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Editorial on the Research Topic

Advanced technologies of UAV application in crop pest, disease and
weed control
In recent years, the use of unmanned aerial vehicles (UAVs) as auto-spraying machines

for plant protection has been increasing (Hu et al., 2022). Recent research has been

conducted on the spray deposition/drift patterns of plant protection UAVs (Tang et al.,

2020; Li et al., 2022), but further exploration is required to ensure their efficient and

accurate application. This Research Topic aims to conduct in-depth studies on new

technologies for the application of plant protection UAVs in crop pest, disease, and

weed control. The published articles cover four topics including pest, disease, weed

detection, and identification; canopy remote sensing and identification; strategies for

improving the spray quality of UAV applications; and spray drift assessment. This

research aims to serve as a reference for new theories and advanced technologies and to

optimize the use of UAVs in crop pest, disease, and weed control, helping to expand the

application potential of plant-protection UAVs.
Pest, disease, and weed detection and identification

Accurate target detection is crucial for establishing prescriptions for chemical

applications and enabling variable spraying with UAVs. This has become even more

important in the application of high-speed plant-protection UAVs, where there is increased

demand for precise target identification.

Xia et al. presented a method for identifying resistant weed biotypes using multispectral

and RGB images based on a deep convolutional neural network (DCNN). They developed a

weed spectral resistance index (WSRI) that compared susceptible and resistant weed

biotypes. By fusing multispectral and RGB images, they enhanced the accuracy of
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resistance identification. The DCNN achieved impressive field

accuracies of 81.1% and 92.4% for barnyard grass and velvet

leaves, respectively.

In another study, Yu et al. developed a weed vegetation index

(WDVINIR) by utilizing the reflectance of three bands—red, green,

and near-infrared— captured by multispectral images. Compared

with the traditional vegetation indices of NDVI, LCI, NDRE, and

OSAVI, WDVINIR showed the most effective ability to identify

weeds from rice, water cotton, and soil, with a weed identification

accuracy of 93.47% and a kappa coefficient of 0.859.

In addition to weed identification, Lu et al. proposed a method

for estimating leaf chlorophyll content in jujube leaves infested by

leaf mites using soil plant analysis development (SPAD). Their

approach aimed to estimate the severity of mite infestation by

correlating it with the SPAD values of jujube leaves. A particle

swarm optimization-extreme learning machine (PSO-ELM) for

SPAD and vegetation indices were established and exhibited

superior accuracy (R2 = 0.856, RMSE = 0.796) when compared

with the ELM model alone (R2 = 0.748, RMSE = 1.689). This

indirect measurement approach is a novel method for detecting

and identifying pests and diseases.
Canopy remote sensing
and identification

A high-precision canopy segmentation methodology called

MPAPR R-CNN, specifically designed for high-density cultivation

orchards, was proposed utilizing low-altitude visible light images

(Zhang et al.). This method accurately identifies and segments the

canopy edge, which can be affected by tree branch extensions and

shadow obstructions. The researchers employed a Mask R-CNN as

the base segmentation algorithm, incorporating a path

augmentation feature pyramid network (PAFPN) and the

PointRend algorithm to achieve precise boundary delineation of

apple tree canopies. Training with the PAFPN and Point-Rend

backbone head resulted in significant improvements, with average

precision scores increasing by 8.96%.

Li et al. introduced a deep-learning-based method for counting

maize plants using image datasets. A real-time detection model for

maize plants was trained based on YOLOv5, and a tracking and

counting approach was developed using Hungarian matching and

Kalman filtering algorithms. The maize plant counts using this

method exhibited a high correlation with the manual count results

(R2 = 0.92). In a separate study, Zhang et al. proposed an improved

lightweight network, improved YOLOv5s, for dragon fruit detection

in an all-weather environment. The results demonstrated that the

model achieved a mean average precision (mAP) of 97.4%,

precision (P) of 96.4%, and recall rate (R) of 95.2%. Compared

with the original YOLOv5s network, the improved model exhibited

a reduction in model size, params, and floating-point operations

(FLOPs) by 20.6%, 18.75%, and 27.8%, respectively.
Frontiers in Plant Science 026
Strategies for improving spray quality
of UAV application

Liu et al. conducted a study that investigated the impact of

adjuvants on the physicochemical properties of defoliant solutions

and droplet deposition in defoliation spraying using plant-

protection UAVs. They aimed to determine the type of adjuvant

that enhances the effect of defoliation on pepper plants. Previous

research has demonstrated that the appropriate addition of

additives to a spray solution can reduce spray drift and improve

droplet adhesion to leaves. By employing this method, droplet

deposition increases, and the defoliation effect is achieved.

Among the adjuvants used in their study, Puliwang was the most

efficient for the aerial application of defoliants.

Downwash airflow is a prominent characteristic of plant-

protection UAV operations. Chang et al. employed the Lattice

Boltzmann Method (LBM) to investigate the rotor flow field of a

quadrotor plant-protection UAV at different speeds. As the rotor

speed increased, the maximum velocity and vorticity of the wind

field under the rotor increased gradually, whereas the ultimate

values of the velocity and vorticity decreased owing to the

emergence of turbulence. This is expected to reveal and

comprehend the changes in the rotor flow field of plant-

protection UAVs as the pesticide loading dynamically evolves.

Considering the limited deposition in the lower canopy when

using plant-protection UAVs, particularly in high-density fruit

trees, Jiang et al. developed a stereoscopic plant-protection system

(SPS) consisting of a small swing-arm ground sprayer and a UAV

sprayer. This approach demonstrated that the density of vertical

droplet deposition in the canopies ranged from 90 to 107 deposits/

cm2, and the uniformity was 38.3% higher than that of

conventional methods.
Spray drift assessment

The primary current challenge to the widespread adoption of

plant-protection UAVs is the potential risk associated with spray

drift exposure in pesticide applications. Accurate measurement of

spray drift is crucial because it serves as the basis for scientifically

developing spray technology and selecting appropriate operating

environments. Li et al. presented a method for evaluating spray drift

based on 3D point cloud data from a light detection and range

technique (LiDAR). LiDAR measurements provide valuable spatial

information, including the height and width of drifting droplets

(Liu et al., 2022). However, it is important to note that LiDAR

detection is sensitive to droplet density or drift mass in space, and

drift clouds with lower densities and smaller droplet sizes may not

be effectively detected by LiDAR. This method has the potential to

serve as an alternative tool for evaluating the drifts of different spray

configurations, although it may not provide direct measurements of

the actual spray drift mass.
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Conclusion

Plant-protection UAVs are a promising tool, having shown

significant success in East Asia, particularly in China, which is the

focus of the articles in this Research Topic. All of these published

manuscripts were funded by the Chinese government. Australian

scholars have also contributed to the study of spray drift evaluation

using 3D LiDAR. The greatest challenges faced by plant-protection

UAVs in global applications are safety concerns and incidents of

environmental pollution caused by the off-target drift of high-

concentration pesticides induced by downwash flow at a higher

operating altitude. In addition, some users have a limited

understanding of plant-protection UAVs, particularly regarding the

feasibility of using a minimal application volume rate for pest and

disease control. Nevertheless, the situation may eventually change

with new technological developments, given the exceptional

operational capabilities of plant-protection UAVs in China.

We hope that the readers will find this Research Topic a

valuable reference for understanding state-of-the-art advanced

technologies in UAV chemical applications and their practical

implications for precise spraying.
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Atrazine is one of the most widely used herbicides in weed management. However,
the widespread use of atrazine has concurrently accelerated the evolution of weed
resistance mechanisms. Resistant weeds were identified early to contribute to crop
protection in precision agriculture before visible symptoms of atrazine application to
weeds in actual field environments. New developments in unmanned aerial vehicle (UAV)
platforms and sensor technologies promote cost-effective data collection by collecting
multi-modal data at very high spatial and spectral resolution. In this study, we obtained
multispectral and RGB images using UAVs, increased available information with the
help of image fusion technology, and developed a weed spectral resistance index,
WSRI = (RE-R)/(RE-B), based on the difference between susceptible and resistant weed
biotypes. A deep convolutional neural network (DCNN) was applied to evaluate the
potential for identifying resistant weeds in the field. Comparing the WSRI introduced
in this study with previously published vegetation indices (VIs) shows that the WSRI is
better at classifying susceptible and resistant weed biotypes. Fusing multispectral and
RGB images improved the resistance identification accuracy, and the DCNN achieved
high field accuracies of 81.1% for barnyardgrass and 92.4% for velvetleaf. Time series
and weed density influenced the study of weed resistance, with 4 days after application
(4DAA) identified as a watershed timeframe in the study of weed resistance, while
different weed densities resulted in changes in classification accuracy. Multispectral and
deep learning proved to be effective phenotypic techniques that can thoroughly analyze
weed resistance dynamic response and provide valuable methods for high-throughput
phenotyping and accurate field management of resistant weeds.

Keywords: atrazine-resistant weed, multispectral reflectance, vegetation indices (VIs), unmanned aerial vehicle
(UAV), deep convolutional neural networks (DCNNs)

Abbreviations: UAV, unmanned aerial vehicle; DCNN, deep convolutional neural network; VIs, vegetation index; WSRI,
weed spectral resistance index; B, blue band; G, green band; R, red band; NIR, near-infrared band; RE, red edge band;
RTK, real-time kinematic; GCPs, round control points; GS, Gram–Schmidt; DOM, digital orthophoto maps; BAD, before
application day; AD, application day; DAA, days after application; RES, resistant weeds; SUP, susceptible weeds.
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INTRODUCTION

Weeds are one of the major factors affecting crop growth and
are the most significant contributors to yield loss globally (Quan
et al., 2021). Overreliance on commonly used chemical herbicides
has resulted in the appearance of several herbicide-resistant weed
biotypes (Colbach et al., 2017). Developing a method that can
indicate herbicide resistance within an acceptable timeframe after
an application can potentially help growers manage their fields
more effectively (Krähmer et al., 2020).

Atrazine (chemical name: 2-chloro-4-ethylamino-6-
isopropylamino-1,3,5-triazine) belongs to the S-triazine
class of herbicides and blocks the electron flow between
photosystems (Foyer and Mullineaux, 1994). Atrazine herbicide
can significantly reduce photosynthesis by reducing photosystem
II (Sher et al., 2021) and is a widely used herbicide in maize fields
to control broadleaf and grassy weeds (Williams et al., 2011).
Its widespread use has also accelerated the evolution of weed
resistance mechanisms (Kelly et al., 1999; Williams et al., 2011;
Perotti et al., 2020).

However, high-throughput herbicide resistance phenotyping
remains a technical bottleneck, limiting the ability to effectively
manage weeds in the field. Before herbicide application, there is
no significant difference in the visual appearance of susceptible
and resistant weeds of the same species (Eide et al., 2021a).
Laboratory determination of various enzymes present within
plant leaves can identify atrazine resistance but is impractical to
use in large-scale applications (Liu et al., 2018). Hyperspectral
systems to detect differences between resistant and susceptible
biotypes have shown potential in controlled environments
(Shirzadifar et al., 2020b), but their effectiveness is drastically
reduced once introduced into field conditions (Shirzadifar et al.,
2020a). The unstable performance of thermal imagery further
suggested that canopy temperature data were likewise not a
reliable predictor of weed resistance (Eide et al., 2021b). Outdoor
resistance identification methods include whole-plant dose–
response assay tests (Huan et al., 2011), but their investigation
area is fixed and limited, resulting in high deployment expense
and poor timeliness. Thus, current phenotypic analysis methods
can hardly satisfy the high-throughput survey requirements for
resistant weeds in the field.

Field-based fast, accurate, and robust phenotyping methods
are essential for atrazine-resistant weed investigation. Atrazine
applications reduce the efficiency of the photosynthetic
mechanism and affect chlorophyll and other pigments, which
change the spectral reflectance of plants in the visible/near-
infrared range (Sher et al., 2021). Therefore, it is assumed that
the spectral characteristics of susceptible weeds should show
different pathways compared to resistant weeds after herbicide
application. These physiological changes induced by herbicide
stress have laid the foundation for monitoring resistance using
vegetation indices (VIs) (Duddu et al., 2019). Multispectral
bands and the normalized difference vegetation index (NDVI)
provide improved glyphosate resistance classification (Eide et al.,
2021a). Therefore, Vis-based high-throughput phenotyping
methods can be reliably applied to atrazine-resistant weed
investigation in the field.

Unmanned aerial vehicles (UAVs) are a popular remote
sensing platform successfully used to obtain high-resolution
aerial images for weed detection and mapping (Su et al., 2022)
because they can be equipped with various imaging sensors to
collect high-spatial, -spectral, and -temporal resolution images
(Yang et al., 2017, 2020). For example, UAVs have been used
for physiological and geometric plant characterization (Zhang
et al., 2020; Meiyan et al., 2022), as well as for pest and disease
classification (Dai et al., 2020; Xia et al., 2021) and resistant weed
identification (Eide et al., 2021a). In addition, remote sensing
imagery is linked to specific farm problems through deep learning
for the identification of biological and non-biological stresses
in crops (Francesconi et al., 2021; Ishengoma et al., 2021; Jiang
et al., 2021; Zhou et al., 2021), segmentation, and classification
(He et al., 2021; Osco et al., 2021; Vong et al., 2021). These
studies show that the combination of UAV remote sensing and
deep learning provides the scope for large-scale resistant weed
evaluation (Krähmer et al., 2020; Wang et al., 2022).

This study explores the potential for using multispectral
images collected by UAVs in crop fields for identifying resistant
weeds and proposes an effective method to identify resistant
weeds in real field environments. We propose a weed spectral
resistance index called WSRI = (RE-R)/(RE-B) to investigate
resistant weeds by analyzing the canopy spectral response
of barnyardgrass and velvetleaf. The fusion of multispectral
and RGB images combining canopy spectral and texture
feature information and applying a deep convolutional neural
network (DCNN) are carried out to evaluate the potential
for identifying resistant weeds in the field based on their
dynamic response.

MATERIALS AND METHODS

Test Site and Experimental Setup
The weed resistance experiment was conducted at the Xiangyang
Farm, Northeast Agricultural University, Harbin, Heilongjiang,
China (45◦61′ N, 126◦97′ E), as shown Figure 1. The region
has a cold-temperate continental climate, with average annual
precipitation of 400–600 mm and an average annual effective
temperature of 2,800◦C. The experimental soil type is black soil,
with a soil tillage layer, a nitrogen content of 0.07–0.11%, a fast-
acting phosphorous content of 20.5–55.8 mg/kg, and a fast-acting
potassium content of 116.6–128.1 mg/kg.

Two different weed species were selected for this study.
Common broadleaf and grassy weeds in the Heilongjiang region
include barnyardgrass (Echinochloa crusgalli (L.) Beauv) and
velvetleaf (Abutilon theophrasti Medicus). Weed seeds were
collected from 20 different fields in Heilongjiang and confirmed
to be atrazine-susceptible and -resistant biotypes (Liu et al.,
2018). The seeds were air-dried and stored at 4◦C. The field was
treated with glufosinate at 0.45 kg active ingredient (AI) ha−1

plus pendimethalin at 1.12 kg AI ha−1 before planting to kill
existing vegetation and provide residual weed control 1 week
before crop planting.

In this trial, maize seeds were first sown in black soil on
May 13. The weed seeds were mixed with sand, dropped on
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FIGURE 1 | Distribution of test sites and test fields.

the soil surface, and then harrowed immediately after maize
sowing. Weed seed dropping is divided into three densities (low,
40 seeds m−2; moderate, 160 seeds m−2; high, 320 seeds m−2).
After maize germination, slight spray irrigation was applied to
the whole field to accelerate weed germination. The herbicide
atrazine (Ji Feng Pesticide Co., Jilin, China) was then sprayed
at a uniform rate on 1st June when the maize reached the
three-leaf stage.

In the experimental field, 40 plots were divided into three
weed density treatments (Figure 2B). Each treatment consisted
of 12 or 14 plots measuring 3 m × 5 m in six rows with a
0.6-m row spacing. A 1-meter-wide protection plot surrounded
the entire field to reduce edge effects. This study investigated
the ground truthing data before the atrazine application day.

The manual measurements for ground truthing consisted of
the survival status of the two weed types and geographical
coordinates after application.

Data Acquisition
Unmanned Aerial Vehicle Image Collection
Multispectral and RGB images were collected with DJI Phantom
4 Multispectral and DJI Phantom 4 RTK UAVs (SZ DJI
Technology Co., Ltd., Shenzhen, China), as shown in Figure 2A.
The UAVs are equipped with centimeter-level navigation and
positioning systems. The DJI Phantom 4 Multispectral camera
simultaneously acquires images in blue (B), green (G), red (R),
red edge (RE), and near-infrared (NIR) bands (Table 1) at a
1600 × 1300 pixel resolutions. The DJI Phantom 4 RTK has a
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FIGURE 2 | Workflow of the unmanned aerial vehicle (UAV) high-throughput field weed resistance approach. (A) DJI Phantom 4 Multispectral, DJI Phantom 4 RTK,
DJI Terra, and RTK GPS instrument for collecting field images. (B) Digital orthophoto maps (DOM) of three maize field densities (low, moderate, high) for weed
resistance research. (C) Gram–Schmidt sharpening for improving spectral image information. (D) Reflectance values of four objects in the orthophoto (soil, maize,
barnyardgrass, and velvetleaf). (E) Soil and maize removal and two types of weed segmentation, including barnyardgrass and velvetleaf. (F) Two weed image
datasets from 6 days after atrazine application (6 DAA) used in the classification models. (G) Deep convolutional neural network (DCNN) architecture.

camera with an FC6310R lens (f = 8.8 mm) and a 4864 × 3648
pixel resolution. Based on a UAV flight test with manually
controlled height varying from 10 to 30 m above ground, the UAV
altitude was finally set to 15 m with no disturbance to the leaves.

The ground sampling distances (GSDs) of multispectral and RGB
images were 0.79 and 0.41 cm pixel−1, respectively. UAV flights
were conducted in the field on 6th and 20th May 2021 to collect
the early season information needed for the study. RGB images
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were acquired first, and then multispectral images were acquired
each day. The mean forward overlap of the photographs was 80%,
and the mean sidelap was 70%. The UAV observations covered
the complete experimental range (Table 2). However, some data
are missing because of weather conditions.

Image Preprocessing
Approximately 2,000 images per flight were used for the
photogrammetry process using DJI Terra software (SZ DJI
Technology Co., Ltd., Shenzhen, China) to obtain images of the
entire experimental area. The global navigation satellite system
(GNSS) real-time motion control measured seven ground control
points (G) to obtain accurate geographical references. The seven
GCPs were measured with a GNSS real-time kinematic (RTK)
receiver (RTK GPS instrument i50, CHC Navigation Co., Ltd.,
Shanghai, China). The reflectance correction and radiometric
calibration use a 3 m2 carpet reference and the Spectron on
software (Resonon Inc., Bozeman, MT, United States). The
empirical line method was then used to convert the image’s digital
number (DN) value to a reflectance value (Figure 2D).

Development of Specific Indices
Identifying Atrazine-Resistant Weeds
Canopy spectral reflectance differs between weed species, and
some spectrum regions may better identify atrazine resistance
status. Sample selection was based on the weed survival 14 days
after application. The reflectance of susceptible and resistant
biotypes of two weed species was counted in the multispectral
images after 2 days of application.

TABLE 1 | Multispectral camera band specifications.

Band Name Center wavelength (nm) Bandwidth (nm)

1 Blue 450 32

2 Green 560 32

3 Red 650 32

4 Near infrared 840 52

5 Red edge 730 32

TABLE 2 | Weather conditions during data collection.

Band** Collection Date Air Temp (◦C) Weather

BAD 2021.05.30 11∼22◦C Clear day

AD 2021.06.01 11∼22◦C Cloudy day

1 DAA 2021.06.02 13∼21◦C Cloudy day

2 DAA 2021.06.03 10∼20◦C Cloudy day

4 DAA 2021.06.05 10∼18◦C Cloudy day

5 DAA 2021.06.06 11∼21◦C Clear day

6 DAA 2021.06.07 12∼25◦C Clear day

7 DAA 2021.06.08 13∼28◦C Clear day

8 DAA 2021.06.09 18∼27◦C Cloudy day

10 DAA 2021.06.11 15∼28◦C Clear day

14 DAA 2021.06.15 18∼29◦C Cloudy day

∗∗BAD, before atrazine application day. AD, atrazine application day; DAA, days
after atrazine application.

Figure 3 shows barnyardgrass and velvetleaf reflectance
density maps for five bands extracted from multispectral images
of susceptible and resistant biotype regions. Slight differences
between susceptible and resistant biotypes were observed in the
green, red, red edge, and near-infrared bands, and the differences
between the red (650 nm) and red edge (780 nm) bands show
greater stability (Jin et al., 2020). Part of the blue (450 nm) band
was observed to reduce the differences in leaf surface reflectance,
thereby improving the correlation between the vegetation index
and leaf pigment content (Sims and Gamon, 2002). Therefore, we
proposed a weed spectral resistance index named WSRI = (RE-
R)/(RE-B) to calculate and evaluate actual field environmental
resistant weeds and tested it in this study (Figure 2F).

Many VIs have similar effects when dealing with classification
problems, differing in their index form expressions. Simple
vegetation index forms, such as the NDVI and ratio vegetation
index (RVI), are universal to the problem and reflect vegetation
information well in many cases. In this study, we entered our
multispectral image data into nine previously published VIs
(Table 3) and the WSRI to evaluate and compare their weed
resistance classification accuracies.

Image Fusion
The multispectral images with low spatial resolution used
for classification lost almost all texture features. However,
susceptible and resistant biotype differences are expressed in
the texture information. The high spatial resolution of RGB
images compensated for the lost texture information in the
multispectral images, so image fusion using the Gram–Schmidt
pan-sharpening method in ENVI 5.4.1 (EXELIS, Boulder, CO,
United States) was used (Figure 2C). The fusion images have five
bands: blue, green, red, red-edge, and near-infrared.

The Gram–Schmidt pan-sharpening method is based on
Gram–Schmidt (GS) orthogonalization. GS orthogonalization is
performed to orthogonalize matrix data or digital image bands
(Laben and Brower, 2000). It first created a simulated low-
resolution panchromatic band as a weighted linear combination
of multispectral bands. Then, GS orthogonalization is performed
using all bands, including the simulated panchromatic and
multispectral bands. The simulated panchromatic band is the
first band in GS orthogonalization. After making all bands
orthogonal by using GS orthogonalization, the high-spatial
resolution panchromatic band replaces the first GS band. Last, an
inverse GS transform creates the pan-bands (Laben and Brower,
2000; Ehlers et al., 2010).

Background Removal and Weed
Segmentation
Because of the reflectance differences between soil and plants
(Figure 2D), Otsu’s thresholding algorithm (Ostu et al., 1979) was
used to separate vegetation from the soil, find an optimal value to
be used for segmentation, and then adjust the threshold value,
if necessary, to improve separation of the plants from the soil
(Figure 2E; Liao et al., 2020).

Manual segmentation of maize and weeds has higher accuracy
but is expensive and time-consuming. UAV multispectral and
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FIGURE 3 | Reflectance density maps of two weed resistant and susceptible biotypes.

RGB images were segmented for maize, barnyardgrass, and
velvetleaf using the support vector machine (SVM) classifier
(Cortes et al., 1995). The four-leaf stage of maize did not shade
the weeds significantly and separated the maize and weeds better.
A binary mask layer was created to segment the maize and the two
weed types from the UAV images’ extracted spectral and texture
features for further processing (Figure 2E). The binary mask layer
was generated in ENVI based on manually tagged template data.

The performance of the SVM classifier was evaluated
using the confusion matrix and accuracy statistics, with the
overall accuracy based on randomly selected independent
test samples. The overall accuracy of SVM classification is
94.4%, which meets the experimental requirements. The zonal
statistics were obtained using ArcPy and the Python 2.7
programming language to remove soil and maize and segment
the barnyardgrass and velvetleaf.

Dataset Production
Different application effects were observed in the experimental
area, and a training template was created for individual velvetleaf
plants based on survival status 14 days after application

(Figure 4A). The training template contained two classes:
susceptible velvetleaf and resistant velvetleaf (Figure 4B).

Because barnyardgrass grows densely and is mostly
aggregated, it is not easy to separate them into individual
plants (Maun and Barrett, 1986). In this study, the resistance
level was set according to the death rate of barnyardgrass in
the same area 14 days after application. Figure 4A shows the
example plants from blocks at different resistance levels (example
of barnyardgrasses in high-density areas). Resistance level 1 is
defined as 0–25% death of barnyardgrasses; resistance level 2 is
26–50% death of barnyardgrasses; resistance level 3 is 51–75%
death of barnyardgrasses; resistance level 4 is 76–95% death of
barnyardgrasses; and resistance level 5 indicates an entirely dead
barnyardgrass block. Blocks with resistance levels less than or
equal to 3 were considered resistant (Figure 4B) because these
blocks exceeded the threshold for weed control in farmland
weeds (Anru and Cuijuan, 2014).

The image patch of each weed plot must be cropped from
the barnyardgrass WSRI fusion segmentation image to build the
dataset for DCNN modeling. Thus, a region of interest (ROI)
shapefile was created in ArcMap 10.3 (Esri Inc., Redlands, CA,
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TABLE 3 | Vegetation indices used in this study.

Category Features Expression** References

DVI Difference
vegetation index

NIR-R Jordan, 1969

MTCI MERIS terrestrial
chlorophyll index

(NIR-RE)/(RE-R) Dash and Curran,
2004

NDVI Normalized
differential
vegetation index

(NIR-R)/(NIR + R) Tucker et al., 1979

GNDVI Green normalized
difference
vegetation index

(NIR-G)/(NIR + G) Gitelson and
Merzlyak, 1998

NDRE Normalized
difference red-edge
index

(NIR-
RE)/(NIR + RE)

Sims and Gamon,
2002

RENDVI Red-edge
normalized
difference
vegetation index

(RE-R)/(RE + R) Sims and Gamon,
2002

RVI Ratio vegetation
index

NIR/R Birth and Mcvey,
1968

RERVI Red-edge ratio
vegetation index

NIR/RE Vincini and Frazzi,
2009

PSRI Plant senescence
reflectance index

(R-G)/NIR Merzlyak et al.,
1999

WSRI Weed Spectral
Resistance Index

(RE-R)/(RE-B) This paper

∗∗B, G, R, RE, and NIR represent blue, green, red, red-edge, and near-infrared
bands, respectively.

United States), and rectangles measuring around 0.5 m × 0.5 m
were drawn. The cropped patch sizes were approximately
100× 100 pixels. All data sets are four bands with a combination
of WSRI images and RGB images.

The other UAV images throughout and after application
were also processed to generate time-series image patches
for dynamic weed resistance classification. Rotated image
enhancement was applied to display the different shapes and
directions of the weeds in the field. Four clockwise rotations
(0◦, the original data; 90◦; 180◦; and 270◦) were performed

for image enhancement. For the barnyardgrass dataset, the
original 1,750 observations were increased four times, with 3,128
observations representing resistant blocks and 3,872 observations
representing susceptible blocks for 7,000 observations each day
and 28,000 total observations. For the velvetleaf dataset, the
original 480 observations were increased four times, with 1,136
observations representing resistant plants and 784 observations
representing susceptible plants for 1,920 observations each day
and 7,680 total observations. Before the data augmentation,
all data were randomly split into training and validation
sets in an 8:2 ratio. The model performance was tested
using a validation area (Figure 4B) to illustrate model’s the
generality and robustness.

Deep Convolutional Neural Network for
Resistant Weed Classification
A DCNN (Figure 2G) for classifying resistant weeds was
constructed using MATLAB R2021a (MathWorks Inc., Natick,
MA, United States). The model was trained and tested on an
NVIDIA 2080Ti GPU with 48-GB RAM and on a 64-bit Windows
10 operating system. CUDA version is 11.4.

The network was built based on the ResNet-50 model (He
et al., 2016) and transfer learning (Kieffer et al., 2017). This
study used the Resnet-50 model pre-trained on ImageNet
(Krizhevsky et al., 2012) without fully connected (FC)
layers for transfer learning. The input size was changed
to 100 × 100 × 4 to match the size of the image patches.
Then a convolutional layer (size of 3 × 3 × 3) was added
behind the input 4-band images for reduced dimension on
data. The ReLU activation layer was appended behind the
convolutional layer to add non-linear characteristics. The
dropout regularization method was deployed after the FC layer
to reduce overfitting (Srivastava et al., 2014), and the dropout
rate was set at 30%.

An Adam optimizer (Kingma and Ba, 2014) was used with
a 10−4 learning rate and 10−3 decay to adaptively optimize
the training process. The batch size was set to 128, and
the data generator generated each batch with real-time data

FIGURE 4 | Two weeds belonging to blocks were evaluated as susceptible and resistant. (A) Manual resistance level and label based on weed death coverage
14 days after atrazine application. (B) Visualization of the data labels on other days.
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augmentation. The model was trained for 300 epochs with
10 batches per epoch. The accuracy of each classification was
observed using a confusion matrix. Accuracy metrics were
averaged from five repeats of randomized holdback cross-
validation.

RESULTS

The DCNN was applied to classify weed resistance using the
canopy spectral and textural information extracted from the UAV
multispectral and RGB sensors, and the results are shown in
Table 4.

Contribution of Spectral Bands and
Vegetation Indices in the Resistant Weed
Classification
The susceptible and resistant biotype reflectance densities of
barnyardgrass and velvetleaf after atrazine application are shown
in Figure 3. Spectral band differences between susceptible and
resistant biotypes are related to the chlorophyll content and cell
wall structure of the weed species.

Atrazine-resistant weed biotypes showed a slightly lower
reflectance than susceptible weed biotypes in the visible light

TABLE 4 | Resistant weed classification performance summary.

Species Feature type Metrics 2DAA 4DAA 6DAA 8DAA

Barnyardgrass RGB Accuracy 0.554 0.609 0.692 0.772

WSRI 0.571 0.634 0.724 0.796

DVI 0.533 0.583 0.641 0.717

MCTI 0.526 0.559 0.619 0.693

NDVI 0.556 0.591 0.654 0.746

GNDVI 0.548 0.570 0.635 0.712

NDRE 0.551 0.587 0.655 0.737

NDVI-RE 0.564 0.597 0.657 0.759

RVI 0.559 0.584 0.681 0.755

RVI-RE 0.543 0.576 0.646 0.722

PSRI 0.527 0.566 0.624 0.709

5 BANDS 0.551 0.582 0.652 0.776

WSRI + RGB 0.602 0.665 0.761 0.811

Velvetleaf RGB Accuracy 0.529 0.596 0.753 0.905

WSRI 0.541 0.604 0.767 0.914

DVI 0.532 0.573 0.691 0.867

MCTI 0.526 0.562 0.677 0.822

NDVI 0.547 0.578 0.705 0.894

GNDVI 0.539 0.567 0.686 0.875

NDRE 0.545 0.562 0.679 0.871

NDVI-RE 0.528 0.583 0.711 0.907

RVI 0.539 0.571 0.700 0.891

RVI-RE 0.537 0.576 0.694 0.898

PSRI 0.525 0.559 0.652 0.834

5 BANDS 0.558 0.598 0.702 0.902

WSRI + RGB 0.551 0.634 0.798 0.924

DAA, days after application; WSRI, weed spectral resistance index.

region. The differences between susceptible and resistant biotypes
were more significant in the red edge and near-infrared regions,
and the resistant biotypes showed increased spectral reflectance.
These effects are related to the low chlorophyll content of
susceptible biotypes, corresponding to plant stress response
(Gomes et al., 2016). The main reason is that the application
of atrazine reduces photosynthesis and destroys the pigments
(Hess, 2000; Zhu et al., 2009). The red band is the central
band of chlorophyll, which is the specific chlorophyll absorption
band (Tros et al., 2021). The red edge position, which is the
slope inflection point between red absorption and near-infrared
reflectance, is usually used to correlate the chlorophyll content
(Horler et al., 1983; Zarco-Tejada et al., 2019). Thus, the red
and red edge bands are stable for the classifying atrazine-
resistant weed biotypes.

This study selected the most commonly used VIs to include
some stress indices and compare their results from the DCNN
with the WSRI (Table 4). Among these, stress and pigmentation
changes resulted from atrazine herbicide application. To further
explore the differences in the vegetation index distributions
for observing susceptible and resistant biotypes, violin plots of
barnyardgrass and velvetleaf for 10 VIs 2 days after application
are shown in Figure 5.

The results in Figure 5 show that WSRI, DVI, NDVI, NDVI-
RE, and RVI VIs distinguish between susceptible and resistant
barnyardgrasses, with a common trait of these indices being that
they all contain red bands. The difference vegetation index (DVI)
and the RVI have little differences in susceptible and resistant
biotypes because they do not integrate multi-band information
well. The NDVI-RE used the red-edge bands to replace the NIR
bands, resulting in a slightly better classification than the NDVI.

The WSRI retained the numerator structure of the NDVI-
RE index and added the blue bands to the denominator to
eliminate the spectral interference between pigments to achieve
a better classification result. However, the WSRI classification
of susceptible and resistant velvetleaf was very poor compared
with barnyardgrass at the early stage of application, and the
NDVI-RE and WSRI provided only partial classification. The
WSRI makes the resistant weed data more concentrated and
the susceptible weed data more dispersed, widening their
differences. The average spectral response of barnyardgrass
shows a more prominent separation than velvetleaf, possibly
via lower herbicide uptake at the cuticular level, causing it
to respond more slowly to herbicide stress (Couderchet and
Retzlaff, 1995). In addition, velvetleaf has a higher reflectance
than barnyardgrass, resulting in spectral changes that are more
difficult to represent effectively.

Contribution of Spectra and RGB in
Resistant Weed Classification
Spectral information with the DCNN resulted in the highest
weed resistance classification accuracy when using a single
sensor. The single-band WSRI vegetation information surpasses
the RGB texture information, even though the RGB image
resolution is about 10 times higher than that of the spectral
images. The difference in accuracy between them was largest

Frontiers in Plant Science | www.frontiersin.org 8 July 2022 | Volume 13 | Article 93860415

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-938604 July 14, 2022 Time: 15:6 # 9

Xia et al. Multispectral Resistant Weed Research

FIGURE 5 | Violin plots of different vegetation indices for susceptible and resistant biotypes of barnyardgrass and velvetleaf 2 days after application, where
*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001 indicate significant differences between the susceptible and resistant biotypes, and ns indicates no
significance differences.

6 days after application, while the difference was smallest 8 days
after application.

As shown in Table 4, the combination of WSRI spectral
and RGB structural information improved accuracy, compared
to using only a single sensor. RGB-derived detailed texture
features, such as slight leaf discoloration and rolling, are
not obtained from spectral features (Rischbeck et al., 2016;
Stanton et al., 2017). In addition, canopy structure information
can overcome the asymptotic saturation problems inherent to
spectral features to some extent (Wallace, 2013; Maimaitijiang
et al., 2020). Therefore, the combination of spectral and
textural information improves classification accuracy. It should
be noted that the accuracy improvement was not substantial, and
combining multispectral and RGB information is likely attributed
to information homogeneity and redundancy among canopy
spectral and textural features (Pelizari et al., 2018; Maimaitijiang
et al., 2020).

Impacts of Different Times in Resistant
Weed Classification
The time-series NDVI image patches of barnyardgrass and
velvetleaf during the atrazine application stage are visualized

in Figure 6. NDVI images reflect vegetation health status and
nutrient information (Eide et al., 2021a). The color of the plant
areas in the NDVI images represent the plant health status,
where NDVI values close to 1 and redder plant regions mean
healthier plants. As time increased, herbicide stress became
more severe, and differences in resistance levels among weed
blocks were increasingly evident. As shown in Figure 6A for
barnyardgrass, the susceptible biotypes changed rapidly under
herbicide application. About 3 days after application, the NDVI
image of the leaves changed from red to yellow or even green,
meaning that the vital characteristics of the susceptible biotypes
gradually diminished.

By contrast, the resistant biotypes changed slowly with low
amplitudes under the herbicide application. About 5 days after
application, the NDVI image of the leaves changed slightly from
red to yellow. The higher the resistance level, the smaller the
change toward yellow. The highest resistance level showed only
signs of stopping the growth and then completely recovered to
normal growth about 4 days after application.

The change rate under herbicide stress conditions and the
recovery speed after the application reflect resistance at different
stages. The higher the resistance level of the barnyardgrass plots,
the later the changes appeared. The large number of resistant
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FIGURE 6 | UAV-based visualization of two weed species with dynamic changes in NDVI images. (A) Image patches of five resistance levels of barnyardgrass under
herbicide stress, where dashed black borders around the patches indicate significant changes. (B) Image patches of two susceptible and two resistant velvetleaf
under herbicide stress, where dashed black borders around the patches indicate significant changes. BAD is before application day; AD is application day; DAA is
days after application.

barnyardgrasses surrounding susceptible barnyardgrasses made
it difficult to observe changes in high-resistance level plots.
A significant difference between susceptible and resistant plots in
later stages is that the recovery of many resistant barnyardgrasses
in the resistant plots compensated for the death of susceptible
barnyardgrasses.

The dynamics of velvetleaf herbicide stress are easier to
analyze because of their individual plant growth characteristics.
Velvetleaf had longer herbicide stress response times than
barnyardgrass, and the susceptibility and resistance of velvetleaf

TABLE 5 | Resistant weed classification performance summary of
different densities.

Densities Metrics 2DAA 4DAA 6DAA 8DAA

Low Accuracy 0.617 0.649 0.725 0.821

Moderate Accuracy 0.611 0.673 0.708 0.746

High Accuracy 0.547 0.614 0.742 0.794

were not directly related to size, as shown in Figure 6B. The
mechanism of prolonged plant death generated by sink tissue
toxicity in velvetleaf may be the main reason (Fuchs et al., 2002).
Atrazine caused gradual inhibition of photosynthesis in velvetleaf
leaves that increased over several days and was nearly complete by
5 days (Qi et al., 2018). Therefore, the difference in the spectral
response of velvetleaf is smaller than that of barnyardgrass 2 days
after application.

About 5 days after application, the susceptible velvetleaf began
to change significantly. The NDVI images show large red leaf
area reductions with relatively little activity. By contrast, the
NDVI images of the resistant velvetleaf leaves changed slightly
from red to yellow about 5 days after application. However,
the formerly red areas began recovering about 7 days after
application, sometimes even before the herbicide application,
indicating that the resistant velvetleaf had resumed growth.

Both susceptible and resistant velvetleaf biotypes showed
growth inhibition at the beginning of herbicide stress, but
the spectral information was still better classified by inhibition
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FIGURE 7 | Classification of susceptible and resistant barnyardgrass biotypes at different densities (high, moderate, low) by the WSRI. DAA is days after application.

FIGURE 8 | Confusion matrices for barnyardgrass and velvetleaf in the validation area. RES are resistant weeds. SUP are susceptible weeds.

differences, demonstrating the potential of spectral information
for the study of resistant weeds.

Impacts of Different Densities in
Resistant Weed Classification
The distribution of barnyardgrass in a real farmland environment
shows a clustered distribution (Maun and Barrett, 1986).

Therefore, studies were conducted for different weed densities.
The classification model was applied to different barnyardgrass
densities to evaluate their reliability and adaptability. As shown
in Table 5, the classification accuracy after herbicide application
had maximum accuracies of 0.794 for low-density weeds,
0.736 for medium-density weeds, and 0.821 for high-density
weeds. However, the velvetleaf distribution was rarely clustered,
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and different velvetleaf densities had almost no effect on the
classification model.

The performance of the WSRI was evaluated for each plot
random samples on different densities. Figure 7 shows the WSRI
density plots for susceptible and resistant barnyardgrass in the
sample areas at different times after application and the box
plots at different weed densities. The results show gaps between
susceptible and resistant biotypes at different densities, and the
gaps gradually increased over time.

In summary, atrazine spraying would encounter problems
such as shading and uneven spraying under high-density
barnyardgrass conditions, potentially overestimating resistance
levels in susceptible areas. Moreover, symbiotic areas of resistant
and susceptible barnyardgrass would affect the spectral response
value, resulting in a low-classification accuracy model at early
application. The low- and moderate-density areas contain few
weeds. Some susceptible weeds died with increasing time
after application, resulting in small fluctuations in spectral
response gaps and small improvements in accuracy rates. In
addition, the massive death of susceptible weeds over time
in high-density areas widened the gap and improved the
classification accuracy.

Model Validation
A robust model should be able to generalize to new datasets
and still perform well. Therefore, the model validation used the
DCNN model to classify the susceptible and resistant weeds in the
validation area, and the confusion matrices of the classification
results are shown in Figure 8. At 8 days after application, the
DCNN provided the highest classification accuracy, with 81.8%
for barnyardgrass and 89.3% for velvetleaf. At 6 days after
application, the DCNN provided better classification accuracy,
with 71.6% for barnyardgrass and 78.6% for velvetleaf. The test
results also confirmed the WSRI and DCNN model’s robustness
and generality for further application.

DISCUSSION

Impacts of Different Information in
Resistant Weed Classification
Spectral information can reflect the physiological properties
of the plant (Rajcan and Swanton, 2001), and physiological
properties express differences between resistant and susceptible
biotypes faster than appearance. Therefore, multispectral images
can assess weed resistance faster and better than RGB images
at the early stage of application. As reported in many previous
works, spectral information such as VIs has become the primary
remote sensing indicator for plant phenotypes because of their
stable and superior performance (Ballester et al., 2017). RGB
canopy structure information yielded slightly lower, but still
comparable, performance than spectral information, indicating
that canopy structure information is a promising alternative to
commonly used VIs.

The results of this study indicate that the choice of the
band is critical when establishing the vegetation index. The
red and red edge bands had a significant influence on the

classification of resistant weeds, and the reflectance changes
of these two bands correlated with the degree of herbicide
stress. The study results confirmed that the WSRI (RE-R)/(RE-
B) performed well in classifying resistant weeds. The WSRI
combines the effects of blue, red, and red-edge wavelengths
to provide a comprehensive picture of weed dynamics after
application and displayed better performance than other indices.
Therefore, it provides powerful support for monitoring and
investigating resistant weeds over a large canopy area using
UAVs or satellites.

Time series of susceptible and resistant weed biotypes are
dynamic expressions of herbicide stress. In this study, 4 days
after application (4DAA) was the watershed timeframe for
studying resistant weeds. The accurate timing of resistant weed
investigation affects effective farmland time management. The
rate of change and recovery after herbicide stress begins is key
to classifying susceptible and resistant weed biotypes. Different
weed species mean that differences in susceptible and resistant
biotypes are expressed at different times. The classification
effect of barnyardgrass was better than that of velvetleaf at the
beginning of the application because of differences in their shape,
physiology, and distribution characteristics. As the application
time increased, the classification effect of velvetleaf became better
than that for barnyardgrass.

Weed density is another factor influencing the research
of resistant weeds. It is better to investigate the resistance of
clustered weeds using different weed densities. The DCNN
trained separately for different weed densities may increase
the accuracy of susceptible and resistant barnyardgrass
classifications. It is worth noting that higher densities mean
the possibility of more resistant weeds, and untimely treatment
multiplies the damage to the crop (Alipour et al., 2022).

Effectiveness and Limitations of
Unmanned Aerial Vehicle Traits in
Resistant Weed Investigation
This study first proposed the multispectral image-derived WSRI
to classify susceptible and resistant weeds in real farmland
environments. For resistant weed investigation, it took at least 2 h
for three raters to manually measure the distribution of resistant
weeds in 40 plots. The UAV field flights took less than 15 min,
which was fast enough to capture accurate data while avoiding
fluctuations in environmental factors such as cloud or wind.
More importantly, the high efficiency of UAV phenotyping makes
dynamic monitoring with high temporal resolution possible.
Therefore, UAVs have shown great potential in the emerging
study of field-resistant weeds.

However, there are some limitations for the WSRI. First,
changes at the early application stage may not adequately reflect
the overall weed resistance because resistant weeds grow slowly
during herbicide stress conditions. This is supported by the
fact that differences between susceptible and resistant biotypes
were not significant at the early stages, so 4 days after herbicide
application is the optimal time to investigate resistant weeds.
Additionally, the WSRI is an unstable measure easily affected
by temperature, humidity, and light conditions in the field.
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Therefore, resistant weeds in the field should continue to be the
subject of in-depth study and discussion.

CONCLUSION

The proposed UAV–WSRI phenotypic method investigates
the potential of fused multispectral and RGB image data
combined with deep learning for resistant weed identification
in the field. Compared with imaging chambers and expensive
unmanned ground vehicle platforms, the UAV platform is more
flexible and efficient to deploy for high-throughput phenotyping
under field conditions. In addition, the timeliness of UAVs
guarantees the reliability of phenotypic traits for resistant weed
identification in the field.

The WSRI introduced in this study showed better consistency
than previously published spectral VIs, with actual data for
atrazine-resistant weed in maize fields. The WSRI provides
better classification results than high-resolution RGB data, and
the fusion of the two data types further improves the results.
The robust deep learning model (DCNN) makes it possible to
monitor the dynamic response to resistant weeds in the field
precisely, regardless of complex environmental factors.

Our results also show that time series and weed density are
closely related to resistant weed identification. The UAV–WSRI
phenotypic method could be extended to evaluate the resistance

response of other field weeds under herbicide stress, providing a
valuable step for further field weed resistance studies.
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Spray drift is an inescapable consequence of agricultural plant protection 

operation, which has always been one of the major concerns in the spray 

application industry. Spray drift evaluation is essential to provide a basis 

for the rational selection of spray technique and working surroundings. 

Nowadays, conventional sampling methods with passive collectors used in 

drift evaluation are complex, time-consuming, and labor-intensive. The aim 

of this paper is to present a method to evaluate spray drift based on 3D LiDAR 

sensor and to test the feasibility of alternatives to passive collectors. Firstly, a 

drift measurement algorithm was established based on point clouds data of 

3D LiDAR. Wind tunnel tests included three types of agricultural nozzles, three 

pressure settings, and five wind speed settings were conducted. LiDAR sensor 

and passive collectors (polyethylene lines) were placed downwind from the 

nozzle to measure drift droplets in a vertical plane. Drift deposition volume 

on each line and the number of LiDAR droplet points in the corresponding 

height of the collecting line were calculated, and the influencing factors of this 

new method were analyzed. The results show that 3D LiDAR measurements 

provide a rich spatial information, such as the height and width of the drift 

droplet distribution, etc. High coefficients of determination (R2 > 0.75) were 

observed for drift points measured by 3D LiDAR compared to the deposition 

volume captured by passive collectors, and the anti-drift IDK12002 nozzle 

at 0.2 MPa spray pressure has the largest R2 value, which is 0.9583. Drift 

assessment with 3D LiDAR is sensitive to droplet density or drift mass in space 

and nozzle initial droplet spectrum; in general, larger droplet density or drift 

mass and smaller droplet size are not conducive to LiDAR detection, while the 

appropriate threshold range still needs further study. This study demonstrates 

that 3D LiDAR has the potential to be  used as an alternative tool for rapid 

assessment of spray drift.
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Introduction

Pesticides have significantly contributed to global agricultural 
development and food supplies (Oerke, 2006). Pesticide 
application is affected by complex environmental factors (e.g., 
temperature, humidity, and wind speed) and application 
techniques (Hilz and Vermeer, 2013). Consequently, it is estimated 
that 30% to 50% of the applied product drifts into non-target areas 
(Berg et al., 1999). Spray drift is defined by the US Environmental 
Protection Agency (EPA) as “the physical movement of a pesticide 
through the air at the time of application or soon thereafter, to any 
site other than the one intended for application” (EPA-United 
States Environmental Protection Agency, 2018). Spray drift is one 
of the largest sources of pollution caused by pesticides and poses 
significant risks to human health and the environment (Zhang 
et al., 2018). Many studies have investigated the effects of spray 
drift on ecosystems (Jong et al., 2008), water (Zhang et al., 2017), 
agriculture workers (Schampheleire et al., 2007), and exposure to 
bystanders and residents (Tsakirakis et al., 2018). Pesticides travel 
thousands of kilometers through air currents, eventually reaching 
remote areas (Stoughton et  al., 1997). With the increasing 
awareness of the need for environmental protection, spray drift 
during pesticide application has attracted significant research 
attention globally.

Several factors such as meteorological conditions, application 
techniques, spray characteristics, spray equipment, target crops, 
and operator skills affect the degree of spray drift (Gil and Sinfort, 
2005; Heidary et al., 2014). Regarding the application technology, 
the droplet size is widely recognized as the main factor affecting 
spray drift (Elliott and Wilson, 1983), and the effects of nozzle 
type, nozzle size, spray pressure, and additives on droplet size 
characteristics have been explored (Taylor et al., 2004; Nuyttens 
et al., 2007a). In addition, to reduce spray drift, components such 
as air-inclusion nozzles and low-drift nozzles with preset orifice 
settings have been designed to increase the droplet size (Butler 
Ellis et al., 2002). These specially designed nozzles can be used in 
harsh environments with a higher wind speed and dry conditions.

Before pesticide spraying, it is necessary to understand the 
anti-drift performance of the nozzle to facilitate the selection of 
the most appropriate nozzle (Ru et al., 2014). Based on ASAE 
Standard 572.1: 2009, the droplet size is divided into six classes—
very fine, fine, medium, coarse, very coarse, and extra coarse 
(ASAE, 2009). The nozzle spray drift is commonly tested either in 
the field or in a wind tunnel. Field tests are complex, cumbersome, 
and costly, with specific requirements for the testing site and 
environmental stability. ISO 22866:2005 (ISO, 2005) specifies the 
procedures for conducting field tests, but this requires several 
people to work collaboratively. A series of experiments can take 
several hours to complete, with extremely high environmental 
crosswind requirements. If the wind direction changes more than 
30° during the test, the measurement line must be reset (Arvidsson 
et al., 2011a). Wind tunnel tests were introduced to evaluate the 
spray drift characteristics (Southcombe et al., 1997; Herbst, 2001) 
by artificially controlling the temperature, humidity, wind speed, 

and wind direction to understand the influence of a single factor 
(Nuyttens et al., 2009; Zhang et al., 2015; Ferguson et al., 2016). 
ISO 22856:2008 standardizes the procedure for wind tunnel drift 
measurement (ISO, 2008).

For field and wind tunnel tests, sampling methods are mostly 
adopted to measure spray drift. Passive collectors, such as filter 
paper (Nuyttens et al., 2007b), plastic card (Carlsen et al., 2006), 
Petri dishes (Caldwell and Wolf, 2006), polyethylene line (Bai 
et  al., 2013), nylon rope (Bui et  al., 1998), dynamic rotating 
sampler (Bonds et al., 2009), and isokinetic sampler (Arvidsson 
et al., 2011b), were used for receiving the drift droplets, and the 
amount of spray deposition is quantified by discrete sampling. 
Each test cycle takes a long time to complete, as this method 
involves multiple processes, such as sample arrangement, 
collection, elution, and instrumental analysis. Furthermore, it is 
difficult to determine the spatial dispersion and evolution of spray 
drift clouds by point measurements. Therefore, new spray drift 
detection techniques or devices have been proposed and tested to 
develop easy and efficient alternative methods. Simulations of the 
transport process of spray droplets have been conducted, forming 
drift prediction models, such as AGDISP (Forster et al., 2012), 
AgDRIFT (Teske et al., 2000), RTDrift (Lebeau et al., 2011), and 
VALDRIFT (Allwine et al., 2010). Other studies have developed 
regression equations considering meteorological conditions and 
the drift distance to provide a reference point for the selection of 
nozzles and additives (Zhang et al., 2015). In addition, a mass 
balance system (Balsari et al., 2005) and test bench (Balsari et al., 
2007) for drift measurement in an orchard and boom spraying 
have been developed, and were applied to measure spray drift of 
different types of nozzles (Gil et al., 2014; Grella et al., 2019).

With recent developments in sensor technology, the use of 
non-contact sensors for evaluating spray drift has become a trend. 
Many studies have been conducted using laser imaging (Wang 
et  al., 2019), infrared thermal imaging (Jiao et  al., 2016), and 
OP-FTIR (Kira et al., 2018) to assess spray drift. Compared with 
direct sampling, sensor detection reduces time and labor cost, 
providing information on the spatial variation of spray drift. Light 
detection and ranging (LiDAR) sensors are non-contact 
measurement devices that use laser beams to accurately detect the 
spatial position of a target. In previous studies, LiDAR sensors 
have been used to study droplet movement in the wingtip vortex 
of spraying aircraft (Hoff et al., 1989) to assess the spray aerosols 
drifting above orange orchards with the influence of meteorology 
parameters and atmospheric stability (Miller et  al., 2003). 
Gregorio et al. (2015) developed an ad hoc LiDAR system for the 
measurement of pesticide spray drift, this system evaluates the 
amount of spray drift through laser signal strength. With this 
system, the optional spray drift reduction of hollow-cone nozzles 
was assessed (Gregorio et al., 2019). Currently, various types of 
LiDAR sensors are used for spray drift measurement. Commercial 
LiDAR technology is mature and highly available, exhibiting 
significant potential for broad and long-term applications in drift 
detection. Most commercial LiDAR sensors obtain plenty of 
distance values by scanning point clouds to construct target 
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contours, which provides the possibility for the detection of 
dispersed drift droplets in space. A commercial 2D LiDAR sensor 
has been used to estimate drift measurement in vineyard spraying, 
where the detection results were compared with passive collector 
experiments to demonstrate the potential of 2D LiDAR for drift 
measurement of air-assisted sprayer (Gil et al., 2013).

This study aims to explore the feasibility of using a commercial 
3D LiDAR sensor to assess spray drift. Spray drift tests with 
different working parameters were conducted in a wind tunnel, 
and the relationship between spray drift measurements obtained 
with LiDAR and passive collectors was analyzed.

Materials and methods

3D LiDAR sensor

The 3D LiDAR sensor used in this study was an outdoor four-
layer scanner designed for harsh environments (model 
LD-MRS400001, Sick, Dusseldorf, Germany), with a long range 
of 300 m. The sensor adopted a four-line design to simultaneously 
emit four laser beams to form four stacked planes, with a scanning 
interval angle of 0.8° and a whole scanning angle of 3.2° (−1.6° to 
1.6°) in the vertical direction (Figure  1A). In the horizontal 
direction, the sensor had a central scanning range of 85° for four 
scan planes, and the scanning range was extended between +35° 
and +50° or −50° and −60° to a total range of 110° (Figure 1B). 
The droplet detection was performed with laser beams emitted by 
the sensor in four stacked planes, where droplets impacted with 
the laser to form a drift cloud. Compared to single-wire LiDAR 
with one laser beam, this design ensures that more data signals are 
acquired in a scan procedure. The sensor had scanning frequencies 
of 12.5, 25, and 50 Hz. The available angular resolution was 
dependent on the scanning frequency, set to 0.125° or 0.25° under 
12.5 Hz, 0.25° under 25 Hz, and 0.5° under 50 Hz. The sensor was 
connected to a computer via Ethernet or the RS232 serial port for 
configuration and data transfer of measurements. The 
specifications of the sensor are listed in Table 1.

The sensor had the multi-echo capability to gather and 
evaluate up to three echoes per transmitted laser pulse. As 
different objects form different echo voltages, the echo signals that 
may interfere with the reflected objects can be filtered by setting 
the threshold voltage. Therefore, the system was configured with 
a noise filtering function. The sensor also had high scanning 
sensitivity for objects with transparent properties, such as rain, 
fog, and glass, which ensured the feasibility of using the sensor to 
detect drift droplets.

Data processing of drift points in space

SOPAS ET configuration software (V 02.18, Sick Sensor 
Intelligence) was used to manage the LiDAR sensor. Using this 
software, operators can configure and test measurement 

properties, analysis behavior, and output properties of the sensor 
as required. The sensor issued the original measured distance and 
angle information of drift droplets in reference to its coordinates. 
Initially, an angular coordinate system was constructed that 
contained each droplet spot scanned. Assuming that point A is a 
droplet in space (the jth droplet in i-plane), its polar coordinates 
( ϕ θ, ,ij ij ijr ) are expressed as:

( )( )
( )ϕ

θ α°

 =
 = +
 = −

· /1000

· /10000

90

ij i

ij i

ij i

r RangeValue j scaleFactor

startAngle j angularResolution
	

(1)

Where rij is the actual distance between droplet A and the 
sensor, m; ϕij  is the horizontal angle of droplet A; θij  is the 
vertical angle of droplet A; ( )iRangeValue j  is the original data 
output by SOPAS ET software; i represents the scan plane number 
between 1 ~ 4; scaleFactor  is the factor by which the following 
RangeValue  s can be brought to mm scale; startAnglei  is the 
initial scan angle of the i-plane; angularResolution is the angular 
resolution in the horizontal direction; and αi  is the angle between 
the four planes in the vertical direction, with values of −1.6°, 
−0.8°, 0.8°, and 1.6°.

The scanned droplet point, in Cartesian coordinates, was 
reconstructed with MATLAB (R2018a, MathWorks Inc., 
Massachusetts). As shown in Figure 2, the coordinates of the 
droplet point A ( ), ,ij ij ijx y z  are given by:
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Spray drift testing in a wind tunnel

Spray drift tests were conducted at the IEA-II wind tunnel at 
the National Experiment Station for Precision Agriculture, 
Beijing, China. A diagram of the wind tunnel is presented in 
Figure 3. This wind tunnel has been used in previous studies, such 
as Zheng et al. (2017); Zhang et al. (2019), and Tang et al. (2020). 
The wind tunnel consisted of an open-ended design, with a 
working section of 6.0 m length, 2.0 m width, and 2.0 m height. 
The wind tunnel applied an axial flow fan as the power source. 
Under the combined action of the rectifier and rectifying device, 
a uniform and stable wind field was generated. The adjustable 
range of the wind speed in the working section was 0.5 to 7 m/s; 
the turbulence was less than 0.3%, and the wind uniformity was 
less than 0.5%. The wind tunnel specifications fulfilled the 
requirements of the ISO 22856:2008 standard (ISO, 2008).

In this study, drift tests were conducted in strict accordance 
with ISO 22856:2008. A single and static nozzle was used, with the 
spray orientated at a right angle to the wind direction (Figure 3). 
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The nozzle was fixed at a height of 0.7 m from the bottom of the 
wind tunnel. The selected test nozzles were a standard flat-fan 
spray nozzle ST11002, an air-inclusion spray nozzle IDK12002, 
and a hollow-cone nozzle TR8002. The spray patterns of the 
nozzles used have representative characteristics and are widely 
used (Nuyttens et al., 2007a; Peter et al., 2008; Torrent et al., 2019). 
A mixture of a water-soluble tracer and yellow tartrazine, with a 
concentration of 8 g/l, was used as the spray solution. To precisely 
control the spraying time, a timer was equipped upstream of the 
nozzle. When the spray time reached the preset value, the timer 
automatically switched the power off, and the spray system 
stopped. In this study, the spraying time was set to 20 s. The spray 

pressure was set to 0.2, 0.3, and 0.4 MPa, and the wind speed was 
set to 1 to 3 m/s with an interval of 0.5 m/s. During all tests, the 
temperature of the wind tunnel was 25°C, and the relative 
humidity was 36%.

Spray drift measurements were performed with both the 
LiDAR sensor and the passive collectors, following ISO 22866. 
Before the wind tunnel tests, the flow rates of the three nozzles 
used were measured by the weighing method. Furthermore, the 
droplet spectra were tested with a laser particle analyzer (HELOS-
VARIO, Sympatec GmbH, Germany). In this study, Dv10, Dv50, and 
Dv90 were measured, and relative span factor (RS), which 
represents a dimensionless indicator of the uniformity of the drop 
size distribution, was calculated according to equation (3); during 

Principle of the scan planes

A B

Scanning range
FIGURE 1

Scanning properties of the LiDAR sensor (Operation instructions of LD-MRS 3D LiDAR sensors, Sick AG, 2010). (A) Principle of the scan planes. 
(B) Scanning range.

TABLE 1  3D LiDAR sensor specifications.

Parameter Technical indicators Experiment 
settings

Wavelength (nm) 905 —

Laser class 1 (IEC 60825–1:2014) —

Horizontal aperture angle (°) 110 (−60 ~ 50) —

Vertical aperture angle (°) 3.2 —

Working range (m) 300 —

Scanning frequency (Hz) 12.5/25/50 25

Angular resolution (°) 0.125/0.25/0.5 0.25

Protection class III —

Enclosure rating IP69K —

Weight (kg) 1 —

Dimensions (mm) 94 × 165 × 88 —

Interface mode RS-232/TCP/IP —

( , , )

x

z

y

LiDAR

FIGURE 2

Schematic of the drift cloud scanned in the Cartesian coordinate 
system.
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the test, the nozzle was fixed at 0.5 m above the analyzer. The flow 
rates and droplet spectra under various working conditions are 
shown in Table 2. According to the experimental setup, a total of 
60 spray drift tests were conducted.

	

−= 90 10

50

v v

v

D D
RS

D 	
(3)

Where, RS is the relative span factor; Dv10, Dv50, and Dv90 are 
the maximum droplet diameter below which 10%, 50%, and 90% 
of the volume of the sample exists, respectively, μm.

Sampling process using passive collectors
As shown in Figure 3, a vertical stainless-steel bracket 

was placed at a horizontal distance of 1.8 m from the nozzle 
in the downwind direction in the wind tunnel. Five 
polyethylene lines with a diameter of 2.0 mm were fixed 
horizontally across the bracket from 0.3 to 0.7 m, at 0.1 m 
intervals, to sample airborne drift droplets. The minimum 
height of 0.3 m was fixed to eliminate the impact of droplets 

bouncing and ground pollution on the test results. When the 
spraying finished, the polyethylene lines were collected into 
separate Ziploc bags, and the samples were stored in a dark 
box. After all the tests had finished, the polyethylene lines 
were brought to the laboratory for quantitative analysis. Five 
milliliters of deionized water was added to each Ziploc bag, 
and it was shaken sufficiently to fully elute and dissolve 
the tracer on the line surface. The absorbance of the 
eluate was measured using a visible light spectrophotometer 
(752 N INESA, Shanghai, China), and the amount of tracer 
droplets on the passive collector surface was calculated 
according to:

	

( )
β

− × ×
=

310samp blk dil
dep

spray

Abs Abs V
Abs

	
(4)

Where, βdep  is the drift deposition volume on the passive 
collector surface in μL; Abssamp is the spectrophotometer 
absorbance value of the sample; Absblk is the absorbance 
reading of the blanks; Vdil is the volume of dilution liquid used 
to solute the tracer from the passive collector in mL; and 

FIGURE 3

Construction of a test platform for measuring droplet drift in the wind tunnel.

TABLE 2  Flow rate and droplet spectra of nozzles.

Nozzle model Nozzle type Pressure/MPa Flow rate/
L·min−1

Dv10/μm Dv50/μm Dv90/μm RS

ST11002 Flat-fan 0.2 0.65 71.84 159.74 279.15 1.298

0.3 0.80 54.57 134.36 231.66 1.318

0.4 0.92 51.05 124.97 206.76 1.246

IDK12002 Air-inclusion 0.2 0.65 142.49 327.19 594.33 1.381

0.3 0.80 126.87 287.84 560.16 1.505

0.4 0.92 109.04 251.20 514.90 1.616

TR8002 Hollow cone 0.2 0.65 64.70 140.88 232.12 1.188

0.3 0.80 55.47 127.19 209.03 1.207

0.4 0.92 47.35 115.39 196.56 1.293
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Absspray is the spectrophotometer absorbance value of the 
spray mixture.

Spray drift measure algorithm using 3D LiDAR
The LiDAR sensor was fixed on the side of the wind tunnel 

closest to the vertical bracket. To ensure that the laser beam 
emitted by the sensor covered the polyethylene lines in the 
vertical array, the sensor was fixed 1.65 m above the wind tunnel 
floor, and the laser emitting surface faced downward. To prevent 
the passive collectors from blocking the laser beams, and 
considering the scanning planes of the sensor, the horizontal 
distance between the sensor and the vertical plane of the 
polyethylene line was set to 0.2 m. In the test, the scanning 
frequency and angular resolution of the sensor were set to 25 Hz 
and 0.25°, respectively. To gather more drift droplet points, four 
layers were used for the evaluation. The sensor was turned on 
before spraying, and the scanning measurements were initiated 
with the SOPAS ET software. The scanning time for each test 
was 1 min. The original data were then exported to the 
computer, and the drift droplet point was calculated according 
to equations (1) and (2).

To compare the measurements performed with the LiDAR 
sensor and the results obtained from the passive collectors, the 
number of drift points in five height intervals of 0.25–0.35, 0.35–
0.45, 0.45–0.55, 0.55–0.65, and 0.65–0.75 m was calculated, 
corresponding to polyethylene lines at heights of 0.3, 0.4, 0.5, 0.6, 
and 0.7 m. Assuming the scanning point Aij ij ij ijx y z( , , )satisfies 
equation (5), the cumulative number of drift points in the 
corresponding height interval should increase by 
increments of one.

	

( ) ( )
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 + − ∆ ≤ < + ∆
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0 01
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y k d y y k d
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Where, xmin  and xmax  are the minimum and maximum 
values of the x-axis of the effective scanning area at xmin= − 1.0 m 
and xmax  =1.0 m, respectively; y0 is the minimum height of the 
effective scanning area, at y0  =0.25 m; ∆d  is the height interval 
between adjacent lines, at ∆d  =0.1 m; and k is a constant, at k = 1, 
2, 3, 4, and 5. The droplet points obtained by scanning in the z-axis 
direction are all valid; therefore, the Zij is unlimited.

Results

Distribution of drift cloud and drift 
deposition in a vertical profile

The number of droplet points at different height intervals 
scanned with the LiDAR sensor was counted, and the amount 
of tracer droplets deposited on the passive collectors was 

measured by a spectrophotometer. Figure  4 presents an 
overview comparison of the drift distributions obtained by the 
two methods. For each nozzle, a total of 15 panels were 
obtained under different working conditions, the left of each 
panel shows the drift points scanned by the LiDAR sensor, and 
the colored strip plot on the right side of the panel shows the 
deposition volume in vertical profile. The drift point cloud 
captured by the LiDAR sensor presents a triangular contour, 
where the distribution of droplets in the lower section is large 
and dense. As the height increases, the number of drift points 
tends to decrease, which is consistent with the results obtained 
from the passive collectors (from bottom to top, the color of 
the strip plot gradually fades). For the three nozzles used, the 
highest number of drift points was produced by the nozzle 
ST11002, followed by TR8002. The IDK120-02 nozzle had the 
least drift points, scanned under the same pressure and wind 
speed as the two other nozzles. The main reason for this 
finding is that large droplets formed in the air, limiting spray 
drift (Nuyttens et  al., 2009; Vashahi et  al., 2018). Under 
constant pressure, as the wind speed increases, the drifting 
droplets tend to be denser.

The conventional sampling method is limited by the number 
and arrangement of samples, making it difficult to obtain the 
complete spatial distribution of drift droplets. In this section, the 
height and width ranges of the drift cloud under various operating 
parameters were calculated based on droplet point coordinates. As 
shown in Figure 5, the width range of nozzle ST11002 is higher 
than 1.0 m for all test conditions, which is significantly higher than 
that of nozzles TR8002 and IDK12002. Despite the spray angle of 
nozzle IDK12002 being 120°, which is higher than the other two 
nozzles as it is, affected by the larger droplets produced (Table 2), 
the width range is smaller than that of nozzles ST11002 and 
TR8002. In general, for the vertical direction, as the wind speed 
increases, the height range also increases, and there is little 
difference between the nozzles.

Figure  6 presents the drift deposition volume and the 
corresponding scanning points for the vertical profile. In 
general, the spray drift obtained by the two methods decreases 
gradually as the height increases. Compared with the passive 
collector sampling method, the LiDAR technique does not 
exhibit high capture sensitivity, especially at greater heights. For 
example, at a pressure of 0.2 MPa, the drift deposition volume 
of nozzle ST11002 was 6.255, 20.943, and 26.405 μl for wind 
speeds of 1.0, 1.5, and 2.0 m/s, respectively, while the LiDAR 
failed to scan any droplet in the height range of 0.65 to 0.75 m. 
The differences may be a result of the difficulties in the laser 
beam impacting the low-density point cloud due to a reduced 
number of drift droplets.

Laser beams emitted by LiDAR sensors are in a divergent 
radiation mode, implying that the scanning results are affected by 
the frequency and angular resolution, which makes it difficult to 
make the actual number of droplets in the space completely 
consistent with the returned effective laser signal. In this study, 
through the comparative analysis of the drift deposition volume 
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FIGURE 4

Drift points scanned by the LiDAR sensor (left of each panel) and drift deposition captured by passive collectors (right of each panel) for the 
three nozzles. In the strip plot for each combination, darker colors represent greater drift deposition. (A) ST11002. (B) TR8002. (C) IDK12002.
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and droplet points of the 60 tests, it was found that when the 
deposition volume was less than 50 μl, LiDAR is prone to invalid 
scanning, that is, it is difficult to get more feedback laser signal.

Correlation analysis between LiDAR and 
indirect methods

The drift deposition and the droplet points through the 
vertical profile were processed further, and a correlation analysis 
was performed (Figure 7). For the three types of nozzles used, the 
drift deposition volume for passive collectors gradually increased 
with increasing wind speed. When the wind speed exceeded 
1.5 m/s, the deposition volume increased gradually with an 
increase in spray pressure (0.4 > 0.3 > 0.2 MPa). The drift points 
captured by the LiDAR sensor did not show a same regularity as 
the deposition volume. At 1–2 m/s, the number of drift points 
gradually increased with an increase in wind speed, while the 
point number at 2.5 m/s may be less than 3 m/s. For example, for 
nozzle ST12002 at a spray pressure of 0.4 MPa, the number of drift 
points at a wind speed of 2.5 m/s was 9,024, which is higher than 
7,925 drift points at a wind speed of 3 m/s. The possible reason is 
that the higher movement speed of droplets affects the capture 
ability. The IDK12002 nozzle has significantly lower deposition 
and drift points than the ST11002 and TR8002 nozzles. In this 
case, 3D LiDAR measurement can classify the drift performance 
of the conventional nozzle and the anti-drift nozzle.

Through the correlation analysis of 3D LiDAR and the 
indirect method, it was found that the drift point number captured 
by 3D LiDAR generally has a good correlation with the deposition 
volume from passive collectors, with the coefficients of 
determination (R2) of the three nozzles being greater than 0.75. 
Among the three nozzles, IDK122002 with less spray drift and 
larger droplet size has the best correlation, and the minimum R2 
is 0.80 under the three spray pressure settings. In terms of spray 
pressure, the R2 of nozzles ST11002 and IDK12002 showed a 
decreasing trend with an increase in the spray pressure. When the 
spray pressure increased, the droplet size decreased (Table 2), and 

the amount of drifting droplets increased. The laser beam 
impacted the droplets directly in front of LiDAR, but a few laser 
beams failed to capture droplets further away from the LiDAR 
sensor because of the blocking effect of the droplets ahead.

Wt analysis of the influence of spray 
parameters on 3D LiDAR drift assessment

Changes in spray parameters can affect the drift deposition 
volume and drift points captured by LiDAR sensors. Through the 
previous analysis, it was found that the scanning accuracy of 3D 
LiDAR is different under different droplet size spectra, flow rates, 
and wind speed conditions. Understanding the influence of these 
factors can provide support for the rational use of 3D LiDAR to 
evaluate spray drift. In this study, SPSS software was used to 
analyze the linear relationship between drift points, deposition 
volume, and the coefficients of determination R2 value of the two 
methods with the flow rate, Dv50, RS, and wind speed. The 
corresponding coefficients were calculated, as shown in Table 3. 
The larger the absolute value of the coefficient, the greater the 
influence of the parameter on the result.

The influence weights of each parameter were calculated 
based on the data in Table 3, as shown in Figure 8. The wind speed 
had the greatest influence on the sampling method by passive 
collectors with a ratio of 37.74%, with the flow rate, Dv50, and 
relative span factor (RS) being equally weighted. For the drift 
point scanned by LiDAR, the influence of wind speed and Dv50 
accounts for a great proportion, and their influence weights are 
49.62% and 42.51%, respectively. For the R2 values of the two 
methods, the droplet spectrum had a greater influence, and the 
weight ratio of Dv50 and RS was more than 80%.

Discussion

In pesticide application process, fine droplets may drift to the 
non-target area and cause serious environmental and public 

 
ST12002

A B C

TR8002 IDK12002

FIGURE 5

Width and height range of drift point distributions scanned by the LiDAR sensor for the three nozzles. The circles filled with solid color represent 
the width range in the horizontal direction and the circles filled with dotted point represent the height range in the vertical direction. (A) ST12002. 
(B) TR8002. (C) IDK12002.
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FIGURE 6

Spray drift obtained with passive collectors and LiDAR sensors at various heights for the three nozzles. (A) 0.2 MPa. (B) 0.3 MPa. (C) 0.4 MPa. 
(D) 0.2 MPa. (E) 0.3 MPa. (F) 0.4 MPa. (G) 0.2 MPa. (H) 0.3 MPa. (I) 0.4 MPa.
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ST11002
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TR8002

IDK12002 

FIGURE 7

Correlation analysis of drift points and deposition volume for the three nozzles. The left panel shows the drift points and deposition under various 
working conditions (line represents deposition volume, column represents drift points), and the right panel shows the correlation between the two 
methods. (A) ST11002. (B) TR8002. (C) IDK12002.

health problems, including damage to the adjacent crops sensitive 
to chemical agents, river contamination, and risk to the health of 
humans and animals (Nuyttens et al., 2010). At present, spray 
drift is unavoidable. However, we  can optimize the chemical 
application technology by means of drift evaluation, i.e., nozzle 
selection, operating parameters adjustment, and suitable working 

surroundings. Traditional spray drift experiments are complex, 
time-consuming, and labor-intensive. Therefore, there is a strong 
demand for an efficient and convenient alternative drift 
measurement method.

In this study, exploratory work was conducted to demonstrate 
the capacity of a commercial 3D LiDAR sensor to evaluate spray 
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drift generated by different nozzle types, spray pressures, and wind 
speeds. LiDAR measurements were compared with those obtained 
with the indirect method using passive collectors. Firstly, the 
coordinates of the drift points scanned by the LiDAR sensor were 
converted to obtain the point clouds in the vertical profile, 
intuitively observing the drift droplet distribution (Figure 4). This 
is difficult to achieve with traditional indirect methods. The drift 
width and height ranges under various working conditions were 
calculated through point cloud coordinates (Figure 5). The results 
can provide a point of reference for setting the size of anti-drift 
obstacles (De Schampheleire et al., 2009).

The drift points in various height intervals were counted. 
It was assumed that each height interval was 0.1 m (with the 
polyethylene line as the center, the upper and lower heights 
were both 0.05 m). Accordingly, the drift points and 
deposition volume for passive collectors were compared 
(Figure 6). Although the LiDAR sensor used a higher scanning 
frequency of 25 Hz, few droplets impacted the laser beam 
owing to the lower droplet density at a higher height interval 
(0.7 m). LiDAR sensor determines drift from the reflected 
signal of a laser beam impacting a droplet, while it is difficult 
to equate a laser feedback signal with a droplet, and laser 
beam impacts are sensitive to droplet density or drift mass. In 
addition, by correlating the drift points with the deposition 
volume obtained by the indirect method (Figure  7), it is 
observed that the nozzle IDK12002 has a better correlation 

between 3D LiDAR measurements and the indirect method, 
and the lower spray pressure with less drift appears to be more 
conducive to drift evaluation with 3D LiDAR. Conversely, Gil 
et al. (2013) conducted a study using a commercial 2D LiDAR 
sensor to evaluate the spray drift of orchard sprayers, the 
results indicate a bad ability of the 2D LiDAR sensor to 
evaluate spray drift in case of sparse drift cloud with 
air-inclusion nozzles. The droplet density or drift mass 
suitable for LiDAR measurement is likely to have a threshold 
range, beyond which the detection accuracy will be reduced. 
By comparing all the test data in this study, we  found that 
when the deposition volume was less than 50 μl, 3D LiDAR is 
prone to invalid scanning.

The drift deposition volume from passive collectors gradually 
increased with increasing wind speed, while the number of drift 
points measured by LiDAR does not follow the same law. For 
example, for nozzle ST12002 at a spray pressure of 0.4 MPa, the 
number of drift points at a wind speed of 2.5 m/s was 9,024, 
which is higher than 7,925 drift points at 3 m/s (Figure 7). This 
phenomenon may be caused by excessive droplet density or by 
changes in wind speed. When the wind speed is higher, the fine 
droplets pass through the vertical profile at a higher speed, and 
either the emitted laser beam fails to perfectly impact the droplets 
or the high-speed droplets cause part of the energy loss, implying 
that the reflected signal strength cannot reach the LiDAR system 
identification threshold.

TABLE 3  Coefficients of spray parameters, according to the linear analysis of drift points, deposition volume, and R2.

Spray parameter Flow rate Dv50 RS Wind speed

Drift deposition volume measured by passive collector 0.303 −0.327 −0.312 0.571

Drift points scanned by LiDAR −0.062 −0.497 0.030 0.580

R2 of LiDAR and indirect method −0.219 0.715 −0.519 —

FIGURE 8

Influence weights of spray parameters on drift assessment.
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Through the wt analysis, it was found that the Dv50 and RS 
have a great influence on R2 of LiDAR and indirect method 
(Figure 8). The droplet spectrum also indirectly affects the 
droplet density in the detection area. In order to reduce the 
detection distortion caused by laser beam occlusion and laser 
beam emission angle resolution, an appropriate detection area 
needs to be  identified in advance. Although the current 
LiDAR sensor has a maximum detection distance of 
300 meters or more, in actual spray drift evaluation, only a 
small plane (e.g., 1 × 1 m) close to the LiDAR may be selected 
as the sampling zone. This selected plane needs to 
be determined by experiments so that LiDAR can restore the 
spatial distribution of droplets most realistically.

In addition to the factors of the spray drift flux mode, the 
spray drift measurement with LiDAR in field maybe faces the 
challenges such as the impact of higher-intensity sunlight, 
dust suspended in the air, and ambient temperature on the 
performance of LiDAR. Gregorio et al. (2019) confirmed that 
spray drift measurement distortion maybe occured because of 
the presence of air-suspended dust based on the LiDAR 
system developed. Nowdays, the research on LiDAR detection 
performance in agriculture mainly focuses on sensing 
geometric characterization of canopy and obstacle in 
agricultural activities (Lee and Ehsani, 2008; Rosell and Sanz, 
2021). Commercially available LiDAR sensors are expected to 
be a practical tool for drift assessment. However, the current 
research depth and breadth are not enough. It is essential to 
carry out subsequent research combined droplet 
characteristics, drift point cloud spatial distribution, 
application scenarios, and environmental conditions, to 
determine the optimal conditions for LiDAR measurements 
such as droplet density ranges, LiDAR Settings, and 
environmental conditions.

Conclusion

3D LiDAR sensors provide a fast and efficient detection 
method for evaluating the drift performance of different types 
of nozzles and spraying techniques. Through non-contact 
scanning, the spatiotemporal distribution plots of drifting 
droplets can be provided, and the influence of environmental 
characteristics on the spatial transport of drifting droplets can 
be evaluated. Compared with the traditional method of using 
passive collectors, LiDAR technology significantly reduces 
time and labor cost, as well as the operator’s exposure to 
chemical pesticides.

In general, a good correlation was observed between the 
drift deposition with passive collectors and the drift points 
scanned by 3D LiDAR. This non-contact sensing method has 
shown potential for evaluating spray drift characteristics of 
nozzles under different working conditions. However, it is 
difficult to equate a laser feedback signal with a droplet, the 
droplet detection performance of commercially available 3D 

LiDAR sensors is limited by sensitivity to droplet density. It 
can be  inferred that the effectiveness of LiDAR on droplet 
detection has certain threshold requirements for droplet 
density, knowing the optimal droplet density range can greatly 
improve the detection accuracy of LiDAR. Also, the droplet 
spectrum and movement speed may be  other important 
factors, which affect the strength and quantity of the reflected 
signal of a laser beam impacting droplet. In this study, 
IDK12002 shows the best correlation between 3D LiDAR 
measurements and the indirect method, and the lower spray 
pressure with less drift and larger droplet size appears to 
be more conducive to drift evaluation with 3D LiDAR. Further 
research would be  arranged to investigate the influence of 
droplet size and movement speed on detection results, and 
clarify the maximum and droplet density threshold range 
allowed by 3D LiDAR detection.
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The United Nations predicts that by 2050, the world’s total population

will increase to 9.15 billion, but the per capita cropland will drop to

0.151◦hm2. The acceleration of urbanization often comes at the expense

of the encroachment of cropland, the unplanned expansion of urban area

has adversely affected cultivation. Therefore, the automatic extraction of

buildings, which are the main carriers of urban population activities, in

remote sensing images has become a more meaningful cropland observation

task. To solve the shortcomings of traditional building extraction methods

such as insufficient utilization of image information, relying on manual

characterization, etc. A U-Net based deep learning building extraction model

is proposed and named AttsegGAN. This study proposes an adversarial

loss based on the Generative Adversarial Network in terms of training

strategy, and the additionally trained learnable discriminator is used as a

distance measurer for the two probability distributions of ground truth Pdata
and prediction Pg. In addition, for the sharpness of the building edge,

the Sobel edge loss based on the Sobel operator is weighted and jointly

participated in the training. In WHU building dataset, this study applies the

components and strategies step by step, and verifies their effectiveness.

Furthermore, the addition of the attention module is also subjected to ablation

experiments and the final framework is determined. Compared with the

original, AttsegGAN improved by 0.0062, 0.0027, and 0.0055 on Acc, F1,

and IoU respectively after adopting all improvements. In the comparative

experiment. AttsegGAN is compared with state-of-the-arts including U-Net,

DeeplabV3+, PSPNet, and DANet on both WHU and Massachusetts building

dataset. In WHU dataset, AttsegGAN achieved 0.9875, 0.9435, and 0.8907

on Acc, F1, and IoU, surpassed U-Net by 0.0260, 0.1183, and 0.1883,

respectively, demonstrated the effectiveness of the proposed components

in a similar hourglass structure. In Massachusetts dataset, AttsegGAN also
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surpassed state-of-the-arts, achieved 0.9395, 0.8328, and 0.7130 on Acc, F1,

and IoU, respectively, it improved IoU by 0.0412 over the second-ranked

PSPNet, and it was 0.0025 and 0.0101 higher than the second place in Acc

and F1.

KEYWORDS

UAV, cropland observation, building extraction,WHUbuilding dataset, Massachusetts
building dataset, multi-loss, dual attention, Sobel edge loss

Introduction

Since 1990, the trend of population migration to cities
has become more pronounced, which has resulted in cities
becoming the main carriers for modern human economic
and social activities (Buhaug and Urdal, 2013). Statistics show
that the average global cropland area loss between 1992
and 2004 was about 30,000 km2yr−1, of which 34.3% was
converted to settlements, and that cropland loss was particularly
pronounced in Asia in the following decade (Tan and Li, 2019).
Especially in China where, even though the illegal occupation
of planting land has been written into the criminal law, the
occupation of cropland is still common (Xing, 2016). Due to
the rapid urbanization process, the occupation of cropland is
often reflected in the expansion of building areas (as shown
in Figure 1), which has become a common phenomenon
(McKittrick, 2013). Therefore, the automatic detection of
buildings is crucial to the protection of cropland. On the other
hand, for automated agricultural intelligent devices such as
robots and UAVs, accurate identification of buildings will also
provide effective reference information for their path planning
and obstacle avoidance tasks.

Buildings are one of the most widely distributed and most
important types of man-made objects and could be extracted
by satellite or UAV (Unmanned Aerial Vehicle) remote sensing
images understanding (Alshehhi et al., 2017). Currently, with
the development of remote sensing technology, such as SPOT
6 of France, ZY-3, Gaofen-1 and Gaofen-2 of China, and
WorldView-3 of the United States can already use meters or
submeters as its spatial resolution measurement unit, and it has
reached or approached the quality of aerial photography (Chen
W. et al., 2017; Ghimire et al., 2020). Compared with medium
and low resolution, higher resolution remote sensing images
have the following characteristics:

(1) The spectral features of the ground objects are more
obvious, the spectral difference between the same type of ground
objects becomes larger, and the spectral difference between
different types of ground objects becomes smaller;

(2) Higher spatial resolution makes the data volume of a
single image larger;

(3) A single pixel often corresponds to only one type of
ground object;

(4) There is more detailed information of ground objects,
such as shape, brightness, texture, etc;

(5) The background of ground objects is more
complex and diverse.

These distinctive features also present higher requirements
for building extraction. In order to meet these various
requirements of new application areas, identifying buildings
in high-resolution remote sensing images is the core
challenge.

Traditional remote sensing image building extraction
methods mainly include knowledge-based methods using
geometric knowledge and context knowledge, along with object-
based image analysis (OBIA)-based methods and machine-
learning-based methods using image segmentation and target
classification (Cheng and Han, 2016). In these traditional
methods, the extraction task often requires experts to judge
and design according to the spectrum, texture, shape, spatial
relationship, and other information of the building, which
relies heavily on abundant human imagination, ingenuity, and
experience for the design of the features. Fortunately, Hinton
and Salakhutdinov (2006) demonstrated the powerful feature
representation capability of deep learning models in computer
vision applications. They showed that the features will be
automatically obtained from the existing data by the neural
network through sampling, and the more abstract features
beyond human imagination can be effectively obtained by
increasing the depth of the network. The burden of feature
design can be shifted to model design, which is relatively simple
(Ubbens and Stavness, 2017).

However, in remote sensing images, due to the increasing
complexity of buildings and their backgrounds caused by
progressively higher resolution, the application of deep learning
to building extraction still has problems (Jun et al., 2016), such
as insufficient extraction of multi-scale targets, insufficient use
of image information, model overfitting, and ambiguous edges
in prediction, etc. Therefore, there are still challenges with
regard to accurately segmenting and characterizing buildings.
In this article, to solve these deficiencies, a deep-learning-based
building extraction method is proposed. The contributions of
this paper can be listed as follows:

(1) The dual-attention mechanism is used, which enhances
the information utilization of remote sensing imagery within
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FIGURE 1

Encroachment by buildings on cropland.

both feature maps and channels, and dedicates computing
resources to more critical areas.

(2) In view of the multi-scale features of modern buildings,
the ASPP (atrous spatial pyramid pooling) module is added
to the model, which reduces the amount of computation
and parameters while increasing the receptive field of the
model, enhancing its ability to extract buildings with multiple
sizes and shapes.

(3) In terms of model training, to make the prediction more
artificial, a learnable discriminator and adversarial loss based
on the idea of generative adversarial networks are proposed,
and the authenticity of the prediction is used as an auxiliary
reference to guide the learning process of the model by weighted
adversarial loss.

(4) In terms of loss design, an edge loss based on
the Sobel operator was proposed to solve the problem of
the edges of buildings being susceptible to approximate
background interference.

The following sections are arranged as follows: the relevant
foundations involved in this study are presented in Section
“Related works”; the components, WHU dataset, multi-
losses design, evaluation indexes, etc., are detailed in Section
“Materials and methods”; ablation experiments and comparative
experiments are presented and discussed in Section “Results

and discussion”; and in Section “Conclusion,” a summary of the
full paper is given.

Related works

Image segmentation and semantic
segmentation

The principle of building extraction is to use a building’s
characteristics to achieve target recognition and accurately
distinguish it from the background. Previous researchers tended
to identify buildings in the order of image segmentation, and
then artificial characterization (Khan, 2014). The traditional
image segmentation method divides an image into several
regions and realizes the feature similarity within the region and
the feature difference between regions.

The main methods are: (1) the threshold-based
segmentation method; (2) the edge-based segmentation
method; (3) the region-based segmentation method; (4) the
graph-based segmentation method; and (5) the energy-based
segmentation method.

However, the above methods that utilize the low-level
semantics do not fully utilize the high-level semantics of remote
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sensing images to qualitatively analyze the segmented regions.
In practical application, especially when processing high-
resolution images, the characteristics of targets will be relatively
complex, and the differences between the same kinds of targets
are relatively large; therefore, algorithms that only rely on low-
level content information such as color, brightness, texture,
etc., are insufficient to achieve a reasonable segmentation.
Different from these traditional methods, the deep-learning-
based semantic segmentation method can not only realize the
image segmentation function, but can also achieve qualitative
analysis and automatic classification for the area after clustering
the pixels. In this process, abstract high-level semantic features
will be fully utilized to achieve more accurate predictions.

The appearance of “semantic segmentation” as a noun can
be traced back to the 1970s. Ohta et al. (1978) proposed the
concept of semantic segmentation and emphasized assigning
a label to each pixel in the image, thereby emphasizing
the semantic meaning of the segmented region. Semantic
segmentation belongs to the pixel-level scene understanding
task in computer image processing, which enables a dense
prediction of the input image and a label assignment for each
pixel. Therefore, deep-learning-based semantic segmentation
is not an isolated task, it involves image classification, target
detection, target boundary division, etc., (Garcia-Garcia et al.,
2017), which means it is a prediction task with high demands on
image understanding.

The most meaningful models for the building extraction
task in this study are fully convolutional networks (FCNs) and
U-Net. In terms of task implementation, this study refers to the
end-to-end idea of FCN. After the CNN (convolutional neural
network) was proposed, researchers tried to apply its excellent
learning performance to semantic segmentation tasks, for which
the pioneering work is the FCN proposed by Long et al.
(2015). FCN utilizes the powerful feature extraction capabilities
of CNN to achieve end-to-end, pixel-to-pixel segmentation
prediction and replaces traditional fully connected layers
with convolutional layers. FCN also adapts classic network
structures, such as AlexNet, VGG16, and GoogLeNet, to
fully convolutional models and verifies their performance in
semantic segmentation. In addition, FCN can accept input
images of an arbitrary size with a fixed number and size of
convolutional layers, and performs pixel-wise predictions on the
input images through learnable deconvolution in terms of up-
sampling.

After the performance of FCN is proved, more enlightening
semantic segmentation models are proposed. Similar to U-Net
in structure, PSPNet uses global pyramid pooling and deeply
supervised loss as improvements, enhancing the ability of
feature extraction. DenseASPP is proposed and used to solve
the problem of insufficient feature resolution in the scale-
axis. DANet proposes a dual-attention module that makes
full use of image information and shows its performance in
multi-class semantic segmentation. OCNet address the semantic

segmentation task with a context aggregation scheme which
focuses on enhancing the role of object information.

In this research, U-Net was referred to in the framework
design. In U-Net, the contracting path performs the role of
down-sampling, and the expansive path performs the role of
up-sampling. It is worth noting that four connection channels
were added, respectively concatenating the feature maps of four
different resolutions in the down-sampling process with the
corresponding layers in the up-sampling process. This operation
avoids the loss of details in the down-sampling process, so
that the shallow features extracted by the convolutional neural
network can directly participate in the prediction.

In the process of down-sampling, the convolution
calculation combined with the ReLU activation function
plays a role in increasing the nonlinear relationship between
pixels, and the image is shrunk by a 2 × 2 max pooling
operation with a stride of two. After each contraction, the
number of channels is doubled by a 3 × 3 convolution. After
four contractions, U-Net starts to use a 2 × 2 convolution for
expansion, and the number of channels will be reduced to half
of the original through a 1 × 1 convolution and concatenated
with the feature maps in contraction. Then, the number of
channels of the output will be reduced by a 3 × 3 convolution
with the ReLU function. It is worth noting that edge pixels will
be lost after the convolution operation, so the corresponding
feature map from the shrinking unit needs to be cropped before
concatenation. Finally, U-Net will output the segmentation map
according to the set size (Ronneberger et al., 2015).

Generative adversarial networks

Before the proposal of GANs (generative adversarial
networks), the deep learning model often included only a
generative model or a discriminative model (Goodfellow et al.,
2014). The former uses a large amount of neural network
parameters and their ability to fit the dataset to generate
new data that does not exist in the training set, while the
latter directly fits the discriminant function. Different from the
traditional model, GAN, as an implicit density generative model,
includes both the generative model and the discriminative
model in one framework. A generative model can be likened
to a counterfeiter, while a discriminative model can be likened
to a policeman. The former hopes that their forgery ability is
as superb as possible, so that the fake data is as similar as
possible to the real data, thus the police cannot make accurate
judgments. The police, on the other hand, are expected to
judge the authenticity of the data as accurately as possible,
and the training process is more like a competition where the
competitors are alternately leading. Assuming that Pdata (x) is
the distribution probability of the real data and Pg (x) is the
distribution probability of the generated data, when the system
is in Nash equilibrium, a “smartest” generator can be obtained

Frontiers in Plant Science 04 frontiersin.org

40

https://doi.org/10.3389/fpls.2022.993961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993961 August 30, 2022 Time: 15:31 # 5

Wang et al. 10.3389/fpls.2022.993961

to achieve more accurate fitting between Pg (x) and Pdata (x)
(Jabbar et al., 2021).

The advantage of GAN is that there are fewer constraints
in the design, it does not need such a complex artificial
qualification as that in the Markov chain or the variational
boundary, but uses a learnable discriminator as an auxiliary
training method to constrain the feature distribution of the
generator output, which is more convenient. Moreover, the
discriminator will act as a distance measurer between Pg (x) and
Pdata (x).

The generative adversarial networks can be expressed by the
following object function:

min
G

max
D

V (D,G) = Ex∼Pdata(x)
[
log D (x)

]
+ Ez∼Pz(z)

[
log (1− D (G (z)))

]
(1)

where D represents the discriminator, G is the generator,
Pdata (x) stands for the probability distribution of the real data,
Pz (z) denotes the probability distribution of random noise z,
D (x) represents the discrimination result on real data x, and
D (G (z)) signifies the discrimination result of D on sample G (z)
generated by generator G through random noise z.

In terms of GAN training, according to the above principles,
to obtain the optimal discriminator, it is necessary to let the
output of D (x) be 1, and let the output of D (G (z)) be 0, then
the optimal discriminator can be expressed as:

max
D

V (D,G) = Ex∼Pdata(x)
[
log D (x)

]
+Ez∼Pz(z)

[
log (1− D (G (z)))

]
(2)

To obtain the optimal generator, it is necessary to let G (z)
generate data as real as possible to disturb the judgment of the
discriminator D. Since this process is independent of the first
half of Formula (2), the optimal generator can be expressed as:

min
G

V (D,G) = Ez∼Pz(z)
[
log (1− D (G (z)))

]
(3)

To provide more accurate data for the subsequent city-
related evaluation tasks, the building extraction has high
requirements with regard to accuracy, and researchers hope
the intensive prediction performance of the model can be as
close as possible to human experts. Therefore, in this study,
the training of the prediction model will be aided by weighted
adversarial loss.

Materials and methods

Depthwise separable convolution and
atrous spatial pyramid pooling

In recent years, the difference in shape and size between
different buildings has become more pronounced; therefore, in

remote sensing imaging, the identification and extraction of
multi-scale objects has always been a challenge (Vakalopoulou
et al., 2015). In a traditional convolution-based model,
to increase the receptive field, reducing the amount of
computation, pooling, or convolution with a stride greater than
1 will be used, but this will reduce the spatial resolution. In this
study, ResNet-50 is used in the encoder; therefore, the depth
of the model is relatively deep and the amount of parameters
will be large (He et al., 2016). To ensure the resolution while
expanding the receptive field, ASPP (atrous spatial pyramid
pooling) and a depthwise separable convolution are used to
obtain multi-scale information flexibly by setting the dilation
rate without introducing additional parameters, so as to better
obtain multi-size buildings.

Atrous spatial pyramid pooling was formally proposed
in DeepLabv2. When deep convolutional neural networks
are used in semantic segmentation tasks, the input remote
sensing image usually needs to undergo a down-/up-sampling
process in a convolutional encoder–decoder structure. Although
convolutional neural networks have a receptive field mechanism
that can be used to extract multi-scale target features, its scale
will be limited by the size of the convolution kernel (Chen L.
C. et al., 2017). An atrous convolution can be used to cheaply
increase the receptive field of output units without increasing
the kernel size, which is especially effective when multiple atrous
convolutions are stacked one after the other (Dai et al., 2021).
Assuming that the input feature map size is Rin × Rin , the
output feature map size is Rout × Rout , and the convolution
kernel size is K × K. In a traditional convolution, the receptive
field range is equal to the size of the convolution kernel, which is
K × K. In an atrous convolution, assuming that the dilated rate
is D, its receptive field will be K ′ = K + (K − 1)(d − 1).

Loss function design

In this study, the overall loss is divided into three parts,
namely BCE (binary cross-entropy) loss Lbce responsible for
segmentation prediction, adversarial loss responsible for the
auxiliary training of model prediction authenticity, and edge
loss responsible for optimizing the accuracy of building edge
prediction. The overall loss is defined as:

Lsum = Lseg + LEdge + Ladv (4)

In the first item, the predicted segmentation map ŷ and the
label map y are compared at the pixel level. For a single pixel
in a remote sensing image, the building extraction task belongs
to the binary classification task; therefore, this study uses binary
cross-entropy as the loss, which can be expressed as:

Lseg = Lbce
(
ŷ, y

)
= −

1
n

n∑
i

zi log ẑi + (1− zi) (5)
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where zi and ẑi denote the label value in y and the predicted
value in ŷ at the same location, respectively.

In the second item, considering that buildings often have
straight boundaries with the background, in this study, a Sobel-
operator-based loss was designed and added to highlight the
edges. By implementing the Sobel operator in both horizontal
and vertical directions, and then using it as a filter to perform
convolution operations on the image to be processed, the
horizontal and vertical edges on the image can be extracted. The
Sobel template in the horizontal direction is:

fh =

−1 0 +1
−2 0 +2
−1 0 +1

 (6)

Meanwhile, in the vertical direction, it is:

fv =

−1 −2 −1
0 0 0
+1 +2 +1

 (7)

Specifically, two convolutional layers using the above
templates are defined, and their weights are not involved
in backpropagation. After the building extraction results are
obtained in the forward propagation, the prediction results and
the original labels are input into the two designed layers for
calculation, and two dual-channel gradient maps of the edge
are obtained, the values of which are between 0 and 1. Then,
the mean square error (MSE) between the two gradient maps is
calculated to obtain the edge loss:

LEdge = Lmse
(
fh(y), fh(ŷ)

)
+ Lmse

(
fv(y), fv(ŷ)

)
(8)

In the third item, to ensure that the model prediction
ability is closer to that of the experts, the idea of GAN is
applied, and the extraction task is still carried out by the
generator; meanwhile, an additional discriminator is trained
synchronously to determine the authenticity of the pixel-level
prediction results. Hence, the discriminator acts as a learnable
constraint and participates in the overall training of the model
by virtue of the adversarial loss, the training of which can be
represented by the following function:

Ladv = Lbce
(
D
(
x, y

)
, 1
)
+ Lbce (D (x,G (x)) , 0) (9)

where G (x) = ŷ, G is the generator, and D represents the
discriminator. In alternate iterative training of generative
adversarial networks, the generator loss can be expressed as:

LG = Lbce
(
ŷ, y

)
+ LEdge − Lbce (D (x,G (x)) , 0) (10)

Here, a maximized Lbce (D (x,G(x)) , 0) can be equivalent to a
minimized Lbce (D (x,G(x)) , 1); furthermore, weights are added
to the loss of each item, so it is easy to obtain:

LG = w1Lbce
(
ŷ, y

)
+ w2LEdge + w3Lbce (D (x,G(x)) , 1) (11)

Dual-attention module

The aim of the attention mechanism is to obtain
the difference in importance between feature maps and
feature values. To realize reassignment, it causes the
neural network to devote more computing resources to
more important areas (Mi et al., 2020). In this building
extraction task, the importance of different objects is
distinct; therefore, introducing an attention module can
provide more tractable and more relevant information for
high-level perceptual reasoning and more complex visual
processing tasks.

Generally, attention mechanisms can be divided into item-
wise and location-wise, both of which can be subdivided
into soft attention (differentiable), and hard attention (non-
differentiable). Among them, the location-wise soft attention
with feature map as an input can participate in gradient descent
together with the neural network and update the weights
through backpropagation (Niu et al., 2021), which is more
suitable for the application scenario of deep learning, so it is also
applied to this study.

In the process of building extraction, the spatial relationship
between each pixel and its nearby pixels is significantly higher
than the relationship with pixels far away from it; therefore, this
study refers to DANet using a dual-attention module to fully
capture the semantic dependencies in the spatial and channel
dimensions (Fu et al., 2019).

In terms of implementation, the dual-attention module
includes the position attention module [shown in Figure 2(A)]
and the channel attention module [shown in Figure 2(B)],
and calculates the attention matrices S and X for them,
respectively.

First, the output A of the last layer after down-sampling is
copied into four parts, in which B, C, and D are obtained after
one convolution layer, and their size is {B,C,D} ∈ RC∗H∗W .
Subsequently, flattening is performed within the channel, and
the new dimension is {B,C,D} ∈ RC∗N , where N = H ∗W.
The reshaped matrix can be expressed as:

Breshape = Creshape = Dreshape

=



M1
11 M1

12

M2
11 M2

11
· · ·

M1
i j−1 M1

i j

M2
i j−1 M2

i j
...

. . .
...

Mc−1
11 Mc−1

12

Mc
11 Mc

12
· · ·

Mc−1
i j−1 Mc−1

i j

Mc
i j−1 Mc

i j


(12)

The matrix B is then transposed to get BTreshape , BTreshape and
C are multiplied by a matrix, and an attention matrix pam is
formed with a size of N ∗ N through the SoftMax, as shown in
the following formula:

Spam = softmax
(
BTreshape ⊗ Creshape

)
(13)
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FIGURE 2

(A) Framework of position attention module; (B) framework of channel attention module.

It is then transposed, so that pamT and Dreshape are
multiplied, and the output is then reorganized in the array
dimension to make it the same as the input A ∈ RC∗H∗W , which
can be expressed as:

output = Dreshape
⊗

STpam =


M1

11S11 + . . . + M1
i jS1n · · · M1

11Sn1 + . . . + M1
i jSn n

...
. . .

...

Mc
11S11 + . . . + Mc

i jS1n · · · Mc
11Sn1 + . . . + Mc

i jSn n


(14)

In the output ∈ RC∗H∗W with an updated weight, each
pixel in the original matrix is associated with the remaining
pixels in the feature map (after being given new weight). Finally,
output and A are added to get E, and it is used as the output of
the spatial attention module.

In terms of the specific implementation of the channel
attention module, the input A ∈ RC∗H∗W is first restructured
into A ∈ RC∗N (where N = H ∗W), and Areshape is multiplied
by its transposed AT

reshape , then a SoftMax operation is
performed on the result, and the channel attention map Xcam

can be obtained, as shown in the formula below:

Xcam = softmax
(
Areshape ⊗ AT

reshape

)

=



S11 S12

S21 S22
· · ·

S1c−1 S1 c

S2 c−1 S2 c
...

. . .
...

Sc−1 1 Sc−1 2

Sc 1 Sc 2
· · ·

Sc−1 c−1 Sc−1 c

Sc c−1 Sc c


(15)

Next, the attention map X is transposed to obtain XT
cam

, the transposed matrix is multiplied with Areshape [as shown
in Formula (16)], and the result is then reorganized into
output ∈ RC∗H∗W .

output = XT
cam

⊗
Areshape =


S11M1

11 + . . . + Sc 1Mc
11 · · · S11M1

i j + . . . + Sc 1Mc
i j

...
. . .

...

S1 cM1
11 + . . . + Sc cMc

11 · · · S1 cM1
i j + . . . + Sc cMc

i j


(16)

It is then added to input A to get output E. It can be seen
from Formula (16) that the weights have been reassigned, and
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the new values are related to the values in the same position in
all feature maps.

Evaluation indexes

To evaluate the predictive ability of the model
comprehensively and objectively, a confusion matrix is
introduced in this study, which is used to summarize
the predictive performance of classification models in
machine learning.

Accuracy is used to find the portion of correctly classified
values, and the formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

where TP is True Positive, FP is False Positive, FN is False
Negative, and TN is True Negative. Precision is used to calculate
the model’s ability to classify positive values correctly, and the
formula is as follows:

Precision =
TP

TP + FP
(18)

Recall is used to determine the model’s ability to predict
positive value, and the formula is as follows:

Recall =
TP

TP + FN
(19)

The F1 score is a comprehensive analysis of whether the
TP is large enough from two perspectives, predicted and actual.
The F1 score is the harmonic mean of precision and recall.
According to the formula of harmonic mean, it can be obtained

by the following formula:

F1 =

(
Precision−1

+ Recall−1

2

)−1

(20)

The formula for calculating IoU (intersection over union) is
as follows:

IoU =
TP

TP + FP + FN
(21)

The model framework

In the framework design of the building extraction
model, a convolutional encoder–decoder structure with
skip connections was designed, as referred to U-Net
and ResNet-50. In the down-sampling process, two
slightly different bottlenecks are used, as shown in
Figure 3, with the difference being that Bottleneck
1 contains a 1 × 1 convolutional and a BN in the
shortcut connection.

In the convolutional encoder, the input image goes through
four bottleneck blocks, and then enters ASPP. As shown in
Figure 4, the ASPP module is divided into four parts, one of
which is a normal 1 × 1 convolutional layer, and the remaining
three set the dilation rate D to 6, 12, and 18, respectively.
The output of the four parts is then concatenated and used
as the final output after a 3×3 Conv+BN+ReLU operation.
In the subsequent attention module, the input is reassigned
according to the attention map and used as the input of
the decoder. In the decoder, up-sampling is conducted using
bilinear interpolation with convolutional layers, generating a
prediction for building extraction.

FIGURE 3

Framework of two types of bottlenecks. (A) Bottleneck 1. (B) Bottleneck 2.
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FIGURE 4

Framework of segmentation model and atrous spatial pyramid pooling.

In terms of the discriminator structure, there are two
different combinations of input: the first is the original image
and the prediction, and the second is the combination of
the original image and the ground truth. In this study,
a Markovian discriminator (also known as PatchGAN) was

designed with reference to Pix2Pix (Isola et al., 2017). The
output of the discriminator is not a simple 1 or 0, but
a discriminant matrix that gives a separate discrimination
for each part of a grided image. To better judge the
high-resolution remote sensing images with dense ground
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FIGURE 5

Markovian discriminator and gradient descent.

objects, the output size of the discriminator was set to
8 × 8 × 1, which is expected to output an all-zero
matrix when judging the first combination, and an all-
one matrix when judging the second combination. Figure 5
displays the Markovian discriminator and the process of
gradient descent.

Building datasets

To verify the performance of the proposed model,
two open-source building dataset was selected. WHU
building dataset contains a total of 8,189 images, including
4,736 for training (containing 130,000 buildings), 1,036
for validation (containing 14,500 buildings), and 2,416
for testing (containing 42,000 buildings). This aerial
dataset consists of more than 220,000 independent
buildings extracted from aerial images with a 0.075◦m
spatial resolution covering 450◦km2 in Christchurch,
New Zealand. The area is divided into 8,189 blocks with
a resolution of 512◦×◦512 each (shown in Figure 6).
The WHU dataset contains a variety of scene types,
such as countryside, residential, cultural, etc. The size,
purpose, and color of the buildings are also diverse, which
is suitable for the training of building extraction models
(Ji et al., 2018).

The Massachusetts building dataset (shown in Figure 6)
has a total of 137 remote sensing images, including 137
in the training set, four in the validation set, and 10
in the test set. The dataset covers buildings of different
scales in cities and suburbs, the image size is 1,500◦×◦1,500
and the area is 2.25 square kilometers, the dataset covers
about 340 square kilometers in total (Saito et al., 2016).

Training details

The model was built in Pytorch v1.7.1, CUDA v11.1.
The training equipment utilized was GeForce RTX 3090ti
24G, Adam was used as the optimizer, the learning rate
was set to 0.001, and the momentum parameters were
set to 0.9 and 0.999. The weights in the overall loss
were set to w1 : w2 : w3 = 1 : 1 : 0.3. In the comparative
experiments, each comparative model was trained for
200 epochs. It is worth highlighting that, to prevent the
segmentation model from being excessively disturbed by
the meaningless discrimination generated by the random
initialized discriminator in the initial stage, AttsegGAN chose
to freeze the discriminator first, and let the segmentation
model train separately in the training set for 1,000 iterations
with a batch size of 1. The segmentation model was
then frozen, letting the discriminator train separately for
800 iterations of the combined input method described
above. Then, the alternate iterative training strategy of
the generative adversarial network was used to complete
the subsequent training. The models used for comparison
were trained according to the environmental parameters
provided by the authors.

Results and discussion

Ablation experiments

To improve the prediction ability of the building
extraction model, this study proposes four strategies
based on an “hourglass” structure: U-Net (namely ASPP),
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FIGURE 6

Images and labels in the WHU building dataset. (A) Original images in WHU dataset, (B) labels of WHU dataset, (C) original images in
Massachusetts dataset, and (D) labels of Massachusetts dataset.

TABLE 1 Component and training strategy ablation experiments in WHU building dataset.

Version 5 (proposed) Version 4 Version 3 Version 2 Version 1

Sobel edge loss �

Adversarial loss � �

ASPP � � �

Attention � � � �

Acc 0.9875 0.9871 0.9867 0.9872 0.9813

F1 0.9435 0.9421 0.9400 0.9402 0.9408

IoU 0.8907 0.8905 0.8874 0.8862 0.8852

Bold values mean the best performing data.
The underlined value means the second best performing data.

attention mechanism, Sobel edge loss, and adversarial
loss. To verify their effectiveness, this part of the
experiment carried out ablation experiments in a step-by-
step manner in WHU building dataset, and conducted
objective evaluations through three evaluation indexes:
Acc, F1, and IoU.

As shown in Table 1, after adopting the components
and training strategies step by step, the prediction ability of
the model was improved. Among them, the most significant

improvement indicators were Acc and IoU; after adding
all the improvement schemes, these two indicators were
improved by 0.0062 and 0.0055, respectively, compared with
the original version. The most obvious improvements to
the model were adversarial loss and Sobel edge loss. After
using the former, the IoU of the model was increased
by 0.0038 and the F1 was increased by 0.0021, which
means that the model could better predict positive values.
The proposal of Sobel edge loss significantly improved
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the prediction ability, with an improvement of 0.0002 to
0.0021 in the evaluation indicators other than SP, and
achieving the best results in the notable Acc, F1, and IoU,
reaching 0.9875, 0.9435, and 0.8907, respectively. The
improvement brought by the dual-attention mechanism
was more significant in Acc, with an increase of 0.0059,
indicating that the performance improved after the allocation of
computing resources was adjusted through the attention
map. Although the overall improvement brought by
ASPP was relatively insignificant, it increased by 0.0012
to 0.8874 on IoU.

Figure 7 shows the intuitive improvement brought
by Sobel edge loss. It may not be able to improve the
extraction of specific small-sized buildings, but it can
make the lines of the extracted buildings clearer, making
them closer to a straight line and to the ground truth.
Although ASPP improved the extraction performance of
the model in multi-size buildings while the evaluation
indicators improved, it was also found that the edges of
the buildings in the predicted segmentation map were
obviously jagged due to the setting of the validation rate.
Since semantic segmentation achieves pixel-level dense
predictions, this phenomenon is not conducive to the
prediction-accuracy-oriented task. However, Sobel edge
loss used in conjunction with ASPP has been proven to
effectively alleviate edge jaggedness.

Attention mechanism ablation
experiments

According to our statistics, each time an attention module
is added to the prediction model, approximately 227,000
parameters are added. Therefore, when the addition cannot
effectively promote the capacity of prediction, it will increase
the training cost and the risk of overfitting. In this section, the
addition strategy of the attention mechanism is investigated and
verified, and we propose several versions of the framework, as
shown in Figure 8.

To explore the relationship between the attention module
and the overfitting phenomenon, we performed the four
versions on the WHU dataset and made statistics, as shown in
Table 2.

From the performance on the test set, the predictive ability
does not increase with the addition of the attention module, but
decreases. Therefore, it is not advisable for this component to
be added to the other connection channels; it works best when
added only after the last down-sampling layer.

From Table 2, it can be found that Acc, F1, and IoU
perform the best in the training set, indicating that after
200 epochs of training, the model can already learn enough
and complete the prediction. Conversely, the indicators show
a downward trend in the remaining two sets, and there
is a large difference from the training set, indicating that

FIGURE 7

Building extraction results: (A) original remote sensing image; (B) ground truth; (C) prediction with atrous spatial pyramid pooling; (D) prediction
with ASPP and Sobel edge loss.
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FIGURE 8

Attention mechanism ablation experiments. (A) Version 1 (proposed), (B) Version 2, (C) Version 3, and (D) Version 4.

TABLE 2 Statistics for the evaluation indicators of the three sets.

Acc F1 IoU
Training set
Version 1 0.9869 0.9586 0.9107
Version 2 0.9873 0.9537 0.9119
Version 3 0.9870 0.9504 0.9039
Version 4 0.9878 0.9569 0.9153
Validation set
Version 1 0.9883 0.8366 0.7889
Version 2 0.9879 0.8362 0.7870
Version 3 0.9889 0.8426 0.7898
Version 4 0.9883 0.8399 0.7903
Test set
Version 1 0.9875 0.9435 0.8907

Version 2 0.9873 0.9436 0.8893
Version 3 0.9869 0.9421 0.8870
Version 4 0.9852 0.9397 0.8869

Bold values mean the best performing data.

these four versions have a certain degree of overfitting.
This phenomenon is most obvious in Version 4, which
has the largest number of parameters. Compared with

the training set, the Acc, F1, and IoU of the model
in the test set decreased by 0.0026, 0.0172, and 0.0284,
respectively. Thus, although the attention mechanism has been
proven to be an effective component, the improvement in
predictive ability is not proportional to the number, and
will lead to an aggravation of the overfitting, and thus
performance degradation.

Comparison with state-of-the-arts on
WHU building dataset

In this section, we selected four classic semantic
segmentation algorithms based on deep learning that have been
proven in various open-source datasets: U-Net, DeepLabv3+,
DANet, and PSPNet.

As shown in Table 3, AttsegGAN is 0.1883 higher than
U-Net in IoU, and 0.0260 higher in Acc, which indicates that
the addition of effective components can improve the predictive
ability of building extraction models in the case of similar
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TABLE 3 Statistics of comparative experiment results on WHU
building dataset.

Acc F1 IoU

U-Net 0.9615 0.8252 0.7024

DeepLabv3+ (ResNet-101) 0.9776 0.9028 0.8228

PSPNet (ResNet-101) 0.9586 0.7734 0.6434

DANet (ResNet-101) 0.9851 0.9327 0.8738

AttsegGAN 0.9875 0.9435 0.8907

Bold values mean the best performing data.
The underlined value means the second best performing data.

deep learning frameworks. In comparison with DeepLabv3+
and DANet, AttsegGAN also has obvious improvement in
indicators: 0.0099 and 0.0024, respectively, in ACC; and 0.0697
and 0.0169 in IoU, which proves that, even if the model uses
components with similar principles, the rational framework and
training strategy can also significantly improve the predictive
ability of the building extraction model. The visual and
intuitive results are shown in Figure 9, and the predicted

segmentation results are objectively represented by rendering
(images are randomly selected from the test set of the WHU
building dataset).

Comparison with state-of-the-arts on
massachusetts building dataset

To further demonstrate the predictive ability of the
proposed AttsegGAN on pixel-level binary classification task,
we trained and validated it on another remote sensing image
based dataset, the Massachusetts building dataset. In this
section, DANet, Deeplabv3+, PSPNet, and UNet were selected
to compare with AttsegGAN.

From the statistics in Table 4, it can be seen that the
performance of the models on the Massachusetts building
dataset is lower than that on the WHU, but still reflects the
difference between the prediction ability. In the evaluation
indicators, AttsegGAN is higher than other algorithms in
Acc, F1, and IoU. Among them, IoU is the most obvious,

FIGURE 9

Building extraction results: (A) original remote sensing image; (B) prediction of U-Net; (C) prediction of DeepLabv3+; (D) prediction of PSPNet;
(E) prediction of DANet; (F) prediction of AttsegGAN (ours). Green: true positive (tp) pixels; transparent: true negative (tn) pixels; red: false
positive (fp) pixels; blue: false negative (fn) pixels.

Frontiers in Plant Science 14 frontiersin.org

50

https://doi.org/10.3389/fpls.2022.993961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993961 August 30, 2022 Time: 15:31 # 15

Wang et al. 10.3389/fpls.2022.993961

TABLE 4 Statistics of comparative experiment results on
Massachusetts building dataset.

Acc F1 IoU

U-Net 0.9370 0.8125 0.6930

DeepLabv3+ (ResNet-101) 0.8921 0.6929 0.5301

PSPNet (ResNet-101) 0.9317 0.8227 0.6988

DANet (ResNet-101) 0.9236 0.7989 0.6652

AttsegGAN 0.9395 0.8328 0.7130

Bold values mean the best performing data.
The underlined value means the second best performing data.

which is 0.0412 higher than the second-ranked PSPNet, this
means that the predicted region fits the ground truth better.
Meanwhile, AttsegGAN is also 0.0025 and 0.0101 higher than
the second place in Acc and F1, respectively. It can be found
that U-Net and AttsegGAN perform more prominently on
Acc. As an earlier designed model, U-Net can outperform

the newly proposed algorithm in binary classification task,
indicating that the feature fusion brought by the skip connection
mechanism can still effectively promote the prediction accuracy.
The visual and intuitive results are shown in Figure 10, and the
predicted segmentation results are objectively represented by
rendering (images are randomly selected from the test set of the
Massachusetts building dataset). In terms of running efficiency,
when the input is a remote sensing image of size 512×512, the
processing time of AttsegGAN is 0.09822s per image.

Detecting buildings in cropland

Recognition and background separation of buildings
near planting land is a meaningful remote sensing image
understanding task, which can provide significant reference
information for planting land protection and path planning
of unmanned equipment. In Figure 11, the processing
performance of the proposed AttsegGAN on this task is
visually displayed.

FIGURE 10

Building extraction results: (A) original remote sensing image; (B) prediction of U-Net; (C) prediction of DeepLabv3+; (D) prediction of PSPNet;
(E) prediction of DANet; (F) prediction of AttsegGAN (ours). Green: true positive (tp) pixels; transparent: true negative (tn) pixels; red: false
positive (fp) pixels; blue: false negative (fn) pixels.
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FIGURE 11

Building extraction results: (A) original remote sensing image; (B) prediction of AttsegGAN; (C) original remote sensing image; (D) prediction of
AttsegGAN.

Conclusion

Aiming to provide more accurate reference information for
arable land monitoring tasks, AttsegGAN is proposed in this
study. AttsegGAN is a deep-learning-based building extraction
model that can automatically segment and characterize
buildings from high-resolution remote sensing images. This
study proposes four improvements based on the U-Net
structure, namely ASPP and a dual-attention mechanism with
regard to model components, and adversarial loss and Sobel
edge loss with regard to training strategy, with experimentation
carried out on the WHU building dataset. In the ablation
experiments, the improvements were added one by one, and the

effectiveness was proven on the test set using three evaluation
indicators, Acc, F1, and IoU, with the results showing that the
improvements brought by the two losses is more obvious. In
the ablation experiments for the attention module, the results
show that the model prediction ability is not positively related
to the number of components, but leads to overfitting. In
the comparison between the final version of AttsegGAN and
state-of-the-arts, AttsegGAN performed the best in comparison
with U-Net, DeepLabv3+, PSPNet, and DANet, achieving
0.9875, 0.9435, and 0.8907 for Acc, F1, and IoU in the WHU
test set, respectively. Meanwhile, AttsegGAN also achieved
the best results on the Massachusetts test set, achieving
0.9395, 0.8328, and 0.7130 for Acc, F1, and IoU. The results

Frontiers in Plant Science 16 frontiersin.org

52

https://doi.org/10.3389/fpls.2022.993961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993961 August 30, 2022 Time: 15:31 # 17

Wang et al. 10.3389/fpls.2022.993961

show that the proposed model could accurately complete
building extraction and provide more reliable reference
information for remote sensing observation tasks
related to cropland.
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E�ect of aerial application of
adjuvants on pepper defoliant
droplet deposition and e�cacy
of defoliation sprayed by
unmanned aerial vehicles

Yapeng Liu, Qinggang Xiao, Xiaoqiang Han*,

Muhammad Zeeshan, Zhihao Fang and Zechen Dou

Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of

Agriculture, Shihezi University, Shihezi, China

Defoliant spraying is an important aspect of the mechanized processing of

pepper harvesting. Complete and uniform spraying of defoliant could improve

the quality of defoliation and reduce the impurity content in processing

pepper. In this study, we assessed the e�ect of aerial spraying of adjuvants

on physicochemical properties of defoliant solution and droplet deposition

when using an unmanned aerial vehicle (UAV) for defoliation spraying. The

results showed that Puliwang was a better aerial spray adjuvant suitable for

spraying defoliants for processing pepper using UAVs, with a higher defoliation

rate and better droplet deposition. Although the YS-20 adjuvant had a higher

droplet deposition amount (0.72 µg/cm2) in the middle layer, its performance

was poor in droplet size, density, and coverage. The size and density of the

droplets added with the Manniu were basically the same as the Puliwang, even

the distribution uniformity was better (the CV of the upper canopy layer was

only 33.6%), but the coverage rate was poor. In the treatment with AS-901N,

there was no marked increase in droplet size, so evaporation and drift were

not improved, eventually resulting in a lower defoliation rate. Puliwang had the

highest comprehensive score, followed by AS-910N, YS-20, and Manniu.

KEYWORDS

processing pepper, defoliant, droplet deposition, aviation spray adjuvants, unmanned

aerial vehicle (UAV)

Introduction

Peppers (Capsicum annuum L.), with a variety of nutrients, are widely used in

cosmetics, food additives, and as an important pharmaceutical and industrial raw

material (Baenas et al., 2019). Xinjiang is an important production and processing area

for peppers in China where the land, sunlight, and heat resources are abundant. Peppers

from this region are highly reputed and have market competitiveness in domestic and

foreign markets (Chai et al., 2020). In 2018, the area of processing pepper in Xinjiang

was 3.67 × 104 hm2, and the annual yield contributed to 20% of the country’s total

production which was 25 × 104 t. At the later stage of the plant’s growth, defoliants are
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applied to make it ready for harvesting by shedding its leaves. As

the stalks and branches of the plants are extremely fragile, the

traditional boom sprayer can damage the crop by crushing the

leaves as well as the mature fruit which will ultimately affect the

yield and quality of the pepper (Xiao et al., 2020).

In recent years, unmanned aerial vehicles (UAVs) have

made great strides in agriculture. Their spraying operations

increase the deposition of pesticides on target crops and avoid

physical damage to crops during ground equipment operations

(Yuan et al., 2018). The distancing of humans and machines

from the crops avoids pesticide poisoning and greatly improves

the efficiency of pesticide spraying and the utilization rate of

pesticides (Yan et al., 2021a). UAVs also have low levels of water

consumption, low dilution ratios, high working heights, fast

flight speeds, and high atomization abilities. UAVs have been

widely used in crops such as wheat (Yan et al., 2021b), rice (Chen

et al., 2020a), corn (Hussain et al., 2022), grapes (Matese and Di

Gennaro, 2018), citrus (Tang et al., 2018), and cotton (Lou et al.,

2018). The addition of aerial spray with adjuvants efficiently

solves the drift and loss of pesticide droplets during the spraying

by UAVs and improves the utilization rate of pesticides.

Extant research on the effect of UAV spraying has mainly

focused on fertilization, pesticide application, and nutritional

analysis (Qiu et al., 2021; Xu et al., 2021; Hafeez et al., 2022).

However, UAV spraying is greatly affected by the environment,

which makes it easy for the droplets to drift and evaporate,

resulting in reduced pesticide utilization and environmental

concerns (Wang et al., 2020). Adding adjuvants to the aerial

spray is an effectivemethod to solve the drift and loss of pesticide

droplets during UAV spraying (Chen et al., 2021). Xiao et al.

(2019) studied the effects of five aerial application adjuvants on

droplet deposition of cotton defoliation and found that vegetable

oil adjuvants had a better effect. However, limited research is

available on the effects of aerial spray adjuvants on pepper

defoliant processing. In this study, we studied “Honglong 18”

pepper as the test material using T16 UAV as the spraying

equipment and examined the efficacy of four kinds of aerial

application adjuvants. The physicochemical properties of the

defoliant solution were studied through laboratory experiments,

and the deposition characteristics were further analyzed to

assess the defoliation effect of the defoliant droplets sprayed by

UAVs through field experiments. Through this study, we aim

to provide theoretical guidance for the operation of the UAV

spraying process in pepper defoliants.

Materials and methods

Materials

The pepper defoliant (18% glufosinate ammonium soluble

concentrate) was produced by Beijing Zhongnong Honglu

Technology Development Co., Ltd., Beijing, China. The tested

adjuvants were YS-20 (improved vegetable oil adjuvant, Anyang

Quanfeng Biotechnology Co., Ltd., Anyang, China), Manniu

(vegetable oil adjuvant, Qingdao Rishengyuan Crop Nutrition

Co., Ltd., Qingdao, China), Puliwang (vegetable oil adjuvant,

Oro Agri. International Co., Ltd., Palmela, Portugal), and AS-

910N (improved vegetable oil adjuvantMomentive Performance

Materials Inc., New York, USA). Allura Red (85%) was used as a

droplet tracer (ZhejiangGigagold Pigment Technology Co., Ltd.,

Wenzhou, China) and ethephon aqueous solutions (40%) were

used as a ripening agent (Jiangsu Anpon Electrochemical Co.,

Ltd., Changzhou, China).

The aviation platform used was the T16 UAV (SZ DJI

Technology Co., Ltd., Shenzhen, China). The UAVwas equipped

with RTK/GNSS precise positioning system, and its spraying

system included a little water pump, pipeline, nozzles (8

XR11001VS, located directly below the rotor), and electronic

control valve. T16 UAV has six rotors with a 16.0 L water tank

and a payload of 15 kg. The flight height was 2.0m and flight

speed of 5.0 m/s with a spray width of 5m and spraying volume

of 15.0 L/hm2.

Treatments

There were five treatments in the experiment (Table 1).

Treatments 1, 2, 3, and 4 were added with YS-20, Manniu,

Puliwang, andAS-910N in the dosage of 225 g/hm2. Treatment 5

was the control (CK) without adjuvant. In addition, 1,875 g/hm2

of pepper defoliant, 300 g/hm2 of Allura red, and 900 g/hm2 of

40% ethephon aqueous solution were added to each treatment.

Determination of physicochemical
properties of pesticide solution

Surface tension

The surface tension was measured using the ST-1510

automatic interfacial tension meter (Xuxin Instrument

Equipment Co., Ltd., Beijing, China) adopting the ring method

according to GB/T 6541-1986, 10s after pesticide solution

preparation. Each treatment was measured three times.

Dynamic viscosity

Kinematic viscosity of pesticide solution was measured by

an electronic analytical balance [Sartorius Scientific Instruments

(Beijing) Co., Ltd, Beijing, China], calculated by Equation 1 (Gao

et al., 2021). Each treatment was measured three times.

η = ρ × (vk × 0.00947) (1)

where η is the dynamic viscosity (mPa·s), ρ is the density

(g/mL), vk is the kinematic viscosity, and 0.00947 is the
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TABLE 1 Test treatment design.

Treatment Adjuvants Dosage of adjuvants

(g/hm2)

Defoliant

(g/hm2)

Ethephon

(g/hm2)

Spraying volume

(L/hm2)

1 YS-20 225 1,875 900 15

2 Manniu 225 1,875 900 15

3 Puliwang 225 1,875 900 15

4 AS-910N 225 1,875 900 15

5 / / 1,875 900 15

instrument constant for this viscometer (mm2/s2), given by

the manufacturer.

Contact angle

Fresh pepper leaves (2 × 2 cm, avoiding leaf veins, disease

spots, etc.) were fixed the on the slide, and 2 µL pesticide

solution (Table 1) was dropped on the leaves, respectively. The

contact angle was recorded by drop shape analyzer DSA100

(KRUSS, Hamburg, Germany). Each treatment was recorded for

three replicates.

Spreading ratio

Fresh pepper leaves (2 × 2 cm, avoiding leaf veins,

disease spots, etc.) were placed the on the worktable of

DP74 stereomicroscope (Olympus Co., Ltd., Japan), with a

magnification of 10 times. About 2 µL of pesticide solution

(Table 1) was dropped on the leaves and the spreading area of

the droplet was recorded. The spreading ratio was calculated by

Equation 2. Each treatment was recorded for three replicates.

R = (St/S0)×100% (2)

where R is the spreading ratio, St is the spreading area at t s,

and S0 is the initial area.

Field and conditions

The experiment was carried out in the Beiquan town of

Xinjiang production and construction crops (44◦23’11 “N,

86◦6’11” E), Shihezi, Xinjiang, China, in 2019. The experimental

field was fertilized to a moderate level and had planted peppers

for 2 years. The peppers (Honglong 18) were sown on 13 April

2019 with a wide film model having six lines (10 ± 66 cm) and

210,000 plants/hm2 (the actual number of plants was 12,070

plants/667 m2), and were irrigated by drip irrigation under the

film. The defoliant was sprayed from 10 am to 12 am on 12

September 2019, from an average height of 0.88m. The average

wind speed was 2.06 m/s with relative humidity of 36.90%

and temperature at 22.13◦C (Kestrel 5500, Nielsen-Kellerman,

Boothwyn, USA).

There were three replicates of 2,700 m2 each in every

treatment, with a 10m buffer area between each treatment

(Figure 1A). A droplet information collection belt was set in

the middle of each repetition and was perpendicular to the

UAV route. Seven droplet information collection points were

arranged in an orderly manner on the belt with a spacing of

0.5m. A metal stick was inserted at the point, and a water

sensitive paper (WSP, 26 × 76mm) and a filter paper (d =

70mm) were fixed at a distance of 900, 600, 100, and 50mm

from the ground through double-sided clips, in line with the

upper layer, middle layer, the lower layer of pepper canopy and

ground (Figure 1B). After spraying, we waited for the WSP and

filter paper to dry slightly, then marked and collected them

before taking them back to the lab for analysis.

Determination of droplet deposition

Droplet information

Droplet information, including droplet size, droplet

density, and droplet coverage, was obtained by first scanning

the collected WSP with a FileScan2500 scanner (Shanghai

Zhongjing Technology Co., Ltd., Shanghai, China) at grayscale

and 600 dpi parameters and then analyzing it with Image J

1.38X software (National Institutes of Health).

Droplet deposition

The droplet deposition was obtained by measuring

the Allura red content on the filter paper. About 5ml of

distilled water was added to each zip lock bag with filter

paper and washed with a small shaker for 10min, then

centrifuged at 4,000 rpm for 5min (Eppendorf 5417R

Centrifuge, Eppendorf Co., Ltd., Hamburg, Germany). The

absorbance value (Yi) was determined using the Infinite 200Pro

ELISA instrument (Tecan, Meilen, Switzerland) at 510 nm.

The Yi was then converted to mass concentration and Xi

according to the linear regression equation of the Allura

red standard solution (Y = 0.0238X + 0.0431, R2 = 0.997).
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FIGURE 1

(A) The experimental layout of each treatment and (B) the placement of the WSP and filter papers at each sampling position within the

processing pepper.

The deposition amount per unit area was calculated using

Equation 3.

A =
Xi × V

S
(3)

where A is droplet deposition per unit area, Xi is the mass

concentration of eluent, V is the volume of the added eluent, S is

the area of droplet collector.

Droplet distribution uniformity

The uniformity of droplet distribution was calculated by the

coefficient of variation (CV) of the same canopy deposition of

processed peppers, and calculated using Equations 4, 5 (Lou

et al., 2018).

s =

√

√

√

√

1

n− 1

n
∑

i=1

(Xi − X)2 (4)

CV =
s

X
(5)

where s is the variance,CV is the coefficient of variation,Xi is

the droplet information (droplet density, DV50 and coverage) of

each droplet captured card,X is the droplet information (droplet

density, DV50 and coverage rate) of different parts of the pepper

plant coverage, n is the total number of droplet collection cards

in different parts of the pepper plant.

Spraying penetration

The spraying penetration was measured using the ratio of

the deposition amount of the upper layer and lower layer of

pepper canopy, as shown in Equation 6.

P =
Ad

Au
× 100% (6)

where P is the spraying penetration rate,Ad is the deposition

amount in the lower layer of the processing pepper canopy, and

Au is the deposition amount in the upper layer of the processing

pepper canopy.

E�ective droplet deposition rate

After all the sample concentration values were measured,

the deposition amount and deposition rate of droplets at each

sampling point were calculated according to ISO22866 standard

(ISO/TC 23/SC, 2005). And it was calculated using Equations

7–9 (Chen et al., 2020b).

Ds =
F

V × I
× 1.67 (7)

Dd =
Ce × V

Cs × A
(8)

R =
Dd

DS
× 100% (9)

where Ds is the deposition amount per unit area (µL/cm2),

V is the flight speed (m/s), I is the spraying interval (m), F is

the spraying flow rate of the UAV (L/min), 1.67 is a constant.
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Dd is the deposition amount per unit area (µL/cm2), Ce is the

concentration of the eluent (µg/mL), V is the volume of the

eluent (mL); CS is the concentration of the tracer (g/L); A is

deposition sampling area (cm2). R is the deposition rate.

Defoliation rate

Three points with consistency and representativeness were

randomly selected in each replicate area. Then 10 consecutive

pepper plants were selected from each point to investigate

the total number of leaves before spraying. They were re-

investigated 3, 5, 7, 9, and 12 d after spraying and the defoliation

rate was calculated using Equation 10.

Rd =
S1 − S2

S1
× 100% (10)

where S1 is the number of leaves investigated before

spraying; S2 is the number of leaves investigated after spraying.

Yield

At the time of harvesting the peppers (24 September 2019),

three sampling sites were selected for each treatment, 15

consecutive pepper plants were selected from each site, and all

their fruits were collected and the fresh fruit were weighed. After

30 days of air-drying, the harvested peppers were weighed to

estimate the yield using Equation 11.

Y = Y ×
12070

15
(11)

where Y is the theoretical yield (kg/667 m2), Y is the average

of fresh (dry) weight of peppers from three sampling points

in each replicate (kg). With an harvest of 14,200 the planting

density of the pepper field was 12,070 plants per 667 m2.

Data analysis

All data were analyzed by OriginPro 2022b (Origin Lab,

Northampton, MA, USA) and SPSS 22 (SPSS Inc., an IBM

Company, Chicago, IL, USA) statistical software. Duncan’s new

multiple range test was selected to test the significance of

differences at the level of P < 0.05.

Results and discussion

E�ect of aerial application adjuvants on
dynamic viscosity and surface tension

Reducing the surface tension of the pesticide solution can

enhance the wetting performance and spreading ability of the

spraying solution on the leaves. At 10 s, the surface tension

of the YS-20, Manniu, Puliwang, AS910N, and CK was 45.83,

43.47, 42.57, 45.73, and 60.47 mN/m, respectively (Figure 2A).

All four kinds of aerial spray adjuvants significantly reduced

the surface tension of the pesticide solution to <46 mN/m.

Compared with the surface tension of CK, Puliwang had the

best effect on reducing the surface tension, which decreased by

29.6%. Liquid viscosity affects the atomization performance of

the nozzle and also the number of satellite droplets, coalescence,

viscosity dissipation in the collision process, and the spread of

droplets on the leaves (Brenn and Kolobatic, 2006). As shown in

Figure 2B, Puliwang and AS-910N could increase the viscosity

to 1.37 and 1.34 mPa·s, respectively. The Manniu reduced the

viscosity, while YS-20 had no effect on viscosity. The increase

of viscosity is helpful to the deposition of droplets on leaves

and avoids the bounce of droplets (Song et al., 2019). Pepper

leaves are hydrophilic leaves. Increasing the viscosity of droplets,

therefore, is conducive to the attachment of droplets on the

leaves and improves the efficacy.

E�ect of aerial application of adjuvants
on contact angle

Adjuvants showed a significant effect on the contact angle

of the droplet in the initial state (Figure 3). At 0 s, the contact

angle without adjuvant was 83.20◦, while that of YS-20, Manniu,

Puliwang, and AS-910N were 60.85◦, 50.22◦, 60.26◦, and 47.12◦,

respectively. The contact angle decreased rapidly within 10 s and

gradually leveled off. After 5 s, the rate of contact angle slows

down and tends to be stable. This indicated that the adjuvants

could spread the spray solution more easily on pepper leaves,

which is beneficial for the absorption of the defoliant. The

adjuvant affected the contact angle by moderating the surface

tension. In general, the contact angle of the leaf surface of the

same crop will decrease with a decrease in surface tension (Lan

et al., 2021). Xu et al. (2011) found that increasing viscosity

and reducing surface tension were two main methods used

to increase pesticide retention on superhydrophobic rice leaf

surfaces. This was also consistent with our results, where after

adding adjuvants the surface tension and contact angle of the

droplets displayed the same trend. Our results showed that the

surface tension and the contact angle of the pesticide solution

on the pepper leaves were reduced, but the effect was different,

which was based on the specific adjuvant used.

E�ect of aerial spray with adjuvants on
spreading ratio

The spreading of fluids over solid substrates is of great

importance to pesticide applications, including defoliants. The

wetting and spreading of pesticides on the leaf surface are
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FIGURE 2

E�ect of aerial spray with adjuvants on surface tension (A) and dynamic viscosity (B). a−eThey represent the results of a significant di�erence

analysis by Duncan’s new multiple range test at the level of P < 0.05. Values followed by the same letter do not di�er statistically.

FIGURE 3

E�ect of aerial spray with adjuvants on contact angle line graph (A) and experimental images (B).

closely related to the combination of the leaf surface and the

physicochemical properties of the pesticide solution. We found

that adding aerial applications with adjuvants could increase

the spreading ratio of defoliant droplets on the surface of

pepper leaves (Figure 4). At 10 s, the spreading ratio of YS-

20, Manniu, Puliwang, and AS-910N was 35.35, 34.54, 46.21,

and 24.17%, respectively, which was significantly higher than

that of CK (10.81%). This result was consistent with the

analysis results of the contact angle. Different types of adjuvants

can improve various aspects of spray dilution performance.

Beacham et al. (2009) found that organosilicon adjuvants have

a very prominent effect on improving the wetting of pesticide

droplets on the leaf surface. However, when defoliants were

used, ethephon, a strong acid ripening agent, needs to be added,

which greatly destroys the stability of organosilicon adjuvants.

Vegetable oil and modified vegetable oil adjuvants have been

popular in recent years because of their wide tolerance. Zhou

et al. (2017) found that modified seed oil slows down the

evaporation rate of droplets on waxy leaves. Our experiments

showed that four vegetable oil adjuvants could also effectively
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FIGURE 4

E�ect of aerial spray with adjuvants on spreading ratio line graph (A) and experimental images (B).

improve the spreading rate of defoliant droplets on pepper leaves

and improve the defoliation effect.

E�ect of aerial applications with
adjuvants on the droplet size sprayed by
UAV

Many factors, including adjuvants, pesticide formulations,

and nozzles affect spray droplet size (Klein et al., 2009). The

droplet size is one of the important indicators to evaluate

the spraying quality when using UAVs. As shown in Table 2,

the average droplet size of the treatments with adjuvants was

significantly larger than that of those without adjuvants. The

droplet sizes of the four adjuvants were also different. In

the upper layer, the DV10 and DV50 of YS-20, Manniu, and

Puliwang were larger than AS910N and CK, the DV90 showed

no difference. In the middle and lower layers, the DV10 and

DV50 of Puliwang were larger than others, but not significant.

On the ground, the DV10 and DV50 of the treatments with

or without adjuvants had no difference. Overall, the DV50 in

the upper, middle, and lower layers, and ground with Puliwang

was 402 ± 22.5, 377 ± 24, 365 ± 27.8, and 355 ± 28.8µm,

respectively, which was higher than other adjuvant augmented

treatments. Although there is no specific droplet size range that

is likely to drift under all conditions, droplets with diameters

<100µm are considered highly draftable (Nuyttens et al., 2014;

Ferguson et al., 2016).

Matthews et al. reported that the optimum droplet size

for herbicide spraying is 250µm, while for fungicide, the

particle size should be maintained at 50–150µm (Matthews

and Thomas, 2000). In this study, the droplet size in the

TABLE 2 E�ect of aerial application of adjuvants on the droplet size

sprayed by UAVs.

Pepper

canopy

Treatment Droplet size (µm)

DV10 DV50 DV90

Upper layer YS-20 238± 11.7 a 373± 30.4 ab 553± 31.5 a

Manniu 219± 12.3 a 397± 29.6 a 650± 38.5 a

Puliwang 226± 3.8 a 402± 22.5 a 628± 34.4 a

AS-910N 171± 12.7 b 320± 15.3 b 523± 35.5 a

CK 193± 17.1 b 348± 53.9 ab 571± 129 a

Middle layer YS-20 220± 17.8 ab 350± 58.2 ab 495± 120.4 ab

Manniu 208± 25.2 ab 368± 47.3 a 522± 83.8 ab

Puliwang 227± 4.5 a 377± 24 a 553± 59.9 a

AS-910N 153± 27.9 c 275± 34.6 b 402± 68.5 ab

CK 184± 16.2 bc 288± 19.8 b 395± 32 b

Lower layer YS-20 204± 19.4 b 311± 17.9 b 405± 37.7 b

Manniu 205± 13 b 317± 28.3 ab 432± 53.4 ab

Puliwang 235± 16.1 a 365± 27.8 a 509± 60.4 a

AS-910N 179± 7.3 bc 292± 42 b 373± 67.7 b

CK 163± 9.1 c 271± 18.9 b 367± 28.2 b

Ground YS-20 228± 28.1 a 328± 54.5 a 437± 42.1 a

Manniu 205± 33.1 abc 330± 40.9 a 446± 63.6 a

Puliwang 225± 21.9 ab 355± 28.8 a 485± 63.7 a

AS-910N 163± 43.2 c 268± 60.6 a 370± 94.6 a

CK 167± 22.9 bc 291± 43.4 a 391± 90.1 a

Values followed by the same letter in the column do not differ statistically (p < 0.05).

treatment after adding Puliwang was between 350 and 450µm,

significantly higher than other treatments; the final defoliation

rate was similarly the highest. It demonstrated that adjuvants
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FIGURE 5

E�ect of aerial spray with adjuvants on the droplet density

sprayed by UAV. a−cThey represent the results of a significant

di�erence analysis by Duncan’s new multiple range test at the

level of P < 0.05. Values followed by the same letter do not

di�er statistically.

could change droplet physicochemical properties, such as

diameter and relative droplet span, thereby increasing the

deposition amount on plant leaves and thus improving the

utilization rate of pesticides (He et al., 2018). In addition,

when the spray volume and droplet size are the same, the

larger the droplet density, the higher the utilization rate of the

chemical solution, and the better the control effect (Merritt,

1982). Combined with the results of contact angle and spreading

rate, we found that adding spray adjuvants could increase the

droplet size of the defoliant and reduce the risk of drift.

E�ect of aerial application of adjuvants
on the droplet density sprayed by UAVs

The droplet density of defoliants varied greatly among the

layers of the pepper canopy (Figure 5). Overall, the droplet

density of the upper layer of the pepper canopy was higher

than that of other layers, which was due to the interception of

the defoliant droplets by the upper layer with a larger leaf area

in the later growth stage of pepper. In the upper and middle

layers of the canopy, the average droplet densities of adjuvant-

added defoliants were 27.31 and 8.11/cm2 respectively, which

were significantly higher than the CK (21.27 and 5.49/cm2),

while in the lower layer and the ground, there was no significant

difference. In addition, the droplet density in the upper layer

with Manniu was the highest (28.18/cm2) among all the

treatments, followed by AS-910N (28.01/cm2) and Puliwang

(27.32/cm2), while the YS-20 (25.91/cm2) was significantly

lower than others. The droplet density of the defoliant without

adjuvants was significantly lower than the aerial application

with adjuvants.

FIGURE 6

E�ect of aerial spray with adjuvants on the droplet coverage

sprayed by UAV. a−cThey represent the results of a significant

di�erence analysis by Duncan’s new multiple range test at the

level of P < 0.05. Values followed by the same letter do not

di�er statistically.

E�ect of aerial application with adjuvants
on the droplet coverage sprayed by UAV

Meng et al. (2020) found that adding adjuvants could

increase droplet coverage of the canopy, which would increase

the probability of the droplets hitting the target, thereby

improving its efficacy (Meng et al., 2020). As the droplets

are intercepted by the upper layer of the pepper canopy, the

coverage rate of the upper layer was significantly higher than

other layers (Figures 6, 7). The presence (or absence), and

the type of adjuvant caused a significant impact on droplet

coverage. The average droplet coverage in the upper, middle,

and lower layers, and ground (3.46, 1.26, 0.7, and 0.51%) of

the crops treated with added adjuvant was significantly higher

than CK (2.56, 0.76, 0.32, and 0.29%). When Puliwang was

added, the droplet coverage of the upper, middle, and lower

layers, and ground (4.44, 1.84, 1.19, and 0.76%) was significantly

higher than other adjuvants. Manniu and YS-20 had the second

highest coverage, and AS-910N had the least, with no significant

difference from CK. In general, the defoliant droplet coverage

rate for the aerial spray with adjuvants was significantly higher

than that of the control (Figure 6). Previous research has shown

that influenced by the wind field of the UAV rotor, the defoliant

droplet coverage rate, particularly the range of spray width,

varies considerably (Li et al., 2018). It should be noted that in

the upper layer of the pepper crops, the droplet coverage rate

was significantly different, and the adjuvant-added treatments

were significantly better than the control without any adjuvant.

In the middle and lower layers and the ground, there were no

such differences. This may be due to the influence of drift and

evaporation on the deposition of droplets in the upper layer.
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FIGURE 7

E�ect of aerial spray with adjuvants on the droplet coverage sprayed by UAV (gray-scale photos of WSP).

TABLE 3 E�ect of aerial spray with adjuvants on the droplet

uniformity sprayed by UAV.

Treatment Coefficient of variation (%) Average

Upper

layer

Middle

layer

Lower

layer

YS-20 57.21 67.32 73.88 66.14

Manniu 33.60 72.50 75.84 60.65

Puliwang 56.83 70.32 72.25 66.47

AS-910N 60.97 90.59 99.39 83.65

CK 64.79 84.11 107.87 82.26

E�ect of aerial spray with adjuvants on
the droplet uniformity sprayed by UAV

The uniform distribution of droplets is expressed by the

coefficient of variation (CV) of the same canopy droplet

deposition. The smaller the coefficient of variation, the better

the uniformity of droplet distribution (Chen et al., 2021). The

field experiments were influenced by environmental conditions

and the CV of droplet density and coverage rate were relatively

large. The average droplet distribution uniformity of the

defoliant treated with Manniu was the best (60.65%), followed

by YS-20 and Puliwang (66.14 and 66.47% respectively). The

results of AS-910N were the poorest (83.65%), even inferior

to the CK (82.26%) (Table 3). However, most of the droplets

were deposited in the upper layer due to interception, so

the distribution uniformity of the upper layer was more

representative. The best uniformity of droplet distribution in the

upper layer was Manniu (33.60%).

The uniformity of droplet distribution was measured by the

CV of the deposition in the same canopy layer of peppers (Zhan

et al., 2022). According to the Chinese Civil Aviation Industry

Standard, in the case of low-volume spray operation, the quality

FIGURE 8

E�ect of aerial spray with adjuvants on the droplet distribution

sprayed by UAV. a−dThey represent the results of a significant

di�erence analysis by Duncan’s new multiple range test at the

level of P < 0.05. Values followed by the same letter do not

di�er statistically.

of the operation can only be guaranteed when the coefficient

of variation of droplet distribution is <60%. The average

variation coefficients of the whole plant droplet distribution

(66.14, 60.65, 66.47, 83.65, and 82.26%) in the current study

seem to be not standard. The planting density of the peppers

in the experimental field reached 213,000 plants/hm2 with an

average height of about 0.88m at the time of application. The

interception effect of the upper layer was obvious, and its droplet

variation coefficient (57.21, 33.60, 56.83, 60.97, and 64.79%) was

more representative. Adding aerial spray adjuvants can reduce

the coefficient of variation of droplet distribution which means

improving the uniformity of droplet distribution, to meet the

UAV operational standards.
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TABLE 4 E�ect of aerial spray with adjuvants on the deposition rate

sprayed by UAVs.

Spraying date Deposition rate (%) Average

Upper

layer

Middle

layer

Lower

layer

YS-20 36.4± 6.1 ab 23.2± 2.5 a 10.4± 3.3 a 23.33

Manniu 35.7± 1.2 ab 21.4± 2.5 a 6.2± 2 b 21.08

Puliwang 39.3± 11.5 a 17.9± 3.6 b 12.3± 5.1 a 23.13

AS-910N 30.1± 5.1 ab 11.5± 0.3 c 7.5± 1.3 b 16.37

CK 25± 1.6 b 7.2± 1.2 d 4± 0.3 c 12.07

The data in the table are averages. Values followed by the same letter in the column do

not differ statistically (p < 0.05).

E�ect of aerial applications with
adjuvants on the droplet distribution
sprayed by UAVs

The average deposition of droplets in the upper, middle, and

lower layers and ground of the crops treated with adjuvants

(1.15, 0.51, 0.25, 0.17 µg/cm2) was significantly higher than

the CK (0.81, 0.25, 0.15, 0.07 µg/cm2) (Figure 8). In the upper

layer, the droplet deposition amount of the Puliwang was the

highest (1.19 µg/cm2). While in the middle layer, the YS-20 was

the highest (0.72 µg/cm2). The droplet distribution penetration

rates of YS-20, Manniu, Puliwang, and AS-910N were 15.51,

22.59, 27.11, and 20.97%, respectively, which were significantly

higher than the CK (15.89%). The Puliwang showed a better

effect in terms of penetration.

Some studies have suggested that droplets with smaller

particle sizes are difficult to be intercepted by the upper layer and

can penetrate better the middle and lower layers (Knoche, 1994;

Wolf and Daggupati, 2009). Few other studies found that large

particle-size droplets could not drift and evaporate easily and

were more likely to reach the lower canopy layer (Derksen et al.,

2008). In this study, we observed that the spraying penetration

using Puliwang (27.11%) was better; it resulted in a larger droplet

size and the DV50 reaching 402, 377, and 365µm in the upper,

middle, and lower layers. Therefore, in our study, penetration

was better due to the larger droplet sizes.

E�ect of aerial spray with adjuvants on
the deposition rate sprayed by UAV

The effective deposition rates (23.33, 21.08, 23.13, and

16.37%) of the four treatments with adjuvants were 5–15%

higher than the CK (12.07%) with a significant difference

(Table 4). In the upper layer of the pepper canopy, the effective

deposition rate after adding Puliwang (39.3%) was the highest.

In the middle layer, the YS-20 was the highest (23.2%). In

TABLE 5 E�ect of aerial spray with adjuvants on the defoliation rate of

processing pepper sprayed by UAVs.

Days

after

spraying

Defoliation rate of processing pepper (%) CK

YS-20 Manniu Puliwang AS-910N

3 46.14 abc 47.24 ab 64.04 a 36.55 bc 20.30c

6 61.40 ab 68.33 ab 79.07 a 53.13 ab 42.31b

9 75.74 ab 75.06 ab 88.40 a 70.32 ab 62.55b

12 85.63 ab 83.19 ab 92.84 a 78.86 ab 73.04b

15 95.21 ab 95.58 ab 98.40 a 89.07 b 79.92c

The data in the table are averages. Values followed by the same letter in the column do

not differ statistically (p < 0.05).

the lower layer, there was no significant difference between

the effective deposition rates of YS-20 and Puliwang (10.4 and

12.3%, respectively), while being significantly higher than the

other treatments.

The effective deposition rate of droplets could also be

remarkably improved by adjuvants, because of the larger

droplet size, the improved atomization effect, and the reduced

evaporation and drift (Lan et al., 2008; Sijs and Bonn, 2020). The

results of this study were similar to previous studies. In addition,

adding adjuvants during pesticide spraying can change the

physicochemical properties, promote the absorption of target

plants or insects, and the retention of the liquid (Wang et al.,

2022), thereby improving the utilization rate of pesticides.

E�ect of aerial sprays with adjuvants on
the defoliation rate of pepper sprayed by
UAV

The addition (and absence) of adjuvants had a significant

effect on the defoliation rate of pepper (Table 5). Leaf abscission

began to form three days after the first spraying and the

aerial spray with adjuvants had a considerable effect on the

defoliation effect. Three days after spraying, the defoliation rate

of crops sprayed with adjuvants was higher than that of CK, and

Puliwang showed the best defoliation effect (64.04%). Between

6 and 12 days after spraying, Puliwang still showed the best

defoliation rate, but there was no significant difference among

the four adjuvants. Fifteen days after spraying, the defoliation

rate of Puliwang treatment was 98.40%, and that of YS-20 and

Manniu was more than 95%. However, the defoliation rate of

AS-910N was only 89.07% and that of CK was only 79.92%. The

above results showed that the addition of adjuvants to aerial

applications could significantly improve the defoliation rate of

pepper, and the results obtained with the use of Puliwang were

the best.
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TABLE 6 E�ect of aerial sprays using adjuvants on the yield of pepper sprayed by UAVs.

Treatment Fresh weight

per 15 plants

(g)

Dry weight

per 15 plants

(g)

DW/ FW

ratio

(%)

Theoretical

yield of fresh

pepper

(kg/667 m2)

Theoretical

yield of dry

pepper

(kg/667 m2)

Increase of

dry pepper

(%)

Puliwang 936.33 671.33 71.69 753.43 540.20 a 20.89

Manniu 928.67 675.33 72.72 747.27 543.42 a 21.61

YS-20 921.67 620.67 67.34 741.64 499.43 b 11.76

AS-910N 1174.33 608.00 51.77 944.94 489.24 b 9.48

CK 799.67 555.33 69.44 643.47 446.86 c /

The data in the table are averages. Values followed by the same letter in the column do not differ statistically (p < 0.05).

TABLE 7 The e�ects of aerial application of adjuvant-enhanced defoliants on physicochemical properties, droplets deposition, and defoliation rate.

Adjuvants Physicochemical properties Droplet deposition Defoliation

rate (%)
Dynamic

viscosity

(mPa/s)

Surface

tension

(mN/m)

Contact

angle

(◦)

Spreading

ratio

(%)

Droplet

size

(µm)

Droplet

density

(/cm2)

Droplet

coverage

(%)

Uniformity

(%)

Penetration

(%)

Deposition

rate

(%)

YS-20 1.24 45.83 44.28 35.35 373 25.91 3.61 57.21 15.51 36.4 95.21

Manniu 1.08 43.47 31.32 34.54 397 28.18 3.70 33.60 22.59 35.7 95.58

Puliwang 1.37 42.57 31.34 46.21 402 27.32 4.44 56.83 27.11 39.3 98.4

AS-910N 1.34 45.73 38.56 24.17 320 28.01 3.15 60.97 20.97 30.1 89.07

CK 1.25 60.47 73.40 10.81 348 21.27 2.56 64.79 15.89 25.0 79.92

E�ect of aerial sprays using adjuvants on
the yield of pepper sprayed by UAVs

The effects of adding adjuvants to aerial applications on the

yield of pepper are shown in Table 6. The average yield of pepper

using adjuvants (518.00 kg/666.7 m2) was significantly higher

than that of the CK (446.85 kg/666.7 m2). The yield of adding

Puliwang (540.19 kg/666.7 m2) was slightly lower than Manniu

(543.41 kg/666.7 m2), but significantly higher than other

treatments. Puliwang and Manniu could significantly improve

the yield of peppers; their yield increase rate exceeded 20%.

To sum up, the aerial applications using adjuvants had

varying degrees of effects on the physicochemical properties,

droplet deposition, and defoliation rate of the pesticide solution

(Table 7). The performance of adjuvants could be evaluated

based on these effects as indicators. Pearson correlation analysis

was used to study the relationship between these indicators

(Figure 9). The results showed that surface tension was

significantly positively correlated with contact angle (r = 0.987,

p < 0.01), and significantly negatively correlated with spreading

ratio and defoliation rate (r = −0.883 and −0.937, p < 0.05).

This indicates that the addition of adjuvants could effectively

reduce the surface tension, thereby promoting the spreading of

the droplets. In addition, the spreading rate was significantly

positively correlated with droplet coverage (r= 0.989, p < 0.01),

deposition rate (r = 0.992, p < 0.05), and defoliation rate (r

= 0.980, p < 0.05). The droplet coverage was also significantly

positively correlated with deposition rate (r = 0.966, p < 0.01)

and defoliation rate (r = 0.946, p < 0.05). It could be seen

that the adjuvants improved the spreading ratio of the droplets,

the coverage rate, and the deposition rate, so that the contact

between the defoliant and the pepper leaves was increased, which

finally enhanced the defoliation effect. Furthermore, although

not significant, there was a positive correlation between droplet

size and droplet distribution penetration (r = 0.494), which

supports the previous observation. In addition, the dynamic

viscosity had a certain effect on the droplet size (r = −0.335).

Specifically, the higher the viscosity, the smaller the droplets

produced by the UAV spray, which was consistent with previous

studies (Jamalabadi et al., 2017).

Through the correlation analysis, we found that the

correlation between the indicators caused obstacles to

the comprehensive evaluation of different adjuvants.

Therefore, principal component analysis (PCA) was used

to comprehensively evaluate the adjuvants. We selected two

principal components whose cumulative contribution rate

of eigenvalue reached 85.16% (Figure 10A). The variance

contribution rates of principal components 1 and 2 were 66.97

and 18.19% respectively, indicating that it could effectively

reflect the original data in the auxiliary indicators. The loading

plot for principal components was used to measure the

contributions of the principal components. Specifically, a larger
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FIGURE 9

Heat map for the pearson correlation coe�cients. The color and size of the circles represent the r and p-values. Deep and large circle signal a

significant correlation.

FIGURE 10

Scree plot of eigenvalues for principal components (A) and loading plot for principal components 1 and 2 (B).

absolute value of the load means that the contribution of the

corresponding principal component is larger (Karytsas and

Choropanitis, 2017). Principal component 1 had a large to small

load in terms of spreading ratio, contact angle, droplet coverage,

surface tension, deposition rate, droplet density, penetration,

and droplet size (Figure 10B). Principal component 2 had a large

load in terms of uniformity and dynamic viscosity (Figure 10B).

These results showed that except for uniformity and dynamic

viscosity, other indicators could reflect the performance of

the aerial application of adjuvants to a large extent, especially
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TABLE 8 Comprehensive score of adjuvant performance.

Adjuvant Scores of first

principal

components

(F1)

Scores of second

principal

components

(F2)

Comprehensive

score (F)

YS-20 0.0303 −0.1078 0.0008

Manniu 0.3163 −1.6467 −0.1023

Puliwang 1.2190 0.6833 1.1046

AS-910N −0.0123 0.8793 0.1781

CK −1.5533 0.191966. −1.1806

spreading ratio, contact angle, droplet coverage, surface tension,

deposition rate, and droplet density.

Based on the mathematical model of PCA, we found that

the comprehensive score for evaluating the performance of

adjuvants (Table 8). Puliwang had the highest comprehensive

score among the four adjuvants, followed by AS-910N, YS-20,

andManniu. The score of CK without additives was only 1.1806,

far lower than the other four treatments. Therefore, it can be

established that Puliwang had the best performance.

Conclusion

In this study, pepper processing and aerial spray adjuvants

were selected as research objects, and the type of adjuvant that

could effectively improve the defoliation effect of the pepper

when sprayed by UAV was determined. Specifically, we studied

the effects of aerial spray adjuvants on the physicochemical

properties of the pepper defoliants. On that basis, the effects

of various adjuvants on droplet deposition and defoliation of

pepper crops were determined by spraying adjuvant enhanced

defoliants using UAVs. The results of correlation analysis and

principal component analysis show that Puliwang had the best

effect as an adjuvant for aerial application of defoliants.
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During the growth season, jujube trees are susceptible to infestation by the leaf 

mite, which reduces the fruit quality and productivity. Traditional monitoring 

techniques for mites are time-consuming, difficult, subjective, and result in 

a time lag. In this study, the method based on a particle swarm optimization 

(PSO) algorithm extreme learning machine for estimation of leaf chlorophyll 

content (SPAD) under leaf mite infestation in jujube was proposed. Initially, 

image data and SPAD values for jujube orchards under four severities of leaf 

mite infestation were collected for analysis. Six vegetation indices and SPAD 

value were chosen for correlation analysis to establish the estimation model 

for SPAD and the vegetation indices. To address the influence of colinearity 

between spectral bands, the feature band with the highest correlation 

coefficient was retrieved first using the successive projection algorithm. 

In the modeling process, the PSO correlation coefficient was initialized 

with the convergent optimal approximation of the fitness function value; 

the root mean square error (RMSE) of the predicted and measured values 

was derived as an indicator of PSO goodness-of-fit to solve the problems 

of ELM model weights, threshold randomness, and uncertainty of network 

parameters; and finally, an iterative update method was used to determine 

the particle fitness value to optimize the minimum error or iteration number. 

The results reflected that significant differences were observed in the 

spectral reflectance of the jujube canopy corresponding with the severity of 

leaf mite infestation, and the infestation severity was negatively correlated 

with the SPAD value of jujube leaves. The selected vegetation indices NDVI, 

RVI, PhRI, and MCARI were positively correlated with SPAD, whereas TCARI 

and GI were negatively correlated with SPAD. The accuracy of the optimized 

PSO-ELM model (R2 = 0.856, RMSE = 0.796) was superior to that of the ELM 

model alone (R2 = 0.748, RMSE = 1.689). The PSO-ELM model for remote 

sensing estimation of relative leaf chlorophyll content of jujube shows high 

fault tolerance and improved data-processing efficiency. The results provide 
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a reference for the utility of UAV remote sensing for monitoring leaf mite 

infestation of jujube.

KEYWORDS

SPAD, PSO-ELM, SPA, hyperspectral, jujube, damage severity, leaf mite

Introduction

The jujube tree (Zizyphus jujuba), which plays a significant 
role in the ecological and economic development of the Xinjiang 
oasis, is a key component of agricultural growth in southern 
Xinjiang. One of the primary pests that endanger the health of 
jujube is the leaf mite (Tetranychus truncatus Ehara), and when it 
infests the jujube during the growth season, it can lower the 
quality of the jujube by more than 35%. Therefore, efficient pest 
control and early detection are crucial for jujube 
orchard management.

Remote sensing monitoring using low-altitude unmanned 
aerial vehicles (UAVs), such as UAVs equipped with multispectral 
and hyperspectral cameras, addresses the above issues. In addition 
to low-altitude UAVs, measurements using satellites are also 
available for remote sensing to monitor the growth of crop plants. 
In recent years, agricultural pest and disease monitoring has 
increasingly utilized remote sensing monitoring technology (Adao 
et al., 2017; Bai et al., 2020; Jiang et al., 2021). With its rapid, real-
time, large-area, and non-destructive qualities, the technology has 
demonstrated benefits that cannot be matched by standard pest 
and disease monitoring approaches. Large-scale monitoring of 
crops, including crop area, pest and early warning, and growth 
conditions, may be accomplished by satellite remote sensing (Bai 
et al., 2019). However, throughout the imaging process, satellite 
remote sensing optical images are frequently influenced by 
inclement weather such as clouds, rain, and fog. Compared with 
satellite remote sensing, UAV remote sensing platforms have the 
characteristics of low operating cost, high flexibility, and fast data 
acquisition in real time, which is a unique advantage in the field 
of crop pest and disease detection. As an essential component of 
low-altitude remote sensing (Zhang et al., 2021), UAV remote 
sensing platforms have unique advantages for crop pest and 
disease monitoring, which considerably expands the scope of 
remote sensing use in crop monitoring (Dehkordi et al., 2020; Xu 
et  al., 2022). Satellite remote sensing is primarily used for 
monitoring broad areas, but it cannot provide images with 
sufficient spatial resolution and the images are susceptible to 
weather conditions (Bendig et  al., 2015; You et  al., 2022). In 
addition, the progressive improvement of UAV technology has 
made feasible its combination with hyperspectral and 
multispectral technology for agricultural disease monitoring, 
providing a reference for accurate crop disease monitoring and to 
guide remedial management (Adao et al., 2017; Li et al., 2021). For 
instance, UAV hyperspectral remote sensing can monitor a broad 

area with high precision, efficiency, and continuity, and accomplish 
the fusion of UAV multisource remote sensing imagery and target 
extraction. In previous studies (Liu et  al., 2020), UAV 
hyperspectral remote sensing has been utilized to perform 
pertinent research on a variety of agricultural diseases, such as 
citrus Huanglongbing (Garcia-Ruiz et al., 2013; Deng X.L. et al., 
2020), wheat yellow rust (Dehkordi et al., 2020; Guo et al., 2021), 
and pine wilt disease (Deng X. et al., 2020; Qin et al., 2021; Xia 
et al., 2021), etc.

UAV hyperspectral remote sensing facilitates information 
extraction in image and spectral dimensions, and is frequently 
employed for monitoring agricultural growth conditions, and pest 
and disease stress in the field. Photosynthesis is an essential 
reference for evaluation of plant development (Hunt et al., 2013, 
Sun Q. et al., 2021), and chlorophyll content is an indication of 
plant photosynthetic capacity; hence, chlorophyll content can 
effectively reflect the growth status of a crop (Ji et  al., 2021; 
Kaivosoja et  al., 2021; Lei et  al., 2021). The variation of the 
chlorophyll content of crops is important for monitoring the 
growth of crops. On the one hand, chlorophyll content absorption 
reflects the strength of photosynthesis, the growth stage and 
health status of crops; on the other hand, pests and diseases also 
directly affect the chlorophyll content of plants. Therefore, 
monitoring chlorophyll content effectively reflects the growth 
condition of crops. Variations in grayscale values on hyperspectral 
scanning recordings are caused on a broad scale when the crop is 
damaged by pests or disease, resulting in considerable variances 
in spatial, spectral, and temporal phases (Liu et al., 2017; Ahmad 
et al., 2018). The introduction of fused hyperspectral data and 
chlorophyll feature content approaches by analyzing local spectral 
differences of crops may also enhance remote sensing research on 
the monitoring of pests and diseases (Vanegas et al., 2018). It may 
be used for monitoring vegetation production, controlling crop 
resources, and monitoring pests and diseases by calculating the 
chlorophyll content of the crop canopy. Consequently (Wang 
et al., 2015), monitoring of crop chlorophyll content indicators 
might assist in reflecting the severity or incidence of agricultural 
pests and diseases to a certain extent.

A key biochemical indicator of crop development is 
chlorophyll content, and when jujube trees are infected with leaf 
mites, the amount of chlorophyll varies according to the degree of 
the disease. Hyperspectral has rich spectral information, which 
provides the possibility for the construction of chlorophyll 
inversion models. The severity of leaf mite infestation was 
correlated with chlorophyll content, which can be  indirectly 
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reflected by measuring the chlorophyll content of jujube. The 
majority of current research on crop chlorophyll inversion with 
hyperspectral data is based on statistical regression models, which 
may be broadly classified into two types: vegetation index models 
and direct spectrum models. In the vegetation index models, the 
hyperspectral data are first utilized to generate several vegetation 
indices (Sun Q. et al., 2021), which are then used to develop 
numerous linear or nonlinear regression methods to produce an 
inversion model between these indices and chlorophyll content in 
the vegetation index models (Guo et al., 2021; Ji et al., 2021; Sun 
J. et  al., 2021). It is easy to build the inversion model using 
vegetation indices, but a single vegetation index cannot adequately 
characterize the entire hyperspectral information. The direct 
spectrum models rely on the modeling of the entire hyperspectral 
bands, which is usually a high-dimension vector. Using the whole 
hyperspectral band directly may result in excessive model 
complexity or model overfitting. Dimension reduction approaches 
like as principal component analysis (PCA) or partial least squares 
(PLS) may assist in addressing this issue in part.

Most of the current research on the relationship between 
hyperspectral data and chlorophyll content focuses on the changes 
in chlorophyll content of crops under different nutrient stresses 
and different growth periods, while the hyperspectral inversion 
research on chlorophyll content of crops infected by diseases and 
insect pests is relatively less. The main performance is that the 
research pays more attention to the spectral characteristics of crop 
diseases and less attention to the physiological and biochemical 
changes in plants caused by diseases and insect pests. In addition, 
the research on crop diseases and insect pests using remote 
sensing technology is mostly aimed at grain crops such as wheat 
and rice, as well as economic crops such as cotton, soybean, and 
rapeseed, which pay less attention to pests and diseases of 
jujube plants.

Therefore, the aim of this study was to estimate SPAD values 
for leaf mite infestation of jujube based on UAV hyperspectral 
images. The estimation performance of the model based on VIs 
and selected feature bands was also analyzed. The relationship 
between the degree of leaf mite infestation and canopy leaf SPAD 
values was investigated based on the best estimates of SPAD values 
obtained. More specifically, the following points were noted in 
our study:

	(1)	 Based on the experimental data, the correlation between 
the hyperspectral characteristic parameters of the jujube 
canopy and chlorophyll content was analyzed.

	(2)	 Establishment of jujube SPAD estimation model under 
stress of leaf mite based on VI alone by using a linear 
regression model.

	(3)	 To improve the accuracy of the inversion of the chlorophyll 
content of jujube infested with leaf mites. A proposed 
method employs a successive projection algorithm (SPA) 
to extract the characteristic bands from the high-
dimensional hyperspectral vector, reducing model 
complexity and avoiding model overfitting. With the 

extracted characteristic bands as input, by building a 
PSO-ELM inversion model for the chlorophyll content 
of jujube.

Materials and methods

Study areas

The 224th regiment, the study area selected for this 
experiment, is located north of National Highway 315 at the 
crossroads of Pishan County and Moyu County in Hotan Region, 
on the southern edge of the Great Taklamakan Desert in Xinjiang, 
China (Li et al., 2021). The total land area is 234,751 km2 and the 
terrain slopes from the southwest to the northeast. Jujube 
predominates in the study area, which comprises a planting area 
of 74,057 ha, a sizable landmass, an abundance of light and heat 
resources, drought, low rainfall, high evaporation, low relative 
humidity, and significant diurnal temperature differences—all of 
which are unique natural conditions that have aided the explosive 
growth of the jujube industry in Xinjiang. The 14th division’s 
224th regiment began planting jujube in 2003, according to 
investigations by the Xinjiang Production and Construction 
Corps. jujube orchards have expanded by more than 90 km2 since 
approximately 2019, and constitute 72% of all arable land and 83% 
of all orchard land (Liu et al., 2015).

At the three designated study areas, a total of 90 sample survey 
sites were selected, where communities of healthy jujube plants 
and plants infested with leaf mites were clearly separated. Taking 
into consideration the features of pest infestation and the 
distinguishability of remote sensing images, the infestation 
severity was divided into four classes: healthy, mild damage, 
moderate damage, and severe damage. Based on an investigation 
of the effects of environmental changes on leaf mite infestation of 
jujube trees in Xinjiang, it was determined that the peak incidence 
of leaf mites occurs annually from June to August (Zhang et al., 
2013; Li H. et al., 2020). By clustering, leaf mites mostly suck sap 
on the underside of leaves, causing grayish white or yellowish fine 
patches on the leaves, decreasing the leaf chlorophyll content, and 
impairing the development and growth of jujube plants. In light 
of this, the present experiment chose the aforementioned period 
to conduct the research and employed an UAV-mounted 
hyperspectral sensor and ground acquisition for data collection in 
the field trial. The study area shown in Figure 1.

Data acquisition

UAV hyperspectral remote sensing image 
acquisition and data processing

The experiment employed a M600Pro UAV (Shenzhen DJI, 
Shenzhen, China) equipped with a hyperspectral camera (Rikola, 
Oulu, Finland) and the SPAD-502Plus (Konica Minolta, Osaka, 
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Japan). Supplementary Figure  1 depicts the experimental 
instruments and the scene diagrams. The acquisition period 
ranged from 11:00 to 15:00 (the sun altitude angle was >45°) 
under bright, clear, or partially overcast conditions. In anticipation 
of flight photography, radiation correction was conducted on the 
hyperspectral camera. Four 50 cm × 50 cm diffuse reflectance gray 
plates (reflections of 3%, 22%, 48%, and 64%, respectively.) were 
placed on a level surface in the test location, and the surface of the 
calibration plate was devoid of interfering objects and shadows. In 
accordance with the features of the hyperspectral imagers 
provided by Rikola, system correction and post-processing 
correction were conducted on the hyperspectral images after 
image acquisition was completed.

Correcting the system

In the course of capturing hyperspectral images, the UAV 
platform creates inevitable systematic inaccuracies owing to the 
instrument’s inherent constraints and the measurement technique, 
which must be  addressed. Radiation calibration, dark current 
correction, and lens vignetting correction are the primary  
components.

The feature information of the original jujube tree orchard 
hyperspectral image was expressed as the digital number (DN). 
However, because the systematic error DN cannot accurately 
reflect the spectral characteristics of the feature, the DN of the 
original image must be converted to the feature reflectance using 
the information for the calibration plate representing the specific 

A B

D

E

C

FIGURE 1

Study area. (A) Xinjiang Uygur Autonomous Region; (B) Hotan area; (C) 224th regiment; (D) and (E) Image of the study area.
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reflectance obtained at the same time as the experiment, as shown 
in Equation (1).

	
r r r rt

tDN DN
DN DN

=
-
-

-( ) +1

2 1
2 1 1

	
(1)

where rt and DNt  are the reflectance and DN of the original 
image target element, r1  and r2 are the reflectance of different 
calibration plates, and DN1  and DN2  denote the DN value of 
different calibration plates, respectively.

Post-processing refinement

In this work, the UAV images were captured using frame-wide 
imaging. Owing to the imaging principle and environment, there 
are small changes in position and attitude between the bands, 
resulting in hyperspectral cube bands that do not totally overlap. 
The flight time of the UAV is ~20–30 min, and the radiation 
brightness gradient difference between different bands will 
be  affected by the change of solar illumination conditions, 
resulting in inhomogeneous color and DN. The irradiance can 
be  effectively corrected to the normal level using Equations 
(2), (3).

	
L L Cjc at sensor j at j

sensor
l l l( ) = ( ) ´ ( )_ 	

(2)

	
C E Ej j refl l l( ) = ( ) ( )/

	
(3)

where Ljc at sensorl( ) _ is the irradiance consistency 
corrected image; Ljc atsensor

l( ) is the jth original image; C j l( )  is 
the jth image multiplicative correction factor; E j l( )  is the 
irradiance value recorded for the jth image; and Eref l( )  is the 
irradiance value of the reference image.

The UAV flew at a height of 60 m, at a speed of 5 m s−1, with 
overlap and side overlap of the images of 75%, a baseline 
distance of 25.9 m, a route spacing of 34.5 m. The Agisoft 
PhotoScan program was used to import photographs and the 
position and orientation system data, define the coordinate 
system, align the images, produce point clouds, grids, and 
textures, construct a digital elevation model, and produce 
orthophotos. The stitched orthophoto was geometrically 
corrected using GPS point data collected in the field to reduce 
the accuracy between the hyperspectral image features and the 
actual feature positions. The projection coordinate system was 
set to the Universal Transverse Mercator and the final correction 
error was controlled within 0.5 m. Within 0.5 m is the ultimate 
correcting error. Even after radiation correction, a variety of 
random disturbances remain in the picture reflectance, 
including impulse noise and Gaussian noise. Using Savitzky–
Golay filtering, the spectral curve was considered to be polished, 
ensuring that the noise was efficiently smoothed with the same 
form and width as the signal.

Measurement of SPAD at ground 
sampling points

The collection environment is shown in 
Supplementary Figure  2. A handheld chlorophyll absorbance 
meter, the SPAD-502Plus, was used to estimate the chlorophyll 
content of leaves swiftly and non-destructively. On the same day 
as the UAV flight, the SPAD properties of jujube trees were 
assessed. The field sampling points were arranged in the shape of 
a ‘S’, each of the three chosen blocks comprised 30 sampling 
points. Four classes of jujube trees were selected with the same 
spatial distribution. Thus, 90 sets of samples were gathered, 
consisting of a total of 1,200 samples. Following the sample 
allocation concept, 20 of the 90 groups of samples were utilized as 
test samples, while the measured SPAD values of the remaining 70 
groups were randomly chosen as modeling samples. To minimize 
sampling error, canopy leaves of comparable size, color, and shape 
were chosen for the sampling procedure (Han et al., 2021). The 
measurements were performed at the leaf tip, center, and base, and 
the mean value was used to represent the leaf ’s SPAD 
characteristic parameter.

Classification of plant pest severity

This study was carried out in experimental plots with leaf mite 
occurrence in the field, and field leaf mite surveys were conducted 
by hand to collect samples. At the time of sampling, the degree of 
leaf damage and the latitude and longitude information of the 
sampling site were recorded based on GPS positioning, the 90 
sample points were sited evenly throughout the jujube tree 
planting area. According to the Code of Practice of Prevention and 
Control Techniques for Pests and Diseases of Jujube (National 
Standard of the People’s Republic China), the severity levels of 
jujube tree mite infestation was divided into four classes in 
Supplementary Table 1. Healthy leaves were assigned a value of I, 
mild damage a value of II, moderate damage a value of III, and 
severe damage a value of IV. The four categories leaves are shown 
in Figure 2.

Vegetation index

A vegetation index may be subdivided into several vegetation 
index parameters based on various monitoring and computation 
methodologies (Torres-Sanchez et al., 2014; Liu et al., 2020; Ji 
et al., 2021). A vegetation index incorporates linear or nonlinear 
combinations of reflectance in distinct spectral bands to produce 
correlated spectral signals so as to simplify the spectral 
information and enhance vegetation-related features. For 
identification of agricultural pests and diseases, the visible red 
band, which is highly absorptive in green plants, and the near-
infrared band, which is highly reflective and transmissive in green 
plants, are often selected. The spectral response of these two bands 
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to the same biophysical phenomena provides a strong contrast 
that changes with the leaf canopy structure and coverage; hence, 
their ratio, difference, or linear combination may be utilized to 
augment or disclose the implicit vegetation information (Lei et al., 
2021). In the present study, the normalized difference vegetation 
index (NDVI), ratio vegetation index (RVI), physiological reflex 
vegetation index (PhRI), modified chlorophyll absorption ratio 
index (MCARI), transformed chlorophyll absorption ratio index 
(TCARI), and green index (GI) were chosen. Information on the 
vegetation indices is presented in Table 1.

Statistical analysis

Regarding the accuracy of the parameter estimates, the 
coefficient of determination (R2) and root mean square error 
(RMSE) were employed to assess the model accuracy. The R2 value 

represents the degree of fit, whereas RMSE measures the accuracy 
of data measurement. In general, it is believed that the closer the 
R2 value is to 1, the better it indicates a strong goodness of fit, and 
conversely, a low value indicates a poor goodness of fit. The 
smaller the RMSE, the better it indicates a small error, whereas a 
high value indicates the inaccuracy is large. The calculation of 
these statistics is shown in Equations (4), (5):
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where n  denotes the number of samples for estimation or 
validation of the model; xi , x , yi , and y  denote: measured 
value, measured mean value, estimated value, and estimated mean 
value, respectively.

Results

Characteristics of SPAD variation

From 90 sample points, a total of 1,200 ground SPAD values 
were obtained, Table 2 summarizes the statistical properties of 
the sampled data. The modeling sample and the validation 
sample differed except for the data samples. The variation range 
of SPAD values for the modeling set of samples was 20.80–66.90, 

A B

C D

FIGURE 2

Different degrees of leaf mite infestation in jujube severity.

TABLE 1  Vegetation index information.

Name Formula Comprehensive embodiment Application Reference

NDVI NIR R
NIR R

-
+

Integrated crop growth variability Diseases detection Mahlein et al. (2013)

RVI NIR
R

Crops growth sensitivity Chlorophyll estimation Birth and McVey (1968)

PhRI ( )
( )

550 531
550 531

R R
R R

-
+

Crop growth pattern Chlorophyll estimation Daughtry et al. (2000)

MCARI ( ) ( )( )0.2701 671 701 549
701
671

R R R R
R
R

- - -

æ ö
ç ÷
è ø

Crops chlorophyll variations LAI and chlorophyll estimation Zhang et al. (2019)

TCARI

( ) ( )0.2
3 700 500

700 675
700
670

R R
R R

R
R

æ ö
ç ÷

-ç ÷- -ç ÷æ öç ÷ç ÷ç ÷è øè ø

Crops growth sensitivity Chlorophyll estimation Haboudane et al. (2002)

GI 554
677

R
R

æ ö
ç ÷
è ø

Crops green variability Leaf rust detection Ashourloo et al. (2014)
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the mean was 46.21, and the coefficient of variation was 21.01%. 
The variation range of SPAD values for the validation set of 
samples was 21.50–67.50, the mean was 45.97, and the CV was 
21.06%. Considering the impact of leaf mites on the leaf 
chlorophyll content, the CV of the SPAD values was more than 
10%, suggesting that the chlorophyll content was more variable. 
The discrepancies between the modeling and validation sets 
were negligible, there were no significant differences within the 
modeling and validation sets (p = 0.678), as determined by an 
independent samples t-test. Therefore, the sample sets were 
appropriate for modeling and validation.

Analysis of SPAD and spectral 
characteristics of jujube under infestation 
of leaf mite

Chlorophyll content is an indicator of the biochemical 
parameters of the crop and reflects the growth of the crop (Qi 
et al., 2021). Pest infestation causes changes in the chlorophyll 
content of the crop. Thus, measuring chlorophyll content reveals 
the health and vigor of the crop. When jujube plants are infected 
with leaf mites, the mean SPAD value of their canopy leaves 
decreases gradually with an increase in the severity of leaf mite 
infestation (Figure 3). The results demonstrated that the SPAD 
value of jujube trees was negatively associated with the severity of 
leaf mite infestation.

With the more severe leaf mite infestation, the SPAD values of 
jujube chlorophyll content gradually decreased, thus causing 
changes in the spectral characteristics of the canopy of jujube, 
showing a trend of decreasing spectral reflectance step by step 
with the increase of leaf mite infestation. Figure 4 depicts the 
average spectral reflectance curves of jujube trees at the canopy 
scale under different severities of leaf mite infestation. The spectral 
band features of jujube plants differ notably with the severity of 
leaf mite infestation. Considering the phenomena of “green peaks” 
owing to decreased chlorophyll absorption, the spectral 
characteristic curves of healthy jujube trees exhibited modest 
reflectance peaks in the green band between 520 and 570 nm. 
Because of the intense absorption of chlorophyll for 
photosynthesis, a red wavelength absorption trough, termed a 
“red valley,” forms in the red wavelength range of 620–690 nm. As 
the chlorophyll concentration rises, so does the photosynthetic 
capability. The “green peak” and “red valley” in the green light 
spectrum progressively diminish between 680 and 750 nm. Given 
light scattering within the leaf, the reflectance in the near-infrared 

range exhibits conspicuous peaks of high reflectance, which 
constitute the spectrum’s largest peak and generate a highly 
reflective platform. The variation in spectral reflectance of leaf 
mite damage of jujube trees was increasingly evident with an 
increase in the severity of infestation, which led to a decline in 
chlorophyll content and severe damage to the cellular structure 
and tissues of the leaf.

Correlation between SPAD value and 
vegetation indices of jujube trees

To facilitate an understanding of the relationship between 
vegetation indices and the chlorophyll content of jujube, a 
correlation coefficient matrix map is presented in Figure  5. 
Positive correlations are represented by numbers greater than 
zero, whereas negative correlations are represented by values less 
than zero (Yang et al., 2021). The absolute values of the correlation 
coefficients between SPAD and NDVI, RVI, PhRI, MCARI, 
TCARI, and GI ranged from 0.64 to 0.82. The NDVI, RVI, PhRI, 
and MCARI were positively correlated with SPAD, whereas 
TCARI and GI were negatively correlated with SPAD. As can 
be  seen in Figure  5, the six selected vegetation indices were 
significantly correlated with SPAD, among which the correlation 
coefficient between leaf SPAD value and PhRI reached a 
maximum of 0.82, which was higher than the correlation 
coefficient between SPAD value and other vegetation indices. 
Further, by taking SPAD of jujube leaves as the dependent 
variable, and using NDVI, RVI, PhRI, MCARI, TCARI, and GI 
as independent variables, a remote sensing estimation model for 
the relative chlorophyll content of jujube canopy leaves was 
constructed. Table 3 shows the statistical regression modeling of 
vegetation indices to inversion chlorophyll content. The modeling 
determination coefficient of the SPAD-PhRI estimation model 
was 0.702, which was higher than the modeling accuracy of SPAD 
value and other vegetation indices.

FIGURE 3

Variations in SPAD values of jujube leaves for different leaf mite 
infestation levels.

TABLE 2  Statistical characteristics of chlorophyll content.

Sample 
set

No. of 
samples

Min. Max. Mean. Std. 
deviation

C.V/%

Overall 1,200 20.80 67.50 46.17 9.66 20.93

Modeling Set 800 20.80 66.90 46.21 9.71 21.01

Validation Set 400 21.50 67.50 45.97 9.68 21.06

75

https://doi.org/10.3389/fpls.2022.1009630
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al.� 10.3389/fpls.2022.1009630

Frontiers in Plant Science 08 frontiersin.org

Correlation between SPAD value and 
spectral reflectance

As the chlorophyll content of jujube trees infected by leaf 
mites will change, as illustrated in Figure 6, chosen chlorophylls 
significantly associated with leaf mite infection were correlated 
with the raw and first-order derivative spectra for the analysis. 
The correlation coefficients between the original spectra and the 
SPAD value were negative at 500–749 nm and positive above 

750 nm (Figure  6A). The absolute value of the correlation 
between the original spectrum and the chlorophyll content is 
mostly between 0.5 and 0.65, and the curve changes are relatively 
flat. When the original spectrum is transformed by the first 
derivative, the correlation with the chlorophyll content of jujube 
leaves is significantly enhanced in some wavelength bands, 
among which it reaches a very significant positive correlation at 
660, 685, 735, and 754 nm, and at 550, 588, 633, and 702 nm 
highly significant negative correlation. The maximum correlation 

FIGURE 4

Spectral curves of jujube trees for different leaf mite damage indices.

FIGURE 5

Correlation analysis between SPAD and vegetation index.
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coefficients between the first-order derivative spectra and the 
SPAD value were −0.75 and 0.70 at 702 and 754 nm (Figure 6B), 
respectively. It is evident that the chlorophyll of jujube leaves 
strongly affects the first-order differential spectrum under the 
leaf mite infestation. The curve of the correlation coefficient 
between the first-order derivative spectrum and chlorophyll 

content fluctuates obviously. Considering that the spectral 
derivative enhances the slight change in the slope of the spectral 
curve, the reason for this change is related to the biochemical 
absorption characteristics of crops. It can be  seen that the 
chlorophyll of jujube trees is damaged by the infection of leaf 
mites, and the first derivative spectrum has a strong sensitivity 
to the chlorophyll content of jujube. Consequently, hyperspectral 
remote sensing technology may be  used to quantify the 
chlorophyll content of jujube under the stress of leaf 
mite infestation.

SPA feature band selection

Hyperspectral data are abundant in volume and wavelength 
information, but the correlation between wavelengths is excessively 
high and contains a substantial quantity of duplicated information, 

TABLE 3 Correlation between SPAD values of canopy leaves and 
vegetation index of jujube trees.

VI Model R2 RMSE

NDVI y = 2.04x + 65.36 0.668 1.062

RVI y = 18.14x + 101.76 0.585 0.951

PhRI y = 15.61x + 94.95 0.702 0.886

MCARI y = 2.0x + 65.3 0.657 0.869

TCARI y = −0.53x + 80.20 0.632 0.896

GI y = 2.74x + 72.55 0.608 0.787

A

B

FIGURE 6

(A) Raw spectra with SPAD correlation analysis; (B) First-order derivative spectra with SPAD correlation analysis.
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which poses a barrier to the storage and processing of huge 
amounts of data for practical applications (Liu et  al., 2021). 
However, duplicate information in the spectral can be avoided by 
using a successive projection algorithm (SPA) for analysis to select 
the wavelengths of interest. The RMSE is calculated as the square 
root of the sum of the square of the departure of the observed value 
from the actual value divided by the number of observations and 
is used to assess the deviation between the observed and true 
values (de Sousa Fernandes et al., 2016). Given that the objective 
of feature wavelength extraction is to accurately categorize healthy 
and unhealthy plants, the fewest possible feature wavelengths 
should be used. In the present study, the RMSE decreased with an 
increase in the number of feature bands extracted (Figure 7A). The 
RMSE was smallest (0.451) with five feature wavelengths; the 
minimum RMSE value is attained when the number of bands 
contained in the corresponding optimal band set, which is the 
optimal subset of bands for the period, attains its minimum. 
Therefore, five characteristic wavelengths were chosen as the 
optimal outcome. The selected characteristic bands comprised 
512.1, 628.8, 674.2, 736.6, and 773.2 nm (Figure 7B).

Model building and prediction

An ELM is a feed-forward neural network with a single or 
multiple hidden layers. Unlike in conventional neural networks 
with back propagation (BP), the parameters of the nodes in the 
hidden layers of ELM are randomly assigned and never tuned. It 
solves the shortcomings of classic neural networks, such as 
sluggish training rate, local optimum instability, and sensitivity to 
learning rate (Li W. et al., 2020). However, the conventional ELM 
architecture is considered to have drawbacks (Zhang et al., 2022), 
such as the unpredictability of weights and thresholds, and the 
uncertainty of network parameters, which make it less effective at 
processing data and result in overfitting phenomena that reduce 
the accuracy of the prediction model. To optimize the parameters, 

such as weights and thresholds, of the ELM model in order to 
increase the prediction accuracy of the model, PSO was 
implemented (Kaloop et al., 2019). The position and velocity of 
the particles were updated according to Equations (6), (7), the 
particle fitness value was recalculated, the individual extremes and 
population extremes were determined with each update, and 
iterations were repeated in order to conduct an optimization 
search in the solution space.

	
( ) ( ) ( )

( ) ( )
1 1

2 2

1kd kd kd kd

kd kd

V t V c r Pbest t X t
c r Gbest t X t

w+ = + é - ùë û
+ é - ùë û 	

(6)

	
X t X t V tkd kd kd+( ) = ( ) + +( )1 1

	
(7)

where V tkd +( )1  is the velocity of particle k  in the d th 
dimension in the t +1 th iteration; w  is the inertia weight, 
generally taken to be 0.9; c1  and c2  are learning factors; r1  and 
r2  are random numbers in the range [0, 1]; and Pbest tkd ( )  and 
Gbest tkd ( )  denote the extreme positions of particle k  in the 
individual and the population.

In the present study, PSO was used to improve the input 
weights and thresholds of the ELM model, and each particle may 
be  considered to be  an ELM model for the prediction of 
chlorophyll content. The location information of the particles is 
utilized to represent the input weights and thresholds of the ELM 
model (as shown in Figure 8), whereas the particle dimension D 
and the kth particle k are represented as follows:
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FIGURE 7

(A) Number of the best spectral variable for sample model; (B) Selection of characteristic hyperspectral bands.
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where n  and t  are the number of neurons in the input 
and hidden layers, respectively; wijk  and bjk  are the input 
weights and hidden layer thresholds, respectively, and both 
are random numbers within the range [−1, 1], 1 < i < n, and 
1 < j < t.

The PSO-ELM employs the SPA extracted characteristic 
bands as the independent variable and the leaf chlorophyll 
content of the jujube canopy as the dependent variable. 
Initially, the PSO parameters were initialized and the ideal 
fitness function value was chosen based on the performance 
of the PSO-ELM model. The inertia weights were set to 0.90, 
the maximum number of iterations was set to 100, and the 
learning factors were set to 1.40. Subsequently, the input 
weights and thresholds corresponding to each particle were 
substituted into the ELM model, and the predicted and 
measured values of RMSE were used for adaptation of the 
PSO to calculate the individual and global extremes. Lastly, 
the particle positions and velocities were updated by  
iterative comparison, and the particle adaptation values  
were calculated, and the particle extremes and global  
extremes were updated until the minimum error was  
achieved or until the maximum number of iterations was  
attained.

Using the 512.1, 628.8, 674.2, 736.6, and 773.2 nm bands 
as independent variables and the chlorophyll content as a 
dependent variable with ELM and PSO-ELM, respectively, the 

SPA method was utilized to create models for prediction of 
the chlorophyll content of jujube trees (as shown in Figure 9). 
The unoptimized ELM and PSO-ELM prediction values were 
utilized to compare and evaluate the actual measured data in 
order to confirm the prediction accuracy of the suggested 
models. Table 4 shows the prediction results of the PSO-ELM 
inversion model of jujube tree chlorophyll content used in 
this study were superior to those of the inversion model built 
with the simple extreme learning method, and the PSO-ELM 
model of chlorophyll content inversion (R2 = 0.856, 
RMSE = 0.796) was superior to that of the chlorophyll  
content inversion built with the single ELM (R2 = 0.748, 
RMSE = 1.689).

Given that the absolute value of the correlation between 
reflectance and chlorophyll content in the 500–900 nm band 
is generally between 0.5 and 0.65, and that there is a 
connection between distinct bands in this range, extracting 
and establishing the chlorophyll content inversion is 
complicated. SPA is used in this study to extract the 
distinctive bands of chlorophyll content inversion in order to 
reduce the complexity of spectral data. The number of bands 
is decreased to 5 after screening the contribution value, and 
the spectral wavenumber is lowered by 88.89%. The RMSE is 
0.451. The correlation coefficients for the ELM and PSO-ELM 
inversion models were found to be  0.748 and 0.856, 
respectively. The preferential selection of five feature band 

FIGURE 8

Flow chart of the PSO-ELM algorithm.
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parameters of SPA reduces the problem of redundancy among 
spectral data, improves modeling efficiency and operational 
efficiency, and reduces the effect of covariance of input data 
parameters, indicating that SPA is a more effective method 
for feature wavelength extraction. The sensitive bands of 
chlorophyll content response of jujube were selected by using 
SPA, and an extreme learning machine inversion model based 
on particle swarm optimization was established with a view 
to achieving rapid, accurate, and nondestructive diagnosis of 
canopy chlorophyll content under leaf mite infestation and 
improving inversion accuracy.

The spatial distribution of jujube leaf mites in the research 
region was determined，using ArcGIS software based on the 
disease grading criteria for leaf mite severity (I–IV; as shown in 
Figure  10). The map displays the range of SPAD values that 
correlate to the severity of each mite infestation. While other 
portions of the plot were less damaged and could be  mildly 
treated for prevention to fulfill the demands of normal jujube tree 
development, the left area of the plot required concentrated 
spraying of pesticides since it was more heavily infested. The 
results demonstrated that the outcomes of the ground survey and 
the UAV images are similar.

Discussion

Analysis of the correlation between 
spectral reflectance and chlorophyll 
content

Using hyperspectral spectra the benefit of “image-spectrum 
integration,” we acquired hyperspectral images of the jujube 
tree, sought to inversion of chlorophyll content under the stress 
of leaf mite for jujube. Recent studies have focused greater 
attention on the spectral properties of crop diseases, and less 
on the physiological and biochemical alterations imposed by 
the diseases. The present results revealed that leaf mite 
infestation influences the spectral reflectance of the jujube tree 
canopy, and that SPAD values are strongly associated with the 
leaf mite infestation index. Given the relative decrease in 
chlorophyll content caused by insect damage, the spectral 
properties of jujube plants varied significantly with severity of 
insect damage. As the population of leaf mites peaks, the 
chlorophyll content in the leaves declines, resulting in a 
reduction in the photosynthetic activity of the leaves and a 
considerable decrease in spectral reflectance. The “white 
patches” or yellowing of branches caused by mite feeding on 
the leaves decreased the leaf area index and leaf chlorophyll 
content of jujube. In addition, it was demonstrated that crop 
pests and chlorophyll are strongly associated, and that spectral 
data can reflect changes in chlorophyll content caused by 
agricultural pests. Future work will focus on transferring such 
an integrative methodology presented here to other agronomic 
parameters estimation.

FIGURE 9

ELM and PSO-ELM models Chlorophyll content inversion model.

TABLE 4 Model comparison.

Model
Modeling set Validation set

R2 RMSE R2 RMSE

ELM 0.748 1.689 0.681 1.566

PSO-ELM 0.856 0.796 0.825 0.862
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Spectral-based inversion model of 
chlorophyll content

In recent years, the link between reflectance spectral 
characteristics and pest parameters has been investigated using 
spectral data, and the sensitive wavebands following pest damage 
have been screened to enable pest monitoring and identification 
by classification. In the present study, we estimated the relative 
chlorophyll content of jujube trees under leaf mite infestation 
using UAV hyperspectral inversion and proposed a model for 
prediction of the chlorophyll content of jujube using 
PSO-ELM. The influence of random parameters of the ELM 
model on prediction accuracy and its weak generalization 
performance were effectively compensated. In addition, the 
inversion accuracy of jujube tree chlorophyll content was 
improved. The present results serve as a reference for the utility of 
UAV remote sensing for diagnosis and monitoring of leaf mite 
infestation in jujube.

Challenges and prospective research

Collaborative “air–sky–ground” building of pest and disease 
monitoring research. In studies utilizing UAV remote sensing 

to monitor crop development, pests, and diseases, the 
determination coefficients (inversion accuracy) of the parameter 
inversion findings are typically greater than those of satellite 
remote sensing (Adao et  al., 2017). However, the essential 
research methodologies and fundamental concepts of both are 
identical or comparable (Aasen et al., 2018). The essence of the 
higher inversion accuracy of UAV remote sensing is as follows. 
First, given the lower altitude of aerial photography, the distance 
to the crop canopy is shorter, hence there is less distortion and 
sensitivity of the acquired information (e.g., image texture 
features, spectral features, and thermal radiation features), 
which more accurately reflect small changes in the crop 
phenotypes. Second, the small spatial scale of UAV remote 
sensing not only objectively excludes heterogeneous factors 
(such as climate variation, soil conditions, moisture conditions, 
crop varieties, pest and disease stress, and human management 
practices) that affect the inversion of crop growth, pests, and 
diseases at medium and large scales, but also allows for the 
precise control of variable factors required for the experiment. 
However, this advantage of UAV remote sensing is also a 
constraint to its application (Delavarpour et al., 2021; Wang 
et al., 2022). Although the combination of ground-based data 
with UAV remote sensing data may provide point-to-point 
inversion of crop growth, pests, and diseases, a number of 

FIGURE 10

Inversion spatial distribution map of infestation severity of jujube mites.
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limitations remain. The geographical extent is confined to the 
field size, and the consequent localization and individual 
variability in crop phenotypes limit the portability of 
monitoring models based on UAV remote sensing (Rezwan and 
Choi, 2022), so it is impossible to duplicate the inversion laws 
observed at larger scales or other sites. It is challenging to 
overcome regional disparities in numerous elements, such as 
crop types, natural environmental conditions, and human 
management practices, using satellite remote sensing (Messina 
and Modica, 2020; Zhou et al., 2020). It is also challenging for 
satellite remote sensing to overcome the impact of the diverse 
inversion influences on the inversion precision. Given the 
restricted geographical extent, UAV remote sensing is able to 
effectively screen diverse information. While employing satellite 
remote sensing techniques, we provide UAV remote sensing 
data as a crucial correction index for satellite remote sensing 
inversion agricultural growth, pest and disease studies to aid in 
the development of crop models. This may provide jujube pests 
monitor new ideas for follow-up studies.

Conclusion

In this study, leaf mite damage was monitored using an UAV 
platform equipped with a hyperspectral sensor. By acquiring 
hyperspectral images of jujube orchards with varying severities 
of leaf mite infestation, hyperspectral inversion was investigated 
to assess the relative chlorophyll content of jujube trees under the 
stress of leaf mite infestation. The results confirmed that the 
SPAD values of jujube plants were negatively correlated with 
severity of leaf mite infestation and leaf damage. Significant 
spectral variation was observed, with SPAD values diminished in 
the green peaks and red troughs of the spectral band with an 
increase in the severity of leaf damage. The differences in spectral 
reflectance among leaf mite-infested jujube plants were more 
pronounced. A strong correlation was observed between the 
SPAD value of jujube trees and the original and first-order 
derivative spectral reflectance of the canopy of jujube trees 
infested with leaf mites. It is therefore possible to quantify the leaf 
chlorophyll content of jujube trees under the stress of leaf mite 
infestation using hyperspectral remote sensing, thus providing a 
theoretical foundation for monitoring leaf mite infestation of 
jujube trees using hyperspectral remote sensing. Five feature 
bands were extracted using SPA: 512.1, 628.8, 674.2, 736.6, and 
773.2 nm. The PSO-ELM model was developed using the 
extracted characteristic bands as input variables and the 
chlorophyll content of jujube trees as the output variable. The 
superior performance of the PSO-optimized ELM model 
demonstrated the viability of UAV deployment to perform 
hyperspectral inversion of the chlorophyll content of jujube 
plants infested with leaf mites. Thus, the variation in leaf 
chlorophyll content may be utilized to examine the categorization 
of jujube plants by severity of leaf mite infestation based on the 
variation in spectral characteristics.
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An improved lightweight network (Improved YOLOv5s) was proposed based on

YOLOv5s in this study to realise all-weather detection of dragon fruit in a

complex orchard environment. A ghost module was introduced in the original

YOLOv5s to realise the lightweight of the model. The coordinate attention

mechanism was joined to make the model accurately locate and identify the

dense dragon fruits. A bidirectional feature pyramid network was built to

improve the detection effect of dragon fruit at different scales. SIoU loss

function was adopted to improve the convergence speed during model

training. The improved YOLOv5s model was used to detect a dragon fruit

dataset collected in the natural environment. Results showed that the mean

average precision (mAP), precision (P) and recall (R) of the model was 97.4%,

96.4% and 95.2%, respectively. The model size, parameters (Params) and

floating-point operations (FLOPs) were 11.5 MB, 5.2 M and 11.4 G,

respectively. Compared with the original YOLOv5s network, the model size,

Params and FLOPs of the improved model was reduced by 20.6%, 18.75% and

27.8%, respectively. Meanwhile, themAP of the improved model was improved

by 1.1%. The results prove that the improved model had a more lightweight

structure and better detection performance. Moreover, the average precision

(AP) of the improved YOLOv5s for dragon fruit under the front light, back light,

side light, cloudy day and night was 99.5%, 97.3%, 98.5%, 95.5% and 96.1%,

respectively. The detection performance met the requirements of all-weather

detection of dragon fruit and the improved model had good robustness. This

study provides a theoretical basis and technical support for fruit monitoring

based on unmanned aerial vehicle technology and intelligent picking based on

picking robot technology.
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1 Introduction

People love Dragon fruit because of its high nutritional

value, constipation prevention, detoxification, blood glucose

reduction, antioxidants and other effects (Attar et al., 2022).

The field management of this tropical fruit is labour-intensive.

Thus, studying disease and pest monitoring for the fruit based

on unmanned aerial vehicle (UAV) technology and intelligent

picking based on picking robot technology is very important.

Fruit and vegetable object detection in the natural orchard

environment is a key technology for monitoring and picking

fruit pests and diseases (Tang et al., 2020; Zheng et al., 2021).

Given the complex environmental information, such as uneven

light intensity and overlapping occlusion between branches and

leaves and fruits in dragon fruit orchards (Jiang et al., 2012; Chu

and Chang, 2020), studying a method that can accurately detect

dragon fruit in complex environments for efficient and

automatic all-weather fruit monitoring and picking of dragon

fruit is of great research value and practical significance.

Researchers at home and abroad have recently achieved

certain results in the field of fruit and vegetable object

detection, and a variety of object detection methods proposed

have been applied to fruit and vegetable detection tasks in

natural scenarios (Behera et al., 2018; Jiang et al., 2019; He

et al., 2020; Yu et al., 2021; Jiang et al., 2022). These methods are

mainly based on traditional image processing methods and deep

learning algorithms (Saleem et al., 2021). Traditional image

processing methods are mainly based on the colour, shape and

texture of fruits and vegetables, which have been widely used to

recognise citrus (Kurtulmus et al., 2011; Lu et al., 2018), apple

(Rakun et al., 2011; Linker et al., 2012; Sun et al., 2019),

pineapple (Chaivivatrakul and Dailey, 2014) and mango

(Payne et al., 2013). However, these methods have high

environmental requirements. When the orchard light is

uneven and occlusions are found between fruits, recognition

accuracy is significantly reduced. With the rapid development of

deep learning, a convolutional neural network (CNN) algorithm

has been applied to fruit and vegetable object detection,

achieving good results. Typical studies are as follows: Sun et al.

(2018) proposed an improved Faster-RCNN for tomato

recognition, which adopted ResNet50 as the feature extraction

network and used the k-means clustering method to adjust the

preselected box, effectively improving the recognition accuracy

but slowing down the detection speed. Fu et al. (2020) used the

Faster-RCNN to identify apples. Before model establishment, a

depth filter was used to remove the background of fruit trees in

the image, improving recognition accuracy by 2.5% compared

with the original network model. Tian et al. (2019) proposed an

improved YOLO-V3 model to detect apples at different growth

stages in orchards, and the average time of detection model was

0.304 s for images with 3000×3000 resolution. Li et al. (2021)

identified occlusion and small object green pepper based on the

deep learning object detection algorithm of Yolov4-tiny
Frontiers in Plant Science 02
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combining the attention mechanism and multi-scale

prediction. The average precision value of the model reached

95.11%, the accuracy rate was 96.91%, and the recall rate was

93.85%. Zhang et al. (2021) proposed a recognition and

positioning method for cherry tomatoes based on a lightweight

neural network improved YoloV4-Lite, and the recognition

accuracy and AP were improved by 8.29% and 0.15%,

respectively, compared with the original network model. Xiong

et al. (2020) added residual network to YOLOv3 model for night

citrus recognition, and the recognition accuracy and the

recognition speed was increased by 2.27% and 26%,

respectively, compared with the original network model.

Cecotti et al. (2020) used transfer learning to pre-train the

network and data enhancement to increase the number of

samples. They also used a modified Resnet network to identify

grapes and perform yield estimates, which achieved good

accuracy. Giang et al. (2022) rapidly detected tomatoes based

on semantic segmentation neural network of RGB-D image, and

the detection accuracy rate was 80.2%. Huang et al. (2022)

applied the YOLOv5 algorithm to detect the citrus data set

collected by UAV, and the detection accuracy rate was 93.32%.

Yan et al. (2021) proposed a lightweight apple object detection

method using improved YOLOv5s to identify grasping and

ungrasping apples in apple tree images automatically, and the

recognition recall rate, accuracy, AP and F1 were 91.48%,

83.83%, 86.75% and 87.49%, respectively. Zhang et al. (2022)

applied the YOLOX object detection algorithm to carry out the

counting detection of Holly fruit and tested the counting

efficiency under different distances and scenarios. Zhou et al.

(2022) proposed an enhanced YOLOX-s object detection

algorithm. Compared with the original YOLOX-s, the

enhanced model improved the detection AP of kiwifruit

images by 6.52%, reduced the number of model parameters by

44.8% and upgraded the model detection speed by 63.9%. Miao

et al. (2022) developed an efficient tomato picking robot based

on traditional image processing methods and YOLOv5 object

detection algorithm, which had high detection accuracy under

different lighting conditions, with an average deviation of 2 mm

and a picking time of 9 s/cluster. Wang et al. (2022) proposed an

improved YOLOv4 model for pear detection in the natural

environment. The AP of the model was 96.71%, the model size

was reduced by approximately 80%, and the average detection

speed was 0.027 s. Many researchers have researched fruit target

detection based on CNN and achieved good results, but they

mainly realised fruit detection under daytime conditions. During

the growth of dragon fruits, supplemental light is carried out at

night, providing an advantageous condition for the all-weather

picking of dragon fruits. Few reports have focused on target

detection for picking dragon fruits in all weather.

Thus, this study constructed a lightweight neural network

model to reduce the size of the network model and improve the

detection accuracy, which was used for the all-weather real-time

detection task of dragon fruit picking robots in complex scenes.
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The main innovations and contributions are summarised

as follows:
Fron
1. To establish data sets of dragon fruits under different

lighting conditions. Through data enhancement, the

image dataset was diversified, and the anti-interference

ability under complex conditions was enhanced.

2. The lightweight ghost module was adopted in the

model, replacing the conventional convolution of the

original YOLOv5s network by combining a small

number of convolution kernels and linear change

operations to achieve the lightweight improvement of

the model. The coordinate attention mechanism (CAM)

was added to the original YOLOv5s network to make

the model more accurate in locating and identifying

dense dragon fruit. The feature fusion of different scales

was strengthened by constructing a bidirectional feature

pyramid network (BiFPN). The SIoU loss function was

used to replace the original loss function to improve the

convergence speed during model training.
The rest of the paper was structurally organised as follows:

The second section presents the data material, including dragon

fruit growth characteristics, image acquisition and dataset

construction. The third section introduces the improved

YOLOv5s dragon fruit detection model, which mainly includes

the lightweight improvement of the model, the introduction of

CAM and BiFPN, and the improvement of the loss function. The

fourth section introduces the training and testing of the model,

including the training platform information, parameter setting

of the training network and evaluation index. The fifth section
tiers in Plant Science 03
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presents the test results and discussion. The final section

illustrates the conclusions and prospects of the study.
2 Data materials

2.1 Growth characteristics of dragon fruit

Dragon fruit is a plant of the cactus family. Its branches are

mostly triangular, and its edge width is generally 3–8 cm. It has

many branches and is mainly cultivated by dense trellis planting

(Figure 1). As a typical tropical and subtropical fruit, the shape

of dragon fruit is generally spherical, the length of the fruit is 7–

12 cm, and the diameter of the fruit is 5–10 cm. Fruits of the

dragon fruit are distributed on branches. Given that fruits are

blocked by branches and overlap with each other, accurately

identifying dragon fruit, counting and measuring production,

monitoring fruit diseases and insect pests and accurately picking

fruit using picking robots in the field are difficult.
2.2 Image acquisition

This study took the red dragon fruit cultivated by dense

trellis planting in modern standard orchards as the research

object. The dragon fruit images were collected from the dragon

fruit planting base in Yazhou, Sanya City, Hainan Province

(latitude: 18.20.45, longitude: 109.12.14). Nikon SLR cameras

and intelligent mobile phones were used to collect images of

dragon fruits. Multi-scale dragon images were acquired during

the three periods of sunny day, cloudy day and night. In the
FIGURE 1

Planting pattern of dragon fruit.
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shooting process, the operation process of the picking robot was

simulated, and the shooting angle and distance were constantly

changed. A total of 1987 images were collected. Among them,

shooting conditions on sunny days included front light, side

light and back light. The collected images included varying

maturity, attitude, size, lighting, background and fruit overlap

occlusion. The image resolution is 4,288×2,848 pixels, and the

format is JPEG. Figure 2 shows the dragon fruit images collected

under different lighting conditions.
2.3 Construction of data set

The collected data were clipped and compressed to 640×640

pixels to improve the training efficiency of the network model

and shorten the training time in the training stage of the deep

learning model. The LabelImg annotation tool was used to

annotate the rectangular box of the dragon fruit in the image

manually. During annotation, all mature dragon fruits fully

exposed in the image were labelled in a rectangular frame, the

exposed part of overlapping or occluded mature dragon fruits

were labelled, and the mature dragon fruits with occlusion

degrees less than 5% in the image were not labelled. A total of

1,987 images were labelled, and the number of labelled mature

dragon fruits was 5,123. After annotation, the.xml file containing

the ground truth was obtained. To avoid the phenomenon of

sample imbalance and overfitting of model training, data

enhancement technology was used to expand the size of

dragon fruit data sets and improve the robustness and

generalisation ability of the model. Under different lighting

conditions, for the original dragon fruit images with obvious

features, defocus blur, motion blur, pixelation and cloud were

used to enrich the data features, increase the number of training

data and reduce the unbalanced proportion of samples and the

sensitivity of the model to the image to improve the model

robustness. Table 1 shows the basic information of the

specifically constructed dragon fruit data sets.

The constructed dragon fruit data sets were divided into the

training and testing sets according to the ratio of 8:2, and the

number of dragon fruit image samples in the train and test sets

was 4,000 and 1,000, respectively. There were no duplicate

images between the training set and testing set.
Frontiers in Plant Science 04
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3 Improvement of detection model
for dragon fruit based on YOLOv5s

3.1 The network structure of YOLOv5s

The network structure of the YOLOv5s model is a classical

one-stage structure, as shown in Figure 3, which is composed of

four parts: input, backbone, neck and prediction head. Mosaic

data enhancement, adaptive anchor frame calculation, adaptive

image scaling and other methods are used at the input. The

backbone part integrates Conv, C3, SPPF and other feature

extraction modules for feature extraction. The neck part

adopts the PANet structure for multi-scale feature fusion to

strengthen feature extraction and greatly improve the model

effect. Compared with other Faster-RCNN, SSD and YOLO

series models, this model has fewer parameters, a small weight

file and the advantages of fast reasoning speed and high

detection accuracy. Therefore, the detection model for dragon

fruit was designed based on the YOLOv5s deep convolutional

network, which was conducive to the embedded development of

the dragon fruit picking robot vision system.
3.2 Improved YOLOv5s detection model
for dragon fruit

Given the multi-scale and multi-mode characteristics of all-

weather picking and recognition of dense trellis planting fruit in

a natural environment, a lightweight neural network model with

high recognition accuracy based on YOLOv5s network structure

was proposed, which is suitable for all-weather real-time

detection task of dragon fruit picking robot in complex scenes.

Firstly, the lightweight ghost module was used to replace the

conventional convolution of the original YOLOv5s backbone

network by combining a small number of convolution kernels

and linear change operations, which effectively realised the

lightweight improvement of the YOLOv5s network model.

Secondly, CAM was added to the original YOLOv5s network,

which could capture the cross-channel information and the

information of direction perception and position perception,

so that the model could accurately locate and identify the dense

dragon fruit. Thirdly, the PANet feature fusion network was
B C D EA

FIGURE 2

Dragon fruit images under different lighting conditions. (A) Front light. (B) Back light. (C) Side light. (D) Cloudy day. (E) Night.
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improved, and the BiFPN was built to enhance the transmission

of feature information between different network layers, realise

two-way feature fusion of deep and shallow layers and improve

the detection effect of dragon fruit at different scales. Finally, the

SIoU loss function was used to replace the original loss function

to improve the convergence speed of model training.
3.2.1 Network lightweight improvement
Ghost module is a method to realise a lightweight neural

network (Han et al., 2020), which can make the deep neural

network transplant the network to some mobile devices with

relatively weak computing power on the basis of ensuring the

performance ability of the algorithm. The overall direction is to

reduce the number of network model Params and FLOPs.

As shown in Figure 4, the ghost module uses a simple linear

operation F instead of the original convolution operation to

generate ghost graphs. Suppose that the size of the input feature

graph is h × w × c convolved with n sets of convolution kernels

of size k×k, and the size of the output feature graph is h′×w′×n.
In the ghost model, m groups of k×k kernels are convolved with

input to generate the intrinsic graph intrinsic of m×h′×w′, after
which the intrinsic graph is linearly transformed F to produce
Frontiers in Plant Science 05
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the Ghost graph, and intrinsic and ghost together are used as

output. Compared with ordinary convolution, after the ghost

module is adopted, the model acceleration ratio rs and

compression ratio rc are obtained, as shown in Equations (1)

and (2).

rs =
n · h 0 ·w 0 ·c · k · k

n
s · h

0 ·w 0 ·c · k · k + s − 1ð Þ · ns · h 0 ·w 0 ·c · d · d
≈ s (1)

rc =
n · c · k · k

n
s · c · k · k + s − 1ð Þ · ns · c · d · d

≈ s (2)

These equations reveal that, compared with ordinary

convolution, the ghost module reduced the calculation amount

and the number of parameters in the convolution process to a

certain extent. A large number of Conv and C3 modules in the

original YOLOv5 network model are found, resulting in a large

calculation amount and parameter volume of the model. The

lightweight improvement of the network model is completed by

using the ghost module to replace the Conv modules of layers 1,

3, 5, 7, 10, 14, 18 and 21 of the original network model with

GhostConv and the C3 modules of layers 2, 4, 6 and 8 with

C3Ghost module for calculation.
FIGURE 3

Network structure diagram of YOLO V5 model.
TABLE 1 Basic information of dragon fruit data sets.

Daytime

Category Sunny day Cloudy day Night Sum

Front light Back light Side light

The number of original image 390 310 440 347 500 1987

The number of enhancement of data 1000 1000 1000 1000 1000 5000

The number of marked dragon fruit 2930 2814 3070 3035 2883 14732
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3.2.2 Coordinate attention mechanism (CAM)
The detection of small dense objects in densely planted

dragon fruit orchards is easily influenced by different lighting

conditions, especially in the night scene, when the detection is

difficult. The original YOLOv5 network model easily loses the

feature information of dense objects and small objects in the

reasoning process, and the detection effect of small dense objects

is poor. As shown in Figure 5, CAM is a novel mobile network

attention mechanism proposed by embedding location

information into channel attention (Hou et al., 2021). To

alleviate the problem of location information loss caused by

two-dimensional global pooling proposed by previous attention

mechanisms, such as SENet (Hu et al., 2018) and CBAM (Woo

et al., 2018), CAM decomposed channel attention into two one-

dimensional feature coding processes, which aggregated features

along two spatial directions respectively.

A CAM block can be viewed as a computational unit that

can take any intermediate feature tensor X=[x1,x2,⋯,

xc]∈RC×H×W as input and output with the same size as the

intermediate feature tensor Y=[y1,y2,⋯,yc]. Meanwhile, it has the

effect of enhancing representation.

Therefore, CAM was inserted in this study after layers 4,

6, 8, 9, 17, 20 and 23 of the original YOLOv5 network model.

After data enhancement, the dragon fruit images entered the
Frontiers in Plant Science 06
90
main network for feature extraction and then entered the

neck part of the model through the CAM connected between

the main part and the neck part (layers 4, 6 and 9 of the

original network). In the neck part, the dragon fruit image

feature fusion of different scales was carried out. Finally,

CAM, after the 17th, 20th and 23rd layers of the original

network, entered the prediction head part of the model, so

that the network model can more accurately notice the dense

small dragon fruit objects. It improved the detection ability of

the network.

3.2.3 Construction of the bidirectional feature
pyramid network (BiFPN)

The neck part of the original YOLOv5 network model uses

PANet for multi-scale feature fusion, and the three effective

feature layers of different scales obtained in the backbone part

continue to extract features in the neck part. When fusing

different input features, PANet adds the features without

distinction. However, because these different input features

have different resolutions, their contributions to the fused

output features tend to be unequal. BiFPN is a new feature

fusion method proposed by the Google Brain team, which

realises the two-way fusion of top-down and bottom-up deep

and shallow features and enhances the transmission of feature
B C

D

A

FIGURE 4

Structure of ghost. (A) Diagram of ghost module. (B) Ghost Conv. (C) GhostBottleneck. (D) C3 Ghost.
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information between different network layers. The PANet and

BiFPN structures are shown in Figure 6.

In this study, the PANet in YOLOv5 structure is replaced by

BiFPN, and the Concat of layer 16, 20, 24 and 28 in the network

structure is renamed as BiFPN_Concat. To fuse more image

features without consuming more computational cost, the image

features output from the 8th layer network were fused to the

24th layer network by concatenation, and the image features

output from the 11th layer network are fused to the 28th layer

network by concatenation, so as to achieve a higher level of

feature fusion. BiFPN used the fast normalised fusion, which is

normalised by dividing the use-right value by the sum of the

ownership value. It normalises the weights to between 0 and 1 to

improve the detection speed.

3.2.4 Improvement of loss function
The traditional object detection loss function relies on the

aggregation of bounding box regression indicators, such as the

distance, overlap region and aspect ratio of the predicted box

and real box (i.e. GIoU, DIoU and CIoU). The original YOLOv5

network model used the CIoU loss function, but it did not

consider that the situation of required direction does not match

between the real box and predict box. It led to a slower and less

efficient convergence of the network model during training. At

the same time, the predicted box may “wander around” during

training and produce worse models. To solve the above

problems, SIoU loss function was used to replace the original

loss function, which could introduce the vector angle between
Frontiers in Plant Science 07
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the real box and the predicted box (Gevorgyan, 2022). It includes

four parts: angle cost, distance cost, shape cost and IoU cost.

Angle cost is shown in Equation (3). Figure 7 shows that,

when a is p/2 or 0, the angle cost is 0. In the training process, if a
is less than p/4, a is minimised; otherwise, b is minimised.

L = cos½2� sin2(arcsin
ch
s

−
p
4
)� (3)

Among them,

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bgtcx − bcx )

2 + (bgtcy − bcy )
2

q
(4)

ch¼ maxðbgtcy , bcy ) −minðbgtcy , bcy ) (5)

where, ch is the height difference between the centre points of the

real box and the predicted box, s is the distance between the

centre points of the real box and the predicted box, (bgtcx , b
gt
cy ) is

the centre coordinates of the real box and (bcx ,bcy) is the centre

coordinates of the predicted box.

Distance cost D is shown in Equation (6),

D = 2 − e−(2−L)(
b
gt
cx

−bcx
cw1

)2 − e−(2−L)(
b
gt
cy

−bcy

ch1
)2 (6)

where, (cw1, ch1) is the width and height of the minimum outer

rectangle of the real box and the predicted box.

The shape cost W is shown in Equation (7),

W = (1 − e−
w−wgtj j

max (w,wgt ) )q + (1 − e−
h−hgtj j

max (h,hgt ) )q (7)
FIGURE 5

Structure diagram of Coordinate Attention module.
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BA

FIGURE 6

Structures of PANet and BiFPN. (A) Structure of PANet. (B) Structure of BiFPN.
FIGURE 7

The scheme for calculating the contribution of the Angle cost to the loss function.
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where, (w, h) is the width and height of the predicted box, (wgt,

hgt) is the width and height of the real box and q is the degree of

attention to shape loss.

To sum up, the SIoU loss function is defined as Equation (8).

LossSIoU = 1 − IoU +
D +W
2

(8)
3.2.5 Improved detection model for
dragon fruit

The overall structure of the improved detection model

network for dragon fruit is shown in Table 2. The from

column in the table indicates which layer the input comes

from, −1 represents the output from the previous layer, −2

represents the output from the upper layer. The params column
Frontiers in Plant Science 09
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represents the size of the argument, module is the name of the

module, and the arguments are the information about the

module argument, including the number of input channels

and output channels, the size of the convolution kernel and

the step size information.
4 Model training and testing

4.1 Training processing platform

This study built a deep learning framework based on

PyTorch 1.7.1 to train and test the dragon fruit detection

model. The relevant configurations of the test platform are as

follows: Intel(R) Core(TM) i9-10900X CPU and NVIDIA
TABLE 2 The overall structure of the improved network.

Number From Params Module Arguments

0 -1 3520 Conv [3, 32, 6, 2, 2]

1 -1 10144 Ghost Conv [32, 64, 3, 2]

2 -1 12072 C3Ghost [64, 64, 3]

3 -1 38720 Ghost Conv [64, 128, 3, 2]

4 -1 47040 C3Ghost [128, 128, 4]

5 -1 6704 CAM [128, 128]

6 -2 151168 Ghost Conv [128, 256, 3, 2]

7 -1 186976 C3Ghost [256, 256, 5]

8 -1 13360 CAM [256, 256]

9 -2 597248 Ghost Conv [256, 512, 3, 2]

10 -1 679680 C3Ghost [512, 512, 4]

11 -1 51296 CAM [512, 512]

12 -1 656896 SPPF [512, 512, 5]

13 -1 51296 CAM [512, 512]

14 -1 69248 Ghost Conv [512, 256, 1, 1]

15 -1 0 Upsample [None, 2, ‘nearest’]

16 [-1,8] 2 BiFPN [1]

17 -1 361984 C3 [512, 256, 1, False]

18 -1 18240 Ghost Conv [256, 128, 1, 1]

19 -1 0 Upsample [None, 2, ‘nearest’]

20 [-1,5] 2 BiFPN [1]

21 -1 90886 C3 [256, 128, 1, False]

22 -1 6704 CAM [128, 128]

23 -2 75584 Ghost Conv [128, 128, 3, 2]

24 [-1,16,8] 3 BiFPN [1]

25 -1 460288 C3 [896, 256, 1, False]

26 -1 13360 CAM [256, 256]

27 -2 298624 Ghost Conv [256, 256, 3, 2]

28 [-1,14,11] 3 BiFPN [1]

29 -1 1444864 C3 [1024, 512, 1, False]

30 -1 51296 CAM [512, 512]

31 [22,26,30] 26970 Detect [nc, anchors]
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GeForce RTX 3090 GPU (Dual Cards). The operating system is

Windows 10. The acceleration environment is CUDA 11.3 and

CUDNN 8.2.0. The development environment is PyCharm

2021.2.2 and Python 3.7. Other Python libraries are Numpy

1.21.6 and Opencv 4.6.0. The model input image size is 640×640

pixels. The training parameters are as follows: a batch size of 64,

300 training iterations, momentum of 0.937, initial learning rate

of 0.001, attenuation coefficient of 0.9.
4.2 Evaluation indicators

This study used precision (P) to measure the accuracy of

dragon fruit prediction. Recall (R) measures the detection of

positive samples in all dragon fruit. Average precision (AP)

measures the performance of the detector in each category.

Mean average precision (mAP) is the average of all class APs.

P, R, AP andmAP are defined as (9)–(12). The complexity of the

algorithm or model is measured by the number of parameters

(Params) and floating-point operations (FLOPs).

P =
TP

TP + FP
� 100% (9)

R =
TP

TP + FN
� 100% (10)

AP =
Z 1

0
P(R)dR� 100% (11)

mAP = o
k
i=1AP

k
(12)

where, TP is the number of correctly predicted positive samples,

TN is the number of correctly predicted negative samples, FP is

the number of negative samples divided into positive samples,

FP is the number of positive samples divided into negative

samples, and k is the number of categories.
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5 Results and discussion

The training process of the original YOLOv5s model and the

improved YOLOv5s model used the same data set and the same

parameters. According to the log files saved in the training

process, the training loss curves of the two models were drawn,

as shown in Figure 8.

Figure 8A is the positioning loss curve, which was used to

represent the error between the predicted box and the labelled

box. After 10 rounds of iteration, the decline rate of positioning

loss value started to become gentle. After 200 rounds of iteration,

the positioning error tended to the stable state. At this point, the

localisation loss of the improved YOLOv5s model was reduced

by 0.01 compared with the original YOLOv5s. The model’s

performance improved after the SIoU loss function was

adopted. Figure 8B is the confidence loss curve, which

calculates the network’s confidence in the iterative process.

The confidence loss curves of the two models were consistent

before and after the improvement. Figure 8C is the classification

loss curve, which is used to show whether the aiming frame and

the corresponding calibration classification are correct. After 100

rounds of iteration, the classification error of the model tended

to the stable state, where the classification error of the improved

YOLOv5s model was significantly reduced compared with the

original YOLOv5s. Figure 8 shows that, compared with the

original YOLOv5s model, the improved YOLOv5s model has

faster convergence and smaller loss value. The results showed

that the convergence ability of the network was improved after

modifying the original loss function.
5.1 Comparison of different algorithms

To compare the accuracy of different models in dragon fruit

detection, eight representative network models of YOLOv3,

YOLOv3-Tiny, YOLOv4-CSP, YOLOv4-Tiny, YOLOv5s,

YOLOX-s, YOLOv7 and YOLOv7-Tiny, were selected to
B CA

FIGURE 8

Comparison of Loss curves for model training. (A) The positioning loss curve. (B) The confidence loss curve. (C) The classification loss curve.
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compare and test with the improved YOLOv5s. All models used

the same data set of dragon fruit for training and testing. The

value ofmAP, P, R, model size, Params and FLOPs were selected

as model evaluation indicators. Table 3 shows the detection

results of dragon fruit for a different model.

Table 3 shows that, compared with YOLOv3, YOLOv3-Tiny,

YOLOv4-CSP, YOLOv4-Tiny, YOLOv5s, YOLOX-s, YOLOv7

and YOLOv7-Tiny, the improved YOLOv5s model has the

highest P, R and mAP values of 96.4%, 95.2% and 97.4%,

respectively. The model size, Params and FLOPs of the

Improved YOLOv5s were larger than those of YOLOV4-Tiny,

but they were smaller than other networks, which were 11.5 MB,

5.2 M and 11.4 G, respectively. Compared with the above eight

network models, mAP of the improved YOLOv5s model was

enhanced by 0.3%, 2.1%, 3.1%, 4.5%, 1.1%, 3.9%, 1.8% and 1.4%

respectively, P was improved by 0.4%, 3.4%, 4.8%, 4.1%, 1.7%,

6.3%, 2.5% and 5.6% respectively, and R was improved by 0.6%,

3.4%, 7.9%, 7.1%, 1.5%, 8.7%, 5.6% and 2.4%, respectively.

Compared with the lightweight YOLOV3-Tiny, YOLOv5s,

YOLOX-s and YOLOV7-Tiny, the model size was reduced by

34.3%, 20.69%, 66.5% and 6.5%, Params was reduced by 37.3%,

18.7%, 42.2%, 8.8%, respectively, FLOPs was reduced by 12.3%,

27.8%, 57.3% and 13.6%, respectively. The results showed that

the improved YOLOv5s model ensured good detection accuracy

and realised the lightweight improvement of the network model.

The improved YOLOv5s model could be embedded into the

vision system of the dragon fruit picking robot to realise the

automatic picking operation of dragon fruits.
5.2 Analysis of ablation
experiment results

The ablation experiment is to verify the optimisation effect

of each improved module, and the experimental results are

shown in Table 4. Improved model 1 represents the

introduction of the ghost module in the original network.

Improved model 2 represents the modification of the pyramid

structure of the original network. Improved model 3 represents
Frontiers in Plant Science 11
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the addition of CAM in the original network. Improved model 4

represents the modification of the loss function. Improved

model 5 represents the addition of all the above improvement

methods in the original network.

Table 4 shows that, after the ghost module was used to

lightweight the original YOLOv5s network structure, the Params

was reduced by 28%, and the FLOPs was reduced by 34.8%

compared with the original network model, but the mAP of the

model increased by 0.4%. The main reason was that after the

ghost module was used to replace the ordinary convolution in

the original network, more feature maps were generated through

linear operation, and this rich or even redundant information

usually ensured a comprehensive understanding of the input

dragon fruit features. Therefore, the lightweight network

structure of the ghost module introduced into the original

YOLOv5s network in this study could still ensure the

detection accuracy of the model. When the CAM was added

to the model, compared with the original model, the mAP of the

model was improved by 0.5 percentage points, but the Params

and the FLOPs of the model were increased by 2.4 M and 5.2 G,

respectively. After replacing the PANet structure in the

YOLOv5s network with BiFPN, the mAP of the model was

improved by 0.9 percentage points, the Params and the FLOPs

increased by 0.2 M and 0.7 G, respectively. After the loss

function of the model was modified, the mAP of the model

was improved by 0.5%. When these four improvements were

combined into the model, compared with the original YOLOv5s

network model, themAP was increased by 1.1%, the Params was

reduced by 18.7%, and the FLOPs was reduced by 27.8%. The

results showed that improved YOLOv5s had better detection

performance for dragon fruit objects, and the complexity of the

model was reduced by using a lightweight module.
5.3 Analysis of detection results in
different scenarios

To verify the feasibility of the improved YOLOv5s model,

the dragon fruit images collected in different scenes were tested,
TABLE 3 Identification results of dragon fruit for different model.

Model mAP/% P/% R/% Model size/MB Params/M FLOPs/G

YOLOv3 97.1 96.0 94.6 123.6 58.7 155.3

YOLOv3-Tiny 95.3 93.0 91.8 17.5 8.3 13.0

YOLOv4-CSP 94.3 91.6 87.3 105.5 50.1 119.7

YOLOv4-Tiny 92.9 92.3 88.1 6.3 2.9 6.4

YOLOv5s 96.3 94.7 93.7 14.5 6.4 15.8

YOLOX-s 93.5 90.1 86.5 34.3 9.0 26.7

YOLOv7 95.6 93.9 89.6 74.9 35.5 105.2

YOLOv7-Tiny 96.0 90.8 92.8 12.3 5.7 13.2

Improved YOLOv5s 97.4 96.4 95.2 11.5 5.2 11.4
fro
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including the scenes of front light, back light, side light, cloudy

day and night. The results are shown in Table 5.

Table 5 shows that both models before and after

improvement had the best recognition effect for dragon fruit

in the scenes of the front light. The AP of the before and after

improvement model in detecting dragon fruit under front light

was 99.0% and 99.5%, respectively, and the AP of the improved

model was improved by 0.5%. The AP of the before and after

improvement model in detecting dragon under the backlight

was 96.7% and 97.3%, respectively. The performance of the

improved model was improved by 0.6%. The AP of the before

and after improvement model in detecting dragon fruit under

side light was 98.4% and 98.5%, respectively, and the

performance of the improved model was improved by 0.1%.
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The AP of the model before and after the improvement under

cloudy day was 93.8% and 95.5%, respectively, and the

detection performance of the improved model was improved

by 1.7%. The AP of the model before and after improvement at

night is 93.6% and 96.1%, and the detection performance of the

improved model is improved by 2.5%. According to Table 5,

under different lighting conditions, the maximum deviation of

the YOLOv5s model before improvement in detecting dragon

fruit was 5.4%, and the maximum deviation after improvement

was 3.4%, which was 2% lower than before the improvement.

The improved model had the greatest improvement for the

situation that was difficult to detect at night, indicating that the

improved model was more robust to all-weather dragon

fruit detection.
TABLE 5 Test results of dragon fruit recognition in different lighting scenes by the YOLOv5s model before and after improvement.

Model mAP
AP

Front light Back light Side light Cloudy day Night

YOLOv5s 96.3 99.0 96.7 98.4 93.8 93.6

Improved YOLOv5s 97.4 99.5 97.3 98.5 95.5 96.1
frontiersin.or
TABLE 4 Results of ablation experiment.

Model Lightweight Modifying the feature pyramid Add attention
mechanism

Modify the loss
function

mAP/% Params/M FLOPs/G

YOLOv5s × × × × 96.3 6.4 15.8

Improved model 1 √ × × × 96.7 4.6 10.3

Improved model 2 × √ × × 97.2 6.8 16.2

Improved model 3 × × √ × 96.8 8.8 21.0

Improved model 4 × × × √ 96.8 6.4 15.8

Improved model 5 √ √ √ √ 97.4 5.2 11.4
"√" Indicates that the current improvement method is used in the model, while "×" indicates that the current improvement method is not used in the model.
TABLE 6 Visual results of dragon fruit object detection on sunny days.

Front light The original image Visual result of YOLOv5s Visual result of Improved YOLOv5s

Single fruit big object

Many fruits in the goal

(Continued)
g
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Tables 6, 7 show the detection visualisation results of the

YOLOv5s model in different lighting scenes before and after the

improvement. According to the visualisation results, the

improved detection model had a better detection effect and

stronger robustness in detecting dragon fruit objects of

different scales under different lighting environments. The

positioning was more accurate, and the model had a strong

anti-interference ability in dense small object detection.
Frontiers in Plant Science 13
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Video images of the dragon fruit orchard taken by UAV

were used for detection to test further the real-time detection

performance of the improved model on dragon fruit. UAV

(model: Phantom 4 RTK) was used to shoot video images of

the dragon fruit orchard at a low altitude of 1 meter in the

daytime and night, with a resolution of 1280×720. The proposed

improved model was used to detect the dragon fruits in video

images. The results showed that the dragon fruits in the video
TABLE 6 Continued

Front light The original image Visual result of YOLOv5s Visual result of Improved YOLOv5s

Dense small object

Back light The original image Visual result of YOLOv5s Visual result of Improved YOLOv5s
Single fruit big object

Many fruits in the goal

Dense small object

Side light The original image Visual result of YOLOv5s Visual result of Improved YOLOv5s
Single fruit big object

Many fruits in the goal

Dense small object
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images could be effectively detected. The image pre-processing

time of single frame video is 0.6 ms, the reasoning time is 17.0

ms, and the post-processing time is 1.9 ms. The results further

verify the strong robustness of the improved algorithm and

provide technical support and research basis for deploying the

algorithm on mobile devices and developing the vision system of

orchard monitoring and picking equipment in the later stage.
Conclusions

Aiming at the all-weather object detection of dense trellis

planting of dragon fruit in a complex environment, a detection
Frontiers in Plant Science 14
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method that integrated a lightweight network and attention

mechanism was proposed in this study. Firstly, dragon fruit

data sets were constructed in complex natural environments.

Second, the lightweight ghost module and CAM were integrated

into the YOLOv5s network structure, while a bidirectional

weighted feature pyramid network was constructed in the neck

part of the network. Finally, the SIoU loss function was used to

replace the loss function of the original network model to

improve the convergence speed during model training.

The mAP value of the testing sets for dragon fruit detection

by this method was 97.4%, P was 96.4%, R was 95.2%, model size

was 11.5 MB, Params was 5.2 M, and FLOPs was 11.4 G.

Compared with the original YOLOv5s network, the model
TABLE 7 Visual results of dragon fruit object detection on cloudy and night days.

Cloudy The original image Visual result of YOLOv5s Visual result of Improved YOLOv5s

Single fruit big object

Many fruits in the goal

Dense small object

Night The original image Visual result of YOLOv5s Visual result of Improved YOLOv5s
Single fruit big object

Many fruits in the goal

Dense small object
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size, Params and FLOPs of the model were reduced by 20.6%,

18.75% and 27.8%, respectively, and the mAP of the model

improved by 1.1%. The improved model has a lighter structure

and better detection performance. Using this model, the AP of

dragon fruit was 99.5%, 97.3%, 98.5%, 95.5% and 96.1% under

front light, backlight, side light, cloudy day and night,

respectively. The detection performance could meet the

requirements of all-weather detection of dragon fruit and had

good robustness. The model was used to test video images with a

resolution of 1280×720. The results showed that the pre-

processing time of a single frame video image was 0.6 ms, the

reasoning time was 17.0 ms, and the post-processing time was

1.9 ms. The model had good application potential in intelligent

operations, such as orchard counting and yield measurement,

fruit disease and insect pest monitoring by low-altitude UAV

and precise picking in the field based on the picking robot.

The next research will mainly apply the existing model to

practical tasks, such as orchard counting and yield

measurement, fruit disease and insect pest monitoring by low-

altitude UAV and precise picking in the field based on the

picking robot. The data enhancement method and model

detection performance will continue to be optimised to

improve the detection accuracy of the model further.
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Stereoscopic plant-protection
system integrating UAVs and
autonomous ground sprayers
for orchards

Shijie Jiang1†, Bingtai Chen1†, Wenwei Li1, Shenghui Yang1,
Yongjun Zheng1,2* and Xingxing Liu1*

1College of Engineering, China Agricultural University, Beijing, China, 2Yan Tai Institute, China
Agricultural University, Yan Tai, China
For orchard plant protection, conventional large machines and small sprayers

are practically restricted by either narrow planting intervals with dense leaves or

their inadequate penetration power, which leads to an unsatisfactory effect of

spray. This paper proposes a stereoscopic plant-protection strategy that

integrates unmanned air and ground sprayers to spray different parts of

canopies to improve uniformity. In order to verify the proposal, a

stereoscopic plant-protection system (SPS) was developed, consisting of a

small swing-arm sprayer and a T16 plant-protection Unmanned Aerial Vehicle

(UAV). Then, optimal operation parameters were determined by Computational

Fluid Dynamics (CFD) and orthogonal experiments, and the uniformity was

finally quantified by trials. CFD and orthogonal experiments showed that a

swing-arm angle of 60° and a forward speed of 0.4 m/s were optimal for the

ground sprayer, whilst a height of 2.0 m from the top of canopies and a forward

speed of 1.0 m/s were appropriate for the UAV. The trial results showed that the

density of vertical droplet deposition varied from 90 to 107 deposits/cm2 in

canopies, and the uniformity was 38.3% higher than conventional approaches.

The uniformity of top, bottom, inside and outside canopies was significantly

improved. Meanwhile, the density of droplet deposition on both sides of leaves

in all test points exceeded 25 deposits/cm2, able to meet the standard of spray.

This study provides a practical approach for uniform pesticide spray to large-

canopy fruit trees. Moreover, the high flexibility of plant-protection UAVs and

the significant trafficability of small swing-arm sprayers can solve the problem

of large machine entering and leaving orchards.

KEYWORDS

orchard, stereoscopic plant-protection, uniform spraying, UAV, UGV, computational
fluid dynamics (CFD)
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1 Introduction

Plant protection is important in the orchard production

process to promote fruit production (Zhao et al., 2017; Jiang

et al., 2021), while the current means still relies on chemical

spray (Zhai et al., 2018; Rehberg et al., 2020; Zheng et al., 2020a).

It is ideal for the entire canopy of fruit trees to be uniformly

covered by droplets. However, due to topographical

characteristics (such as undulating terrain, slope and

unevenness) and narrow row intervals (especially row interval

closure by canopies during tree branching and foliage

densifying), large plant-protection machinery cannot enter

orchards, while small one cannot achieve full-canopy spray.

Thus, it faces serious difficulties for orchard plant protection

to achieve expected effect (especially in hilly mountainous

orchards) (Hołownicki et al., 2017; Zheng et al., 2020b).

Manual spray presents strong randomness, which is hard for

droplets to cover targets uniformly, so using mechanised and

intelligent equipment has played a key role in achieving uniform

fruit-tree spray in developed regions such as Europe, the United

States, Japan and Korea. In Japan and Korea, orchard terrain is

mainly hilly and mountainous (Jin et al., 2017). Plant-protection

machines mostly utilise miniaturised design with levelling and

anti-tipping mechanisms and other safety devices to improve the

application efficiency and adaptability to the terrain. However,

there are still problems like the imperviousness of dense

canopies and the non-uniform distribution of droplets in

canopies. In Europe and the United States, the topography of

orchards is significantly different from China and Japan. Farm

and large-scale planting patterns were generally adopted with

deep integration of agronomy and agricultural machinery

(Grella et al., 2020), providing the possibility of large plant-

protection machinery operations. Among them, air-assisted

sprayers are the most widely used devices (Miranda-Fuentes

et al., 2017). Although large plant-protection machines show the

convenience for plant protection in orchards and have

significant application effects compared to manual spray (Liu

et al., 2012), they present noticeable problems (Salcedo et al.,

2017), such as pesticide overuse, fruit pesticide residues, soil

pesticide residues and water pollution (Kira et al., 2018; Kasner

et al., 2020). Since the end of the 20th century, many

corresponding environmental policies have been promulgated

in Europe and the United States, and the use of pesticides has

become more stringent. For example, safety quarantine zones

must be set up for spray, and pesticides are severely restricted.

Therefore, it has been more challenging to develop spray

technology to reduce drift and improve the uniformity of

droplet distribution. In the 21st century, the target-directional

air delivery method gradually replaced the diffuse air delivery

method that causes serious drift. The target-directional

implement shows a noticeable effect on fruit trees with narrow
Frontiers in Plant Science 02
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canopy and uniform height (Song et al., 2012; Niu et al., 2019).

However, it is limited by its large size and is only adapted to

small canopies and wide row-spacing orchards.

With the advancement of technology, variable spray

techniques based on the characteristics of fruit tree canopies

have been rapidly developed (He et al., 2011; Cai et al., 2017;

Manandhar et al., 2020), and sensors such as LiDAR (Fessler

et al., 2020) and depth cameras (Xiao et al., 2017) have been used

to acquire fruit tree canopy features (Rosell and Sanz, 2012;

Yandún Narváez et al., 2016). Applying pesticides on demand

can effectively reduce chemical waste (Miranda-Fuentes et al.,

2016). However, there are serious problems. Firstly, in terms of

orchard adaptability, after acquiring the characteristics of fruit

trees based on sensors, the spray mechanism needs to reach a

certain position to deliver droplets onto target locations, which

further increases the overall size of the sprayers. (Chen et al.,

2011; Liu et al., 2013; Liu et al., 2016) so that they become less

adaptable to the orchard environment. In addition, for most

large-canopy orchards, canopy closure between rows can

directly affect the accuracy of feature sense, even leading to no

acquisition of expected canopy features. Inspired by the

successful application of plant-protection Unmanned Aerial

Vehicles (UAVs) in fields (Zhang et al., 2016), there have been

many studies related to plant-protection UAVs in orchard

conditions (Wang et al., 2017; Liu et al., 2020; Meng et al.,

2020). UAVs can avoid the terrain restrictions that ground

sprayers have to suffer but present the disadvantages of the

spray for large-canopy fruit trees. The distribution of droplets at

the top and bottom of canopies varies highly. With serious row

closure, the droplet deposition in the lower part of canopies does

not even reach the spraying standard (25 deposits/cm2), which

still cannot meet the demand for uniform spray in canopies.

Our team conducted preliminary experiments in two apple

orchards in Shanxi Province and Beijing, a mango orchard in

Guangxi Province and a citrus orchard in Chongqing Province

from June 2018 to April 2021. Typical sprayers for orchards were

selected for the experiment, including a ring-shape air-assisted

sprayer (model SSA-E541, Wuxi Yifeng Wanshan Technology

Co., Ltd.), a tower-shaped air-assisted sprayer (model G6S,

Shandong Guohaha Agricultural Machinery Co., Ltd.), a

single-rotor plant-protection UAV (model Z-3N, Nanjing

Institute of Simulation Technology, Jiangsu Province) and a

six-rotor plant-protection UAV (model 3WWDZ-10, Beijing

Viga UAV Technology Co., Ltd.). The results in Figure 1 show

that droplets were not uniformly distributed at the top, bottom,

inside and outside canopies during single equipment spraying.

In particular, during the six-rotor plant-protection UAV

spraying, the droplet deposition density in the top layers of

canopies was high and uniform, while that in the bottom was

poor. Meanwhile, the droplet distribution of the air-assisted

sprayer was non-uniform in the top layers and was better in the
frontiersin.org
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bottom layers. (Chen et al., 2020; Jiang et al., 2022). These pre-

test results were highly consistent with the issue on the basis of

the literature review above.

This study proposes a stereoscopic plant-protection method

with a corresponding Stereoscopic Plant-protection System (SPS)

to improve the uniformity of canopy spray. Numerical

simulations using Computational Fluid Dynamics (CFD) and

orchard experiments were conducted to determine the optimal

operation parameters for the SPS. Then, the experiments of the

SPS were conducted. It is a new idea for orchard plant protection,

especially for closure orchards, and provides a technical solution

to improve the spray uniformity in the canopy of fruit trees.
2 Materials and methods

2.1 Development of SPS

2.1.1 SPS scheme
As shown in Figure 1, the plant-protection UAV and the

ground air-assisted sprayer present complementary
Frontiers in Plant Science 03
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characteristics for canopy spray. Thus, they were combined to

cover the entire tree canopies (Figure 2). Plant-protection UAVs

were in charge of the upper part of canopies, while small ground

sprayers (air-assisted sprayers) focused on the middle and

bottom parts.

The plant-protection UAV adopted the canopy top-seeking

operation mode (Zhang et al., 2019). It flew directly above the

fruit tree canopies, and the spray swath mainly covered the top

half of the canopies. The small ground sprayer travelled between

the rows of trees, and the spraying range mainly covered the

bottom half of the canopies. To prevent the wind fields by the

two devices from affecting each other and reducing the spraying

effect , the system could select the following three

operation modes:
1. sequential independent spraying. One of the devices

firstly sprayed. After it was completed, the other one

sprayed.

2. simultaneous following spraying. The plant-protection

UAV operated first and was followed by the ground

sprayer after flying a certain distance (≥spraying width).
B

C D

A

FIGURE 1

Typical equipment canopy droplet deposition experimental results. (A) Vertical longitudinal sampling layer droplet deposition density. (B) Vertical
longitudinal sampling layer droplet distribution uniformity. (C) Horizontal radial sampling layer droplet distribution uniformity. (D) Uniformity of
droplet distribution on leaf surface and leaf back.
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3. simultaneous free spraying. The plant-protection UAV

and the ground sprayer simultaneously sprayed but did

not spray one fruit tree at the same time.
2.1.2 Plant-protection UAV
According to the previous study results (Chen et al., 2020), it

is known that the droplet deposition density and distribution

uniformity of the six-rotor plant-protection UAV on canopies is

better than that of the single-rotor one. Therefore, the T16 six-

rotor plant-protection UAV (Figure 3) produced by Shenzhen
tiers in Plant Science 04
104
DJI Innovation Technology Co., Ltd was exploited for this study.

It has a terrain-following function and wide spraying

performance, which could ensure a similar spray effect in most

cases. Its main parameters are shown in Table 1.
2.1.3 Small swing-arm sprayer
According to the preliminary investigation of orchard

characteristics, a small swing-arm sprayer (Figure 4A) was

specially developed to spray the lower and middle canopy of fruit

trees. The main components consisted of a crawler chassis, a swing-

arm air-assisted sprayingmechanism, a booster renewal mechanism
FIGURE 2

Schematic of stereoscopic plant protection. The dashed line indicates the operation route of the plant-protection UAV, while the solid line is
that of the ground sprayer.
FIGURE 3

T16 six-rotor plant-protection UAV.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1040808
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiang et al. 10.3389/fpls.2022.1040808
and a liquid tank. The crawler chassis and the swing-arm air-

assisted spraying mechanism were developed earlier, which could

autonomously navigate in rows by electrical driving (Liu et al.,

2021) and follow spray targets (Jiang et al., 2021), respectively.

The swing-arm air-assisted spraying mechanism was V-

shaped and was driven by a DC motor with a drive

mechanism to do the swing-arm action. Small pipe fans were

installed at the end of each V-shaped swing-arm support bar

through the angle adjustment parts. The fans on both sides were

controlled independently. Two fan-shaped nozzles were

installed at the exit of the fans, respectively. The V-shaped

swing-arm support bar was connected by driving fan blades.

The angle adjustment parts and the driving fan blade were set

with a circular slot, which could adjust the opening and closing

angle of the bar. The angle adjustment parts and the driving fan

blade were adjustable from 0 to 40° and 0 to 35°, respectively.

In this study, the air-assisted system of the small swing-arm

sprayer consisted of small pipe fans. The air volume of the fan

was determined according to the displacement principle

(Dekeyser et al., 2013). The air-assisted system could

effectively reduce the loss of both air volume and energy and

enhance the duration of operation.

On the basis of 3D model construction and theoretical

parameter calculation, the prototype was developed as shown

in Figure 4B. Its main technical parameters are shown in Table 2.
Frontiers in Plant Science 05
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2.2 Parameter optimisation of SPS based
on CFD

In terms of the SPS, the operating parameters of both the

UAV and the swing-arm sprayer are essential to improve the

spraying performance, whilst the wind fields from these two

devices are the key factors affecting the deposition of droplets in

canopies (Xu et al., 2017). Thus, CFD was applied to investigate

the airflow distribution patterns of these two types of wind fields

with fruit trees. The optimal combination of operating

parameters with a uniform canopy spraying performance was

determined. Based on ANSYS Fluent 18.2, the wind fields of the

six-rotor plant-protection UAV and the swing-arm sprayer were

numerically simulated.

2.2.1 CFD geometric model construction
Compared with high computational costs of using entire 3D

fruit tree canopy models, using porous medium models to replace

fruit tree canopies (Duga et al., 2015; Hong et al., 2018a) has been

confirmed by numerous studies for its reliability (Endalew et al.,

2009; Salcedo et al., 2015; Duga et al., 2016; Hong et al., 2018b). In

this study, fruit tree canopies were represented by a porous

medium model, and the hindrance effect of the canopy on

airflow was simulated by adding a momentum loss source term

in the porous media region. Moreover, the canopy sparseness was
TABLE 1 Main parameters of T16 plant-protection UAV.

Categories Values Categories Values

Weight of the whole machine (without battery) 18.50 kg Medicine tank volume 16.00 L

Nozzle type SX11001VS Number of nozzles 8

Operating height (height above the canopy) 1.50∼3.00 m Maximum spray flow 3.60 L/min

Maximum operating speed 7.00 m/s Spraying width 4.00∼6.50 m
fro
BA

FIGURE 4

Small swing-arm sprayer. (A) Small swing-arm sprayer 3D model. (B) Small swing-arm sprayer prototype. 1. Crawler type walking chassis 2.
Booster renewal mechanism 3. Liquid tank 4. Swing-arm air-assisted spraying mechanism 5. Angle adjustment parts 6. Direct current reducer
motor 7. Piping fan 8. V-shaped swing-arm support bar 9. Driving fan blade.
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characterised by defining different pressure loss coefficients

because canopies had various degrees of sparseness and it has

different drag magnitudes. The final model is shown in Figure 5A,

where the full-leaf stage fruit tree was represented by an ellipsoidal

canopy and a cylindrical branch trunk. Meanwhile, on the basis of

preliminary fruit tree measurements, the canopy pressure loss

coefficient, the plant height, the trunk height and the crown width

were set as 10.0, 3.5 m, 0.8m and 2.8m, respectively.

In terms of the plant-protection UAV, rotors are the core to

generate downwash airflow. Thus, the 3Dmodel of the UAV was
Frontiers in Plant Science 06
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appropriately simplified. Only the six rotors were kept, which is

acceptable for the simulation (Zhang et al., 2019; Yang et al.,

2020). The simplified model of the UAV is shown in Figure 5B,

where the rotational diameter of the rotor was 609mm.

In terms of the swing-arm sprayer, a similar simplification

was conducted. Only the fans were used for simulation, and

other components were not considered. The simplified model of

the swing-arm sprayer is shown in Figure 5C, where the right fan

was taken as an example, and the diameter of the wind outlet

was 247mm.
TABLE 2 The main parameters of the small swing-arm sprayer.

Categories Values Categories Values

Overall dimensions
(length × width × height)

2.05 m × 1.10 m × 1.00 m Maximum spraying width ≤5.50 m

Overall machine mass 500 kg (empty) Maximum operating speed 0.70 m/s

Power 48V lead battery pack (45Ah) Maximum fan speed 2500 r/min

Medicine tank volume 150L Maximum air volume of fan 2304 m3/h

Number of nozzles 2 Maximum flow rate of the pump 12 L/min

Nozzle category Fan spray nozzle Maximum pressure of the pump 4.50 MPa
fron
B C

A

FIGURE 5

CFD geometric model construction. (A) Simplified model of fruit tree. (B) Simplified model of plant-protection UAV. (C) Simplified model of
swing-arm sprayer.
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2.2.2 Setting of computational areas and
boundary conditions

It is required that numerical simulation conditions should be

similar to the actual spraying ones so that simulation results are

reliable. In this study, a virtual orchard model was constructed

based on the parameters of orchard investigations, the model

calculation area was 20.0 m × 15.0 m (long ×wide) with a height

of 13.0 m (Figure 6), so airflow could be fully developed. The

model included the fruit tree canopy subdomain and a branch

subdomain. The fruit tree branch subdomain did not need to be

solved, so it was removed during preprocessing and set as the

wall boundary. Only the outlet boundary was kept.

The air sub-domain and rotor rotation sub-domains were

included in the simulation of the six-rotor plant-protection

UAV. The ‘interface’ boundary condition was applied for the

interface between the air sub-domain and the rotor rotation sub-

domains. The rotor rotation (rotational speed 2500 r/min) sub-

domain was processed by slip grids. Meanwhile, the upper

boundary of the air sub-domain was the pressure inlet, the

lower boundary of the ground was set to the non-slip wall

boundary, and the other boundaries were the pressure outlets.

The rotor was 2.0m away from the top of the fruit tree canopies.

The air sub-domain and fan sub-domains were included in the

simulation of the swing-arm sprayer. The fan was located at the

central line of the row spacing, about 2.0 m from the tree trunk and

0.6 m above the ground. For the setting of the solution parameters,

only the external flow field of the fans was concerned. Moreover, the

no-slip wall boundary was used for the air subdomain, and the rest

of the boundaries were set as pressure outlets.

Meshing was conducted after the geometric model and the

computational areas were determined. Non-structural

tetrahedral meshes applicable to complex entities were used

for gridding. The mesh numbers for the plant-protection UAV
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and swing-arm sprayer simulation were 8112602 and 4694187,

respectively. No negative meshes and left-hand meshes existed,

so the meshes were used for calculation.

In terms of solution, the renormalization group (RNG) k-e
turbulence model was selected, and the control equations were

discretised by the finite volume method. The pressure-velocity

coupling was chosen from the Pressure-Implicit with Splitting of

Operators (PISO) algorithm. The pressure interpolation format

was chosen from the PRESTO! format for high-speed rotating

and porous media. The second-order windward pair

momentum, turbulent kinetic energy and turbulent dissipation

rate were discretised in the spatial domain.
2.3 Orchard experiments of SPS

2.3.1 Experimental site and sprayers
The experiment was conducted in August 2020 in mango

orchards in Tianyang District, Baise City, Guangxi Zhuang

Autonomous Region (Figure 7). The environmental temperature

during the experiment was about from 28°C to 32°C, and the

humidity was about from 45% to 49%. The orchards were planted

in the conventional mode. The row spacing was 4.5 m, the plant

interval was 3.5 m, and the tree height was about 4.5 m. The trees

were about 30 years old, and the canopies were large and closed in

some areas. The UAV (Figure 3) and the sprayer (Figure 5) were

employed in the experiments.

In addition, the wind speed and volume meter, AR856

produced by Shenzhen Franken Electronics Co., Ltd., and

temperature and humidity meter produced by Deloitte Group

Co., Ltd. were used to monitor and record meteorological

parameters such as wind speed, wind direction, temperature

and humidity.
A B

FIGURE 6

The model calculation area. (A) Plant-protection UAV model calculation area. (B) Swing-arm sprayer model calculation area.
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2.3.2 Experimental scheme
The experiments were conducted according to the standards

NY/T 992-2006, ‘The operation quality for air-assisted orchard

sprayer’, and JB/T 9782-2014, ‘Equipment for crop protection -

General test methods’.

1) Sampling point arrangement

The experimental scheme is shown in Figure 8. Three fruit

trees with similar shape, height and canopy size were selected as

target fruit trees in the experimental area (Figure 8A). The target

fruit trees were far from the start and end of rows to reduce the

errors caused by the devices slowing down and turning.

The scheme of canopy droplet sampling points is shown in

Figure 8B. In the canopy, according to the height and shape of

each target tree, vertical sampling was divided into top, middle

and bottom layers, and horizontal radial sampling was divided

into the centre, inner and outer layers relative to the location of

the trunk. One sampling point was placed in the centre layer of

canopies and marked as O. Four sampling points were placed in

the inner and outer layers of canopies, marked as e, s, w, n and E,

S, W, N, respectively. Thus, there were 27 sampling points in

canopies. On the ground, 9 sampling points were set with the

trunk of the tree as the centre.
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Water-sensitive papers (76 mm × 26 mm) were exploited to

collect droplets, laid on both sides of leaves on each sampling

point, so 54 pieces were used in total. Each ground sampling

point arranged a water-sensitive paper and made the water-

sensitive paper face up. The spray solution was water without

solids in suspension at the normal temperature.

2) Optimization of operational parameters based on

orthogonal experiment

The previous CFD simulation had determined both the

proper operation height of the six-rotor plant-protection UAV

and the appropriate swing-arm angle of the swing-arm sprayer.

Hence, a three-factor with three-level orthogonal experiment

was conducted to find the optimal operation speed. The factor

level of the orthogonal experiment is shown in Table 3.

The sequential independent mode was used for the

experiment. After setting water-sensitive paper, the swing-arm

sprayer was firstly enrolled in the test. When the sprayer

completed the test, the T16 UAV started.

3) Effect verification of the SPS based on trials

Based on the CFD simulation and the orthogonal

experiment, the optimal operating parameters of the SPS were

determined. They were selected for the effect verification of the
FIGURE 7

Experimental scenarios.
BA

FIGURE 8

Sampling scheme. (A) Selection of target fruit trees. (B) Sampling point layout scheme.
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SPS, comparing the spraying effect of the SPS with that of the

T16 plant-protection UAV and the swing-arm sprayer. The

operation parameters for the single-device experiment were

the same as that for two-device one.

2.3.3 Data analysis
All the water-sensitive paper was processed by the

following steps:.
Fron
♦ All the water-sensitive paper was scanned with LASERJET

PROMFPM132 to obtain the corresponding scan images.

Then, the images were read by DepositScan ™ droplet

analysis software to get indices such as droplet deposition,

deposition density and coverage. All the data were

recorded in an Excel table.

♦ The coefficient of variation was calculated by using the

equations from (1) to (3) to analyse the droplet

distribution uniformity. SPSS 21.0 and Origin 9.1

software were used for data processing and graph

plotting.
�q =
Σqi
n

(1)

S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ(qi − �q)2

n − 1

s
(2)

CV (% ) =
s

�q
� 100 (3)

where, qi is the i-th sampling point droplet deposition density,

deposits/cm2; �q is the average value of sampling point droplet

deposition density, deposits/cm2; n is the number of sampling

points; S is the standard deviation of droplet deposition density,

deposits/cm2, and CV (%) is the coefficient of variation.
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3 Results and discussion

3.1 Results and analysis of
CFD simulation

3.1.1 Wind field distribution of the six-rotor
plant-protection UAV

(1) Time-dependent characteristics of wind field speed

Figure 9 shows the speed distribution of the rotor wind field

at different moments, respectively. It can be seen that the rotor

airflow kept extending downward with increasing time. At 0.5 s,

the rotor airflow approximately reached canopies. At 1.0s, the

rotor airflow covered the top of canopies. At 5.0 s, the wind field

had not yet reached spreading along the ground, although some

of it touched the ground. Therefore, a six-rotor plant-protection

UAV was used for fruit tree spraying, the height from the top of

the canopy was 2.0m. Meanwhile, the plant-protection UAV

stayed at least 4.0s after take-off and then started operation.

(2) Wind speed distribution of different locations in canopies

The simulated fruit trees were divided into top, middle and

bottom layers at a distance of 2.3m, 3.4m and 4.5m from the

center of the plant-protection UAV, and 9 sample points were

selected uniformly in each layer (the sample point distribution

scheme was the same as the foliar sampling point layout scheme

in Section 2.1) to obtain the maximum airflow velocity in the

vertical direction (Z direction) at each sample point (Table 4).

As shown in Table 4, the average speeds of the top, middle

and bottom layers inside canopies were 3.22 m/s, 0.51 m/s and

0.10 m/s, respectively, with a decreasing trend from top to

bottom. The average wind speed in the bottom layers was

minimal, which could hardly carry and transport droplets.
3.1.2 Wind field distribution law of the
swing-arm sprayer

Figure 10 shows the wind field velocity distribution of the

fan at different moments, indicating that canopies had an
TABLE 3 Three-factor with three-level orthogonal experiment table for the SPS.

Experimental
group

Factor A: Swing-arm sprayer
operating speed (m/s)

Factor B: T16 plant-protection UAV
operating height (m)

Factor C: T16 plant-protection UAV
operating speed (m/s)

1 0.40 (1) 2.00 (1) 1.00 (1)

2 0.40 (1) 2.50 (2) 1.50 (2)

3 0.40 (1) 3.00 (3) 2.00 (3)

4 0.50 (2) 2.00 (1) 1.50 (2)

5 0.50 (2) 2.50 (2) 2.00 (3)

6 0.50 (2) 3.00 (3) 1.00 (1)

7 0.60 (3) 2.00 (1) 2.00 (3)

8 0.60 (3) 2.50 (2) 1.00 (1)

9 0.60 (3) 3.00 (3) 1.50 (2)
A1 refers to the first level of factor A, that is, A1 is 0.40m/s; B1 refers to the first level of factor B, that is, B1 is 2.00 m; other factor levels are expressed in the same way, e.g., B2, C3, etc.
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obvious blocking effect on the fan airflow. It can be seen that at

0.5 s, the fan airflow reached canopies. At 1.0 s, the airflow

appeared to roll up around canopies because of the blocking

effect. The rolled-up airflow gradually increased and kept stable

at about 2.5 s. Therefore, the swing-arm sprayer could start

spraying after the fan was turned on for 2.5 s.

3.1.3 Optimal operation parameters of the SPS
Figure 11 shows the velocity distribution of the stable

wind field of the UAV rotors at different operating heights

(height to the top of the canopy). The rotor airflow reached

the canopy surface in a centrosymmetric pattern, and the

operating height caused the change of the airflow to the

target. The airflow area to targets gradually decreased as

the operating height increased. In the range from 1.5 m to

2.0 m, the airflow velocity changes in the canopy were not

obvious, and the optimal operation height should be selected

in this range.
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Figure 12 shows the velocity distribution of the stable wind

field of the sprayer fan at different swing-arm angles. During

spraying, the area covered by the airflow from the fan to the

target gradually increased gradually with the swing-arm angle

started from 0°. When the swing-arm angle was certain, the

airflow velocity inside canopies gradually decreased as the

canopy depth increased. It basically covered the lower half side

(left side) of canopies, and the airflow mostly spread uniformly

in the range from 1.5 m/s to 3.5 m/s, which is beneficial to the

uniform distribution of droplets.

Based on the above simulation results, the comparative effect of

the wind field coupling in the stereoscopically applying canopy with

different operating parameters is given in Figure 13. When the

operation height of the UAV was 2.0 m, the rotor airflow speed was

between 0.50 m/s and 1.00 m/s in the range of canopy height from

2.0 m to 2.4 m, the rotor airflow speed was between 1.00 m/s and

1.50 m/s in the range of canopy height from 2.4 m to 2.7 m, the

rotor airflow speed was above 1.5 m/s in the range of canopy height
TABLE 4 Velocity distribution of each layer within the canopy.

Location Sample point speed (m/s) Average speed (m/s)

1 2 3 4 5 6 7 8 9

Top layer 3.11 5.05 3.88 5.14 2.02 2.23 3.03 2.36 2.18 3.22

Middle layer 0.42 0.41 0.37 0.35 0.61 0.57 0.59 0.57 0.68 0.51

Bottom layer 0.10 0.09 0.09 0.10 0.10 0.10 0.10 0.10 0.11 0.10
B C

D E F

A

FIGURE 9

Wind field speed distribution of six-rotor plant-protection UAV at different times. (A) T=0.5s. (B) T=1.0s. (C) T=2.0s. (D) T=3.0s. (E) T=4.0s. (F)
T=5.0s.
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from 2.7 m, the rotor airflow speed was above 1.5 m/s in the range

of canopy height from 2.7 m. When the swing-arm angle of the

swing-arm sprayer was 60°, the fan airflow speed of canopy height

below 2.6 m was above 1.5 m/s, the fan airflow speed between 2.6 m
Frontiers in Plant Science 11
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and 2.7 m was from 1.00 m/s to 1.50 m/s, and the fan airflow speed

of canopy height above 2.7m rapidly became smaller.

Therefore, when the maximum swing-arm angle of the

swing-arm sprayer was 60° and the operation height of the
B CA

FIGURE 11

Air speed distribution of plant-protection UAV at different heights. (A) Operating height 1.5m. (B) Operating height 2.0m. (C) Operating height 3.0m.
B C

D E F

A

FIGURE 10

Wind speed distribution of the swing-arm sprayer at different times. (A) T=0.5s. (B) T=1.0s. (C) T=1.5s. (D) T=2.0s. (E) T=2.5s. (F) T=3.0s.
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plant-protection UAV was 2.0 m, the wind fields of the two

devices could be coupled enough.
3.2 Results and analysis of the
orthogonal experiment

The orthogonal test results are shown in from Table 5

to Table 7.
Frontiers in Plant Science 12
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In terms of droplet deposition density, deposition uniformity

and range analysis (Tables 5–7), it is known that the results of

experiment group 1 (A1B1C1 group) were better than the others,

demonstrating an optimal spraying performance.

According to Table 6, the factors affecting the droplet

deposition density in order of priority were the speed of the

swing-arm sprayer, the operating height and the operating speed

of the T16 UAV.

According to Table 7, for the top of canopies, the order of

factors affecting the uniformity of droplet distribution was T16
B

C D

A

FIGURE 13

Comparison of canopy wind field coupling under different operating parameters. (A) Plant-protection UAV operation height 2.0 m. (B) Swing-
arm angle of swing-arm sprayer 60°. (C) Swing-arm angle of swing-arm sprayer 45°. (D) Swing-arm angle of swing-arm sprayer 30°.
B CA

FIGURE 12

Fan air speed distribution under different swing-arm angles. (A) Swing-arm angle 0°. (B) Swing-arm angle 30°. (C) Swing-arm angle 60°.
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plant-protection UAV operation height, swing-arm sprayer speed

and T16 plant-protection UAV operation speed. For the middle

and lower part of canopies, that was UAV operation speed, UAV

operation height and swing-arm sprayer travel speed.

According to the analysis of the above experimental results,

the optimal operation parameters of SPS were: a speed of 0.4 m/s

and 1.0 m/s for the swing-arm sprayer and the T16 plant-

protection UAV, respectively, and an operating height of 2.0

m for the UAV.
3.3 Results and analysis of the
verification trials

The results of the verification trials are shown in Figure 14.

The SPS could significantly increase droplet deposition

density. When the T16 plant-protection UAV operated

independently, the canopy droplet deposition density

decreased from top to bottom. The maximum droplet

deposition density was 101 deposits/cm2 at the top layers, and
Frontiers in Plant Science 13
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its range was nearly 61 deposits/cm2. When the swing-arm

sprayer operated independently, it was less than 10 deposits/

cm2, and the density in the middle and lower layers was closer

and reached the spray quality requirements. The maximum

density range was 24 deposits/cm2. When the SPS operated,

the density range was from 90 to 107 deposits/cm2, and the

maximum density range was only 17 deposits/cm2.

The uniformity of droplet distribution of the SPS was

generally better than that of the T16 UAV and the swing-

arm sprayer. It was only weaker than the T16 UAV in the upper

canopy layer. The coefficient of variation was 16.1% and 10.5%

in the middle and lower canopy layers, 38.3% higher than that

of the conventional air-assisted sprayer in the corresponding

positions. The horizontal radial droplet distribution of the SPS

was better than that of both the T16 UAV and the swing-arm

sprayer. The variation coefficients of each canopy layer of the

SPS from the outside to the inside were 29.8% 34.2%

and 15.8%.

The SPS performed better than the T16 plant-protection

UAV and swing-arm sprayer in terms of droplet deposition
TABLE 6 Canopy vertical longitudinal droplet deposition density range analysis.

Indicators Factor A Factor B Factor C

Top
layer

Middle
layer

Bottom
layer

Top
layer

Middle
layer

Bottom
layer

Top
layer

Middle
layer

Bottom
layer

K1 229.50 295.40 297.40 206.40 252.00 280.60 201.90 281.30 261.20

K2 165.60 195.20 238.40 195.90 246.30 231.60 201.30 209.40 227.90

K3 203.70 248.40 213.00 196.50 240.70 236.60 195.60 248.30 259.70

K1 76.50 98.50 99.10 68.80 84.00 93.50 67.30 93.80 87.10

K2 55.20 65.10 79.50 65.30 82.10 77.20 67.10 69.80 76.00

K3 67.90 82.80 71.00 65.50 80.20 78.90 65.20 82.80 86.60

Range 21.30 33.40 28.10 3.50 3.80 16.30 2.10 24.00 11.10
Ki indicates the sum of the experimental results corresponding to each factor at level i, Ki indicates the mean of the experimental results corresponding to each factor at level i.
TABLE 5 Results of vertical longitudinal droplet deposition distribution in the canopy.

Experimental group Droplet deposition density (deposits/cm2) Coefficient of variation/%

Top layer Middle layer Bottom layer Top layer Middle layer Bottom layer

1 90.10 99.60 106.80 43.75 16.08 10.54

2 73.80 91.90 95.40 44.82 31.39 32.79

3 65.60 103.90 95.20 82.25 31.90 45.13

4 49.50 61.30 79.60 87.00 95.00 39.00

5 63.20 53.30 70.30 53.58 17.94 33.16

6 52.90 80.60 88.50 61.75 34.28 28.25

7 66.80 91.10 94.20 42.03 33.23 39.85

8 58.90 101.10 65.90 39.84 25.60 25.91

9 78.00 56.20 52.90 61.22 76.59 64.88
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density on the front and back of the leaves. The droplet density

on both sides was higher than the theoretical application

requirement of 25 deposits/cm2.

The ground loss of the SPS and the SSA-E541 air-assisted

sprayer were compared. As shown in Figure 15, the ground loss

of the SPS reduced significantly.

According to the analysis above, it is indicated that the

spraying performance of the SPS was obviously improved. The
Frontiers in Plant Science 14
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SPS could be a new way for mechanisation of orchard plant

protection, especially for the orchards in hilly areas.
3.4 Discussions

The trafficability of the miniaturised sprayers and the high

flexibility of plant-protection UAVs could effectively solve the
B

C D

A

FIGURE 14

Results of the validation experiment of the SPS. (A) Vertical longitudinal sampling layer droplet deposition density. (B) Vertical longitudinal
sampling layer droplet distribution uniformity. (C) Horizontal radial sampling layer droplet distribution uniformity. (D) Density of droplet
deposition on leaf surface and leaf back. The values in the figure are the average values of the sampling points when not stated. For example,
the density of droplet deposition in the top of canopies was the means of the values of all the corresponding positions.
TABLE 7 Canopy vertical longitudinal fog droplet distribution uniformity range analysis.

Indicators Factor A Factor B Factor C

Top
layer

Middle
layer

Bottom
layer

Top
layer

Middle
layer

Bottom
layer

Top
layer

Middle
layer

Bottom
layer

K1 170.82 79.37 88.46 172.78 144.31 89.39 145.34 75.96 64.70

K2 202.33 147.22 100.41 138.24 74.93 91.86 193.04 202.98 136.67

K3 143.09 135.42 130.64 205.22 142.77 138.26 177.86 83.07 118.14

K1 56.94 26.46 29.49 57.59 48.10 29.80 48.45 25.32 21.57

K2 67.44 49.07 33.47 46.08 24.98 30.62 64.35 67.66 45.56

K3 47.70 45.14 43.55 68.41 47.59 46.09 59.29 27.69 39.38

Range 19.74 22.61 14.06 22.33 23.12 16.29 15.90 42.34 23.99
Ki indicates the sum of the experimental results corresponding to each factor at level i, Ki indicates the mean of the experimental results corresponding to each factor at level i.
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difficulties of a) large machines entering and leaving and b) the

non-uniform application of small machines.

Compared with field crops, fruit trees have the

characteristics of large canopies. The phenomenon of

depression between rows is common, especially in mature fruit

trees and traditional orchards. There is the problem of

impermeable and uneven canopies during spraying, and it is

difficult for sprayers to be applied in such orchards. To solve the

above issues, this study proposes a layered spraying method,

using a plant-protection UAV and a small ground sprayer to

spray different locations of canopies, respectively. This method

ensures good passability in orchards and improves spray

uniformity in canopies. The feasibility of this method was

further verified through actual orchard trials.

However, there are still some shortcomings:
Fron
1. this study obtained the optimal parameters of SPS by

using CFD and orthogonal tests. Nonetheless, the

parameter selection took a lot of time, and the

subsequent experiments can be performed to further

optimization of the best parameter determination

method and improve the efficiency.

2. In this study, the experiments were conducted in mango

orchards (big canopy). The reliability of application

parameters needs to be further verified for orchards

with vertical planting patterns (high canopies).
tiers in Plant Science 15
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3. precision application methods (such as target

application and variable application) can be combined

to improve pesticide use further and reduce waste and

environmental pollution.
4 Conclusion

To solve the problems that the spray droplet distribution of

plant-protection UAV on the canopy is ‘more on top and less on

the bottom’, while the ground sprayer is ‘less on top and more on

the bottom’, an asynchronous stratified stereoscopic plant-

protection method combining small ground sprayer and a

plant-protection UAV is proposed. The main conclusions are

as follows:
1. The overall scheme of stereoscopic plant-protection was

defined based on the spraying requirements. The plant-

protection UAV was selected and a small swing-arm

sprayer was designed. The SPS consisting of a T16 six-

rotor plant-protection UAV and a small swing-arm

sprayer was developed.

2. The CFD-based optimisation of the operational

parameters of the SPS was conducted. The wind field

distribution characteristics of the plant-protection UAV

and the swing-arm sprayer were clarified, and the
FIGURE 15

Comparison of ground loss.
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Fron
coupling effects of the canopy wind field of stereoscopic

spraying were analyzed. The theoretical operating

parameters of the SPS for uniform application to the

canopy of fruit trees were identified. The operating

height of the plant-protection UAV was 2.0 m, and the

swing-arm angle of the swing-arm sprayer was 60°.

3. Based on CFD numerical simulation, a three-factor with

three-level orthogonal experiment was conducted to

identify the optimal parameters of the SPS. The speed of

the swing-arm sprayer was 0.4 m/s, the operating height of

the T16 plant-protection UAV was 2.0 m, and the

operating speed was 1.0 m/s, respectively. They were

selected for the verification experiments of the SPS. The

results showed that the SPS had a vertical longitudinal

droplet deposition density of 90-107 deposits/cm2 in

canopies, and the coefficients of variation of uniformity

in the top, middle and lower layers were 43.7%, 16.1% and

10.5%, respectively, and the uniformity was 38.3% higher

than conventional air-assisted sprayers. The coefficient of

uniformity variation of the horizontal radial canopy from

outer to central layers was 29.8%, 34.2% and 15.8%,

respectively. The uniformity of application of the SPS in

the upper, lower, inner and outer canopies of fruit trees

were significantly improved, while the density of droplets

deposited on both sides of the leaves was more than 25

deposits/cm2, and could meet the spray requirements.
The SPS proposed in this paper can provide an adequate

technical means and solution for uniform application to large

canopy fruit trees. Meanwhile, the high mobility of plant-

protection UAVs and the high trafficability of small swing-arm

sprayers between orchard rows can solve the problem of the

difficulty of entering and leaving the orchard when using large

plant-protection equipment.
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YOLOV5 and Kalman filter
tracking algorithm
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Maize population density is one of the most essential factors in agricultural

production systems and has a significant impact on maize yield and quality.

Therefore, it is essential to estimate maize population density timely and

accurately. In order to address the problems of the low efficiency of the

manual counting method and the stability problem of traditional image

processing methods in the field complex background environment, a deep-

learning-based method for counting maize plants was proposed. Image

datasets of the maize field were collected by a low-altitude UAV with a

camera onboard firstly. Then a real-time detection model of maize plants

was trained based on the object detection model YOLOV5. Finally, the tracking

and counting method of maize plants was realized through Hungarian

matching and Kalman filtering algorithms. The detection model developed in

this study had an average precision mAP@0.5 of 90.66% on the test dataset,

demonstrating the effectiveness of the SE-YOLOV5m model for maize plant

detection. Application of the model to maize plant count trials showed that

maize plant count results from test videos collected at multiple locations

were highly correlated with manual count results (R2 = 0.92), illustrating the

accuracy and validity of the counting method. Therefore, the maize plant

identification and counting method proposed in this study can better achieve

the detection and counting of maize plants in complex backgrounds and

provides a research basis and theoretical basis for the rapid acquisition of

maize plant population density.
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object detection, YOLOv5, video tracking, maize plants, counting prediction
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Introduction

Crop planting density counts the number of plants per unit

area, which has a great impact on the yield and quality of crops

and is one of the important factors of agricultural production

systems (Zhi et al., 2016; Zhai et al., 2018; Adams et al., 2019;

Chapepa et al., 2020; Ndou et al., 2021). The research on maize

planting density plays an important role in early breeding

decisions to improve yield (Zhai et al., 2018). Therefore, it is

essential to estimate the population density of maize accurately

and timely.

To estimate plant population densities, the traditional field

assessments method counts the number of plants in a randomly

selected partition manually of a field and uses the average of

multiple partitions to express plant population density. This

method is time-consuming, labor-intensive, and inaccurate. To

solve this problem, some studies have used color RGB images to

count crops in the field (Lv et al., 2019; Zhao et al., 2021; Qi et al.,

2022). These studies are based on traditional image processing

algorithms that primarily use color information to segment crop

areas for crop counting. These methods have high counting

accuracy (approximately 90%) under certain conditions but have

the following shortcomings. Firstly, the color information is

easily affected by the surrounding light intensity and crop status.

For example, plants looked darker on cloudy days than on sunny

days and may have different colors at different stages of growth.

Secondly, some counting methods are closely related to location

and time. Typically, these methods require the necessary

calibration by manually counting plants in a small portion of

the field to build a regression model between pixel counts and

actual plant counts. Then the regression model was applied to

the rest of the images to achieve automatic processing.

Therefore, a regression model established at one site (or

growth stage) usually cannot be applied directly to another site

(or growth stage), and the model needs to be re-validated or

calibrated at a new site (or growth stage).

In recent years, many crop detection and counting methods

based on traditional image processing (Zhao et al., 2021),

machine learning (Lv et al., 2019), and deep learning

technology (Qi et al., 2022) have been studied. For the three

types of methods mentioned above, traditional image processing

methods are easily disturbed by factors such as illumination,

noise, and weed background. The shallow features such as color,

shape, and texture extracted by machine learning methods have

limited expression ability, and lack universality and adaptability.

Deep convolutional neural networks (CNN) have shown

powerful performance in object detection for agricultural

images in recent years (Zhao et al., 2019). Many algorithms

based on deep learning models have been successfully applied to

the detection of a variety of crops. For example, researchers have

explored the use of models such as YOLO and Faster-RCNN for
Frontiers in Plant Science 02
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the detection of fruits (Koirala et al., 2019; Häni et al., 2020),

trees (Zhou et al., 2021), and crops (Hu et al., 2013; Jin et al.,

2019). These studies reported promising detection accuracy and

thus per-image counting accuracy.

For the counting methods based on image sequences, how to

prevent the repeated counting of the same object in a continuous

image sequence is a key problem. Methods to address this

problem can be divided into three main categories. The first

class of methods uses 3D reconstruction techniques to

reconstruct space point cloud information from 2D images,

then detection and counting were made in the 3D space (Häni

et al., 2020; Gené-Mola et al., 2020). Since a plant is unique in the

3D space, a plant that is repeatedly counted in 2D images will be

highly overlapped in the 3D space. Therefore, repeated counting

of a plant can be avoided in the 3D space. The second class of

methods uses the position and pose information of the imaging

device to estimate the geometric correspondence between the

same target in two consecutive images (Stein et al., 2016). Using

this method, objects detected in two images captured at different

locations can be associated, then the objects could be tracked and

counted. The third type of method is the tracking method based

on the object detection results. The key to this method is to

establish the associations between detection results and the

trackers (Gao et al., 2022; Lin et al., 2022). The mentioned

three types of methods can achieve high counting accuracy

under certain conditions, but they have certain shortcomings

and problems. The method based on 3D reconstruction

technology has a high computational cost and the 3D

reconstruction results are easily affected by the external

environment. The computational cost of the second method is

lower than that of the method based on 3D reconstruction

techniques, but the applied sensors (e.g., RTK GPS) made the

cost of systems becomes very high. The detection-based tracking

counting method has a low cost, but the robustness of this

strategy is still insufficient to a certain extent. Since the IoU

threshold is obtained from a small portion of the image sequence

data, the threshold may fail when the test image sequence is

obtained in a different environment (Jiang et al., 2019). Recently,

other new tracking strategies can handle this problem. For

example, the research of tracking algorithms based on

correlation filtering has made promising progress recently,

especially in the Kalman filtering method (Wang et al., 2019;

Zhang et al., 2022).

The target detection model YOLOv5 has fast detection

speed, and many target tracking algorithm has been applied to

the tracking and quantity statistics of vehicles and pedestrians

recently. Research shows that YOLOv5 and detection-based

tracking algorithm could quickly and accurately count objects

in videos. At the same time, UAVs have shown great potential as

remote sensing platforms for crop growth monitoring in recent

years (Wang et al., 2019). So it is necessary to explore the
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research on the detection and counting of maize plants by

combing of CNN and drones. In this study, the image datasets

were collected by a low-altitude UAV first. Then the maize

plants detection method based on the SE-YOLOV5m model was

trained. And the trained SE-YOLOV5m model and Kalman

filter algorithm were combined to track and count maize plants

in individual videos. Finally, the counting method was tested and

evaluated on test videos.
Materials and methods

Image acquisition and processing
methods

The DJI Phantom 4 was used for taking pictures of corn

canopy. The Phantom 4 featured a fully stabilized 3-Axis gimbal

system with a 4k 12-megapixel camera and up to 27 minutes of

flight time. The collection site was Nong'an County, Changchun

(125.153436 N, 44.166099 E). According to the identification

system, maize development can be divided into vegetative (V)

and reproductive (R) stages. The V stages are designated

numerically as V(n), where (n) represents the number of

leaves with visible collars. We collected videos for plants from

stages V4 to V6, which are the vegetative growth stages of maize

plants (Zea mays L., Jingke 968) when the fourth, fifth, and sixth

leaf collars are visible. The images and videos containing the

maize plants were taken in different weather conditions (cloudy

and sunny) with the UAV flying at a height of approximately 4

meters. The width and height of the images were 3840 and 2160

pixels, respectively. The collected videos are divided into a

detection dataset and a counting dataset according to the ratio

of 6:4. Images were extracted every 10 frames from every video

in the detection set. They were used to train and validate the
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detection model together with the collected images. And videos

in the counting dataset were used to validate the performance of

the final counting algorithm. The training samples were

manually labeled using Labelimg software (Tzutalin, 2015).

Since the size of the original images was 3840 and 2160 pixels,

which were too large for labeling and training. So the original

images were first cropped to 960 and 540 pixels, respectively.

The maize plants between the V4 and V6 stages look like small

bell mouths when viewed from the top. It is obviously different

from the rest of the leaves in color, brightness, and shape, so this

feature is mainly used as the labeling standard. Some labeled

images are shown in Figure 1. After labeling, a total of

2200 images were obtained, which contains 22235 maize

plants. The images in the detection dataset were split into the

a training set, a validation set, and a test set in the ratio of 8:1:1.

In order to prevent overfitting and improve the generalization

ability of the model, several date augmentations methods were

applied. Such as image perturbation, changing brightness,

changing contrast, changing saturation, changing hue, adding

noise, random scaling, random crop, flipping, rotating, random

erasing, and so on. In addition, Mosaic (Glenn, 2022) was also

used. The data processing flow and data enhancement examples

are shown in Figure 1.
Maize plants detection model

For the maize plant quantity statistics method proposed in

this study, the first thing to study is the design of maize plant

detection model. The model of YOLOv5 (Glenn, 2022) series is

able to substantially improve the detection speed while

maintaining the detection accuracy of existing models, and is

one of the optimal choices for target detection. So the model of

YOLOv5 series was used to build the maize plants detection
FIGURE 1

Data processing flow and data enhancement examples.
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model. The YOLOv5 model is an upgraded version based on

YOLOv3 (Redmon and Farhadi, 2018). Four object detection

models of different depths and widths can be trained by using

the official code. The YOLOv5s has the smallest depth and width

in the YOLOv5 series. The other three networks are deepened

and broadened on the basis of it. The YOLOv5 directly uses a

single neural network to predict and classify input images to

achieve end-to-end object detection. And it proposes cross-scale

prediction, which enables the network to detect objects at three

different scale features and adapt to multiple object detection

tasks of different sizes. The backbone and the neck of the model

use CSPDarknet53 (Wang et al., 2020) and the PAN (Liu et al.,

2018) structure, respectively. Two different CSP modules are

used in different parts of the model. Specifically, the C3_x

module is applied to the backbone, the other C3_F_x module

is used in the later structure. Comparing the speed and accuracy

of the four different YOLOv5 models in Table 1, it can be seen

that the mAP of YOLOv5m is 2.9% higher than that of

YOLOv5s, and 0.8% and 1.6% lower than that of the YOLOv5l

model and the YOLOv5x model, respectively. On the other

hand, the model size of YOLOv5m is 26.7 MB larger than that of

YOLOv5s, but it is 1/2 and 1/4 of that of YOLOv5l and

YOLOv5x, respectively. Therefore, after balancing the

detection accuracy and the model size of the network, the

YOLOv5m model was used as the base for research.

Related research shows that visual attention mechanism can

improve the accuracy of deep learning models (Yang et al.,

2020). To improve the efficiency and accuracy of detecting maize

plants, the Squeeze and Excitation Networks (SENet) (Hu et al.,

2018) was introduced in the CNN. The SENet could obtain the

weight of each channel of the features and then uses the weight

to filter the key features, which could improve the representation

capability of CNN. As shown in Figure 2, the SE module mainly

contains squeeze and excitation operations (Hu et al., 2018). It

performs a squeeze operation firstly, then performs an excitation

on the global features to obtain the weights of different channels

and the relationship between the channels. As shown in Figure 3,

the structure of improved SE-YOLOv5m was proposed in this

study. As shown in the figure, the SE module is embedded in the

C3_x module and C3_F_x module individually. The purpose of
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the SE module is to enhance the feature extraction ability of the

model by emphasizing the key feature of maize plants and

suppressing background features to improve the detection

accuracy in multiple scenarios.
Counting model based on YOLOV5

Firstly, the YOLOV5 model was used to detect maize plants

in continuous static images. Then a tracker based on Kalman

filter (Kalman, 1960) was used to track the maize plants to avoid

repeated counting of them in continuous image sequences.

Based on the trackers, each maize plant would be given a

unique tracking number, so that every maize plant would only

be counted only once. The tracking counting model contains

three steps: maize plants state estimation, association and

matching of maize plants between frames, and trackers update.

Maize plants state estimation
To track each maize plant detected by the detection model,

the following state variable was used to represent the status of

the maize plants:

t = (u, v, s, r, _u, _v, _s) (1)

where u, v, s, r are the horizontal and vertical coordinates of the

center point of the plant bounding box in image coordinates (in

pixels), the area of the bounding box (in pixels), and the aspect

ratio, respectively. _u, _v, _s are their corresponding first derivatives

with respect to time in image coordinates.

The plant tracking problem is a discrete-time series problem

and consists of the following two main steps: the first is

prediction process. Through the Kalman filter dynamic model,

the state variables of the maize plant in the current frame would

be used to predict the state variables in the next frame. The

second step is the update process. The observed variables

(detected bounding box) of the maize plant in the next frame

would be used to update the state variables predicted in the

prediction process (Jiang et al., 2019). Since the camera has a

high frame rate, the position change of the target between video

sequences is very small. So the motion of the camera can be

regarded as a uniform motion. Therefore, it is assumed that the

visual detection and tracking system is linearly correlated with

the time change. A standard Kalman filter with constant velocity

motion and linear observation model was used, which takes a 4-

dimensional state (u, v, s, r) as the direct observation model of

the maize plant.

The state parameters u, v, s, r of the tracker are initialized

according to the detection results in the first frame, and _u, _v, _s are

set to 0. After the first frame ( i ≥2 ), the state variables (t) and the

state covariance matrix (P) of the trackers in the ith image are
TABLE 1 Comparison of model prediction results.

Models mAP
(%)

Average detection speed
(ms)

Model size
(MB)

YOLOV5s 87.65 18.2 14.1

YOLOV5m 90.24 20.3 40.8

YOLOV5l 91.02 22.4 89.2

YOLOV5x 92.15 25.6 166
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estimated using the data of the trackers in the (i-1)th image in

the prediction process. The following formulas were used in the

prediction process (Jiang et al., 2019):

t̂ iji−1k = Ft̂ i−1ji−1k , F =

1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

(2)
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Piji−1 = FPi−1ji−1F
T + Q,Q =

1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 10−2 0 0

0 0 0 0 0 10−2 0

0 0 0 0 0 0 10−4

2
666666666666664

3
777777777777775

(3)

Where t̂ iji−1k is the a priori state estimate for the kth plant

tracker in the ith frame, t̂ i−1ji−1k is the a posteriori state estimate

for the kth plant tracker in the (i-1)th frame, F is the state

transfer matrix, Pi|i−1 is the a priori state covariance matrix for
FIGURE 2

The structure of Squeeze and excitation (SE).
FIGURE 3

The structure of improved SE-YOLOV5m model. CBS contains a Conv, a BN and a SiLU (sigmoid liner relu) activation function, where Conv is
2D Convolutional layer, BN indicates batch normalization. C3_x indicates the use of a CBS structure with X residual modules (ResUnit), e.g. in
the first C3_x, one residual components are used, hence C3_1. C3_F_X has the same meaning as C3_X.
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the ith frame, Pi−1|i−1 is the a posteriori state covariance matrix

for the (i-1)th frame, and Q is the random process noise matrix.

The following formula is used to calculate the posterior state

covariance matrix of the ith frame image and the posterior state

of the tracker.

Si = HPiji−1H
T + R,H =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

2
666664

3
777775,R

=

1 0 0 0

0 1 0 0

0 0 10 0

0 0 0 10

2
666664

3
777775 (4)

Ki = Piji−1H
TS−1i (5)

Piji = (I − KiH)Piji−1(I − KiH)T + KiRK
T
i (6)

yi = dt − Ht̂ iji−1paired (7)

t̂ ijipaired = t̂ iji−1paired + Kiy
i (8)

where Si is the covariance matrix of the measurement residuals

for the ith frame andH is the measurement matrix that maps the
Frontiers in Plant Science 06
123
tracker state variables to the measurement state variables

(detection frame). R is the measurement error covariance

matrix. Ki is the Kalman filter gain in the ith frame, and I is

the identity matrix. yi is the measured residual between the

tracker's a priori estimated state of the ith image and the

matched detection frame, and t̂ iji−1paired is the amount of the

tracker's a posteriori estimated state.
Association and matching between frames
In the update process, the trackers in the (i-1)th frame

and the detection results (Di) of the ith frame were used. Since

the detection results could be valued as the ground truth for

the current frame, it is necessary to match the detection

results with the trackers and thus update the Kalman filter.

In this study, the IoU-based Hungarian algorithm (Kuhn,

2005) was used to establish the association between the

detection results and the trackers. Figure 4 is a schematic

diagram of a maize plant detection and a tracking bounding

box. As shown in the figure, the white rectangle ABCD

represents a maize plant bounding box predicted by the

detector, and the yellow rectangle EFNM represents a maize

plant bounding box predicted by the tracker. The overlap

degree of the tracked bounding box and the detected

bounding box is represented by formula (9). The closer the

value of IoU is to 1, the higher the overlap and correlation

between the detection bounding box and the tracking

bounding box.
FIGURE 4

The schematic diagram of a maize plant detection and a tracking bounding box.
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IoU =
SEMCN

SABCD + SEFGH − SEMCN
(9)

Then the IOU was used in the Hungarian algorithm to

calculate the cost matrix to establish the corresponding

matching relationship between the maize plant tracked

bounding box predicted by Kalman filter and the detection

bounding box predicted by detectors. Assuming that maize

plants have been tracked in the ith frame image denoted as

Ti={T1,T2,…,Tm} , and maize plants detected in the (i+1)th

frame image denoted as Di={D1,D2,…,Dn} . The matching

correlation matrix C is obtained by calculating the IoU of the

tracking frame T and the detection frame D. The calculation

formula is shown in equation (10).

C = (ci,j)mxn = IoU(T ,D) (10)

The threshold Tthresh was set to process the matching

incidence matrix C to obtain the result matrix R. The

processing formula is shown in equation (11).

R = (ri,j)mxn =
0,   ci,j < T

1,   ci,j > T

(
(11)

In the formula, Tthresh is equal to 0.3. when ri,j is 1, it means

that the ith tracked maize plant is successfully associated with

the jth detected maize plant. At the same time, it should be

ensured that each tracked maize plant can only be associated

with one detected maize plant. That is, equation (12) needs to be

met.

maxoM
i=1oN

j=1ci,jri,j   s : t : (oM
i=1ri,j = 1,oN

j=1ri,j = 1) (12)
Trackers update
After the matching of detection bounding boxes and

trackers, detection bounding boxes (Di) and trackers (Ti-1) can

be divided into three categories: trackers associated with

detection boxes, unmatched trackers, and unmatched detection

bounding boxes. The trackers associated with detection boxes

will be used in the update process. As for unmatched detection

boxes, a new tracker will be created for each of them separately

and will be added to the existing collection of trackers. For every

unmatched tracker, its Vlost will be increased by 1, which means

it loses the target once. When the cumulative number of lost

targets reaches the set threshold Tlost, it will be removed from the

tracker set.

Since one tracker theoretically corresponds to one maize

plant, the number of trackers is the number of maize plants.

However, because the detection model may miss or misdetect,

this will cause errors in the number of trackers and eventually

lead to errors in the count of maize plants. For the missed

detection problem of the detector, this study solves this problem

by adding a parameter threshold Tlost to the algorithm. When

the missing detection of the detector causes the unmatched
Frontiers in Plant Science 07
124
tracker appears, the Vlost of the tracker will be increased by 1,

which means that the tracker loses the target once. When the

Vlost reaches the set threshold Tlost, it will be removed from the

tracker set. For the problem of false detection problem, the

algorithm judges by setting the threshold Tlife. Only when the

cumulative number of tracker existences of a plant is greater

than the threshold Tlife, it will be regarded as a valid count.
A quantitative statistical method based
on cross-line counting

If the detection model misses a maize plant in several frames

and then detects it again in another frame, the original tracking

ID will be discarded and then a new ID will be created. When

maize plants appear at the edge of the image, the view of the

center of plants is prone to distortion. At this time, the

performance of the tracker and detector would be affected by

this. Therefore, a counting baseline was defined in the image to

improve the counting accuracy. As shown in Figure 5, the

counting baseline (the yellow line) is defined at the center (1/2

height) of the image. The counting baseline served as a reference

line to count maize plants. The tracked bounding box would be

regarded as a valid count when it crosses the counting baseline

(in Figure 5B). At the same time, the color of the tracking box

will change from red to yellow, indicating that the tracker has

been counted.
Test results and discussion

Model training and testing

The python version and framework used were Python 3.8

and Pytorch 1.5.0, respectively. Ubuntu 16.04 was used with the

Intel Core I7 6700K processor (64GB RAM) and the Nvidia

GeForce RTX 3090. CUDA 10.1 parallel computing framework

and CUDNN 7.6 deep neural network acceleration library were

used. The batch size and epochs were set to 24 and 300,

respectively. Other hyperparameters used the default values

given by the official website. A pretrained weight trained on

Microsoft Common Objects in Context (MS COCO) dataset

(Lin et al., 2015) was used to initialize the weight of the model. In

order to validate the performance of the algorithm, precision,

recall rate, missed rate, and average precision (AP) are used to

evaluate the trained model. The calculation formulas are as

follows:

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)
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M =
FN

TP + FN
(15)

AP =
Z 1

0
P(R)dR (16)

where P is the precision, R is the recall, M is the miss detection

rate, TP is the number of maize correctly detected by the model,

FP is the number of backgrounds misclassified as maize plants

and FN is the number of maize misclassified as background.

Since the category detected in this study is only the maize plant,

the AP (average precision) is equivalent to the commonly used

mAP (mean average precision).
Frontiers in Plant Science 08
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Detection results of the model on maize
plants

The trained Faster RCNN, SSD, YOLOV5, and SE-YOLOV5

models were tested on the test dataset respectively. The results

are shown in Table 2. Comparing in terms of accuracy and speed

in Table 2, it can be seen that the YOLOV5 series models are

superior to the SSD model in both accuracy and speed. Although

the YOLOV5 series models are comparable to Faster RCNN in

terms of accuracy, their speed is more than 7 times that of Faster

RCNN. The mAP of SE-YOLOv5m is 1.21 higher than that of

YOLOv5m. Meanwhile, the model size and the average detection
TABLE 2 Comparison of different detection models on the test set.

Models mAP (%) Average detection speed (ms) Model size (MB)

YOLOV5m 90.24 20.3 40.8

SE-YOLOV5m 91.45 20.4 42.7

SSD 78.32 44.2 82.78

Faster R-CNN 91.88 180.4 110.8
A

B

FIGURE 5

Demonstration of the counting baseline for counting. The yellow line is the counting baseline. The top shows the n th frame; the bottom shows
the n+i th frame. (A, B) shows the n-th frame and n+1 th frame, respectively.
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speed of the SE-YOLOv5m model are close to that of the

YOLOv5m model. Thus, the SE-YOLOv5m network model

was adopted in this experiment after considering the detection

accuracy and the lightweight requirement of the network.
Accuracy evaluation of the model under
different weed proportions

Because weeds are easy to grow in the seedling stage of

maize, excessive weeds may even affect the growth of maize.

Therefore, the complex environment in this study mainly refers

to different weed proportion. The presence of weeds in some
Frontiers in Plant Science 09
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areas of the maize field may have an impact on the accuracy of

the detection model. Therefore, the above test set was split into

three parts according to different the proportion of weeds in the

field: a dataset with a weed proportion less than 30% (denoted by

A), a dataset with a weed proportion between 30% and 60%

(denoted by B) and a dataset with the weed proportion greater

than 60%. Among them, the number of pictures in test sets A, B,

and C are 80, 90, and 50, respectively. The tested models are the

above-mentioned SE-YOLOV5 model and other state-of-art

models. The detection results are shown in Table 3. The test

sample results under different weed proportions are shown in

Figure 6. It can be seen from the table and the figure that

different weed proportions in the field have no significant
TABLE 3 Comparison of detection results under different weed rates.

Models Dataset A Dataset B Dataset C

YOLOV5m 91.24 91.26 90.46

SE-YOLOV5m 92.68 92.65 92.02

SSD 79.24 79.12 78.62

Faster R-CNN 92.88 92.88 92.88
fro
FIGURE 6

Detection results and feature maps of SE-YOLOV5m under different weed proportions. The left column shows detection results; the right
column shows the corresponding feature maps of the last layer in the first C3_2 module of SE-YOLOV5m. From top to bottom are
representative images with weed proportions less than 30%, between 30% and 60% and more than 60%, respectively. In the figure, the blue
boxes and red boxes are the TP and FN.
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influence on the detection accuracy of the maize plant detection

models. The reason may be that weeds are different from maize

plants in color, texture, and shape, so detection models are able

to distinguish weeds from maize plants more directly. Then, the

convolution feature maps of maize plants are visualized in

Figure 6 to further analyze the reasons. It can be seen in

Figure 6 that the features extracted by the model can well

distinguish weeds from maize plants. In addition, it can also

be seen from the FN samples in the figure (red boxes in the first

column) that when the core leaves of the maize plant are

partially obscured or the view of the central leaves is skewed,

the model would have a certain degree of missed detection. It can

also be seen from the corresponding feature map that the model

can not extract effective feature information to distinguish maize

plants at this time.
Counting accuracy regression analysis
and evaluation

Videos in the counting dataset were segregated into 23 video

clips for evaluating the developed counting algorithm, and they

were individually counted by three researchers. Each video clip

represented an approximately 3 m long segment in the videos.

Frame rate and length of each video were about 30 frames per
Frontiers in Plant Science 10
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seconds (FPS) and 10 s, respectively. Then, the counting results

were averaged to obtain the actual number of maize plants in the

corresponding video. The counting algorithm based on SE-

YOLOV5m was tested on the videos. Based on the proposed

algorithm, the corn plant video tracking experiment was carried

out. Figure 7 is an example of tracking a maize plant video

sequence based on the proposed algorithm. As can be seen in the

figure, the No. 24 corn plant has been detected and tracked for

55 consecutive frames in the video. Due to the disturbance of

wind, the key features of the No. 50 maize plant are occluded in

the 10th and 44th frames, which leads to intermittent missed

detection. The algorithm can still track the target in subsequent

images and keep the original ID unchanged, which is because

Tlost is set in this study. When Tlost is not set, the algorithm

cannot track the target in subsequent images. Therefore, it can be

seen that although there is a short-term missed detection

phenomenon in the video, the algorithm in this study could

still effectively track maize plants.

In order to verify the performance of the proposed

algorithm, 23 videos in the counting dataset are used as

experimental data for comparative experiments. The

comparison models were to replace the SE-YOLOv5m model

in the proposed algorithm with the trained YOLOv5m, SSD, and

Faster R-CNN models, respectively. The confusion matrix was

used as the evaluation index to compare the performance of the
A B

D E F

C

FIGURE 7

Tracking example of intermittently detected maize plant. (A–F) shows the result in the 3th frame, 10th frame, 20th frame, 34th frame, 44th
frame and 55th frame, respectively.
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four algorithms quantitatively. The experimental results are

shown in Figure 8. At the same time, the frame rates of the

proposed algorithm and the algorithm based on the above three

models are 28.2, 28.4, 20.2, and 5.2, respectively. It can be seen

from the results that the running speed of the proposed

algorithm is similar to that of the counting algorithm based on

YOLOv5m, but its accuracy is higher. The performance of the

counting algorithm based on SSD is poor, mainly because the

SSD model has low detection accuracy, which can also be

confirmed in Table 2. Compared with the counting algorithm

based on Faster R-CNN, the proposed method is faster on the

basis of comparable accuracy. Although the counting algorithm

based on Faster R-CNN performs well in terms of accuracy,

there is still a lot of room for optimization in terms of running

speed. Therefore, according to the comprehensive analysis of

accuracy and speed, we can see that the performance of the

proposed algorithm is the best among the four methods. Taking

one of the videos as an example, there are a total of 311 frames of

a video collected by UAV, and the statistical results are shown in

Figure 9. Among them, the statistical result of the number of the

104th frame is 4, and the statistical result of the number of the

first 241 frames is 14. During the process of tracking and

matching, the number of some maize plants was lost at the

edge (some plants don’t have ID numbers), but the cross-line

counting method effectively solved this problem. It shows that
Frontiers in Plant Science 11
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under the interference of ground weeds and wind, the algorithm

in this study could accurately count the number of maize plants.
Conclusion

(1) The YOLOV5m model which incorporates a channel

attention mechanism (SENet) was constructed to achieve

effective detection of maize plants in a complex background.

The mAP of the SE-YOLOV5mmodel on the test set was 90.66%

(IoU 0.5), indicating the effectiveness of the SE-YOLOV5m

model for detecting maize plants. The proposed SE-

YOLOV5m model was able to infer at 20.4 ms on a GPU on

an image with the size of 960 pixels × 540 pixels, which have the

potential to be applied to embedded terminals. Evaluation under

different weed proportions shows that different weed

proportions in the field have no significant influence on the

detection accuracy of the maize plant detection models.

(2) A deep-learning-based method for counting maize plants

in a field was proposed, which used an improved YOLOV5

model with a Kalman filter. The mazie plant counting method

proposed in this paper was compared with the counting

algorithms based on YOLOv5, SSD and Faster R-CNN

algorithms. The test results show that the proposed method is

significantly better than the SSD-based algorithm in terms of
A B

DC

FIGURE 8

The confusion matrix of of the four algorithms. (A–D) shows the confusion matrix of Ours algorithm, YOLOv5m based algorithm, SSD based
algorithm and Faster R-CNN based algorithm, respectively.
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accuracy and speed. Its speed is similar to that of the counting

algorithm based on YOLOv5, but its accuracy is higher. Its

accuracy is similar to that of the algorithm based on Faster R-

CNN, but the frame rate is about 23 higher. Therefore, the

proposed counting method is an effective method to achieve fast

and accurate counting of the number of maize plants. In

addition, the detection methods and annotated images used in

this study could be used by the other researchers and engineers

to further develop maize plants detection and counting methods.
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Rice is the world’s most important food crop and is of great importance to

ensure world food security. In the rice cultivation process, weeds are a key

factor that affects rice production. Weeds in the field compete with rice for

sunlight, water, nutrients, and other resources, thus affecting the quality and

yield of rice. The chemical treatment of weeds in rice fields using herbicides

suffers from the problem of sloppy herbicide application methods. In most

cases, farmers do not consider the distribution of weeds in paddy fields, but use

uniform doses for uniform spraying of the whole field. Excessive use of

herbicides not only pollutes the environment and causes soil and water

pollution, but also leaves residues of herbicides on the crop, affecting the

quality of rice. In this study, we created a weed identification index based on

UAV multispectral images and constructed the WDVINIR vegetation index from

the reflectance of three bands, RE, G, and NIR.WDVINIRwas compared with five

traditional vegetation indices, NDVI, LCI, NDRE, and OSAVI, and the results

showed that WDVINIR was the most effective for weed identification and could

clearly distinguish weeds from rice, water cotton, and soil. The weed

identification method based on WDVINIR was constructed, and the weed

index identification results were subjected to small patch removal and

clustering processing operations to produce weed identification vector

results. The results of the weed identification vector were verified using the

confusion matrix accuracy verification method and the results showed that the

weed identification accuracy could reach 93.47%, and the Kappa coefficient

was 0.859. This study provides a new method for weed identification in

rice fields.
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rice weeds, UAV, multispectral imaging, vegetation indices, remote sensing
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1 Introduction

China is a large country of rice cultivation, and there are more

varieties and classifications of rice in China. Field weeds plague the

development of rice production and are a major factor in

preventing high and stable rice yields (Feng et al., 2018).

According to statistics, weed damage alone in 150 million acres of

arable land worldwide causes more than $7 billion in losses each

year, accounting for approximately one-third of the total damage

caused by diseases, insects, and weeds, and directly causes 125

million tons of grain loss (Liu et al., 2014).Since weeds have a fast

growth rate and well-developed root system, they are in an

advantageous position to compete with rice for growth resources,

thus inhibiting rice growth (Liu et al., 2020).Among them,weeds in

paddy fields are diverse, with complex grass phase and a long

occurrence period (Duarte et al., 2021; De Simone et al., 2022). By

competing with rice for water, fertilizer, light, and space, they

change the microecological environment of paddy fields, affect the

photosynthesis, nutrition, and reproductive growth of rice, and are

intermediatehostsofpests anddiseases, aggravating theoccurrence

of pests and diseases, leading to yield reduction and decline of rice

quality, andcausinghuge losses to rice production (Luoet al., 2020).

In the current rice weed management process, chemical weed

control is currently the most effective and widely used method of

weed control in rice fields, commonly used to spray herbicides

uniformly and covering the entire operating area in a disorderly

“spot” or “sheet” form (Eppinga et al., 2020; Druskin et al., 2021;

Wang et al., 2021). The presence of weeds can lead to excessive

sprayingof herbicides (SivaKumar et al., 2020; Su et al., 2022).How

to achieve accurate application of weed and reduce the use of

agrochemicals is a key issue; theprerequisite to solving thisproblem

is to achieve accurate and rapid detection and identification of

weeds (Maes and Steppe, 2019). The rice weeds management

process, chemical weed control, is currently the most effective

and widely used method of weed control in rice fields, commonly

used to spray herbicides uniformly and cover the entire operating

area in a disorderly “spot” or “sheet” form. The presence of weeds

can lead to overspray of herbicides. How to achieve accurate

application of weed and reduce the use of agrochemicals is a key

issue, and the prerequisite to solving this problem is to achieve

accurate and rapid detection and identification of weeds (Carroll,

2020). Based on low-altitude UAV remote sensing technology, we

can carry out accurate monitoring of weeds in rice fields and

generate agricultural UAV weed application prescription maps,

and carry out UAV precision weeding for rice, (Otsu et al., 2019),

which is a new idea to solve the current herbicide overapplication

problem. The prerequisite of herbicide precision application is to

obtain remote sensing images of rice fields and analyze the weed

distribution status in them, get a grid-shaped weed distribution

map, and generate an herbicide operation prescription map

(Matsunami et al., 2009). The use of UAVs to collect remote

sensing images of rice fields and perform weed analysis has been

similarly reported around the world.
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The use of UAV remote sensing technology has enabled

rapid image acquisition and weed mapping in crops such as

sunflower, mango, and rice (Jin et al., 2022). While identifying

weeds in rice, an important issue is the need to locate weeds

against a green vegetation background (Stroppiana et al., 2018).

When the technologies of remote sensing data acquisition,

stitching and correction are more mature, backward research

on the resolution of remote sensing data becomes the main

bottleneck of remote sensing development (Tao and Wei, 2022).

When parsing remote sensing data, machine learning is widely

used for image classification, and weed image recognition

models have been developed using deep learning neural

networks in an increasing number of literatures (Kawamura

et al., 2021). Andrea et al. used convolutional neural networks to

distinguish maize plants from weeds in the early growth stage of

the crop, and trained the convolutional neural networks using

the data set generated in the segmentation stage, and the

recognition accuracy reached 97.23% (Punithavathi et al.,

2023). Flores et al. used support vector machine model (SVM),

neural network (NN), random forest (RF), GoogLeNet and

VGG-16 models for recognition detection after collecting

image shape, color and texture feature values in a greenhouse

environment to simulate field conditions, and finally the

recognition accuracy of the VGG-16 model in distinguishing

soybean seedlings from corn weeds reached. The accuracy of the

VGG-16 model in distinguishing soybean seedlings from corn

seedlings was 96.2%, which was the highest among the above five

model methods (Hirohiko, 2002; Liu and Yu, 2013; Druskin

et al., 2021). Sujaritha designed an automatic image classification

system for extracting leaf texture using fuzzy real-time

classification counting, which was able to correctly identify

sugarcane crops among 9 different weeds, and the accuracy of

the system in detecting weeds was 92.9% (Sujaritha et al., 2017).

Spectral index can provide an important basis for the

identification of rice weeds. Many studies have added spectral

index to improve the identification accuracy of rice weeds. Barrero

et al. used Neural Networks to detect gramineous weeds 50 days

after the emergence of rice field using visible light band and

NGRDI index image fusion. The M/MGT index values obtained

from the detection results ranged from 80 to 108%. MP values

range from 70 to 85% (Barrero and Perdomo, 2018). Stroppiana

et al. used spectral information, SAVI and GSAVI spectral indices

and unsupervised clustering algorithms to classify weeds in the

early stages of the growing season, with an overall accuracy higher

than 94% (Stroppiana et al., 2018). Kawamura et al. used a

combination of hue-saturation-brightness, canopy height model,

spatial texture, color index of vegetation extraction and excess

green. A classifier combining simple linear iterative clustering

algorithm and random forest algorithmwas used to identify weeds

in the early growth stage of small rice plants. out-of-bag accuracy

is higher than 0.915 (Kawamura et al., 2021).

Currently, related researchmainly focuses on the identification

anddetectionofweeds inpaddyfields,while relatively little research
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has been conducted on how to generate accurate operation

prescription maps for agricultural drones through weed

distribution information in paddy fields (Mohidem et al., 2021).

Northern coldland rice is usually weeded 15-20 days after

transplanting, therefore, in this study, remote sensing images of

rice tillering stage were selected to identify weeds. By observing the

UAV remote sensing images, weeds in northern cold rice were

found to have less differences in textural characteristics, similar

shapes and the same color as rice at the tillering stage (Motavalli

et al., 2012; Souri et al., 2022).Weedshave group aggregation, and it

is difficult to distinguish them from rice using UAV visible remote

sensing images, while spectra can reflect their physicochemical

information and highlight their aggregation characteristics.

Therefore, this paper uses spectra to identify weeds in rice fields.

In this study, theDJI Phantom4UAVand itsmultispectral camera

were used to collect multispectral remote sensing images of paddy

fields (Zhu et al., 2020).With rice weeds as the identification target,

the vegetation index was constructed to highlight the spectral

characteristics of weeds (Lu and Zhang, 2020; Nawaz et al., 2021).

Thedensity partitioningalgorithm is used toobtain thedistribution

information of the weeds in the rice field and generate the weed

distribution map with the best classification effect (Wang et al.,

2019). It provides a decision basis for the application of precision

pesticides by agriculture UAV.
2 Materials and methods

2.1 Study area and experimental details

The trial site was located at the precision agriculture aerial

research base of Shenyang Agricultural University, Gengzhuang

Town, Haicheng City, Liaoning Province (40° 58’ 45.39” N, 122°

43’ 47.01” E), and the test variety was “Japonica 653”, a variety

widely grown in Liaoning. In this study, the UAV multispectral

images and visible images were collected separately from the test

field on June 23, 2021. The weeds in the study area were mainly

barnyard grass and Monochoria korsakowii Regel & Maack,

which were verified in the field.
2.2 Data acquisition

The multispectral remote sensing image data collection

equipment was Phantom 4 RTK UAV combined with ground

station software DJI GS PRO for route planning. Multispectral

remote sensing UAV flight altitude of 25 meters, UAV

longitudinal and lateral route overlap rate of 85%. six 1/2.9-

inch CMOS, including five monochrome sensors for

multispectral imaging single sensor, effective pixels 2.08

million. five characteristic wavelength specific information as

shown in Table 1.
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The multispectral camera has an FOV of 62.7°, a focal length

of 5.74 mm, and an aperture of f/2.2. Monochrome sensors gain

in the range of 1-8 multiples.The flying speed of the UAV is set

to 5m/s, the altitude is 30m, and the heading and side-direction

repetition rate is 80%.

The Phantom 4 RTK quadrotor UAV was used as the flight

platform to acquire visible light remote sensing images, with a

built-in RTK differential positioning system and a positioning

accuracy of 1 cm + 1 ppm, 1 ppm means that the error increases

by 1 mm for every 1 km of flight (Lambert et al., 2019; Niu et al.,

2021). DJI flight software was used to plan the route of the test

area, and orthophoto raw data from the test field were obtained

by taking photos at regular intervals.

In this study, multispectral and visible images were acquired

for weed identification using a Phantom 4 RTK UAV on June 18,

2021 (Wei et al., 2021). The validation data in this study were

visually interpreted using a manual visual interpretation method

for the visible images, and a total of 141,483 pixel points were

selected, including 48,255 pixel points for the weed category and

93,228 pixel points for the non-weed category.
2.3 UAV remote sensing image
processing

Pix4D image processing software was used to orthorectify

and crop the visible images of the test area collected by UAV,

and finally high-resolution orthophotos of the rice fields

were obtained.

When the Phantom 4 RTKmultispectral UAV remote sensing

platformobserves the target radiant energy, the radiationdistortion

caused by the sensor response characteristics and external natural

conditions (including solar radiation conditions and atmospheric

transmission conditions, etc.) causes distortion of the remote

sensing images and affects the interpretation and decoding of

remote sensing images; therefore, the radiation calibration of

multispectral images is needed. In this study, first, three

reflectivity plates with 60% reflectivity were laid flat on the

ground near the measurement area, and the Phantom 4 RTK

multispectral took off to a height of 7 times the side length of the

plates, adjusted the aircraft position so that the plates were in the

center of the camera frame and ensured that there was no shadow
TABLE 1 Characteristic wavelengths of multispectral UAV remote
sensing platform.

Name Central wavelength Wavelength range

Blue (B) 450 nm ± 16 nm

Green (G) 560 nm ± 16 nm

Red (R) 650 nm ± 16 nm

Red edge (RE) 730 nm ± 16 nm

Near Infrared (NIR) 840 nm ± 26 nm
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on theplates, thenadjusted thegimbal to -90°, kept theEVvalue at0

and took a set of photos manually (Naji, 2018). The multispectral

image is used to correct the reflectivity of the acquiredUAV remote

sensing image.
2.4 Research methods

2.4.1 Construction of Vegetation Index
Most of the existing multispectral remote sensing UAV

images are used as input of the weed identification model by

the NDVI, EVI, DVI and other indices, but the above vegetation

indices are more used to carry out inversion studies of physical

and chemical parameters of rice, while the accuracy of rice weed

identification still has some shortcomings (Clevers and Verhoef,

1993). In this study the characteristic vegetation indices of the

weed(WDVI) were constructed by analyzing the spectral

characteristics between the weeds and the rice, and the specific

construction methods are as follows.
Fron
(1) UAV multispectral wavelengths of xB、xG、xR、xRE、

xNIR .

(2) Selection of the band xt(t∈B、G……NIR) as the

characteristic transfer band.

(3) Construct the characteristic spectral ratio of multiple

groups using other characteristic bands xf(f∈B、G……

NIR, and f≠t) as a ratio to xt , both Wf =
xf
xt
.

(4) After taking the logarithm of the ratio result, the

correlation with nitrogen content remained good.

Therefore, two sets of characteristic spectral ratios Wf

(f∈B、G……NIR) , were selected and the characteristic

transfer index of weeds(WDVI) was constructed using

Equation 1:
WDVI = logWf
Bf = logxb

xt

xa
xt

(1)

In this study, five vegetation indices were constructed using

five bands, as shown in Table 2
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2.4.2 Weed identification modeling methods
Threshold segmentation is the earliest method studied and

used in image segmentation, which has the characteristics of clear

physical meaning, easy implementation, and good real-time

performance (Setojima et al., 1989; Qin et al., 2013). According to

the regional weed distribution map after visual interpretation of

visible light remote sensing images and experience knowledge, this

study adjusts the gray segmentation threshold of the multispectral

index todetermine the distribution rangeofweeds in the index.The

grid threshold partition mapping function is as follows:

f (x, y) =
0 0 ≤ f (x, y) ≤ t

L − 1 t < (x, y) ≤ L − 1

(
(2)

Let the size of the raster image be M × N, and the gray level

number be L, and f (x, y) denotes the gray level of the pixel with

coordinates (, y), where x ∈ [1, M] and y ∈ [1, N].

According to the gray segmentation threshold, the grid

image of weed distribution is extracted (Bouman et al., 1992).

The algorithm to remove small patches is used to remove

scattered grids in the grid images, and the spatial distribution

map of weeds is obtained. The grid resampling algorithm was

used to resample the grid to 1m × 1m, and the UAV application

prescription diagram was generated. Weed analysis process as

shown in Figure 2.
2.5 Evaluation indicators

Confusion matrix is a standard format for representing

accuracy evaluation in the form of a matrix with n rows and n

columns. In image accuracy evaluation, it is mainly used to

compare the classification results with the actual measured

values, and the accuracy of the classification results can be

displayed inside a confusion matrix. The confusion matrix is

calculated by comparing the position and classification of each

actual measured image element with the corresponding position

and classification in the classified image. In this study, the overall

accuracy of the confusion matrix and the Kappa coefficient are

used as classification effectiveness evaluation metrics.
3 Results and analysis

3.1 Results of vegetation index for weed
identification in rice

The WDVI construction method was used and in this study

five weed-sensitive indices were selected (Wan et al., 2020; Xia

et al., 2021). Five traditional vegetation indices such as GNDVI

(Green Normalized Difference Vegetation Index), NDVI

(Normalized Difference Vegetation Index), LCI(Leaf

Chlorophyll Index), NDRE(Normalized Differential Red Edge
TABLE 2 Five medium Combination Vegetation Index.

Name Formula

WDVI1
WDVINIR = log G

NIR

RE
NIR

WDVI2
WDVINIR = log R

NIR

RE
NIR

WDVI3
WDVINIR = log RE

NIR

R
NIR

WDVI4
WDVINIR = log R

NIR

G
NIR

WDVI5
WDVINIR = log G

NIR

R
NIR
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vegetation inde), and OSAVI(Optimized Soil Adjusted

Vegetation Index) were selected for comparison, and a total of

ten vegetation indices were used to generate pseudo-color maps

for the identification of the rice weed vegetation index, and the

results are shown in Figure 3.

It can be seen from Figure 3 that different vegetation indices

have different sensitivities to weeds in rice fields, and some fields

have water cotton in them, but water cotton is different fromweeds

and requires different agents, so water cotton cannot be considered

as a weed. From the effect of weed identification by different

vegetation indices, the best result was obtained by usingWDVINIR.

WDVINIR = log G
NIR

RE
NIR

(3)

InWDVINIR , NIR is the near-infrared wavelength reflectance

of the multispectral UAV, G is the green wavelength reflectance,

and RE is the red edge.WDVINIR can distinguish weeds from rice

and spirogyra communis more clearly (Figure 4).
3.2 Results of rice weed classification
based on density splitting

Since the test area was large, the manual visual interpretation

workload would be very large if the entire area were analyzed, so

field 9 at Figure 1, where the number of weeds was at a medium

level, was selected for analysis, and the visible light from the

UAV in field 9 is shown in Figure 5. Using the manual visual

interpretation method, the density segmentation threshold was

determined using the criterion of covering all weeds. The results

show that the density segmentation results can cover all weeds

when the threshold values are 0 and 5. The results of the density

segmentation are shown in Figure 6.
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After density segmentation, the results were analyzed by

removing small patches operation, using majority analysis

method to remove small patches, and setting the transform

kernel size as 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

33, respectively. The results of the analysis are verified using the

confusion matrix for accuracy, and the overall accuracy verification

curve is shown in Figure 7, and the manual visual interpretation

vector diagram used to verify the accuracy is shown in Figure 8. The

verification results show that the highest accuracy of the confusion

matrix verification is achieved when the size of the transformation

kernel is set to 27, i.e., the best effect of removing small patches. The

results after removing the small patches are shown in Figure 9.

The images processed by density segmentation and removal

of small patches lack spatial continuity, which is not conducive

to raster resampling operations during the production of UAV

prescription maps. Therefore, the Clump Clustering algorithm is

used for smoothing. The expansion kernel size and erosion

kernel size are set to 3, 4, 5, 6, 7, 8, 9, respectively, and the

kernel values are all 1 for cluster processing. The processed

results are verified with precision using a confusion matrix, and

the overall accuracy verification curves are shown in Figure 10.

The validation results show that the overall accuracy of the

confusion matrix is the highest when the expansion kernel size

and the erosion kernel size are set to 3. The results after the

clustering process are shown in Figure 11.
3.3 Weed UAV precision operation
prescription map generation

The UAV application operation must consider parameters

such as flight speed and spray width of the plant protection UAV,

and the prescription map must be raster data during the
FIGURE 1

Location map of test site.
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operation. Therefore, this study converts the vector data of weed

identification results into raster data and resamples the raster data

to the appropriate size. Take DJI plant protection drone T30 as an

example, DJI T30 plant protection drone can operate 240 mu of

fields per hour, the maximum operating flight speed is 7m/s, the

volume of the operating tank is 30L, the number of nozzles is 16,

the maximum effective spraying width is 4-9m, and the size of the

prescription map grid required for operation is 1m*1m.Therefore,

the raster data identified in this study are resampled to 1m*1m,

and the raster data before resampling is shown in Figure 12, and

the raster data after resampling are shown in Figure 13.

4 Discussion

Using UAV remote sensing technology to monitor weeds in

rice fields and generate prescription maps to provide a decision

basis for accurate herbicide application by plant protection

machinery is one of the important methods to guide accurate
Frontiers in Plant Science 06
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rice weeding and is also a research focus of precision agriculture.

We established a new weed-sensitive vegetation index using a

low-cost UAV multispectral remote sensing platform, then used

image recognition to accurately identify rice weeds and

combined with GIS information to generate a prescription

map for precise operation of agricultural drones for weeds in

rice fields. The main idea of vegetation index construction in this

study is to use mathematical transformation method to combine

multispectral bands into a new vegetation index, and after RE

and G are compared with NIR respectively, it is found that the

ratio results have better sensitivity with weeds. The proposed

WDVI vegetation index may also have decreased recognition

accuracy and lack of generalizability when used in other field

data sets. The reason for this may be that the vegetation index

was constructed using data statistics and the mathematical

mapping relationship between sensitive bands and weeds was

not explored in the agronomic mechanism; the influence of

different regions and varieties on the change in rice weeds was
FIGURE 2

Rice weed identification process.
FIGURE 3

Results of weed identification with different vegetation indices.
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not considered in the research process (Yu et al., 2021).

However, because the calculation of the vegetation index is

simple and easy to realize the development and integration of
Frontiers in Plant Science 07
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detection devices, the method of rice weed identification based

on the vegetation index still has considerable research value (Xia

et al., 2022). The above problems should be explored and studied

more deeply in future research experiments.

In this study, the accuracy of weed recognition in rice field

was 93.47%. Compared with other scholars (Lan et al., 2021), it

was found that the accuracy of weed recognition was

comparable. However, compared with deep learning, spectral

recognition of weeds has higher efficiency, saves time and

requires less computing power, so it has more advantages.

In this study, we used manual labeling to tag multispectral

remote sensing images from UAVs at pixel level for weed model

training and accuracy verification. However, the manual labeling

process is inefficient and time consuming. Manual tagging will

affect the process of model development if remote sensing data

increases substantially (Tobajas et al., 2020; Amziane et al., 2021).

Therefore, in future research, it is necessary to introduce semi-

supervised or weakly supervised analysis methods to reduce the

workload of manual labeling. At the same time, remote sensing

images are collected by a UAV, and a server is used offline to

identify weeds and generate application prescription maps. In this

mode of operation, data collection and data analysis are separated,

and the best time for weed control is easily missed for weeds in

larger rice production fields. Due to the current rapid

development of the computing performance of embedded chips

(Yang et al., 2022), which makes the real-time acquisition and

analysis of UAV multispectral images possible, if the embedded

chips can be deployed on UAVs and the analysis models on
FIGURE 4

Results of WDVINIR vegetation index.
FIGURE 5

Visible image of field No. 9.
FIGURE 6

Density segmentation results.
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servers can be migrated to UAVs to realize the real-time

processing of weed identification, the interval between data

acquisition and data analysis can be effectively broken, and the

process integration of UAV identification of weeds in fields can be

realized, which will greatly enhance the application scope of

remote sensing identification of weeds by UAV.
Frontiers in Plant Science 08
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4.1 Conclusion

In this study, we created a weed identification index based on

multispectral UAV images and constructed theWDVINIRvegetation

index from the reflectance of three bands, RE, G, and NIR.

WDVINIR was compared with five traditional vegetation indices,
FIGURE 7

Confusion matrix verification accuracy curve after removing small patches.
FIGURE 8

Manual visual interpretation vector map.

FIGURE 9

Results after removal of small plaques.
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NDVI, LCI, NDRE, and OSAVI, and the results showed that

WDVINIR was the most effective for weed identification and

could clearly distinguish weeds from rice, water cotton, and soil.

In this study, a weed identification method based on

WDVINIR was constructed, and the weed index identification
Frontiers in Plant Science 09
139
results were subjected to small patch removal and clustering

processing operations to output weed identification vector

results. The weed identification vector results were verified by

using the confusion matrix accuracy verification method, and

the results showed that the weed identification accuracy could
FIGURE 10

Confusion matrix verification accuracy curve after clustering process.
FIGURE 11

The result after clustering process.

FIGURE 12

Before raster resampling.
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reach 93.47%, and the Kappa coefficient was 0.859. Moreover,

this study integrates the parameters of plant protection UAV

operation and takes DJI UAV as an example to convert the weed

recognition vector results into raster data with raster size of

1m*1m to make a UAV application prescription map for field

application, which provides a new method for weed recognition

in rice fields.
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The widespread use of unmanned aerial vehicles (UAV) is significant for the

effective management of orchards in the context of precision agriculture. To

reduce the traditional mode of continuous spraying, variable target spraying

machines require detailed information about tree canopy. Although deep

learning methods have been widely used in the fields of identifying individual

trees, there are still phenomena of branches extending and shadows

preventing segmenting edges of tree canopy precisely. Hence, a

methodology (MPAPR R-CNN) for the high-precision segment method of

apple trees in high-density cultivation orchards by low-altitude visible light

images captured is proposed. Mask R-CNN with a path augmentation feature

pyramid network (PAFPN) and PointRend algorithm was used as the base

segmentation algorithm to output the precise boundaries of the apple tree

canopy, which addresses the over- and under-sampling issues encountered in

the pixel labeling tasks. The proposed method was tested on another miniature

map of the orchard. The average precision (AP) was selected to evaluate the

metric of the proposedmodel. The results showed that with the help of training

with the PAFPN and PointRend backbone head that AP_seg and AP_box score

improved by 8.96% and 8.37%, respectively. It can be concluded that our

algorithm could better capture features of the canopy edges, it could improve

the accuracy of the edges of canopy segmentation results.

KEYWORDS

deep learning, instance segmentation, orchard, canopy, convolutional neural
network, unmanned aerial vehicles
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1 Introduction

Technology and equipment for plant protection are crucial

for agricultural output (Ouyang et al., 2020). In apple farming,

spraying is one of the most important commonly applied canopy

management practices, it should be conducted during the stage

of apple growth aims to raise the quality of apples and obtain

higher yield. However, the low utilization rate of pesticides has

been an important factor in the development of China’s

application technology (Ru et al., 2015), the utilization rate of

pesticides in conventional application methods is only 30%,

which not only affects the effectiveness of pest control, but also

causes environmental pollution.

The integration of agricultural machinery and information

technology is a necessary tool for the development of modern

agriculture, which can improve the efficiency of agricultural

resources utilization and accelerate the process of agricultural

modernization (Chen et al., 2020). With the continuous

development of the precision agriculture, remote sensing

applications have diversified to include satellite, manned

airplanes or unmanned aerial vehicles (UAVs) (Mulla, 2013).

UAV images are more easily obtained and it implies lower

operational costs, less weather constraints (Rasmussen et al.,

2016). UAVs are used for the most autonomous and accurate

way to obtain tree’s information.

A considerable amount of research on orchard canopy

information focus on the identification and counting of

individual trees (Morales et al., 2018; Cheng et al., 2020; Qi

et al., 2021). In fact, due to geometric features of plant canopies

can offer relevant indicators, individual canopy-related features

interested farmers but the most accurate estimations for

canopies all mostly based on destructive and costly labour-

intensive manual measurements (Gower et al., 1999;

Jonckheere et al., 2004; Ma et al., 2017). To overcome these

disadvantages, UAV-based imagery in conjunction with

computer vision methodologies have become widely used on

the research of tree extraction (Nyamgeroh et al., 2018; Durfee et

al., 2019).

Brede et al. (2017) concluded that UAV-borne laser

scanning(ULS) has the potential to perform comparable to

Terrestrial Laser Scanning for estimating forest canopy height.

ULS combines the strengths of above and under canopy surveys,

the results showed that in easy forest stand conditions, the

performance of ULS point cloud is comparable with the

terrestrial solutions (Liang et al., 2019). The UAV-based

LiDAR data can be effectively used in canopy cover

estimation, individual tree segmentation-based method had the

highest accuracy in estimation of canopy cover (R2 = 0.92,

rRMSE = 3.5%) can provide references for sustainable

management (Wu et al., 2019). Laser scanning data of stem

curve was obtained by using UAV. Novel data processing

algorithms were applied for the point clouds to extract the
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stem curves and diameters at breast height (Hyyppa et al.,

2020). However, these methods using LiDAR represents an

important limitation for costly.

There exist other methods that use multispectral cameras to

descriptor such as canopy shape, crown contour and canopy

volume. In order to estimate tree height, Wu et al. (2020)

compared several methods. Height estimations of mango and

avocado trees were compared to canopy metrics obtained from

Airborne Laser Scanning (ALS) and UAV-based RGB and multi-

spectral photography. Chang et al. (2020) used UAV-based

multispectral pictures to compare the canopy shape and

vegetation indicators of range trees. The findings revealed a

strong correlation between tree height and canopy volume

measured from the ground and by UAV. Gallardo-Salazar

et al. (2020) analyzed included different vegetation indices

estimated with a high-resolution orthomosaic and obtained

total height and the crown diameter of individual trees, the

consistency of the the normalized-difference vegetation index

(NDVI) as the most recommended to evaluate productivity

results for its application in the field.

When focusing on RGB images, a large number of studies of

tree phenotype in orchards can be found. Using image processing

techniques, Yıldız et al. (2020) determined the canopy area of

apple trees. Regression analysis employed both circular and

elliptical calculating techniques. Using a local-maxima-based

technique on UAV-derived Canopy Height Models (CHMs),

Mohan et al. (2017) assessed the applicability of low-altitude

visible light image and structurefrom-motion (SFM) algorithm).

To distinguish between overlapping tree crown projections, Ponce

et al. (2021) developed a novel method for crop tree identification

using image analysis techniques, doing away with the usage of

vegetation indices and machine learning-based approaches. The

aforementioned methods, however, are likely to have a low fidelity

for interlaced orchards. Cheng et al. (2020) provided a

segmentation approach for mingled fruit tree canopies with

irregular forms that makes use of a Gaussian Mixture Model

and XGBoost to accurately recover the individual apple and

cherry trees from mingled canopies.

In recent years, the performance of the CNN network in

detecting complicated phenomena has been excellent due to the

accessibility of massive datasets and the ongoing advancement of

GPU processing power. A growing variety of artificial

intelligence algorithms have been used in horticulture research

and remote sensing for agriculture (Kamilaris and Prenafeta-

Boldú, 2018; Zhou et al., 2020; Yang and Xu, 2021; Qi et al.,

2022). Mo et al. (2021) proposed a deep learning-based instance

segmentation method YOLACT of litchi trees. The boundary

and location information of the canopy have been obtained by

using the Digital Orthophoto Map (DOM). A Convolutional

Neural Network (CNN) based on the Deeplab v3+ architecture

was used to detect full-grown isolated Mauritia flexuosa palms,

and has achieved better performance than those of other CNN
frontiersin.org
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networks used for performance comparison (Morales et al.,

2018). Lou et al., (2022) used thrss widely object detection

methods such as the Faster region-based CNN (Faster R-

CNN) (Ren et al., 2015), You Only Look Once version 3

(YOLOv3) (Redmon et al., 2018), and single shot detection

(SSD) (Liu et al., 2016) to identify tree crowns and their

widths in two loblolly pine plantations, respectively.

Due to unsystematic tree branches overlapping and

shadows, the accuracy of the deep learning-based image

segmentation algorithms needs to be improved. In

horticultural computer vision, however, it has always been

challenging to detect the boundary of tree canopies.

In this regard, we offer an innovative technique for precisely

segmenting the borders of apple trees using aerial photos taken

with RGB cameras placed on UAVs. This approach aims to

address the issue of incorrect segmentation of tree canopies in

dense orchards with complex backgrounds, including branches

and shadows. Firstly, RGB images were processed in DJI Terra

software to yield a Digital Orthophoto Map (DOM), then DOM

was sliced into smaller images for training the deep learning

model. Second, the feature of canopy instances was extracted

using the PAFPN (Liu et al., 2018) as backbone neck and

PointRend (Kirillov et al., 2020) as a new backbone head

based on the instance segmentation of the Mask R-CNN
Frontiers in Plant Science 03
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(He et al., 2017) framework. Our method is called MPAPR R-

CNN. This segmentation is eventually combined into a

miniature orchard map, with each little picture containing the

canopy’s pixel count by segmentation network. The whole

system was put to the test in an apple orchard, and the

comparison experiment findings showed how well it works for

identifying apple tree canopy.
2 Materials and methods

2.1 Study area

As shown in Figures 1A, B, the study was conducted during

the summers of 2022 at the JingXiang Orchard in Weihai City,

Shandong Province, China. The location is characterized by a

temperate monsoon climate, with average annual precipitation

of 400–600 mm and an average effective temperature during the

study period (July–August) of 28°C. The local climate is perfect

for the cultivation of apples.

The orchards under study are high-density planting patterns

with a 3.5-meter route between rows and a tree spacing of 0.8

meters. It should be emphasized that the planting and

management model adheres to the region’s suggested
A B

C

D

E F

FIGURE 1

Test location of image capture. (A, B) The location of the experimental orchard. (C-E) Digital orthophoto maps for training and (F) for testing in
canopy detection.
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production techniques. 'Four location DOMs containing apple

orchards of different ages were used for canopy identification in

this paper, where C, D and E of Figure 1 were used as training for

the model, while Map F was used as a test map for the model

training results.
2.2 Unmanned aerial vehicle
image collection

Apple trees were captured with the DJI Phantom 4

Multispectral (P4, SZ DJI Technology Co., Ltd., Shenzhen,

Guangdong, China). The P4 is employed because it can be

programmed to fly independently, and the collected visible

images can be processed to generate orthophoto images, or

other drones equipped with low-cost RGB visible light can be

used. For multispectral imaging, this UAV was outfitted with

one RGB sensor and five monochrome sensors, which have six 1/

2.9-inch CMOS, including one color sensor for visible imaging

and five monochrome sensors for multispectral imaging.

Individual sensors have 2.08 million effective pixels (2.12

million total pixels). Figure 2 depicts the takeoff of a drone for

data collection.

The purpose of this paper is to solve the problem of UAV

canopy image segmentation in complex backgrounds, and we

selected the area where weeds are most abundant for UAV flight.

To minimize any shadow effects, the flight was conducted during

sunny or cloudy weather conditions at high noon, with very light

winds, between approximately 11:30 am and 12:30 pm. The DJI

GO Pro software was used to set up the flight for autonomous

management. The pictures have an 80% mean forward overlap
Frontiers in Plant Science 04
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and a 70% mean side overlap. The aircraft was maintained at a

cruise speed of 2 m/s an altitude of 15 m above ground and

during the flight. The aircraft maintained a cruise speed of 2 m/s

during flight at 15m and 20m altitude, while the ground sample

distance (GSD) was 0.79cm/pixel and 1.06cm/pixel, respectively.
2.3 Canopy segmentation framework

We first summarize the whole process of the proposed

framework for detecting orchard canopy and then discuss in

detail each phase of the model. As shown in Figure 3, the

framework consists of three major parts: (1) image dataset

construction and preprocessing; (2) training and inference and

(3) image stitching.

2.3.1 Image preprocessing and
dataset construction

In this part, DJI Terra software was used to convert the UAV

canopy images into DOM. Since the resolution of DOM is too

large, the images need to be cropped to meet the appropriate size

required for computer operation, then we use Labelme software

for annotation, and then perform image enhancement to

generate the image dataset of orchard canopy for defect and

segmentation model training and testing.

2.3.2 Training and testing of datasets
In this section, we proposed to design our framework based

on Mask R-CNN. In order to fit the tree canopy detection and

segmentation task, as in Figure 4, we introduced the PAFPN and

PointRend into the original architecture. The proposed model
FIGURE 2

The DJI P4 Multispectral.
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can obtain enhanced features with both rich context information

and edge information, leading to better performance of canopy

detection and segmentation results. In addition, considering the

shape characteristics of canopy in cropped image, we modifed

the aspect ratios of anchor boxes in the RPN network. Specific

network design will be described in the later section.

2.3.3 Image stitching
After the deep learning model had been trained and the test

photos had been post-identified, this segmentation is eventually

combined into a miniature orchard map using Adobe Photoshop

CC 2019 software. With each little picture containing the

canopy ’s pixel count by segmentation network, the

orthophotography can be used to provide application

recommendations to variable application machinery.
Frontiers in Plant Science 05
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2.4 Canopy segmentation method

2.4.1 Image preprocessing and
dataset construction

Using DJI Terra software, over 500 photos taken by the P4

UAV of the experimental regions every fl ight were

photogrammetrically processed to create the RGB DOM.

Through the training of a large amount of data, the model

based on deep learning can achieve great prediction results for

complex classification and detection tasks.

DOM resolution is too huge for processing, especially for

deep-learning-based methods, thus the high-resolution picture

was chopped using the Adobe Photoshop CC 2019 software

slicing tool, and the DOM was ultimately divided into 500 little

pixel images of 450*600. To boost the variety of the canopy
FIGURE 4

Canopy segmentation model base on Mask R-CNN. * indicates that the height and width of the convolution kernel matrix are multiplied.
FIGURE 3

Canopy segmentation framework.
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photos for the deep learning network, techniques including noise

addition, random blurring, panning, vertical mirroring, and

diagonal flipping were applied. A final dataset of 2000

enhanced canopy images were produced as a consequence of

the data augmentation strategies, which also expedited the

dataset’s creation, improved the resilience and generalization

of the model training, and decreased the likelihood of overfitting.

Finally, we divided the training and validation sets for 2000

images in the ratio of 8:2.

2.4.2 Architecture of mask R-CNN
Mask R-CNN is a classical image segmentation algorithm

that detects target objects in an image and marks the outline of

the object region, extracting the relevant pixels for area

calculation. Faster R-CNN for target recognition and a Fully

Convolutional Network (FCN) for semantic segmentation are

combined to create Mask R-CNN. The Faster Convolutional

Network (FCN) is utilized for mask prediction, boundary

regression, and classification based on the target discovered by

the Faster R-CNN. These include a feature extraction layer using

ResNet/ResNeXt as the convolutional backbone, a region

suggestion network (RPN), bilinear interpolation (ROIAlign),

and fully connected FC and FCN.

The selected region of interest (RoI), after mapping to the

feature map, is further pixel-corrected by the ROIAlign layer.

The resultant feature map is delivered to a region proposal

network (RPN) to create positive and negative samples. Because

the picture enhancement in this investigation did not involve a

90-degree rotation to increase the dataset, the orientation of the

canopy photographs in this study all stretched along the vertical

direction. The initial model was enhanced by balancing the

distribution of various picture forms and constructing anchor

points with three distinct scales of 0.3, 0.5, and 1 in aspect ratio

to increase the identification and segmentation accuracy of

the canopy.
Frontiers in Plant Science 06
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2.4.3 Feature extraction network
To achieve more effective detection, ResNeXt is regarded as

the backbone network for feature extraction of the input image.

ResNeXt is built on ResNet modular structure and incorporates

the high recognition performance of split‐transform‐merge in

Inception. The right side of Figure 5 shows the structure of each

basic unit.

In Figure 5, ResNeXt uses multiple convolution modules to

perform feature extraction from bottom-up, and group

convolution uses the same topology on different input channel

paths. By using cardinality as a super parameter, it’s able to

achieve a more efficient network. For a 256-dimensional input

with cardinality of 32, the network encodes 256 channels into 4

channels, and the features are extracted in 32 different

embedding spaces by 32 different groups consisting of

continuous 1 × 1 conv, 3 × 3 conv, and 1 × 1 conv.

2.4.4 Feature fusion network
In multilayer convolutional neural networks, features at shallow

layers are usually more representative of edge morphology, which is

crucial for accurate pixel classification and instance segmentation

(Kong et al., 2016), and it is precisely the determination of instance

edges that is most important for segmentation of crown images.

Specially, we adopt a path augmentation feature pyramid network

(PAFPN) to enhance the feature hierarchy with rich low-level

features by adding a bottom-up path augmentation module and a

feature fusion operation module.

The part of Neck in Figure 6 shows the PAFPN module in

details. Each cube represents a corresponding feature tensor. In

the original ResNeXt-FPN backbone network, features are

extracted from the final convolutional layer of conv1–conv5

parts of ResNeXt101, which are called C1, C2, C3, C4 and C5 in

this paper. Based on the bottom-up network architecture, the

feature extraction layers compute hierarchical feature maps.

Feature maps generated by FPN are represented by P2, P3, P4, P5.
FIGURE 5

Backbone Network-ResNeXt. * indicates that the height and width of the convolution kernel matrix are multiplied.
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The feature maps of the added bottom-up path

augmentation module are represented as N2, N3, N4 and N5

corresponding to P2 to P5. The concrete operations for bottom-

up path augmentation module are illustrated in Figure 6. Firstly,

Ni/2 is obtained by a 3 × 3 convolutional layers with stride 2 to

down-sampled, where the size of Ni/2 is reduced by a factor of

two. Then the down-sampled feature map is concatenated with

Pi+1. At last, the fused feature map goes through another 3 × 3

convolutional layer to generate new feature map Ni+1. Then,

feature fusion operations are carried out to incorporate higher

level feature maps to the lower-level ones for contextual

feature fusion.

2.4.5 Optimized boundary feature based on
PointRend technique

As objects have irregular boundaries, most segment methods

can classify pixels inside the object accurately but pay less

attention to the accuracy drop caused by upsampling on the

edge of the object increases the loss of prediction. Image

segmentation tasks of original Mask R-CNN focus on regular

grids to classify each pixel in the image has an obvious drawback

of shivering or over-smoothed edges of segmentation, which

makes the boundary of the mask unsatisfactorily and greatly

undermines the accuracy of canopies edge segment.

As a result, to address this issue, we employed a high-quality

PointRend module to recover clear and sharp mask edges. This

module can adaptively choose a non-uniform set of points by a

subdivision strategy to densely sample and label the boundary

pixels while minimizing the indistinct segmentation results.

Point selection, point-wise feature extraction, and point head

make up the three primary components of PointRend.
Frontiers in Plant Science 07
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The point selection module chooses suitable sampling points

flexibly and adaptively to predict to avoid excessively computed

pixels, and focuses on the points located near object boundaries.

After the target segmentation model output feature map as

the initialization output map of the PointRend model, the

strategy of point selection is to render the output image in a

coarse-to-fine manner. The first prediction is the coarsest and is

performed on the point of a regular grid. As shown in Figure 7,

in each iteration, the points on a regular grid from the low spatial

resolution feature map will be predicted coarsest first. The

output result is sampled up by bilinear interpolation to achieve

the denser feature prediction map. Then on the high-resolution

segmentation map, where the N most uncertain points are

concentrated in the edges, the confidence interval is [0,1] close

to 0.5. Points are selected by Equation (1). Once N points are

selected, point-wise feature extraction is performed. These N

points are the points that are finally filtered out for re-

confirmation. And so on, iterating step by step to obtain the

final segmentation map with the target resolution.

n*i = argmin
ni

p nið Þ − 0:5j j (1)

where p(ni) is the probability for point ni belonging to the

binary mask; n*i is the selected point.

For training, the point selection strategy is a random

sampling-based selection strategy. First, kN candidate points

(k>1) are randomly sampled from the feature map to address the

uncertain regions while keeping a uniform distribution. Then

kN points are sorted while estimating the uncertainty. The most

uncertain bN points are selected, where b ∈ [0,1]. These points

are concentrated in the most uncertain area, such as road
FIGURE 6

Bottom-up path augmentation. * indicates that the height and width of the convolution kernel matrix are multiplied.
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boundaries. Last, the surplus (1−b) N points are distributed from

a uniform distribution.

The coarse prediction and fine-grained features are

combined to create the point-wise feature of the selected

points extraction module. Regarding fine-grained features,

bilinear interpolation is used to extract the finely detailed

segmentations from each point chosen from the sort in the

feature map to display the fine segmentation details. These

segmentations are then stored in feature vectors, which

contain fine-grained features.

Fine-grained features may contain only relatively low-level

information and do not obtain specific region information, but

the coarse predicted feature can provide a more general and

globalized context, with a 2-dimensional vector for class-2

prediction at each point in the region.

The pointed head is a simple Multi-layer Perceptron (MLP)

used to represent prediction labels based on point-wise features,

which can share weights across all points. Moreover, because the

MLP predicts a segmentation label for each point, it can be

trained by the segmentation loss of a specific task. Note that

when the backbone head is replaced with PointRend, the loss of

the segment network is increased by loss point, but this does not

affect the final segmentation accuracy.

2.4.6 Loss function
The loss function of the Mask R-CNN with PointRend has

four components, the classification loss of the bounding box, the

position regression loss of the bounding box, and the loss of the

mask. The loss function L for each sample ROI in the network is

L = Lbox + Lcls + Lmask + Lpoint (2)

There are three components: Lbox is the classification

calculation loss, Lcls is the position regression loss of the

bounding box and Lmask is the mask calculation loss. The

bounding box loss function, the classification calculation loss,

and the mask calculation loss are shown as follows:
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Lbox t*i , ti
� �

= smoothL1 t*i − ti
� �

(3)

smoothL1 xð Þ = 0:5x2 xj j < 1ð Þ
xj j − 0:5 xj j⩾ 1ð Þ

(
(4)

where ti=(tx,ty,tw,th) , t*i = (t*x , t*y , ty, t*w) 。

Lcls p*i , pi
� �

= − log p*i pi + 1 − p*i
� �

1 − pið Þ
h i

(5)

where pi represents the probability anchor is predicted to be

positive samples, p*i represents the foreground true probability

of the anchor point, i.e. a value of 1 when in the foreground and

0 when in the background anchor samples.

Lmask s*i , si
� �

= − s*i log sið Þ + 1 − s*i
� �

log 1 − sið Þ
� �

(6)

where, si represents the probability mask is predicted to be

the irightvalue the s*i is the label value of the mask.

Lpoint s*i , si
� �

= seg _ loss  +  points _ loss (7)

where seg_loss represents the cross-entropy loss of the

overall pixel point, points_loss represents the cross-entropy

loss of the uncertain point.
2.5 Algorithm platform

The model training platform is a laptop with Ubuntu 18.04

operating system. The deep learning model in this paper is the

Detectron2 framework based on PyTorch, while CUDA 11.1 is

used to accelerate the training process. Table 1 describes the

specific environment configuration.

Mask R-CNN employs the alternating optimization training

technique. Stochastic Gradient Descent (SGD), a quick and

efficient gradient descent technique for convolutional neural

networks, is used as the training optimization approach. The
FIGURE 7

The strategy of the point selected.
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maximum number of training iterations is 25000, the number of

samples (batch size) used in each trainer is 1, the number of

samples in a batch of training samples (one epoch) is 128, and

the learning rate decay multiplier (gamma) is 0.2, the learning

rate decay is performed after 10000 and 20000 iterations, the

number of warm-up iterations is 1000, momentum is 0.9, and

weight decay coefficient is 0.001.
2.6 Evaluation indicators

To validate the performance of the model, Mean Average

Precision (mAP ) is used as a metric to evaluate the accuracy of

the training model. mAP is an algorithm performance metric

used to predict target locations and categories, and refers to the

average of the Average Precision (AP ) of multiple categories, and

a higher mAP value indicates a better model is better. In image

segmentation, a curve can be plotted for each category based on

the accuracy P (Precision) and recall R (Recall), and the Average

Precision AP is the area under that curve. Multiple metrics are

calculated as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

AP =
Z 1

0
P Rð ÞdR (10)

where TP denotes the number of samples correctly

predicted as positive, FP denotes the number of samples in

which negative samples are predicted as positive, FN denotes

the number of samples in which positive samples are predicted

as negative, and k denotes the number of categories; P refers to

the accuracy rate, which is the proportion of correctly detected

samples to all samples actually detected; and R refers to the

recall rate, which is the proportion of the number of correctly

detected samples to the number of samples that should

be detected.
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3 Results

To better validate the performance of the optimized

segmentation model, comparative experiments were conducted

to demonstrate the detection and segmentation capabilities of

the model under different configurations.
3.1 Different anchor and backbone

Since the target of detection in this paper is the tree canopy,

combined with the canopy growth and the slender

characteristics of the collected image data set along the top

and bottom directions, the aspect ratio of anchor was adjusted to

{1:1, 1:2, 1:3} to suit the canopy detection.

The ResNeXt network is implemented by simply cascading

layers of the same structure and implementing a split-transform-

merge strategy at each level of the network. Based on the ResNet

network structure, a new dimension called “cardinality” is

proposed. For canopy detection, we need to verify whether the

improvements in the ResNeXt network improve the detection

and segmentation accuracy. To test the impact of the improved

anchor frame ratio and feature extraction network, we designed

a set of comparison experiments. We use the standard metrics

average precision (AP, AP50, AP75) to evaluate our results. The

results are shown in Table 2.

Table 2 shows that the improved anchor ratio and ResNeXt

both affect the accuracy of the segmentation. Since the canopy

distributed along the up-down direction is not rotated by 90

degrees in the data enhancement operation, the detection task of

the canopy dataset is better facilitated when the RPN network

uses a more elongated anchor frame for the generation of the

region suggestion frame. In addition, performing a set of

transformations using low-dimensional embeddings by

constructing bases in the base block, split-transform-merge

strategy can make the deep learning model learn more

features. Therefore, improved anchors and ResNeXt were used

as part of the Mask R-CNN model for feature extraction and as

the base network for subsection 3.2.
3.2 Best model configuration

The key differences between our suggested canopy detection

and segmentation method and the original Mask R-CNN

architecture are two. In order to get feature maps with rich

low-level information, we first applied a PAFPN module to the

original Mask R-CNN. The second is that we utilized Pointrend

to enhance the accuracy of edge segmentation results. Based on

Mask R-CNN with better anchor and ResNeXt, we create four

distinct network frameworks to extract features in order to test
TABLE 1 Image processing unit host hardware and software
environment.

Name Version

CPU Intel(R) Core(TM)i7-11800H

GPU NVIDIA Geforce RTX 3050(4GB)

Operating System Ubuntu 18.04

Computing Architecture CUDA 11.1

Deep learning Framework PyTorch1.5.0

Anaconda Anaconda3(Python3.7.2)
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the impact of the new PAFPN and PointRend module, which are

represented by RX-FPN (Mask R-CNN+ResNeXt+FPN), RX-

PAFPN (Mask R-CNN+ResNeXt+PAFPN), PR-RX-FPN (Mask

R-CNN+PointRend+ResNeXt+FPN) and our method(Mask R-

CNN+PointRend+ResNeXt+PAFPN), respectively. Our method

is called MPAPR R-CNN. Four group experiments are used to

detect and segment orchard canopy images in this part.

Figure 8 compares the loss functions of the four instance

segmentation models used in the experimental training phase. In

Figure 8A, in comparison to RX-FPN and PR-PAFPN, PR-RX-

FPN and MPAPR R-CNN have higher total loss due to the

training loss function of PointRend contains point loss.
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However, it is still obvious in Figure 8A that the RX-PAFPN

with enhanced feature pyramid network has lower loss in RX-

FPN and RX-PAFPN without combining PointRend, and

similarly, in PR-RX-FPN and MPAPR R-CNN with

combining PointRend, the PAFPN module with MPAPR R-

CNN model also has lower loss, which indicates that both

PAFPNs effectively improve the original FPN network. This

can also be seen in Figures 8C, D, where PAFPN has a significant

effect on the model improvement, firstly, the loss_mask_point is

reduced, and secondly, the point accuracy is higher. This further

shows the improvement e ff ec t o f PAFPN on the

PointRend model.
TABLE 2 The detect results of different Anchor and Backbone.

Backbone Network ImprovedAnchor ratio ResNeXt AP_seg AP_box

AP AP50 AP75 AP AP50 AP75

Mask R-CNN-FPN 57.24 79.51 79.87 65.14 78.93 77.42

✔ 58.34 79.89 81.32 65.93 80.29 79.18

✔ 58.96 81.26 81.41 66.71 82.56 80.39
frontier
✔ indicates that on the basis of the backbone network, add the corresponding module at ✔. The first line is Mask R-CNN-FPN, the second line is Mask R-CNN-FPN+Improved Anchor
ratio, and the third line is Mask R-CNN-FPN+ Improved Anchor ratio+ResNeXt.
D

A B

C

FIGURE 8

Loss and accuracy curves of several different instance segmentation algorithms in training stages. (A) Total loss curves. (B) Mask loss curves. (C)
Mask point loss curves. (D) Point accuracy curves.
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For the most important loss_mask of crown segmentation,

Figure 8B shows that both PR-RX-FPN and MPAPR R-CNN

with PointRend module have lower mask loss values than RX-

FPN and RX-PAFPN without PointRend module. It indicates

that the addition of the PointRend module has a more significant

optimization effect on reducing the mask loss of the FPN and

PAFPN networks. However, the lowest Loss_mask is the

MPAPR R-CNN model with both PAFPN and PointRend.

The AP findings for each of the four networks are displayed

in Table 3. MPAPR R-CNN outperforms competing methods in

terms of AP-seg and AP-box score, which supports its efficacy in

identifying canopy images. We can see from Table 3 that the

suggested PAFPN and PointRend algorithm considerably alters

the AP score of test outcomes. The AP seg and AP box scores of

the RX-PAFPN are increased by 3.18% (from 59.64% to 62.82%)

and 1.85% (from 67.61% to 69.46%), respectively, while the value

of the AP 50 grows more considerably, improved by 6.28% (from

81.8% to 88.08%) and 6.16% (from 84.4% to 90.56%). The

outcomes demonstrate that the PAFPN algorithm may

successfully prevent information loss of low-level features and

improve the original’s capacity to extract features.

Meanwhile, as for the PointRend, the AP_seg and AP_box

score of PR-RX-FPN is significantly improved by 7.71% (from

59.64% to 67.35%) and 7.52% (from 67.61% to 75.13%). The

result demonstrates that the PointRend has more influence than

PAFPN. This is because a uses both coarse and fine prediction of

points and fuses the two features, which is more effective for

canopy edges detection. Combined with PAFPN and PoitRend,

MPAPR R-CNN obtained the most excellent canopy detection

and segmentation results with AP_seg and AP_box score

improved by 8.96% (from 59.64% to 68.6%) and 8.37% (from

67.61% to 75.98%), respectively. Therefore, MPAPR R-CNN is

more effective for canopy detection task.

Examples of the results of several methods for canopy

detection are shown in Figure 9. The good boundary

segmentation performance of MPAPR R-CNN is shown in the

figure by the yellow marker box. As can be shown, for the input

image (Figure 9A), our approach (Figure 9C) outperforms Mask

R-CNN paired with ResNeXt and FPN (Figure 9B) in terms of

both canopy identification and segmentation. For instance,
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Mask R-CNN missed some edge information and incorrectly

identifies the shadow of the tree as the canopy areas, but MPAPR

R-CNN’s findings for detecting the canopy are more accurate.

Unlike Mask R-CNN, which has a rather rough segmentation

contour, MPAPR R-CNN ’s segmentation contour is

more defined.
3.3 Image stitching

After the deep learning model had been trained and the test

photos had been post-identified and segmented, a high-

resolution DOM map was created using Adobe Photoshop CC

2019 software. Figures 10 shows the visual outcomes of the

models. Small slices of pictures on the stitched DOM may all

be inferred with accurate geo-coordinate positions, since the RGB

visible camera communicates position coordinates with the UAV

during image acquisition. This has ramifications for the creation

of changeable application prescription maps later on.

By increasing mAP by 2.19%, our innovative segmentation

method significantly improved segmentation accuracy. In the

canopy detection of a mass of branches and notably for tree

margins, the pixel-level target was accurately recognized.

Therefore, our suggested network’s efficiency has been shown.
4 Discussion

4.1 Effect of shadows and surface
vegetation on canopy edge detection is
effectively solved

Most orchard canopy studies at this stage have focused on

identifying the canopy of a single tree, but some researchers have

also looked at methods to recognize and precisely count tree

crowns with significant overlap rates. While there are many

research references for techniques of geometric computation and

image processing, the aforementioned two approaches are

restricted to the relatively constant biological form of tree

crowns and the straightforward backdrop of UAV image
TABLE 3 Comparison of AP results for four different methods.

Network PAFPN PointRend AP_seg AP_box

AP AP50 AP75 AP AP50 AP75

RX-FPN 59.64 81.8 79.16 67.61 84.4 81.14

RX-PAFPN ✔ 62.82 88.08 82.71 69.46 90.56 82.78

PR-RX-FPN ✔ 67.35 88.6 84.88 75.13 90.87 87.95

MPAPR R-CNN ✔ ✔ 68.6 90.78 85.31 75.98 91.19 89.15
frontier
✔ indicates that on the basis of the base network, add the corresponding module at✔. The first line is the base network (RX-FPN). The second line is the base network+PAFPN, abbreviated
as RX-PAFPN. The third line is the base network+PointRend, abbreviated as PR-RX-FPN. The fourth line is the base network+PAFPN+PointRend, abbreviated as MPAPR R-CNN.
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gathering. The geometric measuring method based on the form

of the tree canopy is not reliable because the canopy shape may

fluctuate significantly with the continual expansion of the tree

canopy. In contrast, the instance segmentation approach might

produce high performance by identifying the tree canopy’s pixels

and segmenting each canopy separately with more flexibility and

resilience, or inference in a unified manner. The accuracy of

threshold segmentation techniques used in traditional image

processing can be significantly impacted by weeds on

the ground.

MPAPR R-CNN can address this issue. Firstly, we changed

the original ratio of anchor frames in the RPN network. The

canopy in dataset distributed along the up-down direction due to

images were not rotated by 90 degrees in the data enhancement

operation, the detection task of the canopy dataset better

facilitated when the RPN network uses a more elongated

anchor frame, such as {1:1, 1:2, 1:3}, for the generation of the

region suggestion frame. In addition, performing a set of

transformations using low-dimensional embeddings by

constructing bases in the base block, split-transform-merge

strategy can make the deep learning model learn more

features, which has been effective for the problem of color

interference between the surface vegetation and the canopy.
Frontiers in Plant Science 12
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The most important thing is there are two main distinctions

between the original Mask R-CNN architecture and our

proposed canopy detection and segmentation approach. This

is so that the RPN can generate more precise candidate boxes,

which is made possible by the PAFPN module’s ability to help

the backbone network gather features with rich low-level

information. Furthermore, the PointRend module ’s

combination of coarse- and fine-grained features enhanced the

segmentation accuracy of ground and canopy edges that have a

comparable color palette.

As shown in Figure 11, we visualized the process of

PointRend module in canopy image inference. During the

Inference process, each region is rendered by iterative coarse-

to-fine. In each iteration, PointRend upsamples the previous

segmentation result using bilinear differences, and then selects N

uncertain points from this result. This was equivalent to

purposefully selecting the N points that are difficult to

segment, then extracting the feature vectors, and classifying

them by MLP to get the new segmentation result, then up-

sampling by a factor of 2, extracting the uncertain points, and

then point prediction by MLP, and repeating this step until the

prediction is completed. PointRend optimized the task of

accurately recovering object edges during upsampling.
A

B

C

FIGURE 9

Some examples of canopy images of interferences. (A) Input of the detected raw image. (B) Mask loss curves. (C) Mask point loss curves.Yellow
rectangular boxes indicate details with significantly different test results.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1041791
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1041791
FIGURE 10

The visual results of stitching image.
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Therefore, MPAPR R-CNN effectively segmented under the

influence of shadows and surface vegetation and improved the

recognition accuracy of canopy edges.
4.2 Effectiveness, limitations of UAV in
orchard detectron and future
work directions

The instance segmentation method enhanced by Pointrend

in apple tree orchard situations was initially put out in this work.

Two researchers painstakingly annotated RGB photos of the tree

canopy for at least three days to create the data sets required to

train deep learning models. The labeling of individual branches

requires careful identification because of the severe branch

crosses that result from dense planting patterns. Additionally,

the canopy shadow cast by the sun on aerial photographs when it

is not directly overhead presents a difficult labeling challenge.

Inadequate illumination or a little swing of the drone during the

photo-taking process can further degrade the picture quality of

the final orthophoto image, in addition to the effects of

cloudiness or wind on the UAV. More crucially, the new
Frontiers in Plant Science 14
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research on precision management in orchards has shown

considerable promise for UAV gathering of photos with

excellent flying efficiency. Compared with UAVs equipped

with expensive multispectral or hyperspectral cameras for

canopy identification methods, carrying visible light cameras is

cost-effective and promising for large area applications.

We propose to focus on two topics of improvement in the

upcoming work plan. First, a study may be done using the multi-

spectral photos that the DJI P4 UAV captured. Multi-spectral

research on canopy segmentation and individual differences in

the tree canopy may be analyzed based on the chlorophyll

difference between the tree canopy and ground weeds. The

second is the study and development of quick and effective

orchard spraying tools based on low-altitude data fromUAVs on

orchard distribution and canopy differences, combined with

ground spraying and UAV plant protection technologies.
5 Conclusions

In this paper, a novel orchard canopy detection and

segmentation method based on the Mask R-CNN was
ED

A

B C

FIGURE 11

Example of inference image subdivision step. (A) The raw image used to visualize the inference process. (B) Course prediction. (C-E) Subdivision
step 1-3, the bilinear differential upsampling is performed successively at a rate of 2x.
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presented. By applying the PAFPN module and the PointRend

into the original Mask R-CNN framework, combined with the

improved anchor and ResNeXt, our well-trained model can

automatically detect and segment canopy in orchard with high

accuracy. It can be concluded that our algorithm could better

capture features of the canopy edges, it could improve the

accuracy of the edges of canopy segmentation results, which

addressed the over- and under-sampling issues encountered in

the pixel labeling tasks. It can be concluded that our algorithm

could better capture features of the canopy edges, it could

improve the accuracy of the edges of canopy segmentation

results. Our future work will be to extend MPAPR R-CNN to

many other UAV image applications.
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Institute of Technology, Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and
Rural Affairs, Nanjing, China, 5Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture
and Rural Affairs, Nanjing, China, 6Department of Biological and Agricultural Engineering, Texas
A&M University, College Station, TX, United States
In aerial spraying of plant protection UAVs, the continuous reduction of

pesticides is an objective process. Under the condition of constant flight

state (speed and altitude), the change of pesticide loading will inevitably lead

to the shift of lift force and rotor speed generated by UAV rotor rotation, which

will change the distribution of the rotor flow field and affect the effect of aerial

spraying operation of plant protection UAV. Therefore, the rotor speed of UAV

is taken as the research object in this paper, and the adaptive refinement

physical model based on the Lattice Boltzmann Method (LBM) is used to

numerically simulate the rotor flow field of the quadrotor plant-protection

UAV at different speeds. A high-speed particle image velocimeter (PIV) was

used to obtain and verify the motion state of the droplets emitted from the fan

nozzle in the rotor flow field at different speeds. The results show that, with the

increase of rotor speed, the maximum velocity and vorticity of the wind field

under the rotor increase gradually, the top wind speed can reach 13m/s, and

the maximum vorticity can reach 589.64s-1. Moreover, the maximum velocity

flow value is mainly concentrated within 1m below the rotor, and themaximum

vorticity value is primarily concentrated within 0.5m. However, with the

increase of time, the ultimate value of velocity and vorticity decreases due to

the appearance of turbulence, and the distribution of velocity and vorticity are

symmetrically distributed along the centre line of the fuselage, within the range

of (-1m, 1m) in the X direction. It is consistent with the motion state of droplets

under the action of the rotor downwash flow field obtained by PIV. The study
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results are expected to reveal and understand the change law of the rotor flow

field of plant protection UAVs with the dynamic change of pesticide loading to

provide a theoretical basis for the development of precise spraying operation

mode of plant protection UAVs and improve the operation effect.
KEYWORDS

plant protection UAV, dynamic load effect, lattice Boltzmann method (LBM), particle
image of velocity (PIV), the numerical simulation
Introduction

The application technology of plant protection unmanned

aerial vehicle (UAV) has the advantages of high operation

efficiency, low operation cost, and no limitation of operation

geographical area and crop growth, which is one of the key

technologies to realize the modernization of field management

(Dongyan et al., 2014; Yong et al., 2017). Early domestic

researchers initially focused on application operation

parameters and droplets deposition (Yuan-yuan, 2013; Shuai,

2014). Since 2016, the research scope of plant protection UAV

applications began to multiply and extend to other application

objects. For example, the distribution of spraying effect in the

citrus orchard was studied under different operating parameters

(Pan and Qiang, 2016); Study on spraying corn with droplets

using JF01-10 plant protection UAV in different growing stages

(Zheng et al., 2017); Study on wheat scab control by using DJI

T30 plant protection UAV (Tang et al., 2018). That can be seen

that plant protection UAVs have been widely used in modern

precision agriculture (Huang et al., 2013; Shahbazi et al., 2014;

Xiongkui et al., 2017; Chen et al., 2022). In particular, the

quadrotor plant protection UAV, the most important type of

plant protection UAV, has been effectively applied to prevent

and control diseases, insects and weeds in various countries (Jiyu

et al., 2018; Wang et al., 2019; Zhan et al., 2022).

Generally, in terms of studying the effect of droplets deposition

and distribution, field experiments mainly use materials such as

water-sensitive papers, Mylar sheets, Petri dishes and polyethene

wires to study the related parameters of wind field distribution

characteristics (Shengde et al., 2016; Xiaonan et al., 2017; Wang

et al., 2018; Wu et al., 2019). Through these materials, the droplets

in the vertical and horizontal planes can be collected in space

movement. Still, only the deposition effect of the pesticide droplets

can be observed, and the depositionmotion state andmechanism of

the droplets can not be directly revealed. The rotor wind field

generated by the plant protection UAV is the most critical factor

affecting aerial spray droplets deposition and distribution

characteristics in the gradual settlement of pesticide droplets

under the rotor wind field (Songchao et al., 2015; Songchao et al.,

2017). In recent years, some researchers have also used wireless
02
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wind sensor networks, ultrasonic anemometer arrays and

tensiometers to measure the change of instantaneous wind field

under the rotor to reveal the influence mechanism of the rotor

downwash wind field on droplets deposition (Jiyu et al., 2014a;

Zhang et al., 2016; Songchao et al., 2017; Wang et al., 2018; Tang

et al., 2019; Wu et al., 2019). In the whole process of aerial spraying

of plant protection UAV, with the continuous reduction of the

pesticide in the pesticide box, its mission load parameters are always

in a constant dynamic change process. Therefore, the effect of the

rotor wind field of plant protection UAV under dynamic load is

bound to differ (Jiyu et al., 2014a; Jiyu et al., 2014b; Shengde et al.,

2016; Chen et al., 2017). Nevertheless, the above research is only

focused on the hover state or a particular condition to test and

analyze, and the change of pesticide load in the actual operation

condition determines that the rotor wind field distribution is a

process of continuous change. Therefore, there are many

limitations; the above research results cannot directly reflect plant

protection UAV’s rotor wind field distribution transformation in

the whole operation process.

With the improvement of the computing power of computers

and the gradual improvement of the theory of fluid mechanics, the

cross combination of the two makes computational fluid dynamics

(CFD) widely in-depth into various fields. Especially in the field of

agriculture, computational fluid dynamics is often used to analyze

the wind field changes of UAVs in flight. Through the numerical

simulation method, the three-dimensional CFD model and two-

phase flow model were established to study the influence of the

downwash wind field of the plant protection UAV on the

movement trajectory and distribution of droplets (Junfeng et al.,

2017; Fengbo et al., 2018; Hao et al., 2019; Juan et al., 2019; Guo

et al., 2020). However, in these previous numerical simulation

studies, the complex structure of nozzle model is not accurate

enough due to the physical model of nozzle in the numerical

simulation. The physical model in numerical simulation can not

completely represent the real nozzle structure. Nonetheless, all these

studies provide specific references and guidance for the study of

wind field simulation of plant protection UAVs.

For wind field distribution models under complex

conditions, due to the inaccuracy of the physical model and

the weak computational force, many simulations will simplify
frontiersin.org
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the physical model and reduce the mesh density, resulting in

some deviations. For example, in the simulation of the rotor

wind field, the structure will be simplified, and the mesh density

will be reduced so that the motion state in the rotor wind field

can be obtained conveniently and quickly. The computational

fluid dynamics method based on the Lattice Boltzmann method

(LBM) has advantages in dealing with the complex model

boundary of UAV rotors (Fakhari and Lee, 2015; Sheng et al.,

2018). It can accurately deal with problems at both micro and

macro scales (Tang et al., 2020a; Zhang et al., 2020; Tang et al.,

2021; Wang et al., 2021). In addition, with the development of

image processing technology, particle image velocimetry (PIV)

has been applied to the analysis of spray under the rotor wind

field (Jin et al., 2014; Tang et al., 2020b). However, there are few

papers on the combination of numerical simulation and PIV

image analysis technology to study the downwash flow state of

the rotor wind field of plant protection UAVs under

dynamic load.

Therefore, this study is devoted to studying the changes in

the rotor wind field distribution of plant protection UAVs under

dynamic loads (at different rotor speeds) and focuses on

revealing the influence mechanism of rotor wind field on

droplet distribution characteristics of plant protection UAVs at

different rotor speeds. Because the Lattice Boltzmann method

has obvious advantages in dealing with complex boundary

conditions and non-stationary moving objects, XFlow software

is used to simulate the distribution of the downwash wind field

of the quadrotor plant protection UAV at different rotor speeds.

At the same time, because PIV has the characteristics of non-

contact, high measurement accuracy and fast processing speed,

PIV is used in this study to measure the spray changes of the

wind field under the rotor at different speeds. Through the

combination of the two, the conditions of the downwash wind

field and the velocity and vorticity of droplets under different

rotor speeds are compared. It is hoped that this study can help

researchers better understand the distribution characteristics of

rotor wind field at different rotor speeds and further reveal the

distribution characteristics and rules of droplet deposition under

the influence of rotor wind field in the dynamic load state of the

quadrotor plant protection UAV.
Materials and methods

Numerical simulation

Physical model
This paper takes the 410S quadrotor plant protection UAV

(Xiamen Land and Air Technology Co., LTD.) as the research

object. As one of the most representative models in the market at

present, the UAV has the functions of manual or semi-automatic

route flight, continuous spraying at break point, low voltage

protection and so on. The expansion size is 1075×1075×490mm.
Frontiers in Plant Science 03
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The folding size is 635×666×490mm, the UAV empty weight is

about 5kg (excluding the spraying system), the maximum takeoff

weight is 25kg, the rotor size is 30 inches, and the spraying is 1.3-

2 acres per sortie. The UAV is shown in Figure 1, and its main

parameters are shown in Table 1.

The detailed parameters of the Xiamen Land and Air

Technology Co., LTD. 410S quadrotor plant protection UAV

are listed in Table 1.

The UAV rotor is the essential component to generate the

rotor wind field, so it is essential to establish accurate 3D

modelling for it. Therefore, in order to accurately simulate the

wind field characteristics of the quadrotor UAV at different rotor

speeds, it is necessary to conduct a three-dimensional reverse

reconstruction of the rotor to establish the physical model of the

rotor. In this paper, a handheld 3D scanner N700 (CREAFORM

INC.) is used to scan the rotors in three dimensions to obtain the

point cloud data of each scanning surface of the rotors, as shown

in Figure 2A. Then Geomagic Studio software (Geomagic INC.)

is used to post-process each scanned surface point and

reconstruct the three-dimensional surface model of the rotor,

as shown in Figure 2B. The body, landing gear and other

components of the quadrotor UAV are based on surveying

and mapping technology dimensions. Autodesk Inventor
FIGURE 1

Quadrotor plant protection UAV.
TABLE 1 Parameters of the quadrotor plant protection UAV.

Parameters Technical index

Rotor diameter/m 1.4

Typical application speed/m·s-1 3-8

Rotor speed/rpm 0-3000

Load capacity/kg 10

Flight duration/min 8-10

Operate temperature/°C -25-50
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Profession (Autodesk INC.) is used to establish a three-

dimensional model. The complete three-dimensional model of

the constructed electric quadrotor plant protection UAV is

shown in Figure 2C.

Simulation calculation
Commonly used commercial Computational Fluid Dynamic

(CFD) software, such as Fluent (ANSYS Inc.) and CFX (ANSYS

Inc.), the dynamic mesh technique is usually used in dynamic

simulation to analyse the hydrodynamic characteristics of rotors

in a high-speed rotating motion. However, for complex

quadrotor model boundary cases, the mesh reconstruction in

the numerical simulation process usually consumes a large

amount of computational time, and it is easy to produce

negative volume in the calculation process, leading to

calculation errors. XFlow (Next Limit Dynamics S.L.) is a fluid

Dynamics simulation and analysis software based on the Lattice

Boltzmann method (LBM), which does not need to mesh the

model. It has advantages in solving complex boundary

conditions and three-dimensional flow field problems of non-

stationary moving objects. It can conveniently deal with fluid
Frontiers in Plant Science 04
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problems at micro and macro scales. Because this particle-based

calculation method does not require traditional grid division and

has high efficiency in the discretisation stage and accurate

calculation results, this paper adopts the LBM-based XFlow

software to simulate the downwash wind field of the quadrotor

plant protection UAV.
Simulation method
Xflow uses the LBM method, where the computation

domain is a uniform cube cell. The LBM is a mesoscopic

method, and the macroscopic Navier-Stokers equations can be

derived from the lattice Boltzmann equation according to the

Chapman-Enskog expansion. In many of the LBM models,

XFlow adopts a three-dimensional lattice structure as shown

in Figure 3, which includes 27 velocity vector directions

(D3Q27), 1 discrete velocity vector lattice body to zero point

in the centre, 6 discrete velocity vectors from the body of the

heart to the centre of the lattice decent, 12 discrete velocity

vector from body centre to lattice body midpoint, 8 discrete

velocity vectors from the centre of the body to the top Angle of

the lattice. Therefore, compared with the traditional LBM, there

are higher-order spatial discretisation modes.

In this method, the lattice-Boltzmann equation is selected as

the solution equation, and the lattice-Boltzmann transport

equation is discretized on the lattice as

fi x + ei, t + dtð Þ = fi x, tð Þ +Wi x, tð Þ (1)

Wi =
1
t fi − f eið Þ (2)

Where fi ——Particle velocity vector distribution function; ei
——The velocity of the particle in the i direction; dt——Time

step; fi(x,t) ——The velocity distribution function of the particle

in i the direction at x point at t time; wi—— Collision operator;

fi
e—— One particle equilibrium distribution function; t ——

Dimensionless relaxation parameter.

After the approximate simplification of the collision

operator, the equation is reduced to the Navier-Stokers

equation, which is the governing equation to describe the fluid

flow, and the fluid state with a low Mach number can

be displayed.
B CA

FIGURE 2

Three-dimensional model of quadrotor plant protection UAV.
FIGURE 3

D3Q27 lattice model.
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Boundary conditions
The fluid calculation domain set by simulation is a cuboid

with a space size of 12m×6m×20m. In the calculation domain,

the height of the quadrotor plant protection UAV from the

ground is 4m, as shown in Figure 4A.

By improving the spatial and temporal resolution of the

calculation domain, the flow field data parameters of the rotor

can be obtained more accurately to obtain the omnidirectional

irregular flow turbulence scale. Since the simulation of rotor

plant protection UAV focuses on the rotor surface, fuselage

surface and the wake of the downwash wind field of the UAV,

the global spatial refinement resolution size of the virtual wind

tunnel is set to 0.2m to save computing resources and shorten

computing time. The surface refinement method of the fuselage,

main rotor and tail is set as an adaptive method, and the

resolution of the fuselage and rotor is set as 0.05m. In order to

further demonstrate the characteristics of the wake of the

downwash wind field, the refinement space domain is set as

12m×6m×1m at the centre of the rotor, and the refinement

resolution of the wake of the downwash wind field is set as

0.025m. After the parameters are set, the automatic discretisation

effect diagram of numerical simulation is shown in Figure 4B. The

motion characteristics of the four rotors are set to be rigid and

rotate around the Y-axis of their respective coordinate systems.
Frontiers in Plant Science 05
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In order to obtain the movement law of the quadrotor UAVs

in the downwash field, numerical simulation analysis is carried

out for the quadrotor UAVs in hovering state at different speeds

of 1000rpm, 1500rpm, 2000rpm and 2500rpm. Because the rotor

of the quadrotor plant protection UAV will produce velocity

flow and vortex in the process of rotation, in order to analyse this

phenomenon, the simulated phase diagram of two rotors of the

quadrotor UAV in a hovering state is selected for analysis.

PIV experimental

UAV system platform
The UAV rotor used in the test is fixed on the plant

protection UAV rotor platform, designed and manufactured

by the Nanjing Institute of Agricultural Mechanization. The test

platform mainly includes the rotor system, spray system, control

system and lifting device. The main body of the test platform is

composed of aluminium alloy profiles, which are suspended

under the gantry frame. There are three adjustable attitudes

ranging from -30°∼30°, which can support using multiple

UAVs, such as quadrotor, six-rotor and eight-rotor. The rotor

system is specially customized for the test platform. The motor

speed of the moving platform is controlled by the ground station

software in real-time to achieve the corresponding wind field test
BA

FIGURE 4

Fluid calculation domain and Discrete division of the computational domain.
BA

FIGURE 5

Plant protection UAV test platform.
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effect. At the same time, the parameter information of the

platform can be monitored in real time, and the test data can

be saved. The quadrotor structure is used in the test, and the

height of the rotor is about 2m above the ground. The UAV

system platform is shown in Figure 5.

Details of power system of plant protection UAV are shown

in Table 2 below:

The spray system of the platform is installed next to the

gantry frame and consists of a water pump and a control system.

The spray system supports the hydraulic nozzle and centrifugal

spray nozzle. The pressure range is 0∼1.2MPa, the flow range is

0~2L/min, and the spray time is automatically controlled. In this

experiment, a fan-shaped 110-02 nozzle designed and

manufactured by Lechler is used to produce droplets with an

average volume diameter of 120mm. Because the relative density

and size of droplets meet the particle requirements required by

the PIV test, the droplets produced by the sprinkler head can be

directly used as tracer particles for the PIV test. Meanwhile, the

nozzle is installed 35cm below the rotor.

PIV system

Because the rotor vortex caused by the downwash wind field

of the quadrotor plant protection UAV is aperiodic, the PIV
Frontiers in Plant Science 06
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device is selected as the measurement tool to measure the fluid

domain. PIV technology is a transient, multi-point, non-contact

fluid dynamics measurement method, which can record the

velocity distribution information of particles at a space point

at the same time, provide abundant spatial structure and flow

characteristics of the flow field, and has very high measurement

accuracy. The PIV system consists of high-speed cameras

(2048*2048, 32 FPS; TSI Incorporated, USA), a pulsed laser

(380 mJ/pulse, wavelength = 532 nm; TSI Incorporated, USA),

etc. The laser generated by the pulsed laser is combined through

an optical system composed of a cylindrical mirror and a

spherical mirror to generate a slice light source with a waist

thickness of about 1 mm. The frame rate is resized according to

the actual situation. In this experiment, the schematic setting of

the whole PIV system experiment is shown in Figure 6.

A 50mm lens is used to generate a large enough field of view

to capture the motion state of the flow field particles, which is the

evolution of particles scattering from the nozzle into the air. The

movement of droplet particles in the wind field under different

rotor speeds is captured by setting Mask, as shown in Figure 7. In

this experiment, the pulse width of the YAG laser pulse is 3-5ns,

the time interval of two laser beams is 50ms, the time series

between two pictures is 0.025s, and the maximum distance of

particle movement is less than 1mm. Therefore, the query

window is set to 36*36 pixels (a 4.6×4.6mm square) to ensure

that the particle moves less than a quarter of the query window

length, and the overlap rate is set to 50×50mm.

The results of PIV are obtained by obtaining the average

value of flow field data from multiple consecutive double-frame

images when the rotor speed is 0, 1000rpm, 1500rpm, 2000rpm

and 2500rpm, respectively. Based on its high sampling
TABLE 2 Power system parameters of plant protection UAV.

Parameters Technical index

Rotor diameter/m 1.4

Rotor speed/rpm 0-3000

Operation duration time/min 10-15

Operate height/m 1-3
FIGURE 6

Schematic diagram of the experiment.
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frequency, the turbulent kinematic energy is calculated from the

two position components of the velocity fluctuation as follows:

k =
1
2

u 02 +v 02
� �

Where u ′ i s the hor izonta l component , v ′ i s the

vertical component.

Insight 4G software is used to obtain two consecutive

instantaneous AB frames spray images, analyze the flow field

in the images, and generate the original data. Tecplot software is

used to obtain the image data to generate the velocity vector

map. The resolution of these images is 2048*2048 pixels. The

nozzle is located at (0,0) in the coordinate system, and the rotor

is located directly above the nozzle. Because the laser beam

irradiates the droplet field from the right and the droplets have a

refraction effect, the light on the left side is weaker than that on

the right side, so the effect on the right side of the whole droplet

field is obviously stronger than that on the left side, but the

actual effect should be consistent. According to the rotor speed

used in the numerical simulation analysis, the corresponding

rotor speed of 1000rpm, 1500rpm, 2000rpm and 2500rpm is also

selected for the PIV test to observe the influence of the wind field

below the rotor on the droplet velocity flow and vortex in the

test. The velocity and vorticity motion of droplets under the

action of the wind field is analyzed.
Frontiers in Plant Science 07
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Results and analysis

Numerical simulation of rotor flow field

Distribution of rotor velocity under
numerical simulation

The rotor speeds studied in the test are respectively

1000rpm, 1500rpm, 2000rpm and 2500rpm. Therefore, 3s and

5s at different times are selected to study the distribution of flow

fields at different rotor speeds to compare the differences of flow

fields. Figure 8 is the velocity state phase diagram of the

downwash wind field at 3s and 5s when the rotor speed of the

quadrotor plant protection UAV is 1000rpm, 1500rpm,

2000rpm and 2500rpm, respectively. As can be seen from

Figures 8A1-D1, with the increase of rotor speed, the speed

value under the rotor of the quadrotor UAV gradually increases,

with the maximum value increasing from 7.6m/s at 1000rpm to

15.7m/s at 2500rpm. Due to the presence of turbulence, the

velocity core area under each rotor (velocity greater than 10m/s)

also gradually breaks apart, forming four distinct velocity core

areas. At the same time, a very low value of local velocity occurs

just below the centre of each rotor in the process of rotor

rotation. Furthermore, with the increase of rotor speed, the

situation of extremely low local velocity becomes more apparent.

By observing Figure 8A1 and Figure 8A2, it is found that when

the rotation speed is 1000rpm, the situation of the very low local

speed is not apparent, indicating that the quadrotor plant

protection UAV is still in the relatively initial state when it is

actually 1000rpm and has not reached the stable flight state.

As shown in Figures 8A2-D2, with the increase of rotor speed,

the maximum speed under the rotor of the quadrotor UAV varies

from 7.9m/s at 1000rpm to 14.6m/s at 2500rpm. This shows that

the quadrotor plant protection UAV does not reach a stable flight

state at 1000rpm while the maximum speed under the rotor

decreases at 2500rpm. The reason for the decrease is that the

velocity flow field under the rotor gradually diffuses around and

becomes more widely distributed after a period of development. In

addition, part of the wind bouncing on the ground also rises, which

offsets the downwash wind, so the downwash force is weakened,

and the maximum speed is reduced(as shown by the red arrow in

the figure). By observing Figure 8, it can be seen that the contraction

distortion of the velocity core area caused by the rotor is not

apparent when the rotational speed is 1000rpm and 1500rpm in the

figure. However, the contraction distortion of the velocity core area

under the rotor is noticeable when the rotor speed is 2000rpm and

2500rpm. It indicates that the quadrotor plant protection UAV

basically reaches a stable flight state when the rotor speed is

above 2000rpm.
FIGURE 7

Image of droplets distribution in the downwash flow field of the
nozzle under the rotor. (The red particles are the droplets
irradiated by the laser, and the dashed box is the set Mask flow
field analysis area).
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FIGURE 8

Rotor velocity distribution at different speed and time.
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FIGURE 9

Rotor velocity distribution at a different time and 2500rpm.
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Because the flow field has just reached the ground and

generated turbulence at 3s and the flow field is formed at 5s

when the rotor speed is 2500rpm, the rotor speed is 2500rpm for

analysis. Figure 9 is the speed state phase diagram of the

quadrotor plant protection UAV at 1s, 3s, 5s and 7s when the

rotor speed is 2500rpm. It can be seen from Figures 9A-D that a

jellyfish-like wind field with the speed decreasing from the

fuselage has been generated around the quadrotor plant

protection UAV at 1s. The maximum wind field at each time

is 14.8m/s, 15.7m/s, 14.6m/s and 14.9m/s respectively. Thus, it

can be seen that the wind field initially acts together in the high-

speed area formed above the rotor, integrates with each other,

diffuses to the top of the whole fuselage, and rapidly decreases

from the fuselage to the surrounding areas. The velocity core

area has been formed just below the rotor at 1s. With the gradual

downward development of the wind field, the tail is broken more

violently in the development process, strong turbulence appears

below, and the influence range gradually increases downward.

The flow field has reached the ground, and the maximum speed

of the wind field also reaches the highest at this moment, which

is 15.7m/s at 3s. Then the wind field, due to contact with the

ground, collision with the ground, rebound and spread around, a

violent turbulent phenomenon occurred(as shown by the red

arrow in the figure). The maximum speed gradually reduced,

kept below 15 m/s. It can be seen that with the increase of time,

the velocity flow field under the quadrotor UAV gradually

diffuses downward, and the range of the flow field gradually

increases. After bouncing with the ground, the airflow is

absorbed by the low pressure generated by the high-speed

airflow, and the spiral airflow is gradually formed in the

vertical space. Taking the centre line of the fuselage as the axis

of symmetry, the flow field is about in the x-direction (-1m, 1m).
Frontiers in Plant Science 09
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At the same time, from the perspective of flow field

development, the velocity flow field is basically developed and

formed around 5s.

According to Figures 8, 9, when the rotor of the quadrotor

UAV rotates, the velocity core area generated by the two rotors

with opposite rotation directions is basically symmetric, and the

overall posture of aggregation, contraction and downward

pressure is presented after the development and formation.

The local extremely low velocity under the rotor becomes

more obvious with the increase of rotor speed. As the distance

from the rotor increases, the velocity core area generated by the

downwash wind field under the rotor gradually decreases, and

the distance of about 1m below the rotor basically disappears.

Distribution of rotor vorticity under
numerical simulation

Figure 10 is the cross-sectional phase diagram of the vortex

state of the quadrotor plant protection UAV at the hover time of

1s, 3s, 5s and 7s when the rotor speed is 2500rpm. First of all, it

can be seen from Figure 10 that the maximum vorticity at each

moment reaches 337s-1, 376s-1, 304s-1 and 343s-1 respectively,

showing that the maximum vorticity rises first and then

decreases. The maximum vorticity around the rotor has

reached 337s-1 at 1s, and the vortex on the rotor surface is

concentrated and distributed around the rotor. Second, the

vortex moves down in a vertical direction under each rotor.

Due to the contraction distortion characteristic of the wingtip

vortex, the contraction effect is induced by the following wake

vortex. After leaving the rotor surface, the vortex gradually

shrinks. Under the coupling effect of the vortex, the rotor

vortex is damaged and eventually forms turbulence. As shown

in Figure 10, with the fuselage centre line as the axis of
B
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FIGURE 10

Distribution of rotor vorticity at different times and 2500 rpm.
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symmetry, the main vortex field is about in the x-direction

(-1m, 1m).

With the passage of time, the maximum vorticity reaches

376s-1 at 3s. Then the larger value of vorticity begins to decline

and mainly concentrates within 0.5m below the rotor. At the

same time, the rest parts gradually move further below the rotor

and contain larger vorticity. Larger vorticity may even appear

within 2m below the rotor and then be destroyed by coupling,

resulting in turbulence. However, the vorticity beyond 2m below

the rotor is small and basically exists in the form of turbulence.

This indicates that the quadrotor plant protection UAV produce

a strong enrolling effect within 1m below the rotor and the

enrolling effect is weaker, followed by 1m-2m. At the same time,

in the vertical direction, the spiral vortex decreases with the

increase of the distance from the rotor.

Since the velocity field at 3s and 5s time is mainly observed

and analyzed in the wind field analysis, and a similar flow field

also appears in the vortex field, this paper also analyze the vortex
Frontiers in Plant Science 10
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at various speeds at 3s and 5s time. Figure 11 is the vortex state

phase diagram of the downwash wind field at 3s and 5s when the

rotor speed of the quadrotor plant protection UAV is 1000rpm,

1500rpm, 2000rpm and 2500rpm, respectively. As shown in

Figures 11A1-D1, the vorticity also increases, and the vortex

changes more violently with the increase of rotor speed. In

Figure 11A, the vortex within 1m below the rotor shows

apparent symmetry, showing a relatively stable state as a

whole. In the range of 1m-2m below the rotor, relatively

chaotic turbulence is generated due to the coupling effect of

the rotor vortex. In the range of 2m to 4m below the rotor, the

turbulent effect is more apparent, and the vortex has a strong

irregular movement. At the same time, the symmetrical vortex

generated by the rotor decreases obviously with the increase of

rotor speed. When the time is 3s, the symmetric vortices with the

rotation speed of 1000rpm, 1500rpm, 2000rpm, and 2500rpm

mainly appear within 1m, 0.8m, 0.6m, and 0.5m below the rotor,

respectively. The maximum vorticity under the rotor also
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FIGURE 11

Distribution of rotor vorticity at different speeds and different times.
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changes from 216s-1 at 1000rpm to 376s-1 at 2500rpm with the

increase of rotor speed.

Although part of the vortex symmetry is still maintained in

Figure 11A2 compared with Figure 11A2, the maximum vorticity

under the rotor is 213s-1 in Figure 11B2, and the vortex is greatly

disorganized. In Figure 11B2, the vortex under the rotor even

appears to have temporary disconnection. As seen from

Figure 11B1, the maximum vorticity becomes 170s-1 with the

increase of time at 1000rpm. This indicates that the vortex of the

quadrotor plant protection UAV developed with time at this

speed appeared disorder after reaching the ground at 3s. By

observing the vortex state of 1500rpm, 2000rpm and 2500rpm
Frontiers in Plant Science 11
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at 5s, the maximum vorticity of 1500rpm and 2000rpm at 5s is

246s-1 and 283s-1, respectively, which also shows a certain degree

of disorder, but the degree of influence gradually decreases. The

vortex state at 2500rpm appears more stable and develops more

stably than 3s. By comparison, it can be seen that the greater the

rotor speed, the longer the vortex needs to reach relative stability.

According to Figures 10, 11, when the rotor of the quadrotor

UAV rotates, the vortices generated by the two rotors with

opposite rotation directions are basically symmetric, and the

overall posture of aggregation, contraction and downward is

presented after the development and formation. Moreover, the

greater the rotational speed, the longer it takes for the vortex to
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FIGURE 12

Average droplet velocity field at different rotor speeds.
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reach a relatively stable state. At the same time, with the increase

of the distance from the rotor, the vorticity gradually decreases,

and the enrolling effect of the larger vortex group is mainly

concentrated within 1m below the rotor.
PIV experiment of the rotor flow field

Distribution of rotor velocity under the
PIV experiment

As shown in Figure 12, they are the droplet velocity fields at

rotor speeds of 0, 1000rpm, 1500rpm, 2000rpm and 2500rpm,

respectively. Figure 12A shows that the expanding state of

droplets is mainly distributed in the sector. The effective range

of droplets greater than 16 m/s (defined as high-speed) in the

sector area is mainly distributed in the sector area of X (-70, 100)

Y (0, -150), while the regional velocity in other areas is mainly in

the range of 6-16 m/s (defined as medium-speed). The droplet

velocity in the lower right corner is mainly below 6 m/s (defined

as low-speed), which has been shown by curves in the figure of

each area. There are medium-speed droplets in the air in the

upper left and upper right corners and much turbulence. As

the speed increases to 1000rpm (Figure 12B), compared with the

wind field without downward pressure in Figure 12A, under

the influence of the downwash wind field generated by the rotor,

the speed and range of action of the droplets in the sector area

have changed significantly. The turbulence pattern in the upper

left and upper right corners shows a particularly significant

change. The number of droplets decreases, and the velocity

decreases significantly to almost zero. Under the nozzle, not only

the velocity value but also the high-speed range of the droplets

increases significantly. The high-speed area near the nozzle is

shaped as a half ellipse with a long axis perpendicular to the Y-

axis. The fan distribution of droplets generated by the nozzle is

more obvious. The effective range of the high-speed area of

droplets is mainly distributed in the fan area of X (-70, 90) Y (0,

-140), the effective range of the medium-speed area decreases,

and the low-speed area in the lower left and right corners

increases. On the edge of both sides of the sector area, there

are apparent channels of medium-speed droplets layer between

the high-speed area and the air.

It can be seen from Figures 12C-E that with the increase of

rotor speed, the downward pressure wind field is gradually

enhanced, and the droplet high-speed area under the rotor

contracts, obviously. Not only does the high-speed zone

contract, but the droplet velocity decreases gradually. The

effective range distribution of the high-speed zone gradually

contracts from X (-65, 90) Y (0, -130) to the sector of X (-55, 85)

Y (0, -110). In addition, the core area of the high-speed zone

below the nozzle is the most obvious situation: the droplet area

and velocity decrease. Even the core area is mostly disconnected

from the surrounding area of the high-speed area (Figure 12E).

At the same time, the low-speed area in the lower left corner and
Frontiers in Plant Science 12
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lower right corner of the area in the figure gradually increases

with the increase of rotor speed, especially the expansion in the

lower right corner is the most obvious.

By comparing the conditions in the high-speed area of each

droplet velocity field in Figure 12, it can be found that the

droplet velocity in the central area of the sector in the high-speed

area tends to decrease successively. This trend not only indicates

that the number of droplets is more concentrated in the unit

volume, which causes the laser coming from the right side to be

refracted more and weakens the intensity of the laser on the left

side but also indicates that under the action of the wind field

under the rotor, the speed of the droplets emitted from the fan

nozzle weaken with the increase of the rotor speed. The

expansion of the low-speed zone between the lower left corner

and the lower right corner also proves that the droplet velocity

from the fan nozzle weakens with the increase of rotor speed.

Similarly, Figure 13 shows the number distribution of

droplets in different rotor speed intervals. Figure 13A shows

that the maximum droplet velocity is about 18 m/s, and there are

mainly two peaks in the quantity distribution of droplet velocity.

The peak with the most significant number occurs in the interval

of 8.5-9.5 m/s, followed by the interval of 15.5-16.5 m/s. The

speed of droplets is primarily concentrated in the medium speed

interval of 6-16 m/s, followed by high speed and low speed.

Figure 13B shows the distribution of droplet velocity when the

rotor speed is 1000rpm, and the maximum droplet velocity is

about 19 m/s. With the appearance of the downwash wind field

under the rotor, the maximum droplet velocity does not increase

significantly, but the peak value of the number distribution of

droplet velocity changes. However, the peak value of the

medium-speed area becomes more. At the same time, a large

number of low-speed droplets also appears in the low-speed area

where there are only a few droplets, and the peak value is

generated. The peak value of the medium-speed area is mainly

distributed in the interval of 7-9 m/s, 11-12 m/s, 13.5-14.5 m/s,

and 15-16 m/s, while the peak value of the low-speed area is

mainly in the interval of 0.5-1.5 m/s.

Figures 13C-E show the quantity distribution of droplet velocity

at 1500rpm, 2000rpm and 2500rpm of rotor speed, respectively. It

can be seen from the figures of 13c and 13d that when the rotor

speed is 1500rpm and 2000rpm, the maximum speed of the droplet

field is basically 19m/s. However, in Figure 13E, when the rotor

speed is 2500rpm, the maximum speed of the droplet field is only

18m/s, indicating that the droplet field is affected by the increase of

the rotor speed. The maximum velocity of the droplet field is also

weakened. At the same time, compared with Figure 13B, the total

droplet velocity in the high-speed area decreases, and two apparent

peaks appear in the medium-speed area. In addition, by comparing

the medium-speed intervals of Figures 13C-E, it can be found that

the peak value of themedium-speed zone extends from the intervals

of 8-9 m/s and 15-16m/s in Figure 13C to 6.5-8 m/s and 13.5-16m/

s, respectively, indicating that the number of droplets in the

medium-speed zone gradually increases and the effect of wind
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field downward pressure is obvious. At the same time, it can also be

seen from the figures of the three, the number of droplets in the

low-speed area also increases significantly. The number of droplets

in the low-speed area with the speed toward zero concentration is

the most obvious, especially in Figure 13E.

As seen in Figure 13, the speed in the overall droplet field is

weakened due to the generation of the rotor wind field.

Furthermore, with the increase of rotor speed, it can be seen that

the droplet velocity in the low-speed area gradually concentrated at

0, and the turbulence in the whole study area basically disappear.
Frontiers in Plant Science 13
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Due to laser refraction caused by the concentration of the number

of droplets on the right side, the droplets in the left area are not

sufficiently obtained, and the velocity data are not apparent. Because

of this, the peak value of the total number of droplets in the

medium-speed area gradually tends to both sides of the medium-

speed area, which makes two prominent peaks appear in the

medium-speed area, which should be relatively gentle.

In conclusion, it can be seen from Figure 12 that the high-

speed area generated at the nozzle location is obviously different

due to the downwash wind field caused by the increase of rotor
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FIGURE 13

Quantitative distribution of average droplet velocity at different rotor speeds.
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speed. With the increase of rotor speed, the downwash wind field

is gradually strengthened, and the high-speed area at the nozzle

is gradually contracted and decreased. At the same time, the total

spray angle of the nozzle is gradually reduced, and the number of

droplets in the sector area is gradually concentrated. The high-

speed area gradually decreases, and the low-speed area gradually

expands in the whole spray sector area. As can be seen from

Figure 13, the maximum velocity of droplets in the sector area is
Frontiers in Plant Science 14
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19 m/s, which is basically unchanged. When the total number of

droplets in the high-speed area is 1000rpm, the number of

droplets in the high-speed area is the largest, and the number

of droplets in the high-speed area gradually decreases with the

increase of the rotor speed. The number of droplets in the

medium-speed zone and low-speed zone increases obviously.

The turbulent conditions in the upper left and upper right

corners disappear.
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FIGURE 14

Average droplets vorticity field at different rotor speeds.
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Distribution of rotor vorticity under the
PIV experiment

Figure 14 shows the vortex field of the nozzle droplet at

different rotor speeds. Figure 15 shows droplet vortex size and

quantity distribution at different rotor speeds.

Through the vortex analysis of Figure 14, it can be seen that

positive vortex and negative vortex cross in the droplets field,

and it can be clearly seen that the left side of the droplets field is

dominated by negative vortex, and the right side is dominated by

positive vortex. Through numerical analysis of the vortex field, it
Frontiers in Plant Science 15
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can be seen that in Figure 14A, the extreme values of the vortex

in the droplets field are -449.14s-1 and 819.02s-1 respectively.

However, under the effect of the rotor wind field, the extreme

value here changes. In Figure 14B, the extreme value of the

vortex in the droplets field changes to -502.91s-1 and 463.75s-1.

Compared with Figure 14B, the positive vortex in the droplets

field has significantly changed and decreased by 355.27s-1, while

the negative vortex in the droplets field has slightly changed and

only increased by 53.77s-1. In Figures 14C, 14D, the extreme

value of the negative vortex in the droplets field decreases, both

of which are around -485s-1. The extreme value of the positive
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FIGURE 15

Quantity distribution of the average droplet vorticity at different rotor speeds.
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vortex in Figure 14C reaches 589.64s-1, while the extreme value

of the positive vortex in Figure 14D reaches 478.32s-1, decreasing

by 111.44s-1. In Figure 14E, the extreme values of the droplet

field are -597.93s-1 and 463.27s-1 respectively. Compared with

Figure 14D, the positive vortex in the droplets field decreased by

15.05s-1, while the negative vortex in the droplet field changed

greatly and increased by 113.51s-1.

The vortex between (-500, 500) are selected as the X-axis,

and the number of vortex under different vorticity is selected as

the Y-axis for analysis in the Figure 15. As can be seen from

Figure 15A, the total number of vortex in the range of (-100, 0)

exceeds 1000. After the rotor wind field is generated, as shown in

Figure 15B, the range of the total number of vortex exceeding

1000 changes to (-100, 50), and the range is expanded. In

Figure 15C, the range where the total number of vortex

exceeds 1000 remains basically unchanged. However, it can be

seen from Figure 15D that the range of the total vortex exceeding

1000 becomes smaller, and only the range (-50, 0) exceeding

1000. However, from the whole of Figure 15D, the droplets are

more concentrated on both sides of the 0 vortex. In Figure 15E,

the range of vortex exceeding 1000 is mainly concentrated in the

range (-100, 50), but the total number of vortex in this range is

somewhat reduced compared with that in Figure 15B.

According to the combination of Figure 14 and Figure 15,

the left side of the droplets field is dominated by negative vortex,

while the right side is dominated by positive vortex. With the

increase of rotor speed, the extreme value and number of vortex

in the droplets field change in different degrees. The negative

vortex in the droplets field increases first, then decreases and

then increases, while the positive vortex decreases first, then

increases and then decreases. Compared with the vortex under

the effect of no wind field, the maximum value of negative vortex

under the effect of rotor wind field is reduced by 148.79s-1, while
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the maximum value of positive vortex is reduced by 355.27s-1.

Meanwhile, it can be seen from Figure 15 that under the effect of

no wind field, the majority of vortex near 0 in the vortex field are

negative vortex. However, with the increase of rotor speed, the

number of positive vortex near 0 and negative vortex is

gradually equal.
Discussion

In this paper, the droplet velocity distribution at four

different horizontal levels (Y=50mm, 100mm, 150mm,

200mm) of the coordinate system in PIV image is selected for

comparative analysis and research with wind field velocity at

four different horizontal levels corresponding to the coordinate

system in numerical simulation. The schematic diagram of

horizontal level selection is shown in Figure 16. In this study,

the data under each level are averaged to obtain the average

value. In the numerical simulation test, the data at the time of 3s

is selected for analysis. In the data of PIV experiment, the

vertical velocity data is selected as the analysis sample. Thus,

the mean value and variance results of PIV test and numerical

simulation are shown in Table 3, and the change trend of the

mean value of PIV and numerical simulation is shown

in Figure 17.

As can be seen from the Figure 17, with the increase of rotor

speed, the average velocity of the wind field in the numerical

simulation test shows an overall trend of increase, while the

average velocity of droplets in the PIV test shows an overall

trend of decrease, indicating that the wind field significantly

reduces the average velocity of droplets. As can be seen from the

Figure 17, in the numerical simulation test, the wind speed of

four levels at each rotor speed has little difference.

However, in the PIV test, there is a large difference in droplet

velocity under different levels. The average velocity of droplets at

the level of Y=200 mm is the minimum, while the average

velocity of droplets at the level of Y=100 mm is the maximum,

even exceeding the average velocity of droplets at the level of

Y=50 mm. This is because at the level of Y=50mm, the velocity

of some droplets is close to 0 and the velocity variance is about

5.3, while at other levels, the velocity variance of droplets is

about 2.6, thus dragging down the overall average velocity.

Meanwhile, it can also be seen from Figure 17 and Table 3

that the wind speed generated by the wind field increases

gradually on the whole with the gradual increase of rotor

speed. However, when the rotor speed is 1000rpm, the speed

in the wind field is higher than that when the rotor speed is

1500rpm. According to the analysis results of the speed value,

the variance of the speed value is smaller than that of other

speeds when the rotor speed is 1000rpm. This indicates that

when the rotator speed is 1000rpm, the vortex in this range is

small and the velocity value is relatively uniform. Combined

with the PIV test results, it can be seen that the variances of PIV
FIGURE 16

The schematic diagram.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1087636
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chang et al. 10.3389/fpls.2022.1087636
droplet speeds at these two speeds are also very close, indicating

that the PIV test data can effectively reflect the accuracy of the

numerical simulation. When the rotor speed in the numerical

simulation exceeds 2000rpm, the droplet velocity in the PIV test

decreases significantly, and the rotor downwash wind field has a

significant influence on the movement velocity of droplets at all

levels. Although the speed at the level of Y=200mm in numerical

simulation is the smallest compared with other levels, combined

with the change of droplets in PIV test, it has a certain influence

on the droplets at the level of Y=200mm. Combined with the

above analysis, it can be seen that this is because the numerical

simulation of the wind field at Y=200mm began to appear a
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certain degree of vortex, which reduced the movement speed

of droplets.

Through the above analysis, it can be seen that in the

numerical simulation, the speed is relatively stable at 1000rpm

and 1500rpm. Under these two rotor speeds, the droplet

velocities at all levels in PIV are also basically stable, which

proves that the droplet velocity under PIV test can effectively

verify the reliability of the numerical simulation. At the same

time, when the rotor speed exceeds 2000rpm, the speed in the

numerical simulation increases significantly. Correspondingly,

the droplet velocity in PIV test all decreased to varying degrees,

among which the droplet velocity change was most obvious at

the level of Y=200mm. Therefore, combined with the above

analysis, PIV test can effectively verify the validity of the

numerical simulation results.

At present, the mechanical analysis of droplet velocity and

vorticity variation has not been effectively and comprehensively

verified. In this paper, PIV test is used to effectively analyze the

motion state of droplets field under the action of wind field. By

analyzing the distribution of velocity flow and vortex in droplet

field, it is concluded that under the action of wind field of rotor,

the velocity of droplet is reduced, while the vortex shrinks and

the vorticity increases. PIV test can reflect the reliability of

numerical simulation results from the side. The downwash

wind field of plant protection UAV is very complicated, and it

has a very important influence on the deposition and drift of

droplet. Therefore, based on the actual operation of plant

protection UAVs, this paper expounds the influence

mechanism of rotor wind field of plant protection UAVs on

droplets distribution characteristics under different rotor speeds

based on the distribution characteristics of rotor wind field

under dynamic load (at different speeds), providing references

for researchers in this field.
TABLE 3 The mean value and variance results of PIV test and numerical simulation.

Rotor Speed/rpm
Y=50mm Y=100mm Y=150mm Y=200mm

Mean SD Mean SD Mean SD Mean SD

PIV

1000 9.9 5.32 11.35 2.65 9.17 2.56 6.96 1.74

1500 9.75 5.31 11.38 2.61 9.03 2.61 7.06 1.68

2000 9.53 5.22 11.8 2.93 8.37 2.51 6.03 1.43

2500 8.91 5.50 10.99 2.84 8.19 2.61 6.1 1.53

Sim

1000 4.54 1.91 4.56 1.79 4.61 1.82 4.20 1.86

1500 4.45 2.24 4.26 1.99 4.20 1.86 3.92 1.72

2000 5.25 2.70 5.52 2.95 5.38 3.30 4.63 3.35

2500 6.27 2.35 6.68 2.75 6.63 1.86 5.81 2.30
fr
FIGURE 17

The change trend of the mean value of PIV and numerical
simulation.
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Conclusion

The XFlow software was used to simulate the downwash

wind field of the quadrotor plant protection UAV at different

rotor speeds, and the particle image velocimetry (PIV) was used

to measure the motion state of droplets at different rotor speeds.

The main findings of this experiment are summarized as follows:

The experimental results of numerical simulation show

that the maximum velocity and vorticity of the downwash field

under the rotor increase with the increase of rotor speed.

However, with the increase of time, turbulence is generated,

and the maximum values of the downwash wind velocity and

vorticity decrease. The velocity flow field under the rotor

becomes more widely distributed. In addition, the velocity

flow and vortex under the rotor are symmetrically distributed

in the centre line of the fuselage, mainly distributed in the

range of (-1m, 1m) in the X direction. The larger value of

velocity flow is mainly concentrated in the area within 1m

below the rotor, and the vortex is mainly concentrated in the

area within 0.5m.

The results of the PIV test show that with the increase of

rotor speed, the total spray angle and the high-speed area of the

spray area gradually shrink and decrease under the action of the

downwash wind field, while the low-speed area in the spray area

gradually expands. In addition, the maximum velocity of droplet

particles under the rotor wind field is 19m/s. The number of

droplet particles decreases gradually in the high-speed area,

while the number of droplet particles increases gradually in

the medium-speed area and low-speed area. When there is no

downwash wind field, there is a lot of turbulence in the fan

droplet area, and the maximum vorticity is the 819.02. But under

the effect of the downwash wind field produced by the rotor, the

vortex is contracted. Under the effect of no wind field, most of

the eddies near 0 are negative vortex in the vortex field, but with

the increase of rotor speed, the number of positive vortex near 0

and negative vortex is gradually equal.

Through comparative analysis of the PIV test and numerical

simulation results, it can be seen that the maximum speed of the

numerical simulation wind field in the area within 0.5m below

the rotor reaches 15.7m/s. In the PIV test, the speed of the

droplet in the droplet field in this range is about 18 m/s under

the action of the nozzle pressure, and the speed of the turbulent

droplet in the upper left and upper right corner outside the

sector area is about 8m/s. Due to the increase of rotor speed and

the enhancement of the downwash wind field, the turbulence

disappears in the upper left and upper right corners of the sector

area, and the number of low-speed droplets increases in the

lower left and right corners of the sector area in the PIV test,

which indicates that the PIV test results effectively verify the

reliability of the numerical simulation results.
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