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Papillary renal neoplasm
with reverse polarity: A
clinicopathological and
molecular genetic
characterization of 16
cases with expanding the
morphologic spectrum
and further support for a
novel entity

Miaomiao Shen", Xiaona Yin*, Yanfeng Bai®, Huizhi Zhang®*,
Guoqing Ru?, Xianglei He?, Xiaodong Teng®,

Guorong Chen® and Ming Zhao™*

tCancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s
Hospital, Hangzhou Medical College, Hangzhou, China, ?2Department of Pathology, Hangzhou
Women's Hospital, Hangzhou, China, *Department of Pathology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China, *Department of Pathology, Ningbo

Diagnostic Pathology Center, Ningbo, China, *Department of Pathology, The First Affiliated
Hospital, Wenzhou Medical University, Wenzhou, China

Papillary renal neoplasm with reverse polarity (PRNRP) is a recently described,
rare renal tumor that differs clinically, morphologically, and molecularly from
papillary renal cell carcinoma (RCC). To further characterize the pathological
spectrum of this rare tumor, in this study, we retrospectively identified 16 cases
of PRNRP from three institutions to comprehensively investigate the
clinicopathological and molecular genetic features, using
immunohistochemistry (IHC), fluorescence in-situ hybridization (FISH), and
targeted next-generation sequencing (NGS). The patients included nine men
and seven women, with age ranging from 47 to 80 years (median = 67.5 years,
mean = 65 years). The tumor size ranged from 0.4 to 9.5 cm in the greatest
dimension (median = 1.8 cm, mean = 2.6 cm). Most tumors (12/16) were
incidentally identified by imaging studies. By AJCC stage, 15 were categorized
as pTl and 1 was pT2. Follow-up showed no recurrences, metastases, or
disease-related deaths in all the 16 patients. Grossly, 14 cases demonstrated at
least a partially cystic appearance. Microscopically, all PRNRPs except 1 (case
13) were composed predominantly of thin, branching papillary architecture
covered by a single layer of cuboidal cells with finely granular cytoplasm, and
low-grade nuclei typically located toward the apical surface away from the
basement. Case 13 consisted mostly of solid, densely packed tubules with only
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a minor papillary component (5%). Other commonly seen histological features
included hyalinized or edematous papillae (n = 11), lymphocyte aggregation in
fibrovascular cores (n = 10), mast cell infiltration (n = 8), and intralesional
hemorrhage (n = 7). Uncommonly seen histological features included
lymphoid cuff (h = 4), hemosiderin deposition (n = 5), foci of clear cell
change (n = 4), intracytoplasmic vacuoles (n = 4), eosinophilic hobnail cells
(n = 2), and infarct-type necrosis (n = 1). Two PRNRPs were concurrent with
ipsilateral clear cell papillary RCC and clear cell RCC, respectively. By IHC, the
tumors were consistently positive for GATA3, CK7, and PAX8. Fourteen out of
16 tumors showed a basolateral-membranous E-cadherin expression pattern,
and 12/16 cases were positive for 34BE12.The expression of AMACR, CD10, and
vimentin was either absent or only weak and focal. By targeted NGS, 13/14
evaluated PRNRPs harbored KRAS missense mutations involving ¢.35G>T
resulting in p.G12V (7/13), c.35G>A resulting in p.G12D (4/13), and ¢.34G>T
resulting in p.G12C (2/13). By FISH, 1/15 had gains of chromosomes 7 and 17,
and 2/8 male cases had deletion of chromosomes Y. In conclusion, our study
confirms that PRNRP is an indolent renal cell neoplasm with unique
morphology, consistent immunohistochemical profile, and recurrent KRAS
mutation. Our study expands the morphologic spectrum of PRNRP and
provides further evidence supporting it as a novel entity.

KEYWORDS

papillary renal neoplasm with reverse polarity, papillary renal cell carcinoma, GATA3,
KRAS mutation, next-generation sequencing

Introduction

Papillary renal cell carcinoma (PRCC), the second prevalent
subtype among RCCs, has been divided into types 1 and 2 for
more than two decades (1). Histologically, PRCC type 1 is
characterized by papillary architecture covered by a single layer
of cuboidal cells with scant pale or basophilic cytoplasm and low-
grade nuclei under the criterion made by the World Health
Organization/International Society of Urological Pathology
(WHO/ISUP), whereas PRCC type 2 usually exhibits large
pseudostratified cells with abundant eosinophilic cytoplasm and
high WHO/ISUP nuclear grade (1-3). PRCC type 2 has worse
prognosis than type 1 (2). The Cancer Genome Atlas (TCGA)
research group revealed that PRCC type 1 was associated with
MET mutations, while PRCC type 2 was a heterogeneous tumor at
the molecular level involving CDKN2A silencing, SETD2
mutations, and TFE3 fusions (4). Genetic differences further
explained the morphologic discrimination between these two
types (4). In practice, however, it may be challenging to
dichotomize PRCC as such, since well-sampled tumors
frequently harbor mixtures of type 1 and 2 areas (5). Currently,
the 2022 WHO classification eliminated the PRCC type 1/2
subcategorization, given the recognition of frequent mixed
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tumor phenotypes and the existence of entities with a different
molecular background within the PRCC type 2 category (6). A
subset of PRCCs that had granular eosinophilic cytoplasm but
favorable prognosis has been designated as oncocytoid-type or
oncocytic PRCC (7, 8). Subsequently, several studies that referred
to varied inclusion criteria were performed and proposed various
terminologies such as oncocytic PRCC with an inverted nuclear
pattern and oncocytic low-grade variant of PRCC (9, 10). In 2016,
WHO designated PRCC with voluminous granular eosinophilic
cytoplasm and a monotonous layer of cells with low WHO/ISUP
nuclear grade as oncocytic PRCC (3). However, emerging
evidence suggests that oncocytic PRCC may not be an
independent tumor entity, as oncocytic change can be noted in
otherwise typical type 1 or 2 PRCC (11). In 2017, Saleeb et al. (12)
subdivided PRCC into four types, of which PRCC type 4 showed
morphology similar to that of oncocytic PRCC and was
characterized by specific GATA3 immunoreactivity. In 2019,
Al-Obaidy et al. (13) used the term “papillary renal neoplasm
with reverse polarity” (PRNRP) for the first time and proposed
that it should be distinguished from both PRCC types 1 and 2.
Subsequently, the term “papillary renal neoplasm” not “papillary
RCC” was widely adopted based on its extremely
indolent behavior.
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PRNRPs are composed of papillary or rarely tubular
architectures with a single layer of uniform cuboidal cells with
finely granular cytoplasm and apically located, low WHO/ISUP
grade nuclei with inconspicuous nucleoli. Immunohistochemical
staining for GATA3 and L1CAM along with the lack of vimentin
expression is characteristic (13). The same group subsequently
discovered that recurrent KRAS missense mutations at codon 12
of exon 2 may be a molecular hallmark for PRNRP, verifying the
distinction from other renal cell neoplasms (14). More recently,
several studies have also been published on this entity,
reinforcing our understanding of its histologic and molecular
genetic characteristics (15-19). In 2021, in its update on existing
renal neoplasms, the Genitourinary Pathology Society (GUPS)
has considered PRNRP to represent a distinct pattern/variant
within the spectrum of PRCC (20). Most recently, type D
papillary adenoma (PA) has been suggested to represent an
analogue or a small-sized, clinically undetected PRNRP on the
basis of their identical morphology, immunophenotype, and
molecular genetics, broadening the concept of PRNRP (21-23).

In the current study, we identified 16 cases of PRNRP to
further analyze the clinicopathological, immunohistochemical,
and molecular features, expanding the morphologic spectrum of
PRNRP and providing further evidence to support it as a
novel entity.

Materials and methods
Case selection

Sixteen cases of PRNRP diagnosed between 2016 and 2021
from the files of three departments of pathology in China (The
First Affiliated Hospital of Zhejiang University School of
Medicine, Hangzhou; Ningbo Diagnostic Pathology Center,
Ningbo; and Zhejiang Provincial People’s Hospital, Hangzhou)
were retrieved. The clinical details and follow-up data were
obtained from a review of the patients’ electronic records and
from the physicians’ offices. For all cases, the hematoxylin-eosin
(HE)-stained and immunohistochemical slides were reviewed
and the diagnosis of PRNRP was further confirmed according to
the diagnostic criteria proposed by Al-Obaidy et al. (13) in 2019.
All tumors were graded according to the WHO/ISUP nuclear
grading system (10) and staged on the basis of the eighth edition
TNM staging system of renal neoplasms (24). This study was
approved by the institutional ethics committee of Zhejiang
Provincial People’s Hospital.

Immunohistochemistry

All specimens were formalin-fixed and paraffin-embedded
(FFPE). Tissues were sliced into 3-um sections.
Immunohistochemistry (IHC) was performed at a single
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laboratory (Zhejiang Provincial People’s Hospital, Hangzhou,
China) using a Ventana Benchmark autostainer (Ventana
Medical Systems, Tucson, USA). The following primary
antibodies were used: PAX8 (Clone EP298, ZSGB-BIO,
Beijing, China), GATA3 (Clone EP368, ZSGB-BIO, China),
cytokeratin 7 (CK7, Clone EP16, ZSGB-BIO, China), 34BE12
(Clone 34BE12, ZSGB-BIO, China), E-cadherin (Clone EP6,
ZSGB-BIO, China), alpha-methylacyl-CoA-racemase
(AMACR, Clone 13H4, ZSGB-BIO, China), CD10 (Clone
SP67, ZSGB-BIO, China), vimentin (Clone EP21, ZSGB-BIO,
China), and CD117 (Clone YR145, Roche, China). The staining
process was performed in accordance with the instructions and
established positive and negative controls. We regarded the
result as positive findings if the intensity was more than mild
and evaluated the proportional score as follows: 0 negative, focal
<50%; diffuse >50%.

Fluorescence in-situ hybridization

Fluorescence in-situ hybridization (FISH) analysis was
performed to identify the presence of chromosomal
abnormalities including gains of 7 and 17, or losses of Y, as
described previously (25, 26). The centromere-specific probe
(CEP) 7, CEP17, CEP X, and CEP Y were all from Anbiping' "
(Anbiping, Guangzhou, China). Only individual and well-
delineated cells were scored. Overlapping cells were excluded
from the analysis. Approximately 100 tumor cells were analyzed
in the targeted region. Using established criteria, chromosomal
gains were considered significant if present in greater than 20%
of tumor cells (25), and chromosomal losses were considered
significant if present in >45% of tumor cells (26). Gains or losses
were considered artifactual if seen in less than 20% of cells and
45% of tumors, respectively.

Targeted next-generation sequencing

For next-generation sequencing (NGS), 10 FFPE sections 5
um thin containing >20% tumor cells confirmed by HE staining
were used for genomic DNA and total RNA isolation. Genomic
DNA and total RNA were extracted using a QIAamp Mini Kit
(QIAGEN, Hilden, Germany). The DNA concentration was
measured using a Qubit 4.0 Fluorometer (Thermo Fisher,
Waltham, USA). A library was generated using RingCapTM
loop-mediated amplification technology for the 13-gene panel
(SpaceGen, Xiamen, China). This panel targeted the hotspot
regions of EGFR, KRAS, BRAF, PIK3CA, NRAS, HER2, MET,
AKTI1, KIT, and PDGFRA with more than 500 hotspot
mutations and 52 fusion variants of ALK, ROSI, and RET
genes. Reads were generated on a MiniSeq platform (Illumina,
San Diego, USA). Single-nucleotide variants (SNVs) and small
insertions and deletions (InDels) with variant allele frequency
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more than 5% and gene fusions were annotated using a
commercial mutation-reporting system (SpaceGen, Xiamen,
China) and identified manually by Integrative Genomics Viewer.

Results
Clinicopathological characteristics

The clinicopathological data of the 16 cases were tabulated in
Table 1. The patients included nine men and seven women, with
age ranging from 47 to 80 years (median = 67.5 years, mean = 65
years). Most tumors (12/16) were incidentally identified by
imaging studies while three presented with symptoms
including back pain and hematuria; the remaining one (case 4,
the smallest one) was incidentally identified in the radical
nephrectomy specimen for end-stage renal disease (ESRD).
Ten neoplasms affected the left kidney, and six the right.
Except for case 4, all neoplasms were treated by partial
nephrectomy. All tumors were confined to the kidney; hence,
15 were categorized as pT1 and 1 (case 3) was pT2, according to
the eighth edition TNM staging system (24). With a median
follow-up of 15 months (range, 1-62 months), no tumor
recurrences, metastases, or disease-related deaths were
identified for all the 16 patients.

Grossly, most tumors (13/16) were small tumors, less than
3 c¢m in size (median = 1.8 cm, mean = 2.6 cm; range, 0.4-9.5
cm). All tumors were well-demarcated or encapsulated and most
(14/16) demonstrated at least a partially cystic appearance. Five
cases with larger size were predominantly cystic, frequently with
intracystic polypoid or papillary masses protruding into the
cystic spaces (Figure 1); nine were predominantly solid with
minor areas of cystic change; and two were completely solid. The
tumors were typically soft and friable in texture and tan to light
brown in color. Microscopically, at low power, the tumors were
frequently mixed solid and cystic (Figure 2A). All tumors were
circumscribed, and seven had a thick fibrous capsule, four of
which had peri-capsule lymphoid cuff (Figure 2B). In all
PRNRPs, except in one (case 13), the solid areas were
composed predominantly of thin, branching papillary
architecture (Figures 2A-C), with variable amounts of
hyalinized or edematous papillae noted in 11 cases
(Figures 2D, E); in case 13, the tumor consisted mostly of
solid, densely packed tubules with only a minor papillary
component (5%) (Figure 2F). The papillaec and tubules were
covered by a single layer of cuboidal cells with moderate,
eosinophilic, or finely granular/oncocytic cytoplasm, indistinct
cell membrane, and round, WHO/ISUP grade 1-2 nuclei
typically located toward the apical surface away from the
basement (Figures 2G, H). Foci of clear cell change and
intracytoplasmic vacuoles were each observed in four cases
(Figures 3A, B). In addition, eosinophilic hobnail cells were
focally present in two cases (cases 4 and 12) (Figure 3C).
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Lymphocyte aggregation and scattered mast cell infiltration in
the fibrovascular cores were notable in 10 and 8 PRNRP cases,
respectively (Figure 3D). The cystic areas when noted were
frequently filled with eosinophilic proteinaceous material or
blood clots (Figures 2A, 3E). Intralesional hemorrhage was
identified in seven cases, and hemosiderin deposition was
occasionally noted in five cases (intracellular in three and
extracellular in two) (Figure 3F). In case 12, areas of infarct-
type necrosis, due (putatively) to extensive intralesional
hemorrhage, were identified (Figure 3G). Pseudostratification,
psammoma bodies, foam cell clusters, coagulative-type tumor
necrosis, or mitotic figures were absent in all tumors. All PRNRP
cases were confined to the kidney, and none had microscopic
lymphovascular invasion, perinephric fat invasion, or
pelvicalyceal system involvement. A separate clear cell RCC
(4.8 cm, WHO/ISUP grade 2) was observed in case 15,
whereas a clear cell papillary RCC (1.4 cm) was present in
case 2 (Figure 3H).

Immunohistochemical results

The immunohistochemical results for PRNRPs are
summarized in Table 2. All PRNRPs showed strong and
diffuse immunoreactivity to GATA3 (Figure 4A), CK7, and
PAXS. Fourteen of the 16 tumors showed E-cadherin expression,
with a diffuse, basolateral-membranous/”cup-like” staining
pattern (Figure 4B), and 12/16 cases were strongly positive for
34BE12 (Figure 4C), with staining being diffusely in 11 and
focally in 1. AMACR was weakly positive in 11 cases and
negative in the remaining 5 cases (Figure 4D), and CD10 was
focally and weakly positive in 3 cases and negative in the
remaining 13 cases (Figure 4E). Vimentin was negative in 15
tumors and only focally positive in the remaining one
(Figure 4F). All PRNRPs were completely negative for CAIX
and CD117, while CD117 highlighted the mast cell infiltration in
the fibrovascular cores of the papillae. The concurrent clear cell
papillary RCC in case 2 showed a diffuse and strong expression
of GATA3, 34BE12, CK7, and “cup-like” CAIX (Figure 3H).

Targeted NGS and FISH findings

The targeted NGS and FISH findings are summarized in
Tables 3 and 4. The targeted NGS was performed in 14 out of 16
PRNRP cases. The targeted NGS was not performed in the
remaining two cases, because their quality was not suitable for
targeted sequencing. PRNRP tumors exhibited KRAS missense
mutations in 13 out of the 14 cases (93%) by targeted NGS.
These mutations were due to a ¢.35 G>T (7/13, 54%), c.35G>A
(4/13, 31%), and ¢.34G>T(2/13, 15%) substitution, resulting in
p.G12V, p.G12D, and p.G12C alterations, respectively
(Figure 5). The allele frequency (AF) ranged from 9.2% to
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TABLE 1 Clinicopathological characteristics of PRNRP.

Case
no.

10

11

12

13

14

15

16

Sex/
age

)
F/76

M/
80

M/
67

M/
79

M/
54

M/
67

M/
55

F/57

F/47

F/50

F/76

M/
70

M/
73

M/
70

F/68

F/51

Clinical man-
ifestation

Incidentally
identified

Incidentally
identified

Incidentally
identified

Incidentally
identified

Incidentally
identified

Back pain

Hematuria

Incidentally
identified

Incidentally
identified

Incidentally
identified
Incidentally
identified
Back pain,
fever and
hematuria
Incidentally
identified
Incidentally
identified
Incidentally
identified

Incidentally
identified

Laterality Size Stage

Right

Right

Left

Right

Left

Right

Left

Right

Left

Right

Left

Left

Right
Right
Right

Right

(cm)

2.5

2.8

9.5

0.4

2.1

19

4.5

12

2.6

1.0

1.2

6.0

1.0

15

1.7

12

pTla

pTla

pT2a

pTla

pTla

pTla

pT1b

pTla

pTla

pTla

pTla

pTIb

pTla

pTla

pTla

pTla

Follow-
up
(months)

NED (3)

NED (3)

NED (9)

NED (1)

NED (4)

NED (8)

NED
(16)

NED
(39)

NED
(62)

NED
(15)

NED
(14)

NED (7)

NED
(42)

NED (4)

NED
(11)
NED (8)

Concurrent WHO/
RCC ISUP
grade
N 1

Y, CCPRCC 1

N 2
N 2
N 2
N 1
N 2
N 2
N 1
N 1
N 1
N 2
N 2
N 2
Y, CCRCC 2
N 2

Fibrous- Cystic
capsule change
N Y,
prominent
Y, Y,

lymphoid ~ prominent
cuff
Y, Y,
lymphoid ~ prominent
cuff

N Y
Y Y
N Y
N Y,
prominent
N Y
Y, Y
lymphoid
cuff
N N
N Y
Y, Y,

lymphoid prominent
cuff

Y N
N Y
N Y
Y Y

Edematous/

hyalinized
papillae

N

Intracytoplasmic

vacuoles

Clear Hobnail Hemosiderin

cell
change

Y

cells

N

Y,
extracellular

N

N

Y,
extracellular

Y,
intracellular

Y,
intracellular

N

N

N

Y,
intracellular

N

Hemorrhage Lymphocytes

N

Y, with
infarct-type
necrosis

N

N

aggregation

Mast cells
infiltration

CCPRCC, clear cell papillary renal cell carcinoma; CCRCC, clear cell renal cell carcinoma; F, female; M, male; N, not; NED, no evidence of disease; WHO/ISUP, World Health Organization/International Society of Urological Pathology; Y, yes.
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FIGURE 1

Gross examination showing an encapsulated and cystic PRNRP with a soft and friable, intracystic polypoid mass.

33%. No mutations of other genes in the panel were identified in
any of the PRNRPs. No fusion genes were detected. No KRAS
mutations were found in either concurrent clear cell RCC or
clear cell papillary RCC. By FISH analysis, one of the 15 PRNRP
cases analyzed (case 1) demonstrated trisomy 7 and 17
(Figures 6A, B). Chromosome Y deletion was present in two
of eight male cases examined (case 13 and 14)(Figure 6C).

Discussion

RCC featuring papillary architecture and eosinophilic or
oncocytic cytoplasm represents a heterogeneous disease,
encompassing an increasing number of tumor variants, such
as PRNRP, PRCC type 2, MiT family translocation RCC,
biphasic hyalinizing psammomatous RCC, acquired cystic
disease-associated RCC, and fumarate hydratase (FH)-deficient
RCC. PRNRP was firstly designated as its current name in 2019
by Al-Obaidy and colleagues (13). It accounts for 1.3% to 9.1% of
all PRCCs according to the previous reports (13, 17, 18, 22, 27),
and to date there are a total of approximately 160 cases of
PRNRP that have been published in the English-language
literature. In the current study, we were able to identify 16
cases of PRNRP from three tertiary medical institutions between
5 years during which more than 350 PRCCs have been
diagnosed, further indicating the rarity of this tumor type.

In agreement with previous studies, the 16 PRNRPs in our
cohort presented mostly with an incidentally identified mass
during the imaging study and showed a slight male predilection,
and had small tumor size, low TNM stage, low WHO/ISUP
nuclear grade, and a favorable prognosis at follow-up, without
any recurrence, metastasis, or tumor-related death after surgical
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excision (13-19, 22, 23). Although most are solitary tumors,
previous studies have demonstrated that a subset of PRNRPs
may have multiple tumors as defined by presence of >2
unilateral or bilateral tumors, particularly for those with small
size which are usually clinically undetectable (13, 22, 23). A
recently published paper by Wei et al. (19) comprehensively
reviewed the 100 reported cases of PRNRP and emphasized that
this tumor was frequently a cystic tumor and at least a partially
cystic change can be noted in 62% cases. Additionally, Al-
Obaidy et al. (23) documented cystic expansion with
intracystic papillary proliferation in 7 of their 16 clinically
detected (=5 mm) neoplasms. In line with these results, in our
cohort, 14 cases displayed at least a partially cystic appearance
and 5 larger tumors were predominantly cystic, frequently with
intracystic polypoid or papillary masses protruding into the
cystic spaces. Chang et al. (22) demonstrated that PRNRP
showed a significantly higher association with ESRD compared
with PRCC type 2. Similarly, Al-Obaidy et al. (23) showed that
12 of 35 clinically undetected (<5 mm) neoplasms were
discovered on nephrectomy specimens performed for ESRD.
In the current study, the smallest one (case 4, 0.4 cm) was
clinically undetected and was incidentally identified in the
nephrectomy specimen for ESRD. Concurrent ipsilateral renal
tumor is not uncommon in PRNRP, and Lee et al. (28) reported
a PRNRP with a KRAS mutation and a co-occurring clear cell
RCC with a PIK3CA mutation in 2020. Most recently, Al-Obaidy
and colleagues (23) found that 26 of 50 PRNRPs had other
concurrent tumors of different histologic subtypes in the
ipsilateral kidney, particularly for those with diameters less
than 5 mm. In their study, the concurrent renal tumors
included PRCCs, clear cell RCCs, acquired cystic disease-
associated RCCs, chromophobe RCCs, and oncocytomas. In
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FIGURE 2

our cases, two PRNRPs coexisted with clear cell RCC and clear
cell papillary RCC, respectively. To our knowledge, the latter
tumor type was the first time to be reported to co-occur
with PRNRP.

Histologically, PRNRP was originally documented by Al-
Obaidy and colleagues (13) as a well-demarcated or
encapsulated neoplasm displaying delicate and thin, arborizing
papillary patterns or predominantly solid tubular growth in
occasional cases. In that study, a minority of tumors showed
thicker and hyalinized papillary cores or edematous papillae
with cystically dilated tips filled with clear to eosinophilic fluid
containing floating foamy macrophages. However, subsequent

Frontiers in Oncology

Histologic features of PRNRP. (A) Mixed solid and cystic tumor with eosinophilic proteinaceous material (HE, low magnification). (B) Thick fibrous
capsule with peri-capsule lymphoid cuff (arrows, HE, low magnification). (C) Branching papillary architecture with delicate fibrovascular cores (HE,
medium magnification). (D) Hyalinized papillae (HE, medium magnification). (E) Foci of edematous papillae (HE, medium magnification). (F) PRNRP
consisting mostly of solid, densely packed tubules with only a minor papillary component (HE, medium magnification). The papillae (G, HE, high
magnification) and tubules (H, HE, high magnification) are covered by oncocytic cells with inverted low-grade nuclei.

11

multiple studies reported that hyalinized or edematous papillae
could be observed in the majority of PRNRP cases (26/30 in Kim
et al. (15), 7/10 cases in Tong et al. (16), 9/14 in Kiyozawa et al.
(18), and 11/16 in our cohort). The lining epithelium typically
consisted of a monolayer of cuboidal to columnar cells with
moderate to abundant, finely granular eosinophilic cytoplasm
frequently with intracytoplasmic clear vacuoles or lumens, and
apically located round, bland-appearing nuclei with
inconspicuous nucleoli. Rare areas of nuclear clearing,
wrinkled nuclear contours, and mild nuclear enlargement were
also observed. Al-Obaidy et al. (13) did not identify psammoma
bodies, intracellular hemosiderin, tumor necrosis, tight clusters
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FIGURE 3

Uncommonly seen histologic features of PRNRP. (A) Clear cell change (HE, high magnification). (B) Intracytoplasmic vacuoles (arrows, HE, high
magnification). (C) Eosinophilic hobnail cells (HE, high magnification). (D) Lymphocyte aggregation and scattered mast cell infiltration in the
fibrovascular cores (HE, high magnification). (E) Cystic change with blood clots (HE, low magnification). (F) Intracellular hemosiderin deposition
(HE, high magnification). (G) Infarct-type necrosis (HE, medium magnification). (H) PRNRP coexisting with an adjacent clear cell papillary renal
cell carcinoma (arrow, HE, low magnification). Inserts showing clear cells with nuclei aligned circumferentially (right upper, HE, high
magnification) and “cup-like” CAIX expression (right middle, high magnification).

of foamy macrophages, and mitoses in all tumors. Subsequent
studies expanded the morphological spectrum of PRNRP to
include eosinophilic hobnail cells (16, 22, 23), clear cell change
on the tumor cells (18, 22, 23), peritumoral lymphoid cuff (15,
22), foamy histiocyte aggregation (15, 16, 18, 22), intracellular
hemosiderin (22, 23), and lymphocyte or mast cell infiltration in
the stroma (15, 16, 22, 23). These morphologies are typically
focal and only present in a small subset of cases. The cases in our
cohort had comparable findings except for foamy histiocyte
aggregation, which were not identified. Tong et al. (16)
reported that 8/10 cases had focal areas showing hobnail cells
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with abundant eosinophilic cytoplasm. Chang et al. (22)
demonstrated that 60% (6/10) of their cases had focal hobnail
features. In the most recently published to date study on the
largest series of PRNRPs, Al-Obaidy et al. (23) found that
hobnail conformation was present in only 3 out of the 50
cases. We found eosinophilic hobnail features in 2 of the 16
cases. Despite the presence of hobnail features, all of these
reported cases had non-overlapping and WHO/ISUP low-
grade nuclei. Although Kim et al. (15) reported 4/30 (13%) of
their cases with WHO/ISUP grade 3 nuclei, our cases and other
studies only found WHO/ISUP grade 1 or 2 nuclei in PRNRPs.
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TABLE 2 Immunohistochemistry staining features of PRNRP.

Case no. GATA3 34BE12 AMACR  E-cadherin*
1 + + + (weak) +
2 + + + (weak) +
3 + + + (weak) +
4 + + - -
5 + + + (weak) +
6 + + + (weak) +
7 + + - +
8 + + - -
9 + + + (weak) +
10 + + + (weak) +
11 + + (focal) + (weak) +
12 + - - +
13 + - + (weak) +
14 + + + (weak) +
15 + - + (weak) +
16 + - - +

*basolateral-membranous staining pattern.

Foamy histiocytes are uncommonly seen in PRNRPs; when
present, they typically appeared as loose, scattered
macrophages floating within the edematous cores (13),
contrasting sharply to the tight clusters in papillary RCC. We
identified foci of infarct-type necrosis in our case 12, which is
exceptional for PRNRP, as tumor necrosis was consistently
absent in previously documented cases. We speculate that
infarct formation in this case is related to intralesional
hemorrhage and cystic degeneration, which leads to the
increased pressure in the cystic cavity, further resulting in
ischemic infarction of the tumor. However, it should be
mentioned that the cysts are commonly filled with
proteinaceous fluid or blood clots and may contain floating
degenerated cell debris with hemosiderin deposition, which may
be confused with necrosis; however, true tumor type coagulative
necrosis is never present in PRNRPs (23).

In the current study, all PRNRP cases exhibited a diffuse and
strong expression of PAX8, CK7, and GATA3, whereas the
expression of AMACR, CD10, and vimentin was either absent
or only weak and focal, and the tumor cells were completely
negative for CD117 and CAIX. The immunohistochemical
profiles of PRNRP in our cohort are in line with the results in
a recent meta-analysis by Wei and colleagues (19). In three
previous reports, it was disclosed that PRNRP usually displayed
a diffuse LICAM expression typically in a basolateral and lateral
membrane pattern, leading to a “cup-like” staining appearance
(13, 15, 23). As L1CAM is not available in our laboratory, we
performed immunostaining for E-cadherin and found that it was
expressed in 14/16 (87.5%) of our PRNRP cases and all the 14
cases showed a “cup-like” staining pattern identical to that of
L1ICAM. Only one previous study has investigated the
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CK7 CD10 CD117 Vimentin CAIX

+ - - - -
+ . - _ _
+ +(focal and weak) - - -
+ . -
¥ . - - -
+ + (focal and weak) - - -
¥ . - - -
+ . - - -
+ + (focal and weak) - - -
+ . - . -

+ - - - -

expression of E-cadherin in PRNRP. Kim et al. (15) found that
23/30 (77%) of their cases showed positive reactivity to E-
cadherin with the expression being significantly higher than
both PRCC types 1 and 2; however, they did not specify the
staining pattern in their study. In the present study, we found
that 12/16 (75%) PRNRPs were strongly positive for 34BE12,
with staining being diffusely in 11 and focally in 1, consistent
with the results reported by Zhou et al. (17), who found that all
the seven cases of PRNRP in their study strongly expressed
34BE12. These data suggest that 34BE12 may serve as a sensitive
marker for the diagnosis of PRNRP. Co-expression of GATA3
and 34BE12 is relatively rare in renal cell tumors and is often
seen in tumors of distal nephron or collecting duct origin, such
as collecting duct carcinoma (29, 30) and clear cell papillary
RCC (31, 32). For the latter, studies have demonstrated that both
GATA3 and 34BE12 can be used as sensitive and specific
markers for its diagnosis and differential diagnosis (31, 32).
With regard to the cell origin, the co-expression of GATA3 and
34BE12 in PRNRP may also point to its distal nephron origin.
Using public data sets, Tong et al. (16) found that PRNRP shared
similar gene expression profiles with cortical collecting duct,
suggesting that PRNRP may potentially originate from the distal
renal tubule. In addition, a negative or focal/weak expression of
proximal renal tubule markers, such as vimentin, CD10, CD15,
and AMACR (33), also supports this speculation. In a most
recently published abstract, using unsupervised clustering
analysis, Park and colleagues (34) found that PRNRPs formed
a tight group on tSNE and were distant from PRCCs while close
to clear cell papillary RCCs, further supporting this hypothesis.

At the molecular genetic level, NGS revealed in our cohort
that PRNRP contained KRAS mutation at a high frequency (13/
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FIGURE 4

Immunohistochemical profiles of PRNRP. (A) Diffusely and strongly positive for GATA3 (medium magnification). (B) Basolateral-membranous/
"cup-like” staining pattern of E-cadherin (high magnification). (C) Positive for 34BE12 (medium magnification). (D) Weakly positive for AMACR
(medium magnification). Negative for CD10 (E, low magnification) and vimentin (F, medium magnification).

14, 93%). The one without KRAS mutation (case 14) showed
typical morphological and immunohistochemical features
consistent with PRNRP. KRAS missense mutations clustered in
codon 12 in exon 2, with ¢.35G>T (p.G12V, 54%), ¢.35G>A
(p.G12D, 31%), and ¢.34G>T (p.G12C, 15%). The AF ranged
from 9.2% to 33%, supporting the somatic origin. There was no
correlation between histologic phenotype and KRAS mutant
genotype. Case 13 showed a predominantly tubular growth
pattern which had immunohistochemical features identical to
those with prominent papillary morphology. This case harbored
a KRAS mutation with ¢.35G>T (p.G12V). KRAS mutation was
identified in 57%-93% of PRNRPs in previous studies (14-16,
18, 19, 22, 23), with an overall frequency of 85% and the most
common KRAS mutation being p.G12V (54%), as documented
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by Wei et al. (19). One KRAS-mutated PRNRP was reported to
harbor a GI2A/V/D complex mutation (23). In the past
research, other somatic mutations detected by NGS in PRNRP
included mutations in BRCA2, BRIP1, RAD50, TP53, and BRAF
(14, 15, 18). Chang et al. (22) demonstrated recurrent activating
KRAS mutation in six of eight cases of type D PA, which shows
identical morphology and immunophenotype to PRNRP (21).
Additionally, Al-Obaidy et al. (23) found KRAS mutation in 44%
(15/34) of the microscopic (<5 mm) PRNRPs, and in 88% (14/
16) of the clinically detected (=5 mm) ones. These findings
indicate that KRAS mutation may be an early molecular event in
the tumorigenesis or progression of PRNRP, and type D PA may
represent an analogue or a small-sized PRNRP (22, 23). KRAS
missense mutation rarely appeared in other types of RCC, and
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TABLE 3 Targeted next-generation sequencing findings of PRNRP.

Case no. SNV
1 ¢.35G>T
2 ¢.35G>T
3 €34G>T
4 ND

5 ND

6 ¢35G>T
7 c35G>A
8 ¢35G>T
9 c35G>A
10 c.34G>T
11 c35G>A
12 c.35G>A
13 ¢35G>T
14 Negative
15 ¢.35G>T
16 ¢.35G>T

AF, allele frequency; ND, not done; SNV, single-nucleotide variant.

only Raspollini et al. (35) reported a case of clear cell RCC
harboring KRAS mutation. Several previous studies have
documented that KRAS mutation was absent in clear cell RCC,
PRCC (both types 1 and 2), chromophobe RCC, and clear cell
papillary RCC (14, 15, 23). According to TCGA database,
mutation of KRAS occurred in 0.7% (2/279) of PRCCs and
0.2% (1/451) of clear cell RCCs (14-16). Five tumors harboring a
KRAS mutation have been registered as PRCC in the TCGA

TABLE 4 Fluorescence in-situ hybridization findings of PRNRP.

Chromosome 7

Case no. 1G(%) 2G(%) 3G(%) 1G(%)
1 6 71 23 4
2 4 91 5 4
3 15 83 2 14
4 ND ND ND ND
5 22 75 3 39
6 28 66 6 35
7 21 67 2 31
8 24 76 0 31
9 18 77 5 21
10 5 92 3 68
11 10 87 3 40
12 33 64 3 31
13 5 92 3 55
14 41 56 3 49
15 45 49 6 39
16 7 89 4 37

G, green; ND, not done; R, red.
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Amino acid changes AF (%)
p.GI12V 32.61%
p.G12V 32.98%
p.G12C 29.66%
p.G12V 9.17%
p.G12D 14.28%
p.G12V 13.29%
p.G12D 25.66%
p.G12C 30.97%
p.G12D 18.14%
p.G12D 10.31%
p.G12V 9.72%
Negative Negative
p.G12V 20.39%
p.G12V 20.63%

database; however, different groups have reviewed these tumors
independently and concluded that three of these tumors in fact
represented PRNRP (14-16). These above findings suggest that
KRAS mutation is a consistent and unique finding in PRNRP
and can serve as a powerful molecular tool for the accurate
diagnosis of PRNRP when at challenging settings.
Bioinformatics analysis has shown that a prominent KRAS
signature is associated with activation of several important

Chromosome 17 Chromosome Y

2G(%) 3G(%) 1G(%) 1R1G(%)
76 20 — —_
92 4 5 95
84 2 2 98
ND ND ND ND
58 3 3 99
63 2 2 98
63 5 1 99
65 4 — —
78 1 —_ —_
21 11 — —
58 2 —_ —_
66 3 25 75
34 11 68 32
47 4 76 24
54 7 — —
56 7 — —

frontiersin.org


https://doi.org/10.3389/fonc.2022.930296
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shen et al.

Case 8: KRAS (NM_004985:exon2): ¢.35 G>T (p.G12V)

Case 9: KRAS (NM_004985:exon2): ¢.35 G>A (p.G12D)

10.3389/fonc.2022.930296

Case 3: KRAS (NM_004985:exon2): ¢.34 G>T (p.G12C)
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FIGURE 5

KRAS mutations in PRNRP. Integrative Genomics Viewer screenshot of the representative KRAS mutation hotspot, including ¢.35 G>T (p.G12V)

(case 8), ¢.35G>A (p.G12D)(case 9), and c.34G>T(p.G12C)(case 3)

transcription factor networks, including GATA3 (36). In
addition, overexpression of GATA3 was found in KRAS-driven
lung cancer cells and further promoted the oncogenesis via
microRNAs (37). These aforementioned evidence may explain
the potential link between the genotype and immunophenotype
of PRNRP; however, the function of mutated KRAS in the
pathogenesis or progression of PRNRP requires further
investigations. Trisomy of chromosome 7 and/or 17 and/or
deletion of Y chromosome have been shown to be
chromosomal abnormalities characteristic of PRCC (38). Prior
studies using FISH analysis demonstrated that a subset of
PRNRPs shared these specific chromosomal abnormalities
with PRCCs (13, 17). However, Kiyozawa et al. (18) and Wei
et al. (19) found that no cases of PRNRP had gains of
chromosome 7 and/or 17, or loss of the Y chromosome, using
copy number alteration analysis and chromosomal microarray
analysis, respectively. In the present study, FISH study revealed
trisomy 7 and 17 in only one of the 15 PRNRP cases analyzed.
Chromosome Y deletion was identified in two of the eight male
cases examined. These above findings suggest that the presence
of trisomy 7 and/or 17 and loss of Y chromosome in PRNRP is
likely to represent a random rather than a recurrent event,
contrasting to those in PRCC.

A potential limitation of our study is the relatively short
follow-up time for these tumors, although the vast majority of
tumors were in the pT1 stage with 1 in the pT2 stage. The
current data seem to be inadequate to make a conclusion about
the long-term outcomes of this emerging neoplasm entity.
Because PRNRP is overall a low-stage tumor with an indolent
biological behavior, it is important to differentiate PRNRP from
other renal tumors featuring papillary architecture and
oncocytic cytoplasm. Differentiation of PRNRP from PRCC
type 2 is sometimes difficult, as both of them may display
similar histologic appearances. Although reverse polarity of
nuclei is one of the characteristic features of PRNRP, it can be
focally observed in a subset cases of PRCC type 2 (15). In
addition, pseudostratification, a commonly seen feature in
PRCC type 2, has also been reported in a few PRNRPs (13,
22). In cases with overlapping histology, immunohistochemical
staining and KRAS mutation analysis can help for making a
correct diagnosis. Positivity for GATA3 and 34BE12 along with
negativity for CD10 and vimentin could be useful for supporting
PRNRP, while detection of KRAS mutation by molecular
genetics can further confirm the diagnosis. Since a few RCCs
with MiT family alterations may demonstrate oncocytic and
papillary RCC-like morphology with reverse polarity of nuclei, it

FIGURE 6

Fluorescence in-situ hybridization findings of PRNRP. (A) Trisomy 7 (case 1). Inset indicating the schematic diagram of the centromere-specific
probe of chromosome 7. (B) Trisomy 17 (case 1). Inset indicating the schematic diagram of the centromere-specific probe of chromosome 7.
(C) Deletion of chromosome Y (case 13). Insets indicating schematic diagrams of the centromere-specific probe of chromosome X (green) and

chromosome Y(red).
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is necessary to exclude these tumors by FISH assays (39). As
mentioned above, a diffuse and strong expression of both
GATA3 and 34BE12 can also be noted in clear cell papillary
RCC (31, 32), which may be confused with PRNRP with focal
clear cell change. However, clear cell papillary RCC is
characterized by a papillary growth of low-grade clear cells
with circumferentially aligned nuclei and lack of the oncocytic
cytoplasm and inverted nuclei characteristic of PRNRP. FH-
deficient RCC is a highly aggressive renal cancer and shows quite
variable morphology; it can have prominent papillary
architecture and oncocytic cytoplasm mimicking PRNRP.
However, FH-deficient RCC usually has nuclear features of
large reddish inclusion-like nucleoli surrounded by a clear
halo that can suggest the diagnosis. Loss of FH and 2 succinyl
cysteine positivity by IHC and/or detection of FH mutation
(either germline or somatic) can further confirm the diagnosis
(20, 40). Lastly, PRNRP with a prominent tubular pattern may
be confused with recently characterized low-grade oncocytic
tumor or eosinophilic vacuolated tumor; however, these
tumors are frequently associated with mutations involving
TSC/MTOR pathways and typically lack the inverted nuclei
and GATA3 positivity in PRNRP (41-43).

Conclusions

In summary, PRNRP is a rare renal tumor with an indolent
clinical course. We confirm the previous reports that PRNRP is
pathologically characterized by papillary or tubulopapillary
architecture with frequently cystic change, low-grade tumor
cells with oncocytic cytoplasm and inverted nuclear location,
diffuse and strong expression of GATA3 and 34BE12, and
recurrent KRAS mutation. We further expand the histologic
spectrum of PRNRP to include the presence of infarct-type
necrosis, concurrent with clear cell papillary PRCC, and
basolateral and lateral membrane expression of E-cadherin by
IHC. Our study further supports that PRNRP should be
considered as a novel renal cell tumor entity.
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Affiliate to School of Medicine, University of Electronic Science and Technology of China,
Chengdu, China

Introduction: Primary intrathoracic liposarcoma is extremely rare, and most
published series lack genetic analyses. The aim of our study is to better
understand the clinicopathologic and genetic features of these rare lesions.

Materials and methods: Forty-three primary intrathoracic liposarcomas were
identifled and most cases were analyzed by systematic genetic studies,
including fluorescence in situ hybridization (FISH), whole-exome sequencing
(WES), and Sanger sequencing.

Results: This series included 27 males and 16 females (ratios, 1.68:1) aged 24-73
years (median, 53 years). Tumors mainly occurred in the mediastinum (n=23,
53.5%), followed by pleural cavity (n=16, 37.2%) and lung (n=4, 9.3%). The study
included 21 well-differentiated liposarcomas (WDLs), 19 dedifferentiated
liposarcomas (DDLs), 2 myxoid pleomorphic liposarcomas (MPLs) and 1
pleomorphic liposarcoma (PL), without identification of myxoid liposarcoma.
FISH analysis identified MDM2 amplification in 17 of 18 WDLs (94.4%) and all
DDLs (16/16, 100.0%). The MDMZ2-nonamplified WDL was CDK4-nonamplified
but FRS2-amplified. WES and Sanger sequencing found somatic TP53 mutation
in the 2 MPLs. Follow-up information was available for 33 of 38 cases (86.8%).
Thirteen patients (39.4%) showed no evidence of disease, 10 patients (30.3%)
were alive with disease, and 8 patients (24.2%) died of disease. Fourteen cases
developed recurrence and 1 with metastasis.

Conclusions: WDL/DDL was the overwhelming subtype in this location,
followed by MPL and PL. Analysis of the FRS2 gene, in combination with
MDM?2 and other genes of 12q13-15, may more precisely characterize WDL/
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DDLs. MPL is the most fatal subtype of this site. Further studies are needed to
explore the role of TP53 in the pathogenesis of MPL.

KEYWORDS

liposarcoma, thorax, molecular analysis, well-differentiated liposarcoma,
dedifferentiated liposarcoma, myxoid pleomorphic liposarcoma

Introduction

Liposarcoma is one of the most common soft tissue
malignancies. The recent fifth World Health Organization
(WHO) Classification of Tumors of Soft Tissue and Bone
divided liposarcoma into 4 major clinicopathologic and genetic
subtypes: atypical lipomatous tumor (ALT)/well-differentiated
liposarcoma (WDL)/dedifferentiated liposarcoma (DDL),
myxoid liposarcoma (ML), pleomorphic liposarcoma (PL), and
myxoid pleomorphic liposarcoma (MPL) (1-5). ALT/WDL/
DDL accounts for 50-60% of all liposarcomas and is
characterized by the amplification of 12q13-15, including
several oncogenes, such as MDM2, CDK4, FRS2, HMGA2, and
CPM. The term “ALT” is used for tumors located in the site
where surgical excision can be carried out and is curative, and
the term “WDL” is used for lesions arising in sites such as the
retroperitoneum, spermatic cord, and mediastinum, where
tumors have a greater possibility for progression (1, 2). Nearly
20-30% of liposarcomas are MLs, most of which are
characterized by the FUS-DDIT3 fusion gene and a subset of
tumors harboring the EWSRI-DDIT3 fusion gene (3). PL
represents less than 5% of liposarcoma with complex
chromosomal aberrations (4). The newly proposed subtype,
MPL, is an extremely rare and highly aggressive tumor (5).

Most liposarcomas occur in deep soft tissue of the
extremities, followed by the retroperitoneum and trunk,
although the location of liposarcomas depends on their
subtype. Primary intrathoracic liposarcoma is very rare,
accounting for only 1-2% of all liposarcomas (6). To the best
of our knowledge, there were only 7 relatively large series of
primary intrathoracic liposarcoma in the English literature, with
clinical and pathologic information (7-13). However, the
majority of previous series studies only reported mediastinal
liposarcoma, without pleural and pulmonary tumors. Moreover,
most series lacked systematic genetic studies, and only two
previous large series explored genetic changes by fluorescence
in situ hybridization (FISH) in 2/18 (11.1%) and 10/24 (41.7%)
of their cases, respectively (10, 12).

Therefore, to better understand the clinicopathologic and
genetic features of these rare lesions, we report a large series of 43
cases of primary intrathoracic liposarcomas from one of the
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largest medical centers in China. To the best of our knowledge,
this is the largest population-based analysis with the highest rate
for molecular testing in the English literature. Genetic analyses,
including FISH, whole-exome sequencing (WES), and Sanger
sequencing, were carried out in most cases (>90%).

Materials and methods
Case identification

This study was approved by the West China Hospital
Institutional Review Board. A SNOMED search of hospital
surgical pathology files from January 2007 to June 2021
identified 1386 liposarcoma cases. Seventy-eight liposarcomas
were identified as intrathoracic liposarcomas, of which 35
tumors were metastatic or extended from other locations. All
metastatic intrathoracic liposarcomas, primary cardiac
liposarcomas, and intimal sarcomas arising in large blood
vessels were excluded from the study. Finally, forty-three (43/
1386, 3.1%) were included as primary intrathoracic liposarcomas
in this study.

Radiology methods

All available images of the cases were reviewed by one
radiologist with thoracic tumor imaging expertise. Several
parameters were evaluated, consisting of tumor margin and
heterogeneity, pleural effusion, calcification, necrosis, cystic
change and the involvement of other organs.

Histologic evaluation

All cases were reviewed by 2 pathologists (H.Z., H.C.) with
soft tissue tumor pathology expertise and 3 general surgical
pathologists (Y.X., W.J.,, W.Z.) according to well-described
criteria. Grading was evaluated following the ‘modified’
French Federation of Cancer Centers (FNCLCC) grading
system (14).
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Immunohistochemistry (IHC)

Immunohistochemical analysis was performed on formalin-
fixed, paraffin-embedded tissue using the Dako Envision Plus
detection system (Dako, Carpinteria, CA, USA) with controls.
The antibodies used included MDM2 (clone SMP14, ready-to-
use; Abcam, Cambridge, UK), CDK4 (clone EP180, 1:100; Santa
Cruz Biotechnology, Santa Cruz, CA, USA), S-100 protein (clone
4C49, 1:100; Abcam, Cambridge, UK), CD34 (clone QBEnd 10,
1:100; Abcam, Cambridge, UK), desmin (clone D33, 1:100; Dako,
Carpinteria, CA, USA), smooth muscle actin (SMA) (clone 1A4,
1:100; Dako, Carpinteria, CA, USA), H-caldesmon (clone h-CD,
1:100; Dako, Carpinteria, CA, USA), and p53 (clone Do-7, ready-to-
use; Dako, Carpinteria, CA, USA).

Fluorescence in situ hybridization (FISH)

FISH analysis was conducted on formalin-fixed, paraffin-
embedded 4-um-thick tissue sections of 41 cases that had
material available for further study. Additionally, FISH for the
CDK4 and FRS2 was performed on the MDM?2 nonamplified
case but with a potential diagnosis of WDL. MDM2, CDK4,
FRS2, DDIT3, HMGA2, and RBI FISH analyses were performed
using the commercially available Vysis MDM2 Dual Color Probe
(Abbott Molecular, Des Plaines, IL, USA), GSP CDK4 (12q14)
Gene Amplification Probe (Anbiping, Guangzhou, China), GSP
FRS2 (12q15) Gene Amplification Probe (Anbiping, Guangzhou,
China), Vysis LSI DDIT3 Dual Color Break Apart Probe (Abbott
Molecular, Des Plaines, IL, USA) and Vysis LSI 13 (RBI) 13q14
Spectrum Orange Probe (Abbott Molecular, Des Plaines, IL,
USA). All FISH analyses were performed according to a
previously established laboratory protocol (15-17). Each case
was examined and evaluated by counting a minimum of 100
nuclei by two independent investigators (H.Z. and M.C.).
MDM2, CDK4 or FRS2 amplification was defined as an
MDM2/CEP12, CDK4/CEP12 or FRS2/CEP12 ratio >2.0, and a
ratio <2.0 was considered nonamplified. DDIT3 gene
rearrangement was defined as > 10% cells exhibiting the split
signal pattern, that is, the distance between the green and red
signals was greater than the diameter of two signals. Cells
containing RBI deletion displayed only one orange signal
pattern. RBI deletion was defined as more than 25% of the
cells exhibiting the deletion pattern.

Whole exome sequencing (WES)

WES was performed on one MPL case (case 42) by Genomic
OE Biotech Co., Ltd. (Shanghai, China). Genomic DNA was
extracted using a QIAamp DNA Mini Kit (Qiagen, Valencia,
CA, USA), and the quantification and integrity of DNA were
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identified by a Nanodrop spectrophotometer (Thermo Fisher
Scientific, Inc., Wilmington, DE, USA). Genomic DNA samples
were captured on an Agilent SureSelect whole exome library
following the manufacturer’s protocol. In brief, genomic DNA
was sheared, purified immediately and ligated with adapters. The
amplification of the libraries was conducted by polymerase chain
reaction (PCR) and then hybridized with custom probes. The
bound DNA fragments were washed and eluted; then, these
libraries were sequenced on the Illumina sequencing platform
(HiSeq X-10, Mumina, Inc., San Diego, CA, USA), and 150 bp
paired-end reads were generated.

TP53 mutation analysis

TP53 mutation analysis was performed on the 2 MPL cases
(including tumors and their adjacent normal tissues) by PCR
and Sanger sequencing according to a previously reported
method (15). Primers were used as follows: TP53-F:
TCCCAAGCAATGGATGATTT, TP53-R: TTCTGGGAAGGG
ACAGAAGA. Sanger sequencing was performed by Tsingke
Biological Technology Co., Ltd. (Chengdu, China).

Statistical analysis

For survival analysis, overall survival (OS) was defined as
time from disease diagnosis to death from tumor. DFS (disease-
free survival) was defined as time from complete resection until
local recurrence or metastasis. OS and DFS were analyzed using
the Kaplan-Meier method followed with log- rank test. Data
were analyzed using SPSS version 20.0 (IBM Corp, Armonk, NY,
USA). P < 0.05 indicates the statistical significance between
different groups.

Results
Clinical findings

The clinicopathologic findings of the 43 patients are
summarized in Table 1. This study comprised 27 males and 16
females (ratios, 1.68:1) with a median age of 53 years (range, 24
to 73 years). The tumors involved the mediastinum (23/43,
53.5%), pleura space (16/43, 37.2%), and lung (4/43, 9.3%).
Among the 23 mediastinal cases, 6 tumors involved anterior
mediastinum (6/23, 26.1%), 4 in the posterior mediastinum (4/
23, 17.3%), 3 in the superior mediastinum (3/23, 13.1%), and 3
tumors (3/23, 13.1%) extensively involved multiple mediastinal
compartments. The remaining 7 (7/23, 30.4%) stated no definite
mediastinal location.
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TABLE 1 Clinicopathologic features of 43 primary intrathoracic liposarcomas.

Case Age/ Symptoms Size

No. sex (cm)

1 56/F  Cough, Short ~ NA
of breath

2 43/M  Cough NA

3 65/M  Chest pain 6

4 57/F  Cough 20

5 70/F  Asymptomatic 26

6 43/F  Chest 12
tightness,

7 64/M  Asymptomatic 22

8 42/M  Asymptomatic 18

9 69/M  Asymptomatic 23

10 73/F  Cough 20

11 50/M  Asymptomatic 12

12 64/F  Asymptomatic 6.4

13 46/F  Short of breath  NA

14 38/F  Asymptomatic NA

15 65/M  Asymptomatic 11
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Location

Pleura space

Mediastinum

Left pleura
space

Right pleura
space

Anterior
mediastinum

Middle and
posterior
mediastinum

Left pleura
space

Anterior
mediastinum

Posterior
mediastinum

Right pleura
space

Superior
mediastinum
(the right
side)

Anterior
mediastinum

Pleura space
(the whole)

Anterior
mediastinum

Superior
mediastinum
(the right
side)

Histology

WDL (lipoma-like)
WDL (lipoma-like)
WDL (lipoma-like)

WDL (lipoma-like)

WDL (lipoma-like) (original diagnosis:
WDL)

WDL (lipoma-like)

WDL (lipoma-like)

WDL (lipoma-like) with myxoid change

WDL (sclerosing and lipoma-like) with
myxoid change

WDL (inflammatory and lipoma-like)
(original diagnosis: WDL)

WDL (lipoma-like) with myxoid change
(original diagnosis: liposarcoma)

WDL (lipoma-like) (original diagnosis:
DDL with myxofibrosarcoma-like
differentiation)

WDL (lipoma-like) with myxoid change
(original diagnosis spindle cell
liposarcoma, spindle cell lipoma)

WDL (lipoma-like)

WDL (inflammatory), with myxoid
change

23

IHC results

ND

ND

CDK4+

ND

MDM2+

MDM2+, CDK4+

ND

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

ND

ND

Genetic
results

Failed

MDM2
+(FISH)

Failed

MDM2-,
CDK4-,
FRS2 +
(FISH)

MDM?2
+(FISH)

MDM2
+(FISH)

MDM2
+(FISH)

MDM2
+(FISH)
MDM2
+(FISH)
MDM2
+(FISH)

MDM2
+(FISH)

MDM2+, no
RBI loss
(FISH)

MDM?2+, no
RBI loss
(FISH)

MDM?2
+(FISH)

ND

10.3389/fonc.2022.949962

Treatment Outcome/

Marginal

excision

Biopsy only

Complete
excision

Complete
excision

Marginal
excision

Complete

excision

Complete
excision

Complete
excision

Complete
excision

Marginal
excision

Marginal

excision

Marginal

excision

Marginal
excision

Marginal
excision; CT,
RT

Complete
excision

Follow-

up
duration

AWD/113
mo

Lost

ANED/93
mo

ANED/16
mo

Recurrence
at 5 mo, 20
mo, and
53mo
resected;
DOD/70 mo

ANED/48
mo

Recurrence
at 31 mo,
resected and
RT; AWD/
36 mo

Lost

ANED/35
mo

Recurrence
at 37 mo, 61
mo and 72
mo, resected;
DOD/72 mo

Recurrence
at 84 mo,
resected and
RT; AWD/
161 mo

Recurrence
at 22 mo,
resected;
NED/42 mo
Recurrence
at 32 mo,
resected;
AWD/39 mo
Recurrence
at 33 and 66
mo, resected;
AWD/120
mo

DFU/53 mo

(Continued)
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TABLE 1 Continued

Case Age/ Symptoms

No.

18

19

20

21

22

23

24

25

26

27

28

sex

56/M

53/M

37/F

57/M

44/M

38/M

62/M

48/M

56/M

58/M

62/M

65/M

30/M

Asymptomatic

Cough,
Expectoration

Cough

Asymptomatic

Short of breath

Cough

Facial edema

Asymptomatic

Asymptomatic

Chest
tightness,
Short of breath

Cough,
Expectoration,
Chest pain

Short of breath

Chest pain
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Size
(cm)

10.5

17

12

19.2

35

10

16

NA

18

20

16

Location

Left pleura
space
(involving to
lung)

Posterior
mediastinum

Posterior
mediastinum

Right and
posterior
mediastinum

Posterior
mediastinum

Mediastinum

Mediastinum

Mediastinum

Right pleura
space

Anterior
mediastinum

Inferior and
anterior
mediastinum

mediastinum

Left pleura
space

Histology

WDL (inflammatory) (original diagnosis
inflammatory pseudotumor)

WDL (sclerosing and lipoma-like)

WDL (sclerosing and lipoma-like)

WDL (sclerosing and lipoma-like) with
myxoid change

WDL (sclerosing and lipoma-like)

WDL (lipoma-like)

DDL, with undifferentiated pleomorphic
sarcoma-like differentiation and myxoid
change; well-differentiated liposarcoma
area (lipoma-like) (original diagnosis:
malignant tumor: 1.SFT 2. MFH 3.
liposarcoma)

DDL, with undifferentiated pleomorphic
sarcoma-like differentiation and myxoid
change; (original diagnosis: DDL)

DDL, with high-grade
myxofibrosarcoma- like differentiation;
well-differentiated liposarcoma area
(sclerotic); (original diagnosis: spindle
cell tumor. 1. SFT with malignant
transformation2. synovial sarcoma 3.
thymoma (type A) 4. DDL need to be
excluded)

DDL, with undifferentiated pleomorphic
sarcoma-like differentiation; well-
differentiated liposarcoma area (sclerotic)

DDL, with undifferentiated pleomorphic
sarcoma-like differentiation; well-
differentiated liposarcoma area (sclerotic)

DDL, with undifferentiated pleomorphic
sarcoma-like differentiation; well-
differentiated liposarcoma area
(sclerotic); (original diagnosis poorly
differentiated sarcoma)

DDL, with high-grade myxofibrosarcoma
-like differentiation, well- differentiated
liposarcoma area (lipoma-like and
sclerotic)

24

IHC results

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

CDK4+

MDM2+, CDK4+

MDM2+

ND

MDM2+, CDK4+

MDM2+, CDK4+

MDM2+, CDK4+

Genetic
results

MDM2
+(FISH)

MDM2
+(FISH)

MDM2
+(FISH)

MDM?2
+(FISH)

MDM2
+(FISH)

MDM2+,
CDK4+,
FRS2 +
(FISH)

failed

MDM2
+(FISH)

MDM2
+(FISH)

ND

MDM2
+(FISH)

MDM2
+(FISH)

MDM2
+(FISH)

10.3389/fonc.2022.949962

Treatment Outcome/

Complete
excision

Marginal
excision
Marginal
excision

Complete

excision

Marginal
excision; CT,
RT

Complete
excision

Marginal

excision

Marginal
excision; CT,
RT

Complete

excision

Marginal

excision

Marginal
excision; CT

Marginal
excision

Complete
excision,

CT

Follow-

up
duration

ANED/37
mo

AWD/17 mo

Recurrence
at 36 mo,
RT+CT;
AWD/43 mo

ANED/42
mo

Recurrence

at 16 and 28
mo, resected;
DOD/36 mo

ANED/7 mo

Lost

DOD/3 mo

Lost

Lost

Recurrence
at 11 mo,
resected;
DOD/39 mo

DOD/4 mo

ANED/24

mo

(Continued)
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TABLE 1 Continued

Case Age/ Symptoms

No.

29

30

31

32

33

34

35

36

37

38

39

40

41

sex

53/M

60/F

53/F

43/M

44/M

62/M

31/F

40/F

40/F

72/F

46/M

51/M

24/M

Cough

Asymptomatic

Cough,
Expectoration,
Dorsagia

Cough,
Expectoration,
Chest pain

Short of breath

Cough,
Expectoration

Cough,
Expectoration
Cough, Chest
pain

Cough

Short of breath

Cough, Short
of breath

NA

Asymptomatic
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Size
(cm)

24

NA

20

1.2

264

13

10.2

NA

35

NA

15

Location

mediastinum

Left lung
tissue

Left pleura
space

Right pleura
space

Right pleura
space
(involving to
lung tissue)
Left lung
tissue

Right pleura
space

Left pleura
space

Right pleura
space

Right lung
tissue

Right pleura
space

Lung

Superior
mediastinum

Histology

DDL, with osteosarcoma/
chondrosarcomatous-like differentiation
and myxoid change, well- differentiated
liposarcoma area (lipoma-like and
sclerotic)

DDL, with high-grade myxofibrosarcoma
-like differentiation

DDL, with myxofibrosarcoma-like
differentiation and myxoid change, well-
differentiated liposarcoma area (lipoma-
like)

DDL, with myxofibrosarcoma-like
differentiation and myxoid change, well-
differentiated liposarcoma area (lipoma-
like and sclerotic)

DDL with leiomyosarcomatous
differentiation, well- differentiated
liposarcoma area (sclerotic)

DDL, with myxofibrosarcoma-like
differentiation

DDL, with IMT-like differentiation, and
myxoid change, well-differentiated
liposarcoma area (lipoma-like)

DDL, with IMT-like differentiation, well-
differentiated liposarcoma area (sclerotic)

DDL, with low-grade fibrosarcoma-like
differentiation (desmoid-type
fibromatosis-like); well-differentiated
liposarcoma area (sclerotic)

DDL, with IMT-like differentiation well-
differentiated liposarcoma area
(sclerotic); (original diagnosis: low-grade
soft tissue tumor, with a tendency to
histocytic tumor or
hemanyiopericytoma)

DDL, with low-grade fibrosarcoma-like
differentiation, well- differentiated
liposarcoma area (inflammatory and
sclerotic)

DDL with osteosarcomatous
differentiation

MPL, displaying myxoid stroma, and
pleomorphic lipoblasts (original
diagnosis: desmoid-type fibromatosis)

25

IHC results

MDM2+, CDK4+

MDM2+, CDK4+

ND

MDM2+,

MDM2+, CDK4+,
SMA+, Desmin+

CDK4+

MDM2+, CDK4+

ND

ND

ND

MDM2+, CDK4+

ND

P53+, MDM2-,
CDK4-, CD34-,
S100-

Genetic
results

MDM2+,
DDIT3-
(FISH)

MDM2
+(FISH)

MDM2
+(FISH)

MDM2+,
DDIT3-
(FISH)

MDM?2
+(FISH)

MDM?2
+(FISH)

MDM2
+(FISH)

MDM2
+(FISH)

ND

MDM2
+(FISH)

MDM?2
+(FISH)

MDM2
+(FISH)

MDM2-,
DDIT3-, no
RBI loss
(FISH);
TP53
somatic
mutation
(PCR)

10.3389/fonc.2022.949962

Treatment Outcome/
Follow-
up
duration
Complete ANED/23
excision mo
Biopsy; CT, AWD/12 mo
RT
Marginal Recurrence
excision; CT  at 25 and 37
mo, resected;
AWD/55 mo
Marginal Recurrence
excision, CT  at 58 and 74
mo, Scalp
metastasis at
70 mo,
resected;
AWD/91 mo
Complete Lost
excision
Complete ANED/28
excision mo
Complete ANED/30
excision mo
Marginal DFU/17 mo
excision; CT
Marginal AWD/13 mo
excision
Biopsy, CT Lost
Marginal Recurrence
excision at 65 mo,
resected;
AWD/105
mo
Biopsy only ~ DOD/6 mo
Marginal Recurrence
excision, CT, at 3 mo,
RT unresected;
DOD/9 mo
(Continued)
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TABLE 1 Continued

10.3389/fonc.2022.949962

Case Age/ Symptoms Size Location Histology IHC results Genetic Treatment Outcome/
No. sex (cm) results Follow-
up
duration
42 49/F  Dizziness, 7.8 Anterior MPL, displaying myxoid stroma, and P53+, MDM2-, MDM2-, Marginal DOD/7 mo
Hemoptysis, mediastinum  pleomorphic lipoblasts; (original CDK4-, CD34-, DDIT3-,no  excision
Chest tightness diagnosis: malignant tumor with the $100- RBI loss
tendency to soft tissue sarcoma) (FISH);
TP53
somatic
mutation
(WES&PCR)
43 59/M  Short of breath NA mediastinum  PL, displaying spindle, pleomorphic P53+, MDM2- MDM2-, Biopsy only ~ AWD/7 mo
tumors cells with pleomorphic lipoblasts CDK4-,

FRS2-(FISH)

M, male; F, female; NA, not available; WDL, well-differentiated liposarcoma; DDL, de-differentiated liposarcoma; M-PL, myxoid pleomorphic liposarcoma; SFT, solitary fibrous tumor;
MFH, malignant fibrous histiocytoma; IMT, inflammatory myofibroblastic tumor; IHC, immunohistochemistry; “+” positive, “-” negative; FISH, fluorescence in situ hybridization; PCR,
polymerase chain reaction; WES, whole exome sequencing; RT, radiotherapy; CT, chemotherapy; ANED, alive with no evidence of disease; AWD, alive with disease; DFU, died from

unrelated reasons; DOD, died of disease; ND, not done; mo, month.
Radiologic findings

Computed tomography (CT) images were available in thirty-
two patients (32/43, 74.4%). The tumor margins were well
defined in 15 cases (15/32, 46.9%), ill-defined in 15 cases (15/
32, 46.9%) and infiltrative in 2 cases (2/32,6.2%). Twenty-two
cases had contrast-enhanced CT data, 16 of 22 (72.7%) cases
displayed heterologous enhancement, and 6 cases (27.3%)
showed homologous enhancement. Necrosis or cystic change
was identified in 5 of 32 (15.6%) cases, and 1 of 32 cases (3.1%)
had calcification. Seventeen cases (17/32, 53.1%) extensively
involved or compressed the adjacent tissues and vital vessels,
and pleural effusion was found in five cases (5/32, 15.6%). None
of the 32 cases showed lymphadenopathy.

Clinical treatments

Surgical excisions were performed on 38 patients (38/43,
88.4%), including marginal excision (n=22) and complete
excision (n=16), and 9 patients (23.7%) received chemotherapy
and/or radiotherapy. Five patients (5/43, 11.6%) received biopsy
only, and 2 were treated with chemotherapy and/
or radiotherapy.

Pathologic and molecular findings

Gross findings

Macroscopic descriptions were available in 26 of the 38
(68.4%) resected specimens. Macroscopically, eighteen cases (18/
26, 69.2%) were well-circumscribed masses, and the remaining 8
lesions (8/26, 30.8%) were poorly circumscribed with infiltration
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of adjacent organs or tissues. The cut surface of tumors showed a
solid appearance from yellow to white.

Microscopic and molecular findings

WDL (N=21)

The 21 conventional WDLs comprised 13 lipoma-like
(61.9%) (Figure 1A), 2 inflammatory (9.5%) (Figure 1B), and 6
mixed-subtype tumors (28.6%). Lipoma-like WDL tumors were
mainly composed of atypical adipocytes of varying sizes, and
inflammatory WDL was characterized by extensive chronic
inflammatory infiltrate. The 6 mixed-type tumors included 5
cases with mixed lipoma-like and sclerosing subtypes, and 1 case
was a mixture of lipoma-like and inflammatory variants.
Atypical, hyperchromatic stromal cells were identified in all of
the tumors. A small focal area with increased cellularity was
found in 10 cases, consistent with the morphology of cellular
WDL. Myxoid change (Figure 1C) was found in 6 of 21
(28.6%) cases.h

Immunohistochemically, MDM2 and CDK4 positivity was
observed in 13/13 (100.0%) and 13/13 (100.0%) WDL cases,
respectively. MDM?2 amplification was observed in 17/18
(94.5%) cases (Figure 1D). The MDM2 FISH-negative case was
CDK4-nonamplified but FRS2-amplified (case 4)
(Figures 2A-D).

DDL (N=19)

Among the 19 DDLs, 15 cases (15/19, 79.0%) comprised
WDL and DDL components simultaneously, and 4 cases only
had DDL components. In the 15 cases with both components, 11
cases (11/15, 73.3%) showed an abrupt transition from WDL to
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FIGURE 1

The histologic features of well-differentiated liposarcoma (WDL) and corresponding fluorescence in situ hybridization (FISH) images. Lipoma-like
WDL showing variation in adipocyte size, with the presence of bizarre, hyperchromatic stromal cells (A hematoxylin and eosin staining [H&E];
magnification: 200x). Inflammatory WDL with predominant inflammatory cell arrogation and atypical, hyperchromatic cells can be identified in
the stroma (B H&E; magnification: 200x). WDL with extensive myxoid change showing abundant myxoid stroma and containing small branching
vessels (C H&E; magnification: 200x). FISH analysis identified MDM2 amplification in the WDL (case 17) (D)

DDL components, 3 cases (3/15, 20.0%) with gradual transition,
and one case (1/15, 6.7%) with a mosaic transition pattern.

In 19 DDL cases, 13 (68.4%) tumors exhibited classic histologic
patterns, including undifferentiated pleomorphic sarcoma-like
(n=5, 26.4%) (Figure 3A) and intermediate- to high-grade
myxofibrosarcoma/fibrosarcoma-like patterns (n=6, 31.6%)
(Figure 3B), and 2 cases exhibited osteosarcomatous/
chondrosarcomatous differentiation (Figure 3C). The other
6 cases (31.6%) manifested uncommon dedifferentiated
components, including 3 with inflammatory myofibroblastic
tumor (IMT)-like morphology (15.8%), 2 cases with low-grade
dedifferentiation (10.5%), and one DDL with leiomyosarcomatous
differentiation. The mitotic rate ranged from 1-30 per 10 high-
power fields (HPFs). Necrosis was found in 6 of 19 cases (31.6%).
Myxoid change was identified in 6 cases (31.6%). Thirteen DDLs
were classified as FNCLCC 2, and 6 DDLs were graded as
FNCLCC 3.

In IMT-like DDLs (cases 35, 36, 38), the spindled tumor cells
ranged in a fascicular cluster set in a slight myxoid matrix with
varying degrees of chronic inflammatory cell infiltration. The
spindle cells had abundant, eosinophilic cytoplasm and vesicular
nuclei with small nucleoli (Figure 3D). Two DDL cases showed
low-grade dedifferentiation resembling low-grade fibrosarcoma
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or desmoid fibromatosis (cases 37, 39). The tumor cells
organized in a fascicular pattern, exhibiting moderate
cellularity. The spindle cells had abundant, eosinophilic
cytoplasm with mild nuclear atypia (Figures 3E, F).

In one case (case 33), the tumor developed based on the
pleura, involving the pleural cavity and lung parenchyma
simultaneously. The pleural part was composed of a classic
WDL component (Figure 4A). The lesion within the lung
parenchyma exhibited more complexity and diversity. At low
magnification, the growth of the spindle tumor cells under the
bronchiolar epithelium caused cleft-like architecture, mimicking
the pattern of pulmonary adenofibroma (Figure 4B). At high
magnification, most areas displayed fascicular arrangement of
spindle tumor cells, with hyperchromatic, cigar-shaped nuclei
and mild to moderate atypia, mimicking low-grade smooth
muscle tumors (Figure 4C). In the focal area of the lesion, the
tumor cells exhibited increased nuclear atypia with obvious
pleomorphism (Figure 4D). The mitotic activity increased to
12 per 10 HPF in this area, and atypical mitosis and necrosis
could be identified.

Immunoreactivity for MDM2 and CDK4 was present in 11/
11 (100%) and 11/11 (100%) DDL cases, respectively. The THC
results of DDL with well-differentiated leiomyosarcoma-like
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FIGURE 2

The histologic features of well-differentiated liposarcoma (WDL) with unusual genetic results and corresponding fluorescence in situ
hybridization (FISH) images. The WDL (case 4) showing hyperchromatic bizarre stromal cells (A H&E; magnification: 200x). FISH analysis
revealed that the tumor was negative for MDM2 (B) and CDK4 (C) gene amplification but with FRS2 gene amplification (D)

area (case 33) exhibited positivity for smooth muscle actin,
desmin and h-caldesmon. In the dedifferentiated area, the
tumor cells were negative for those myogenic markers (case
33; Figures 4E-G). High level MDM2 amplification was
identified in 16/16 cases (100%) (Figure 4H), including 2 cases
with myxoid change, which were negative for DDIT3
rearrangement (cases 29, 32).

MPL (N=2)

Two cases (cases 41, 42) showed mixed features of
conventional PL and variable portions of myxoid background
(Figure 5A). The tumor cells in the PL-like area exhibited
marked atypia, and pleomorphic lipoblasts were also
identified. The conspicuous ML-like areas ranged from 40-60%
in each case, displaying a well-developed plexiform vasculature
pattern, pulmonary edema-like mucous pool, and scattered
small lipoblasts and bland round cells (Figure 5B). The mitotic
rates varied from 22 to 27 mitoses per 10 HPF. Necrosis could be
observed in both cases. The 2 MPLs were graded as FNCLCC 3.

Both of the cases were strongly positive for p53(Figure 5C)
and negative for CD34, MDM2, CDK4, and S-100 protein. FISH
analysis revealed that both MPLs were negative for MDM2
amplification (Figure 5D), DDIT3 rearrangement (Figure 5E),
and RBI deletion.
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WES was performed on 1 MPL (case 42) to find more
detailed genetic change of this subtype. The structural variants
(SV) analysis showed that the number of interchromosomal
translocation was the most frequent variant, followed by
intrachromosomal translocation, deletion, duplication and
inversion. Copy number variation (CNV) result showed the
loss locus of chromosomes were more than the gains. The most
frequent loss loci were 8p23.1, 16p13.11 and 1q21.3, and gain
loci of 14q11.2, 7q22.1 and 7q11.23 were found. Somatic TP53
mutation in exon 4: ¢.215G>C, p.P72R. was detected in this
MPL, which was verified by Sanger sequencing analysis. The
same result was observed in another MPL (case 41), while the
TP53 mutation was not detected in the nontumorous tissues of
either case (Figure 5F).

PL (N=1)

The lesion comprised spindle, epithelioid tumor cells with
severe atypia. The bizarre lipoblasts can be identified in some
areas within the tumor (Figures 6A, B). Myxoid change was
identified in focal area, resembling the morphology of
myxofibrosarcoma (Figure 6C). Tumor necrosis and atypical
mitotic figure were seen in the tumor. Immunohistochemical
analysis revealed that the tumor cells were diffusely positive for
P53 (Figure 6D) and focally positive for S-100 but negative for
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FIGURE 3

The histologic features of dedifferentiated liposarcoma (DDL) and corresponding fluorescence in situ hybridization (FISH) images. DDL with
undifferentiated pleomorphic sarcoma-like differentiation; tumor cells exhibited moderate cytologic atypia with obvious nuclear pleomorphism

(A H&E; magnification: 400x). DDL showed a fibrosarcoma-like pattern, exhibiting marked hypercellularity and cytologic atypia. (B HGE; magnification:
400x). DDL showing areas of osteosarcoma and chondrosarcoma-like differentiation (C H&E; magnification: 100x). DDL with IMT-like features with
varying degrees of chronic inflammatory cell infiltration (D H&E; magnification: 200x). DDL with low-grade fibrosarcoma-like differentiation, exhibiting
mild cytologic atypia (E H&E; magnification: 200x). FISH analysis identified MDMZ2 amplification in the DDL (case 32) (F)

MDM2 protein. FISH analysis revealed that the tumor was
negative for MDM2/CDK4/FRS2 amplification.

Clinical follow-up

Clinical follow-up data were available for 33 of 38 (86.8%)
patients who received surgical intervention, with a median
follow-up duration of 37 months (mean, 44.8 months; range
3 - 161 months). Local recurrence occurred in 14 cases (14/33,
42.4%) (median, 25 months; range 3- 84 months), including 9
WDLs, 4 DDLs and 1 MPL. Metastasis occurred in 1 patient with
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DDL. Thirteen patients (13/33, 39.4%) were alive with no
evidence of disease (median, 35 months; range 7-105 months),
including 8 WDLs and 5 DDLs. Ten patients (10/33, 30.3%)
were alive with disease from 13 to 161 months after diagnosis
(median, 49 months), including 7 WDL cases and 3 DDLs. Eight
patients (8/33, 24.2%) died of disease, including 3 WDLs, 3
DDLs and 2 MPLs. Additionally, two cases (2/33, 6.1%) died
from unrelated causes.

The results of Log-rank analyses of the clinical parameters
are summarized in Table 2. The survival analysis found that
tumor subtype (}2 = 16.118, p< 0.05), necrosis (x2 = 6.174, p<
0.05) and surgical resection (complete resection vs. marginal
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FIGURE 4
The histologic features of DDL with leiomyosarcomatous differentiation (case 33) and its corresponding immunohistochemical and fluorescence

in situ hybridization (FISH) image. Sclerotic well-differentiated area outside the lung (A H&E; magnification: 200x). At low magnification, the
growth of the spindle tumor cells showed cleft-like architecture, mimicking the pattern of pulmonary adenofibroma (B H&E; magnification
200x). Spindle tumor cells display a fascicular arrangement, with hyperchromatic, cigar-shaped nuclei and mild to moderate atypia (C H&GE;
magnification: 200x). The tumor cells exhibited increased nuclear atypia with obvious pleomorphism (D H&E; magnification: 200x). The tumor
cells showed SMA (E magnification: 200x), desmin (F magnification: 200x) and h-caldesmon (G magnification: 200x) positivity in well-
differentiated areas and negativity in focal sarcoma-like areas. MDM2 amplification was identified in this case (H).
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FIGURE 5

10.3389/fonc.2022.949962

The histologic features of myxoid pleomorphic liposarcoma and corresponding immunohistochemical and genetic results. The tumor exhibited
features of pleomorphic liposarcoma with myxoid matrix, and multivacuolated lipoblasts were found (A HGE; magnification: 400x) (case 42).
Myxoid liposarcoma-like areas were also identified within the tumor, displaying a well-developed plexiform vasculature pattern (B H&E;
magnification: 400x). The tumor cells (case 42) showed positivity for p53 immunostaining (C magnification: 400x). FISH analysis revealed
negativity for MDM2 amplification (D) or DDIT3 rearrangement (E). Sanger sequencing results showed TP53 mutations in both tumors (F).

resection; 2 = 4.156, p < 0.05) were associated with overall
survival (OS). DFS (disease-free survival) was related to tumor
subtype (32 = 9.526, p < 0.05) and surgical resection (complete
resection vs. marginal resection; ¥2 = 7.605, p < 0.05). No
significant difference was observed between the other survival
factors with OS and DFS, including sex, age and tumor size.

Discussion

This study enrolled 43 primary intrathoracic liposarcomas,
aged from 24 to 73 years (median, 53 years) with male
predilection (M: F= 1.68:1). We reviewed previously reported
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primary intrathoracic liposarcoma (1990-2021) with available
clinicopathological information in English literature(n=300),
summarizing the series cases in Table 3 and the rest in
Supplementary Table 1 (7-13). The majority of the historical
cases were also older adults (median, 54 years) with a male
predication (M: F= 1.46:1).

In this cohort, a preference for the mediastinum (23/43,
53.5%) was observed, which is in agreement with the tendency of
previous cases (222/300, 74.0%). The percentage of our series
(53.5%) was lower than that of previous studies (74.0%), which
may be caused by our research analyzing all intrathoracic
liposarcomas, whereas some large series studies focused on
mediastinal tumors only (8, 9, 12). Only 4 cases in our cohort
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FIGURE 6

The histologic features of pleomorphic liposarcoma and corresponding immunohistochemical results. The spindled, epithelial tumor cells
exhibited marked nuclear atypia (A H&E; magnification: 400x) (case 43). The bizarre lipoblasts can be identified within the lesion (B HEGE;
magnification: 400x). Myxoid change in focal area, resembling the morphology of myxofibrosarcoma (C H&E; magnification: 200x). The tumor

cells were diffusely positive for P53 (D magnification: 400x).

were located within the lung parenchyma (4/43, 9.3%), and 18
pulmonary liposarcomas were reported previously (18/300,
6.0%) (11, 13, 18-29). These results indicated that primary
pulmonary liposarcoma is exceedingly rare but does exist.
According to the results of this study, the most significant
difference between our series and previous studies is the
distribution spectrum of the subtype. In our study, WDL/DDL
was the overwhelming subtype (40/43, 93.0%), followed by MPL
(2/43,4.7%) and PL (1/43, 2.3%). Notably, ML was not identified
in our study. The distribution spectrum differed significantly
from the overall distribution of liposarcoma subtypes, in which
WDL/DDL, ML and PL accounted for approximately 65%, 30%,
and 5% of cases, respectively, and MPL was exceptionally rare.
Moreover, our result is also different from to that of historical
intrathoracic cases, in which WDL/DDL, ML, PL and MPL
accounted for 56.7% (170/300), 21.3% (64/300), 11.3% (34/300)
and 2.7% (8/300), respectively. Notably, the subtype distribution
of our thoracic liposarcoma is similar to that of primary
retroperitoneal liposarcoma, in which WDL/DDL is the
predominant subtype and ML and PL are vanishingly rare (30).
The 21 WDLs in our study comprised lipoma-like (61.9%),
inflammatory (9.5%), and mixed subtype tumors (28.6%). Most
historical WDLs with available subtype information (n=54),
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were also lipoma-like (12/54, 22.2%) and mixed-subtype (32/
54, 59.3%). Conspicuous myxoid change was observed in 6 of
our cases (28.6%) and appeared to be more common than in
reported tumors with available descriptions (12/66, 18.2%) (9,
10, 12). Attention should be given to these cases, as some WDLs
can show extensive myxoid changes mimicking ML.

It should be mentioned that only 8 historical WDLs (6.8%)
were analyzed by FISH, including 6 MDM2-amplified cases, 1
case with equivocal MDM2-FISH results, and 1 CPM-
nonamplified case (10, 12, 20, 31-34). In our study, all 18
tested WDLs were 12q13-15 amplified, including 17 MDM2-
amplified cases and 1 FRS2-amplified/MDM2-nonamplified/
CDK4-nonamplified tumor (case 4). We reported the first
FRS2+/MDM2-/CDK4- WDL in English literature. The
position of the FRS2 gene is close to the MDM2 and CDK4
genes within the 12q13-15 chromosomal region. In 2011, Wang
et al. identified consistent amplification of the FRS2 gene in 57
WDL/DDLs (100%) (35).Subsequently, our research found a
high amplification frequency of the FRS2 gene in WDL/DDLs
(136/146, 93.2%) and low-grade osteosarcoma (21/22, 95%),
slightly lower than that of MDM?2 (100%). These results
indicated that FISH analysis of the FRS2 gene could also be a
useful ancillary tool for the diagnosis of WDL/DDL (17, 36).
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TABLE 2 Survival data of the primary intrathoracic liposarcoma patients of the study.

Parameter N (%)
Log-rank
Gender 33 0.891
Male 19 (57.6)
Female 14 (42.4)
Age 33 0.723
<=50y 16 (48.5)
>50 y 17 (51.5)
Size 29 0.110
<=10cm 7 (24.1)
>10 cm 22 (75.9)
Location 33 1.488
Mediastinum 18 (54.6)
Pleura space 14 (42.4)
Lung 1(3.0)
Subtype 33 9.526
Well-differentiated 19 (57.6)
Dedifferentiated 12 (36.4)
Myxoid pleomorphic 2 (6.0)
Necrosis 33 2.795
Yes 8(24.2)
No 25 (75.8)
Surgical resection 33 7.605
Complete resection 14(42.4)
Marginal resection 19(57.6)

Moreover, in addition to MDM2 and CDK4, aberrations of other
genes at 12q13-15 may also participate in the pathogenesis of
this entity, and comprehensive molecular analysis in challenging
cases is valuable.

In the 19 DDLs, 13 tumors (68.4%) exhibited a conventional
dedifferentiation pattern, and the other 6 cases showed
uncommon morphology, including an IMT-like pattern (n=3,
15.8%), low-grade dedifferentiation (n=2, 10.5%) and DDL with
leiomyosarcomatous differentiation (n=1, 5.3%). It should be
mentioned that IMT-like features are a recently described
histologic pattern of DDL, while none of the intrathoracic
cases have been described in the English literature (37-39). In
the 52 reported DDLs, 10 of them (10/52, 19.2%) exhibited low-
grade dedifferentiation (9, 10, 12, 40-42). Notably, 1 case was
DDL with leiomyosarcomatous differentiation, mimicking
smooth muscle tumor and pulmonary adenofibroma
histologically. However, typical areas of WDL were found after
extensive sampling. Furthermore, the identification of MDM2
amplification helped the final diagnosis. To the best of our
knowledge, only 1 primary intrathoracic DDL with
leiomyosarcomatous differentiation has been described (12). In
the study cohort, all tested DDL tumors (16/16, 100%) exhibited
MDM?2 amplification. However, only 11 of 52 (21.1%) historical
cases were subjected to FISH analysis, and all of them displayed
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Overall survival

P-value Log-rank P-value
0.345 0.267 0.605
0.395 0.017 0.896
0.740 2321 0.128
0475 5225 0.073
<0.05 16.118 <0.001
0.095 6.174 <0.05
<0.05 4.156 <0.05

positive results (10, 18, 40, 42-47). We endorsed ancillary tests
for cases in rare locations, such as the mediastinum, lung and/or
ambiguous morphology.

Two MPLs were identified in this study. As an exceptionally
rare subtype of liposarcoma, only 38 MPLs have been reported
previously. Of the 37 reported cases with available information,
MPLs have a predilection for the mediastinum (15/37, 40.6%),
suggesting although MPL is an extremely rare subtype of
liposarcoma, it is not the rarest liposarcoma variant in the
mediastinum (10, 15, 48-55). The 2 MPL patients in our study
were 24 and 49 years old. The median age of cases from case
reports and series study was 17 years and 35 years, respectively
(55). These result suggested MPL is more prone to occur in
young age group.

The MPL tumors of this cohort simultaneously harbored
pleomorphic liposarcoma-like areas and myxoid liposarcoma-
like areas, with a plexiform vasculature pattern in a myxoid
background, similar to previously reported cases. The MPLs in
our study and historically tested MPL cases were all negative
for MDM2 amplification or DDIT3 rearrangement, indicating
the phenotype of MPL was different from that of WDL/DDL or
ML (10, 48, 50-54). The WES results of our MPL case showed
numerous chromosome gain and loss loci, similar to 2 previous
aCGH studies of 2 MPLs, and 1 large series study of MPLs (50,
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TABLE 3 Clinicopathologic features of previously reported primary mediastinal and intrathoracic liposarcomas of large series studies.

Published Case Author Gender Age Clinical Presentation Size (cm) Location Histology Molecular/THC Therapy Follow- Outcome
time No. (M:F) (year) upInformation
1964 8 Cicciarelli, F. E.et 35 50 (13- pain, cough, dyspnea, loss of weight ~ 17.8 (14- 2 PM, 2 AM, 8 Liposarcoma NA 5 excision & RT, 6 recurrence 5 DOD,
al (7) 70) 22) 4 MC 2 excision,1 RT 3 AWD
1995 28 Klimstra DS, et al 16:12 43 (14-  pain, cough, dyspnea, 157 (6- 28 AM 15 WDL,7 ML,3 PL, NA 28 excision 7 (7122) 11
(8) 72) 40) 3 mixed-type recurrence ANED,
4 AWD,
7 DOD,
2007 24 Hahn HP, et al. 13:11 58 (3- Dyspnea and cough 16 (2.2- 9 AM,7 PM, 1 SM,7 mediastinum 10 WDL,8 DDL,2 ML,4 PL NA 14 complete excision, 1 marginal excision +CT, 1 5(5/15) 11
) 72) 61) RT+CT recurrence ANED,
2(215) 1 AWD,
metastasis 2 DOD,
1 DFU
2012 24 Boland JM, et al. 13:11 53 (15- NA 16 (8-30) 6 AM, 6PM, 2SM, 3 MM, 5MC, 8 WDL,6 DDL,2 ML, WDL:1/1CPM-(FISH), DDL:3/3 CPM 22 excision 8 (8/19) 6 ANED,
(10) 73) 1PS, 1AM/SM 4PL,3M-PL,1 Unclassifiable +(FISH), recurrence 3 AWD,
type ML:1/1CPM-, DDIT3-(FISH), 5(5/19) 9 DOD
PL:2/2 CPM-(FISH); metastasis 3 Alive
MPL: 1/1 DDIT3-,1/1 DDIT3-, EWS-
(FISH)
Unclssifiable:1/1 CPM-, FUS- DDIT3-
(FISH),
2014 23 Chen M, et al. 12:11 49 (16-  Chest pain, cough, dyspnea, 8(4-39)  l0mediastinum,9 PS, 4 lung 8 WDL, 4 DDL, 8 ML,3 PL WDL:6/8 MDM2+, 6/8 CDK4+, 8/8 17 complete excision,6 marginal excision 9(9/17) 10 DOD
(11) 72) shortness of breath S100+(IHC) recurrence
DDL: 3/4 MDM2+, 3/4 CDK4+, 4/4 6 (6/23)
S100+(IHC) metastasis
ML:8/8 S100+(IHC)
2015 18 Ortega P, et al. 117 57 (29-  Cough, dysphagia, and chest pain 15 (6-30) 18 PM 10 WDL,3 DDL, 3 ML,2 PL WDL: 1/2 S100 +, 5/5 MDM2+(IHC); 12 complete excision, 4 marginal excesion+RT,1 RT 3 (3/13) 7 ANED,
(12) 87) 2/2 MDM2 +(FISH) recurrence 3 AWD,
DDL: 3/3 MDM2+, 0/3 S100+(IHC) 3(3/13) 2 DOD,
ML: 3/3 S100+, 0/3 MDM2+(IHC) metastasis 1DFU
2019 31 FuZetal. (13) 19:12 45 (20-  Chest tightness 10 (1.8- 16 AM, 8PM, 5 PS, 2 lung 6 WDL,3 DDL,13 NA 17excision,8 excision+RT,3 RT, 1 excision +CT, 0 (20/31) 18 DOD
64) 32) ML,4PL,5Mixed-type 2excision+RT +CT recurrence
1(11/31)

metastasis

M, male; F, female; NA, not available; AM, anterior mediastinum; PM, posterior mediastinum; SM, superior mediastinum; MM, middle mediastinum; MC, multiple compartments; PS, pleural space; WDL, well-differentiated liposarcoma; DDL,

dedifferentiated liposarcoma; ML, myxoid liposarcoma; PL, pleomorphic liposarcoma; M-PL, myxoid pleomorphic liposarcoma; IHC, immunohistochemistry;

chemotherapy, ANED, alive with no evidence of disease; AWD, alive with disease; DFU, died from unrelated reasons; DOD, died of disease.

34

+” positive,

negative; FISH, fluorescence in situ hybridization; RT, radiotherapy; CT,
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51, 55). Moreover, our results found losses are more frequent
than gains in MPL case, which were in agreement with
Creytens et al. but different from other studies, and more
MPL cases are needed to verify the finding. Furthermore,
both our research and previous studies found complex
chromosomal aberrations in MPL. However, these results
revealed MPL showed a simpler pattern of chromosome
alterations than conventional PL, with focal copy number
changes rather than whole chromosomal gains and losses.

MPL may be related to Li-Fraumeni syndrome (LFS)
associated with germline TP53 mutations. Both MPL tumors
of our study harbored somatic TP53 mutations, without
association with LFS. Including our 2 cases, TP53 mutation
was found in 78% of MPLs (7/9) (15, 51-54). These findings
reminded us TP53 mutation might play a role in the
pathogenesis of MPL. RBI gene deletion was found in 10 of 15
(66.7%) historical MPLs and 1 MPL was reported to have
KMT2D gene mutation, while our 2 MPL cases were negative
for such genetic changes (15, 51, 55). It should be pointed out
that conventional PL also harbors frequent TP53 and RBI
mutations (56), implying that aberrant genes of conventional
PL overlapped with those of MPL. Further study is needed to
identify the relationship and difference between these
two entities.

Only 1 conventional PL was found in our study with the
identification of typical of bizarre, giant lipoblasts and without
amplification of MDM2/CDK4/FRS2 genes. In previous studies,
PL was also rarely seen in this location and accounted for 11.3%
(34/300) of reported cases. The majority of historical PLs were
diagnosed based on morphology only, and only 2 cases were
found to be CPM nonamplified (10). Therefore, PL in the thorax
is scarce and the diagnosis of PL in this location is challenging.
Molecular analysis is needed to rule out the possibility of other
subtypes of liposarcoma.

Primary intrathoracic ML was not identified in our cohort.
In fact, 2 cases were coded as intrathoracic MLs at the beginning.
However, one was proved to be a metastatic tumor, and another
was revised as DDL (case 32) which was MDM?2-amplified but
DDIT3-nonrearranged. Although 64 primary intrathoracic MLs
have been reported, only one tumor was DDIT3-rearranged (10,
26). Hence, primary intrathoracic ML does exist, but it may be
quite rare.

The correct diagnosis and classification of intrathoracic
liposarcoma subtypes is of considerable importance and may
be challenging for difficult cases, particularly in small biopsy
specimens. Moreover, intrathoracic liposarcomas should be
differentiated from a variety of other types of neoplastic and
nonneoplastic lesions, such as benign adipose tissue tumors,
inflammatory lesions, and other spindle cell lesions. It should be
emphasized that intrathoracic DDL especially in the
pleuropulmonary area is extremely rare and can mimic other
types of adipocytic and nonadipocytic tumors, such as IMT,
solitary fibrous tumor (SFT), synovial sarcoma, malignant
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peripheral nerve sheath tumor (MPNST), smooth muscle
tumor, pulmonary adenofibroma, intimal sarcoma,
sarcomatoid carcinoma, and other types of liposarcoma.

In this study, one lipoma-like WDL (case 13) and one
inflammatory WDL case (case 16) were diagnosed as lipoma
and inflammatory pseudotumor, respectively, at a local hospital.
Careful histological inspection can aid in identifying atypical
adipocytes of varying sizes, especially bizarre, hyperchromatic
stromal cells. More importantly, MDM2 and CDK4 nuclear
positivity, especially MDM2 gene amplification, can be
invaluable in distinguishing WDL from lipoma and
inflammatory lesions.

IMT is the more common tumor type in the
pleuropulmonary area, outnumbering liposarcomas. This study
cohort comprised 3 IMT-like DDL tumors and could be easily
confused with IMT. However, extensive sampling identified
typical areas of a WDL component, suggestive of the diagnosis
of DDL. More importantly, IMT can be excluded because of the
presence of high-level amplification of the MDM?2 locus and the
absence of ALK, ROSI, NTRK3, RET, or PDGFRB gene
rearrangement. It should be pointed out that the diagnosis of
MDM2-amplified IMT should be extremely cautious, as MDM?2
amplification is the genetic hallmark of DDL, although a few
IMT cases harboring MDM?2 amplification have been reported
(57, 58).

SET is one of the commonest pleuropulmonary soft tissue
tumors and might share some morphologic features with DDL.
SET could be distinguished from DDL in the following aspects.
First, SFT usually exhibits strong and diffuse nuclear positivity of
STAT®6 although a subset of DDL may also show moderate or
weak STAT6 expression caused by the STAT6 amplification (59).
Most importantly, SFT can be excluded because of the presence
of MDM?2 gene amplification and absence of NAB2-STAT6 gene
fusion (15, 60).

Primary pleuropulmonary synovial sarcoma has gradually
been recognized as a clinicopathological entity. Sometimes the
histologic features of DDL and synovial sarcoma can overlap
significantly, especially in small biopsy samples. Careful
morphologic inspection and ancillary immunohistochemical
markers including EMA, TLE1, cytokeratins, and MDM2 are
helpful in distinguishing between these lesions. Of note, ancillary
molecular studies testing of t(X;18)(p11.2;q11.2) for synovial
sarcoma and MDM?2 amplification can be invaluable in secure
the diagnosis (61).

MPNST could resemble DDL and appears to be the most
challenging tumor type in the differential diagnosis of DDL in
any location. MPNST usually shows complete loss of staining for
H3K27me3 but negativity for MDM2 expression. Notably,
detection of MDM2 amplification, combined with the absence
of the genetic loss of SUZI2 or EED, can help to confirm the
diagnosis of DDL (62).

This cohort comprised one peculiar DDL with
leiomyosarcomatous differentiation (case no. 33), posing
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diagnostic challenges on morphologic grounds only. The
distinction can be aided through extensive sampling of the
lesion. For example, in the current case, 10 blocks were taken
at the very beginning, and the tumor was almost entirely
composed of smooth muscle tumor elements, mimicking
smooth muscle tumor. Additionally, the tumor component
within the lung parenchyma showed a leaf-like pattern and
could be confused with pulmonary adenofibroma. However,
typical areas of WDL were found both in the pleural areas and
pulmonary areas of the mass after an extra 12 blocks were taken.
Moreover, the identification of MDM2 amplification in the
tumor further helped us to make the diagnosis.

Four DDLs of our study were located within the lung
parenchyma, which were extremely rare in this site. It should
be pointed out that all the 4 DDLs were MDM2-amplified.
Moreover, the imaging of the 4 patients did not found tumors
elsewhere of the body. The WDL component was identified in 1
case and lipomatous components were found radiologically in
2 biopsy samples. While the WDL component was not
observed in another surgical resected tumor (case 34). Such
case might be confused with tumors carrying MDM?2
amplification, such as intimal sarcoma and a few pulmonary
sarcomatoid carcinomas (PSC). Firstly, the diagnosis of intimal
sarcoma was excluded as the different location of the two
entities. Intimal sarcomas mainly arise from pulmonary
arteries and major systemic arteries, while the DDLs were all
located within the lung parenchyma (63). Secondly, all the four
documented MDM2-amplified PSCs had adenocarcinoma
components. In contrast, carcinomatous component was not
detected in our DDL case (64, 65). In combination with the
clinicopathologic, genetic and radiologic results, this case (case
34) was diagnosed as DDL.

In fact, both of the MPL cases in our series were diagnosed as
PL in the local hospital. MPL is an exceptionally rare emerging
entity of liposarcoma, and most general surgical pathologists are
not familiar with this peculiar tumor. However, careful
histological inspection revealed that both tumors exhibited
conspicuous myxoid areas, showing mixed features of classic
PL and ML. Additionally, these tumors were negative for DDIT3
rearrangement and MDM?2 amplification. Finally, the diagnosis
of MPL was established.

PL is extremely rare in the intrathoracic location and should
be distinguished from other tumors especially DDL with
homologous lipoblastic differentiation. It is noteworthy to
point out that a minority of DDL cases can exhibit
pleomorphic liposarcoma-like differentiation, making it
indistinguishable from PL (66, 67). DDL usually comprises
typical areas of WDL component within the tumor.
Importantly, negativity for MDM2 overexpression, especially
lack of amplification of MDM?2 gene can help distinguish PL
from the above mentioned variant of DDL.
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The results of this study showed that tumor subtype was an
important prognostic factor for the OS of intrathoracic
liposarcoma patients. In our cohort, only 3 of 19 (15.8%)
WDL and 3 of 12 (25.0%) DDL cases, but both MPLs (2/
2,100%), died of disease. In previously reported cases with
follow-up information, disease-related death was found in 5 of
73 (6.8%) WDLs, 10 of 42 (23.8%) DDLs and 15 of 26 (57.7%)
MPL cases. Similar to our study, the mortality was highest in
MPL and lowest in WDL cases, suggesting that the intrathoracic
tumor subtype was related to the overall survival of the cases.
Our research also found that OS and DFS were related to
marginal or complete resection of the tumor, as none of the 13
patients who received complete tumor resection died of disease,
while 44.5% (8/18) patients who underwent marginal resection
died of disease. Chen et al. found that surgical resection was
associated with the OS of tumors, further indicating that the
surgical procedure can influence the behavior and prognosis of
the disease (11).

In conclusion, we present clinicopathological and molecular
features of 43 primary intrathoracic liposarcomas. In our study,
WDL/DDL is the overwhelming subtype, followed by MPL and
PL. Notably, ML was not identified. MPL is extremely rare in
liposarcoma, but it is not the rarest subtype in thorax. One FRS2
+/MDM2-/CDK4- WDL was identified, indicating that analysis
of the FRS2, in combination with MDM?2 and other genes located
at 12q13-15, may more precisely characterize WDL/DDLs. Both
MPLs exhibited somatic TP53 mutations, showing overlapping
features with conventional PL. MPL is the most fatal subtype of
this site, suggesting that correct classification is of
considerable significance.
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Hospital, Shenzhen, China, 2Department of Joint and Musculoskeletal Tumor, Shenzhen Second
People’'s Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, China, *Department of
Radiology, Shenzhen Second People’'s Hospital, Shenzhen University First Affiliated Hospital,
Shenzhen, China

Background: Rosai—-Dorfman disease (RDD) is a rare histiocytic proliferative
disorder of uncertain pathogenesis. Most patients present with proliferation in
the lymph nodes manifesting as adenopathy; however, RDD may primarily arise
in a variety of extranodal sites, including the bone, which is a great challenge in
the diagnosis. The clinicopathological characteristics and prognostic features
of primary intraosseous RDD have not been well characterized.

Methods: We retrospectively analyzed the clinicopathologic and prognostic
features of four cases of primary intraosseous RDD during the past 10 years in
our hospital, with a review of an additional 62 cases with complete follow-up
data from the literature.

Results: Primary intraosseous RDD was identified in 0.14% (4/2,800) of total
bone biopsies performed at our institution over the study period. According to
our retrospective analysis, a total of 18 cases of primary lymph node, skin, or
other non-osseous site-based RDD were diagnosed in our hospital. The ages of
the 66 total patients ranged from 1.5 to 76 years, with a median age of 25 years.
There were 31 male and 35 female patients, with a male-to-female ratio of
0.89:1. Primary intraosseous RDD occurred most often in the bones of the
extremities (60.6%, 40/66), with the proximal tibia being the most common
location; 39.4% (26/66) of the cases arose in the axial skeleton, predominantly
in the vertebra and craniofacial bones. Solitary masses and multiple tumors
were present in 84.8% (56/66) and 15.2% (10/66) of the cases, respectively. Pain
of the affected area was the most common presenting symptom.
Radiographically, the lesions were lytic with well-defined and usually
sclerotic margins. Immunohistochemistry showed that large histiocytes from
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patients with RDD were positive for OCT2, in addition to S100 and CD68.
Molecular tests were performed in seven reported cases and four of our cases.
All the 11 cases were non-decalcified. PCR results showed that there were no
BRAF-V600E, KRAS, or NRAS mutations in primary intraosseous RDD; only one
case with both RDD and Langerhans cell histiocytosis showed BRAF-V600E
mutation. The survival data showed that 22.7% (15/66) of the patients
experienced recurrences or developed RDD at distant sites during the
follow-up period (median follow-up, 13 months; range, 1-106 months). The
5-year progression-free survival (PFS) of the patients with primary intraosseous
RDD was 57.5%. We found that there was a significant difference in PFS between
female and male patients (p = 0.031). However, there was no statistically
significant difference in PFS between patients with solitary masses and
multiple tumors (p = 0.698). Similarly, no statistically significant differences in
PFS were found between the different age groups (p = 0.908) or tumor
locations (p = 0.728).

Conclusion: Primary intraosseous RDD is an extremely rare disease. The
diagnosis of RDD may be quite challenging because of its non-specific
clinical presentation and imaging. Immunohistochemistry showed that large
histiocytes were positive for OCT2 in addition to S100 and CD68, which may be
helpful for differential diagnosis. Molecular detection showed that RDD may be
related to the MAPK pathway, though these results are also ultimately not
specific. The pathogenesis of RDD is yet to be elucidated, but recent studies
suggest possible clonality of hyperproliferative histiocytes.

KEYWORDS

primary, bone, Rosai—Dorfman disease, clinicopathologic features, OCT2, cyclin D1,
progression-free survival (PFS), MAPK pathway

Because of its rarity, the clinicopathological characteristics and

1 Introduction

Rosai-Dorfman disease (RDD), as a synonym for sinus
histiocytosis with massive lymphadenopathy, was first
described in 1965 (1), although it was not recognized as a
distinct clinical entity until 1969 (2). RDD is a histiocytic
proliferation disorder characterized by large S100-positive
histiocytes exhibiting emperipolesis (3). RDD usually involves
the lymph nodes, most frequently in the neck. As a result,
patients typically present with painless bilateral cervical
lymphadenopathy, in conjunction with fever, leukocytosis, and
elevated erythrocyte sedimentation rate (4). Extranodal disease
may occur as a primary process or in association with
bone involvement.

Primary intraosseous RDD is an extremely rare disease. To
date, only about 100 cases of intraosseous RDD have been
reported, mainly as case reports rather than as study series.

Abbreviations: IRD, IgG4-related disease; LCH, Langerhans cell

histiocytosis; PES, progression-free survival; RDD, Rosai-Dorfman disease.
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prognostic features of primary intraosseous RDD have not been
well described. In an attempt to expand the known
clinicopathologic and molecular genetic characteristics, as well
as prognostic features, we retrospectively analyzed four cases of
primary intraosseous RDD in our hospital with a review of an
additional 62 cases with complete follow-up data from
the literature.

2 Materials and methods
2.1 Case selection

All cases of primary intraosseous RDD diagnosed from
January 2012 to July 2022 in the Department of Pathology,
Shenzhen Second People’s Hospital, Shenzhen University First
Affiliated Hospital, Shenzhen, Guangdong, China, were
retrospectively analyzed. Primary intraosseous RDD cases
were collected. The inclusion criteria of this retrospective
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study were as follows: 1) imaging showed no cervical mass or
systemic superficial lymph node enlargement and 2)
intraosseous lesion as the initial presentation without
extraskeletal or lymph node manifestations at presentation.
Patients with RDD with evidence of systemic disease or
associated lymphadenopathy were excluded. The clinical data
collected for analysis included age, gender, location, clinical
presentation, imaging, treatment regimens, and survival data.
All patients provided written informed consent for the collection
and publication of their medical information during their first
visit to the hospital.

We also performed an extensive literature search for
reported cases of primary intraosseous RDD in PubMed
(www.ncbinlm.nih.gov/pubmed/) using different combinations
of keywords in the title/abstract field, including “primary”,
“bone”, “intraosseous”, “sinus histiocytosis with massive
lymphadenopathy”, “RDD”, and “Rosai-Dorfman”. Cases in
English-language literature were carefully reviewed to extract
essential clinicopathologic and prognostic data and to combine
the cases that were repeatedly studied in different papers. A total
of 62 cases of primary intraosseous RDD were retrieved from the
literature and included in our review.

2.2 Immunohistochemical staining and
in-situ hybridization

The specimens of these four cases of primary intraosseous
RDD cases were formalin-fixed and paraffin-embedded and
then sectioned at 4.0 wm thickness. The sections were stained
using hematoxylin and eosin staining or were used for
immunohistochemical examination. The immunohistochemical
stains were performed on a Leica BOND-III Fully Automated
IHC & ISH Staining System (Leica Biosystems Newcastle Ltd.,
England) with Bond Polymer Refine Detection Kit (Leica
Biosystems; Catalog no. DS9800). Appropriate negative and
positive controls were performed with satisfactory staining. The
pretreatment methods, primary antibodies, and their working
dilutions are listed in Table SI.

The EBV Probe In Situ Hybridization Kit (Zhongshan Golden
Bridge Biotechnology Co. Ltd., Beijing, China; Catalog no. ISH-
7001) was used to detect Epstein-Barr virus-encoded small RNAs
according to the manufacturer’s protocol. The positive signals
were a brownish-yellow color localized in the nuclei.

2.3 Molecular assays for gene mutations

BRAF-V600E, KRAS, and NRAS mutations were detected in
the undecalcified and formalin-fixed paraffin-embedded samples
using real-time PCR. Genomic DNA was extracted from tumor
cell samples via the commercial Amony® FFPE DNA Kit
(Amoy Diagnostic Co. Ltd., Xiamen, China; Catalog no.
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8.02.23501X036G) according to the kit’s instructions. DNA
(15 ng) was then examined for BRAF-V600E, KRAS, and
NRAS mutations using commercial kits with a detection
sensitivity of 1% mutation load (Human BRAF Gene V600E
Mutation Fluorescence PCR Diagnostic Kit, Amoy, Catalog no.
8.0120301X024A; Amony® KRAS/NRAS Mutations Detection
Kit, Amoy, Catalog no. 8.01.25402W006A) in an ABI 7500 real-
time PCR machine (Applied Biosystems, CA, USA). FAM
signals from the mutation detection system indicated the
mutation status of the sample.

2.4 Statistical analysis

Progression-free survival (PES) was defined as the years from
the first diagnosis of primary intraosseous RDD to local
recurrence, secondary lesions in other locations, or last follow-
up. Those without evidence of the disease at last follow-up
were treated as censored. The Kaplan-Meier method was
used to estimate overall distributions, and the log-rank test
was used to compare survival distributions between patient
groups. p-values <0.05 (two-sided) were considered to be
statistically significant. The life table method was used to
estimate overall distributions. SPSS software (version 26.0 for
Mac; SPSS Statistics Inc., IL, USA) was used for the analysis.

3 Results
3.1 Patients’ clinical characteristics

The major clinical features of the four cases of primary
intraosseous RDD are summarized in Table 1. There were one
female and three male patients, with ages ranging from 25 to
35 years. Primary intraosseous RDD was identified in 0.14% (4/
2,800) of total bone biopsies performed at our institution over
the study period. After retrospective analysis, a total of 18 cases
of primary lymph node, skin, or other non-osseous site-based
RDD in our hospital were diagnosed. All patients were Chinese
without a history of RDD, and imaging showed no cervical mass
or systemic superficial lymph node enlargement. The lesions
arose in the humerus, skull, and vertebra, respectively. Clinically,
patient #1 complained of pain in the left shoulder, with limited
activity for more than 1 month. Patient #2 found a subcutaneous
mass in his right forehead for 6 months. Patient #3 presented
with limb numbness for 2 months when visiting the hospital.
Patient #4 complained of left middle finger pain for 2 months.

After an extensive search of the English literature, we found
62 cases of primary intraosseous RDD with complete follow-up
data (5-42). Some cases were included in two articles with
different study purposes, and the data from these cases were
carefully extracted and combined. The clinicopathologic features
of these cases are summarized in Table S2. The brief
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TABLE 1 Clinical features of the four cases of primary intraosseous RDD in our hospital.

Case Age Gender Location Clinical presentation Imaging Lesion Treatment Outcome
(years) (mo)
#1 25 M Left proximal humerus Left shoulder pain with Irregular cystic transparent area S Lesion NED, 12
metaphysis, extended into the  limited activity for more with focal sclerotic margins curettage
adjacent epiphysis than 1 month
#2 28 F Right frontal bone Subcutaneous mass of right Bone defect area, soft tissue S Lesion NED, 65
forehead was found for mass excised
6 months
#3 32 M Spinous process of C2-C5 Limbs with numbness for =~ MRI showed an enhancing S Lesion NED, 10
2 months intramedullary mass excised
#4 35 M Middle phalanx of the left Left middle finger pain for  Irregular cystic transparent area S Lesion NED, 2
middle finger 2 months with trabecular destruction and excised

absorption

F, female; M, male; mo, months; M, multiple; MRI, magnetic resonance imaging; NED, no evidence of disease; S, single.

clinicopathologic characteristics of the cases from the literature
and our institution are summarized in Table 2.

The ages of the 66 total patients ranged from 1.5 to 76 years,
with a median age of 25 years. There were 31 male and 35 female
patients, with a male-to-female ratio of 0.89:1. Primary
intraosseous RDD occurred most often in the bones of the
extremities (60.6%, 40/66), with the proximal tibia being
the most common location; 39.4% (26/66) of the cases arose in
the axial skeleton, predominantly in the vertebra and craniofacial
bones. A solitary mass and multiple tumors were present in 84.8%
(56/66) and 15.2% (10/66) of the cases, respectively. Pain of the
affected area was the most common presenting symptom.

3.2 Radiology findings

Imaging was available for the four patients. Patient #1 had an
irregular cystic transparent area in the left proximal humerus
metaphysis which extended into the adjacent epiphysis, with focal
sclerotic margins (Figures 1A, B). The right frontal bone of patient
#2 was damaged locally, with the inner and outer plates becoming

thinner and extending into the soft tissue locally(Figures 1C).
Patient #3 had an enhanced intramedullary mass in the spinous
process of C2-C5, extending into the adjacent soft tissue and
epidural space and causing compression of the spinal cord
(Figures 1D). Patient #4 showed an irregular cystic transparent
area with trabecular destruction and absorption (Figures 1E, F).

3.3 Pathology findings

3.3.1 Histology

The histomorphologic features of RDD in the bone and
lymph nodes are not exactly the same. Classically, nodal RDD
shows prominent sinusoidal involvement, but primary
intraosseous RDD 1is poorly defined, replaces the marrow,
infiltrates Haversian systems, and is associated with local bone
resorption (Figure 2A). The mass is characterized by sheets and
clusters of large histiocytes, with nuclei that range from round or
oval to reniform, with fine or vesicular chromatin and
prominent eosinophilic nucleoli (Figure 2B). The cytoplasm is
abundant and pale eosinophilic, with conspicuous emperipolesis

TABLE 2 Summary of the brief clinicopathologic features of primary intraosseous RDD in the present study and the literature.

Characteristics

Total cases

Male/female

Median age (range) (years)

Location (extremital bone/axial skeleton)

Lesions (single/multiple)

BRAF-V600E mutation (positive/negative/unknown)
KRAS mutation (positive/negative/unknown)

NRAS mutation (positive/negative/unknown)
Median follow-up (mo)

5-year PES

Outcome (recurrence or progression/NED)

Present study Literature Total
4 62 66
3/1 28/34 31/35
/(25-35) 23 (1.5-76) 25 (1.5-76)
2/2 38/24 40/26
4/0 52/10 56/10
0/4/0 1/6/55 1/10/55
0/4/0 0/7/55 0/11/55
0/4/0 0/0/62 0/4/62
I(n = 4) 14 (n = 62) 13 (n = 66)
/ / 57.5%
0/4 15/47 16/50

mo, months; NED, no evidence of disease; PFS, progression-free survival.
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FIGURE 1

Radiographic findings in our four patients. (A, B) The sagittal and coronal computed tomography scan demonstrated that patient #1 had an
irregular cystic transparent area in the left proximal humerus metaphysis, extended into the adjacent epiphysis. (C) Computed tomography
image showed that the right frontal bone of patient #2 was damaged locally. (D) T1-weighted MRI showed that patient #3 had a hypointense
epidural lesion in the spinous process of C2—C5 (arrow). (E, F) Patient #4 showed an irregular cystic transparent area with trabecular destruction
and absorption in the coronal and sagittal computed tomography scan.
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FIGURE 2

Morphology of primary intraosseous Rosai—Dorfman disease (RDD). (A) An infiltrative pattern of RDD in the medullary cavity (patient #3,
hematoxylin and eosin x100). (B) Large histiocytes with abundant clear to eosinophilic cytoplasm tended to form loose clusters surrounded by a
mixed inflammatory infiltrate (patient #2, hematoxylin and eosin x200). (C) Large histiocytes demonstrated emperipolesis of the neutrophils,
lymphocytes, and plasma cells (patient #4, hematoxylin and eosin x200). (D) The tumor cells are enmeshed in a fibrotic stroma that contains a
great quantity of intermixed lymphocytes and plasma cells (patient #1, hematoxylin and eosin x400).

of the lymphocytes (lymphocytophagocytosis), plasma cells, or
neutrophils (Figure 2C). The tumor cells were enmeshed in a
fibrotic stroma that contained a great quantity of intermixed
lymphocytes and plasma cells in patient #1 (Figure 2D).

3.3.2 Immunophenotype

The results of immunohistochemistry are summarized in
Table 3. All four cases had large histiocytes that were strongly
positive for S100 and CDé68 (Figures 3A, B). Nuclear
immunoreactivity for cyclin DI and OCT2 was observed in
these cases (Figures 3C, D). Only one of the four cases showed
CD163 positivity, and the other three were negative. All cases
were negative for langerin (Figure 3G), CDla, and EBER
(Figure 3H). The biopsy specimens of patient #1 had more
than 100 IgG4-positive plasma cells per high-power field and an
IgG4/IgG ratio of more than 0.4:1 (Figures 3E, F). However,

serum IgG4 (1.82 g/L, reference range: 0.03-2.01 g/L) and IgG
(15.96 g/L, reference range: 7-16 g/L) levels were normal.

3.3.3 Molecular pathology

PCR assays for BRAF-V600E, KRAS, and NRAS gene
mutations were performed on the four cases. All four cases
showed no mutations in BRAF-V600E, KRAS, or NRAS.
However, due to limited conditions in our department, a
larger next-generation sequencing (NGS) panel was not
performed on these four cases, to assess for the presence of
mutations in other genes within the MAPK pathway.

3.3.4 Treatment and outcome
All four patients underwent surgical resections and did not
accept further treatment. These four patients were followed up

TABLE 3 Immunophenotype and EBV infection status of four primary intraosseous RDD.

Case $100 OCT2 Cyclin D1 CDé68 CD163 Langerin CDla IgG4/1gG EBER
#1 + + + + - - - >40% -
#2 + + + + - - - / -
#3 + + + + - - - <40% -
#4 + + + + + - - <40% -

+, positive; —, negative.

Frontiers in Oncology

44

frontiersin.org


https://doi.org/10.3389/fonc.2022.950114
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Weng et al.

10.3389/fonc.2022.950114

¢ Wy
et

FIGURE 3

Immunophenotype of primary intraosseous RDD. (A, B) The large histiocytes were strongly positive for S100 and CD68, respectively. (C) The
nuclear immunoreactivity for cyclin D1 was observed. (D) All cases were positive for OCT2. (E, F) The biopsy specimens of patient 1# had a large
quantity of IgG4-positive and IgG-positive plasma cells. (G, H) Langerin and EBER were negative.

successfully until 18 April 2022. The follow-up interval ranged
from 2 to 65 months. All patients survived without disease
during the follow-up period.

Of the 66 patients with survival data from our present study
and reported in the literature, local recurrence and secondary
lesions in other locations occurred in 22.7% (15/66) of the
patients during the follow-up period (median follow-up,
13 months; range, 1-106 months). The 5-year PFS of the
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patients with primary intraosseous RDD was 57.5%
(Figure 4A). Of note, the male patients had significantly lower
5-year PES (50.5%) than the female patients (66.0%; p = 0.031)
(Figure 4B). However, there was no statistically significant
difference in PFS between patients with solitary masses and
multiple tumors (p = 0.698). Similarly, no statistically significant
differences were found in PFS between age groups (p = 0.908)
and different tumor locations (p = 0.728).
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FIGURE 4

Progression-free survival (PFS) analysis for primary intraosseous RDD. The 5-year PFS of the patients with primary intraosseous RDD was 57.5%
(A). Female patients showed a trend toward superior progression-free survival compared with male patients (p = 0.031) (B).

4 Discussion

RDD is a rare histiocytic proliferative disorder of uncertain
pathogenesis, which was first described in 1965 (1) and
recognized as a distinct clinical entity in 1969 by Rosai and
Dorfman (2). In the fifth edition of the WHO classification of
soft tissue and bone tumors, RDD was classified as a
hematopoietic neoplasm of the bone (3). Most of the patients
present with lymph node involvement manifesting as
adenopathy. In the present retrospective study, a total of 18
cases of primary lymph node, skin, or other non-osseous site-
based RDD were diagnosed in our hospital. Extranodal disease
may occur as a primary process or in association with nodal
involvement (5). However, primary RDD of the bone is
extremely rare and the occurrence of this entity remains
unknown. Primary intraosseous RDD was identified in 0.14%
(4/2,800) of total bone biopsies at our institution over the
study period.

Due to its rarity, the clinicopathologic features and prognosis
of primary intraosseous RDD have not been well characterized.
To date, no known risk factors have been identified. After an
extensive search of the English literature, only 62 cases of
primary intraosseous RDD with complete survival data were
identified. The median age of the patients was 24 years old, and
there was no significant difference in age between genders. Pain
of the affected area was the most common presenting symptom.
Interestingly, we found that primary intraosseous RDD most
occurred in the bones of the extremities, with the proximal tibia
being the most common location. In addition, most of the
tumors were single osteolytic lesions.

The etiology of RDD remains uncertain. The proposed
mechanisms include immune dysfunction and possible viral
infection. A few studies have reported that RDD may be
related to the Epstein-Barr virus, human herpesvirus
infections, and so on (43, 44). However, no Epstein-Barr virus
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or human herpesvirus infections were observed in primary
intraosseous RDD from our present study and those reported
in the literature, so any potential correlation between viral
infection and the pathogenesis of primary intraosseous RDD
cannot be clarified.

RDD has always been considered as a disease of histiocytic
polyclonal hyperplasia, but in recent years, molecular genetics
suggests that it may have a potential monoclonal pathogenesis.
Fatobene and Haroche reported one case of nodal RDD with
confirmed BRAF-V600E mutation, representing a promising
therapeutic target, especially for patients with refractory or
extensive disease (45). In addition, mutually exclusive KRAS
and MAP2K]1 mutations were described in one-third of the cases
of RDD, suggesting that this subgroup is clonal and involves
activation of the MAPK/ERK pathway (46). Wu et al. reported
an NRAS mutation in cutaneous RDD (47), indicating that
NRAS mutations in the MAPK/ERK pathway may be involved
in the pathogenesis of cutaneous RDD. Nevertheless, there was
only one report on the molecular genetics of primary
intraosseous RDD. Dong et al. detected BRAF-V600E and
KRAS mutations in seven undecalcified primary intraosseous
RDD cases, which showed that only one case with the
concurrence of RDD and Langerhans cell histiocytosis (LCH)
had BRAF-V600E mutation, suggesting that the BRAF-V600E
mutation may be caused by LCH lesions rather than RDD
lesions. Similarly, no BRAF-V600E, KRAS, and NRAS
mutations were detected in our cases and all samples were not
decalcified. Unfortunately, a larger NGS panel was not
performed on our cases and the reported cases to assess for
the presence of mutations in other genes within the MAPK
pathway. Like our results, some studies (25, 48) have
demonstrated immunohistochemical cyclin D1 expression in
RDD cases including bone lesions, reflecting constitutive MAPK
pathway activation in the pathogenesis of RDD. However, since
few studies have been reported and no larger NGS panel has
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been performed, it is still unclear whether the primary
intraosseous RDD is related to the activation of the MAPK
pathway. Therefore, not only more cases but also more robust
mutational analysis are needed to further confirm the findings.

Tracht et al. demonstrated a possible histologic overlap
between RDD and the more common IgG4-related disease
(IRD), which could cause problems in pathologic diagnosis
(49). Another study demonstrated that RDD of the breast can
show a significant increase in IgG4+ plasma cells as well as
fibrosis, which may further complicate matters (50). In our
present study, one case showed increased IgG4-positive plasma
cells and IgG4/IgG ratio, but serum IgG4 and IgG levels were
normal. Therefore, we speculate that RDD histomorphology
may be associated with that of IRD, but a relationship between
RDD and IRD has not been definitively established. A diagnosis
of concurrence of RDD and IRD should integrate the
pathological features, the number of IgG4-positive plasma
cells, clinical manifestations, serological examinations. and
s0 on.

The imaging characteristics of primary intraosseous RDD are
not specific and often misleading. Radiographically, bone lesions
are often misdiagnosed as osteomyelitis or LCH. Other entities in
differential diagnosis include Erdheim-Chester disease,
lymphoma, plasma cell myeloma, and metastatic disease (5).
Osteomyelitis is a necrotizing and sclerosing bone disease
dominated by inflammation, often including numerous
neutrophils and with frequent periosteal reactive bone
formation. Histologically, the mixed inflammatory infiltrate with
focal neutrophilic micro-abscesses, occasional multinucleated
giant cells, and granuloma-like histiocyte collections may
suggest infection or granulomatous disease. However, the
characteristic S100-positive histiocytes with emperipolesis are
not seen in either condition. As the name suggests, LCH is
dominated by the proliferation of Langerhans histiocytes.
Langerhans histiocytes are usually found in granuloma-like
clusters and have characteristic elongated, indented, grooved, or
convoluted nuclei with inconspicuous nucleoli. In addition to the
S$100 protein, they are consistently positive for CD1a and langerin,
which are not expressed by RDD histiocytes. Erdheim-Chester
disease is a multisystemic proliferative histiocytic disorder,
characterized by long bone involvement with bilateral and
symmetrical sclerotic lesions. Frequently, there is extraskeletal
involvement including the cardiovascular system, central nervous
system, kidneys, and lungs. Histologically, there is a proliferation
of foamy histiocytes within the marrow spaces with associated
fibrosis and thickening of bone trabeculae. The proliferating
histiocytes are positive for CD163 and CD68 and are usually
negative for S100. They are also negative for CD1a and langerin.
Emperipolesis is not seen in Erdheim-Chester disease. Metastatic
carcinoma and melanoma can be ruled out by histomorphology
and the lack of expression of epithelial and melanocytic markers.

Surgical resection or curettage is the most common
treatment of primary intraosseous RDD. At present, there is
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great controversy about the relative benefits of postoperative
adjuvant radiotherapy and steroids therapy (51). The prognosis
is good, but local recurrences or secondary lesions in other
locations may occur after surgery in some cases. Our analysis
showed that the 5-year PES of patients with primary
intraosseous RDD was 57.5%. Interestingly, our analysis of all
prior reported cases showed that female patients had a trend
toward superior PFS compared with male patients. No
statistically significant difference was found in PFS between
patients with different age groups, tumor locations, or number
of lesions.

4.1 Conclusions

Primary intraosseous RDD is an extremely rare disease.
Diagnosis of the disease may be quite challenging because of
its variable clinical manifestations, non-specific imaging
findings, and background mixed with inflammatory infiltrate.
Immunohistochemistry showed that large histiocytes from
patients with RDD were positive for OCT2 in addition to S100
and CD68 and negative for CD163, which may be helpful for
differential diagnosis. Molecular detection showed that RDD
may be related to the MAPK pathway, though these findings are
ultimately not specific. The pathogenesis of RDD is yet to be
elucidated, but recent studies suggest possible clonality.
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Metanephric stromal tumor (MST) is a rare, benign pediatric renal neoplasm of
uncertain histogenesis that belongs to the metanephric family of tumors. MST
involving adult patients is very uncommon, which could cause significant
diagnostic confusions. Recent molecular studies have revealed recurrent
BRAF mutations in MST in pediatric patients which may serve as powerful
diagnostic tools for distinguishing MST from other renal stromal tumors. We
present a BRAF-mutated MST in an adult patient with a brief review of the
pertinent literature. To our knowledge, our case represents to date the sixth
report of adult MST and the first adult MST proven to harbor BRAF mutation.
This is a 41-year-old man who was incidentally identified to have a left renal
mass by ultrasonography. He had a 5-year history of hypertension which could
be controlled with oral antihypertensive drug. Partial nephrectomy was
performed which demonstrated a 2.6-cm, oval, circumscribed mass with a
fibrotic and firm texture. Microscopic examination showed a hypocellular,
spindle cell neoplasm with entrapped nephrons, within a predominantly
fibrous and focally myxoid stroma. Foci of hyalinized stroma surrounding
entrapped native renal tubules or blood vessels to form concentric
collarettes-like structures, and small-sized arterioles showing angiodysplasia,
were observed. Immunostains showed the tumor cells to be diffusely positive
for CD34. Fluorescence in-situ hybridization analysis was negative for
rearrangements involving both the EWSR1 and FUS loci. Targeted next-
generation sequencing disclosed a pathogenic mutation of BRAF exonl5:
c.1799T>A (p.V600E). The patient's hypertension normalized without oral
antihypertensive drugs 2 months postoperatively and he was in good status
12 months after the surgery. Our case highlights the diagnostic dilemma of MST
occurring in adults and points to the usefulness of molecular detection of BRAF
mutation for arriving at accurate diagnosis.

KEYWORDS

NGS: next-generation sequencing, FISH: fluorescence in-situ hybridization, BRAF V60OE
mutation, metanephric stromal tumor, metanephric tumors, mesenchymal tumor
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Introduction

Metanephric stromal tumor (MST) is a rare, benign stromal
neoplasm unique to the kidney that is thought to be part of a
spectrum of metanephric family of tumors which also includes
the epithelial lesion metanephric adenoma (MA) and the mixed
stromal-epithelial lesion metanephric adenofibroma (MAF) (1).
The vast majority of MSTs occur in children in their first three
years (2), with only few cases involving adults have been
documented (3-6). Recently, several molecular studies have
revealed that most pediatric MSTs have a BRAF V600E
mutation (7, 8). Because of its rarity, the preoperative
diagnosis of adult MST is often difficult, and the etiology and
clinical biology are largely undetermined. We herein present a
MST in a 41-year-old man mimicking a low-grade fibroblastic
tumor of the kidney and harboring a BRAF V600E mutation by
targeted next-generation sequencing. To our knowledge, our
case represents to date the sixth report of adult MST and the first
adult MST proven to harbor BRAF mutation in the literature.

Case presentation

A 41-year-old man was incidentally identified to have a left
renal mass by ultrasonography for physical examination. His
medical history was unremarkable except for a 5-year history of
hypertension, which could be controlled with the oral
antihypertensive drug hydrochlorothiazide. Workup for 24-
hour urine metanephrines and norepinephrine was negative.
Computed tomography scan showed a focally low-enhancing,
circumscribed, oval mass in the upper pole of the left kidney
(Figure 1A). A subsequent magnetic resonance imaging revealed
that the mass had iso-signal intensity on T1-weighted and low-
signal intensity on T2-wighted with enhancement after contrast
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FIGURE 1
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injection (Figure 1B). Neither local invasion nor
lymphadenopathy was identified. A benign or low-grade
mesenchymal tumor was suspected, and the patient underwent
left laparoscopic partial nephrectomy.

Grossly, the resection specimen showed a well-
circumscribed, nodular mass measuring 2.6x2.0x1.0 cm,
centered on the renal cortex of the kidney. On sectioning, the
mass was non-encapsulated, firm and fibrotic in consistency and
whitish in color. Histologically, the tumor had overall expansile
but focally infiltrative, scalloped margins, and numerous
entrapped native renal tubules were noted throughout the
tumor (Figures 2A-C). The tumor was composed of
hypocellular, bland-appearing, ovoid- to spindle- or stellate-
shaped cells, set in a predominantly collagenous and focally
myxoid stroma (Figures 2D-F). Frequently, the highly
hyalinized stroma surrounded entrapped native renal tubules
or blood vessels forming concentric collarettes-like structures
(Figure 2E). Occasionally, small-sized arterioles showing
angiodysplasia were observed (Figure 2F). Mitotic figure was
absent. By immunohistochemistry, the neoplastic cells were
diffusely positive for CD34 (Figure 3), and focally positive for
estrogen and progesterone receptors; they were negative for
PAXS, S100 protein, STAT6, MUC4, cytokeratin, WT1, and
actin. The Ki67 proliferation index was less than 1%.
Fluorescence in-situ hybridization analysis revealed negative
for rearrangements involving both the EWSRI and FUS loci
(Figures 4A, B). Genetic testing using targeted next-generation
sequencing for 425 cancer-relevant genes (GENESEEQ PRIME)
disclosed the pathogenic mutation of BRAF exonl5: ¢.1799T>A
(p-V600E) in the tumor (Figure 4C). On the basis of the
pathological and molecular genetic features, a diagnosis of
adult MST was rendered.

The tumor was completely removed with negative resection
margins. The operation was uneventful, and the patient was
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Imaging features of adult metanephric stromal tumor with BRAF V600E mutation. (A) Computed tomography scan shows a slightly enhanced,
well-defined, oval mass (white arrow), in the upper pole of the left kidney. (B) Magnetic resonance imaging demonstrates that the mass has

low-signal intensity on T2-wighted imaging (white arrow).
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FIGURE 2

Histological characteristics of adult metanephric stromal tumor with BRAF V600E mutation. (A) At low power, the tumor is non-encapsulated
and has an overall expansile contour. H&EX15. (B) Subtly infiltrative border of the tumor with adjacent normal renal parenchyma (arrows).
H&Ex40. (C) Numerous entrapped native renal tubules are noted. HGEx100. (D) The tumor is composed of bland, spindle- or stellate-shaped
cells, set in a predominantly collagenous and focally myxoid stroma. H&Ex100. (E) The highly hyalinized stroma encircles and entraps native
renal tubules (arrows). H&EX300. (F) The tumor induces angiodysplasia within entrapped blood vessels (arrow). H&Ex300.

discharged home on postoperative day 5. As of 2 months
postnephrectomy, the patient’s hypertension has normalized
without oral antihypertensive drugs and he was in good status
12-month after the surgery.

Discussion

MST typically occurs in the first years of life (mean: 2 years)
with only a few cases documented after 3 years (2). MST
affecting adult patients is even rarer with only 6 cases
(including the current one) have been described to date
(Table 1) (3-6). There is no sex predilection with age ranging
from 43 to 77 years (mean: 54 years). The clinical presentations
are similar to those in pediatric patients, including abdominal
pain or mass in 3 cases, hematuria in 1, and hypertension in 2
(3-6). Hypertension as a symptom is uncommonly seen in MST,
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presenting in less than 10% of pediatric cases (2). The previously
reported adult MST with hypertension by McDonald et al. (5) in
2011 was a 55-year-old woman who had a 30-year history of
neurofibromatosis type I and new-onset of refractory
hypertension. As with our case, the patient’s hypertension
normalized in a short period after resection of the tumor. It is
believed that the symptom of hypertension may be associated
with the tumor’s ability to entrap cortical glomeruli and induce
juxtaglomerular cell hyperplasia and subsequent renin secretion
(2, 5).

Adult MSTs exhibited identical histological features to those
in pediatric patients. The tumors could be solid or mixed solid
and cystic with size ranging from 2.5 to 21 cm (mean: 7.3cm) (3-
6). Morphologically, MST is typically a subtly infiltrative tumor
composed of variably cellular, bland-looking, spindle cells
embedded in a diftusely fibrous to focally myxoid stroma. It
characteristically encircles entrapped native renal tubules in a
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FIGURE 3
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Immunohistochemistry of adult metanephric stromal tumor with BRAF V600OE mutation. The tumor cells are diffusely and strongly positive for

CD34. x100.
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FIGURE 4

Fluorescence in-situ hybridization analysis is negative for rearrangements of both the (A) EWSR1 (x1500, arrows indicate fused green and
orange signals) and (B) FUS (x2000, arrows indicate fused green and orange signals) loci (Insets in A and B indicate schematic diagram of break-
apart probes flanking EWSR1 and FUS, respectively). (C) Targeted next-generation sequencing discloses the pathogenic mutation of BRAF

exonl5: ¢.1799T>A (p.V60O0E) in the tumor, as illustrated by the Integrative Genomics Viewer screenshot
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TABLE 1 Summary of adult metanephric stromal tumor reported in the literature.

Case Age Clinical Imaging features Size Molecular analysis Follow-up
(reference) (years)/ presentations (months)
Sex
1(3) 53/ Incidentally identified on ~ CT: enhancing mixed solid cystic 5.5- NA NA
Female workup for other diseases  mass with mural calcifications in ~ cm
the right kidney
2 (4) 72/Male  Abdominal mass with pain NA 21- NA NED (120)
cm
3(4) 77/Male  Abdominal mass with pain NA 18- NA NED (48)
cm
4 (5, 7)* 55/ 30-year history of CT: complex cystic mass abutting 2.5-  Negative for BRAF mutation by RT-PCR Blood pressure
Female neurofibromatosis type I the renal pelvis in the lower pole cm returned to normal
and new-onset of of the left kidney status 3-month
refractory hypertension postnephrectomy
5 (6) 56/ Left lower abdominal pain; CT: focally low-enhancing, 9-cm  NA NA
Female hematuria sharply circumscribed, central
mass in the upper pole of the
right kidney
6 Current 41/Male  Incidentally identified by ~ CT: focally low-enhancing, 2.6-  Positive for mutation of BRAF exonl15: Blood pressure
case ultrasonography for circumscribed, oval mass in the ~cm  ¢.1799T>A (p.V600E) by targeted NGS; returned to normal

physical examination; 5-

year history of
hypertension

upper pole of the left kidney.
MRI: iso-signal intensity on T1-
weighted and low-signal intensity

negative for rearrangements involving both
the EWSRI and FUS loci by FISH analysis.

status 2-month
postnephrectomy.
NED (8)

on T2-wighted with

enhancement after contrast

injection

*The case in reference 5 was the same to the 7th case in reference 7.

CT, computed tomography; MRI, magnetic resonance imaging; NA, not available; NED, no evidence of disease; NGS, next-generation sequencing; FISH, fluorescence in-situ hybridization.

concentric, onion skin pattern and frequently induces
angiodysplasia in adjacent blood vessels and/or
juxtaglomerular cell hyperplasia in entrapped glomeruli (1, 2).
It often shows strong immunoreactivity to antibodies against
CD34 and vimentin (2). The molecular basis of MST remains
largely unknown until most recently when two separate groups
identified mutations in BRAF gene (specifically V600E) in 6/7
(86%) and 11/17 (65%) of cases of MST, respectively (7, 8).
These findings provide a common consistent genetic alteration
that unifies all 3 members of the proposed metanephric
neoplasia family, MST, MAF, and MA, given the fact that the
latter two entities also frequently harbor BRAF V600E mutations
(9, 10). For the previously reported cases of adult MST, only 1
had been tested for BRAF mutation and was negative (7). To our
knowledge, the current case represents to date the first report of
adult MST which has been proven to harbor BRAF mutation.
However, further studies with more cases will be necessary to
fully characterize the genetic underpinnings of this rare entity.
Although being rare, it remains a formal possibility that
MST may be under-recognized in adults, with some cases have
been diagnosed as other adult renal neoplasms that can closely
resemble MST with entrapped nephrons. The most useful
morphological clues for diagnosing MST include onion-
skinning, concentric pattern of tumor cells surrounding
entrapped renal tubules, and associated angiodysplasia and
juxtaglomerular cell hyperplasia; however, these features
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maybe only subtle and not well-developed in a subset of cases.
The differential diagnostic considerations for MST in adults are
quite different from those in pediatric patients because of
different clinical settings. For pediatric MST, the most
important differential diagnosis is cellular congenital
mesoblastic nephroma (CCMN) and clear cell sarcoma of the
kidney (CCSK) (2). Both entities typically affect children in less
than 3 years and vary rarely occur in adults. However, CCMN
usually has a pushing border and is composed of sheets of
mitotically-active spindle cells identical to infantile
fibrosarcoma. Unlike MST, CCMN lacks expression of CD34
while harbors the characteristic gene fusion involving ETV6-
NTRK3 (11). CCSK is histologically characterized by regular
branching capillary vasculature, cords cells with open
chromatin, and multiple variants pattern. CCSK shows
positivity to BCOR and cyclinD1 but negativity to CD34 by
immunohistochemistry (12). Molecularly, most CCSKs have a
BCOR internal tandem duplication, and small subset have gene
fusions involving YWHAE-NUTM2B or BCOR-CCNB3 (13, 14).
The main differential diagnosis for adult MST includes
sclerosing epithelioid fibrosarcoma (SEF) and solitary fibrous
tumor (SFT). Both tumors can rarely occur primarily within the
kidney and show bland, spindle to epithelioid cells infiltrating or
entrapping native tubules with extensive sclerosis, and positivity
for CD34 by immunostain (15, 16). SEF usually shows
immunoreactivity for MUC4 and harbors the characteristic
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gene rearrangements involving EWSRI, or less commonly FUS
(15), which are absent in MST. SFT commonly has prominent
HPC-like vessels and demonstrates the characteristic gene fusion
of NAB2-STATS, leading to the extensive expression of STAT6
(16); these features are unexpected in MST. Lastly, mixed
epithelial and stromal tumor (MEST) of the kidney, which is
characterized by biphasic epithelial and stromal components
with spindle stroma, glands, and cysts, may also enter into the
differential diagnosis of MST. However, MEST mostly occurs in
perimenopausal women; the epithelial structures in MEST are
more complex and are often lined by hobnail cells, and the
stromal cells usually show smooth muscle and mullerian
differentiation, which are typically positive for actin, desmin,
CD10, and estrogen and progesterone receptors (17).
Importantly, as BRAF V600E mutation has not been identified
in other renal stromal tumors, the presence of this mutation may
support the diagnosis of MST in difficult cases (8), just as our
case has illustrated.

Adult MST is very rare and accurate diagnosis has important
clinical significance. All the reported adult MSTs have had a
benign course without recurrence or metastasis (3-6). Excision
of the tumor is adequate therapy. The extra-renal angiodysplasia
symptom induced by MST, such as hypertension, can relieve
after resection of the tumor. Our case highlights the diagnostic
dilemma of MST occurring in adults and points to the usefulness
of molecular detection of BRAF mutation for arriving at
accurate diagnosis.
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Background: Metanephric adenomas (MAs) are rare, benign renal tumors.
Wilms' tumors (WTs) are malignant embryonic tumors that originated from
nephrogenic blastemal cells. However, some tumors have similar morphology
to both MA and epithelial-predominant WT, which makes differential diagnosis
difficult. We aimed to analyze the morphological, immunophenotypic and
molecular changes in overlapping cases to explore their attribution.

Methods and results: Twenty MAs, ten WTs, and nine cases with MA/WT
overlapping histological features were studied. Twenty tumors demonstrated
the typical morphological spectrum of MA with high cellularity and were
composed of tightly packed small, uniform, round acini with a lower Ki67
index. Almost all MAs (94.7%, 18/19) were detected with BRAF V600E
mutation. The ten WTs were epithelial-predominant WTs with glands, rosettes
and glomerular structures, which also showed a higher Ki-67 index (up to 60%),
invasive growth patterns, and a lack of BRAF mutation. However, the other nine
overlapping cases showed two components: typical MA-like areas and epithelial
WT-like areas. The cells of the WT-like areas were tubular, columnar and
showed marked cytological atypia, with a Ki-67 proliferative index of up to
30%. The immunophenotype of these overlapping lesions was not significantly
different from that of typical MA and they positively expressed WT1 and CD57.
The BRAF V600E mutation was detected in both WT-like and MA-like areas in
nine overlapping tumors. The follow-up data of 31 patients were analyzed, with
a median follow-up time of 66 months (range, 8-45 months). Even though most
patients with WT underwent radiotherapy or chemotherapy after surgery, two
died, and one had liver metastasis. No MA or overlapping cases showed any
evidence of recurrence or metastasis after surgery.
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Conclusions: The molecular changes in tumors with overlapping
morphological features were the same as those of typical MA; thus, we think
that these tumors should be classified as MA and further called atypical MA. Itis
important to note that atypical MA is not a neglected subtype of MA. It possesses
different histological morphology and a higher Ki-67 index but has the common
imaging characteristics, immunophenotype and gene expression as typical MA,
and patients usually have a good prognosis.

KEYWORDS

metanephric adenoma, atypical metanephric adenoma, Wilms' tumor, clinicopathological
features, BRAF V600 mutation

Introduction

Metanephric adenoma (MA) is an uncommon kidney
neoplasm that accounts for 0.2-0.7% of primary renal
epithelial tumors (1). It is often asymptomatic, generally
occurs in adults and has a significant predominance in females
(2, 3). Most MAs feature a small solid, well-circumscribed,
unilateral renal mass composed of primitive metanephric
tubular cells and can be diagnosed by routine hematoxylin and
eosin staining. Nevertheless, some MAs may also exhibit atypical
morphology or overlap with other tumors. MA should be
differentially diagnosed as the solid variant of papillary renal
cell carcinoma (PRCC), epithelial-predominant Wilms™ tumor
(WT), and mucinous tubular and spindle cell carcinoma (4, 5).
MA can also be challenging to diagnose due to its confusing
histopathological morphology.

WT, also known as nephroblastoma, is another tumor
that can form primitive renal tubules. In contrast to MA, WT
has a younger onset age and is the most common embryonal
tumor in children (6). Tumors generally mimic the cell types
observed during normal nephrogenesis, with the classical
triphasic WT comprising undifferentiated blastemal cells with
differentiation toward both stromal and epithelial elements (7).
Epithelial-predominant WT is a rare subtype of WT, that
belongs to intermediate-risk tumors, and more than 67% of
the tumor cells are epithelial structures (8). The epithelial
components of tumors are usually rosette-like but may
also be tubular or papillary, with or without heterologous
epithelial differentiation. Degeneration, liquefaction, necrosis,
hemorrhage, and metastasis are common in embryonal tumors.

It is worth noting that some renal tumors have overlapping
morphologic features of epithelial-predominant WT and MA.
Overlapping lesions were first reported in 1995, and the author
occasionally found some epithelial renal tumors with features of
epithelial WT, however, the cells had a bland and adenomatous
appearance with focal areas similar to MA (9). Subsequently,
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more cases with overlapping features have been reported, which
were described as either typical MA with active mitotic activity
or MA with a morphology similar to epithelial WT (5, 10).
However, in addition to morphological descriptions, the
diagnosis and attribution of these cases remain unclear.

In this study, we summarized a series of MA/WT
overlapping tumors and compared their morphology, Ki-67
index, BRAF mutation status, and prognosis with typical MA
and epithelial WT, with the aim of highlighting and further
clarifying the attribution of these tumors.

Materials and methods
Patients and samples

We reviewed MAs and epithelial-predominant WTs
diagnosed at the West China Hospital of Sichuan University
from 2008 to 2021. Formalin-fixed paraffin-embedded (FFPE)
blocks were retrieved, and the corresponding slides from all
cases were re-reviewed independently by two genitourinary
pathologists (YXX, CN). Finally, 39 tumors were studied: 20
typical MAs, 9 renal tumors with overlapping morphological
features of epithelial-predominant WT and MA, and 10 other
cases of epithelial-predominant WT were selected as controls.

Immunohistochemistry (IHC)

IHC staining was performed on 4-pum-thick formalin-fixed
paraffin embedded tissue sections by using the following
antibodies: WT1 (6F-H2, DAKO, 1:100), CD57 (NK-1,
Zhongshan Golden Bridge, 1:100), CD56 (123C3, Zhongshan
Golden Bridge, 1:100), EMA (M0613, DAKO, 1:100), CK7 (OV-
TL12/30, Zhongshan Golden Bridge, 1:100), and Ki-67 (MIB-1,
Maixin, 1:100). All immunohistochemical staining was
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performed using the Roche BenchMark ULTRA automated
staining system (Roche, Basel, Switzerland) according to the
manufacturer’s protocols. Ki-67 was assessed as follows: five
random fields of tumor sections were randomly selected to
calculate the average proportion of positive cells under a
magnification of x400, and the Ki-67 index was presented as
a percentage.

Detection of BRAF V600 mutation by
polymerase chain reaction (PCR)

An FFPE DNA Kit (Qiagen, Hilden, Germany) was used to
extract DNA from FFPE tissue samples from the tumor according
to the manufacturer’s protocol. Polymerase chain reaction (PCR)
experiments were carried out with Taq HS (TaKaRa, Shiga, Japan),
forward primer (5-TCATAATGCTTGCTCTGATAGGA-3’) and
reverse primer (5- GCCAAAAATTTAATCAGTGG A-3%)
primers. The PCR conditions were as follows: 94°C for
3 minutes (min); 35 cycles of denaturation at 94°C for 1 min,
annealing at 60°C for 50 seconds (s), and extension at 72°C for
90 s; and a final extension at 72°C for 10 min. The amplified
fragments were resolved by agarose gel electrophoresis, recovered
by gel extraction (Qiagen, Hilden, Germany), and sequenced. For
cases with overlapping morphology of WT and MA, manual
microdissection was performed to distinguish WT-like and MA-
like areas, DNA was then extracted from different areas for further
PCR and sequencing.

Results
Typical MA (N = 20)

Twenty cases of typical MA (case 1-20) are listed in Table 1,
involving 14 females and 6 males, and the age at diagnosis

39 years). Most MA
patients had no symptoms and were usually discovered by

ranged from 3 to 70 years (median =

physical examination, while some patients had gross
hematuria, bellyache, and abdominal mass as their primary
clinical features. All patients had unilateral renal masses, and
MA appeared to be more in the right kidney (left: right = 7: 13).
Computer tomography scan showed a renal round exophytic
soft tissue dense mass with a clear boundary, with or without a
capsule. The mass density on the unenhanced scan was equal to
or slightly higher than that on the kidney, which has uniform
density. On enhanced scan, the mass density changed gradually
mild to moderately uneven.

Macroscopically, most tumors were nodular, including one
solid-cystic tumor and two tumors with macroscopic necrosis.
The maximum tumor diameter ranged from 1.5 to 18.0 cm
(median, 4.5 cm). Histologically, these tumors were well defined
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and usually abutted directly against normal renal tissue without
a pseudocapsule. All 20 cases were highly cellular and composed
of crowded small, round acini, tubular, glandular, antler tubular,
papillary, and solid patterns, along with glomeruloid bodies.
Tumor cells were bland, uniform, round, or oval with scant
cytoplasm, monomorphic nuclei, fine chromatin, and small and
inconspicuous nucleoli. The stroma ranged from inconspicuous
to loose and edematous. Hyaline degeneration and psammoma
bodies were common and might be numerous. Mitotic figures
were rare or absent. In addition, all 19 cases were tested positive
for WT1 and CD57 expression by IHC, and the Ki-67 index
ranged from 1% to 15%. Sanger sequencing showed that 18 of
these 19 (94.7%) cases had the BRAF V600E mutation. The 1799
base in exon 15 of the BRAF gene was changed from T to A,
leading to the related valine being replaced by glutamic
acid (Figure 1).

All patients received nephron-sparing surgery or radical
nephrectomy without postoperative adjuvant therapy,
including targeted therapy, chemotherapy or radiotherapy
after surgery. The follow-up lasted anywhere from 12 to 143
months (mean = 74.5 months, median = 67.5 months), and no
patients showed signs of a recurrence or metastasis.

WT (N = 10)

Ten epithelial-predominant WTs (case 21-30), with more
than 67% of the tumor cells being epithelial structures, were
enrolled as the control group. The patients included 5 males and
5 females with ages ranging from 1 to 38 years (median = 5
years). An abdominal mass was the most common symptom in
patients, and computer tomography scan revealed a large lesion
in the kidney. In contrast to the crescent-like enhancement of
the residual renal parenchyma, the tumors were heterogeneous
in density with mild to moderate uneven enhancement. Some
tumors demonstrated pushy growth and infiltrated the
peripheral blood vessels and nerve tissue.

All patients underwent radical nephrectomy, and half
of them were treated with vincristine-based therapy or
radiotherapy after surgery. Most lesions were accompanied by
hemorrhage, necrosis, calcification, or cystic degeneration due to
excessive growth. These tumors showed epithelial differentiation
and were composed of tubules, rosettes, and primitive glomeruli.
The tumor cells were more heteromorphic, with active mitosis
and more pathological mitosis. The Ki-67 index was usually >
30%, and WT1 was positively expressed in 60% (6/10) of tumors.
BRAF mutations were performed, but none of these lesions were
detected with the V600 mutation (Figure 2). By the end of
follow-up, nine patients were contacted, and the follow-up lasted
anywhere from 8 to 81 months (mean = 56.3 months, median =
70 months). Unfortunately, two patients died, and one patient
developed liver metastases two years after the surgery.
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TABLE 1 Cases in this study.

Case Age Tumor Tumor Treatment Ki-67 (%) WT CD CD EMA CK BRAF Follow Status
(Y) Size  Morphology 1 57 56 7 Status  up
\Sex  (cm) (%) (mo)
1 26/F 4.0 MA NA 2 + + NA - - V600E NA NA
2 28/F 7.5 MA NSS 5 + + NA - - V600E 143 NED
3 49/F 3.0 MA NSS NA + + - - - NA 126 NED
4 59/M 7.0 MA RN 1 + + - - - V600E 105 NED
5 14/M 18.0 MA RN 5 + + - - - V600E 103 NED
6 27/F 5.5 MA RN 5 + + + - - V600E 111 NED
7 50/F 4.5 MA RN 1 + + + NA - V600E 96 NED
8 52/M 15.0 MA RN 3 NA NA NA NA NA  V600E 74 NED
9 60/F 2.5 MA NSS 3 + + NA - - V600E 69 NED
10 30/F 9.0 MA NA NA + + + - - V600E 66 NED
11 20/F NA MA NA 5 + + + - NA  V600E NA NA
12 28/F 35 MA NSS 15 + + + NA - V600E 60 NED
13 58/M 35 MA RN 5 + + + - - V600E 59 NED
14 3/M 5.5 MA RN 2 + + + NA - V600E 56 NED
15 48/F 4.7 MA NSS 2 + + - - - V600E 53 NED
16 70/M 4.0 MA NSS 3 + + + NA - V600E NA NA
17 36/F 4.5 MA RN 15 + + - - - - 35 NED
18 33/F 1.5 MA NSS 5 + + NA NA - V600E 24 NED
19 42/F 2.5 MA NSS 10 + + NA - - V600E 12 NED
20 65/F 4.0 MA NSS 5 + + - - - V600E NA NA
21 17/M 3.0 WT NSS 25 - - NA - - - 8 Dead
22 13/M 2.5 WT RN + 30 - - + - - - 53 NED, liver metastasis
chemotherapy occurred 2 years after
+radiotherapy surgery
23 38/F 4.5 WT RN + 40 + NA + + - - 41 NED
chemotherapy
+
radiotherapy
24 3/M 10.0 WT RN 60 - NA NA - + - NA NA
25 5/F 12.0 WT RN 40 + NA NA NA NA - 76 NED
26 3/F 14.0 WT RN + 25 + NA + - NA - 17 Dead
radiotherapy
27 5/M 10.0 WT RN + NA + NA + NA NA - 70 NED
chemotherapy
28 1/F 8.0 WT RN 30 + NA NA + + - 81 NED
29 5/F 5.0 WT RN 40 - - + - NA - 81 NED
30 1/M 4.5 WT RN + 30 + + + + NA - 80 NED
chemotherapy
31 21/M 6.0 MA-like(95) + RN MA-like(2) + NA NA NA NA MA- 145 NED
WT-like(5) + WT-like like:
(©) V600E,
WT-
like:
V600E
32 20/F NA MA-like(60) NA MA-like(1) + NA NA - - MA- NA NA
+WT-like(40) + WT-like like:
(10) V600E,
WT-
like:
V600E
(Continued)
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TABLE 1 Continued

Case Age Tumor Tumor Treatment Ki-67 (%)
(Y) Size  Morphology
\Sex  (cm) (%)
33 20/F 45 MA-like(60) NSS MA-like(2)
+WT-like(40) + WT-like
(10)
34 14/F 37 MA-like(40) NSS NA
+WT-like(60)
35 31/F 5.0 MA-like(30) RN MA-like(1)
+WT-like(70) + WT-like
(15)
36 31/M 48 MA-like(20) RN MA-like(2)
+WT-like(80) + WT-like
(10)
37 37/F 2.0 MA-like(20) RN MA-like(2)
+WT-like(80) + WT-like
(30)
38 38/F 6.1 MA-like(10) NSS MA-like(5)
+WT-like(90) + WT-like
(20)
39 51/M 3.0 MA-like(5) RN MA-like(5)
+WT-like(95) + WT-like
(30)

WT CD

1

10.3389/fonc.2022.1020456

CD EMA CK
56 7

BRAF
Status

Follow Status

up
(mo)

57

NA MA-
like:
V600E,
WT-
like:
V600E

MA-
like:
V600E,
WT-
like:
V600E

MA-
like:
V600E,
WT-
like:
V600E

MA-
like:
V600E,
WT-
like:
V600E
MA-
like:
V600E,
WT-
like:
V600E
MA-
like:
V600E,
WT-
like:
V600E
MA-
like:
V600E,
WT-
like:
V600E

66 NED

NA NA NA

130 NED

NA NA

NA NA 20 NED

46 NED

NA 35 NED

Y, year; F, female; M, male; MA, metanephric adenoma; WT, Wilms’ tumor, NSS, nephron-sparing surgery; RN, radical nephrectomy, mo, month; NA, not available; NED, no evidence of

disease.

Renal tumors with overlapping
morphological features of MA and
epithelial-predominant WT (N = 9)

Nine tumors (case 31-39) shared the overlapping
morphological features of epithelial-predominant WT and
MA. The patients included 6 females and 3 males, with a
median age of 31 years (range, 14-51 years). Most tumors
showed heterogeneous-enhancement on computer tomography
scans, and the imaging features were similar to those of typical
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MA. The tumors were nodular or multinodular, well-
circumscribed, and expanded in size.

Both typical MA-like areas and primitive epithelial
components (WT-like areas) were observed in these lesions,
and epithelial WT-like areas accounted for 5-95% of the
neoplasms in different cases. The tumor cells demonstrated
marked cytological atypia; some of them were oval or
polygonal and tightly packed into the solid and nested
structures, while others were cubic or highly columnar and
showed different epithelial differentiation into tubules (with
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FIGURE 1
Case 1-20 demonstrated the typical histomorphological spectrum of MA. The representative morphological images were shown below: Axial
computer tomography scan displayed a soft tissue mass of 3.1 cm X 3.7 cm in the upper pole of the right kidney, with a clear boundary and
obvious enhancement (case 2, A). The tumor was multinodular, well-defined and usually abutted directly against the normal renal tissue without
a pseudocapsule (case 18, B). Psammoma bodies were common and may be numerous, and the stroma ranged from inconspicuous to loose
and edematous (case 16, C). Tumors were highly cellular and composed of crowded small, round acini, papillae or antler tubular structures, and
mitotic figures were rare or absent (case 19 and 7, D, E). Tumor cells showed diffusely positive staining for WT1 (case 7, F) but negative
expression or only a few cells expressed Ki-67 (case 7, G). Sanger sequencing revealed that the tumor harbored the T1799A mutation in exon 15
of the BRAF gene (V600E mutation) (case 7, H).
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FIGURE 2

Case 21-30 were epithelial-predominant WT. The representative histomorphological images were as follows: In the axial computer tomography
scan, the patient’s right kidney was characterized by a large swollen mass with uneven density and a clear boundary with the surrounding renal
parenchyma, which appeared to invade the perirenal tissue (case 22, A). Microscopically, the tumor invaded the renal capsule, and carcinoma
was observed in the renal fibrous membrane (case 22, B). Tumor cells were arranged in obvious papillary, acinar or duct structures (case 22 and
23, C, D). Pathological mitotic figures were easily seen and were indicated by the yellow arrows (case 22, E). WT1 (case 22, F) and Ki-67 (case
22, G) were highly expressed in tumors. No BRAF V600OE mutation was observed (case 22, H).

earlier forms resembling rosettes), papillae, glands, cystic
degeneration with fine chromatin, high nucleocytoplasmic
ratio, scant and pale or light pink cytoplasm, and obvious
mitotic activity. Calcification and psammoma bodies were
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easily observed. Notably, we observed significant hyaline
degeneration and calcification in the tumor stroma, forming a
thick pseudocapsule (case 36). The immunohistochemistry
staining results are listed in Table 1. All tumors expressed
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WT1 (9/9) and CD57 (6/6). The Ki-67 index was significantly
higher in the epithelial WT-like area (5-30%) than in the MA-
like area (1-5%) for the nine tumors. BRAF mutation analysis
was performed separately on tissues from both MA-like and
WT-like areas and yielded identical V600E mutation (Figure 3).

Among them, two cases were almost completely composed
of papillotubular architecture in the primitive epithelial
components, and the WT-like areas accounted for more than
90% of the tumor. The first case (case 38) was a 31-year-old
woman who presented with a 5.0 cm renal mass that was
partially covered by a membrane on the surface. Necrosis,
hemorrhage, and hyalinized stroma were observed in the
lesion. The tumor demonstrated discrete areas that were
predominantly composed of epithelial WT and had a narrow
strip area associated with cuboidal mitotically inactive
epithelium consistent with MA. Tumor cells in the WT-like
area were highly-columnar, with crowded high-columnar nuclei
and active mitotic features. The second case (case 39) was a 51-
year-old man with a 3.0 cm renal neoplasm. The tumor was
multinodular and invaded the perirenal fat of the kidney, which
was morphologically consistent with epithelial WT in most
areas, and MA-like epithelium in a few areas. The tumor was
well demarcated from the surrounding renal tissue, but the
demarcation between the WT-like and MA-like areas
was unclear.

In summary, these overlapping lesions in the 9 cases showed
different proportions of MA-like and WT-like areas, with
positive expression of WT1 in both areas. The Ki-67 index was
lower in the MA-like area and higher in the epithelial-
predominant WT-like area, reflecting the different mitotic
activities within the lesions. However, BRAF V600E mutations
coexisted in both morphological areas of the tumor (Figure 4).
At the end of follow-up, no recurrence or metastasis was
observed in the 6 patients with follow-up data (ranging from
20-145 months, mean = 73.6 months, median = 56 months).
Therefore, based on morphological features, immunomarkers,
molecular changes, and prognosis, we believe that these 9
overlapping lesions were more similar to MA and could be
called atypical MA.

Discussion

MA is a rare renal tumor characterized by the proliferation
of small epithelial cells and is classified as a benign renal
epithelial tumor. WT is a malignant embryonic tumor derived
from renal blastemal cells. However, in cases with overlapping
morphological features of WT and MA, it is difficult to diagnose
(4). In this study, we summarized and analyzed a group of cases,
including typical MAs, epithelial-predominant WTs and renal
tumors with overlapping morphological features of MA and WT
(Table 2). Based on the comparison of their clinicopathological
features and molecular changes, we found that cases with WT/
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MA overlapping features were closer to MA due to the same
immunophenotype, molecular changes, and clinical outcomes,
while these cases had different morphologies and a higher Ki-67
index. Therefore, we classified these overlapping cases as MA
and named them atypical MA.

To date, more than 300 cases of MA have been reported
(1-3, 10-13). The patients ranged from children to elderly
individuals, with a median age of approximately 50 years, with
an obvious female preponderance (female/male = 1/2-1/3) (10,
11, 14). The most common symptoms are pyrexia, hematuria,
lumbar pain and an abdominal mass; however, most patients
have no symptoms and are found incidentally (3). In our study,
the ages of 20 patients with typical MA were younger than those
of most previously reported cases, ranging from 3 to 70 years
(median = 39 years), with a significant female tendency (male-
to-female ratio, 6:14). However, the median age of 9 atypical
MAs was 31 years, with no significant difference from the typical
MAs, but much older than the epithelial-predominant WT
(median = 5 years). Overall, atypical MA is more similar to
typical MA in terms of age at onset.

Macroscopically, MA is usually a nodular mass of various
sizes, but multifocality and cystic degeneration are rare (15-18).
In the present study, 9/29 tumors showed multifocality, and 3
tumors showed cystic degeneration. Histologically, all 9 atypical
MAs were composed of different proportions of MA-like and
WT-like structures. Epithelial WT-like areas accounted for 5%-
95% of the tumors. Among them, two tumors were composed of
papillotubular architecture (more than 90% of the tumor area)
with a high nucleocytoplasmic ratio, active mitotic features, and
significant necrosis. These 9 cases showed different levels of
tumor cytological atypia, and it was difficult to differentiate them
from WT based on cellular morphological features. In fact, many
tumors with similar morphology of epithelial components that
need to be distinguished from MA, especially the solid variant of
PRCC and epithelial-predominant WT (17).

Some uncommon histological morphologies of MA still
exist. The first case of MA with an atypical morphology was
reported in 1995 (19). In 2007, Jain et al. proposed the concept of
atypical MA. A case of MA with atypical histological features
characterized by various-sized nuclei, hyperchromasia,
prominent nucleoli, and approximately 2/10 high-power fields
of mitotic activity was observed in the cellular areas (20).
Subsequently, “malignant MA” was proposed, which was
considered to comprise hypercellular uniform cells in a solid-
acini pattern, and the cells varied in size with small uniform
nuclei, prominent nucleoli and with or without increased
numbers of mitoses (12). Wobker et al. reported a group of
cases that morphologically overlapped MA and WT, which were
divided into typical MAs with unusually prominent mitotic
activity, and epithelial WTs with areas resembling MA (4). In
addition to WT, composite tumors of MA with other malignant
components have also been reported (12, 21-26). However, no
consensus has been established on the attribution and

frontiersin.org


https://doi.org/10.3389/fonc.2022.1020456
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yin et al. 10.3389/fonc.2022.1020456

T

FIGURE 3
Tumors with overlapping morphologic features of MA and epithelial-predominant WT (case 31-39). The representative morphological images

were displayed as follows: A large mass was observed in the middle and upper parts of the right kidney in computer tomography scan (axial,
case 38). The mass was irregularly bound, compressing the surrounding renal tissue, and the tumor parenchyma was markedly heterogeneously
enhanced (A). The green lines divided the tissue into three areas: the tumor demonstrated discrete areas that were predominantly composed of
epithelial WT (left) but had a narrow strip area (middle) associated with cuboidal mitotically inactive epithelium consistent with MA (B). Excessive
abruptness and unclear boundaries between the two structures of the tumor (C). The majority of tumors demonstrated primitive columnar-
shaped neoplastic cells with papillotubular or rosette-like architectures, typical of epithelial-predominant WT (D). The yellow arrow indicates
pathological mitotic figures (E). WT1 was positively expressed in the tumor (F), and Ki-67 expression in the WT-like area was significantly higher
than that in the MA-like area (G). The tumor showed the BRAF V600E mutation (H).
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FIGURE 4

Analysis of BRAF mutations in different areas of renal tumors with overlapping morphology (Represented by case 37). The tumors showed
overlapping morphological features of epithelial-predominant WT and MA (A). The red circle indicates typical MA-like features with mild cells
and hyalinized stroma, and the tumor cells were oval or polygonal and tightly packed in the solid and nested areas (B). The green circle shows
that the tumor consisted of primitive epithelial components with a papillotubular architecture, similar to epithelial WT. The tumor cells were tall
columnar, with fine chromatin, a high nucleocytoplasmic ratio, crowded high columnar nuclei, and minimal mitotic activity (C). Only a few cells
expressed Ki-67 in the typical MA-like areas (D), whereas more Ki-67 was expressed in the epithelial WT-like areas (E). Tumor cells from both
areas showed the BRAF V600E mutation (F, G).
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TABLE 2 The histological criteria used to classify tumors into three groups.

Border

MA The junction The tumor is typically highly cellular and consist of densely arranged small,
with the kidney  uniform vesicles or tubules. The tubules can show branching and intraluminal
is usually abrupt tufts, producing glomeruloid structures with small cuboidal cells of uniform
and without a size, scanty cytoplasm, round or ovoid nuclei, fine nuclear chromatin,
pseudocapsule.  inconspicuous nucleoli, and rare or absent mitotic figures.

Epithelial- Typical The viable tumor consists of at least 66% of epithelial structures. The tumor

predominant circumscribed,  cells are arranged in tubular, vesicular or papillary structures with short or

WT encapsulated, high columnar nuclei perpendicular to the basement membrane, marked
pushing border.  nuclear atypia, coarse nuclear chromatin and more mitotic figures.

Atypical MA  With or without

a pseudocapsule. were observed in these lesions.

MA, metanephric adenoma; WT, Wilms’ tumor.

nomenclature of these tumors, and the term “malignant MA”
remains controversial.

Due to the overexpression of WT1 and CD57 in both MA
and WT, THC is less useful for differential diagnosis. In the
present study, WT1 and CD57 were positively expressed in 19
typical MAs, whereas 6/10 and 1/3 of the epithelial-predominant
WTs expressed WT1 and CD57, respectively. In addition, Ki-67
indices ranged from 1% to 15% in typical MAs and 25% to 60%
in WTs, with significant differences between the two tumors. For
the 9 renal tumors with overlapping morphologic features of MA
and WT, WT1 and CD57 were positively expressed in both MA-
like areas and epithelial WT-like areas, and Ki-67 indices of MA-
like areas were 1-5%, less than that in epithelial WT-like areas
(5-30%). These results suggest that the cell proliferative activity
and immunophenotype of tumors with overlapping morphology
were between those of typical MA and WT, and that they were
closer to MA.

Molecular analyses play an important role in the differential
diagnosis of renal epithelial neoplasms. The BRAF V600E
mutation has been found in 66.7% to 100% of MA tumors,
and the V600D missense mutation, V600K mutation, and
compound V600D and K601L missense mutations have
recently been reported (2, 11, 27-30). However, only two
molecular studies have reported on tumors with overlapping
WT/MA morphological features, especially BRAF mutations.
One article reported 9 overlapping cases, 4 of which showed a
BRAF V600E mutation in both epithelial WT-like and MA-like
areas (4). Another study found that BRAF mutations were of
diagnostic interest in overlapping lesions because BRAF
mutations were detected only in typical MA and overlapping
cases, but did not exist in epithelial WT (31).

In the present study, we performed manual microdissection
of the tissue to distinguish WT-like areas and MA-like areas for
overlapping lesions and further separately detected the BRAF
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Tumor stromal cells Secondary

changes

The stroma ranges from Hyaline degeneration,
calcifications and
psammoma bodies are

common, with

inconspicuous to loose and

oedematous, with no

obvious vascular structure.
hemorrhages and
cystic changes visible.

The mesenchymal Tumors are often

component is diverse and associated with
differentiation of smooth hemorrhage, necrosis,
muscle, striated muscle, calcification, etc.
fibroblasts, adipose tissue,
cartilage and bone can be

seen.

Tumors share the overlapping morphologic features of epithelial-predominant WT and MA, both typical MA-like and WT-like areas

mutation status. Finally, both WT-like areas and MA-like areas
showed that the 1799 base in exon 15 of the BRAF gene changed
from T to A, and only the BRAF V600E mutation was detected in
our cases. In total, 94.8% (18/19) of the typical MAs and 100%
(9/9) of the atypical MAs showed this genetic change. The
absence of other BRAF mutations in our cases may be due to
ethnic differences in the Chinese population. Moreover, BRAF
V600E mutations in common non-MA renal tumors were either
extremely infrequent (less than 1%) or absent. BRAF mutations
were not found in our WT cases. To date, only a few epithelial
WTs have been found to harbor this mutation (4, 11, 28, 31, 32).
Therefore, BRAF mutation detection is helpful in differentiating
MA from epithelial-predominant WT cases.

Currently, most MAs have a good prognosis. However, the
ability of MA to become malignant has also been reported. Some
studies have found that a small subset of these tumors have
atypical histological characteristics, an exponential growth
pattern (12) or even coexist with other malignant tumors (21,
24, 33). The duration of follow-up for our cases (including
typical and atypical MA) ranged from 12 to 145 months, and
none of them showed any evidence of recurrence or metastasis.
Therefore, we tend to consider MA to be an indolent
tumor, and cases 31-39 in our study are more suitable to
temporarily named atypical MA rather than malignant MA or
epithelial-predominant WT resembling MA with the BRAF
V600E mutation.

Conclusion

In this study, we reported 9 atypical MAs that were younger
than most reported patients, and all cases harbored the BRAF
V600E mutation in both MA-like and epithelial-predominant
WT-like areas. Atypical MA is not a neglected subtype of MA,
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possessing an uncommon histological morphology and a higher
Ki-67 index, but shares common features of imaging,
immunophenotype and gene expression with typical MA, and
patients usually have a good clinical outcome. Differentiating
atypical MA from other renal tumors with epithelial
components is important because of their totally different
prognoses. Thus, since BRAF V600E gene is extremely
infrequent or absent in non-MA renal tumors, its high
mutation rate led to its application as a specific marker for MA.
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spindle and epithelioid cell
neoplasms with S100 and CD34
co-expression: Additional
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positive soft tissue tumors
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ALK rearrangements have rarely been reported in S100- and CD34-co-expressing
soft tissue neoplasms with lipofibromatosis-like neural tumor (LPFNT) pattern or
stromal and perivascular hyalinization, mimicking NTRK-rearranged spindle cell
tumors. Here, we reported ALK fusions involving related partner genes in two adult
soft tissue tumors with S100 and CD34 co-expression, and conducted a literature
review of mesenchymal tumors harboring ALK or other kinase fusions. Case 1 was
a 25-year-old female who underwent excision of a soft tissue mass in the anterior
thigh region. Morphologically, the tumor was composed of spindle cells adjacent
to epithelioid cells embedded in myxedematous and hyalinized stroma, with
infiltrative boundary. Spindle cells mixed with inflammatory infiltration
resembling inflammatory myofibroblastic tumor (IMT) were seen sporadically.
However, brisk mitosis and focal necrosis was also observed, indicating an
intermediate-grade sarcoma. In case 2, the left side of the neck of a 34-year-
old man was affected. The tumor was composed of monomorphic spindle cells
arranged in fascicular growth or patternless pattern, with stromal and perivascular
hyalinization. Sparse inflammatory cell infiltration was also observed. Both tumors
showed CD34, S100, and ALK-D5F3 immunoreactivity. Next generation
sequencing (NGS) test identified a PLEKHH2::ALK fusion in case 1, which was
confirmed by RT-PCR and Sanger sequencing, whereas the RT-PCR (ARMS
method) test detected an EML4::ALK fusion in case 2. In conclusion, this study
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expands the morphological and genetic landscape of tumors with S100 and CD34
co-expression harboring kinase fusions, and suggests that kinase fusion—positive
mesenchymal neoplasms are becoming an enlarging entity with a variety of
morphological patterns.

KEYWORDS

ALK, PLEKHH2, EML4, S100 and CD34 co-expression, soft tissue tumor

Introduction

According to the 2020 WHO classification of soft tissue
tumors (STTs), NTRK-rearranged spindle cell tumors are an
emerging entity, which spans a wide spectrum of morphologies
and histologic grades, with frequent immunohistochemical co-
expression of S100 and CD34. Notably, the family of this entity is
expanding, as tumors with similar clinicopathological features
and morphology but alternative kinase genes fusions are
constantly identified; among them, STTs with ALK gene
rearrangement have emerged as a recent hot spot (1-20).

The ALK gene (2p23) encodes a cell membrane receptor
tyrosine kinase (RTK), which plays an important role in brain
development and specific neurons in the nervous system.
Oncogenic activation of ALK kinase following ALK
rearrangement has been reported in a variety of tumors,
including non-small cell lung cancer (NSCLC), anaplastic large
cell lymphoma (ALCL), IMT, epithelioid fibrous histiocytoma
(EFH) (21), ALK-positive histiocytosis (22), renal cell carcinoma
(23), thyroid cancer (24), secretory carcinomas (25), and
gastrointestinal stromal tumor (GIST) (26). Recently, ALK
rearrangements have been reported in S100- and CD34-co-
expressing soft tissue tumors (5-14). A provisionally termed
entity, superficial ALK-rearranged myxoid spindle cell neoplasm,
has been coined to emphasize the characteristic swirling pattern of
spindle cells arranged in myxoid or myohyaline stroma (6). Later,
Kao YC et al. reported an additional case of superficial ALK-
rearranged spindle cell neoplasm, which showed ovoid tumor cells
predominantly arranged in reticular and cord-like patterns in a
hyalinized stroma, with only focal presence of whorl-like pattern
(7). However, the emerging tumor was also characterized by
frequent S100 protein and CD34 co-expression, perivascular
hyalinization, and collagenous stroma, and it partly showed
LPENT pattern, which could not sufficiently distinguish it from
other ALK-rearranged tumors with $100 and CD34 co-expression.
Furthermore, infantile fibrosarcoma (IFS)-like pattern, which is
normally reported in the wide morphological spectrum of NTRK-
rearranged STTs, including infantile fibrosarcoma and NTRK-
rearranged spindle cell tumors, has also been documented with
ALK rearrangements (8, 27).
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Therefore, more cases are needed to recognize the innate
character of such soft tissue tumors with ALK rearrangements
and improve their classification and nomenclature. In this study,
we identified two S100- and CD34-co-expressing STTs with ALK
rearrangement and summarized the clinicopathological
characteristics of the reported kinase fusion-positive
mesenchymal neoplasms, hoping to enlighten new ideas.

Case presentation
Clinicopathological findings

Case 1 was a 25-year-old woman with an egg-sized, movable,
painless mass in the left anterior thigh region for more than 1
year, with a gradual increase in size associated with pain for 2
months. Magnetic resonance imaging (MRI) suggested an
intramuscular mass between the anterior rectus and vastus
lateralis muscles in the left thigh (Supplementary Figure 1).
The patient underwent resection of the mass. Macroscopically,
the resected specimen comprised a soft solid tumor mass
measuring 6.5 x 3.5 x 2.8 cm with a gray-white, fleshy, or
myzxoid cut surface. Microscopically, the tumor was composed of
spindle cells juxtaposed with epithelioid cells embedded in
myxedematous and hyalinized stroma (Figure 1A), partially
infiltrating surrounding striated muscles and adipose tissue.
The spindle cells were arranged in sheet-like, intersecting
fascicles, or in patternless patterns, showing indistinct
cytoplasmic borders and moderate nuclear pleomorphism
(Figure 1B). The epithelioid cells were arranged in a nest- or
cord-like pattern in a myohyaline background with ample
eosinophilic cytoplasm and round to ovoid nuclei (Figure 1C).
The mitotic figures (MFs) were plentiful, especially in the
cellular area (about 8 MFs/10 high-power fields (HPFs))
(Figure 1D). Focal hemorrhage and necrosis were also
observed in the spindle cell area (Figure 1E). Prominent
branching of thin-walled blood vessels of different sizes was
also found (Figure 1F). At the periphery, some spindle tumor
cells admixed with infiltrating inflammatory cells, closely
resembling IMT (Figure 1G). According to the French
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FIGURE 1
Clinicopathological findings of the tumor in case 1. The tumor was composed of the spindle and epithelioid cells embedded in myxedematous
and hyalinized stroma (A). The spindle cells were focally arranged in the intersecting fascicles with frequently observed mitotic figures (B), while
the epithelioid cells were arranged in the nest- or cord-like pattern in the myohyaline background (C). In some areas, the tumor cells were
more cellular with relatively brisk mitoses (D). Focal necrosis was recognized (E). Tumor cells infiltrating the surrounding adipose tissues and
thin-walled branching vessels were seen (F). Inflammatory cell infiltration was observed locally (G). Tumor cells were positive for CD34 (H), S100
(1), and ALK-D5F3 (J).
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Federation of Cancer Centers Sarcoma Group (FNCLCC)
grading, the morphology of the neoplasm was intermediate
grade. The tumor cells were immunohistochemically positive
for CD34 (Figure 1H), S100 (Figure 1I), ALK-D5F3 (Figure 1J),
H3K27me3, vimentin, and CD99 (paranuclear dot-like
staining), and they were negative for STAT6, CK-pan, EMA,
desmin, SMA, CD31, WT-1, and pan-TRK. The average Ki-67

10.3389/fonc.2022.1007296

index was 35%. The patient underwent postoperative
radiotherapy(70Gy/35F), and there were no signs of recurrence
or metastasis 48 months after surgery.

Case 2 was a 34-year-old man with a mass on the left side of
his neck. The tumor was marginally removed without further
treatment. Grossly, the mass was partially encapsulated
measuring 8 x 5 x 4 cm in size. The texture was soft, and the
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FIGURE 2

Clinicopathological findings of the tumor in case 2. The tumor consisted of spindle-shaped mesenchymal cells with stromal and perivascular
hyalinization (A, B). Focal staghorn vessels and clusters of clear cytoplasmic cells were observed (C). Giant multinucleated tumor cells and
inflammatory infiltration were also seen (D). The tumor cells were diffusely positive for CD34 (E), S100 (F), and ALK-D5F3 (G). The relapsed
tumor showed diffuse proliferation of compact spindle cells, also infiltrating striated muscles (H).
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cut surface was gray-white to gray-yellow. Microscopically, the
lesion was composed of spindle-shaped mesenchymal cells
infiltrating the fat tissue and striated muscle, with stromal and
perivascular hyalinization (Figures 2A, B). A higher-power view
showed bland spindle cells arranged in a patternless pattern with
fusiform nuclei and fine chromatin. Focal clusters of cells
showed clear cytoplasm (Figure 2C). Pleomorphic and
multinucleate cells were occasionally seen. Sparse
inflammatory cell infiltration was also observed (Figure 2D).
The mitotic count was 1 MF/10 HPFs. Necrosis was not found.
According to FNCLCC grading, the morphology of the
neoplasm was low grade. The tumor cells were
immunohistochemically positive for CD34 (Figure 2E), S100
(Figure 2F), and ALK-D5F3 (Figure 2G), and negative for AE1/
3, SMA, desmin, STAT6, and SOX10. H3K27me3 staining was
retained. The available clinical follow-up information of the
patient revealed that the tumor recurred at the original site 27
months after surgery. Pathologically, the relapsed tumor showed
similar morphology and immunophenotype to the original
tumor, with more compact tumor cells (Figure 2H).

Molecular findings

Genomic DNA was extracted from formaldehyde-fixed
paraffin-embedded (FFPE) tumor tissues using the QIAamp
DNA mini kit (Qiagen, Hilden, Germany). Targeted deep
sequencing of mutational hot spots was conducted using a
capture-based targeted sequencing panel (Burning Rock
Biotech, Guangzhou, China), including a panel of 520 genes to
detect genomic alterations including single base substitution,
short and long insertions/deletions, copy number variations,
gene fusions, and rearrangement. NGS test identified a transcript
comprising intron 6 of PLEKHH?2 and intron 20 of ALK in case
1, which was validated by RT-PCR and Sanger
sequencing (Figure 3A).

Genomic RNA was extracted from tumor FFPE tissues using
RNeasy FFPE (Qiagen, Hilden, Germany) and reverse
transcribed using SuperScript IV First-Strand Synthesis System
(Invitrogen, Carlsbad, CA, USA). The mutation of EML4::ALK
was detected according to the ARMS methods using a human
multigene mutation detection kit (PCR fluorescence probe
method) (Amoy Diagnostics Co. Ltd., Xiamen, China). The
PCR product was analyzed by Sanger sequencing using Big
Dye Terminator Sequencing kit (Applied Biosystems, Foster
City, CA, USA). ARMS test detected a transcript comprising
exon 6 of EML4 and exon 20 of ALK in case 2 (Figure 3B).

The predicted chimeric proteins consisted of an N-terminal
part with the coiled-coil domains of PLEKHH2 or EML4 and a
C-terminal part with the complete kinase domain of ALK
(Figures 3C, D).

Fluorescence in situ hybridization (FISH) analysis was
performed on 3-um-thick FFPE tumor sections using the dual-
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color break-apart probe of ALK (Abbot Molecular, Abbott Park,
IL, USA). A hundred nonoverlapping cells were scored, and
more than 20% of tumor cells with abnormal signals were
considered positive for gene rearrangement. FISH results
confirm ALK rearrangements in both cases (Figures 3E, F).

Discussion

In this study, we reported two cases of STTs with S100 and
CD34 co-expression harboring ALK gene rearrangements with
some distinct features. Morphologically, case 1 was
intermediate-grade sarcoma composed of uniform spindle cells
and epithelioid cells arranged in myxedematous and hyalinized
stroma, with brisk mitosis, focal necrosis, and inflammatory cell
infiltration. Although most of the kinase fusion-positive STTs
were defined as spindle cell tumors, epithelioid cells have been
observed in some areas of S100- and CD34-co-expressing
tumors harboring RAFI, BRAF, and ALK gene rearrangements
(3,9, 19). Myxedematous stroma has been found in some cases
of ALK-rearranged STTs with S100 and CD34 co-expression (6-
11). However, tumor cells with brisk mitosis and focal necrosis,
which were the features of intermediate- to high-grade sarcoma,
have rarely been reported in ALK-rearranged STTs. The tumor
in case 2 showed moderate to high cellular proliferation and
stromal and perivascular hyalinization, which are consistent
with morphological features reported by Suurmeijer et al. (15).
Similar to other reported S100- and CD34-co-expressing
mesenchymal tumors harboring ALK rearrangement (6, 8, 9,
12, 13), inflammatory infiltration was found in both our cases.
However, case 1 even showed IMT-like morphology, suggesting
IMT in the differential diagnosis, but then we discarded the
hypothesis due to the absence of myogenic expression and S100
and CD34 co-expression. To the best of our knowledge, IMT-
like morphology has not been revealed in S100- and CD34-co-
expressing mesenchymal tumors harboring ALK rearrangement.
Nevertheless, it has been reported in NTRK-rearranged spindle
cell tumors, presented primarily (28) or as a morphological
transformation after chemotherapy (29). Based on the case
reported here and the literature reviewed in the Introduction
section, we speculate that similar to NTRK-rearranged spindle
cell tumors, ALK-rearranged soft tissue tumors also span a wide
spectrum of morphologies and histologic grades. Furthermore,
the IMT-like pattern, analogous to the LPFNT pattern, might
overlap with other patterns in the wide spectrum of kinase
fusion—positive mesenchymal neoplasms.

Genetically, the tumor in case 1 was identified to harbor
PLEKHH2::ALK fusion gene, whereas the tumor in case 2
showed EML4::ALK gene fusion. The PLEKHH?2 gene (2p21)
encodes an intracellular protein highly enriched in renal
glomerular podocytes, which plays a structural and functional
role in the podocyte foot processes. The presence of a putative a-
helical coiled-coil domain was observed in the N-terminus of
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FIGURE 3

Molecular tests to validate ALK fusions. The presence of the PLEKHH2::ALK fusion transcript was validated by Sanger sequencing (A). Direct
sequencing of the purified RT-PCR products revealed the chimeric transcripts between exon 6 of EML4 and exon 20 of ALK (B). Schematic
representation of the predicted chimeric proteins (C, D). By ALK break-apart FISH test, most tumor cells in both cases demonstrated a signal

pattern consisting of isolated 5’ (green) and isolated 3’ (orange),

along with fused 3'/5" signals (E, F). TD, trimerization domain; HELP,
hydrophobic motif in EML proteins; TAPE, tandem atypical propeller domain; ECD-LB, extracell
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PLEKHH2 (30). The EML4 gene (2p21) encodes a microtubule-
associated protein with a coiled-coil domain and may generate
abnormal fusion with ALK, which has been identified in lung
adenocarcinoma, breast cancer, colorectal cancer, IMT, and
$100- and CD34-co-expressing neoplasms. Commonly, ALK
fusions could activate the ALK kinase domain without a ligand
through autophosphorylation due to dimerization. Both of the
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fusion genes in our study contained the entire intracellular
kinase domain of ALK and the coiled-coil domain of the
fusion partner genes, which mediated dimerization and
activation of the ALK kinase domain. Therefore, the fusion
proteins were presumed to have an oncogenic function.
Recently, an emerging class of spindle cell tumors
characterized by frequent S100 protein and/or CD34 co-
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expression and recurrent tyrosine kinase fusions, including
BRAF, RAF1, RET, MET, ROSI, and ALK, has been
documented, although it is unclear whether these tumors
should be classified into one category (31). We tried to
summarize their features and find some commonalities listed
hereafter. First, the related kinase fusion genes are
predominantly tyrosine kinase genes, which regulate
downstream signaling pathways, including the MAPK/ERK,
PI3K/AKT, and JAK3-STAT3. BRAF and RAFI even
constitute the MAPK pathway components. Second, most of
the oncogenic activation of kinase genes is through
rearrangement. The kinase domain is reserved, and the partner
gene is responsible for dimerization or other ways to mediate the
activation of the kinase domain. Third, kinase fusion-positive
neoplasms have been proven to be effective for targeted therapy
(13, 27), not only in mesenchymal tumors but also in various
epithelial neoplasms. Finally, these kinase fusion-positive
mesenchymal neoplasms share similar clinicopathological
features with NTRK-rearranged spindle cell tumors.

We have generalized the features of 47 mesenchymal
neoplasms with oncogenic kinase alterations akin to NTRK-
rearranged mesenchymal neoplasms searched in the available
published literature, including 10 cases positive for RAF1, eight
for RET, four for BRAF, 21 for ALK, one for MET, one for ROS1,
and two for ABLI gene rearrangements (1-20). Among them, 15
were found in children (<10 years), seven were found in
adolescents (age range of 10-20 years), and 25 were found in
adult patients (>20 years old). Both sexes were affected (27
females and 20 males). The tumors were most commonly located
in soft tissues of the trunk and extremities, while a few occurred
in the head and neck region, viscera, and even skeleton. Tumor
size ranged from 0.5 cm to 14 cm in 29 tumors with available
data. The 47 tumors spanned a wide spectrum of morphologies
and histologic grades, showing monomorphic spindle cell
proliferation in a haphazard arrangement with occasional
components of epithelioid or pleomorphic cells. In addition to
the unified features mentioned above, some cases seem to show
overlapped characteristics. Myxoid stroma was observed in some
cases (14/47) and seemed to be more frequently present in ALK-
rearranged tumors (6-11, 16). Some ALK-, RAFI-, or RET-
rearranged tumors were characterized by the presence of tumor
cells arranged in concentric whorls, which was also observed in
NTRK-rearranged tumors (6, 7, 17, 18, 32). Staghorn or
hemangiopericytoma-like vessels were also observed in some
ALK-, RET-, RAFI-, or BRAF-rearranged tumors (8/47), which
has also been recognized as one of the characteristics of NTRK-
rearranged STTs (6, 14, 16, 18, 19). Inflammatory infiltration
was readily witnessed in nearly one-third of cases, closely
correlating with LPFNT morphology (20). Tumors with low-
grade morphological features were common (32/47, 68.1%),
while intermediate- to advanced-grade tumors were relatively
rare. Certainly, with the deepening understanding of these
tumors, some less common features will be reported and
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summarized, even under the name of other provisionally
termed entities. The prognosis of the tumors appears to be
related to histologic grade. Low-grade tumors with positive
margins showed a propensity for local recurrence, whereas
high-grade tumors showed aggressive clinical behavior and
metastasized to lungs or other organs. Thus, in view of
increasing cases of kinase fusion-positive mesenchymal
neoplasms, we believe that the emerging entity of
mesenchymal neoplasms with oncogenic kinase alterations
akin to NTRK-rearranged spindle cell tumors could develop
into a constantly expanding family of kinase fusion-positive soft
tissue tumors.

Conclusions

Herein, we reported two spindle and epithelioid cell
neoplasms with S100 and CD34 co-expression showing
recurrent ALK rearrangements. Our report adds to the
morphological and genetic spectrum of the novel, recently
described entity with S100 and CD34 co-expression harboring
kinase fusions. We believe that more reported cases will unveil
the panoramic view of the clinicopathological features of kinase
fusion—positive STTs and improve patient treatment strategies
and prognosis via targeted therapies.
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intramuscular myxoma
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Atypical spindle cell/pleomorphic lipomatous tumors (ASPLTs) were recently
categorized as benign lipomatous tumors. However, accurate and complete
preoperative diagnosis of ASPLTs may be difficult. Furthermore, diagnosis based
on magnetic resonance imaging (MRI) findings is uncertain because of the varying
ratios of the fat component within the tumor. Here, we report a case of ASPLT
masquerading as a myxoid tumor. Although MRI findings were consistent with a
myxoid liposarcoma, needle biopsy findings suggested a myxoma, and we
performed marginal resection. Histopathological findings revealed infiltrating
spindle cells with atypia. In addition, immunohistochemistry (IHC) showed
positive staining for CD34 and heterogeneous retinoblastoma deficiency, and
fluorescence in situ hybridization (FISH) showed no amplification of mouse double
minute 2 homolog and no rearrangement of FUS or EWSR1. When MRI and
histopathological findings suggest a myxoid tumor, IHC and FISH should be
considered and performed for a precise and accurate diagnosis.

KEYWORDS
atypical spindle cell/pleomorphic lipomatous tumor, differential diagnosis, magnetic

resonance imaging, histopathology, immunohistochemistry, fluorescence in
situ hybridization

Abbreviations: ASPLT, atypical spindle cell/pleomorphic lipomatous tumor; MRI, magnetic resonance
imaging; IHC, immunohistochemistry; FISH, fluorescence in situ hybridization; MLS, myxoid liposarcoma;
RBI1, retinoblastoma; MDM2, mouse double minute 2 homolog; ALT/WDL, atypical lipomatous tumor/
well-differentiated liposarcoma; SCL, spindle cell lipoma; DDLS, dedifferentiated liposarcoma; PLS,
pleomorphic liposarcoma; PET-CT, Positron emission tomography-computed tomography; CDK4,

cyclin-dependent kinase.
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Introduction

Dei Tos et al. were the first to describe atypical spindle cell/
pleomorphic lipomatous tumors (ASPLTs), which are similar to
spindle cell liposarcomas, well-differentiated liposarcomas, and
atypical spindle cell lipomas (1). Further molecular analysis
showed that ASPLTs could be further subclassified as atypical
spindle cell lipomatous tumors and atypical pleomorphic
lipomatous tumors, which are benign lipomatous tumors (2).
Although histopathological findings are essential for diagnosing
ASPLT, diagnosis is complex because of the presence of varying
proportions of atypical spindle cells, adipocytes, lipoblasts, and
multinucleated cells and an extracellular matrix that consists of
varying proportions of myxoid and collagenous components (3).
Therefore, the differential diagnosis of ASPLT may encompass a
broad range of conditions, from fatty tumors to fibrous tumors.
Accordingly, histopathology, immunohistochemistry (IHC), and
fluorescence in situ hybridization (FISH) are indispensable for
an accurate diagnosis (4, 5). Although there have been few
reports on the magnetic resonance imaging (MRI) findings of
ASPLT, ASPLTs have varying T1 intensities, which may reflect
their pathological diversity (6-8). Herein, we report a case of
ASPLT masquerading as a myxoid tumor and review the
pathological and MRI findings of ASPLT.

10.3389/fonc.2022.1033114

Case description

A 64-year-old man presented with a mass on his right buttock.
The mass had been apparent for 1 year and was painless and
gradually increased in size. Physical examination revealed no pain,
swelling, or numbness. Moreover, the Tinel sign was negative, and
the hip range of motion was normal. Furthermore, there was no gait
disturbance. MRI revealed a low-intensity signal on T1-weighted
images with a few high-intensity signals that suggested the presence
of intratumoral fat (Figure 1A). High signal intensity on T2-
weighted images (Figure 1B) and T2 short tau inversion recovery
images (Figure 1C) suggested the presence of myxoid components.
Heterogeneous enhancement was noted on gadolinium-enhanced
T1-weighted images (Figures 1D, E). Positron emission
tomography-computed tomography (PET-CT) showed slight '°F-
fluorodeoxyglucose uptake in the right buttock mass, with an
SUVmax of 2.8 (Figure 1F). The imaging findings suggested
myxoid liposarcoma (MLS). However, needle biopsy findings
suggested myxoma, because there were few atypical spindle cells
(Figures 2A, B). Collectively, the preoperative findings indicated
intramuscular myxoma; therefore, marginal resection was
performed. The tumor was located within the gluteus maximus
(Figure 3A). Macroscopically, the tumor measured 16 x 15 x 12 cm
in size and consisted of mainly myxoid components with little fat

FIGURE 1

Imaging findings. T1-weighted axial images showing low and slightly high signals (yellow asterisk) (A); almost homogeneous high signal on T2-
weighted images (B) and short tau inversion recovery images (C); and axial and central enhancement on a gadolinium-enhanced T1-weighted axial
image (D, E). Axial fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) showing a hypometabolic tumor (F).
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FIGURE 2

10.3389/fonc.2022.1033114

Histological findings of the needle biopsy specimen. Pathological examination showed mild proliferation of spindle cells with few atypical cells

in a myxoid background (A, X100 B, x200).

tissue (Figures 3B, C). Histopathologically, the tumor infiltrated the
muscle and had an ill-defined border (Figure 4A). While most of
the tumor cells were bland and short-spindled with a myxoid
matrix, some of the cells showed cytological atypia and
pleomorphism. Mitosis was rare. In addition, there were areas
with fatty lipid and lipoblast components (Figures 4B, C). IHC
indicated that the tumor was positive for CD34 (Figure 4D) and
S100 (Figure 4E), negative for retinoblastoma (RB1) (Figure 4F),
and negative for desmin, estrogen receptor, Muc4, and BCL2 (data
not shown). FISH showed no amplification of mouse double
minute 2 homolog (MDM?2) (Figure 4G) and no rearrangement
of FUS (Figure 4H) or EWSRI (Figure 4I). A final diagnosis of
ASPLT was made based on of the IHC and FISH results and the
imaging and pathological findings.

Considering the clinical features of the tumor, we decided to
conduct follow-up using imaging studies. The patient was free of
recurrence 1 year after surgery.

Discussion

ASPLT was originally reported as a spindle cell liposarcoma, a
well-differentiated liposarcoma, and an atypical spindle cell
lipoma (1). Although ASPLT was initially considered a subtype
of atypical lipomatous tumor/well-differentiated liposarcoma
(ALT/WDL), further analysis of clinicopathologic
characterizations led to separate categorizations (9). Marino-
Enriquez et al. suggested that ASPLTs were atypical spindle cell
lipomatous tumors (4). However, analysis of the genetic and
pathological features of atypical pleomorphic lipomatous tumors
(10) led to classifying both atypical pleomorphic lipomatous
tumors and atypical spindle cell lipomatous tumors as ASPLTSs,
which are categorized as benign lipomatous tumors (2). Although
the exact mechanism of ASPLT tumorigenesis has not been
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elucidated, a subset of cases showed a loss of RBI, which
comprises the 13q/RB1 family of tumors (2, 11).

The differential diagnosis of ASPLT based on histopathology
is broad, ranging from benign to malignant lipomatous tumors
as summarized in Table 1 (3). The characteristics of both ASPLT
and other tumors highly overlap, implying that differential
diagnosis is very complex. Thus, IHC and FISH, in addition to
histological examination, are essential for the correct diagnosis
of ASPLT.

The distinctive differences in clinical features between ASPLT
and spindle cell lipoma (SCL) are sex and anatomic location (4,
12). Approximately 60% of patients with ASPLT are men, and
most are in their 50s. With regard to tumor location, 60% of
tumors occur in the limbs and limb girdles and approximately
60% occur in subcutaneous tissues. The average tumor size is
approximately 5 cm (4). However, the size, depth, and anatomical
location of the tumor in our case were different from those of
typical ASPLT cases. There are several histological differences
between SCL and ASPLT, including the presence of atypical
spindle cells, atypical multivacuolated lipoblasts, bizarre
pleomorphic cells, and mitotic activity. Floret-like
multinucleated cells and ropey collagen are typical of SCL.
These findings are uncommon in ASPLT, but they have been
observed previously (3, 11). SCL and ASPLT share similar
immunohistochemical features, such as CD34 positivity and the
loss of RBI (11). Although these features are observed in almost all
SCL cases, ASPLT has about 50-70% positive expression of CD34
and about 60-70% RB1 loss (4, 13). In addition, although 40% of
ASPLT cases are positive for S100, 90% of SCL cases have no S100
expression (4, 14). Nonetheless, ASPLT and SCL have many
overlapping histological and IHC findings. Therefore, extreme
caution is required during diagnosis.

Differentiating ALT/WDL, dedifferentiated liposarcoma
(DDLS), and ASPLT is clinically important. The expression of
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FIGURE 3

MDM2 and CDK4 in IHC are key findings (3). ALT/WDL and
DDLS have both MDM2 and CDK4 expression, whereas ASPLT
is usually negative for both markers (3). However, care should be
taken because some cases of ASPLT have shown CDK4 or
MDM2 positivity (13). In these cases, no positivity may be
observed in both MDM2 and CDK4, and no amplification of
MDM?2 is observed using FISH (4, 13).

The presence of pleomorphism, high mitotic activity, and
tumor necrosis and the lack of floret-like multinucleated cells are
important for differentiating pleomorphic liposarcoma (PLS)
from ASPLT (10). PLS has no characteristic IHC or FISH
findings. Various MRI findings of PLS have been observed
because of necrosis and intratumoral bleeding, making
diagnosis based on MRI difficult (15, 16). In our case, myxoid
liposarcoma (MLS) and myxoma were strongly suspected based
on MRI findings. To differentiate ASPLT from MLS,
confirmation of FUS and EWSRI rearrangements using FISH
is required (17). Additionally, histological and morphological
findings may be useful for differentiating these tumor types, as
myxoma is positive for CD34 and negative for S100 and desmin
(18). Therefore, complete pathological assessment, IHC, and
FISH should be performed to obtain a correct diagnosis.

Previous reports of ASPLT have mainly analyzed
pathological findings with no analyses of imaging findings,

Frontiers in Oncology

Intraoperative and pathological findings of the resection specimen. The tumor was located inside the gluteus maximus (A). Macroscopically, the
tumor measured 16 x 15 x 12 cm in size (B). The tumor consisted of large myxoid components and small fatty components (yellow asterisk) (C).
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especially those of MRI (4, 5, 10, 11, 13). In general, the T1
intensity on MRI is important for differentiating lipomatous
tumors (16); therefore, we focused on the intensity of T1-
weighted images (only CT was available in one case). Based on
the results of three previous cases, the T1 intensity of ASPLT can
be divided into three groups: (i) high (7), (ii) high and low (6),
and (iii) low (8). ASPLT and SCL tend to have similar
enhancement patterns on T1-weighted images, which reflect
their similar pathological findings (19). In our case, MRI showed
a low intensity on T1-weighted images (pattern iii) and a high
intensity on STIR images, which is caused by fat tissue within the
muscle. These imaging findings suggested MLS and
intramuscular myxoma rather than ASPLT. The MRI findings
of myxoma and MLS include hazy, nodular internal
enhancement, the presence of fat, and the tumor size (20).
Based on these features, the MRI findings in our case were
consistent with MLS. For tumors with high T1 intensity, ALT/
WDL should be considered, and for tumors with high and low
T1 intensity, DDLS should be considered. When differentiating
ASPLT from ALT/WDL and DDLS, diagnosis using only MRI is
nearly impossible; therefore, histology, IHC, and FISH are
required for a definite diagnosis.

This is the first case of ASPLT for which positron emission
tomography-computed tomography was reported. However, we did
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FIGURE 4

Analysis of the resected specimen. The resected specimen showed an ill-defined border (A, X100) and a myxoid and fibrous lesion with spindle
cells; some spindle cells had cytological atypia (B, X100 C, x200). Immunohistochemical results for CD34 (D), S100 (E) and RB1 (F) (x200)
Fluorescence in situ hybridization indicated no amplification of MDM2 (G) and no rearrangement of FUS (H) or EWSR1 (1)

TABLE 1 Differential diagnosis of atypical spindle cell/pleomorphic lipomatous tumor.

ASPLT
Clinical
Age (decade) 6th
Location Superficial > deep
Size (mean or median) 5cm
Histology
Atypical spindle cells yes
lipoblasts common

Immunohisto-Chemistry Rb loss (50-70%)CD34 (60-
70%)

Molecular features RbI deletion

SCL

5th to 6th
Superficial

<5cm

no
rare

RD loss
CD34

RbI deletion

ALT/WDL

4th to 6th
deep

> 10cm

possible
possible
MDM?2/CDK4

MDM?2
amplification

DDLS

5th to 6th
deep

>10cm

possible
possible
MDM2/CDK4

MDM?2
amplification

PLS

7th
deep

8-10cm

possible

yes
NA

NA

MLS Myxoma
4th to 5th 4th to 7th
deep deep
8- 12cm <10 cm
no no
rare no

NA CD345100(-)
FUS/EWSRI:: GNAS
DDIT3 mutation

ASPLT, atypical spindle cell/pleomorphic lipomatous tumor; SCL, spindle cell lipoma; ALT/WDL, atypical lipomatous tumor/well differentiated liposarcoma; DDLS, dedifferentiated liposarcoma; PLS,
pleomorphic liposarcoma; MLS, myxoid liposarcoma; RB, retinoblastoma; MDM2, mouse double minute 2 homolog; CDK4, cyclin dependent kinase 4. NA; not applicable.
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not find PET-CT useful in differential diagnosis because the SUVmax
and SUC were similar to those of myxoma and MLS (20).

Generally, precise preoperative diagnosis as either benign or
malignant soft tissue tumor is important because wide resection is
essential for malignant soft tissue tumors and, in addition,
radiotherapy and chemotherapy are needed for some histological
types. These are the reasons why we should differentiate MLS from
myxoma and ASPLT. In our case, preoperative imaging findings
suggested MLS rather than myxoma. Notably, wide resection is
needed for MLS and ASPLT, while marginal resection is sufficient for
myxoma. In addition, MLS has radiosensitivity, suggesting that
preoperative radiotherapy for MLS is advantageous in reducing
both tumor size and local recurrence. The preoperative diagnosis
using needle biopsy was intramuscular myxoma; however, the
presence of spindle cells with atypia could not be confirmed. We
should consider ASPLT when myxoid tumors, including myxoid
liposarcoma and myxoma, are suspected based on imaging findings
and needle biopsy. Although the recurrence rate is 10-15% in ASPLT
cases with incomplete resection, no cases of metastasis or
dedifferentiation have been reported (2, 4). In contrast, MLS has a
high recurrence rate of 60% with marginal resection and metastasis
rate of 30-60% (17, 21). Considering the differences in clinical
features between ASPLT and MLS and although additional surgery
or radiotherapy was performed in case of MLS, we decided to conduct
a follow-up of our ASPLT case using imaging studies. Follow-up is
essential in cases like ours, and long-term follow-up is preferable
because the interval of recurrence has been reported to be 6 months to
17 years (4).

Conclusion

Here, we present an atypical case of ASPLT and the difficulties in
its differential diagnosis. Although the combination of imaging and
pathological findings is essential for the precise diagnosis of soft tissue
tumors, pathological findings are more advantageous than imaging
findings for ASPLT because MRI findings are heterogeneous. If
benign or malignant lipomatous tumors cannot be accurately
diagnosed by histology, IHC and FISH should be performed. A
wide resection is recommended; however, there will be some cases,
such as our case, where preoperative diagnosis is inconclusive.
Because ASPLT is a benign tumor that does not metastasize,
careful, long-term follow-up may be more beneficial than
additional surgery.
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Introduction: Epithelioid glioblastoma (eGBM) is one of the rare glioblastoma
(GBM) variants in the current World Health Organization (WHO) categorization
of central nervous system (CNS) tumours. However, the diagnostic basis and
molecular features of eGBM have not been clearly defined to date. In this study,
we aimed to molecularly characterize these tumours.

Methods: The clinicopathological, molecular, and immunohistochemical
characteristics of 12 cases of eGBM were investigated.

Results: The tumours were found to be made up of epithelioid and rhabdoid cells
when examined under a microscope. Six cases (50%) harboured the BRAF V600OE
mutation, and NF1 mutation was detected in 2 eGBM cases (16.7%). CDKN2A/B
homozygous deletion was seenin 5 cases (41.7%). TP53 mutation was recognized in
2 instances (16.7%), and TERT promoter mutation was recognized in 5 cases (41.7%).

Discussion: eGBM is characterized by high molecular heterogeneity and has
molecular overlaps between low-grade gliomas. Moreover, rather than being a
variant or entity, the biological significance of the "epithelioid” appearance may be
reduced to asimply morphological pattern. In order to target the proper treatment
to suitable patients, molecular stratification via genome-wide molecular profiling
will be crucial.

KEYWORDS

glioblastoma, epithelioid glioblastoma, BRAF V600E, molecular genetics, central
nervous system tumour

Introduction

GBM is the extremely frequent and aggressive tumour of the human brain.
Epithelioid glioblastoma (eGBM) is the rare type of GBM variables in the 2021 WHO
CNS tumours classification. This entity is mostly made up of epithelioid cells with
abundant cytoplasm, eccentrically placed nuclei, and prominent nucleoli (1). Due to the
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lack of particular immunohistochemical or molecular markers
for eGBM, diagnosis can be difficult. The BRAF V600E mutation
has been identified in eGBMs at a relatively great frequency,
despite being rare in conventional GBM (54%) (2-5). Moreover,
low-grade glioma components in eGBM were reported in recent
studies, and a few eGBM patients were previously diagnosed
with pleomorphic xanthoastrocytoma (PXA) (6-9). Therefore,
several studies have suggested that eGBM and PXA may be
either the same entity or closely related (6, 10-13).

eGBM is commonly considered more devastating than
classical GBM and has a higher molecular heterogeneity (12,
14). Nevertheless, the clinical features, pathological results and
molecular characteristics of eGBM are still poorly understood.
Moreover, the diagnostic basis and molecular features of eGBM
have not been clearly defined to date. Wide panels of molecular
and immunohistochemical markers are required to achieve the
correct diagnosis. We described the clinicopathological and
molecular characteristics of 12 eGBMs and discussed their
molecular genetic features.

Methods
Data collection

The Institute Research Ethics Committee of Jinling Hospital
approved this study. Slides from glioblastomas were retrieved
from 2014 to 2022 surgical pathology files of the authors’
institution (Affiliated Jinling Hospital, Medical School of
Nanjing University) and were involved in the study if they were
diagnosed as eGBM on the basis of characteristic morphological
and molecular features. Two pathologists performed a blinded
review of the pathological materials according to the pathological
and molecular definition of eGBM in the 2021 WHO
categorization of CNS tumours. Thirteen GBM cases were
consistent with epithelioid morphology. Case 13 was eliminated
from the series because of the involvement of an IDHI mutation.
In total, 12 eGBMs were gathered in this study. The clinical,
radiological and pathological data were obtained from the
Department of Pathology, Affiliated Jingling Hospital, Medical
School of Nanjing University. Reviewing electronic health records
and attempting to contact referring pathologists and clinicians
yielded clinical and demographic follow-up information.

Immunohistochemistry

Tumour tissues were embedded in paraffin after being fixed
in 10% formalin. Sections were cut out at 3 um thickness and
immunohistochemically stained with conventional antibodies as
well as several available commercially antibodies against gene
expression targets identified throughout the gene expression
analysis. The following proteins were chosen as targets: GFAP
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(MAB-0764, 1:150, Maixin Bio (MXB)), INI1 (ZA-0696, ready-
to-use, Zhongshan (ZSGB)), IDH1 (ZM-0447, ready-to-use,
ZSGB), BRAF V600E (790-5095, ready-to-use, Roche), CKpan
(kit-0004, 1:200, MXB), ATRX (MAB-0855, ready-to-use,
MXB), EMA(ZM-0095, ready-to-use, ZSGB) and TP53 (ZM-
0408, 1:200, ZSGB).

TP53 immunostaining was identified as a missense mutation
when higher than 10% nuclear positivity was exist (15).
Immunostaining was defined as a frameshift when tumour
cells demonstrated a full absence of nuclear staining, and
intrinsic control cells showed focal nuclear staining (16, 17).
Both missense and frameshift mutations were considered TP53
mutants (15, 16). Internal negative or positive controls,
including endothelial cells and/or trapped cortical neurons,
were identified in all immunostainings.

Targeted next-generation sequencing

Sequencing of a 425-gene panel was performed on the cases
(Supplementary Table S1). Nucleic acid isolation for NGS was
performed on formalin-fixed paraffin-embedded (FFPE) tumour
tissue from a microdissected representative block. Following the
generator’s instructions, five 10 im tumour slices were utilized
for DNA extraction utilizing the QIAamp DNA FFPE Kit
(QIAGEN, Valencia, CA, USA). The quality of the DNA was
determined using spectrophotometry with absorbance at 230,
260, and 280 nm, and the DNA was measured using Qubit 2.0.
Sequencing libraries were created utilizing the KAPA Hyper
Prep Kit (KAPA Biosystems) based on the manufacturer’s
recommendations for various specimen types.

In summary, end repair, A-tailing, and ligation with indexed
adapters were applied to 1 g of fragmented genomic DNA prior
to size selection with Agencourt AMPure XP beads (Beckman
Coulter). For hybridization-based target enrichment, the
GeneseeqOneTM pan cancer gene panel (425 cancer-relevant
genes, Geneseeq Technology Inc.) and the xGen Lockdown
Hybridization and Wash Reagents Kit were utilized
(Integrated DNA Technologies). Libraries captured by
Dynabeads M-270 (Life Technologies) were amplified in
KAPA HiFi HotStart ReadyMix (KAPA Biosystems), and their
quantities were assessed by qPCR through KAPA Library
Quantification Kit (KAPA Biosystems). On the Illumina
HiSeq4000 platform, target-enriched libraries were sequenced
with 2x150 bp paired-end reads. The Burrows-Wheeler Aligner
was applied to match the sequencing dataset to the reference
hgl9 genome (Human Genome version 19). Sequencing data
collected were demultiplexed by bcl2fastq (v2.19), analysed by
Trimmomatic (18) to eliminate low-quality (quality <15) or N
bases, and afterwards aligned to the reference hgl9 genome (19).
By using Picard (found at https://broadinstitute.github.io/
picard/), PCR duplicates were eliminated. For base quality
assurance and local realignments around indels, the Genome
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Analysis Toolkit (GATK) was used (20).SNPs and indels were
identified by VarScan2 (21) and Haplotype Caller/Unified
Genotyper in GATK, with a mutant allele frequency (MAF)
cut-off of 0.5% for tissue cases and a least of three optimal
mutant reads. Frequent variants were eliminated utilizing
dbSNP and the 1000 Genome Project. An internal list of
repeated sequencing errors generated from more than 10000
normal control cases sequenced on the same platform was used
to further filter the resulting somatic variants. FACTERA
identified gene fusions (22), and copy number variations
(CNVs) were measured with ADTEx (23). For tissue samples,
the log2 ratio cut-off for copy number gain was given as 2.0. All
specimen types were used to detect copy number loss using a
log2 ratio cut-oft of 0.67. The thresholds were established from
the absolute CNVs found by droplet digital PCR, which was used
for earlier assay validation (ddPCR). FACETS (24) was used to
estimate allele-specific CNVs with a 0.2 drift cut-off for unstable
joint segments. By splitting the size of drifted segments by the
overall segment size, the chromosomal instability’s percentage
(CIN) was recorded.

Results
Clinical data

The clinical and histopathological data of eGBMs were
tabulated and are presented in Table 1. There were 9 female
and 3 male cases with ages varying from 28 to 70 years. The
frontal lobe involving was 3, the temporal lobe involving was 5,
the parietal lobe involving was 2, and the basal ganglia was 2.
The most common symptoms were headaches and seizures.
Radiological examination demonstrated gadolinium-enhancing,
comparatively circumscribed lesions with significant perilesional
oedema and central necrosis in all cases (Figure 1). In 1 case,
there was a midline shift (8.33%). All patients had gross total
resection. After surgery, 7 patients (58.3%) received radiation or
chemotherapy. One patient received targeted therapy (case 12),
and have not demonstrated tumour recurrence or metastatic
disease to date. The follow-up period varied from 1 to 30
months. One patient was lost to followed-up. At the time of
data cut-off, 4 cases developed local recurrences, and succumbed
to complications (case 4, case 5, case 6 and case 7). One case
developed a pulmonary metastasis (case 2). No radiological or
histological evidence of cerebrospinal fluid dissemination
was found.

Histopathological findings

The histological results are presented in Table 1 and
Figure 2. The main notable features of most eGBMs were
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abundant epithelioid cells and extensive necrosis (Figure 2). In
all 12 cases analyzed, microscopy revealed eGBM
histopathological types (or melanoma or epithelioid-like cells’
sheets with abundant cytoplasm, eccentric nuclei, and loose
cohesion). All tumours showed signs of microvascular
proliferation, brisk mitotic activity, and necrosis. However, 4
cases had focal areas that resembled PXA (WHO grade 2)
appearance (the set of spindled cells forming fascicles, single
large bizarre cells, and vacuolated tumour cells with perivascular
lymphocytic cuffing).

Immunohistochemistry

The immunohistochemistry outcomes are presented in
Table 2 and Figure 3. eGBM showed diffuse and strong
staining with vimentin. GFAP (glial fibrillary acidic protein)
immunoreactivity was diffusely observed in epithelioid cells and
lower-grade glioma cells. eGBMs did not show cytokeratin (CK)
or epithelial membrane antigen (EMA) staining. The SMARCB1
(INI1) staining was universally intact. Mutant TP53 was
observed in 2 cases, and both cases were frameshift mutations.
The ATRX loss expression was not observed in any case. IDH1
expression was also not observed in any case. BRAF V600E
expression occurred in 50% (6/12) of cases.

Genetic analysis

The findings of genetic analysis are outlined in Figure 4 and
Supplementary Table S2. Six cases (50%) harboured the BRAF
V600E mutation, and CDKN2A/B homozygous deletion was
seen in 5 cases (41.7%). TP53 mutation was detected in 2 cases
(16.7%), and TERT promoter mutation was detected in 5 cases
(41.7%). PTEN deletion was detected in 2 cases (16.7%). Two of
6 cases without BRAF V600E mutation showed NFI mutation.
IDH and H3 K27M mutations were not found in any cases. In
conclusion, eGBMs are complex and heterogeneous tumours,
exhibiting multiple genetic mutations.

Discussion

Epithelioid glioblastoma is a rare and extremely aggressive
variant of GBM. Kepes et al. first characterized it in 1982, and it
was suggested as a histological subtype in the WHO
classification of CNS tumours in 2021 (25, 26). However, the
radiological, histological and molecular signature of eGBM have
not been clearly defined (10, 27). In this study, we applied
combined NGS, histology, radiology and immunohistochemistry
to describe the clinicopathological and molecular characterization
of eGBM.
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TABLE 1 Summary of the clinical parameters of 12 eGBM patients.

Case

Age/Sex

Location

Symptoms

Follow up in months

Resection

type
Chemotherapy/
radiation therapy

Microvascular
proliferation

Epithelioid cells
Necrosis
Recurrence
Metastasis

Cerebrospinal fluid
dissemination

1

F*/58

Right Parietal
lobe

Myodynamia
weakness

24 (Alive)
GTR*

Radiation
therapy

Present

>30%
Confluent
None
None

None

2

F/59
Right
Temporal
lobe

Headache

30 (Alive)

GTR

Radiation
therapy

Present

=>30%
Confluent
None
Pulmonary

None

*GTR, gross total resection; F, female; M, male.

3

F/51

Left Frontal
lobe

Headache

(Lost to
follow-up)

GTR

(Lost to
follow-up)

Present

=>30%
Confluent
None
None

None

4

M*/53

Left Frontal

lobe

Slurred
speech

12 (Dead)

GTR

Radiation
therapy

Present

>30%
Confluent
Recurrence
None

None

F/61
Right
Temporal
lobe

Headache

15 (Dead)

GTR

Radiation
therapy

Present

>30%
Confluent
Recurrence
None

None

F/69

Left Frontal lobe

Headache,

slurred speech

10 (Dead)

GTR

None

Present

>30%
Confluent
Recurrence
None

None

89

M/30

Left
Temporal
lobe

Headache,
seizures

1 (Dead)

GTR

None

Present

>30%
Confluent
Recurrence
None

None

F/42

Right
Temporoparietal
Seizures

8 (Alive)

GTR

None

Present

>20%
Confluent
None
None

None

M/55

Bilateral
Frontal lobe

Headache,
memory loss

16 (Alive)

GTR

Chemotherapy

Present

=220%
Confluent
None
None

None

10

F/62

Right Basal
ganglia

Limited limb
mobility
12 (Alive)

GTR

None

Present

=>20%
Confluent
None
None

None

11

F/70

Left Basal
ganglia

Headache,
slurred speech

18 (Alive)

GTR

Chemotherapy

Present

>20%
Confluent
None
None

None

12

M/28
Right Parietal lobe

Headache, seizures

28 (Alive)

GTR

Radiation therapy,
Chemotherapy

Present

=>30%
Confluent
None
None

None

e 19 ued
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FIGURE 1

Neuroradiological findings for eGBM case 11. Neuroradiological results for eGBM case 11. (A) A heterogeneous lesion with necrosis and
perilesional oedema on T1 in the right basal ganglia with significant midline shift, 23 mm x 28 mm X 17 mm in size. (B) A heterogeneous lesion
with perilesional oedema (T2). (C) A rim-enhancing mass with perilesional oedema (T1-weighted enhanced).

Histologically, eGBMs are dominated by a population of
epithelioid cells with focal discohension, eosinophilic cytoplasm,
a differentiated cell membrane, and a nucleus placed laterally.
The tumour is richly vascularized, involving thick- and thin-
walled vessels with microvascular proliferation and hyaline
degeneration, and also glomerulus-like vasculature. Extensive
palisading necrosis has also been observed in eGBM. Although
the exact aetiology and origin of epithelioid cells are
unidentified, there have been numerous studies of eGBMs
occurring concurrently with PXA, particularly tumours with
anaplastic transformation and epithelioid characteristics, or
occurring years after initial tumour resection (5, 10). Four
eGBM cases in our series also presented PXA-like (WHO grade
2) morphological characteristics focally. PXA-like components
(WHO grade 2) coexisting with eGBM demonstrated a spindle-
shaped cells with some mono- or multinucleated pleomorphic cells
(Figure 2). Intercellular reticlin meshwork and perivascular
lymphocytic cuffing were noticed. Although eGBM is commonly
considered to be a primary/de novo lesion, numerous cases of
eGBM with a pre- or coexisting lower-grade component have been
noted (2, 4, 6, 9, 13, 28). The majority of the lower-grade lesions
identified thus far were PXA (WHO grade 2), and a few were low-
grade diffuse glioma-like lesions (6-9). We speculate that these
unique pathological features may be associated with the
molecular heterogeneity.

Consistent with those reported in the literature, half of the
eGBMs (50%) in our series were involved in the BRAF V600E
mutation. NF1 mutation was detected in 2 eGBM cases (16.7%).
The NFI mutation was mutually exclusive to the BRAF V600E
mutation. The codon 600 mutation (V600E) is the main mutation
site for the BRAF gene, which is located on chromosome 7q34.
BRAF is the gene that encodes cytoplasmic serine-threonine
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kinase. Subsequent activation of the mitogen-activated protein
kinase (MAPK) signaling pathway occurs through the mutated
BRAF protein, which in turn promotes tumourigenesis, cellular
proliferation, as well as resistance to apoptosis (3, 14). The NFI
gene is located on 17q11.2 and encodes a tumour suppressor that
works as a GTPase-activating protein to deactivate the RAS/
MAPK signalling pathway, finally causing the occurrence of
tumours (29, 30). Hence, both NFI mutations and BRAF V600E
mutations contribute to the constitutive stimulation of
downstream RAS/MAPK signalling pathways (31-33), which
may be associated with unique pathological features similar to
eGBM and PXA (30, 34). Several studies have reported that part of
wt-IDH glioblastomas with NFI mutation also presented a
xanthomatous histological appearance (34, 35). Consequently, in
addition to BRAF V600E, NFI mutation may be another
meaningful biomarker for the diagnosis of eGBMs. However,
the proportion of NFI mutation in BRAF V600E negative eGBMs
demands further investigation.

The work of Korshunov et al. has also illustrated the
molecular heterogeneity of eGBM (11) (Table 3). They
identified three distinct, previously described subtypes of
tumours by combining data from methylation types, copy
number alterations, as well as mutations analysis with
outcomes from clinical trials. According to the authors,
histopathologically defined eGBM is divided into at least 3
molecularly and biologically distinguishable classifications.
Consequently, the outcome that eGBM molecularly shares
overlaps with other subtypes of glioblastoma may reduce their
epithelioid appearance to a morphological pattern, and decrease
the biological significance of it.

Molecularly, in this series, TERT promoter mutation was
detected in 41.7% (5/12) of cases. CDKN2A/B homozygous
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FIGURE 2

Histological findings of eGBM. (A) Patches of epithelioid and rhabdoid cells were presented (x200). (B) The tumour showed microvascular
proliferation and zonal necrosis, and epithelioid and rhabdoid cells constituted abundant and uniformly eosinophilic cytoplasm and laterally
located oval to pleomorphically shaped nuclei. Mitoses could easily be seen (x400). (C, D) PXA-like components in eGBM cases showed
multinucleated pleomorphic cells, a fascicular arrangement of spindle-shaped cells and single large bizarre cells (x200 and x400). (E, F)
Histopathological findings of case 13 (IDH-mutant astrocytoma). The tumour presented epithelioid morphology (x200 and x400).

TABLE 2 Immunohistochemistry of 12 eGBM cases.

1 2 3 4 5 6 7 9 10 11 12 13

GFAP* 3+ 2+ 2+ 3+ 3+ 3+ 3+ 1+ 3+ 2+ 3+ 3+
S-100 3+ 3+ - 1+ 3+ 2+ 3+ 3+ 3+ 2+ 2+ 2+
ATRX 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+
BRAF V600E - - - - 3+ - 2+ 1+ - - 3+ 3+
INI-1* Intact Intact Intact Intact Intact Intact Intact Intact Intact Intact Intact Intact
IDH1 - - - - - - - - - - - _
TP53 - - Mutated - - - - - - - Mutated -
CK* _ _ _ _ _ _ _ _ _ _ _ _

*GFAP, glial fibrillary acidic protein; CK, cytokeratini; EMA, epithelial membrane antigen; INI1, SMARCBI.

deletion was seen in 41.7% of cases and TP53 mutation was
detected in 16.7% of cases. A total of 16.7% of cases were
confirmed to have PTEN deletion (Figure 4). Some reports
documented the TERT promoter mutation in GBMs,
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suggesting its role in the aggressive

clinical course (4, 36).

TERT promoter mutation is a poor prognostic indicator in wt-
IDH gliomas. Moreover, the exitance of pTERT mutation
partially clarifies the aggressive nature of GBMs, and its
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FIGURE 3

Immunohistochemical findings. The immunohistochemical findings of eGBMs. (A) Immunohistochemical studies showed negtive PTEN
expression in 2 cases. Vascular endothelial cells provided an internal positive control (x200). (B) INI1 staining was universally intact (x200). (C)
Positive expression of BRAF V60OE in eGBM (x200). (D) The tumour cells demonstrated a complete absence of TP53 staining and lymphocytes

showed TP53 nuclear staining focally (x200).
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FIGURE 4

Genomic landscape of eGBM. Clinical and genomic features of 12 eGBM cases. In addition to BRAF V600E mutation, eGBM also showed TP53

mutation, CDKN2A/B homozygous deletions and NF1 mutation.

correlation with the tumour’s ability to overcome escape
apoptosis and replicative senescence (the fundamental steps in
tumourigenesis). CDKN2A is a tumour suppressor gene located
on chromosome 9p21. It encodes the p16 protein, a negative
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regulator of cell cycle progression. The CDKN2B gene is located
next to CDKN2A. The mutation to either CDKN2A or CDKN2B
will lead to cellular proliferation and the disruption of
proapoptotic pathways (37). In IDH-mutated gliomas,
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TABLE 3 Review of previous studies including mutational analysis.

10.3389/fonc.2022.980059

Author/ No. of Age/ Necrosis (% Followup MVP* (% IDH1 CDKN2A/ PTEN  Braf TP53 TERT NF
year cases Sex of cases) in months  of cases) B V600E
Kahanna 7 13~50/ 100% 3~6 28% None Not Done None 28% Not 40% Not
et al, 2018 M-3 F-4 Done Done
Kleinschmidt 13 10~69/ 92% 5~82 7% 9% Not Done Deletion 54% 33% Not Not
et al., 2013 M-9 F-4 (33%) Done Done

Monosomy

(33%)

Negative

(33%)
Alexandrescu 11 2~79/M- 93% 2~38 87% None Not Done Deletion 53% 36% Not 36%
et al, 2015 9 F-2 (12%) (IHC) Done (IHC)

Monosomy

(12%)
Korshunov 64 3~67/M- 100% 5~72 Not None 55% Not Done 56% Not 38% Not
et al,, 2020 45 F-19 Applicable Done Done
Ying et al., 15 18~77/ 100% One week~32 Not None Not Done Not Done 47% 47% Not Not
2020 M-12 F-3 Applicable (IHC) Done Done
Debajyoti 3~54/M- 96% 5~38 100% None Not Done Not Done 52% Not Not Not
et al., 2020 12 F-12 (IHC) (IHC) Done Done Done
Our Present 12 28~70/ 100% 1~30 100% None 42% Deletion 50% 17% 42% 17%
study M-4 F-8 (17%)

*MVP, microvascular proliferation.

CDKN2A homozygous deletion is a strong adverse prognostic
factor (38). PTEN is located on 10g23.3 and consists of 9 exons.
PTEN deletion has been proven to correlate with poor survival in
glioblastoma, suggesting that PTEN plays a role in patient
outcomes (39). In this study, most cases (83.3%, 10/12)
showed at least 1 mutation mentioned above, which has been
detected frequently in gliomas and associated with poor
prognosis. Even though, the prognosis of patients are quite
different (Table 1), which further illustrates the clinical
heterogeneity of eGBM.

Interestingly, case 13 in our study, which exhibited an
epithelioid morphology (Figure 2), had both the BRAF V600E
mutation and an IDHI mutation. Consistent with the reports of
IDH-mutated glioblastomas, this patient had a relatively long
overall survival of up to 30 months. In consequence, this case
should be diagnosed as IDH-mutant astrocytoma (WHO grade
4). Accordingly, when high-grade gliomas present epithelioid
morphology, the diagnosis of eGBM may not be necessary.
Another study also reported that K3 K27M-altered gliomas
exhibited an epithelioid appearance (10).

In summary, we studied 12 eGBM cases and further
described the clinicopathological and molecular features of the
tumours. Our study indicates clinical and molecular
heterogeneity among eGBMs. We propose that in addition to
BRAF V600E, NF1 mutation may be another meaningful
biomarker for the diagnosis of eGBMs. Instead of being a
variant or entity, the “epithelioid” GBM phenotype might be a
histologic subtype. In order to target the proper treatment to
suitable patients, molecular stratification via genome-wide
molecular profiling will be crucial in the upcoming years.
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Min Chen and Hongying Zhang*

Department of Pathology, West China Hospital, Sichuan University, Chengdu, China

Introduction: Among those tumors with consistent USP6 rearrangement, some
arise from soft tissue and show bone metaplasia, including myositis ossificans
(MO), fibro-osseous pseudotumor of digits (FOPD), soft tissue aneurysmal bone
cyst (ST-ABC) and fasciitis ossificans (FO). These lesions are easily confused with
malignancies because they show a rapid growth rate and brisk mitoses. Here, we
aim to clarify the clinicopathologic and genetic characteristics of this entity and
analyze the correlations among the different subtypes in one of the largest cohorts.

Materials and Methods: The clinicopathologic features of 73 cases of MO, FOPD,
ST-ABC and FO diagnosed at West China Hospital, Sichuan University from
January 2010 to December 2021 were retrospectively analyzed. Forty-three
undecalcified samples were analyzed by systematic genetic studies, including
fluorescence in situ hybridization (FISH), reverse transcription polymerase chain
reaction (RT-PCR), Sanger sequencing and next-generation-based sequencing
were performed.

Results: This series included 40 males and 33 females aged 2 to 80 years old
(median: 31 years). FOPD occurred in extremal soft tissue, while lower extremities
(38/58, 65.5%) were the most commonly involved lesions in the other three
subgroups. Histologically, proliferative myofibroblasts/fibroblasts with varying
degrees of osteoid tissue were present. Fluorescence in situ hybridization (FISH)
results indicated that 22 cases (22/27, 81.5%) were positive for USP6
rearrangement, and 5 cases were negative. Among those cases with positive
FISH results, 18 underwent reverse transcription-polymerase chain reaction (RT-
PCR) detection that successfully detected common USP6 fusion types. Thirteen
cases showed COL1A1::USP6 fusion, one showed MYH9::USP6 fusion, and 4 were
negative for common fusion types. Next-generation-based sequencing
technology was performed on two lesions with negative RT—PCR results and
novel fusion partners SNHG3 and UBE2G1 were discovered.
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Conclusions: Our findings revealed that COL1Al is the most common fusion
partner in this entity, unlike primary aneurysmal bone cysts and nodular fasciitis.
Notably, we believed that FO may demonstrate more similar clinicopathologic and
genetic manifestations with MO/FOPD and ST-ABC instead of nodular fasciitis for
involving lower limbs most frequently and showing recurrent COL1A1::USP6
fusion. Additionally, this study also found two novel USP6 fusion partners, which
further expanded our knowledge of this neoplastic spectrum.

KEYWORDS

USP6 rearrangement, myositis ossificans, fibro-osseous pseudotumor of digits, soft tissue
aneurysmal bone cyst, fasciitis ossificans, differential diagnosis, USP6-associated neoplasms

Introduction

The ubiquitin-specific protease 6 gene (USP6), also known as Tre-
2, encodes chromosome 17p13.2 (1). In 2004, Oliveira and colleagues
found recurrent USP6 rearrangement in primary aneurysmal bone
cysts (ABCs) (63%) (2). Subsequent studies confirmed that CDHI1
was the most common fusion partner for USP6 in primary ABC (2, 3).
In 2011, Erickson-Johnson et al. recognized recurrent USP6
rearrangement and the most common fusion partner MYH9 in
nodular fasciitis (NF) (4). Thereafter, these two entities were
included as USP6-associated neoplasms (1). In recent years, a
growing number of molecular genetic studies (including research
from our group) have expanded the families of USP6-associated
neoplasms. The family also includes (1) variants of NF: cranial
fasciitis (CF), intravascular fasciitis (IVF) and fasciitis ossificans
(FO); and (2) other spindle cell neoplastic lesions: fibroma of
tendon sheath (FTS), benign infiltrative myofibroblastic neoplasms,
myositis ossificans (MO), fibro-osseous pseudotumor of digits
(FOPD) and soft tissue aneurysmal bone cyst (ST-ABC) (5-14).

Notably, USP6-associated neoplasms are characterized by
proliferative myofibroblasts/fibroblasts with or without metaplasia
of osteoid components. In this family, many tumors are classic
pseudosarcomatoid lesions, which are easily confused with
malignancies in the diagnostic process, especially for those with
bone metaplasia. Our group has previously conducted some related
studies on NF and its variants (some results have been published) (11,
15). This study will focus on USP6-associated soft tissue tumors with
bone metaplasia.

USP6-associated soft tissue tumors with bone metaplasia
predominantly consist of MO, FOPD, ST-ABC and FO. MO and
FOPD have been previously recognized as tumors belonging to the
same spectrum from the perspective of morphology, and recent
studies have further confirmed the conclusion from the perspective
of genetics for identifying consistent USP6 rearrangements in both
MO and FOPDs (8, 9). Recent research has revealed that the most
common fusion partner in MO and FOPD is COLIA1 (10), which is
different from the primary ABC and NF. Recently, clinicopathological
features and genetic changes similar to MO/FOPD have been

Frontiers in Oncology

identified in ST-ABC, while the 2020 WHO classification of soft
tissue and bone tumors and some recent researchers have suggested
that rare ST-ABC, MO and FOPD should be classified into the same
subclass of USP6-associated tumors (5, 16). Notably, FO also showed
ossifying components in morphology, but there are only a few studies
with a small sample size on these tumors, Further studies are needed
to determine whether there is a closer affinity between FO and MO,
FOPD, and ST-ABC.

Based on the aforementioned background, this study will include one
of the largest cohorts of MO, FOPD, ST-ABC, and FO cases to further
clarify the clinicopathologic and genetic characteristics of this entity and
analyze the correlations and differences among different subtypes.

Materials and methods
Case selection

This study was approved by the Ethics Committee on Biomedical
Research, West China Hospital of Sichuan University (No. 793, 2021).
A SNOMED search of the hospital surgical pathology files from
January 2010 to December 2021 identified 73 USP6-associated soft
tissue tumors with bone metaplasia, which included 44 MO cases, 15
FOPD cases, 12 FO cases and 2 ST-ABC cases. Clinical, pathological,
and follow-up information was collected from clinical records and
pathology reports. Follow-up information was collected by telephone
interviews. The follow-up duration was calculated from the date of the
first surgery to the date of recurrence, death, or last follow-up.

Histologic review

Hematoxylin and eosin-stained and immunohistochemically
stained slides were obtained from the surgical and pathological
bank of the hospital, and all cases were reviewed independently by
2 experienced pathologists (Hongying Zhang and Xianliang Zhang)
with expertise in soft tissue and bone tumor pathology and 1 general
surgical pathologist (Yahan Zhang).
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Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) was conducted on
formalin-fixed, paraffin-embedded (FFPE) tissue sections using a USP6
break-apart probe (Lbp Medicine Science & Technology, Guangzhou,
China) following the manufacturer-provided instructions for 43 cases
(including 24 MOs, 6 FOPDs, 11 FOs and 2 ST-ABCs) with available
undecalcified tissues. Thirty decalcified cases did not perform FISH
because the strong acid decalcification method routinely used would
damage the sample DNA. Tumor samples were evaluated by two
pathologists in 100 neoplastic cells in a blind fashion using an
Olympus BX53 fluorescence microscope (Japan). A red-green split
signal pattern was considered positive for USP6 gene rearrangement if
the distance between the green and red signals was greater than the
diameter of any two signals. A case was considered positive for USP6
rearrangement when 10% or more counted cells showed red-green
split signals.

Reverse transcription-polymerase chain
reaction and Sanger sequencing

Total RNA was extracted using the miRNeasy FFPE Kit (Qiagen,
Hilden, Germany), and the concentration and quality of RNA were
measured using NanoDrop Microvolume Spectrophotometers (Thermo
Fisher Scientific, Massachusetts, USA). cDNA was synthesized using the
PrimeScript RT reagent kit (Takara, Tokyo, Japan). All polymerase chain
reactions (PCRs) were performed for 40 cycles using a TB Green'"
Premix Ex Taq " 11 kit (Takara, Tokyo, Japan) with the following cycle
conditions: denaturation at 94°C for 40 s, annealing at 50~60°C for 30 s,
and extension at 72°C for 30 s using primers for commonly reported
USP6 fusion genes, including MYH9::USP6, CDHI1::USP6, COLIAI:
USP6, SEC31A::USP6, RUNX2::USP6, PAFAH1BI1::USP6, PPP6R3::USP6
and COLIA2:USP6 (Supplemental Table 1). Ten microliters of each
amplified product were subjected to 2% agarose gel electrophoresis and
photographed by a Bio-Rad imager for visualization. Sanger sequencing
was performed to verify the positive reverse transcription-polymerase
chain reaction (RT-PCR) products.

Next-generation-based technology

The FFPE tissue was sent to the sequencing core (242 gene DNA
panels, Yousu'", OrigiMed, Shanghai, China). DNA was extracted from
FFPE tissues using the QIAamp DNA FFPE Tissue Kit according to the
manufacturer’s protocol (Qiagen, Hilden, Germany). A total of 0.5 pg of
DNA per sample was applied as input for the DNA library preparations.
Assays were performed using an Illumina MiSeq Platform (Illumina, San
Diego, CA, USA) following the manufacturer’s recommendations.

Results
Clinical findings

This subgroup included 40 males and 33 females with diagnosed
ages ranging from 2 to 80 years old (median: 31 years). Most cases
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manifested as a painful mass or swelling lesion, and the duration of
these symptoms was 0.2 to 96 months (median: 1 month) in 66
patients with available data. Injury information was available for 48
patients, among which 14 (29.2%) had a history of trauma at the
lesion site. Except for FOPD occurring in the soft tissues of the
extremities (12 fingers and 3 toes), the lower limbs (38/58, 65.5%)
were the most commonly involved sites, followed by the upper limbs
(9/58, 15.5%), trunk (9/58, 15.5%), and head and neck (2/58, 3.5%) in
MO, ST-ABC and FO. The range of maximum tumor diameter
in 59 cases with available information was 0.5 cm to 20 cm
(median: 5.0 cm).

Imaging data were available for 38 cases. MO was often in the
deep muscle, FOPD was predominantly located in the subcutaneous
soft tissue of the fingers and toes, ST-ABC was located in the deep soft
tissue, and FO was essentially confined to the subcutaneous fat layer.
Tumor boundary information was obtained in 30 cases, and most of
them (21/30, 70.0%) were well circumscribed on imaging. MRI is
mainly manifested as a mass with an abnormal signal in the
intramuscular or subcutaneous tissues. CT and/or X-ray usually
showed a slightly low-density mass in the soft tissue, with mostly
high-density calcification in or around the mass (15/25, 60.0%)
(Figures 1A-D).

Pathological findings

Histologically, the basic lesions of this entity are myofibroblast/
fibroblast proliferation with varying degrees of osteoid components.
The myofibroblasts/fibroblasts may show mild atypia. Osteoblasts
were often found around the mature and braided bone, and
multinucleated giant cells were shown in some areas. Some (29/71,
40.1%) lesions were accompanied by cartilage metaplasia. Varying
numbers of mitoses with no atypia can be observed (0~20/10 HPFs).
In those MO lesions, most cases demonstrated an ill-defined
intramuscular mass. Microscopically, a zonation pattern, noted as
transitions from the central immature osteoid component gradually
to the peripheral mature trabecular bone, can be observed in most
cases (Figure 2A). Part of MO cases (34.1%, 15/44) showed NF-like
morphology in some foci, among which myofibroblasts/fibroblasts
arranged as cell culture pattern, varying degree of myxoid change,
extravasated erythrocytes, infiltrating inflammatory cells (Figure 2B).
Extremely rare cases displayed extensive and prominent NF-like
morphology (Figure 2C) and focal osteoid components with
zonation patterns (Figure 2D). In terms of FOPD, the morphology
was similar to MO; however, osteoid components in most FOPD
cases showed a haphazard pattern instead of an obvious zonation
pattern (Figures 2E, F). Most FO had classical NF-like morphology
(10/12, 83.8%), and osteoid tissue of different maturation degrees
were distributed haphazardly in tumors (Figure 3A). Extremely rare
FO cases showed local infiltration and reverse zonal distribution that
is similar to osteosarcoma (Figure 3B). The hyperplastic
myofibroblasts/fibroblasts cells showed mild atypia, and immature
osteoid tissue was scattered among them (Figure 3C). Besides, brisk
mitosis with no atypia could be observed (Figure 3D). ST-ABC
featured blood-filled cyst formation (Figure 3E), and MO-like
morphology with a zonation structure was also found in some
regions of one ST-ABC in this group (Figure 3F).
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FIGURE 1

Imaging findings of USP6-associated soft tissue tumors with osteoid tissue. (A) CT showed a soft tissue density mass in the muscle, with well-defined
boundaries and circumferentially circular density (arrow) (Case 33). (B) X-rays demonstrated a soft tissue mass in the right finger with calcification (arrow)
(Case 54). (C) CT showed mixed-density shadows with clear boundaries around the right hip (arrow) (Case 60). (D) MRI showed mixed signals in the
subcutaneous fat layer of the left thigh, with clear boundaries (arrow) (Case 63)

Pertinent immunohistochemical markers were performed for
diagnosis in some cases. Smooth muscle actin (SMA) showed
diffuse expression in all detected cases (21/21, 100%), six cases
exhibited MSA expression (6/8, 75.0%), and expression of SATB2
was present in the bone metaplasia area (8/8, 100%). Lacked
expression of desmin in 19 cases (19/20, 95.0%). S-100 protein (16/
16, 100%), B-catenin (8/8, 100%) and MDM2 (8/8,100%) expression
were consistently absent. The MIB-I positive index ranged from 1
to 30%.

Genetic findings

In current studies, FISH has been performed on tissues in 43 cases
with available undecalcified tissues; 27 cases, including 17 MOs, 2
FOPDs, 2 ST-ABCs, and 6 FOs, were successfully detected, and 16 of
them failed due to poor DNA quality or tissue falling. Among these
cases with interpretable results, FISH showed rearrangements of USP6
in 20%~60% of neoplastic cells in 22 cases (81.5%) (Figures 4A-D), and
5 cases were negative for USP6 rearrangements (Table 1). The positive
rates for USP6 rearrangement among cases of MO, FOPD, ST-ABC and
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FO were 70.6% (12/17), 100.0% (2/2), 100% (2/2) and 100.0% (6/
6), respectively.

Among those 22 patients with positive USP6 rearrangements,
RT-PCR was successfully performed in 18 cases (3 MOs and 1 FOPD
with poor RNA quality failed testing); 13 cases (72.2%), including 5
MOs, 1 FOPD, 2 ST-ABCs and 5 FOs, were positive for COLIAI:
USP6 fusion, and one case with MO was positive for MYH9::USP6
fusion. For COLIAI::USP6 fusion types (Figure 4E), 1 MO, 1 FOPD
and 3 FO cases were found with fusion transcript type 1 (nucleotide
103, NM_000088 exon 1; nucleotide 1330, NM_0004505 exon 2)
(Figure 4F), 3 MO, 1 ST-ABC and 1 FO cases were found with fusion
type II (nucleotide 219, NM_000088 exon 1; nucleotide 1338,
NM_0004505 exon 2) (Figure 4G), and 1 MO and 1 ST-ABC
demonstrated fusion transcript type III (nucleotide 130 exon 1,
NM_000088; nucleotide 1231, NM_0004505 exon 1) (Figure 4H).
One FO case was found with a special transcript type with COLIA1
(nucleotide 222, NM_000088 exon 1) and USP6 (nucleotide 1355,
NM_0004505 exon 3) fusion (Figure 4I). Additionally, one MO case
showed fusion of exon 1 (nucleotide 49, NM_000088) of USP6 and
exon 2 (nucleotide 1330, NM_0004505) of MYH? instead of any
transcript type of COL1A1::USP6 fusion (Figure 4]).
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FIGURE 2

myofibroblast/fibroblast (Case 57).

Histopathologic characteristics of myositis ossificans and fibro-osseous pseudotumors of digits. (A) Most myositis ossificans cases were well
circumscribed with a typical zonation pattern (Case 33). (B) Myofibroblasts/fibroblasts were arranged in bundles in the myxoid stroma, accompanied by
extravasated red blood cells and chronic inflammatory cells, showing NF-like morphology (Case 33). (C) Extensive NF-like morphology was observed in
one myositis ossificans case (Case 42). (D) The tumor formed obvious zonal distribution focally (Case 42). (E) Osteoid components were mature and
disorderly in fibro-osseous pseudotumors of digits (Case 46). (F) Immature osteoid components were observed scattered among the proliferative

Four USP6-rearranged lesions were negative for COLIA1::USP6,
and only two of them (1 MO and 1 FO) underwent next-generation-
based sequencing technology, while the tissues of the other two cases
were not sufficient to perform a further study. A novel fusion
of UBE2GI1 (exon 1, NM_003342) and USP6 (exon 8-38,
NM_001304284) was identified in one MO case (Case 39)
(Figure 5A), while a novel fusion of SNHG3 (exon 1, NR_002909)
and USP6 (exon 8-38, NM_001304284) was demonstrated in one FO
case (Case 66) (Figure 5B). The presence of the fusion at the DNA
level was further validated by RT-PCR and Sanger sequencing using
corresponding primers (UBE2GI-F: 5-AGGCTGGTCTTGAA
CTCCTGA-3and USP6-R: 5-CGTGTGTGTTGCTTCTCTGGC-3’;
SNHG3-F: 5-TCTTAGTGGAGACGGGGTTTC-3’ and USP6-R: 5'-
AGCTAGAGGATCATGTGCGGA-3’). The process and results of
genetic testing are summarized in Figure 6.
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Treatment and follow-up

Treatment information was obtained in 63 cases. Sixteen
patients underwent biopsy, 41 patients underwent local complete
resection, 3 patients underwent wide resection, 2 patients
underwent partial mass resection, and 1 patient underwent
curettage. Follow-up information was obtained for 36 patients (4
patients underwent biopsy, and 32 patients underwent resection),
and the follow-up times ranged from 1 to 127 months (median, 26
months). Four patients survived with tumors after the biopsy
without tumor progression. Twenty-nine cases showed no tumor
progression after biopsy or surgery, and 5 cases (5/34, 14.7%)
experienced postoperative recurrence, including 1 MO with
curettage, 2 FOPDs with partial mass resection, 1 MO and 1 FO
with complete resection (Table 2).
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FIGURE 3

Histopathologic characteristics of fasciitis ossificans and soft tissue aneurysmal bone cyst. (A) Osteoid tissues were distributed disorderly in an NF-like
background in fasciitis ossificans (Case 66). (B) In one fasciitis ossificans case, the tumor was locally invasive with a reverse zonation structure. (Case 63).
(C) Myofibroblasts/fibroblasts cells were hyperplasia with mild atypia, and immature osteoid tissue was scattered among them. (Case 63). (D) Mitotic
figures with no atypia were presented in myofibroblasts/fibroblasts (Case 63). (E) Soft tissue aneurysmal bone cyst showed a cystic cavity with
hyperplastic myofibroblasts/fibroblasts and focal osteoid tissue in the cystic septum (Case 60). (F) In one soft tissue aneurysmal bone case, MO-like zone
structure was observed and bone shell was formed around the tumor (Case 60).

10.3389/fonc.2022.1065071

Details of the clinicopathological and genetic characteristics of
different subtypes of USP6-associated soft tissue tumors with bone

metaplasia are shown in Supplemental Table 2.

Discussion

USP6-associated soft tissue tumors with bone metaplasia are a
subgroup of myofibroblasts/fibroblastic proliferative lesions with
metaplastic osteoid components, mainly including MO, FOPD, ST-
ABC and FO. This group of neoplasms is not clinically common, but
its histology shows pseudosarcomatous changes with the formation of
an osteoid component, making it susceptible to misdiagnosis as
a malignancy.

In our cohort, there were 73 cases of USP6-associated soft tissue
tumors with bone metaplasia, including 44 MOs, 15 FOPDs, 2 ST-
ABCs and 12 FOs. As we know, this is one of the largest groups for
exploring the clinicopathologic and molecular characteristics of this
entity. The diagnosis age in this group was wide, ranging from 2 to 80
years old (median: 31 years). Consistent with previous reports, these

Frontiers in Oncology

tumors can occur in all age groups, but they are more common in
young adults between 20~40 years old (5, 16, 17). Fourteen patients
(14/48, 29.2%) had a clear history of trauma, but the history of
repeated minor trauma might be neglected. In this group, except for
FOPD, the lesion sites of the other subtypes were mainly in the lower
limbs. The predisposing site of our group was different from that of
traditional NF, which more often involves the upper limbs and trunk
(18). Notably, FO is currently classified as a special subtype of NF.
However, according to the results of our study, we found that the
most common site of FO was the lower limbs (9/12, 75%) instead of
the upper limbs and trunk. Three FOs were also reported in the latest
study, of which 2 cases were identified in the lower extremities, which
was consistent with our findings (5). As for imaging examinations in
our study, the results were consistent with those reported in previous
literature (5, 9, 10, 16, 19).

Histologically, this group showed hyperplastic myofibroblasts/
fibroblasts and osteoid tissues with different degrees of maturity. The
histological morphology of MO/FOPD and ST-ABC in the present
study were essentially consistent with the description in the literature
(16, 17, 20). There have been few case reports of FO, and the
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Findings of break-apart USP6 fluorescence in situ hybridization and reverse transcription polymerase chain reaction for identifying common USP6 fusion
partners. (A) Break-apart USP6 FISH showed split red (long arrow) and green (short arrow) signals in myositis ossificans (Case 42). (B) USP6 FISH showed
split red (long arrow) and green (short arrow) signals in fibro-osseous pseudotumor of digits (Case 49). (C) USP6 FISH showed split red (long arrow) and
green (short arrow) signals in soft tissue aneurysmal bone cyst (No. 60). (D) USP6 FISH showed split red (long arrow) and green (short arrow) signals in
fasciitis ossificans (No. 63). (E) Diagram showing the overall structure of COLIA1::USP6 fusion genes. (F) One myositis ossificans (Case 22) showed the
nucleotide (103, NM_000088) of COL1A1 exon 1 fused with a nucleotide (1330, NM_0004505) of USP6 exon 2 (type I). (G) One fasciitis ossificans (Case
71) showed the last nucleotide (219, NM_000088) of COLIA1 exon 1 fused with a nucleotide (1338, NM_0004505) of USP6 exon 2 (type II). (H) One
myositis ossificans (Case 32) showed the last nucleotide (130, NM_000088) of COL1A1 exon 1 fused with a nucleotide (1231, NM_0004505) of USP6
exon 1 (type llI). (1) One fasciitis ossificans (Case 63) showed a nucleotide (222, NM_000088) of COL1A1 exon 1 fused with a nucleotide (1355,
NM_0004505) of USP6 exon 3. (J) One myositis ossificans (Case 42) showed the last nucleotide (49, NM_000088) of MYH9 exon 1 fused with a

nucleotide (1330, NM_0004505) of USP6 exon 2.

deposition pattern of osteoid tissues is mainly described as having a
haphazard distribution similar to that of FOPD. However, MO-like
zonal deposition pattern was observed in 50% of FO cases in our
group, which indicated that there was evident histological overlap
between FO and the other three subtypes of USP6-associated soft
tissue tumors with bone metaplasia.

At present, soft tissue tumors in osteoid tissues have been
successively confirmed to be USP6-associated tumors. Studies have
suggested that the positive rate of USP6 rearrangement/fusion in MO/
FOPD, ST-ABC and FO ranges from 16.7% to 100% (5, 8-10, 17, 19, 21).
However, it should be emphasized that the overall sample size of existing
studies is relatively small, with only 4 studies with more than 10 cases (11
cases (8), 12 cases (10), 12 cases (21), 14 cases (5)). Our study had the
largest number of cases in a single center, and the positive rate of USP6
rearrangement detected by FISH in this group of cases was 81.5% (22/27).
In recent years, an increasing number of studies have focused on the
fusion partners of these tumors and the relationship between them. Our
study suggested that COLIAI (13/18, 72.2%) was the most frequent
fusion partner in MO/FOPD, ST-ABC and FO, which was consistent
with previous studies (67.7%~100%) and differed from classical primary
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ABC and NF (5, 10). Notably, despite the presence of significant
ossification, FO is currently classified as a variant of NF. Although it
has also been reported that COLIA1 was found to be the fusion partner in
a few NFs (22), COLIAI was the unique USP6 fusion partner of FO in
this study, which was consistent with the findings of Wang and
colleagues (5). Meanwhile, we found that the most common site of FO
was the lower limbs instead of the upper limbs of NF, suggesting that FO
seemed to be more closely related to MO/FOPD and ST-ABC. Notably,
in USP6-associated neoplasms, although an increasing number of partner
genes have been identified, there is a preference for these partner genes in
different tumor subtypes (5-7, 10, 14, 15, 17, 19, 23-35) (Figure 7A).
Intriguingly, according to our study and previous literature, almost all of
the USP6-associated neoplasms with bone metaplasia adopt COLIAI as
the fusion partner, including MO, FOPD, ST-ABC and FO (5, 10, 17, 19,
25). As reported, COLIAI encodes the pro-alphal chain of type I
collagen, which is associated with osteogenesis imperfecta and
osteoporosis (36). It should be noted that the fusion of COLIAI and
USPE still retained the whole USP6 coding sequence of the open reading
frame, namely, the fusion of the partner gene exonl and the USP6 gene
exonl or/and exon2. Although this fusion is expected to lead to the high
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TABLE 1 Genetic findings of USP6-associated soft tissue tumors with bone metaplasia.

Diagnosis Location Age Trauma History  Size (cm) L SRS and'Sanger sequencing/
FISH Next-generation-based sequencing
4 MO Elbow M 49 NA 2.0 + COLIAI exonl::USP6 exon2
7 MO Hip F 14 No 4.1 + COLIAT exonl::USP6 exon2
10 MO Back M 14 No 3.5 + -
14 MO Arm F 62 NA 6.0 - ND
18 MO Hip M 46 No 5.3 + COLIATI exonl::USP6 exon2
19 MO Thigh F 60 No 3.0 - ND
20 MO inguinal M 21| Yes NA - ND
region
22 MO Neck M 5 No 6.0 + COLIA1I exonl::USP6 exon2
30 MO Hip M 12 No NA + -
32 MO Thigh M 22 NA 10.0 + COLIATI exonl:USP6 exonl
33 MO Thigh M 36 No 7.0 + ND (poor RNA quality)
37 MO Thigh M 36 NA 3.7 - ND
39 MO Hip M 7 No 3.0 + UBE2G1 exonl::USP6 exon 8-38
41 MO Thigh F 54 No 35 - ND
42 MO Hip M 15 No 5.0 + MYH?9 exonl::USP6 exon2
43 MO Crus M 14 No 4.0 + ND (poor RNA quality)
44 MO Thigh F 15 No 4.0 + ND (poor RNA quality)
49 FOPD Finger M 64 NA 0.8 + ND (poor RNA quality)
58 FOPD Finger M 20 Yes NA + COLIATI exonl::USP6 exon2
60 ST-ABC Hip M 14 Yes 5.0 + COLIATI exonl::USP6 exonl
61 ST-ABC Lumbar vertebral side | M 15 No 4.0 + COLIAI exonl::USP6 exon2
63 FO Thigh F 44 No 12.0 + COLIAT1 exonl::USP6 exon3
64 FO Infraclavicularis M 28 No 4.0 + COLIAI exonl::USP6 exon2
65 FO Knee M 10 No 5.0 + COLIAI exonl::USP6 exon2
66 FO Arm M 32 No 2.0 + SNHG3 exonl::USP6 exon 8-38
71 FO Knee M 18 No 5.0 + COLIA1I exonl::USP6 exon2
72 FO Thigh F 36 No 5.0 + COLIAI exonl::USP6 exon2
MO, myositis ossificans; FOPD, fibro-osseous pseudotumor of digits; ST-ABC, soft tissue aneurysmal bone cyst; FO, fasciitis ossificans; F, female; M, male; NA, not available; ND, not done; FISH,
Fluorescence in situ hybridization; RT-PCR, Reverse Transcription-Polymerase Chain Reaction. +, positive; -, negative.

expression of USP6 or be the main mechanism of USP6 gene-mediated
tumor pathogenesis, the high percentage of COLIAI as a fusion partner
in these tumor subtypes still likely has a potential association with the
osteoid formation on the histology, but further research is needed. In
addition, individual USP6 fusion partners that overlap between these
tumor subtypes have been identified (3, 7, 11, 15, 22, 35-39) (Figure 7B).
Although such cases are limited, the possibility of some crossover or even
transition between USP6-associated neoplasms cannot be ruled out.
Notably, although COLIAI was the most frequent fusion partner
in this entity, we still identified MYH9::USP6 fusion in one case of
MO (Case 42). At present, after thoroughly reviewing the English
literature, MHY9 has not been reported as a USP6 fusion partner in
MO/FOPD, ST-ABC and FO. As reported, MYH9::USP6 fusion is the
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most frequent fusion type in NF (including variants of NF) and FTS
in USP6-associated tumors (4, 5, 40). After carefully reviewing the
slides of this lesion, we found that it was an intramuscular mass and
demonstrated a prominent zonation pattern in focal areas (Figure 2D)
and obvious NF-like morphology in some foci (Figure 2C), which
indicated there are some overlapping histological features as well as
molecular findings among different subtypes of USP6-associated
neoplasms, for example, as the major fusion type in the primary
ABC, CDH11::USP6 also can be detected in the NF, but how they
work in building the bridge between them are still not clear and needs
to be further studied in a larger cohort.

In this study, we also identified a novel ubiquitin-conjugating
enzyme E2 G1 (UBE2G1)::USP6 gene fusion in one case of MO (Case
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FIGURE 5

Novel fusion partners identified in USP6-associated soft tissue tumors with bone metaplasia. (A) NGS-based technology showing detection of UBE2G1
(exonl):: USP6 (exon8-38) fusion and breakpoint information between the two genes. Sanger sequencing analysis confirmed the presence of UBE2GI1::
USP6 fusion. (B) NGS-based technology showing detection of SNHG3 (exonl)::USP6 (exon8-38) fusion and breakpoint information between the two
genes. Sanger sequencing analysis confirmed the presence of SNHG3::USP6 fusion

39) and a novel small nuclear protein RNA host gene 3 (SNHG3):
USP6 fusion in one case of FO (Case 66). To our knowledge, fusions
of these two genes with USP6 have not been previously reported.
UBE2G]I is located on chromosome 17p13.2; it encodes a member of
the E2 ubiquitin-conjugating enzyme family and catalyzes the
covalent attachment of ubiquitin to other proteins (41). SNHG3 is
located on chromosome 1p35.3, which belongs to a group of long
noncoding RNAs associated with multiple cancers and is dysregulated
in multiple cancers (42). Recent studies have shown that SNHG3
expression is higher in many tumors, such as osteosarcoma, breast
cancer and hepatocellular carcinoma (42). Similar to previous
findings (4, 43), the entire coding region of USP6 was preserved in

these two rearrangements, which likely leads to activating USP6
transcription and subsequent neoplastic processes.

Notably, except for MYHY9, UBE2GI and SNHG3, which were
discovered in our study, the unusual USP6 partner ANGPTL2 has also
been identified in one MO-like ST-ABC (17). However, despite the
presence of uncommon fusion types, no peculiar clinicopathologic
findings were identified in these 4 cases. Whether the novel fusions
may be related to the clinicopathological features of these tumors
remains to be further investigated. Additionally, according to many
reported studies, in most cases of USP6-associated tumors, the fusion
site of USP6 was exon 1 or/and exon 2 (4, 5, 10). In the current study,
we found rare fusion sites of the USP6 gene, which were exon 3 and
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Summary of process and results for genetic testing of USP6-associated tumors.
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TABLE 2 Clinicopathologic and genetic results of 5 recurrent cases.
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MO, myositis ossificans; FOPD, fibro-osseous pseudotumor of digits; FO, fasciitis ossificans; F, female; M, male; NF, nodular fasciitis; ND, not done; NA, not available.
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exon 8 of USP6 (NM_001304284). In addition, a previous study by
our team also reported an equally rare case of atypical NF in children
at the fusion site of exon 9 of USP6 (NM_001304284) (15). However,
whether these rare fusion sites are related to clinicopathologic
characteristics still needs further study.

For differential diagnosis, USP6-associated soft tissue tumors with
bone metaplasia are extremely easily confounded with extraskeletal
osteosarcoma, especially in MO cases. Ten of 33 consultation cases
were initially considered extraskeletal osteosarcoma in the local
hospital. Clinically, extraskeletal osteosarcoma more commonly
occurs in middle-aged and elderly populations and often lacks an
injury history. Histologically, osteoid components of extraskeletal
osteosarcoma are often arranged in a reverse zonation pattern.
Obvious cell atypia with pathologic mitosis can be present among
neoplastic cells (44). In addition, USP6-associated soft tissue tumors
with bone metaplasia need to be differentiated from other osteogenic
sarcomas, such as malignant peripheral nerve sheath tumors with
heterogeneous bone differentiation and dedifferentiated liposarcomas
with heterogeneous bone differentiation. Malignant peripheral nerve
sheath tumors is usually a rare, high-grade sarcoma with high
morphological heterogeneity. The tumor cells are long and fusiform
with wavy, curved, comma-shaped or asymmetrically ovoid nuclei,
the chromatin is usually uniform or dense, and pathological mitosis is
easy to observe. Complete loss of H3K27me3 along with SUZI12 and
EED gene deletions are frequently seen in this entity (45), which are
invaluable in the diagnosis of challenging cases. For dedifferentiated
liposarcomas with heterogeneous bone differentiation, except for
dedifferentiated bone elements, well-differentiated liposarcomatous
components are characteristically present. More importantly,
consistent MDM2 and/or CDK4 amplification is present in
dedifferentiated liposarcomas (46), which is absent in USP6-
associated soft tissue tumors with bone metaplasia. In addition to
those malignant tumors, USP6-associated soft tissue tumors with
bone metaplasia should also be differentiated from some benign
lesions, including proliferative fasciitis/proliferative myositis, bizarre
parosteal ostochondromatous proliferation (Nora’s lesion) and
subungual exostosis. Proliferative fasciitis/proliferative myositis is a
type of myofibroblast/fibroblast proliferative disease that occurs in the
subcutaneous fascia and muscle. It is characterized by a scattered
distribution of ganglion-like cells, interstitial mucinous degeneration
and collagenization in the background (47). In addition, no USP6
rearrangement was identified in proliferative fasciitis/proliferative
myositis, indicating that proliferative fasciitis/proliferative myositis
is a real reparative lesion instead of a neoplastic change. Nora’s lesion
often presents bizarre, enlarged nuclei and stroma with a
characteristically basophilic tinctorial quality. Additionally, genetic
changes with t(1;17) (q32; q21) and inv (7) and inv (6) were
recurrently identified in Nora’s lesion and were not commonly seen
in FOPD, MO and FO (48). FOPD should also be distinguished from
subungual exostosis, as it is more prone to involve digits. Unlike
FOPD, subungual exostosis commonly presents as a lesion with an
irregular bone-cartilage interface with enlarged, atypical and
binucleated chondrocytes histologically and harbors a t(X;6) (q24-
q26; q15-q25) change genetically (49). In clinical practice, molecular
testing is usually unnecessary for clinically and histologically typical
cases. However, in challenging cases, USP6 FISH, RT-PCR and/or
NGS may be used to confirm the diagnosis. We recommend the
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diagnostic algorithm shown in the figure to reduce misdiagnosis as
much as possible (Figure 8).

USPé6-associated soft tissue tumors with bone metaplasia are benign
lesions. Currently, local resection is the most commonly used and most
effective treatment. Postoperative recurrence is rare (16). Patients with
incomplete resection are likely to experience recurrence. In our study,
among the patients with follow-up information, 4 patients who received

ion partners of primary

PKM, 1, COL3AT,
NR1D1, MIR22HG, CAP1,
RAB1A, LINCOO152, EMPT
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biopsy only survived with tumors without tumor progression; most of the
patients showed no evidence for recurrence, while 5 patients (5/32,
15.6%), including 2 MOs, 2 FOPDs and 1 FO, showed recurrence after
surgery. Those two FOPD patients underwent partial resection with
positive margins to retain the normal function of the finger or toe, and
one MO was not completely curetted, which may lead to relapses of these
tumors. Another MO and FO with recurrence underwent complete local

Soft tissue tumor suspected of UPS6-associated neoplasm |

Biopsy specimen

A
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USP6 FISH
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FIGURE 8

Diagnostic algorithm for soft tissue tumors suspected of UPS6-associated neoplasms.
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resection and showed a large tumor size of over 10.0 cm (10.0 cm and
12.0 cm). In this study, the tumor volumes of 2 cases with recurrence
after complete resection were large (over 10.0 cm), among which one case
also harbored a rare fusion site (Case 63) (the other case did not undergo
genetic testing due to sample decalcification). Notably, the FO recurrent
case (Case 63) had special histological morphology. Some areas of the
tumor showed invasive growth, with the active proliferation of
myofibroblasts/fibroblasts, messy distribution of osteoid tissue, and
reverse distribution of focal areas similar to osteosarcoma (Figures 3B-
D). Due to the large size of the tumor, osteosarcoma could not be
excluded from the original diagnosis after the lesion recurrence, and the
diagnosis of FO was finally confirmed by USP6 FISH test. However,
whether these were related to clinical conditions (especially biological
behavior) still needs to be further studied by increasing the number of
cases. Given the nature of this group of tumors, if the lesion can be
diagnosed in the biopsy, it may provide more treatment options for
patients. However, due to the small size of biopsies, it is difficult to
diagnose these tumors only by histology and immunohistochemistry.
FISH detection of USP6 rearrangement will be valuable for clarifying the
diagnosis, and the method of surgery can be determined according to the
tumor size, location, and follow-up.

Conclusions

In summary, USP6-associated soft tissue tumors with bone
metaplasia include MO, FOPD, ST-ABC and FO. Here, we explored
the peculiar clinicopathologic and molecular features of this entity in one
of the largest cohorts. Tumors can occur in all age groups but most often
affect young adults. Different subtypes of this entity not only share
overlapping clinicopathological features but also exhibit similar genetic
changes, namely, consistent USP6 rearrangement and frequent COLIAI::
USP6 fusion. Notably, for FO, the lower limbs are commonly involved
sites, and COLIAI is the most frequent fusion partner, suggesting that
FO may be closer to MO/FOPD and ST-ABC than conventional NF.
Another point we should address is that MYH9::USP6 was first identified
in MO, and the novel USP6 fusion partners UBE2GI and SNHG3 were
uncovered in one case with MO and one case with FO, respectively,
expanding our knowledge of USP6-associated soft tissue tumors with
bone metaplasia. The prognosis of this entity is good, and local complete
resection is the most effective treatment. Recurrence may be associated
with incomplete resection and/or large tumor size (over 10.0 cm), and
whether rare fusion sites or novel/uncommon fusion partners are
correlated with clinical parameters still needs to be further studied in
larger cohorts.
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Pediatric dermatofibrosarcoma
protuberans: A clinicopathologic
and genetic analysis of 66 cases
In the largest institution in
Southwest China

Zhang Zhang', Yang Lu', Changle Shi, Min Chen, Xin He
and Hongying Zhang*

Department of Pathology, West China Hospital, Sichuan University, Chengdu, China

Background: Dermatofibrosarcoma protuberans (DFSP) is an uncommon
cutaneous tumor in children. Most published articles are sporadic or small series
and lack systematically molecular analyses. The aim of our study is to better
understand the clinicopathologic and genetic features of these rare lesions.

Methods: All patients diagnosed with DFSP aged < 18 years were retrospectively
reviewed from January 2006 to May 2022.

Results: A total of 66 cases (32 male and 34 female patients) were identified, with
ages ranging from 0.3 to 18 years (median, 13 years). Tumor locations
predominantly occurred on the trunk (38/66, 57.6%), followed by the
extremities (20/66, 30.3%) and head/neck (8/66, 12.1%). Histological findings
revealed classic (41/66, 62.1%), myxoid (4/66, 6.1%), pigmented (6/66, 9.1%),
plaque-like (3/66, 4.5%), giant cell fibroblastoma (GCF; 6/66, 9.1%), and
fibrosarcomatous (6/66, 9.1%) variants of DFSP. Immunochemistry revealed
minority tumors (9/66, 13.6%) showing patchy or negative staining for CD34.
Fluorescence in situ hybridization (FISH) indicated that 49 of 53 tested cases
including all detected biopsy specimens (11/11) contained COL1A1-PDGFB
fusion, in which the average copy number gain of COLIA1-PDGFB was 0.68.
There were four cases negative for COL1A1-PDGFB rearrangement, one of which
was found to harbor a novel COL3A1-PDGFB fusion by next-generation
sequencing (NGS). Treatment for 63 patients comprised 40 marginal excisions
and 23 wide local excisions (WLEs), including 1 with imatinib therapy. Follow-up
information was available on 49 patients with a duration of 12-161 months
(median, 60 months). Fourteen patients developed tumor recurrence, all with
initial marginal excisions. The others survived with no evidence of disease.

Conclusions: This study of pediatric DFSP indicates certain discrepancies in
clinicopathologic characteristics between children and adults. The majority of
pediatric DFSPs contain COL1A1-PDGFB fusion, the same as their adult
counterparts. The COL3A1-PDGFB chimerism might be associated with the
special morphology of GCF, which needs further investigation. FISH is valuable
in biopsy tissues and cases with atypical CD34 immunostaining, while
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supplementary NGS could be helpful to identify the cytogenetically cryptic DFSP.
Overall, an urgent accurate diagnosis is needed to formulate an optimal
therapeutic strategy in the pediatric population.

KEYWORDS

dermatofibrosarcoma protuberans, giant cell fibroblastoma, pediatric sarcoma, COL1A1-
PDGFB fusion, COL3A1-PDGFB fusion, fluorescence in situ hybridization, next
generation sequencing

Introduction

Dermatofibrosarcoma protuberans (DFSP), one of the most
common dermal sarcomas, is a locally infiltrative dermal and
subcutaneous fibroblastic tumor of intermediate malignancy (1).
According to the 2020 World Health Organization (WHO)
classification of soft tissue and bone tumors, the lesion divides into
several histologic subtypes, including classic DFSP, pigmented DFSP,
myxoid DFSP, DFSP with myoid differentiation, plaque-like DESP,
giant cell fibroblastoma (GCF), and fibrosarcomatous DFSP (FS-
DESP) (1). DFSP can locally recur with a rate of 20%-50%, of
which FS-DESP is the only subtype associated with more aggressive
behavior. Approximately 10%-16% of FS-DFSP may develop distant
metastases, resulting in a worse prognosis (1-4).

Cytogenetically, more than 90% of DFSP cases are characterized
with the collagen type I alpha 1 and platelet-derived growth factor B
(COL1A1-PDGEFB) fusion deriving from supernumerary ring r (17;22)
or translocation t (17;22) (q22; q13) (5). The chimeric formation
could result in upregulating the PDGFB expression, associated with
tumorigenesis and accordingly designed to be the target by tyrosine
kinase inhibitors like imatinib mesylate (6). In clinical routine
practice, the critical molecular abnormality is exploited to be
detected by fluorescence in situ hybridization (FISH), aiding in
diagnosis and validating targeted molecular therapy in certain
circumstances (7, 8).

The incidence of DFSP is approximately 1 case per 1,000,000
person-years of adults predominantly within the second to fifth
decades, while even rare in children (9-12). Notably, to the best of
our knowledge, previous reports are mostly sporadic or small series
and there are only six large analyses involving pediatric DFSP, most of
which are absent of detailed histological analysis or systematic
molecular studies (11, 13-17). Therefore, we retrospectively
evaluated a large series of 66 pediatric DFSPs at the largest
institution in Southwest China and aimed to further investigate the
clinicopathological features and molecular characteristics.

Materials and methods
Patient acquisition
This study was approved by the West China Hospital Institutional

Review Board. A SNOMED search of the hospital surgical pathology
and consultation files from January 2006 to May 2022 identified 926
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DESPs. All cases were independently reviewed by two pathologists
(HZ and ZZ) who specialized in soft tissue tumors and two general
surgical pathologists (XH and YL). The patients diagnosed with DFSP
aged > 19 years were considered adult DFSP and were excluded.
Finally, 66 DFSP cases aged < 18 years were confirmed as pediatric
DEFSP and included in this study.

Immunohistochemical staining

Immunohistochemical analysis was performed using the
EnVision Plus detection system (DAKO, Carpinteria, CA, USA)
with positive and negative controls. Antibodies for the experiments
included CD34 (EP88, ready-to-use; ZSGB-Bio), SMA (UMAB237,
ready-to-use; ZSGB-Bio), Ki-67 (clone MIB-1, 1:100; Dako), desmin
(D33, 1:100; Dako), S-100 protein (4C49, 1:100; Dako), myogenin
(F5D, 1:50; ZSGB-Bio), Bcl-2 (EP36, 1:200; ZSGB-Bio), CD99 (EPS,
ready-to-use; ZSGB-Bio), p16 (16P04/IC2, ready-to-use; Dako), p63
(4A4, 1:400; Dako), cytokeratin (AE1/AE3, 1:100; Dako), and EMA
(E29, 1:100; Dako).

Fluorescence in situ hybridization

FISH analyses were performed using commercially available
ZytoLight® SPEC PDGFB Dual Color Break Apart Probe and
ZytoLight® SPEC COL1A1/PDGFB Dual Color Dual Fusion Probe
(ZytoVision, Bremerhaven, Germany). The tests were performed on
4-um sections according to an established laboratory protocol, as
previously described (18). Two investigators independently counted
at least 100 nuclei on each slide. A case was considered positive for
PDGFB rearrangement when at least >10% of the cells exhibited a
split signal pattern which showed that the distance between the green
and red signals was greater than the diameter of two signals. The
COLI1A1-PDGFB fusion was considered positive when at least 10% of
the cells showed one separate red signal, one separate green signal,
and two red/green fusion signals. The COL1A1-PDGFB copy gain was
calculated according to the description of Abbott et al. (19).

Next-generation sequencing

Genomic profiling was performed on FFPE tissues with capture-
based panel targeting 481 soft tissue tumor-relevant genes. Genomic
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DNA was extracted from FFPE tissues using a QIAamp DNA FFPE
Tissue Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol. The eligible DNA was hybridized with the
capture probes, selected using magnetic beads, and polymerase chain
reaction (PCR)-amplified. Then, library fragment size was
determined by Bioanalyzer2100 (Agilent Technologies, Santa Clara,
CA). The target-enriched library was sequenced on the Hiseq4000
platform (Illumina, Inc., San Diego, CA) following the manufacturer’s
instructions. The average sequencing depth was 1000x for all
targeted regions.

Polymerase chain reaction
and Sanger sequencing

The COL3A1-PDGFB fusion was analyzed by PCR using primers
(COL3A1-F: 5-CTTCAGGGTGAGACAGCCAA-3’; PDGFB-R: 5-
CATAAGCCCCCGGATTTGGT-3).
performed at Tsingke Biological Technology Co., Ltd.
(Chengdu, China).

Sanger sequencing was

Statistical analysis

Statistical analysis was performed using the GraphPad Prism
version 5 (GraphPad Software, San Diego, CA). Comparisons
between different groups were evaluated using Student’s ¢-test and
ANOVA for continuous variables. p < 0.05 indicates the statistical
significance between different groups.

Results

Clinicopathological features
of the study cohort

The relevant clinicopathologic data are summarized in Table 1.
The study cohort comprised 32 male and 34 female patients
(ratio, 1:1.1). The age of the patients ranged from 0.3 to 18 years
(median, 13 years; mean, 11.38 years), including 2 infants (2/66,
3.0%; age < 11 months) and 26 children aged less than 10 years
(26/66, 39.4%). The tumor size ranged from 0.6 to 8 cm (median,
3 cm; mean, 2.9 cm). The majority of the tumors occurred on the
trunk (38/66, 57.6%), followed by the extremities (20/66, 30.3%) and
head/neck (8/66, 12.1%). The clinical manifestations commonly
presented as nodular or multinodular masses (61/66, 92.4%) and
much less in the plaque stage (5/66, 7.6%). The cut surfaces of DFSP
were tan and yellow, with rubbery firm to soft gelatinous appearances.
There were 15 cases (15/66, 22.7%) who underwent biopsies
before treatment.

Histologic features
The tumors were classified according to histologic subtypes into

classic DFSP (41/66, 62.1%), myxoid DFSP (4/66, 6.1%), pigmented
DESP (6/66, 9.1%), plaque-like DFSP (3/66, 4.5%), giant cell
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fibroblastoma (GCF; 6/66, 9.1%), and fibrosarcomatous DFSP (6/
66, 9.1%).

Microscopically, the DFSPs diffusely infiltrated into the dermis
and subcutis with ill-defined borders, which, with infiltration into the
subcutaneous fat, could result in a honeycomb-like appearance.
Typically, uniform wavy or spindle tumor cells were proliferative
and arranged in a storiform or cartwheel pattern (Figure 1A). In the
myxoid subtype (cases 10, 16, 23, and 40), the abundant myxoid
stroma with low cellularity and numerous vessels occupied more than
50% of the tumor (Figure 1B). There were six pigmented-subtype
tumors (including cases 14, 20, 41, 42, 51, and 58; case 58 was a
recurrent lesion), all of which could find that the pigmented dendritic
cells were scattered over fibroblastic tumor cells (Figure 1C). The
three cases of plaque-like DFSP (cases 24, 61, and 64) were dermal-
based lesions, composed of regular plump tumor cells presenting a
horizontally oriented arrangement and a focal storiform structure
(Figure 1D). In six GCF tumors, a varying number of pleomorphic
mononucleated or multinucleated giant cells admixed with spindle
cells in the loose myxoid matrix or abundant collagenous stroma.
Among them, three were pure GCF (cases 19, 33, and 65) and three
were hybrid lesions (cases 7, 57, and 63) that consisted of
conventional DFSP and GCF components. Most differently, case 65
uniquely consisted of a higher proportion of neoplasms that were with
larger and more atypical giant nuclei compared to that of the other
five typical GCFs, which predominantly contained slender wavy
spindled cells and sporadic giant cells. The floret-like giant cell-
lined pseudovascular spaces and infiltrated subcutaneous fat
mimicking liposarcoma were easy to find (Figure 1E). Most of the
above variants of DFSP presented low mitotic activity (0-5/10 high-
power fields), while one conventional DFSP showed mitotic activity
with 11/10 high-power fields. FS-DFSP presented in four primary
cases (cases 2, 15, 45, and 60) and two recurrent lesions (cases 1 and
3), whose primary tumors were both confirmed as a conventional
DEFSP. The fibrosarcomatous component was composed of neoplastic
cells with increased cellularity and mitotic activity, arranging in a
fascicular pattern with a herringbone appearance (Figure 1F).
Necrosis was not identified.

Immunohistochemistry analysis

Immunohistochemical analysis revealed that most of the tumors
(57/66, 86.3%) were diffusely positive for CD34, whereas the minority
(9/66,13.6%) showed patchy or negative staining. The decreased or
lost expression of CD34 was mainly observed in myxoid and
fibrosarcomatous areas, originating from three conventional DFSPs,
three myxoid DFSPs, two ES-DFSPs, and one GCF (Figure 2).
Majority of tumors were negative for smooth muscle actin (SMA),
while there were a few cases (9/46, 20%) exhibiting positivity or focal
staining. All cases were negative for desmin, S-100 protein, myogenin,
Bcl-2, CD99, pl6, p63, cytokeratin, and EMA.

Molecular analysis
FISH analysis indicated that 46 cases (46/53, 86.8%) were positive

for PDGFB in a split-signal pattern. There were four that showed
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TABLE 1 Clinicopathological and cytogenetic features of 66 pediatric DFSPs.

No. Age of Gender Location Size  Primary  Recurrent SMA PDGFB COLA1-PDGFB  Surgery Local Metastasis Follow-up

operation (cm)  subtypes  subtypes break fusion signal recurrence (months)
(years) signal (months)

1 16 F Abdomen 3.0 Classic FS Negative = NA Positive Positive E 40 No No NED/115

2 17 F Shoulder 35 FS FS Positive NA Positive Positive E 20 NA NA NA

3 15 M Chest 6.0 Classic FS Positive NA Positive Positive E 55 No No NED/114

4 6 M Chest 2.0 Classic NA Positive NA Positive Positive WE No No No NED/94

5 16 F Chest 22 Classic Classic Positive NA Failure Positive E 10 No No NED/149

6 17 M Abdomen 25 Classic NA Positive Negative | Positive Positive E NA NA NA NA

7 8 M Shoulder 3.0 GCF GCF Positive Negative | Positive Positive E 9, 34 No No NED/161

8 15 F Chest 3.5 Classic NA Positive NA Positive Positive WE No No No NED/137

9 17 F Abdomen 1.3 Classic NA Positive NA Positive Positive NA No No No NED/66

10 12 M Chest 22 Myxoid NA Positive NA Positive Positive WE No No No NED/74

11 10 M Chest 52 Classic Classic Positive Negative | Positive Positive E 13 No No NED/81

12 15 F Abdomen 35 Classic Classic Positive  Negative | Positive Positive E 22 No No NED/85

13 17 F Chest 3.0 Classic NA Positive NA Failure Positive WE NA NA NA NA

14 4 F Finger 2.5 Pigmented Pigmented Positive Negative | Positive Positive E 5 No No NED/61

15 11 M Forearm 0.7 FS NA Positive Negative | Positive Positive WE No No No NED/60

16 0.3 F Shoulder 2.8 Myxoid NA Patchy Focal Negative Positive E No No No NA

17 13 F Chest 1.2 Classic NA Positive Focal Positive Positive WE No No No NED/101

18 6 M Thigh 1.6 Classic NA patchy Negative | Positive Positive WE No No No NED/100

19 3 M Neck 4.0 GCF NA Positive Negative | Positive Positive E 60 No No NED/89

20 11 M Foot 2.0 Pigmented NA Positive Negative | Positive Positive NA No No No NA

21 14 F Scalp 2.5 Classic NA Positive Negative | Positive Positive WE No No No NED/75

22 18 F Back 1.8 Classic NA Positive Negative | Positive Positive E No No No NA

23 16 M Back 1.5 Myxoid Myxoid Patchy Negative | Negative Negative E 10 No No NED/77

24 18 F Face 3.0 Plaque-like NA Positive  Negative | Positive Positive E No No No NA

25 17 F Upper arm 4.0 Classic NA Positive Negative | Positive Positive WE No No No NA

26 17 F Chest 1.0 Classic NA Positive Negative | Positive Positive E No No No NA

(Continued)
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TABLE 1 Continued

No. Age of Gender Location Size  Primary  Recurrent SMA PDGFB COLA1-PDGFB  Surgery Local Metastasis Follow-up
operation (cm)  subtypes  subtypes break fusion signal recurrence (months)
(years) signal (months)
27 7 M Leg 1.0 Classic NA Positive Negative | NA NA E No No No NED/82
28 17 M Back 5.0 Classic NA patchy Negative | NA NA E No No No NED/79
29 18 M Head 25 Classic NA Positive Focal NA NA E No No No NED/73
30 4 F Back 3.0 Classic NA Positive Negative | NA NA WE No No No NED/15
31 17 M Thigh NA Classic NA Positive Negative | Positive Positive WE No No No NED/14
32 17 M Abdomen 35 Classic NA Positive Focal NA NA E No No No NED/69
33 0.9 M Chest 4.0 GCF NA Positive Negative | Positive Positive WE No No No NED/59
34 9 M Thigh NA Classic NA Positive  Negative = NA NA E No No No NED/58
35 9 F Waist NA Classic NA Positive Negative | NA NA E No No No NED/29
36 8 F Abdomen NA Classic NA Positive Negative | NA NA E No No No NED/50
37 7 F Abdomen NA Classic NA Positive Negative | Positive Positive E No No No NED/26
38 6 M Chest NA Classic NA Positive Negative | Positive Positive WE No No No NED/9
39 5 M Leg NA Classic NA Positive Focal Positive Positive WE No No No NA
40 4 M Neck 2.8 Myxoid NA Patchy NA Positive Positive E 8 No No NED/27
41 4 F Forearm 3.0 Pigmented NA Positive Negative | Positive Positive E 16 No No NED/45
42 1 F Hip 4.0 Pigmented NA Positive Negative | Negative Negative E No No No NED/44
43 18 M Abdomen NA Classic NA Positive NA Positive Positive E No No No NED/44
44 18 F Abdomen NA Classic NA Positive Negative | NA NA E 12, 12, 48 No No NED/66
45 18 F Groin NA FS NA Patchy Negative | NA NA WE No No No NED/48
46 15 M Axilla 3.0 Classic NA Positive Negative | Positive Positive WE No No No NED/26
47 14 F Breast NA Classic NA Positive NA NA NA NA No No No NA
48 14 F Neck NA Classic NA Positive NA Positive Positive WE No No No NED/54
49 13 F Abdomen NA Classic NA Positive Negative | NA NA WE No No No NED/26
50 13 M Back 8.0 Classic NA Positive NA Positive Positive WE No No No NED/34
51 12 M Shoulder NA Pigmented NA Positive NA NA NA E No No No NED/23
52 13 F Forehead NA Classic NA Negative = NA Negative Negative E No No No NA
(Continued)
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TABLE 1 Continued

No. Age of Gender Location Size  Primary  Recurrent COLA1-PDGFB  Surgery Local Metastasis Follow-up
operation (cm)  subtypes  subtypes fusion signal recurrence (months)
(years) (months)
53 18 F Breast NA Classic NA Positive NA Positive Positive WE No No No NED/61
54 3 M Scalp NA Classic NA Positive Negative | Positive NA E No No No NED/23
55 15 F Shoulder NA Classic NA Positive Negative | Positive Positive E No No No NED/22
56 6 M Abdomen NA Classic NA Positive Negative | Positive Positive WE No No No NED/21
57 5 F Sacrococcygeal 3.0 GCF NA Positive Positive Positive Positive E No No No NA
region
58 11 M Forearm 3.0 NA Pigmented Positive Focal Positive Positive E 72 No No NED/84
59 18 F Breast 0.6 Classic NA Positive NA Positive Positive E No No No NED/12
60 11 M Thigh NA FS NA Positive NA Positive Positive E 72 No No NED/88
61 9 F Breast NA Plaque-like NA Positive = Focal Positive Positive E No No No NED/57
62 17 F Abdomen NA Classic NA Positive NA Positive Positive WE No No No NED/12
63 2 M Groin 3.0 GCF NA Positive Negative | Positive Positive E No No No NED/25
64 10 M Waist NA Plaque-like NA Positive Negative | Positive Positive WE No No No NED/2
65 2 M Forearm NA GCF NA Patchy NA Ambiguous Negative E No No No 2
66 13 F Groin NA Classic NA Positive Negative | Positive Positive E No No No 1

FS, fibrosarcomatous; GCF, giant cell fibroblastoma; NA, not available; E, excision; WE, wide excision; NED, no evidence of disease.
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FIGURE 1

Histologic findings of various subtypes of pediatric DFSP. (A) Conventional DFSP. The lesion consisted of uniform bland spindled neoplastic cells
arranged in a classic cartwheel pattern (H&E X 200). (B) Myxoid DFSP. The tumor had relatively low cellularity and consisted of pump spindle or stellated
tumor cells diffusely distributed in prominent myxoid architecture with numerous vessels (H&E x 100). (C) Pigmented DFSP. The dendritic cells with
melanin pigment punctuated within monotonous storiform area of conventional DFSP (H&E x 200). (D) Plague-like DFSP. The dermal-based lesion
composed of regular plump tumor cells presenting a horizontally oriented arrangement and a focal storiform structure (H&E x 100). (E) Giant cell
fibroblastoma (case 65). High proportion of hyperchromatic multinucleated giant cells scattered in the loosely fibrous and myxoid stroma, and lined
pseudovascular spaces (H&E x 200). (F) Fibrosarcomatous DFSP. The lesion was composed of high-grade fibrosarcoma-like component, showing a
typical herringbone appearance with increasing mitoses (H&E x 200; insert x 400).

negative results of PDGFB rearrangement (cases 16, 23, 42, and 52), in
one of which (case 16) COLI1A1-PDGFB fusion was detected. One
case exhibited an ambiguous result of PDGFB rearrangement (case
65). The last two cases failed the experiment (cases 5 and 13). The
median COLIAI-PDGFB copy gain of pediatric DFSP was 0.7 (range
0-1.8; mean * SD, 0.68 * 0.46). Not much different from the classic
DEFSP, the median COLIAI-PDGFB copy gain in the FS subtype was
0.6 (range 0-1.1; mean + SD, 0.58 + 0.40) (p = 0.64), while in the GCF
subtype, the median COLIAI-PDGFB copy gain was 0.45 (range 0—
1.25; mean + SD, 0.49 £ 0.50) (p = 0.36) (Figures 3A-C).
Moreover, 49 of 53 tested cases (92.5%) including all detected
biopsy specimens (11/11, 100%) contained COL1A1-PDGFB fusion,
while 4 cases were negative for COLIA1-PDGFB based on the routine
FISH screening (cases 23, 42, 52, and 65). One case (case 65) with
suspicious PDGFB split but COLIAI-PDGFB fusion negative was
found to harbor a novel COL3AI-PDGFB fusion through NGS. The

Frontiers in Oncology

PCR and Sanger sequencing further confirmed the COL3A1-PDGFB
fusion gene (Figure 3D).

Treatment and follow-up

The treatment and follow-up information is detailed in Table 1.
Surgical strategies for 63 patients were composed of marginal
excisions (40/63, 63.5%) and WLE (23/63, 36.5%). Eight cases (8/
15, 53.3%) underwent WLE after biopsies. One (case 14) underwent
finger amputation for recurrent tumor therapy. Targeted therapy with
imatinib mesylate was administered to one patient (case 7) after
tumor excision on the second relapse.

Follow-up information was available on 49 patients (49/66,
74.2%) with a duration from 12 to 161 months (median, 60
months). Fourteen patients (14/49, 28.5%) developed recurrence, all
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FIGURE 2

(case 1) could exhibit loss for CD34 staining (E, H&E X 200; F, x 200).

with marginal excisions with positive margins. The others survived
with no evidence of disease.

Discussion

The occurrence of DESP could involve people of all ages, from
neonates to old adults (13, 20-22). Pediatric DFSPs were uncommon,
which accounted for only 7.1% (66/926) of all DEFSPs in our medical
center. Among the DFSPs, the GCF subtype occurred mainly within
10 years old, which was consistent with previous observations as a
pediatric-predominance subtype. The cohort of DFSP displayed a
slight female predilection (M:F = 1:1.1), which was similar to the US
pediatric population (11). Consistently, GCF occurred significantly in
the male sex (M:F = 5:1) as the tendency of literature presenting male
predominance in children diagnosed GCF (13, 14). The tumors in our
cases were widespread and were predominantly distributed on the
trunk (57.6%), followed by the extremities (30.3%) and head/neck
(12.1%). Moreover, functional vitals or cosmetic positions including

Frontiers in Oncology

Histologic findings of DFSP and corresponding immunohistochemical images. (A, B) The neoplastic cells infiltrated into subcutaneous fat tissues forming
a characteristic "honeycomb” pattern (A, H&E x 200). The corresponding component showed diffuse positivity for CD34 (B, x 200). (C, D) The myxoid
component of DFSP (case 40) could show patchy or focal staining for CD34 (C, H&E x 200; D, x 200). (E, F) The fibrosarcomatous component of DFSP

10.3389/fonc.2023.1017154

breast (4/66, 6%), groin (3/66, 4.5%), scalp (2/66, 3%), and face (1/66,
1.5%) could be involved and were rarely mentioned in children
according to previous findings (12, 23, 24).

The distribution spectrum of the subtype exhibited some
differences between pediatric and adult DFSPs. In the adult
population, conventional DFSP was the most predominant subtype,
which constituted approximately 61.3%-91% of DFSPs in previous
studies, followed by FS-DFSP (10%-16%), myxoid DFSP (7.6%),
pigmented DFSP (2.7%-5%), GCF (2.7%), and plaque-like DFSP
(1.3%-1.7%) (3, 25-29). According to the results with detailed
constitution of pediatric DFSP variants in this large cohort, the
incidence of conventional DFSP (62.1%), FS-DFSP (9.1%), and
myxoid DFSP (6.1%) was close to the lower limit of the adult
counterparts, while pigmented DESP (9.1%), GCF (9.1%), and
plaque-like DESP (4.5%) were higher than that of the adult.

CD34 is the most frequently used immunohistochemical marker
for the diagnosis of DESP. Typically, DFSP stains positive for CD34 in
about 90% of tumors and mostly shows negativity for SMA (30, 31).
In our series, 86.3% of cases were diffusely positive for CD34
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FIGURE 3

Molecular findings of pediatric DFSP. (A) FISH was performed on the DFSP component using a PDGFB break-apart probe to the locus on chromosome
22. The results showed several tumor cells with one red—green signal indicating a normal chromosome 22; one separate red and one separate green
signal indicating a COL1A1-PDGFB fusion gene with no extra copies of red signal (orange arrows) (PDGFB, red signals and green signals). (B) FISH was
performed on the DFSP component using a PDGFB break-apart probe to the locus on chromosome 22. The results showed several tumor cells with one
red—green signal indicating a normal chromosome 22 and one to three extra copies of red signal (orange arrows) indicating a COL1A1-PDGFB fusion
gene (PDGFB, red signals and green signals). (C) Comparison among DFSP (left column) and the GCF and the FS-DFSP (right two columns) indicated that
there was not much difference in average COLIA1-PDGFB copy gains of pediatric DFSP. (D) Next-generation sequencing revealed case 65 with a novel
COL3A1 (e20)-PDGFB (e2) fusion (upper part); Sanger sequencing results demonstrated the presence of the COL3A1-PDGFB fusion gene (lower part).

expression, whereas diminished or absent staining presented in
approximately 13.6% of pediatric DFSP cases. The decreased or lost
expression of CD34 was mainly observed in myxoid and
fibrosarcomatous areas, as published (3, 14, 32, 33). One case of
classic DFSP showed a lack of CD34 expression (case 52), which two
pathologists independently reviewed, arriving at a diagnosis of classic
DFSP based on the typical histology. FISH utilizing the PDGFB
break-apart probe revealed unbalanced translocation presenting
additional 3’-red signals in 5% of these tumor cells, while the
COL1A1-PDGFB fusion probe showed yellow signal denoting a
fusion pattern in 2% of tumor cells. This case might show cryptic
rearrangement associated with DFSP. Regretfully, the specimen could
not be further investigated using NGS because of poor quality.
Evidence of COLIAI-PDGFB rearrangement is the key to the
differential diagnosis of difficult cases and is inevitable for the effective
application of targeted treatment. FISH has shown the validity for
confirmation of the COLIA1-PDGFB fusion and it was widely applied
to clinical detection. In our children’s series, 92.5% of children’s
DFSPs were confirmed positive results by using the PDGFB break-
apart probe and the COLIAI-PDGFB fusion probe as routine
screening methods, similar to the previous FISH studies with
detectable rate ranging from 86% to 96% (7, 8, 34). In addition, the
fusion product COLIAI-PDGFB was amplified with low levels of
thel7q and 22q sequences (usually one to three copies), which could
be detectable by either FISH or comparative genomic hybridization
(GCH) (19, 35). In our study, we found that the average gains of the
COLIAI-PDGFB fusion gene showed no statistical difference in
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ordinary DFSP, FS-DFSP, and GCF groups of children, among
which the GCF cases presented the lowest average genomic gains.
While correlated studies were scarce in children, more samples and
deeper investigations are needed to further reveal the meaning of the
molecular characters in pediatric patients.

Nevertheless, based on previous studies, a minority of DFSP cases
with uncertain or negative results based on routine FISH assays are
considered to be molecular unconfirmed DFSP and might result in
inaccurate diagnosis (36). Application of supplementary NGS
approaches would be of value to fusion detection (37). In our
cohort, 7.5% (4/53) of pediatric DFSPs exhibited molecular
unconfirmed characteristics. After carefully reviewing the published
English articles, we included two studies and collected a total of seven
pediatric DESPs (including the four pediatric cases in our cohort)
considered to be molecular unconfirmed based on routine FISH
detection, the clinicopathological and molecular characteristics of
which are summarized in Table 2. The clinicopathological features of
most cases seem to not differ from the corresponding subtypes except
one GCF (present case 65) with atypical morphology. Genetically
important, NGS revealed the GCF containing a novel COL3AI-
PDGFB fusion that was first presented in DFSP. COL3A1, located
in 2q32.2, belongs to the collagen genes together with COLIAI and
COL1A2, and encodes a structural protein of type III collagen, which
is found in abundance in extensible connective tissues, such as skin,
blood vessels, gastrointestinal tract, and the developing brain (38-41).
The translocation of COL3A1 had been reported as a rare partner
fusing to PLAGI-rearranged neoplasms (including lipoblastoma and
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TABLE 2 Clinicopathologic and molecular characteristics of 7 cytogenetically cryptic DFSPs in children.

Gender/ Location Histologic Diagnosis  CD34 FISH RNA
Age findings sequencing
COL1A1- PDGFB PDGFD COL6A3 EMILIN2

PDGFB break break apart  break apart = break apart

fusion apart
R1(48) F/14 Neck NA DEFSP Positive ND Negative Positive Positive NA ND NA NA
R2(48) F/15 Thigh NA FS-DFSP Positive NA Negative Positive NA Positive ND NA NA
R3 (36) M/4 Calf Storiform pattern Pigmented- Positive ND Negative Negative Negative Negative No fusion NA NED/17

DFSP transcript

Present M/16 Back Myxoid matrix Myxoid- patchy Negative Negative NA NA NA NA NA R/10; NED/
case 23 DFSP 77
Present F/1 Hip Pigmented cell, Pigmented- Positive Negative Negative NA NA NA NA NA NED/44
case 42 storiform pattern DFSP
Present F/13 Forehead Storiform pattern Classic- Negative | Negative Negative NA NA NA NA NA NA
case 52 DFsP
Present M/2 Forearm Giant cell, myxoid GCFE partial Negative Ambiguous NA NA NA COL3A1(e20)- COL3A1(e20)- Recent case
case 65 matrix PDGFB(e2) PDGFB(e2)

ND, not detectable; NA, not available; R, relapse; NED, no evidence of disease.
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unclassified spindle cell neoplasm) and USP6-rearranged neoplasms
(including cranial fasciitis, cellular fibroma of the tendon sheath, and
unclassified benign myofibroblastic tumor). The breakpoints seem to
constantly occur at exon 1 of COL3AI in COL3AI-PLAGI and
COL3A1-USP6 cases, whereas they occurred at exon 20 of COL3A1
in the present GCF case (40, 42-46). In addition, atypical variants of
COL3AI were associated with Ehlers-Danlos syndrome (EDS)
involving connective tissue disorders (39, 47). Furthermore, though
without unique clinical presentation, some distinctive pathological
morphology was observed that could be associated with the COL3AI-
rearranged GCF, which contained a higher proportion of
multinucleated giant cells with larger and more atypical nuclei than
the COL1AI-rearranged GCFs. However, more studies are needed to
confirm the relationship between the specific chimerism and
morphology. In addition, there was one classic DFSP with
COL6A3-PDGFD and one FS-DFSP with EMILIN2-PDGFD in
children from the work of Lee et al. (48). Dadone-Montaudié et al.
described one pediatric pigmented DFSP, which was not found to
have suspicious transcript even after using RNA sequencing,
indicating that a more complicated mechanism might exist (36).
There were three cases (present cases 23, 42, and 52) of genetic
aberrations in the current study that could not be further identified
using NGS because of the poor quality of the specimens, which could
be associated with alternative rearrangement (including PDGFD
rearrangement and PDGFB rearrangement with novel partner
genes), cryptic COLIAI-PDGFB fusion, and even other
sophisticated chromosomal aberrations (36, 49-52). We still needed
more specimens to reveal the genetic characteristics of cryptic
pediatric DFSP. Altogether, NGS could be a helpful strategy to
identify the molecular unconfirmed DFSP and provide detailed
information about abnormal genes for further investigation.

The diagnosis of pediatric DFSP could be challenging, and it
should be differentiated from not only benign mimics but also
malignant neoplasms, similar to its subtypes in terms of the
diversity of histological morphology in the pediatric tumor.
Basically, the histologically and immunophenotypically (CD34
positive) overlapping pediatric lesions are often considered in the
differential diagnoses, such as plaque-like CD34-positive dermal
fibroma (lack of COL1AI-PDGFB), fibroblastic connective tissue
nevus, fibrous hamartoma of infancy (EGFR exon 20 insertion/
duplication mutations), pediatric NTRK-rearranged spindle cell
neoplasm (co-expression of CD34 and S100, and NTRK-positive
expression or rearrangement), lipofibromatosis, and plexiform
myofibroblastoma. Although DEFSPs are generally centered within
the dermis or subcutis and characterized by spindle cells with a
storiform to the whorled pattern, when these tumors have similar
morphological features, the cytogenetic method can help with
diagnosis, especially for small or superficial biopsy samples. In
addition, there are a minority of DESPs (especially myxoid DESP
and FS-DFSP) with patchy or negative staining for CD34 that are
more likely to result in diagnostic pitfalls. The myxoid DFSP could be
easily confused with other myxoid lesions such as superficial acral
fibromyxoma, solitary fibrous tumor, and low-grade fibromyxoid
sarcoma (LGFMS). Despite developing typically in old adults,
pediatric liposarcoma should rarely be excluded, especially myxoid
liposarcoma (ML) (53). FS-DFSP with atypical staining for CD34
could be confused with high-grade sarcomas, such as high-grade
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infantile fibrosarcoma (IFS) with ETV6-NTRK3 fusion, especially
dedifferentiated liposarcoma (DDL) without a well-differentiated
liposarcoma (WDL) component. Notably, the situation we had
reported could be extremely challenging due to the presence of
MDM?2/FRS2 amplification and the lack of evidence for COLIAI-
PDGFB fusion by routine FISH screening (54). Importantly, carefully
looking for conventional components and searching for
characteristics of fusion genes could be helpful for pathologists to
confirm complicated cases.

Tissue biopsy, as one of the gold standard diagnostic
examinations, could effectively assist in identifying uncertain lesions
at an early stage. There were 15 (15/66, 22.7%) children who
underwent biopsy, and 11 biopsy specimens detected by FISH all
identified with COLIAI-PDGFB fusion, which reconfirmed the
valuable function of FISH in biopsy samples as shown in our
previous report (55). Therefore, it encouraged us to increase biopsy
in children and boosted FISH application in pediatric specimens.

Accurate and early diagnosis is critical to guide an appropriate
therapeutic scheme in children. Nowadays, the recommended
treatment for DFSP is either WLE (2-4 cm) with tumor-negative
margins or Mohs micrographic surgery (MMS) (56). In our group, 40
patients (63.5%) underwent marginal excisions, and the other 23
patients (36.5%) received WLE. The overall prognosis of pediatric
DFSP was favorable, with all patients surviving without metastasis.
However, 15 patients (15/49, 30.6%) developed tumor recurrence. It
should be noted that there were 2 of 15 (13.3%) recurrent tumors
transforming into fibrosarcomatous DFSP, which was more
aggressive than the primary conventional types. Importantly, the
recurrence of DFSP was closely related to surgical margin. A wide
local excision (2-3 cm) with tumor-negative margins reduces the local
recurrence of DFSP from 50%-75% to 0%-30% (24, 57). Moreover,
MMS could further decrease the recurrence rate to 0.6%-6% (58).
Noteworthy, a higher proportion of patients (8/15, 53.3%) were
subjected to WLE, which was a benefit from early diagnosis
through biopsy. It highlighted the pivotal role of biopsy in
providing definitive evidence for patients to select an optimal
therapeutic strategy. Moreover, 11 patients suffered defects from
surgery involving anatomic critical regions including the breast,
groin, finger, scalp, and face in this cohort. Actually, there are
numerous issues arising from surgery for the special population:
poor compliance of young patients, prolonged anesthesia duration,
increasing surgical difficulty and risk, and unacceptable cosmetic and
functional mutilation.

Another treatment opportunity that is typically reserved for
adults in surgically unresectable, recurrent, or metastatic cases is
targeted therapy (7). However, there is no standard clinical guidance
about targeted therapy for pediatric patients. Hitherto, imatinib was
applied on six child patients postoperatively for continuous remission
and preoperatively for tumor reduction, all of whom achieved the
desired effects (23, 59-62). In our study, we reported another patient
(case 7) diagnosed with the GCF subtype who benefited from targeted
therapy with imatinib after marginal excision in the second relapse,
with no evidence of disease after 10 years. Therefore, using imatinib
mesylate could act as a neoadjuvant or adjuvant therapy to help
control tumor progression, in tandem with other treatments in
children, but it still warrants further evaluation and large-
scale investigation.
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In conclusion, we present the largest series study of 66 cases of
pediatric DFSP with genetic investigation. There are certain
differences in clinicopathology between children and adults. Most
pediatric DFSPs contain classical COLIAI-PDGFB fusion as
compared with adults. The COL3A1-PDGFB chimerism might be
associated with the special morphology of GCF, which needs further
investigation. Furthermore, FISH screening, and even supplementary
NGS detection, should be used in identifying pediatric lesions with
typical or uncertain morphology involving dermis and subcutis. The
overall prognosis would be favorable with appropriate treatment,
while more attention should be paid to recurrence prevention and
mutilation reduction in DFSP management in the special population.
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Background: Oral potentially malignant disorders (OPMDs) and oral squamous cell
carcinoma (OSCC) are a series of related pathologic and molecular events
involving simple epithelial hyperplasia, mild to severe dysplasia and canceration.
N6-methyladenosine RNA methylation, as the most common modification of both
coding mRNA and non-coding ncRNA in eukaryotes, participates in the regulation
of the occurrence and development of various malignant tumors in human.
However, its role in oral epithelial dysplasia (OED) and OSCC remain unclear.

Materials and methods: In this study, multiple public databases were used for
bioinformatics analysis of 23 common m6A methylation regulators in head and
neck squamous cell carcinoma (HNSCC). Protein expressions of IGF2BP2 and
IGF2BP3 were verified accordingly in clinical cohort samples of OED and OSCC.

Results: Patients with high expression of FTO, HNRNPC, HNRNPA2B1,
LRPPRC, IGF2BP1, IGF2BP2, IGF2BP3 had a poor prognosis. IGF2BP2 had a
relatively high mutation rate in HNSCC, and its expression was significantly
positively correlated with tumor purity, and significantly negatively correlated
with the infiltration level of B cells and CD8+T cells. The expression of IGF2BP3
was significantly positively correlated with tumor purity and CD4+T cells.
Immunohistochemistrically, the expression of IGF2BP2 and IGF2BP3 in oral
simple epithelial hyperplasia, OED and OSCC increased gradually. Both were
strongly expressed in OSCC.

Conclusion: IGF2BP2 and IGF2BP3 were the potential biological prognostic
indicators of OED and OSCC.

KEYWORDS

oral squamous cell carcinoma, oral epithelial dysplasia, N6-methyladenosine,
IGF2BP2, IGF2BP3

123 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2023.1013054/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1013054/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1013054/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1013054&domain=pdf&date_stamp=2023-01-30
mailto:huiyinghe@bjmu.edu.cn
mailto:kqlibinbin@bjmu.edu.cn
https://doi.org/10.3389/fonc.2023.1013054
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1013054
https://www.frontiersin.org/journals/oncology

Qin et al.

Introduction

Oral squamous cell carcinoma (OSCC) is the most prevalent
malignancy in oral and maxillofacial region, with approximately
350,000 newly diagnosed cases annually (1). A considerable number
of patients with OSCC develop from oral epithelial dysplasia (OED).
It is generally believed that the higher the degree of epithelial
dysplasia, the higher the risk of malignant transformation.
However, the pathological judgment is subjective to some extent,
which may lead to discrepancy between different pathologists. In
some cases, the pathologic predictions had no significant relation with
clinical prognosis. Therefore, it is needed to discover more molecular
markers for accurate assessment of cancer risk and further determine
the specific biomarkers of OED and OSCC.

N6-methyladenosine (m6A), the methylation modification at the
sixth N atom of adenine, is the most common post-transcriptional
modification on mRNA, mediating >60% RNA methylation (2).
Abnormal m6A methylation levels play an essential role in the
progression of various cancers (3, 4). M6A methylation is dynamic
and reversible in cells, and the levels of m6A methylation in tumors
mainly depend on the expression of m6A methylation regulators.
Regulators that interact with m6A methylation are mainly divided
into three categories: Writers (methyltransferases), Erasers
(demethylases), and Readers (reading proteins). Recently, new
evidence has showed that m6A modification is associated with
tumor proliferation, glycolysis, apoptosis, and metastasis. m6A
modification could play either an oncogenetic or tumor-suppressive
role in malignant tumors (5, 6). For example, METTL3, as one of the
m6A-RNA-methylation regulators, is upregulated in OSCC tissues,
and high levels of METTL3 expression in tumor tissues predict poor
patient survival. METTL3 promotes the proliferation, invasion, and
migration of OSCC cells in vitro, while METTL3-knockout inhibits
tumor growth in vivo. METTL3 promotes the stabilization of c-Myc
through YTHDFI-mediated m6A modification, leading to the
occurrence of OSCC (7). In addition, OSCC patients with high
FTO expression had larger tumor volume, higher tumor node
metastasis (TNM) stage, worse differentiation, and shorter survival
time. Stable knockout of FTO inhibited OSCC cell viability, colony
formation, and tumor growth (8).

Abbreviations: OSCC, Oral squamous cell carcinoma; OED, Oral epithelial
dysplasia; m6A, N6-methyladenosine; TNM, Tumor node metastasis; IGF2BP2,
Insulin-like growth factor 2 mRA-binding Protein 2; IGF2BP3, Insulin Like Growth
Factor 2 mNA Binding Protein 3; GEPIA, Gene expression profiling interactive
analysis; RNA-Seq, RNA sequencing; GTEx, Genotype-Tissue Expression; OS,
Overall survival; FP, First-progression survival; PPS, Post-progression survival;
HNSCC, Head and neck squamous cell carcinoma; HR, Hazard ratio; CIs,
Confidence intervals; CNAs, Copy number alterations; GISTIC, Genomic
identification of significant targets in cancer; IHC, Immunohistochemistry; FFPE,
Formalin-fixed, paraffin-embedded; HRP, Horse-radish peroxidase; DAB, 3, 3-
diaminobenzidine; LSD, Least significant difference; HE, hematoxylin-eosin;
TCGA, The cancer genome atlas; SCC, Squamous cell carcinoma; BMI1, B-cell-
specific moloneymurine leukemia virus insertion site 1; LSCC, laryngeal squamous

cell carcinoma; VEGF, vascular endothelial growth factor.
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Thus, we utilized public databases to analyze the expression of 23
m6A methylation regulators and their relationships with
clinicopathological characteristics, and to predict their potential
functions. Further, clinical cohort cases with epithelial hyperplasia/
dysplasia and OSCC were collected to verify the protein expression of
Insulin-Like Growth Factor 2 mNA Binding Protein 2 (IGF2BP2) and
Insulin-Like Growth Factor 2 mNA Binding Protein 3 (IGF2BP3),
and their clinical associations in OSCC and OED cases.

Materials and methods
Oncomine analysis

Oncomine gene expression array datasets (https://www.
oncomine.org/resource/login.html) were used to analyze the
transcription levels of m6A regulators in cancers. The cutoffs of P-
value and fold change were defined as 0.01 and 2 by Student’s t-
test, respectively.

Gene expression profiling interactive
analysis dataset

GEPIA is a newly developed interactive web server for analyzing
the RNA sequencing (RNA-Seq) expression data of 9,736 tumors and
8,587 normal samples from the Cancer Genome Atlas and the
Genotype-Tissue Expression projects, using a standard processing
pipeline. GEPIA provides customizable functions such as tumor/
normal differential expression analysis, profiling according to cancer
types or pathological stages, patient survival analysis, similar gene
detection, correlation analysis, and dimensionality reduction
analysis (9).

The Kaplan-Meier Plotter

Kaplan-Meier Plotter (www.kmplot.com) was used to analyze the
overall survival (OS), first-progression survival (FP), and post-
progression survival (PPS) of patients with head and neck
squamous cell carcinoma (HNSCC), which contained gene
expression data and survival information of HNSCC patients (10).
Cases were divided into two groups by median expression (high vs
low expression) and assessed by a Kaplan-Meier survival plot, with
the hazard ratio (HR) with 95% confidence intervals (CIs) and log-
rank p-value. Only the JetSet best probe set of m6A regulators was
chosen to obtain Kaplan-Meier plots, in which the number-at-risk
was indicated below the main plot.

The cBioPortal

The Cancer Genome Atlas have sequencing and pathological data
of 30 different cancers. The HNSCC dataset, including data from
1,107 cases with pathology reports, was selected for further analyses of
MG6A regulators using cBioPortal (11). The genomic profiles included
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mutations, putative copy number alterations (CNAs) from genomic
identification of significant targets in cancer (GISTIC), mRNA
expression Z scores (RNA-seq v.2 RSEM), and protein expression Z
scores (reverse phase protein array).

The TIMER database analysis

The Timer database is a publicly available data platform for the
systematic analysis of tumor immune infiltration (12). We used
GENE modules to explore the correlation between the expression
levels of m6A methylation regulators and immune cell infiltration in
patients with HNSCC, including CD4+ T cells, CD8+ T cells, B cells,
neutrophils, dendritic cells and macrophages.

Patient sections

The study samples were obtained from Peking University School
and Hospital of Stomatology (Beijing, China) from January 2000 to
June 2021. Inclusion criteria were as follows: the initial diagnosis was
epithelial hyperplasia or epithelial dysplasia; there were complete
medical records and clinical data; and there was no history of oral
mucosal epithelial lesions or OSCC. Exclusion criteria were as follows:
no pathological biopsy was performed; cancerous change was
diagnosed by pathological biopsy at the first visit; and there was a
history of radiotherapy and chemotherapy in the past. All study
samples were further confirmed by two pathologists according to
World Health Organization criteria (13). This study was in
compliance with the Declaration of Helsinki. Data were
collected after approval of the Biomedical Ethics Committee of
Peking University School and Hospital of Stomatology (No.
PKUSSIRB-201948111).

Immunohistochemistry

Formalin-fixed and paraffin-embedded (FFPE) tissues were
chosen from above cases. Briefly, 3-mm sections were incubated
with commercial rabbit poly-clonal antibodies against IGF2BP2 and
IGF2BP3 (Abcam) at 1/200 dilution overnight at 4°C. Then, the
sections were conjugated with horse-radish peroxidase (HRP)
antibody (1:500 dilution; Gene Tech) at room temperature for 2 h,
then covered by 3, 3-diaminobenzidine (DAB), and slides were
mounted with mounting medium.

Statistical analysis

All analyses were performed with the SPSS 24.0 software (SPSS
Inc., USA) and the data from these independent experiments were
presented as mean = SD. If the multi-sample comparisons were
independent of each other and conform to the normal distribution
and homogeneity of variance, a one-way analysis of variance would be
applied. Differences between groups were compared using the least
significant difference (LSD) test. If the heterogeneity between samples
didn’t conform to the normal distribution, the Nonparametric tests
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Mann-Whitney test, or Kruskal-Wallis H test would be used.
Enumeration data were analyzed using Fisher’s exact test of 2 test.
Correlation analysis was performed using Spearman correlation
analysis. The test level a= 0.05 and P<0.05 was considered
statistically significant.

Results

Baseline characteristics of the patient
sections

A total of 109 patients with OSCC or OED were enrolled. In this
cohort, 28 patients relapsed after the initial biopsy and became cancer,
and 81 patients underwent no recurrence within 5 years. Among
them, 48 sections were assigned to the mild epithelial dysplasia group,
71 sections were assigned to the moderate epithelial dysplasia group,
57 sections were assigned to the severe epithelial dysplasia group, 63
sections were assigned to the OSCC group, and 37 sections were
assigned to the epithelial hyperplasia group.

At the same time, 195 biopsy sections were collected from above
28 patients with malignant transformation, and only one section was
selected for each biopsy, which were recorded as the progression
group; 81 patients were pathologically diagnosed as epithelial
dysplasia at the first visit, and there was no recurrence or malignant
transformation during the follow-up period of at least 5 years, which
were collected as the stable group (Tables 1, 2).

Bioinformatic analysis of m6A methylation
regulators in HNSCC

A lot of evidence showed that m6A RNA methylation promotes
tumor initiation and progression (14). However, there are few studies
to explore the role of m6A methylation in OSCC and OED. To study
the expression correlation of m6A methylation regulators in OSCC
and OED, we reviewed relevant literature and selected a total of 23
m6A methylation regulators. We preliminarily analyzed the
expression of these regulators in different cancer types through the
Oncomine database compared with normal control. Figure 1A
demonstrated that the m6A level upregulated in OSCC and OED
tissues compared with normal control. It was found that m6A
methylation regulators were expressed to different degrees in
various cancer types, and the expressions of METTL3, WTAP,
ZC3H13, KIAA1429, YTHDC, YTHDE2, YTHDF3, HNRNPA2B,
HNRNPC, LRPPRC, IGF2BP2 and IGF2BP3 in HNSCC were higher,
among which KIAA1429, YTHDF3, IGF2BP2, and IGF2BP3
had significant differences in the corresponding studies
(Supplementary Material)

Figure 1B showed that the expression levels of RBM15, FTO,
YTHDCI1, YTHDC2, HNRNPC, HNRNPA2B1, LRPPRC, IGF2BP1,
IGF2BP2, IGF2BP3 were significantly correlated with the overall
survival of patients with HNSCC (P<0.05) through Kaplan-Meier
curve and log-rank test analysis. Among them, the higher the
expression of RBM15, YTHDCI, and YTHDC2, the better the
prognosis of the patient; while the overall survival time of patients
with high expressions of FTO, HNRNPC, HNRNPA2B1, LRPPRC,
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TABLE 1 Baseline characteristics of the patients in advanced group.

e Epithelial hyperplasia Mild dysplasia Moderate dysplasia Severe dysplasia
Number % Number % Number % Number %
Sex
Female 6 85.71 4 80.00 8 61.54 3 100.00
Male 1 14.29 1 20.00 5 38.46 0 0.00
Age(years)
<40 0 0.00 1 20.00 1 7.69 0 0.00
40-60 5 71.43 1 20.00 7 53.85 0 0.00
260 2 28.57 3 60.00 5 38.46 3 100.00
Sites
Tongue 2 28.57 3 60.00 6 46.15 1 33.33
Buccal 2 28.57 1 20.00 1 7.69 1 33.33
Gingiva 3 42.86 1 20.00 3 23.08 1 33.33
Other 0 0.00 0 0.00 3 23.08 0 0.00

Tobacco smoking

Yes 0 0.00 0 0.00 2 15.38 0 0.00

No 7 100.00 5 100.00 11 84.62 3 100.00

Alcohol drinking

Yes 0 0.00 0 0.00 1 7.69 0 0.00

No 7 100.00 5 100.00 12 92.31 3 100.00
Prognosis(relapse)

Original sites 3 42.86 3 60.00 8 61.54 1 33.33

Multiple sites 4 57.14 2 40.00 5 38.46 2 66.67

TABLE 2 Baseline characteristics of the patients in stable group.

Epithelial hyperplasia Mild dysplasia Moderate dysplasia Severe dysplasia
Characteristic
Number % Number % Number % Number %

Sex

Female 10 47.62 8 40.00 6 31.58 11 52.38

Male 11 52.38 12 60.00 13 68.42 10 47.62
Age(years)

<40 7 33.33 3 15.00 1 8.86 1 4.76

40-60 11 52.38 11 55.00 11 57.89 9 42.86

260 3 14.29 6 30.00 7 36.84 11 52.38
Sites

Tongue 12 57.14 6 30.00 12 63.16 13 61.90

Buccal 6 28.57 10 50.00 3 15.79 0 0.00

Gingiva 3 14.29 3 15.00 2 10.53 3 14.29

Other 0 0.00 1 5.00 2 10.53 4 19.05
Tobacco smoking

Yes 6 28.57 10 50.00 3 15.79 7 33.33

No 15 71.43 10 50.00 16 84.21 66.67
Alcohol drinking

Yes 6 28.57 5 25.00 3 15.79 8 38.10

No 15 71.43 15 75.00 16 84.21 13 61.90
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IGF2BP1, IGF2BP2, and IGF2BP3 were significantly shorter than
those of patients with low expressions.

To analyze the expression of 23 methylation regulators in the
cancer genome atlas (TCGA) in HNSCC and normal tissues, we
searched the GEPIA database and found that only the m6A
methylation regulators IGF2BP2 and IGF2BP3 had significant
differences in expression in HNSCC than in normal tissues
(P<0.05) (Figure 1C), which was consistent with the results from
the Oncomine database. However, there was no significant difference
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between IGF2BP2 and IGF2BP3 in different stages of HNSCC
(P>0.05) (Figure 1D). Infiltrating immune cells are an important
part of the tumor microenvironment and are closely related to tumor
progression. Furthermore, we explored the relationship between the
expression of m6A methylation regulators and the level of immune
infiltration. The results showed that the expression of IGF2BP2 was
significantly positively correlated with tumor purity (cor=0.113,
P=1.19¢-02), and was significantly negatively correlated with the
infiltration levels of B cells (cor=-0.249, P=3.89¢-08) and CD8+ T
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cells (cor=-0.225, P=1.91e-08). And the expression of IGF2BP3 was
significantly correlated with tumor purity (cor=0.094, P=4.03e-02)
and CD4+ T cells (cor=0.19, P=2.07¢-05) (Figure 2A).

To obtain the mutation frequency of m6A methylation
regulators in HNSCC, we analyzed and integrated the cBioPortal
database. The m6A methylation regulators were found to have
various degrees of genetic variation in HNSCC (Figure 2B), and
the most common variation was amplification. Among them,
IGF2BP2 had the highest genetic variation frequency (14%),
followed by KIAA1429 (5%) and YTHDEF3 (4%). The frequencies
of other regulators were less than 3%, indicating that changes in

10.3389/fonc.2023.1013054

the expression levels of these regulators were not caused by
genetic alterations.

Immunohistochemical analysis of m6A
methylation regulators IGF2BP2 and
IGF2BP3

Combined with the m6A methylation regulator expression profile
and prognosis of patients with HNSCC, we selected IGF2BP2 and
IGF2BP3 to verify their expression in OSCC and OED. We examined
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IGF2BP2 and IGF2BP3 expression of 69 OSCC patients (A total of
236 tissue sections) from our department by IHC staining. The results
showed that both IGF2BP2 and IGF2BP3 were expressed in the
cytoplasm of squamous epithelial cells (Figures 2C, D).

According to the semi-quantitative results of IHC, we found that
the expression of IGF2BP2 increased gradually in epithelial
hyperplasia, epithelial dysplasia and squamous cell carcinoma
(SCC) (all P<0.01) (Figure 3A, Table 3). And the expression of
IGF2BP2 increased in epithelial hyperplasia, mild dysplasia,
moderate dysplasia and severe dysplasia (P<0.01) (Figure 3C).
Besides, the expression of IGF2BP3 was increased in epithelial
hyperplasia, epithelial dysplasia and SCC (all P<0.05) (Figure 3B,
Table 3). However, there was no statistical significance for IGF2BP3
between epithelial hyperplasia and mild dysplasia (P>0.05)
(Figure 3D, Table 3).

There was no significant difference in immunohistochemical
semiquantitative scores of IGF2BP2 and IGF2BP3 in the
epithelial hyperplasia, mild dysplasia, moderate dysplasia and
severe dysplasia groups (P>0.05). Moreover, the expression of

10.3389/fonc.2023.1013054

IGF2BP2 and IGF2BP3 were shown moderate correlation
(r=0.490, P<0.001).

The relationship between the expression of IGF2BP2 and
IGF2BP3 in the initial biopsy samples of 69 patients and the
clinicopathological characteristics of these patients was analyzed.
The results showed that there was no significant difference in the
expression of IGF2BP2 and IGF2BP3 among different genders,
different ages or smoking/drinking (P>0.05). However, they were
significantly correlated with pathological diagnosis in the initial
biopsy (P<0.05) (Tables 4, 5).

Discussion

M6A methylation is one of the significant factors in the
occurrence and development of tumors. Reported studies have
shown that the m6A write protein METTL3 can recognize the m6A
methylation site on the 3’-UTR of B-cell-specific Moloney murine
leukemia virus insertion site 1 (BMI1), bind to the m6A read protein
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FIGURE 3

Increased expression of IGF2BP2 and IGF2BP3 was associated with the occurrence of oral squamous cell carcinoma (OSCC), oral epithelial dysplasia
(OED), and progression of OED. (A, B) Immunohistochemical semiquantitative results of IGF2BP2 and IGF2BP3 expression in oral epithelial hyperplasia,
OED, and OSCC. (C, D) Immunohistochemical semiquantitative results of IGF2BP2 and IGF2BP3 in epithelial hyperplasia, mild/moderate/severe epithelial

dysplasia. *:extreme value.
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TABLE 3 Differential expression of IGF2BP2 and IGF2BP3 in epithelial hyperplasia, dysplasia and SCC*.

Clinicopathological diagnosis ‘

IGF2BP2 IGF2BP3
hyperplasia-dysplasia 0.000 0.000
Dysplasia-SCC 0.000 0.000
hyperplasia-mild dysplasia 0.000 0.511
mild dysplasia-moderate dysplasia 0.003 0.000
moderate dysplasia-severe dysplasia 0.000 0.018

SCC, squamous cell carcinoma.

TABLE 4 Association between the clinicopathological characteristics and IGF2BP2 expression in 109 cases of OSCC and OED.

IGF2BP2
Characteristic
Negative Weak Positive Strong Positive
Gender
Female 62 22 18 22
0.490
Male 47 21 14 12
Age(years)
<40 14 8 4 2
40-60 56 20 19 17 0.380
=60 39 15 9 15
Locations
Tongue 55 18 18 19
Buccal 23 14 4 5
0.060
Gingiva 19 9 7 3
Other 12 2 3 7
Initial diagnosis
Epithelial hyperplasia 28 27 1 0
Mild dysplasia 24 8 14 2
0.000
Moderate dysplasia 33 8 11 14
Severe dysplasia 24 0 6 18
Smoking
Yes 28 13 8 7
0.626
No 81 30 24 27
Drinking
Yes 23 11 5 7
0.577
No 86 32 27 27

* P < 0.05 was considered statistically significant.

IGF2BP1, promote the translation of BMI1 and induce the
proliferation and metastasis of OSCC thereby (15). However, at
present, there is no comprehensive analysis of the relationship
between m6A methylation regulators and tumor progression of
HNSCG, especially its role in oral mucosal malignant transformation.

Differential expression analysis showed that there were
differences between oral epithelial hyperplasia and epithelial

Frontiers in Oncology

dysplasia (16). The positive rate of P53 was gradually increasing
also indicated that the degree of malignancy was increasing (17).
Through bioinformatics analysis, we found that high expressions
of 7 m6A methylation regulators including IGF2BP2 and IGF2BP3
were associated with poor prognosis. Therefore, IGF2BP2 and
IGF2BP3 were selected to be explored in OSCC and OED tissues. It
was found that both proteins were highly expressed in OSCC, and
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TABLE 5 Association between the clinicopathological characteristics and IGF2BP3 expression in 109 cases of OSCC and OED.

IGF2BP3
Characteristic
Negative Weak Positive Strong Positive
Sex
Female 62 37 10 15 0.497
Male 47 31 4 12
Age(years)
<40 14 10 2 2 0.895
40-60 56 35 7 14
=60 39 23 5 11
Locations
Tongue 55 32 10 13 0.119
Buccal 23 19 0 4
Gingiva 19 12 1 6
Other 12 5 3 4
Initial diagnosis
Epithelial hyperplasia 28 25 1 2 0.002
Mild dysplasia 24 18 3 3
Moderate dysplasia 33 17 5 11
Severe dysplasia 24 8 5 11
Smoking
Yes 28 19 0 9 0.054
No 81 49 14 18
Drinking
Yes 23 15 0 8 0.084
No 86 53 14 19

* P < 0.05 was considered statistically significant.

their expression increased gradually in oral epithelial hyperplasia,
OED, and OSCC.

The insulin-like growth factor 2 mRNA-binding proteins family
consists of three restriction enzymes: IGF2BP1, IGF2BP2, and
IGF2BP3, which are mainly responsible for regulating the
localization, translation, and stability of m6A methylated mRNAs.
IGF2BPs exert oncogenic effects by stabilizing m6A-modified mRNAs
of oncogenic targets and promoting tumorigenesis (18, 19).

IGF2BP2 is located on chromosome 3q27.2, which binds to the 5’
UTR of insulin-like growth factor 2 mRNA and regulates its translation
(20). This study showed that the expression of IGF2BP2 increased in
epithelial hyperplasia, OED, and OSCC, and gradually increased with the
severity of dysplasia. However, there was no significant difference in
expression between epithelial hyperplasia and mild epithelial dysplasia
between the progressive and stable groups. Previous studies of IGF2BP2
mainly focused on its role as an RNA-binding protein regulating multiple
biological processes. For instance, IncRNA HOTAIR inhibits IGF2BP2
and regulates the growth and invasion of colon cancer (21). In recent
years, researchers are more tend to regard IGF2BP2 as a reading protein
of m6A to regulate the occurrence and development of tumors. For
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instance, METTL3 stabilized the expression of SOX2 through an m6A-
IGF2BP2-dependent mechanism in colon cancer (22). In a study on
esophageal adenocarcinoma, IGF2BP2 was found to be more expressed
in metastatic lesions than in primary tumors (23).

IGF2BP3 is located on chromosome 7pl15.3 and is a
carcinoembryonic protein, which is mainly expressed in the embryonic
stage and has a lower expression in adult tissues (24). Most of the studies
on IGF2BP3 were analyzed by immunohistochemical methods, and
several studies in OSCC confirmed that the expression of IGF2BP3
was up-regulated in OSCC (25, 26). In this study, the expression of
IGF2BP3 was positive in epithelial hyperplasia, OED, and OSCC. As an
m6A methylation reader protein, IGF2BP3 is also involved in regulating
the occurrence and development of tumors. In laryngeal carcinoma,
RBM15 and IGF2BP3 are involved in m6A methylation modification of
TMBIMS, thereby regulating the expression of TMBIM6 in laryngeal
squamous cell carcinoma (LSCC) (27). And some studies have shown
that the knockout of IGF2BP3 can inhibit DNA replication and
angiogenesis in the S phase of the cell cycle by reading the m6A
modification of CCND1 and vascular endothelial growth factor
(VEGEF) respectively in colon cancer (28).
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Conclusion

We aimed to predict the cancer risk of OED from the perspective
of epigenetics. This study suggested that m6A methylation regulators
played an important role in head and neck tumor progression and
demonstrates that IGF2BP2 and IGF2BP3 were prognostic indicators
and potential biomarkers for immunotherapy in OSCC and OED.
These findings may provide new strategies for the diagnosis and
treatment of OSCC and OED.
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Case Report: An NTRK1
fusion-positive embryonal
rhabdomyosarcoma: clinical
presentations, pathological
characteristics and
genotypic analyses
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Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China

Rhabdomyosarcoma (RMS) is a prevalent form of soft tissue sarcoma that
primarily affects children. Pediatric RMS is characterized by two distinct
histological variants: embryonal (ERMS) and alveolar (ARMS). ERMS is a
malignant tumor with primitive characteristics resembling the phenotypic and
biological features of embryonic skeletal muscles. With the widespread and
growing application of advanced molecular biological technologies, such as
next-generation sequencing (NGS), it has been possible to determine the
oncogenic activation alterations of many tumors. Specifically for soft tissue
sarcomas, the determination of tyrosine kinase gene and protein related
changes can be used as diagnostic aids and may be used as predictive markers
for targeted tyrosine kinase inhibition therapy. Our study reports a rare and
exceptional case of an 11-year-old patient diagnosed with ERMS, who tested
positive for MEF2D-NTRK1 fusion. The case report presents a comprehensive
overview of the clinical, radiographic, histopathological, immunohistochemical,
and genetic characteristics of a palpebral ERMS. Furthermore, this study sheds
light on an uncommon occurrence of NTRK1 fusion-positive ERMS, which may
provide theoretical basis for therapy and prognosis.

KEYWORDS

embryonal rhabdomyosarcoma, NTRK1 fusion, case report, pathological features, next
generation sequencing (NGS)

Introduction

Rhabdomyosarcoma (RMS) is a common malignant tumor, accounting for 50% of all
soft tissue sarcomas in children. It originates from the embryonic mesenchyme precursor
of striated muscle and fails to undergo terminal differentiation (1). Based on the
histopathologic and molecular features, RMS is categorized into four primary subtypes,
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which are embryonal (ERMS), alveolar (ARMS), pleomorphic
(PRMS), and spindle cell/sclerosing (SpRMS) (2). Currently, the
diagnosis of RMS mainly relies on morphology (rhabdomyoblastic
differentiation) and immunohistochemistry (IHC) (expression
pattern of Myogenin and MYO-D1) (3). ERMS represents the
most prevalent subtype of RMS and is imparted with a favorable
prognosis; whereas, ARMS is known to exhibit a more aggressive
clinical course and is often associated with a higher incidence of
metastasis (2). The cornerstone of treatment comprises of multi-
agent chemotherapy along with local intervention strategies,
including surgery and/or radiotherapy, as required (3, 4).

With widespread applications of NGS, genetic testing in RMS
diagnosis have delineated the mechanism of oncogenesis. The
majority of ARMS harbor PAX-FOXO gene fusions owing to
chromosomal translocations, mostly involving in PAX3-FOXOL1
and PAX7-FOXOL1 (5), and a small subset expressing PAX3-
FOXO0O4 or PAX3-NOXA1 (6). As a transcription factor, the
chimeric protein PAX-FOXO drives the expression of oncogenic
genes. Molecular ancillary testing in ARMS even proposes a
challenge for morphological classification: fusion-positive ARMS
showing worse survival than fusion-negative subtype, irrespective of
histopathologic features. Moreover, fusion-negative ARMS exhibits
the molecular profile and clinical outcome that are analogous to the
ERMS subtype (7). Application of ARMS fusion status in the risk
stratification is popular in clinical trials (8, 9).

SpRMS was initially established as a distinct entity in the WHO
2013 classification of soft tissue and bone neoplasms (10).
Morphologically, bland spindle cell and extensive hyalinized matrix
are the outstanding features of spindle cell RMS and sclerosing RMS
separately. The discovery of several significant genes associated with
SpRMS has greatly deepened our comprehension of the biological
processes underlying SpRMS, as well as indicated that it is a
heterogeneous group of tumors, molecularly classifying it into four
categories (1): infantile/congenital SpRMS harboring NCOA2 or
VGLL2 gene fusions (11); (2) SpRMS occurring in the adult and
pediatric which show MYOD1 gene mutations (12); (3) SpRMS with
EWSRI/FUS-TFCP2 gene fusion, predilection for intraosseous
locations (13, 14); (4) SpRMS with no known recurrent
abnormalities. MYOD1 mutated SpRMS and SpRMS with EWSR1/
FUS-TECP2 gene fusion both behave aggressively and have a poor

10.3389/fonc.2023.1178945

prognosis (15, 16). Molecular classification of SpRMS facilitates
prognostic stratification.

Genetic analyses typically have indicated that ERMS is a
biologically heterogeneous group of disorders, involving in
aneuploidy and gene mutation including RAS genes (HRAS,
KRAS, and NRAS) (17, 18), FGFR4 (19, 20), PIK3CA, NFI and
FBXW?7 (21, 22). It has been observed in 1996 that ERMS exhibits
the gain of multiple chromosomes, with notable instances on
chromosomes 2, 7, 8, 12, 13, 17, 18, and 19, while concurrently
demonstrating the loss of chromosomes 10, 14, 15, and 16 (23). In
both fusion gene-negative ARMS and ERMS, frequent alterations
can be observed in whole chromosome copy numbers, particularly,
the amplification in chromosome 8 (24). At present, few literatures
have reported that ERMS tumors harbor gene rearrangement. Here,
we find a rare case of ERMS, harboring neurotrophic receptor
tyrosine kinase 1 (NTRK1) gene rearrangement, which can broaden
our understanding of ERMS genotype and maybe provide
treatment options.

Case presentation

An 11-year-old male youngster reported a 20-day history of
eyelid mass, which is painless and non-pruritic, as well as no skin
ulceration. MRI scan revealed a subcutaneous mass (1.2 x 0.5 cm) in
the left lower eyelid, which was well demarcated indicating a pre-
operative clinical impression of skin benign tumor (Figures 1A, B).
After surgical excision of subcutaneous tumor, samples were micro-
evaluated in our department, and presented as monomorphous
population of primitive cells with abundant mitosis and minimal
cytoplasm (Figures 2A, C). The mass was surrounded
by a continuous fibrous pseudocapsule (Figures 2A, B).
Hyperendothelial vessels lied in maliglant tumor cells, with small
lymphocytes surrounding these vessels (Figures 2B, D, F, G, H, K, L).
Based on extensive H&E staining observation, there is no evidence of
rhabdomyoblastic differentiation.

IHC demonstrated striated muscle differentiation (diffusely
positive for DES, MYOD1 and Myogenin showing patchy
staining) (Figures 2E-H), which led to reliable diagnosis of ERMS
in the case. DNA-based NGS revealed MEF2D-NTRK1 (EX5:EX12)

FIGURE 1

Axial MRI Imaging. (A) Well-circumscribed fusiformmass is noted in the left lower eyelid appearing hypointense on T1 weighted image with green
arrowhead. (B) T2-weighted showing hyperintense with green arrowhead.
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FIGURE 2

10.3389/fonc.2023.1178945

Representative H&E and IHC stainings of serial sections. (A) Extra-low power H&E image shows a well-demarcated mass entirely, surrounded by
fibrous pseudocapsule. (B) High power view of A gets more detail about the pseudocapsule, simultaneously, demonstrates hyperendothelial vessels
and lymphocytes that aggregated around these vessels. (C) The tumor is primarily composed of primitive round cells with scant cytoplasm and
numerous mitosis. (D) Focally shows clear cytoplasm and lymphocytes aggregating around the hyperendothelial vessels. (E) Diffuse Desmin staining
in the same power view of (A, F) A high power view of E showing cytoplasmic positive of Desmin, while the nonmuscular hyperendothelial vessels
are negative for Desmin. (G, H) Focal positive immunohistochemical staining of tumor cells for MYOD1 and Myogenin respectively. (I, J) The
immunohistochemical staining for TrkA/B/C expression was performed using pan-Trk (clone EPR17341, Roche/Ventana). There is a strong diffuse
immunoreactivity for pan-Trk in cytoplasm of tumor cells. (K, L) Negative IHC reaction for CD34 and S100, respectively.

fusion (Figure 3A), and NTRK1 amplification, along with multiple
genes amplifications (CDK6, PMS2, MET, EGFR, BRAF, MLL3,
MYC, FGFR1, WRN, EXT1, NBN, RECQL4) and deletions (FLT4,
MAP2K2, DOTI1L, STK11, GNA11) (Table 1). These copy number
variations involve chromosomes 7, 8 and 19. Next, RNA-based NGS
also revealed MEF2D-NTRK1 (EX5:EX12) fusion (Figure 3B). IHC
detection of Pan-Trk is a dependable and effective method for
identifying NTRK fusions (25). In consideration of MEF2D-
NTRK1 fusion detected by NGS, follow-up confirmatory IHC
staining of pan-Trk was performed, as expected, it demonstrated
diftusely strong positive in cytoplasm (Figures 2I, J). In terms of
differential diagnosis in IHC, CD34 and S-100 were negative
(Figures 2K, L). To sum up, the case is a rare ERMS with NTRK1
fusion positive, not an NTRK-rearranged spindle cell tumor.

Discussion

RMS is a frequently occurring soft tissue sarcoma in children,
constituting over 50% of all cases (3). ERMS, the most common
subtype, is an unsophisticated and malignant neoplasm of soft
tissue that exhibits characteristics similar to those of embryonic
skeletal muscle, both phenotypically and biologically (26).
Histologically, ERMS features a proliferation of undifferentiated
mesenchymal cells that exhibit round or spindle-shaped
morphologies, mixed with a varying number of rhabdomyoblasts
and interspersed with zones of stroma that are loose, myxoid, and
paucicellular (27). ERMS is typified by the presence of oval to
spindle-shaped primitive cells with minimal cytoplasm. These cells
can be arranged in compact sheets or surrounded by a loose,
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myxoid background. Certain regions of ERMS display a small,
blue, and round morphology. As these cells undergo
differentiation, they gradually exhibit an increased eosinophilic
cytoplasm and adopt elongated shapes that are described

» o«

variously as “tadpole”, “strap”, and “spider” cells, indicating the
presence of rhabdomyoblastic differentiation (28). Desmin is the
leading diagnostic marker, commonly demonstrating diffuse
staining. In general, ERMS features a patchy positivity for
Myogenin and MYO-D1, and there are apparent divergences in
Myogenin staining patterns between ERMS and ARMS. Specifically,
ARMS usually displays a diffuse Myogenin staining, while in ERMS,
the staining frequently appears patchy. Differences in Myogenin
staining patterns have also been observed between ERMS and
ARMS. ARMS tends to show diffuse staining for Myogenin,
whereas the staining is often patchy in ERMS. In our report, THC
expression patterns of Desmin, Myogenin, and MYO-D1 were
consistent with the immunological phenotype of ERMS.
Genotypic analyses of ERMS and fusion-negative ARMS
typically reveal aneuploidy characterized by numerous copy
number gains and losses (7). The ERMS tumors have been
demonstrated the gain of whole or most of distinct chromosomes,
particularly chromosomes 2, 13, 12, 8, 7, 17, 18, and 19, along with
the loss of chromosomes 16, 10, 15, and 14 (23). ERMS is linked to
distinct genetic changes, which encompass chromosomal gains and
losses resulting in aneuploidy. Additionally, ERMS involves
modifications in RAS family genes (HRAS, NRAS, KRAS),
FGFR4, PIK3CA, NF1, and FBXW7 (28-30). In ARMS,
identifying PAX3-FOXOI1 and PAX7-FOXOI gene fusions is an
important feature for diagnosis (31, 32). The identification of gene
fusions and the use of molecular ancillary testing have improved the
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classification of RMS by grouping fusion-positive tumors into the
alveolar subtype regardless of cytomorphology. However, no
differences were observed between fusion-negative ARMS and
ERMS (7). In this case, the patient harbors amplifications and
losses of multiple genes, involving multiple chromosomes (1, 5, 7, 8,
and 19).

Interestingly, the patient also has NTRKI1 gene rearrangement.
RNA-/DNA-based NGS testing confirms NTRK1 fusion with a
partner gene MEF2D. Immunohistochemically, the case is also pan-
TRK positive. Therefore, it is necessary to make differential
diagnosis between this case and NTRK-rearranged spindle cell
tumor. The NTRK-rearranged spindle cell tumor is a rare type of
soft tissue tumor with NTRK gene rearrangement as the molecular
feature, and is a group of soft tissue tumors defined by molecular
genetic features (33). It has a wide spectrum of morphology and
tissue classification. IHC often shows co-expression of S-100 and
CD34, while lack of other definite differentiations. Its most common
features are the phenotype of monomorphic spindle cells,
interstitial transparency and infiltrating growth. In this case, IHC
of §-100 and CD34 are both negative, moreover, Myogenin, MYO-
D1 and Desmin reveal the skeletal muscle differentiation.

Tropomyosin receptor kinases (Trk) are encoded by the
neurotrophic tyrosine/tropomyosin receptor kinase (NTRK) genes

>

10.3389/fonc.2023.1178945

and belong to the family of tyrosine kinases (34). The Trk family
comprises three isoforms, namely TrkA, TrkB, and TrkC, which are
encoded by NTRK1, NTRK2, and NTRK3, respectively. In cancer,
the most common mechanism of Trk activation involves fusion
events that affect NTRK1/2/3. These fusions arise from
chromosomal rearrangements between NTRK genes, which
include the kinase domains, and various partner genes (35).
Currently, there are two drugs approved for treating the NTRK
fusion-positive cancers, irrespective of their type: larotrectinib
(approved in 2018) and entrectinib (approved in 2019) (36).
Involving rearrangements either within or between chromosomes,
gene fusions that affect the Trk protein family typically entail the
fusion of the 5 end of a partner gene that contains a dimerization/
oligomerization domain with the 3’ region of an NTRK gene that
encodes the tyrosine kinase domain. The resulting chimeric gene
gives rise to a protein that lacks the TRK ligand binding domain, but
retains the tyrosine kinase domain. This fusion protein is associated
with oncogenic and transforming potential, which arises from the
overexpression and constitutive activation of the TRK kinase
domain due to the presence of the dimerization domain derived
from the partner gene (37).

In this case, DNA-based NGS results showed MEF2D-NTRK1
(EX5:EX12) gene fusion in tumor cells. Subsequently, we validated

B breakpoint
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FIGURE 3
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NGS testing of the tumor to validate NTRK1 fusion. (A) DNA-based NGS testing of the pan-tumor related 1021-Genes Panel is used to demonstrate
the MEF2D-NTRK1 (EX5:EX12) fusion in formalin-fixed paraffin-embedded tissue sample. (B) Schematic representation of the predicted chimeric
protein in RNA-based NGS assay with the 555-Genes Panel in formalin-fixed paraffin-embedded tissue sample.
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NTRK1 gene fusion with RNA-based NGS, which also detected
MEF2D-NTRK1 (EX5:EX12) fusion mutation, and the fusion
breakpoint sequence was completely consistent with DNA-based
NGS. In vertebrates, the myocyte enhancer factor 2 (MEF2) protein
family is comprised of four members, MEF2A, B, C, and D, all of
which contain a highly conserved MADS-box domain at their N-
terminal regions. The MADS-box domain is composed of 55 amino
acids and plays a crucial role in recognizing target sequences. The
conserved residues within this domain are primarily responsible for
binding to DNA sequences rich in A/T and mediating the
dimerization of MADS-box proteins. NTRK1 protein is a
transmembrane neurotrophic receptor that is found in neural cells
and is triggered via the binding of its main ligand, nerve growth
factor. The NTRK1 comprises an extracellular domain responsible
for ligand binding, a transmembrane domain, and an intracellular
region harboring the tyrosine kinase domain. Oncogenic activation of
NTRKI1 leads to autophosphorylation and activation of the MAP-
kinase, PI3-kinase and PLC-y pathways, mediating cell proliferation,
survival and differentiation (38). After the rearrangement of MEF2D-
NTRKI1 (EX5:EX12), the 5" end of the resulting fusion gene retained
the promoter of MEF2D gene to intron 5, and the 3’ end retained the
intron 11 of NTRK1 gene to the terminator. The fusion mutation

10.3389/fonc.2023.1178945

occurs in the intra-codon reading frame, and the fusion protein will
retain the tyrosine kinase domain of NTRK1. The protein formed by
this fusion mutation retains the MADS-box domain of MEF2D gene
at its 5’ end, and the tyrosine kinase domain of NTRKI1 at its 3’ end
(Figure 3B). Moreover, IHC staining of pan-Trk also demonstrated
diffusely strong positive in cytoplasm (Figures 21, ). Therefore, the
resulting chimera protein is a Trk kinase that is activated in a
constitutive manner, irrespective of ligand binding, and has
biological functions.

Fusions of the NTRK1 gene are found in lung cancers,
colorectal and thyroid cancers, and Glioma, etc (39). It has been
reported that 3 cases of NTRKI fusion were detected in 982 patients
with glioma, and one patient had MEF2D-NTRK1 (EX9:EX12)
fusion, and IHC detection of pan-Trk showed strong expression
(40). Entrectinib (41) and larotrectinib (42) have demonstrated
significant efficacy in NTRK fusion-positive tumors. Tadipatri et al.
also demonstrated the administration of larotrectinib has resulted
in the successful management for remission at 6 months in a high-
grade glioneuronal tumor harboring the MEF2D-NTRK1 fusion
(43). A patient newly diagnosed low-grade glioneuronal tumor with
the BCAN-NTRKI1 fusion was treated with entrectinib, 60% tumor
reduction at 9 months, then progression at 11 months (44). A 26-

TABLE 1 Genetic mutations of DNA-based next generation sequencing (NGS) in the case.

Copy number/

Mutation Genes Location Transcript Version Variant types M .
utation frequency
NTRK1 1q23.1 NM_002529.3 all exon, amplification 13.0
CDK6 7q21.2 NM_001145306.1 all exon, amplification 4.8
PMS2 7p22.1 NM_000535.5 all exon, amplification 4.0
MET 7p31.2 NM_000245.2 all exon, amplification 3.6
EGFR 7pl1.2 NM_005228.3 all exon, amplification 3.6
BRAF 7934 NM_004333.4 all exon, amplification 3.6
MLL3 7q36.1 NM_170606.2 all exon, amplification 3.6
MYC 8q24.21 NM_002467.4 all exon, amplification 8.2
FGFR1 8p11.23 NM_023110.2 all exon, amplification 7.0
WRN 8pl2 NM_000553.4 all exon, amplification 6.8
EXT1 8q24.11 NM_000127.2 all exon, amplification 6.6
NBN 8q21.3 NM_002485.4 all exon, amplification 6.0
RECQL4 8q24.3 NM_004260.3 all exon, amplification 5.4
FLT4 5@35.3 NM_182925.4 all exon, deletion 1.2
MAP2K2 19p13.3 NM_030662.3 all exon, deletion 1.2
DOTIL 19p13.3 NM_032482.2 all exon, deletion 1.0
STK11 19p13.3 NM_000455.4 all exon, deletion 1.0
GNA11 19p13.3 NM_002067.2 all exon, deletion 1.0
MEF2D-NTRK1 lq22 NM_005920.2; Fusion (EX5:EX12) 49.7%
1q23.1 NM_002529.3
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year-old male with advanced TPM4-NTRKI1 rearranged spindle cell
neoplasm and liver, lung and bone metastases, treated with
larotrectinib on a continuous 28-day schedule, and showed tumor
shrinkage in both visceral and bone lesions after 7 days of treatment
(45). ERMS is usually treated primarily by the surgical resection in
clinical practice, with adjuvant comprehensive treatment such as
radiotherapy, chemotherapy, or targeted drug therapy when
necessary to improve patient survival. For this case, the current
treatment of this patient is systemic chemotherapy and local
radiotherapy after the surgical resection, without the use of
NTRK inhibitors. This treatment regimen is currently effective.
Targeted drug therapy with NTRK1 fusion will be a very good
option if disease progression occurs in the future. NGS assay also
identified the NTRKI, EGFR, MET, BRAF and FGFRI
amplifications in this patient. Interestingly, the targeted systemic
therapy with larotrectinib was efficacious in a clinical case study, an
individual with metastatic esophageal carcinoma was observed
NTRKI amplification (46). The amplification of MET and FGEFR,
and the activation of bypass signaling molecules including RAS-
MAPK/ERK and PI3K-AKT pathways (such as BRAF) are
important mechanisms of resistance to tyrosine kinase inhibitors
(TKIs) (47). Considering that the patient has a variety of sensitive
and drug-resistant mutations involving targeted drugs, whether and
how to use targeted drugs in the future need to be further discussed.

Here, we find a rare case of NTRK1 fusion-positive ERMS,
which is the first report in literature. In the case, we believe that
MEF2D-NTRK1 fusion is a driving mutation and harbors
oncogenic and transforming potentials, which is one of the
potential pathogeneses. The patient has not been treated with
NTRK inhibitors, which is the limitation of the study.
Approaches for the identification of cancers driven by NTRK
fusions encompass the following tactics: IHC staining of pan-Trk,
but NTRK fusion detection by NGS remains the most reliable tool.
With NGS application in rare tumors, more NTRK fusion-driven
RMS may be found, providing theoretical basis for the follow-up
targeted therapy. Therefore, we recommend that all ERMS should
undergo the NGS detection with large panel, which can enrich the
gene mutation spectrum of ERMS and promote the molecular
typing and diagnosis of ERMS. If gene mutation with targeted
drug is detected, it will also provide patients with more
treatment options.

Conclusion

Based on the results of morphology, immunology, and genotype
analysis, we present a rare ERMS with NTRK1 fusion. With the
growing accessibility of NGS analysis, rare tumors are now
amenable to management through identifying the targetable
molecular markers. Importantly, the oncogenic receptor tyrosine
kinase that is abnormally expressed in NTRK-rearranged sarcoma
has been proved to have therapeutic targeting, which may improve
the prognosis of patients.
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Primary pulmonary hyalinizing clear cell carcinoma (HCCC) is a rare salivary
gland-type tumor newly recognized in recent years, with approximately 21 cases
reported to date in the English literature, which constitutes a challenge in
pathology diagnosis, particularly in small biopsy specimens. Here, we present a
case of pulmonary HCCC diagnosed by computed tomography-guided
percutaneous lung biopsy in a 70-year-old man’s right lower lung. Although
the morphology and immunophenotype of the tumor suggested the diagnosis of
mucoepidermoid carcinoma, fluorescence in situ hybridization failed to reveal
the rearrangement of MAML2 gene, which is characteristic of mucoepidermoid
carcinoma. Instead, further molecular genetic testing showed that the tumor
harbored a rare EWSR1::CREM fusion combined with a previously unreported
IRF2::NTRK3 fusion. Pulmonary HCCC is commonly regarded as a low-grade
malignant tumor with an indolent course, but this case has a different biological
behavior, presenting extensive dissemination and metastases at the time of
diagnosis, which expands our understanding of the prognosis of this tumor.
The patient has had five cycles of combination chemotherapy and has been alive
with the tumor for eight months.

KEYWORDS

hyalinizing clear cell carcinoma, lung biopsy, EWSR1::CREM fusion, next-generation
sequencing, prognosis

Abbreviations: CT, computed tomography; FISH, fluorescence in situ hybridization; HCCC, hyalinizing
clear cell carcinoma; MEC, mucoepidermoid carcinoma; NGS, next-generation sequencing; RNA-Seq,

ribonucleic acid sequencing; SCC, squamous cell carcinoma.
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Introduction

Primary pulmonary hyalinizing clear cell carcinoma (HCCC) is
a rare new entity listed in the 2021 World Health Organization
classification of thoracic tumors, which was first described by
Garcia et al. in 2015 (1), and only 21 cases have been reported in
English publications to date (2-13). The typical histopathologic
features of pulmonary HCCC are similar to those of the salivary
gland counterparts, mainly composed of clear cells arranged in
nests, cords, and trabecular patterns with hyalinization of the
stroma. However, because of small tissue samples often with
artificial extrusion in the preoperative biopsy, the morphology of
pulmonary HCCC is variable and usually not typical, and the
diagnosis of which remains very challenging.

We herein report a case of pulmonary HCCC diagnosed by
computed tomography (CT)-guided percutaneous lung biopsy, the
morphology and immunophenotype of which were similar to those of
mucoepidermoid carcinoma. However the molecular genetic testing
revealed that the tumor harbored a rare EWSR1:CREM fusion
combined with an IRF2:NTRK3 fusion, rather than the
rearrangement of MAML2 gene, which is characteristic of
mucoepidermoid carcinoma (14). Meanwhile, we reviewed 21 cases
reported previously (Table 1) to explore their clinicopathologic and
imaging features, so as to strengthen our understandings of this rare
tumor and, to improve diagnostic accuracy.

Case presentation

A 70-year-old male patient suffered from persistent dull pain in
the right chest for two months, which was exacerbating at night. He
presented neither symptoms of fever, cough, sputum, hemoptysis
and dyspnea, nor history of chronic disease, infection, trauma,
smoking and drinking. Chest CT revealed a lobulated mass with a
diameter of approximately 5.3 cm in the right lower lobe of the lung
close to the bronchus (Figure 1A), which was heterogeneously
enhanced (Figure 1B). Multiple nodules were found in the middle
and lower lobes of the right lung and the right interlobular fissure.
CT also demonstrated multiple enlarged lymph nodes in the right
subphrenic and anterior supradiaphragmatic spaces (Figure 1C),
nodular thickening of the right pleura and the diaphragm around
the liver (Figure 1D), and bone destruction in the right third, fourth,
seventh, and eighth ribs (Figure 1E). All the findings suggested a
lung cancer with metastases to intrapulmonary, pleural, diaphragm,
right ribs and multiple lymph nodes. Subsequently, a CT-guided
percutaneous lung biopsy was performed for pathological
diagnosis (Figure 1F).

Microscopically, the epithelioid tumor cells were arranged in
nests (Figure 2A), cords, and trabeculae (Figure 2B), with moderate
cytologic atypia. Most atypical cells had eosinophilic cytoplasm,
except for some scattered tumor cells containing clear cytoplasm.
Focally, the tumor showed cyst formation. The nuclei were round or
oval with fine chromatin and small nucleoli. Neither significant
mitotic activity nor necrosis was observed. Loose myxoid stroma
and scattered mucus-secreting cells (mucocytes) were observed in
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focal areas (Figure 2C). The mucinous differentiation was
demonstrated via Alcian blue staining (Figure 2D). Cord-like
collagen fibers were observed only in focal areas (Figure 2E).
Immunohistochemical staining showed that the tumor cells were
positive for CK5/6 (Figure 2F), CK7 (Figure 2G), p40 (Figure 2H)
and p63, but negative for S-100, SOX10, SMA, Calponin, and TTF1.
The Ki-67 proliferation index was approximately 20% (Figure 2I).

Although the morphology and the immunophenotype
suggested the diagnosis of mucoepidermoid carcinoma (MEC),
fluorescence in situ hybridization (FISH) failed to disclose the
rearrangement of MAML2 gene (Figure 3A), a typical genetic
alteration in MEC, which casted doubt on the initial diagnosis of
MEC. It has been found in pathological practice that the
pathological features of MEC resemble those of hyalinizing clear
cell carcinoma (HCCC) or myoepithelial carcinoma. However,
HCCC and myoepithelial carcinoma are featured with the
rearrangement of EWSRI1 gene, whereas MEC is not. Therefore,
we performed FISH for the EWSRI1 gene. Interestingly, we found
the rearrangement of EWSR1 gene (Figure 3B), implying the nature
of HCCC or myoepithelial carcinoma. Subsequently, next-
generation sequencing (NGS) with a 425-gene panel was
conducted, which revealed EWSR1:CREM fusion (Figure 3C) and
IRF2:NTRK3 fusion (Figure 3D) at the DNA level. To determine
whether there were potential targets of the NTRK inhibitor, newly
approved by National Medical Products Administration (NMPA),
the tissue sample was subjected to RNA sequencing (RNA-Seq).
Unexpectedly, only EWSRI1:CREM fusion was found at the RNA
level (Figures 3E, F). The molecular profiling data indicated that the
NTRK3 fusion gene encoded no protein product, and thus the
patient could not receive the NTRK-targeted therapy. Surgery was
not possible because the patient had substantial metastases and
dissemination at the time of diagnosis. As a result, five cycles of
combination chemotherapy were administered, and the patient has
been alive with the tumor for eight months.

Discussion

Primary pulmonary HCCC is a very rare salivary gland-type
tumor recognized in recent years, with approximately 21 cases so far
reported in the English literature (1-13). Together with our newly
identified HCCC case, the 22-case cohort (Table 1) demonstrates
that it mainly occurred in middle-aged and older adults, with ages
ranging from 32 to 75 years (median, 55 years; average, 53 years).
The ratio of male to female patients was 9:13. Most patients lacked
specific clinical manifestations and apparent symptoms. The tumor
masses in the lung were often observed during regular physical
examinations. A few patients presented back pain, chest pain,
cough, hemoptysis, and dyspnea. Some patients had a history of
smoking. The maximal diameter of the tumor ranged from 0.9 cm
to 5.3 cm, and our case was the largest one reported so far.

Imaging presents that most HCCCs are well-demarcated, and
destruction of the surrounding bronchus is recognized in some
cases. Unlike common lung cancers, primary pulmonary HCCC is
often close to and grows along the bronchus. These imaging features
of HCCC may be related to its origin from the bronchial
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TABLE 1 Summaries of 22 cases of primary pulmonary hyalinizing clear cell carcinoma.

Maximal
Tumor : Gross Initial Molecular
: Location : . Treatment Follow-up (mo)
Diameter pathological features = diagnoses results
(cm)
EWSRI:ATF1
1(1) 38/M 2.6 Bronchus Clear boundary HCCC R Surg NED (10)
gene fusion
Segmental Clear boundary, protrusion SCC or low- EWSRI1 gene
22 32/M 1.8 S NED (18
@ / bronchus into the bronchi grade MEC rearrangement ure (18)
Right lower SCC or low- EWSRI1 gene
2 M 2. 1 ED (1
3@ 391 6 lobe Clear boundary grade MEC rearrangement Surg NED (18)
AWD, with multipl
Right upper EWSR1:ATF1 WD, with multiple
4(3) 69/M NA NA Lung cancer . Surg + LND pulmonary and lymph node
lobe gene fusion
metastases (192)
Left EWSRI:ATFI
5(4) | 54/F 32 et upper Clear boundary sce ) Surg NED (16)
lobe gene fusion
Right
it s i E 1
6(5) | 55M 25 intermedius | (2% Poundary, protrusion NSCLC WSRI gene Surg NED (20)
into the bronchi rearrangement
bronchus
EWSRI:
7 (6) 75/F 0.9 Lower lobe Clear boundary MEC CREM gene Surg NED (8)
fusion
Segmental Clear boundary, protrusion EWSRI1:ATF1
8 (7 52/F 33 H NED (181
2 / bronchus into the bronchi cee gene fusion Surg (s1)
1 \ i EWSRI:ATFI
9(7) 35/F 28 secondary Clear 'boundary protl"usmn HeCe S ' Surg NED (79)
bronchus into the bronchi gene fusion
d Clear boundary, protrusi EWSRI:ATFI
10(7)  56/F 33 seconcary ear boundary, protrusion HCCC ) Surg NED (12)
bronchus into the bronchi gene fusion
EWSR1 T hial
11 (8) 66/F 1.3 Trachea Polypoid mass HCCC SR1 gene ra.nsbronc. 1 NA
rearrangement laser resection
Distal EWSRI1 LND
12(9)  55/F 25 o Polypoid mass HCCC SRl gene | Surg + LND + NED (72)
tracheal rearrangement RT
13 EWSRI:ATF1 Surg + LND +
46/F NA Trach NA SCC R« 24), STD (72
(10) / rachea gene fusion ChT + RT ecurrences (24) (72)
14 S7/F 28 Right lower Clear boundary MEC EWSRI::A.TFI Surg + LND AWD, \iﬂth lmph n‘ode
(11) lobe gene fusion metastasis at diagnosis (3)
Squamous
15 Right upper . EWSR1:ATF1
M 4. 1 11: hT ED (1
(12) 58/ 3 lobe Clear boundary papillary gene fusion Surg + C NED (10)
neoplasm
16 Left 1 EWSRI:ATFI
60/F 20 et ower Polypoid mass HCCC : Surg NED (10)
(12) lobe gene fusion
Left lower
17 EWSRI1
44/M 35 Jobar NA HCCe gene Surg NED (48)
(13) rearrangement
bronchus
Left upper
18 EWSRI1
56/F 16 lobar NA HCCC gene Surg NA
(13) rearrangement
bronchus
Right upper
1 E 1
’ 44/F 13 lobar NA HCCC WSRI1 gene Surg NA
(13) rearrangement
bronchus
Right
20 iddl EWSRI1
33/F 49 et NA HCCC gene Surg NA
(13) lobar rearrangement
bronchus
(Continued)
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Maximal
Tumor : Gross
: Location :
Diameter pathological features
(cm)
Left upper
4/M 4. NA
(13) 64/ o lobe hilum
22 70/M 53 ngllltliower Clear boundary
obe

Initial Molecular
. Treatment Follow-up (mo)
diagnoses results
EWSR1
HCCC sene Surg NED (9)
rearrangement
EWSRI1:: AWD, with intrapulmonary,
MEC CREM gene ChT pleural, multiple bone and
fusion lymph node metastases (8)

22, Present case; M, male; F, female; NA, not available; HCCC, hyalinizing clear cell carcinoma; SCC, squamous cell carcinoma; MEC, mucoepidermoid carcinoma; NSCLC, non-small-cell lung
carcinoma; Surg, surgery; LND, lymph node dissection; RT, radiotherapy; ChT, chemotherapy; NED, no evidence of disease; AWD, alive with disease; STD, succumbed to disease.

submucosal glands (7). CT and fiberoptic bronchoscopy also find
some polypoid masses in the bronchial lumen, which may lead to
airway obstruction. Icard et al. reported a case of HCCC undergoing
emergency admission due to progressive dyspnea. Fiberoptic
bronchoscopy unveiled a polypoid mass blocking 60% of the
tracheal lumen, and emergency endobronchial laser resection was
performed to relieve the obstruction (8). Therefore, clinicians
should pay attention to the acute airway events in this disease.
The patient herein is the first case of HCCC diagnosed by CT-
guided percutaneous lung biopsy. In the previously described cases,
20 of 21 (95%) were diagnosed after surgical resection, and only one
was diagnosed by bronchoscopic biopsy (11). Jeffus et al. reported a
case initially misdiagnosed as moderately to poorly differentiated
squamous cell carcinoma (SCC) with a biopsy specimen (4). Based
on the bronchoscopic biopsy specimen, two cases were
misdiagnosed as non-small cell lung cancer and squamous
papillary neoplasm, respectively (5, 12). The postoperative cases
were also often diagnosed as other common tumors, such as MEC
(1 case), SCC (2 cases), SCC/MEC (2 cases), and lung cancer

(1 case) (2-4, 6, 10), which indicates a high misdiagnosis rate of
pulmonary HCCC.

Together, the diagnostic difficulty might be attributed to the
followings: (a) The morphology of HCCC is variable. The tumor
cells might contain clear or eosinophilic cytoplasm, and the
hyalinizing stroma might not be apparent. Additionally, the tumor
cells might present with squamous and mucinous cell differentiation,
pathologically resembling MEC, SCC, and myoepithelial carcinoma;
(b) HCCC lacks specific immunohistochemical markers, and its
immunophenotype overlaps with MEC, SCC, and myoepithelial
carcinoma; and (c) Most importantly, primary pulmonary HCCC
is so scarce that both clinicians and pathologists do not have enough
awareness and understanding of this new entity.

It is challenging to distinguish HCCC from MEC because both
show epidermoid and mucinous differentiation. Among the 22
cases, 5 (23%) were initially diagnosed as MEC (2, 6, 11). MEC is
the most common malignant salivary gland-type lung tumor, and
is more aggressive than HCCC. Our case had been initially
diagnosed as a stage IV lung cancer with high invasiveness,

FIGURE 1

CT images show a lobulated mass in the right lower lobe of the lung (A) non-contrast, (B) contrast-enhanced), enlarged anterior supradiaphragmatic
lymph nodes (C), multiple thickening nodules in the right pleura (D), bone destruction in the right fourth rib (E), and CT-guided percutaneous lung

biopsy (F)
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FIGURE 2

Hematoxylin and eosin staining of the core needle biopsy specimen reveals that epithelioid tumor cells with eosinophilic cytoplasm are arranged in
nests (A) inset: low-power view of needle biopsy), cords, and trabeculae (B). There are scattered mucocytes among the tumor cell nests (C). Alcian
blue staining highlights the mucocytes and loose myxoid stroma (D). Cord-like collagen fibers are seen only in focal areas (E). Immunohistochemical
staining shows that the tumor cells are positive for CK5/6 (F), CK7 (G), and p40 (H), the Ki-67 proliferation index of which is about 20% (1).

which prompted us to consider this case as MEC. However, the
lack of MAML2 gene rearrangement and the acquisition of
EWSRI1 gene rearrangement argued against the diagnosis of
high-grade MEC. Therefore, the characteristic molecular
changes are crucial in the differential diagnosis. Pulmonary
HCCC should also be distinguished from SCC. Among 22 cases,
4 cases (18%) were initially considered as SCC (2, 4, 10).
Compared with HCCC, SCC has remarkable cellular atypia with
prominent nucleoli and obvious mitotic figures. Although both
HCCC and SCC consistently express CK5/6, CK7, and p40, the Ki-
67 proliferation index of HCCC is usually lower than that of SCC.
Therefore, if the Ki-67 proliferation index is relatively low, the
possibility of HCCC should be considered.

Pulmonary HCCC has characteristic molecular changes,
including EWSRI1:ATF1 fusion (10 of 11 cases) and EWSRI:
CREM fusion (1 of 11 cases) (1-13). In our case, NGS revealed a
rare EWSR1:CREM fusion and an unreported IRF2:NTRK3 fusion
at the DNA level. Although the gene rearrangement of EWSRI1 can
occur in both HCCC and myoepithelial carcinoma, the fusion
partners are different. Myoepithelial carcinoma often presents
with EWSR1::PBX1 fusion, EWSR1:ZNF444 fusion, or FUS:
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KLF17 fusion. Therefore, NGS, RNA-seq, or other methods of
fusion gene detection could be used for differential diagnosis.
Complete resection of the mass is the first choice for treating
pulmonary HCCC (21/22 cases). It remains unclear whether
regional lymph node dissection or postoperative chemo
radiotherapy is necessary. In our case, the patient received five
cycles of combined chemotherapy (paclitaxel plus nedaplatin).
However, the CT showed that the primary tumor and metastatic
lesions had no response after chemotherapy. The chemotherapy will
be continued, and the therapeutic effect will be further followed up.
Primary pulmonary HCCC is commonly considered a low-
grade malignant tumor with an indolent clinical course. Analysis of
18 patients with an average follow-up of 44 months revealed that 14
(78%) survived without tumors, four experienced disease relapses or
metastases, and only one died. However, in our case, the patient had
active disease progression with extensive dissemination and
metastases at the time of diagnosis, which is different from those
reported in the literature and expands our understanding of the
biological behavior of the pulmonary HCCC. Specifically, the case
had unusual genetic changes including EWSR1:CREM fusion and
IRF2:NTRK3 fusion, and the largest tumor diameter of 5.3 cm,
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FIGURE 3

EWSRI::CREM (E10:C6)

Fluorescence in situ hybridization is negative for MAML2 gene rearrangement (A) and positive for EWSR1 gene rearrangement (B). Next-generation
sequencing with a 425-gene panel reveals the EWSR1::CREM fusion (fusion of EWSR1 exon 11 to CREM exon 7) and IRF2::NTRK3 fusion (fusion of
IRF2 intron 6 to NTRK3 intron 14) at DNA level (C, D). RNA sequencing detects the EWSR1::CREM fusion transcript in which exon 10 of EWSR1 is

fused to exon 5 and 6 of CREM (E, F), respectively

whether these phenotypes were associated with poor prognosis of
the patient remained to be investigated.

Conclusion

The diagnosis of primary pulmonary HCCC is very challenging
because of its rarity, particularly in small biopsy specimens. This
paper reports an unusual pulmonary HCCC diagnosed by CT-
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guided percutaneous lung biopsy. Further understanding of this
enigmatic tumor is essential to augment its diagnostic accuracy.
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