasis in lung cancer in vitro and vivo
(104).Moreover, both NETs and CTCs expressed B1-integrin
protein, which acted as a bridge mediating the interactions
between CTCs and NETs, then increased cancer cell adhesion to
distant organs (104). These findings highlight the molecular
mechanism by which NETSs can trap CTCs via a protein-protein
interaction. Whether NETs-derived proteins have other molecular
mechanisms to protect CTCs from risks, such as anoikis and
apoptosis, are still unclear now. Thus, it is important to explore
the mechanism of CTCs adhesion to NETs, that might identify
NETs as potential therapeutic targets. Recently, NETs were found to
trap hepatocellular carcinoma cells, and trigger the cytotoxicity
resistance, enhanced invasiveness and angiogenesis of the trapped
HCC cells (78). Mechanically, NETs enhanced metastatic of the
trapped HCC cells by activating TLR4/9-COX2 signaling, that
induced an inflammatory response (78). Yang et al. (15)
demonstrated that NET-DNA functions as a chemotactic factor
to attract CTCs, then induces cancer cells migration, adhesion, and
distant metastases in breast cancer. Further study revealed that
NET-DNA interact with coiled-coil domain-containing 25
(CCDC25) to activate the ILK-B-parvin-RAC1-CDC42 pathway,
which may further facilitate the metastasis of cancer cells (15).
Furthermore, Xiao et al (24). found that the protease cathepsin C
activates the PR3-IL-1B axis, induces NET formation, and
contributed to the early stage of metastatic colonization in breast
cancer lung metastasis. Similar studies have shown that
complement 3 (C3) is increased in lung mesenchymal stromal
cells, and C3-C3a receptor axis promotes neutrophil recruitment
and NET formation, which facilitates breast cancer cell metastasis to
the lungs (105). And this function of C3 in the regulation of NETs
depends on Th2-drived IL-4/IL-13-STAT6 pathway (105). Taken
together, these studies confirm that NETs promote cancer
metastasis through regulating multiple steps of cancer metastasis.

3.3 NETs in tumor therapy resistance

In addition to tumor growth and metastasis, tumor therapy
resistance remains a major challenge in current research. Resistance
to tumor includes both primary and secondary resistance. Targeted
therapy is frequently associated with acquired resistance (106),
whereas immunotherapy is often associated with primary
resistance (107). In the area of malignancy, tumor-associated
neutrophils (TANs) have been shown to contribute to cancer
resistance to therapies (108). Building on the function of TANSs in
cancer resistance to therapy, NET-dependent mechanisms of drug
resistance are beginning to be recognized. For example, drug-
resistant cancer cells are dormant during clinical remission and
can be reactivated leading to cancer recurrence (109). It has been
demonstrated that NETSs are required for awakening dormant
cancer (110). Mechanistic analysis revealed that NET-associated
NE and MMP-9 proteins cleave laminin and activate integrin 031
signaling, which further induces focal adhesion kinase (FAK),
ERK1/2, myosin light-chain kinase (MLCK), and yes-associated
protein (YAP) signaling to reactivate dormant cancer cell
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proliferation (110). Moreover, NETs could trap doxorubicin
(DOX) and inhibit its diffusion into ovarian cancer cells; the
degradation of NETs could increase the DOX-induced apoptosis
of ovarian cancer cells (111), suggested that NETs induced DOX
chemotherapy resistance. Radiotherapy is an important component
of cancer treatment, however, radioresistance can lead to tumor
progression and mortality (112). One study revealed that radiation
therapy could stimulate NET formation in bladder cancer; in turn,
increased NETs contributed to tumor radioresistance (87).
Researchers further found that HMGBI was released by tumor
cells after radiation therapy, and HMGBI1 promoted NET formation
by activating TLR4 signaling (87). Inhibition of HMGBI1 and NETs
significantly delayed tumor proliferation. Moreover, NET levels
were significantly higher in radiation therapy non-responders
than in radiation therapy responders, suggesting that NETs seem
to have a pivotal influence on radioresistance (87). Additionally,
another study indicated that NETs participated in the post-
radiotherapy local recurrence of in breast cancer (113). NETs are
increased in relapsed human breast cancer and are associated with
poor prognosis, and inhibition of NETs might provide new
opportunities to address post-radiotherapy resistance in clinical
trials. Overall, NETs play important roles in tumor progression
(Figure 2), further research on the molecular mechanism of NET-
mediated tumor progression is warranted.

4 NETs in immune cells

Beyond the well-known functions of NETs in the diversified phases
of tumor metastasis and tumor progression, NETs also play critical
roles in tumor immune exclusion. The tumor-promoting function of
NETs is mediated not only by diverse mechanisms, as described above,
but also by attenuating the antitumor functions of the immune system.
Accumulating evidence suggests that NETs are considerably involved
in the regulation of immune cells (114, 115).Thus, interest in
understanding how NETSs interact with immune cells to modulate
the tumor immune response of tumors is increasing.

4.1 Macrophages and DCs

Macrophages and Dendritic Cells (DCs), two major Antigen
Presenting Cells (APCs), are pivotal innate immune cells that
regulate the anti-tumour immune responses (116, 117). It has been
shown that NETs activate macrophages and DCs through upregulating
important costimulatory molecules (CD80, CD86) at early times
(30 min), however, macrophages and DCs undergo apoptosis after
prolonged incubation with NETs (118). Further study showed that
NETs-derived histone H2A and to a lesser degree elastase caused
mitochondrial morphological alterations, which further induced a
caspase- and AIF-dependent apoptosis (118).These results indicated
that NETs interact with macrophages and DCs for a long time might
enhance tumor immunosuppression. Another study revealed that LPS
induced significant upregulation of surface markers of activation and
maturation on DCs, such as, CD80, CD83, and CD86 was significantly
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reduced when DCs were exposed to both NETs and LPS (119).
Moreover, NETs plus LPS significantly promoted inflammasome
activation though increased IL-1B secretion, and decreased LPS-
induced IL-10, an immunomodulatory cytokine, and IL-12, a T cell
stimulatory factor in both macrophages and DCs (119). In turn, both
macrophages and DCs could also degrade NETs (119), suggesting that
NETs acted as double-edged swords of innate immunity. Besides, the
addition of NETSs to IL-4/GM-CSF-treated monocytes downregulated
the expression of the IL-4 receptor in monocytes and prevented
monocytes from fully differentiating into DCs but induced them to
differentiate into M2 macrophages (120). It has been reported that M2
macrophages such as tumor-associated macrophages (TAMs) promote
tumor growth and invasion (121). Thus, NETs might contribute to
tumor progression through promoting M2 polarization of
macrophages. Moreover, DNA released from NETs also mediated
pro-inflammatory macrophage polarization by activating the TLR-9
pathway (122). In addition, NETs induced the production of IL-8 by
macrophages through activating the TLR9/NF-xB signaling pathway,
which further aggravated atherosclerosis (123). Georgakis et al. found
NETs from patients with systemic lupus erythematosus activate
plasmacytoid DCs (pDCs) to secrete IFN-0,, correlating with severe,
active disease (124). Mechanistically, immunocomplexes stimulated
neutrophils release IL-33-decorated NETs, which recognized the IL-33
receptor ST2L on pDCs, and further activating TLR9-IRF7 pathway,
leading to IFN-ou secretion (124). Similarly, cigarette smoke extract-
induced NETs also promoted pDCs maturation and activation (125).
The role of pDCs in TME is still ambiguous now (126). Thus, we hold
the opinion that whether NETs-mediated pDCs activation display
active immunity functions or involved in immune tolerance is
determined by the specific tumor microenvironmental. In contrast,
another recent study demonstrated that NETs induced by oleic acid
stimulated DCs caused increased levels of CD40, CD86, and human
leukocyte antigen DR (HLA-DR), indicating that oleic acid-induced
NETs facilitated the maturation and activation of DCs (40). NE is an
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important component of NETs. A recent study indicated that NE could
impair macrophage phagocytic function through the cleavage of cell
surface receptors or opsonins (127). Furthermore, treatment of
immature DCs with NE induced the generation of CD4+FOXP3
+Tregs, which showed suppressive activity in vitro (128). NETSs
regulate macrophages and DCs through different pathways,
indicating that NET's might be an important indicator for antitumor
immune response.

4.2 Natural killer cells

Natural killer (NK) cells are an important subset of innate
immune cells that are found to be essential for tumor
immunosurveillance (129). One study showed that NETs might
inhibit the function of NK cells by upregulating LGAS9 and
CEACAMI genes, which are negative regulators for NK cells in
patients with COVID-19 (130). Other groups have confirmed that
NETs can accumulate decidual NK cells, which leads to
immunological disorders in the placenta in patients with systemic
lupus erythematosus (131). Moreover, CG, an important
component of NETSs, cleaves the NK cell-associated activating
receptor NKp46, which further impairs NK cell function,
including IFN-y production and cell degranulation (132),
suggesting that NETs might inhibit NK-cell based antitumor
response. In turn, NK cells also induced NET formation via IFN-
v secretion, which further promotes thrombus formation (133).

43T cells

T cells have long been regarded as a major subset of the immune
cells involved in tumor immunity. Miranda et al. demonstrated that
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Toxoplasma gondii-induced NETs promote CD4+ T cell recruitment
and the secretion of IFN-y, TNF, and IL-6, indicating that NETs
contribute to the adaptive immune response (134). In addition, NET-
stimulated DCs promote primary CD4+ T cell differentiation into T
helper (Th) 1 and Th17 cells compared with DCs without stimulation
by NETs (40). Consistent with this finding, it has been shown that
NETs can directly promote naive T cell differentiation into Th17 cells
(135). Further studies have shown that histones are involved in the
NET-induced increase in Th17 cell differentiation, and this regulation
is dependent on the TLR2/MyD88 pathway. Moreover, NETs could
also activate Th17 cells, that enhanced immune cells recruitment in
atherosclerotic plaques (136). These findings demonstrate that NET's
may be acritical factor influencing the differentiation of Th17 cells. It
has also been reported that increased infiltration of Th17 cells
promoted tumor progression and was correlated with a poor
prognosis (137, 138). By inducing Th17 cell differentiation, NETs
might be important for Th17 cell-related cancer immunotherapy.
Additionally, in patients with severe COVID-19, focal NETs were
negatively associated with CD8+ T cell infiltration in lung tissues (139).
Taken together, how to target NETs to improve Th helper-mediated
anticancer immunity needs to be explored in the future.

4.4 B cells

B cells could inhibit tumor progression through secreting
immunoglobulins, promoting T cell response, and killing cancer
cells (140). In addition to macrophages, DCs, and NK cells, NETs
are also associated with B cells. For example, IL-37-DNA complexes
derived from NETs can trigger B cell proliferation and activation in
lupus erythematosus (LE) patients (141). Further study showed that
NET-derived LL37-DNA complexes gain access to endosomal
compartments of B cells and activate TLR9 pathway (141). In
addition, citrullinated histones in NETs are thought to act as a
continuous source of fresh antigens for B cells, promoting the
production of new immunoglobulin M pathogenic anti-citrullinated
protein antibodies in rheumatoid arthritis (142).Another study
showed that NETs might contribute to B cell activation and
autoantibody secretion, which aggravates tissue damage in
hidradenitis suppurativa (114). Moreover, elevated levels of NETs
have been found to induce B-cell differentiation into plasma cells by
activating the mitogen-activated protein kinases (MAPK) p38
pathway in bullous pemphigoid (143). These findings indicate that
NETs might regulate tumor immune response. by acting on B cells. In
summary, these studies suggest that NETs play an important but
complicated role in immune cells (Figure 3).

5 Targeting NETs for tumor
immunotherapy

Immunotherapy has provided new strategies for cancer therapy
and has increased long-term survival in subsets of patients. The
significant and wide-ranging effects of NETs in regulating tumor
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cells and immune cells have prompted the clinical investigation of
additional therapies to improve the efficacy of tumor immunotherapy.

5.1 NETs in anti-tumor immunity

Given that there is much evidence for the participation of NETs in
many types of immune cells, it is no surprise that NET's regulate tumor
immunity. For instance, in non-small cell lung cancer, bladder cancer,
and metastatic melanoma, NET density is inversely correlated with
CD8+ T cell density, suggesting that NETs might impair CD8-
mediated antitumor immunity (144). Furthermore, studies have
shown that both CD4+ and CD8+ T cells in the NET-rich TME
express significantly higher levels of T cell exhaustion-related markers,
such as programmed cell death protein 1 (PD-1), T cell
immunoglobulin domain and mucin domain 3 (Tim3), and
lymphocyte-activation gene 3 (Lag3), indicating that increased NET's
in the TME are responsible for the loss of T cell function (145). Further
research demonstrated that both mouse and human neutrophil-
derived NETs contained the immunosuppressive ligand programmed
death-ligand 1 (PD-L1), blocking of PD-L1 in NETs obviously
decreased tumor growth (145). In addition, NETs can obstruct
contact between immune cells and the surrounding target tumor
cells by wrapping and coating tumor cells and protecting them from
CD8+ T cells and NK cell-mediated cytotoxicity, which further hamper
immune-cell control of tumor metastases (23). Moreover, NET's
inhibition sensitized tumors to PD-1+CTLA-4 dual checkpoint
blockade (23). Another group reported that NETs participated in IL-
17-associated immunosuppression in pancreatic cancer (20).
Mechanistically, IL-17 recruited neutrophils, induced NETs
formation, which favors tumor CD8+ T cell inactivation and spatial
exclusion (20). Wang et al. recently demonstrated that NETs and
regulatory T cells (Tregs) co-localized in NASH-associated HCC and
that NETs could promote the differentiation of naive CD4" T cells into
Tregs which contributes to the initiation and progression of NASH-
HCC (146). Further study showed that NETs activated TLR4 pathway
in naive CD4+ T cells, leading to naive CD4+ T cells metabolic
processes reprogram, tilting the balance toward mitochondrial
oxidative phosphorylation (OXPHOS) to promote Treg
differentiation (146). In addition, another study demonstrated that
NETs lead to a hypercoagulable state in gastric cancer (147). Further
studies revealed that NET's upregulated angiopoietin-2 (ANGPT2), and
ANGPT?2 was significantly correlated with macrophage M0, NK cell
resting, and mast cell activation, suggesting that NETs might be
involved in the regulation of the immune microenvironment in
gastric cancer. Other studies have shown that NET-related long
intergenic non-protein coding RNA 426 (LINC00426) contributes to
the innate immune cyclic GMP-AMP synthase (cGAS)-stimulator of
interferon genes (STING) signaling pathway in head and neck
squamous cell carcinoma (148). Taken together, these observations
suggest that the pro-tumorigenic activities of NETs are also mediated
by the attenuation of antitumor functions of the immune system,
which occurs by impairing the function of tumor-antagonizing
immune cells and the maintenance of an immunosuppressive
molecular signature in the TME.
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Schematic representation of NET in regulating immune cells. NETs can mediate immune response via complex regulations at multiple immune cells.

Macrophages and DCs: NETs promote macrophages apoptosis, polarization,

cytokine production, and impair macrophage phagocytic function;

NETs can promote DCs apoptosis, maturation, activation and cytokine production. NK cells: NETs can impair NK cell function, including IFN-y
production and cell degranulation. T cells: NETs promote CD4+ T cell differentiation into Thl and Th17 cell; NETs also promote immature DCs
differentiation into CD4+FOXP3+Tregs.B cells: NETs can induce B cells proliferation, activation, differentiation and antibody secretion.

5.2 NETs in immunotherapy

As NETSs are considerably involved in regulating the behavior of
tumor cells and immune cells, thus affecting the efficacy of tumor
immunotherapy in different ways. Therefore, targeting NETSs is a
relatively new option to inhibit tumor progression and boost the
efficacy of immunotherapy, including decreasing NET formation
and/or activity in tumors. Current trials targeting NET's are mainly
based on interference with NET's formation or direct dismantling of
their structure. For example, targeting of PAD4 with GSK484
inhibitor repressed NETs formation and prevented dormant
cancer cell awakening in a breast cancer model (110); targeting
PAD4 with the novel PAD4 inhibitor BMS-P5, delayed the
appearance of symptoms and MM progression (149). In addition,
targeting the tumor-associated induction of NET's formation is also
a promising therapeutic strategy. ROS, TNF-a,, IL-8, cathepsin C,
amyloid B3, and CXCR-1 and -2 are all responsible for NET' release,
as mentioned above. Blocking these tumor-associated NET stimuli
with antibodies or inhibitors might prevent metastatic colonization
by abolishing NET-mediated capture of circulating tumor cells.
Other groups have also focused on the interaction mediators
present in NETs and cancer cells, such as integrin (104), TLR9
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(94) and CCDC25 (15). Functional blocking of these mediators may
also contribute to tumor treatment.

Recent report has demonstrated that NET's are associated with
immunotherapy resistance (150). NET-mediated physical barriers
inhibited contact between immune cytotoxic cells and tumor cells
and influenced immune checkpoint therapy in primary colorectal
cancer (88). Using photoregulated enzyme delivery for efficient
release of DNase I for localized degradation of NETs destroyed the
NET-mediated physical barrier, thereby enhancing the interaction
of immune cytotoxic cells with tumor cells, and sensitized immune
checkpoint therapy for primary colorectal cancer, and eliminating
NET-mediated capture and colonization of metastasizing cells in
the liver sinusoids (88). These results suggest inhibition of NET's by
DNase I facilitate the removal of immunosuppressive NETSs, and
improve the efficacy of clinical treatment. Similarly, high levels of
NETs inhibited the response to anti-PD-1 therapy in a mouse
colorectal cancer model (150). Furthermore, degradation of NETs
by DNase I reduced tumor cell-induced TAN infiltration within
tumors, and increased CD8+ T cell infiltration and cytotoxicity,
which further improved the efficacy of PD-1 blockade to inhibit
tumor growth (150). In addition, NET's also mediated resistance to
immune checkpoint blockade PD-1 and cytotoxic T-lymphocyte
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associated protein 4 (CTLA4) by Ovarian cancer in pancreatic
cancer (20). Besides, NETs could greatly counteract the efficacy of
NK cell therapy and contribute to HCC recurrence (151). Inhibition
of NETs enhanced NK cell infusion to kill cancer cells (151).These
findings indicated that NET-mediated immunotherapy resistance is
through protecting tumor cells from cytotoxic immune attack.
Moreover, NET-associated T cell exhaustion was abrogated by
DNase, which also supports the use of NET-targeting therapeutics
to restore proper T cell antitumor activity. In addition, chimeric
antigen receptor (CAR)-T therapy in solid tumors often resistance
to immunotherapy, and NETs can prevent the interaction of CAR-
T cells with tumor cells (152). Therefore, NET inhibition might
overcome CAR-T resistance in the future. In addition, vaccination
with DCs loaded with NETs reduced myeloproliferation in
transgenic mice, and induced CD8+ T cell responses (153),
suggesting that NETs might be used in the development of a
leukemia vaccine. Taken together, NETs have the potential to
enhance the efficacy of clinical immunotherapy by promoting T
cell tumor infiltration and enhancing cytotoxic immune cells on
tumor cells and could be used in tumor vaccines in the
future (Figure 4).

NETs-mediated tumor
immunosuppression and
immunotherapy resistance

l

growth

10.3389/fimmu.2023.1135086

6 Concluding remarks

While diverse studies have demonstrated the classic functions of
NETs in promoting, tumor growth, metastatic spread and cancer
therapy resistance, accumulating data in recent years have clearly
shown that NETSs play an important role in immune regulation. In this
review, we summarized the functions of NETs in immune cells, anti-
tumor immunity, and tumor immunotherapy. A better understanding
of the crosstalk between NETs and anti-tumor immunity can help
overcome cancer immunotherapy resistance. However, the role of
NETs in anti-tumor immunity in other immune cells, including
macrophages, DCs, myeloid-derived suppressor cells, B cells, and,
has not been sufficiently evaluated. Moving forward, we believe that
detailed analyses of the role of NETs in immune, tumor, and TME/
stromal cells are required. Moreover, it should be noted that a number
of proteins and potentially other NETs compounds may be
detrimental for antitumor immune response. Thus, scientists need
to carry out more research to identify the role of NETs-associated
proteins in immunotherapy. These efforts would provide a substantial
basis for targeting NETs as a new/alternative choice and a new
approach for clinicians in cancer immunotherapy.
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The emerging roles of NETs in the modulation of anti-tumor immunity and immunotherapy. NETs can promote CD4+ and CD8+ T cells exhaustion
and dysfunction; NET-mediated physical barrier decreases the contact of immune cytotoxic cells (CD8+ T cell, NK cell and CAR-T cell) with tumor
cells; NETs promote the differentiation of naive CD4+ T cells into Tregs, which further contribute to tumor initiation and progression; NETs promote
macrophage MO, NK cell resting. Degradation of NETs by DNase | can enhance the efficiency of tumor immunotherapy; NET/DC vaccine may be

used for leukemia treatment.
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Glossary

ANGPT2 angiopoietin-2

C3 complement 3

CAR chimeric antigen receptor
CCDC25 coiled-coil domain-containing 25
CG cathepsin G

COVID-19 coronavirus disease 2019

CSF colony stimulating factor

CTLA4 cytotoxic T-lymphocyte associated protein 4
CXCLs C-X-C motif chemokine ligand
CXCR C-X-C motif chemokine receptor
DC dendritic cell

DOX doxorubicin

ERK extracellular signal-regulated kinase
GM granulocyte-macrophage

H3Cit citrullinated histone H3

HCC hepatocellular carcinoma
HMGB-1 high mobility group box 1

IFN interferon

IL interleukin

MM multiple myeloma

MMP-9 matrix metalloproteinase 9

MPO myeloperoxidase

NASH non-alcoholic steatohepatitis

NE neutrophil elastase

NET neutrophil extracellular trap

NF nuclear factor

NK natural killer

NOX NADPH-oxidase

PAD4 peptidyl arginine deiminase 4
PD-1 programmed cell death protein 1
PD-L1 programmed death-ligand 1
PMA phorbol 12-myristate 13-acetate
ROS reactive oxygen species

TAN tumor-associated neutrophil

Th T helper

TLR toll-like receptor

TME tumor microenvironment

Tregs regulatory T cells

TIMP1 tissue inhibitor of metalloproteinases-1
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Introduction: Lung adenocarcinoma (LUAD), as the most frequent pathological
subtype of non—-small cell lung cancer, is often characterized by poor prognosis
and low 5-year survival rate. Exploriton of new biomarkers and accurate
molecular mechanisms for effectively predicting the prognosis of LUAD
patients is still necessary. Presently, BTG2 and SerpinB5, which play important
roles in tumors, are studied as a gene pair for the first time with the aim of
exploring whether they can be used as potential prognostic markers.

Methods: Using the bioinformatics method to explore whether BTG2 and
SerpinB5 can become independent prognostic factors, and explore their
clinical application value and whether they can be used as immunotherapeutic
markers. In addition, we also verify the conclusions obtained from external
datasets, molecular docking, and SqRT-PCR.

Results: The results show that compared with normal lung tissue, BTG2
expression level was down-regulated and SerpinB5 was up-regulated in LUAD.
Additionally, Kaplan—Meier survival analysis demonstrate that the prognosis of
low expression level of BTG2 was poor, and that of high expression level of
SerpinB5 was poor, suggesting that both of them can be used as independent
prognostic factors. Moreover, the prognosis models of the two genes were
constructed respectively in this study, and their prediction effect was verified by
external data. Besides, ESTIMATE algorithm reveals the relationship between this
gene pair and the immune microenvironment. Furthermore, patients with a high
expression level of BTG2 and a low expression level of SerpinB5 have higher
immunophenoscore for CTLA-4 and PD-1 inhibitors than patients with a low
expression level of BTG2 and a high expression level of SerpinB5, indicating that
such patients have a more obvious effect of immunotherapy.

Discussion: Collectively, all the results demonstrate that BTG2 and SerpinB5

might serve as potential prognostic biomarkers and novel therapeutic targets for
LUAD.
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Introduction

Lung cancer is the third most common cancer in the world and
the leading cause of cancer death worldwide. According to the
histological classification of tumors, lung cancer can be divided into
two types: small cell lung cancer, accounting for 15% of all lung
cancer, and non-small cell lung cancer (NSCLC), accounting for
about 85% of all lung cancer (1, 2). Among them, NSCLC can be
divided into several histological subtypes: lung adenocarcinoma
(LUAD), adenosquamous cell carcinoma, squamous cell carcinoma
(LUSC) and large cell carcinoma (LCC) (3), in which LUAD is by
far the most common subtype of NSCLC. The main reason for the
high mortality of LUAD was the lack of early diagnosis methods
that would find tumorigenesis at an early stage. So tumorigenesis
can’t be found in time in the early stage of cancer, leading to the
diagnosis of most patients in the middle and late stages (4). At the
same time, the tumor was prone to invasion and metastasis,
resulting in poor curative effect (5).

Cisplatin is currently the first-line drug for the treatment of lung
cancer, but the clinical application is limited due to drug resistance
(6, 7). However, cisplatin is often used in combination with other
drugs in the process of clinical medication. Although cisplatin has a
strong tolerance to lung cancer, its basic pharmacological effect
against lung cancer is still worthy of further study (8, 9). In this
study, we use bioinformatics technology to predict the core targets
during the development of LUAD, taking cisplatin as the main drug
for the treatment of lung cancer to find the targets that could be
used as prognostic markers. Through bioinformatics study of gene
expression changes in LUAD patients after being treated by
cisplatin that the data was downloaded from GEO dataset, it was
found that cisplatin could regulate the abnormal decrease or
increase of gene expression level of BTG2 and SerpinB5 in Lung
cancer cells, and these two genes were related to the overall survival
(OS) of the LUAD patients. Additionally, from the correlation of
gene expression, which was calculated by Pearson’s correlation test,
it was found that there was a negative correlation between BTG2
and SerpinB5. Relevant studies have also found that both of them
were related to p53 (10, 11). The expression level of BTG2 was
related to the SerpinB5’, and the two genes could interact through
p53. Therefore, we took BTG2 and SerpinB5 as a new gene pair to
study their clinical prognostic value.

Actually, BTG2 was the first gene found in the BTG/TOB gene
family, which was involved in biological functions such as cell
proliferation and differentiation, cell cycle regulation, and DNA
damage repair (12). A large number of studies have shown that the
expression level of BTG2 in tumors was closely related to the
biological characteristics of tumors (12-15). The BTG2 was
considered to be a tumor suppressor gene, and the expression
level was significantly reduced or even not expressed in liver cancer,
bladder cancer, breast cancer, ovarian cancer and other tumors (16).
With respect to SerpinB5, it was one of the members of the serine
protease inhibitor (Serpin) family, belonging to non-inhibitory
subpins (17). SerpinB5 was expressed in normal breast epithelial
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cells, skin, prostate, testis, lung, tongue, intestine and thymus, but
the expression level was abnormally lower in a variety of malignant
tumors compared with the expression level in normal tissue.
Previous studies have shown that SerpinB5 can inhibit the
occurrence and development of tumors, including promoting
tumor cell apoptosis, inhibiting tumor angiogenesis, and
inhibiting tumor metastasis (18-20).

Presently, we performed a series of bioinformatics analyses on the
gene expression level of BTG2 and SerpinB5 in LUAD, including
transcriptional analysis, co-expression analysis, functional annotation
enrichment analysis, protein-protein interaction (PPI) analysis,
survival analysis, and constructed prognosis models. The increased
levels of SerpinB5 and decreased BTG2 expression were observed in
LUAD. Both a high expression level of SerpinB5 and a low expression
level of BTG2 were associated with poor OS in LUAD. In addition,
the expression level of BTG2 and SerpinB5 were related to
macrophages in the immune microenvironment, which may be an
important reason why these two genes can affect the immune
microenvironment. Finally, we verified our research content
through many methods, including external datasets, molecular
docking, immunohistochemistry, and experiment which would
make our findings more reliable. In our article, these two genes
were studied together for the first time. We studied whether this gene
pair could be a potential tumor prognostic marker and its potential
mechanism. All these findings provide new insights for improving the
prognosis of patients and may may promote the discovery and
application of prognostic markers of LUAD.

Materials and methods
Data sources

The gene expression matrix of patients with LUAD samples was
downloaded from the Gene Expression Omnibus (GEO) website
(https://www.ncbi.nlm.nih.gov/), including GSE73302 datasets. The
corresponding probe set GPL5175 of GSE73302 dataset was
obtained from GEO website. Gene expression profile data of
LUAD patients were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/repository), which included 59
samples of normal lung tissue and 539 LUAD tissues (Workflow
Type: STAR-Counts). Four groups of samples were in GSE73302
dataset, including A549 cell samples that were not treated with
cisplatin and cultured for 24 and 48 hours respectively as the
experimental control group, and A549 cell samples treated with
cisplatin for 24 and 48 hours respectively as the experimental group,
each group repeated three times. Therefore, a total of 12 samples
were analyzed in GSE73302 dataset. The pan-cancer analysis of
genes in 33 kinds of cancers was obtained through Sangerbox
(http://sangerbox.com/tool.html) database. Data on pan-cancer
analysis in the Sangerbox were downloaded from UCSC XENA,
which was from TCGA database and GTXs and the expression
value was converted into Log2 (x+0.001).
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Identification of DEGs in LUAD after
treated with cisplatin

In order to obtain the differential expression genes (DEGs), the
gene expression data need to be preprocessed, including the data
correction and log2 (x+1) transformation. First, we corrected the gene
expression data through the normalized BetweenArrays function of the
“limma” package of R (4.2.0) and then calculated the log2 (x+1) of the
corrected data. DEGs in GSE73302 were obtained by using the “limma”
package. The gene expression level of DEGs in GSE73302 was visually
displayed by heatmap and the volcano plot, which were drawn through
the “ggplot2” package. The y-axis of the volcano plot is log2 fold change
(log2FC) and the fold change represents the differential expression
multiple. The expression of these genes that were increasing or
decreasing can be judged by the positive and negative value of log2
fold change in the volcano plot.

The DEGs in normal tissues and tumor tissues were obtained by
using the “limma” package. The screening criteria of DEGs were P <
0.05 and |log FC| >1.0. In order to obtain DEGs in tumor tissues
after cisplatin interference, the overlapping DEGs of two gene
expression profiles were obtained through the “Venn” package.

Protein-protein interaction network

In order to explore the interaction between DEGs, a PPI
network was constructed. We obtained the gene interaction
relationship among 17 DEGs through the online database
STRING (https://cn.string-db.org/) and constructed a PPI
network through Cytoscape (3.8.0). Meanwhile, the correlations
of gene expression between the 17 DEGs were calculated by
Pearson’s correlation analysis and displayed by a heatmap.

Survival analysis of DEGs

To evaluate whether mRNA levels of DEGs affected the
prognosis of LUAD, the correlation between the expression level
of 17 DEGs and median OS were analyzed using the GEPIA
database (http://gepia.cancer-pku.cn/). This database was used to
assess the link between DEGs expression and patient prognosis in
multiple cancer types and drew the survival curve plot between
them. Enter DEGs one by one into “Gene” and “LUAD” in
“Datasets”. The prognosis-related genes could be got. Log-rank P-
value <0.05 was considered statistically significant. DEGs with P <
0.05 were considered as genes that related to prognosis.

Moreover, receiver operating characteristic curves (ROC) were
plotted to determine the sensitivity and specificity of these
prognostic genes. Downloading clinical data, and analyzing the
survival curve with the data through the TCGA database.

The ROC curves were drawn by the “pROC” package. The area
covered under a curve is called the area under a curve (AUC). This
is used to evaluate the performance of sensitivity and specificity.
The higher the AUC, the better the effect by using the expression
level to predict the survival time of cancer patients.
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Evaluation of the independent prognostic
factor and survival analysis of the gene pair

Correlations between core gene expression level and the
clinicopathological and molecular features were analyzed by the
“Complex Heatmap”, “ggalluvial”, and “ggpubr” packages (21).
According to the median expression level of core genes, LUAD
patients were divided into high-expression and low-expression
groups. In order to accurately study the relationship between gene
expression and patient survival time, the relationship between the
two groups of BTG2 and SerpinB5 and OS and progression free
survival (PFS) were calculated by using the “survival” package. The
clinical data and the gene expression RNA-Seq (HTSeq-FPKM)
were downloaded from the TCGA dataset.

Development and validation of the
nomogram model

To establish the relationship between different clinical
characteristics and patient survival, a prognosis model was
constructed. Univariate and multivariate Cox regression analyses
were used to determine whether core genes could be used as an
independent prognostic factor in patients with LUAD without the
influence of clinical characteristics.

The Cox regression model was constructed by the “RMS” (22)
package and visualized the parameters related to the survival time of
patients through nomogram. Nomogram is essentially a visual
regression model. It sets the scoring criteria according to the
regression coefficients of all independent variables and then gives
the scoring values of each independent variable to calculate the total
score of each patient. The conversion between occurrence
probability and the prognosis were calculated to predict the
survival time of each patient (22).

The concordance index (C-index) and a calibration curve plot
were then used to evaluate the nomogram’s predictive accuracy and
discriminative ability. The nomogram’s predictive accuracy was
drawn by the “ggplot2” package. The x-axis represents the predicted
survival rate of each patient, and the y-axis represents the actual
survival rate of each patient. The correlations between core genes
and co-expression genes were calculated by Pearson’s correlation
analysis in the cBioPortal database (https://www.cbioportal.org/),
and genes with a correlation coefficient (absolute value) more than
0.5 were selected.

Enrichment in LUAD by GSEA
and GO analysis

The GSEA is a computational analysis method used to judge
whether an a priori-defined set of genes shows statistically
significant differences between two biological states. In this study,
the “clusterProfiler” package was used to perform GSEA between
the high-expression and low-expression of core genes (23).
Functional or pathway terms with adjusted P-values<0.05 and
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False Discovery Rate (FDR) q-value <0.25 were considered
statistically significant. The GO analysis and KEGG analysis were
also used to obtain the pathway that these genes may participate.

Identification of potential mechanisms of
IncRNA/miRNA/mRNA networks

In order to further study the possible mechanism of BTG2 and
Serpinb5 in LUAD, the IncRNA/miRNA/mRNA network was used
to reveal the mechanism. First, the miRNAs that were related to these
two genes were screened through the “miRNA-mRNA” module in
the StarBase v3.0 database (https://starbase.sysu.edu.cn/), and
then the miRNAs that may be related to these two genes were
obtained by the intersection of these two groups of genes. Then, the
IncRNAs corresponding to the miRNAs were searched through the
“miRNA-LncRNA” module. The screening condition was low
stringency (>=1) in “CLIP Data”, and “Pan-Cancer” was > 4 cancer
types (24). The miRNAs and IncRNAs obtained above were used to
build a network through Cytoscape.

Infiltration patterns in the
tumor microenvironment

The ESTIMATE algorithm (Estimation of Stromal and Immune
cells in Malignant Tumors using Expression data) was applied to
calculate the immune score, stromal score, estimate score, and
tumor purity based on the expression level of mRNA of TCGA (25).

The ESTIMATE computational method in the “estimate”
package was applied to calculate the “estimate score”, “immune
score”, and “stromal score” in LUAD tissues. CIBERSORT
computational method was used to compute cell components of
the tissues. Twenty-two categories of TIICs (Tumor infiltrating
immune cells), including plasma cells and natural killer cells were
identified and the relative proportions were calculated by using the
“CIBERSORT” package. Correlation analysis between different
TIIC subpopulations was achieved by the “corrplot” package. The
“vioplot” package was applied to visualize the TIICs between high-
expression and low-expression groups. The association between the
expression level of core genes and the TIICs was acquired by using

» « » «

“limma” “ggplot2” “ggpubr” and “ggExtra” packages.

Correlation analysis between different TIIC subpopulations was
achieved by the “corrplot” package. For each tumor sample, the
TMB was analyzed as the total count of somatic mutations (except

silent mutations) detected in the tumor.

Immunotherapy

Next, we further predicted the response that the LUAD patients
treated with anti-PD-1 and anti-CTLA-4 immunotherapy. To better
predict the response to the immune checkpoint inhibitors (ICIs),
the immune cell and immunophenotype data were downloaded
from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home).
The immunophenogram was used to predict anti-PD1/PD-L1
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therapy response in LUAD. The immunophenogram was used to
calculate the immunophenoscore (IPS) among four types (CTLA4
positive + PD-1 positive, CTLA4 negative + PD-1 negative,
CTLA4 positive + PD-1 negative, CTLA4 negative + PD-1
positive, CTLA4 negative + PD-1 positive) from the TCGA
database. The IPS scale ranged from 0 to 10. A high IPS predicts
a good response to anti-PD-1/PD-L1 therapy. In addition, the
correlation between expression level of the gene pair with the
other immune checkpoint was also analyzed by Pearson’s
correlation analysis and shown in a heatmap. The potential
response of patients to immunotherapy was inferred by IPS and
the tumor immune dysfunction and exclusion (TIDE) score. TIDE
scores were calculated by the TIDE algorithm after normalizing the
gene expression data (26). The tumor samples were divided into
high-expression and low-expression according to the median
value of expression level. Then, the TIDE score of the two groups
were compared.

Immunohistochemistry

The protein expression of core genes in both LUAD and normal
tissues was obtained from the Human Protein Atlas database (HPA)
(https://www.proteinatlas.org/), which is a program to map all the
human proteins in cells, tissues and organs by using an integration
of various omics technologies, including antibody-based imaging,
mass spectrometry-based proteomics, transcriptomics and systems
biology. In this study, the HPA database was used to analyze the
protein expression level and performed immunohistochemistry
(IHC) analysis of core genes between normal lung tissues and
LUAD tissues.

Molecular docking

To investigate the mechanism of the two genes binding with
cisplatin, we made molecular docking between these two genes and
cisplatin, respectively. We first obtained the molecular structure of
the protein from the RCSB protein data bank (https://
www.rcsb.org) and then the binding was obtained by Autodock
software, which was used with default values for all parameters (27).

Semi-quantitation RT-PCR

A total of 7 pairs of LUAD tissues and paracancerous tissues were
collected from LUAD patients in SWMU hospital. The study was
approved by the Ethical Committee of Southwest Medical University/
Anhui University of Chinese Medicine, and all patients signed the
informed consent form. All surgically removed samples were
immediately transferred to liquid nitrogen and stored at -80°C until
further research and analysis. The Use RNAsimple Total RNA Kit
which was purchased from TIANGEN (Catalog No. DP419) was used
to extract total RNA from the sample. The ReverTra Ace® qRNA RT
Master Mix which was purchased from TOYOBO (Code No. FSQ-
201) was used to reversely transcribes RNA into cDNA. The procedure
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of reverse transcription was 37°C for 15min, 50°C for 5min, 98°C for
5min, and 4°C for holding. Then the cDNA was used as a template to
prepare the PCR reaction solution. Veriti Thermal Cycler 96 Well
(Applied Biosystems AB) was used for the amplification reaction.
ACTB was used as an internal control. The sequences of the primers
ACTB were: RT-ACTB-5: 5-CTCTTCCAGCCTTCCTTCCT-3
(forward primer), RT-ACTB-3: 5-GTGGCCATCTGTGAGATCCT-
3’ (reverse primer). The expected product size of ACTB was 510 bp.
The sequences of the primers SERPINB5 were: RT- SERPINB5 -5: 5’-
TTCCTTTTCCACGCATTTTC -3’ (forward primer), RT- SERPINB5
-3:5- GTGGCCATCTGTGAGATCCT -3’ (reverse primer). The
expected product size of SerpinB5 was 476 bp. The standard
procedure of three-step PCR amplification was used: pre-denaturing
at 95 °C for 30s, annealling at 60°C for 30s, and extending at 72°C for
30s. ACTB has 25 cycles and SerpinB5 has 33 cycles (28-30).

Statistical analysis

All statistical analyses and graphs were analyzed and displayed by
R. P < 0.05 was considered to be statistically significant. P<0.05 is
w,

expressed by “*”; P<0.01 is expressed by “**”; P<0.001 is expressed
by o

Results

Identification of DEGs for LUAD that
treated by cisplatin

By unified processing of RNA-Seq data downloaded from the
TCGA database, the mRNA gene expression levels in 59 normal
samples were compared with 539 tumor samples and the results
showed that 5169 genes were differentially expressed. There were 12
samples in the GSE73302 database, including 6 samples of the
control group (lung cancer patients) and 6 samples of experimental
groups (LUAD patients treated with cisplatin after 24h and 48h).
The gene expression levels of the control group were compared with
the experimental group and 107 genes were found to be
differentially expressed. The change in gene expression level
distribution in the GEO dataset can be seen in Figures 1A, B.

To obtain the DEGs that the LUAD patients were treated with
cisplatin, the DEGs obtained from the TCGA dataset and DEGs
obtained from the GEO dataset were intersected by the “Venn”
package (Figure 1C). And a total of 17 DEGs were obtained. They
were ZNF677, TLR10, SPATA18, SESNI1, SerpinB5, RTN4RLI,
NPY5R, GPR87, GLIPRIL2, FUTY9, FGF7, FGF5, CYP7Al,
CYP2A13, BTG2, AQPY, ABCAI2. The changes in the expression
level of 17 DEGs after being treated with cisplatin could be seen
from the heatmap (Figure 1E).

PPI analysis in LUAD

The PPI of the 17 DEGs network was established based on the
STRING database with 14 edges and 17 nodes. The four genes with
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the most nodes were SESNI, SerpinB5, GPR87, and BTG2. There
were four genes, including ZNF677, TLR10, GLIPRIL2 and FUTY,
that had no direct relationship with other genes in the PPI
network (Figure 1D).

After analysis of the PPI network, 17 genes will affect each other.
But the genes that how influenced each other was still unknown.
Therefore, we need to explore the correlation between 17 genes. In
this study, a heatmap was used to study the correlation (Figure 1F).
As depicted in Figure 1F, the expression level of SerpinB5 was
negatively correlated with BTG2, GDR87 and SESN1, and positively
correlated with FGFG7. The expression level of GDR87 was
positively correlated with BTG2 and ABCAI2. The expression
level of BTG2 was positively correlated with SPATA18 and AQP9.
The expression level of CYP2A13 was negatively correlated with
SPATAI8 and positively correlated with CYP7Al. NYP5R was
positively correlated with RTN4RLI. FGF7 was negatively
correlated with FGF5 (Figure 1F).

The mRNA expression of DEGs between
LUAD tissue and Normal tissue.

By comparing the mRNA expression level in the TCGA database,
the result showed that compared with normal tissues, the genes with
higher expression level of DEGs were TLR10, SerpinB5, GPR87, FUTY,
FGF5 and ABCAI2. The genes with lower expression level were
ZNF677, SPATA1S, SESN1, RTN4RL1, NPY5R, GLIPRIL2, FGF7,
CYP7A1, AQP9, CYP2A13 and BTG2 (Figure 2A).

Gene expression after cisplatin treatment

The DEGs with higher expression level after cisplatin treatment
compared with the expression level of A549 were TLR10, SPATA1S,
SESN1, RTN4RL1, NPY5R, GPR87, GLIPRIL2, FUT9, FGF5, BTG2,
AQP9 and ABCAI2. The genes with lower expression level after
cisplatin treatment in LUAD were ZNF677, SerpinB5, FGF7,
CYP7AI and CYP2A13 (Figure 2B). We sorted out the results of
this part through a table

The mRNA expression level in normal lung tissue is expressed
by “+7. ¢
LUAD tissue, “-” respect the mRNA expression level was decreased

++” respect the mRNA expression level was increased in
in LUAD tissue. Compared with tumor group,there was more “+”
when the mRNA level increased after treated with cisplatin. The
specific changes of gene expression are shown in Table 1.

From the above results, cisplatin could reduce the expression level
of CYP7AI, SerpinB5 which increased abnormally in LUAD and
increase the mRNA expression level of AQPY, BTG2, GLIPRIL2,
NPY5R, RTN4RLI, SESN1, SPATA18 which decreased abnormally in
LUAD. Therefore, the above genes may be the key genes of cisplatin in
the treatment of LUAD. Next, the prognostic-related genes in DEGs
were evaluated, and the results demonstrated that TLR10, BTG2, FGF5,
GPR87 and SerpinB5 were significantly correlated with OS. Among
them, the high-expression of TLRI0 and BTG2 was significantly
correlated with good OS. However, the low-expression of FGF5,
GPR87 and SerpinB5 were significantly correlated with good OS
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FIGURE 1

The differential expression genes. (A) Heatmap of the DEGs in GSE73302 according to the value of |log FC|>1 and P <0.01. The green color indicates
lower expression and red color indicates high expression. (B) The volcano plots visualize the DEGs in GSE73302. The red nodes represent
upregulated genes while the blue nodes represent downregulated genes. (C) Common DEGs in GSE73302 and TCGA data sets. A total of 17
commons in the intersection of two gene set. (D) Protein—protein interaction network of differentially expressed genes and the related genes from
the STRING database. (E) Heatmap of the 17 DEGs in GSE73302 according to the value of |logFC|>1 and P<0.01. The green color indicates low
expression and red color indicates high expression. (F) A heat map shows the correlations of 17 DEGs in LUAD.
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(Figures 2C-G). Through the above research, BTG2 and SerpinB5 may
play a therapeutic role in the treatment of LUAD with cisplatin and
they were also mainly related to prognosis.

The mRNA expression of BTGZ2 and
SerpinB5 in pan-cancers and LUAD

BTG2 is differentially expressed between various cancers and
normal tissues. The mRNA expression level in tissues of GBM,
GBMLGG, LGG, BRCA, CESC, LIHC, THCA, TGCT, ALL, LAML,
and CHOL was higher than that in normal tissues. There was no
difference between PCPG, READ tumor tissues and normal tissues.
The mRNA expression level of BTG2 in tissues of UCEC, LUAD,
ESCA, STES, KIRP, KIPAN, COAD, COADREAD, PRAD, STAD,
HNSC, KIRC, LUSC, WT, SKCM, BLCA, PAAD, OV, UCS, PCPG,
ACC, KICH was significantly different from that in normal tissues, and
the mRNA expression level in tumor tissues was lower than that in
normal tissues (Figure 3A).

By comparing the mRNA expression level of SerpinB5 in tumor
tissues with that in normal tissues, there was no difference in the
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mRNA expression of SerpinB5 between KIRP, KIPAN, HNSC,
KIRC, BLCA and PCPG in normal tissues. The genes with higher
mRNA expression level in tumor tissues than that in normal tissues
were UCEC, CESC, LUAD, ESCA, STES, COAD, COADREAD,
STAD, LUSC, WT, OV, PAAD, UCS and CHO. The genes with
lower mRNA expression level in tumor tissues include GBM,
GBMLGG, LGG, BRCA, PRAD, LIHC, SKCM, BLCA, REA,
TGCT, ALL, LAML, ACC and KICH (Figure 3B).

Compared with normal lung tissues, BTG2 mRNA expression
level was lower in the tissues of LUAD, while the SerpinB5 higher in
LUAD tissues (Figures 3C-F).

Survival analysis of BTG2 and SerpinB5

The OS of patients with high BTG2 expression was better than
that of patients with low BTG2 expression (P<0.05), and there was
no significant difference in PFS between patients with high and low
BTG2 expression (P>0.05) (Figures 3G, I). The OS and PFS of
patients with high SerpinB5 expression were lower than those with
low SerpinB5 expression (P<0.05) (Figures 3H, J).
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FIGURE 2

The mRNA expression level, survival analysis and ROC curve of DEGs. (A) The mRNA expression level of 17 DEGs in TCGA dataset. (B) The mRNA

expression level of 17 DEGs in GSE73302 dataset. (C-G) The OS prognostic
GEPIA. (H-L) The ROC curve demonstrated the diagnostic value of TLR10,

value of TLR10, BTG2, FGF5, GPR87, SerpinB5 in human cancer from
BTG2, FGF5, GPR87, SerpinB5 in LUAD patients. (B) *P <0.05, **P <0.01.

The relationship between BTG2,
SerpinB5 and the clinical characteristics
of LUAD patients

BTG2 was differentially expressed in different N stages, M
stages, pathological stages and different age groups (Figure 4G).
The clinical baseline data was be shown in Table 2. There was no
difference in the mRNA expression level of BTG2 between different
sexes (P>0.05) (Figure 4B), but it was differentially expressed
between different age groups (P<0.019) (Figure 4A). The
expression of BTG2 in patients aged >=65 years was greater than
that in patients aged <65 years (Figure 4A). It is also differentially
expressed in different pathological stages. Stage I was differentially
expressed with stage II and stage III respectively (P=0.0038,
P=0.00019). Compared with Stage I, the gene expression of stage
I and stage III are both down. There were significant differences in
gene expression of BTG2 between stage II, stage Il and stage IV (P=
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0.015, P= 0.0037). Compared with stage II and stage III, the gene
expression of stage IV was relatively low (Figure 4C). It was
differentially expressed between M0 and M1 (P=0.035), and the
gene expression in M1 phase was lower than that in MO (Figure 4D).
NO was differentially expressed with N1 and N2 (P=0.0023,
P=0.0035), and N1 and N2 had lower gene expression than NO
(Figure 4E). It was differentially expressed among T1, T2 and T3
(P=0.0015, P=0.026), and the gene expression of T1 was higher than
that of T2 and T3 (Figure 4F).

Overall, SerpinB5 was differentially expressed in different T
stages and different sexes (Figure 5G). The expression level of
SerpinB5 was not different in different age groups (P>0.05)
(Figure 5A), but it was different between females and males
(P=0.0023) (Figure 5B). Compared with female patients, the
expression level of SerpinB5 in male patients was higher
(Figure 5B). In different pathological stages, SerpinB5 was
differentially expressed between stage I and stage III (P=0.016),
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and the gene expression of stage I was lower than that of stage III
(Figure 5C). There was no difference in N stages and M stages
(Figures 5D, E). It was differentially expressed in different T
stages. The gene expression levels of T1, T2 and T3 were
differentially expressed (P=0.0058, P=0.0011). Compared with

1, the gene expression levels of T2 and T3 were both
higher (Figure 5F).

10.3389/fimmu.2023.1098700

The expression level of BTG2 and
SerpinB5 impacted the prognosis
of LUAD in patients with different
clinicopathological status

Cox regression was used to analyze the potential relationship
between BTG2, SerpinB5 and the OS of patients. Univariate Cox
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TABLE 1 The change of mRNA expression level in LUAD tissue, normal lung tissue and treated with Cisplatin.

Gene symbol Expression Gene symbol Expression
Normal Tumor Cisplatin Normal Tumor Cisplatin

ABCA12 + ++ +++ GPR87 + ++ +++
AQP9 + - + NPY5R + - +
BTG2 + - + RTN4RL1 + - +
CYP7A1 + - - SERPINB5 + ++ +
CYP7A2 + ++ + SESN1 + - +
FGF5 + ++ +4+ SPATAI18 + - +
FGF7 + - - TLR10 + ++ +++
FUT9 + ++ +++ ZNF677 + - -
GLIPR1L2 + - +

The mRNA expression level in normal lung tissue is expressed by “+”. “++” respect the mRNA expression level was increased in LUAD tissue, “-” respect the mRNA expression level was

decreased in LUAD tissue. Compared with tumor group,there was more “+” when the mRNA level increased after treated with cisplatin. “+++” respect the mRNA expression level was increased
in LUAD tissue, which was increased compared with normal lung tissue, after treated with cisplatin.

proportional hazards regression was used to assess the factors
influencing OS. The results of the univariate Cox analysis suggested
that BTG2 was a predictive factor for LUAD (HR: 0.801, CIL: 0.701-
0.908, P <0.001) (Figure 6A). Using the forest plot to demonstrate the
results of the multivariate Cox analysis, the results showed that BTG2
was an independent prognostic factor for the prognosis of patients with
LUAD (HR: 0.779, CI: 0.681-0.892, P <0.001) (Figure 6B). These results
suggest that BTG2 can be used as a diagnostic and prognostic marker
for LUAD.

The results of the univariate Cox analysis suggested that SerpinB5
was a high-risk factor for LUAD (HR:1.156, CI:1.085-1.233, P <0.001)
(Figure 6E). Using the forest plot to demonstrate the results of the

TABLE 2 The clinical baseline data.

Characteristic

All patients [cases (%)]

multivariate Cox analysis, SerpinB5 was an independent risk factor for
the prognosis of patients with LUAD (HR: 1.143, CL: 1.069-1.222,
P <0.001) (Figure 6F). These results suggest that SerpinB5 can be also
used as a diagnostic and prognostic marker for LUAD.

BTG2 and SerpinB5 co-expression in LUAD

In order to screen the core genes related to BTG2 and SerpinB5 and
predict the regulatory relationship between genes, we constructed the
co-expression network of BTG2 and SerpinB5, respectively (Figure 6C).
The results showed that BTG2 has positive regulation with

Characteristic All patients [cases (%)]

Gender Clinical T stage

female 265 (54.1) Tl 168 (34.3)
male 225 (45.9) T2 257 (52.4)
Vital Status T3 44 (9)
Alive 312 (63.7) T4 18 (3.7)
Dead 178 (36.3) Others 3 (0.6)
Age NA Clinical Stage

<65 218 (46.2) Stage_I 266 (54.3)
>65 254 (53.8) Stage_II 118 (24.1)
Clinical N stage Stage_III 80 (16.3)
NoO 316 (64.5) Stage_IV 26 (5.3)
N1 91 (18.6) Clinical M stage

N2 70 (14.3) MO 323 (66.3)
N3 2 (0.4) M1 25 (5.1)
others 11 (2.2) others 139 (28.5)
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CACNA2D2, FOS, CYFIP2, SFTPB, CGNL, EGR. It has negative
regulation with CENPA, SPC24, AUNIP, KIF2C and ANLN. And the
results showed that SerpinB5 has positive regulation with G/B4, KRT6B,
GJB4, SH3PXD2A-ASI, ITGA6, ANXAS8. It has negative regulation
with CISH, PTCSC3, ST3GAL5, NKX2-1-AS1 and NKX2-1 (Figure 6G).

GSEA and GO Analysis of BTG2 and
SerpinB5 in LUAD

In order to preliminarily explore the possible ways and pathways
through which BTG2 and SerpinB5 function in the development of
LUAD, the GSEA was used to perform enrichment analysis on BTG2
and SerpinB5. According to the p-value < 0.05, FDR < 0.05, significant

10.3389/fimmu.2023.1098700

enrichment pathways were screened. The results demonstrate that
Aldosterone regulates sodium reabsorption, Neuroactivity, ligand
receptor interaction and Vascular smooth muscle contraction were
active when BTG2 was highly expressed. Olfactory conduction,
Systemic lupus erythematosus were active when BTG2 was active at
low BTG2 expression (Figure 6D).

The results demonstrate that Ascorbic acid and aldarate
metabolism, Metabolism of xenobiotics by cytochrome P450,
Porphyrin and chlorophyll metabolism, Retinol metabolism and
Steroid hormone biosynthesis were active when SerpinB5 was
highly expressed (Figure 6H).

The PPI network was made of genes related to BTG2 and
SerpinB5, and the results show that FOS and EGRI interact with
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many other genes in the PPI network (Figure 7A). By the GO
analysis, the above genes were found to be mainly enriched in wide
pore channel activity, gap junction channel activity, contractile ring,
NMS complex and other functions. This may be the potential
mechanism of these two genes (Figure 7B).

Identification of IncRNA/miRNA/
MRNA network

In order to study the mechanism, we also studied the
potential IncRNA/miRNA/mRNA network. Searching for

10.3389/fimmu.2023.1098700

“BTG2” in the StarBase database, and a total of 218 miRNAs
were obtained. Searching for “SerpinB5 “, and a total of 80
miRNAs were obtained. After the intersection of the two groups
of miRNAs, 42 miRNAs were obtained (Figure 7C). Using these
42 miRNAs as keywords to search for relevant IncRNAs. These
genes should be analyzed for correlation with BTG2 and
SerpinB5 respectively, and a total of 31 IncRNAs were selected.
The network results were shown in Figures 7F. NRAT1 was
associated with more miRNAs and correlated with BTG2 and
SerpinB5C (Figures 7D, E), so we speculate that these two genes
may play a role through NRATI.
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Relationship between mRNA expression
of BTGZ2 and SerpinB5 and immune
microenvironment and tumor
mutational burden

The immune microenvironment influences cancer progression
by immune cells. To understand whether immune cells contribute
to tumor growth, tumor immune cell infiltral. There were
significant differences in the number of immune cells between
high and low expression groups of BTG2 (P<0.05) and SerpinB5
(P<0.05) (Figures 8A, 9A). In the high-expression group of BTG2
(Figure 8A) and the low-expression group of SerpinB5 (Figure 9A),
there were more immune cells in the immune microenvironment.

In order to further observe which immune cells are differentially
expressed, the differentially expressed of BTG2 in 22 immune cells
was observed. The results showed that the BTG2 in T cells CD8, T

10.3389/fimmu.2023.1098700

cells CD4 memory resetting, T cells CD4 memory activated, NK
cells resting, Macrophages M0, Macrophages M1, Dendritic cells
resting, Mast cells resting, Mast cells activated and Eosinophils were
differentially expressed (Figure 8B). Besides, the correlation between
gene expression and immune cells were also be studied (Figure 8C).
The results suggest that mRNA expression level of BTG2 were
positively correlated with T cells CD4 memory resting (R = 0.25, p =
9.3e—08), Dendritic cells resting (R = 0.19, p = 5.8¢—05), Mast cells
resting (R = 0.19, p = 3.3e-05) and negatively correlated with
Macrophages M1 (R = -0.16, p = 0.00079), T cells CD4 memory
activated (R = -0.2, p = 1.2e-05), Macrophages M0 (R = -0.2, p =
2.3e—05), NK cells resting (R = - 0.14, p = 0.0036), Mast cells
activated (R =- 0.1, p =0.031), T cells regulatory (Tregs) (R = - 0.12,
p = 0.011) (Figures 8D-L). The results showed that when the
prognosis of patients with LUAD was poor, the expression level
of BTG2 was lower. Meanwhile, the immune cells which were
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positively related to the expression of BTG2 may play an anti-tumor
role. However, the immune cells negatively related to the expression
of BTG2 may play a role in promoting the occurrence and
development of tumors.

The two groups of SerpinB5 were differentially expressed in T
cells CD8, T cells CD4 memory resting, T cells CD4 memory
activated, NK cells resting, Macrophages M0, Macrophages M1,
Dendritic cells resting, Mast cells resting, Mast cells activated,
Eosinophils among 22 immune cells (Figures 9B, C). The mRNA
expression of SerpinB5 were positively correlated with Macrophages
MO (R = 0.16, p = 0.00055), NK cells resting (R = 0.097, p = 0.04), T
cells CD4 memory activated (R = 0.097, p = 0.04) (Figures 9D, G,
H), and negatively correlated with Dendritic cells resting (R = -0.12,
p = 0.012), Monocytes (R = - 0.11, p = 0.017) (Figures 9E, F). The
mRNA expression level of SerpinB5 was not correlated with TMB
(P>0.05) (Figure 10B). The mRNA expression level of BTG2 was
negatively correlated with TMB (R = - 0.29, P = 5.8e —
11) (Figure 10A).

The above results showed that when the gene expression of
BTG2 was low and the expression of SerpinB5 was high, the

prognosis of patients was poor when they were used as a gene
pair as a prognostic marker. By analyzing the relationship between
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BTG2, SerpinB5 and immune cells, the immune cells that were
related to the changes of these two genes are Macrophages MO0. At
this time, the number of macrophages in the immune
microenvironment increases, which indicates that the increase of
Macrophages MO may be a reason for the poor prognosis of
LUAD patients.

Relationship between BTGZ2, SerpinB5
and immunotherapy

In order to study the relationship between mRNA expression
and immunotherapy, the IPS produced by the high-expression and
low-expression groups under the four treatment methods would be
compared. The higher the IPS, the better the effect of
immunotherapy. The results show that in CTLA4_ negative+PD-
1_ Negative type and CTLA4_ positive + PD-1_ negative type, there
was a significant difference in IPS between high-expression and low-
expression of BTG2 (P<0.05) (Figures 10C, E), and in CTLA4_
positive + PD-1_ Positive type and CTLA4_ negative+ PD-1_
positive type (Figures 10D, F), there was no significant difference
in IPS between the two groups (P>0.05). Interestingly, in CTLA4_
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negative+PD-1_ IPS of negative, BTG2 high and low expression
groups were higher than that of CTLA4_ positive + PD-1_ negative.
The results showed that patients with high BTG2 expression had a
better therapeutic effect with the same immunotherapy. For patients
with high expression, immunotherapy was better when CTLA-4
and PD-1 were inhibited at the same time.

By studying the relationship between the two groups of
SerpinB5 and immunotherapy methods, the results showed that
in CTLA4_ negative+PD-1_ Negative and CTLA4_ positive + PD-
1_ negative, IPS in the low-expression group was higher than that in
high-expression group (P<0.005) (Figures 10H, J), and in CTLA4_
positive + PD-1_ Positive and CTLA4_ negative+ PD-1_ positive,
there was no significant difference in IPS between high and low
expression groups (Figures 10I, K). Interestingly, in CTLA4_
negative+PD-1_ Negative, IPS of high and low expression groups

10.3389/fimmu.2023.1098700

were higher than the IPS in CTLA4_ positive + PD-1_ negative. The
results showed that patients with low SerpinB5 expression had a
better therapeutic effect with the same immunotherapy. For patients
with low expression, CTLA4_ negative+PD-1_ Negative
immunotherapy would be better.

In the TCGA LUAD cohort, the TIDE score of the high-
expression group of BTG2 was significantly lower than that of the
low-expression group (Figure 10M). The TIDE score of the high-
expression group of SerpinB5 was significantly higher than that of
the low-expression group (Figure 10N). By comparing the IPS and
TIDE score of the high-expression group with the low-expression
group of two genes, the potential immunotherapeutic effect of the
high-expression group of BTG2 would be better than that of the
low-expression group, and the effect of the low-expression group of
SerpinB5 would be better than that of high-group.
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Correlation between BTG2 and SerpinB5
gene expression levels and immune
checkpoint gene expression levels

BTG2 was negatively correlated with immune checkpoint related
gene CD276, and were positively correlated with CD244, BTLA, ICOS,
TNFRSF14, TNFSF14, TNFSF15, CD40LG, LGALS9, TNFSF18, CTLA4,
CD27, CD200R1, CD28, CD48 (Figure 10G). Additionally, SerpinB5
was negatively correlated with immune checkpoint-related genes
NRPI, TNFSF15, CD40LG, IDO2, and positively correlated with
CD276 (Figure 10L). Both BTG2 and SerpinB5 were correlated with
immune checkpoints CD276 and CD40LG, while BTG2 was negatively
correlated with CD276 and positively correlated with CD40LG.
SerpinB5 was positively correlated with CD276 and negatively
correlated with CD40LG. As a result, when BTG2 was down-
regulated and SerpinB5 was up-regulated in LUAD, the expression of
CD276 increased and the expression of CD40LG decreased.

Multiple methods for validation

To verify the reliability of our analysis, we also investigated the
changes in these two genes in other datasets. The GSE11969

10.3389/fimmu.2023.1098700

database was downloaded, which was composed of 163
independent samples, including 158 lung samples and 5 normal
lung tissue samples. We selected 90 LUAD patients from 158
patients and 5 normal patients as the study subjects. Differential
analysis revealed that the two genes were differentially expressed in
normal lung tissue and lung adenocarcinoma samples, with BTG2
downregulated and SerpinB5 upregulated compared with normal
lung tissue, which is in agreement with the data we analyzed in the
TCGA repository (Figures 11A, B).

In addition to these, we analyzed both genes in this dataset for
survival analysis and correlation with clinical characteristics. The
results showed that patients in the high expression group of BTG2
had a better prognosis (Figure 11C). But showed no association of
SerpinB5 with patient outcome in this gene set. But there was no
significant difference in SerpinB5 by Survival analysis (Figure 11D).

Meanwhile, we analyzed the correlation between SerpinB5 and
clinical characteristics. The results showed that there were
differences in mRNA expression level between different ages and
different stages, but there was no difference between different
genders (Figures 11E-G).

IHC staining images from HPA further validated the
findings. THC also indicated that SerpinB5 was remarkably
overexpressed in the LUAD sample at the proteomic level, in
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Comparison of the IPS in four groups and the relationship of the genes. (A) Correlation analysis of BTG2 expression and TMB in LUAD. (B) Correlation
analysis of SerpinB5 expression and TMB in LUAD. (C—F) Comparison of the IPS between high- and low-expression groups of BTG2, IPS-CTLA4 negative
+ PD-1 negative, IPS-CTLA4 negative + PD-1 positive, IPS-CTLA4 positive + PD-1 negative, IPS-CTLA4 positive + PD-1 positive. (G) Correlations
between BTG2 and Immune checkpoints associated with BTG2. Corr denotes Pearson correlation coefficient. The red nodes represent positive
correlation with BTG2 while the green nodes represent negative correlation with BTG2. (H—K) Comparison of the IPS between high- and low-
expression groups of SerpinB5, IPS-CTLA4 negative + PD-1 negative, IPS-CTLA4 negative + PD-1 positive, IPS-CTLA4 positive + PD-1 negative, IPS-
CTLA4 positive + PD-1 positive. (L) Correlations between SerpinB5 and Immune checkpoints associated with the gene. Corr denotes Pearson correlation
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representation of TIDE scores in the high-group versus low-group of BTG2 in TCGA LUAD cohort. (N) Boxplot representation of TIDE scores in the
high-group versus low-group of SerpinB5 in TCGA LUAD cohort.

comparison with the expression of SerpinB5 in normal Lung
gland tissue (Figure 11I) and BTG2 was an inadequate
expression in LUAD tissues (Figure 11H). The results of the
analysis by the two methods agree with the results analyzed in

the TCGA database.
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In addition to the above studies, we also compared the mRNA
expression of SerpinB5 in LUAD with paracancerous tissues
through qRT-PCR, and the results showed that the gene
expression of SerpinB5 was higher in LUAD tissues compared

with paracancerous tissues, which was consistent with the results
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obtained by bioinformatics approach (Figure 11]). And the
difference between BTG2 was not significant. So we didn’t do too
much research about BTG2.

Molecular docking

We simulated the binding situation of cisplatin with BTG2 and
SerpinB5 by molecular docking, and the results showed that the
binding affinities of BTG2 and SerpinB5 with cisplatin were mainly
affected by hydrogen bonding and hydrophobic bonds
(Figures 12D-F). Cisplatin forms H-bond networks with BTG2 in
His50, Asp76, Tyr66 (Figures 12D-F). And cisplatin forms H-bond
interactions with SerpinB5 in Glu2l, while forms hydrophobic
bonds in Leul9, Val28, Lys371, Phel6, Lys17 (Figures 12D-F).

Discussion

NSCLC is the most common subtype of lung cancer, which can
be divided into squamous cell carcinoma, large cell carcinoma and
lung adenocarcinoma. Clinically, about 50% of patients were LUAD
(31). Since most patients were diagnosed in the late stage of lung
cancer, their 5-year survival time is difficult to exceed 15% after
comprehensive treatment such as surgery, radiotherapy and
chemotherapy (32). In recent years, the discovery of new
molecular targets has promoted the development of new therapies
such as targeted therapy and immunotherapy (25). For different
treatment methods, there is an urgent need for stable and reliable

10.3389/fimmu.2023.1098700

prognostic biomarkers to identify subgroups with a high risk of
death. Therefore, finding prognostic markers can effectively
evaluate the survival probability of patients with LUAD and
reasonably adjust the treatment methods.

Presently, in order to find appropriate tumor prognostic
markers, we obtained DEGs in LUAD through bioinformatics
technology. In addition, the cisplatin was used as the basic drug to
study the genes whose gene expression changes when the drug
acts. And the genes related to the OS of patients were also be
studied. The genes that meet the above three conditions were
regarded as genes that may become tumor prognostic markers.
The results show that only BTG2 and SerpinB5 meet the above
conditions. Compared with normal lung tissue, BTG2 was down-
regulated in LUAD and SerpinB5 was up-regulated in LUAD
(Figure 3). After cisplatin treatment, cisplatin can increase the
expression level of BTG2 which was downregulated in LUAD
compared with that in normal lung tissue, and decrease the
expression level of SerpinB5 which was upregulated in LUAD
(Figure 2A) compared with that in normal lung tissue. At the same
time, BTG2 and SerpinB5 were also related to the prognosis of
patients. The prognosis was poor when BTG2 was at low
expression and poor when SerpinB5 was at high expression
(Figure 3). Therefore, we infer that BTG2 and SerpinB5 have the
potential to become prognostic markers in patients with LUAD.
Cox regression analysis showed that both of them were
independent prognostic factors (Figures 6, 8). Moreover, the
nomogram also confirmed that when both were used as
prognostic factors, their prediction accuracy was also high
(Figures 4, 5).
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BTG2 was considered to be a tumor suppressor, which was
highly expressed in a variety of normal tissues (33-36). It has been
reported that BTG2 could play an anti-tumor role in a variety of
ways. In the process of tumor occurrence and development, BTG2
played an important role in cell proliferation, differentiation,
apoptosis and DNA damage repair. Wei found that
overexpression of BTG2 can inhibit the proliferation and invasion
of some tumors, including lung cancer cells (37). Zhang also found
that BTG2 can promote or induce apoptosis of triple negative breast
cancer cells and inhibit cell invasion (38).

SerpinB5 was first proposed as a tumor suppressor, and the
mRNA expression level was downregulated in a variety of
malignant tumors (39) compared with that in normal tissue.
Some studies have found that SerpinB5 can inhibit tumor cell
infiltration and metastasis, promote tumor cell apoptosis, and
inhibit tumor vascular growth (40, 41). However, interestingly,
our study found that SerpinB5 expression level was up-regulated
in LUAD (Figures 3E, F), and it may be used as a tumor inducer in
the process of tumorigenesis. Lei found that SerpinB5 can promote
the occurrence and development of gastric cancer in gastric cancer
cell line HTB103 (42). However, there is no more in-depth study on
SerpinB5 promoting the occurrence and development of gastric
cancer. The results of this study showed that SerpinB5 has the
potential to become an independent prognostic factor of LUAD
(Figure 6), so it is necessary to further study the mechanism.

In addition to finding the relationship between the two genes, we
reasoned the mechanism of the gene pair in LUAD from the
perspective of IncRNA/miRNA/mRNA and finally deduced a
pathway, which was NEAT1/miR-193b/SerpinB5 (BTG2) (Figure 7).
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Besides, through correlation analysis, the mRNA expression of
BTG2 and SerpinB5 was positively correlated (Figure 1F). This may
be because both of them were p53 downstream regulatory genes.
The recent study suggests that BTG2 was originally identified as a
p53-inducible gene. Expression of BTG2 was significantly increased
in response to DNA damage, and this increase was a consequence of
p53 induction since the expression of a loss-of-function p53 mutant
does not lead to BTG2 accumulation in this context (41).
Meanwhile, SerpinB5 has also been reported to be the target gene
of tumor suppressor gene p53. There was a p53 binding site in the
promoter region of 84~112 nucleotides of the SerpinB5, and p53
can bind to this site to activate the SerpinB5 promoter and control
its mRNA transcription. When wild-type p53 binds to the p53
binding site in the promoter region, it can stimulate histone
acetylation and increase the accessibility of chromatin in the
promoter region, thus activating p53 expression. On the contrary,
mutant p53 will inhibit SerpinB5 expression (43). The positive
correlation between BTG2 and SerpinB5 gene expression may be
due to both being regulated by p53. However, in-depth research is
needed on its specific relationship. By constructing the prognosis
model, both BTG2 and SerpinB5 can be used to evaluate the 1-year,
3-year and 5-year survival rates of patients, and the accuracy of the
model was high.

Through the study, it was found that BTG2 was low expression
and SerpinB5 was high expression, and the prognosis of LUAD
patients was poor. At this time, the active biological function of
BTG2 was Olfactory conduction, Systemic lupus erythematosus.
Among them, some studies have found that patients with systemic
lupus erythematosus were easy to be associated with lung cancer,
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Interaction of BTG2 and SerpinB5 with cisplatin. (A, D) The binding mode of cisplatin to BTG2 and SerpinB5 in the active site. (B, E) Stereoview of
binding mode for cisplatin with BTG2 and SerpinB5 in the binding site. (C, F) The detailed view of the 2-D ligand interaction among cisplatin with
BTG2 and SerpinB5. The mRNA expression level in normal lung tissue is expressed by “+". "++" respect the mRNA expression level was increased in
LUAD tissue, "-" respect the mRNA expression level was decreased in LUAD tissue. Compared with tumor group,there was more “+" when the mRNA

level increased after treated with cisplatin.

Frontiers in Immunology 123

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1098700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yang et al.

and there was a positive correlation between them (44). BTG2 was
low expression in LUAD and systemic lupus erythematosus.

The results of our study showed that when BTG2 was low
expression and SerpinB5 was high expression in LUAD, the
macrophage MO in the tumor microenvironment increases during
tumorigenesis. Resting macrophages can be polarized into a variety
of subpopulations. Classically activated macrophages (M1) and
alternatively activated macrophages (M2) are the two main
subpopulations of macrophages (45). In the process of
tumorigenesis, primary tumor cells can recruit macrophages to
infiltrate the tumor microenvironment and become tumor
associated macrophages (TAMs). Clinical studies have found that
the proportion of TAMs in the primary focus of lung cancer
patients was high, and the prognosis was poor (45). The study
found that in the animal model of lung cancer, knocking out or
blocking CSF1/CSFIR will significantly reduce the number of
TAMs, proving that blocking the survival signal of macrophages
was one of the effective ways to prevent and treat lung cancer (46).
Results showed that BTG2 was negatively correlated with
macrophage MO, and SerpinB5 was positively correlated with
macrophage MO (Figures 8, 9). From the results of this study,
when BTG2 was low expression and SerpinB5 was high expression,
the macrophage infiltration level in tumor tissue increases, and the
prognosis was poor. The results suggested that the increase of
macrophages may be the main cause of poor prognosis in
patients with LUAD (Figure 8, 9). This research result was also
consistent with the above clinical research report, showing that
these two genes can not only be used as tumor prognostic factors,
but also as drug targets to play a therapeutic role.

Additionally, in recent years, immunotherapy has gradually
become a new anti-tumor therapy, in which ICIs was a common
tumor immunotherapy in the clinic (42). The immune checkpoint
was the regulator of the immune system, which can inhibit the
function of T cells under normal circumstances (47). However,
some tumors can regulate immune checkpoints to protect
themselves from the attack of the host immune system and form
immune escape (48). At present, the ICIs that have been listed
mainly include CTLA-4 inhibitors and PD-1/PD-L1 inhibitors. Our
results indicate that when PD-1/PD-L1 and CTLA-4 were inhibited,
the immunogenicity in tumor tissue was higher. However, the
immunogenicity of high-expression group of BTG2 and the low-
expression group of SerpinB5 was also higher (Figure 9). In
addition, the same results were obtained by comparing the TIDE
scores of the high and low groups of these two genes. This indicates
that the mRNA expression level of BTG2 and SerpinB5 may be
detected to judge the effect of immunotherapy, making BTG2 and
SerpinB5 may become prognostic biomarkers of immunotherapy.

Besides, both the two genes are related to CD276 and CD40
(Figures 10G, L), which were other immune checkpoints. Previous
studies showed that CD276 could promote tumor immune escape,
thus promoting the occurrence and development of tumors (49).
However, CD40 was an inhibitory immune checkpoint, which can
inhibit the occurrence and development of tumors (50). Isn
conclusion, BTG2 and SerpinB5 were correlated with the above
immune checkpoints, which may further prove that BTG2 and
SerpinB5 have the potential as biomarkers of immunotherapy.
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BTG2 and SerpinB5 were studied as a gene pair in our article to
investigate their prognostic value in lung adenocarcinoma. This is
the first time that the two genes were studied together to observe the
prognostic value. Although there have been studies on the two genes
separately, there was no one to report the combining of BTG2 and
SerpinB5 (51-56). And we have also speculated the mechanism of
how the gene pair influences the development of LUAD. By looking
up the journal, we found that the two genes were p53-related genes
(41, 43), and p53 was a key gene in tumor cell apoptosis (57, 58). It
may also be the mechanism that this gene pair could become a
prognostic marker for LUAD. In addition, we added the molecular
dynamics simulation of BTG2 and SerpinB5 with cisplatin. Not
only the molecular structure of the genes were displayed, but also
the result demonstrated the genes could bind with cisplatin. And
this is also the first time, the molecular structures of these two genes
were presented in the article. At present, the common methods to
find out prognostic markers were single gene analysis or
constructing a prognostic model for prognostic analysis. Although
the two methods are relatively common, the two methods are
difficult to study the mechanism. However, it was found in our
study that the gene pair were correlated about gene expression, and
there may also be an interactive relationship in pathology. So it is
easier to study the mechanism of the gene pair compared with
other methods.

However, there are several limitations in this study. The present
study mainly derived from public databases and was retrospective,
but the sample size was small. Thus, to ensure greater reliability and
representativeness of the findings and assumptions, the sample
should be expanded for further research in the future. In addition,
all data in this study were from public databases. Although the study
included experimental verification, the sample size was small and
the mechanism study could not be carried out.

Conclusion

In conclusion, the expression of BTG2 decreased and SerpinB5
increased in LUAD. Downregulation BTG2 gene expression in
LUAD tissue could be upregulated, and the up-regulation
SerpinB5 in LUAD tissue compared with normal lung tissue
could be down-regulated after being treated with cisplatin. The
correlation analysis of gene expression between the two genes
showed that the expression of BTG2 was negatively correlated
with the SerpinB5, they were both P53 downregulated genes,
which gave us a hypothesis that they could be studied as a gene
pair. the survival analysis show that when the BTG2 gene expression
was low and the SerpinB5 was high, the patient’s prognosis was
poor; Cox regression analysis showed that both BTG2 and SerpinB5
could be used as independent prognostic factors to evaluate the
patient’s prognosis. Morever, the relationship between the two
genes and the immune microenvironment was studied and
showed that both of them are related to macrophages. The
macrophages increased when the prognosis was poor, which may
be a reason for the poor prognosis of LUAD patients. We also
studied the response of these two genes to immunotherapy and that
they also have the potential to become markers of immunotherapy.
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Take together, we proposed that BTG2 and SerpinB5 can be studied
as a gene pair, but the common function of this gene pair has not
been discussed in depth. In subsequent studies, it is necessary to
conduct in-depth research and other experimental verification.
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Comprehensive analysis,
Immune, and cordycepin
regulation for SOX9 expression
In pan-cancers and the matched
healthy tissues

Shuguang Liu™, Lisha Yang™*, Jiewen Fu™, Ting Li*,

Baixu Zhou™*, Kai Wang™, Chunli Wei™* and Junjiang Fu™

tKey Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest
Medical University, Luzhou, China, 2Department of Obstetrics, The Affiliated Hospital of Southwest

Medical University, Luzhou, China, *Department of Gynecology and Obstetrics, Guangdong Women
and Children Hospital, Guangzhou, China

SRY-box transcription factor 9 (SOX9) (OMIM 608160) is a transcription factor.
The expression of SOX9 in pan-cancers and the regulation by small molecules in
cancer cell lines are unclear. In the current study, we comprehensively analyzed
the expression of SOX9 in normal tissues, tumor tissues and their matched
healthy tissues in pan-cancers. The study examined the correlation between
immunomodulators and immune cell infiltrations in normal and tumor tissues.
Cordycepin (CD), an adenosine analog for SOX9 expression regulation, was also
conducted on cancer cells. The results found that SOX9 protein is expressed in a
variety of organs, including high expression in 13 organs and no expression in
only two organs; in 44 tissues, there was high expression in 31 tissues, medium
expression in four tissues, low expression in two tissues, and no expression in the
other seven tissues. In pan-cancers with 33 cancer types, SOX9 expression was
significantly increased in fifteen cancers, including CESC, COAD, ESCA, GBM,
KIRP, LGG, LIHC, LUSC, OV, PAAD, READ, STAD, THYM, UCES, and UCS, but
significantly decreased in only two cancers (SKCM and TGCT) compared with the
matched healthy tissues. It suggests that SOX9 expression is upregulated in the
most cancer types (15/33) as a proto-oncogene. The fact that the decrease of
SOX9 expression in SKCM and the increase of SOX9 in the cell lines of melanoma
inhibit tumorigenicity in both mouse and human ex vivo models demonstrates
that SOX9 could also be a tumor suppressor. Further analyzing the prognostic
values for SOX9 expression in cancer individuals revealed that OS is long in ACC
and short in LGG, CESC, and THYM, suggesting that high SOX9 expression is
positively correlated with the worst OS in LGG, CESC, and THYM, which could be
used as a prognostic maker. In addition, CD inhibited both protein and mRNA
expressions of SOX9 in a dose-dependent manner in 22RV1, PC3, and H1975
cells, indicating CD's anticancer roles likely via SOX9 inhibition. Moreover, SOX9
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might play an important role in tumor genesis and development by participating
inimmune infiltration. Altogether, SOX9 could be a biomarker for diagnostics and
prognostics for pan-cancers and an emerging target for the development of

anticancer drugs.

KEYWORDS

The SOX9 gene, pan-cancers, cordycepin (CD), immune, regulation, drug development

1 Introduction

SRY-box transcription factor 9 (SOX9) (OMIM 608160) is a
transcription factor gene that maps to 17q24.3 and encodes 509
amino acids with a molecular mass of 56,137 Da (1). The SOX9
protein as a transcription factor recognizes the CCTTGAG motif
along with other HMG-box class DNA-binding protein members,
such as SRY (Sex-Determining Region Y) (2). SOX9 is involved in
various developmental pathways, including differentiation and
progenitor cell development (3, 4). During chondrocyte
differentiation, SOX9 acts together with steroidogenic factor 1 to
regulate the transcriptional expression of the anti-Muellerian
hormone (AMH) gene. Mutations or defects with SOX9 are
associated with skeletal malformation syndrome (campomelic
dysplasia; OMIM 57 114290) or sex reversal (46,XY Sex Reversal
10; OMIM 57 616425) disorders (5, 6). Campomelic dysplasia is a
severe form of autosomal dominant skeletal dysplasia with
congenital short and curved long tubular bones. 46, XY Sex
Reversal is an XY karyotype in which patients are born looking
like normal females but fail to develop secondary sexual
characteristics during puberty and have no menstruation.

Subsequently, the role of SOX9 in cancer growth and invasion
was revealed. Wang et al. (7) first showed that overexpression of
SOX9 promoted tumor growth in xenograft experiments using
prostate cancer cells, whereas SOX9 knockdown repressed tumor
growth (7). They also found that SOX9 expression was restricted to
the basal epithelium of the adult prostate, which begins to be
expressed at 19 weeks of gestation, ultimately concluding that
SOX9 may allow prostate epithelial cells to grow toward the
mesenchyme and then provide basal cellular support for the
development and maintenance of ductal epithelial cells. However,
SOX9 expression was weak or negative in melanoma specimens but
positive in normal skin, and upregulation of SOX9 expression
significantly inhibited tumorigenesis in both melanoma-bearing
mice and human melanoma ex vivo models (8). In melanoma cell
lines, treatment with PGD2 (176803) increased SOX9 expression and
restored retinoic acid sensitivity. As a proto-oncogene or tumor
suppressor gene, SOX9 can induce epithelial-mesenchymal
transition (EMT) by regulating the tumor microenvironment
(TME) to acquire stem cell characteristics, which are dependent on
cancer type (9-11). Thus, activation of the SOX9 pathway may play
crucial roles in cancer development and progression (10). Over the
past decade, SOX9 has been intensively studied in the field of cancer.
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Besides, SOX9 has been shown to be closely associated with
tumor immunity. Yuan et al. found that SOX9 expression in
thymoma was negatively correlated with target genes related to
Th17 cell differentiation, primary immunodeficiency, PD-L1
expression, and T-cell receptor signaling pathways, suggesting
that SOX9 may be associated with immune dysregulation in
thymoma (12). In the progression of breast cancer, SOX9 triggers
tumorigenesis by facilitating the immune escape of tumor cells (13).
Ashkenazi et al. indicated that the downregulation of SOX9
contributed to reduced T-cell cytotoxicity (14). In our opinion,
the immunopromotive and immunosuppressive effects of SOX9 on
tumors may be attributed to the degree to which different tumor
types act on the tumor microenvironment.

Cordycepin (CD) is an adenosine analog isolated from the
traditional Chinese medicine cordyceps sinensis with a wide
range of biological activities, including anti-inflammatory (15),
anti-tumor (16), immunomodulatory (17), etc. In our previous
studies, it was shown that CD downregulated transcription factors
to inhibit the migration and invasion of triple-negative breast
cancer cells as well as the progression of drug-resistant non-small
cell lung cancer by regulating the AMPK signaling pathway (18, 19).
In addition, we found that CD was also able to remarkably reduce
the syncytium formation and fluorescence intensity of the SARS-
CoV-2 spike pseudotyped virus that invaded 293-ACE2 cells,
indicating its anti-COVID potential (20, 21). However, the
expression and immunomodulation of SOX9 in pan-cancer and
the regulation of the small-molecule drug CD in cancer cell lines are
not clear.

In the current study, we thoroughly analyzed SOX9 expression
in normal and tumor tissues, matched healthy tissues, and
performed correlation analysis with immunomodulators and
immune cell infiltration in pan-cancer. The regulation of SOX9
expression by the adenosine analog CD has also been studied in
cancer cells, including prostate cancer cell lines.

2 Materials and methods
2.1 Online data collection
The Human Protein Atlas (HPA) database (https://

www.proteinatlas.org/Ensembl ID: ENSG00000125398) was applied
to search for mRNA and protein expression of SOX9 in normal
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tissues. The immunohistochemical and immunofluorescence images
of SOX9 in normal and tumor tissues were downloaded from HPA,
too (22, 23). Gene expression profiles were obtained from the online
Gene Expression Profile Interaction Analysis (GEPIA 2 dataset;
http://gepia2.cancer-pku.cn/#index) (24-26) and were employed to
compare SOX9 expression in tumors and corresponding healthy
tissues. Mutational hot spot analysis of SOX9 as well as survival
analysis were used in cBioPortal (27). Additionally, we downloaded
the pan-cancer dataset from the UCSC (https://xenabrowser.net/)
database: TCGA Pan-Cancer (PANCAN, N = 10,535; G = 60,499).
The workflow of our study is shown in Figure 1.

2.2 HPA analysis

SOX9 mRNA and its protein expression in healthy and tumor
tissues from HPA (https://www.proteinatlas.org/) were analyzed
(23). SOX9 mRNA expression levels in healthy tissues were found in
HPA, GTEx, and FANTOMS, while normalized expression in
tissues and distinct blood cells was obtained from the three
databases mentioned above (v20.proteinatlas.org/about/assays
+annotation#normalization_rna).

2.3 GEPIA and prognostic analysis of SOX9

SOX9 mRNA expression in 5,540 healthy and 9,663 tumor
tissues and the relationship between SOX9 expression levels and
median overall survival (OS) were analyzed by GEPIA (25). A
correlation analysis of SOX9 expression and immune regulation

10.3389/fimmu.2023.1149986

was performed. Data for pan-cancer (PANCAN, N = 10,535; G =
60499) was downloaded from the UCSC database (http://
xenabrowser.net/).

2.4 Cell culture and small molecular
compound cordycepin treatment

Prostate cancer cells PC3 and 22RV1 and lung cancer cell
H1975 were obtained from the Cell Bank of the Research Center
for Preclinical Medicine, Southwest Medical University, and these
cells were purchased from ATCC, USA. H1975 and PC3 cells were
cultured in RPMI 1640 medium (Gibico, USA) containing 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin. 22RV1 cells
were cultured in DMEM medium (Gibico, USA), which contains
15% fetal bovine serum (FBS) and 1% penicillin/streptomycin. All
cells were cultured in a 37°C incubator with 5% CO,. CD was
obtained from Chengdu Must Bio-Technology Co. Ltd. (Chengdu,
Sichuan, China), which has been used previously (18, 28, 29). Cells
were inoculated in 12-well plates and treated with CD at final
concentrations of 0, 10, 20, and 40 uM for 24 h. Protein was
collected, and expression levels were monitored by Western blot.
Total RNA was extracted by reverse transcription (29, 30).

2.5 Western blot assays

Cells were lysed in EBC buffer and 2xSDS loading buffer to
collect proteins. The protein samples were boiled at 100°C for 5 min
and then electrophoresed in the Bio-Rad Mini PROTEAN Tetra

HPA
database

GEPIA2
database

Normal
tissues/organs

Normal tissues vs
paired tumor tissues

‘ Regulation of CD }—»\ SOX9 expression ’—»| Validation by RT-PCR

|

|

Overall Survival

TCGA Pan-Cancer Data Set
! (PANCAN, N=10535, G=60499)

from UCSC Database

‘ Mutation and prognosis‘

l

! !

|

Immunomodulatory Immune checkpoint
genetic analysis gene analysis
(150 genes) (60 checkpoints)

Immune infiltration
analysis
(ESTIMATE/Stromal/Im
mune score)

Immune cell analysis
(TIMER/deconvoips/de
convoCIBERSOR)

!

| SOX9 may be a potential target for anti-tumor therapy |

FIGURE 1

The workflow of our study. First, SOX9 expression in normal tissues and pan-cancer was analyzed using the HPA and GEPIA2 databases, which was
further validated by RT-PCR. Subsequently, the overall survival analysis and mutation and prognosis analysis of tumor patients with SOX9 were
performed comprehensively. The regulation of SOX9 by a small molecule compound, cordycepin (CD), was explored. Finally, pan-cancer data were
collected again from the UCSC database for immunomodulatory gene analysis, immune checkpoint gene analysis, immune cell analysis, and

immune infiltration analysis, respectively.
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System (Bio-Rad, USA). After electrophoresis, the proteins were
transferred to the PVDF membrane under ice bath conditions, and
then the membrane was washed twice with 1xTBST. The
membrane was blocked with 5% free-fat milk for 2 h at room
temperature. The primary antibodies to SOX9 (67439-1-Ig,
Proteintech) and HSP90 (ab203126, Abcam) were diluted with
2% free-fat milk at ratios of 1:4,000 and 1: 10,000, respectively,
and then incubated overnight at 4°C. Membrane was washed thrice
for 15 min and incubated the secondary antibodies for 2 h at room
temperature. After another three times washing, the bands were
solarized and imaged using the Syngene G: BOX Imaging System
(Cambridge, UK) (19, 31).

2.6 RT-PCR analysis

The total RNA was extracted using a TTANGEN Kkit (cat. no.:
#DP419, TIANGEN, China), then reversely transcribed into cDNA
using a reverse transcription kit (TOYOBO, China). The forward
primer 5’-gaggaagtcggtgaagaacg-3’ and the reverse primer 5-
atcgaaggtctcgatgttgg-3’ for SOX9 were designed on the Primer3
online primer design website. The product size for SOX9 is 337 bp.
ACTB was used as an internal control. PCR amplification was
conducted using a Veriti 96-well thermal cycler (ABI, USA); it is
worth noting that the amplification number for SOX9 did not
exceed 30 cycles. After PCR reactions were completed, agarose
electrophoresis for the amplified products was performed on 1.5%
agarose gel (30).

For the LUSC samples’ quantitative RT-PCR, the tumor samples
and the matched healthy tissue samples were collected from Chinese
individuals (seven pairs of samples) and the RT-PCR analysis was
performed as mentioned above. This study was approved by the
Ethical Committee of Southwest Medical University.

2.7 Immunomodulatory genetic analysis

The expression data of the SOX9 gene and 150 marker genes of
five immune pathways (chemokines (41), receptors (18), MHCs
(21), immunoinhibitors (24) and immunostimulators (46)) in each
tumor sample were extracted from the downloaded pan-cancer
dataset (TCGA Pan-Cancer (PANCAN, N = 10,535; G = 60,499)),
filtered all normal samples, and a log2(x + 0.001) transformation
was performed for each expression value. Finally, a Pearson
correlation was calculated between SOX9 and the five types of
marker genes.

2.8 Immune checkpoint gene analysis

The expression data of the SOX9 gene and 60 marker genes of
two types of immune checkpoint pathway genes (inhibitory (24),
stimulatory (36)) in pan-cancer were extracted from the
downloaded pan-cancer dataset (TCGA Pan-Cancer (PANCAN,
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N = 10,535; G = 60,499)), and all normal samples were filtered. A
log2(x + 0.001) transformation was performed for each expression
value, and finally the Pearson correlation of SOX9 with marker
genes of five types of immune pathways was calculated.

2.9 Immunocytometric analysis

Expression data of the SOX9 gene in each sample were extracted
from the downloaded pan-cancer dataset (TCGA Pan-Cancer
(PANCAN, N = 10,535; G = 60,499)) and a log2(x + 0.001)
transformation was performed for each expression value. The
expression profile was mapped to GeneSymbol and reassessed
separately using the R package IOBR (version 0.99.9) of the
TIMER, deconvo_ips, and deconvo_CIBERSOR methods to
reassess the immune cell infiltration score of each tumor in each
patient based on gene expression.

2.10 Immune infiltration analysis

The expression data of the SOX9 gene in each sample were
extracted from the downloaded pan-cancer dataset (PANCAN, N =
10,535; G = 60,499); and a log2(x + 0.001) transformation was
performed for each expression value, from which the gene
expression profile of each tumor was extracted separately and the
expression profile was mapped to GeneSymbol. Stromal, immune,
and ESTIMATE scores were calculated for each tumor in each
patient using the R package ESTIMATE (version 1.0.13).

2.11 Statistical analysis

The SOX9 expression levels of all individuals in the survival
analysis were separated into high and low expression groups using
the median expression of overall survival (OS). Logrank with P
<0.05 was considered a significant difference.

3 Results
3.1 SOX9 expression in human organs

SOX9 mRNA was expressed non-specifically in many human
tissues. For example, it was highly expressed in the proximal
digestive tract (salivary glands) and brain, moderately expressed
in the gastrointestinal tract (stomach), pancreas, male tissues
(prostate and testis), female tissues (breast), and skin, but lowly
expressed in tissues such as the kidney and gallbladder (Figures 2A,
B). The SOX9 protein was highly expressed in 13 organs and not
expressed in only two organs (eye and skin) (Figure 2A); it was
highly expressed in 31 tissues, expressed in four tissues, lowly
expressed in two tissues, and not expressed in the other seven
tissues (Figures 2A, C). This broad protein expression suggests an
important role for SOX9 in multiple tissues/organs.

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1149986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.
[RNA AND PROTEIN EXPRESSION SUMMARY —
o 100
Sain 80
[} \‘\0 e 60
. * 40
\ ndocrine tssues
Q“ A 20
Respirstory system
i
et
LARL Y Liver
st =
Liver & Gallbladder Re ¥ 50>
Expression Allorgans Plncrsas R
% c
Kidney & Urinary g
blzdder » ) High
A
Y e
. . Medium
maie ssues
-/ | NS 3
(‘ Low.
o N
Not
E (] detected
&
&
Bone marrow & .° <
Lymphoid tssues <&
FIGURE 2

10.3389/fimmu.2023.1149986

s A R g
SEISESSESELES ; SLES &S S
SEITTSTLCE VLS EL s FEPOTCFFHE O SIS E SSTLETE 7 ¢
SHTES T FEE f@ﬁ";«f TEOSEE ¢S &8 88 ;}so* &
(S8 & & N & S & 8
< & ®
&

SOX9 expression in normal tissues/organs. (A) The general situation of SOX9 mRNA and protein expression. Color-coding lists are based on different
tissue groups, and each group comprises tissues with similar functional characteristics. The image on the right shows the immunohistochemical
(IHC) staining values of SOX9 in normal tissues. (B) MRNA expression of SOX9 in normal tissues, indicated by nTPM (normalized transcripts per

million). (C) SOX9 protein expression levels in normal tissues by IHC score.

3.2 SOX9 expression in pan-cancers and
the matched healthy tissues

In 33 cancer types, SOX9 expression was a significant increase in
COAD (colon adenocarcinoma), CESC (cervical squamous cell
carcinoma and endocervical adenocarcinoma), ESCA (esophageal
carcinoma), GBM (glioblastoma multiforme), KIRP (kidney renal
papillary cell carcinoma), LIHC (liver hepatocellular carcinoma),
LGG (brain lower grade glioma), LUSC (lung squamous cell
carcinoma), OV (ovarian serous cystadenocarcinoma), PAAD
(pancreatic adenocarcinoma), READ (prostate adenocarcinoma),
STAD (stomach adenocarcinoma), THYM (thymoma), UCES
(uterine corpus endometrial carcinoma), and UCS (uterine
carcinosarcoma), but significant decrease only in SKCM (skin
cutaneous melanoma) and TGCT (testicular germ cell tumors)
compared with the matched healthy tissues (Figures 3A, B). Higher
expression of the SOX9 gene in the LUSC tumor tissues was verified
when compared with the matched normal tissues (Figure 3C). Thus,
SOX9 expression was upregulated in most cancers.

3.3 Prognostic values for SOX9 expression
in pan-cancer

Further analysis of the prognostic value of SOX9 expression in
individuals with cancer revealed that overall survival was longer in
ACC (Figure 3D) (adrenocortical carcinoma) and shorter in LGG
(Figure 3E), CESC (Figure 3F), and THYM (Figure 3G) when SOX9
was highly expressed in pan-cancer compared with the matched
healthy tissues. Consequently, the high expression of SOX9 was
positively correlated with the poor prognosis of LGG, CESC, and
THYM, which may be a prognostic factor.

Frontiers in Immunology

3.4 SOX9 mutations and their prognostics

cBioPortal analysis in 26 cancer types revealed that SOX9
mutations are highest in COAD with 11.78%, including
mutations at 10.77% in 64 cases, amplification at 0.67% in four
cases, and deep deletion at 0.34% in two cases, and lowest in THCA
(thyroid carcinoma) with 0.2% (amplification of 0.2% in one case)
(Figure 4A). No SOX9 mutation was found in the other six cancer
types, including ACC, KICH (kidney chromophobe), LAML (acute
myeloid leukemia), DLBC (diffuse large B-cell lymphoma), CHOL
(cholangiocarcinoma), and TGCT (Figure 4A). A total of 170
mutations (somatic mutation frequency: 1.4%) were found,
including 89 missenses, 69 truncations, nine inframes, and three
splices along the whole SOX9 gene (Figure 4B).

Survivals for disease-specific, overall, disease-free, and
progression-free conditions revealed no significant difference in
the mutated group compared with the unaltered group of SOX9,
although median months were much shorter (Figure 4C, p >0.05).
These data suggested that SOX9 was mutated in most cancers but
did not have prognostic significance.

3.5 Treatment with CD inhibits SOX9
expression in both protein and mRNA in
different cancer cells

We then analyzed the effect of CD on SOX9 expression levels in
tumor cells and showed that CD dose-dependently decreased the
protein of SOX9 and its mRNA expression levels in 22RV1
(Figures 5A, B), PC3 (Figures 5C, D), and H1975 (Figures 5E, F)
cells, indicating that CD inhibited SOX9 expression in tumor cells,
especially in prostate cancer cells.
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CD inhibits the expression of SOX9 in different tumor cells. (A) Protein expression levels of SOX9 in prostate cancer cell 22RV1 after CD treatment.
(B) mRNA expression level of SOX9 in prostate cancer cell 22RV1 after CD treatment. (C) Protein expression levels of SOX9 in prostate cancer cell

PC3 after CD treatment. (D) mRNA expression level of SOX9 in prostate cancer cell PC3 after CD treatment. (E) Protein expression level of SOX9 in
lung cancer cell H1975 after CD treatment. (F) mRNA expression level of SOX9 in lung cancer cell H1975 after CD treatment.

3.6 SOX9 expression is associated with
immune cell infiltration in pan-cancer

We first collected the SOX9 gene and 60 genes of two immune
checkpoint pathways and 150 genes of five immune pathways for
analysis of immunoregulation genes, immune checkpoints,
immunocytes, and immune infiltration. In the analysis, we
detected that SOX9 expression had a positive association with lots
of immune regulatory genes, including ADORA2A, TMIGD2,
TGFB1, TMEM173, TNFRSF18, IL6R, IL10RB in THYM, CHOL,
TGCT, PAAD, ESCA, ACC, LAML, and CESC (Figure 6A;
Supplementary Table 1). In addition, SOX9 expression was
reciprocally exclusive with several tumor immune checkpoints,
such as CD27, CTLA4, LAG3, TIGIT, IL10, CSFIR, ADORA2A,
CD244, etc. (Figure 6B; Supplementary Table 2).

Based on SOX9 gene expression, we reappraised the invasion
scores of six immune cells (lymphocyte T CD4, lymphocyte B,
macrophage, lymphocyte T CD8, neutrophil, and dendritic cells)
for 9,406 tumor samples in 36 cancer types and six immune cells
(SC, MHC, EC, IPS, CP, and AZ) and 22 class immunocytes in
9,555 cancer specimens from 39 neoplasm types. Results showed
that the SOX9 expression was sensibly related to immune
infiltration in 26 tumor species (TCGA-BLCA (N = 405), TCGA-
BRCA (N = 1,077), TCGA-CESC (N = 291), TCGA-CHOL (N =
36), TCGA-COAD (N = 282), TCGA-COADREAD (N = 373),
TCGA-ESCA (N = 181), TCGA-GBM (N = 152), TCGA-GBMLGG
(N = 656), TCGA-HNSC (N = 517), TCGA-KIRC (N = 528),
TCGA-KIRP (N = 285), TCGA-LGG (N = 504), TCGA-LIHC (N =
363), TCGA-MESO (N = 85), TCGA-OV (N = 417), TCGA-PAAD
(N = 177), TCGA-PCPG (N = 177), TCGA-PRAD (N = 495),
TCGA-SARC (N = 258), TCGA-SKCM (N = 452), TCGA-STAD
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(N = 388), TCGA-TGCT (N = 132), TCGA-THCA (N = 503),
TCGA-THYM (N = 118), TCGA-UVM (N = 79)) (Figures 7A-C;
Supplementary Tables 3-5).

In addition, we detected the relevance between the state of
immune invasion and SOX9 expression in cancer. We discovered
that the SOX9 gene expression was notably interrelated with
immune invasion in 17 neoplasm species, indicating six
significant positive correlations (TCGA-GBMLGG (N = 656, R =
0.20, P = 4.4e-7), TCGA-LGG (N = 504, R = 0.31, P = 7.8e-13),
TCGA-LAML (N = 149, R = 0.30, P = 2.4e—4), TCGA-THYM (N =
118, R = 0.27, P = 2.9e-3), TCGA-TGCT (N = 132, R =0.51, P =
6.3e-10), TCGA-BLCA (N = 405, R = 0.18, P = 3.5e—4)) and 11
significant negative associations (TCGA-GBM (N = 152, R = —0.34,
P =2.2e-5), TCGA-COADREAD (N = 373, R = -0.12, P = 0.02),
TCGA-BRCA (N =1,077,R =-0.12, P = 1.5e—-4), TCGA-ESCA (N
=181,R=-0.28,P =1.1e-4), TCGA-STES (N =569,R=-0.32,P =
8.8e—15), TCGA-KIPAN (N =878, R = —0.16, P = 1.4e—6), TCGA-
STAD (N =388, R=-0.42, P =1.0e-17), TCGA-PRAD (N =495, R
= -0.09, P = 0.04), TCGA-READ (N =91, R = -0.21, P = 0.05),
TCGA-PAAD (N =177, R = —0.36, P = 6.5e-7), TCGA-UCS (N =
56, R = —0.30, P = 0.02)) by assaying the connection among SOX9
and immune infiltration marks in 9,555 tumor specimens from 39
cancers (Figure 8; Supplementary Table 6).

These results suggest that it is probable for SOX9 to be sensibly
interrelated with immune infiltration of neoplasms and negatively
associated with tumor immunosuppression. We know that tumor-
related immune cells infiltrating tumor tissues affect TME and can
help tumor cells escape immune surveillance, thus promoting the
malignant progression of tumors (32-34). Additionally, our studies
indicated that the expression of SOX9 was negatively correlated
with multiple immunosuppressants, and many cancer species
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related to the expression of SOX9 were highly malignant, such as
COAD, LAML, ESCA, etc., implying that the correlation between
SOXO9 expression and immune cell infiltration in pan-cancer may be
related to the malignancy of the tumor.

4 Discussion

In the current study, we revealed that SOX9 protein was
expressed in multiple organs. For example, SOX9 was highly
expressed in 13 organs and absent in only two organs (eye and
skin); it was highly expressed in 31 of 44 tissues, expressed in four
tissues, lowly expressed in two tissues, and absent in the other seven
tissues, indicating an important role for SOX9 in multiple tissues/
organs. This contrasts with the positive SOX9 expression results in
healthy skin reported by Passeron et al. (8). In addition, we did not
observe SOX9 protein expression but only saw significant SOX9
mRNA expression (23.3 nTPM), which implies that the IHC score
may be inaccurate. We found that the SOX9 gene was highly

Frontiers in Immunology

expressed in COAD, ESCA, CESC, GBM, KIRP, LGG, LIHC,
LUSC, OV, PAAD, READ, STAD, THYM, UCES, and UCS, and
lowly expressed in SKCM and TGCT, suggesting that SOX9 may be
a pro-oncogene in most cancer types. It has also been reported in
the literature that reduced expression of SOX9 in SKCM and
overexpression of SOX9 in melanoma cell lines suppressed
tumorigenesis in both mouse and human in vitro models (8),
indicating that SOX9 may be a tumor suppressor gene in both
cancer types. Prognostic analysis showed that SOX9 expression was
positively correlated with the prognosis of ACC patients and
negatively correlated with the prognosis of LGG, CESC, and
THYM patients, which suggests that SOX9 is likely to be an
oncogene, making it an important factor affecting the prognosis
of LGG, CESC, and THYM patients.

The interaction between tumors and immunity is a hot and
difficult point that has been studied but has never been deeply
clarified (35). Many cancers use embryonic genes to grow wildly
and escape the monitoring of the immune system. SOX9 is
upregulated in many tumors, as described above in 15 cancers.
However, the role of SOX9 in mediating an immunosuppressive
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tumor microenvironment is still unclear (36, 37). Next, we explored
the immunomodulatory role of SOX9 in cancer. Bioinformatics
results showed that SOX9 was positively associated with
immunomodulatory genes such as ADORA2A, TMIGD2, TGFBI1,
TMEM173, TNFRSF18, IL6R, IL10RB in THYM, CHOL, TGCT,
PAAD, ESCA, ACC, LAML, and CESC, indicating the immune-
promoting role of SOX9. Because ADORA2A is an adenosine
receptor distributed on the surface of immune cells (NK, CD4+
and CD8+ T cells, and macrophages) (38). In the tumor
microenvironment (TME), ADORA2A promotes adenosine signal
transduction, inhibits infiltration of CD8+ T cells and NK cells, and
promotes tumor progression (39). TMIGD2 is widely expressed in
T cells, B cell DCs, and monocytes and has been shown to promote
angiogenesis and increase actin filament formation, leading to cell
adhesion and inhibition of cell migration (40). PD-L1 is highly
expressed in most cancers, and the PD-L1/PD-1 signaling pathway
contributes to cancer evasion by T-cell immunity (41). We found
that SOX9 negatively correlated with CD8+ T cells, activated NK
cells, M2 macrophages, and other tumor-infiltrating immune cells.
It is well known that TME is composed of vascular endothelial cells,
fibroblasts, and immune cells, which promote oncogenic gene
expression and block the immunomodulatory effects of distinct
immune cells. Both CD8+ T cells and activated NK cells exhibit
strong tumor-killing effects (42), and M2 macrophages play a role in
suppressing immune responses in the tumor microenvironment
(43). These results suggest that SOX9 expression may be able to
regulate TME homeostasis by modulating various immune cells and
immunomodulatory genes. The immune checkpoint pathway is a
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mechanism used by tumor cells to disguise themselves as normal
components of the human body (44-46). In addition, SOX9 was
mutually exclusive with a variety of tumor immune checkpoints
(CD27, CTLA4, LAG3, TIGIT, IL10, CSF1R, ADORA2A, CD244,
etc.), further suggesting that SOX9 may be a novel target with great
potential in tumor immunotherapy. Thus, SOX9 may play an
important role in tumor genesis and development by
participating in immune infiltration. Moreover, the correlation
between SOX9 expression and tumor immune cell infiltration
may be related to the malignancy of the tumor. The
bioinformatics approach we used in this study can rapidly predict
the role of expected target molecules in disease progression and the
potential association between molecules based on a large amount of
sequencing data. However, the amount of sample size may also
cause inconsistency between the prediction results and
experimental results, thus generating errors.

CD is an adenosine analog with wide pharmacological effects
and maybe resistance to a variety of tumors (18, 19, 47) and viruses
(48-50), including SARS-CoV-2 (20, 29, 51, 52). We analyzed the
role of CD in different tumor cells and found that CD
concentration-dependently decreased SOX9 protein and mRNA
expression in 22RV1, PC3, and H1975, suggesting that the
anticancer effect of CD may be associated with SOX9 inhibition.
CD has been shown to be an immunomodulator to suppress T-cell
activity, reduce IL-2 levels, and to increase IL-10 levels, along with
affecting the regulation of immune cells and cytokine networks (53).
SOX9’s tumor immunomodulatory role will be further elucidated in
future experiments.
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The correlation between SOX9 expression and the immune infiltration score indicated several cancer types.

Conclusions

Collectively, SOX9 can be used as a diagnostic and prognostic
marker for many types of tumors. Notably, high SOX9 expression in
pan-cancer may predict the tumor immunosuppressive
microenvironment, suggesting an important role for SOX9 in
tumor immune regulation. CD significantly inhibits SOX9
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expression in a variety of tumor cells and targeting SOX9 with
CD is more promising as a strategy for cancer therapy.
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Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense
desmoplastic stroma that impedes drug delivery, reduces parenchymal blood
flow, and suppresses the anti-tumor immune response. The extracellular matrix
and abundance of stromal cells result in severe hypoxia within the tumor
microenvironment (TME), and emerging publications evaluating PDAC
tumorigenesis have shown the adenosine signaling pathway promotes an
immunosuppressive TME and contributes to the overall low survival rate.
Hypoxia increases many elements of the adenosine signaling pathway,
resulting in higher adenosine levels in the TME, further contributing to immune
suppression. Extracellular adenosine signals through 4 adenosine receptors
(Adoral, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the
lowest affinity for adenosine and thus, has important consequences when
stimulated by adenosine binding in the hypoxic TME. We and others have
shown that Adora2b is present in normal pancreas tissue, and in injured or
diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b
receptor is present on many immune cells, including macrophages, dendritic
cells, natural killer cells, natural killer T cells, ¥8 T cells, B cells, T cells, CD4* T
cells, and CD8™ T cells. In these immune cell types, adenosine signaling through
Adora2b can reduce the adaptive anti-tumor response, augmenting immune
suppression, or may contribute to transformation and changes in fibrosis,
perineural invasion, or the vasculature by binding the Adora2b receptor on
neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels,
lymphatic vessels, and nerves. In this review, we discuss the mechanistic
consequences of Adora2b activation on cell types in the tumor
microenvironment. As the cell-autonomous role of adenosine signaling
through Adora2b has not been comprehensively studied in pancreatic cancer
cells, we will also discuss published data from other malignancies to infer
emerging therapeutic considerations for targeting the Adora2b adenosine
receptor to reduce the proliferative, invasive, and metastatic potential of
PDAC cells.

KEYWORDS

immunotherapy, pancreatic adenocarcinoma, hypoxia, Adenosine receptor 2B, CD8+ T
cell response
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a lethal
malignancy, with only a 3-13% 5-year survival rate, which is
critically dependent on the stage at diagnosis. PDAC is
characterized by a highly immunosuppressive and hypoxic tumor
microenvironment. Risk factors include age, chronic pancreatitis,
diabetes, genetic predisposition, obesity, and smoking (1, 2).
Current therapeutic approaches including chemotherapy and
radiation have not resulted in significant changes in overall
survival, highlighting the continued need for testing new
therapeutic strategies to treat PDAC patients. In this review, we
will expand on an immune suppressive pathway in PDAC, the
adenosine signaling pathway, with a focus on the role of the
Adora2b receptor. Work from our lab and others has shown this
pathway is elevated in a subset of patients with PDAC, and
inhibition of extracellular adenosine generation augments anti-
tumor immunity in several preclinical pancreatic cancer models
(3-6). We will discuss the mechanistic consequences of elevated
extracellular adenosine in the pancreatic cancer microenvironment
and will emphasize emerging considerations for targeting the
Adora2b receptor as a therapeutic target to improve outcomes for
patients at high risk or who have been diagnosed with PDAC (7-9).

Heterocyclic aromatic molecules such as adenosine
triphosphate (ATP), adenosine diphosphate (ADP), and
adenosine are purines essential to life, indispensable for
maintaining intracellular energy balance, cellular processes, and
pathways (10). ATP is generated by glycolysis or oxidative
phosphorylation and is commonly known as the principal
molecule for storing and transferring energy in the cell (11).
Within the cell, ATP molecules are transported by mitochondrial
ADP/ATP carriers (AAC) proteins, major components of the inner
mitochondrial membrane that regulate ATP synthesis by
influencing ADP intake in the mitochondria. In the contexts of
cellular injury, stress, hypoxia, or cell death, ATP can be secreted
out of the cell in exosomes (exocytotic release), through connexin or
pannexin channels, or by volume-regulated anion channels to the
extracellular space, where it signals through purinergic receptors
and participates in a broad range of cellular processes (12, 13). Some
of the roles of extracellular ATP include the regulation of
inflammation and fibrosis (14). Both ATP and extracellular ADP
can be converted by an ectonucleotidase enzyme (CD39) into
adenosine monophosphate (AMP), a molecule that can then be
converted to adenosine by ecto-5-nucleotidase (CD73) (Figure 1)
(11, 15). Adenosine has been shown to participate in pro-
inflammatory, anti-inflammatory, fibrotic, and
immunosuppressive responses dependent on cell type activated,
extracellular concentrations of ATP, ADP, and adenosine, degree of
hypoxia, and availability and duration of binding to P1 receptors
including Adoral, Adora3, Adora2a or Adora2b which can all be
expressed on epithelial, stromal, or immune cells. Such responses
vary depending on the P1 receptor involvement and intracellular
signaling downstream of receptor activation (15-18). Extracellular
adenosine signaling can be terminated through the uptake of
adenosine into cells through two predominant equilibrative
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nucleoside transporters (ENTs), ENT1 and ENT2, which are
bidirectional transport channels that allow transmembrane
diffusion of nucleosides (19, 20). Termination of adenosine
signaling can also occur when adenosine undergoes an
irreversible termination process by the enzyme adenosine
deaminase (ADA), which converts adenosine to inosine (21).

Hypoxia-mediated adenosine
signaling in inflammatory and
tumor microenvironments

Hypoxia is a hallmark of chronic inflammatory conditions
including several solid tumors; yet hypoxic conditions can occur
in the early stages of inflammation due to the oxygen requirements
of neutrophils and other immune cells, causing nearby epithelial
and stromal cells to become oxygen-depleted (22). Chronic
inflammation exacerbates this response resulting in hypoxia-
inducible factor (HIF) activation in immune, stromal, and
epithelial cells. Hypoxia-inducible factor 1-alpha (HIF-la) is a
well-known regulator of hypoxic cellular processes, and its
activity is mainly controlled by post-translational rather than
transcriptomic modifications. During normoxic conditions, HIF-
1o levels are kept low by the Von Hippel-Lindau (VHL) tumor
suppressor which targets HIF-la for ubiquitin-mediated
proteasomal degradation. However, when oxygen levels become
depleted, HIF-1o. starts to accumulate and HIF-1o stabilizes and
binds to HIF-1f forming a complex that enters the nucleus and
binds to hypoxia response elements (HRE) to either promote or
repress genes (23, 24). In a mouse model of caerulean-induced acute
pancreatitis, injured tissues presented high expression of HIF-10,
and inhibition of HIF-1o, through intraperitoneal injections of
HIF-1o. small molecule inhibitor PX478, reduced RIP3/p-MLKL
expression and ROS production, mitigating acinar cell injury and
necrosis (25). In the context of pancreatic cancer, HIF-1a levels are
elevated in part due to the desmoplastic stroma and HIF-1o
staining and expression strongly associates with PDAC lymph
node metastasis, high tumor stage, poor prognosis, and immune
evasion (26). A recent study in an autochthonous mouse model of

PDAC with pancreas-specific expression of Kras®'*P

implicates
HIF-1o. may have a protective role, as genetic deletion of the gene
promotes neoplasia. Immunohistochemical staining and ELISA
analysis revealed that HIF-la genetic deletion significantly
increases secretion of the B-cell chemoattractant CXCL13, which
increases the intrapancreatic accumulation of B cells, as shown
through flow cytometry analysis. These data indicate HIF-1lo
prevents B cell infiltration into hypoxic regions and when B cells
were depleted in mice, PanIN development was decreased,
implicating B cells promote tumorigenesis in PDAC (27). The
expression of Adora2b and its subsequent activation was shown
to be elevated by HIF-1a in hepatic ischemia-reperfusion injury
mouse models, acute lung injury, liver cancer, and breast cancer
(28). During pancreatic diseases, hypoxic conditions tend to
develop and both HIF-1o and Adora2b are elevated and involved
in the inflammatory process (4, 29), yet, further analysis is needed to
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on which P1 receptor is involved and which intracellular signaling pathways are activated downstream. Adenosine can also be converted to inosine

by adenosine deaminase (ADA) in an irreversible termination process.

fully uncover the potential link between both molecules and their
participation in the development of these diseases.

Studies of hypoxia-induced changes in gene expression
identified a transcriptional program that promotes CD73
expression in the extracellular vicinity of inflamed tissues
(Figure 2). In these studies, Adora2b gene expression is also
elevated resulting in an endogenous feedback loop critical for
injury resolution and ischemia tolerance under oxygen-deprived
conditions (30-32). Transcription of CD73 is regulated by an HRE
on the promoter in hypoxic epithelial cells and transcription of
CD39 is either upregulated through Sp1 or downregulated through

the formation of a HIF-1ar and AHR complex with ARNT which
decreases AHR recruitment to the CD39 promoter that has three
AHR response elements (33-35). HIF-1at inhibits adenosine kinase
and ENTs resulting in increased accumulation of adenosine in the
tumor microenvironment (19, 20, 36). Another ligand for Adora2b
is Netrin-1, a neuronal guidance molecule essential for the proper
development of neurons. In PDAC, perineural infiltration is present
in early and late stages of the disease and neuronal infiltration by
tumor cells may contribute to pain and tumor progression
indicating Netrin-1/Adora2b signaling could be evaluated as a
therapeutic strategy to reduce perineural infiltration. In addition,
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Adenosine signaling pathway during hypoxia. Adenosine signaling in hypoxia is similar to normoxia, as ATP is converted to ADP and AMP by CD39,
then converted to adenosine by CD73. However, in hypoxic cancer cells, the transcription of CD39 is upregulated through Sp1l, leading to more ADP
and AMP in the tumor microenvironment (TME). Also, while levels of HIF-1a. are kept low by the Von Hippel-Lindau (VHL) tumor suppressor in
normoxic conditions, in hypoxia HIF-1a stabilizes and binds to HIF-1B, which forms a complex that enters the nucleus and binds to hypoxia
response elements (HRE) on the gene promoter, therefore regulating the transcription of CD73 and equilibrative nucleoside transporters (ENT1/2). In
hypoxia, CD73 transcription is upregulated, while ENT1 and ENT2 transcription is downregulated. HIF-1a also inhibits adenosine kinase and ENTSs,

leading to an accumulation of adenosine in the TME.
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signaling of Netrin-1 through the Adora2b receptor also inhibits
immune cell infiltration into organs under hypoxic and
inflammatory conditions (37-39) indicating several mechanistic
consequences for Adora2b in pancreatic and other solid tumors.
In addition to Netrin, in vitro data have shown that stimulation and
activation of Adora2b by adenosine and NECA promotes cell
proliferation and secretion of chromogranin A, a protein that is
widely accepted as a biomarker for neuroendocrine tumors. Such
findings suggest inhibition of the adenosine pathway, specifically
targeting Adora2b receptors, may be of high interest in the
therapeutic management of neuroendocrine tumors (40).

Another component of the PDAC TME is the vasculature,
which is characterized by high microvascular density yet poor
perfusing in the vessels and decreased vascular integrity. In
PDAC patients, the superior mesenteric vessels are commonly
involved, especially when tumors arise in the head of the
pancreas. These clinical features of PDAC are notable in the
context of adenosine signaling as hypoxia-mediated adenosine
signaling influences vascular responses. In the context of
inflammation, neutrophils exit the bloodstream through
transendothelial migration (TEM) and secrete ATP and ADP
resulting in high adenosine concentrations (41-44). Studies
exploring the role of adenosine receptors in vascular leakage were
completed in mice that were deficient in either Adoral, Adora3,
Adora2a, or Adora2b, then subjected to hypoxia. While the Adoral,
Adora3, or Adora2a mice did not have an increase in hypoxia-
induced vascular leakage, the Adora2b deficient mice showed a
significant increase in hypoxia-induced vascular leakage.
Furthermore, administration of the Adora2b antagonist PSB1115
to wild-type mice also significantly increased neutrophil infiltration
through TEM and worsened vascular leakage while administration
of Adora2b agonist BAY-60-6583 reversed the hypoxia-induced
vascular leakage. These findings suggest Adora2b has a key role in
controlling hypoxia-associated vascular leak by increasing
endothelial cell intracellular levels of cAMP which promotes
vasculature resealing (31, 45). These studies suggest adenosine
signaling events can be targeted to dampen hypoxia-induced
inflammation and prevent excessive tissue damage (13, 30). In
solid tumors with a hypoxic TME, Adora2b antagonists may
promote increased infiltration of immune cells and anti-
tumor immunity.

Functional consequences of
adenosine receptor signaling
in inflammation and cancer

Adoral and Adora3 receptors

The Adoral, or adenosine A; receptor, is a G protein-coupled
receptor (GPCR) that, when bound to an agonist, causes G;j , 3 or
Gy protein binding. Adoral is ubiquitously expressed in the body
and, when G;, , 5 is bound, adenylate cyclase is inhibited, and cAMP
concentrations are decreased. This has important consequences in
several fundamental biological contexts including slowing heart rate
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(46, 47), reducing glucose-induced insulin secretion (48), reducing
blood flow, and promoting edema during acute pancreatitis (49). In
the context of cancer, Adoral overexpression has been published to
facilitate the malignant progression of colorectal, kidney, and breast
cancers, as well as glioblastoma and leukemia (50). Inhibition of
Adoral in combination with immune checkpoint blockade (ICB)
therapy targeting PD-1 has shown promising therapeutic effects in
non-small cell lung cancer and melanoma (51). In contrast, studies
evaluating the role of hypoxia in the pancreas reveal Adoral is
downregulated during hypoxia (52) and analysis of RNA-seq data
from The Cancer Genome Atlas (TCGA) database indicated this
receptor was not associated with PDAC prognosis (48). Thus, the
role of Adoral in response to hypoxia or other environmental
triggers of adenosine is dependent on tumor type and organ
of origin.

The Adora3 or adenosine Aj; receptor couples to Gi/Gq
proteins. Like Adoral, Adora3 receptor activation promotes Gi
protein binding and decreased adenylyl cyclase activity which
reduces cAMP intracellular levels. Adenosine signaling through
Adora3 has been shown to participate in the degranulation and
activation of mast cells important in asthma pathogenesis (53-55).
Adora3 also modulates cytokine release via T cell-mediated
production of IL-10 which helps reverse neuropathic pain (56)
and through down-regulation of nuclear factor-kappa B signaling
results in the inhibition of inflammatory cytokine production in the
colonic mucosa of patients with ulcerative colitis (57). Unlike the
Adoral receptor, hypoxic conditions do not affect Adora3
expression (52). In the context of the pancreas, low levels of
Adora3 receptor expression have been reported and Adora3 is
not associated with PDAC prognosis (48).

Adora2 receptors

Adora2 adenosine receptors consist of the adenosine A2,
(Adora2a) and A2p (Adora2b) receptors, both of which are Gs-
coupled GPCRs. In the pancreas, Adora2a and Adora2b have many
similarities, as they both are present in the luminal membrane of
ductal, insulin-positive beta, and PECAM-+ endothelial cells (11).
Agonist binding to Adora2 receptors stimulates cAMP, a
membrane-associated protein kinase A (type II PKA), and cAMP-
activated Cl" channels which mediate critical pancreatic ductal
secretions (48). Adora2a is the most abundant adenosine receptor
in the pancreas and it participates in endocrine pancreatic functions
as well as water and bicarbonate secretion responses (48). Adora2a
is also a potent anti-inflammatory regulator as its activation limits
immune cell activity during an inflammatory response preventing
additional tissue damage (16, 58, 59). In studies carried out in mice
lacking Adora2a receptors, behavioral alterations are present,
suggesting the participation of Adora2a in regulating neuronal
populations (60). In caerulein-mediated mouse models of
pancreatitis, inhibition of adenosine uptake using a
pharmacologic inhibitor enhanced stimulation of the Adora2a
receptor, and was capable of reducing the severity of pancreatitis
(61). Specifically, in pancreatic cancer patients, studies show CD73
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and Adora2a expression on neoplastic or tumor cells correlates with
divergent immune cell populations in the tumor
microenvironment. In a publication by Sweed et al, when
Adora2a is overexpressed in human PDAC patients, there are
correlative high levels of tumor-infiltrating mononuclear cells
(TIMC), associated with larger tumor sizes (62). Moreover, in an
immunohistochemical study performed on 48 human PDAC
tissues, Adora2a was overexpressed, and high Adora2a PDAC
expression was associated with more aggressive cases and later
tumor stages at the time of diagnosis (62). While no functional
experiments were reported in this manuscript, these data indicate
both autocrine and paracrine adenosine signaling through Adora2a
are important in the pathogenesis of pancreatic cancer.

The Adora2b receptor is the only low-affinity adenosine
receptor [Adora2b ECsy = 24 puM, Adora2a ECsy = 0.7 pM,
Adoral ECsy = 0.31 uM, Adora3 ECs, = 0.29 uM (63)], requiring
high levels of extracellular adenosine to become activated rather
than existing in a resting state (64). Adora2b is present in
myocardial cells, epithelial cells, fibroblasts, and several immune
cell types (65) and in many disease models is a potent anti-
inflammatory regulator. However, controversial findings exist
around its role in disease, fibrosis, and tumor development.
Across several mouse models of acute injury, Adora2b activation
has shown protective effects, either by modulating IL-10 production
on the intestinal epithelium (66), stabilization of circadian rhythm
protein (67) or enhancing alveolar fluid clearance in mice (68).
Additionally, studies in Adora2b deficient mice showed enhanced
pulmonary recruitment of effector T cells and failed induction of
regulatory T cells during endotoxin-induced inflammation resulting
in increased severity of the disease. Similarly, in a pulmonary
disease mouse model, induction of Adora2b signaling attenuated
inflammation and edema only in wild-type mice but not in mice
lacking expression of the receptor (69, 70). Contrarily, the absence
of Adora2b in an ulcerative colitis mouse model ameliorated acute
intestinal inflammation, suggesting this receptor plays a pro-
inflammatory role in the development of this disease (71, 72).

In cancer, there are also conflicting studies related to the
function of Adora2b in the progression of different malignant
diseases. High Adora2b levels are associated with a better
prognosis in patients with ovarian cancer. In vitro
pharmacological activation of Adora2b in ovarian carcinoma cells
reduced cell migration and actin stress fiber expression (7).
However, detrimental effects were observed for mammary
carcinoma, hepatocellular carcinoma, lung adenocarcinoma
(LUAD), and PDAC. Adenosine signaling through Adora2b in
breast cancer cells regulates the tumor microenvironment and
enhances pro-tumorigenic actions in cancer-associated fibroblasts,
effects correlated with increased metastatic potential and poor
prognosis (73). In hepatocellular carcinoma, Adora2b receptor
blockage enhanced the benefits of sorafenib treatment by
suppressing the inhibitory effects of adenosine on CD8" T cells
(74). Bioinformatic studies in LUAD and PDAC revealed Adora2b
expression and associated signaling pathways predicted poor
prognosis and significantly reduced overall survival (48, 75).
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The function of Adora2b receptor
on immune cells: implications

for targeting to promote
anti-cancer immunity

Adora2b in innate immunity

Comprised of many cell types including macrophages, dendritic
cells, natural killer cells, natural killer T cells, ¥ T cells, and more,
the innate immune system provides a rapid response to foreign
antigens, and the innate immunity antitumor response triggers
effector mechanisms to contain the tumor. Adenosine binding to
the Adora2b receptor has important functional consequences on
innate immune cells (Figure 3). Macrophages impart critical
functions in the resolution of inflammation and a return to
normal tissue conditions. Their principal function is to clear dead
cells from inflamed tissues through a process called efferocytosis,
which also resolves inflammation by suppressing pro-inflammatory
cytokines and stimulating anti-inflammatory cytokines. Adora2b
on bone marrow-derived macrophages (BMDM) was discovered
through flow cytometry experiments done in mice and functionality
of the receptor was assessed by Adora2b agonist, 5-N-
ethylcarboxamidoadenosine (NECA), which resulted in increased
cAMP levels in cultured BMDM (76, 77). Adora2b is upregulated
on macrophages by IFN-y and when Adora2b is activated, TNF
production in infiltrating macrophages is suppressed, inhibiting
their capacity to secrete cytokines important for anti-tumor
immunity and promoting tumor growth (78).

Dendritic cells (DCs) are antigen-presenting cells and critical
determinants of both innate and adaptive immunity. They dwell in
peripheral tissues in an immature state and, when exposed to
triggers, transform into differentiated and mature DCs.
Stimulation of Adora2b on DCs stimulates maturation into a
differentiated population with DC markers and monocyte or
macrophage markers, allowing mature DCs to interact with T
lymphocytes and promote CD4+ differentiation into Thl cells
through IL-12 production. DCs differentiated due to exposure to
adenosine have decreased allostimulatory activity and express high
levels of angiogenic, immune suppression, pro-inflammatory, and
tolerogenic factors, such as COX-2, IDO, IL-6, IL-8, IL-10, TGE-j3,
and VEGF (79, 80).

Natural killer (NK) cells are critical in responses to stress and
infections. Many types of NK cells have NK receptors (NKRs) that
determine if a cell encountered by an NK cell becomes a target for
destruction or is protected (81). When activated NK cells encounter
adenosine through the Adora2b receptor, the cAMP pathway is
activated and cytotoxic activity and cytokine production is blocked,
contributing to reduced anti-tumor activity (82, 83). While NKs and
natural killer T cells (NKTs) have many similarities, they are very
different in the context of cancer. Both cell types display effector
properties in early cancer stages and have impaired functionality in
later stages. NKT cells become exhausted in advanced cancers and
have an irregular metabolism. NKTs have exhaustion markers such
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Immune cell interactions in response to Adora2b activation. As immune cells enter into the TME and encounter adenosine through the Adora2b
receptor, they undergo changes resulting in immunosuppression. Adora2b activation on macrophages contributes to M2 polarization and
tumorigenesis, as it inhibits MHC Il expression, activates MAPK/AP-1 which increases IL-6 and vascular endothelial growth factor (VEGF) production,
and increases cAMP levels which inhibits tumor necrosis factor (TNF) production. On dendritic cells, stimulation of Adora2b increases cAMP
production which inhibits TNF and IL-12 production and increases IL-10 and VEGF release, resulting in tumorigenesis, angiogenesis, and immune
suppression. Natural killer cells encounter adenosine through the Adora2b receptor and the cAMP pathway is activated resulting in blocked cytokine
production and cytotoxicity, contributing to immunosuppression. On B cells, Adora2b activation results in the inhibition of proliferation and cytokine
production. CD4* T cell activation of Adora2b increases TH1 cell and Treg cell levels, as well as contributes to immune suppression. On CD8* T
cells, Adora2b activation results in the deactivation of CD8+ T cells and contributes to the suppression of the immune system.

as high CTLA4, PD1, and Tim3, as well as low granzyme B levels,
and reduced cell numbers as cancer progresses further (84). Limited
studies have been done assessing the role of the Adora2b receptor in
NKT cells.

YO T cells are a rare subtype of T cells, bridging the gap between
the innate and adaptive immune system components, they possess
both yand & T cell receptor chains. They have gained traction in the
area of immunotherapy as they have an anti-tumor immune
function and are critical in immune surveillance. Analysis of
TCGA data has shown PDAC patients with high CD73 levels
have lower amounts of ¥d T cells (85). These cells are regulated
by extracellular adenosine levels, and in mice treated with an
Adora2b agonist, the DCs activate Y T cells, elevating Th17
responses (86). When yd T cells induce an elevated Thl7
response, this contributes to the pathogenesis of autoimmune
diseases and can be a target in inflammation-related diseases such
as cancer. However, the specific role of the Adora2b receptor in this
cell type is unknown and should be explored further.

Adora2b in adaptive immunity

Comprised of B cell and T cell subtypes, the adaptive immune
system is responsible for recognizing and attacking specific antigens. B
cells are lymphocytes that produce antibodies tagging specific antigens
for destruction and play an important role in hypoxia and inflammation
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in the TME in PDAC. B cells express both CD73 and CD39, and the
production of extracellular adenosine by B cells can inhibit T cell
proliferation and the production of IL-10 cytokines. However, B cells
have very low levels of the Adora2b receptor and few studies have been
conducted to determine its role in B cell interactions (87).

T cells are a crucial group of cells in the immune system that
generally express CD73, CD39, and the Adora2b receptor. The
presence of Adora2b on T cells was confirmed through flow
cytometry and the functionality of the receptor was determined by
increased cAMP levels in the cells induced by an Adora2b agonist.
Extracellular adenosine limits T cell mobility and increases cAMP
levels in T cells, contributing to Adora2b-mediated immune
suppression (87, 88). Helper T cells are CD4" T lymphocytes that
stimulate other immune cells to respond to infection and when
activated, Adora2b receptor levels increase on the CD4™ T cell
surface (88). In a model of endotoxin-induced pulmonary
inflammation, mice with a genetic knockout of Adora2b had an
enhanced CD4" T cell response, resulting in increased inflammation
(69). Adora2b on CD4" T cells contributes to immunosuppression and
could be a target in cancer, but additional studies are needed to learn
more about the role of the receptor on CD4" T cells. Cytotoxic T cells
are CD8" T cells that are important in protection against tumor
growth, as they trigger apoptosis of pathogenic cells. In an in vitro
experiment, activation of CD8" T cells through an unspecific activation
signal (phytohemagglutinin) and by a specific activation signal (the
anti-T cell receptor/CD3 complex mAb, OKT3) triggers increased
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Adora2b levels and a decrease in IL-2 production (88). Through TCGA
and The Cancer Immune Atlas analyses, PDAC patients with high
CD73 levels had lower amounts of CD8" T cells (4, 85). In studies
performed in mice with genetic deletion of Adora2b, when murine
PDAC cell lines derived from Pdx1:Cre; LsL-Kras®*";LsL-Trp53%/ 7"+
(KPC) mice, were implanted subcutaneously, tumor growth was
significantly reduced compared to implanted cells in WT mice and
there was a significant increase in Granzyme B (GZM+) and CD8" T
cells in KPC-derived tumors implanted in Adora2b” mice (4). These
data indicate paracrine adenosine Adora2b signaling restrains cytotoxic
CD8" T cell function. Also, in complimentary studies, wild-type mice
treated with PSB1115, an Adora2b antagonist, had reduced KPC
subcutaneous tumor growth compared to vehicle-treated KPC
tumor-bearing mice. However, in wild-type mice without CD8" T
cells, treatment with the PSB1115 did not inhibit the growth of the KPC
subcutaneous tumors indicating paracrine adenosine signaling through
Adora2b on CD8" T cells reduces their anti-tumor properties in PDAC
(4). Future studies using genetic models or orthotopic implantation of
KPC cells into the pancreas will aid in further delineating the role of
Adora2b in pancreatic cancer.

Adora2b function in exocrine
pancreatic diseases

The pancreas is comprised of both endocrine and exocrine cells.
Specifically related to exocrine function, acinar cells organize into
acini and constitute 70-90% of pancreatic cells while 5-25% of

Normal pancreatic tissue

Pancreatitis

10.3389/fimmu.2023.1163585

exocrine pancreatic cells are ducts. Acinar cells are responsible for
releasing digestive enzymes and CI rich fluid, while ducts release
bicarbonate pancreatic juice to neutralize stomach acidity and
deliver acinar cell-derived enzymes to the duodenum (89, 90).
The characteristic zymogen granules in acini store intracellular
ATP at 10uM concentrations (91, 92). In a healthy pancreas, ATP is
secreted by acinar cells into the ducts where P2 receptors regulate
Cl" and K" ion channels, cAMP signaling, and transporters resulting
in ductal secretion of NaHCOj3-rich fluid (93). Acini and ducts have
both been shown to express CD39 and CD73 which generate
luminal adenosine that signals through ductal P1 receptors
Adora2a and Adora2b which stimulate the cystic fibrosis
membrane conductance regulator Cl” channels important for
ductal function (94). While less numerous, accounting for
approximately 3-5% of pancreatic parenchyma, endocrine-
functioning islet cells are critical for glucose homeostasis, and
pancreatogenic (Type3c) diabetes can occur in a subset of
patients with acute or recurrent acute pancreatitis (48, 95, 96).
Both human and rodent ducts express adenosine receptors, with
Adora2a and Adora2b being the most prevalent in these cells. When
these receptors are stimulated, CI" channels are opened and allow
ductal secretions to occur indicating purinergic signaling is
important for pancreas function and homeostasis (29, 48, 97, 98)
(Figure 4, left panel).

In the pathophysiology of acute pancreatitis, the enzymes
zymogen and trypsinogen are released due to premature
activation of acinar cells resulting in local parenchymal
destruction and activation of inflammatory pathways. When
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Changes in the pancreatic landscape in response to pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Normal pancreas tissue is
comprised of acinar cells that release digestive enzymes and Cl rich fluid, ductal cells that release bicarbonate pancreatic juice, and islet cells that
maintain glucose homeostasis. However, during pancreatitis acinar cells lyse, releasing ATP into the extracellular environment, promoting elevated
purinergic signaling which leads to altered bicarbonate secretion levels and exacerbates inflammation. In chronic pancreatitis, damage to islet cells
contributes to increased fibrosis and inflammation, promoting high extracellular ATP levels and increased adenosine signaling. Neutrophils also
contribute to exacerbating pancreatitis by expressing P2RX1 which promotes glycolytic metabolism. Contrarily, adenosine can inhibit the
inflammatory function of neutrophils through Adora2b mediated deactivation, which partially promotes the resolution of pancreatitis. PDAC is
characteristically immunosuppressive and possesses a dense desmoplastic stroma with a hypoxic necrotic core. In the necrotic core, there are high
levels of extracellular ATP and higher levels of CD39 and CD73, which leads to an accumulation of adenosine in the TME which can then bind to
Adora2b and contribute to immunosuppression. This also leads to fewer y8+ T cells, more collagen deposition, and more stellate cells.
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acinar cells prematurely secrete enzymes, they also secrete ATP and
other inflammatory signals into the extracellular environment (99-
101). High extracellular ATP levels promote elevated purinergic
signaling which leads to altered bicarbonate secretion from
pancreatic ducts, ductal dilation, infiltration of innate immune
cells, and increased severity of pancreatitis (11). Purinergic
receptors are expressed on neutrophils and are key chemoattracts
for these cells, which elevate pancreatic inflammation and the
severity of pancreatitis. Thus, the conversion of ATP by CD39
and CD73 to adenosine is an important anti-inflammatory
mechanism to return the pancreas to normal homeostasis after
acute injury (102). Recent studies using single-cell RNA sequencing
reveal CD73 is expressed in T cells and ductal cells in murine and
human models of chronic pancreatitis (103). During chronic
pancreatitis, not only are acinar cells severely injured, but also
islet cells, with increased fibrosis and inflammation. This causes an
extreme accumulation of extracellular ATP and exacerbated
purinergic signaling (11) as well as increased infiltration of
P2RX1 expressing neutrophils (102). Anti-inflammatory
adenosine Adora2b signaling on ducts, neutrophils, and insulin-
producing beta cells is therefore critical to promote healing after
acute and chronic pancreatic injury (Figure 4, middle panel).
Adora2b signaling reduces netosis formation and reduces
oxidative burst from neutrophils, critical functions that reduce
neutrophil-mediated inflammation during pancreatitis (104, 105).
Future studies to determine the exact role of Adora2b receptor
signaling in acute and chronic pancreatitis are important for future
therapeutic considerations.

PDAC has a characteristically immunosuppressive TME where
tumor cells coexist with exhausted and deactivated immune cells
within a dense hypoxic desmoplastic stroma and necrotic tumor
core (27). Understanding and targeting mechanistic triggers of
immune suppression is one therapeutic approach being testing in
preclinical and clinical trials. In a recent immunohistochemical
study on human PDAC tissues, Jacoberger-Foissac et al. found that
worse prognosis occurred only when patients present with elevated
expression of both CD39 and CD73. When CD39 levels are high but
CD?73 levels are low, there is an increase of CD8" T cells; however,
this effect is not present when CD73 levels are also high, reaffirming
that production of adenosine limits CD8" T cell infiltration into
PDAC tumors (6). Elevated expression of CD39 and CD73 has also
been associated with fewer Y3+ T cells, more collagen deposition,
and more proliferation of stellate cells indicating adenosine
signaling may also be a critical determinant of fibrosis and
desmoplasia in pancreatitis and pancreatic cancer (85, 106, 107).
Three recent publications have utilized preclinical mouse models to
evaluate the role of adenosine signaling in pancreatic cancer and
have collectively shown genetic deletion of CD73 or treatment with
CD73 small molecule inhibitors in syngeneic or genetic mouse
models significantly reduces the development and progression of
pancreatic cancer and promotes increased anti-tumor immunity;
however, there are some differences in the models and findings
which we want to highlight (4-6). In a publication by King et al, the
authors performed a metabolic screen and found elevated CD73
correlated with aggressiveness of disease. The authors genetically
deleted Nt5¢/CD73 in murine PDAC cells and used an orthotopic
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model to show deletion of CD73 significantly ablated tumor growth
and reduced the abundance of infiltrating MDSCs. They further
show the anti-tumor immune response in Nt5e depleted tumors
was associated with CD4" and CD8" T cells expressing IFN y and
showed the response was dependent on CD4" T cells, but not CD8"
T cells (5). In a second publication by Jacoberger-Foissac et al,
CD39 expression on CD8" T cells was shown to suppress IFN y
production by T cells and transplantation of murine KPC tumors,
myeloid expression of CD39 and CD73 and tumor expression of
CD73 promoted polarization of myeloid cells to an M2 phenotype,
which promoted PDAC growth and targeting both CD73 and CD39
significantly enhanced the anti-tumor T cell response. These
findings were both done in the transplanted or orthotopic setting.
Similarly, in the publication by Faraoni et al, inhibition of CD73 in
murine genetic (spontaneous) models of pancreatic cancer,
significantly reduced cancer development in spontaneous models
with higher expression of CD73 in the neoplastic and cancer cells.
Notably, pharmacologic inhibition of CD73 correlated with a
significant increase in activated CD8+GZM+ T cells and F4/80+
cells in both genetic models. The authors then expanded these
studies to a subcutaneous model to show inhibition of CD73 or the
Adora2b receptor reduced the growth rate of murine KPC tumors.
A limitation of the subcutaneous model is it does not recapitulate
the microenvironment of the pancreas or the desmoplastic response
in the pancreas. However, in this model, Faraoni et al. show the
reduction in tumor growth using a small molecule inhibitor of
Adora2b is dependent on CD8" T cells. These studies were
conducted to expand beyond the findings using CD73 inhibitors
in spontaneous, orthotopic and subcutaneous models as we show in
the publication by Faraoni et al, that PDAC patients with high
ADORA2b have reduced survival and poor prognosis. In addition,
we have shown using Quantiseq and The Cancer Immune Atlas
analysis that patients with high ADORA2b or high CD73 have
decreased NK cells, CD8" T cells, B cells, and M2 macrophages (4).
In studies using implantation of murine KPC tumors into WT or
Adora2b”" mice, we show a significant reduction in tumor growth in
tumors arising in Adora2b”” mice compared to WT mice.
Pharmacologic inhibition of Adora2b also restrained tumor
growth in vivo; however, the effect of the small molecule inhibitor
was not present in tumor growth in CD8KO mice indicating
adenosine signaling through Adora2b significantly restrains CD8"
T cell anti-tumor activity in PDAC (4) (Figure 4, right panel). These
data indicate that co-inhibition of CD73 and Adora2b may provide
additional therapeutic targeting to activate anti-tumor immunity
and improve outcomes for PDAC patients.

Adora2b function in metastasis

Greater than 90% of cancer-related deaths are due to metastasis,
illustrating an urgent need for an improved understanding of
mechanisms driving metastasis and ways to prevent metastases
from forming. Traveling through the bloodstream, rogue cancer
cells create metastatic cancer nodules that are highly resistant to
therapies (108). In experimental mouse models of melanoma and
triple-negative breast cancer metastasis, the incidence of metastasis
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is significantly decreased when mice are treated with an Adora2b
antagonist (109). Similarly, genetic deletion of the Adora2b receptor
in mouse and human triple-negative breast cancer cells reduces
their metastatic capability in vivo (109), suggesting an important
role for Adora2b in cancer metastasis. Recently, it was also shown
that antagonizing Adora2b expression in gastric cancer cells
increased the efficacy of cisplatin treatment (110). However,
despite these promising results in melanoma, breast cancer, and
gastric cancer cells, the specific role of Adora2b in metastatic
development remains unknown. Metastasis is especially common
in PDAC patients, due to the unfortunate ability of PDAC tumor
cells to evade the exhausted and suppressed immune system. Future
studies will be needed to further demonstrate the potential role of
Adora2b in pancreatic cancer metastasis as well as their potential
impact on this and other diseases.

Experimental considerations for
targeting autocrine and paracrine
Adora2b signaling

PDAC organoids and cell lines

Organoid models are a highly translational model system and
provide an ex vivo approach to studying healthy pancreas and PDAC.
Derived most from human or murine tissues, they are 3D and capable
of self-renewal as well as spontaneous self-organization, providing a
unique opportunity to study therapeutic approaches to augment
personalized medicine, therapeutics, and mechanisms of resistance
(111-114). Pancreatic organoids can also be orthotopically implanted
after cryopreservation or genetic manipulation allowing more rapid
studies of mechanistic drivers of PDAC development and metastasis
in vivo. Noteworthy, it is important to mention that although
organoids offer an interesting platform to test therapeutic drugs
and can be applied to many different cell types and diseases, they
still lack a high-fidelity cell type composition, have limited
maturation, and have an atypical physiology which does not always
can recapitulate or mimic interactions between molecules when
compared to the physiologically normal and/or tumor
microenvironments, which limit their applicability and reliability
for certain tumor studies (115). If organoid models are not
available, human PDAC cell lines can also be used as an in vitro
mechanistic approach to study cell autonomous and non-cell
autonomous purinergic signaling. Established cell lines from
human PDAC primary tumors are BxPC-3, Capan-2, HPAC, MIA
PaCa-2, and Panc-1. BXxPC-3 is the only cell line mentioned which is
wild type for KRAS and does not represent the majority of PDAC
tumors, which have somatic mutations in KRAS (116). For each of
these human cell lines, experiments can be done with Adora2b
agonists, Adora2b antagonists, siRNA, or CRISPR/Cas9 mediated
genetic deletions, to study the cell-autonomous upstream and
downstream effects of adenosine signaling through the Adora2b
receptor. The KPC cell line is also a very common murine PDAC
cell line with mutations in Trp53 and Kras.
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Mouse models

Mouse models are essential to studying pancreatic cancer and
there are numerous models which would be useful to study the
Adora2b receptor and its role in PDAC. First, there are syngeneic
models utilizing subcutaneous or orthotopic implantation of KPC
cells into the flank, pancreas, spleen, or any combination of these
injection sites. These models are useful for studying treatment
options using Adora2b antagonist compounds in primary tumors
and metastatic sites (4). There are also genetically engineered mouse
(GEM) models that can be used, such as the KPC and Pdx : Cre;LsL-
GI2D (KC) models. The KPC mice have mutations in Kras,

mutations or genetic deletion of Trp53, and use Cre-Lox technology

Kras

through Cre recombinase gene insertion into Pdx-1 or Ptfla (p48-
Cre) coding exons. KPC mice begin to develop PDAC precursor
lesions around 8-10 weeks of age and have PDAC by 4 months of
age (117). KC mice are advantageous for prevention studies as they
have slow development from PanIN to PDAC over a time frame of
12-15 months (118). Future studies in GEM models could also be
used to test different Adora2b antagonist compounds in vivo and to
study immune cell interactions in the preventive or therapeutic
setting. Using cell-specific inducible CreER alleles crossed to an
Adora2b floxed allele, genetically engineered mouse GEM models
can be generated with genetic deletion of Adora2b in specific cells or
tissues. Mice without Adora2b receptors in the defined immune
cells, stromal cells, or vasculature could also be useful to study the
role of the receptor in PDAC in the future.

Adora2b agonist and antagonist compounds

Selective adenosine agonists and antagonists have been
described for the Adora2b receptor and support the protective
and anti-inflammatory mechanistic consequences of Adora2b
signaling. Particularly in pancreatic diseases, 5°-N-
ethylcarboxamidoadenosine, commonly abbreviated as NECA,
was recently administered in a model of pancreatitis and
described as a suitable Adora2b agonist which may be involved in
tissue regeneration and restraint of MPO accumulation and
metaplasia during acute pancreatitis; however, no specific
therapeutic applications of NECA have been described to date in
the clinic (29). Though studies have shown short-term adenosine
exposure is highly effective at reducing pain and inflammation, high
levels of adenosine have been reported to increase tissue damage
and may increase inflammation and potentiate protumor adenosine
signaling (119). For these reasons, Adora2b antagonist compounds
could be potential therapies in cancer (120). Notably, some of the
Adora2b antagonists have been described to decrease the secretory
rate of the pancreas by 25% and increase insulin production levels
(48). Mice bearing KPC subcutaneous tumors treated with Adora2b
antagonist PSB1115, presented with significantly decreased KPC
tumor growth and significantly decreased fibrosis measured by THC
for 0-SMA. These studies highlight the complex dynamics of this
pathway and the urgent need for preclinical and clinical evaluation
of targeting Adora2b receptor signaling to better deduce its role in
immunity, fibrosis, and cancer (4) (Figure 5).
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Adora2b Agonist and Antagonist Compounds
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FIGURE 5

Commercially available compounds targeting Adora2b. (A, B) Chemical structures of Adora2b agonist compounds BAY-60-6583 and NECA.

(C) Chemical structure of Adora2b antagonist compound PSB 1115.

Current therapeutic opportunities and
clinical trials

Studies have shown there is an estimated time of 10 years
between the moment at which a pancreatic epithelial cell
undergoes an oncogenic hit and the time of diagnosis (121),
which provides a wide window of opportunity for the detection
and prevention of precancerous lesions including pancreatic
intraepithelial neoplasia (PanIN). A recent study of healthy
human pancreata has shown PanIN are present in individuals
irrespective of age and these PanIN have transcriptional signatures
that share similarities to cancer cells (122). Despite this recent
finding, the lack of technology or systemic biomarkers available for
performing early detection allows precursor lesions to progress to a
point where, when detected, PDAC is diagnosed at advanced stages
and is unresectable in 70-80% of patients diagnosed. Thus, there is
a need to test and evaluate new approaches in patients with locally
advanced or borderline resectable pancreatic cancer including the
use of immunomodulators in the neoadjuvant setting. Considering
recent publications showing Adora2b reduces the cytotoxic
functionality of NKT and CD8" T cells, there is an increased
premise to evaluate inhibiting Adora2b signaling in the prevention
setting. Targeting the adenosine signaling pathway at the
preclinical stage has been an intense area of study in recent years
and future studies in GEM models of PanIN initiation and

TABLE 1 Current clinical trials.

Drug +/- combination therapy

progression to PDAC would aid in determining if targeting this
pathway has clinical promise. Preclinical studies utilizing
checkpoint blockade combined with ectoenzyme blockade
approach through inhibition of CD39, CD73, PD-1/PDL-1, and
the various adenosine receptors may show enhanced antitumor
immunity, decreased tumor initiation, and metastasis, but have not
yet been evaluated. As a tightly balanced extracellular amount of
both adenosine and ATP is needed to maintain an adequate
immune response, therapeutic combinations of CD39 with PD1/
PDLI with and without chemotherapy are being studied (123, 124).
There are also ongoing clinical trials targeting the Adora2a
receptor in combination with CD73 or PDL-1 inhibitors
(Table 1) (125-128). Adora2a blockade studies are also ongoing
in combination with PD-1, PDL-1, or chemotherapy (11).
However, there are no current clinical trials specifically targeting
the Adora2b receptor. It is important to consider the complex
interactions between purinergic receptors and ATP/ADP/
adenosine signaling, because receptor blockade may impact
unwanted cell types and promote unintended effects on other
receptors (11). For clinical and therapeutic considerations, there
is also a need to evaluate the role of the Adora2b receptor in
regulating perineural infiltration, fibrosis, and vasculature as the
PDAC microenvironment is dynamic and recent studies have
shown multiple subtypes of PDAC can co-exist in patients with
pancreatic cancer.

Identifier Study

Phase

Adora2a Ciforadenant (A2A inhibitor) + atezolizumab (PD-L1 inhibitor) Incurable Cancers NCT02655822 | Phase I/Ib

Adora2a NIR178 (A2A inhibitor) + PDR001 (anti-PD-1 mAb) Solid tumors and Non- Hodgkin NCT03207867 @ Phase II
Lymphoma

CD73 +/- CPI-006 (anti-CD73 mAb) +/- ciforadenant (A2A inhibitor) +/- Solid tumors, including PDAC NCTO03454451 | Phase I/Ib

Adora2a pembrolizumab (anti-PD1 mAb)

CD73 +/- NZV930 (anti-CD73 mAb) +/- PDR001 (anti-PD-1 mAb) +/- NIR178 (A2A Solid tumors, including PDAC NCT03549000 Phase 1/Ib

Adora2a inhibitor)

Current ongoing clinical trials targeting adenosine receptors for treatment in pancreatic cancer and other tumors.
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Challenges to the field

Pancreatic cancer is a particularly challenging field to study, as it
is extremely complex, and tumor genetic and histologic heterogeneity
is prominent when comparing patient tumor samples. The advent of
sequencing human PDAC tumors has revealed PDAC subtypes
(129-132) and Squamous and Basal subtypes have been reported to
have the highest expression of CD73 (4) indicating they may have
more pronounced intratumoral levels of adenosine. One of the
challenges to this field is that most studies of adenosine receptor
signaling, and interactions are performed in mouse models, which
may not translate directly into humans. This limitation, while
applicable to most, if not all preclinical studies, makes it difficult to
accurately translate therapies targeting adenosine receptors into
human patients, as there may be unintended side effects or
limitations of small molecule inhibitor activity or delivery not
observed in murine models. Another complication to using mouse
models is the immense time requirement to breed genetically
engineered mice that more accurately represent human PDAC
progression. Despite these limitations, more preclinical and clinical
studies need to be done to more accurately evaluate the role of
adenosine signaling and possible resistance mechanisms to small
molecular inhibitors targeting this pathway in cancer as most studies
conducted on extracellular purinergic and adenosine signaling have
been in diseases other than pancreatic cancer including acute lung
disease, acute liver disease, asthma, diabetes, myocardial ischemia,
sickle cell disease, and IBD. Another challenge related to the field of
use of Adora2b small molecule inhibitors for immunotherapeutic
consideration is that few studies have been performed exploring
specifically the Adora2b receptor on individual tumor cells,
fibroblasts, or immune cell types in the context of the tumor
microenvironment. Studies using human or murine organoid
cultures and genetic deletion of Adora2b or pharmacologic
inhibition will aid in scientific understanding of the mechanistic
consequences of Adora2b expression in pancreatic cancer and also
help determine if different PDAC subtypes respond differently to
Adora2b inhibition. In addition, the role of the gut microbiome or
intrapancreatic bacteria or fungi may also elevate adenosine or
inosine levels elevating the importance of targeting this pathway for
cancer treatment (133, 134). Future studies evaluating the functional
consequences of Adora2b receptor signaling in different innate and
adaptive immune cell types and interactions are also desperately
needed to advance immunotherapies in this field.

Discussion

Pancreatic ductal adenocarcinoma is aggressive, resistant to
therapy, and successful treatments are desperately needed, as
current options have not yet resulted in significant changes in
overall survival. In this review, we discuss literature related to the
function of Adora2b, a low-affinity adenosine receptor prominently
known for its role in reducing inflammation. The hypoxic TME of
PDAC creates a unique niche where CD73, CD39, and Adora2b are
elevated resulting in dynamic changes in concentrations of ATP and
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extracellular adenosine. The ENT1 transporter promotes sensitivity
to chemotherapy in PDAC patients and high expression has strong
prognostic implications for improved outcomes in PDAC (135).
ENT1 is critical for regulating nucleoside concentrations and under
hypoxic conditions regulates adenosine receptor signaling (136)
indicating another possible combination therapeutic approach, as
ENT1 is important for the transport of nucleotides into and out of
the cell. Future studies deducing the entire pathway in cancer
development and metastasis will aid in determining the utility of
targeting this pathway to improve patient outcomes.

Another important consideration is the four P1 adenosine
receptors have divergent roles dependent on cell type expression
and concentrations of ligands. Of the four receptors, Adora2a and
Adora2b have been reported as high in PDAC and are overexpressed
in the pancreas during pancreatic cancer; yet only high expression of
Adora2b receptor was shown to correlate with significantly reduced
survival in PDAC patients. We recently published that patients with
high ADORA2B have reduced CD8" T cells and NK cells indicating
inhibiting this receptor may have utility in recruiting activated CD8"
T cells and NKT cells to target PDAC (4). However, these efforts are
complicated by the fact that Adora2b is present on virtually all
myeloid and lymphoid lineage cells, and activation of the receptor on
these cells can alter their functionality and contribute to dynamic
changes in immune cell function in the TME. A critical consideration
for future trials is understanding patient-specific levels of CD73,
Adora2b and ATP, ADP, and adenosine available to signal through
P2 or P1 receptors. Adenosine is rapidly taken back into cells and
converted to inosine by ADA, which has also been shown to have
immunosuppressive consequences in cancer models (133). Thus,
understanding the full context of this incredibly complex signaling
pathway including Adora2b functionality warrants further
consideration and research efforts. Clinical trials where patient
samples are available pre and post-treatment are urgently needed
to determine if targeting this pathway will improve overall survival.
Trials in both the neoadjuvant and adjuvant setting should be
conducted due to recent publications showing the Adora2 receptors
can promote tumor growth, metastasis and reduce CD8" T cell anti-
tumor immunity predominantly in preclinical models (3, 4, 11, 120,
123-126, 137-144).
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Background: Immune checkpoint inhibition, combined with novel biomarkers,
may provide alternative pathways for treating chemotherapy-resistant triple-
negative breast cancer (TNBC). This study investigates the expression of new
immune checkpoint receptors, including CD155 and CD73, which play arolein T
and natural killer (NK) cell activities, in patients with residual TNBC after
neoadjuvant chemotherapy (NAC).

Methods: The expression of biomarkers was immunohistochemically examined
by staining archival tissue from surgical specimens (n = 53) using specific
monoclonal antibodies for PD-L1, CD155, and CD73.

Results: Of those, 59.2% (29/49) were found to be positive (>1%) for PD-L1 on the
tumour and tumour-infiltrating lymphocytes (TILs), while CD155 (30/53, 56.6%)
and CD73 (24/53, 45.3%) were detected on tumours. Tumour expressions of
CD155 and CD73 significantly correlated with PD-L1 expression on the tumour (p
= 0.004 for CD155, p = 0.001 for CD73). Patients with CD155 positivity >10%
were more likely to have a poor chemotherapy response, as evidenced by higher
MDACC Residual Cancer Burden Index scores and Class II/1ll than those without
CD155 expression (100% vs 82.6%, p = 0.03). At a median follow-up time of 80
months (range, 24-239), patients with high CD73 expression showed improved
10-year disease-free survival (DFS) and disease-specific survival (DSS) rates
compared to those with low CD73 expression. In contrast, patients with CD155
(>10%) expression exhibited a decreasing trend in 10-year DFS and DSS
compared to cases with lower expression, although statistical significance was
not reached. However, patients with coexpression of CD155 (>10%) and low
CD73 were significantly more likely to have decreased 10-year DFS and DSS rates
compared to others (p = 0.005).
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Conclusion: These results demonstrate high expression of CD73 and CD155 in
patients with residual tumours following NAC. CD155 expression was associated
with a poor response to NAC and poor prognosis in this chemotherapy-resistant
TNBC cohort, supporting the use of additional immune checkpoint receptor
inhibitor therapy. Interestingly, the interaction between CD155 and CD73 at
lower levels resulted in a worse outcome than either marker alone, which calls
for further investigation in future studies.

KEYWORDS

CD155, CD73, chemotherapy response, prognosis, triple-negative breast cancer

Introduction

Triple-negative breast cancer (TNBC) is the most aggressive
subtype, accounting for approximately 15-20% of all breast cancer
cases (1). Recent studies in TNBC have indicated that high levels of
stromal tumour-infiltrating lymphocytes (TILs) can serve as
prognostic markers and may also predict patients’ responses to
chemotherapy (2, 3). Clinical trials have demonstrated some
efficacy of targeted therapy against programmed death ligand 1
(PD-L1)/programmed cell death 1 (PD-1) and have shown
improved survival outcomes for TNBC patients (4-6).
Consequently, the existing literature emphasizes the need for new
immunotherapeutic approaches for TNBC. CD155 (7-10) and
CD73 (11-14) are targetable molecules that could modulate the
anti-tumour immune response and serve as potential promising
prognostic biomarkers for clinical outcomes in breast cancer.

T cellimmunoglobulin and ITIM domain (TIGIT) is a member of
the CD28 protein family and has emerged as a new target for
immunotherapy (15-19). It is predominantly expressed on T and
natural killer (NK) cells and inhibits their anti-tumour activities. In
the tumour microenvironment, T cells often co-express TIGIT along
with other immune checkpoint receptors, such as PD-1 (20). CD155,a
type I transmembrane glycoprotein, belongs to the immunoglobulin
superfamily and serves as one of the ligands for TIGIT alongside low
affinity nectin-2/CD112 and nectin-3/CD113 (21). Originally
identified as a poliovirus receptor (PVR), CD155 is involved in
various physiological processes, including cell proliferation,
adhesion, and potentially tumour invasion and migration (22-25).
CD155 is highly expressed on endothelial cells, dendritic cells, and
fibroblasts, and its overexpression has been observed in several cancer
types, such as lung adenocarcinoma, colorectal cancer, pancreatic
cancer, cutaneous melanoma, and hepatocellular carcinoma (26-30).
Notably, CD155 interacts with regulatory receptors CD96 and CD226
expressed on NK cells, CD4+ T cells, and monocytes. The CD155-
CD226 interaction stimulates the cytotoxicity of NK cells and T cell
response, while the CD155-CD96 interaction inhibits NK cell
function (31). Any imbalance in this interaction may result in
tumour immunosuppression (23). Given its role as an immune
checkpoint protein, CD155 represents a potential target for novel
anti-tumour immunotherapy in TNBC, with its overexpression
serving as an indicator of poor prognosis (7).
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CD73 is a GPI-anchored ecto-nucleotidase that is crucial in
limiting the breakdown of extracellular ATP to adenosine (32, 33).
Adenosine acts as an immunosuppressive molecule, inhibiting the
activity of CD8+ T cells and NK cells while promoting the
proliferation of immunosuppressive cells (34, 35). Within the
tumour microenvironment, adenosine levels increase, leading to a
reduction in the anti-tumour immune response by promoting the
stabilization of immunosuppressive regulatory cells and
suppressing the functions of effector cells (36). Thus, the CD73-
adenosine pathway contributes to creating an immunosuppressive
microenvironment in various tumours (37). Overexpression of
CD73 has been observed in infiltrating immune cells and stromal
tumour cells (38). Moreover, CD73 is upregulated on regulatory T
cells in response to adenosine signalling and hypoxia (38-40).
Recent studies have shown that CD73 expression may be a better
predictor of neoadjuvant chemotherapy (NAC) response than TILs
in TNBC (13).

The significance of CD155 and CD73 expressions on tumours
in TNBC remains controversial. Additionally, the potential
interaction between CD155 and CD73 is unknown, considering
the complex immunoregulatory mechanisms involving TIGIT and
CD155 and adenosine and CD73 in modulating T and NK cell
responses. Therefore, this study aims to investigate the
immunohistochemical expressions of CD155 and CD73, along
with PD-L1 expression, and to analyze the associations between
their expression levels, response to chemotherapy, and prognosis in
TNBC patients.

Materials and methods

Between September 2000 and May 2017, consecutive patients
with TNBC diagnosed with locally advanced breast cancer, who
underwent breast surgery at the Istanbul University, Istanbul Faculty
of Medicine, Department of General Surgery, Breast Surgery Service
after completing NAC, were included in the study. Patients with a
pathologic complete response, male breast cancer, pregnancy-
associated breast cancer, bilateral breast cancer, and distant
metastases were excluded from the analysis. Patient and tumour
characteristics were analyzed to evaluate the clinicopathological
factors and outcomes in the study group. The American Joint
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Committee on Cancer Staging System 8th edition was used in clinical
and pathological evaluation of patients (41). Ethical committee
approval was obtained from the Istanbul University, Istanbul
Faculty of Medicine.

Immunohistochemical evaluation
and scoring

Patients with TNBC were identified based on their previous
pathology reports of the surgical specimen. All patients had
negative estrogen and progesterone receptors and c-erb-B2
expressions, which were examined using immunochemistry (IHC).
Immunological markers were retrospectively studied in archival tissue
material of surgical specimens (n = 53) using immunohistochemistry.
Tumour paraffin block sections containing TILs were chosen
for immunostaining,

Immunohistochemical expressions of PD-L1, CD-73, and
CD155 were detected using an automatic Ventana BenchMark
slide staining device (Ventana Medical Systems, Tucson, AZ,
USA). The 5-um formalin-fixed paraffin-embedded sections were
incubated with specific primary antibodies, including anti-CD73
rabbit mAb (D7F9A, Cell Signaling) at a 1:200 dilution, and anti-
CD155 rabbit mAb (D8A5G, Cell Signaling) at a 1:200 dilution. PD-
L1 expression was detected using the “rabbit monoclonal antibody,
Ventana SP263 Clone kit” (Ventana Medical Systems, Tucson, AZ,
USA). Placenta tissue was used as a control sample.

The staining percentage and intensity of tumour cells and TILs
were recorded for each immune checkpoint receptor. The staining
intensity was categorized as follows: no staining, weakly stained,
moderately stained, or strongly stained. All immune checkpoint
receptors, including PD-L1, CD73, and CD155, exhibited a
membranous staining pattern. PD-L1 positivity was defined as
membranous staining >1% on either tumour or TILs, or both, as
previously described (42). Various staining percentages ranging from
1% to 20% (>1%, >5%, >10%, >20%), determined based on the median
values for each biomarker, along with or without staining intensity,
were tested to investigate significant associations with prognosis for
CD73 and CD155. Furthermore, an expression score for CD73 and
CD155 was calculated for each patient using the formula “staining
intensity x percentage of positive cells” to evaluate its significance for
the outcome. Stained tumour cells and TILs were assessed under a light
microscope (Olympus BX51, Japan) at 40x magnification, equipped
with an integrated digital camera (Olympus DP71, Japan).

The “MD Anderson Cancer Center Residual Cancer Burden
Index” was calculated to assess the response to NAC based on the
following residual tumour characteristics: a) The two largest
dimensions of the residual tumour bed (including the largest
tumour bed in multicentric cases), b) The histologic assessment
of the percentage of the tumour bed area containing carcinoma, c)
The histologic estimate of the percentage of carcinoma in the
tumour bed that is in-situ, d) The number of metastatic lymph
nodes, and e) The diameter of the largest lymph node metastasis.
The “RCB” index was estimated using the MD Anderson Residual
Cancer Calculator (www3.mdanderson.org/app/medcalc/
index.cfm?pagename=jsconvert3) by incorporating these
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parameters. The residual cancer classification was determined
based on this scoring system. A chemotherapy response was
considered good if classified as Class 0 (pathologic complete
response) or Class 1, and not as good if classified as Class 2 or 3
(chemotherapy resistant)

Statistical analysis

The study’s statistical analysis was conducted using the SPSS 17
software program (Statistical Package for Social Sciences; SPSS, Inc,
Chicago, IL). Categorical variables were assessed using the Pearson
Chi-Square, Fisher’s exact, or Continuity Correction tests.
Differences between continuous variables were evaluated using
the Mann-Whitney U test. The Spearman correlation test
examined the expression associations between continuous
variables, including the percentages of CD155, CD73, and PD-LI.
Disease-free survival (DFS) rates were analyzed, considering
locoregional and distant recurrences, while disease-specific
survival (DSS) rates were analyzed considering breast cancer-
associated mortality. Kaplan-Meier analyses were performed to
calculate DFS and DSS rates and construct survival curves. The
log-rank test was used to compare factors influencing the outcome.
A p-value less than 0.05 was considered statistically significant.

Results

Of the 53 patients diagnosed with locally advanced TNBC, the
mean age was 50 + 13.3 (95% confidence interval (CI); 46.2-53.5),
whereas the median age was 47 years (range, 24-76 years). Among
them, 29 patients were clinically (= ¢) T3-4 (54.6%), while almost all
of them had cN1-3 (96.2%) before NAC. All patients received NAC,
including anthracyclines, followed by taxanes. Following completion
of NAC, most patients (n = 39, 73.6%) underwent mastectomy and
axillary dissection (n = 46, 86.8%). Breast-conserving surgery was
performed in the remaining patients, and seven cases had only
sentinel lymph node biopsy due to negative intraoperative
pathological evaluation of the lymph nodes. In the definitive
pathology evaluation of the surgical specimens, 16 cases (30.2%)
showed axillary pathologic complete response (ypNO), while all
patients had residual invasive cancer in the breast specimen.
Histopathological examination revealed 43 tumours with invasive
ductal carcinoma (81.1%), three tumours with invasive lobular
carcinoma (5.7%), one tumour with mixed invasive ductal and
lobular carcinoma (1.9%), and six tumours with metaplastic
carcinoma (11.3%). The mean “MD Anderson Cancer Center
Residual Cancer Burden Index” was 3.17 + 1.2 (95%ClI, 2.8-3.5).

Staining patterns and associations with
clinicopathological characteristics

The mean values of PD-L1 expressions on tumours and TILs, as

well as the expressions of CD73 and CD155 on the tumour (%),
along with the CD73 and CD155 scores, are shown in Table 1.
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TABLE 1 Immune check point expression levels.

Immune checkpoint receptor Mean + SD

expression (95% Confidence
Interval)

CD73 (%) 479 +822
(2.53-7.06)

CD73 score 8.17 £ 2.29
(3.59-12.76)

CD155 (%) 19.06 + 3.05

(12.93-25.18)

CD155 score 28.11 +5.20

(17.67-38.55)

PD-Lltumour (%) 533 + 8.31
(2.94-7.71)
PD-Llyy (%) 5.84 +9.12
(3.22-8.47)

Tumour expressions of CD155 and CD73 were found to have a
significant correlation with PD-L1ers (for CD73, r = 0.294, p =
0.040; and for CD155, r = 0.363, p = 0.010; Figure 1). However, the
associations with PD-Llyy¢ expressions did not reach statistical
significance (for CD73, r = 0.274, p = 0.057; and for CD155, r =
0.233, p = 0.108).

PD-L1 expression was observed on tumours or TILs in 29 cases
(59.2%, Figure 2A). Additionally, tumoural staining for CD73 was
observed in 24 patients (45.3%, Figure 2B), while 30 patients
exhibited tumoural CD155 expression (56.6%, Figure 2C).

10.3389/fonc.2023.1165257

Low CD73 expression was considered if the tumour cells were
weakly stained <20%. High CD73 expression was considered if the
tumour cells were weakly stained >20% or any moderately/strongly
staining. Patients with high CD73 expression (n = 11, 20.8%) were
observed to have a higher likelihood of achieving an axillary
pathologic complete response compared to those with low CD73
expression (54.6% vs 23.8%, p = 0.068); however, this difference did
not reach statistical significance. In contrast, patients expressing
CD155 were more likely to exhibit a poor chemotherapy response,
as indicated by higher MD Anderson Cancer Center Residual
Cancer Burden Index scores and Class II/III, compared to those
without CD155 expression (100% vs 82.6%, p = 0.03; Table 2).
Nevertheless, no significant associations were found between CD73
and CD155 expressions and other clinicopathological
characteristics. Furthermore, no significant associations could be
found in CD73 high-expression (n=11) among patients with CD155
>10% vs CD155 <10% expression (5/30, 16.7% vs 6/23, 26.1%,
p=0.501, respectively). Patients with CD155 210% were more likely
to exhibit PD-L1,, positivity compared to others (21/30, 70% vs.
8/19, 42.1%, p = 0.05, respectively). Similarly, patients with high
CD?73 expression were more likely to have PD-L1, positivity than
those with low CD73 expression (9/10, 90% vs 20/39, 51.3%, p =
0.034, respectively).

Outcome

The median follow-up time was 80 months (range, 24-239
months). In univariate survival analyses (Figure 3), patients with
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FIGURE 1

Correlations of immuncheckpoint receptors (Spearman’s rho). Tumour expressions of CD155 (%) and CD73 (%) significantly correlated with PD-
L1tumour (for CD73, r = 0.294, p = 0.040 and for CD155, r = 0.363, p = 0.010). However, the associations with PD-L1y s expressions did not reach
the statistical significance (for CD73, r = 0.274, p = 0.057 and for CD155, r = 0.233, p = 0.108). Correlation is significant at the 0.05 level (2-tailed).
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FIGURE 2

Immunohistochemical expressions of PD-L1, CD73, and CD155. (A) PD-L1 expression in the tumour with 25% strongly stained, in intratumoral
lymphocytes with 5% -moderately stained (x20). (B) High expression of CD73 as membranous staining pattern on tumor cells (x20). (C) Positive
CD155 expression (>10%) as membranous staining pattern on tumor cells (x20).

TABLE 2 Associations of immune checkpoint receptor expression with clinicopathological factors.

Variables

Age 0.735" 0.546"
<50 29 (54.7%) 22(52.4) 7(63.6) 11(47.8) 18(60)
>50 24 (45.3%) 20(47.6) 4(36.4) 12(52.2) 12(40)

0518 0.962"
cT1-2 24 (45.3%) 18(42.9) 6(54.5) 11(47.8) 13(43.3)
cT3-4 29 (54.7%) 24(57.1) 5(45.5) 12(52.2) 17(56.7)

0.999° 0.639"
cNO-1 33 (62.3%) 26(61.9) 7(63.6) 13(56.5) 20(66.7)
oN2-3 20 (37.7%) 16(38.1) 4(36.4) 10(43.5) 10(33.3)

0.068" 0.737°
ypNO 16 (30.2%) 10(23.8) 6(54.5) 8(34.8) 8(26.7)
YpN(+) 37 (69.8%) 32(76.2) 5(45.5) 15(65.2) 22(73.3)
MDACC RCBI 0.624 0.028*
Mean Score + SD (95%CI) 32412 32+ 1.2 (2.8-3.6) 3+ 1.1(2.2-3.7) 28+ 1.3 (2.2-3.3) 35+ 1.1 (L6-

(2.8-3.5) 5.1)

MDACC RCBI 0.569° 0.030°
Class I 4 (7.5%) 4(9.5) 0(0) 4(17.4) 0(0)
Class TI-TIT 49 (92.5%) 38(90.5) 11(100) 19(82.6) 30(100)

0.313° 0.141°
Class I-IT 25 (47.2%) 18(42.9) 7(63.6) 14(60.9) 11(36.7)
Class I1I 28 (52.8%) 24(57.1) 4(36.4) 9(39.1) 19(63.3)

MDACC RCBI, MDACC Residual Cancer Burden Index.

*p<0.05, Chi-Square Tests (“Fisher’s Exact Test, "Continuity Correction), “Mann Whitney U test

cT: clinical T size (determined by physical exam and imaging, AJCC 8" edition) (42);

N: clinical nodal status (determined by physical exam and imaging, AJCC 8" edition) (42);

ypNO: pathological nodal complete response after neoadjuvan chemotherapy (AJCC 8™ edition) (42);
ypN(+): pathological residual nodal disease after neoadjuvant chemotherapy (AJCC 8" edition) (42).

Low CD73 expression was considered if the tumour cells were weakly stained <20%. High CD73 expression was considered if the tumour cells were weakly stained >20% or any moderately/

strongly staining.
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FIGURE 3

Disease-free and disease-spesific survival of patients with CD73 and CD155 expressions. Patients with CD73-high expression were found to have an
improved 10-year DFS- and DSS rate compared to those with CD73-low expression (10-year DFS: 34.8% vs 77.9%, p = 0.021, and 10-year DSS:
37.3% vs 90.9%, p = 0.015) (A, B). Those with a >10% CD155 expression have contrastly shown a decreased trend of 10-year-DFS and DSS compared
to other cases with lower expression patterns (10-year DFS: 32.7% vs 58.3%, p = 0.097, and 10-year DSS: 36.7% vs 62.8%, p = 0.158) (C, D). Notably,
patients with coexpression of CD155 (>10%)/CD73-low were significantly more likely to have a decreased 10-year DFS and DSS rate compared to

others (p = 0.005) (E, F).

high CD73 expression showed an improved 10-year DFS and DSS
rate compared to those with low CD73 expression. On the other
hand, patients with CDI155 expression (210%) demonstrated a
decreasing trend in 10-year DFS and DSS rates, although it did
not reach statistical significance. Notably, patients with
coexpression of CD155 (210%)/CD73-low were significantly more
likely to have a decreased 10-year DFS and DSS rate compared to
others (p = 0.005). However, no other significant associations were
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found between the expression patterns of CD73, CD155, PD-L1,
CD73PD-L1, or CD155PD-L1 and outcomes (Table 3).
Furthermore, in multivariate Cox regression analysis, patients
with a higher MD Anderson Cancer Center Residual Cancer
Burden Index (RCBI) had an increased hazard ratio (HR) of DFS
(HR = 1.941; 0.838-4.495) and DSS (HR = 2.904; 1.103-7.643)
compared to those with better chemotherapy response. It is worth
noting that patients with low CD73 expression had a higher HR of
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TABLE 3 Outcome of patients according to biomarker expressions with different cut-off levels and staining patterns.

10-year 10-year

Biomarker expression DFS (%) p-value DSS (%) p-value

CD73 (%, n = 53)

CD73 0.303 0.490
<1% 29 (54.7%) 37.1 41.6

>1% 24 (45.3%) 54.0 59.9

CD73 0.548 0.576
<5% 36 (67.9%) 40.2 43.4%

>5% 17 (32.1%) 52.8 62.7%

CD73 0.475 0.324
<10% 42 (79.2%) 40.7 43.4%

>10% 11 (20.8%) 58.2 70.7%

CD73 0.179 0.099
<20% 46 (86.8%) 39.8 42.0%

>20% 7 (13.2%) 68.6 85.7%

CD73 expression* 0.021* 0.015*
Low (weakly stained <20%) 42 (79.2%) 34.8 37.3

High (moderately/strongly staining &weakly stained if >20%) 11 (20.8%) 77.9 90.9

CD73 score (n = 53)

Score 0.548 0.576
<5 36 (67.9%) 40.2 434
=5 17 (32.1%) 52.8 62.7
Score 0.293 0.199
<10 41 (77.4%) 39.0 41.5
>10 12 (22.6%) 62.5 73.3
Score 0.123 0.070
<20 45 (84.9%) 39.1 413
>20 8 (15.1%) 70.0 87.5
CD155 (%, n = 53) 0.097 0.158
<10% 23 (43.4%) 58.5 62.8
>10% 30 (56.6%) 327 36.7
CD155 0.115 0.285
<20% 24 (46.1%) 56.4 59.7
=>20% 28 (53.9%) 289 322
CD155 0.218 0.446
<30% 30 (57.7%) 50.2 53.5
>30% 22 (42.3%) 314 41.0

CD155 score (n = 53)

Score 0.097 0.158

<10 23 (43.4%) 58.5 62.8

(Continued)
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TABLE 3 Continued

10.3389/fonc.2023.1165257

10-year 10-year
Biomarker expression DFS (%) p-value DSS (%) p-value
=10 30 (56.6%) 327 36.7
Score 0.115 0.285
<20 29 (54.7%) 56.4 59.7
>20 24 (45.3%) 289 322
Score 0.141 0.424
<40 32 (60.4%) 51.2 53.2
> 40 21 (39.6%) 33.0 42.8
Score 0.767 0.893
<50 40 (75.5%) 42.8 49.5
> 50 13 (24.5%) 46.2 48.6
PD-L1 (%)
Tumour 0.687 0.878
- 24 (49%) 44.6 48.5
+ 25 (51%) 39.0 459
TILs 0.405 0.255
- 24 (49%) 345 375
+ 25 (51%) 489 55.1
Total 0.822 0.858
- 20 (40.8%) 43.1 47.6
+ 29 (59.2%) 412 46.6
CD73/CD155 coexpression 0.005 0.005
CD73low/CD155 >10% 25 (47.2%) 232 23.0
Other (n = 28) 28 (52.8%) 61.2 69.5
CD73/PD-Ll 1o coexpression 0.072 0.046*
CD73high/PD-Llpou (+) 9 (17.3%) 71.1 88.9
°Other 43 (82.7%) 36.6 39.3
CD155/PD-L1 1oty coexpression 0.289 0.209
CD155(210%)/PD-Ll 1o (+) 21 (39.6%) 349 36.3
Other 32 (60.4%) 50.9 58.0

*: p<0.05; %% Log-Rank (Mantel-Cox)

“Other: CD73high/PD-Ll 1o (-), CD7310w/PD-Ll 1o (-), CD73low/PD-Ll o (+)
®Other: CD73high/PD-Ll gy (), CD73low/PD-Llgg (), CD73low/PD-Llpgy (+)
“Other: CD155(210%)/PD-Llogq (-), CD155(-)/PD-Ll pogq) (), CD155(-)/PD-Lloqey (+).

DFS (HR = 3.979; 0.926-17.102) and DSS (HR = 6.45; 0.858-
48.490) compared to those with high CD73 expression, although
statistical significance was not reached (Table 4).

Discussion

There are currently no established molecular targets for TNBC
patients, so chemotherapy remains the standard treatment

Frontiers in Oncology

approach. However, unlike patients with other subtypes,
TNBC patients typically exhibit aggressive clinical behaviour and
have an unfavourable prognosis. Consequently, novel systemic
therapies, including immunotherapies, are being investigated for
TNBC patients who are resistant to neoadjuvant chemotherapy
or have only achieved a partial response to NAC. CD73 and
CD155 have recently garnered significant attention as potential
therapeutic targets for their immunoregulatory functions (18, 19,
21, 22, 43-45).
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TABLE 4 Multivariate cox regression analysis.

Disease-free Survival
Factors
HR (95%Cl)

MDACC Residual Cancer Burden

10.3389/fonc.2023.1165257

Disease-specific Survival

HR (95%Cl)

Index 0.122 0.031
Class I-IT Reference (1) Reference (1)

Class III 1.941 (0.838-4.495) 2.904(1.103-7.643)

CD73 0.063 0.070
high (weakly stained <20%) Reference (1) Reference (1)

low (moderately/strongly staining

& weakly stained if >20%) 3.979(0.926-17.102) 6.451 (0.858-48.490)

CD155 0.246 0.453
<10 Reference (1) Reference (1)

>10% 1.636 (0.712-3.758) 1.407(0.577-3.430)

Hazard ratio (HR) are presented with their 95% confidence interval (CI) and the p-value.

CD155 has emerged as a novel immune checkpoint protein
highly expressed in many tumour cells (26-30). Its expression has
been implicated in tumour immunosuppression (3), as its interaction
with TIGIT or CD96-positive T lymphocytes and NK cells leads to
immune exhaustion and reduced interferon-y secretion (4, 5).
Therefore, blocking CD155-TIGIT or CD96 signalling could
enhance anti-tumour immune cell function, making it a potential
marker for immunotherapy in breast cancer (43-45).

CD?73, also known as ecto-5'-nucleotidase (NT5E), is the rate-
limiting enzyme in the ATP to adenosine degradation pathway. It
regulates the synthesis of adenosine through the catabolism of
extracellular ATP (1, 2). Growing evidence suggests that the CD73-
adenosine pathway plays a critical role in cancer progression and
immune surveillance, exerting immunosuppressive effects on NK
cells and CD8+ T cells, which can stimulate tumour escape
mechanisms. Therefore, we investigated the potential interaction
between these novel immune checkpoint expressions in response to
NAC and the prognosis of patients with residual TNBC.

Our study found that CD155 was associated with poor
chemotherapy response and outcome, whereas CD73 overexpression
was conversely indicative of improved survival. Intriguingly, the
interaction of CD155 with CD73 at lower levels resulted in a worse
outcome than either protein alone. Furthermore, both CD73 and
CD155 were found to be associated with PD-LI expression in TNBC
within our cohort.

There have been limited studies investigating the prognostic
significance of CD155 immunohistochemical expression (IHC) in
breast cancer (7, 10, 46, 47). In a study conducted by Yoshikawa
et al. (7), CD155 expression was observed in 41% (25/61) of TNBC
patients using IHC and tissue microarray. However, no associations
were found between CDI155 expression and pathological stage,
histological grade, Ki-67 labelling index, or stromal tumour-
infiltrating lymphocytes. Notably, only PD-L1 expression in
tumour cells, as determined by the SP142 assay, exhibited a
significant correlation with CD155 expression (p = 0.035). Our
present study also found correlations between CD155 expression on
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tumour cells and PD-L1 expression on both tumour cells and
tumour-infiltrating lymphocytes. However, unlike the current
cohort, Yoshikawa et al. found no significant associations between
CD155 expression and DFS or overall survival (OS).

Yong et al. conducted a study involving 216 patients and
similarly found a significant association between CD155
expression, as determined by IHC, and primary tumour size,
lymph node metastasis, TNM stage, Ki-67 expression, and
CD163/CD8/CD68 expression (10). Among the cases, 117 had
ER-negative tumours, and nearly half had HER2-positive cancer.
Most of the cohort consisted of early-stage breast cancer patients
who underwent upfront surgery. Importantly, patients with high
CD155 expression were more likely to experience poor OS, as
indicated by both univariate analysis (HR = 2.681, 95%CI =
1.458-4.928, p < 0.001) and multivariate analysis (HR = 2.029,
95%CI = 1.059-3.887, P = 0.033). Consistent with our findings,
multivariate analysis further confirmed that CD155 expression
level and TNM stage were independent risk factors for OS. These
findings suggest an interaction between CDI155 expression and
TILs in breast cancer and highlight the potential utility of CD155
as a prognostic marker.

In a recent study conducted by Li et al. (46), CDI155
overexpression was detected in 17%, 39%, 37%, and 62% of
patients diagnosed with Luminal A, Luminal B, HER2-positive, and
TNBC, respectively, in a cohort of 126 patients. Patients with CD155
overexpression exhibited a higher Ki-67 index and a greater presence
of tumour-infiltrating lymphocytes and PD-1+ lymphocytes than
those with low expression. Additionally, patients with CD155
overexpression experienced significantly poorer DES and OS (p <
0.05), along with an increased risk of recurrence (HR = 13.93, 95%CI:
2.82,68.91) and death (HR = 5.47, 95%CI: 1.42-20.9), consistent with
the findings of our present study.

A recent meta-analysis (47) involving 26 studies and 4,325
cancer patients revealed that high CD155 expression was
significantly associated with decreased OS compared to low
CD155 expression (pooled HR = 1.772, 95%CI = 1.441-2.178, p <
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0.001). Moreover, a subgroup analysis specifically focusing on
breast cancer patients demonstrated a significant association
between CD155 expression and decreased OS (pooled HR =
2.137, 95%CI = 1.448-3.154, p < 0.001). Consistent with previous
studies (7), we observed a high expression of CD155 in 57% of
TNBC patients within our cohort. Interestingly, in our cohort of
patients with residual breast cancer after NAC, those with high
CD155 expression were more likely to respond poorly to NAC.
These findings, combined with our present report, suggest that
CDI155 may serve as a potential target for immunotherapy in
breast cancer.

Moreover, our study revealed that more than half of the patients
(59%) exhibited PD-L1 expression on both tumour cells and TILs,
while CD73 expression on tumour cells was observed in 45% of the
patients. In contrast to the findings of the study by Buisseret et al.
(48), our study demonstrated correlations between CD73
expression on tumour cells and PD-L1 expression on both
tumour cells and TILs. However, in our cohort of patients with
residual tumours following NAC, no significant associations were
found between CD73 expression and the response to NAC.
Nevertheless, Cerbelli et al. demonstrated a higher likelihood of
achieving a pathological complete response (pCR) in a cohort of 61
TNBC patients with low CD73 expression as determined by
immunohistochemical staining (13).

Controversial findings have emerged regarding the prognostic
significance of CD73 expression in breast cancer (11-14). Loi et al.
analyzed gene expression data from over 6,000 TNBC patients and
determined that CD73 expression was associated with poor
prognosis (12). Additionally, high CD73 gene expression was
significantly correlated with a lower rate of pathological complete
response in TNBC patients treated with anthracycline-only
preoperative chemotherapy. In in vitro assays utilizing breast
cancer cell lines, it was demonstrated that doxorubicin treatment
increased CD73 expression in tumour cells, potentially leading to
chemoresistance in mouse models. However, blocking CD73
resulted in enhanced anti-tumour immune responses to
doxorubicin and prolonged the survival of mice in an established
metastatic mouse model.

A recent meta-analysis encompassing 2,951 patients from 14
publications explored the associations between CD73 expression,
clinicopathological characteristics, and prognosis across different
cancers (14). The analysis revealed that high CD73 expression was
significantly associated with decreased OS in breast cancer (HR =
1.23) and ovarian cancer (HR = 1.14), while it correlated with
favourable OS in lung cancer (HR = 0.80) and gastric cancer (HR =
0.71). High CD73 expression was also strongly linked to lymph
node metastases (OR = 2.61, p = 0.05). Our study found that
patients with high CD73 expression were more likely to achieve
axillary pathologic complete response than those with low CD73
expression (54.6% vs 23.8%, p = 0.068); however, this difference did
not reach statistical significance.

In contrast to studies reporting CD73 as a poor prognostic
indicator, our findings revealed an intriguing observation. We
demonstrated an improved 10-year DFS and DSS rate in patients
with high CD73 expression, as determined by immunohistochemistry
(IHC), compared to those with low CD73 expression. These results
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were obtained at a median follow-up time of 80 months. Interestingly,
our findings align with a report by Supernat et al., which indicated
that CD73 expression, as assessed by IHC on tissue microarrays,
serves as a favourable prognostic marker in 136 stage I-III breast
cancer patients (11).

Furthermore, we present a novel finding in this study: the
interaction between CD155 and CD73 at lower expression levels
resulted in a worse outcome than either protein alone. This
observation warrants further investigation in future studies.
Consequently, the precise role of CD73 and its interaction with
CD155 in cancer progression remains unclear and should be
elucidated through in vitro and clinical studies.

Conclusions

There is a critical need for novel targets in anti-cancer
immunotherapy to improve the prognosis of TNBC patients. In
this study, we demonstrated high expression of CD73 and CD155 in
patients who had a partial response to NAC. Notably, CD155
expression was associated with a poor response to NAC and an
unfavourable prognosis in this cohort of patients with residual
TNBC, suggesting the potential benefit of additional immune
checkpoint receptor inhibitor therapy. Consistent with other
published studies (49-52), our findings also support the
hypothesis that CD73 and CD155 could serve as promising
therapeutic targets in TNBC, either alone or in combination with
other immunotherapeutic agents targeting PD-L1. This opens
avenues for developing personalized de-escalation or escalation
strategies in patients with residual TNBC.
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Introduction: Bisphosphonates (BPs) are bone-protecting osteoclast inhibitors,
typically used in the treatment of osteoporosis and skeletal complications of
malignancies. When given in the adjuvant setting, these drugs may also prevent
relapses and prolong overall survival in early breast cancer (EBC), specifically
among postmenopausal patients. Because of these findings, adjuvant nitrogen-
containing BPs (N-BPs), such as zoledronate (ZOL), are now the standard of care
for high-risk EBC patients, but there are no benefit-associated biomarkers, and
the efficacy remains low. BPs have been demonstrated to possess anti-tumor
activities, but the mechanisms by which they provide the beneficial effects in EBC
are not known.

Methods: We used stably transfected 4T1 breast cancer cells together with
suppression of CD73 (sh-CD73) or control cells (sh-NT). We compared ZOL
effects on tumor growth and infiltrating lymphocytes (TILs) into tumors and lung
metastases using two mouse models. B cell depletion was performed using anti-
CD20 antibody.

Results: Sh-CD73 4T1 cells were significantly more sensitive to the growth
inhibitory effects of n-BPs in vitro. However, while ZOL-induced growth
inhibition was similar between the tumor groups in vivo, ZOL enhanced B and
T lymphocyte infiltration into the orthotopic tumors with down-regulated CD73.
A similar trend was detected in lung metastases. ZOL-induced tumor growth
inhibition was found to be augmented with B cell depletion in sh-NT tumors, but
not in sh-CD73 tumors. As an internal control, ZOL effects on bone were similar
in mice bearing both tumor groups.
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Discussion: Taken together, these results indicate that ZOL modifies TILs in breast
cancer, both in primary tumors and metastases. Our results further demonstrate
that B cells may counteract the growth inhibitory effects of ZOL. However, all
ZOL-induced TIL effects may be influenced by immunomodulatory
characteristics of the tumor.

KEYWORDS

CD73, TNBC, zoledronate, tumor growth, tumor-infiltrating lymphocytes

Introduction

Bisphosphonates (BPs) inhibit osteoclast-mediated bone
resorption and thereby, effectively prevent osteoporotic
bone fractures in osteoporosis and skeletal complications in bone
metastasis (1). These drugs have also well documented anticancer
effects (2-4). For example, BPs induce cancer cell apoptosis and
prevent tumor growth in vivo (5-7). It has also been demonstrated in
a large meta-analysis that BPs, when given in the adjuvant setting,
provide survival advantage to a small fraction of breast cancer
patients (8). This effect was detected with both pyrophosphate-like
(p-BP) and N-BPs and was mostly due to prevention of bone
metastasis. The protective effect was specifically detected among
postmenopausal women (9, 10). Despite their well-characterized
effects on the mevalonate pathway or on the production of ATP-
like metabolites in cells (11), it remains unknown how adjuvant BPs
prevent the outgrowth of microscopic disease into clinically
detectable metastases (8). Furthermore, adjuvant BPs provide a
survival effect for only 3% of breast cancer patients. Thus, the
patient numbers needed to treat for one person to gain improved
survival remains high. Although some prognostic biomarkers have
been proposed, they are not yet in clinical use (12).

CD73 is a glycosylphosphatidylinositol-anchored membrane
protein, which hydrolases AMP to adenosine and inorganic
phosphate. A high CD73 expression has been reported in various
cancer types, such as triple-negative breast cancer (TNBC) (13),
pancreatic (14), gastric (15) cancer cells, renal cell carcinoma (16),
esophageal squamous cell carcinoma (17) or lung adenocarcinoma
(18). We and others showed that CD73 facilitates breast tumor
growth in a pre-clinical model (19, 20). Low tumor CD73
expression is also associated with improved survival in TNBC.
Moreover, a recent study demonstrated that low tumor CD73
expression levels were associated with higher pathologic complete
response rates in TNBC patients receiving neo-adjuvant
chemotherapy. These findings have raised interest in CD73 as a
molecular target and currently, there are several active clinical trials
investigating the effect of CD73 inhibition in cancer (21, 22).

Both BPs and CD73 regulate immune responses. Especially the
newer, N-BPs are proinflammatory. They increase cytokine release and
expand gamma-delta T cell populations, which are associated with
cytotoxic effects against cancer cells (23). Furthermore, regulatory T cell
expansion was suppressed in cell cultures using conditioned media

Frontiers in Immunology

from zoledronate pre-treated TNBC cells (24). CD73 and adenosine,
on the other hand, have an immunosuppressive role in cancer
progression (25). For example, blockage of adenosine production
activated immune cells within the tumor microenvironment, along
with sensitizing cancer cells to anti-cancer therapy (26). The correlation
between elevated CD73 expression and unfavorable outcomes in
TNBC may also be attributed to the impact on the immune system.
Adenosine assists cancer cells in evading the immune system’s attempts
to target and eradicate them. As a result, TNBC tumors with high
CD73 expression might be shielded from the body’s inherent immune
responses against tumors, ultimately resulting in a poorer prognosis for
patients (21). The role of tumor infiltrating lymphocytes (TILs) is
gaining importance in the pathophysiology and treatment of breast
cancer (27). The aim of this study was to investigate whether
zoledronate affects TILs. We also investigated whether CD73-
dependent, tumor immunosuppressive characteristics affect N-BP
responses in TNBC tumors.

Material and methods

Cells

Human MDA-MB-231 and mouse 4T1, representing TNBC
cells and human T47-D cells, representing luminal A type breast
cancer cells (all from ATCC, Manassas, VA, USA) were cultured as
previously described (28). CD73 was downregulated in the 4T1 cells
through stable small hairpin RNA (shRNA) transduction, using
mouse-specific lentiviral particles, according to manufacturer’s
recommendations (Mission lentiviral transduction particles,
Sigma-Aldrich) as described previously (20).

RNA sequencing

RNA-Seq (RNA sequencing) service was performed by LC
Sciences (Houston, Texas) to analyze 4T1 sh-NT and 4T1 sh-CD73
cells. Poly(A) RNA sequencing library was prepared following
Mumina’s TruSeq-stranded-mRNA sample preparation protocol.
RNA integrity was checked with Agilent Technologies 2100
Bioanalyzer. Poly(A) tail-containing mRNAs were purified using
oligo-(dT) magnetic beads with two rounds of purification.
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Cutadapt (29) and perl scripts in house were used to remove the reads
that contained adaptor contamination, low quality bases and
undetermined bases. The sequence quality was verified using
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). HISAT2 (30) was used to map reads to the genome of
ftp://ftp.ensembl.org/pub/release-101/fasta/mus_musculus/
dna/. StringTie (31) was used to perform expression level for mRNAs
by calculating FPKM. mRNAs differential expression analysis was
performed by R package DESeq2 (32) between two different groups
(and by R package edgeR (33) between two samples). The mRNAs
with the parameter of false discovery rate (FDR) below 0.05 and
absolute fold change > 2 were considered differentially expressed
mRNAs. Database links presented in Supplementary Table 1.

Cell viability assay

Cancer cells were seeded in 96-well plates (2x 10° cells/well) and
left to attach overnight. ICs, of N-BPs (zoledronate = ZOL,
alendronate = ALN, pamidronate = PAM) for sh-NT and sh-
CD73 cells was measured using 6 technical replicates after 72 h of
treatment. N-BP concentrations varied from 1 uM to 500 puM
followed by 50% serial dilutions to lower doses. The IC50 values
were obtained by non-linear regression analysis using GraphPad
Prism version 7.0 (GraphPad Software Inc, San Diego, CA, USA).
Obtained ICs5, values for individual cell lines were used throughout
the study. Additionally, cell viability was measured upon 100 uM
Adenosine 5-(o.,3-methylene) diphosphate (APCP, Merck Life
Science OY, Finland) treatment after 72h. Cell viability was
measured by WST-8 assay (Dojindo, Biotop Oy, Denmark). The
level of WST-formazan was quantified using a microplate Tecan
ULTRA Reader (Tecan AG, Austria) at 450 nm.

CD73 analyses

For quantitative PCR, cells at the density of 10* cells were
cultured with IC5y N-BP concentrations in 6-well plates (Corning,
USA) for 72 h. Quantitative PCR was performed using SYBR Green
qPCR kit (Bio-Rad) as previously described by us (20). For analysis
of CD73 activity, cells were seeded onto 96-well flat bottom clear
plates at a density of 1x10* cells/well and let to attach overnight.
Cells were treated for 72h with N-BPs prior to addition of [°H]
AMP substrate. CD73 activity was determined by thin-layer
chromatographic (TLC) analysis as was described before (34).

IncuCyte measurements

Cells were seeded onto 96-well plates (2x10° cells/well) and
allowed to attach overnight. For proliferation studies, cell growth
after N-BPs treatment was assessed for 72 h, to allow cells to reach
confluency. For caspase3/7 measurement, ZOL and caspase 3/7 (4704,
Sartorius) reporter red dye (ratio 1:8) were added for 72 h. Apoptotic
cells showed cleaved caspase 3/7 staining in the nucleus, which was
shown by the appearance of red fluorescence emission in IncuCyte S3.
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Cell density and the number of caspase3/7-positive cells were analyzed
using IncuCyte S3 with IncuCyte 2020A software (Sartorius).

Flow cytometry analysis

Cell cycle assay was performed with Click-iT™ EdU Pacific
Blue'™ (ThermoFisher Scientific). Apoptosis assay was performed
with Annexin V-FITC Apoptosis Staining/Detection Kit (ab14085,
Abcam). Cells were seeded onto 6-well plates (3x10* cells/well) and
allowed to attach overnight. Next, cells were treated with N-BPs and
incubated for 72 h. Cell pellets were collected and stained according
to the kit protocols. Samples were analyzed using BD LSRFortessa
flow cytometer (BD Biosciences). The data was analyzed with
Flowing Software 2.5.1 (Perttu Terho, Turku Bioscience Centre,
Turku, Finland).

Western blotting

Cells were cultured in complete culture medium and harvested
after 72 h of N-BPs treatment in RIPA buffer (Thermo Fisher
Scientific). Protein amounts were measured using bicinchoninic
acid (BCA) protein assay (Thermo Fisher Scientific). The
membranes were incubated with 5’-Nucleotidase/CD73, Caspase-
3, p27 and o-tubulin primary antibodies overnight at 4°C
(Supplementary Table 2). Secondary detection was performed
with anti-rabbit 800CW and anti-mouse 680CW antibodies
(1:2000, IRDye, LI-COR). The emitted fluorescence was detected
with Li-Cor Odyssey CLx imaging system.

In vivo experiments

Four-week-old female Balb/c mice (Balb/cOlaHsd) were obtained
from Envigo (Netherlands). Animals were maintained under
controlled pathogen-free environmental conditions with a 12h
light/dark cycle. Mice were inoculated with sh-NT and sh-CD73
4T1cells (2x10* cells in 100 ul PBS per mouse) orthotopically into 4™
mammary fat pads (n = 10/group) and followed for 31 days. For the
metastasis models, the mice were inoculated intravenously with sh-
NT and sh-CD73 4T1 cells (5x10* cells in 100 ul PBS per mouse) into
tail vein (n = 6/group) and followed for 20 days. In the B cell depletion
model, 100 pM/animal Ultra-leaf purified anti-mouse CD20
(BioLegend, 152104) and control IgG antibody (BioLegend, 400671)
were injected intravenously in the tail vain, once cells were inoculated
and followed for 34 days. Animals were treated intraperitoneally each
4™ day with the dose of 6 ug ZOL/animal. Body weights and tumor
dimensions (35) were measured once a week. The animals were
sacrificed when weight loss was > 10% (data not shown).

Analysis of the B cell depletion efficiency

After sacrifice, spleen and lung samples were mashed through
70 um strainer (22363548, Fischer scientific) to a new well. The
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strainer was washed with MAC buffer 2mM EDTA, 0,5% BSA, 1 x
PBS). Isolated cells were incubated for 5 min RT with red blood lysis
buffer (420301, Biolegend). The reaction was stopped with 1 x PBS.
1 x 10° cells were spined down (5 min, 500 x G) and resuspend in
2% BSA, 1 x PBS, 2 puL TruStain FcX (101320, Biolegend). Total
cellular fraction isolated from lungs were analyzed from the
presence of lymphocytes. Specifically, the isolated cells were
incubated with anti-CD8 and anti-CD19 antibodies according to
manufacturer’s recommendations (Table S2). Isolated spleen cells
were incubated with conjugated CD19/CD3 antibodies (Table S2)
for 1 h at 4°C in dark. Blood was drawn with intracardiac punctures
into anti-coagulated K2E tubes (BD Microtainer, 1307939). Whole
blood was stained with conjugated anti-CD19 antibody for 1 h at 4°
C in dark (Table S2). All samples were washed with cell staining
buffer (BioLegend, 420201) and centrifugated for 5 min at 500 g.
Cell pellet was resuspended in 500 pL of cell staining buffer. The
presence of CD19-positive cells was analyzed using flow cytometry
(BD LSRFortessa, BD Biosciences). The data was analyzed with
Flowing Software 2.5.1 (Turku, Finland).

Histology and tissue staining

Dissected tumors and lungs were fixed with 10% paraformaldehyde
for 24 h, after which they were processed into paraffin blocks and cut
tissue sections with standard methods (20). Dissected lungs were
stained with hematoxylin and eosin staining. For THC staining,
dissected tumors were stained immunohistochemically to analyze
cleaved caspase-3 (cCas-3), phospho-histone H3 (pHH3), CD34,
CD45R/B220 and CD4 cells (Table S2). Slides were scanned using
Pannoramic 250 slide scanner (3DHISTECH Ltd, Hungary). For
immunofluorescent staining, dissected tumors were stained with anti-
CD8 AlexaFluor 488 and Ki-67 antibodies (Table S2). Secondary anti-
rabbit AlexaFluor 488 antibody was applied for 1h at RT. DAPI was
used as a nuclear counterstain. Slides were scanned using Pannoramic
Midi fluorescence slide scanner (3DHISTECH Ltd, Hungary).
Acquired digital slides were analyzed with QuPath-0.2.0 software
(36). All stainings were evaluated blindly. QuPath scripts used for
image analysis are presented in Table S3.

Bone analyses

For bone histology, tibiae were dissected and prepared into
paraffin-blocks and cut sections, as previously described (37).
Osteoclasts were stained for tartrate-resistant acid phosphatase
(TRAP) (Merck, Germany). The number of osteoclasts were
counted per area in the trabecular bone manually using Fiji-Image]J
(1.52p) software. Quantitative analysis of femurs was performed using
a Skyscan 1272 X-ray computer tomography scanner (Bruker,
Kontich, Belgium). Morphometric parameters including tissue
volume (TV, mm?), bone volume (BV, mm?) and bone volume/
tissue volume (%) were analyzed by CTan version 1.9.32 software from
Skyscan. The parameters applied for scanning were the following: x
26.31 magnification, X-ray tube voltage 61 kV, tube current 148 UA,
X-ray filtration with 0.25 mm aluminum filter. Trabecular bone
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morphometric region of interest was defined at metaphysis of the
femur starting 11 layers (122pum) below an anatomic marker, showing
lower surface of the growth plate and extending 50 layers (557{um).

Statistical analysis

Results are showed as the mean + SD of independent
experiments with parallels. All analyses were performed using
GraphPad Prism version 7.0 (GraphPad Software Inc, San Diego,
CA, USA). Data were analyzed for statistical significance using
Mann-Whitney t-test, one-way and two-way analysis of variance
(ANOVA). Differences for which P was <0.05 are reported as
statistically significant. Original dataset is available in a publicly
accessible repository. This data can be found here:

Ethical approval

All procedures involving animal studies were cared for in
accordance with the Project Authorization Board of Finland
(license No ESAVI/7015/2020) in accordance with the 2010/EU/
63 EU Directive on the protection of animals used for scientific
purposes and the ARRIVE guidelines (38).

Results

CD73 gene involvement in cell cycle and
inflammatory pathways in 4T1 cancer cells

We have previously demonstrated that suppression of CD73
expression affects migration and viability of TNBC cells (20). To
further characterize CD73 shRNA-induced changes in these cells,
sh-NT and sh-CD73 cells were analyzed with RNA-seq. The analysis
revealed 551 upregulated (log2 (fc) > 1, p < 0.05) and 886
downregulated (log2 (fc) < 1, p < 0.05) genes in sh-CD73 cells as
compared with sh-NT cells (Figure 1A and Supplementary File 2). We
then used k-means clustering to divide the top 1000 most variable
genes from RNA-seq FPKM (fragments per kilobase of exon per
million mapped fragments) data into clusters via iDEP tool (39). We
identified 4 clusters based on GO Biological Process database. Three
clusters were involved in inflammation and immune responses and
one cluster in cell division and replication (Figure 1B and Figure S1).
Additionally, we applied KEGG enrichment analysis on the most
engaged pathways changed in sh-CD73 versus sh-NT cells (Figure 1C).
The genes that passed the threshold level (log2 (fc) > 1.5 or log2 (fc) < -
1.5, p > 0.05) in the pathways were associated with apoptosis, cell cycle
and cytokine activity and are presented in Supplementary Table 4.

Suppression of CD73 expression sensitizes
TNBC cells to bisphosphonates in vitro.

To begin our studies, we first wanted to define whether CD73
expression in TNBC alters direct cellular response to N-BPs. We
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FIGURE 1

Gene expression in 4T1 sh-CD73 vs sh-NT cells. (A) Volcano map of the differential gene expression. (B) Differentially expressed gene clusters
between sh-CD73 and sh-NT cells, using three replicates. The clusters were defined using the kmeans algorithm, using iDEP tool available online.
(C) The KEGG diagram was made according to the gene pathway enrichment. The mRNAs with the parameter of false discovery rate (FDR) below
0.05 and absolute fold change > 2 were considered differentially expressed mRNAs. The gene expression signature of 4T1 sh-NT and sh-CD73 cells

were determined by RNA sequence (LC Sciences, Houston, Texas).

treated 4T1 sh-NT and sh-CD73 cells with ZOL, ALN and PAM,
and determined the IC5, doses with cell viability assays (Table S5).
Sh-CD?73 cells were significantly more sensitive than sh-NT cells to
ZOL and ALN ICs, doses after 48h, and to all selected N-BPs after
72h (Figures S2A, B). Thus, we selected ZOL and ALN for further
experiments. N-BPs did not directly affect CD73 catalytic activity,
mRNA or protein expression level (Figures S2C-E). We also tested
the combined effects of APCP, a specific CD73 activity inhibitor and
ZOL in parental cells. APCP did not augment ZOL effects on cell
viability of any breast cancer cell lines (Figures S3A-C). Thus, our
results suggest that suppression of CD73 expression, but not
enzymatic activity sensitizes cells to N-BPs in vitro.

Suppression of CD73 expression delayed
cell proliferation and induced apoptosis
upon bisphosphonates

Further experiments were conducted with ICs, concentrations at
72h. In line with decreased viability, ZOL and ALN caused a
significant decrease of proliferation in sh-CD73 cells compared to
sh-NT cells after 72h of treatment (Figure 2A). Significantly higher
percentage of sh-CD73 cells than sh-NT cells were at G1-phase after
ZOL-treatment (Figure 2B). Compared with vehicle, ZOL also
significantly increased the percentage of sh-NT cells at S-phase. No
such effect was seen in sh-CD73 cells (Figure 2C). Both ZOL and ALN
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increased sh-NT cell population in G2-phase compared to 7vehicle.
In sh-CD73 cells, no such effect was seen (Figure 2D). Cyclin-
dependent kinase inhibitor, p27 is a marker of cell cycle transition.
We showed that sh-CD73 cells increased expression of p27 upon ZOL
and ALN (Figure 2E). There was a trend of increased the percentage
of apoptotic cells in vehicle treated sh-CD73 cells compared to sh-NT
cells (Figure 2F). Both ZOL and ALN induced a significantly higher
fold-increase in apoptosis in sh-CD73 cells in comparison to sh-NT
cells after 72h treatment (Figure 2G), an effect which was not seen in
in vehicle treated sh-CD73 cells. Apoptotic marker, caspase-3 was
increased upon ZOL- and ALN-treatments. Furthermore, sh-CD73
cells demonstrated increased expression of caspase-3 upon ZOL-
treatment in comparison to sh-NT cells (Figure 2H). In agreement
with this, ZOL significantly increased the number of caspase 3/7
positive cells (Figures 21, J) in sh-CD73 cells, as compared to sh-NT
cells. Taken together, these results indicate that the increased
sensitivity of sh-CD73 cells to the growth inhibitory effects of ZOL
or ALN is due to changes in cycle arrest and increased apoptosis.

ZOL increases tumor infiltrating
lymphocytes in sh-CD73 tumors

As ZOL demonstrated the most effective growth inhibition of

cells in vitro, we next compared effects of ZOL on sh-NT and sh-
CD73 tumor growth in vivo, using an immune-competent,
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FIGURE 2

Suppression of CD73 causes cell cycle arrest and increases apoptosis upon N-BP treatment. (A) Cell proliferation of sh-NT and sh-CD73 4T1 cells
upon N-BPs treatment for 72 h. Cell proliferation was assessed with confluence analysis using IncuCyte 2018B software (Essen Bioscience). The
percentage of cells (B) in G1 phase, (C) S phase, (D) G2 phase of cell cycle upon N-BPs treatment for 72 h. (E) Representative dot plots of p27
protein expression upon N-BP treatment. (F) The percentage of apoptotic cells in vehicle and (G) N-BPs treated sh-NT and sh-CD73 groups. (H)
Representative dot plots of caspase-3 protein expression upon N-BP treatment. (I) Representative images of caspase 3/7 staining. The images were
generated by IncuCyte 2018B software (Essen Bioscience). (J) The number of caspase 3/7 positive 4T1 cells upon zoledronate treatment for 72 h
The bars represent fold-change in number of caspase3/7 in sh-NT ZOL-treated vs. sh-CD73 ZOL-treated cells. The results are expressed as mean +
SD, n=3.*P <0.05 ** P <0.01, comparing within the same group upon different treatment; # P < 0.05, ## P < 0.01, ### P < 0.001, comparing

sh-CD73 treated cells vs. sh-NT cells treated cells.

mammary fat pad mouse model of breast cancer (Figure 3A). As
also seen previously (20), sh-CD73 cells formed significantly
smaller tumors than sh-NT cells. Tumor growth was significantly
suppressed in both ZOL-treated sh-NT (32%) and sh-CD73 (36%)
groups compared to vehicle groups (Figure 3B). Unlike in vitro,
ZOL-induced growth inhibition was similar in both tumor groups
(Figures S4A, B). As an internal control for CD73 suppression
throughout the experiment, significantly lower CD73 mRNA
expression was maintained in the sh-CD73 tumors at sacrifice. In
line with our in vitro results, ZOL did not influence CD73 mRNA
expression in tumors either (Figure S4C). As an internal control for
ZOL efficacy, we confirmed that ZOL significantly prevented bone
resorption and decreased the number of osteoclasts in mice bearing
either sh-NT or sh-CD73 tumors (Figures S4D-G).
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There are several important characteristics, which implicate
cancer progression, including proliferative status of tumor cells or
their interaction with immune cells (40). Although, CD73
suppression in vehicle-treated tumors significantly decreased the
number of pHH3" cells (mitotic marker) in comparison to vehicle-
treated sh-NT tumors, it did not affect the number of cleaved-
Caspase3 (apoptotic marker) cells or CD34" and CYR61"
(angiogenesis markers) cells in vehicle-treated tumors (Figures
S5B-E). ZOL significantly increased the number of cleaved-
Caspase3™ cells in sh-CD73 group compared to vehicle-treated sh-
CD73 group. There was a trend of ZOL reducing pHH3+ cells in both
groups (Figures S5B-E) and CD34" cells in sh-CD73 tumors (Figure
S5C, D). However, the treatment did not alter the number of CYR61"
cells (Figure S5E). Taken together, in agreement with the in vitro data,
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Zoledronate increases immune cell infiltration into CD73-suppressed tumors. (A) A schematic view of the in vivo experiment. Zoledronate was given
at a dose of 6ug/animal for six times after tumors were formed. (B) sh-NT and sh-CD73 tumor growth demonstrated as a function of time. Tumor
dimensions were measured with a caliper once a week. * P < 0.05, **** P < 0.0001, comparing within the same group upon different treatment;
Data is expressed as mean + SEM, by a two-tailed Student's t — test. # P < 0.05, comparing sh-CD73 tumors vs. sh-NT tumors. (C) Representative
images of B220, CD8, CD4 and Foxp3 stainings in sh-NT and sh-CD73 tumors. Scale bar 100 um. Number of (D) B220-positive cells, (E) CD4-
positive cells, (F) CD8-positive and (G) Foxp3-positive cells from 4T1 sh-NT and sh-CD73 tumors. Data is expressed as mean + SEM, by a two-tailed

Student's t — test. * P < 0.05; sh-CD73 vs. sh-NT tumors.

sh-CD73 tumors had more apoptotic cells after ZOL treatment than
after vehicle-treatment. A similar trend was seen in sh-NT tumors,
but none of the differences were statistically significant.

Immune cell infiltration into tumors can promote or suppress
tumor progression. The interplay of immune cells in this context is,
however, very complex. For example, B cell infiltration demonstrated
anti-tumor activity, resulting in better OS of cancer patients, but in
the presence of effector T-cells (41). There are previous reports on BP
effects on TILs, especially on T-cell (42, 43), but whether N-BPs affect
B cell infiltration into tumors, is not known. The number of TILs was
similar between vehicle-treated sh-NT and sh-CD73 tumors
(Figures 3D-G). Compared with vehicle-treated sh-CD73 tumors,
ZOL significantly increased B220" B cell, CD4" and CD8" T cell
infiltration in sh-CD73 tumors. Only two tumors in the sh-NT group
(n=6) showed increased numbers of B cells and CD8" T cells upon
ZOL (Figures 3C-E). ZOL treatment had no effect on FOXP3" T
helper cells in either group (Figure 3F). Thus, our results suggest that
ZOL induces lymphocyte infiltration into primary tumors and that
low CD73 expression in the tumor augments this effect.
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ZOL increases TIL infiltration into
lung metastases

We previously demonstrated that sh-CD73 cells formed
significantly lower lung metastatic burden than sh-NT cells (20).
ZOL had no obvious effects on the number and sizes of lung
metastases in either group (Figures S5F, G). To investigate ZOL
effects on TILs at lung metastases, we used an experimental lung
metastasis model, which typically results in the formation of larger
lung metastases without the engagement of primary tumors. With
this model as well, there was a trend of fewer and smaller metastases
formed by the sh-CD73 cells. ZOL, however, had no obvious effect
on the number of metastases (Figures 4A-C). Similar to immune
cell infiltration into mammary fat pad tumors, there was a trend
towards ZOL-induced B220* B cell, CD4" and CD8" T cells
infiltration into lung metastases. This effect appeared to be
slightly more pronounced in the sh-CD73 than in the sh-NT
tumors, but none of these changes reached statistical significance
(Figures 4D-G).
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FIGURE 4

The effect of CD73 suppression on immune cell infiltration into lung metastases after zoledronate treatment. Cancer cells were injected
intravenously into mouse tail veins (n = 6/group). Lung samples for staining were collected after 20 days. (A) Representative images of lung sections
stained with antibody against Ki-67. Scale bar 500 um. The number (B) and size (C) of lung metastases. (D) Representative images of B200, CD8 and
CD4 immune cell stainings in lung metastases formed by sh-NT and sh-CD73 cells. Scale bar — 100 um. Number of (E) B220-positive cells, (F) CD8-
positive cells and (G) CD4-positive cells in lung metastases formed by sh-NT and sh-CD73 cells. Data is expressed as mean + SEM.

B cell depletion augments ZOL effect on
growth in CD73-expressing tumors

TNBC tumors have been suggested to have higher levels of B cell
infiltration than other breast cancer subtypes, but their role in the
disease pathophysiology is unclear (3, 9-21, 23-41). Therefore, we
further explored the role of B-cells in our model in general, and also
whether they contribute to ZOL effects in tumors (Figure 5A). We first
determined an effective dose of B cell-depleting anti-CD20 antibody,
by assaying its effect on circulating B cells using CD19 as a marker. A
single dose of anti-CD20 IgG (100pM/animal) efficiently reduced the
absolute number of CD19" lymphocytes in spleens, compared to
control IgG group. Anti-CD20 treatment also slightly increased the
absolute number of CD3" lymphocytes in spleen compared to control
IgG group (Figure S6). This dose was used in further experiments. In
the mouse orthotopic tumor model, both ZOL or anti-CD20
treatment alone significantly reduced tumor growth in sh-NT and
sh-CD73 tumors, as compared with corresponding controls. The effect
of anti-CD20 appeared to be slightly stronger in sh-CD73 tumors. No
significant synergistic effects of ZOL and anti-CD20 were seen in sh-
NT tumors. (Figures 5B, C). Notably however, whereas in sh-NT
tumors there was a trend of anti-CD20 antibody further augmenting
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ZOL-induced growth inhibition, no such effect was detected in the sh-
CD73 tumors (Figures 5B, C). Additionally, the post-mortem analysis
suggested that ZOL significantly reduced tumor size in sh-CD73 group
in comparison to sh-NT group. ZOL + anti-CD20 treatment could be
more efficient that the individual treatments in sh-N'T tumors, while in
sh-CD73 tumors both ZOL and anti-CD20 seemed to have similar
effect without further synergy (Figures 5D, E). The analysis of lung
metastases showed the fewest and smallest metastases in the mice
treated with anti-CD20, both with tumor cells expressing normal or
reduced levels of CD73 and no clear synergy between ZOL and anti-
CD20 was detected (Figures 5F-H). Taken together, the B cell
depletion caused at least similar if not stronger growth inhibitory
effects than ZOL in both tumor types and our data additionally
suggested that sh-NT tumor could show some level of synergistic
response, which was absent in sh-CD73 tumors.

The effect of B cell depletion upon ZOL on
immune cell infiltration into tumors
In the orthotopic tumor model, ZOL significantly increased

B220" B cell infiltration into both sh-NT and sh-CD73 tumors, in

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1179022
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Petruk et al.

10.3389/fimmu.2023.1179022

A B Cc
3007 4 sh-NT Veh + IgG 3007 . sh-CD73 Veh + 1gG
a6 . ~  |= sh-NTZOL+IgG ~ | =sh-CD73ZOL +igG
anti-CD20 i.v. (3 - sh-NT Veh + anti-CD20 £ - sh-CD73 Veh + anti-CD20
£ sh-NT ZOL + anti-CD20 3 sh-CD73 ZOL + anti-CD20
Vehicle and ZOL i.p. injection Z 200 x| < 200
| | | "i ek ‘E
° 2
4T1s.c. Cull 5 o x|
s T T T © 100 = 100 ;£|
o CE’ Hkkk
CD19" blood analysis £ 5
2 [
0 0
0 4 8 12 16 20 24 28 32 36 4 8 12 16 20 24 28 32 36
Time (days) Time (days)
D F
#
. 600 * Vehicle + ZOL + Vehicle + anti-CD20 +
e * anti-CD20 ZOL
£ *% 3 3 3 5 X
© 400 * :
€
3
[<]
>
5 200
§
-
0
sh-NT sh-CD73
S oS S S
X\QG‘\Q‘;& Jorid x\‘)"x\‘)"‘.‘& fonid
X oy & v T
N 40 x"o\’x'bo N 1«0‘\x°° e
$° 1}0 KT 1,0
E G H
— 13
M - s
[} 3 10 NE 1.5x10°
5 £ £
S 1007 - mm e 88 e
T 2 2 1x10°
-— *
2 * Es 8
:; Pl ** < 9
E 50 2 4 g
3 e k] £ 5x10°
: 5 2
g E 8
g 0 320 e e ——— « L ————
sh-NT sh-CD73 sh-NT sh-CD73 sh-NT sh-CD73
S o0 S S S oS S oS S o0 S o0
PSS LSS IS SIS B A N
‘Lo\' x'b&\ x’bo\\ 19\« x’bo‘\ x'b(\"\ 4é\$°:°‘&x0“\\4°‘\1r°\;'b°\\x'b§ Qz‘\’lfo\;”({\\x"(\\\46‘\’1S)\;"‘(\\k"’(\‘\
& 07 & 40 RO g RO KU ROMO

FIGURE 5

The effect of anti-CD20 and zoledronate treatment on tumor growth. (A) Schematic views of in vivo experiment. Animals were treatment with 100
pg/mouse anti-CD20 antibody after tumor cells were inoculated. Zoledronate was given at a dose of 6ug/animal for six times after tumors were
formed. The number of circulating CD19-positive cells was analyzed throughout the experiment by Flow cytometry 3 times. (B) sh-NT and (C) sh-
CD73 tumor growth upon treatment shown as a function of time. Tumor dimensions were measured with a caliper once a week. (D) Tumor volume
and (E) fold-change of tumor volume at the sacrifice. (F) Representative images of H&E staining of lungs. Scale bar 200 um. The number (G) and size
(H) of lung metastases from 4T1 sh-NT and sh-CD73 cells. Data is expressed as mean + SEM, by one-way ANOVA with a Sidak post-test. * P < 0.05,
** P < 0.01 and **** P < 0.0001, comparing within the same group upon different treatment. # P < 0.05, comparing sh-CD73 treated tumors vs. sh-

NT cells treated tumors.

comparison to corresponding vehicle + IgG treatment (Figure 6A).
Anti-CD20 treatment did not alter the baseline number of B220" B
cells in sh-NT and sh-CD73 tumors in comparison to vehicle-treated
groups. However, anti-CD20 treatment removed ZOL-induced
B220" B cell infiltration in sh-NT tumors, but not in sh-CD73
tumors (Figure 6A). None of the treatments significantly affected
CD8" T cell infiltration in the sh-NT group. However, the number of
CD8" TILs was significantly suppressed by anti-CD20, with or
without ZOL in sh-CD73 group (Figure 6B). ZOL seemed to
increase CD4" T-cell infiltration in both groups, showing
significant difference in the sh-CD73 tumors. The combination of
anti-CD20 + ZOL significantly increased CD4" T-cell infiltration in
comparison to anti-CD20 alone in the sh-NT group. This effect was
not significantly affected by anti-CD20 in the sh-CD73
group (Figure 6C).
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ZOL alone had no significant effect on the percentage of
circulating CD19" cells in either mouse group. In mice bearing
sh-NT tumors, anti-CD20 antibody decreased circulating CD19"
cells, and this effect reached significance only upon anti-CD20 +
ZOL. In mice bearing sh-CD73 tumors anti-CD20 and anti-CD20 +
ZOL significantly decreased circulating CD19" cells (Figure 6D).
Although neither treatment alone had a significant effect, the
combination of anti-CD20 + ZOL significantly increased the
number of circulating CD8" cells in comparison to corresponding
vehicle in mice bearing sh-NT tumors. The effects were similar, but
more pronounced in mice bearing sh-CD73 tumors (Figure 6E). We
also investigated TILs in lung tissues with metastases, as our
experimental metastases model demonstrated that lungs were a
metastatic niche for 4T1 cells. The distribution of CD19+ cells in the
total number of cells isolated from lungs mimicked those detected

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1179022
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Petruk et al.

10.3389/fimmu.2023.1179022

A B (¢
o * o o
£ 150 £ 300 3 400
£ E £
= S 5 300
S 1<)
g 100 £ 200 £
=1 3 =
= - -
c = = 200
" ) @
= 50 = 100 =
8 3 3 100
Q a 3
g 0 = O o O 9
sh-NT sh-CD73 sh-NT sh-CD73 sh-NT sh-CD73
S S o S oS
KX S &o& S SIS NSNS X % & & \9 S
\/ \, QN \Y N \ S
& 19 AN &S 19 S & 1%\: & 1’0\« \\é{o 45\19\1 1/‘\ & 0
KT 1,0 K2 1/0 K2 1,0 © 19 KT 1’0 E© 1/0
D E F
2 ® S
> 2
K 8 5
(=] L] 1
@ ©
o o £
o o )
> 2
2 5 S
kS = P
3 3 3
g £ 8
o . [&] =
sh-NT sh-CD73 sh-NT sh-CD73 sh-NT sh CD73
S oS S o S oS
RS \900'1' 0"' ) \000"' oV \9 \Q’Go"’oo"’ \Q 5 0"900'1' R \%&G& \q. \9 <>"‘°<>"9
‘(\ NG QY \' . %
SR\ S ,Lo\' S 1,‘\ 4¢"‘1,0\’ & <« 1,?:\’ & 45‘\1,‘3:
1 ,Lo @ 1«° KT ,‘,o K 1,0 $E© ,Lo & 1«0
G
15
s
(2]
<)
o
2
£
0
©
(3]
©
o
o
sh-NT sh-CD73
\Q 9, &o& \9 O o"'°<>"'°
& 1’0\/ S 19\, \\' ,\\x\
Qé(\ 1,0\' & 1/0

FIGURE 6

The effect of anti-CD20 treatment and zoledronate on circulating and tumor-infiltrating immune cells. The number of (A) B220-positive cells, (B)
CD8-positive cells and (C) CD4-positive cells from 4T1 sh-NT and sh-CD73 tumors. The percentage of circulating (D) CD19-positive and (E) CD8-
positive cells from 4T1 sh-NT and sh-CD73 tumor-bearing mice. The percentage of (F) CD19-positive and (G) CD8-positive cells in lungs from 4T1
sh-NT and sh-CD73 tumor-bearing mice. Data is expressed as mean + SEM, by one-way ANOVA with a Sidak post-test. * P < 0.05, ** P < 0.01,

comparing within the same group upon different treatment

in blood (Figure 6F). Although, the changes were not significant,
anti-CD20 + ZOL treatment resulted in highest CD8" infiltrating
cells in the lungs of mice bearing sh-NT tumors. Anti-CD20
decreased CD8 + TILs in the lungs of mice bearing sh-CD73
tumors, but adding ZOL attenuated this effect (Figure 6G). Taken
together, our data shows that anti-CD20 treatment alone
significantly inhibits tumor growth in both sh-NT and sh-CD73
tumors, suggesting that B-cells regulate TNBC growth, regardless of
tumor CD73 expression status. ZOL induces B cell infiltration into
tumors, and this may counteract the growth inhibitory effects of this
drug. However, tumor CD73 expression may interfere with this
effect, making tumors less permissive for CD8 cells. The main
immunological findings of this study are depicted in Figure 7.

Frontiers in Immunology

175

Discussion

Adjuvant bisphosphonates increase the survival rate of
postmenopausal women across different subtypes of breast cancer
(44). The mechanism how this survival advantage is reached, is
unclear and there are no predictive biomarkers for patient selection
either. Especially N-BPs are pro-inflammatory and have been
demonstrated to increase circulating immune cells both in pre-
clinical and clinical studies (23). Less is known about their ability to
affect tumor immunity. We studied here the effects of ZOL on
tumor infiltrating lymphocytes. We further investigated whether
immune system modulating tumor characteristics, namely CD73
expression, affects the growth inhibitory and inflammatory
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FIGURE 7

Zoledronate promotes B220+ B, CD8+ and CD4+ T cell infiltration into tumors or lung metastases with low CD73 expression. Depletion of B cells
with anti-CD20 antibody led to reduced CD8+ T cell infiltration into tumors with low CD73 expression upon zoledronate-treatment. Zoledronate
increased the number of CD8+ T cells in circulation when B cells were depleted in sh-CD73 tumor-bearing mice. ZOL, zoledronate; s.c.,
subcutaneously; i.v., intravenously; i.p., intraperitoneally; 4T1 sh-NT, cells were transfected with non-targeting particles; 4T1 sh-CD73, cells were
transfected with a stable small hairpin RNA transduction, using mouse-specific lentiviral particles. Created with BioRender.com.

responses to N-BPs. Modulation of CD73 expression in the tumors
was chosen, due to its prognostic significance and because it is a
promising immunotherapeutic target especially in TNBC (21,
45, 46).

Our results demonstrate that CD73 suppression sensitizes 4T1
breast cancer cells to the growth inhibitory effects of N-BPs in vitro.
These drugs, especially the most potent and clinically most
frequently used N-BP, ZOL, paused the sh-CD73 4T1 cells at the
G1-phase, delayed proliferation and increased apoptotic rate. These
differences were not, however, reflected in vivo, as the tumor growth
inhibitory responses to ZOL were similar regardless of the tumor
CD73 expression rate.

N-BPs have well characterized pro-inflammatory effects. They
have been shown to inhibit the migration of macrophages (47) and
promote their polarization (48, 49), activate Y3 T-cells, and increase
the production of inflammatory mediators (43). It was also shown
also that ZOL reduced infiltration of the immunosuppressive
regulatory T cells (42). Here, we take these findings further and
demonstrate, that ZOL also induces also B cell accumulation into
the primary tumors and also into lung metastases. Our results also
suggest that anti-CD20 antibody may weaken the growth inhibitory
effects of ZOL in tumors with low CD73 expression. This suggests
that under certain conditions, the infiltration of B-cells may oppose
the growth inhibitory effects of this N-BP. This effect was partially
regulated by tumor CD73 expression, suggesting that
immunoregulatory characteristics of the tumor could modify the
B-cell responses induced by ZOL. Anti-CD20 treatment, when
given alone significantly inhibited tumor growth regardless of
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tumor CD73 expression, suggesting that eradication of B cells is a
beneficial anti-tumor treatment approach in general. CD73
suppression made tumors less permissive for CD8 T cells upon
ZOL treatment when B cells were depleted, without reducing CD8 T
cells number in circulation or lungs. A previous study showed that
inhibition of CD73 enzymatic activity did not influence CD8 T cells
infiltration to tumors in mice with B cell depletion (50). Tumor sizes
were assessed with caliper measurement in our experiments. This
approach measures total tumors, including tumor infiltrating non-
malignant cells, such as TILs. Thus, a possible explanation for the
lack of difference in sensitivity to N-BPs between sh-NT and sh-
CD73 cells, which was observed in vitro, but not in vivo, may
partially be explained by differences in the immune cell responses
that we detected. Furthermore, CD20 antibody could target not only
CD20-positive B cells, but CD20-positive CD8 or CD4 T cells. This
T cells subset showed the same activity as CD20-negative T cells
(51), depletion of which could improve treatment for patients with
multiple sclerosis (52). Given that cytotoxic activity of CD8 T cells
against cancer cells, these CD20-posivite T cells could play role in
cancer suppression as well, which requires further studies. Our
finding is in agreement with previous publications demonstrating
that anti-CD20 treatment decreases tumor growth in various cancer
models (42, 43) and ZOL eftects on B cell (53, 54).

There are several implications of our finding. First, immune
surveillance plays a critical role in tumor progression (55). Thus, it
could be, that it is the inflammatory, TIL promoting effects of
adjuvant N-BPs that prevent the outgrowth of microscopic disease
into macroscopic metastasis in post-menopausal women. This
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hypothesis is supported also by the fact that the benefit is seen in
post-menopausal women, who are not immunosuppressed by
estrogen, like younger women (56). Second, breast cancers are
considered immunologically “cold tumors”, due to modest
inflammatory infiltration (57). Converting immunologically cold
tumors into hot is a major topic in immuno-oncology to improve
responses to immunotherapy. Our results suggest that N-BPs
should be further studied in this approach. Third, the role of B
cells in tumor progression requires further analysis, since their role
in cancer remains controversial (58, 59). B cells prevent tumor
progression through releasing immunoglobulins and activation of T
cells. However, the progression of tumor growth might also be
promoted via B cell-induced immunosuppressive cytokines (60,
61). Further clinical studies are needed to examine N-BP treatment
effects on TILs in breast and other cancers, and whether tumor
baseline immunological features affect such outcomes.
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The immune checkpoint
adenosine 2A receptor is
associated with aggressive
clinical outcomes and reflects an
Immunosuppressive tumor
microenvironment in human
breast cancer
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Hamza Benthami?, Ibtissam Razzouki*, Mohamed Elkarroumi?,
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Hospital Center, Casablanca, Morocco, “"Mohammed VI Center for Research & Innovation, Rabat,
Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco

Background: The crosstalk between the immune system and cancer cells has
aroused considerable interest over the past decades. To escape immune
surveillance cancer cells evolve various strategies orchestrating tumor
microenvironment. The discovery of the inhibitory immune checkpoints was a
major breakthrough due to their crucial contribution to immune evasion. The
A2AR receptor represents one of the most essential pathways within the TME. Itis
involved in several processes such as hypoxia, tumor progression, and
chemoresistance. However, its clinical and immunological significance in
human breast cancer remains elusive.

Methods: The mRNA expression and protein analysis were performed by RT-
gPCR and immunohistochemistry. The log-rank (Mantel-Cox) test was used to
estimate Kaplan-Meier analysis for overall survival. Using large-scale microarray
data (METABRIC), digital cytometry was conducted to estimate cell abundance.
Analysis was performed using RStudio software (7.8 + 2023.03.0) with EPIC,
CIBERSORT, and ImmuneCellAl algorithms. Tumor purity, stromal and immune
scores were calculated using the ESTIMATE computational method. Finally,
analysis of gene set enrichment (GSEA) and the TISCH2 scRNA-seq database
were carried out.

Results: Gene and protein analysis showed that A2AR was overexpressed in
breast tumors and was significantly associated with high grade, elevated Ki-67,
aggressive molecular and histological subtypes, as well as poor survival. On
tumor infiltrating immune cells, A2AR was found to correlate positively with PD-1
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and negatively with CTLA-4. On the other hand, our findings disclosed more
profuse infiltration of protumoral cells such as MO and M2 macrophages, Tregs,
endothelial and exhausted CD8+ T cells within A2ARhigh tumors. According to
the Single-Cell database, A2AR is expressed in malignant, stromal and immune
cells. Moreover, it is related to tumor purity, stromal and immune scores. Our
results also revealed that CD8+T cells from A2ARhigh patients exhibited an
exhausted functional profile. Finally, GSEA analysis highlighted the association of
A2AR with biological mechanisms involved in tumor escape and progression.

Conclusion: The present study is the first to elucidate the clinical and
immunological relevance of A2AR in breast cancer patients. In light of these
findings, A2AR could be deemed a promising therapeutic target to overcome

immune evasion prevailing within the TME of breast cancer patients.

KEYWORDS

A2AR, PD-1, CTLA-4, tumor and immune microenvironment, immunosuppression,
immune checkpoint, immunotherapy, breast cancer prognosis

1 Introduction

Despite considerable progress in cancer management, breast
cancer remains a major public health concern given its high
morbidity and mortality rate, with an estimated 2.3 million new
cases and 685,000 deaths worldwide in 2020 (1, 2). Breast cancer
accurately reflects intratumoral heterogeneity conditioning
therapeutic strategy. While chemotherapy remains the backbone
of treatment for triple-negative breast cancer (TNBC), endocrine
and human epidermal growth factor receptor 2 (HER2) targeted
therapies provide the gold standard for hormone receptor-positive
(HR+) and HER2-positive (HER2+) tumors, respectively (3, 4). In
addition to TNBC and HER2+ tumors’ propensity for recurrence,
early metastasis, and poor survival, patients harboring these

Abbreviations: A2AR, Adenosine 2A receptor; ADO, Adenosine; APC, Antigen
presenting cells; CAR, Chimeric antigen receptors; CTLA-4, Cytotoxic T-
lymphocyte-associated protein 4; DC, Dendritic cell; EMT, Epithelial-
mesenchymal transition; ER, Estrogen receptor; ES, Enrichment Score; GAL-1,
Galectin-1; GPCR, G protein-coupled receptor; GSEA, Gene Set Enrichment
Analysis; GZMA, Granzyme A; GZMB, Granzyme B; HER2, Human epidermal
growth factor receptor 2; HIF-lo, Hypoxia-inducible factor-1 alpha; HR+,
Hormone receptor positive; ICIs, Immune checkpoint inhibitors; IFNy,
Interferon gamma; IL, Interleukin; LAG-3, Lymphocyte-activation gene 3;
MDSC, Myeloid-derived suppressor cells; NES, Normalized Enrichment Score;
NK, Natural killer cell; NPI, Nottingham Prognostic Index; PD-1, Programmed
cell death protein 1; PD-L1, Programmed death-ligand 1; PR, Progesterone
receptor; PRF1, Perforin-1; TCR, T-cell receptor; Teff, Effector T cell; TGE,
Transforming growth factor beta; TIM-3, T-cell immunoglobulin and mucin-
domain containing-3; TISCH, Tumor Immune Single-cell Hub 2; TME, Tumor
microenvironment; TMEM, Tumor microenvironment of metastasis; TNBC,
Triple-negative breast cancer; TNF, Tumor necrosis factor; Treg, Regulatory T
cell; UMAP, Uniform Manifold Approximation and Projection; VEGF, Vascular
endothelial growth factor; VISTA, V-domain Ig suppressor of T cell activation.
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stubborn tumors are prone to build-up conventional therapy
resistance (3-15). Although chemotherapy is widely perceived as
the mainstay of TNBC treatment, this therapeutic approach reflects
a detrimental aspect with some clinical drawbacks. One of the
adverse effects of chemotherapy involves growth promotion and
activity of cancer cell intravasation niches, called tumor
microenvironment of metastasis (TMEM), which endows the
tumor with aggressive features and dramatically affects the clinical
outcome of patients (16, 17). The success of immunotherapy in
patients with immune-sensitive tumors has brought this treatment
strategy to the forefront of current oncology breakthroughs (18-
20). Therefore, immune checkpoint inhibitors (ICIs), notably anti-
PD-1 and anti-CTLA-4 mAbs have received widespread interest
over the past decade. However, despite the clinical benefit of ICIs in
some tumor contexts, these have not been proven to be highly
effective in TNBC and HER2+ patients (5, 18-22). Indeed, tumors
appear to be able to overcome effects of ICIs through various
strategies, including synergistic engagement of several
immunosuppressive pathways (23). Interestingly, recent studies
have reported compensatory upregulation of inhibitory immune
checkpoints in patients receiving ICI therapy (24-26). Among these
regulatory molecules, A2AR represents one of the most prominent
and essential pathways in the TME. Known as a member of the G
protein-coupled receptor (GPCR) family, this adenosine (ADO)
receptor is expressed on nearly all immune cells (27).

As is the case with most solid tumors, 25% to 40% of invasive
breast carcinomas are hallmarked by hypoxic areas driving
extracellular ATP release with an overexpression of hypoxia-
inducible factor-1 alpha (HIF-1ct) (27, 28). The latter serves as a
potent enhancer of CD39 and CD73 ectonucleotidase expression,
which in turn mediate ATP, ADP, and AMP hydrolysis and
consequently extracellular ADO accumulation (27, 29-31). Under
physiological conditions, A2AR signaling upholds immune
homeostasis to safeguard tissues against the onset of autoimmune
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disorder (32, 33). Nevertheless, in the cancer setting, the stimulation
of this receptor via its ligand ADO triggers signal transduction of
cAMP/PKA/CREB pathway while damping that of NFxB and JAK/
STAT to inhibit the antitumor function of immune cells (27, 34).
Thus, A2AR impairs the proliferative potential, effector and
cytotoxic activity, as well as CD8+T cell infiltration within the
TME (35-38). The attenuation of A2AR-mediated TCR and CD28
signaling drives CD8+T cells into an exhausted state marked by
altered production of IFNYy, PRF and GZMB with upregulation of
inhibitory immune checkpoints including PD-1, CTLA-4, LAG-3
and TIM-3 (27, 39-41). A2AR engagement also acts by preventing
the maturation, proliferation and cytotoxicity of NK cells, while
impairing the neoantigen presentation ability of dendritic cells
(DC) (38, 42, 43). Otherwise, the A2AR pathway strengthens the
immunosuppressive behavior of protumoral immune cells by
hindering macrophage-induced phagocytosis, improving myeloid-
derived suppressor cells (MDSC) function and promoting Tregs
and M2-like macrophage polarization (38, 44-46). The A2AR
receptor may also impinge on the non-immune axis of the TME,
inducing tumor growth, epithelial-mesenchymal transition (EMT),
and angiogenesis, thereby contributing to metastasis (36, 47-51).

Gastric, colorectal, and renal carcinomas have provided
evidence of the link and involvement of A2AR in the poor
prognosis of cancer patients (47, 48, 52, 53). Genetic and
pharmacological inhibition of this immunosuppressive pathway
has shown significant efficacy reflected by tumor burden decrease
and metastasis prevention in experimental models (36, 54, 55). In
renal cell carcinoma, phase I results from the first clinical trial of
A2AR antagonist exhibited durable clinical improvement with
immune response restoration even in patients resistant or
refractory to PD-1/PD-L1 inhibitors (56). Given the complexity
and heterogeneity of breast tumors and the large proportion of non-
responders to currently available ICIs, the aim of the present study
was to investigate the clinical and immunological relevance of
A2AR in human breast cancer.

2 Materials and methods
2.1 Patients and specimen collection

Our study workflow is illustrated in (Figure 1). The present
study includes 62 patients with invasive breast carcinoma who
underwent surgical treatment between 2018 and 2021. The age of
patients ranged from 32 to 89 years, with an average of 51 years. A
total of 124 fresh specimens consisting of tumor tissues (n = 62) and
matched adjacent tissues (n = 62) from the same patients were
collected immediately after surgical resection at the Mohamed VI
Oncology Center, Ibn Rochd University Hospital Center,
Casablanca, Morocco. Tissue samples harvested from the
uninvaded area adjacent to the tumor served as a control.
Estrogen receptor (ER), Progesterone receptor (PR) and HER2
status were determined by the pathologists according to the
American Society of Clinical Oncology/College of American
Pathologists (ASCO/CAP) guidelines. Scarff-Bloom-Richardson
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(SBR) grading and histological subtyping were evaluated
following standard recommendations.

Eligible patients were selected based on the following criteria:
patients diagnosed with invasive breast carcinoma who underwent
mastectomy or conservative surgery, free and informed consent,
available formalin-fixed, paraffin-embedded tissue blocks and
patients with defined molecular subtypes (Luminal A, Luminal B,
HER2+ or TNBC). However, the exclusion criteria include male
patients, unavailability of free and informed consent, unavailability
of matched control tissue and incomplete medical records.

2.2 METABRIC dataset acquisition
and preprocessing

Transcriptomic and clinicopathological data of 1904 primary
invasive breast carcinoma tumors were collected from the large-
scale METABRIC (Molecular Taxonomy of Breast Cancer
International Consortium) cohort. For this purpose, we exported
(METABRIC, Nature 2012 & Nat communication 2016) dataset
using the cBioPortal for Cancer Genomics interface (https://
www.cbioportal.org/). Clinicopathological parameters included in
data_clinical_patient.txt and data_clinical_sample.txt files were
merged and mapped to the corresponding gene expression data.
The transcriptome file comprises mRNA expression levels of 24,368
genes measured by the Illumina Human v3 microarray, log2
transformed and normalized. To predict the 10-year survival rate,
Nottingham Prognostic Index (NPI) scores were converted and
categorized into 4 prognostic groups: Excellent, Good, Moderate
and Poor.

Only patients with complete transcriptomic data were included
in this study. In contrast, male patients or those with incomplete
data were excluded. All analyses were repeated several times
independently by two investigators.

2.3 Total RNA extraction, reverse
transcription and quantitative
real-time PCR

Total RNA was extracted from 124 fresh biopsies (breast
carcinoma and matched control tissue) using TRIzol reagent
(Invitrogen, France), according to the manufacturer’s instructions.
After the estimation of total RNA concentration and quality by a
NanoVueTM Plus spectrophotometer (GE Healthcare, UK), cDNA
was synthesized from 0.5 pg of RNA included in a reaction mixture
containing RNase-Free Water and Random Hexamer Primer
(Bioline, France) and incubated at 70°C for 5 min. Afterward,
Tetro reverse transcriptase buffer, RNase-free water, RNase
inhibitor (Invitrogen, France), dNTP (10 mM), and Tetro reverse
transcriptase enzyme (Bioline, France) were added, followed by
incubation at 25°C for 10 min, then at 45°C for 30 min, and finally
at 85°C for 5 min.

Real-time PCR was performed using SYBR Green PCR Master
Mix (Thermo Fischer) on the Bio-Rad CFX96 Real-Time PCR
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System. Specific primer pairs targeting each gene were used at 10
UM concentration. All experiments were carried out according to
the following schedule: holding stage at 95°C for 10 min, followed
by 40 cycles of denaturation at 95°C for 15 s, then annealing and
extension at 60°C for 1 min. The specificity control of PCR reaction
was applied after each experiment by analyzing the amplicon
melting curves. A second specificity-checking was implemented
by submitting the PCR product (the amplified cDNA) to agarose gel
electrophoresis. Data were assessed as a relative mRNA expression
using the housekeeping gene 3-actin and matched control tissue as
internal controls. The relative quantification was computed using
the 224" approach. Only the comparative analysis of tumor and
matched control tissues was conducted by applying the 2~
AC method.

Primer pairs used in this study:

Forward sequence Reverse sequence

B-actin 5'- GAGATGGCCACGGCTGCTT- 5'-
3 GCCACAGGACTCCA
TGCCCA-3’
ADORA2A 5- 5-
ATCGCCATTGACCGCTACAT3-’ GCTGACCGCAGTTGT
TCCA-3’

2.4 Immunohistochemistry

Formalin-fixed, paraffin-embedded (FFPE) specimens from 45
invasive breast carcinoma and 10 matched control tissues were
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sectioned at an optimal thickness of 3-4 um. Histologic sections
were oven-dried at 60°C for one hour and then left at 37°C
overnight prior to any treatment. The sections were then
deparaffinized and rehydrated prior to heat-induced epitope
unmasking using the PT Link system (Dako, Denmark). This
antigen retrieval step was performed with a (low or high pH)
solution providing a 3-in-1 pretreatment (EnVision Flex target
retrieval solution low/high PH (x 50), Dako, Denmark). Samples
were incubated with peroxidase-blocking reagent (EnVision flex
peroxidase-blocking reagent, Dako, Denmark) for 5 min at room
temperature and then rinsed with wash buffer (EnVision flex wash
buffer, Dako, Denmark).

Thereafter, sections were incubated with the primary antibodies
(A2AR clone 7F6-G5-A2 (Santa Cruz Biotechnology Inc.) at a 1:50
dilution, PD-1 clone DBM15.5 (Diagnostic BioSystems) at a 1:100
dilution and CTLA-4 clone F-8 (Santa Cruz Biotechnology Inc.) ata
1:500 dilution for 1 hour at room temperature. Negative control
sections were incubated with Isotype control antibodies (Mouse
IgG2a Isotype Control clone PPV-04 (OriGene) at a 1:500 dilution
and Mouse IgGl1 Isotype Control clone MOPC-21 (LSBio) at a
1:200 dilution for each sample. Otherwise, different positive control
tissues were added for each primary antibody used. After washing,
the secondary antibody (EnVision Flex/HRP, Dako, USA) was
added and slides were incubated for 20 min at room temperature.
The latter were then rinsed and incubated with a DAB substrate-
chromogen solution (EnVision DAB+chromogen, Dako, USA) for
10 min.

Subsequently, slides were immersed in a hematoxylin bath for
counterstaining and dehydrated in 3 ethanol baths (70%, 96%, and
100%). Finally, they were cleared in toluene baths and then
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mounted for reading under an Olympus light microscope
(Olympus, Tokyo, Japan).

2.5 Immunostaining assessment and
scoring system

Staining intensity, localization (membrane, cytoplasm, or
nucleus), and percentage of labeled tumor, immune, and
endothelial cells were evaluated by two independent pathologists.
For gene expression analysis, a semi-quantitative assessment of
immunostaining, presented as a Histoscore (H-score), was
performed. This approach combines the intensity of staining and
the percentage of labeled cells. Staining intensity was considered as
negative (0), weak (1), intermediate (2) or strong (3). The H-score
was calculated as follows: (1 x % of weak positive cells) + (2 x % of
moderate positive cells) + (3 x % of strong positive cells). Thus, the
expression level was ranged from 0 to 300.

2.6 Computational analysis of tumor-
infiltrating immune cells

To assess the abundance of tumor infiltrating immune cells and
to estimate tumor purity, stromal and immune scores, the
computational deconvolution approach was performed using
RStudio software version (7.8 + 2023.03.0) and four algorithms
based on different immunological signatures: EPIC, CIBERSORT,
ImmuneCellAI, and ESTIMATE. Prior to processing, the
METABRIC transcriptomic dataset was standardized and
converted into a non-log linear matrix. Then, according to A2AR
gene expression and using the median as the cutoff, we stratified our
cohort into two patient groups (A2AR"" and A2AR"E"),

2.7 Gene Set Enrichment Analysis (GSEA)

To investigate the key signaling pathways and biological processes
linked to A2AR, we performed Gene Set Enrichment Analysis using
RStudio software version (2023.03.0) and exploiting the three
molecular signature databases: Hallmark, Curated and Ontology
gene sets. Enriched terms with a false discovery rate (FDR) and a
(p-nominal) < 0.05 are considered statistically significant.

2.8 A2AR exploration at single-cell
resolution

The scRNA-seq Tumor Immune Single-cell Hub 2 (TISCH2)
database is used to investigate the distribution of A2AR expression
in different cell populations. The cell type annotation of three breast
cancer datasets: BRCA_EMTAB8107, BRCA_GSE114727_10X and
BRCA_Alex was arranged in two levels: Malignancy and Major
Lineage. The manifold learning algorithm (UMAP) is adopted for
dimension reduction. A2AR expression is explored in malignant,
stromal and immune cells.
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2.9 Statistical analysis

Statistical analysis, graphical representations and Heat map
visualization were performedusing GraphPad Prism 8.0.1, RStudio
software version 7.8, Morpheus (Broad Institute) and BioRender. For
Overall survival, Kaplan—-Meier analysis was estimated using the Log-
rank (Mantel-Cox) test. To determine A2AR gene expression status,
the median is used as a cutoff to stratify our METABRIC and
experimental cohorts into A2AR'" and A2AR™®" clusters. The
non-parametric two-sided Wilcoxon signed rank test was applied
for matched-pairs analysis. The Mann-Whitney rank test was
conducted for unpaired analysis. Correlation coefficients were
estimated with Pearson’s r statistic. Analysis with a 2-sided P value
less than 0.05 (p < 0.05) was considered statistically significant.

2.10 Study approval

All experiments were conducted in conformity with the
principles set forth in the Helsinki declaration and approved by
the Ethics Committee for Biomedical Research (CERB) of Ibn
Rochd University Hospital Center, under the approval code (28/
15). The free and informed consent form was signed by all subjects
participating in this study. Medical records containing clinical and
pathological data (age, stage, grade and histological and molecular
subtypes) were obtained from the hospital pathology department.

METABRIC patients are anonymous and their data are publicly
available. The authors of the original publication have obtained free
informed consent from all participants (57), therefore, this part of
the present study was exempt from Institutional Review Board
approval requirements.

3 Results

3.1 Human breast tumor exhibit increased
levels of A2AR compared to matched
uninvaded control tissue

In order to highlight the clinical impact of A2AR and determine
its eventual involvement in human breast tumorigenesis, a cohort of
62 invasive breast carcinoma patients with an average age of 51
years (ranging from 32 to 89 years) was included in this study. The
mRNA relative expression of ADORA2A gene, encoding human
A2AR was assessed by qRT-PCR in 124 fresh specimens.
Comparative analysis of 62 tumor tissues and 62 matched control
tissues revealed increased expression of A2AR in breast tumors
(Figure 2A). To corroborate these findings, we evaluated A2AR
expression at the protein level by performing immunohistochemical
staining in tumor and matched control tissues from 10 patients. The
IgG2a Isotype was used as a negative control, while the placenta and
testis were included as positive control tissues (Figure 2C).
Immunological labeling revealed membrane and cytoplasmic
expression of A2AR protein in both immune and cancer cells
(Figure 2D). Interestingly, quantification of A2AR H-score for
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FIGURE 2

A2AR expression on breast tumors and matched control tissues. The A2AR expression level was measured by qRT-PCR and immunohistochemistry.
(A) A2AR gene expression exhibits an elevated level in breast tumors compared to matched control tissues (p = 0.0176). (C) Representative
immunohistochemical staining for A2AR and the IgG2a isotype (magnification20X, scale bar 200um) in positive control tissues: Placenta (black
arrows indicate tubular epithelial lining cells) and Testis (black arrows indicate germline cells at different development stages, and red arrows show
Leydig cells). (D) A2AR staining showed membrane and cytoplasmic localization within both tumor and immune cells (black arrows indicate tumor
cells, and red arrows show immune cells). (B, D) A2AR protein expression is more pronounced within tumors compared to matched control tissues
(p = 0.0020). Significance was calculated using the Wilcoxon matched-pairs signed rank test. *p<0.05, **p<0.01.

each sample exhibited higher expression within the tumor
compared to matched uninvaded control tissue (Figures 2B, D).
These findings suggest that A2AR might potentially contribute to
the pathogenesis of human breast cancer.

3.2 A2AR is associated with aggressive
clinical features and predicts poor overall
survival in breast cancer patients

Given the increased levels of A2AR within the mammary
tumor, we aimed to explore its clinical value for our patients by
investigating its association to well-established breast cancer
prognostic features. The clinicopathological parameters of
patients are summarized in (Table 1). In high-grade tumors
(grade IIT), an overexpression of A2AR was detected by the
transcriptional analysis (Figure 3A). Our findings further revealed
an association with the most aggressive molecular subtypes, known
for their poor prognosis, by showing a significant upregulation of
our gene of interest in TNBC and HER2+ patients (Figure 3B).
Estrogen and progesterone receptors and human epidermal growth
factor status constitute independent risk factors which affect
prognosis and predict response to immunotherapy. Consequently,
the transcript-level study illustrated the association between A2AR
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and hormone receptor status with unfavorable prognosis (ER- and
PR-) (Figures 3C, D). In contrast, analysis of HER2 status
(Figure 3E) showed no significant difference in expression
between groups. Ki-67 is another distinct parameter considered
for decades as a prognostic marker related to disease aggressiveness
(58). In order to evaluate A2AR expression according to the tumor
proliferation index, we stratified our cohort into two groups, Ki-
67°% (<20%) and Ki-67"#" (>20%). However, although Ki-67Msh
tumors seem to exhibit a strong A2AR transcript level trend
(Figure 3F), the difference is not statistically significant.

The large-scale METABRIC dataset was also investigated to
support the transcriptomic findings from our cohort. To this end,
microarray expression data from 1904 patients with primary invasive
breast carcinoma were explored. Patient clinicalpathological
parameters are described in (Supplementary Table 1). Analysis of
public data showed that A2AR is linked to ductal, lobular and mixed
histological subtypes (Figure 4A). In accordance with the
experimental cohort, High-grade tumors displayed increased A2AR
expression (Figure 4B). As illustrated in (Figure 4D), the molecular
subtyping of the METABRIC dataset included two additional
subgroups (Normal and Claudin-low). In addition to its adverse
prognosis, the latter represents a distinctly aggressive subgroup,
related to stemness characteristics, downregulation of major cell
junction components and activation of the EMT process during
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TABLE 1 Clinicopathological parameters of the experimental cohort.

Real-Time PCR Immunohistochemistry

No. (%) . (%)

Clinicopathological parameters

Histological grade

Grade I 3 4.84 4 8.89
Grade II 31 50.00 17 37.78
Grade 11T 28 45.16 24 53.33

Molecular subtypes

Luminal A 15 24.19 11 24.45
Luminal B 21 33.87 14 31.11
HER2+ 12 19.36 10 22.22
TNBC 14 22.58 10 2222

Estrogen receptor status (ER)
ER+ 36 58.06 24 53.33
ER- 26 41.94 21 46.67

Progesterone receptor status (PR)

PR+ 35 56.45 24 53.33
PR- 27 43.55 21 46.67
HER?2 status

HER2- 40 64.52 31 68.89
HER2+ 22 35.48 14 31.11

Ki-67 proliferation index
Ki-67 Low 11 24.44 14 31.11
Ki-67 High 34 75.56 31 68.89

HER-2, human epidermal growth factor receptor-2; TNBC, triple negative breast cancer; ER, estrogen receptor; PR, progesterone receptor.
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FIGURE 3

A2AR transcript level is linked to unfavorable clinicopathological outcomes. (A, B) The A2AR mRNA relative expression is significantly increased in high
grade (grade Il vs grade Ill: p = 0.0019), HER2+ (HER2+ vs LumA: p = 0.0087), (HER2+ vs LumB: p = 0.0162) and TNBC tumors (TNBC vs LumA: p =
0.0011), (TNBC vs LumB: p = 0.0018). (C, D) A2AR gene expression is strongly elevated in tumors with ER- (p < 0,0001), and PR- (p = 0,0007) status.
(E, F) A2AR has no association with HER2 (p = 0.9388) status and KI-67 proliferation index (p = 0.2130). (G) Kaplan—Meier analysis reveals that A2AR
gene expression is not related to survival (p = 0.3452). Significance was calculated using the Mann-Whitney and the Log-rank (Mantel-Cox) tests.
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns, not significant.
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FIGURE 4

The A2AR gene expression is associated with aggressive clinical features in the METABRIC cohort. Microarray data from 1904 patients with invasive
breast carcinoma were analyzed. (A) A2AR expression is downregulated in mucinous subtype tumors compared to ductal (p = 0.0002), lobular (p =
0.0005) and mixed (p = 0.0015). (B) A2AR is overexpressed in high-grade tumors compared to grade | (p = 0.0027) and grade Il (p = 0.0064).

(C) Patients presenting poor (poor vs excellent: p = 0.0067), (poor vs good: p = 0.0048) or moderate (moderate vs excellent: p = 0.0071), (moderate
vs good: p = 0.0011) prognostic index exhibit high levels of A2AR transcripts. (D) Tumors with an aggressive subtype such as HER2+ (HER2+ vs.
LumA: p = 0.0265), (HER2+ vs. LumB: p = 0.0204) and Claudin Low (Claudin Low vs. Normal: p = 0.0113), (Claudin Low vs. LumA: p = 0.0012),
(Claudin Low vs. LumB: p = 0.0017) show increased A2AR expression. (F, G) A2AR gene level is linked to PR- (p = 0.0359) and HER2+ (p = 0.0160)
status. (E, H) A2AR shows no association with ER (p = 0.6840) and Ki-67 (p = 0.0601) status. (I) Kaplan—Meier analysis reveals that A2AR gene
expression is not related to survival (p = 0.6009). Significance was calculated using the Mann-Whitney and the Log-rank (Mantel-Cox) tests. *p<0.05,

**p<0.01, ***p<0.001, ns, not significant.

tumor progression (59, 60). Interestingly, our data showed the
association of A2AR with Claudin-low and HER2+ subtypes.
Furthermore, A2AR mRNA levels was increased in patients
exhibiting PR- and HER2+ status (Figures 4F, G), however, no
significant difference was detected between groups of ER status and
Ki-67 proliferation index (Figures 4E, H).

Although the management of breast cancer is mainly based on
well-defined clinical features, this pathology is characterized by an
extremely complex and heterogeneous molecular profile. Therefore,
the NPI was established to predict the clinical outcome of patients
(prediction of 10-year survival after surgery). This prognostic index
is widely used in clinical practice and has undergone prospective
validation after long-term follow-up in large multicentric studies.
The NPI is computed by combining three histopathological criteria
(grade and size of tumor and lymph node invasion). Consequently,
we performed the NPI analysis by stratifying the cohort into 4
prognostic groups. Thus, we showed that A2AR was linked to
patients with moderate to poor survival prediction (Figure 4C).

To substantiate these findings, we further analyzed the
expression of our molecule of interest at the protein level by
immunohistochemistry. Immunological staining was performed
on tumor specimens from 45 patients. For each sample, H-score
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of cancer cells and tumor-infiltrating immune cells were estimated
independently. Consistent with the transcriptomic data, A2AR
expression on tumor-infiltrating immune cells was significantly
associated with ER- and PR- status (Figures 5C, D), HER2+ and
TNBC molecular subtypes (Figures 5A, G), as well as high tumor
grade (Figures 6A, B). However, A2AR was not associated with
HER2 status (Figure 5E). Furthermore, in contrast to the
transcriptomic data, immunohistochemical staining revealed

increased levels of A2AR protein in Ki-67"8"

tumors (Figures 5B,
F). This discrepancy between gene and protein expression profiles
could be ascribed to an eventual post-transcriptional regulation.
Surprisingly, the analysis of tumor cells did not show any
association between A2AR and clinicopathological parameters.
Finally, we evaluated the prognostic value of A2AR by
estimating overall survival. Accordingly, patients were stratified
into two groups, A2AR'"Y and A2ARME". Clustering was
performed according to A2AR expression using the median as a
cutoff. At the transcriptomic level, Kaplan-Meier analysis estimated
by the Log-rank (Mantel-Cox) test showed no significant difference
between groups in the experimental (Figure 3G) and METABRIC
(Figure 4I) cohorts. Interestingly, at the protein level, survival
curves reflect the association of A2AR with a worse prognosis. In
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FIGURE 5

A2AR protein is associated with aggressive molecular subtypes and a high proliferation index. (A, B) Representative immunohistochemical staining
(magnification 20X, scale bar 200pm) showing A2AR expression according to molecular subtypes and Ki-67 proliferation index status. (C—F) A2AR is
overexpressed in immune cells from tumors with status: ER- (p = 0.0003), PR- (p < 0.0001) and high Ki-67 proliferation index (p = 0.0473). (G) A2AR
is highly expressed in immune cells of HER2+ (HER2+ vs. LumA: p = 0.0073), (HER2+ vs. LumB: p = 0.0054) and TNBC (TNBC vs. LumA: p =
0.0032), (TNBC vs. LumB: p = 0.0035) tumors. Significance was calculated using the Mann-Whitney test. Black arrows indicate tumor cells. Red
arrows show immune cells. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns, not significant.

fact, A2AR™®" patients exhibit poor overall survival compared to
the A2AR™ group (Figure 6C). Therefore, our findings illustrate
the prognostic impact of A2AR expression by predicting adverse
clinical outcomes and negatively affecting the overall survival of
breast cancer patients. In this regard, it should be emphasized that
A2AR might be involved in breast cancer progression and
aggressiveness mainly through the immunological process.

3.3 A2AR is remarkably correlated
with PD-1 and CTLA-4 inhibitory
immune checkpoints

Admittedly, in some tumor contexts, most notably melanoma,
ICIs have proved to be considerably effective by achieving more
durable antitumor responses than conventional therapies.
Nevertheless, they have not been successful in breast cancer
management, particularly for HER2+ and TNBC cancers, which
are defined as immunogenic tumors. Indeed, only a restricted subset
of metastatic TNBC is responsive to these immunotherapeutic
agents with an overall response rate reaching 10%. Several studies
have provided compelling evidence for the involvement of
compensatory and synergistic immune checkpoint mechanisms in
ICI monotherapy resistance. In this regard, we aimed to investigate
the correlation of A2AR with PD-1 and CTLA-4 regulatory proteins
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to identify the potential interplay between these immunological
pathways and consequently emphasize the relevance of combined
therapy in human breast cancer. As a first result, our
immunohistochemical analysis revealed that among these three
regulators, A2AR protein exhibit the strongest expression in
human breast tumor infiltrating immune cells (Figures 7A, B).
Subsequently, Pearson’s coefficient showed a positive correlation
between A2AR and PD-1 protein (Figure 7C). However, as depicted
in (Figure 7D), our protein of interest displays a negative correlation
with CTLA-4. Taken together, these findings imply that the
prevailing immunosuppression within the mammary TME may
be more related to the immunosuppressive effect of A2AR and an
eventual interplays with PD-1 and CTLA-4 checkpoints might exist.
Therefore, we suggest that precision immunotherapy management
in breast cancer requires a careful focus on the status of different
immunological biomarker expression.

3.4 A2AR is closely linked to the biological
processes underlying tumorigenesis and
breast cancer progression

After shedding light on the clinical and prognostic relevance of

A2AR in breast cancer, we attempted to assess its probable
involvement in tumor pathogenesis. In this regard, we performed
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FIGURE 6

The A2AR protein is associated with high grade and predicts poor survival. (A) Representative immunohistochemical staining (magnification 20X,
scale bar 200pm) of A2AR according to different histological grades. (B) A2AR shows high expression in immune cells from high-grade tumors
(grade 1) compared to those from grade Il (p = 0.0054). (C) Patients overexpressing A2AR (A2AR™9") predict poor overall survival (o = 0.0350).
Significance was calculated using the Mann-Whitney and the Log-rank (Mantel-Cox) tests. Black arrows indicate tumor cells. Red arrows show

immune cells. **p<0.01, ns, not significant.

Gene Set Enrichment Analysis (GSEA) to decipher the biological
functions and mechanisms implicated in cancer development and
progression. According to the Normalized Enrichment Score (NES),
analysis of three human molecular signature databases (Hallmark,
Curated and Ontology) revealed that the A2ARM®" phenotype is
mainly concentrated in a panoply of gene sets related to oncogenesis
and tumor progression (Figure 8C). As illustrated in (Figures 8A, B),
the A2AR is linked to the invasive breast cancer signature, oncogenic
and angiogenic signaling pathways (Myc, VEGF and IL6-JAK-
STAT3) as well as proliferation, metastasis, hypoxia, adhesion and
cell cycle processes (Racl GTPASE cycle). In light of these results,
A2AR could be a key mediator in the development and progression of
human breast cancer.

3.5 A2AR"9" TME exhibits profuse
infiltration of protumoral cells and an
upregulation of immunosuppressive
molecular mediators

In breast cancer, the immune profile of TME plays a critical role
in the establishment of patient prognosis and response to
immunotherapy. Mellman et al. have provided an overview of the
immunologic background for each tumor phenotype. Indeed,
tumors exhibiting an immune-inflamed profile testify to a pre-
existing immune response marked by upregulation of inhibitory
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factors and protumoral cell infiltration. Therefore, patients
harboring these tumors are more prone to respond to
immunotherapy. Since our immunohistochemical analysis
revealed an increased prevalence of A2AR in breast tumor
infiltrating immune cells, we speculated that A2AR might
represent a prominent mediator influencing the composition and
abundance of the immune infiltrate. For this purpose, we performed
a computational analysis to explore the immune profile of A2AR-
related TME, by investigating the composition and abundance of
several immune cell subsets in the 1904 patients of METABRIC
cohort. To strengthen the validity of our results, the analysis is
performed using four different deconvolution algorithms. First, the
immune signature of the computational algorithm (EPIC) was used
to estimate the proportions of immune and cancer cells (Figure 9A).
The results show increased infiltration of B cells, CD4+ T cells, NK,
macrophages and Endothelial cells within the A2AR™&" TME.
However, CD8+ T cells are significantly more abundant in
A2AR"" tumors. Subsequently, we used the CIBERSORT
(Figure 9B) and ImmuneCellAI (Figures 9C-E) algorithms to
obtain a complete and integrated view of the different cell sub-
populations and to identify which cell subsets CD4+, TCD8+, NK,
DC and T macrophages infiltrate the A2AR™" TME. Interestingly,
patients with A2AR™" TME displayed profuse infiltration of M0
and M2 macrophages, Treg, Trl, nTreg, iTreg, T CD4+ memory
resting cells, B cells, T y8, T CD4+ naive, Thl, Th2, Th17, Tth, Tcm
and exhausted T CD8+ cells. However, DC, monocytes, activated
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A2AR exhibits a significant correlation with PD-1 and CTLA-4 inhibitory immune checkpoint molecules. (A) Representative Immunohistochemical
staining of A2AR, PD-1 and CTLA-4 (magnification 20X, scale bar 200um). (B) A2AR protein seems to have the strongest expression compared to
PD-1 (p < 0.0001) and CTLA-4 (p < 0.0001). (C, D) The expression of A2AR correlated positively with PD-1 (p = 0.0053, r = 0.41) and negatively with
CTLA-4 (p = 0.0021, r = -0.44). Statistical difference was calculated using the Wilcoxon matched-pairs signed rank test. Pearson'’s rank coefficient
was used for correlation. Black arrows indicate tumor cells. Red arrows show immune cells. ****p<0.0001, ns, not significant.

NK, NKT, neutrophils, MAIT, effector memory and naive CD8+ T
cells appear to be more abundant in A2AR"" tumors.

In order to estimate the stromal and immune score and to
predict tumor purity, we applied the ESTIMATE enrichment test
(Figures 9F, G). A2ARMEM tumors exhibit high stromal and
immune scores. The ESTIMATE score, which represents the non-
tumoral component, was also found to be high in this group of
patients. Meanwhile, A2AR™" TME show lower tumor purity than
A2AR"" group.

After investigating the cellular components linked to A2AR, we
attempted to pinpoint the functional state of CD8+T cells from
patients overexpressing this gene (A2ARMS" CD8+T cells).
Expression of effector and cytotoxic molecules (IFNy, GZMA,
GZMB, and PRF1) and inhibitory immune regulators (PD-1, PD-
L1, CTLA-4, TIM-3, LAG-3, and VISTA) was assessed. As depicted
in (Figure 9H), A2ARME" CD8+T cells weakly express IFNY,
GZMA, GZMB and PRFI1. In contrast, PD-1, CTLA-4, LAG-3,
and VISTA exhibit an upregulation in the same group of cells
(Figure 91). Therefore, A2AR may also affect the functional state of
intratumoral CD8+T cells.

To further elucidate the relevance of A2AR in TME regulation,
we also investigated the pivotal molecular mediators involved in
immunosuppression and tumor progression. We therefore assessed
the correlation of A2AR with inhibitory immune checkpoints
(Figures 10A, B) and chemokines (Figures 10C, D) involved in
the attraction and polarization towards tolerogenic and protumoral
cell sub-sets. Thus, A2AR was associated and positively correlated
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with these immunoregulatory molecules, including the immune
checkpoints PD-1, CTLA-4, BTLA, LAG-3, TIGIT, VTCN-1, PD-
L1, CD-47 and GAL-9, as well as the chemokines CCL-22, CXCL-
13, CCL-5, CCL-17, CCR-4 and CCL-25.

In light of these results, this part of our work illustrates the
potential involvement of A2AR in the establishment of the
immunosuppressive TME, which is characterized by a pro-tumor
cellular component, low tumor purity and an upregulation of major
immunosuppressive molecular mediators.

3.6 A2AR tends to be prominently
expressed on Tregs and exhausted
CD8+ T cells

To decipher A2AR-expressing cells in the TME, we used the
Tumor Immune Single-cell Hub 2 (TISCH2) database. For this
purpose, three breast cancer datasets; BRCA_EMTAB8107
(Figures 11A, B), BRCA_GSE114727_10X (Figures 11C, D) and
BRCA_Alex (Figures 11E, F), were analyzed. As a first result, A2AR
seems to be expressed more in immune cells than in malignant and
stromal cells. Subsequently, major lineage data showed that among
the different cell populations analyzed, A2AR tends to be
prominently expressed on Tregs and exhausted CD8+ T cells.
These findings further underscore the potential contribution of
A2AR to the immunosuppressive process.
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Normalized Ensichment Score (NES)

A2AR association with signaling pathways and biological functions involved in breast cancer pathogenesis revealed by Gene Set Enrichment Analysis.
(A) Gene Set Enrichment Analysis (GSEA) plots illustrate statistically significant and concordant differences in an a priori defined set of genes
reflecting various biological processes, between A2ARY and A2AR™9" clusters. The Plots depict the key pathways implicated in breast cancer
development and progression which are positively enriched in A2AR™9" patients. (B) Random ES (Enrichment Score) distribution based on the
previous nine enrichment plots. (C) The major significant pathways involved in proliferation, invasion, angiogenesis, and metastasis are illustrated in
the bubble plot. Hallmark, Ontology and Curated gene sets were exploited as molecular signatures. Enriched terms with a false discovery rate (FDR)
and (p-nominal) < 0.05 are considered statistically significant. ES, Enrichment Score; NES, Normalized Enrichment Score.

3.7 A2AR is involved in immune tolerance
and tumor escape processes

To further substantiate the protumoral aspect of A2ARME
TME, we assessed their immunoregulatory impact using GSEA
enrichment analysis. As illustrated in (Figure 12B), a wide range of
immunosuppression and tumor escape-related gene-sets is
positively enriched in A2ARM®" TME. These pathways mainly
involve the dysfunction and downregulation of T cell
proliferation, impaired antigen-specific response, reduced natural
killer cell count, upregulation of IL-17 production, tumor escape
and tolerogenicity (Figure 12A, Supplementary Figure 1).

Therefore we can suggest that A2AR represents a potent
immunosuppression mediator and a promising target for
immunotherapy to overcome the immune evasion prevalent in
human breast cancer.

4 Discussion

The TME reflects a dynamic network wherein tumor and
immune cells interplay is strictly mediated by molecular effectors
promoting tumor progression (61, 62). The main constraint for
breast cancer to elicit an effective antitumor response resides in its
highly immunosuppressive profile. Immune evasion constitutes a
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critical step in breast tumor progression, where inhibitory immune
checkpoint molecules represent a crucial protumoral mediator (63,
64). Thus, to overcome and defeat immune escape, the ICIs
targeting PD-1 and CTLA-4 have been conceived as an emerging
immunotherapeutic strategy. This treatment approach has proven
promising, however, efficient and long-lasting responses
occur among a restricted group of patients (65). In this
regard, Atezolizumab (anti-PD-L1), the only FDA-approved
immunotherapeutic agent for breast cancer is unfortunately
limited to metastatic TNBC (66). The unresponsiveness to current
ICIs could be ascribed to the post-therapeutic upregulation of other
compensatory immune checkpoints such as A2AR (56, 67, 68). This
mechanism is often adopted by tumors to counterbalance and offset
the immunosuppressive effect of the blocked molecule (69).
Furthermore, one third of invasive breast cancers exhibit
hypoxic TME, which could promote the HIF-lo-A2A-
adenosinergic pathway, and consequently the establishment of
immunosuppression (70, 71). All these facts sparked our interest
in bringing to light the clinical and prognostic relevance of A2AR
and its related immunological profile in breast cancer. Accordingly,
the first part of this work focused on transcriptomic and proteomic
analysis in two distinct breast cancer cohorts. Our experimental
study revealed that breast tumors exhibited increased levels of
A2AR transcript compared to uninvaded control tissues. This
overexpression was related to high grade, ER- and PR- status as
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well as HER2+ and TNBC molecular subtypes. Protein analysis has
supported the transcript level results with an additional association
to the Ki-67 proliferation index. Nevertheless, this observation was
noted exclusively in immune cells, hinting that A2AR severely
affects patient clinical prognosis probably via the immune axis
regulation. These findings were confirmed by METABRIC cohort,
wherein A2AR expression was associated with high grade,
aggressive histological subtypes, as well as PR- and HER2+ status.
Interestingly, in addition to HER2+ molecular subtype, a strong
expression of this inhibitory receptor was observed in Claudin-low
tumors. The latter represents a group of patients who manifest poor
survival (59). Moreover, the Nottingham Prognostic Index reported
that patients predicting short 10-year survival displayed high levels
of A2AR. Kaplan-Meier analysis further demonstrated the
prognostic significance of A2AR by showing its association with
worse survival in breast cancer patients. In gastric and colorectal
cancers, A2AR protein appears to be overexpressed with a
correlation to disease progression and reduced survival (48, 53).
Head and neck squamous cell carcinoma samples also showed
elevated expression of this protein, which was linked to advanced
pathologic grade, larger tumor size, positive lymph node status,
recurrence, and poor survival (47). Similar results were observed in
renal cell carcinoma where A2AR was associated with metastatic
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profiles. It was also found that patients with A2AR™" status did not
respond efficiently to anti-VEGF or anti-PD-1 monotherapy as well
as to combined therapy with anti-PD-1 and anti-CTLA-4 (52). In
agreement with our findings, all these observations testify to the
aggressive clinical outcomes and poor prognosis of A2AR elevated
expression in cancer.

Although ICIs monotherapy has emerged as an appealing
strategy, the synergistic effect of multi-targeted blockade has
brought considerably superior benefits (39, 67, 72-74). In fact,
the relevance of combined therapy mirrors the cooperative
interaction between negative regulators, which simultaneously
collaborate to achieve immune tolerance (26, 52, 73, 75). Co-
inhibition of A2AR and PD-1 or CTLA-4 has been investigated in
several types of cancer and proven promising for the clinical
application (39, 67, 72). However, the potential interplay between
A2AR and PD-1 or CTLA-4 has not yet been elucidated in human
breast cancer. In this regard, we have explored the correlation
between A2AR and these two inhibitory receptors in the
mammary TME. As a first observation, compared to PD-1 and
CTLA-4, A2AR appears as the most highly expressed protein
in breast cancer tumors. This could imply that the
immunosuppression occurring in breast TME might be further
orchestrated by A2AR pathway. As expected, our experimental
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A2AR is positively correlated with immunosuppressive and protumoral molecular mediators. (A, C) A2AR exhibits a significant positive correlation
with inhibitory immune checkpoint and immunosuppressive chemokines. (B, D) Heat maps illustrating the upregulation of inhibitory immune
checkpoint and immunosuppressive chemokine in breast cancer patients overexpressing A2AR. Statistical difference was calculated using the Mann-

Whitney rank test. Pearson’s rank coefficient was used for correlation.

results also revealed the positive correlation between A2AR and
PD-1. Therefore, we can speculate that inherent interdependence
may exist between these two receptors to synergistically amplify
immune escape. Compared to single agent treatment, dual
blockade of A2AR and PD-1 pathways exhibited a significant
improvement in immune response restoration, tumor growth
inhibition and survival in preclinical models of breast and
colorectal cancer (39, 67, 74, 76). In metastatic renal cell
carcinoma patients treated with anti-PD-1, increased A2AR
expression was associated with poor treatment response and
reduced survival (52). Accordingly, the phase 1/1b clinical trials
conducted on refractory renal and non-small cell lung cancer
patients reported that A2AR antagonism showed antitumor
activity with clinical responses, even in patients resistant or
refractory to prior anti-PD-1/PD-L1 treatment (56, 77).
Otherwise, CD73/A2AR and PD-1/PD-L1 signaling was found
to induce immunosuppressive TME in diffuse large B-cell
lymphoma (78). Indeed, patients whose CD8+T cells co-express
both A2AR and PD-1 had shorter overall and progression-free
survival than those whose CD8+T cells solely express either AZAR
or PD-1 (75). Furthermore, studies have shown that A2AR
stimulation would impact the regulation of PD-1/PD-L1
pathway, thereby supporting the interactive relationship
between these two immune checkpoints. As a matter of fact,
A2AR activation upregulates PD-1 on tumor-specific CD8+T
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and Treg cells, whereas its inhibition decreases the expression of
PD-L1 on myeloid APCs and PD-1 on both tumor-associated
CD8+T and Tregs cells (74, 79, 80).

In turn, concomitant blockade of A2AR and CTLA-4 also
proved quite beneficial in various experimental models. A2AR
antagonism was proven to significantly enhance the antitumor
activity of anti-CTLA-4 in colorectal, renal, melanoma, prostate
and metastatic breast cancer models (39, 72-74). It has been
reported that co-targeting these two immunosuppressive
pathways exhibited improved immune response with prolonged
survival, whereas monotherapy showed partial efficacy (39, 72, 73).
We therefore investigated the correlation between A2AR and
CTLA-4 expression in our breast cancer patients. Surprisingly, in
contrast to PD-1, we found that A2AR is negatively correlated with
CTLA-4. Indeed, many studies have revealed that down-regulation
of immune checkpoint molecules could induce the compensatory
expression and stimulation of other immunosuppressive pathways.
PD-1 deficient mice were found to overexpress the CTLA-4 protein
(26, 81). Meanwhile, inhibition of CTLA-4 also results in
upregulation of PD-1 and adenosinergic genes (72, 81).
Consequently, we can suggest that the cooperative mechanism of
immune checkpoints does not always rely on concomitant action,
but also on compensatory feedback loops.

The composition of tumor-infiltrating immune cells is of major
prognostic relevance, given its key role in disease growth and
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development as well as response to treatment. The TME harbors
different cell types, which can either favor tumor progression or
conversely serve an antitumor function (62, 82). ESTIMATE,
stromal and immune score computation revealed low tumor
purity and abundant stromal and immune infiltration in
A2AR"M" tumors. In fact, low tumor purity is an independent
poor prognostic factor. Previous studies have shown the significant
association of this tumor feature with short survival, early relapse,
invasive and metastatic phenotype, EMT, upregulation of inhibitory
immune checkpoints and immunosuppressive chemokines as well
as high infiltration of protumoral cells, including M2 macrophages
and Tregs (83, 84).

Subsequently, investigating the profile of tumor-infiltrating cell,
we found that compared to the A2AR'™ phenotype, TME with a
strong A2AR expression had an increased proportion of protumoral
cells, including M0 and M2 macrophages, different subsets of Tregs
(Trl, nTreg and iTreg), exhausted T CD8+ cells and CD4+ memory
resting T cells. The association between MO macrophages and
unfavorable patient prognosis has been illustrated in several
tumor contexts. In breast cancer, a high fraction of this cell
subset correlates positively with high grade, high Ki-67
proliferative index and poor overall and disease-free survival (85—
89). Whereas the M2 phenotype has been shown to have
proangiogenic activity promoting breast cancer metastasis and to
be closely related to worse clinical outcomes (87, 89, 90). The
polarization of monocytes into tolerogenic M2-like macrophages
known for their weak proinflammatory effect could occur in
response to A2AR stimulation. The protumoral behavior of this
cell type lies in its high expression of IL-10, arginase 1, iNOS and
VEGF with low expression of TNF and IL-12 cytokines (45, 91).

In turn, the frequency of Treg cells represents a useful hallmark
for breast cancer prognosis. A higher fraction of Foxp3+ Tregs
correlates positively with ER-, PR- and HER2+ status, nodal
invasion and short survival (92, 93). However, the decrease in
Treg abundance was associated with the complete pathological
response in TNBC patients who underwent adjuvant
chemotherapy (94). Taylor et al. reported that Tregs exhibit a
substantial proportion of Claudin-low tumor-infiltrating
lymphocytes. They have also shown that Tregs isolated from
Claudin-low tumor-bearing mice display a strongly
immunosuppressive function capable of inhibiting T cell
proliferation and effector response (95). The activation of A2AR
increases the intracellular rate of cAMP and HIF-1ot in Tregs, which
triggers the downstream signal transduction cascades leading to
enhanced transcription of genes involved in Tregs development and
function including; Foxp3, IL-10, TGFf, GAL-1, PD-1, CTLA-4
and LAG-3 (46, 96-100). A2AR+Tregs are able to establish an
immunosuppressed state of TME by upregulating CD39 and CD73
ectoenzymes, resulting in eADO release, which in turn induces
inhibition of Teff lymphocytes (40, 46, 47, 97, 99). This eADO can
also operate in an autocrine loop by feeding back to Tregs the
transducing stimulus of rising intracellular cAMP via its A2AR
receptor (97, 100). These observations were crowned by works of
pharmacological blockade and gene silencing of A2AR in
experimental models, highlighting the immunosuppressive impact
of this receptor when expressed on Tregs (40, 47, 100).
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Meanwhile, substantial abundance of CD4+ memory resting T
cells is associated with unfavorable prognosis in gastric cancer
(101). Nevertheless, prolonged survival and remarkable response
to ICIs as well as increased tumor mutational burden and
neoantigen load were observed in melanoma patients with a
profuse infiltration of CD4+ memory activated T cells and a
lower fraction of CD4+ memory resting T cells (102).

It is noteworthy that cell infiltrate analysis also portrays a
reduced proportion of cells mediating antitumor activity, notably
DC, activated NK, NKT and effector memory CD8+ T cells in
A2AR"E" patients. It is clearly established that the presence of the
above-mentioned cells within breast TME correlates positively with
prolonged survival, prevention of metastatic progression and
complete pathological response, consequently affording better
prognosis for patients (103-109).

In NK cells, A2AR is regarded as an intrinsic negative regulator
of the maturation and effective killing function of this cell type.
Targeting this ADO-receptor results in reduced metastasis,
improved tumor control and delayed tumor initiation in
experimental models, by enhancing NK-mediated cytotoxic
activity in a PRF1 and GZMB-dependent manner (42, 110).
Furthermore, during infection and cancer, A2AR engagement
seems to inhibit via IL-15 signaling blockade, the generation of
human CD39+NK cells endowed with a potent degranulation
capacity and overexpression of IFNy and TNFo (111).

Several works have provided through in vitro systems and various
murine models a clear evidence of A2AR-mediated CD8+T cell
exhaustion (39-41, 68, 112). By impairing upstream TCR signaling,
A2AR downregulates NOTCH1 pathway, leading to reduced
production of IFNYy, PRF1 and GZMB (39-41). Moreover,
restricted CD8+T cell proliferative potential has been described in
A2AR-deficient mice (36). In this regard, our study aimed to
investigate the expression impact of this ADO-receptor on the
functional state of human breast tumor-infiltrating CD8+ T cells.
Our digital cytometry analysis revealed a very weak expression of
effector and cytotoxic molecules, including IFNY, GZMA, GZMB and
PRFI within CD8+T cells from A2AR"&" patients. In contrast, an
upregulation of negative regulators such as PD-1, CTLA-4, LAG-3
and VISTA was observed within this cell cluster. The inhibitory
immune checkpoints included in the analysis are well established
markers of CD8+T cell depletion (113-116). Based on these
observations, our results provide some evidence of the impact of
A2AR on the dysfunctional profile of CD8+T cells in breast cancer.
Interestingly, Single-cell data corroborate these findings, showing that
A2AR tends to be upregulated on exhausted CD8+ T cells and Tregs.
As a matter of fact, recent study repoted that pharmacological and
genetic targeting of A2AR substantially enhanced the clinical efficacy
of CAR-T-cell therapy by promoting their activation, effector
cytokine production and antitumor activity in breast tumor-bearing
mice (68). A2AR antagonism has also improved melanoma patient-
derived CAR-T-cell activity (68).

Admittedly, the cellular component has a major impact on
cancer prognosis. However, molecular factors released by
immunosuppressive TME cells and/or promoting their attraction
and polarization towards a protumoral and tolerogenic phenotype
play a pivotal role and reflect the aggressive tumor behavior. We
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therefore studied the association of our gene of interest with a panel
of inhibitory immune checkpoints, including PD-1, CTLA-4,
BTLA, LAG-3, TIGIT, VICN-1, PD-L1, CD-47 and GAL-9, as
well as immunosuppressive chemokines such as CCL-22, CXCL-13,
CCL-5, CCL-17, CCR-4 and CCL-25. Thus, A2AR was found to be
positively correlated with these well-known mediators of
immune evasion.

Finally, the last part of our work focused on enrichment analysis
to provide further evidence for A2AR involvement in breast cancer
pathogenesis. Thus, the present study revealed the close association of
this inhibitory immune checkpoint with the invasive breast cancer
signature as well as the mechanisms of immunosuppression, tumor
escape, proliferation, hypoxia, angiogenesis and metastasis. In the
light of these findings and to the best of our knowledge, this work is
the first to elucidate the clinical and immunological relevance of
A2AR in breast cancer. Considering its link to dismal clinical
outcomes and unfavorable prognosis, we have provided compelling
evidence for the involvement of this ADO-receptor in the
aggressiveness of the disease. Furthermore, the present study
underlines the link between A2AR and the mechanisms of
immunosuppression and tumor development and progression.

Despite significant advances in the management of breast
cancer, it remains a major public health problem. Although
immunotherapy with current immune checkpoint inhibitors has
attracted a great deal of interest, they remain ineffective in breast
cancer. It is necessary to explore new potential biomarkers to
improve patient prognosis. Accordingly, our work suggests that
A2AR could be considered a promising therapeutic target for
human breast cancer. Moreover, its use as part of a combination
therapy might enhance the efficacy of currently available ICIs.
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