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Editorial on the Research Topic

Advanced technologies of UAV application in crop pest, disease and
weed control

In recent years, the use of unmanned aerial vehicles (UAVs) as auto-spraying machines
for plant protection has been increasing (Hu et al, 2022). Recent research has been
conducted on the spray deposition/drift patterns of plant protection UAVs (Tang et al,
20205 Li et al,, 2022), but further exploration is required to ensure their efficient and
accurate application. This Research Topic aims to conduct in-depth studies on new
technologies for the application of plant protection UAVs in crop pest, disease, and
weed control. The published articles cover four topics including pest, disease, weed
detection, and identification; canopy remote sensing and identification; strategies for
improving the spray quality of UAV applications; and spray drift assessment. This
research aims to serve as a reference for new theories and advanced technologies and to
optimize the use of UAVs in crop pest, disease, and weed control, helping to expand the
application potential of plant-protection UAVs.

Pest, disease, and weed detection and identification

Accurate target detection is crucial for establishing prescriptions for chemical
applications and enabling variable spraying with UAVs. This has become even more
important in the application of high-speed plant-protection UAVs, where there is increased
demand for precise target identification.

Xia et al. presented a method for identifying resistant weed biotypes using multispectral
and RGB images based on a deep convolutional neural network (DCNN). They developed a
weed spectral resistance index (WSRI) that compared susceptible and resistant weed
biotypes. By fusing multispectral and RGB images, they enhanced the accuracy of

5 frontiersin.org
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resistance identification. The DCNN achieved impressive field
accuracies of 81.1% and 92.4% for barnyard grass and velvet
leaves, respectively.

In another study, Yu et al. developed a weed vegetation index
(WDVIyr) by utilizing the reflectance of three bands—red, green,
and near-infrared— captured by multispectral images. Compared
with the traditional vegetation indices of NDVI, LCI, NDRE, and
OSAVI, WDVIyr showed the most effective ability to identify
weeds from rice, water cotton, and soil, with a weed identification
accuracy of 93.47% and a kappa coefficient of 0.859.

In addition to weed identification, Lu et al. proposed a method
for estimating leaf chlorophyll content in jujube leaves infested by
leaf mites using soil plant analysis development (SPAD). Their
approach aimed to estimate the severity of mite infestation by
correlating it with the SPAD values of jujube leaves. A particle
swarm optimization-extreme learning machine (PSO-ELM) for
SPAD and vegetation indices were established and exhibited
superior accuracy (R*=0.856, RMSE =0.796) when compared
with the ELM model alone (R®=0.748, RMSE =1.689). This
indirect measurement approach is a novel method for detecting
and identifying pests and diseases.

Canopy remote sensing
and identification

A high-precision canopy segmentation methodology called
MPAPR R-CNN, specifically designed for high-density cultivation
orchards, was proposed utilizing low-altitude visible light images
(Zhang et al.). This method accurately identifies and segments the
canopy edge, which can be affected by tree branch extensions and
shadow obstructions. The researchers employed a Mask R-CNN as
the base segmentation algorithm, incorporating a path
augmentation feature pyramid network (PAFPN) and the
PointRend algorithm to achieve precise boundary delineation of
apple tree canopies. Training with the PAFPN and Point-Rend
backbone head resulted in significant improvements, with average
precision scores increasing by 8.96%.

Li et al. introduced a deep-learning-based method for counting
maize plants using image datasets. A real-time detection model for
maize plants was trained based on YOLOVS5, and a tracking and
counting approach was developed using Hungarian matching and
Kalman filtering algorithms. The maize plant counts using this
method exhibited a high correlation with the manual count results
(R* = 0.92). In a separate study, Zhang et al. proposed an improved
lightweight network, improved YOLOVS5s, for dragon fruit detection
in an all-weather environment. The results demonstrated that the
model achieved a mean average precision (mAP) of 97.4%,
precision (P) of 96.4%, and recall rate (R) of 95.2%. Compared
with the original YOLOv5s network, the improved model exhibited
a reduction in model size, params, and floating-point operations
(FLOPs) by 20.6%, 18.75%, and 27.8%, respectively.
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Strategies for improving spray quality
of UAV application

Liu et al. conducted a study that investigated the impact of
adjuvants on the physicochemical properties of defoliant solutions
and droplet deposition in defoliation spraying using plant-
protection UAVs. They aimed to determine the type of adjuvant
that enhances the effect of defoliation on pepper plants. Previous
research has demonstrated that the appropriate addition of
additives to a spray solution can reduce spray drift and improve
droplet adhesion to leaves. By employing this method, droplet
deposition increases, and the defoliation effect is achieved.
Among the adjuvants used in their study, Puliwang was the most
efficient for the aerial application of defoliants.

Downwash airflow is a prominent characteristic of plant-
protection UAV operations. Chang et al. employed the Lattice
Boltzmann Method (LBM) to investigate the rotor flow field of a
quadrotor plant-protection UAV at different speeds. As the rotor
speed increased, the maximum velocity and vorticity of the wind
field under the rotor increased gradually, whereas the ultimate
values of the velocity and vorticity decreased owing to the
emergence of turbulence. This is expected to reveal and
comprehend the changes in the rotor flow field of plant-
protection UAVs as the pesticide loading dynamically evolves.

Considering the limited deposition in the lower canopy when
using plant-protection UAVs, particularly in high-density fruit
trees, Jiang et al. developed a stereoscopic plant-protection system
(SPS) consisting of a small swing-arm ground sprayer and a UAV
sprayer. This approach demonstrated that the density of vertical
droplet deposition in the canopies ranged from 90 to 107 deposits/
cm?, and the uniformity was 38.3% higher than that of
conventional methods.

Spray drift assessment

The primary current challenge to the widespread adoption of
plant-protection UAVs is the potential risk associated with spray
drift exposure in pesticide applications. Accurate measurement of
spray drift is crucial because it serves as the basis for scientifically
developing spray technology and selecting appropriate operating
environments. Li et al. presented a method for evaluating spray drift
based on 3D point cloud data from a light detection and range
technique (LiDAR). LiIDAR measurements provide valuable spatial
information, including the height and width of drifting droplets
(Liu et al., 2022). However, it is important to note that LIDAR
detection is sensitive to droplet density or drift mass in space, and
drift clouds with lower densities and smaller droplet sizes may not
be effectively detected by LIDAR. This method has the potential to
serve as an alternative tool for evaluating the drifts of different spray
configurations, although it may not provide direct measurements of
the actual spray drift mass.

frontiersin.org
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Conclusion

Plant-protection UAVs are a promising tool, having shown
significant success in East Asia, particularly in China, which is the
focus of the articles in this Research Topic. All of these published
manuscripts were funded by the Chinese government. Australian
scholars have also contributed to the study of spray drift evaluation
using 3D LiDAR. The greatest challenges faced by plant-protection
UAVs in global applications are safety concerns and incidents of
environmental pollution caused by the off-target drift of high-
concentration pesticides induced by downwash flow at a higher
operating altitude. In addition, some users have a limited
understanding of plant-protection UAVs, particularly regarding the
feasibility of using a minimal application volume rate for pest and
disease control. Nevertheless, the situation may eventually change
with new technological developments, given the exceptional
operational capabilities of plant-protection UAVs in China.

We hope that the readers will find this Research Topic a
valuable reference for understanding state-of-the-art advanced
technologies in UAV chemical applications and their practical
implications for precise spraying.
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" College of Engineering, Anhui Agricultural University, Anhui, China, ¢ College of Engineering, Northeast Agricultural
University, Harbin, China, ? Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences
(JAAS), Jiangsu, China

Atrazine is one of the most widely used herbicides in weed management. However,
the widespread use of atrazine has concurrently accelerated the evolution of weed
resistance mechanisms. Resistant weeds were identified early to contribute to crop
protection in precision agriculture before visible symptoms of atrazine application to
weeds in actual field environments. New developments in unmanned aerial vehicle (UAV)
platforms and sensor technologies promote cost-effective data collection by collecting
multi-modal data at very high spatial and spectral resolution. In this study, we obtained
multispectral and RGB images using UAVs, increased available information with the
help of image fusion technology, and developed a weed spectral resistance index,
WSRI = (RE-R)/(RE-B), based on the difference between susceptible and resistant weed
biotypes. A deep convolutional neural network (DCNN) was applied to evaluate the
potential for identifying resistant weeds in the field. Comparing the WSRI introduced
in this study with previously published vegetation indices (VIs) shows that the WSRI is
better at classifying susceptible and resistant weed biotypes. Fusing multispectral and
RGB images improved the resistance identification accuracy, and the DCNN achieved
high field accuracies of 81.1% for barnyardgrass and 92.4% for velvetleaf. Time series
and weed density influenced the study of weed resistance, with 4 days after application
(4DAA) identified as a watershed timeframe in the study of weed resistance, while
different weed densities resulted in changes in classification accuracy. Multispectral and
deep learning proved to be effective phenotypic techniques that can thoroughly analyze
weed resistance dynamic response and provide valuable methods for high-throughput
phenotyping and accurate field management of resistant weeds.

Keywords: atrazine-resistant weed, multispectral reflectance, vegetation indices (VIs), unmanned aerial vehicle
(UAV), deep convolutional neural networks (DCNNs)

Abbreviations: UAV, unmanned aerial vehicle; DCNN, deep convolutional neural network; VIs, vegetation index; WSRI,
weed spectral resistance index; B, blue band; G, green band; R, red band; NIR, near-infrared band; RE, red edge band;
RTK, real-time kinematic; GCPs, round control points; GS, Gram-Schmidt; DOM, digital orthophoto maps; BAD, before
application day; AD, application day; DAA, days after application; RES, resistant weeds; SUP, susceptible weeds.
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Multispectral Resistant Weed Research

INTRODUCTION

Weeds are one of the major factors affecting crop growth and
are the most significant contributors to yield loss globally (Quan
etal, 2021). Overreliance on commonly used chemical herbicides
has resulted in the appearance of several herbicide-resistant weed
biotypes (Colbach et al., 2017). Developing a method that can
indicate herbicide resistance within an acceptable timeframe after
an application can potentially help growers manage their fields
more effectively (Krihmer et al., 2020).

Atrazine  (chemical 2-chloro-4-ethylamino-6-
isopropylamino-1,3,5-triazine) belongs to the S-triazine
class of herbicides and blocks the electron flow between
photosystems (Foyer and Mullineaux, 1994). Atrazine herbicide
can significantly reduce photosynthesis by reducing photosystem
IT (Sher et al., 2021) and is a widely used herbicide in maize fields
to control broadleaf and grassy weeds (Williams et al., 2011).
Its widespread use has also accelerated the evolution of weed
resistance mechanisms (Kelly et al., 1999; Williams et al., 2011;
Perotti et al., 2020).

However, high-throughput herbicide resistance phenotyping
remains a technical bottleneck, limiting the ability to effectively
manage weeds in the field. Before herbicide application, there is
no significant difference in the visual appearance of susceptible
and resistant weeds of the same species (Eide et al, 2021a).
Laboratory determination of various enzymes present within
plant leaves can identify atrazine resistance but is impractical to
use in large-scale applications (Liu et al., 2018). Hyperspectral
systems to detect differences between resistant and susceptible
biotypes have shown potential in controlled environments
(Shirzadifar et al., 2020b), but their effectiveness is drastically
reduced once introduced into field conditions (Shirzadifar et al.,
2020a). The unstable performance of thermal imagery further
suggested that canopy temperature data were likewise not a
reliable predictor of weed resistance (Eide et al., 2021b). Outdoor
resistance identification methods include whole-plant dose-
response assay tests (Huan et al., 2011), but their investigation
area is fixed and limited, resulting in high deployment expense
and poor timeliness. Thus, current phenotypic analysis methods
can hardly satisfy the high-throughput survey requirements for
resistant weeds in the field.

Field-based fast, accurate, and robust phenotyping methods
are essential for atrazine-resistant weed investigation. Atrazine
applications reduce the efficiency of the photosynthetic
mechanism and affect chlorophyll and other pigments, which
change the spectral reflectance of plants in the visible/near-
infrared range (Sher et al., 2021). Therefore, it is assumed that
the spectral characteristics of susceptible weeds should show
different pathways compared to resistant weeds after herbicide
application. These physiological changes induced by herbicide
stress have laid the foundation for monitoring resistance using
vegetation indices (VIs) (Duddu et al, 2019). Multispectral
bands and the normalized difference vegetation index (NDVI)
provide improved glyphosate resistance classification (Eide et al.,
2021a). Therefore, Vis-based high-throughput phenotyping
methods can be reliably applied to atrazine-resistant weed
investigation in the field.

name:

Unmanned aerial vehicles (UAVs) are a popular remote
sensing platform successfully used to obtain high-resolution
aerial images for weed detection and mapping (Su et al., 2022)
because they can be equipped with various imaging sensors to
collect high-spatial, -spectral, and -temporal resolution images
(Yang et al,, 2017, 2020). For example, UAVs have been used
for physiological and geometric plant characterization (Zhang
et al., 2020; Meiyan et al., 2022), as well as for pest and disease
classification (Dai et al., 2020; Xia et al., 2021) and resistant weed
identification (Eide et al.,, 2021a). In addition, remote sensing
imagery is linked to specific farm problems through deep learning
for the identification of biological and non-biological stresses
in crops (Francesconi et al., 2021; Ishengoma et al., 2021; Jiang
et al., 2021; Zhou et al,, 2021), segmentation, and classification
(He et al, 2021; Osco et al., 2021; Vong et al., 2021). These
studies show that the combination of UAV remote sensing and
deep learning provides the scope for large-scale resistant weed
evaluation (Krihmer et al., 2020; Wang et al., 2022).

This study explores the potential for using multispectral
images collected by UAVs in crop fields for identifying resistant
weeds and proposes an effective method to identify resistant
weeds in real field environments. We propose a weed spectral
resistance index called WSRI = (RE-R)/(RE-B) to investigate
resistant weeds by analyzing the canopy spectral response
of barnyardgrass and velvetleaf. The fusion of multispectral
and RGB images combining canopy spectral and texture
feature information and applying a deep convolutional neural
network (DCNN) are carried out to evaluate the potential
for identifying resistant weeds in the field based on their
dynamic response.

MATERIALS AND METHODS

Test Site and Experimental Setup

The weed resistance experiment was conducted at the Xiangyang
Farm, Northeast Agricultural University, Harbin, Heilongjiang,
China (45°61’ N, 126°97" E), as shown Figure 1. The region
has a cold-temperate continental climate, with average annual
precipitation of 400-600 mm and an average annual effective
temperature of 2,800°C. The experimental soil type is black soil,
with a soil tillage layer, a nitrogen content of 0.07-0.11%, a fast-
acting phosphorous content of 20.5-55.8 mg/kg, and a fast-acting
potassium content of 116.6-128.1 mg/kg.

Two different weed species were selected for this study.
Common broadleaf and grassy weeds in the Heilongjiang region
include barnyardgrass (Echinochloa crusgalli (L.) Beauv) and
velvetleaf (Abutilon theophrasti Medicus). Weed seeds were
collected from 20 different fields in Heilongjiang and confirmed
to be atrazine-susceptible and -resistant biotypes (Liu et al,
2018). The seeds were air-dried and stored at 4°C. The field was
treated with glufosinate at 0.45 kg active ingredient (AI) ha™!
plus pendimethalin at 1.12 kg AI ha~! before planting to kill
existing vegetation and provide residual weed control 1 week
before crop planting.

In this trial, maize seeds were first sown in black soil on
May 13. The weed seeds were mixed with sand, dropped on
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FIGURE 1 | Distribution of test sites and test fields.

the soil surface, and then harrowed immediately after maize
sowing. Weed seed dropping is divided into three densities (low,
40 seeds m~2; moderate, 160 seeds m~2; high, 320 seeds m~2).
After maize germination, slight spray irrigation was applied to
the whole field to accelerate weed germination. The herbicide
atrazine (Ji Feng Pesticide Co., Jilin, China) was then sprayed
at a uniform rate on 1st June when the maize reached the
three-leaf stage.

In the experimental field, 40 plots were divided into three
weed density treatments (Figure 2B). Each treatment consisted
of 12 or 14 plots measuring 3 m x 5 m in six rows with a
0.6-m row spacing. A 1-meter-wide protection plot surrounded
the entire field to reduce edge effects. This study investigated
the ground truthing data before the atrazine application day.

The manual measurements for ground truthing consisted of
the survival status of the two weed types and geographical
coordinates after application.

Data Acquisition

Unmanned Aerial Vehicle Image Collection
Multispectral and RGB images were collected with DJI Phantom
4 Multispectral and DJI Phantom 4 RTK UAVs (SZ DJI
Technology Co., Ltd., Shenzhen, China), as shown in Figure 2A.
The UAVs are equipped with centimeter-level navigation and
positioning systems. The DJI Phantom 4 Multispectral camera
simultaneously acquires images in blue (B), green (G), red (R),
red edge (RE), and near-infrared (NIR) bands (Table 1) at a
1600 x 1300 pixel resolutions. The DJI Phantom 4 RTK has a
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FIGURE 2 | Workflow of the unmanned aerial vehicle (UAV) high-throughput field weed resistance approach. (A) DJI Phantom 4 Multispectral, DJI Phantom 4 RTK,
DJl Terra, and RTK GPS instrument for collecting field images. (B) Digital orthophoto maps (DOM) of three maize field densities (low, moderate, high) for weed
resistance research. (C) Gram-Schmidt sharpening for improving spectral image information. (D) Reflectance values of four objects in the orthophoto (soil, maize,
barnyardgrass, and velvetleaf). (E) Soil and maize removal and two types of weed segmentation, including barnyardgrass and velvetleaf. (F) Two weed image
datasets from 6 days after atrazine application (6 DAA) used in the classification models. (G) Deep convolutional neural network (DCNN) architecture.

camera with an FC6310R lens (f = 8.8 mm) and a 4864 x 3648 The ground sampling distances (GSDs) of multispectral and RGB
pixel resolution. Based on a UAV flight test with manually images were 0.79 and 0.41 cm pixel !, respectively. UAV flights
controlled height varying from 10 to 30 m above ground, the UAV  were conducted in the field on 6th and 20th May 2021 to collect
altitude was finally set to 15 m with no disturbance to the leaves.  the early season information needed for the study. RGB images
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were acquired first, and then multispectral images were acquired
each day. The mean forward overlap of the photographs was 80%,
and the mean sidelap was 70%. The UAV observations covered
the complete experimental range (Table 2). However, some data
are missing because of weather conditions.

Image Preprocessing

Approximately 2,000 images per flight were used for the
photogrammetry process using DJI Terra software (SZ DJI
Technology Co., Ltd., Shenzhen, China) to obtain images of the
entire experimental area. The global navigation satellite system
(GNSS) real-time motion control measured seven ground control
points (G) to obtain accurate geographical references. The seven
GCPs were measured with a GNSS real-time kinematic (RTK)
receiver (RTK GPS instrument i50, CHC Navigation Co., Ltd.,
Shanghai, China). The reflectance correction and radiometric
calibration use a 3 m? carpet reference and the Spectron on
software (Resonon Inc., Bozeman, MT, United States). The
empirical line method was then used to convert the image’s digital
number (DN) value to a reflectance value (Figure 2D).

Development of Specific Indices

Identifying Atrazine-Resistant Weeds

Canopy spectral reflectance differs between weed species, and
some spectrum regions may better identify atrazine resistance
status. Sample selection was based on the weed survival 14 days
after application. The reflectance of susceptible and resistant
biotypes of two weed species was counted in the multispectral
images after 2 days of application.

TABLE 1 | Multispectral camera band specifications.

Band Name Center wavelength (nm) Bandwidth (nm)
1 Blue 450 32
2 Green 560 32
3 Red 650 32
4 Near infrared 840 52
5 Red edge 730 32

TABLE 2 | Weather conditions during data collection.

Band** Collection Date Air Temp (°C) Weather
BAD 2021.05.30 11~22°C Clear day
AD 2021.06.01 11~22°C Cloudy day
1 DAA 2021.06.02 13~21°C Cloudy day
2 DAA 2021.06.038 10~20°C Cloudy day
4 DAA 2021.06.05 10~18°C Cloudy day
5 DAA 2021.06.06 11~21°C Clear day
6 DAA 2021.06.07 12~25°C Clear day
7 DAA 2021.06.08 13~28°C Clear day
8 DAA 2021.06.09 18~27°C Cloudy day
10 DAA 2021.06.11 156~28°C Clear day
14 DAA 2021.06.15 18~29°C Cloudy day

**BAD, before atrazine application day. AD, atrazine application day, DAA, days
after atrazine application.

Figure 3 shows barnyardgrass and velvetleaf reflectance
density maps for five bands extracted from multispectral images
of susceptible and resistant biotype regions. Slight differences
between susceptible and resistant biotypes were observed in the
green, red, red edge, and near-infrared bands, and the differences
between the red (650 nm) and red edge (780 nm) bands show
greater stability (Jin et al., 2020). Part of the blue (450 nm) band
was observed to reduce the differences in leaf surface reflectance,
thereby improving the correlation between the vegetation index
and leaf pigment content (Sims and Gamon, 2002). Therefore, we
proposed a weed spectral resistance index named WSRI = (RE-
R)/(RE-B) to calculate and evaluate actual field environmental
resistant weeds and tested it in this study (Figure 2F).

Many VIs have similar effects when dealing with classification
problems, differing in their index form expressions. Simple
vegetation index forms, such as the NDVI and ratio vegetation
index (RVI), are universal to the problem and reflect vegetation
information well in many cases. In this study, we entered our
multispectral image data into nine previously published VIs
(Table 3) and the WSRI to evaluate and compare their weed
resistance classification accuracies.

Image Fusion

The multispectral images with low spatial resolution used
for classification lost almost all texture features. However,
susceptible and resistant biotype differences are expressed in
the texture information. The high spatial resolution of RGB
images compensated for the lost texture information in the
multispectral images, so image fusion using the Gram-Schmidt
pan-sharpening method in ENVI 5.4.1 (EXELIS, Boulder, CO,
United States) was used (Figure 2C). The fusion images have five
bands: blue, green, red, red-edge, and near-infrared.

The Gram-Schmidt pan-sharpening method is based on
Gram-Schmidt (GS) orthogonalization. GS orthogonalization is
performed to orthogonalize matrix data or digital image bands
(Laben and Brower, 2000). It first created a simulated low-
resolution panchromatic band as a weighted linear combination
of multispectral bands. Then, GS orthogonalization is performed
using all bands, including the simulated panchromatic and
multispectral bands. The simulated panchromatic band is the
first band in GS orthogonalization. After making all bands
orthogonal by using GS orthogonalization, the high-spatial
resolution panchromatic band replaces the first GS band. Last, an
inverse GS transform creates the pan-bands (Laben and Brower,
2000; Ehlers et al., 2010).

Background Removal and Weed
Segmentation

Because of the reflectance differences between soil and plants
(Figure 2D), Otsu’s thresholding algorithm (Ostu et al., 1979) was
used to separate vegetation from the soil, find an optimal value to
be used for segmentation, and then adjust the threshold value,
if necessary, to improve separation of the plants from the soil
(Figure 2E; Liao et al., 2020).

Manual segmentation of maize and weeds has higher accuracy
but is expensive and time-consuming. UAV multispectral and
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FIGURE 3 | Reflectance density maps of two weed resistant and susceptible biotypes.

RGB images were segmented for maize, barnyardgrass, and
velvetleaf using the support vector machine (SVM) classifier
(Cortes et al., 1995). The four-leaf stage of maize did not shade
the weeds significantly and separated the maize and weeds better.
A binary mask layer was created to segment the maize and the two
weed types from the UAV images’ extracted spectral and texture
features for further processing (Figure 2E). The binary mask layer
was generated in ENVI based on manually tagged template data.

The performance of the SVM classifier was evaluated
using the confusion matrix and accuracy statistics, with the
overall accuracy based on randomly selected independent
test samples. The overall accuracy of SVM classification is
94.4%, which meets the experimental requirements. The zonal
statistics were obtained using ArcPy and the Python 2.7
programming language to remove soil and maize and segment
the barnyardgrass and velvetleaf.

Dataset Production

Different application effects were observed in the experimental
area, and a training template was created for individual velvetleaf
plants based on survival status 14 days after application

(Figure 4A). The training template contained two classes:
susceptible velvetleaf and resistant velvetleaf (Figure 4B).

Because barnyardgrass grows densely and is mostly
aggregated, it is not easy to separate them into individual
plants (Maun and Barrett, 1986). In this study, the resistance
level was set according to the death rate of barnyardgrass in
the same area 14 days after application. Figure 4A shows the
example plants from blocks at different resistance levels (example
of barnyardgrasses in high-density areas). Resistance level 1 is
defined as 0-25% death of barnyardgrasses; resistance level 2 is
26-50% death of barnyardgrasses; resistance level 3 is 51-75%
death of barnyardgrasses; resistance level 4 is 76-95% death of
barnyardgrasses; and resistance level 5 indicates an entirely dead
barnyardgrass block. Blocks with resistance levels less than or
equal to 3 were considered resistant (Figure 4B) because these
blocks exceeded the threshold for weed control in farmland
weeds (Anru and Cuijuan, 2014).

The image patch of each weed plot must be cropped from
the barnyardgrass WSRI fusion segmentation image to build the
dataset for DCNN modeling. Thus, a region of interest (ROI)
shapefile was created in ArcMap 10.3 (Esri Inc., Redlands, CA,
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TABLE 3 | Vegetation indices used in this study.

Category Features Expression** References

DVI Difference NIR-R Jordan, 1969
vegetation index

MTCI MERIS terrestrial (NIR-RE)/(RE-R) Dash and Curran,
chlorophyll index 2004

NDVI Normalized (NIR-R)/(NIR + R) Tucker et al., 1979
differential
vegetation index

GNDVI Green normalized (NIR-G)/(NIR + G) Gitelson and
difference Merzlyak, 1998
vegetation index

NDRE Normalized (NIR- Sims and Gamon,
difference red-edge RE)/(NIR + RE) 2002
index

RENDVI Red-edge (RE-R)/(RE + R) Sims and Gamon,
normalized 2002
difference
vegetation index

RVI Ratio vegetation NIR/R Birth and Mcvey,
index 1968

RERVI Red-edge ratio NIR/RE Vincini and Frazzi,
vegetation index 2009

PSRI Plant senescence (R-G)/NIR Merzlyak et al.,
reflectance index 1999

WSRI Weed Spectral (RE-R)/(RE-B) This paper

Resistance Index

**B, G, R, RE, and NIR represent blue, green, red, red-edge, and near-infrared
bands, respectively.

United States), and rectangles measuring around 0.5 m x 0.5 m
were drawn. The cropped patch sizes were approximately
100 x 100 pixels. All data sets are four bands with a combination
of WSRI images and RGB images.

The other UAV images throughout and after application
were also processed to generate time-series image patches
for dynamic weed resistance classification. Rotated image
enhancement was applied to display the different shapes and
directions of the weeds in the field. Four clockwise rotations
(0°, the original data; 90°; 180°; and 270°) were performed

for image enhancement. For the barnyardgrass dataset, the
original 1,750 observations were increased four times, with 3,128
observations representing resistant blocks and 3,872 observations
representing susceptible blocks for 7,000 observations each day
and 28,000 total observations. For the velvetleaf dataset, the
original 480 observations were increased four times, with 1,136
observations representing resistant plants and 784 observations
representing susceptible plants for 1,920 observations each day
and 7,680 total observations. Before the data augmentation,
all data were randomly split into training and validation
sets in an 8:2 ratio. The model performance was tested
using a validation area (Figure 4B) to illustrate model’s the
generality and robustness.

Deep Convolutional Neural Network for

Resistant Weed Classification

A DCNN (Figure 2G) for classifying resistant weeds was
constructed using MATLAB R2021a (MathWorks Inc., Natick,
MA, United States). The model was trained and tested on an
NVIDIA 2080Ti GPU with 48-GB RAM and on a 64-bit Windows
10 operating system. CUDA version is 11.4.

The network was built based on the ResNet-50 model (He
et al., 2016) and transfer learning (Kieffer et al., 2017). This
study used the Resnet-50 model pre-trained on ImageNet
(Krizhevsky et al, 2012) without fully connected (FC)
layers for transfer learning. The input size was changed
to 100 x 100 x 4 to match the size of the image patches.
Then a convolutional layer (size of 3 x 3 x 3) was added
behind the input 4-band images for reduced dimension on
data. The ReLU activation layer was appended behind the
convolutional layer to add non-linear characteristics. The
dropout regularization method was deployed after the FC layer
to reduce overfitting (Srivastava et al., 2014), and the dropout
rate was set at 30%.

An Adam optimizer (Kingma and Ba, 2014) was used with
a 10™* learning rate and 1072 decay to adaptively optimize
the training process. The batch size was set to 128, and
the data generator generated each batch with real-time data

FIGURE 4 | Two weeds belonging to blocks were evaluated as susceptible and resistant. (A) Manual resistance level and label based on weed death coverage
14 days after atrazine application. (B) Visualization of the data labels on other days.
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augmentation. The model was trained for 300 epochs with
10 batches per epoch. The accuracy of each classification was
observed using a confusion matrix. Accuracy metrics were
averaged from five repeats of randomized holdback cross-
validation.

RESULTS

The DCNN was applied to classify weed resistance using the
canopy spectral and textural information extracted from the UAV
multispectral and RGB sensors, and the results are shown in
Table 4.

Contribution of Spectral Bands and
Vegetation Indices in the Resistant Weed

Classification
The susceptible and resistant biotype reflectance densities of
barnyardgrass and velvetleaf after atrazine application are shown
in Figure 3. Spectral band differences between susceptible and
resistant biotypes are related to the chlorophyll content and cell
wall structure of the weed species.

Atrazine-resistant weed biotypes showed a slightly lower
reflectance than susceptible weed biotypes in the visible light

TABLE 4 | Resistant weed classification performance summary.

Species Feature type Metrics 2DAA 4DAA 6DAA 8DAA
Barnyardgrass RGB Accuracy 0.554 0.609 0.692 0.772
WSRI 0.571 0.634 0.724 0.796

DVI 0.533 0.583 0.641 0.717

MCTI 0.526 0559 0.619 0.693

NDVI 0.556 0.591 0.654 0.746

GNDVI 0.548 0570 0.635 0.712

NDRE 0.551 0587 0.655 0.737

NDVI-RE 0.564 0597 0.657 0.759

RVI 0.559 0.584 0.681 0.755

RVI-RE 0.543 0576 0.646 0.722

PSRI 0.527 0566 0.624 0.709

5 BANDS 0.551 0582 0.652 0.776

WSRI + RGB 0.602 0.665 0.761 0.811

Velvetleaf RGB Accuracy 0.529 0.596 0.753 0.905
WSRI 0.541 0.604 0.767 0.914

DVI 0.532 0573 0.691 0.867

MCTI 0.526 0562 0.677 0.822

NDVI 0.547 0578 0.705 0.894

GNDVI 0.539 0.567 0.686 0.875

NDRE 0.545 0562 0.679 0.871

NDVI-RE 0.528 0583 0.711 0.907

RVI 0.539 0.571 0.700 0.891

RVI-RE 0.537 0576 0.694 0.898

PSRI 0.525 0559 0.652 0.834

5 BANDS 0.558 0.598 0.702 0.902

WSRI + RGB 0.551 0.634 0.798 0.924

DAA, days after application; WSRI, weed spectral resistance index.

region. The differences between susceptible and resistant biotypes
were more significant in the red edge and near-infrared regions,
and the resistant biotypes showed increased spectral reflectance.
These effects are related to the low chlorophyll content of
susceptible biotypes, corresponding to plant stress response
(Gomes et al., 2016). The main reason is that the application
of atrazine reduces photosynthesis and destroys the pigments
(Hess, 2000; Zhu et al., 2009). The red band is the central
band of chlorophyll, which is the specific chlorophyll absorption
band (Tros et al, 2021). The red edge position, which is the
slope inflection point between red absorption and near-infrared
reflectance, is usually used to correlate the chlorophyll content
(Horler et al., 1983; Zarco-Tejada et al.,, 2019). Thus, the red
and red edge bands are stable for the classifying atrazine-
resistant weed biotypes.

This study selected the most commonly used VIs to include
some stress indices and compare their results from the DCNN
with the WSRI (Table 4). Among these, stress and pigmentation
changes resulted from atrazine herbicide application. To further
explore the differences in the vegetation index distributions
for observing susceptible and resistant biotypes, violin plots of
barnyardgrass and velvetleaf for 10 VIs 2 days after application
are shown in Figure 5.

The results in Figure 5 show that WSRI, DVI, NDVI, NDVI-
RE, and RVI VIs distinguish between susceptible and resistant
barnyardgrasses, with a common trait of these indices being that
they all contain red bands. The difference vegetation index (DVT)
and the RVI have little differences in susceptible and resistant
biotypes because they do not integrate multi-band information
well. The NDVI-RE used the red-edge bands to replace the NIR
bands, resulting in a slightly better classification than the NDVL

The WSRI retained the numerator structure of the NDVI-
RE index and added the blue bands to the denominator to
eliminate the spectral interference between pigments to achieve
a better classification result. However, the WSRI classification
of susceptible and resistant velvetleaf was very poor compared
with barnyardgrass at the early stage of application, and the
NDVI-RE and WSRI provided only partial classification. The
WSRI makes the resistant weed data more concentrated and
the susceptible weed data more dispersed, widening their
differences. The average spectral response of barnyardgrass
shows a more prominent separation than velvetleaf, possibly
via lower herbicide uptake at the cuticular level, causing it
to respond more slowly to herbicide stress (Couderchet and
Retzlaft, 1995). In addition, velvetleaf has a higher reflectance
than barnyardgrass, resulting in spectral changes that are more
difficult to represent effectively.

Contribution of Spectra and RGB in

Resistant Weed Classification

Spectral information with the DCNN resulted in the highest
weed resistance classification accuracy when using a single
sensor. The single-band WSRI vegetation information surpasses
the RGB texture information, even though the RGB image
resolution is about 10 times higher than that of the spectral
images. The difference in accuracy between them was largest
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6 days after application, while the difference was smallest 8 days
after application.

As shown in Table 4, the combination of WSRI spectral
and RGB structural information improved accuracy, compared
to using only a single sensor. RGB-derived detailed texture
features, such as slight leaf discoloration and rolling, are
not obtained from spectral features (Rischbeck et al., 2016;
Stanton et al., 2017). In addition, canopy structure information
can overcome the asymptotic saturation problems inherent to
spectral features to some extent (Wallace, 2013; Maimaitijiang
et al., 2020). Therefore, the combination of spectral and
textural information improves classification accuracy. It should
be noted that the accuracy improvement was not substantial, and
combining multispectral and RGB information is likely attributed
to information homogeneity and redundancy among canopy
spectral and textural features (Pelizari et al., 2018; Maimaitijiang
et al., 2020).

Impacts of Different Times in Resistant

Weed Classification
The time-series NDVI image patches of barnyardgrass and
velvetleaf during the atrazine application stage are visualized

in Figure 6. NDVI images reflect vegetation health status and
nutrient information (Eide et al., 2021a). The color of the plant
areas in the NDVI images represent the plant health status,
where NDVI values close to 1 and redder plant regions mean
healthier plants. As time increased, herbicide stress became
more severe, and differences in resistance levels among weed
blocks were increasingly evident. As shown in Figure 6A for
barnyardgrass, the susceptible biotypes changed rapidly under
herbicide application. About 3 days after application, the NDVI
image of the leaves changed from red to yellow or even green,
meaning that the vital characteristics of the susceptible biotypes
gradually diminished.

By contrast, the resistant biotypes changed slowly with low
amplitudes under the herbicide application. About 5 days after
application, the NDVI image of the leaves changed slightly from
red to yellow. The higher the resistance level, the smaller the
change toward yellow. The highest resistance level showed only
signs of stopping the growth and then completely recovered to
normal growth about 4 days after application.

The change rate under herbicide stress conditions and the
recovery speed after the application reflect resistance at different
stages. The higher the resistance level of the barnyardgrass plots,
the later the changes appeared. The large number of resistant
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barnyardgrasses surrounding susceptible barnyardgrasses made
it difficult to observe changes in high-resistance level plots.
A significant difference between susceptible and resistant plots in
later stages is that the recovery of many resistant barnyardgrasses
in the resistant plots compensated for the death of susceptible
barnyardgrasses.

The dynamics of velvetleaf herbicide stress are easier to
analyze because of their individual plant growth characteristics.
Velvetleaf had longer herbicide stress response times than
barnyardgrass, and the susceptibility and resistance of velvetleaf

TABLE 5 | Resistant weed classification performance summary of
different densities.

Densities Metrics 2DAA 4DAA 6DAA 8DAA
Low Accuracy 0.617 0.649 0.725 0.821
Moderate Accuracy 0.611 0.673 0.708 0.746
High Accuracy 0.547 0.614 0.742 0.794

were not directly related to size, as shown in Figure 6B. The
mechanism of prolonged plant death generated by sink tissue
toxicity in velvetleaf may be the main reason (Fuchs et al., 2002).
Atrazine caused gradual inhibition of photosynthesis in velvetleaf
leaves that increased over several days and was nearly complete by
5 days (Qi et al., 2018). Therefore, the difference in the spectral
response of velvetleaf is smaller than that of barnyardgrass 2 days
after application.

About 5 days after application, the susceptible velvetleaf began
to change significantly. The NDVI images show large red leaf
area reductions with relatively little activity. By contrast, the
NDVI images of the resistant velvetleaf leaves changed slightly
from red to yellow about 5 days after application. However,
the formerly red areas began recovering about 7 days after
application, sometimes even before the herbicide application,
indicating that the resistant velvetleaf had resumed growth.

Both susceptible and resistant velvetleaf biotypes showed
growth inhibition at the beginning of herbicide stress, but
the spectral information was still better classified by inhibition
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differences, demonstrating the potential of spectral information

for the study of resistant weeds.

Impacts of Different Densities in
Resistant Weed Classification

The distribution of barnyardgrass in a real farmland environment
shows a clustered distribution (Maun and Barrett, 1986).

Therefore, studies were conducted for different weed densities.
The classification model was applied to different barnyardgrass
densities to evaluate their reliability and adaptability. As shown
in Table 5, the classification accuracy after herbicide application
had maximum accuracies of 0.794 for low-density weeds,
0.736 for medium-density weeds, and 0.821 for high-density
weeds. However, the velvetleaf distribution was rarely clustered,
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and different velvetleaf densities had almost no effect on the
classification model.

The performance of the WSRI was evaluated for each plot
random samples on different densities. Figure 7 shows the WSRI
density plots for susceptible and resistant barnyardgrass in the
sample areas at different times after application and the box
plots at different weed densities. The results show gaps between
susceptible and resistant biotypes at different densities, and the
gaps gradually increased over time.

In summary, atrazine spraying would encounter problems
such as shading and uneven spraying under high-density
barnyardgrass conditions, potentially overestimating resistance
levels in susceptible areas. Moreover, symbiotic areas of resistant
and susceptible barnyardgrass would affect the spectral response
value, resulting in a low-classification accuracy model at early
application. The low- and moderate-density areas contain few
weeds. Some susceptible weeds died with increasing time
after application, resulting in small fluctuations in spectral
response gaps and small improvements in accuracy rates. In
addition, the massive death of susceptible weeds over time
in high-density areas widened the gap and improved the
classification accuracy.

Model Validation

A robust model should be able to generalize to new datasets
and still perform well. Therefore, the model validation used the
DCNN model to classify the susceptible and resistant weeds in the
validation area, and the confusion matrices of the classification
results are shown in Figure 8. At 8 days after application, the
DCNN provided the highest classification accuracy, with 81.8%
for barnyardgrass and 89.3% for velvetleaf. At 6 days after
application, the DCNN provided better classification accuracy,
with 71.6% for barnyardgrass and 78.6% for velvetleaf. The test
results also confirmed the WSRI and DCNN model’s robustness
and generality for further application.

DISCUSSION

Impacts of Different Information in

Resistant Weed Classification
Spectral information can reflect the physiological properties
of the plant (Rajcan and Swanton, 2001), and physiological
properties express differences between resistant and susceptible
biotypes faster than appearance. Therefore, multispectral images
can assess weed resistance faster and better than RGB images
at the early stage of application. As reported in many previous
works, spectral information such as VIs has become the primary
remote sensing indicator for plant phenotypes because of their
stable and superior performance (Ballester et al., 2017). RGB
canopy structure information yielded slightly lower, but still
comparable, performance than spectral information, indicating
that canopy structure information is a promising alternative to
commonly used VIs.

The results of this study indicate that the choice of the
band is critical when establishing the vegetation index. The
red and red edge bands had a significant influence on the

classification of resistant weeds, and the reflectance changes
of these two bands correlated with the degree of herbicide
stress. The study results confirmed that the WSRI (RE-R)/(RE-
B) performed well in classifying resistant weeds. The WSRI
combines the effects of blue, red, and red-edge wavelengths
to provide a comprehensive picture of weed dynamics after
application and displayed better performance than other indices.
Therefore, it provides powerful support for monitoring and
investigating resistant weeds over a large canopy area using
UAVs or satellites.

Time series of susceptible and resistant weed biotypes are
dynamic expressions of herbicide stress. In this study, 4 days
after application (4DAA) was the watershed timeframe for
studying resistant weeds. The accurate timing of resistant weed
investigation affects effective farmland time management. The
rate of change and recovery after herbicide stress begins is key
to classifying susceptible and resistant weed biotypes. Different
weed species mean that differences in susceptible and resistant
biotypes are expressed at different times. The classification
effect of barnyardgrass was better than that of velvetleaf at the
beginning of the application because of differences in their shape,
physiology, and distribution characteristics. As the application
time increased, the classification effect of velvetleaf became better
than that for barnyardgrass.

Weed density is another factor influencing the research
of resistant weeds. It is better to investigate the resistance of
clustered weeds using different weed densities. The DCNN
trained separately for different weed densities may increase
the accuracy of susceptible and resistant barnyardgrass
classifications. It is worth noting that higher densities mean
the possibility of more resistant weeds, and untimely treatment
multiplies the damage to the crop (Alipour et al., 2022).

Effectiveness and Limitations of
Unmanned Aerial Vehicle Traits in

Resistant Weed Investigation

This study first proposed the multispectral image-derived WSRI
to classify susceptible and resistant weeds in real farmland
environments. For resistant weed investigation, it took at least 2 h
for three raters to manually measure the distribution of resistant
weeds in 40 plots. The UAV field flights took less than 15 min,
which was fast enough to capture accurate data while avoiding
fluctuations in environmental factors such as cloud or wind.
More importantly, the high efficiency of UAV phenotyping makes
dynamic monitoring with high temporal resolution possible.
Therefore, UAVs have shown great potential in the emerging
study of field-resistant weeds.

However, there are some limitations for the WSRI. First,
changes at the early application stage may not adequately reflect
the overall weed resistance because resistant weeds grow slowly
during herbicide stress conditions. This is supported by the
fact that differences between susceptible and resistant biotypes
were not significant at the early stages, so 4 days after herbicide
application is the optimal time to investigate resistant weeds.
Additionally, the WSRI is an unstable measure easily affected
by temperature, humidity, and light conditions in the field.
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Therefore, resistant weeds in the field should continue to be the
subject of in-depth study and discussion.

CONCLUSION

The proposed UAV-WSRI phenotypic method investigates
the potential of fused multispectral and RGB image data
combined with deep learning for resistant weed identification
in the field. Compared with imaging chambers and expensive
unmanned ground vehicle platforms, the UAV platform is more
flexible and eflicient to deploy for high-throughput phenotyping
under field conditions. In addition, the timeliness of UAVs
guarantees the reliability of phenotypic traits for resistant weed
identification in the field.

The WSRI introduced in this study showed better consistency
than previously published spectral VIs, with actual data for
atrazine-resistant weed in maize fields. The WSRI provides
better classification results than high-resolution RGB data, and
the fusion of the two data types further improves the results.
The robust deep learning model (DCNN) makes it possible to
monitor the dynamic response to resistant weeds in the field
precisely, regardless of complex environmental factors.

Our results also show that time series and weed density are
closely related to resistant weed identification. The UAV-WSRI
phenotypic method could be extended to evaluate the resistance
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Spray drift is an inescapable consequence of agricultural plant protection
operation, which has always been one of the major concerns in the spray
application industry. Spray drift evaluation is essential to provide a basis
for the rational selection of spray technique and working surroundings.
Nowadays, conventional sampling methods with passive collectors used in
drift evaluation are complex, time-consuming, and labor-intensive. The aim
of this paper is to present a method to evaluate spray drift based on 3D LiDAR
sensor and to test the feasibility of alternatives to passive collectors. Firstly, a
drift measurement algorithm was established based on point clouds data of
3D LiDAR. Wind tunnel tests included three types of agricultural nozzles, three
pressure settings, and five wind speed settings were conducted. LiDAR sensor
and passive collectors (polyethylene lines) were placed downwind from the
nozzle to measure drift droplets in a vertical plane. Drift deposition volume
on each line and the number of LIDAR droplet points in the corresponding
height of the collecting line were calculated, and the influencing factors of this
new method were analyzed. The results show that 3D LiIDAR measurements
provide a rich spatial information, such as the height and width of the drift
droplet distribution, etc. High coefficients of determination (R? > 0.75) were
observed for drift points measured by 3D LIiDAR compared to the deposition
volume captured by passive collectors, and the anti-drift IDK12002 nozzle
at 0.2MPa spray pressure has the largest R? value, which is 0.9583. Drift
assessment with 3D LiDAR is sensitive to droplet density or drift mass in space
and nozzle initial droplet spectrum; in general, larger droplet density or drift
mass and smaller droplet size are not conducive to LiDAR detection, while the
appropriate threshold range still needs further study. This study demonstrates
that 3D LiDAR has the potential to be used as an alternative tool for rapid
assessment of spray drift.
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Introduction

Pesticides have significantly contributed to global agricultural
development and food supplies (Oerke, 2006). Pesticide
application is affected by complex environmental factors (e.g.,
temperature, humidity, and wind speed) and application
techniques (Hilz and Vermeer, 2013). Consequently, it is estimated
that 30% to 50% of the applied product drifts into non-target areas
(Bergetal., 1999). Spray drift is defined by the US Environmental
Protection Agency (EPA) as “the physical movement of a pesticide
through the air at the time of application or soon thereafter, to any
site other than the one intended for application” (EPA-United
States Environmental Protection Agency, 2018). Spray drift is one
of the largest sources of pollution caused by pesticides and poses
significant risks to human health and the environment (Zhang
et al,, 2018). Many studies have investigated the effects of spray
drift on ecosystems (Jong et al., 2008), water (Zhang et al., 2017),
agriculture workers (Schampheleire et al., 2007), and exposure to
bystanders and residents (Tsakirakis et al., 2018). Pesticides travel
thousands of kilometers through air currents, eventually reaching
remote areas (Stoughton et al, 1997). With the increasing
awareness of the need for environmental protection, spray drift
during pesticide application has attracted significant research
attention globally.

Several factors such as meteorological conditions, application
techniques, spray characteristics, spray equipment, target crops,
and operator skills affect the degree of spray drift (Gil and Sinfort,
2005; Heidary et al., 2014). Regarding the application technology,
the droplet size is widely recognized as the main factor affecting
spray drift (Elliott and Wilson, 1983), and the effects of nozzle
type, nozzle size, spray pressure, and additives on droplet size
characteristics have been explored (Taylor et al., 2004; Nuyttens
etal,, 2007a). In addition, to reduce spray drift, components such
as air-inclusion nozzles and low-drift nozzles with preset orifice
settings have been designed to increase the droplet size (Butler
Ellis et al., 2002). These specially designed nozzles can be used in
harsh environments with a higher wind speed and dry conditions.

Before pesticide spraying, it is necessary to understand the
anti-drift performance of the nozzle to facilitate the selection of
the most appropriate nozzle (Ru et al., 2014). Based on ASAE
Standard 572.1: 2009, the droplet size is divided into six classes—
very fine, fine, medium, coarse, very coarse, and extra coarse
(ASAE, 2009). The nozzle spray drift is commonly tested either in
the field or in a wind tunnel. Field tests are complex, cumbersome,
and costly, with specific requirements for the testing site and
environmental stability. ISO 22866:2005 (ISO, 2005) specifies the
procedures for conducting field tests, but this requires several
people to work collaboratively. A series of experiments can take
several hours to complete, with extremely high environmental
crosswind requirements. If the wind direction changes more than
30° during the test, the measurement line must be reset (Arvidsson
et al., 2011a). Wind tunnel tests were introduced to evaluate the
spray drift characteristics (Southcombe et al., 1997; Herbst, 2001)
by artificially controlling the temperature, humidity, wind speed,
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and wind direction to understand the influence of a single factor
(Nuyttens et al., 2009; Zhang et al., 2015; Ferguson et al., 2016).
ISO 22856:2008 standardizes the procedure for wind tunnel drift
measurement (ISO, 2008).

For field and wind tunnel tests, sampling methods are mostly
adopted to measure spray drift. Passive collectors, such as filter
paper (Nuyttens et al., 2007b), plastic card (Carlsen et al., 2006),
Petri dishes (Caldwell and Wolf, 2006), polyethylene line (Bai
et al., 2013), nylon rope (Bui et al, 1998), dynamic rotating
sampler (Bonds et al., 2009), and isokinetic sampler (Arvidsson
et al,, 2011b), were used for receiving the drift droplets, and the
amount of spray deposition is quantified by discrete sampling.
Each test cycle takes a long time to complete, as this method
involves multiple processes, such as sample arrangement,
collection, elution, and instrumental analysis. Furthermore, it is
difficult to determine the spatial dispersion and evolution of spray
drift clouds by point measurements. Therefore, new spray drift
detection techniques or devices have been proposed and tested to
develop easy and efficient alternative methods. Simulations of the
transport process of spray droplets have been conducted, forming
drift prediction models, such as AGDISP (Forster et al., 2012),
AgDRIFT (Teske et al., 2000), RTDrift (Lebeau et al., 2011), and
VALDRIFT (Allwine et al., 2010). Other studies have developed
regression equations considering meteorological conditions and
the drift distance to provide a reference point for the selection of
nozzles and additives (Zhang et al., 2015). In addition, a mass
balance system (Balsari et al., 2005) and test bench (Balsari et al.,
2007) for drift measurement in an orchard and boom spraying
have been developed, and were applied to measure spray drift of
different types of nozzles (Gil et al., 2014; Grella et al., 2019).

With recent developments in sensor technology, the use of
non-contact sensors for evaluating spray drift has become a trend.
Many studies have been conducted using laser imaging (Wang
et al,, 2019), infrared thermal imaging (Jiao et al., 2016), and
OP-FTIR (Kira et al., 2018) to assess spray drift. Compared with
direct sampling, sensor detection reduces time and labor cost,
providing information on the spatial variation of spray drift. Light
detection and ranging (LiDAR) sensors are non-contact
measurement devices that use laser beams to accurately detect the
spatial position of a target. In previous studies, LIDAR sensors
have been used to study droplet movement in the wingtip vortex
of spraying aircraft (Hoff et al., 1989) to assess the spray aerosols
drifting above orange orchards with the influence of meteorology
parameters and atmospheric stability (Miller et al., 2003).
Gregorio et al. (2015) developed an ad hoc LiIDAR system for the
measurement of pesticide spray drift, this system evaluates the
amount of spray drift through laser signal strength. With this
system, the optional spray drift reduction of hollow-cone nozzles
was assessed (Gregorio et al,, 2019). Currently, various types of
LiDAR sensors are used for spray drift measurement. Commercial
LiDAR technology is mature and highly available, exhibiting
significant potential for broad and long-term applications in drift
detection. Most commercial LiDAR sensors obtain plenty of
distance values by scanning point clouds to construct target
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contours, which provides the possibility for the detection of
dispersed drift droplets in space. A commercial 2D LiDAR sensor
has been used to estimate drift measurement in vineyard spraying,
where the detection results were compared with passive collector
experiments to demonstrate the potential of 2D LiDAR for drift
measurement of air-assisted sprayer (Gil et al., 2013).

This study aims to explore the feasibility of using a commercial
3D LiDAR sensor to assess spray drift. Spray drift tests with
different working parameters were conducted in a wind tunnel,
and the relationship between spray drift measurements obtained
with LiDAR and passive collectors was analyzed.

Materials and methods

3D LiDAR sensor

The 3D LiDAR sensor used in this study was an outdoor four-
layer scanner designed for harsh environments (model
LD-MRS400001, Sick, Dusseldorf, Germany), with a long range
of 300 m. The sensor adopted a four-line design to simultaneously
emit four laser beams to form four stacked planes, with a scanning
interval angle of 0.8° and a whole scanning angle of 3.2° (—1.6° to
1.6°) in the vertical direction (Figure 1A). In the horizontal
direction, the sensor had a central scanning range of 85° for four
scan planes, and the scanning range was extended between +35°
and +50° or —50° and —60° to a total range of 110° (Figure 1B).
The droplet detection was performed with laser beams emitted by
the sensor in four stacked planes, where droplets impacted with
the laser to form a drift cloud. Compared to single-wire LIDAR
with one laser beam, this design ensures that more data signals are
acquired in a scan procedure. The sensor had scanning frequencies
of 12.5, 25, and 50Hz. The available angular resolution was
dependent on the scanning frequency, set to 0.125° or 0.25° under
12.5Hz, 0.25° under 25 Hz, and 0.5° under 50 Hz. The sensor was
connected to a computer via Ethernet or the RS232 serial port for
configuration and data transfer of measurements. The
specifications of the sensor are listed in Table 1.

The sensor had the multi-echo capability to gather and
evaluate up to three echoes per transmitted laser pulse. As
different objects form different echo voltages, the echo signals that
may interfere with the reflected objects can be filtered by setting
the threshold voltage. Therefore, the system was configured with
a noise filtering function. The sensor also had high scanning
sensitivity for objects with transparent properties, such as rain,
fog, and glass, which ensured the feasibility of using the sensor to
detect drift droplets.

Data processing of drift points in space
SOPAS ET configuration software (V 02.18, Sick Sensor

Intelligence) was used to manage the LIDAR sensor. Using this
software, operators can configure and test measurement
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properties, analysis behavior, and output properties of the sensor
as required. The sensor issued the original measured distance and
angle information of drift droplets in reference to its coordinates.
Initially, an angular coordinate system was constructed that
contained each droplet spot scanned. Assuming that point A is a
droplet in space (the jy, droplet in i-plane), its polar coordinates
(1j>Pij> 05 ) are expressed as:

1= (RangeValuei (j)-scaleFactor) /1000
@; = (startAngle,- + j-angularResolution) /10000
;=90 -a;

(1)

Where 7;; is the actual distance between droplet A and the
sensor, m; ¢ is the horizontal angle of droplet A; ;i is the
vertical angle of droplet A; RangeValue; ( j) is the original data
output by SOPAS ET software; i represents the scan plane number
between 1~4; scaleFactor is the factor by which the following
RangeValue s can be brought to mm scale; startAngle,- is the
initial scan angle of the i-plane; angularResolution is the angular
resolution in the horizontal direction; and ¢4 is the angle between
the four planes in the vertical direction, with values of —1.6°,
—0.8°,0.8°, and 1.6°.

The scanned droplet point, in Cartesian coordinates, was
reconstructed with MATLAB (R2018a, MathWorks Inc.,
Massachusetts). As shown in Figure 2, the coordinates of the
droplet point A (X,j, Yij> Zij) are given by:

Xjj = ;- sin6;- cos @;;
2)

Yij = t;j-sin 6 - sin@y;

zjj = 1;j-cos &;

Spray drift testing in a wind tunnel

Spray drift tests were conducted at the IEA-II wind tunnel at
the National Experiment Station for Precision Agriculture,
Beijing, China. A diagram of the wind tunnel is presented in
Figure 3. This wind tunnel has been used in previous studies, such
as Zheng et al. (2017); Zhang et al. (2019), and Tang et al. (2020).
The wind tunnel consisted of an open-ended design, with a
working section of 6.0 m length, 2.0 m width, and 2.0 m height.
The wind tunnel applied an axial flow fan as the power source.
Under the combined action of the rectifier and rectifying device,
a uniform and stable wind field was generated. The adjustable
range of the wind speed in the working section was 0.5 to 7 m/s;
the turbulence was less than 0.3%, and the wind uniformity was
less than 0.5%. The wind tunnel specifications fulfilled the
requirements of the ISO 22856:2008 standard (ISO, 2008).

In this study, drift tests were conducted in strict accordance
with ISO 22856:2008. A single and static nozzle was used, with the
spray orientated at a right angle to the wind direction (Figure 3).
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TABLE 1 3D LiDAR sensor specifications.

Parameter Technical indicators Experiment
settings

Wavelength (nm) 905 —

Laser class 1 (IEC 60825-1:2014) —

Horizontal aperture angle (°) 110 (=60 ~ 50) —

Vertical aperture angle (°) 32 —

Working range (m) 300 —

Scanning frequency (Hz) 12.5/25/50 25

Angular resolution (°) 0.125/0.25/0.5 0.25

Protection class 111

Enclosure rating IP69K

Weight (kg) 1 —

94 x 165 x 88 —
RS-232/TCP/IP —

Dimensions (mm)

Interface mode

The nozzle was fixed at a height of 0.7 m from the bottom of the
wind tunnel. The selected test nozzles were a standard flat-fan
spray nozzle ST11002, an air-inclusion spray nozzle IDK12002,
and a hollow-cone nozzle TR8002. The spray patterns of the
nozzles used have representative characteristics and are widely
used (Nuyttens et al., 2007a; Peter et al., 2008; Torrent et al., 2019).
A mixture of a water-soluble tracer and yellow tartrazine, with a
concentration of 8 g/1, was used as the spray solution. To precisely
control the spraying time, a timer was equipped upstream of the
nozzle. When the spray time reached the preset value, the timer
automatically switched the power off, and the spray system
stopped. In this study, the spraying time was set to 20s. The spray
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FIGURE 2
Schematic of the drift cloud scanned in the Cartesian coordinate
system.

pressure was set to 0.2, 0.3, and 0.4 MPa, and the wind speed was
set to 1 to 3m/s with an interval of 0.5m/s. During all tests, the
temperature of the wind tunnel was 25°C, and the relative
humidity was 36%.

Spray drift measurements were performed with both the
LiDAR sensor and the passive collectors, following ISO 22866.
Before the wind tunnel tests, the flow rates of the three nozzles
used were measured by the weighing method. Furthermore, the
droplet spectra were tested with a laser particle analyzer (HELOS-
VARIO, Sympatec GmbH, Germany). In this study, Dv,, Dvs, and
Dvy, were measured, and relative span factor (RS), which
represents a dimensionless indicator of the uniformity of the drop
size distribution, was calculated according to equation (3); during
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TABLE 2 Flow rate and droplet spectra of nozzles.
Nozzle model Nozzle type Pressure/MPa  Flow rate/ D, o/pm D,s5o/pm D,go/pm RS
L-min~!

ST11002 Flat-fan 0.2 0.65 71.84 159.74 279.15 1.298

0.3 0.80 54.57 134.36 231.66 1.318

0.4 0.92 51.05 124.97 206.76 1.246
IDK12002 Air-inclusion 0.2 0.65 142.49 327.19 594.33 1.381

0.3 0.80 126.87 287.84 560.16 1.505

0.4 0.92 109.04 251.20 514.90 1.616
TR8002 Hollow cone 0.2 0.65 64.70 140.88 232.12 1.188

0.3 0.80 55.47 127.19 209.03 1.207

0.4 0.92 47.35 115.39 196.56 1.293

the test, the nozzle was fixed at 0.5 m above the analyzer. The flow
rates and droplet spectra under various working conditions are
shown in Table 2. According to the experimental setup, a total of
60 spray drift tests were conducted.

Dyoo — Dy1o
D5

RS =

Where, RS is the relative span factor; D, o, D,s, and D, are
the maximum droplet diameter below which 10%, 50%, and 90%
of the volume of the sample exists, respectively, ym.

Sampling process using passive collectors

As shown in Figure 3, a vertical stainless-steel bracket
was placed at a horizontal distance of 1.8 m from the nozzle
in the downwind direction in the wind tunnel. Five
polyethylene lines with a diameter of 2.0 mm were fixed
horizontally across the bracket from 0.3 to 0.7 m, at 0.1 m
intervals, to sample airborne drift droplets. The minimum

height of 0.3 m was fixed to eliminate the impact of droplets
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bouncing and ground pollution on the test results. When the
spraying finished, the polyethylene lines were collected into
separate Ziploc bags, and the samples were stored in a dark
box. After all the tests had finished, the polyethylene lines
were brought to the laboratory for quantitative analysis. Five
milliliters of deionized water was added to each Ziploc bag,
and it was shaken sufficiently to fully elute and dissolve
the tracer on the line surface. The absorbance of the
eluate was measured using a visible light spectrophotometer
(752N INESA, Shanghai, China), and the amount of tracer
droplets on the passive collector surface was calculated
according to:

(Abss,m,p - Absblk) X Vg X 10°
Absspmy

ﬂdep = (4)

Where, Bdep is the drift deposition volume on the passive
collector surface in uL; Absyy, is the spectrophotometer
absorbance value of the sample; Absy, is the absorbance
reading of the blanks; Vy; is the volume of dilution liquid used
to solute the tracer from the passive collector in mL; and
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Absspray
spray mixture.

is the spectrophotometer absorbance value of the

Spray drift measure algorithm using 3D LiDAR

The LiDAR sensor was fixed on the side of the wind tunnel
closest to the vertical bracket. To ensure that the laser beam
emitted by the sensor covered the polyethylene lines in the
vertical array, the sensor was fixed 1.65 m above the wind tunnel
floor, and the laser emitting surface faced downward. To prevent
the passive collectors from blocking the laser beams, and
considering the scanning planes of the sensor, the horizontal
distance between the sensor and the vertical plane of the
polyethylene line was set to 0.2m. In the test, the scanning
frequency and angular resolution of the sensor were set to 25 Hz
and 0.25°, respectively. To gather more drift droplet points, four
layers were used for the evaluation. The sensor was turned on
before spraying, and the scanning measurements were initiated
with the SOPAS ET software. The scanning time for each test
was 1min. The original data were then exported to the
computer, and the drift droplet point was calculated according
to equations (1) and (2).

To compare the measurements performed with the LiDAR
sensor and the results obtained from the passive collectors, the
number of drift points in five height intervals of 0.25-0.35, 0.35-
0.45, 0.45-0.55, 0.55-0.65, and 0.65-0.75m was calculated,
corresponding to polyethylene lines at heights of 0.3, 0.4, 0.5, 0.6,
and 0.7m. Assuming the scanning point A;;(x;;, yjjz;j)satisfies
equation (5), the cumulative number of drift points in the
height interval  should

corresponding increase by

increments of one.

Xmin < Xij < Xmax

zjj

Where, Xpin and Xp.¢ are the minimum and maximum
values of the x-axis of the effective scanning area at x;y;,=—1.0m
and X,y =1.0m, respectively; yq is the minimum height of the
effective scanning area, at yy =0.25m; Ad is the height interval
between adjacent lines, at Ad =0.1m;and kisa constant, at k=1,
2,3,4, and 5. The droplet points obtained by scanning in the z-axis
direction are all valid; therefore, the Z; is unlimited.

Results

Distribution of drift cloud and drift
deposition in a vertical profile

The number of droplet points at different height intervals

scanned with the LiDAR sensor was counted, and the amount
of tracer droplets deposited on the passive collectors was

Frontiers in Plant Science

10.3389/fpls.2022.939733

measured by a spectrophotometer. Figure 4 presents an
overview comparison of the drift distributions obtained by the
two methods. For each nozzle, a total of 15 panels were
obtained under different working conditions, the left of each
panel shows the drift points scanned by the LIDAR sensor, and
the colored strip plot on the right side of the panel shows the
deposition volume in vertical profile. The drift point cloud
captured by the LiDAR sensor presents a triangular contour,
where the distribution of droplets in the lower section is large
and dense. As the height increases, the number of drift points
tends to decrease, which is consistent with the results obtained
from the passive collectors (from bottom to top, the color of
the strip plot gradually fades). For the three nozzles used, the
highest number of drift points was produced by the nozzle
ST11002, followed by TR8002. The IDK120-02 nozzle had the
least drift points, scanned under the same pressure and wind
speed as the two other nozzles. The main reason for this
finding is that large droplets formed in the air, limiting spray
drift (Nuyttens et al., 2009; Vashahi et al., 2018). Under
constant pressure, as the wind speed increases, the drifting
droplets tend to be denser.

The conventional sampling method is limited by the number
and arrangement of samples, making it difficult to obtain the
complete spatial distribution of drift droplets. In this section, the
height and width ranges of the drift cloud under various operating
parameters were calculated based on droplet point coordinates. As
shown in Figure 5, the width range of nozzle ST11002 is higher
than 1.0 m for all test conditions, which is significantly higher than
that of nozzles TR8002 and IDK12002. Despite the spray angle of
nozzle IDK12002 being 120°, which is higher than the other two
nozzles as it is, affected by the larger droplets produced (Table 2),
the width range is smaller than that of nozzles ST11002 and
TR8002. In general, for the vertical direction, as the wind speed
increases, the height range also increases, and there is little
difference between the nozzles.

Figure 6 presents the drift deposition volume and the
corresponding scanning points for the vertical profile. In
general, the spray drift obtained by the two methods decreases
gradually as the height increases. Compared with the passive
collector sampling method, the LiDAR technique does not
exhibit high capture sensitivity, especially at greater heights. For
example, at a pressure of 0.2 MPa, the drift deposition volume
of nozzle ST11002 was 6.255, 20.943, and 26.405 pl for wind
speeds of 1.0, 1.5, and 2.0 m/s, respectively, while the LiDAR
failed to scan any droplet in the height range of 0.65 to 0.75m.
The differences may be a result of the difficulties in the laser
beam impacting the low-density point cloud due to a reduced
number of drift droplets.

Laser beams emitted by LiDAR sensors are in a divergent
radiation mode, implying that the scanning results are affected by
the frequency and angular resolution, which makes it difficult to
make the actual number of droplets in the space completely
consistent with the returned effective laser signal. In this study,
through the comparative analysis of the drift deposition volume
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FIGURE 4

Drift points scanned by the LiDAR sensor (left of each panel) and drift deposition captured by passive collectors (right of each panel) for the
three nozzles. In the strip plot for each combination, darker colors represent greater drift deposition. (A) ST11002. (B) TR8002. (C) IDK12002.
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and droplet points of the 60 tests, it was found that when the
deposition volume was less than 50 pl, LIDAR is prone to invalid
scanning, that is, it is difficult to get more feedback laser signal.

Correlation analysis between LiDAR and
indirect methods

The drift deposition and the droplet points through the
vertical profile were processed further, and a correlation analysis
was performed (Figure 7). For the three types of nozzles used, the
drift deposition volume for passive collectors gradually increased
with increasing wind speed. When the wind speed exceeded
1.5m/s, the deposition volume increased gradually with an
increase in spray pressure (0.4>0.3>0.2MPa). The drift points
captured by the LiDAR sensor did not show a same regularity as
the deposition volume. At 1-2m/s, the number of drift points
gradually increased with an increase in wind speed, while the
point number at 2.5m/s may be less than 3 m/s. For example, for
nozzle ST12002 at a spray pressure of 0.4 MPa, the number of drift
points at a wind speed of 2.5m/s was 9,024, which is higher than
7,925 drift points at a wind speed of 3m/s. The possible reason is
that the higher movement speed of droplets affects the capture
ability. The IDK12002 nozzle has significantly lower deposition
and drift points than the ST11002 and TR8002 nozzles. In this
case, 3D LiDAR measurement can classify the drift performance
of the conventional nozzle and the anti-drift nozzle.

Through the correlation analysis of 3D LiDAR and the
indirect method, it was found that the drift point number captured
by 3D LiDAR generally has a good correlation with the deposition
volume from passive collectors, with the coefficients of
determination (R?) of the three nozzles being greater than 0.75.
Among the three nozzles, IDK122002 with less spray drift and
larger droplet size has the best correlation, and the minimum R*
is 0.80 under the three spray pressure settings. In terms of spray
pressure, the R* of nozzles ST11002 and IDK12002 showed a
decreasing trend with an increase in the spray pressure. When the
spray pressure increased, the droplet size decreased (Table 2), and
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the amount of drifting droplets increased. The laser beam
impacted the droplets directly in front of LIDAR, but a few laser
beams failed to capture droplets further away from the LIDAR
sensor because of the blocking effect of the droplets ahead.

Wt analysis of the influence of spray
parameters on 3D LiDAR drift assessment

Changes in spray parameters can affect the drift deposition
volume and drift points captured by LiDAR sensors. Through the
previous analysis, it was found that the scanning accuracy of 3D
LiDAR is different under different droplet size spectra, flow rates,
and wind speed conditions. Understanding the influence of these
factors can provide support for the rational use of 3D LiDAR to
evaluate spray drift. In this study, SPSS software was used to
analyze the linear relationship between drift points, deposition
volume, and the coeflicients of determination R? value of the two
methods with the flow rate, D, RS, and wind speed. The
corresponding coefficients were calculated, as shown in Table 3.
The larger the absolute value of the coefficient, the greater the
influence of the parameter on the result.

The influence weights of each parameter were calculated
based on the data in Table 3, as shown in Figure 8. The wind speed
had the greatest influence on the sampling method by passive
collectors with a ratio of 37.74%, with the flow rate, D,5, and
relative span factor (RS) being equally weighted. For the drift
point scanned by LiDAR, the influence of wind speed and D,
accounts for a great proportion, and their influence weights are
49.62% and 42.51%, respectively. For the R* values of the two
methods, the droplet spectrum had a greater influence, and the
weight ratio of D,5, and RS was more than 80%.

Discussion

In pesticide application process, fine droplets may drift to the
non-target area and cause serious environmental and public
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FIGURE 7
Correlation analysis of drift points and deposition volume for the three nozzles. The left panel shows the drift points and deposition under various
working conditions (line represents deposition volume, column represents drift points), and the right panel shows the correlation between the two
methods. (A) ST11002. (B) TR8002. (C) IDK12002.

health problems, including damage to the adjacent crops sensitive
to chemical agents, river contamination, and risk to the health of
humans and animals (Nuyttens et al., 2010). At present, spray
drift is unavoidable. However, we can optimize the chemical
application technology by means of drift evaluation, i.e., nozzle
selection, operating parameters adjustment, and suitable working
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surroundings. Traditional spray drift experiments are complex,
time-consuming, and labor-intensive. Therefore, there is a strong
demand for an efficient and convenient alternative drift
measurement method.

In this study, exploratory work was conducted to demonstrate
the capacity of a commercial 3D LiDAR sensor to evaluate spray
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drift generated by different nozzle types, spray pressures, and wind
speeds. LIDAR measurements were compared with those obtained
with the indirect method using passive collectors. Firstly, the
coordinates of the drift points scanned by the LiDAR sensor were
converted to obtain the point clouds in the vertical profile,
intuitively observing the drift droplet distribution (Figure 4). This
is difficult to achieve with traditional indirect methods. The drift
width and height ranges under various working conditions were
calculated through point cloud coordinates (Figure 5). The results
can provide a point of reference for setting the size of anti-drift
obstacles (De Schampheleire et al., 2009).

The drift points in various height intervals were counted.
It was assumed that each height interval was 0.1 m (with the
polyethylene line as the center, the upper and lower heights
were both 0.05m). Accordingly, the drift points and
deposition volume for passive collectors were compared
(Figure 6). Although the LiDAR sensor used a higher scanning
frequency of 25Hz, few droplets impacted the laser beam
owing to the lower droplet density at a higher height interval
(0.7m). LiDAR sensor determines drift from the reflected
signal of a laser beam impacting a droplet, while it is difficult
to equate a laser feedback signal with a droplet, and laser
beam impacts are sensitive to droplet density or drift mass. In
addition, by correlating the drift points with the deposition
volume obtained by the indirect method (Figure 7), it is
observed that the nozzle IDK12002 has a better correlation

10.3389/fpls.2022.939733

between 3D LiDAR measurements and the indirect method,
and the lower spray pressure with less drift appears to be more
conducive to drift evaluation with 3D LiDAR. Conversely, Gil
etal. (2013) conducted a study using a commercial 2D LiDAR
sensor to evaluate the spray drift of orchard sprayers, the
results indicate a bad ability of the 2D LiDAR sensor to
evaluate spray drift in case of sparse drift cloud with
air-inclusion nozzles. The droplet density or drift mass
suitable for LIDAR measurement is likely to have a threshold
range, beyond which the detection accuracy will be reduced.
By comparing all the test data in this study, we found that
when the deposition volume was less than 50 pl, 3D LiDAR is
prone to invalid scanning.

The drift deposition volume from passive collectors gradually
increased with increasing wind speed, while the number of drift
points measured by LiDAR does not follow the same law. For
example, for nozzle ST12002 at a spray pressure of 0.4 MPa, the
number of drift points at a wind speed of 2.5m/s was 9,024,
which is higher than 7,925 drift points at 3m/s (Figure 7). This
phenomenon may be caused by excessive droplet density or by
changes in wind speed. When the wind speed is higher, the fine
droplets pass through the vertical profile at a higher speed, and
either the emitted laser beam fails to perfectly impact the droplets
or the high-speed droplets cause part of the energy loss, implying
that the reflected signal strength cannot reach the LiDAR system
identification threshold.

TABLE 3 Coefficients of spray parameters, according to the linear analysis of drift points, deposition volume, and R?.

Spray parameter Flow rate D, RS Wind speed
Drift deposition volume measured by passive collector 0.303 —0.327 —0.312 0.571
Drift points scanned by LIDAR —0.062 —0.497 0.030 0.580

R? of LiDAR and indirect method —0.219 0.715 —0.519 —

Deposition

RZ

FIGURE 8
Influence weights of spray parameters on drift assessment.

20.62%

B Flow rate
BDv50

RS

Wind speed
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Through the wt analysis, it was found that the D5, and RS
have a great influence on R? of LiDAR and indirect method
(Figure 8). The droplet spectrum also indirectly affects the
droplet density in the detection area. In order to reduce the
detection distortion caused by laser beam occlusion and laser
beam emission angle resolution, an appropriate detection area
needs to be identified in advance. Although the current
LiDAR sensor has a maximum detection distance of
300 meters or more, in actual spray drift evaluation, only a
small plane (e.g., 1 x 1 m) close to the LiDAR may be selected
as the sampling zone. This selected plane needs to
be determined by experiments so that LiDAR can restore the
spatial distribution of droplets most realistically.

In addition to the factors of the spray drift flux mode, the
spray drift measurement with LiDAR in field maybe faces the
challenges such as the impact of higher-intensity sunlight,
dust suspended in the air, and ambient temperature on the
performance of LiDAR. Gregorio et al. (2019) confirmed that
spray drift measurement distortion maybe occured because of
the presence of air-suspended dust based on the LiDAR
system developed. Nowdays, the research on LiDAR detection
performance in agriculture mainly focuses on sensing
geometric characterization of canopy and obstacle in
agricultural activities (Lee and Ehsani, 2008; Rosell and Sanz,
2021). Commercially available LiDAR sensors are expected to
be a practical tool for drift assessment. However, the current
research depth and breadth are not enough. It is essential to
out research

carry subsequent

characteristics, drift point cloud spatial distribution,

combined droplet

application scenarios, and environmental conditions, to
determine the optimal conditions for LIDAR measurements
such as droplet density ranges, LiDAR Settings, and
environmental conditions.

Conclusion

3D LiDAR sensors provide a fast and efficient detection
method for evaluating the drift performance of different types
of nozzles and spraying techniques. Through non-contact
scanning, the spatiotemporal distribution plots of drifting
droplets can be provided, and the influence of environmental
characteristics on the spatial transport of drifting droplets can
be evaluated. Compared with the traditional method of using
passive collectors, LIDAR technology significantly reduces
time and labor cost, as well as the operator’s exposure to
chemical pesticides.

In general, a good correlation was observed between the
drift deposition with passive collectors and the drift points
scanned by 3D LiDAR. This non-contact sensing method has
shown potential for evaluating spray drift characteristics of
nozzles under different working conditions. However, it is
difficult to equate a laser feedback signal with a droplet, the
droplet detection performance of commercially available 3D
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LiDAR sensors is limited by sensitivity to droplet density. It
can be inferred that the effectiveness of LIDAR on droplet
detection has certain threshold requirements for droplet
density, knowing the optimal droplet density range can greatly
improve the detection accuracy of LiDAR. Also, the droplet
spectrum and movement speed may be other important
factors, which affect the strength and quantity of the reflected
signal of a laser beam impacting droplet. In this study,
IDK12002 shows the best correlation between 3D LiDAR
measurements and the indirect method, and the lower spray
pressure with less drift and larger droplet size appears to
be more conducive to drift evaluation with 3D LiDAR. Further
research would be arranged to investigate the influence of
droplet size and movement speed on detection results, and
clarify the maximum and droplet density threshold range
allowed by 3D LiDAR detection.
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The United Nations predicts that by 2050, the world’s total population
will increase to 9.15 billion, but the per capita cropland will drop to
0.151°hm?2. The acceleration of urbanization often comes at the expense
of the encroachment of cropland, the unplanned expansion of urban area
has adversely affected cultivation. Therefore, the automatic extraction of
buildings, which are the main carriers of urban population activities, in
remote sensing images has become a more meaningful cropland observation
task. To solve the shortcomings of traditional building extraction methods
such as insufficient utilization of image information, relying on manual
characterization, etc. A U-Net based deep learning building extraction model
is proposed and named AttsegGAN. This study proposes an adversarial
loss based on the Generative Adversarial Network in terms of training
strategy, and the additionally trained learnable discriminator is used as a
distance measurer for the two probability distributions of ground truth Pgat,
and prediction Pg. In addition, for the sharpness of the building edge,
the Sobel edge loss based on the Sobel operator is weighted and jointly
participated in the training. In WHU building dataset, this study applies the
components and strategies step by step, and verifies their effectiveness.
Furthermore, the addition of the attention module is also subjected to ablation
experiments and the final framework is determined. Compared with the
original, AttsegGAN improved by 0.0062, 0.0027, and 0.0055 on Acc, F1,
and loU respectively after adopting all improvements. In the comparative
experiment. AttsegGAN is compared with state-of-the-arts including U-Net,
DeeplabV3+, PSPNet, and DANet on both WHU and Massachusetts building
dataset. In WHU dataset, AttsegGAN achieved 0.9875, 0.9435, and 0.8907
on Acc, F1, and loU, surpassed U-Net by 0.0260, 0.1183, and 0.1883,
respectively, demonstrated the effectiveness of the proposed components
in a similar hourglass structure. In Massachusetts dataset, AttsegGAN also
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surpassed state-of-the-arts, achieved 0.9395, 0.8328, and 0.7130 on Acc, F1,
and loU, respectively, it improved loU by 0.0412 over the second-ranked
PSPNet, and it was 0.0025 and 0.0101 higher than the second place in Acc

and F1.

UAV, cropland observation, building extraction, WHU building dataset, Massachusetts
building dataset, multi-loss, dual attention, Sobel edge loss

Introduction

Since 1990, the trend of population migration to cities
has become more pronounced, which has resulted in cities
becoming the main carriers for modern human economic
and social activities (Buhaug and Urdal, 2013). Statistics show
that the average global cropland area loss between 1992
and 2004 was about 30,000 kmzyr_l, of which 34.3% was
converted to settlements, and that cropland loss was particularly
pronounced in Asia in the following decade (Tan and Li, 2019).
Especially in China where, even though the illegal occupation
of planting land has been written into the criminal law, the
occupation of cropland is still common (Xing, 2016). Due to
the rapid urbanization process, the occupation of cropland is
often reflected in the expansion of building areas (as shown
in Figure 1), which has become a common phenomenon
(McKittrick, 2013). Therefore, the automatic detection of
buildings is crucial to the protection of cropland. On the other
hand, for automated agricultural intelligent devices such as
robots and UAVs, accurate identification of buildings will also
provide effective reference information for their path planning
and obstacle avoidance tasks.

Buildings are one of the most widely distributed and most
important types of man-made objects and could be extracted
by satellite or UAV (Unmanned Aerial Vehicle) remote sensing
images understanding (Alshehhi et al,, 2017). Currently, with
the development of remote sensing technology, such as SPOT
6 of France, ZY-3, Gaofen-1 and Gaofen-2 of China, and
WorldView-3 of the United States can already use meters or
submeters as its spatial resolution measurement unit, and it has
reached or approached the quality of aerial photography (Chen
W. et al,, 2017; Ghimire et al., 2020). Compared with medium
and low resolution, higher resolution remote sensing images
have the following characteristics:

(1) The spectral features of the ground objects are more
obvious, the spectral difference between the same type of ground
objects becomes larger, and the spectral difference between
different types of ground objects becomes smaller;

(2) Higher spatial resolution makes the data volume of a
single image larger;

(3) A single pixel often corresponds to only one type of
ground object;
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(4) There is more detailed information of ground objects,
such as shape, brightness, texture, etc;

(5) The
complex and diverse.

background of ground objects is more

These distinctive features also present higher requirements
for building extraction. In order to meet these various
requirements of new application areas, identifying buildings
in high-resolution remote sensing images is the core
challenge.

Traditional remote sensing image building extraction
methods mainly include knowledge-based methods using
geometric knowledge and context knowledge, along with object-
based image analysis (OBIA)-based methods and machine-
learning-based methods using image segmentation and target
classification (Cheng and Han, 2016). In these traditional
methods, the extraction task often requires experts to judge
and design according to the spectrum, texture, shape, spatial
relationship, and other information of the building, which
relies heavily on abundant human imagination, ingenuity, and
experience for the design of the features. Fortunately, Hinton
and Salakhutdinov (2006) demonstrated the powerful feature
representation capability of deep learning models in computer
vision applications. They showed that the features will be
automatically obtained from the existing data by the neural
network through sampling, and the more abstract features
beyond human imagination can be effectively obtained by
increasing the depth of the network. The burden of feature
design can be shifted to model design, which is relatively simple
(Ubbens and Stavness, 2017).

However, in remote sensing images, due to the increasing
complexity of buildings and their backgrounds caused by
progressively higher resolution, the application of deep learning
to building extraction still has problems (Jun et al., 2016), such
as insufficient extraction of multi-scale targets, insufficient use
of image information, model overfitting, and ambiguous edges
in prediction, etc. Therefore, there are still challenges with
regard to accurately segmenting and characterizing buildings.
In this article, to solve these deficiencies, a deep-learning-based
building extraction method is proposed. The contributions of
this paper can be listed as follows:

(1) The dual-attention mechanism is used, which enhances
the information utilization of remote sensing imagery within
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FIGURE 1
Encroachment by buildings on cropland.

both feature maps and channels, and dedicates computing
resources to more critical areas.

(2) In view of the multi-scale features of modern buildings,
the ASPP (atrous spatial pyramid pooling) module is added
to the model, which reduces the amount of computation
and parameters while increasing the receptive field of the
model, enhancing its ability to extract buildings with multiple
sizes and shapes.

(3) In terms of model training, to make the prediction more
artificial, a learnable discriminator and adversarial loss based
on the idea of generative adversarial networks are proposed,
and the authenticity of the prediction is used as an auxiliary
reference to guide the learning process of the model by weighted
adversarial loss.

(4) In terms of loss design, an edge loss based on
the Sobel operator was proposed to solve the problem of
the edges of buildings being susceptible to approximate
background interference.

The following sections are arranged as follows: the relevant
foundations involved in this study are presented in Section
“Related works”; the components, WHU dataset, multi-
losses design, evaluation indexes, etc., are detailed in Section
“Materials and methods”; ablation experiments and comparative
experiments are presented and discussed in Section “Results
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and discussion”; and in Section “Conclusion,” a summary of the
full paper is given.

Related works

Image segmentation and semantic
segmentation

The principle of building extraction is to use a building’s
characteristics to achieve target recognition and accurately
distinguish it from the background. Previous researchers tended
to identify buildings in the order of image segmentation, and
then artificial characterization (Khan, 2014). The traditional
image segmentation method divides an image into several
regions and realizes the feature similarity within the region and
the feature difference between regions.

The (1) the threshold-based
segmentation method; (2) the edge-based segmentation

main methods are:
method; (3) the region-based segmentation method; (4) the
graph-based segmentation method; and (5) the energy-based
segmentation method.

However, the above methods that utilize the low-level
semantics do not fully utilize the high-level semantics of remote
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sensing images to qualitatively analyze the segmented regions.
In practical application, especially when processing high-
resolution images, the characteristics of targets will be relatively
complex, and the differences between the same kinds of targets
are relatively large; therefore, algorithms that only rely on low-
level content information such as color, brightness, texture,
etc., are insufficient to achieve a reasonable segmentation.
Different from these traditional methods, the deep-learning-
based semantic segmentation method can not only realize the
image segmentation function, but can also achieve qualitative
analysis and automatic classification for the area after clustering
the pixels. In this process, abstract high-level semantic features
will be fully utilized to achieve more accurate predictions.

The appearance of “semantic segmentation” as a noun can
be traced back to the 1970s. Ohta et al. (1978) proposed the
concept of semantic segmentation and emphasized assigning
a label to each pixel in the image, thereby emphasizing
the semantic meaning of the segmented region. Semantic
segmentation belongs to the pixel-level scene understanding
task in computer image processing, which enables a dense
prediction of the input image and a label assignment for each
pixel. Therefore, deep-learning-based semantic segmentation
is not an isolated task, it involves image classification, target
detection, target boundary division, etc., (Garcia-Garcia et al,
2017), which means it is a prediction task with high demands on
image understanding.

The most meaningful models for the building extraction
task in this study are fully convolutional networks (FCNs) and
U-Net. In terms of task implementation, this study refers to the
end-to-end idea of FCN. After the CNN (convolutional neural
network) was proposed, researchers tried to apply its excellent
learning performance to semantic segmentation tasks, for which
the pioneering work is the FCN proposed by Long et al.
(2015). FCN utilizes the powerful feature extraction capabilities
of CNN to achieve end-to-end, pixel-to-pixel segmentation
prediction and replaces traditional fully connected layers
with convolutional layers. FCN also adapts classic network
structures, such as AlexNet, VGGI16, and GoogLeNet, to
fully convolutional models and verifies their performance in
semantic segmentation. In addition, FCN can accept input
images of an arbitrary size with a fixed number and size of
convolutional layers, and performs pixel-wise predictions on the
input images through learnable deconvolution in terms of up-
sampling.

After the performance of FCN is proved, more enlightening
semantic segmentation models are proposed. Similar to U-Net
in structure, PSPNet uses global pyramid pooling and deeply
supervised loss as improvements, enhancing the ability of
feature extraction. DenseASPP is proposed and used to solve
the problem of insufficient feature resolution in the scale-
axis. DANet proposes a dual-attention module that makes
full use of image information and shows its performance in
multi-class semantic segmentation. OCNet address the semantic
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segmentation task with a context aggregation scheme which
focuses on enhancing the role of object information.

In this research, U-Net was referred to in the framework
design. In U-Net, the contracting path performs the role of
down-sampling, and the expansive path performs the role of
up-sampling. It is worth noting that four connection channels
were added, respectively concatenating the feature maps of four
different resolutions in the down-sampling process with the
corresponding layers in the up-sampling process. This operation
avoids the loss of details in the down-sampling process, so
that the shallow features extracted by the convolutional neural
network can directly participate in the prediction.

In the process of down-sampling, the convolution
calculation combined with the ReLU activation function
plays a role in increasing the nonlinear relationship between
pixels, and the image is shrunk by a 2 x 2 max pooling
operation with a stride of two. After each contraction, the
number of channels is doubled by a 3 x 3 convolution. After
four contractions, U-Net starts to use a 2 x 2 convolution for
expansion, and the number of channels will be reduced to half
of the original through a 1 x 1 convolution and concatenated
with the feature maps in contraction. Then, the number of
channels of the output will be reduced by a 3 x 3 convolution
with the ReLU function. It is worth noting that edge pixels will
be lost after the convolution operation, so the corresponding
feature map from the shrinking unit needs to be cropped before
concatenation. Finally, U-Net will output the segmentation map
according to the set size (Ronneberger et al., 2015).

Generative adversarial networks

Before the proposal of GANs (generative adversarial
networks), the deep learning model often included only a
generative model or a discriminative model (Goodfellow et al,,
2014). The former uses a large amount of neural network
parameters and their ability to fit the dataset to generate
new data that does not exist in the training set, while the
latter directly fits the discriminant function. Different from the
traditional model, GAN, as an implicit density generative model,
includes both the generative model and the discriminative
model in one framework. A generative model can be likened
to a counterfeiter, while a discriminative model can be likened
to a policeman. The former hopes that their forgery ability is
as superb as possible, so that the fake data is as similar as
possible to the real data, thus the police cannot make accurate
judgments. The police, on the other hand, are expected to
judge the authenticity of the data as accurately as possible,
and the training process is more like a competition where the
competitors are alternately leading. Assuming that Py, (x) is
the distribution probability of the real data and Pg (x) is the
distribution probability of the generated data, when the system
is in Nash equilibrium, a “smartest” generator can be obtained

frontiersin.org


https://doi.org/10.3389/fpls.2022.993961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

Wang et al.

to achieve more accurate fitting between Py (x) and Pu, (X)
(Jabbar et al., 2021).

The advantage of GAN is that there are fewer constraints
in the design, it does not need such a complex artificial
qualification as that in the Markov chain or the variational
boundary, but uses a learnable discriminator as an auxiliary
training method to constrain the feature distribution of the
generator output, which is more convenient. Moreover, the
discriminator will act as a distance measurer between Py (x) and
Piata (x)

The generative adversarial networks can be expressed by the
following object function:

m(i’n mgx V (D, G) = Ex~p,,,(x) [log D (x)]

+ Erep,» [log (1 =D (G (2)))] (1)

where D represents the discriminator, G is the generator,
Pata (x) stands for the probability distribution of the real data,
P, (z) denotes the probability distribution of random noise z,
D (x) represents the discrimination result on real data x, and
D (G (z)) signifies the discrimination result of D on sample G (z)
generated by generator G through random noise z.

In terms of GAN training, according to the above principles,
to obtain the optimal discriminator, it is necessary to let the
output of D (x) be 1, and let the output of D (G (z)) be 0, then
the optimal discriminator can be expressed as:

mgx V (D, G) = Ex~p,,,x) [logD (x)]

+Eip,» [log(1 =D (G ()] (2

To obtain the optimal generator, it is necessary to let G (2)
generate data as real as possible to disturb the judgment of the
discriminator D. Since this process is independent of the first
half of Formula (2), the optimal generator can be expressed as:

minV (D, G) = E;p,n [lg 01 =D G @)] ()

To provide more accurate data for the subsequent city-
related evaluation tasks, the building extraction has high
requirements with regard to accuracy, and researchers hope
the intensive prediction performance of the model can be as
close as possible to human experts. Therefore, in this study,
the training of the prediction model will be aided by weighted
adversarial loss.

Materials and methods

Depthwise separable convolution and
atrous spatial pyramid pooling

In recent years, the difference in shape and size between
different buildings has become more pronounced; therefore, in

Frontiers in Plant Science

41

10.3389/fpls.2022.993961

remote sensing imaging, the identification and extraction of
multi-scale objects has always been a challenge (Vakalopoulou
et al, 2015). In a traditional convolution-based model,
to increase the receptive field, reducing the amount of
computation, pooling, or convolution with a stride greater than
1 will be used, but this will reduce the spatial resolution. In this
study, ResNet-50 is used in the encoder; therefore, the depth
of the model is relatively deep and the amount of parameters
will be large (He et al, 2016). To ensure the resolution while
expanding the receptive field, ASPP (atrous spatial pyramid
pooling) and a depthwise separable convolution are used to
obtain multi-scale information flexibly by setting the dilation
rate without introducing additional parameters, so as to better
obtain multi-size buildings.

Atrous spatial pyramid pooling was formally proposed
in DeepLabv2. When deep convolutional neural networks
are used in semantic segmentation tasks, the input remote
sensing image usually needs to undergo a down-/up-sampling
process in a convolutional encoder-decoder structure. Although
convolutional neural networks have a receptive field mechanism
that can be used to extract multi-scale target features, its scale
will be limited by the size of the convolution kernel (Chen L.
C. et al,, 2017). An atrous convolution can be used to cheaply
increase the receptive field of output units without increasing
the kernel size, which is especially effective when multiple atrous
convolutions are stacked one after the other (Dai et al., 2021).
Assuming that the input feature map size is R™ x R™ , the
output feature map size is R x R°* | and the convolution
kernel size is K x K. In a traditional convolution, the receptive
field range is equal to the size of the convolution kernel, which is
K x K. In an atrous convolution, assuming that the dilated rate
is D, its receptive field willbe K’ = K + (K — 1)(d — 1).

Loss function design

In this study, the overall loss is divided into three parts,
namely BCE (binary cross-entropy) loss Ly responsible for
segmentation prediction, adversarial loss responsible for the
auxiliary training of model prediction authenticity, and edge
loss responsible for optimizing the accuracy of building edge
prediction. The overall loss is defined as:

Leym = Lseg + LEdge + Laay 4

In the first item, the predicted segmentation map y and the
label map y are compared at the pixel level. For a single pixel
in a remote sensing image, the building extraction task belongs
to the binary classification task; therefore, this study uses binary
cross-entropy as the loss, which can be expressed as:

A 1 g ,
Lseg = Lpece (}’,}’) = _; zzi IOgZi +(1—z) (5)
i
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where z; and Zz; denote the label value in y and the predicted
value in y at the same location, respectively.

In the second item, considering that buildings often have
straight boundaries with the background, in this study, a Sobel-
operator-based loss was designed and added to highlight the
edges. By implementing the Sobel operator in both horizontal
and vertical directions, and then using it as a filter to perform
convolution operations on the image to be processed, the
horizontal and vertical edges on the image can be extracted. The
Sobel template in the horizontal direction is:

—10+1
—20+2
—10+1

fu=

Meanwhile, in the vertical direction, it is:

-1-2-1
0 0 O
+1 +2 +1

f= (7)

Specifically, two convolutional layers using the above
templates are defined, and their weights are not involved
in backpropagation. After the building extraction results are
obtained in the forward propagation, the prediction results and
the original labels are input into the two designed layers for
calculation, and two dual-channel gradient maps of the edge
are obtained, the values of which are between 0 and 1. Then,
the mean square error (MSE) between the two gradient maps is
calculated to obtain the edge loss:

LEdge = Linse (fh(}’)>fh(j’)) + Linse (fv(}’%fv@)) (8)

In the third item, to ensure that the model prediction
ability is closer to that of the experts, the idea of GAN is
applied, and the extraction task is still carried out by the
generator; meanwhile, an additional discriminator is trained
synchronously to determine the authenticity of the pixel-level
prediction results. Hence, the discriminator acts as a learnable
constraint and participates in the overall training of the model
by virtue of the adversarial loss, the training of which can be
represented by the following function:

Ladv = Lice (D (x’ y) > 1) + Lyee (D (x, G (x)) , 0) ©))

where G(x) =7, G is the generator, and D represents the
discriminator. In alternate iterative training of generative

adversarial networks, the generator loss can be expressed as:
LG = Liee ()A’s )’) + LEdge — Lyee (D (x, G (x)), 0) (10)

Here, a maximized Ly, (D (x, G(x)), 0) can be equivalent to a
minimized Ly, (D (x, G(x)), 1); furthermore, weights are added
to the loss of each item, so it is easy to obtain:

L = wiLpee (j\/: }’) + WZLEdge + w3Lpc, (D (x: G(x)) > 1) (11)
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Dual-attention module

The aim of the attention mechanism is to obtain
the difference in importance between feature maps and
To the
neural network to devote more computing resources to

feature values. realize reassignment, it causes
more important areas (Mi et al, 2020). In this building
extraction task, the importance of different objects is
distinct; therefore, introducing an attention module can
provide more tractable and more relevant information for
high-level perceptual reasoning and more complex visual
processing tasks.

Generally, attention mechanisms can be divided into item-
wise and location-wise, both of which can be subdivided
into soft attention (differentiable), and hard attention (non-
differentiable). Among them, the location-wise soft attention
with feature map as an input can participate in gradient descent
together with the neural network and update the weights
through backpropagation (Niu et al, 2021), which is more
suitable for the application scenario of deep learning, so it is also
applied to this study.

In the process of building extraction, the spatial relationship
between each pixel and its nearby pixels is significantly higher
than the relationship with pixels far away from it; therefore, this
study refers to DANet using a dual-attention module to fully
capture the semantic dependencies in the spatial and channel
dimensions (Fu et al., 2019).

In terms of implementation, the dual-attention module
includes the position attention module [shown in Figure 2(A)]
and the channel attention module [shown in Figure 2(B)],
and calculates the attention matrices § and X for them,
respectively.

First, the output A of the last layer after down-sampling is
copied into four parts, in which B, C, and D are obtained after
one convolution layer, and their size is {B, C, D} € RO*HW,
Subsequently, flattening is performed within the channel, and
the new dimension is {B, C, D} € RN | where N = H % W.
The reshaped matrix can be expressed as:

Breshape = Creshape = Dreshupe

1 agl 1 1]
My, My, M;;y M;;
2 a2 2 2
My My, M;;y M
- Do (12)
c—1 c—1 c—1 c—1
My My, My, M
4 c c c
| My Mj, My M;j o]
The matrix B is then transposed to get BrTeshupe , BrTeshupe and

C are multiplied by a matrix, and an attention matrix pam is
formed with a size of N * N through the SoftMax, as shown in
the following formula:

Spam = softmax (BrTeshupe ® thupe) (13)
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FIGURE 2
(A) Framework of position attention module; (B) framework of channel attention module.
It is then transposed, so that pam! and Dyeshape are can be obtained, as shown in the formula below:
multiplied, and the output is then reorganized in the array
. . . . CxHsxW . Xeam = softmax (A hape @ AL )
dimension to make it the same as the input A € R~*"*" 'which reshape reshape
can be expressed as:
P Su Sz Sie-1 Sic
S21 S22 S2c-182¢
T
output = Dreshape Q) Spam = = L : (15)
Se-11 812 Se—1c-1 Se-1c
Sc 1 Sc 2 Sc c—1 Sc c
1 1 1 1 . . .
MySu+ oo+ MiSin 0 MySm+ o 4 My San Next, the attention map X is transposed to obtain XL

, the transposed matrix is multiplied with Aygqpe [as shown

' . ' in Formula (16)], and the result is then reorganized into
MESt o 4 ME St e MESiy 4 o+ ME S (16)] 8

output € ROH*W,
(14) P
CxHsW : i T
In the output € R with an updated weight, each output = X, ® Aveshape =

pixel in the original matrix is associated with the remaining
pixels in the feature map (after being given new weight). Finally,
output and A are added to get E, and it is used as the output of

the spatial attention module. SuMy + o SaMiy SnMilj T F Sy
In terms of the specific implementation of the channel .

attention module, the input A € REH*W g first restructured St cMh + o+ SecMfy - S ,;Milj + ...+ S chj

into A € RN (where N = H % W), and Areshape is multiplied (16)

by its transposed ArTeshupe , then a SoftMax operation is It is then added to input A to get output E. It can be seen

performed on the result, and the channel attention map Xcam from Formula (16) that the weights have been reassigned, and
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the new values are related to the values in the same position in
all feature maps.

Evaluation indexes

To evaluate the predictive ability of the model
comprehensively and objectively, a confusion matrix is
introduced in this study, which is used to summarize
the predictive performance of classification models in
machine learning.

Accuracy is used to find the portion of correctly classified
values, and the formula is as follows:

TP+ TN

Accuracy = (17)
TP+ TN + FP + FN

where TP is True Positive, FP is False Positive, FN is False
Negative, and TN is True Negative. Precision is used to calculate
the model’s ability to classify positive values correctly, and the
formula is as follows:

TP

—_— 18
TP + FP (18)

Precision =
Recall is used to determine the model’s ability to predict
positive value, and the formula is as follows:
TP

Recall = ——— (19)
TP + FN

The F1 score is a comprehensive analysis of whether the
TP is large enough from two perspectives, predicted and actual.
The F1 score is the harmonic mean of precision and recall.
According to the formula of harmonic mean, it can be obtained

Convolution 1xX1,s =1

Batch Normalization

10.3389/fpls.2022.993961

by the following formula:

-1
Precision™" + Recall ™!
Fl — ( recision” + Reca ) 20)
2
The formula for calculating IoU (intersection over union) is
as follows:
TP
IoU= ————— (21)
TP + FP + EN

The model framework

In the framework design of the building extraction
model, a convolutional encoder-decoder structure with
skip connections was designed, as referred to U-Net
and ResNet-50. In the down-sampling process, two
slightly different bottlenecks are wused, as shown in
Figure 3, with the difference being that Bottleneck
1 contains a 1 x 1 convolutional and a BN in the
shortcut connection.

In the convolutional encoder, the input image goes through
four bottleneck blocks, and then enters ASPP. As shown in
Figure 4, the ASPP module is divided into four parts, one of
which is a normal 1 x 1 convolutional layer, and the remaining
three set the dilation rate D to 6, 12, and 18, respectively.
The output of the four parts is then concatenated and used
as the final output after a 3x3 Conv+BN+ReLU operation.
In the subsequent attention module, the input is reassigned
according to the attention map and used as the input of
the decoder. In the decoder, up-sampling is conducted using
bilinear interpolation with convolutional layers, generating a
prediction for building extraction.

Convolution 1x1,s =1

Batch Normalization
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FIGURE 3

Framework of two types of bottlenecks. (A) Bottleneck 1. (B) Bottleneck 2.
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In terms of the discriminator structure, there are two
different combinations of input: the first is the original image
and the prediction, and the second is the combination of
the original image and the ground truth. In this study,
a Markovian discriminator (also known as PatchGAN) was
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designed with reference to Pix2Pix (Isola et al, 2017). The
output of the discriminator is not a simple 1 or 0, but
a discriminant matrix that gives a separate discrimination
for each part of a grided image. To better judge the
high-resolution remote sensing images with dense ground
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FIGURE 5
Markovian discriminator and gradient descent.

objects, the output size of the discriminator was set to
8 x 8 x 1, which is expected to output an all-zero
matrix when judging the first combination, and an all-
one matrix when judging the second combination. Figure 5
displays the Markovian discriminator and the process of
gradient descent.

Building datasets

To verify the performance of the proposed model,
selected. WHU
building dataset contains a total of 8,189 images, including
4,736 for training (containing 130,000 buildings), 1,036
for validation (containing 14,500 buildings), and 2,416
This
independent

two open-source building dataset was

for testing (containing 42,000 buildings). aerial
than 220,000
buildings extracted from aerial images with a 0.075°m
spatial resolution covering 450°km? in Christchurch,
New Zealand. The area is divided into 8,189 blocks with

a resolution of 512°x°512 each (shown in Figure 6).

dataset consists of more

The WHU dataset contains a variety of scene types,
such as countryside, residential, cultural, etc. The size,
purpose, and color of the buildings are also diverse, which
is suitable for the training of building extraction models
(Jietal., 2018).

The Massachusetts building dataset (shown in Figure 6)
has a total of 137 remote sensing images, including 137
in the training set, four in the validation set, and 10
in the test set. The dataset covers buildings of different
scales in cities and suburbs, the image size is 1,500°x°1,500
and the area is 2.25 square kilometers, the dataset covers
about 340 square kilometers in total (Saitoetal,2016).
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Training details

The model was built in Pytorch v1.7.1, CUDA v1l.1.
The training equipment utilized was GeForce RTX 3090ti
24G, Adam was used as the optimizer, the learning rate
was set to 0.001, and the momentum parameters were
set to 0.9 and 0.999. The weights in the overall loss
were set to wp:wy:w3=1:1:0.3. In the comparative
experiments, each comparative model was trained for
200 epochs. It is worth highlighting that, to prevent the
segmentation model from being excessively disturbed by
the meaningless discrimination generated by the random
initialized discriminator in the initial stage, AttsegGAN chose
to freeze the discriminator first, and let the segmentation
model train separately in the training set for 1,000 iterations
with a batch size of 1. The segmentation model was
then frozen, letting the discriminator train separately for
800 iterations of the combined input method described
above. Then, the alternate iterative training strategy of
the generative adversarial network was used to complete
the subsequent training. The models used for comparison
were trained according to the environmental parameters
provided by the authors.

Results and discussion
Ablation experiments
To improve the prediction ability of the building

this
based on an “hourglass” structure: U-Net (namely ASPP),

extraction model, study proposes four strategies
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FIGURE 6

Images and labels in the WHU building dataset. (A) Original images in WHU dataset, (B) labels of WHU dataset, (C) original images in

Massachusetts dataset, and (D) labels of Massachusetts dataset.

TABLE1 Component and training strategy ablation experiments in WHU building dataset.

Version 5 (proposed) Version 4 Version 3 Version 2 Version 1
Sobel edge loss v
Adversarial loss v v
ASPP v v v
Attention v v v v
Acc 0.9875 0.9871 0.9867 0.9872 0.9813
F1 0.9435 0.9421 0.9400 0.9402 0.9408
IoU 0.8907 0.8905 0.8874 0.8862 0.8852

Bold values mean the best performing data.
The underlined value means the second best performing data.

attention mechanism, Sobel edge loss, and adversarial
To verify their this of the

experiment carried out ablation experiments in a step-by-

loss. effectiveness, part
step manner in WHU building dataset, and conducted
objective evaluations through three evaluation indexes:
Acc, F1, and IoU.

As shown in Table 1, after adopting the components
and training strategies step by step, the prediction ability of

the model was improved. Among them, the most significant
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improvement indicators were Acc and IoU; after adding
all the improvement schemes, these two indicators were
improved by 0.0062 and 0.0055, respectively, compared with
the original version. The most obvious improvements to
the model were adversarial loss and Sobel edge loss. After
using the former, the IoU of the model was increased
by 0.0038 and the F1 was increased by 0.0021, which
means that the model could better predict positive values.
The proposal of Sobel edge loss significantly improved
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the prediction ability, with an improvement of 0.0002 to
0.0021
achieving the best results in the notable Acc, F1, and IoU,
reaching 0.9875, 0.9435, and 0.8907,
improvement brought by the dual-attention mechanism

in the evaluation indicators other than SP, and
respectively. The

was more significant in Acc, with an increase of 0.0059,
indicating that the performance improved after the allocation of
computing resources was adjusted through the attention
the by
ASPP was relatively insignificant, it increased by 0.0012
to 0.8874 on IoU.

shows the intuitive improvement brought

map. Although overall improvement brought

by Sobel edge loss. It may not be able to improve the
extraction of specific small-sized buildings, but it can
make the lines of the extracted buildings clearer, making
them closer to a straight line and to the ground truth.
Although ASPP improved the extraction performance of
the model in multi-size buildings while the evaluation
indicators improved, it was also found that the edges of
the buildings in the predicted segmentation map were
obviously jagged due to the setting of the validation rate.
Since semantic segmentation achieves pixel-level dense
predictions, this phenomenon is not conducive to the
Sobel

loss used in conjunction with ASPP has been proven to

prediction-accuracy-oriented task. However, edge

effectively alleviate edge jaggedness.

10.3389/fpls.2022.993961

Attention mechanism ablation
experiments

According to our statistics, each time an attention module
is added to the prediction model, approximately 227,000
parameters are added. Therefore, when the addition cannot
effectively promote the capacity of prediction, it will increase
the training cost and the risk of overfitting. In this section, the
addition strategy of the attention mechanism is investigated and
verified, and we propose several versions of the framework, as
shown in .

To explore the relationship between the attention module
and the overfitting phenomenon, we performed the four
versions on the WHU dataset and made statistics, as shown in

From the performance on the test set, the predictive ability
does not increase with the addition of the attention module, but
decreases. Therefore, it is not advisable for this component to
be added to the other connection channels; it works best when
added only after the last down-sampling layer.

, it can be found that Acc, F1, and IoU
perform the best in the training set, indicating that after

From

200 epochs of training, the model can already learn enough
and complete the prediction. Conversely, the indicators show
a downward trend in the remaining two sets, and there
is a large difference from the training set, indicating that

FIGURE 7

Building extraction results: (A) original remote sensing image; (B) ground truth; (C) prediction with atrous spatial pyramid pooling; (D) prediction

with ASPP and Sobel edge loss

Frontiers in


https://doi.org/10.3389/fpls.2022.993961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

Wang et al.

10.3389/fpls.2022.993961

A Input Prediction
Conv.
E2yerit
Layer1 |
Conv
Layer 2 ﬁ Layer 2
Conv.
Layer 3 - Ups(:;:in Layer 3

Version 1 (proposed)

Parameters~2551300

¢ Input Prediction

Layer 1

Layer 2
Layer 3
Layer 4
Version 3
Parameters=~3005300
FIGURE 8

Attention mechanism ablation experiments. (A) Version 1 (proposed), (B) Version 2, (C) Version 3, and (D) Version 4.
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TABLE 2 Statistics for the evaluation indicators of the three sets.

Acc F1 IoU
Training set
Version 1 0.9869 0.9586 0.9107
Version 2 0.9873 0.9537 0.9119
Version 3 0.9870 0.9504 0.9039
Version 4 0.9878 0.9569 0.9153
Validation set
Version 1 0.9883 0.8366 0.7889
Version 2 0.9879 0.8362 0.7870
Version 3 0.9889 0.8426 0.7898
Version 4 0.9883 0.8399 0.7903
Test set
Version 1 0.9875 0.9435 0.8907
Version 2 0.9873 0.9436 0.8893
Version 3 0.9869 0.9421 0.8870
Version 4 0.9852 0.9397 0.8869

Bold values mean the best performing data.

these four versions have a certain degree of overfitting.
This phenomenon is most obvious in Version 4, which
has the largest number of parameters. Compared with
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the training set, the Acc, Fl, and IoU of the model
in the test set decreased by 0.0026, 0.0172, and 0.0284,
respectively. Thus, although the attention mechanism has been
proven to be an effective component, the improvement in
predictive ability is not proportional to the number, and
will lead to an aggravation of the overfitting, and thus
performance degradation.

Comparison with state-of-the-arts on
WHU building dataset

In this selected four classic semantic

segmentation algorithms based on deep learning that have been

section, we
proven in various open-source datasets: U-Net, DeepLabv3+,
DANet, and PSPNet.

As shown in Table 3, AttsegGAN is 0.1883 higher than
U-Net in IoU, and 0.0260 higher in Acc, which indicates that
the addition of effective components can improve the predictive
ability of building extraction models in the case of similar
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TABLE 3 Statistics of comparative experiment results on WHU
building dataset.

Acc F1 IoU
U-Net 0.9615 0.8252 0.7024
DeepLabv3+ (ResNet-101) 0.9776 0.9028 0.8228
PSPNet (ResNet-101) 0.9586 0.7734 0.6434
DANet (ResNet-101) 0.9851 0.9327 0.8738
AttsegGAN 0.9875 0.9435 0.8907

Bold values mean the best performing data.
The underlined value means the second best performing data.

deep learning frameworks. In comparison with DeepLabv3+
and DANet, AttsegGAN also has obvious improvement in
indicators: 0.0099 and 0.0024, respectively, in ACC; and 0.0697
and 0.0169 in IoU, which proves that, even if the model uses
components with similar principles, the rational framework and
training strategy can also significantly improve the predictive
ability of the building extraction model. The visual and
intuitive results are shown in Figure 9, and the predicted

10.3389/fpls.2022.993961

segmentation results are objectively represented by rendering
(images are randomly selected from the test set of the WHU
building dataset).

Comparison with state-of-the-arts on
massachusetts building dataset

To further demonstrate the predictive ability of the
proposed AttsegGAN on pixel-level binary classification task,
we trained and validated it on another remote sensing image
based dataset, the Massachusetts building dataset. In this
section, DANet, Deeplabv3+, PSPNet, and UNet were selected
to compare with AttsegGAN.

From the statistics in Table 4, it can be seen that the
performance of the models on the Massachusetts building
dataset is lower than that on the WHU, but still reflects the
difference between the prediction ability. In the evaluation
indicators, AttsegGAN is higher than other algorithms in
Acc, F1, and IoU. Among them, IoU is the most obvious,

FIGURE 9

positive (fp) pixels; blue: false negative (fn) pixels.

Building extraction results: (A) original remote sensing image; (B) prediction of U-Net; (C) prediction of Deeplabv3+; (D) prediction of PSPNet;
(E) prediction of DANet; (F) prediction of AttsegGAN (ours). Green: true positive (tp) pixels; transparent: true negative (tn) pixels; red: false
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TABLE 4 Statistics of comparative experiment results on
Massachusetts building dataset.

Acc F1 IoU
U-Net 0.9370 0.8125 0.6930
DeepLabv3+ (ResNet-101) 0.8921 0.6929 0.5301
PSPNet (ResNet-101) 0.9317 0.8227 0.6988
DANet (ResNet-101) 0.9236 0.7989 0.6652
AttsegGAN 0.9395 0.8328 0.7130

Bold values mean the best performing data.
The underlined value means the second best performing data.

which is 0.0412 higher than the second-ranked PSPNet, this
means that the predicted region fits the ground truth better.
Meanwhile, AttsegGAN is also 0.0025 and 0.0101 higher than
the second place in Acc and F1, respectively. It can be found
that U-Net and AttsegGAN perform more prominently on
Acc. As an earlier designed model, U-Net can outperform

10.3389/fpls.2022.993961

the newly proposed algorithm in binary classification task,
indicating that the feature fusion brought by the skip connection
mechanism can still effectively promote the prediction accuracy.
The visual and intuitive results are shown in Figure 10, and the
predicted segmentation results are objectively represented by
rendering (images are randomly selected from the test set of the
Massachusetts building dataset). In terms of running efficiency,
when the input is a remote sensing image of size 512x 512, the
processing time of AttsegGAN is 0.09822s per image.

Detecting buildings in cropland

Recognition and background separation of buildings
near planting land is a meaningful remote sensing image
understanding task, which can provide significant reference
information for planting land protection and path planning
of unmanned equipment. In Figure 11, the processing
performance of the proposed AttsegGAN on this task is
visually displayed.

FIGURE 10

positive (fp) pixels; blue: false negative (fn) pixels.

Building extraction results: (A) original remote sensing image; (B) prediction of U-Net; (C) prediction of DeeplLabv3+; (D) prediction of PSPNet;
(E) prediction of DANet; (F) prediction of AttsegGAN (ours). Green: true positive (tp) pixels; transparent: true negative (tn) pixels; red: false
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FIGURE 11

Building extraction results: (A) original remote sensing image; (B) prediction of AttsegGAN; (C) original remote sensing image; (D) prediction of

AttsegGAN.

Conclusion

Aiming to provide more accurate reference information for
arable land monitoring tasks, AttsegGAN is proposed in this
study. AttsegGAN is a deep-learning-based building extraction
model that can automatically segment and characterize
buildings from high-resolution remote sensing images. This
study proposes four improvements based on the U-Net
structure, namely ASPP and a dual-attention mechanism with
regard to model components, and adversarial loss and Sobel
edge loss with regard to training strategy, with experimentation
carried out on the WHU building dataset. In the ablation
experiments, the improvements were added one by one, and the
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effectiveness was proven on the test set using three evaluation
indicators, Acc, F1, and IoU, with the results showing that the
improvements brought by the two losses is more obvious. In
the ablation experiments for the attention module, the results
show that the model prediction ability is not positively related
to the number of components, but leads to overfitting. In
the comparison between the final version of AttsegGAN and
state-of-the-arts, AttsegGAN performed the best in comparison
with U-Net, DeepLabv3+, PSPNet, and DANet, achieving
0.9875, 0.9435, and 0.8907 for Acc, F1, and IoU in the WHU
test set, respectively. Meanwhile, AttsegGAN also achieved
the best results on the Massachusetts test set, achieving
0.9395, 0.8328, and 0.7130 for Acc, F1, and IoU. The results
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show that the proposed model could accurately complete
building extraction and provide more reliable reference

information for remote sensing observation  tasks

related to cropland.
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Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of
Agriculture, Shihezi University, Shihezi, China

Defoliant spraying is an important aspect of the mechanized processing of
pepper harvesting. Complete and uniform spraying of defoliant could improve
the quality of defoliation and reduce the impurity content in processing
pepper. In this study, we assessed the effect of aerial spraying of adjuvants
on physicochemical properties of defoliant solution and droplet deposition
when using an unmanned aerial vehicle (UAV) for defoliation spraying. The
results showed that Puliwang was a better aerial spray adjuvant suitable for
spraying defoliants for processing pepper using UAVs, with a higher defoliation
rate and better droplet deposition. Although the YS-20 adjuvant had a higher
droplet deposition amount (0.72 Mg/cmz) in the middle layer, its performance
was poor in droplet size, density, and coverage. The size and density of the
droplets added with the Manniu were basically the same as the Puliwang, even
the distribution uniformity was better (the CV of the upper canopy layer was
only 33.6%), but the coverage rate was poor. In the treatment with AS-901N,
there was no marked increase in droplet size, so evaporation and drift were
notimproved, eventually resulting in a lower defoliation rate. Puliwang had the
highest comprehensive score, followed by AS-910N, YS-20, and Manniu.

processing pepper, defoliant, droplet deposition, aviation spray adjuvants, unmanned
aerial vehicle (UAV)

Introduction

Peppers (Capsicum annuum L.), with a variety of nutrients, are widely used in
cosmetics, food additives, and as an important pharmaceutical and industrial raw
material (Baenas et al., 2019). Xinjiang is an important production and processing area
for peppers in China where the land, sunlight, and heat resources are abundant. Peppers
from this region are highly reputed and have market competitiveness in domestic and
foreign markets (Chai et al., 2020). In 2018, the area of processing pepper in Xinjiang
was 3.67 x 10* hm?, and the annual yield contributed to 20% of the country’s total
production which was 25 x 10* t. At the later stage of the plant’s growth, defoliants are
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applied to make it ready for harvesting by shedding its leaves. As
the stalks and branches of the plants are extremely fragile, the
traditional boom sprayer can damage the crop by crushing the
leaves as well as the mature fruit which will ultimately affect the
yield and quality of the pepper (Xiao et al., 2020).

In recent years, unmanned aerial vehicles (UAVs) have
made great strides in agriculture. Their spraying operations
increase the deposition of pesticides on target crops and avoid
physical damage to crops during ground equipment operations
(Yuan et al,, 2018). The distancing of humans and machines
from the crops avoids pesticide poisoning and greatly improves
the efficiency of pesticide spraying and the utilization rate of
pesticides (Yan et al., 2021a). UAVs also have low levels of water
consumption, low dilution ratios, high working heights, fast
flight speeds, and high atomization abilities. UAVs have been
widely used in crops such as wheat (Yan et al., 2021b), rice (Chen
et al, 2020a), corn (Hussain et al., 2022), grapes (Matese and Di
Gennaro, 2018), citrus (Tang et al., 2018), and cotton (Lou et al.,
2018). The addition of aerial spray with adjuvants efficiently
solves the drift and loss of pesticide droplets during the spraying
by UAVs and improves the utilization rate of pesticides.

Extant research on the effect of UAV spraying has mainly
focused on fertilization, pesticide application, and nutritional
analysis (Qiu et al., 2021; Xu et al.,, 2021; Hafeez et al,, 2022).
However, UAV spraying is greatly affected by the environment,
which makes it easy for the droplets to drift and evaporate,
resulting in reduced pesticide utilization and environmental
concerns (Wang et al., 2020). Adding adjuvants to the aerial
spray is an effective method to solve the drift and loss of pesticide
droplets during UAV spraying (Chen et al., 2021). Xiao et al.
(2019) studied the effects of five aerial application adjuvants on
droplet deposition of cotton defoliation and found that vegetable
oil adjuvants had a better effect. However, limited research is
available on the effects of aerial spray adjuvants on pepper
defoliant processing. In this study, we studied “Honglong 18”
pepper as the test material using T16 UAV as the spraying
equipment and examined the efficacy of four kinds of aerial
application adjuvants. The physicochemical properties of the
defoliant solution were studied through laboratory experiments,
and the deposition characteristics were further analyzed to
assess the defoliation effect of the defoliant droplets sprayed by
UAVs through field experiments. Through this study, we aim
to provide theoretical guidance for the operation of the UAV
spraying process in pepper defoliants.

Materials and methods

Materials
The pepper defoliant (18% glufosinate ammonium soluble

concentrate) was produced by Beijing Zhongnong Honglu
Technology Development Co., Ltd., Beijing, China. The tested
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adjuvants were YS-20 (improved vegetable oil adjuvant, Anyang
Quanfeng Biotechnology Co., Ltd., Anyang, China), Manniu
(vegetable oil adjuvant, Qingdao Rishengyuan Crop Nutrition
Co., Ltd., Qingdao, China), Puliwang (vegetable oil adjuvant,
Oro Agri. International Co., Ltd., Palmela, Portugal), and AS-
910N (improved vegetable oil adjuvant Momentive Performance
Materials Inc., New York, USA). Allura Red (85%) was used as a
droplet tracer (Zhejiang Gigagold Pigment Technology Co., Ltd.,
Wenzhou, China) and ethephon aqueous solutions (40%) were
used as a ripening agent (Jiangsu Anpon Electrochemical Co.,
Ltd., Changzhou, China).

The aviation platform used was the T16 UAV (SZ DJI
Technology Co., Ltd., Shenzhen, China). The UAV was equipped
with RTK/GNSS precise positioning system, and its spraying
system included a little water pump, pipeline, nozzles (8
XR11001VS, located directly below the rotor), and electronic
control valve. T16 UAV has six rotors with a 16.0 L water tank
and a payload of 15kg. The flight height was 2.0m and flight
speed of 5.0 m/s with a spray width of 5m and spraying volume
of 15.0 L/hm?.

Treatments

There were five treatments in the experiment (Table 1).
Treatments 1, 2, 3, and 4 were added with YS-20, Manniu,
Puliwang, and AS-910N in the dosage of 225 g/hm?. Treatment 5
was the control (CK) without adjuvant. In addition, 1,875 g/ hm?
of pepper defoliant, 300 g/hm? of Allura red, and 900 g/hm? of
40% ethephon aqueous solution were added to each treatment.

Determination of physicochemical
properties of pesticide solution

Surface tension

The surface tension was measured using the ST-1510
automatic interfacial tension meter (Xuxin Instrument
Equipment Co., Ltd., Beijing, China) adopting the ring method
according to GB/T 6541-1986, 10s after pesticide solution
preparation. Each treatment was measured three times.

Dynamic viscosity

Kinematic viscosity of pesticide solution was measured by
an electronic analytical balance [Sartorius Scientific Instruments
(Beijing) Co., Ltd, Beijing, China], calculated by Equation 1 (Gao
et al., 2021). Each treatment was measured three times.

n=p x (v x 0.00947) 1

where 7 is the dynamic viscosity (mPa-s), p is the density
(g/mL), vi is the kinematic viscosity, and 0.00947 is the

frontiersin.org


https://doi.org/10.3389/fpls.2022.917462
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

TABLE 1 Test treatment design.

Treatment Adjuvants Dosage of adjuvants
(g/hm?)

1 YS-20 225

2 Manniu 225

3 Puliwang 225

4 AS-910N 225

5 / /

instrument constant for this viscometer (mm?/s?), given by
the manufacturer.

Contact angle

Fresh pepper leaves (2 x 2cm, avoiding leaf veins, disease
spots, etc.) were fixed the on the slide, and 2 pL pesticide
solution (Table 1) was dropped on the leaves, respectively. The
contact angle was recorded by drop shape analyzer DSA100
(KRUSS, Hamburg, Germany). Each treatment was recorded for
three replicates.

Spreading ratio

Fresh pepper leaves (2 x 2cm, avoiding leaf veins,
disease spots, etc.) were placed the on the worktable of
DP74 stereomicroscope (Olympus Co., Ltd., Japan), with a
magnification of 10 times. About 2 pwL of pesticide solution
(Table 1) was dropped on the leaves and the spreading area of
the droplet was recorded. The spreading ratio was calculated by
Equation 2. Each treatment was recorded for three replicates.

R = (S¢/Sp)x100% (2)
where R is the spreading ratio, S; is the spreading area at t s,
and Sy is the initial area.

Field and conditions

The experiment was carried out in the Beiquan town of
Xinjiang production and construction crops (44°23’11 “N,
86°6’11” E), Shihezi, Xinjiang, China, in 2019. The experimental
field was fertilized to a moderate level and had planted peppers
for 2 years. The peppers (Honglong 18) were sown on 13 April
2019 with a wide film model having six lines (10 & 66 cm) and
210,000 plants/hm2 (the actual number of plants was 12,070
plants/667 m?), and were irrigated by drip irrigation under the
film. The defoliant was sprayed from 10 am to 12 am on 12
September 2019, from an average height of 0.88 m. The average
wind speed was 2.06 m/s with relative humidity of 36.90%
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Defoliant Ethephon Spraying volume
(g/hm?) (g/hm?) (L/hm?)
1,875 900 15
1,875 900 15
1,875 900 15
1,875 900 15
1,875 900 15

and temperature at 22.13°C (Kestrel 5500, Nielsen-Kellerman,
Boothwyn, USA).

There were three replicates of 2,700 m? each in every
treatment, with a 10 m buffer area between each treatment
(Figure 1A). A droplet information collection belt was set in
the middle of each repetition and was perpendicular to the
UAV route. Seven droplet information collection points were
arranged in an orderly manner on the belt with a spacing of
0.5m. A metal stick was inserted at the point, and a water
sensitive paper (WSP, 26 x 76 mm) and a filter paper (d =
70 mm) were fixed at a distance of 900, 600, 100, and 50 mm
from the ground through double-sided clips, in line with the
upper layer, middle layer, the lower layer of pepper canopy and
ground (Figure 1B). After spraying, we waited for the WSP and
filter paper to dry slightly, then marked and collected them
before taking them back to the lab for analysis.

Determination of droplet deposition

Droplet information

Droplet information, including droplet size, droplet
density, and droplet coverage, was obtained by first scanning
the collected WSP with a FileScan2500 scanner (Shanghai
Zhongjing Technology Co., Ltd., Shanghai, China) at grayscale
and 600 dpi parameters and then analyzing it with Image |
1.38X software (National Institutes of Health).

Droplet deposition

The droplet deposition was obtained by measuring
the Allura red content on the filter paper. About 5ml of
distilled water was added to each zip lock bag with filter
paper and washed with a small shaker for 10min, then
centrifuged at 4,000 rpm for 5min (Eppendorf 5417R
Centrifuge, Eppendorf Co., Ltd., Hamburg, Germany). The
absorbance value (Y;) was determined using the Infinite 200Pro
ELISA instrument (Tecan, Meilen, Switzerland) at 510 nm.
The Y; was then converted to mass concentration and Xj
according to the linear regression equation of the Allura
red standard solution (Y = 0.0238X + 0.0431, R = 0.997).
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FIGURE 1
(A) The experimental layout of each treatment and (B) the placement of the WSP and filter papers at each sampling position within the
processing pepper.

The deposition amount per unit area was calculated using
Equation 3.

XixV
S

A=

3)

where A is droplet deposition per unit area, X; is the mass
concentration of eluent, V is the volume of the added eluent, S is
the area of droplet collector.

Droplet distribution uniformity

The uniformity of droplet distribution was calculated by the
coeflicient of variation (CV) of the same canopy deposition of
processed peppers, and calculated using Equations 4, 5 (Lou
et al., 2018).

n

LS -2 @

n—1 rt

cv

Il
Mlow £

®)

where s is the variance, CV is the coeflicient of variation, Xj is
the droplet information (droplet density, DV5g and coverage) of
each droplet captured card, X is the droplet information (droplet
density, DV50 and coverage rate) of different parts of the pepper
plant coverage, n is the total number of droplet collection cards
in different parts of the pepper plant.
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Spraying penetration

The spraying penetration was measured using the ratio of
the deposition amount of the upper layer and lower layer of
pepper canopy, as shown in Equation 6.

A
P="4 y 100% (6)
Au

where P is the spraying penetration rate, A 4 is the deposition
amount in the lower layer of the processing pepper canopy, and

Ay is the deposition amount in the upper layer of the processing
pepper canopy.

Effective droplet deposition rate

After all the sample concentration values were measured,
the deposition amount and deposition rate of droplets at each
sampling point were calculated according to 1SO22866 standard
(ISO/TC 23/SC, 2005). And it was calculated using Equations
7-9 (Chen et al., 2020b).

Ds = 1.67 7

s VXIX (7)
CexV

Dy = 8

d Cs x A ®
D

R = =% % 100% )
Dg

where Dy is the deposition amount per unit area (uL/cm?),
V is the flight speed (m/s), I is the spraying interval (m), F is
the spraying flow rate of the UAV (L/min), 1.67 is a constant.
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D, is the deposition amount per unit area (uL/cm?), C, is the
concentration of the eluent (ug/mL), V is the volume of the
eluent (mL); Cg is the concentration of the tracer (g/L); A is
deposition sampling area (cm?). R is the deposition rate.

Defoliation rate

Three points with consistency and representativeness were
randomly selected in each replicate area. Then 10 consecutive
pepper plants were selected from each point to investigate
the total number of leaves before spraying. They were re-
investigated 3, 5, 7, 9, and 12 d after spraying and the defoliation
rate was calculated using Equation 10.

S1—3S
Ry= 2" % 100% (10)
S1
where S; is the number of leaves investigated before

spraying; Sy is the number of leaves investigated after spraying.

Yield

At the time of harvesting the peppers (24 September 2019),
three sampling sites were selected for each treatment, 15
consecutive pepper plants were selected from each site, and all
their fruits were collected and the fresh fruit were weighed. After
30 days of air-drying, the harvested peppers were weighed to
estimate the yield using Equation 11.

12070
—_— 11
15 (11)

Y=Y x

where Y is the theoretical yield (kg/667 m?), Y is the average
of fresh (dry) weight of peppers from three sampling points
in each replicate (kg). With an harvest of 14,200 the planting
density of the pepper field was 12,070 plants per 667 m?2.

Data analysis

All data were analyzed by OriginPro 2022b (Origin Lab,
Northampton, MA, USA) and SPSS 22 (SPSS Inc., an IBM
Company, Chicago, IL, USA) statistical software. Duncan’s new
multiple range test was selected to test the significance of
differences at the level of P < 0.05.

Results and discussion

Effect of aerial application adjuvants on
dynamic viscosity and surface tension

Reducing the surface tension of the pesticide solution can

enhance the wetting performance and spreading ability of the
spraying solution on the leaves. At 10s, the surface tension
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of the YS-20, Manniu, Puliwang, AS910N, and CK was 45.83,
43.47, 42.57, 45.73, and 60.47 mN/m, respectively (Figure 2A).
All four kinds of aerial spray adjuvants significantly reduced
the surface tension of the pesticide solution to <46 mN/m.
Compared with the surface tension of CK, Puliwang had the
best effect on reducing the surface tension, which decreased by
29.6%. Liquid viscosity affects the atomization performance of
the nozzle and also the number of satellite droplets, coalescence,
viscosity dissipation in the collision process, and the spread of
droplets on the leaves (Brenn and Kolobatic, 2006). As shown in
Figure 2B, Puliwang and AS-910N could increase the viscosity
to 1.37 and 1.34 mPa-s, respectively. The Manniu reduced the
viscosity, while YS-20 had no effect on viscosity. The increase
of viscosity is helpful to the deposition of droplets on leaves
and avoids the bounce of droplets (Song et al., 2019). Pepper
leaves are hydrophilic leaves. Increasing the viscosity of droplets,
therefore, is conducive to the attachment of droplets on the
leaves and improves the efficacy.

Effect of aerial application of adjuvants
on contact angle

Adjuvants showed a significant effect on the contact angle
of the droplet in the initial state (Figure 3). At 0s, the contact
angle without adjuvant was 83.20°, while that of YS-20, Manniu,
Puliwang, and AS-910N were 60.85°, 50.22°, 60.26°, and 47.12°,
respectively. The contact angle decreased rapidly within 10 s and
gradually leveled off. After 5s, the rate of contact angle slows
down and tends to be stable. This indicated that the adjuvants
could spread the spray solution more easily on pepper leaves,
which is beneficial for the absorption of the defoliant. The
adjuvant affected the contact angle by moderating the surface
tension. In general, the contact angle of the leaf surface of the
same crop will decrease with a decrease in surface tension (Lan
et al, 2021). Xu et al. (2011) found that increasing viscosity
and reducing surface tension were two main methods used
to increase pesticide retention on superhydrophobic rice leaf
surfaces. This was also consistent with our results, where after
adding adjuvants the surface tension and contact angle of the
droplets displayed the same trend. Our results showed that the
surface tension and the contact angle of the pesticide solution
on the pepper leaves were reduced, but the effect was different,
which was based on the specific adjuvant used.

Effect of aerial spray with adjuvants on
spreading ratio

The spreading of fluids over solid substrates is of great

importance to pesticide applications, including defoliants. The
wetting and spreading of pesticides on the leaf surface are
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closely related to the combination of the leaf surface and the
physicochemical properties of the pesticide solution. We found
that adding aerial applications with adjuvants could increase
the spreading ratio of defoliant droplets on the surface of
pepper leaves (Figure 4). At 10s, the spreading ratio of YS-
20, Manniu, Puliwang, and AS-910N was 35.35, 34.54, 46.21,
and 24.17%, respectively, which was significantly higher than
that of CK (10.81%). This result was consistent with the
analysis results of the contact angle. Different types of adjuvants
can improve various aspects of spray dilution performance.
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Beacham et al. (2009) found that organosilicon adjuvants have
a very prominent effect on improving the wetting of pesticide
droplets on the leaf surface. However, when defoliants were
used, ethephon, a strong acid ripening agent, needs to be added,
which greatly destroys the stability of organosilicon adjuvants.
Vegetable oil and modified vegetable oil adjuvants have been
popular in recent years because of their wide tolerance. Zhou
et al. (2017) found that modified seed oil slows down the
evaporation rate of droplets on waxy leaves. Our experiments
showed that four vegetable oil adjuvants could also effectively
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Effect of aerial spray with adjuvants on spreading ratio line graph (A) and experimental images (B).

improve the spreading rate of defoliant droplets on pepper leaves
sprayed by UAVs.

and improve the defoliation effect.

TABLE 2 Effect of aerial application of adjuvants on the droplet size

Pepper Treatment Droplet size (wm)
) ) . . canopy
Effect of aerial applications with DVio DVso DVoo
adjuvants on the droplet size sprayed by
UAV Upper layer ~ YS-20 238+ 11.7a  373+304ab 553+315a
Manniu 219+£123a  397+29.6a 650 +385a
. ) . o . Puliwang 226 +3.8a 402 £22.5a 628 & 34.4a
Many factors, including adjuve.mts, pe?t1c1de formulations, AS.9L0N 14127 32041535 52343554
and nozzles affect spray droplet size (Klein et al., 2009). The
= i o CK 193£171b  348+539ab  571+129a
droplet size is one of the important indicators to evaluate )
. . . . Middle layer  YS-20 220+ 17.8ab 350 +582ab 495+ 120.4 ab
the spraying quality when using UAVs. As shown in Table 2, )
. . . Manniu 208 +252ab 368 £47.3a 522+ 83.8ab
the average droplet size of the treatments with adjuvants was
L . . Puliwang 227+ 45a 377 £ 24a 553+ 59.9a
significantly larger than that of those without adjuvants. The
. i i AS-910N 153£279¢  275+346b  402£685ab
droplet sizes of the four adjuvants were also different. In
) CK 184+162bc  288+19.8b  395+32b
the upper layer, the DVjg and DVsg of YS-20, Manniu, and | . . .
. Lower layer ~ YS-20 204£194b  311+179b  405+37.7
Puliwang were larger than AS910N and CK, the DVgy showed e
. . Manni 205+£13b  317+283ab 432+ 53.4ab
no difference. In the middle and lower layers, the DVg and anmiu ? :
. o Puliwang 235+£161a  365+27.8a 509+ 60.4a
DV5q of Puliwang were larger than others, but not significant.
. AS-910N 179+ 7.3 b 292+£42b  373+67.7b
On the ground, the DV and DVs5g of the treatments with ¢
. . . . CK 163 +9.1 271+189b 367 +£282b
or without adjuvants had no difference. Overall, the DVsq in ¢
. . . YS-2 228 +28.1 28 4 54. 437 £42.1
the upper, middle, and lower layers, and ground with Puliwang Ground 520 §habla Lo 4 :
was 402 & 22.5, 377 & 24, 365 + 27.8, and 355 & 28.8 um, Manniu 205£33.1abe 330£409a  446£63.6a
respectively, which was higher than other adjuvant augmented Puliwang 25£219ab - 355£288a  485£637a
treatments. Although there is no specific droplet size range that AS910N lo3£43.2¢  268£606a  370£916a
CK 167+229bc  291+434a  391+90.1a

is likely to drift under all conditions, droplets with diameters
<100 pm are considered highly draftable (Nuyttens et al., 2014;
Ferguson et al., 2016).

Matthews et al. reported that the optimum droplet size
for herbicide spraying is 250 um, while for fungicide, the
particle size should be maintained at 50-150 pm (Matthews
and Thomas, 2000). In this study, the droplet size in the
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Values followed by the same letter in the column do not differ statistically (p < 0.05).

treatment after adding Puliwang was between 350 and 450 um,
significantly higher than other treatments; the final defoliation
rate was similarly the highest. It demonstrated that adjuvants
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Effect of aerial spray with adjuvants on the droplet density
sprayed by UAV. @~ “They represent the results of a significant
difference analysis by Duncan’s new multiple range test at the
level of P < 0.05. Values followed by the same letter do not
differ statistically.

could change droplet physicochemical properties, such as
diameter and relative droplet span, thereby increasing the
deposition amount on plant leaves and thus improving the
utilization rate of pesticides (He et al, 2018). In addition,
when the spray volume and droplet size are the same, the
larger the droplet density, the higher the utilization rate of the
chemical solution, and the better the control effect (Merritt,
1982). Combined with the results of contact angle and spreading
rate, we found that adding spray adjuvants could increase the
droplet size of the defoliant and reduce the risk of drift.

Effect of aerial application of adjuvants
on the droplet density sprayed by UAVs

The droplet density of defoliants varied greatly among the
layers of the pepper canopy (Figure5). Overall, the droplet
density of the upper layer of the pepper canopy was higher
than that of other layers, which was due to the interception of
the defoliant droplets by the upper layer with a larger leaf area
in the later growth stage of pepper. In the upper and middle
layers of the canopy, the average droplet densities of adjuvant-
added defoliants were 27.31 and 8.11/cm? respectively, which
were significantly higher than the CK (21.27 and 5.49/cm?),
while in the lower layer and the ground, there was no significant
difference. In addition, the droplet density in the upper layer
with Manniu was the highest (28.18/cm?) among all the
treatments, followed by AS-910N (28.01/cm2) and Puliwang
(27.32/cm?), while the YS-20 (25.91/cm?) was significantly
lower than others. The droplet density of the defoliant without
adjuvants was significantly lower than the aerial application
with adjuvants.
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Effect of aerial application with adjuvants
on the droplet coverage sprayed by UAV

Meng et al. (2020) found that adding adjuvants could
increase droplet coverage of the canopy, which would increase
the probability of the droplets hitting the target, thereby
improving its efficacy (Meng et al, 2020). As the droplets
are intercepted by the upper layer of the pepper canopy, the
coverage rate of the upper layer was significantly higher than
other layers (Figures 6, 7). The presence (or absence), and
the type of adjuvant caused a significant impact on droplet
coverage. The average droplet coverage in the upper, middle,
and lower layers, and ground (3.46, 1.26, 0.7, and 0.51%) of
the crops treated with added adjuvant was significantly higher
than CK (2.56, 0.76, 0.32, and 0.29%). When Puliwang was
added, the droplet coverage of the upper, middle, and lower
layers, and ground (4.44, 1.84, 1.19, and 0.76%) was significantly
higher than other adjuvants. Manniu and YS-20 had the second
highest coverage, and AS-910N had the least, with no significant
difference from CK. In general, the defoliant droplet coverage
rate for the aerial spray with adjuvants was significantly higher
than that of the control (Figure 6). Previous research has shown
that influenced by the wind field of the UAV rotor, the defoliant
droplet coverage rate, particularly the range of spray width,
varies considerably (Li et al., 2018). It should be noted that in
the upper layer of the pepper crops, the droplet coverage rate
was significantly different, and the adjuvant-added treatments
were significantly better than the control without any adjuvant.
In the middle and lower layers and the ground, there were no
such differences. This may be due to the influence of drift and
evaporation on the deposition of droplets in the upper layer.
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TABLE 3 Effect of aerial spray with adjuvants on the droplet
if it d by UAV.
uniformity sprayed by —_
. . 1.4+ Manniu
Treatment Coefficient of variation (%) Average I Pulivang
& ; ab 2 ab [ AS-910N
Upper Middle Lower % 127 ab I . CK
layer layer layer 2 10-
z b
£
¥5-20 57.21 67.32 73.88 66.14 L 2
Manniu 33.60 72.50 75.84 60.65 é 0.6 - b
=3
Puliwang 56.83 70.32 7225 66.47 2 Ibb
< 044 a
AS-910N 60.97 90.59 99.39 83.65 3 [ by
g 3 THERT )
CK 64.79 84.11 107.87 82.26 E " CE g
Upper layer Middle layer Lower layer Ground
Effect of aerial spray with adjuvants on Processing pepper canopy
the droplet uniformity sprayed by UAV FCURE 8
Effect of aerial spray with adjuvants on the droplet distribution
a—d . o
The uniform distribution of droplets is expressed by the sprayed by UAV. “They represent the results of a significant
) difference analysis by Duncan’s new multiple range test at the
coefficient of variation (CV) of the same canopy droplet level of P < 0.05. Values followed by the same letter do not
deposition. The smaller the coefficient of variation, the better differ statistically.

the uniformity of droplet distribution (Chen et al., 2021). The
field experiments were influenced by environmental conditions
and the CV of droplet density and coverage rate were relatively
large. The average droplet distribution uniformity of the
defoliant treated with Manniu was the best (60.65%), followed
by YS-20 and Puliwang (66.14 and 66.47% respectively). The
results of AS-910N were the poorest (83.65%), even inferior
to the CK (82.26%) (Table 3). However, most of the droplets
were deposited in the upper layer due to interception, so
the distribution uniformity of the upper layer was more
representative. The best uniformity of droplet distribution in the
upper layer was Manniu (33.60%).

The uniformity of droplet distribution was measured by the
CV of the deposition in the same canopy layer of peppers (Zhan
et al., 2022). According to the Chinese Civil Aviation Industry
Standard, in the case of low-volume spray operation, the quality
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of the operation can only be guaranteed when the coefficient
of variation of droplet distribution is <60%. The average
variation coefficients of the whole plant droplet distribution
(66.14, 60.65, 66.47, 83.65, and 82.26%) in the current study
seem to be not standard. The planting density of the peppers
in the experimental field reached 213,000 plants/hm? with an
average height of about 0.88 m at the time of application. The
interception effect of the upper layer was obvious, and its droplet
variation coefficient (57.21, 33.60, 56.83, 60.97, and 64.79%) was
more representative. Adding aerial spray adjuvants can reduce
the coefficient of variation of droplet distribution which means
improving the uniformity of droplet distribution, to meet the
UAV operational standards.
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TABLE 4 Effect of aerial spray with adjuvants on the deposition rate
sprayed by UAVs.

Spraying date Deposition rate (%) Average
Upper Middle Lower
layer layer layer
YS-20 364+£61ab 232+25a 104+33a 23.33
Manniu 357+ 12ab 214+25a 62+2b 21.08
Puliwang 393+115a 17.9+36b 123+5.1a 23.13
AS-910N 301£51ab  115+03c  75%13b 16.37
CK 25+16b  72+12d  4+03c 12.07

The data in the table are averages. Values followed by the same letter in the column do
not differ statistically (p < 0.05).

Effect of aerial applications with
adjuvants on the droplet distribution
sprayed by UAVs

The average deposition of droplets in the upper, middle, and
lower layers and ground of the crops treated with adjuvants
(1.15, 0.51, 0.25, 0.17 pg/cm?) was significantly higher than
the CK (0.81, 0.25, 0.15, 0.07 pg/cm?) (Figure 8). In the upper
layer, the droplet deposition amount of the Puliwang was the
highest (1.19 jug/cm?). While in the middle layer, the YS-20 was
the highest (0.72 jLg/cm?). The droplet distribution penetration
rates of YS-20, Manniu, Puliwang, and AS-910N were 15.51,
22.59, 27.11, and 20.97%, respectively, which were significantly
higher than the CK (15.89%). The Puliwang showed a better
effect in terms of penetration.

Some studies have suggested that droplets with smaller
particle sizes are difficult to be intercepted by the upper layer and
can penetrate better the middle and lower layers (Knoche, 1994;
Wolf and Daggupati, 2009). Few other studies found that large
particle-size droplets could not drift and evaporate easily and
were more likely to reach the lower canopy layer (Derksen et al.,
2008). In this study, we observed that the spraying penetration
using Puliwang (27.11%) was better; it resulted in a larger droplet
size and the DV50 reaching 402, 377, and 365 pum in the upper,
middle, and lower layers. Therefore, in our study, penetration
was better due to the larger droplet sizes.

Effect of aerial spray with adjuvants on
the deposition rate sprayed by UAV

The effective deposition rates (23.33, 21.08, 23.13, and
16.37%) of the four treatments with adjuvants were 5-15%
higher than the CK (12.07%) with a significant difference
(Table 4). In the upper layer of the pepper canopy, the effective
deposition rate after adding Puliwang (39.3%) was the highest.
In the middle layer, the YS-20 was the highest (23.2%). In
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TABLE 5 Effect of aerial spray with adjuvants on the defoliation rate of
processing pepper sprayed by UAVs.

Days Defoliation rate of processing pepper (%) CK
after

spraying YS-20 Manniu Puliwang AS-910N

3 46.14 abc 47.24 b 64.042 36.55bc  20.30c
6 61.40 ab 68.33 ab 79.07a 53.13ab  4231b
9 75.74 ab 75.06 ab 88.40a 70.32ab  62.55b
12 85.63 ab 83.19 ab 92.84a 78.86ab  73.04b
15 95.21 ab 95.58 ab 98.40a 89.07b  79.92¢

The data in the table are averages. Values followed by the same letter in the column do
not differ statistically (p < 0.05).

the lower layer, there was no significant difference between
the effective deposition rates of YS-20 and Puliwang (10.4 and
12.3%, respectively), while being significantly higher than the
other treatments.

The effective deposition rate of droplets could also be
remarkably improved by adjuvants, because of the larger
droplet size, the improved atomization effect, and the reduced
evaporation and drift (Lan et al., 2008; Sijs and Bonn, 2020). The
results of this study were similar to previous studies. In addition,
adding adjuvants during pesticide spraying can change the
physicochemical properties, promote the absorption of target
plants or insects, and the retention of the liquid (Wang et al,,
2022), thereby improving the utilization rate of pesticides.

Effect of aerial sprays with adjuvants on
the defoliation rate of pepper sprayed by
UAV

The addition (and absence) of adjuvants had a significant
effect on the defoliation rate of pepper (Table 5). Leaf abscission
began to form three days after the first spraying and the
aerial spray with adjuvants had a considerable effect on the
defoliation effect. Three days after spraying, the defoliation rate
of crops sprayed with adjuvants was higher than that of CK, and
Puliwang showed the best defoliation effect (64.04%). Between
6 and 12 days after spraying, Puliwang still showed the best
defoliation rate, but there was no significant difference among
the four adjuvants. Fifteen days after spraying, the defoliation
rate of Puliwang treatment was 98.40%, and that of YS-20 and
Manniu was more than 95%. However, the defoliation rate of
AS-910N was only 89.07% and that of CK was only 79.92%. The
above results showed that the addition of adjuvants to aerial
applications could significantly improve the defoliation rate of
pepper, and the results obtained with the use of Puliwang were
the best.
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TABLE 6 Effect of aerial sprays using adjuvants on the yield of pepper sprayed by UAVs.

Treatment Fresh weight Dry weight DW/FW Theoretical Theoretical Increase of
per 15 plants per 15 plants ratio yield of fresh yield of dry dry pepper
(g) (g) (%) pepper pepper (%)
(kg/667 m?2) (kg/667 m?)
Puliwang 936.33 671.33 71.69 753.43 540.20a 20.89
Manniu 928.67 675.33 72.72 747.27 543.42a 21.61
YS-20 921.67 620.67 67.34 741.64 499.43 b 11.76
AS-910N 1174.33 608.00 51.77 944.94 489.24b 9.48
CK 799.67 555.33 69.44 643.47 446.86 ¢ /

The data in the table are averages. Values followed by the same letter in the column do not differ statistically (p < 0.05).

TABLE 7 The effects of aerial application of adjuvant-enhanced defoliants on physicochemical properties, droplets deposition, and defoliation rate.

Adjuvants Physicochemical properties

Dynamic Surface

viscosity tension  angle ratio size

(mPa/s) (mN/m)  (°) (%) (km)
YS-20 1.24 45.83 44.28 3535 373
Manniu 1.08 43.47 31.32 34.54 397
Puliwang 1.37 4257 31.34 46.21 402
AS-910N 1.34 4573 38.56 24.17 320
CK 1.25 60.47 73.40 10.81 348

Effect of aerial sprays using adjuvants on
the yield of pepper sprayed by UAVs

The effects of adding adjuvants to aerial applications on the
yield of pepper are shown in Table 6. The average yield of pepper
using adjuvants (518.00 kg/666.7 m?) was significantly higher
than that of the CK (446.85 kg/666.7 m?). The yield of adding
Puliwang (540.19 kg/666.7 m?) was slightly lower than Manniu
(543.41 kg/666.7 m?), but significantly higher than other
treatments. Puliwang and Manniu could significantly improve
the yield of peppers; their yield increase rate exceeded 20%.

To sum up, the aerial applications using adjuvants had
varying degrees of effects on the physicochemical properties,
droplet deposition, and defoliation rate of the pesticide solution
(Table 7). The performance of adjuvants could be evaluated
based on these effects as indicators. Pearson correlation analysis
was used to study the relationship between these indicators
(Figure 9). The results showed that surface tension was
significantly positively correlated with contact angle (r = 0.987,
p < 0.01), and significantly negatively correlated with spreading
ratio and defoliation rate (r = —0.883 and —0.937, p < 0.05).
This indicates that the addition of adjuvants could effectively
reduce the surface tension, thereby promoting the spreading of
the droplets. In addition, the spreading rate was significantly
positively correlated with droplet coverage (r = 0.989, p < 0.01),
deposition rate (r = 0.992, p < 0.05), and defoliation rate (r
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Droplet deposition Defoliation
rate (%)
Contact Spreading Droplet Droplet Droplet Uniformity Penetration Deposition

density coverage (%) (%) rate

(fem?) (%) (%)
2591 3.61 57.21 15.51 36.4 9521
28.18 3.70 33.60 22.59 35.7 95.58
27.32 4.44 56.83 27.11 39.3 98.4
28.01 3.15 60.97 20.97 30.1 89.07
21.27 2.56 64.79 15.89 25.0 79.92

= 0.980, p < 0.05). The droplet coverage was also significantly
positively correlated with deposition rate (r = 0.966, p < 0.01)
and defoliation rate (r = 0.946, p < 0.05). It could be seen
that the adjuvants improved the spreading ratio of the droplets,
the coverage rate, and the deposition rate, so that the contact
between the defoliant and the pepper leaves was increased, which
finally enhanced the defoliation effect. Furthermore, although
not significant, there was a positive correlation between droplet
size and droplet distribution penetration (r = 0.494), which
supports the previous observation. In addition, the dynamic
viscosity had a certain effect on the droplet size (r = —0.335).
Specifically, the higher the viscosity, the smaller the droplets
produced by the UAV spray, which was consistent with previous
studies (Jamalabadi et al., 2017).

Through the correlation analysis, we found that the
correlation between the indicators caused obstacles to
the of different
Therefore, principal component analysis (PCA) was used

comprehensive evaluation adjuvants.
to comprehensively evaluate the adjuvants. We selected two
principal components whose cumulative contribution rate
of eigenvalue reached 85.16% (Figure 10A). The variance
contribution rates of principal components 1 and 2 were 66.97
and 18.19% respectively, indicating that it could effectively
reflect the original data in the auxiliary indicators. The loading
plot for principal components was used to measure the

contributions of the principal components. Specifically, a larger
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Scree plot of eigenvalues for principal components (A) and loading plot for principal components 1 and 2 (B).
absolute value of the load means that the contribution of the and droplet size (Figure 10B). Principal component 2 had a large
corresponding principal component is larger (Karytsas and load in terms of uniformity and dynamic viscosity (Figure 10B).
Choropanitis, 2017). Principal component 1 had a large to small These results showed that except for uniformity and dynamic
load in terms of spreading ratio, contact angle, droplet coverage, viscosity, other indicators could reflect the performance of
surface tension, deposition rate, droplet density, penetration, the aerial application of adjuvants to a large extent, especially
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TABLE 8 Comprehensive score of adjuvant performance.

Adjuvant Scores of first Scores of second Comprehensive

principal principal score (F)
components components
(F1) (F2)
YS-20 0.0303 —0.1078 0.0008
Manniu 0.3163 —1.6467 —0.1023
Puliwang 1.2190 0.6833 1.1046
AS-910N —0.0123 0.8793 0.1781
CK —1.5533 0.191966. —1.1806

spreading ratio, contact angle, droplet coverage, surface tension,
deposition rate, and droplet density.

Based on the mathematical model of PCA, we found that
the comprehensive score for evaluating the performance of
adjuvants (Table 8). Puliwang had the highest comprehensive
score among the four adjuvants, followed by AS-910N, YS-20,
and Manniu. The score of CK without additives was only 1.1806,
far lower than the other four treatments. Therefore, it can be
established that Puliwang had the best performance.

Conclusion

In this study, pepper processing and aerial spray adjuvants
were selected as research objects, and the type of adjuvant that
could effectively improve the defoliation effect of the pepper
when sprayed by UAV was determined. Specifically, we studied
the effects of aerial spray adjuvants on the physicochemical
properties of the pepper defoliants. On that basis, the effects
of various adjuvants on droplet deposition and defoliation of
pepper crops were determined by spraying adjuvant enhanced
defoliants using UAVs. The results of correlation analysis and
principal component analysis show that Puliwang had the best
effect as an adjuvant for aerial application of defoliants.
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Beijing, China, °The 14th Division of Xinjiang Production and Construction Corps, Institute of
Agricultural Sciences, Kunyu, China

During the growth season, jujube trees are susceptible to infestation by the leaf
mite, which reduces the fruit quality and productivity. Traditional monitoring
techniques for mites are time-consuming, difficult, subjective, and result in
a time lag. In this study, the method based on a particle swarm optimization
(PSO) algorithm extreme learning machine for estimation of leaf chlorophyll
content (SPAD) under leaf mite infestation in jujube was proposed. Initially,
image data and SPAD values for jujube orchards under four severities of leaf
mite infestation were collected for analysis. Six vegetation indices and SPAD
value were chosen for correlation analysis to establish the estimation model
for SPAD and the vegetation indices. To address the influence of colinearity
between spectral bands, the feature band with the highest correlation
coefficient was retrieved first using the successive projection algorithm.
In the modeling process, the PSO correlation coefficient was initialized
with the convergent optimal approximation of the fitness function value;
the root mean square error (RMSE) of the predicted and measured values
was derived as an indicator of PSO goodness-of-fit to solve the problems
of ELM model weights, threshold randomness, and uncertainty of network
parameters; and finally, an iterative update method was used to determine
the particle fitness value to optimize the minimum error or iteration number.
The results reflected that significant differences were observed in the
spectral reflectance of the jujube canopy corresponding with the severity of
leaf mite infestation, and the infestation severity was negatively correlated
with the SPAD value of jujube leaves. The selected vegetation indices NDVI,
RVI, PhRI, and MCARI were positively correlated with SPAD, whereas TCARI
and Gl were negatively correlated with SPAD. The accuracy of the optimized
PSO-ELM model (R?=0.856, RMSE=0.796) was superior to that of the ELM
model alone (R°=0.748, RMSE=1.689). The PSO-ELM model for remote
sensing estimation of relative leaf chlorophyll content of jujube shows high
fault tolerance and improved data-processing efficiency. The results provide
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a reference for the utility of UAV remote sensing for monitoring leaf mite

infestation of jujube.
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Introduction

The jujube tree (Zizyphus jujuba), which plays a significant
role in the ecological and economic development of the Xinjiang
oasis, is a key component of agricultural growth in southern
Xinjiang. One of the primary pests that endanger the health of
jujube is the leaf mite (Tetranychus truncatus Ehara), and when it
infests the jujube during the growth season, it can lower the
quality of the jujube by more than 35%. Therefore, efficient pest
control and early detection are crucial for jujube
orchard management.

Remote sensing monitoring using low-altitude unmanned
aerial vehicles (UAVs), such as UAVs equipped with multispectral
and hyperspectral cameras, addresses the above issues. In addition
to low-altitude UAVs, measurements using satellites are also
available for remote sensing to monitor the growth of crop plants.
In recent years, agricultural pest and disease monitoring has
increasingly utilized remote sensing monitoring technology (Adao
etal, 2017; Bai et al., 2020; Jiang et al., 2021). With its rapid, real-
time, large-area, and non-destructive qualities, the technology has
demonstrated benefits that cannot be matched by standard pest
and disease monitoring approaches. Large-scale monitoring of
crops, including crop area, pest and early warning, and growth
conditions, may be accomplished by satellite remote sensing (Bai
et al,, 2019). However, throughout the imaging process, satellite
remote sensing optical images are frequently influenced by
inclement weather such as clouds, rain, and fog. Compared with
satellite remote sensing, UAV remote sensing platforms have the
characteristics of low operating cost, high flexibility, and fast data
acquisition in real time, which is a unique advantage in the field
of crop pest and disease detection. As an essential component of
low-altitude remote sensing (Zhang et al., 2021), UAV remote
sensing platforms have unique advantages for crop pest and
disease monitoring, which considerably expands the scope of
remote sensing use in crop monitoring (Dehkordi et al., 2020; Xu
et al, 2022). Satellite remote sensing is primarily used for
monitoring broad areas, but it cannot provide images with
sufficient spatial resolution and the images are susceptible to
weather conditions (Bendig et al., 2015; You et al.,, 2022). In
addition, the progressive improvement of UAV technology has
made feasible its combination with hyperspectral and
multispectral technology for agricultural disease monitoring,
providing a reference for accurate crop disease monitoring and to
guide remedial management (Adao et al., 2017; Liet al., 2021). For

instance, UAV hyperspectral remote sensing can monitor a broad
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area with high precision, efficiency, and continuity, and accomplish
the fusion of UAV multisource remote sensing imagery and target
extraction. In previous studies (Liu et al, 2020), UAV
hyperspectral remote sensing has been utilized to perform
pertinent research on a variety of agricultural diseases, such as
citrus Huanglongbing (Garcia-Ruiz et al., 2013; Deng X.L. et al,,
2020), wheat yellow rust (Dehkordi et al., 2020; Guo et al., 2021),
and pine wilt disease (Deng X. et al., 2020; Qin et al., 2021; Xia
etal, 2021), etc.

UAV hyperspectral remote sensing facilitates information
extraction in image and spectral dimensions, and is frequently
employed for monitoring agricultural growth conditions, and pest
and disease stress in the field. Photosynthesis is an essential
reference for evaluation of plant development (Hunt et al., 2013,
Sun Q. et al,, 2021), and chlorophyll content is an indication of
plant photosynthetic capacity; hence, chlorophyll content can
effectively reflect the growth status of a crop (Ji et al,, 2021;
Kaivosoja et al, 2021; Lei et al, 2021). The variation of the
chlorophyll content of crops is important for monitoring the
growth of crops. On the one hand, chlorophyll content absorption
reflects the strength of photosynthesis, the growth stage and
health status of crops; on the other hand, pests and diseases also
directly affect the chlorophyll content of plants. Therefore,
monitoring chlorophyll content effectively reflects the growth
condition of crops. Variations in grayscale values on hyperspectral
scanning recordings are caused on a broad scale when the crop is
damaged by pests or disease, resulting in considerable variances
in spatial, spectral, and temporal phases (Liu et al., 2017; Ahmad
et al, 2018). The introduction of fused hyperspectral data and
chlorophyll feature content approaches by analyzing local spectral
differences of crops may also enhance remote sensing research on
the monitoring of pests and diseases (Vanegas et al., 2018). It may
be used for monitoring vegetation production, controlling crop
resources, and monitoring pests and diseases by calculating the
chlorophyll content of the crop canopy. Consequently (Wang
et al., 2015), monitoring of crop chlorophyll content indicators
might assist in reflecting the severity or incidence of agricultural
pests and diseases to a certain extent.

A key biochemical indicator of crop development is
chlorophyll content, and when jujube trees are infected with leaf
mites, the amount of chlorophyll varies according to the degree of
the disease. Hyperspectral has rich spectral information, which
provides the possibility for the construction of chlorophyll
inversion models. The severity of leaf mite infestation was
correlated with chlorophyll content, which can be indirectly
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reflected by measuring the chlorophyll content of jujube. The
majority of current research on crop chlorophyll inversion with
hyperspectral data is based on statistical regression models, which
may be broadly classified into two types: vegetation index models
and direct spectrum models. In the vegetation index models, the
hyperspectral data are first utilized to generate several vegetation
indices (Sun Q. et al., 2021), which are then used to develop
numerous linear or nonlinear regression methods to produce an
inversion model between these indices and chlorophyll content in
the vegetation index models (Guo et al., 2021; Ji et al., 2021; Sun
J. et al, 2021). It is easy to build the inversion model using
vegetation indices, but a single vegetation index cannot adequately
characterize the entire hyperspectral information. The direct
spectrum models rely on the modeling of the entire hyperspectral
bands, which is usually a high-dimension vector. Using the whole
hyperspectral band directly may result in excessive model
complexity or model overfitting. Dimension reduction approaches
like as principal component analysis (PCA) or partial least squares
(PLS) may assist in addressing this issue in part.

Most of the current research on the relationship between
hyperspectral data and chlorophyll content focuses on the changes
in chlorophyll content of crops under different nutrient stresses
and different growth periods, while the hyperspectral inversion
research on chlorophyll content of crops infected by diseases and
insect pests is relatively less. The main performance is that the
research pays more attention to the spectral characteristics of crop
diseases and less attention to the physiological and biochemical
changes in plants caused by diseases and insect pests. In addition,
the research on crop diseases and insect pests using remote
sensing technology is mostly aimed at grain crops such as wheat
and rice, as well as economic crops such as cotton, soybean, and
rapeseed, which pay less attention to pests and diseases of
jujube plants.

Therefore, the aim of this study was to estimate SPAD values
for leaf mite infestation of jujube based on UAV hyperspectral
images. The estimation performance of the model based on VIs
and selected feature bands was also analyzed. The relationship
between the degree of leaf mite infestation and canopy leaf SPAD
values was investigated based on the best estimates of SPAD values
obtained. More specifically, the following points were noted in
our study:

(1) Based on the experimental data, the correlation between
the hyperspectral characteristic parameters of the jujube
canopy and chlorophyll content was analyzed.

(2) Establishment of jujube SPAD estimation model under

stress of leaf mite based on VI alone by using a linear

regression model.

(3) To improve the accuracy of the inversion of the chlorophyll

content of jujube infested with leaf mites. A proposed

method employs a successive projection algorithm (SPA)
to extract the characteristic bands from the high-
dimensional hyperspectral vector, reducing model

complexity and avoiding model overfitting. With the
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extracted characteristic bands as input, by building a
PSO-ELM inversion model for the chlorophyll content
of jujube.

Materials and methods
Study areas

The 224th regiment, the study area selected for this
experiment, is located north of National Highway 315 at the
crossroads of Pishan County and Moyu County in Hotan Region,
on the southern edge of the Great Taklamakan Desert in Xinjiang,
China (Li et al., 2021). The total land area is 234,751 km? and the
terrain slopes from the southwest to the northeast. Jujube
predominates in the study area, which comprises a planting area
of 74,057 ha, a sizable landmass, an abundance of light and heat
resources, drought, low rainfall, high evaporation, low relative
humidity, and significant diurnal temperature differences—all of
which are unique natural conditions that have aided the explosive
growth of the jujube industry in Xinjiang. The 14th division’s
224th regiment began planting jujube in 2003, according to
investigations by the Xinjiang Production and Construction
Corps. jujube orchards have expanded by more than 90 km” since
approximately 2019, and constitute 72% of all arable land and 83%
of all orchard land (Liu et al., 2015).

At the three designated study areas, a total of 90 sample survey
sites were selected, where communities of healthy jujube plants
and plants infested with leaf mites were clearly separated. Taking
into consideration the features of pest infestation and the
distinguishability of remote sensing images, the infestation
severity was divided into four classes: healthy, mild damage,
moderate damage, and severe damage. Based on an investigation
of the effects of environmental changes on leaf mite infestation of
jujube trees in Xinjiang, it was determined that the peak incidence
of leaf mites occurs annually from June to August (Zhang et al.,
2013; Li H. et al., 2020). By clustering, leaf mites mostly suck sap
on the underside of leaves, causing grayish white or yellowish fine
patches on the leaves, decreasing the leaf chlorophyll content, and
impairing the development and growth of jujube plants. In light
of this, the present experiment chose the aforementioned period
to conduct the research and employed an UAV-mounted
hyperspectral sensor and ground acquisition for data collection in
the field trial. The study area shown in Figure 1.

Data acquisition

UAV hyperspectral remote sensing image
acquisition and data processing

The experiment employed a M600Pro UAV (Shenzhen DJI,
Shenzhen, China) equipped with a hyperspectral camera (Rikola,
Oulu, Finland) and the SPAD-502Plus (Konica Minolta, Osaka,

frontiersin.org


https://doi.org/10.3389/fpls.2022.1009630
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Luetal. 10.3389/fpls.2022.1009630
A
75°0'0"E  80°0'0"E 85°0'0"E  90°0'0"E  95°0'0"E 76°Q'0"E 78°Q'0"E 80°Q'0"E 82°0"0"E 84°0.'0"E
Xinjiang Uygur N Hotan
Autonomous Regio A z Prefecture
2z | o .
% |:I Hotan Prefecture § 5 . Kunyu City .
2_,]. Kunyu City > % Studyarea £
24 | €
Zz
: i
= o 7 Z
g T 5 1S
< 4 14
2 R
2
z Elevation (m _g—;,
g_ ™ 8611 § z - =
7 0 150 300 600 “ 210 50100 200 o
A Km B s g Km B0 g
T T T T T gl T T T T
7500‘0"]3 8000|0||E 8500‘0"]3 9000‘0“}5 9500v0"E 7800!0IIE 80°0'0"E 8200'0"5 8400|0"E @
79°17'0"E Z 79°5'0"E  79°10'0"E  79°15'0"E  79°20'0"E  79°25'0"E z
24 Y . I3
o~ v
& g
© o
>
i z
5 Z
| 4 o
N 15
‘l | f[: %
>
A i
=3
@
3
&
79°17'0"E
FIGURE 1
Study area. (A) Xinjiang Uygur Autonomous Region; (B) Hotan area; (C) 224th regiment; (D) and (E) Image of the study area.

Japan). Supplementary Figure 1 depicts the experimental
instruments and the scene diagrams. The acquisition period
ranged from 11:00 to 15:00 (the sun altitude angle was >45°)
under bright, clear, or partially overcast conditions. In anticipation
of flight photography, radiation correction was conducted on the
hyperspectral camera. Four 50 cm x 50 cm diffuse reflectance gray
plates (reflections of 3%, 22%, 48%, and 64%, respectively.) were
placed on a level surface in the test location, and the surface of the
calibration plate was devoid of interfering objects and shadows. In
accordance with the features of the hyperspectral imagers
provided by Rikola, system correction and post-processing
correction were conducted on the hyperspectral images after
image acquisition was completed.
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Correcting the system

In the course of capturing hyperspectral images, the UAV
platform creates inevitable systematic inaccuracies owing to the
instrument’s inherent constraints and the measurement technique,
which must be addressed. Radiation calibration, dark current
correction, and lens vignetting correction are the primary
components.

The feature information of the original jujube tree orchard
hyperspectral image was expressed as the digital number (DN).
However, because the systematic error DN cannot accurately
reflect the spectral characteristics of the feature, the DN of the
original image must be converted to the feature reflectance using
the information for the calibration plate representing the specific
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reflectance obtained at the same time as the experiment, as shown
in Equation (1).

DNt _DNI

:—DNZ ~DN (Pz —P1)+P1

Pt

where p;and DN, are the reflectance and DN of the original
image target element, p; and pj are the reflectance of different
calibration plates, and DN; and DN, denote the DN value of
different calibration plates, respectively.

Post-processing refinement

In this work, the UAV images were captured using frame-wide
imaging. Owing to the imaging principle and environment, there
are small changes in position and attitude between the bands,
resulting in hyperspectral cube bands that do not totally overlap.
The flight time of the UAV is ~20-30min, and the radiation
brightness gradient difference between different bands will
be affected by the change of solar illumination conditions,
resulting in inhomogeneous color and DN. The irradiance can
be effectively corrected to the normal level using Equations

(2), 3).

ch (l )at _sensor = Lj (l )atm,,,. x Cj (l ) )
Cj(2)=E;(2)/ Ergr (2) ()
where L. (l)a ¢ sensor 1S the irradiance consistency

corrected image; L f"‘(/%)a . s the jth original image; C; (1) is
the jth image multiplicative correction factor; E; (ﬂ.) is the
irradiance value recorded for the jth image; and E,¢f (l) is the
irradiance value of the reference image.

The UAV flew at a height of 60 m, at a speed of 5ms™', with
overlap and side overlap of the images of 75%, a baseline
distance of 25.9m, a route spacing of 34.5m. The Agisoft
PhotoScan program was used to import photographs and the
position and orientation system data, define the coordinate
system, align the images, produce point clouds, grids, and
textures, construct a digital elevation model, and produce
orthophotos. The stitched orthophoto was geometrically
corrected using GPS point data collected in the field to reduce
the accuracy between the hyperspectral image features and the
actual feature positions. The projection coordinate system was
set to the Universal Transverse Mercator and the final correction
error was controlled within 0.5 m. Within 0.5m is the ultimate
correcting error. Even after radiation correction, a variety of
random disturbances remain in the picture reflectance,
including impulse noise and Gaussian noise. Using Savitzky-
Golay filtering, the spectral curve was considered to be polished,
ensuring that the noise was efficiently smoothed with the same
form and width as the signal.
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Measurement of SPAD at ground
sampling points

The
Supplementary Figure 2. A handheld chlorophyll absorbance
meter, the SPAD-502Plus, was used to estimate the chlorophyll
content of leaves swiftly and non-destructively. On the same day
as the UAV flight, the SPAD properties of jujube trees were
assessed. The field sampling points were arranged in the shape of

collection environment is shown in

a ‘S, each of the three chosen blocks comprised 30 sampling
points. Four classes of jujube trees were selected with the same
spatial distribution. Thus, 90 sets of samples were gathered,
consisting of a total of 1,200 samples. Following the sample
allocation concept, 20 of the 90 groups of samples were utilized as
test samples, while the measured SPAD values of the remaining 70
groups were randomly chosen as modeling samples. To minimize
sampling error, canopy leaves of comparable size, color, and shape
were chosen for the sampling procedure (Han et al., 2021). The
measurements were performed at the leaf tip, center, and base, and
the mean value was used to represent the leaf’s SPAD
characteristic parameter.

Classification of plant pest severity

This study was carried out in experimental plots with leaf mite
occurrence in the field, and field leaf mite surveys were conducted
by hand to collect samples. At the time of sampling, the degree of
leaf damage and the latitude and longitude information of the
sampling site were recorded based on GPS positioning, the 90
sample points were sited evenly throughout the jujube tree
planting area. According to the Code of Practice of Prevention and
Control Techniques for Pests and Diseases of Jujube (National
Standard of the People’s Republic China), the severity levels of
jujube tree mite infestation was divided into four classes in
Supplementary Table 1. Healthy leaves were assigned a value of I,
mild damage a value of II, moderate damage a value of III, and
severe damage a value of IV. The four categories leaves are shown
in Figure 2.

Vegetation index

A vegetation index may be subdivided into several vegetation
index parameters based on various monitoring and computation
methodologies (Torres-Sanchez et al., 2014; Liu et al., 2020; Ji
etal, 2021). A vegetation index incorporates linear or nonlinear
combinations of reflectance in distinct spectral bands to produce
correlated spectral signals so as to simplify the spectral
information and enhance vegetation-related features. For
identification of agricultural pests and diseases, the visible red
band, which is highly absorptive in green plants, and the near-
infrared band, which is highly reflective and transmissive in green
plants, are often selected. The spectral response of these two bands
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to the same biophysical phenomena provides a strong contrast
that changes with the leaf canopy structure and coverage; hence,
their ratio, difference, or linear combination may be utilized to
augment or disclose the implicit vegetation information (Lei et al.,
2021). In the present study, the normalized difference vegetation
index (NDVT), ratio vegetation index (RVI), physiological reflex
vegetation index (PhRI), modified chlorophyll absorption ratio
index (MCARI), transformed chlorophyll absorption ratio index
(TCARI), and green index (GI) were chosen. Information on the
vegetation indices is presented in Table 1.

Statistical analysis

Regarding the accuracy of the parameter estimates, the
coefficient of determination (R?) and root mean square error
(RMSE) were employed to assess the model accuracy. The R* value

(Healthy)

Cc

(Moderate)

FIGURE 2
Different degrees of leaf mite infestation in jujube severity.

TABLE 1 Vegetation index information.

10.3389/fpls.2022.1009630

represents the degree of fit, whereas RMSE measures the accuracy
of data measurement. In general, it is believed that the closer the
R?value is to 1, the better it indicates a strong goodness of fit, and
conversely, a low value indicates a poor goodness of fit. The
smaller the RMSE, the better it indicates a small error, whereas a
high value indicates the inaccuracy is large. The calculation of
these statistics is shown in Equations (4), (5):

AN AR
Zi: Xp=X) |\ Vi™)Y
e SV S w

(sl Y
2 ) 2177

RMSE = ©)

where n denotes the number of samples for estimation or
validation of the model; x;, X, y;, and y denote: measured
value, measured mean value, estimated value, and estimated mean
value, respectively.

Results
Characteristics of SPAD variation

From 90 sample points, a total of 1,200 ground SPAD values
were obtained, Table 2 summarizes the statistical properties of
the sampled data. The modeling sample and the validation
sample differed except for the data samples. The variation range
of SPAD values for the modeling set of samples was 20.80-66.90,

Name Formula Comprehensive embodiment Application Reference
NDVI NIR - R Integrated crop growth variability Diseases detection Mahlein et al. (2013)
NIR +R
RVI puiid Crops growth sensitivity Chlorophyll estimation Birth and McVey (1968)
R
PhRI m Crop growth pattern Chlorophyll estimation Daughtry et al. (2000)
(Rss0 +Rs31)
MCARI ((R701 - R671) - 0.2(R701 —Rs49 )) Crops chlorophyll variations LAI and chlorophyll estimation ~ Zhang et al. (2019)
[ R701 ]
Re71
TCARI Crops growth sensitivit Chlorophyll estimation Haboudane et al. (2002)
Ps g 4 phyl

0.2(R700 - R500)

3| (R700 — R675) — 00
(R67O]

R554]
GI =222
[R677

Crops green variability

Leaf rust detection Ashourloo et al. (2014)
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TABLE 2 Statistical characteristics of chlorophyll content.

Sample No.of Min. Max. Mean. Std. C.V/%
set samples deviation

Overall 1,200 2080 6750  46.17 9.66 20.93
Modeling Set 800 2080 6690 4621 9.71 21.01
Validation Set 400 2150 6750 4597 9.68 21.06

the mean was 46.21, and the coeflicient of variation was 21.01%.
The variation range of SPAD values for the validation set of
samples was 21.50-67.50, the mean was 45.97, and the CV was
21.06%. Considering the impact of leaf mites on the leaf
chlorophyll content, the CV of the SPAD values was more than
10%, suggesting that the chlorophyll content was more variable.
The discrepancies between the modeling and validation sets
were negligible, there were no significant differences within the
modeling and validation sets (p=0.678), as determined by an
independent samples t-test. Therefore, the sample sets were
appropriate for modeling and validation.

Analysis of SPAD and spectral
characteristics of jujube under infestation
of leaf mite

Chlorophyll content is an indicator of the biochemical
parameters of the crop and reflects the growth of the crop (Qi
et al,, 2021). Pest infestation causes changes in the chlorophyll
content of the crop. Thus, measuring chlorophyll content reveals
the health and vigor of the crop. When jujube plants are infected
with leaf mites, the mean SPAD value of their canopy leaves
decreases gradually with an increase in the severity of leaf mite
infestation (Figure 3). The results demonstrated that the SPAD
value of jujube trees was negatively associated with the severity of
leaf mite infestation.

With the more severe leaf mite infestation, the SPAD values of
jujube chlorophyll content gradually decreased, thus causing
changes in the spectral characteristics of the canopy of jujube,
showing a trend of decreasing spectral reflectance step by step
with the increase of leaf mite infestation. Figure 4 depicts the
average spectral reflectance curves of jujube trees at the canopy
scale under different severities of leaf mite infestation. The spectral
band features of jujube plants differ notably with the severity of
leaf mite infestation. Considering the phenomena of “green peaks”
owing to decreased chlorophyll absorption, the spectral
characteristic curves of healthy jujube trees exhibited modest
reflectance peaks in the green band between 520 and 570 nm.
Because of the intense absorption of chlorophyll for
photosynthesis, a red wavelength absorption trough, termed a
“red valley;” forms in the red wavelength range of 620-690 nm. As
the chlorophyll concentration rises, so does the photosynthetic
capability. The “green peak” and “red valley” in the green light
spectrum progressively diminish between 680 and 750 nm. Given
light scattering within the leaf, the reflectance in the near-infrared
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FIGURE 3
Variations in SPAD values of jujube leaves for different leaf mite
infestation levels.

range exhibits conspicuous peaks of high reflectance, which
constitute the spectrum’s largest peak and generate a highly
reflective platform. The variation in spectral reflectance of leaf
mite damage of jujube trees was increasingly evident with an
increase in the severity of infestation, which led to a decline in
chlorophyll content and severe damage to the cellular structure
and tissues of the leaf.

Correlation between SPAD value and
vegetation indices of jujube trees

To facilitate an understanding of the relationship between
vegetation indices and the chlorophyll content of jujube, a
correlation coefficient matrix map is presented in Figure 5.
Positive correlations are represented by numbers greater than
zero, whereas negative correlations are represented by values less
than zero (Yang et al., 2021). The absolute values of the correlation
coefficients between SPAD and NDVI, RVI, PhRI, MCARI,
TCARI and GI ranged from 0.64 to 0.82. The NDVI, RVI, PhRI,
and MCARI were positively correlated with SPAD, whereas
TCARI and GI were negatively correlated with SPAD. As can
be seen in Figure 5, the six selected vegetation indices were
significantly correlated with SPAD, among which the correlation
coefficient between leaf SPAD value and PhRI reached a
maximum of 0.82, which was higher than the correlation
coeflicient between SPAD value and other vegetation indices.
Further, by taking SPAD of jujube leaves as the dependent
variable, and using NDVI, RVI, PhRI, MCARI, TCARI, and GI
as independent variables, a remote sensing estimation model for
the relative chlorophyll content of jujube canopy leaves was
constructed. Table 3 shows the statistical regression modeling of
vegetation indices to inversion chlorophyll content. The modeling
determination coefficient of the SPAD-PhRI estimation model
was 0.702, which was higher than the modeling accuracy of SPAD
value and other vegetation indices.
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Spectral curves of jujube trees for different leaf mite damage indices.
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Correlation analysis between SPAD and vegetation index.

Correlation between SPAD value and
spectral reflectance

As the chlorophyll content of jujube trees infected by leaf
mites will change, as illustrated in Figure 6, chosen chlorophylls
significantly associated with leaf mite infection were correlated
with the raw and first-order derivative spectra for the analysis.
The correlation coeflicients between the original spectra and the
SPAD value were negative at 500-749 nm and positive above
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750nm (Figure 6A). The absolute value of the correlation
between the original spectrum and the chlorophyll content is
mostly between 0.5 and 0.65, and the curve changes are relatively
flat. When the original spectrum is transformed by the first
derivative, the correlation with the chlorophyll content of jujube
leaves is significantly enhanced in some wavelength bands,
among which it reaches a very significant positive correlation at
660, 685, 735, and 754nm, and at 550, 588, 633, and 702 nm
highly significant negative correlation. The maximum correlation
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coeflicients between the first-order derivative spectra and the
SPAD value were —0.75 and 0.70 at 702 and 754 nm (Figure 6B),
respectively. It is evident that the chlorophyll of jujube leaves
strongly affects the first-order differential spectrum under the
leaf mite infestation. The curve of the correlation coefficient
between the first-order derivative spectrum and chlorophyll

TABLE 3 Correlation between SPAD values of canopy leaves and
vegetation index of jujube trees.

10.3389/fpls.2022.1009630

content fluctuates obviously. Considering that the spectral
derivative enhances the slight change in the slope of the spectral
curve, the reason for this change is related to the biochemical
absorption characteristics of crops. It can be seen that the
chlorophyll of jujube trees is damaged by the infection of leaf
mites, and the first derivative spectrum has a strong sensitivity
to the chlorophyll content of jujube. Consequently, hyperspectral
remote sensing technology may be used to quantify the
chlorophyll content of jujube under the stress of leaf

VI Model R? RMSE mite infestation.
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(A) Raw spectra with SPAD correlation analysis; (B) First-order derivative spectra with SPAD correlation analysis
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which poses a barrier to the storage and processing of huge
amounts of data for practical applications (Liu et al., 2021).
However, duplicate information in the spectral can be avoided by
using a successive projection algorithm (SPA) for analysis to select
the wavelengths of interest. The RMSE is calculated as the square
root of the sum of the square of the departure of the observed value
from the actual value divided by the number of observations and
is used to assess the deviation between the observed and true
values (de Sousa Fernandes et al., 2016). Given that the objective
of feature wavelength extraction is to accurately categorize healthy
and unhealthy plants, the fewest possible feature wavelengths
should be used. In the present study, the RMSE decreased with an
increase in the number of feature bands extracted (Figure 7A). The
RMSE was smallest (0.451) with five feature wavelengths; the
minimum RMSE value is attained when the number of bands
contained in the corresponding optimal band set, which is the
optimal subset of bands for the period, attains its minimum.
Therefore, five characteristic wavelengths were chosen as the
optimal outcome. The selected characteristic bands comprised
512.1, 628.8, 674.2, 736.6, and 773.2nm (Figure 7B).

Model building and prediction

An ELM is a feed-forward neural network with a single or
multiple hidden layers. Unlike in conventional neural networks
with back propagation (BP), the parameters of the nodes in the
hidden layers of ELM are randomly assigned and never tuned. It
solves the shortcomings of classic neural networks, such as
sluggish training rate, local optimum instability, and sensitivity to
learning rate (Li W. et al., 2020). However, the conventional ELM
architecture is considered to have drawbacks (Zhang et al., 2022),
such as the unpredictability of weights and thresholds, and the
uncertainty of network parameters, which make it less effective at
processing data and result in overfitting phenomena that reduce
the accuracy of the prediction model. To optimize the parameters,

10.3389/fpls.2022.1009630

such as weights and thresholds, of the ELM model in order to
increase the prediction accuracy of the model, PSO was
implemented (Kaloop et al,, 2019). The position and velocity of
the particles were updated according to Equations (6), (7), the
particle fitness value was recalculated, the individual extremes and
population extremes were determined with each update, and
iterations were repeated in order to conduct an optimization
search in the solution space.

Vid (t + 1) = Vg +cn [Pbestkd (t) — Xt (l):|

(6)
+com [Gbestkd (t) — Xta (t):|

Xkd(t+l)=Xkd(t)+de(l‘+1) (7)

where Vi (t + 1) is the velocity of particle k£ in the d th
dimension in the ¢+1 th iteration; @ is the inertia weight,
generally taken to be 0.9; ¢; and ¢, are learning factors; n and
7y are random numbers in the range [0, 1]; and Pbestiy (t) and
Gbestyq (1) denote the extreme positions of particle & in the
individual and the population.

In the present study, PSO was used to improve the input
weights and thresholds of the ELM model, and each particle may
be considered to be an ELM model for the prediction of
chlorophyll content. The location information of the particles is
utilized to represent the input weights and thresholds of the ELM
model (as shown in Figure 8), whereas the particle dimension D
and the kth particle k are represented as follows:

D=t(n+1) (®)

ko k k k _k k
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Flow chart of the PSO-ELM algorithm

where n and ¢ are the number of neurons in the input
and hidden layers, respectively; a)éc and bjg are the input
weights and hidden layer thresholds, respectively, and both
are random numbers within the range [—1, 1], 1 <i<n, and
I<j<t.

The PSO-ELM employs the SPA extracted characteristic
bands as the independent variable and the leaf chlorophyll
content of the jujube canopy as the dependent variable.
Initially, the PSO parameters were initialized and the ideal
fitness function value was chosen based on the performance
of the PSO-ELM model. The inertia weights were set to 0.90,
the maximum number of iterations was set to 100, and the
learning factors were set to 1.40. Subsequently, the input
weights and thresholds corresponding to each particle were
substituted into the ELM model, and the predicted and
measured values of RMSE were used for adaptation of the
PSO to calculate the individual and global extremes. Lastly,
the particle positions and velocities were updated by
iterative comparison, and the particle adaptation values
were calculated, and the particle extremes and global
extremes were updated until the minimum error was
achieved or until the maximum number of iterations was
attained.

Using the 512.1, 628.8, 674.2, 736.6, and 773.2 nm bands
as independent variables and the chlorophyll content as a
dependent variable with ELM and PSO-ELM, respectively, the
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SPA method was utilized to create models for prediction of
the chlorophyll content of jujube trees (as shown in Figure 9).
The unoptimized ELM and PSO-ELM prediction values were
utilized to compare and evaluate the actual measured data in
order to confirm the prediction accuracy of the suggested
models. Table 4 shows the prediction results of the PSO-ELM
inversion model of jujube tree chlorophyll content used in
this study were superior to those of the inversion model built
with the simple extreme learning method, and the PSO-ELM
of chlorophyll inversion (R?>=0.856,
RMSE=0.796) was superior to that of the chlorophyll
content inversion built with the single ELM (R*=0.748,
RMSE =1.689).

Given that the absolute value of the correlation between

model content

reflectance and chlorophyll content in the 500-900 nm band
is generally between 0.5 and 0.65, and that there is a
connection between distinct bands in this range, extracting
and establishing the chlorophyll content inversion is
complicated. SPA is used in this study to extract the
distinctive bands of chlorophyll content inversion in order to
reduce the complexity of spectral data. The number of bands
is decreased to 5 after screening the contribution value, and
the spectral wavenumber is lowered by 88.89%. The RMSE is
0.451. The correlation coefficients for the ELM and PSO-ELM
inversion models were found to be 0.748 and 0.856,
respectively. The preferential selection of five feature band
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TABLE 4 Model comparison.

Modeling set Validation set
Model
R RMSE R RMSE
ELM 0.748 1.689 0.681 1.566
PSO-ELM 0.856 0.796 0.825 0.862

parameters of SPA reduces the problem of redundancy among
spectral data, improves modeling efficiency and operational
efficiency, and reduces the effect of covariance of input data
parameters, indicating that SPA is a more effective method
for feature wavelength extraction. The sensitive bands of
chlorophyll content response of jujube were selected by using
SPA, and an extreme learning machine inversion model based
on particle swarm optimization was established with a view
to achieving rapid, accurate, and nondestructive diagnosis of
canopy chlorophyll content under leaf mite infestation and
improving inversion accuracy.

The spatial distribution of jujube leaf mites in the research
region was determined, using ArcGIS software based on the
disease grading criteria for leaf mite severity (I-IV; as shown in
Figure 10). The map displays the range of SPAD values that
correlate to the severity of each mite infestation. While other
portions of the plot were less damaged and could be mildly
treated for prevention to fulfill the demands of normal jujube tree
development, the left area of the plot required concentrated
spraying of pesticides since it was more heavily infested. The
results demonstrated that the outcomes of the ground survey and
the UAV images are similar.
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Discussion

Analysis of the correlation between
spectral reflectance and chlorophyll
content

Using hyperspectral spectra the benefit of “image-spectrum
integration,” we acquired hyperspectral images of the jujube
tree, sought to inversion of chlorophyll content under the stress
of leaf mite for jujube. Recent studies have focused greater
attention on the spectral properties of crop diseases, and less
on the physiological and biochemical alterations imposed by
the diseases. The present results revealed that leaf mite
infestation influences the spectral reflectance of the jujube tree
canopy, and that SPAD values are strongly associated with the
leaf mite infestation index. Given the relative decrease in
chlorophyll content caused by insect damage, the spectral
properties of jujube plants varied significantly with severity of
insect damage. As the population of leaf mites peaks, the
chlorophyll content in the leaves declines, resulting in a
reduction in the photosynthetic activity of the leaves and a
considerable decrease in spectral reflectance. The “white
patches” or yellowing of branches caused by mite feeding on
the leaves decreased the leaf area index and leaf chlorophyll
content of jujube. In addition, it was demonstrated that crop
pests and chlorophyll are strongly associated, and that spectral
data can reflect changes in chlorophyll content caused by
agricultural pests. Future work will focus on transferring such
an integrative methodology presented here to other agronomic
parameters estimation.
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Inversion spatial distribution map of infestation severity of jujube mites.

Spectral-based inversion model of
chlorophyll content

In recent years, the link between reflectance spectral
characteristics and pest parameters has been investigated using
spectral data, and the sensitive wavebands following pest damage
have been screened to enable pest monitoring and identification
by classification. In the present study, we estimated the relative
chlorophyll content of jujube trees under leaf mite infestation
using UAV hyperspectral inversion and proposed a model for
prediction of the chlorophyll content of jujube using
PSO-ELM. The influence of random parameters of the ELM
model on prediction accuracy and its weak generalization
performance were effectively compensated. In addition, the
inversion accuracy of jujube tree chlorophyll content was
improved. The present results serve as a reference for the utility of
UAV remote sensing for diagnosis and monitoring of leaf mite
infestation in jujube.

Challenges and prospective research

Collaborative “air-sky-ground” building of pest and disease
monitoring research. In studies utilizing UAV remote sensing
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to monitor crop development, pests, and diseases, the
determination coefficients (inversion accuracy) of the parameter
inversion findings are typically greater than those of satellite
remote sensing (Adao et al., 2017). However, the essential
research methodologies and fundamental concepts of both are
identical or comparable (Aasen et al., 2018). The essence of the
higher inversion accuracy of UAV remote sensing is as follows.
First, given the lower altitude of aerial photography, the distance
to the crop canopy is shorter, hence there is less distortion and
sensitivity of the acquired information (e.g., image texture
features, spectral features, and thermal radiation features),
which more accurately reflect small changes in the crop
phenotypes. Second, the small spatial scale of UAV remote
sensing not only objectively excludes heterogeneous factors
(such as climate variation, soil conditions, moisture conditions,
crop varieties, pest and disease stress, and human management
practices) that affect the inversion of crop growth, pests, and
diseases at medium and large scales, but also allows for the
precise control of variable factors required for the experiment.
However, this advantage of UAV remote sensing is also a
constraint to its application (Delavarpour et al., 2021; Wang
et al., 2022). Although the combination of ground-based data
with UAV remote sensing data may provide point-to-point
inversion of crop growth, pests, and diseases, a number of
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limitations remain. The geographical extent is confined to the
field size, and the consequent localization and individual
variability in crop phenotypes limit the portability of
monitoring models based on UAV remote sensing (Rezwan and
Choi, 2022), so it is impossible to duplicate the inversion laws
observed at larger scales or other sites. It is challenging to
overcome regional disparities in numerous elements, such as
crop types, natural environmental conditions, and human
management practices, using satellite remote sensing (Messina
and Modica, 2020; Zhou et al., 2020). It is also challenging for
satellite remote sensing to overcome the impact of the diverse
inversion influences on the inversion precision. Given the
restricted geographical extent, UAV remote sensing is able to
effectively screen diverse information. While employing satellite
remote sensing techniques, we provide UAV remote sensing
data as a crucial correction index for satellite remote sensing
inversion agricultural growth, pest and disease studies to aid in
the development of crop models. This may provide jujube pests
monitor new ideas for follow-up studies.

Conclusion

In this study, leaf mite damage was monitored using an UAV
platform equipped with a hyperspectral sensor. By acquiring
hyperspectral images of jujube orchards with varying severities
of leaf mite infestation, hyperspectral inversion was investigated
to assess the relative chlorophyll content of jujube trees under the
stress of leaf mite infestation. The results confirmed that the
SPAD values of jujube plants were negatively correlated with
severity of leaf mite infestation and leaf damage. Significant
spectral variation was observed, with SPAD values diminished in
the green peaks and red troughs of the spectral band with an
increase in the severity of leaf damage. The differences in spectral
reflectance among leaf mite-infested jujube plants were more
pronounced. A strong correlation was observed between the
SPAD value of jujube trees and the original and first-order
derivative spectral reflectance of the canopy of jujube trees
infested with leaf mites. It is therefore possible to quantify the leaf
chlorophyll content of jujube trees under the stress of leaf mite
infestation using hyperspectral remote sensing, thus providing a
theoretical foundation for monitoring leaf mite infestation of
jujube trees using hyperspectral remote sensing. Five feature
bands were extracted using SPA: 512.1, 628.8, 674.2, 736.6, and
773.2nm. The PSO-ELM model was developed using the
extracted characteristic bands as input variables and the
chlorophyll content of jujube trees as the output variable. The
superior performance of the PSO-optimized ELM model
demonstrated the viability of UAV deployment to perform
hyperspectral inversion of the chlorophyll content of jujube
plants infested with leaf mites. Thus, the variation in leaf
chlorophyll content may be utilized to examine the categorization
of jujube plants by severity of leaf mite infestation based on the
variation in spectral characteristics.
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2Mechanical and Electrical Engineering College, Hainan University, Haikou, China, *College of
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An improved lightweight network (Improved YOLOv5s) was proposed based on
YOLOV5s in this study to realise all-weather detection of dragon fruit in a
complex orchard environment. A ghost module was introduced in the original
YOLOV5s to realise the lightweight of the model. The coordinate attention
mechanism was joined to make the model accurately locate and identify the
dense dragon fruits. A bidirectional feature pyramid network was built to
improve the detection effect of dragon fruit at different scales. SloU loss
function was adopted to improve the convergence speed during model
training. The improved YOLOv5s model was used to detect a dragon fruit
dataset collected in the natural environment. Results showed that the mean
average precision (mAP), precision (P) and recall (R) of the model was 97.4%,
96.4% and 95.2%, respectively. The model size, parameters (Params) and
floating-point operations (FLOPs) were 11.5 MB, 5.2 M and 11.4 G,
respectively. Compared with the original YOLOvV5s network, the model size,
Params and FLOPs of the improved model was reduced by 20.6%, 18.75% and
27.8%, respectively. Meanwhile, the mAP of the improved model was improved
by 1.1%. The results prove that the improved model had a more lightweight
structure and better detection performance. Moreover, the average precision
(AP) of the improved YOLOV5s for dragon fruit under the front light, back light,
side light, cloudy day and night was 99.5%, 97.3%, 98.5%, 95.5% and 96.1%,
respectively. The detection performance met the requirements of all-weather
detection of dragon fruit and the improved model had good robustness. This
study provides a theoretical basis and technical support for fruit monitoring
based on unmanned aerial vehicle technology and intelligent picking based on
picking robot technology.
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1 Introduction

People love Dragon fruit because of its high nutritional
value, constipation prevention, detoxification, blood glucose
reduction, antioxidants and other effects (Attar et al., 2022).
The field management of this tropical fruit is labour-intensive.
Thus, studying disease and pest monitoring for the fruit based
on unmanned aerial vehicle (UAV) technology and intelligent
picking based on picking robot technology is very important.
Fruit and vegetable object detection in the natural orchard
environment is a key technology for monitoring and picking
fruit pests and diseases (Tang et al., 2020; Zheng et al., 2021).
Given the complex environmental information, such as uneven
light intensity and overlapping occlusion between branches and
leaves and fruits in dragon fruit orchards (Jiang et al., 2012; Chu
and Chang, 2020), studying a method that can accurately detect
dragon fruit in complex environments for efficient and
automatic all-weather fruit monitoring and picking of dragon
fruit is of great research value and practical significance.

Researchers at home and abroad have recently achieved
certain results in the field of fruit and vegetable object
detection, and a variety of object detection methods proposed
have been applied to fruit and vegetable detection tasks in
natural scenarios (Behera et al, 2018; Jiang et al, 2019; He
etal., 2020; Yu et al,, 2021; Jiang et al., 2022). These methods are
mainly based on traditional image processing methods and deep
learning algorithms (Saleem et al., 2021). Traditional image
processing methods are mainly based on the colour, shape and
texture of fruits and vegetables, which have been widely used to
recognise citrus (Kurtulmus et al., 2011; Lu et al,, 2018), apple
(Rakun et al., 2011; Linker et al., 2012; Sun et al., 2019),
pineapple (Chaivivatrakul and Dailey, 2014) and mango
(Payne et al., 2013). However, these methods have high
environmental requirements. When the orchard light is
uneven and occlusions are found between fruits, recognition
accuracy is significantly reduced. With the rapid development of
deep learning, a convolutional neural network (CNN) algorithm
has been applied to fruit and vegetable object detection,
achieving good results. Typical studies are as follows: Sun et al.
(2018) proposed an improved Faster-RCNN for tomato
recognition, which adopted ResNet50 as the feature extraction
network and used the k-means clustering method to adjust the
preselected box, effectively improving the recognition accuracy
but slowing down the detection speed. Fu et al. (2020) used the
Faster-RCNN to identify apples. Before model establishment, a
depth filter was used to remove the background of fruit trees in
the image, improving recognition accuracy by 2.5% compared
with the original network model. Tian et al. (2019) proposed an
improved YOLO-V3 model to detect apples at different growth
stages in orchards, and the average time of detection model was
0.304 s for images with 3000x3000 resolution. Li et al. (2021)
identified occlusion and small object green pepper based on the
deep learning object detection algorithm of Yolov4-tiny
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combining the attention mechanism and multi-scale
prediction. The average precision value of the model reached
95.11%, the accuracy rate was 96.91%, and the recall rate was
93.85%. Zhang et al. (2021) proposed a recognition and
positioning method for cherry tomatoes based on a lightweight
neural network improved YoloV4-Lite, and the recognition
accuracy and AP were improved by 8.29% and 0.15%,
respectively, compared with the original network model. Xiong
etal. (2020) added residual network to YOLOv3 model for night
citrus recognition, and the recognition accuracy and the
recognition speed was increased by 2.27% and 26%,
respectively, compared with the original network model.
Cecotti et al. (2020) used transfer learning to pre-train the
network and data enhancement to increase the number of
samples. They also used a modified Resnet network to identify
grapes and perform vyield estimates, which achieved good
accuracy. Giang et al. (2022) rapidly detected tomatoes based
on semantic segmentation neural network of RGB-D image, and
the detection accuracy rate was 80.2%. Huang et al. (2022)
applied the YOLOv5 algorithm to detect the citrus data set
collected by UAV, and the detection accuracy rate was 93.32%.
Yan et al. (2021) proposed a lightweight apple object detection
method using improved YOLOV5s to identify grasping and
ungrasping apples in apple tree images automatically, and the
recognition recall rate, accuracy, AP and F;, were 91.48%,
83.83%, 86.75% and 87.49%, respectively. Zhang et al. (2022)
applied the YOLOX object detection algorithm to carry out the
counting detection of Holly fruit and tested the counting
efficiency under different distances and scenarios. Zhou et al.
(2022) proposed an enhanced YOLOX-s object detection
algorithm. Compared with the original YOLOX-s, the
enhanced model improved the detection AP of kiwifruit
images by 6.52%, reduced the number of model parameters by
44.8% and upgraded the model detection speed by 63.9%. Miao
et al. (2022) developed an efficient tomato picking robot based
on traditional image processing methods and YOLOV5 object
detection algorithm, which had high detection accuracy under
different lighting conditions, with an average deviation of 2 mm
and a picking time of 9 s/cluster. Wang et al. (2022) proposed an
improved YOLOv4 model for pear detection in the natural
environment. The AP of the model was 96.71%, the model size
was reduced by approximately 80%, and the average detection
speed was 0.027 s. Many researchers have researched fruit target
detection based on CNN and achieved good results, but they
mainly realised fruit detection under daytime conditions. During
the growth of dragon fruits, supplemental light is carried out at
night, providing an advantageous condition for the all-weather
picking of dragon fruits. Few reports have focused on target
detection for picking dragon fruits in all weather.

Thus, this study constructed a lightweight neural network
model to reduce the size of the network model and improve the
detection accuracy, which was used for the all-weather real-time
detection task of dragon fruit picking robots in complex scenes.
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The main innovations and contributions are summarised
as follows:

1. To establish data sets of dragon fruits under different
lighting conditions. Through data enhancement, the
image dataset was diversified, and the anti-interference
ability under complex conditions was enhanced.

2. The lightweight ghost module was adopted in the
model, replacing the conventional convolution of the
original YOLOv5s network by combining a small
number of convolution kernels and linear change
operations to achieve the lightweight improvement of
the model. The coordinate attention mechanism (CAM)
was added to the original YOLOv5s network to make
the model more accurate in locating and identifying
dense dragon fruit. The feature fusion of different scales
was strengthened by constructing a bidirectional feature
pyramid network (BiFPN). The SIoU loss function was
used to replace the original loss function to improve the
convergence speed during model training.

The rest of the paper was structurally organised as follows:
The second section presents the data material, including dragon
fruit growth characteristics, image acquisition and dataset
construction. The third section introduces the improved
YOLOV5s dragon fruit detection model, which mainly includes
the lightweight improvement of the model, the introduction of
CAM and BiFPN, and the improvement of the loss function. The
fourth section introduces the training and testing of the model,
including the training platform information, parameter setting
of the training network and evaluation index. The fifth section

10.3389/fpls.2022.1040923

presents the test results and discussion. The final section
illustrates the conclusions and prospects of the study.

2 Data materials
2.1 Growth characteristics of dragon fruit

Dragon fruit is a plant of the cactus family. Its branches are
mostly triangular, and its edge width is generally 3-8 cm. It has
many branches and is mainly cultivated by dense trellis planting
(Figure 1). As a typical tropical and subtropical fruit, the shape
of dragon fruit is generally spherical, the length of the fruit is 7-
12 cm, and the diameter of the fruit is 5-10 cm. Fruits of the
dragon fruit are distributed on branches. Given that fruits are
blocked by branches and overlap with each other, accurately
identifying dragon fruit, counting and measuring production,
monitoring fruit diseases and insect pests and accurately picking
fruit using picking robots in the field are difficult.

2.2 Image acquisition

This study took the red dragon fruit cultivated by dense
trellis planting in modern standard orchards as the research
object. The dragon fruit images were collected from the dragon
fruit planting base in Yazhou, Sanya City, Hainan Province
(latitude: 18.20.45, longitude: 109.12.14). Nikon SLR cameras
and intelligent mobile phones were used to collect images of
dragon fruits. Multi-scale dragon images were acquired during
the three periods of sunny day, cloudy day and night. In the

FIGURE 1
Planting pattern of dragon fruit.
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shooting process, the operation process of the picking robot was
simulated, and the shooting angle and distance were constantly
changed. A total of 1987 images were collected. Among them,
shooting conditions on sunny days included front light, side
light and back light. The collected images included varying
maturity, attitude, size, lighting, background and fruit overlap
occlusion. The image resolution is 4,288x2,848 pixels, and the
format is JPEG. Figure 2 shows the dragon fruit images collected
under different lighting conditions.

2.3 Construction of data set

The collected data were clipped and compressed to 640x640
pixels to improve the training efficiency of the network model
and shorten the training time in the training stage of the deep
learning model. The Labellmg annotation tool was used to
annotate the rectangular box of the dragon fruit in the image
manually. During annotation, all mature dragon fruits fully
exposed in the image were labelled in a rectangular frame, the
exposed part of overlapping or occluded mature dragon fruits
were labelled, and the mature dragon fruits with occlusion
degrees less than 5% in the image were not labelled. A total of
1,987 images were labelled, and the number of labelled mature
dragon fruits was 5,123. After annotation, the.xml file containing
the ground truth was obtained. To avoid the phenomenon of
sample imbalance and overfitting of model training, data
enhancement technology was used to expand the size of
dragon fruit data sets and improve the robustness and
generalisation ability of the model. Under different lighting
conditions, for the original dragon fruit images with obvious
features, defocus blur, motion blur, pixelation and cloud were
used to enrich the data features, increase the number of training
data and reduce the unbalanced proportion of samples and the
sensitivity of the model to the image to improve the model
robustness. Table 1 shows the basic information of the
specifically constructed dragon fruit data sets.

The constructed dragon fruit data sets were divided into the
training and testing sets according to the ratio of 8:2, and the
number of dragon fruit image samples in the train and test sets
was 4,000 and 1,000, respectively. There were no duplicate
images between the training set and testing set.

10.3389/fpls.2022.1040923

3 Improvement of detection model
for dragon fruit based on YOLOv5s

3.1 The network structure of YOLOv5s

The network structure of the YOLOv5s model is a classical
one-stage structure, as shown in Figure 3, which is composed of
four parts: input, backbone, neck and prediction head. Mosaic
data enhancement, adaptive anchor frame calculation, adaptive
image scaling and other methods are used at the input. The
backbone part integrates Conv, C3, SPPF and other feature
extraction modules for feature extraction. The neck part
adopts the PANet structure for multi-scale feature fusion to
strengthen feature extraction and greatly improve the model
effect. Compared with other Faster-RCNN, SSD and YOLO
series models, this model has fewer parameters, a small weight
file and the advantages of fast reasoning speed and high
detection accuracy. Therefore, the detection model for dragon
fruit was designed based on the YOLOv5s deep convolutional
network, which was conducive to the embedded development of
the dragon fruit picking robot vision system.

3.2 Improved YOLOvV5s detection model
for dragon fruit

Given the multi-scale and multi-mode characteristics of all-
weather picking and recognition of dense trellis planting fruit in
a natural environment, a lightweight neural network model with
high recognition accuracy based on YOLOV5s network structure
was proposed, which is suitable for all-weather real-time
detection task of dragon fruit picking robot in complex scenes.
Firstly, the lightweight ghost module was used to replace the
conventional convolution of the original YOLOvV5s backbone
network by combining a small number of convolution kernels
and linear change operations, which effectively realised the
lightweight improvement of the YOLOv5s network model.
Secondly, CAM was added to the original YOLOv5s network,
which could capture the cross-channel information and the
information of direction perception and position perception,
so that the model could accurately locate and identify the dense
dragon fruit. Thirdly, the PANet feature fusion network was

FIGURE 2

Dragon fruit images under different lighting conditions. (A) Front light. (B) Back light. (C) Side light. (D) Cloudy day. (E) Night.
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TABLE 1 Basic information of dragon fruit data sets.

10.3389/fpls.2022.1040923

Daytime
Category Sunny day Cloudy day Night Sum
Front light Back light Side light
The number of original image 390 310 440 347 500 1987
The number of enhancement of data 1000 1000 1000 1000 1000 5000
The number of marked dragon fruit 2930 2814 3070 3035 2883 14732

improved, and the BiFPN was built to enhance the transmission
of feature information between different network layers, realise
two-way feature fusion of deep and shallow layers and improve
the detection effect of dragon fruit at different scales. Finally, the
SIoU loss function was used to replace the original loss function
to improve the convergence speed of model training.

3.2.1 Network lightweight improvement

Ghost module is a method to realise a lightweight neural
network (Han et al, 2020), which can make the deep neural
network transplant the network to some mobile devices with
relatively weak computing power on the basis of ensuring the
performance ability of the algorithm. The overall direction is to
reduce the number of network model Params and FLOPs.

As shown in Figure 4, the ghost module uses a simple linear
operation @ instead of the original convolution operation to
generate ghost graphs. Suppose that the size of the input feature
graph is h x w x ¢ convolved with n sets of convolution kernels
of size kxk, and the size of the output feature graph is h'xw’xn.
In the ghost model, m groups of kxk kernels are convolved with
input to generate the intrinsic graph intrinsic of mxh’xw’, after
which the intrinsic graph is linearly transformed @ to produce

the Ghost graph, and intrinsic and ghost together are used as
output. Compared with ordinary convolution, after the ghost
module is adopted, the model acceleration ratio r, and
compression ratio r. are obtained, as shown in Equations (1)
and (2).

n-h'wc-k-k B
“h wcokok+(s=1)-% k" w'cod-d

N

s (1)

Ty =

n-c-k-k B
§~c-k~k+(s—l)'%'c~d~d~

r. = s (2)

These equations reveal that, compared with ordinary
convolution, the ghost module reduced the calculation amount
and the number of parameters in the convolution process to a
certain extent. A large number of Conv and C3 modules in the
original YOLOV5 network model are found, resulting in a large
calculation amount and parameter volume of the model. The
lightweight improvement of the network model is completed by
using the ghost module to replace the Conv modules of layers 1,
3, 5,7, 10, 14, 18 and 21 of the original network model with
GhostConv and the C3 modules of layers 2, 4, 6 and 8 with
C3Ghost module for calculation.
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FIGURE 3
Network structure diagram of YOLO V5 model.
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Structure of ghost. (A) Diagram of ghost module. (B) Ghost Conv. (C) GhostBottleneck. (D) C3 Ghost.

3.2.2 Coordinate attention mechanism (CAM)

The detection of small dense objects in densely planted
dragon fruit orchards is easily influenced by different lighting
conditions, especially in the night scene, when the detection is
difficult. The original YOLOvV5 network model easily loses the
feature information of dense objects and small objects in the
reasoning process, and the detection effect of small dense objects
is poor. As shown in Figure 5, CAM is a novel mobile network
attention mechanism proposed by embedding location
information into channel attention (Hou et al., 2021). To
alleviate the problem of location information loss caused by
two-dimensional global pooling proposed by previous attention
mechanisms, such as SENet (Hu et al., 2018) and CBAM (Woo
etal, 2018), CAM decomposed channel attention into two one-
dimensional feature coding processes, which aggregated features
along two spatial directions respectively.

A CAM block can be viewed as a computational unit that
can take any intermediate feature tensor X=[xi,x,,,
x]ERCHAW

intermediate feature tensor Y=[y;,y,,--,y.]. Meanwhile, it has the

as input and output with the same size as the

effect of enhancing representation.

Therefore, CAM was inserted in this study after layers 4,
6, 8,9, 17, 20 and 23 of the original YOLOV5 network model.
After data enhancement, the dragon fruit images entered the
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main network for feature extraction and then entered the
neck part of the model through the CAM connected between
the main part and the neck part (layers 4, 6 and 9 of the
original network). In the neck part, the dragon fruit image
feature fusion of different scales was carried out. Finally,
CAM, after the 17th, 20th and 23rd layers of the original
network, entered the prediction head part of the model, so
that the network model can more accurately notice the dense
small dragon fruit objects. It improved the detection ability of
the network.

3.2.3 Construction of the bidirectional feature
pyramid network (BiFPN)

The neck part of the original YOLOvV5 network model uses
PANet for multi-scale feature fusion, and the three effective
feature layers of different scales obtained in the backbone part
continue to extract features in the neck part. When fusing
different input features, PANet adds the features without
distinction. However, because these different input features
have different resolutions, their contributions to the fused
output features tend to be unequal. BiFPN is a new feature
fusion method proposed by the Google Brain team, which
realises the two-way fusion of top-down and bottom-up deep
and shallow features and enhances the transmission of feature
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Structure diagram of Coordinate Attention module.

information between different network layers. The PANet and
BiFPN structures are shown in Figure 6.

In this study, the PANet in YOLOVS5 structure is replaced by
BiFPN, and the Concat of layer 16, 20, 24 and 28 in the network
structure is renamed as BiFPN_Concat. To fuse more image
features without consuming more computational cost, the image
features output from the 8th layer network were fused to the
24th layer network by concatenation, and the image features
output from the 11th layer network are fused to the 28th layer
network by concatenation, so as to achieve a higher level of
feature fusion. BiFPN used the fast normalised fusion, which is
normalised by dividing the use-right value by the sum of the
ownership value. It normalises the weights to between 0 and 1 to
improve the detection speed.

3.2.4 Improvement of loss function

The traditional object detection loss function relies on the
aggregation of bounding box regression indicators, such as the
distance, overlap region and aspect ratio of the predicted box
and real box (i.e. GIoU, DIoU and CIoU). The original YOLOV5
network model used the CloU loss function, but it did not
consider that the situation of required direction does not match
between the real box and predict box. It led to a slower and less
efficient convergence of the network model during training. At
the same time, the predicted box may “wander around” during
training and produce worse models. To solve the above
problems, SIoU loss function was used to replace the original
loss function, which could introduce the vector angle between
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the real box and the predicted box (Gevorgyan, 2022). It includes
four parts: angle cost, distance cost, shape cost and IoU cost.

Angle cost is shown in Equation (3). Figure 7 shows that,
when ais /2 or 0, the angle cost is 0. In the training process, if o
is less than 1/4, o is minimised; otherwise, 3 is minimised.

A = cos[2 x sinz(arcsinc—h - E)] (3)
c 4
Among them,
0 =\~ b ) + () - b, ? @
= max(b‘g,bcy) - min(bfy‘,bcy) (5)

where, ¢, is the height difference between the centre points of the
real box and the predicted box, o is the distance between the
centre points of the real box and the predicted box, (b‘gf_, b’gj) is
the centre coordinates of the real box and (b ,bcy) is the centre
coordinates of the predicted box.
Distance cost A is shown in Equation (6),

b,
‘}'Chl Y )2

t
s ~bex

2 —(2—
Az TR

(6)
where, (c,,1, ¢1) is the width and height of the minimum outer
rectangle of the real box and the predicted box.

The shape cost Q is shown in Equation (7),

-] -S|
Q=(1- eimax(w,wgt))e +(1 - eimax(h,hgt))e

7)
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Structures of PANet and BiFPN. (A) Structure of PANet. (B) Structure of BiFPN

real box

BGT

- AN

I
I
I Ich
I
: I
|
Cu

predicted box

FIGURE 7
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where, (w, h) is the width and height of the predicted box, (w*,
h#") is the width and height of the real box and 6 is the degree of
attention to shape loss.

To sum up, the SIoU loss function is defined as Equation (8).

A+ Q

8)

Losssioy = 1 —IoU +

3.2.5 Improved detection model for
dragon fruit

The overall structure of the improved detection model
network for dragon fruit is shown in Table 2. The from
column in the table indicates which layer the input comes
from, -1 represents the output from the previous layer, —2
represents the output from the upper layer. The params column

TABLE 2 The overall structure of the improved network.

Number From Params
0 -1 3520
1 -1 10144
2 -1 12072
3 -1 38720
4 -1 47040
5 -1 6704
6 2 151168
7 -1 186976
8 -1 13360
9 2 597248
10 -1 679680
11 -1 51296
12 -1 656896
13 -1 51296
14 -1 69248
15 -1 0
16 [-1,8] 2
17 -1 361984
18 -1 18240
19 -1 0
20 [-1,5] 2
21 -1 90886
22 -1 6704
23 2 75584
24 [-1,16,8] 3

25 -1 460288
26 -1 13360
27 2 298624
28 [-1,14,11] 3
29 -1 1444864
30 -1 51296
31 [22,26,30] 26970
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represents the size of the argument, module is the name of the
module, and the arguments are the information about the
module argument, including the number of input channels
and output channels, the size of the convolution kernel and
the step size information.

4 Model training and testing
4.1 Training processing platform

This study built a deep learning framework based on
PyTorch 1.7.1 to train and test the dragon fruit detection
model. The relevant configurations of the test platform are as
follows: Intel(R) Core(TM) i9-10900X CPU and NVIDIA

Module Arguments
Conv [3, 32,6, 2,2]
Ghost Conv [32, 64, 3, 2]
C3Ghost [64, 64, 3]
Ghost Conv [64, 128, 3, 2]
C3Ghost [128, 128, 4]
CAM [128, 128]
Ghost Conv [128, 256, 3, 2]
C3Ghost [256, 256, 5]
CAM [256, 256]
Ghost Conv [256, 512, 3, 2]
C3Ghost [512, 512, 4]
CAM [512, 512]
SPPF [512, 512, 5]
CAM (512, 512]
Ghost Conv [512, 256, 1, 1]
Upsample [None, 2, ‘nearest’]
BiFPN (1]

C3 [512, 256, 1, False]
Ghost Conv [256, 128, 1, 1]
Upsample [None, 2, ‘nearest’]
BiFPN [1]

C3 [256, 128, 1, False]
CAM [128, 128]
Ghost Conv [128, 128, 3, 2]
BiFPN (1]

C3 [896, 256, 1, False]
CAM [256, 256]
Ghost Conv [256, 256, 3, 2]
BiFPN [1]

C3 [1024, 512, 1, False]
CAM [512, 512]
Detect [nc, anchors]
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GeForce RTX 3090 GPU (Dual Cards). The operating system is
Windows 10. The acceleration environment is CUDA 11.3 and
CUDNN 8.2.0. The development environment is PyCharm
2021.2.2 and Python 3.7. Other Python libraries are Numpy
1.21.6 and Opencv 4.6.0. The model input image size is 640x640
pixels. The training parameters are as follows: a batch size of 64,
300 training iterations, momentum of 0.937, initial learning rate
of 0.001, attenuation coefficient of 0.9.

4.2 Evaluation indicators

This study used precision (P) to measure the accuracy of
dragon fruit prediction. Recall (R) measures the detection of
positive samples in all dragon fruit. Average precision (AP)
measures the performance of the detector in each category.
Mean average precision (mAP) is the average of all class APs.
P, R, AP and mAP are defined as (9)-(12). The complexity of the
algorithm or model is measured by the number of parameters
(Params) and floating-point operations (FLOPs).

PP 100% ©9)
“TP+FEP ?
R=— "2 . 100% (10)
" TP+ EN ’
1
AP:/ P(R)dR x 100 % (1)
0
SE AP
mAP = S 12)

where, TP is the number of correctly predicted positive samples,
TN is the number of correctly predicted negative samples, FP is
the number of negative samples divided into positive samples,
FP is the number of positive samples divided into negative
samples, and k is the number of categories.

10.3389/fpls.2022.1040923

5 Results and discussion

The training process of the original YOLOv5s model and the
improved YOLOv5s model used the same data set and the same
parameters. According to the log files saved in the training
process, the training loss curves of the two models were drawn,
as shown in Figure 8.

Figure 8A is the positioning loss curve, which was used to
represent the error between the predicted box and the labelled
box. After 10 rounds of iteration, the decline rate of positioning
loss value started to become gentle. After 200 rounds of iteration,
the positioning error tended to the stable state. At this point, the
localisation loss of the improved YOLOv5s model was reduced
by 0.01 compared with the original YOLOv5s. The model’s
performance improved after the SIoU loss function was
adopted. Figure 8B is the confidence loss curve, which
calculates the network’s confidence in the iterative process.
The confidence loss curves of the two models were consistent
before and after the improvement. Figure 8C is the classification
loss curve, which is used to show whether the aiming frame and
the corresponding calibration classification are correct. After 100
rounds of iteration, the classification error of the model tended
to the stable state, where the classification error of the improved
YOLOvV5s model was significantly reduced compared with the
original YOLOv5s. Figure 8 shows that, compared with the
original YOLOv5s model, the improved YOLOv5s model has
faster convergence and smaller loss value. The results showed
that the convergence ability of the network was improved after
modifying the original loss function.

5.1 Comparison of different algorithms

To compare the accuracy of different models in dragon fruit
detection, eight representative network models of YOLOV3,
YOLOv3-Tiny, YOLOv4-CSP, YOLOv4-Tiny, YOLOV5s,
YOLOX-s, YOLOv7 and YOLOvV7-Tiny, were selected to

A B (o]
035 0.06
0.12 —— Improved YOLOVSs 630 — Improved YOLOVSs —— Improved YOLOVSs
—— YOLOV5s " — YOLOvss —— YOLOVSs
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FIGURE 8

Comparison of Loss curves for model training. (A) The positioning loss curve. (B) The confidence loss curve. (C) The classification loss curve.
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compare and test with the improved YOLOv5s. All models used
the same data set of dragon fruit for training and testing. The
value of mAP, P, R, model size, Params and FLOPs were selected
as model evaluation indicators. Table 3 shows the detection
results of dragon fruit for a different model.

Table 3 shows that, compared with YOLOv3, YOLOv3-Tiny,
YOLOV4-CSP, YOLOv4-Tiny, YOLOv5s, YOLOX-s, YOLOv7
and YOLOv7-Tiny, the improved YOLOv5s model has the
highest P, R and mAP values of 96.4%, 95.2% and 97.4%,
respectively. The model size, Params and FLOPs of the
Improved YOLOvV5s were larger than those of YOLOV4-Tiny,
but they were smaller than other networks, which were 11.5 MB,
5.2 M and 11.4 G, respectively. Compared with the above eight
network models, mAP of the improved YOLOv5s model was
enhanced by 0.3%, 2.1%, 3.1%, 4.5%, 1.1%, 3.9%, 1.8% and 1.4%
respectively, P was improved by 0.4%, 3.4%, 4.8%, 4.1%, 1.7%,
6.3%, 2.5% and 5.6% respectively, and R was improved by 0.6%,
3.4%, 7.9%, 7.1%, 1.5%, 8.7%, 5.6% and 2.4%, respectively.
Compared with the lightweight YOLOV3-Tiny, YOLOVS5s,
YOLOX-s and YOLOV7-Tiny, the model size was reduced by
34.3%, 20.69%, 66.5% and 6.5%, Params was reduced by 37.3%,
18.7%, 42.2%, 8.8%, respectively, FLOPs was reduced by 12.3%,
27.8%, 57.3% and 13.6%, respectively. The results showed that
the improved YOLOv5s model ensured good detection accuracy
and realised the lightweight improvement of the network model.
The improved YOLOv5s model could be embedded into the
vision system of the dragon fruit picking robot to realise the
automatic picking operation of dragon fruits.

5.2 Analysis of ablation
experiment results

The ablation experiment is to verify the optimisation effect
of each improved module, and the experimental results are
shown in Table 4. Improved model 1 represents the
introduction of the ghost module in the original network.
Improved model 2 represents the modification of the pyramid
structure of the original network. Improved model 3 represents

TABLE 3 Identification results of dragon fruit for different model.

Model mAP/% P/% R/%
YOLOv3 97.1 96.0 94.6
YOLOV3-Tiny 95.3 93.0 91.8
YOLOv4-CSP 94.3 91.6 87.3
YOLOvV4-Tiny 92.9 92.3 88.1
YOLOV5s 96.3 94.7 93.7
YOLOX-s 93.5 90.1 86.5
YOLOv7 95.6 93.9 89.6
YOLOvV7-Tiny 96.0 90.8 92.8
Improved YOLOV5s 97.4 96.4 95.2
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the addition of CAM in the original network. Improved model 4
represents the modification of the loss function. Improved
model 5 represents the addition of all the above improvement
methods in the original network.

Table 4 shows that, after the ghost module was used to
lightweight the original YOLOV5s network structure, the Params
was reduced by 28%, and the FLOPs was reduced by 34.8%
compared with the original network model, but the mAP of the
model increased by 0.4%. The main reason was that after the
ghost module was used to replace the ordinary convolution in
the original network, more feature maps were generated through
linear operation, and this rich or even redundant information
usually ensured a comprehensive understanding of the input
dragon fruit features. Therefore, the lightweight network
structure of the ghost module introduced into the original
YOLOV5s network in this study could still ensure the
detection accuracy of the model. When the CAM was added
to the model, compared with the original model, the mAP of the
model was improved by 0.5 percentage points, but the Params
and the FLOPs of the model were increased by 2.4 M and 5.2 G,
respectively. After replacing the PANet structure in the
YOLOvV5s network with BiFPN, the mAP of the model was
improved by 0.9 percentage points, the Params and the FLOPs
increased by 0.2 M and 0.7 G, respectively. After the loss
function of the model was modified, the mAP of the model
was improved by 0.5%. When these four improvements were
combined into the model, compared with the original YOLOv5s
network model, the mAP was increased by 1.1%, the Params was
reduced by 18.7%, and the FLOPs was reduced by 27.8%. The
results showed that improved YOLOv5s had better detection
performance for dragon fruit objects, and the complexity of the
model was reduced by using a lightweight module.

5.3 Analysis of detection results in
different scenarios

To verify the feasibility of the improved YOLOv5s model,
the dragon fruit images collected in different scenes were tested,

Model size/MB Params/M FLOPs/G
1236 587 155.3
17.5 8.3 13.0
105.5 50.1 119.7
6.3 29 6.4
14.5 6.4 15.8
343 9.0 267
74.9 355 105.2
12.3 57 13.2
115 52 114
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TABLE 4 Results of ablation experiment.

Model Lightweight Modifying the feature pyramid
YOLOV5s X X

Improved model 1 v X

Improved model 2 X

Improved model 3 X X

Improved model 4 X X

Improved model 5 V

10.3389/fpls.2022.1040923

Add attention Modify the loss mAP/% Params/M FLOPs/G

mechanism function
x x 96.3 6.4 15.8
x x 96.7 46 10.3
x x 972 6.8 16.2
V x 96.8 8.8 21.0
x V 96.8 6.4 15.8
V V 97.4 52 11.4

"V" Indicates that the current improvement method is used in the model, while "x" indicates that the current improvement method is not used in the model.

TABLE 5 Test results of dragon fruit recognition in different lighting scenes by the YOLOv5s model before and after improvement.

AP
Model mAP
Front light Back light Side light Cloudy day Night
YOLOV5s 96.3 99.0 96.7 98.4 93.8 93.6
Improved YOLOV5s 97.4 99.5 97.3 98.5 95.5 96.1

including the scenes of front light, back light, side light, cloudy
day and night. The results are shown in Table 5.

Table 5 shows that both models before and after
improvement had the best recognition effect for dragon fruit
in the scenes of the front light. The AP of the before and after
improvement model in detecting dragon fruit under front light
was 99.0% and 99.5%, respectively, and the AP of the improved
model was improved by 0.5%. The AP of the before and after
improvement model in detecting dragon under the backlight
was 96.7% and 97.3%, respectively. The performance of the
improved model was improved by 0.6%. The AP of the before
and after improvement model in detecting dragon fruit under
side light was 98.4% and 98.5%, respectively, and the
performance of the improved model was improved by 0.1%.

TABLE 6 Visual results of dragon fruit object detection on sunny days.

Front light The original image

Single fruit big object

Many fruits in the goal
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The AP of the model before and after the improvement under
cloudy day was 93.8% and 95.5%, respectively, and the
detection performance of the improved model was improved
by 1.7%. The AP of the model before and after improvement at
night is 93.6% and 96.1%, and the detection performance of the
improved model is improved by 2.5%. According to Table 5,
under different lighting conditions, the maximum deviation of
the YOLOv5s model before improvement in detecting dragon
fruit was 5.4%, and the maximum deviation after improvement
was 3.4%, which was 2% lower than before the improvement.
The improved model had the greatest improvement for the
situation that was difficult to detect at night, indicating that the
improved model was more robust to all-weather dragon
fruit detection.

Visual result of Improved YOLOV5s

(Continued)
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TABLE 6 Continued
Front light The original image

Dense small object

Back light
Single fruit big object

Many fruits in the goal

Dense small object

Side light
Single fruit big object

Many fruits in the goal

Dense small object

Tables 6, 7 show the detection visualisation results of the
YOLOvV5s model in different lighting scenes before and after the
improvement. According to the visualisation results, the
improved detection model had a better detection effect and
stronger robustness in detecting dragon fruit objects of
different scales under different lighting environments. The
positioning was more accurate, and the model had a strong
anti-interference ability in dense small object detection.
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Video images of the dragon fruit orchard taken by UAV
were used for detection to test further the real-time detection
performance of the improved model on dragon fruit. UAV
(model: Phantom 4 RTK) was used to shoot video images of
the dragon fruit orchard at a low altitude of 1 meter in the
daytime and night, with a resolution of 1280x720. The proposed
improved model was used to detect the dragon fruits in video
images. The results showed that the dragon fruits in the video
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TABLE 7 Visual results of dragon fruit object detection on cloudy and night days.

Cloudy

The original image

Single fruit big object

Many fruits in the goal

Dense small object

Night
Single fruit big object

Many fruits in the goal

Dense small object

images could be effectively detected. The image pre-processing
time of single frame video is 0.6 ms, the reasoning time is 17.0
ms, and the post-processing time is 1.9 ms. The results further
verify the strong robustness of the improved algorithm and
provide technical support and research basis for deploying the
algorithm on mobile devices and developing the vision system of
orchard monitoring and picking equipment in the later stage.

Conclusions

Aiming at the all-weather object detection of dense trellis
planting of dragon fruit in a complex environment, a detection
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method that integrated a lightweight network and attention
mechanism was proposed in this study. Firstly, dragon fruit
data sets were constructed in complex natural environments.
Second, the lightweight ghost module and CAM were integrated
into the YOLOv5s network structure, while a bidirectional
weighted feature pyramid network was constructed in the neck
part of the network. Finally, the SIoU loss function was used to
replace the loss function of the original network model to
improve the convergence speed during model training.

The mAP value of the testing sets for dragon fruit detection
by this method was 97.4%, P was 96.4%, R was 95.2%, model size
was 11.5 MB, Params was 52 M, and FLOPs was 11.4 G.
Compared with the original YOLOv5s network, the model

frontiersin.org


https://doi.org/10.3389/fpls.2022.1040923
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

size, Params and FLOPs of the model were reduced by 20.6%,
18.75% and 27.8%, respectively, and the mAP of the model
improved by 1.1%. The improved model has a lighter structure
and better detection performance. Using this model, the AP of
dragon fruit was 99.5%, 97.3%, 98.5%, 95.5% and 96.1% under
front light, backlight, side light, cloudy day and night,
respectively. The detection performance could meet the
requirements of all-weather detection of dragon fruit and had
good robustness. The model was used to test video images with a
resolution of 1280x720. The results showed that the pre-
processing time of a single frame video image was 0.6 ms, the
reasoning time was 17.0 ms, and the post-processing time was
1.9 ms. The model had good application potential in intelligent
operations, such as orchard counting and yield measurement,
fruit disease and insect pest monitoring by low-altitude UAV
and precise picking in the field based on the picking robot.

The next research will mainly apply the existing model to
practical tasks, such as orchard counting and yield
measurement, fruit disease and insect pest monitoring by low-
altitude UAV and precise picking in the field based on the
picking robot. The data enhancement method and model
detection performance will continue to be optimised to
improve the detection accuracy of the model further.
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For orchard plant protection, conventional large machines and small sprayers
are practically restricted by either narrow planting intervals with dense leaves or
their inadequate penetration power, which leads to an unsatisfactory effect of
spray. This paper proposes a stereoscopic plant-protection strategy that
integrates unmanned air and ground sprayers to spray different parts of
canopies to improve uniformity. In order to verify the proposal, a
stereoscopic plant-protection system (SPS) was developed, consisting of a
small swing-arm sprayer and a T16 plant-protection Unmanned Aerial Vehicle
(UAV). Then, optimal operation parameters were determined by Computational
Fluid Dynamics (CFD) and orthogonal experiments, and the uniformity was
finally quantified by trials. CFD and orthogonal experiments showed that a
swing-arm angle of 60° and a forward speed of 0.4 m/s were optimal for the
ground sprayer, whilst a height of 2.0 m from the top of canopies and a forward
speed of 1.0 m/s were appropriate for the UAV. The trial results showed that the
density of vertical droplet deposition varied from 90 to 107 deposits/cm? in
canopies, and the uniformity was 38.3% higher than conventional approaches.
The uniformity of top, bottom, inside and outside canopies was significantly
improved. Meanwhile, the density of droplet deposition on both sides of leaves
in all test points exceeded 25 deposits/cmz, able to meet the standard of spray.
This study provides a practical approach for uniform pesticide spray to large-
canopy fruit trees. Moreover, the high flexibility of plant-protection UAVs and
the significant trafficability of small swing-arm sprayers can solve the problem
of large machine entering and leaving orchards.

KEYWORDS

orchard, stereoscopic plant-protection, uniform spraying, UAV, UGV, computational
fluid dynamics (CFD)
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1 Introduction

Plant protection is important in the orchard production
process to promote fruit production (Zhao et al.,, 2017; Jiang
et al, 2021), while the current means still relies on chemical
spray (Zhai et al., 2018; Rehberg et al., 2020; Zheng et al., 2020a).
It is ideal for the entire canopy of fruit trees to be uniformly
covered by droplets. However, due to topographical
characteristics (such as undulating terrain, slope and
unevenness) and narrow row intervals (especially row interval
closure by canopies during tree branching and foliage
densifying), large plant-protection machinery cannot enter
orchards, while small one cannot achieve full-canopy spray.
Thus, it faces serious difficulties for orchard plant protection
to achieve expected effect (especially in hilly mountainous
orchards) (Holownicki et al., 2017; Zheng et al., 2020b).

Manual spray presents strong randomness, which is hard for
droplets to cover targets uniformly, so using mechanised and
intelligent equipment has played a key role in achieving uniform
fruit-tree spray in developed regions such as Europe, the United
States, Japan and Korea. In Japan and Korea, orchard terrain is
mainly hilly and mountainous (Jin et al., 2017). Plant-protection
machines mostly utilise miniaturised design with levelling and
anti-tipping mechanisms and other safety devices to improve the
application efficiency and adaptability to the terrain. However,
there are still problems like the imperviousness of dense
canopies and the non-uniform distribution of droplets in
canopies. In Europe and the United States, the topography of
orchards is significantly different from China and Japan. Farm
and large-scale planting patterns were generally adopted with
deep integration of agronomy and agricultural machinery
(Grella et al., 2020), providing the possibility of large plant-
protection machinery operations. Among them, air-assisted
sprayers are the most widely used devices (Miranda-Fuentes
etal, 2017). Although large plant-protection machines show the
convenience for plant protection in orchards and have
significant application effects compared to manual spray (Liu
et al, 2012), they present noticeable problems (Salcedo et al.,
2017), such as pesticide overuse, fruit pesticide residues, soil
pesticide residues and water pollution (Kira et al., 2018; Kasner
et al, 2020). Since the end of the 20th century, many
corresponding environmental policies have been promulgated
in Europe and the United States, and the use of pesticides has
become more stringent. For example, safety quarantine zones
must be set up for spray, and pesticides are severely restricted.
Therefore, it has been more challenging to develop spray
technology to reduce drift and improve the uniformity of
droplet distribution. In the 21st century, the target-directional
air delivery method gradually replaced the diffuse air delivery
method that causes serious drift. The target-directional
implement shows a noticeable effect on fruit trees with narrow
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canopy and uniform height (Song et al., 2012; Niu et al., 2019).
However, it is limited by its large size and is only adapted to
small canopies and wide row-spacing orchards.

With the advancement of technology, variable spray
techniques based on the characteristics of fruit tree canopies
have been rapidly developed (He et al., 2011; Cai et al., 2017;
Manandhar et al., 2020), and sensors such as LiDAR (Fessler
etal., 2020) and depth cameras (Xiao et al., 2017) have been used
to acquire fruit tree canopy features (Rosell and Sanz, 2012;
Yandiun Narvaez et al., 2016). Applying pesticides on demand
can effectively reduce chemical waste (Miranda-Fuentes et al.,
2016). However, there are serious problems. Firstly, in terms of
orchard adaptability, after acquiring the characteristics of fruit
trees based on sensors, the spray mechanism needs to reach a
certain position to deliver droplets onto target locations, which
further increases the overall size of the sprayers. (Chen et al,
20115 Liu et al,, 2013; Liu et al,, 2016) so that they become less
adaptable to the orchard environment. In addition, for most
large-canopy orchards, canopy closure between rows can
directly affect the accuracy of feature sense, even leading to no
acquisition of expected canopy features. Inspired by the
successful application of plant-protection Unmanned Aerial
Vehicles (UAVs) in fields (Zhang et al., 2016), there have been
many studies related to plant-protection UAVs in orchard
conditions (Wang et al., 2017; Liu et al, 2020; Meng et al,
2020). UAVs can avoid the terrain restrictions that ground
sprayers have to suffer but present the disadvantages of the
spray for large-canopy fruit trees. The distribution of droplets at
the top and bottom of canopies varies highly. With serious row
closure, the droplet deposition in the lower part of canopies does
not even reach the spraying standard (25 deposits/cm?), which
still cannot meet the demand for uniform spray in canopies.

Our team conducted preliminary experiments in two apple
orchards in Shanxi Province and Beijing, a mango orchard in
Guangxi Province and a citrus orchard in Chongqing Province
from June 2018 to April 2021. Typical sprayers for orchards were
selected for the experiment, including a ring-shape air-assisted
sprayer (model SSA-E541, Wuxi Yifeng Wanshan Technology
Co., Ltd.), a tower-shaped air-assisted sprayer (model G6S,
Shandong Guohaha Agricultural Machinery Co., Ltd.), a
single-rotor plant-protection UAV (model Z-3N, Nanjing
Institute of Simulation Technology, Jiangsu Province) and a
six-rotor plant-protection UAV (model 3WWDZ-10, Beijing
Viga UAV Technology Co., Ltd.). The results in Figure 1 show
that droplets were not uniformly distributed at the top, bottom,
inside and outside canopies during single equipment spraying.
In particular, during the six-rotor plant-protection UAV
spraying, the droplet deposition density in the top layers of
canopies was high and uniform, while that in the bottom was
poor. Meanwhile, the droplet distribution of the air-assisted
sprayer was non-uniform in the top layers and was better in the
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bottom layers. (Chen et al., 2020; Jiang et al., 2022). These pre- characteristics for canopy spray. Thus, they were combined to
test results were highly consistent with the issue on the basis of cover the entire tree canopies (Figure 2). Plant-protection UAV's
the literature review above. were in charge of the upper part of canopies, while small ground
This study proposes a stereoscopic plant-protection method sprayers (air-assisted sprayers) focused on the middle and
with a corresponding Stereoscopic Plant-protection System (SPS) bottom parts.
to improve the uniformity of canopy spray. Numerical The plant-protection UAV adopted the canopy top-seeking
simulations using Computational Fluid Dynamics (CFD) and operation mode (Zhang et al., 2019). It flew directly above the
orchard experiments were conducted to determine the optimal fruit tree canopies, and the spray swath mainly covered the top
operation parameters for the SPS. Then, the experiments of the half of the canopies. The small ground sprayer travelled between
SPS were conducted. It is a new idea for orchard plant protection, the rows of trees, and the spraying range mainly covered the
especially for closure orchards, and provides a technical solution bottom half of the canopies. To prevent the wind fields by the
to improve the spray uniformity in the canopy of fruit trees. two devices from affecting each other and reducing the spraying

effect, the system could select the following three
operation modes:

2 Materials and methods

1. sequential independent spraying. One of the devices

2.1 Development of SPS firstly sprayed. After it was completed, the other one
sprayed.
2.1.1 SPS scheme 2. simultaneous following spraying. The plant-protection
g spraying plant-p
As shown in Figure 1, the plant-protection UAV and the UAV operated first and was followed by the ground
ground air-assisted sprayer present complementary sprayer after flying a certain distance (=spraying width).
A & B
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FIGURE 1

Typical equipment canopy droplet deposition experimental results. (A) Vertical longitudinal sampling layer droplet deposition density. (B) Vertical
longitudinal sampling layer droplet distribution uniformity. (C) Horizontal radial sampling layer droplet distribution uniformity. (D) Uniformity of
droplet distribution on leaf surface and leaf back.
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FIGURE 2

Small ground sprayers

10.3389/fpls.2022.1040808

— Plant protection UAV

Schematic of stereoscopic plant protection. The dashed line indicates the operation route of the plant-protection UAV, while the solid line is

that of the ground sprayer.

3. simultaneous free spraying. The plant-protection UAV
and the ground sprayer simultaneously sprayed but did
not spray one fruit tree at the same time.

2.1.2 Plant-protection UAV

According to the previous study results (Chen et al., 2020), it
is known that the droplet deposition density and distribution
uniformity of the six-rotor plant-protection UAV on canopies is
better than that of the single-rotor one. Therefore, the T16 six-
rotor plant-protection UAV (Figure 3) produced by Shenzhen

DJI Innovation Technology Co., Ltd was exploited for this study.
It has a terrain-following function and wide spraying
performance, which could ensure a similar spray effect in most
cases. Its main parameters are shown in Table 1.

2.1.3 Small swing-arm sprayer

According to the preliminary investigation of orchard
characteristics, a small swing-arm sprayer (Figure 4A) was
specially developed to spray the lower and middle canopy of fruit
trees. The main components consisted of a crawler chassis, a swing-
arm air-assisted spraying mechanism, a booster renewal mechanism

FIGURE 3
T16 six-rotor plant-protection UAV.
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TABLE 1 Main parameters of T16 plant-protection UAV.

Categories Values
Weight of the whole machine (without battery) 18.50 kg
Nozzle type $X11001VS
Operating height (height above the canopy) 1.50~3.00 m
Maximum operating speed 7.00 m/s

‘eAsAs aABAr

FIGURE 4

10.3389/fpls.2022.1040808

Categories Values
Medicine tank volume 16.00 L
Number of nozzles 8
Maximum spray flow 3.60 L/min
Spraying width 4.00~6.50 m

Small swing-arm sprayer. (A) Small swing-arm sprayer 3D model. (B) Small swing-arm sprayer prototype. 1. Crawler type walking chassis 2.
Booster renewal mechanism 3. Liquid tank 4. Swing-arm air-assisted spraying mechanism 5. Angle adjustment parts 6. Direct current reducer
motor 7. Piping fan 8. V-shaped swing-arm support bar 9. Driving fan blade.

and a liquid tank. The crawler chassis and the swing-arm air-
assisted spraying mechanism were developed earlier, which could
autonomously navigate in rows by electrical driving (Liu et al,
2021) and follow spray targets (Jiang et al., 2021), respectively.

The swing-arm air-assisted spraying mechanism was V-
shaped and was driven by a DC motor with a drive
mechanism to do the swing-arm action. Small pipe fans were
installed at the end of each V-shaped swing-arm support bar
through the angle adjustment parts. The fans on both sides were
controlled independently. Two fan-shaped nozzles were
installed at the exit of the fans, respectively. The V-shaped
swing-arm support bar was connected by driving fan blades.
The angle adjustment parts and the driving fan blade were set
with a circular slot, which could adjust the opening and closing
angle of the bar. The angle adjustment parts and the driving fan
blade were adjustable from 0 to 40° and 0 to 35°, respectively.

In this study, the air-assisted system of the small swing-arm
sprayer consisted of small pipe fans. The air volume of the fan
was determined according to the displacement principle
(Dekeyser et al., 2013). The air-assisted system could
effectively reduce the loss of both air volume and energy and
enhance the duration of operation.

On the basis of 3D model construction and theoretical
parameter calculation, the prototype was developed as shown
in Figure 4B. Its main technical parameters are shown in Table 2.
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2.2 Parameter optimisation of SPS based
on CFD

In terms of the SPS, the operating parameters of both the
UAV and the swing-arm sprayer are essential to improve the
spraying performance, whilst the wind fields from these two
devices are the key factors affecting the deposition of droplets in
canopies (Xu et al., 2017). Thus, CFD was applied to investigate
the airflow distribution patterns of these two types of wind fields
with fruit trees. The optimal combination of operating
parameters with a uniform canopy spraying performance was
determined. Based on ANSYS Fluent 18.2, the wind fields of the
six-rotor plant-protection UAV and the swing-arm sprayer were
numerically simulated.

2.2.1 CFD geometric model construction
Compared with high computational costs of using entire 3D
fruit tree canopy models, using porous medium models to replace
fruit tree canopies (Duga et al., 2015; Hong et al., 2018a) has been
confirmed by numerous studies for its reliability (Endalew et al,,
2009; Salcedo et al., 2015; Duga et al., 2016; Hong et al., 2018b). In
this study, fruit tree canopies were represented by a porous
medium model, and the hindrance effect of the canopy on
airflow was simulated by adding a momentum loss source term
in the porous media region. Moreover, the canopy sparseness was
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TABLE 2 The main parameters of the small swing-arm sprayer.

Categories Values

Overall dimensions 2.05m x 1.10 m x 1.00 m
(length x width x height)

Overall machine mass 500 kg (empty)

Power 48V lead battery pack (45Ah)
Medicine tank volume 150L
Number of nozzles 2

Nozzle category Fan spray nozzle

characterised by defining different pressure loss coefficients
because canopies had various degrees of sparseness and it has
different drag magnitudes. The final model is shown in Figure 5A,
where the full-leaf stage fruit tree was represented by an ellipsoidal
canopy and a cylindrical branch trunk. Meanwhile, on the basis of
preliminary fruit tree measurements, the canopy pressure loss
coefficient, the plant height, the trunk height and the crown width
were set as 10.0, 3.5 m, 0.8m and 2.8m, respectively.

In terms of the plant-protection UAV, rotors are the core to
generate downwash airflow. Thus, the 3D model of the UAV was

FIGURE 5

10.3389/fpls.2022.1040808

Categories Values
Maximum spraying width <5.50 m
Maximum operating speed 0.70 m/s
Maximum fan speed 2500 r/min
Maximum air volume of fan 2304 m*/h
Maximum flow rate of the pump 12 L/min
Maximum pressure of the pump 4.50 MPa

appropriately simplified. Only the six rotors were kept, which is
acceptable for the simulation (Zhang et al., 2019; Yang et al,,
2020). The simplified model of the UAV is shown in Figure 5B,
where the rotational diameter of the rotor was 609mm.

In terms of the swing-arm sprayer, a similar simplification
was conducted. Only the fans were used for simulation, and
other components were not considered. The simplified model of
the swing-arm sprayer is shown in Figure 5C, where the right fan
was taken as an example, and the diameter of the wind outlet

was 247mm.

CFD geometric model construction. (A) Simplified model of fruit tree. (B) Simplified model of plant-protection UAV. (C) Simplified model of

swing-arm sprayer.
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2.2.2 Setting of computational areas and and swing-arm sprayer simulation were 8112602 and 4694187,
boundary conditions respectively. No negative meshes and left-hand meshes existed,
It is required that numerical simulation conditions should be so the meshes were used for calculation.

similar to the actual spraying ones so that simulation results are In terms of solution, the renormalization group (RNG) k-¢
reliable. In this study, a virtual orchard model was constructed turbulence model was selected, and the control equations were
based on the parameters of orchard investigations, the model discretised by the finite volume method. The pressure-velocity
calculation area was 20.0 m x 15.0 m (long xwide) with a height coupling was chosen from the Pressure-Implicit with Splitting of
of 13.0 m (Figure 6), so airflow could be fully developed. The Operators (PISO) algorithm. The pressure interpolation format
model included the fruit tree canopy subdomain and a branch was chosen from the PRESTO! format for high-speed rotating
subdomain. The fruit tree branch subdomain did not need to be and porous media. The second-order windward pair
solved, so it was removed during preprocessing and set as the momentum, turbulent kinetic energy and turbulent dissipation
wall boundary. Only the outlet boundary was kept. rate were discretised in the spatial domain.

The air sub-domain and rotor rotation sub-domains were
included in the simulation of the six-rotor plant-protection
UAV. The ‘interface’ boundary condition was applied for the 2.3 Orchard experiments of SPS
interface between the air sub-domain and the rotor rotation sub-

domains. The rotor rotation (rotational speed 2500 r/min) sub- 2.3.1 Experimental site and sprayers
domain was processed by slip grids. Meanwhile, the upper The experiment was conducted in August 2020 in mango
boundary of the air sub-domain was the pressure inlet, the orchards in Tianyang District, Baise City, Guangxi Zhuang
lower boundary of the ground was set to the non-slip wall Autonomous Region (Figure 7). The environmental temperature
boundary, and the other boundaries were the pressure outlets. during the experiment was about from 28°C to 32°C, and the
The rotor was 2.0m away from the top of the fruit tree canopies. humidity was about from 45% to 49%. The orchards were planted
The air sub-domain and fan sub-domains were included in the in the conventional mode. The row spacing was 4.5 m, the plant
simulation of the swing-arm sprayer. The fan was located at the interval was 3.5 m, and the tree height was about 4.5 m. The trees
central line of the row spacing, about 2.0 m from the tree trunk and were about 30 years old, and the canopies were large and closed in
0.6 m above the ground. For the setting of the solution parameters, some areas. The UAV (Figure 3) and the sprayer (Figure 5) were
only the external flow field of the fans was concerned. Moreover, the employed in the experiments.
no-slip wall boundary was used for the air subdomain, and the rest In addition, the wind speed and volume meter, AR856
of the boundaries were set as pressure outlets. produced by Shenzhen Franken Electronics Co., Ltd., and
Meshing was conducted after the geometric model and the temperature and humidity meter produced by Deloitte Group
computational areas were determined. Non-structural Co., Ltd. were used to monitor and record meteorological
tetrahedral meshes applicable to complex entities were used parameters such as wind speed, wind direction, temperature

for gridding. The mesh numbers for the plant-protection UAV and humidity.

A Pressure inlet B Pressure inlet

Ro tation sub-domains utlet Pressu
(the six-rotor plant-protection UAV)

Fruit tree canopy sub-domain

Fruit tree canopy sub-domain (porous medium model)

(porous medium model)

Branch sub-domain Branch sub-domain

Non-slip wall boundary
Non-slip wall boundary

FIGURE 6
The model calculation area. (A) Plant-protection UAV model calculation area. (B) Swing-arm sprayer model calculation area.
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FIGURE 7
Experimental scenarios.

2.3.2 Experimental scheme

The experiments were conducted according to the standards
NY/T 992-2006, ‘The operation quality for air-assisted orchard
sprayer’, and JB/T 9782-2014, ‘Equipment for crop protection -
General test methods’.

1) Sampling point arrangement

The experimental scheme is shown in Figure 8. Three fruit
trees with similar shape, height and canopy size were selected as
target fruit trees in the experimental area (Figure 8A). The target
fruit trees were far from the start and end of rows to reduce the
errors caused by the devices slowing down and turning.

The scheme of canopy droplet sampling points is shown in
Figure 8B. In the canopy, according to the height and shape of
each target tree, vertical sampling was divided into top, middle
and bottom layers, and horizontal radial sampling was divided
into the centre, inner and outer layers relative to the location of
the trunk. One sampling point was placed in the centre layer of
canopies and marked as O. Four sampling points were placed in
the inner and outer layers of canopies, marked as e, s, w, n and E,
S, W, N, respectively. Thus, there were 27 sampling points in
canopies. On the ground, 9 sampling points were set with the
trunk of the tree as the centre.

12.0m

00  ©--000
.Fruittree

. target fruit trees —- T16 six-rotor plant protection UAV
travel trajectory

— swing-arm sprayer travel trajectory

FIGURE 8

Middle

Bottom

Ground _,

Water-sensitive papers (76 mm X 26 mm) were exploited to
collect droplets, laid on both sides of leaves on each sampling
point, so 54 pieces were used in total. Each ground sampling
point arranged a water-sensitive paper and made the water-
sensitive paper face up. The spray solution was water without
solids in suspension at the normal temperature.

2) Optimization of operational parameters based on
orthogonal experiment

The previous CFD simulation had determined both the
proper operation height of the six-rotor plant-protection UAV
and the appropriate swing-arm angle of the swing-arm sprayer.
Hence, a three-factor with three-level orthogonal experiment
was conducted to find the optimal operation speed. The factor
level of the orthogonal experiment is shown in Table 3.

The sequential independent mode was used for the
experiment. After setting water-sensitive paper, the swing-arm
sprayer was firstly enrolled in the test. When the sprayer
completed the test, the T16 UAV started.

3) Effect verification of the SPS based on trials

Based on the CFD simulation and the orthogonal
experiment, the optimal operating parameters of the SPS were
determined. They were selected for the effect verification of the

Canopy sampling points

;ﬁu
k 3 ‘ lILE

Ground sampling points

Sampling scheme. (A) Selection of target fruit trees. (B) Sampling point layout scheme.
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TABLE 3 Three-factor with three-level orthogonal experiment table for the SPS.

Experimental Factor A: Swing-arm sprayer  Factor B: T16 plant-protection UAV  Factor C: T16 plant-protection UAV

group operating speed (m/s) operating height (m) operating speed (m/s)
1 0.40 (1) 2.00 (1) 1.00 (1)
2 0.40 (1) 2.50 (2) 1.50 (2)
3 0.40 (1) 3.00 (3) 2.00 (3)
4 050 (2) 2,00 (1) 1.50 (2)
5 050 (2) 250 (2) 2.00 (3)
6 050 (2) 3.00 (3) 1.00 (1)
7 0.60 (3) 2.00 (1) 2.00 (3)
8 0.60 (3) 2.50 (2) 1.00 (1)
9 0.60 (3) 3.00 (3) 1.50 (2)

A1 refers to the first level of factor A, that is, A1 is 0.40m/s; B1 refers to the first level of factor B, that is, B1 is 2.00 m; other factor levels are expressed in the same way, e.g., B2, C3, etc.

SPS, comparing the spraying effect of the SPS with that of the 3 Results and discussion
T16 plant-protection UAV and the swing-arm sprayer. The

operation parameters for the single-device experiment were 3.1 Results and analysis of

the same as that for two-device one. CFD simulation
2.3.3 Data analysis 3.1.1 Wind field distribution of the six-rotor
All the water-sensitive paper was processed by the plant-protection UAV
following steps:. (1) Time-dependent characteristics of wind field speed
Figure 9 shows the speed distribution of the rotor wind field
¢ All the water-sensitive paper was scanned with LASERJET at different moments, respectively. It can be seen that the rotor
PRO MFP M132 to obtain the corresponding scan images. airflow kept extending downward with increasing time. At 0.5 s,
Then, the images were read by DepositScan ™ droplet the rotor airflow approximately reached canopies. At 1.0s, the
analysis software to get indices such as droplet deposition, rotor airflow covered the top of canopies. At 5.0 s, the wind field
deposition density and coverage. All the data were had not yet reached spreading along the ground, although some
recorded in an Excel table. of it touched the ground. Therefore, a six-rotor plant-protection
¢ The coefficient of variation was calculated by using the UAYV was used for fruit tree spraying, the height from the top of
equations from (1) to (3) to analyse the droplet the canopy was 2.0m. Meanwhile, the plant-protection UAV
distribution uniformity. SPSS 21.0 and Origin 9.1 stayed at least 4.0s after take-off and then started operation.
software were used for data processing and graph (2) Wind speed distribution of different locations in canopies
plotting. The simulated fruit trees were divided into top, middle and
bottom layers at a distance of 2.3m, 3.4m and 4.5m from the
_ Xg center of the plant-protection UAV, and 9 sample points were
q= o (1) selected uniformly in each layer (the sample point distribution

scheme was the same as the foliar sampling point layout scheme

in Section 2.1) to obtain the maximum airflow velocity in the

vertical direction (Z direction) at each sample point (Table 4).
(2) As shown in Table 4, the average speeds of the top, middle

and bottom layers inside canopies were 3.22 m/s, 0.51 m/s and
0.10 m/s, respectively, with a decreasing trend from top to
CV( 0/0) = 2 % 100 (3) bottom. The average wind speed in the bottom layers was
minimal, which could hardly carry and transport droplets.

where, g; is the i-th sampling point droplet deposition density,
deposits/cm?; g is the average value of sampling point droplet 3.1.2 Wind field distribution law of the

deposition density, deposits/cm’ n is the number of sampling swing-arm sprayer

points; S is the standard deviation of droplet deposition density, Figure 10 shows the wind field velocity distribution of the
deposits/cm?, and CV (%) is the coefficient of variation. fan at different moments, indicating that canopies had an
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FIGURE 9

Wind field speed distribution of six-rotor plant-protection UAV at different times. (A) T=0.5s. (B) T=1.0s. (C) T=2.0s. (D) T=3.0s. (E) T=4.0s. (F)

T=5.0s.

TABLE 4 Velocity distribution of each layer within the canopy.

Location Sample point speed (m/s) Average speed (m/s)
1 2 3 4 5 6 7 8 9

Top layer 3.11 5.05 3.88 5.14 2.02 223 3.03 2.36 218 322

Middle layer 0.42 0.41 037 035 0.61 0.57 0.59 0.57 0.68 051

Bottom layer 0.10 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.11 0.10

obvious blocking effect on the fan airflow. It can be seen that at
0.5 s, the fan airflow reached canopies. At 1.0 s, the airflow
appeared to roll up around canopies because of the blocking
effect. The rolled-up airflow gradually increased and kept stable
at about 2.5 s. Therefore, the swing-arm sprayer could start
spraying after the fan was turned on for 2.5 s.

3.1.3 Optimal operation parameters of the SPS

Figure 11 shows the velocity distribution of the stable
wind field of the UAV rotors at different operating heights
(height to the top of the canopy). The rotor airflow reached
the canopy surface in a centrosymmetric pattern, and the
operating height caused the change of the airflow to the
target. The airflow area to targets gradually decreased as
the operating height increased. In the range from 1.5 m to
2.0 m, the airflow velocity changes in the canopy were not
obvious, and the optimal operation height should be selected
in this range.
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Figure 12 shows the velocity distribution of the stable wind
field of the sprayer fan at different swing-arm angles. During
spraying, the area covered by the airflow from the fan to the
target gradually increased gradually with the swing-arm angle
started from 0°. When the swing-arm angle was certain, the
airflow velocity inside canopies gradually decreased as the
canopy depth increased. It basically covered the lower half side
(left side) of canopies, and the airflow mostly spread uniformly
in the range from 1.5 m/s to 3.5 m/s, which is beneficial to the
uniform distribution of droplets.

Based on the above simulation results, the comparative effect of
the wind field coupling in the stereoscopically applying canopy with
different operating parameters is given in Figure 13. When the
operation height of the UAV was 2.0 m, the rotor airflow speed was
between 0.50 m/s and 1.00 m/s in the range of canopy height from
2.0 m to 2.4 m, the rotor airflow speed was between 1.00 m/s and
1.50 m/s in the range of canopy height from 2.4 m to 2.7 m, the
rotor airflow speed was above 1.5 m/s in the range of canopy height
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FIGURE 10

Wind speed distribution of the swing-arm sprayer at different times. (A) T=0.5s. (B) T=1.0s. (C) T=1.5s. (D) T=2.0s. (E) T=2.5s. (F) T=3.0s.
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FIGURE 11

Air speed distribution of plant-protection UAV at different heights. (A) Operating height 1.5m. (B) Operating height 2.0m. (C) Operating height 3.0m.

from 2.7 m, the rotor airflow speed was above 1.5 m/s in the range
of canopy height from 2.7 m. When the swing-arm angle of the
swing-arm sprayer was 60°, the fan airflow speed of canopy height
below 2.6 m was above 1.5 m/s, the fan airflow speed between 2.6 m
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and 2.7 m was from 1.00 m/s to 1.50 m/s, and the fan airflow speed
of canopy height above 2.7m rapidly became smaller.

Therefore, when the maximum swing-arm angle of the
swing-arm sprayer was 60° and the operation height of the
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FIGURE 12

Fan air speed distribution under different swing-arm angles. (A) Swing-arm angle 0°. (B) Swing-arm angle 30°. (C) Swing-arm angle 60°.

plant-protection UAV was 2.0 m, the wind fields of the two
devices could be coupled enough.

3.2 Results and analysis of the
orthogonal experiment

The orthogonal test results are shown in from Table 5
to Table 7.
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FIGURE 13

In terms of droplet deposition density, deposition uniformity
and range analysis (Tables 5-7), it is known that the results of
experiment group 1 (A1B1C1 group) were better than the others,
demonstrating an optimal spraying performance.

According to Table 6, the factors affecting the droplet
deposition density in order of priority were the speed of the
swing-arm sprayer, the operating height and the operating speed
of the T16 UAV.

According to Table 7, for the top of canopies, the order of
factors affecting the uniformity of droplet distribution was T16

B Velocity(m/s)
6.00
5.50
5.00
4.50
4.00
3.50

D velocity(m/s)
6.00

5.50

-1 5.00
4.50
4.00

Comparison of canopy wind field coupling under different operating parameters. (A) Plant-protection UAV operation height 2.0 m. (B) Swing-
arm angle of swing-arm sprayer 60°. (C) Swing-arm angle of swing-arm sprayer 45°. (D) Swing-arm angle of swing-arm sprayer 30°
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TABLE 5 Results of vertical longitudinal droplet deposition distribution in the canopy.

Experimental group

Droplet deposition density (deposits/cm?)

Coefficient of variation/%

Top layer Middle layer Bottom layer Top layer Middle layer Bottom layer

1 90.10 99.60 106.80 43.75 16.08 10.54
2 73.80 91.90 95.40 44.82 31.39 32.79
3 65.60 103.90 95.20 82.25 31.90 45.13
4 49.50 61.30 79.60 87.00 95.00 39.00
5 63.20 53.30 70.30 5358 17.94 33.16
6 52.90 80.60 88.50 61.75 34.28 28.25
7 66.80 91.10 94.20 42.03 33.23 39.85
8 58.90 101.10 65.90 39.84 25.60 25.91
9 78.00 56.20 52.90 61.22 76.59 64.88
TABLE 6 Canopy vertical longitudinal droplet deposition density range analysis.
Indicators Factor A Factor B Factor C

Top Middle Bottom Top Middle Bottom Top Middle Bottom

layer layer layer layer layer layer layer layer layer
K, 229.50 295.40 297.40 206.40 252.00 280.60 201.90 281.30 261.20
K, 165.60 195.20 238.40 195.90 246.30 231.60 201.30 209.40 227.90
Ks 203.70 248.40 213.00 196.50 240.70 236.60 195.60 248.30 259.70
K 76.50 98.50 99.10 68.80 84.00 93.50 67.30 93.80 87.10
K, 55.20 65.10 79.50 65.30 82.10 77.20 67.10 69.80 76.00
5 67.90 82.80 71.00 65.50 80.20 78.90 65.20 82.80 86.60
Range 2130 33.40 28.10 3.50 3.80 16.30 2.10 24.00 11.10

K; indicates the sum of the experimental results corresponding to each factor at level i, K; indicates the mean of the experimental results corresponding to each factor at level i.

plant-protection UAV operation height, swing-arm sprayer speed
and T16 plant-protection UAV operation speed. For the middle
and lower part of canopies, that was UAV operation speed, UAV
operation height and swing-arm sprayer travel speed.

According to the analysis of the above experimental results,
the optimal operation parameters of SPS were: a speed of 0.4 m/s
and 1.0 m/s for the swing-arm sprayer and the T16 plant-
protection UAV, respectively, and an operating height of 2.0
m for the UAV.

3.3 Results and analysis of the
verification trials

The results of the verification trials are shown in Figure 14.
The SPS could significantly increase droplet deposition
density. When the T16 plant-protection UAV operated
independently, the canopy droplet deposition density
decreased from top to bottom. The maximum droplet
deposition density was 101 deposits/cm* at the top layers, and
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its range was nearly 61 deposits/cm”. When the swing-arm
sprayer operated independently, it was less than 10 deposits/
cm?, and the density in the middle and lower layers was closer
and reached the spray quality requirements. The maximum
density range was 24 deposits/cm”. When the SPS operated,
the density range was from 90 to 107 deposits/cm?, and the
maximum density range was only 17 deposits/cm?.

The uniformity of droplet distribution of the SPS was
generally better than that of the T16 UAV and the swing-
arm sprayer. It was only weaker than the T16 UAV in the upper
canopy layer. The coefficient of variation was 16.1% and 10.5%
in the middle and lower canopy layers, 38.3% higher than that
of the conventional air-assisted sprayer in the corresponding
positions. The horizontal radial droplet distribution of the SPS
was better than that of both the T16 UAV and the swing-arm
sprayer. The variation coefficients of each canopy layer of the
SPS from the outside to the inside were 29.8% 34.2%
and 15.8%.

The SPS performed better than the T16 plant-protection
UAV and swing-arm sprayer in terms of droplet deposition
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TABLE 7 Canopy vertical longitudinal fog droplet distribution uniformity range analysis.

Indicators Factor A

Top Middle Bottom Top

layer layer layer layer
K 170.82 79.37 88.46 172.78
K 202.33 147.22 100.41 138.24
K 143.09 135.42 130.64 205.22
K 56.94 26.46 29.49 57.59
5 67.44 49.07 3347 46.08
5 47.70 45.14 43.55 68.41
Range 19.74 22.61 14.06 2233

Factor B Factor C
Middle Bottom Top Middle Bottom

layer layer layer layer layer
144.31 89.39 145.34 75.96 64.70
74.93 91.86 193.04 202.98 136.67
142.77 138.26 177.86 83.07 118.14
48.10 29.80 48.45 2532 21.57
24.98 30.62 64.35 67.66 45.56
47.59 46.09 59.29 27.69 39.38
23.12 16.29 15.90 4234 23.99

K; indicates the sum of the experimental results corresponding to each factor at level i, K; indicates the mean of the experimental results corresponding to each factor at level i.

density on the front and back of the leaves. The droplet density
on both sides was higher than the theoretical application
requirement of 25 deposits/cm’.

The ground loss of the SPS and the SSA-E541 air-assisted
sprayer were compared. As shown in Figure 15, the ground loss
of the SPS reduced significantly.

According to the analysis above, it is indicated that the
spraying performance of the SPS was obviously improved. The
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SPS could be a new way for mechanisation of orchard plant
protection, especially for the orchards in hilly areas.

3.4 Discussions

The trafficability of the miniaturised sprayers and the high
flexibility of plant-protection UAVs could effectively solve the
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Results of the validation experiment of the SPS. (A) Vertical longitudinal sampling layer droplet deposition density. (B) Vertical longitudinal
sampling layer droplet distribution uniformity. (C) Horizontal radial sampling layer droplet distribution uniformity. (D) Density of droplet
deposition on leaf surface and leaf back. The values in the figure are the average values of the sampling points when not stated. For example,
the density of droplet deposition in the top of canopies was the means of the values of all the corresponding positions.
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Comparison of ground loss.

difficulties of a) large machines entering and leaving and b) the
non-uniform application of small machines.

Compared with field crops, fruit trees have the
characteristics of large canopies. The phenomenon of
depression between rows is common, especially in mature fruit
trees and traditional orchards. There is the problem of
impermeable and uneven canopies during spraying, and it is
difficult for sprayers to be applied in such orchards. To solve the
above issues, this study proposes a layered spraying method,
using a plant-protection UAV and a small ground sprayer to
spray different locations of canopies, respectively. This method
ensures good passability in orchards and improves spray
uniformity in canopies. The feasibility of this method was
further verified through actual orchard trials.

However, there are still some shortcomings:

1. this study obtained the optimal parameters of SPS by
using CFD and orthogonal tests. Nonetheless, the
parameter selection took a lot of time, and the
subsequent experiments can be performed to further
optimization of the best parameter determination
method and improve the efficiency.

2. In this study, the experiments were conducted in mango
orchards (big canopy). The reliability of application
parameters needs to be further verified for orchards
with vertical planting patterns (high canopies).
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3. precision application methods (such as target
application and variable application) can be combined
to improve pesticide use further and reduce waste and
environmental pollution.

4 Conclusion

To solve the problems that the spray droplet distribution of
plant-protection UAV on the canopy is ‘more on top and less on
the bottom’, while the ground sprayer is ‘less on top and more on
the bottom’, an asynchronous stratified stereoscopic plant-
protection method combining small ground sprayer and a
plant-protection UAV is proposed. The main conclusions are
as follows:

1. The overall scheme of stereoscopic plant-protection was
defined based on the spraying requirements. The plant-
protection UAV was selected and a small swing-arm
sprayer was designed. The SPS consisting of a T16 six-
rotor plant-protection UAV and a small swing-arm
sprayer was developed.

2. The CFD-based optimisation of the operational
parameters of the SPS was conducted. The wind field
distribution characteristics of the plant-protection UAV
and the swing-arm sprayer were clarified, and the
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coupling eftects of the canopy wind field of stereoscopic
spraying were analyzed. The theoretical operating
parameters of the SPS for uniform application to the
canopy of fruit trees were identified. The operating
height of the plant-protection UAV was 2.0 m, and the
swing-arm angle of the swing-arm sprayer was 60°.

3. Based on CFD numerical simulation, a three-factor with
three-level orthogonal experiment was conducted to
identify the optimal parameters of the SPS. The speed of
the swing-arm sprayer was 0.4 m/s, the operating height of
the T16 plant-protection UAV was 2.0 m, and the
operating speed was 1.0 m/s, respectively. They were
selected for the verification experiments of the SPS. The
results showed that the SPS had a vertical longitudinal
droplet deposition density of 90-107 deposits/cm® in
canopies, and the coefficients of variation of uniformity
in the top, middle and lower layers were 43.7%, 16.1% and
10.5%, respectively, and the uniformity was 38.3% higher
than conventional air-assisted sprayers. The coefficient of
uniformity variation of the horizontal radial canopy from
outer to central layers was 29.8%, 34.2% and 15.8%,
respectively. The uniformity of application of the SPS in
the upper, lower, inner and outer canopies of fruit trees
were significantly improved, while the density of droplets
deposited on both sides of the leaves was more than 25
deposits/cm?, and could meet the spray requirements.

The SPS proposed in this paper can provide an adequate
technical means and solution for uniform application to large
canopy fruit trees. Meanwhile, the high mobility of plant-
protection UAVs and the high trafficability of small swing-arm
sprayers between orchard rows can solve the problem of the
difficulty of entering and leaving the orchard when using large
plant-protection equipment.
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Maize population density is one of the most essential factors in agricultural
production systems and has a significant impact on maize yield and quality.
Therefore, it is essential to estimate maize population density timely and
accurately. In order to address the problems of the low efficiency of the
manual counting method and the stability problem of traditional image
processing methods in the field complex background environment, a deep-
learning-based method for counting maize plants was proposed. Image
datasets of the maize field were collected by a low-altitude UAV with a
camera onboard firstly. Then a real-time detection model of maize plants
was trained based on the object detection model YOLOVS. Finally, the tracking
and counting method of maize plants was realized through Hungarian
matching and Kalman filtering algorithms. The detection model developed in
this study had an average precision mAP@0.5 of 90.66% on the test dataset,
demonstrating the effectiveness of the SE-YOLOV5m model for maize plant
detection. Application of the model to maize plant count trials showed that
maize plant count results from test videos collected at multiple locations
were highly correlated with manual count results (RZ = 0.92), illustrating the
accuracy and validity of the counting method. Therefore, the maize plant
identification and counting method proposed in this study can better achieve
the detection and counting of maize plants in complex backgrounds and
provides a research basis and theoretical basis for the rapid acquisition of
maize plant population density.

KEYWORDS

object detection, YOLOVS5, video tracking, maize plants, counting prediction
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Introduction

Crop planting density counts the number of plants per unit
area, which has a great impact on the yield and quality of crops
and is one of the important factors of agricultural production
systems (Zhi et al., 2016; Zhai et al., 2018; Adams et al., 2019;
Chapepa et al., 2020; Ndou et al., 2021). The research on maize
planting density plays an important role in early breeding
decisions to improve yield (Zhai et al., 2018). Therefore, it is
essential to estimate the population density of maize accurately
and timely.

To estimate plant population densities, the traditional field
assessments method counts the number of plants in a randomly
selected partition manually of a field and uses the average of
multiple partitions to express plant population density. This
method is time-consuming, labor-intensive, and inaccurate. To
solve this problem, some studies have used color RGB images to
count crops in the field (Lv et al., 2019; Zhao et al., 2021; Qi et al.,
2022). These studies are based on traditional image processing
algorithms that primarily use color information to segment crop
areas for crop counting. These methods have high counting
accuracy (approximately 90%) under certain conditions but have
the following shortcomings. Firstly, the color information is
easily affected by the surrounding light intensity and crop status.
For example, plants looked darker on cloudy days than on sunny
days and may have different colors at different stages of growth.
Secondly, some counting methods are closely related to location
and time. Typically, these methods require the necessary
calibration by manually counting plants in a small portion of
the field to build a regression model between pixel counts and
actual plant counts. Then the regression model was applied to
the rest of the images to achieve automatic processing.
Therefore, a regression model established at one site (or
growth stage) usually cannot be applied directly to another site
(or growth stage), and the model needs to be re-validated or
calibrated at a new site (or growth stage).

In recent years, many crop detection and counting methods
based on traditional image processing (Zhao et al, 2021),
machine learning (Lv et al., 2019), and deep learning
technology (Qi et al,, 2022) have been studied. For the three
types of methods mentioned above, traditional image processing
methods are easily disturbed by factors such as illumination,
noise, and weed background. The shallow features such as color,
shape, and texture extracted by machine learning methods have
limited expression ability, and lack universality and adaptability.
Deep convolutional neural networks (CNN) have shown
powerful performance in object detection for agricultural
images in recent years (Zhao et al., 2019). Many algorithms
based on deep learning models have been successfully applied to
the detection of a variety of crops. For example, researchers have
explored the use of models such as YOLO and Faster-RCNN for
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the detection of fruits (Koirala et al., 2019; Hini et al., 2020),
trees (Zhou et al,, 2021), and crops (Hu et al,, 2013; Jin et al,
2019). These studies reported promising detection accuracy and
thus per-image counting accuracy.

For the counting methods based on image sequences, how to
prevent the repeated counting of the same object in a continuous
image sequence is a key problem. Methods to address this
problem can be divided into three main categories. The first
class of methods uses 3D reconstruction techniques to
reconstruct space point cloud information from 2D images,
then detection and counting were made in the 3D space (Hini
etal., 2020; Gene-Mola et al., 2020). Since a plant is unique in the
3D space, a plant that is repeatedly counted in 2D images will be
highly overlapped in the 3D space. Therefore, repeated counting
of a plant can be avoided in the 3D space. The second class of
methods uses the position and pose information of the imaging
device to estimate the geometric correspondence between the
same target in two consecutive images (Stein et al., 2016). Using
this method, objects detected in two images captured at different
locations can be associated, then the objects could be tracked and
counted. The third type of method is the tracking method based
on the object detection results. The key to this method is to
establish the associations between detection results and the
trackers (Gao et al, 2022; Lin et al., 2022). The mentioned
three types of methods can achieve high counting accuracy
under certain conditions, but they have certain shortcomings
and problems. The method based on 3D reconstruction
technology has a high computational cost and the 3D
reconstruction results are easily affected by the external
environment. The computational cost of the second method is
lower than that of the method based on 3D reconstruction
techniques, but the applied sensors (e.g., RTK GPS) made the
cost of systems becomes very high. The detection-based tracking
counting method has a low cost, but the robustness of this
strategy is still insufficient to a certain extent. Since the IoU
threshold is obtained from a small portion of the image sequence
data, the threshold may fail when the test image sequence is
obtained in a different environment (Jiang et al., 2019). Recently,
other new tracking strategies can handle this problem. For
example, the research of tracking algorithms based on
correlation filtering has made promising progress recently,
especially in the Kalman filtering method (Wang et al., 2019;
Zhang et al., 2022).

The target detection model YOLOV5 has fast detection
speed, and many target tracking algorithm has been applied to
the tracking and quantity statistics of vehicles and pedestrians
recently. Research shows that YOLOvV5 and detection-based
tracking algorithm could quickly and accurately count objects
in videos. At the same time, UAVs have shown great potential as
remote sensing platforms for crop growth monitoring in recent
years (Wang et al, 2019). So it is necessary to explore the
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research on the detection and counting of maize plants by
combing of CNN and drones. In this study, the image datasets
were collected by a low-altitude UAV first. Then the maize
plants detection method based on the SE-YOLOV5m model was
trained. And the trained SE-YOLOVS5m model and Kalman
filter algorithm were combined to track and count maize plants
in individual videos. Finally, the counting method was tested and
evaluated on test videos.

Materials and methods

Image acquisition and processing
methods

The DJI Phantom 4 was used for taking pictures of corn
canopy. The Phantom 4 featured a fully stabilized 3-Axis gimbal
system with a 4k 12-megapixel camera and up to 27 minutes of
flight time. The collection site was Nong'an County, Changchun
(125.153436 N, 44.166099 E). According to the identification
system, maize development can be divided into vegetative (V)
and reproductive (R) stages. The V stages are designated
numerically as V(n), where (n) represents the number of
leaves with visible collars. We collected videos for plants from
stages V4 to V6, which are the vegetative growth stages of maize
plants (Zea mays L., Jingke 968) when the fourth, fifth, and sixth
leaf collars are visible. The images and videos containing the
maize plants were taken in different weather conditions (cloudy
and sunny) with the UAV flying at a height of approximately 4
meters. The width and height of the images were 3840 and 2160
pixels, respectively. The collected videos are divided into a
detection dataset and a counting dataset according to the ratio
of 6:4. Images were extracted every 10 frames from every video
in the detection set. They were used to train and validate the

10.3389/fpls.2022.1030962

detection model together with the collected images. And videos
in the counting dataset were used to validate the performance of
the final counting algorithm. The training samples were
manually labeled using Labelimg software (Tzutalin, 2015).
Since the size of the original images was 3840 and 2160 pixels,
which were too large for labeling and training. So the original
images were first cropped to 960 and 540 pixels, respectively.
The maize plants between the V4 and V6 stages look like small
bell mouths when viewed from the top. It is obviously different
from the rest of the leaves in color, brightness, and shape, so this
feature is mainly used as the labeling standard. Some labeled
images are shown in Figure 1. After labeling, a total of
2200 images were obtained, which contains 22235 maize
plants. The images in the detection dataset were split into the
a training set, a validation set, and a test set in the ratio of 8:1:1.
In order to prevent overfitting and improve the generalization
ability of the model, several date augmentations methods were
applied. Such as image perturbation, changing brightness,
changing contrast, changing saturation, changing hue, adding
noise, random scaling, random crop, flipping, rotating, random
erasing, and so on. In addition, Mosaic (Glenn, 2022) was also
used. The data processing flow and data enhancement examples
are shown in Figure 1.

Maize plants detection model

For the maize plant quantity statistics method proposed in
this study, the first thing to study is the design of maize plant
detection model. The model of YOLOvV5 (Glenn, 2022) series is
able to substantially improve the detection speed while
maintaining the detection accuracy of existing models, and is
one of the optimal choices for target detection. So the model of
YOLOV5 series was used to build the maize plants detection

&

FIGURE 1
Data processing flow and data enhancement examples.
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model. The YOLOv5 model is an upgraded version based on
YOLOvV3 (Redmon and Farhadi, 2018). Four object detection
models of different depths and widths can be trained by using
the official code. The YOLOv5s has the smallest depth and width
in the YOLOVS5 series. The other three networks are deepened
and broadened on the basis of it. The YOLOv5 directly uses a
single neural network to predict and classify input images to
achieve end-to-end object detection. And it proposes cross-scale
prediction, which enables the network to detect objects at three
different scale features and adapt to multiple object detection
tasks of different sizes. The backbone and the neck of the model
use CSPDarknet53 (Wang et al., 2020) and the PAN (Liu et al.,
2018) structure, respectively. Two different CSP modules are
used in different parts of the model. Specifically, the C3_x
module is applied to the backbone, the other C3_F_x module
is used in the later structure. Comparing the speed and accuracy
of the four different YOLOv5 models in Table 1, it can be seen
that the mAP of YOLOv5m is 2.9% higher than that of
YOLOVS5s, and 0.8% and 1.6% lower than that of the YOLOV5I
model and the YOLOv5x model, respectively. On the other
hand, the model size of YOLOv5m is 26.7 MB larger than that of
YOLOvV5s, but it is 1/2 and 1/4 of that of YOLOv5!] and
YOLOV5x, respectively. Therefore, after balancing the
detection accuracy and the model size of the network, the
YOLOv5m model was used as the base for research.

Related research shows that visual attention mechanism can
improve the accuracy of deep learning models (Yang et al,
2020). To improve the efficiency and accuracy of detecting maize
plants, the Squeeze and Excitation Networks (SENet) (Hu et al.,
2018) was introduced in the CNN. The SENet could obtain the
weight of each channel of the features and then uses the weight
to filter the key features, which could improve the representation
capability of CNN. As shown in Figure 2, the SE module mainly
contains squeeze and excitation operations (Hu et al., 2018). It
performs a squeeze operation firstly, then performs an excitation
on the global features to obtain the weights of different channels
and the relationship between the channels. As shown in Figure 3,
the structure of improved SE-YOLOv5m was proposed in this
study. As shown in the figure, the SE module is embedded in the
C3_x module and C3_F_x module individually. The purpose of

TABLE 1 Comparison of model prediction results.

Models mAP  Average detection speed = Model size
(%) (ms) (MB)
YOLOVSs  87.65 182 14.1
YOLOV5m  90.24 203 40.8
YOLOVS! 91.02 224 89.2
YOLOV5x 9215 25.6 166

Frontiers in Plant Science

10.3389/fpls.2022.1030962

the SE module is to enhance the feature extraction ability of the
model by emphasizing the key feature of maize plants and
suppressing background features to improve the detection
accuracy in multiple scenarios.

Counting model based on YOLOV5

Firstly, the YOLOV5 model was used to detect maize plants
in continuous static images. Then a tracker based on Kalman
filter (Kalman, 1960) was used to track the maize plants to avoid
repeated counting of them in continuous image sequences.
Based on the trackers, each maize plant would be given a
unique tracking number, so that every maize plant would only
be counted only once. The tracking counting model contains
three steps: maize plants state estimation, association and
matching of maize plants between frames, and trackers update.

Maize plants state estimation

To track each maize plant detected by the detection model,
the following state variable was used to represent the status of
the maize plants:

t=(u,v,s1,i,7,8) (1)

where u, v, s, r are the horizontal and vertical coordinates of the
center point of the plant bounding box in image coordinates (in
pixels), the area of the bounding box (in pixels), and the aspect
ratio, respectively. i1, v, § are their corresponding first derivatives
with respect to time in image coordinates.

The plant tracking problem is a discrete-time series problem
and consists of the following two main steps: the first is
prediction process. Through the Kalman filter dynamic model,
the state variables of the maize plant in the current frame would
be used to predict the state variables in the next frame. The
second step is the update process. The observed variables
(detected bounding box) of the maize plant in the next frame
would be used to update the state variables predicted in the
prediction process (Jiang et al., 2019). Since the camera has a
high frame rate, the position change of the target between video
sequences is very small. So the motion of the camera can be
regarded as a uniform motion. Therefore, it is assumed that the
visual detection and tracking system is linearly correlated with
the time change. A standard Kalman filter with constant velocity
motion and linear observation model was used, which takes a 4-
dimensional state (u, v, s, r) as the direct observation model of
the maize plant.

The state parameters u, v, s, r of the tracker are initialized
according to the detection results in the first frame, and i, v, § are
set to 0. After the first frame (i >2 ), the state variables (t) and the
state covariance matrix (P) of the trackers in the ith image are
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Excitation
1x1xC Ix1IxC
Reweight
FIGURE 2
The structure of Squeeze and excitation (SE).
estimated using the data of the trackers in the (i-I)th image in 1000 1 O O
the prediction process. The following formulas were used in the 0100 0 1 0
prediction process (Jiang et al., 2019):
0010 O 0 1
1000100 Py, =FP ; ,F'+QQ=|0001 0 0 0 3)
-2
0100010 000010 0 0
)
0010001 0000 0 10 0
, o -4
E;Jz—l:Ft;{lhl’F: 0001000 (2) _0000 0 0 10 ]
0000100 Where f;l’_l is the a priori state estimate for the kth plant
0000010 tracker in the ith frame, ¢ ;(_1"_1 is the a posteriori state estimate
for the kth plant tracker in the (i-I)th frame, F is the state
L00000O0T1] transfer matrix, Py;_; is the a priori state covariance matrix for
Backbone} /~ Neck Detect

st — o] |
ol ‘ SILU

FIGURE 3

The structure of improved SE-YOLOV5m model. CBS contains a Conv, a BN and a SiLU (sigmoid liner relu) activation function, where Conv is
2D Convolutional layer, BN indicates batch normalization. C3_x indicates the use of a CBS structure with X residual modules (ResUnit), e.g. in

the first C3_x, one residual components are used, hence C3_1. C3_F_X has the same meaning as C3_X.
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the ith frame, P;_y};_; is the a posteriori state covariance matrix
for the (i-1)th frame, and Q is the random process noise matrix.

The following formula is used to calculate the posterior state
covariance matrix of the ith frame image and the posterior state
of the tracker.

1000000
r 0100000
Si :HPi‘i—lH +R,H = ,R
0010000
0001000
1000
0100
= (4)
0010 0
00 010
K, =Py H'S (5)
Py = (I - KH)Py; (I - KH)" + KRK] (6)
V' =d' = Hij &)
~1l7 A“_l o
t;l;ired = t;‘;ired + Kiyl (®)

where §; is the covariance matrix of the measurement residuals
for the ith frame and H is the measurement matrix that maps the

FIGURE 4

The schematic diagram of a maize plant detection and a tracking bounding box.

10.3389/fpls.2022.1030962

tracker state variables to the measurement state variables
(detection frame). R is the measurement error covariance
matrix. K; is the Kalman filter gain in the ith frame, and I is
the identity matrix. y' is the measured residual between the
tracker's a priori estimated state of the ith image and the
matched detection frame, and f;‘;:ed
tracker's a posteriori estimated state.

is the amount of the

Association and matching between frames

In the update process, the trackers in the (i-1)th frame
and the detection results (D;) of the ith frame were used. Since
the detection results could be valued as the ground truth for
the current frame, it is necessary to match the detection
results with the trackers and thus update the Kalman filter.
In this study, the IoU-based Hungarian algorithm (Kuhn,
2005) was used to establish the association between the
detection results and the trackers. Figure 4 is a schematic
diagram of a maize plant detection and a tracking bounding
box. As shown in the figure, the white rectangle ABCD
represents a maize plant bounding box predicted by the
detector, and the yellow rectangle EFNM represents a maize
plant bounding box predicted by the tracker. The overlap
degree of the tracked bounding box and the detected
bounding box is represented by formula (9). The closer the

value of IoU is to 1, the higher the overlap and correlation
between the detection bounding box and the tracking
bounding box.
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Semcn

fov= Sascp + Seren — Semen ©)
Then the IOU was used in the Hungarian algorithm to
calculate the cost matrix to establish the corresponding
matching relationship between the maize plant tracked
bounding box predicted by Kalman filter and the detection
bounding box predicted by detectors. Assuming that maize
plants have been tracked in the ith frame image denoted as
T={Ty,T5....,T,,} , and maize plants detected in the (i+I)th
frame image denoted as D;={D;,D,,...,D,} . The matching
correlation matrix C is obtained by calculating the IoU of the
tracking frame T and the detection frame D. The calculation

formula is shown in equation (10).

C= (Ci,j)mxn = IOU(T) D) (10)

The threshold Ti,.sn was set to process the matching
incidence matrix C to obtain the result matrix R. The
processing formula is shown in equation (11).

R = (ry)) bt (11)
= (7. =
1,j/mxn 1, Ci)j ST

In the formula, Tiq, is equal to 0.3. when r;; is 1, it means
that the ith tracked maize plant is successfully associated with
the jth detected maize plant. At the same time, it should be
ensured that each tracked maize plant can only be associated
with one detected maize plant. That is, equation (12) needs to be
met.

M N M N
mainﬂEj:lc,-,jri)j s (i = 1,21.:1@]- =1) (12)

Trackers update

After the matching of detection bounding boxes and
trackers, detection bounding boxes (D;) and trackers (T; ;) can
be divided into three categories: trackers associated with
detection boxes, unmatched trackers, and unmatched detection
bounding boxes. The trackers associated with detection boxes
will be used in the update process. As for unmatched detection
boxes, a new tracker will be created for each of them separately
and will be added to the existing collection of trackers. For every
unmatched tracker, its Vj,s will be increased by 1, which means
it loses the target once. When the cumulative number of lost
targets reaches the set threshold T}, it will be removed from the
tracker set.

Since one tracker theoretically corresponds to one maize
plant, the number of trackers is the number of maize plants.
However, because the detection model may miss or misdetect,
this will cause errors in the number of trackers and eventually
lead to errors in the count of maize plants. For the missed
detection problem of the detector, this study solves this problem
by adding a parameter threshold Tj, to the algorithm. When
the missing detection of the detector causes the unmatched
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tracker appears, the Vj,s of the tracker will be increased by 1,
which means that the tracker loses the target once. When the
Viest r€aches the set threshold Tjy, it will be removed from the
tracker set. For the problem of false detection problem, the
algorithm judges by setting the threshold Tj. Only when the
cumulative number of tracker existences of a plant is greater
than the threshold Tjg,, it will be regarded as a valid count.

A quantitative statistical method based
on cross-line counting

If the detection model misses a maize plant in several frames
and then detects it again in another frame, the original tracking
ID will be discarded and then a new ID will be created. When
maize plants appear at the edge of the image, the view of the
center of plants is prone to distortion. At this time, the
performance of the tracker and detector would be affected by
this. Therefore, a counting baseline was defined in the image to
improve the counting accuracy. As shown in Figure 5, the
counting baseline (the yellow line) is defined at the center (1/2
height) of the image. The counting baseline served as a reference
line to count maize plants. The tracked bounding box would be
regarded as a valid count when it crosses the counting baseline
(in Figure 5B). At the same time, the color of the tracking box
will change from red to yellow, indicating that the tracker has
been counted.

Test results and discussion
Model training and testing

The python version and framework used were Python 3.8
and Pytorch 1.5.0, respectively. Ubuntu 16.04 was used with the
Intel Core I7 6700K processor (64GB RAM) and the Nvidia
GeForce RTX 3090. CUDA 10.1 parallel computing framework
and CUDNN 7.6 deep neural network acceleration library were
used. The batch size and epochs were set to 24 and 300,
respectively. Other hyperparameters used the default values
given by the official website. A pretrained weight trained on
Microsoft Common Objects in Context (MS COCO) dataset
(Lin etal., 2015) was used to initialize the weight of the model. In
order to validate the performance of the algorithm, precision,
recall rate, missed rate, and average precision (AP) are used to
evaluate the trained model. The calculation formulas are as

follows:
TP
pP=— 13
TP + FP (13)
TP
R=—— 14
TP + FN (14)
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FIGURE 5
Demonstration of the counting baseline for counting. The yellow line is the counting baseline. The top shows the n th frame; the bottom shows
the n+i th frame. (A, B) shows the n-th frame and n+1 th frame, respectively.

FN
M=o N (15)
1
AP = / P(R)dR (16)
0

where P is the precision, R is the recall, M is the miss detection
rate, TP is the number of maize correctly detected by the model,
FP is the number of backgrounds misclassified as maize plants
and FN is the number of maize misclassified as background.
Since the category detected in this study is only the maize plant,
the AP (average precision) is equivalent to the commonly used
mAP (mean average precision).

TABLE 2 Comparison of different detection models on the test set.

Models mAP (%)
YOLOV5m 90.24
SE-YOLOV5m 91.45
SSD 78.32
Faster R-CNN 91.88
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Detection results of the model on maize
plants

The trained Faster RCNN, SSD, YOLOVS5, and SE-YOLOV5
models were tested on the test dataset respectively. The results
are shown in Table 2. Comparing in terms of accuracy and speed
in Table 2, it can be seen that the YOLOVS5 series models are
superior to the SSD model in both accuracy and speed. Although
the YOLOVS5 series models are comparable to Faster RCNN in
terms of accuracy, their speed is more than 7 times that of Faster
RCNN. The mAP of SE-YOLOv5m is 1.21 higher than that of
YOLOv5m. Meanwhile, the model size and the average detection

Model size (MB)

20.3 40.8
20.4 42.7
44.2 82.78
180.4 110.8
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speed of the SE-YOLOv5m model are close to that of the
YOLOv5m model. Thus, the SE-YOLOv5m network model
was adopted in this experiment after considering the detection
accuracy and the lightweight requirement of the network.

Accuracy evaluation of the model under
different weed proportions

Because weeds are easy to grow in the seedling stage of
maize, excessive weeds may even affect the growth of maize.
Therefore, the complex environment in this study mainly refers
to different weed proportion. The presence of weeds in some

TABLE 3 Comparison of detection results under different weed rates.

10.3389/fpls.2022.1030962

areas of the maize field may have an impact on the accuracy of
the detection model. Therefore, the above test set was split into
three parts according to different the proportion of weeds in the
field: a dataset with a weed proportion less than 30% (denoted by
A), a dataset with a weed proportion between 30% and 60%
(denoted by B) and a dataset with the weed proportion greater
than 60%. Among them, the number of pictures in test sets A, B,
and C are 80, 90, and 50, respectively. The tested models are the
above-mentioned SE-YOLOVS5 model and other state-of-art
models. The detection results are shown in Table 3. The test
sample results under different weed proportions are shown in
Figure 6. It can be seen from the table and the figure that
different weed proportions in the field have no significant

Models Dataset A Dataset B Dataset C
YOLOV5m 91.24 91.26 90.46
SE-YOLOV5m 92.68 92.65 92.02
SSD 79.24 79.12 78.62
Faster R-CNN 92.88 92.88 92.88

FIGURE 6

Detection results and feature maps of SE-YOLOV5m under different weed proportions. The left column shows detection results; the right
column shows the corresponding feature maps of the last layer in the first C3_2 module of SE-YOLOV5m. From top to bottom are
representative images with weed proportions less than 30%, between 30% and 60% and more than 60%, respectively. In the figure, the blue

boxes and red boxes are the TP and FN.
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influence on the detection accuracy of the maize plant detection
models. The reason may be that weeds are different from maize
plants in color, texture, and shape, so detection models are able
to distinguish weeds from maize plants more directly. Then, the
convolution feature maps of maize plants are visualized in
Figure 6 to further analyze the reasons. It can be seen in
Figure 6 that the features extracted by the model can well
distinguish weeds from maize plants. In addition, it can also
be seen from the FN samples in the figure (red boxes in the first
column) that when the core leaves of the maize plant are
partially obscured or the view of the central leaves is skewed,
the model would have a certain degree of missed detection. It can
also be seen from the corresponding feature map that the model
can not extract effective feature information to distinguish maize
plants at this time.

Counting accuracy regression analysis
and evaluation

Videos in the counting dataset were segregated into 23 video
clips for evaluating the developed counting algorithm, and they
were individually counted by three researchers. Each video clip
represented an approximately 3 m long segment in the videos.
Frame rate and length of each video were about 30 frames per

10.3389/fpls.2022.1030962

seconds (FPS) and 10 s, respectively. Then, the counting results
were averaged to obtain the actual number of maize plants in the
corresponding video. The counting algorithm based on SE-
YOLOV5m was tested on the videos. Based on the proposed
algorithm, the corn plant video tracking experiment was carried
out. Figure 7 is an example of tracking a maize plant video
sequence based on the proposed algorithm. As can be seen in the
figure, the No. 24 corn plant has been detected and tracked for
55 consecutive frames in the video. Due to the disturbance of
wind, the key features of the No. 50 maize plant are occluded in
the 10™ and 44™ frames, which leads to intermittent missed
detection. The algorithm can still track the target in subsequent
images and keep the original ID unchanged, which is because
Tiose is set in this study. When Tj,e is not set, the algorithm
cannot track the target in subsequent images. Therefore, it can be
seen that although there is a short-term missed detection
phenomenon in the video, the algorithm in this study could
still effectively track maize plants.

In order to verify the performance of the proposed
algorithm, 23 videos in the counting dataset are used as
experimental data for comparative experiments. The
comparison models were to replace the SE-YOLOv5m model
in the proposed algorithm with the trained YOLOv5m, SSD, and
Faster R-CNN models, respectively. The confusion matrix was
used as the evaluation index to compare the performance of the

34t frame

FIGURE 7

Tracking example of intermittently detected maize plant. (A—F) shows the result in the 3th frame, 10th frame, 20th frame, 34th frame, 44th

frame and 55th frame, respectively.

i

44t frame 55t frame
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four algorithms quantitatively. The experimental results are
shown in Figure 8. At the same time, the frame rates of the
proposed algorithm and the algorithm based on the above three
models are 28.2, 28.4, 20.2, and 5.2, respectively. It can be seen
from the results that the running speed of the proposed
algorithm is similar to that of the counting algorithm based on
YOLOv5m, but its accuracy is higher. The performance of the
counting algorithm based on SSD is poor, mainly because the
SSD model has low detection accuracy, which can also be
confirmed in Table 2. Compared with the counting algorithm
based on Faster R-CNN, the proposed method is faster on the
basis of comparable accuracy. Although the counting algorithm
based on Faster R-CNN performs well in terms of accuracy,
there is still a lot of room for optimization in terms of running
speed. Therefore, according to the comprehensive analysis of
accuracy and speed, we can see that the performance of the
proposed algorithm is the best among the four methods. Taking
one of the videos as an example, there are a total of 311 frames of
a video collected by UAV, and the statistical results are shown in
Figure 9. Among them, the statistical result of the number of the
104th frame is 4, and the statistical result of the number of the
first 241 frames is 14. During the process of tracking and
matching, the number of some maize plants was lost at the
edge (some plants don’t have ID numbers), but the cross-line
counting method effectively solved this problem. It shows that

10.3389/fpls.2022.1030962

under the interference of ground weeds and wind, the algorithm
in this study could accurately count the number of maize plants.

Conclusion

(1) The YOLOV5m model which incorporates a channel
attention mechanism (SENet) was constructed to achieve
effective detection of maize plants in a complex background.
The mAP of the SE-YOLOV5m model on the test set was 90.66%
(IoU 0.5), indicating the effectiveness of the SE-YOLOV5m
model for detecting maize plants. The proposed SE-
YOLOV5m model was able to infer at 20.4 ms on a GPU on
an image with the size of 960 pixels x 540 pixels, which have the
potential to be applied to embedded terminals. Evaluation under
different weed proportions shows that different weed
proportions in the field have no significant influence on the
detection accuracy of the maize plant detection models.

(2) A deep-learning-based method for counting maize plants
in a field was proposed, which used an improved YOLOV5
model with a Kalman filter. The mazie plant counting method
proposed in this paper was compared with the counting
algorithms based on YOLOvV5, SSD and Faster R-CNN
algorithms. The test results show that the proposed method is
significantly better than the SSD-based algorithm in terms of

A B
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5 maize 5 maize
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E g
= =]
iz _E 300
E |
= 8 200
< background < background
100
maize background maize background
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FIGURE 8
The confusion matrix of of the four algorithms. (A—D) shows the confusion matrix of Ours algorithm, YOLOv5m based algorithm, SSD based
algorithm and Faster R-CNN based algorithm, respectively.
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FIGURE 9

Visual video counting result of the algorithmic. The number on the bounding box is the ID of the mazie plant being tracked, and the solid point
is the center of the mazie plant being tracked. The test video contains a total of 311 frames. In the figure, the 104 and 241 are typical frames. (A,
B) shows the result in the 104th frame and 241th frame, respectively. Corrections has been post in the Production Forum.

accuracy and speed. Its speed is similar to that of the counting
algorithm based on YOLOVS5, but its accuracy is higher. Its
accuracy is similar to that of the algorithm based on Faster R-
CNN, but the frame rate is about 23 higher. Therefore, the
proposed counting method is an effective method to achieve fast
and accurate counting of the number of maize plants. In
addition, the detection methods and annotated images used in
this study could be used by the other researchers and engineers
to further develop maize plants detection and counting methods.
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Rice is the world’'s most important food crop and is of great importance to
ensure world food security. In the rice cultivation process, weeds are a key
factor that affects rice production. Weeds in the field compete with rice for
sunlight, water, nutrients, and other resources, thus affecting the quality and
yield of rice. The chemical treatment of weeds in rice fields using herbicides
suffers from the problem of sloppy herbicide application methods. In most
cases, farmers do not consider the distribution of weeds in paddy fields, but use
uniform doses for uniform spraying of the whole field. Excessive use of
herbicides not only pollutes the environment and causes soil and water
pollution, but also leaves residues of herbicides on the crop, affecting the
quality of rice. In this study, we created a weed identification index based on
UAV multispectral images and constructed the WDVIy,z vegetation index from
the reflectance of three bands, RE, G, and NIR. WDV/y,r was compared with five
traditional vegetation indices, NDVI, LCl, NDRE, and OSAVI, and the results
showed that WDVIyr was the most effective for weed identification and could
clearly distinguish weeds from rice, water cotton, and soil. The weed
identification method based on WDVIyr was constructed, and the weed
index identification results were subjected to small patch removal and
clustering processing operations to produce weed identification vector
results. The results of the weed identification vector were verified using the
confusion matrix accuracy verification method and the results showed that the
weed identification accuracy could reach 93.47%, and the Kappa coefficient
was 0.859. This study provides a new method for weed identification in
rice fields.

KEYWORDS

rice weeds, UAV, multispectral imaging, vegetation indices, remote sensing

frontiersin.org
131


https://www.frontiersin.org/articles/10.3389/fpls.2022.1037760/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1037760/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1037760/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1037760&domain=pdf&date_stamp=2022-11-09
mailto:chenchunling@syau.edu.cn
https://doi.org/10.3389/fpls.2022.1037760
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1037760
https://www.frontiersin.org/journals/plant-science

Yu et al.

1 Introduction

China is a large country of rice cultivation, and there are more
varieties and classifications of rice in China. Field weeds plague the
development of rice production and are a major factor in
preventing high and stable rice yields (Feng et al., 2018).
According to statistics, weed damage alone in 150 million acres of
arable land worldwide causes more than $7 billion in losses each
year, accounting for approximately one-third of the total damage
caused by diseases, insects, and weeds, and directly causes 125
million tons of grain loss (Liu et al., 2014).Since weeds have a fast
growth rate and well-developed root system, they are in an
advantageous position to compete with rice for growth resources,
thus inhibiting rice growth (Liu et al., 2020). Among them, weeds in
paddy fields are diverse, with complex grass phase and a long
occurrence period (Duarte et al., 2021; De Simone et al., 2022). By
competing with rice for water, fertilizer, light, and space, they
change the microecological environment of paddy fields, affect the
photosynthesis, nutrition, and reproductive growth of rice, and are
intermediate hosts of pests and diseases, aggravating the occurrence
of pests and diseases, leading to yield reduction and decline of rice
quality, and causing huge losses to rice production (Luo etal., 2020).
In the current rice weed management process, chemical weed
control is currently the most effective and widely used method of
weed control in rice fields, commonly used to spray herbicides
uniformly and covering the entire operating area in a disorderly
“spot” or “sheet” form (Eppinga et al., 2020; Druskin et al., 2021;
Wang et al.,, 2021). The presence of weeds can lead to excessive
spraying of herbicides (Siva Kumar etal., 2020; Suetal., 2022). How
to achieve accurate application of weed and reduce the use of
agrochemicals is a key issue; the prerequisite to solving this problem
is to achieve accurate and rapid detection and identification of
weeds (Maes and Steppe, 2019). The rice weeds management
process, chemical weed control, is currently the most effective
and widely used method of weed control in rice fields, commonly
used to spray herbicides uniformly and cover the entire operating
area in a disorderly “spot” or “sheet” form. The presence of weeds
can lead to overspray of herbicides. How to achieve accurate
application of weed and reduce the use of agrochemicals is a key
issue, and the prerequisite to solving this problem is to achieve
accurate and rapid detection and identification of weeds (Carroll,
2020). Based on low-altitude UAV remote sensing technology, we
can carry out accurate monitoring of weeds in rice fields and
generate agricultural UAV weed application prescription maps,
and carry out UAV precision weeding for rice, (Otsu et al., 2019),
which is a new idea to solve the current herbicide overapplication
problem. The prerequisite of herbicide precision application is to
obtain remote sensing images of rice fields and analyze the weed
distribution status in them, get a grid-shaped weed distribution
map, and generate an herbicide operation prescription map
(Matsunami et al, 2009). The use of UAVs to collect remote
sensing images of rice fields and perform weed analysis has been
similarly reported around the world.
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The use of UAV remote sensing technology has enabled
rapid image acquisition and weed mapping in crops such as
sunflower, mango, and rice (Jin et al., 2022). While identifying
weeds in rice, an important issue is the need to locate weeds
against a green vegetation background (Stroppiana et al., 2018).
When the technologies of remote sensing data acquisition,
stitching and correction are more mature, backward research
on the resolution of remote sensing data becomes the main
bottleneck of remote sensing development (Tao and Wei, 2022).
When parsing remote sensing data, machine learning is widely
used for image classification, and weed image recognition
models have been developed using deep learning neural
networks in an increasing number of literatures (Kawamura
et al.,, 2021). Andrea et al. used convolutional neural networks to
distinguish maize plants from weeds in the early growth stage of
the crop, and trained the convolutional neural networks using
the data set generated in the segmentation stage, and the
recognition accuracy reached 97.23% (Punithavathi et al,
2023). Flores et al. used support vector machine model (SVM),
neural network (NN), random forest (RF), GoogLeNet and
VGG-16 models for recognition detection after collecting
image shape, color and texture feature values in a greenhouse
environment to simulate field conditions, and finally the
recognition accuracy of the VGG-16 model in distinguishing
soybean seedlings from corn weeds reached. The accuracy of the
VGG-16 model in distinguishing soybean seedlings from corn
seedlings was 96.2%, which was the highest among the above five
model methods (Hirohiko, 2002; Liu and Yu, 2013; Druskin
etal, 2021). Sujaritha designed an automatic image classification
system for extracting leaf texture using fuzzy real-time
classification counting, which was able to correctly identify
sugarcane crops among 9 different weeds, and the accuracy of
the system in detecting weeds was 92.9% (Sujaritha et al., 2017).
Spectral index can provide an important basis for the
identification of rice weeds. Many studies have added spectral
index to improve the identification accuracy of rice weeds. Barrero
et al. used Neural Networks to detect gramineous weeds 50 days
after the emergence of rice field using visible light band and
NGRDI index image fusion. The M/MGT index values obtained
from the detection results ranged from 80 to 108%. MP values
range from 70 to 85% (Barrero and Perdomo, 2018). Stroppiana
et al. used spectral information, SAVI and GSAVI spectral indices
and unsupervised clustering algorithms to classify weeds in the
early stages of the growing season, with an overall accuracy higher
than 94% (Stroppiana et al., 2018). Kawamura et al. used a
combination of hue-saturation-brightness, canopy height model,
spatial texture, color index of vegetation extraction and excess
green. A classifier combining simple linear iterative clustering
algorithm and random forest algorithm was used to identify weeds
in the early growth stage of small rice plants. out-of-bag accuracy
is higher than 0.915 (Kawamura et al., 2021).

Currently, related research mainly focuses on the identification
and detection of weeds in paddy fields, while relatively little research
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has been conducted on how to generate accurate operation
prescription maps for agricultural drones through weed
distribution information in paddy fields (Mohidem et al., 2021).
Northern coldland rice is usually weeded 15-20 days after
transplanting, therefore, in this study, remote sensing images of
rice tillering stage were selected to identify weeds. By observing the
UAV remote sensing images, weeds in northern cold rice were
found to have less differences in textural characteristics, similar
shapes and the same color as rice at the tillering stage (Motavalli
etal.,2012; Souri etal., 2022). Weeds have group aggregation, and it
is difficult to distinguish them from rice using UAV visible remote
sensing images, while spectra can reflect their physicochemical
information and highlight their aggregation characteristics.
Therefore, this paper uses spectra to identify weeds in rice fields.
In this study, the DJI Phantom 4 UAV and its multispectral camera
were used to collect multispectral remote sensing images of paddy
fields (Zhu et al., 2020). With rice weeds as the identification target,
the vegetation index was constructed to highlight the spectral
characteristics of weeds (Lu and Zhang, 2020; Nawaz et al., 2021).
The density partitioning algorithm is used to obtain the distribution
information of the weeds in the rice field and generate the weed
distribution map with the best classification effect (Wang et al.,
2019). It provides a decision basis for the application of precision
pesticides by agriculture UAV.

2 Materials and methods
2.1 Study area and experimental details

The trial site was located at the precision agriculture aerial
research base of Shenyang Agricultural University, Gengzhuang
Town, Haicheng City, Liaoning Province (40° 58 45.39” N, 122°
43’ 47.01” E), and the test variety was “Japonica 6537, a variety
widely grown in Liaoning. In this study, the UAV multispectral
images and visible images were collected separately from the test
field on June 23, 2021. The weeds in the study area were mainly
barnyard grass and Monochoria korsakowii Regel & Maack,
which were verified in the field.

2.2 Data acquisition

The multispectral remote sensing image data collection
equipment was Phantom 4 RTK UAV combined with ground
station software DJI GS PRO for route planning. Multispectral
remote sensing UAV flight altitude of 25 meters, UAV
longitudinal and lateral route overlap rate of 85%. six 1/2.9-
inch CMOS, including five monochrome sensors for
multispectral imaging single sensor, effective pixels 2.08
million. five characteristic wavelength specific information as
shown in Table 1.
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TABLE 1 Characteristic wavelengths of multispectral UAV remote
sensing platform.

Name Central wavelength ~ Wavelength range
Blue (B) 450 nm + 16 nm
Green (G) 560 nm + 16 nm
Red (R) 650 nm + 16 nm
Red edge (RE) 730 nm + 16 nm
Near Infrared (NIR) 840 nm + 26 nm

The multispectral camera has an FOV of 62.7°, a focal length
of 5.74 mm, and an aperture of f/2.2. Monochrome sensors gain
in the range of 1-8 multiples.The flying speed of the UAV is set
to 5m/s, the altitude is 30m, and the heading and side-direction
repetition rate is 80%.

The Phantom 4 RTK quadrotor UAV was used as the flight
platform to acquire visible light remote sensing images, with a
built-in RTK differential positioning system and a positioning
accuracy of 1 cm + 1 ppm, 1 ppm means that the error increases
by 1 mm for every 1 km of flight (Lambert et al., 2019; Niu et al,,
2021). DJI flight software was used to plan the route of the test
area, and orthophoto raw data from the test field were obtained
by taking photos at regular intervals.

In this study, multispectral and visible images were acquired
for weed identification using a Phantom 4 RTK UAV on June 18,
2021 (Wei et al,, 2021). The validation data in this study were
visually interpreted using a manual visual interpretation method
for the visible images, and a total of 141,483 pixel points were
selected, including 48,255 pixel points for the weed category and
93,228 pixel points for the non-weed category.

2.3 UAV remote sensing image
processing

Pix4D image processing software was used to orthorectify
and crop the visible images of the test area collected by UAV,
and finally high-resolution orthophotos of the rice fields
were obtained.

When the Phantom 4 RTK multispectral UAV remote sensing
platform observes the target radiant energy, the radiation distortion
caused by the sensor response characteristics and external natural
conditions (including solar radiation conditions and atmospheric
transmission conditions, etc.) causes distortion of the remote
sensing images and affects the interpretation and decoding of
remote sensing images; therefore, the radiation calibration of
multispectral images is needed. In this study, first, three
reflectivity plates with 60% reflectivity were laid flat on the
ground near the measurement area, and the Phantom 4 RTK
multispectral took off to a height of 7 times the side length of the
plates, adjusted the aircraft position so that the plates were in the
center of the camera frame and ensured that there was no shadow
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on the plates, then adjusted the gimbal to -90°, kept the EV value at 0
and took a set of photos manually (Naji, 2018). The multispectral
image is used to correct the reflectivity of the acquired UAV remote
sensing image.

2.4 Research methods

2.4.1 Construction of Vegetation Index

Most of the existing multispectral remote sensing UAV
images are used as input of the weed identification model by
the NDVI, EVI, DVI and other indices, but the above vegetation
indices are more used to carry out inversion studies of physical
and chemical parameters of rice, while the accuracy of rice weed
identification still has some shortcomings (Clevers and Verhoef,
1993). In this study the characteristic vegetation indices of the
weed(WDVI) were constructed by analyzing the spectral
characteristics between the weeds and the rice, and the specific
construction methods are as follows.

(1) UAV multispectral wavelengths of xg, XG\ Xr\ XREs
XNIR -

(2) Selection of the band x,(t€B. G...... NIR) as the
characteristic transfer band.

(3) Construct the characteristic spectral ratio of multiple
groups using other characteristic bands x{feB, G......
NIR, and f#t) as a ratio to x; , both Wf = i—f

(4) After taking the logarithm of the ratio result, the
correlation with nitrogen content remained good.
Therefore, two sets of characteristic spectral ratios Wy
(feB. G...... NIR) , were selected and the characteristic
transfer index of weeds(WDVI) was constructed using

Equation 1:
Xa
WDVI = logy, By = log%,x—t (1)

In this study, five vegetation indices were constructed using
five bands, as shown in Table 2

TABLE 2 Five medium Combination Vegetation Index.

Name Formula
WDVIL WDVl = logﬁ %
WDVL2 WDVIypg = log s %
wDvis WDVIyp = logs. %
WDVI4 WDVlIyg = logﬁ %
WDVI5

R
WDVIyg = logﬁ NIR
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2.4.2 Weed identification modeling methods

Threshold segmentation is the earliest method studied and
used in image segmentation, which has the characteristics of clear
physical meaning, easy implementation, and good real-time
performance (Setojima et al.,, 1989; Qin et al., 2013). According to
the regional weed distribution map after visual interpretation of
visible light remote sensing images and experience knowledge, this
study adjusts the gray segmentation threshold of the multispectral
index to determine the distribution range of weeds in the index. The
grid threshold partition mapping function is as follows:

0 0<f(xy <t
flxy @
L-1t<(xy)<L-1

fley) = {

Let the size of the raster image be M x N, and the gray level
number be L, and f (x, y) denotes the gray level of the pixel with
coordinates (, y), where x € [1, M] and y € [1, N].

According to the gray segmentation threshold, the grid
image of weed distribution is extracted (Bouman et al., 1992).
The algorithm to remove small patches is used to remove
scattered grids in the grid images, and the spatial distribution
map of weeds is obtained. The grid resampling algorithm was
used to resample the grid to 1m x 1m, and the UAV application
prescription diagram was generated. Weed analysis process as
shown in Figure 2.

2.5 Evaluation indicators

Confusion matrix is a standard format for representing
accuracy evaluation in the form of a matrix with n rows and n
columns. In image accuracy evaluation, it is mainly used to
compare the classification results with the actual measured
values, and the accuracy of the classification results can be
displayed inside a confusion matrix. The confusion matrix is
calculated by comparing the position and classification of each
actual measured image element with the corresponding position
and classification in the classified image. In this study, the overall
accuracy of the confusion matrix and the Kappa coefficient are
used as classification effectiveness evaluation metrics.

3 Results and analysis

3.1 Results of vegetation index for weed
identification in rice

The WDVI construction method was used and in this study
five weed-sensitive indices were selected (Wan et al., 2020; Xia
et al., 2021). Five traditional vegetation indices such as GNDVI
(Green Normalized Difference Vegetation Index), NDVI
(Normalized Difference Vegetation Index), LCI(Leaf
Chlorophyll Index), NDRE(Normalized Differential Red Edge
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vegetation inde), and OSAVI(Optimized Soil Adjusted
Vegetation Index) were selected for comparison, and a total of
ten vegetation indices were used to generate pseudo-color maps
for the identification of the rice weed vegetation index, and the
results are shown in Figure 3.

It can be seen from Figure 3 that different vegetation indices
have different sensitivities to weeds in rice fields, and some fields
have water cotton in them, but water cotton is different from weeds
and requires different agents, so water cotton cannot be considered
as a weed. From the effect of weed identification by different
vegetation indices, the best result was obtained by using WD VIyg.

RE
WDVINIR =logec —

NR NTR (3)

In WDVIyk , NIR is the near-infrared wavelength reflectance
of the multispectral UAV, G is the green wavelength reflectance,
and RE is the red edge. WDVIy;x can distinguish weeds from rice
and spirogyra communis more clearly (Figure 4).

3.2 Results of rice weed classification
based on density splitting

Since the test area was large, the manual visual interpretation
workload would be very large if the entire area were analyzed, so
field 9 at Figure 1, where the number of weeds was at a medium
level, was selected for analysis, and the visible light from the
UAV in field 9 is shown in Figure 5. Using the manual visual
interpretation method, the density segmentation threshold was
determined using the criterion of covering all weeds. The results
show that the density segmentation results can cover all weeds
when the threshold values are 0 and 5. The results of the density
segmentation are shown in Figure 6.

1220432518 122°43'2769"

122:43°302"

10.3389/fpls.2022.1037760

After density segmentation, the results were analyzed by
removing small patches operation, using majority analysis
method to remove small patches, and setting the transform
kernel size as 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,
33, respectively. The results of the analysis are verified using the
confusion matrix for accuracy, and the overall accuracy verification
curve is shown in Figure 7, and the manual visual interpretation
vector diagram used to verify the accuracy is shown in Figure 8. The
verification results show that the highest accuracy of the confusion
matrix verification is achieved when the size of the transformation
kernel is set to 27, i.e., the best effect of removing small patches. The
results after removing the small patches are shown in Figure 9.

The images processed by density segmentation and removal
of small patches lack spatial continuity, which is not conducive
to raster resampling operations during the production of UAV
prescription maps. Therefore, the Clump Clustering algorithm is
used for smoothing. The expansion kernel size and erosion
kernel size are set to 3, 4, 5, 6, 7, 8, 9, respectively, and the
kernel values are all 1 for cluster processing. The processed
results are verified with precision using a confusion matrix, and
the overall accuracy verification curves are shown in Figure 10.
The validation results show that the overall accuracy of the
confusion matrix is the highest when the expansion kernel size
and the erosion kernel size are set to 3. The results after the
clustering process are shown in Figure 11.

3.3 Weed UAV precision operation
prescription map generation

The UAV application operation must consider parameters
such as flight speed and spray width of the plant protection UAV,
and the prescription map must be raster data during the
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FIGURE 1
Location map of test site.

Frontiers in Plant Science

12743302

135

12zaran” 12233522

frontiersin.org


https://doi.org/10.3389/fpls.2022.1037760
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yu et al.
High resolution
visible-light remote | Visual | Weed distril
sensing image of "] interpretation map of the area
UAV
N Y
Start Compare
A
. Set the
Ly| Exponential | ] cigctatistios |——p| segmentation |—p| Threshold
raster image segmemallon
threshold
FIGURE 2

Rice weed identification process.

operation. Therefore, this study converts the vector data of weed
identification results into raster data and resamples the raster data
to the appropriate size. Take DJI plant protection drone T30 as an
example, DJI T30 plant protection drone can operate 240 mu of
fields per hour, the maximum operating flight speed is 7m/s, the
volume of the operating tank is 30L, the number of nozzles is 16,
the maximum effective spraying width is 4-9m, and the size of the
prescription map grid required for operation is 1m*1m.Therefore,
the raster data identified in this study are resampled to 1m*1m,
and the raster data before resampling is shown in Figure 12, and
the raster data after resampling are shown in Figure 13.

4 Discussion

Using UAV remote sensing technology to monitor weeds in
rice fields and generate prescription maps to provide a decision
basis for accurate herbicide application by plant protection
machinery is one of the important methods to guide accurate

10.3389/fpls.2022.1037760
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distribution Gri application
map of weeds resampling prescription
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rice weeding and is also a research focus of precision agriculture.
We established a new weed-sensitive vegetation index using a
low-cost UAV multispectral remote sensing platform, then used
image recognition to accurately identify rice weeds and
combined with GIS information to generate a prescription
map for precise operation of agricultural drones for weeds in
rice fields. The main idea of vegetation index construction in this
study is to use mathematical transformation method to combine
multispectral bands into a new vegetation index, and after RE
and G are compared with NIR respectively, it is found that the
ratio results have better sensitivity with weeds. The proposed
WDVI vegetation index may also have decreased recognition
accuracy and lack of generalizability when used in other field
data sets. The reason for this may be that the vegetation index
was constructed using data statistics and the mathematical
mapping relationship between sensitive bands and weeds was
not explored in the agronomic mechanism; the influence of
different regions and varieties on the change in rice weeds was

WDVIL WDVI2

WDVI3

WDVI4 WDVI5

FIGURE 3
Results of weed identification with different vegetation indices.
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Spirogyra communis

FIGURE 4
Results of WDVIy,r vegetation index.

not considered in the research process (Yu et al, 2021).
However, because the calculation of the vegetation index is
simple and easy to realize the development and integration of

FIGURE 5
Visible image of field No. 9.
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FIGURE 6
Density segmentation results.

detection devices, the method of rice weed identification based
on the vegetation index still has considerable research value (Xia
etal., 2022). The above problems should be explored and studied
more deeply in future research experiments.

In this study, the accuracy of weed recognition in rice field
was 93.47%. Compared with other scholars (Lan et al., 2021), it
was found that the accuracy of weed recognition was
comparable. However, compared with deep learning, spectral
recognition of weeds has higher efficiency, saves time and
requires less computing power, so it has more advantages.

In this study, we used manual labeling to tag multispectral
remote sensing images from UAV’s at pixel level for weed model
training and accuracy verification. However, the manual labeling
process is inefficient and time consuming. Manual tagging will
affect the process of model development if remote sensing data
increases substantially (Tobajas et al., 2020; Amziane et al., 2021).
Therefore, in future research, it is necessary to introduce semi-
supervised or weakly supervised analysis methods to reduce the
workload of manual labeling. At the same time, remote sensing
images are collected by a UAV, and a server is used offline to
identify weeds and generate application prescription maps. In this
mode of operation, data collection and data analysis are separated,
and the best time for weed control is easily missed for weeds in
larger rice production fields. Due to the current rapid
development of the computing performance of embedded chips
(Yang et al,, 2022), which makes the real-time acquisition and
analysis of UAV multispectral images possible, if the embedded
chips can be deployed on UAVs and the analysis models on
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servers can be migrated to UAVs to realize the real-time
processing of weed identification, the interval between data
acquisition and data analysis can be effectively broken, and the
process integration of UAV identification of weeds in fields can be
realized, which will greatly enhance the application scope of
remote sensing identification of weeds by UAV.

FIGURE 8
Manual visual interpretation vector map.
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4.1 Conclusion

In this study, we created a weed identification index based on
multispectral UAV images and constructed the WDVIygvegetation
index from the reflectance of three bands, RE, G, and NIR.
WDVIyr was compared with five traditional vegetation indices,

FIGURE 9
Results after removal of small plaques.
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FIGURE 10
Confusion matrix verification accuracy curve after clustering process

NDVI, LCI, NDRE, and OSAVI, and the results showed that
WDVInr was the most effective for weed identification and
could clearly distinguish weeds from rice, water cotton, and soil.
In this study, a weed identification method based on
WDVIy;z was constructed, and the weed index identification

results were subjected to small patch removal and clustering
processing operations to output weed identification vector
results. The weed identification vector results were verified by
using the confusion matrix accuracy verification method, and
the results showed that the weed identification accuracy could

FIGURE 11
The result after clustering process

Frontiers in Plant Science

FIGURE 12
Before raster resampling

frontiersin.org


https://doi.org/10.3389/fpls.2022.1037760
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yu et al.

FIGURE 13
After raster resampling

reach 93.47%, and the Kappa coefficient was 0.859. Moreover,
this study integrates the parameters of plant protection UAV
operation and takes DJI UAV as an example to convert the weed
recognition vector results into raster data with raster size of
Im*Im to make a UAV application prescription map for field
application, which provides a new method for weed recognition
in rice fields.
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The widespread use of unmanned aerial vehicles (UAV) is significant for the
effective management of orchards in the context of precision agriculture. To
reduce the traditional mode of continuous spraying, variable target spraying
machines require detailed information about tree canopy. Although deep
learning methods have been widely used in the fields of identifying individual
trees, there are still phenomena of branches extending and shadows
preventing segmenting edges of tree canopy precisely. Hence, a
methodology (MPAPR R-CNN) for the high-precision segment method of
apple trees in high-density cultivation orchards by low-altitude visible light
images captured is proposed. Mask R-CNN with a path augmentation feature
pyramid network (PAFPN) and PointRend algorithm was used as the base
segmentation algorithm to output the precise boundaries of the apple tree
canopy, which addresses the over- and under-sampling issues encountered in
the pixel labeling tasks. The proposed method was tested on another miniature
map of the orchard. The average precision (AP) was selected to evaluate the
metric of the proposed model. The results showed that with the help of training
with the PAFPN and PointRend backbone head that AP_seg and AP_box score
improved by 8.96% and 8.37%, respectively. It can be concluded that our
algorithm could better capture features of the canopy edges, it could improve
the accuracy of the edges of canopy segmentation results.

KEYWORDS

deep learning, instance segmentation, orchard, canopy, convolutional neural
network, unmanned aerial vehicles
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1 Introduction

Technology and equipment for plant protection are crucial
for agricultural output (Ouyang et al., 2020). In apple farming,
spraying is one of the most important commonly applied canopy
management practices, it should be conducted during the stage
of apple growth aims to raise the quality of apples and obtain
higher yield. However, the low utilization rate of pesticides has
been an important factor in the development of China’s
application technology (Ru et al., 2015), the utilization rate of
pesticides in conventional application methods is only 30%,
which not only affects the effectiveness of pest control, but also
causes environmental pollution.

The integration of agricultural machinery and information
technology is a necessary tool for the development of modern
agriculture, which can improve the efficiency of agricultural
resources utilization and accelerate the process of agricultural
modernization (Chen et al., 2020). With the continuous
development of the precision agriculture, remote sensing
applications have diversified to include satellite, manned
airplanes or unmanned aerial vehicles (UAVs) (Mulla, 2013).
UAV images are more easily obtained and it implies lower
operational costs, less weather constraints (Rasmussen et al,
2016). UAVs are used for the most autonomous and accurate
way to obtain tree’s information.

A considerable amount of research on orchard canopy
information focus on the identification and counting of
individual trees (Morales et al., 2018; Cheng et al., 2020; Qi
et al,, 2021). In fact, due to geometric features of plant canopies
can offer relevant indicators, individual canopy-related features
interested farmers but the most accurate estimations for
canopies all mostly based on destructive and costly labour-
intensive manual measurements (Gower et al., 1999;
Jonckheere et al,, 2004; Ma et al.,, 2017). To overcome these
disadvantages, UAV-based imagery in conjunction with
computer vision methodologies have become widely used on
the research of tree extraction (Nyamgeroh et al., 2018; Durfee et
al,, 2019).

Brede et al. (2017) concluded that UAV-borne laser
scanning(ULS) has the potential to perform comparable to
Terrestrial Laser Scanning for estimating forest canopy height.
ULS combines the strengths of above and under canopy surveys,
the results showed that in easy forest stand conditions, the
performance of ULS point cloud is comparable with the
terrestrial solutions (Liang et al, 2019). The UAV-based
LiDAR data can be effectively used in canopy cover
estimation, individual tree segmentation-based method had the
highest accuracy in estimation of canopy cover (R2 = 0.92,
rRMSE = 3.5%) can provide references for sustainable
management (Wu et al., 2019). Laser scanning data of stem
curve was obtained by using UAV. Novel data processing
algorithms were applied for the point clouds to extract the
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stem curves and diameters at breast height (Hyyppa et al,
2020). However, these methods using LiDAR represents an
important limitation for costly.

There exist other methods that use multispectral cameras to
descriptor such as canopy shape, crown contour and canopy
volume. In order to estimate tree height, Wu et al. (2020)
compared several methods. Height estimations of mango and
avocado trees were compared to canopy metrics obtained from
Airborne Laser Scanning (ALS) and UAV-based RGB and multi-
spectral photography. Chang et al. (2020) used UAV-based
multispectral pictures to compare the canopy shape and
vegetation indicators of range trees. The findings revealed a
strong correlation between tree height and canopy volume
measured from the ground and by UAV. Gallardo-Salazar
et al. (2020) analyzed included different vegetation indices
estimated with a high-resolution orthomosaic and obtained
total height and the crown diameter of individual trees, the
consistency of the the normalized-difference vegetation index
(NDVI) as the most recommended to evaluate productivity
results for its application in the field.

When focusing on RGB images, a large number of studies of
tree phenotype in orchards can be found. Using image processing
techniques, Yildiz et al. (2020) determined the canopy area of
apple trees. Regression analysis employed both circular and
elliptical calculating techniques. Using a local-maxima-based
technique on UAV-derived Canopy Height Models (CHMs),
Mohan et al. (2017) assessed the applicability of low-altitude
visible light image and structurefrom-motion (SFM) algorithm).
To distinguish between overlapping tree crown projections, Ponce
et al. (2021) developed a novel method for crop tree identification
using image analysis techniques, doing away with the usage of
vegetation indices and machine learning-based approaches. The
aforementioned methods, however, are likely to have a low fidelity
for interlaced orchards. Cheng et al. (2020) provided a
segmentation approach for mingled fruit tree canopies with
irregular forms that makes use of a Gaussian Mixture Model
and XGBoost to accurately recover the individual apple and
cherry trees from mingled canopies.

In recent years, the performance of the CNN network in
detecting complicated phenomena has been excellent due to the
accessibility of massive datasets and the ongoing advancement of
GPU processing power. A growing variety of artificial
intelligence algorithms have been used in horticulture research
and remote sensing for agriculture (Kamilaris and Prenafeta-
Boldu, 2018; Zhou et al., 2020; Yang and Xu, 2021; Qi et al.,
2022). Mo et al. (2021) proposed a deep learning-based instance
segmentation method YOLACT of litchi trees. The boundary
and location information of the canopy have been obtained by
using the Digital Orthophoto Map (DOM). A Convolutional
Neural Network (CNN) based on the Deeplab v3+ architecture
was used to detect full-grown isolated Mauritia flexuosa palms,
and has achieved better performance than those of other CNN
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networks used for performance comparison (Morales et al.,
2018). Lou et al, (2022) used thrss widely object detection
methods such as the Faster region-based CNN (Faster R-
CNN) (Ren et al, 2015), You Only Look Once version 3
(YOLOV3) (Redmon et al, 2018), and single shot detection
(SSD) (Liu et al,, 2016) to identify tree crowns and their
widths in two loblolly pine plantations, respectively.

Due to unsystematic tree branches overlapping and
shadows, the accuracy of the deep learning-based image
segmentation algorithms needs to be improved. In
horticultural computer vision, however, it has always been
challenging to detect the boundary of tree canopies.

In this regard, we offer an innovative technique for precisely
segmenting the borders of apple trees using aerial photos taken
with RGB cameras placed on UAVs. This approach aims to
address the issue of incorrect segmentation of tree canopies in
dense orchards with complex backgrounds, including branches
and shadows. Firstly, RGB images were processed in DJI Terra
software to yield a Digital Orthophoto Map (DOM), then DOM
was sliced into smaller images for training the deep learning
model. Second, the feature of canopy instances was extracted
using the PAFPN (Liu et al., 2018) as backbone neck and
PointRend (Kirillov et al., 2020) as a new backbone head

based on the instance segmentation of the Mask R-CNN

10.3389/fpls.2022.1041791

(He et al., 2017) framework. Our method is called MPAPR R-
CNN. This segmentation is eventually combined into a
miniature orchard map, with each little picture containing the
canopy’s pixel count by segmentation network. The whole
system was put to the test in an apple orchard, and the
comparison experiment findings showed how well it works for
identifying apple tree canopy.

2 Materials and methods

2.1 Study area

As shown in Figures 1A, B, the study was conducted during
the summers of 2022 at the JingXiang Orchard in Weihai City,
Shandong Province, China. The location is characterized by a
temperate monsoon climate, with average annual precipitation
of 400-600 mm and an average effective temperature during the
study period (July-August) of 28°C. The local climate is perfect
for the cultivation of apples.

The orchards under study are high-density planting patterns
with a 3.5-meter route between rows and a tree spacing of 0.8
meters. It should be emphasized that the planting and
management model adheres to the region’s suggested
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production techniques. 'Four location DOMs containing apple
orchards of different ages were used for canopy identification in
this paper, where C, D and E of Figure 1 were used as training for
the model, while Map F was used as a test map for the model

training results.

2.2 Unmanned aerial vehicle
image collection

Apple trees were captured with the DJI Phantom 4
Multispectral (P4, SZ DJI Technology Co., Ltd., Shenzhen,
Guangdong, China). The P4 is employed because it can be
programmed to fly independently, and the collected visible
images can be processed to generate orthophoto images, or
other drones equipped with low-cost RGB visible light can be
used. For multispectral imaging, this UAV was outfitted with
one RGB sensor and five monochrome sensors, which have six 1/
2.9-inch CMOS, including one color sensor for visible imaging
and five monochrome sensors for multispectral imaging.
Individual sensors have 2.08 million effective pixels (2.12
million total pixels). Figure 2 depicts the takeoff of a drone for
data collection.

The purpose of this paper is to solve the problem of UAV
canopy image segmentation in complex backgrounds, and we
selected the area where weeds are most abundant for UAV flight.
To minimize any shadow effects, the flight was conducted during
sunny or cloudy weather conditions at high noon, with very light
winds, between approximately 11:30 am and 12:30 pm. The DJI
GO Pro software was used to set up the flight for autonomous
management. The pictures have an 80% mean forward overlap

10.3389/fpls.2022.1041791

and a 70% mean side overlap. The aircraft was maintained at a
cruise speed of 2 m/s an altitude of 15 m above ground and
during the flight. The aircraft maintained a cruise speed of 2 m/s
during flight at 15m and 20m altitude, while the ground sample
distance (GSD) was 0.79cm/pixel and 1.06cm/pixel, respectively.

2.3 Canopy segmentation framework

We first summarize the whole process of the proposed
framework for detecting orchard canopy and then discuss in
detail each phase of the model. As shown in Figure 3, the
framework consists of three major parts: (1) image dataset
construction and preprocessing; (2) training and inference and
(3) image stitching.

2.3.1 Image preprocessing and
dataset construction

In this part, DJI Terra software was used to convert the UAV
canopy images into DOM. Since the resolution of DOM is too
large, the images need to be cropped to meet the appropriate size
required for computer operation, then we use Labelme software
for annotation, and then perform image enhancement to
generate the image dataset of orchard canopy for defect and
segmentation model training and testing.

2.3.2 Training and testing of datasets

In this section, we proposed to design our framework based
on Mask R-CNN. In order to fit the tree canopy detection and
segmentation task, as in Figure 4, we introduced the PAFPN and
PointRend into the original architecture. The proposed model

FIGURE 2
The DJI P4 Multispectral.
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Stage 1: Stage 2: Stage 3:
Canopy image preprocessing and dataset construction Training and testing of dataset Image stitching
Augmentation |
Labelled
FIGURE 3

Canopy segmentation framework.

can obtain enhanced features with both rich context information
and edge information, leading to better performance of canopy
detection and segmentation results. In addition, considering the
shape characteristics of canopy in cropped image, we modifed
the aspect ratios of anchor boxes in the RPN network. Specific
network design will be described in the later section.

2.3.3 Image stitching

After the deep learning model had been trained and the test
photos had been post-identified, this segmentation is eventually
combined into a miniature orchard map using Adobe Photoshop
CC 2019 software. With each little picture containing the
canopy’s pixel count by segmentation network, the
orthophotography can be used to provide application
recommendations to variable application machinery.

2.4 Canopy segmentation method

2.4.1 Image preprocessing and
dataset construction

Using DJI Terra software, over 500 photos taken by the P4
UAV of the experimental regions every flight were
photogrammetrically processed to create the RGB DOM.
Through the training of a large amount of data, the model
based on deep learning can achieve great prediction results for
complex classification and detection tasks.

DOM resolution is too huge for processing, especially for
deep-learning-based methods, thus the high-resolution picture
was chopped using the Adobe Photoshop CC 2019 software
slicing tool, and the DOM was ultimately divided into 500 little
pixel images of 450%600. To boost the variety of the canopy

Full Convolutios

Nets,

Full
connected

— = Conv3*3
— Output

«— 2*Interpolate

¥ Conv3*3 stride2

FIGURE 4

Canopy segmentation model base on Mask R-CNN. * indicates that the height and width of the convolution kernel matrix are multiplied.
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photos for the deep learning network, techniques including noise
addition, random blurring, panning, vertical mirroring, and
diagonal flipping were applied. A final dataset of 2000
enhanced canopy images were produced as a consequence of
the data augmentation strategies, which also expedited the
dataset’s creation, improved the resilience and generalization
of the model training, and decreased the likelihood of overfitting.
Finally, we divided the training and validation sets for 2000
images in the ratio of 8:2.

2.4.2 Architecture of mask R-CNN

Mask R-CNN is a classical image segmentation algorithm
that detects target objects in an image and marks the outline of
the object region, extracting the relevant pixels for area
calculation. Faster R-CNN for target recognition and a Fully
Convolutional Network (FCN) for semantic segmentation are
combined to create Mask R-CNN. The Faster Convolutional
Network (FCN) is utilized for mask prediction, boundary
regression, and classification based on the target discovered by
the Faster R-CNN. These include a feature extraction layer using
ResNet/ResNeXt as the convolutional backbone, a region
suggestion network (RPN), bilinear interpolation (ROIAlign),
and fully connected FC and FCN.

The selected region of interest (Rol), after mapping to the
feature map, is further pixel-corrected by the ROIAlign layer.
The resultant feature map is delivered to a region proposal
network (RPN) to create positive and negative samples. Because
the picture enhancement in this investigation did not involve a
90-degree rotation to increase the dataset, the orientation of the
canopy photographs in this study all stretched along the vertical
direction. The initial model was enhanced by balancing the
distribution of various picture forms and constructing anchor
points with three distinct scales of 0.3, 0.5, and 1 in aspect ratio
to increase the identification and segmentation accuracy of

10.3389/fpls.2022.1041791

2.4.3 Feature extraction network

To achieve more effective detection, ResNeXt is regarded as
the backbone network for feature extraction of the input image.
ResNeXt is built on ResNet modular structure and incorporates
the high recognition performance of split-transform-merge in
Inception. The right side of Figure 5 shows the structure of each
basic unit.

In Figure 5, ResNeXt uses multiple convolution modules to
perform feature extraction from bottom-up, and group
convolution uses the same topology on different input channel
paths. By using cardinality as a super parameter, it’s able to
achieve a more efficient network. For a 256-dimensional input
with cardinality of 32, the network encodes 256 channels into 4
channels, and the features are extracted in 32 different
embedding spaces by 32 different groups consisting of
continuous 1 X 1 conv, 3 X 3 conv, and 1 x 1 conv.

2.4.4 Feature fusion network

In multilayer convolutional neural networks, features at shallow
layers are usually more representative of edge morphology, which is
crucial for accurate pixel classification and instance segmentation
(Kong et al,, 2016), and it is precisely the determination of instance
edges that is most important for segmentation of crown images.
Specially, we adopt a path augmentation feature pyramid network
(PAFPN) to enhance the feature hierarchy with rich low-level
features by adding a bottom-up path augmentation module and a
feature fusion operation module.

The part of Neck in Figure 6 shows the PAFPN module in
details. Each cube represents a corresponding feature tensor. In
the original ResNeXt-FPN backbone network, features are
extracted from the final convolutional layer of convl-conv5
parts of ResNeXt101, which are called C;, C,, Cs, C, and Cs in
this paper. Based on the bottom-up network architecture, the
feature extraction layers compute hierarchical feature maps.

the canopy. Feature maps generated by FPN are represented by P,, P3, P4, Ps.
256-d in
Total 32 256,1%1, 4
Paths
4,3*3,4
4,171,256
@
T 256-d out
FIGURE 5

Backbone Network-ResNeXt. * indicates that the height and width of the convolution kernel matrix are multiplied.
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FIGURE 6

Bottom-up path augmentation. * indicates that the height and width of the convolution kernel matrix are multiplied.

The feature maps of the added bottom-up path
augmentation module are represented as N,, N3, Ny and N5
corresponding to P, to Ps. The concrete operations for bottom-
up path augmentation module are illustrated in Figure 6. Firstly,
Ni/2 is obtained by a 3 x 3 convolutional layers with stride 2 to
down-sampled, where the size of N;/2 is reduced by a factor of
two. Then the down-sampled feature map is concatenated with
P;.1. At last, the fused feature map goes through another 3 x 3
convolutional layer to generate new feature map Nj,;. Then,
feature fusion operations are carried out to incorporate higher
level feature maps to the lower-level ones for contextual
feature fusion.

2.4.5 Optimized boundary feature based on
PointRend technique

As objects have irregular boundaries, most segment methods
can classify pixels inside the object accurately but pay less
attention to the accuracy drop caused by upsampling on the
edge of the object increases the loss of prediction. Image
segmentation tasks of original Mask R-CNN focus on regular
grids to classify each pixel in the image has an obvious drawback
of shivering or over-smoothed edges of segmentation, which
makes the boundary of the mask unsatisfactorily and greatly
undermines the accuracy of canopies edge segment.

As a result, to address this issue, we employed a high-quality
PointRend module to recover clear and sharp mask edges. This
module can adaptively choose a non-uniform set of points by a
subdivision strategy to densely sample and label the boundary
pixels while minimizing the indistinct segmentation results.
Point selection, point-wise feature extraction, and point head
make up the three primary components of PointRend.

Frontiers in Plant Science

The point selection module chooses suitable sampling points
flexibly and adaptively to predict to avoid excessively computed
pixels, and focuses on the points located near object boundaries.

After the target segmentation model output feature map as
the initialization output map of the PointRend model, the
strategy of point selection is to render the output image in a
coarse-to-fine manner. The first prediction is the coarsest and is
performed on the point of a regular grid. As shown in Figure 7,
in each iteration, the points on a regular grid from the low spatial
resolution feature map will be predicted coarsest first. The
output result is sampled up by bilinear interpolation to achieve
the denser feature prediction map. Then on the high-resolution
segmentation map, where the N most uncertain points are
concentrated in the edges, the confidence interval is [0,1] close
to 0.5. Points are selected by Equation (1). Once N points are
selected, point-wise feature extraction is performed. These N
points are the points that are finally filtered out for re-
confirmation. And so on, iterating step by step to obtain the
final segmentation map with the target resolution.

n,* = argmin|p(n;) — 0.5] (1)

where p(n;) is the probability for point n; belonging to the
binary mask; n,* is the selected point.

For training, the point selection strategy is a random
sampling-based selection strategy. First, KN candidate points
(k>1) are randomly sampled from the feature map to address the
uncertain regions while keeping a uniform distribution. Then
kN points are sorted while estimating the uncertainty. The most
uncertain BN points are selected, where B € [0,1]. These points
are concentrated in the most uncertain area, such as road
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FIGURE 7

The strategy of the point selected.

boundaries. Last, the surplus (1-) N points are distributed from
a uniform distribution.

The coarse prediction and fine-grained features are
combined to create the point-wise feature of the selected
points extraction module. Regarding fine-grained features,
bilinear interpolation is used to extract the finely detailed
segmentations from each point chosen from the sort in the
feature map to display the fine segmentation details. These
segmentations are then stored in feature vectors, which
contain fine-grained features.

Fine-grained features may contain only relatively low-level
information and do not obtain specific region information, but
the coarse predicted feature can provide a more general and
globalized context, with a 2-dimensional vector for class-2
prediction at each point in the region.

The pointed head is a simple Multi-layer Perceptron (MLP)
used to represent prediction labels based on point-wise features,
which can share weights across all points. Moreover, because the
MLP predicts a segmentation label for each point, it can be
trained by the segmentation loss of a specific task. Note that
when the backbone head is replaced with PointRend, the loss of
the segment network is increased by loss point, but this does not
affect the final segmentation accuracy.

2.4.6 Loss function

The loss function of the Mask R-CNN with PointRend has
four components, the classification loss of the bounding box, the
position regression loss of the bounding box, and the loss of the
mask. The loss function L for each sample ROI in the network is

L= Lbox + Lcls + Lmask + Lpoint

2

There are three components: Lyox is the classification
calculation loss, Ly, is the position regression loss of the
bounding box and L, is the mask calculation loss. The
bounding box loss function, the classification calculation loss,
and the mask calculation loss are shown as follows:
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Lyox (tf , tf) = smoothy, (t: - ti) 3)
055 (x| < 1)
smoothy; (x) = (4)
x| -0.5 ([x|>1)
where t=(totytuwtn) > 6 = (to b, t, )
* * *
Lo (p,v ,pa) = ~log {pi pi + (1 - pi)(l _Pi)] ®)

where p; represents the probability anchor is predicted to be
positive samples, p; represents the foreground true probability
of the anchor point, i.e. a value of 1 when in the foreground and
0 when in the background anchor samples.

Lyase (57-5:) = =(57 log(s) + (1-57 ) log(1=5))  (©)

where, s; represents the probability mask is predicted to be
the irightvalue the sj is the label value of the mask.
Lpoint (s:,si) =seg_loss + points_loss

(7)

where seg loss represents the cross-entropy loss of the
overall pixel point, points_loss represents the cross-entropy
loss of the uncertain point.

2.5 Algorithm platform

The model training platform is a laptop with Ubuntu 18.04
operating system. The deep learning model in this paper is the
Detectron2 framework based on PyTorch, while CUDA 11.1 is
used to accelerate the training process. Table 1 describes the
specific environment configuration.

Mask R-CNN employs the alternating optimization training
technique. Stochastic Gradient Descent (SGD), a quick and
efficient gradient descent technique for convolutional neural
networks, is used as the training optimization approach. The
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TABLE 1 Image processing unit host hardware and software
environment.

Name Version

CPU Intel(R) Core(TM)i7-11800H
GPU NVIDIA Geforce RTX 3050(4GB)
Operating System Ubuntu 18.04

Computing Architecture CUDA 11.1

Deep learning Framework PyTorchl.5.0

Anaconda Anaconda3(Python3.7.2)

maximum number of training iterations is 25000, the number of
samples (batch size) used in each trainer is 1, the number of
samples in a batch of training samples (one epoch) is 128, and
the learning rate decay multiplier (gamma) is 0.2, the learning
rate decay is performed after 10000 and 20000 iterations, the
number of warm-up iterations is 1000, momentum is 0.9, and
weight decay coefficient is 0.001.

2.6 Evaluation indicators

To validate the performance of the model, Mean Average
Precision (m,p ) is used as a metric to evaluate the accuracy of
the training model. m4p is an algorithm performance metric
used to predict target locations and categories, and refers to the
average of the Average Precision (Ap ) of multiple categories, and
a higher m,p value indicates a better model is better. In image
segmentation, a curve can be plotted for each category based on
the accuracy P (Precision) and recall R (Recall), and the Average
Precision Ap is the area under that curve. Multiple metrics are
calculated as follows:

— TP
B Tp + FP (8)
" Tp+Fy ©)
1
Ap = / P(R)dR (10)
0

where Tp denotes the number of samples correctly
predicted as positive, Fp denotes the number of samples in
which negative samples are predicted as positive, Fy denotes
the number of samples in which positive samples are predicted
as negative, and k denotes the number of categories; P refers to
the accuracy rate, which is the proportion of correctly detected
samples to all samples actually detected; and R refers to the
recall rate, which is the proportion of the number of correctly
detected samples to the number of samples that should
be detected.

Frontiers in Plant Science

10.3389/fpls.2022.1041791

3 Results

To better validate the performance of the optimized
segmentation model, comparative experiments were conducted
to demonstrate the detection and segmentation capabilities of
the model under different configurations.

3.1 Different anchor and backbone

Since the target of detection in this paper is the tree canopy,
combined with the canopy growth and the slender
characteristics of the collected image data set along the top
and bottom directions, the aspect ratio of anchor was adjusted to
{1:1, 1:2, 1:3} to suit the canopy detection.

The ResNeXt network is implemented by simply cascading
layers of the same structure and implementing a split-transform-
merge strategy at each level of the network. Based on the ResNet
network structure, a new dimension called “cardinality” is
proposed. For canopy detection, we need to verify whether the
improvements in the ResNeXt network improve the detection
and segmentation accuracy. To test the impact of the improved
anchor frame ratio and feature extraction network, we designed
a set of comparison experiments. We use the standard metrics
average precision (AP, AP50, AP75) to evaluate our results. The
results are shown in Table 2.

Table 2 shows that the improved anchor ratio and ResNeXt
both affect the accuracy of the segmentation. Since the canopy
distributed along the up-down direction is not rotated by 90
degrees in the data enhancement operation, the detection task of
the canopy dataset is better facilitated when the RPN network
uses a more elongated anchor frame for the generation of the
region suggestion frame. In addition, performing a set of
transformations using low-dimensional embeddings by
constructing bases in the base block, split-transform-merge
strategy can make the deep learning model learn more
features. Therefore, improved anchors and ResNeXt were used
as part of the Mask R-CNN model for feature extraction and as
the base network for subsection 3.2.

3.2 Best model configuration

The key differences between our suggested canopy detection
and segmentation method and the original Mask R-CNN
architecture are two. In order to get feature maps with rich
low-level information, we first applied a PAFPN module to the
original Mask R-CNN. The second is that we utilized Pointrend
to enhance the accuracy of edge segmentation results. Based on
Mask R-CNN with better anchor and ResNeXt, we create four
distinct network frameworks to extract features in order to test
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TABLE 2 The detect results of different Anchor and Backbone.

Backbone Network ImprovedAnchor ratio

Mask R-CNN-FPN

v

ResNeXt

10.3389/fpls.2022.1041791

AP_seg AP_box
AP AP50 AP75 AP AP50 AP75
57.24 79.51 79.87 65.14 78.93 77.42
58.34 79.89 81.32 65.93 80.29 79.18
58.96 81.26 81.41 66.71 82.56 80.39

V indicates that on the basis of the backbone network, add the corresponding module at V. The first line is Mask R-CNN-FPN, the second line is Mask R-CNN-FPN+Improved Anchor

ratio, and the third line is Mask R-CNN-FPN+ Improved Anchor ratio+ResNeXt.

the impact of the new PAFPN and PointRend module, which are
represented by RX-FPN (Mask R-CNN+ResNeXt+FPN), RX-
PAFPN (Mask R-CNN+ResNeXt+PAFPN), PR-RX-FPN (Mask
R-CNN+PointRend+ResNeXt+FPN) and our method(Mask R-
CNN-+PointRend+ResNeXt+PAFPN), respectively. Our method
is called MPAPR R-CNN. Four group experiments are used to
detect and segment orchard canopy images in this part.

Figure 8 compares the loss functions of the four instance
segmentation models used in the experimental training phase. In
Figure 8A, in comparison to RX-FPN and PR-PAFPN, PR-RX-
FPN and MPAPR R-CNN have higher total loss due to the
training loss function of PointRend contains point loss.

A
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—— MPAPR R-CNN
«
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FIGURE 8

However, it is still obvious in Figure 8A that the RX-PAFPN
with enhanced feature pyramid network has lower loss in RX-
FPN and RX-PAFPN without combining PointRend, and
similarly, in PR-RX-FPN and MPAPR R-CNN with
combining PointRend, the PAFPN module with MPAPR R-
CNN model also has lower loss, which indicates that both
PAFPNs effectively improve the original FPN network. This
can also be seen in Figures 8C, D, where PAFPN has a significant
effect on the model improvement, firstly, the loss_mask_point is
reduced, and secondly, the point accuracy is higher. This further
shows the improvement effect of PAFPN on the
PointRend model.

— RX-FPN
—— RX-PAFPN
—— PR-RX-FPN
—— MPAPR R-CNN
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Loss and accuracy curves of several different instance segmentation algorithms in training stages. (A) Total loss curves. (B) Mask loss curves. (C)

Mask point loss curves. (D) Point accuracy curves.
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For the most important loss_mask of crown segmentation,
Figure 8B shows that both PR-RX-FPN and MPAPR R-CNN
with PointRend module have lower mask loss values than RX-
FPN and RX-PAFPN without PointRend module. It indicates
that the addition of the PointRend module has a more significant
optimization effect on reducing the mask loss of the FPN and
PAFPN networks. However, the lowest Loss_mask is the
MPAPR R-CNN model with both PAFPN and PointRend.

The AP findings for each of the four networks are displayed
in Table 3. MPAPR R-CNN outperforms competing methods in
terms of AP-seg and AP-box score, which supports its efficacy in
identifying canopy images. We can see from Table 3 that the
suggested PAFPN and PointRend algorithm considerably alters
the AP score of test outcomes. The AP seg and AP box scores of
the RX-PAFPN are increased by 3.18% (from 59.64% to 62.82%)
and 1.85% (from 67.61% to 69.46%), respectively, while the value
of the AP 50 grows more considerably, improved by 6.28% (from
81.8% to 88.08%) and 6.16% (from 84.4% to 90.56%). The
outcomes demonstrate that the PAFPN algorithm may
successfully prevent information loss of low-level features and
improve the original’s capacity to extract features.

Meanwhile, as for the PointRend, the AP_seg and AP_box
score of PR-RX-FPN is significantly improved by 7.71% (from
59.64% to 67.35%) and 7.52% (from 67.61% to 75.13%). The
result demonstrates that the PointRend has more influence than
PAFPN. This is because a uses both coarse and fine prediction of
points and fuses the two features, which is more effective for
canopy edges detection. Combined with PAFPN and PoitRend,
MPAPR R-CNN obtained the most excellent canopy detection
and segmentation results with AP_seg and AP_box score
improved by 8.96% (from 59.64% to 68.6%) and 8.37% (from
67.61% to 75.98%), respectively. Therefore, MPAPR R-CNN is
more effective for canopy detection task.

Examples of the results of several methods for canopy
detection are shown in Figure 9. The good boundary
segmentation performance of MPAPR R-CNN is shown in the
figure by the yellow marker box. As can be shown, for the input
image (Figure 9A), our approach (Figure 9C) outperforms Mask
R-CNN paired with ResNeXt and FPN (Figure 9B) in terms of
both canopy identification and segmentation. For instance,

TABLE 3 Comparison of AP results for four different methods.

Network PAFPN PointRend

AP
RX-FPN 59.64
RX-PAFPN v 62.82
PR-RX-FPN v 67.35
MPAPR R-CNN v v 68.6

10.3389/fpls.2022.1041791

Mask R-CNN missed some edge information and incorrectly
identifies the shadow of the tree as the canopy areas, but MPAPR
R-CNN’s findings for detecting the canopy are more accurate.
Unlike Mask R-CNN, which has a rather rough segmentation
contour, MPAPR R-CNN’s segmentation contour is
more defined.

3.3 Image stitching

After the deep learning model had been trained and the test
photos had been post-identified and segmented, a high-
resolution DOM map was created using Adobe Photoshop CC
2019 software. Figures 10 shows the visual outcomes of the
models. Small slices of pictures on the stitched DOM may all
be inferred with accurate geo-coordinate positions, since the RGB
visible camera communicates position coordinates with the UAV
during image acquisition. This has ramifications for the creation
of changeable application prescription maps later on.

By increasing mAP by 2.19%, our innovative segmentation
method significantly improved segmentation accuracy. In the
canopy detection of a mass of branches and notably for tree
margins, the pixel-level target was accurately recognized.
Therefore, our suggested network’s efficiency has been shown.

4 Discussion

4.1 Effect of shadows and surface
vegetation on canopy edge detection is
effectively solved

Most orchard canopy studies at this stage have focused on
identifying the canopy of a single tree, but some researchers have
also looked at methods to recognize and precisely count tree
crowns with significant overlap rates. While there are many
research references for techniques of geometric computation and
image processing, the aforementioned two approaches are
restricted to the relatively constant biological form of tree
crowns and the straightforward backdrop of UAV image

AP_seg AP_box

AP50 AP75 AP AP50 AP75
81.8 79.16 67.61 84.4 81.14
88.08 82.71 69.46 90.56 82.78
88.6 84.88 75.13 90.87 87.95
90.78 85.31 75.98 91.19 89.15

V indicates that on the basis of the base network, add the corresponding module at ¥ The first line is the base network (RX-FPN). The second line is the base network+PAFPN, abbreviated
as RX-PAFPN. The third line is the base network+PointRend, abbreviated as PR-RX-FPN. The fourth line is the base network+PAFPN+PointRend, abbreviated as MPAPR R-CNN.
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FIGURE 9

Some examples of canopy images of interferences. (A) Input of the detected raw image. (B) Mask loss curves. (C) Mask point loss curves.Yellow

rectangular boxes indicate details with significantly different test results.

gathering. The geometric measuring method based on the form
of the tree canopy is not reliable because the canopy shape may
fluctuate significantly with the continual expansion of the tree
canopy. In contrast, the instance segmentation approach might
produce high performance by identifying the tree canopy’s pixels
and segmenting each canopy separately with more flexibility and
resilience, or inference in a unified manner. The accuracy of
threshold segmentation techniques used in traditional image
processing can be significantly impacted by weeds on
the ground.

MPAPR R-CNN can address this issue. Firstly, we changed
the original ratio of anchor frames in the RPN network. The
canopy in dataset distributed along the up-down direction due to
images were not rotated by 90 degrees in the data enhancement
operation, the detection task of the canopy dataset better
facilitated when the RPN network uses a more elongated
anchor frame, such as {1:1, 1:2, 1:3}, for the generation of the
region suggestion frame. In addition, performing a set of
transformations using low-dimensional embeddings by
constructing bases in the base block, split-transform-merge
strategy can make the deep learning model learn more
features, which has been effective for the problem of color
interference between the surface vegetation and the canopy.
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The most important thing is there are two main distinctions
between the original Mask R-CNN architecture and our
proposed canopy detection and segmentation approach. This
is so that the RPN can generate more precise candidate boxes,
which is made possible by the PAFPN module’s ability to help
the backbone network gather features with rich low-level
information. Furthermore, the PointRend module’s
combination of coarse- and fine-grained features enhanced the
segmentation accuracy of ground and canopy edges that have a
comparable color palette.

As shown in Figure 11, we visualized the process of
PointRend module in canopy image inference. During the
Inference process, each region is rendered by iterative coarse-
to-fine. In each iteration, PointRend upsamples the previous
segmentation result using bilinear differences, and then selects N
uncertain points from this result. This was equivalent to
purposefully selecting the N points that are difficult to
segment, then extracting the feature vectors, and classifying
them by MLP to get the new segmentation result, then up-
sampling by a factor of 2, extracting the uncertain points, and
then point prediction by MLP, and repeating this step until the
prediction is completed. PointRend optimized the task of
accurately recovering object edges during upsampling.
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FIGURE 10
The visual results of stitching image.
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A Inference image

FIGURE 11

Subdivision step

7

B Coarse prediction

: 2, resolution 28x28

Coarse prediction, resolution 7x7

¢ Subdivision step 1

M

Example of inference image subdivision step. (A) The raw image used to visualize the inference process. (B) Course prediction. (C-E) Subdivision
step 1-3, the bilinear differential upsampling is performed successively at a rate of 2x.

Therefore, MPAPR R-CNN effectively segmented under the
influence of shadows and surface vegetation and improved the
recognition accuracy of canopy edges.

4.2 Effectiveness, limitations of UAV in
orchard detectron and future
work directions

The instance segmentation method enhanced by Pointrend
in apple tree orchard situations was initially put out in this work.
Two researchers painstakingly annotated RGB photos of the tree
canopy for at least three days to create the data sets required to
train deep learning models. The labeling of individual branches
requires careful identification because of the severe branch
crosses that result from dense planting patterns. Additionally,
the canopy shadow cast by the sun on aerial photographs when it
is not directly overhead presents a difficult labeling challenge.
Inadequate illumination or a little swing of the drone during the
photo-taking process can further degrade the picture quality of
the final orthophoto image, in addition to the effects of
cloudiness or wind on the UAV. More crucially, the new
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research on precision management in orchards has shown
considerable promise for UAV gathering of photos with
excellent flying efficiency. Compared with UAVs equipped
with expensive multispectral or hyperspectral cameras for
canopy identification methods, carrying visible light cameras is
cost-effective and promising for large area applications.

We propose to focus on two topics of improvement in the
upcoming work plan. First, a study may be done using the multi-
spectral photos that the DJI P4 UAV captured. Multi-spectral
research on canopy segmentation and individual differences in
the tree canopy may be analyzed based on the chlorophyll
difference between the tree canopy and ground weeds. The
second is the study and development of quick and effective
orchard spraying tools based on low-altitude data from UAVs on
orchard distribution and canopy differences, combined with
ground spraying and UAV plant protection technologies.

5 Conclusions

In this paper, a novel orchard canopy detection and
segmentation method based on the Mask R-CNN was
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presented. By applying the PAFPN module and the PointRend
into the original Mask R-CNN framework, combined with the
improved anchor and ResNeXt, our well-trained model can
automatically detect and segment canopy in orchard with high
accuracy. It can be concluded that our algorithm could better
capture features of the canopy edges, it could improve the
accuracy of the edges of canopy segmentation results, which
addressed the over- and under-sampling issues encountered in
the pixel labeling tasks. It can be concluded that our algorithm
could better capture features of the canopy edges, it could
improve the accuracy of the edges of canopy segmentation
results. Our future work will be to extend MPAPR R-CNN to
many other UAV image applications.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

WZ collected and analyzed the data, and wrote the
manuscript. XC supervised the project. JQ conceptualized
the experiment, selected the algorithms, provided funding
support and equipment. SY assisted in analyzing the data.
All authors contributed to the article and approved the
submitted version.

References

Brede, B., Lau, A., Bartholomeus, H. M., and Kooistra, L. (2017). Comparing
RIEGL RiCOPTER UAYV LiDAR derived canopy height and DBH with terrestrial
LiDAR. Sensors 17 (10), 2371.

Chang, A., Jung, J., Maeda, M. M., and Landivar, J. (2017). Crop height
monitoring with digital imagery from unmanned aerial system (UAS). Comput.
Electron. Agric. 141, 232-237. doi: 10.1016/j.compag.2017.07.008

Chang, A., Jung, J., Maeda, M. M., and Landivar, J. (2020). Comparison of
canopy shape and vegetation indices of citrus trees derived from UAV
multispectral images for characterization of citrus greening disease. Remote
Sensing 12 (24), 4122.

Cheng, Z., Qi, L., Cheng, Y., Wu, Y., and Zhang, H. (2020). Interlacing orchard
canopy separation and assessment using UAV images. Remote Sens. 12, 767. doi:
10.3390/rs12050767

Chen, X., Wen, H., Zhang, W., Pan, F., and Zhao, Y. (2020). Development status
and direction of agricultural machinery and information technology fusion. Smart
Agric. 2 (4), 1-16. doi: 10.12133/j.smartag.2020.2.4.202002-SA003

Durfee, N., Ochoa, C. G., and Mata-Gonzalez, R (2019). The use of low-altitude
UAYV imagery to assess Western juniper density and canopy cover in treated and
untreated stands the use of low-altitude UAV imagery to assess Western juniper
density and canopy cover in treated and untreated stands. Forests 10 (4), 296. doi:
10.3390/f10040296

Gallardo-Salazar, J. L., and Pompa-Garcia, M. (2020). Detecting individual tree
attributes and multispectral indices using unmanned aerial vehicles: Applications
in a pine clonal orchard. Remote Sens. 12 (24), 4144. doi: 10.3390/rs12244144

Gower, S. T., Kucharik, C. J., and Norman, J. M. (1999). Direct and indirect
estimation of leaf area index, fAPAR, and net primary production of terrestrial

Frontiers in Plant Science

156

10.3389/fpls.2022.1041791

Funding

This study was supported by the National Natural Science
Foundation of China (31971783). Financial support from the
above fund and organizations is gratefully acknowledged.

Acknowledgments

The authors wish to thank the Jingxiang Orchard of Weihai
City for the help in the collection of the ground data and
field data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

ecosystems. Remote Sens. Environ. 70 (1), 29-51. doi: 10.1016/S0034-4257(99)
00056-5

He, K., Gkioxari, G., Dollar, P., and Girschik, R. (2017). “Mask r-CNN,” in
Proceedings of the IEEE international conference on computer vision, Vol. 99. 2961
22969.

Hyyppa, E., Hyyppa, J., Hakala, T., Kukko, A., Wulder, M. A., White, J. C,, et al.
(2020). Under-canopy UAYV laser scanning for accurate forest field measurements
ISPRS. J. Photogramm. Remote Sens. 164, 41-60. doi: 10.1016/
j-isprsjprs.2020.03.021

Jonckheere, L, Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., et al.
(2004). Review of methods for in situ leaf area index determination: Part i. theories,
sensors and hemispherical photography. Agricultural and forest meteorology 121
(1-2), 19-35.

Kamilaris, A., and Prenafeta-Boldq, F. X. (2018). Deep learning in agriculture: A
survey. Computers and electronics in agriculture 147, 70-90.

Kirillov, A., Wu, Y., He, K., and Girshick, R. (2020). “Pointrend: Image
segmentation as rendering,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 9799-9808.

Kong, T., Yao, A. B, Chen, Y. R,, and Sun, F. C. (2016). “HyperNet: towards
accurate region proposal generation and joint object detection,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, Las Vegas. 845—
853, IEEE.

Liang, X., Wang, Y., Pyorild, J., Lehtomiki, M., Yu, X., Kaartinen, H., et al.
(2019). Forest in situ observations using unmanned aerial vehicle as an alternative
of terrestrial measurements. Forest Ecosystem 6 (1), 1-16. doi: 10.1186/s40663-019-
0173-3

frontiersin.org


https://doi.org/10.1016/j.compag.2017.07.008
https://doi.org/10.3390/rs12050767
https://doi.org/10.12133/j.smartag.2020.2.4.202002-SA003
https://doi.org/10.3390/f10040296
https://doi.org/10.3390/rs12244144
https://doi.org/10.1016/S0034-4257(99)00056-5
https://doi.org/10.1016/S0034-4257(99)00056-5
https://doi.org/10.1016/j.isprsjprs.2020.03.021
https://doi.org/10.1016/j.isprsjprs.2020.03.021
https://doi.org/10.1186/s40663-019-0173-3
https://doi.org/10.1186/s40663-019-0173-3
https://doi.org/10.3389/fpls.2022.1041791
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., and Reed, S. (2016). “SSD: single
shot multibox detector,” in Proceedings of the European Conference on Computer
Vision (ECCV). (Cham: Springer), 21-37.

Liu, S., Qi, L., Qin, H,, Shi, J., and Jia, J. (2018). “Path aggregation network for
instance segmentation,” in IEEE conference on computer vision and pattern
recognition, Salt Lake City, UT, USA. 8759-8768.

Lou, X.,, Huang, Y., Fang, L., Huang, S., Gao, H., Yang, L, et al. (2022).
Measuring loblolly pine crowns with drone imagery through deep learning. J.
For. Res. 33 (1), 227-38. doi: 10.1007/s11676-021-01328-6

Ma, Q., Su, Y., and Guo, Q. (2017). Comparison of canopy cover estimations
from airborne LiDAR, aerial imagery, and satellite imagery. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 10, 4225-4236. doi: 10.1109/JSTARS.2017.2711482

Mohan, M, Silva, C. A,, Klauberg, C,, Jat, P., Catts, G., Cardil, A., et al. (2017).
Individual tree detection from unmanned aerial vehicle (UAV) derived canopy
height model in an open canopy mixed conifer forest. Forests 8 (9), 340. doi:
10.3390/£8090340

Mo, ], Lan, Y., Yang, D., Wen, F., Qiu, H., Chen, X,, et al. (2021). Deep learning-
based instance segmentation method of litchi canopy from UAV-acquired images.
Remote Sens. 13 (19), 3919. doi: 10.3390/rs13193919

Morales, G., Kemper, G., Sevillano, G., Arteaga, D., Ortega, I, and Telles, J.
(2018). Automatic segmentation of mauritia flexuosa in unmanned aerial vehicle
(UAV) imagery using deep learning. Forests 9 (12), 736. doi: 10.3390/f9120736

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture:
Key advances and remaining knowledge gaps. Biosyst. Eng. 114, 358-371. doi:
10.1016/j.biosystemseng.2012.08.009

Nyamgeroh, B. B,, Groen, T. A., Weir, M. J. C., Dimov, P., and Zlatanov, T.
(2018). Detection of forest canopy gaps from very high-resolution aerial images.
Ecol. Indic. 95, 629-636. doi: 10.1016/j.ecolind.2018.08.011

Ouyang, J., De Bei, R., Fuentes, S., and Collins, C. (2020). UAV and ground-
based imagery analysis detects canopy structure changes after canopy management
applications. OENO One 54, 1093-1103. doi: 10.20870/0eno-one.2020.54.4.3647

Ponce, J. M., Aquino, A., Tejada, D., Al-Hadithi, B. M., and Anddjar, J. M.
(2021). A methodology for the automated delineation of crop tree crowns from
UAV-based aerial imagery by means of morphological image analysis. Agronomy
12 (1), 43. doi: 10.3390/agronomy12010043

Frontiers in Plant Science

157

10.3389/fpls.2022.1041791

Qi, Y., Dong, X., Chen, P., Lee, K.-H., Lan, Y., Lu, X,, et al. (2021). Canopy
volume extraction of citrus reticulate blanco cv. shatangju trees using UAV image-
based point cloud deep learning. Remote Sens. 13, 3437. doi: 10.3390/rs13173437

Qi, J., Liu, X,, Liu, K., Xu, F., Guo, H., Tian, X,, et al. (2022). An improved
YOLOV5 model based on visual attention mechanism: Application to recognition
of tomato virus disease. Computers and electronics in agriculture 194, 106780.

Rasmussen, J., Ntakos, G., Nielsen, J., Svensgaard, J., Poulsen, R. N., and
Christensen, S. (2016). Are vegetation indices derived from consumer-grade
cameras mounted on UAVs suficiently reliable for assessing experimental plots?
Eur. J. Agron. 74, 75-92. doi: 10.1016/j.¢ja.2015.11.026

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-CNN: Towards real-time
object detection with region proposal networks. Advances in neural information
processing systems 2015, 28.

Ru, Y, Jin, L,, Jia, Z. C,, Bao, R,, and Qian, X. D. (2015). Design and experiment
on electrostatic spraying system for unmanned aerial vehicle. Trans. CSAE 31 (8),
42-47. doi: 10.3969/j.issn.1002-6819.2015.08.007

Wu, D., Johansen, K., Phinn, S., Robson, A., and Tu, Y.-H. (2020). Inter-
comparison of remote sensing platforms for height estimation of mango and
avocado tree crowns. Int. J. Appl. Earth Obs. Geoinf. 89, 102091. doi: 10.1016/
1.jag.2020.102091

Wu, X, Shen, X., Cao, L., Wang, G., and Cao, F. (2019). Assessment of individual
tree detection and canopy cover estimation using unmanned aerial vehicle based
light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sens. 11,
908. doi: 10.3390/rs11080908

Yang, B, and Xu, Y. (2021). Applications of deep-learning approaches in
horticultural research: A review. Hortic. Res. 8, 123. doi: 10.1038/s41438-021-00560-9

Yildiz, A. K., Keles, H., and Aras, S. (2020). Estimation of canopy area of fruit
trees using light unmanned aerial vehicle (UAV) and image processing methods.
Turkish J. Agriculture-Food Sci. Technol. 8 (5), 1039-1042. doi: 10.24925/
turjaf.v8i5.1039-1042.3164

Zhou, D., Li, M., Li, Y., Qi, J., Liu, K., Cong, X,, et al. (2020). Detection of ground
straw coverage under conservation tillage based on deep learning. Computers and
electronics in agriculture 172, 105369. doi: 10.1016/j.compag.2020.105369

frontiersin.org


https://doi.org/10.1007/s11676-021-01328-6
https://doi.org/10.1109/JSTARS.2017.2711482
https://doi.org/10.3390/f8090340
https://doi.org/10.3390/rs13193919
https://doi.org/10.3390/f9120736
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://doi.org/10.1016/j.ecolind.2018.08.011
https://doi.org/10.20870/oeno-one.2020.54.4.3647
https://doi.org/10.3390/agronomy12010043
https://doi.org/10.3390/rs13173437
https://doi.org/10.1016/j.eja.2015.11.026
https://doi.org/10.3969/j.issn.1002-6819.2015.08.007
https://doi.org/10.1016/j.jag.2020.102091
https://doi.org/10.1016/j.jag.2020.102091
https://doi.org/10.3390/rs11080908
https://doi.org/10.1038/s41438-021-00560-9
https://doi.org/10.24925/turjaf.v8i5.1039-1042.3164
https://doi.org/10.24925/turjaf.v8i5.1039-1042.3164
https://doi.org/10.1016/j.compag.2020.105369
https://doi.org/10.3389/fpls.2022.1041791
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

& frontiers | Frontiers in

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Ruirui Zhang,

Beijing Academy of Agricultural and
Forestry Sciences, China

REVIEWED BY
Qing Tang,

Beijing Research Center for Intelligent
Equipment for Agriculture, China
Jiangtao Qi,

Jilin University, China

*CORRESPONDENCE
Shengde Chen
shengde-chen@scau.edu.cn
Yubin Lan
ylan@scau.edu.cn

SPECIALTY SECTION
This article was submitted to
Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

RECEIVED 02 November 2022
ACCEPTED 23 December 2022
PUBLISHED 26 January 2023

CITATION
Chang K, Chen S, Wang M, Xue X and
Lan Y (2023) Numerical simulation and
verification of rotor downwash flow
field of plant protection UAV at
different rotor speeds.

Front. Plant Sci. 13:1087636.

doi: 10.3389/fpls.2022.1087636

COPYRIGHT
© 2023 Chang, Chen, Wang, Xue and
Lan. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Plant Science

TYPE Original Research
PUBLISHED 26 January 2023
D01 10.3389/fpls.2022.1087636

Numerical simulation and
verification of rotor downwash
flow field of plant protection
UAYV at different rotor speeds

Kun Chang*? Shengde Chen’**, Meimei Wang*,
Xinyu Xue® and Yubin Lan*?*%

*College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural
University, Guangzhou, China, ?National Center for International Collaboration Research on
Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University,
Guangzhou, China, *Guangdong Laboratory for Lingnan Modern Agriculture, South China
Agricultural University, Guangzhou, China, “Department of Mechanical Engineering, Anyang
Institute of Technology, Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and
Rural Affairs, Nanjing, China, ®*Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture
and Rural Affairs, Nanjing, China, ¢Department of Biological and Agricultural Engineering, Texas
A&M University, College Station, TX, United States

In aerial spraying of plant protection UAVs, the continuous reduction of
pesticides is an objective process. Under the condition of constant flight
state (speed and altitude), the change of pesticide loading will inevitably lead
to the shift of lift force and rotor speed generated by UAV rotor rotation, which
will change the distribution of the rotor flow field and affect the effect of aerial
spraying operation of plant protection UAV. Therefore, the rotor speed of UAV
is taken as the research object in this paper, and the adaptive refinement
physical model based on the Lattice Boltzmann Method (LBM) is used to
numerically simulate the rotor flow field of the quadrotor plant-protection
UAV at different speeds. A high-speed particle image velocimeter (PIV) was
used to obtain and verify the motion state of the droplets emitted from the fan
nozzle in the rotor flow field at different speeds. The results show that, with the
increase of rotor speed, the maximum velocity and vorticity of the wind field
under the rotor increase gradually, the top wind speed can reach 13m/s, and
the maximum vorticity can reach 589.64s™1. Moreover, the maximum velocity
flow value is mainly concentrated within 1m below the rotor, and the maximum
vorticity value is primarily concentrated within 0.5m. However, with the
increase of time, the ultimate value of velocity and vorticity decreases due to
the appearance of turbulence, and the distribution of velocity and vorticity are
symmetrically distributed along the centre line of the fuselage, within the range
of (-1m, 1m) in the X direction. It is consistent with the motion state of droplets
under the action of the rotor downwash flow field obtained by PIV. The study
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results are expected to reveal and understand the change law of the rotor flow
field of plant protection UAVs with the dynamic change of pesticide loading to
provide a theoretical basis for the development of precise spraying operation
mode of plant protection UAVs and improve the operation effect.

KEYWORDS

plant protection UAV, dynamic load effect, lattice Boltzmann method (LBM), particle
image of velocity (PIV), the numerical simulation

Introduction

The application technology of plant protection unmanned
aerial vehicle (UAV) has the advantages of high operation
efficiency, low operation cost, and no limitation of operation
geographical area and crop growth, which is one of the key
technologies to realize the modernization of field management
(Dongyan et al, 2014; Yong et al, 2017). Early domestic
researchers initially focused on application operation
parameters and droplets deposition (Yuan-yuan, 2013; Shuai,
2014). Since 2016, the research scope of plant protection UAV
applications began to multiply and extend to other application
objects. For example, the distribution of spraying effect in the
citrus orchard was studied under different operating parameters
(Pan and Qiang, 2016); Study on spraying corn with droplets
using JF01-10 plant protection UAV in different growing stages
(Zheng et al,, 2017); Study on wheat scab control by using DJI
T30 plant protection UAV (Tang et al., 2018). That can be seen
that plant protection UAVs have been widely used in modern
precision agriculture (Huang et al., 2013; Shahbazi et al., 2014;
Xiongkui et al, 2017; Chen et al, 2022). In particular, the
quadrotor plant protection UAV, the most important type of
plant protection UAV, has been effectively applied to prevent
and control diseases, insects and weeds in various countries (Jiyu
et al,, 2018; Wang et al.,, 2019; Zhan et al,, 2022).

Generally, in terms of studying the effect of droplets deposition
and distribution, field experiments mainly use materials such as
water-sensitive papers, Mylar sheets, Petri dishes and polyethene
wires to study the related parameters of wind field distribution
characteristics (Shengde et al., 2016; Xiaonan et al,, 2017; Wang
et al, 2018 Wu et al,, 2019). Through these materials, the droplets
in the vertical and horizontal planes can be collected in space
movement. Still, only the deposition effect of the pesticide droplets
can be observed, and the deposition motion state and mechanism of
the droplets can not be directly revealed. The rotor wind field
generated by the plant protection UAV is the most critical factor
affecting aerial spray droplets deposition and distribution
characteristics in the gradual settlement of pesticide droplets
under the rotor wind field (Songchao et al., 2015; Songchao et al,,
2017). In recent years, some researchers have also used wireless
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wind sensor networks, ultrasonic anemometer arrays and
tensiometers to measure the change of instantaneous wind field
under the rotor to reveal the influence mechanism of the rotor
downwash wind field on droplets deposition (Jiyu et al, 2014a;
Zhang et al,, 2016; Songchao et al., 2017; Wang et al., 2018; Tang
etal, 2019; Wu et al,, 2019). In the whole process of aerial spraying
of plant protection UAV, with the continuous reduction of the
pesticide in the pesticide box, its mission load parameters are always
in a constant dynamic change process. Therefore, the effect of the
rotor wind field of plant protection UAV under dynamic load is
bound to differ (Jiyu et al., 2014a; Jiyu et al., 2014b; Shengde et al,,
2016; Chen et al., 2017). Nevertheless, the above research is only
focused on the hover state or a particular condition to test and
analyze, and the change of pesticide load in the actual operation
condition determines that the rotor wind field distribution is a
process of continuous change. Therefore, there are many
limitations; the above research results cannot directly reflect plant
protection UAV’s rotor wind field distribution transformation in
the whole operation process.

With the improvement of the computing power of computers
and the gradual improvement of the theory of fluid mechanics, the
cross combination of the two makes computational fluid dynamics
(CFD) widely in-depth into various fields. Especially in the field of
agriculture, computational fluid dynamics is often used to analyze
the wind field changes of UAVs in flight. Through the numerical
simulation method, the three-dimensional CFD model and two-
phase flow model were established to study the influence of the
downwash wind field of the plant protection UAV on the
movement trajectory and distribution of droplets (Junfeng et al,
2017; Fengbo et al., 2018; Hao et al,, 2019; Juan et al,, 2019; Guo
et al, 2020). However, in these previous numerical simulation
studies, the complex structure of nozzle model is not accurate
enough due to the physical model of nozzle in the numerical
simulation. The physical model in numerical simulation can not
completely represent the real nozzle structure. Nonetheless, all these
studies provide specific references and guidance for the study of
wind field simulation of plant protection UAVs.

For wind field distribution models under complex
conditions, due to the inaccuracy of the physical model and
the weak computational force, many simulations will simplify
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the physical model and reduce the mesh density, resulting in
some deviations. For example, in the simulation of the rotor
wind field, the structure will be simplified, and the mesh density
will be reduced so that the motion state in the rotor wind field
can be obtained conveniently and quickly. The computational
fluid dynamics method based on the Lattice Boltzmann method
(LBM) has advantages in dealing with the complex model
boundary of UAV rotors (Fakhari and Lee, 2015; Sheng et al.,
2018). It can accurately deal with problems at both micro and
macro scales (Tang et al., 2020a; Zhang et al., 2020; Tang et al.,
2021; Wang et al., 2021). In addition, with the development of
image processing technology, particle image velocimetry (PIV)
has been applied to the analysis of spray under the rotor wind
field (Jin et al., 2014; Tang et al., 2020b). However, there are few
papers on the combination of numerical simulation and PIV
image analysis technology to study the downwash flow state of
the rotor wind field of plant protection UAVs under
dynamic load.

Therefore, this study is devoted to studying the changes in
the rotor wind field distribution of plant protection UAVs under
dynamic loads (at different rotor speeds) and focuses on
revealing the influence mechanism of rotor wind field on
droplet distribution characteristics of plant protection UAVs at
different rotor speeds. Because the Lattice Boltzmann method
has obvious advantages in dealing with complex boundary
conditions and non-stationary moving objects, XFlow software
is used to simulate the distribution of the downwash wind field
of the quadrotor plant protection UAV at different rotor speeds.
At the same time, because PIV has the characteristics of non-
contact, high measurement accuracy and fast processing speed,
PIV is used in this study to measure the spray changes of the
wind field under the rotor at different speeds. Through the
combination of the two, the conditions of the downwash wind
field and the velocity and vorticity of droplets under different
rotor speeds are compared. It is hoped that this study can help
researchers better understand the distribution characteristics of
rotor wind field at different rotor speeds and further reveal the
distribution characteristics and rules of droplet deposition under
the influence of rotor wind field in the dynamic load state of the
quadrotor plant protection UAV.

Materials and methods
Numerical simulation

Physical model

This paper takes the 410S quadrotor plant protection UAV
(Xiamen Land and Air Technology Co., LTD.) as the research
object. As one of the most representative models in the market at
present, the UAV has the functions of manual or semi-automatic
route flight, continuous spraying at break point, low voltage
protection and so on. The expansion size is 1075x1075x490mm.
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FIGURE 1
Quadrotor plant protection UAV.

The folding size is 635x666x490mm, the UAV empty weight is
about 5kg (excluding the spraying system), the maximum takeoff
weight is 25kg, the rotor size is 30 inches, and the spraying is 1.3-
2 acres per sortie. The UAV is shown in Figure 1, and its main
parameters are shown in Table 1.

The detailed parameters of the Xiamen Land and Air
Technology Co., LTD. 410S quadrotor plant protection UAV
are listed in Table 1.

The UAV rotor is the essential component to generate the
rotor wind field, so it is essential to establish accurate 3D
modelling for it. Therefore, in order to accurately simulate the
wind field characteristics of the quadrotor UAV at different rotor
speeds, it is necessary to conduct a three-dimensional reverse
reconstruction of the rotor to establish the physical model of the
rotor. In this paper, a handheld 3D scanner N700 (CREAFORM
INC.) is used to scan the rotors in three dimensions to obtain the
point cloud data of each scanning surface of the rotors, as shown
in Figure 2A. Then Geomagic Studio software (Geomagic INC.)
is used to post-process each scanned surface point and
reconstruct the three-dimensional surface model of the rotor,
as shown in Figure 2B. The body, landing gear and other
components of the quadrotor UAV are based on surveying
and mapping technology dimensions. Autodesk Inventor

TABLE 1 Parameters of the quadrotor plant protection UAV.

Rotor diameter/m 1.4
Typical application speed/m-s™ 3-8
Rotor speed/rpm 0-3000
Load capacity/kg 10
Flight duration/min 8-10
Operate temperature/°C -25-50
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FIGURE 2
Three-dimensional model of quadrotor plant protection UAV.

Profession (Autodesk INC.) is used to establish a three-
dimensional model. The complete three-dimensional model of
the constructed electric quadrotor plant protection UAV is
shown in Figure 2C.

Simulation calculation

Commonly used commercial Computational Fluid Dynamic
(CFD) software, such as Fluent (ANSYS Inc.) and CFX (ANSYS
Inc.), the dynamic mesh technique is usually used in dynamic
simulation to analyse the hydrodynamic characteristics of rotors
in a high-speed rotating motion. However, for complex
quadrotor model boundary cases, the mesh reconstruction in
the numerical simulation process usually consumes a large
amount of computational time, and it is easy to produce
negative volume in the calculation process, leading to
calculation errors. XFlow (Next Limit Dynamics S.L.) is a fluid
Dynamics simulation and analysis software based on the Lattice
Boltzmann method (LBM), which does not need to mesh the
model. It has advantages in solving complex boundary
conditions and three-dimensional flow field problems of non-
stationary moving objects. It can conveniently deal with fluid
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FIGURE 3

D3Q27 lattice model.
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problems at micro and macro scales. Because this particle-based
calculation method does not require traditional grid division and
has high efficiency in the discretisation stage and accurate
calculation results, this paper adopts the LBM-based XFlow
software to simulate the downwash wind field of the quadrotor
plant protection UAV.

Simulation method

Xflow uses the LBM method, where the computation
domain is a uniform cube cell. The LBM is a mesoscopic
method, and the macroscopic Navier-Stokers equations can be
derived from the lattice Boltzmann equation according to the
Chapman-Enskog expansion. In many of the LBM models,
XFlow adopts a three-dimensional lattice structure as shown
in Figure 3, which includes 27 velocity vector directions
(D3Q27), 1 discrete velocity vector lattice body to zero point
in the centre, 6 discrete velocity vectors from the body of the
heart to the centre of the lattice decent, 12 discrete velocity
vector from body centre to lattice body midpoint, 8 discrete
velocity vectors from the centre of the body to the top Angle of
the lattice. Therefore, compared with the traditional LBM, there
are higher-order spatial discretisation modes.

In this method, the lattice-Boltzmann equation is selected as
the solution equation, and the lattice-Boltzmann transport
equation is discretized on the lattice as

filx + et +dt) = fi(x, t) + Wi(x, t) (1)
Wi=1(fi-f) ()
Where f; ——Particle velocity vector distribution function; e;

——The velocity of the particle in the i direction; d,——Time
step; fi(x,t) ——The velocity distribution function of the particle
in i the direction at x point at t time; w;—— Collision operator;
fif—— One particle equilibrium distribution function; 7 ——
Dimensionless relaxation parameter.

After the approximate simplification of the collision
operator, the equation is reduced to the Navier-Stokers
equation, which is the governing equation to describe the fluid
flow, and the fluid state with a low Mach number can
be displayed.
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Fluid calculation domain and Discrete division of the computational domain.

Boundary conditions

The fluid calculation domain set by simulation is a cuboid
with a space size of 12mx6mx20m. In the calculation domain,
the height of the quadrotor plant protection UAV from the
ground is 4m, as shown in Figure 4A.

By improving the spatial and temporal resolution of the
calculation domain, the flow field data parameters of the rotor
can be obtained more accurately to obtain the omnidirectional
irregular flow turbulence scale. Since the simulation of rotor
plant protection UAV focuses on the rotor surface, fuselage
surface and the wake of the downwash wind field of the UAV,
the global spatial refinement resolution size of the virtual wind
tunnel is set to 0.2m to save computing resources and shorten
computing time. The surface refinement method of the fuselage,
main rotor and tail is set as an adaptive method, and the
resolution of the fuselage and rotor is set as 0.05m. In order to
further demonstrate the characteristics of the wake of the
downwash wind field, the refinement space domain is set as
12mx6mx1m at the centre of the rotor, and the refinement
resolution of the wake of the downwash wind field is set as
0.025m. After the parameters are set, the automatic discretisation
effect diagram of numerical simulation is shown in Figure 4B. The
motion characteristics of the four rotors are set to be rigid and
rotate around the Y-axis of their respective coordinate systems.

A Rotor platform

FIGURE 5
Plant protection UAV test platform.
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In order to obtain the movement law of the quadrotor UAV's
in the downwash field, numerical simulation analysis is carried
out for the quadrotor UAVs in hovering state at different speeds
of 1000rpm, 1500rpm, 2000rpm and 2500rpm. Because the rotor
of the quadrotor plant protection UAV will produce velocity
flow and vortex in the process of rotation, in order to analyse this
phenomenon, the simulated phase diagram of two rotors of the
quadrotor UAYV in a hovering state is selected for analysis.

PIV experimental

UAV system platform

The UAV rotor used in the test is fixed on the plant
protection UAV rotor platform, designed and manufactured
by the Nanjing Institute of Agricultural Mechanization. The test
platform mainly includes the rotor system, spray system, control
system and lifting device. The main body of the test platform is
composed of aluminium alloy profiles, which are suspended
under the gantry frame. There are three adjustable attitudes
ranging from -30°~30° which can support using multiple
UAVs, such as quadrotor, six-rotor and eight-rotor. The rotor
system is specially customized for the test platform. The motor
speed of the moving platform is controlled by the ground station
software in real-time to achieve the corresponding wind field test

Handheld earth
station

B Control system
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TABLE 2 Power system parameters of plant protection UAV.

Parameters Technical index

Rotor diameter/m 1.4
Rotor speed/rpm 0-3000
Operation duration time/min 10-15
Operate height/m 1-3

effect. At the same time, the parameter information of the
platform can be monitored in real time, and the test data can
be saved. The quadrotor structure is used in the test, and the
height of the rotor is about 2m above the ground. The UAV
system platform is shown in Figure 5.

Details of power system of plant protection UAV are shown
in Table 2 below:

The spray system of the platform is installed next to the
gantry frame and consists of a water pump and a control system.
The spray system supports the hydraulic nozzle and centrifugal
spray nozzle. The pressure range is 0~1.2MPa, the flow range is
0~2L/min, and the spray time is automatically controlled. In this
experiment, a fan-shaped 110-02 nozzle designed and
manufactured by Lechler is used to produce droplets with an
average volume diameter of 120um. Because the relative density
and size of droplets meet the particle requirements required by
the PIV test, the droplets produced by the sprinkler head can be
directly used as tracer particles for the PIV test. Meanwhile, the
nozzle is installed 35cm below the rotor.

PIV system

Because the rotor vortex caused by the downwash wind field
of the quadrotor plant protection UAV is aperiodic, the PIV

10.3389/fpls.2022.1087636

device is selected as the measurement tool to measure the fluid
domain. PIV technology is a transient, multi-point, non-contact
fluid dynamics measurement method, which can record the
velocity distribution information of particles at a space point
at the same time, provide abundant spatial structure and flow
characteristics of the flow field, and has very high measurement
accuracy. The PIV system consists of high-speed cameras
(2048*2048, 32 FPS; TSI Incorporated, USA), a pulsed laser
(380 mJ/pulse, wavelength = 532 nm; TSI Incorporated, USA),
etc. The laser generated by the pulsed laser is combined through
an optical system composed of a cylindrical mirror and a
spherical mirror to generate a slice light source with a waist
thickness of about 1 mm. The frame rate is resized according to
the actual situation. In this experiment, the schematic setting of
the whole PIV system experiment is shown in Figure 6.

A 50mm lens is used to generate a large enough field of view
to capture the motion state of the flow field particles, which is the
evolution of particles scattering from the nozzle into the air. The
movement of droplet particles in the wind field under different
rotor speeds is captured by setting Mask, as shown in Figure 7. In
this experiment, the pulse width of the YAG laser pulse is 3-5ns,
the time interval of two laser beams is 50us, the time series
between two pictures is 0.025s, and the maximum distance of
particle movement is less than 1mm. Therefore, the query
window is set to 36*36 pixels (a 4.6x4.6mm square) to ensure
that the particle moves less than a quarter of the query window
length, and the overlap rate is set to 50x50mm.

The results of PIV are obtained by obtaining the average
value of flow field data from multiple consecutive double-frame
images when the rotor speed is 0, 1000rpm, 1500rpm, 2000rpm
and 2500rpm, respectively. Based on its high sampling

l.workstation; 2.synchronizer; 3.laser powersupply; 4.laser; 5.CCD camera;
6.UAV platform; 7.the fan nozzle; 8.laser irradiation area; 9.photo area

FIGURE 6
Schematic diagram of the experiment.
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FIGURE 7

Image of droplets distribution in the downwash flow field of the
nozzle under the rotor. (The red particles are the droplets
irradiated by the laser, and the dashed box is the set Mask flow
field analysis area)

frequency, the turbulent kinematic energy is calculated from the
two position components of the velocity fluctuation as follows:

1
- (u/Z +V’2)
2

Where u is the horizontal component, v is the

k=

vertical component.

Insight 4G software is used to obtain two consecutive
instantaneous AB frames spray images, analyze the flow field
in the images, and generate the original data. Tecplot software is
used to obtain the image data to generate the velocity vector
map. The resolution of these images is 2048*2048 pixels. The
nozzle is located at (0,0) in the coordinate system, and the rotor
is located directly above the nozzle. Because the laser beam
irradiates the droplet field from the right and the droplets have a
refraction effect, the light on the left side is weaker than that on
the right side, so the effect on the right side of the whole droplet
field is obviously stronger than that on the left side, but the
actual effect should be consistent. According to the rotor speed
used in the numerical simulation analysis, the corresponding
rotor speed of 1000rpm, 1500rpm, 2000rpm and 2500rpm is also
selected for the PIV test to observe the influence of the wind field
below the rotor on the droplet velocity flow and vortex in the
test. The velocity and vorticity motion of droplets under the
action of the wind field is analyzed.

Frontiers in Plant Science

164

10.3389/fpls.2022.1087636

Results and analysis
Numerical simulation of rotor flow field

Distribution of rotor velocity under
numerical simulation

The rotor speeds studied in the test are respectively
1000rpm, 1500rpm, 2000rpm and 2500rpm. Therefore, 3s and
5s at different times are selected to study the distribution of flow
fields at different rotor speeds to compare the differences of flow
fields. Figure 8 is the velocity state phase diagram of the
downwash wind field at 3s and 5s when the rotor speed of the
quadrotor plant protection UAV is 1000rpm, 1500rpm,
2000rpm and 2500rpm, respectively. As can be seen from
Figures 8A1-D1, with the increase of rotor speed, the speed
value under the rotor of the quadrotor UAV gradually increases,
with the maximum value increasing from 7.6m/s at 1000rpm to
15.7m/s at 2500rpm. Due to the presence of turbulence, the
velocity core area under each rotor (velocity greater than 10m/s)
also gradually breaks apart, forming four distinct velocity core
areas. At the same time, a very low value of local velocity occurs
just below the centre of each rotor in the process of rotor
rotation. Furthermore, with the increase of rotor speed, the
situation of extremely low local velocity becomes more apparent.
By observing Figure 8A1 and Figure 8A2, it is found that when
the rotation speed is 1000rpm, the situation of the very low local
speed is not apparent, indicating that the quadrotor plant
protection UAYV is still in the relatively initial state when it is
actually 1000rpm and has not reached the stable flight state.

As shown in Figures 8A2-D2, with the increase of rotor speed,
the maximum speed under the rotor of the quadrotor UAV varies
from 7.9m/s at 1000rpm to 14.6m/s at 2500rpm. This shows that
the quadrotor plant protection UAV does not reach a stable flight
state at 1000rpm while the maximum speed under the rotor
decreases at 2500rpm. The reason for the decrease is that the
velocity flow field under the rotor gradually diffuses around and
becomes more widely distributed after a period of development. In
addition, part of the wind bouncing on the ground also rises, which
offsets the downwash wind, so the downwash force is weakened,
and the maximum speed is reduced(as shown by the red arrow in
the figure). By observing Figure 8, it can be seen that the contraction
distortion of the velocity core area caused by the rotor is not
apparent when the rotational speed is 1000rpm and 1500rpm in the
figure. However, the contraction distortion of the velocity core area
under the rotor is noticeable when the rotor speed is 2000rpm and
2500rpm. It indicates that the quadrotor plant protection UAV
basically reaches a stable flight state when the rotor speed is
above 2000rpm.

frontiersin.org


https://doi.org/10.3389/fpls.2022.1087636
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chang et al. 10.3389/fpls.2022.1087636
[Velocity(m - s71) elocity(m - s~)
l12
-9
6
3
0
Velocity(m - s71) Velocity(m - s~1)
ll2 I12
29 -9
6 I6
3 I3
0 0
B2 1500rpm (5s)
Velocity(m - s™1) Velocity(m - s™)
Il 2 I 12
59 § 9
6 6
3 3
' 0 0
€2 2000rpm (5s)
FIGURE 8

Rotor velocity distribution at different speed and time.
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FIGURE 9
Rotor velocity distribution at a different time and 2500rpm.
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Because the flow field has just reached the ground and
generated turbulence at 3s and the flow field is formed at 5s
when the rotor speed is 2500rpm, the rotor speed is 2500rpm for
analysis. Figure 9 is the speed state phase diagram of the
quadrotor plant protection UAV at 1s, 3s, 5s and 7s when the
rotor speed is 2500rpm. It can be seen from Figures 9A-D that a
jellyfish-like wind field with the speed decreasing from the
fuselage has been generated around the quadrotor plant
protection UAV at 1s. The maximum wind field at each time
is 14.8m/s, 15.7m/s, 14.6m/s and 14.9m/s respectively. Thus, it
can be seen that the wind field initially acts together in the high-
speed area formed above the rotor, integrates with each other,
diffuses to the top of the whole fuselage, and rapidly decreases
from the fuselage to the surrounding areas. The velocity core
area has been formed just below the rotor at 1s. With the gradual
downward development of the wind field, the tail is broken more
violently in the development process, strong turbulence appears
below, and the influence range gradually increases downward.
The flow field has reached the ground, and the maximum speed
of the wind field also reaches the highest at this moment, which
is 15.7m/s at 3s. Then the wind field, due to contact with the
ground, collision with the ground, rebound and spread around, a
violent turbulent phenomenon occurred(as shown by the red
arrow in the figure). The maximum speed gradually reduced,
kept below 15 m/s. It can be seen that with the increase of time,
the velocity flow field under the quadrotor UAV gradually
diffuses downward, and the range of the flow field gradually
increases. After bouncing with the ground, the airflow is
absorbed by the low pressure generated by the high-speed
airflow, and the spiral airflow is gradually formed in the
vertical space. Taking the centre line of the fuselage as the axis
of symmetry, the flow field is about in the x-direction (-1m, 1m).
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FIGURE 10
Distribution of rotor vorticity at different times and 2500 rpm.
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At the same time, from the perspective of flow field
development, the velocity flow field is basically developed and
formed around 5s.

According to Figures 8, 9, when the rotor of the quadrotor
UAV rotates, the velocity core area generated by the two rotors
with opposite rotation directions is basically symmetric, and the
overall posture of aggregation, contraction and downward
pressure is presented after the development and formation.
The local extremely low velocity under the rotor becomes
more obvious with the increase of rotor speed. As the distance
from the rotor increases, the velocity core area generated by the
downwash wind field under the rotor gradually decreases, and
the distance of about 1m below the rotor basically disappears.

Distribution of rotor vorticity under
numerical simulation

Figure 10 is the cross-sectional phase diagram of the vortex
state of the quadrotor plant protection UAV at the hover time of
Is, 3s, 5s and 7s when the rotor speed is 2500rpm. First of all, it
can be seen from Figure 10 that the maximum vorticity at each
moment reaches 337s %, 3765}, 304s' and 343s respectively,
showing that the maximum vorticity rises first and then
decreases. The maximum vorticity around the rotor has
reached 3375 at s, and the vortex on the rotor surface is
concentrated and distributed around the rotor. Second, the
vortex moves down in a vertical direction under each rotor.
Due to the contraction distortion characteristic of the wingtip
vortex, the contraction effect is induced by the following wake
vortex. After leaving the rotor surface, the vortex gradually
shrinks. Under the coupling effect of the vortex, the rotor
vortex is damaged and eventually forms turbulence. As shown
in Figure 10, with the fuselage centre line as the axis of
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FIGURE 11
Distribution of rotor vorticity at different speeds and different times.

symmetry, the main vortex field is about in the x-direction
(-1m, 1m).

With the passage of time, the maximum vorticity reaches
3765 at 3s. Then the larger value of vorticity begins to decline
and mainly concentrates within 0.5m below the rotor. At the
same time, the rest parts gradually move further below the rotor
and contain larger vorticity. Larger vorticity may even appear
within 2m below the rotor and then be destroyed by coupling,
resulting in turbulence. However, the vorticity beyond 2m below
the rotor is small and basically exists in the form of turbulence.
This indicates that the quadrotor plant protection UAV produce
a strong enrolling effect within 1m below the rotor and the
enrolling effect is weaker, followed by 1m-2m. At the same time,
in the vertical direction, the spiral vortex decreases with the
increase of the distance from the rotor.

Since the velocity field at 3s and 5s time is mainly observed
and analyzed in the wind field analysis, and a similar flow field
also appears in the vortex field, this paper also analyze the vortex
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at various speeds at 3s and 5s time. Figure 11 is the vortex state
phase diagram of the downwash wind field at 3s and 5s when the
rotor speed of the quadrotor plant protection UAV is 1000rpm,
1500rpm, 2000rpm and 2500rpm, respectively. As shown in
Figures 11A1-D1, the vorticity also increases, and the vortex
changes more violently with the increase of rotor speed. In
Figure 11A, the vortex within 1m below the rotor shows
apparent symmetry, showing a relatively stable state as a
whole. In the range of 1m-2m below the rotor, relatively
chaotic turbulence is generated due to the coupling effect of
the rotor vortex. In the range of 2m to 4m below the rotor, the
turbulent effect is more apparent, and the vortex has a strong
irregular movement. At the same time, the symmetrical vortex
generated by the rotor decreases obviously with the increase of
rotor speed. When the time is 3s, the symmetric vortices with the
rotation speed of 1000rpm, 1500rpm, 2000rpm, and 2500rpm
mainly appear within 1m, 0.8m, 0.6m, and 0.5m below the rotor,
respectively. The maximum vorticity under the rotor also
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changes from 2165 at 1000rpm to 376s™" at 2500rpm with the
increase of rotor speed.

Although part of the vortex symmetry is still maintained in
Figure 11A2 compared with Figure 11A2, the maximum vorticity
under the rotor is 213s™" in Figure 11B2, and the vortex is greatly
disorganized. In Figure 11B2, the vortex under the rotor even
appears to have temporary disconnection. As seen from
Figure 11B1, the maximum vorticity becomes 170s™ with the
increase of time at 1000rpm. This indicates that the vortex of the
quadrotor plant protection UAV developed with time at this
speed appeared disorder after reaching the ground at 3s. By
observing the vortex state of 1500rpm, 2000rpm and 2500rpm

10.3389/fpls.2022.1087636

at 5s, the maximum vorticity of 1500rpm and 2000rpm at 5s is
2465 and 283s™", respectively, which also shows a certain degree
of disorder, but the degree of influence gradually decreases. The
vortex state at 2500rpm appears more stable and develops more
stably than 3s. By comparison, it can be seen that the greater the
rotor speed, the longer the vortex needs to reach relative stability.

According to Figures 10, 11, when the rotor of the quadrotor
UAV rotates, the vortices generated by the two rotors with
opposite rotation directions are basically symmetric, and the
overall posture of aggregation, contraction and downward is
presented after the development and formation. Moreover, the
greater the rotational speed, the longer it takes for the vortex to
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FIGURE 12
Average droplet velocity field at different rotor speeds.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2022.1087636
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chang et al.

reach a relatively stable state. At the same time, with the increase
of the distance from the rotor, the vorticity gradually decreases,
and the enrolling effect of the larger vortex group is mainly
concentrated within 1m below the rotor.

PIV experiment of the rotor flow field

Distribution of rotor velocity under the
PIV experiment

As shown in Figure 12, they are the droplet velocity fields at
rotor speeds of 0, 1000rpm, 1500rpm, 2000rpm and 2500rpm,
respectively. Figure 12A shows that the expanding state of
droplets is mainly distributed in the sector. The effective range
of droplets greater than 16 m/s (defined as high-speed) in the
sector area is mainly distributed in the sector area of X (-70, 100)
Y (0, -150), while the regional velocity in other areas is mainly in
the range of 6-16 m/s (defined as medium-speed). The droplet
velocity in the lower right corner is mainly below 6 m/s (defined
as low-speed), which has been shown by curves in the figure of
each area. There are medium-speed droplets in the air in the
upper left and upper right corners and much turbulence. As
the speed increases to 1000rpm (Figure 12B), compared with the
wind field without downward pressure in Figure 12A, under
the influence of the downwash wind field generated by the rotor,
the speed and range of action of the droplets in the sector area
have changed significantly. The turbulence pattern in the upper
left and upper right corners shows a particularly significant
change. The number of droplets decreases, and the velocity
decreases significantly to almost zero. Under the nozzle, not only
the velocity value but also the high-speed range of the droplets
increases significantly. The high-speed area near the nozzle is
shaped as a half ellipse with a long axis perpendicular to the Y-
axis. The fan distribution of droplets generated by the nozzle is
more obvious. The effective range of the high-speed area of
droplets is mainly distributed in the fan area of X (-70, 90) Y (0,
-140), the effective range of the medium-speed area decreases,
and the low-speed area in the lower left and right corners
increases. On the edge of both sides of the sector area, there
are apparent channels of medium-speed droplets layer between
the high-speed area and the air.

It can be seen from Figures 12C-E that with the increase of
rotor speed, the downward pressure wind field is gradually
enhanced, and the droplet high-speed area under the rotor
contracts, obviously. Not only does the high-speed zone
contract, but the droplet velocity decreases gradually. The
effective range distribution of the high-speed zone gradually
contracts from X (-65, 90) Y (0, -130) to the sector of X (-55, 85)
Y (0, -110). In addition, the core area of the high-speed zone
below the nozzle is the most obvious situation: the droplet area
and velocity decrease. Even the core area is mostly disconnected
from the surrounding area of the high-speed area (Figure 12E).
At the same time, the low-speed area in the lower left corner and

Frontiers in Plant Science

169

10.3389/fpls.2022.1087636

lower right corner of the area in the figure gradually increases
with the increase of rotor speed, especially the expansion in the
lower right corner is the most obvious.

By comparing the conditions in the high-speed area of each
droplet velocity field in Figure 12, it can be found that the
droplet velocity in the central area of the sector in the high-speed
area tends to decrease successively. This trend not only indicates
that the number of droplets is more concentrated in the unit
volume, which causes the laser coming from the right side to be
refracted more and weakens the intensity of the laser on the left
side but also indicates that under the action of the wind field
under the rotor, the speed of the droplets emitted from the fan
nozzle weaken with the increase of the rotor speed. The
expansion of the low-speed zone between the lower left corner
and the lower right corner also proves that the droplet velocity
from the fan nozzle weakens with the increase of rotor speed.

Similarly, Figure 13 shows the number distribution of
droplets in different rotor speed intervals. Figure 13A shows
that the maximum droplet velocity is about 18 m/s, and there are
mainly two peaks in the quantity distribution of droplet velocity.
The peak with the most significant number occurs in the interval
of 8.5-9.5 m/s, followed by the interval of 15.5-16.5 m/s. The
speed of droplets is primarily concentrated in the medium speed
interval of 6-16 m/s, followed by high speed and low speed.
Figure 13B shows the distribution of droplet velocity when the
rotor speed is 1000rpm, and the maximum droplet velocity is
about 19 m/s. With the appearance of the downwash wind field
under the rotor, the maximum droplet velocity does not increase
significantly, but the peak value of the number distribution of
droplet velocity changes. However, the peak value of the
medium-speed area becomes more. At the same time, a large
number of low-speed droplets also appears in the low-speed area
where there are only a few droplets, and the peak value is
generated. The peak value of the medium-speed area is mainly
distributed in the interval of 7-9 m/s, 11-12 m/s, 13.5-14.5 m/s,
and 15-16 m/s, while the peak value of the low-speed area is
mainly in the interval of 0.5-1.5 m/s.

Figures 13C-E show the quantity distribution of droplet velocity
at 1500rpm, 2000rpm and 2500rpm of rotor speed, respectively. It
can be seen from the figures of 13c and 13d that when the rotor
speed is 1500rpm and 2000rpm, the maximum speed of the droplet
field is basically 19m/s. However, in Figure 13E, when the rotor
speed is 2500rpm, the maximum speed of the droplet field is only
18m/s, indicating that the droplet field is affected by the increase of
the rotor speed. The maximum velocity of the droplet field is also
weakened. At the same time, compared with Figure 13B, the total
droplet velocity in the high-speed area decreases, and two apparent
peaks appear in the medium-speed area. In addition, by comparing
the medium-speed intervals of Figures 13C-E, it can be found that
the peak value of the medium-speed zone extends from the intervals
of 8-9 m/s and 15-16 m/s in Figure 13C to 6.5-8 m/s and 13.5-16 m/
s, respectively, indicating that the number of droplets in the
medium-speed zone gradually increases and the effect of wind
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field downward pressure is obvious. At the same time, it can also be
seen from the figures of the three, the number of droplets in the
low-speed area also increases significantly. The number of droplets
in the low-speed area with the speed toward zero concentration is
the most obvious, especially in Figure 13E.

As seen in Figure 13, the speed in the overall droplet field is
weakened due to the generation of the rotor wind field.
Furthermore, with the increase of rotor speed, it can be seen that
the droplet velocity in the low-speed area gradually concentrated at
0, and the turbulence in the whole study area basically disappear.
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Due to laser refraction caused by the concentration of the number
of droplets on the right side, the droplets in the left area are not
sufficiently obtained, and the velocity data are not apparent. Because
of this, the peak value of the total number of droplets in the
medium-speed area gradually tends to both sides of the medium-
speed area, which makes two prominent peaks appear in the
medium-speed area, which should be relatively gentle.

In conclusion, it can be seen from Figure 12 that the high-
speed area generated at the nozzle location is obviously different
due to the downwash wind field caused by the increase of rotor
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Average droplets vorticity field at different rotor speeds.

speed. With the increase of rotor speed, the downwash wind field
is gradually strengthened, and the high-speed area at the nozzle
is gradually contracted and decreased. At the same time, the total
spray angle of the nozzle is gradually reduced, and the number of
droplets in the sector area is gradually concentrated. The high-
speed area gradually decreases, and the low-speed area gradually
expands in the whole spray sector area. As can be seen from
Figure 13, the maximum velocity of droplets in the sector area is
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19 m/s, which is basically unchanged. When the total number of
droplets in the high-speed area is 1000rpm, the number of
droplets in the high-speed area is the largest, and the number
of droplets in the high-speed area gradually decreases with the
increase of the rotor speed. The number of droplets in the
medium-speed zone and low-speed zone increases obviously.
The turbulent conditions in the upper left and upper right
corners disappear.
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Distribution of rotor vorticity under the
PIV experiment

Figure 14 shows the vortex field of the nozzle droplet at
different rotor speeds. Figure 15 shows droplet vortex size and
quantity distribution at different rotor speeds.

Through the vortex analysis of Figure 14, it can be seen that
positive vortex and negative vortex cross in the droplets field,
and it can be clearly seen that the left side of the droplets field is
dominated by negative vortex, and the right side is dominated by
positive vortex. Through numerical analysis of the vortex field, it

10.3389/fpls.2022.1087636

can be seen that in Figure 14A, the extreme values of the vortex
in the droplets field are -449.14s™" and 819.02s™" respectively.
However, under the effect of the rotor wind field, the extreme
value here changes. In Figure 14B, the extreme value of the
vortex in the droplets field changes to -502.91s" and 463.75s".
Compared with Figure 14B, the positive vortex in the droplets
field has significantly changed and decreased by 355.27s !, while
the negative vortex in the droplets field has slightly changed and
only increased by 53.77s™". In Figures 14C, 14D, the extreme
value of the negative vortex in the droplets field decreases, both
of which are around -485s™". The extreme value of the positive
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vortex in Figure 14C reaches 589.64s™", while the extreme value
of the positive vortex in Figure 14D reaches 478.32s™', decreasing
by 111.44s™". In Figure 14E, the extreme values of the droplet
field are -597.93s" and 463.27s™" respectively. Compared with
Figure 14D, the positive vortex in the droplets field decreased by
15.05s", while the negative vortex in the droplet field changed
greatly and increased by 113.51s".

The vortex between (-500, 500) are selected as the X-axis,
and the number of vortex under different vorticity is selected as
the Y-axis for analysis in the Figure 15. As can be seen from
Figure 15A, the total number of vortex in the range of (-100, 0)
exceeds 1000. After the rotor wind field is generated, as shown in
Figure 15B, the range of the total number of vortex exceeding
1000 changes to (-100, 50), and the range is expanded. In
Figure 15C, the range where the total number of vortex
exceeds 1000 remains basically unchanged. However, it can be
seen from Figure 15D that the range of the total vortex exceeding
1000 becomes smaller, and only the range (-50, 0) exceeding
1000. However, from the whole of Figure 15D, the droplets are
more concentrated on both sides of the 0 vortex. In Figure 15E,
the range of vortex exceeding 1000 is mainly concentrated in the
range (-100, 50), but the total number of vortex in this range is
somewhat reduced compared with that in Figure 15B.

According to the combination of Figure 14 and Figure 15,
the left side of the droplets field is dominated by negative vortex,
while the right side is dominated by positive vortex. With the
increase of rotor speed, the extreme value and number of vortex
in the droplets field change in different degrees. The negative
vortex in the droplets field increases first, then decreases and
then increases, while the positive vortex decreases first, then
increases and then decreases. Compared with the vortex under
the effect of no wind field, the maximum value of negative vortex
under the effect of rotor wind field is reduced by 148.79s°L, while

FIGURE 16
The schematic diagram.
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the maximum value of positive vortex is reduced by 355.27s™".
Meanwhile, it can be seen from Figure 15 that under the effect of
no wind field, the majority of vortex near 0 in the vortex field are
negative vortex. However, with the increase of rotor speed, the
number of positive vortex near 0 and negative vortex is

gradually equal.

Discussion

In this paper, the droplet velocity distribution at four
different horizontal levels (Y=50mm, 100mm, 150mm,
200mm) of the coordinate system in PIV image is selected for
comparative analysis and research with wind field velocity at
four different horizontal levels corresponding to the coordinate
system in numerical simulation. The schematic diagram of
horizontal level selection is shown in Figure 16. In this study,
the data under each level are averaged to obtain the average
value. In the numerical simulation test, the data at the time of 3s
is selected for analysis. In the data of PIV experiment, the
vertical velocity data is selected as the analysis sample. Thus,
the mean value and variance results of PIV test and numerical
simulation are shown in Table 3, and the change trend of the
mean value of PIV and numerical simulation is shown
in Figure 17.

As can be seen from the Figure 17, with the increase of rotor
speed, the average velocity of the wind field in the numerical
simulation test shows an overall trend of increase, while the
average velocity of droplets in the PIV test shows an overall
trend of decrease, indicating that the wind field significantly
reduces the average velocity of droplets. As can be seen from the
Figure 17, in the numerical simulation test, the wind speed of
four levels at each rotor speed has little difference.

However, in the PIV test, there is a large difference in droplet
velocity under different levels. The average velocity of droplets at
the level of Y=200 mm is the minimum, while the average
velocity of droplets at the level of Y=100 mm is the maximum,
even exceeding the average velocity of droplets at the level of
Y=50 mm. This is because at the level of Y=50mm, the velocity
of some droplets is close to 0 and the velocity variance is about
5.3, while at other levels, the velocity variance of droplets is
about 2.6, thus dragging down the overall average velocity.

Meanwhile, it can also be seen from Figure 17 and Table 3
that the wind speed generated by the wind field increases
gradually on the whole with the gradual increase of rotor
speed. However, when the rotor speed is 1000rpm, the speed
in the wind field is higher than that when the rotor speed is
1500rpm. According to the analysis results of the speed value,
the variance of the speed value is smaller than that of other
speeds when the rotor speed is 1000rpm. This indicates that
when the rotator speed is 1000rpm, the vortex in this range is
small and the velocity value is relatively uniform. Combined
with the PIV test results, it can be seen that the variances of PIV
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TABLE 3 The mean value and variance results of PIV test and numerical simulation.

Y=100mm Y=150mm Y=200mm
Rotor Speed/rpm
Mean Mean Mean
1000 9.9 532 1135 2.65 9.17 2.56 6.96 1.74
1500 9.75 531 1138 2.61 9.03 261 7.06 1.68
PIV

2000 9.53 522 11.8 2.93 8.37 251 6.03 143

2500 8.91 5.50 10.99 2.84 8.19 261 6.1 153

1000 454 191 456 1.79 461 1.82 420 1.86

1500 445 224 426 1.99 420 1.86 3.92 172

Sim

2000 525 2.70 552 2.95 538 330 463 3.35

2500 627 235 6.68 2.75 6.63 1.86 5.81 230
certain degree of vortex, which reduced the movement speed

of droplets.

= PIV50 Through the above analysis, it can be seen that in the
"r ._——.\.__’—0 - O - Sim50 numerical simulation, the speed is relatively stable at 1000rpm
10k ] O. g:m%% and 1500rpm. Under these two rotor speeds, the droplet
-\.\.\. A PIV150 velocities at all levels in PIV are also basically stable, which
® or L_\_‘\A\‘ B g'lr\'/‘;gg proves that the droplet velocity under PIV test can effectively
§ 8t - % - Sim200 verify the reliability of the numerical simulation. At the same
5 7 time, when the rotor speed exceeds 2000rpm, the speed in the

o 7 . . Lo L .
2 m numerical simulation increases significantly. Correspondingly,
> 6} P /,// % the droplet velocity in PIV test all decreased to varying degrees,

Z -
5| - ,/,.@ - - among which the droplet velocity change was most obvious at
g == = gz z _ % the level of Y=200mm. Therefore, combined with the above
ar , T T =T \ \ analysis, PIV test can effectively verify the validity of the
1000 1500 2000 2500 numerical simulation results.
Rotor Speed(rpm) At present, the mechanical analysis of droplet velocity and
FIGURE 17 vorticity variation has not been effectively and comprehensively
The change trend of the mean value of PIV and numerical verified. In this paper, PIV test is used to effectively analyze the
simulation.

droplet speeds at these two speeds are also very close, indicating
that the PIV test data can effectively reflect the accuracy of the
numerical simulation. When the rotor speed in the numerical
simulation exceeds 2000rpm, the droplet velocity in the PIV test
decreases significantly, and the rotor downwash wind field has a
significant influence on the movement velocity of droplets at all
levels. Although the speed at the level of Y=200mm in numerical
simulation is the smallest compared with other levels, combined
with the change of droplets in PIV test, it has a certain influence
on the droplets at the level of Y=200mm. Combined with the
above analysis, it can be seen that this is because the numerical
simulation of the wind field at Y=200mm began to appear a
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motion state of droplets field under the action of wind field. By
analyzing the distribution of velocity flow and vortex in droplet
field, it is concluded that under the action of wind field of rotor,
the velocity of droplet is reduced, while the vortex shrinks and
the vorticity increases. PIV test can reflect the reliability of
numerical simulation results from the side. The downwash
wind field of plant protection UAV is very complicated, and it
has a very important influence on the deposition and drift of
droplet. Therefore, based on the actual operation of plant
protection UAVs, this paper expounds the influence
mechanism of rotor wind field of plant protection UAVs on
droplets distribution characteristics under different rotor speeds
based on the distribution characteristics of rotor wind field
under dynamic load (at different speeds), providing references
for researchers in this field.
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Conclusion

The XFlow software was used to simulate the downwash
wind field of the quadrotor plant protection UAV at different
rotor speeds, and the particle image velocimetry (PIV) was used
to measure the motion state of droplets at different rotor speeds.
The main findings of this experiment are summarized as follows:

The experimental results of numerical simulation show
that the maximum velocity and vorticity of the downwash field
under the rotor increase with the increase of rotor speed.
However, with the increase of time, turbulence is generated,
and the maximum values of the downwash wind velocity and
vorticity decrease. The velocity flow field under the rotor
becomes more widely distributed. In addition, the velocity
flow and vortex under the rotor are symmetrically distributed
in the centre line of the fuselage, mainly distributed in the
range of (-Im, 1m) in the X direction. The larger value of
velocity flow is mainly concentrated in the area within Im
below the rotor, and the vortex is mainly concentrated in the
area within 0.5m.

The results of the PIV test show that with the increase of
rotor speed, the total spray angle and the high-speed area of the
spray area gradually shrink and decrease under the action of the
downwash wind field, while the low-speed area in the spray area
gradually expands. In addition, the maximum velocity of droplet
particles under the rotor wind field is 19m/s. The number of
droplet particles decreases gradually in the high-speed area,
while the number of droplet particles increases gradually in
the medium-speed area and low-speed area. When there is no
downwash wind field, there is a lot of turbulence in the fan
droplet area, and the maximum vorticity is the 819.02. But under
the effect of the downwash wind field produced by the rotor, the
vortex is contracted. Under the effect of no wind field, most of
the eddies near 0 are negative vortex in the vortex field, but with
the increase of rotor speed, the number of positive vortex near 0
and negative vortex is gradually equal.

Through comparative analysis of the PIV test and numerical
simulation results, it can be seen that the maximum speed of the
numerical simulation wind field in the area within 0.5m below
the rotor reaches 15.7m/s. In the PIV test, the speed of the
droplet in the droplet field in this range is about 18 m/s under
the action of the nozzle pressure, and the speed of the turbulent
droplet in the upper left and upper right corner outside the
sector area is about 8m/s. Due to the increase of rotor speed and
the enhancement of the downwash wind field, the turbulence
disappears in the upper left and upper right corners of the sector
area, and the number of low-speed droplets increases in the
lower left and right corners of the sector area in the PIV test,
which indicates that the PIV test results effectively verify the
reliability of the numerical simulation results.
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