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Editorial on the Research Topic

Risk assessment and resilience of extreme weather-induced disasters
s

Introduction

Extreme weather events include unexpected, unusual, severe, or unseasonable
rainstorms, droughts, and extreme temperatures, among others. They are important
triggering factors that cause various natural hazards, including mountain flash
floods (Figure 1), landslides, debris flows, urban flooding waterlogging, and agro-
meteorological hazards, etc (Field et al., 2012; Sang et al., 2018; Sajadi, et al., 2022;
Ren et al., 2024; Shi, et al., 2024). Such extreme weather-induced hazards pose a
significant global threat to sustainable socioeconomic development. For instance,
flooding generated by heavy rainstorms has become a serious “urban disease” in
many cities worldwide, posing a serious threat to the safety of people’s lives and
property and the normal operation of cities (Yang et al., 2020). Because of climate
change, the frequency and intensity of extreme weather events and related disasters
will worsen (Stott, 2016). Thereby, it is vital to focus on risk assessment and resilience
management of extreme weather-induced disasters (Easterling et al., 2000), to inform
policymaking and mitigate natural disasters. This is the motivation for proposing this
Research Topic.

In this Research Topic, scholars contributed their latest findings on useful
methods and techniques for forecasting, providing early warning and assessing
the risks of extreme weather-induced disasters. Moreover, they provided in-
depth scientific insights and improved our understanding of the resilience
and mitigation of extreme weather-induced disasters. Their solid scientific
contributions will significantly promote research on extreme weather-induced disasters.
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FIGURE 1
Mountain flash flood disaster in a small basin in Southwest China on
18–19 August 2020, following extreme rainstorms.

Overview of the articles

As guest editors, we would like to thank the authors who
submitted very interesting articles for this Research Topic. Thanks
to the valuable collaboration between the reviewers and authors,
eight articles are featured in this Research Topic, which are briefly
summarized below.

In the first study, “Objective identification and forecast method
of PM2.5 pollution based on medium- and long-term ensemble
forecasts in Beijing-Tianjin-Hebei region and its surrounding areas”,
Liu et al. developed an objective identification and forecast method
for PM2.5 pollution (OIF-PM2.5) in the Beijing-Tianjin-Hebei
region and its surrounding areas. The authors reported that the
observed PM2.5 pollution ratio increased with the aggravating PM2.5
pollution. Statistical results indicated that the OIF-PM2.5 method
is highly reliable for forecasts with a leading forecasting time
of 1–15 days.

In the second article by Assi et al.,“Homeowner flood risk
and risk reduction from home elevation between the limits
of the 100- and 500-year floodplains”, the authors proposed
a systematic approach to predicting flood risk for single-
family homes using the average annual loss in the shaded X
Zone–the area immediately outside the Special Flood Hazard
Area (i.e., the 500-year floodplain) in the United States.
The results enhanced the understanding of flood risk and
the benefits of elevating homes above the first floor in the
shaded X Zone.

The third article “Gaps in the governance of floods, droughts, and
heatwaves in the United Kingdom” was contributed by Carvalho and
Spataru. The authors presented the current state of the art of flood,
drought, and heatwave governance in the United Kingdom, with a
focus on pre-emergency phases and the lack of indicators for the
assessment of the effectiveness of adaptation to all three disasters.
Gaps and challenges are discussed, along with providing actions
for adapting to and building resilience against these three types of
disasters.

In the fourth contribution “Analysis of urban necessities reserve
index and reserve quantity under emergency conditions”, Jiang et al.
assessed urban safety, and classified the emergency materials of

urban necessities in Shanghai, by establishing a corresponding
reserve list. To better handle emergencies, the authors provided
countermeasures and suggestions for optimizing the material
structure of emergency reserves, managing material reserves at
different levels, reasonably planning the amount of emergency
materials, reducing the cost of reserves and improving the efficiency
of emergency reserves.

The fifth study “Sedimentary records of giant landslide-dam
breach events in western Sichuan, China” was contributed by Ma
et al. The authors conducted a detailed investigation of large-scale
landslide-dammed lake outburst deposits in two typical River Basins
on the Western Sichuan Plateau in China. They found that the
sedimentary characteristics of outburst deposits (ODs) explain
the hydrodynamic changes during the propagation of outburst
floods, and are important records for distinguishing ODs and
“normal” floods.

The sixth study, by Liu et al., is titled “A comparative study
of regional rainfall-induced landslide early warning models based
on RF, CNN and MLP algorithms”. The authors focused on Fujian
Province in China, and proposed a four-step process for building
a regional landslide early warning model based on machine
learning.The process includes data integration and cleaning, sample
set construction, model training and validation, and practical
application. This study will be valuable for landslide disaster
warning research.

In the seventh contribution “Construction and preliminary
analysis of landslide database triggered by heavy storm in the
parallel range-valley area of western Chongqing, China, on 8
June 2017”, Liu and Xu identified landslide disasters triggered
by extreme rainfall events in the parallel range-valley area of
western Chongqing, China, and established a historical landslide
database. This database provides scientific support for investigating
landslide mechanisms in western Chongqing and mitigating the
associated risks.

The eighth study “Exploring Bayesian network model
with noise filtering for rainfall-induced landslide susceptibility
assessment in Fujian, China” was contributed by Zhou et al.
The researchers employed a Bayesian network to analyze

the factors influencing landslides in Fujian Province, China,
which is prone to typhoons and landslides. They introduced a
progressive noise filtering method to mitigate the mislabeling
effects of non-landslide points. This study provides useful
guidance for reliable landslide susceptibility mapping in the
study area.

For this Research Topic, further critical and constructive debate,
viewpoints and opinions are welcome: they will contribute to more
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resilient and sustainable strategies and practices for adapting to
extreme weather-induced disasters. We suggest you freely use and
discuss these articles—including their methods, solid datasets, key
findings and propositions, to promote research on extreme weather-
induced disasters.
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Bo Zhang1
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Accurate long-term forecasts of PM2.5 pollution are essential to mitigating

health risks and formulating pollutant control strategies for decision-makers in

China. In this study, an objective identification and forecast method for PM2.5

pollution (OIF-PM2.5) is developed based onmedium- and long-term ensemble

forecasts of PM2.5 in Beijing-Tianjin-Hebei region and its surrounding areas. The

results show that the observed PM2.5 pollution ratio increases with the

aggravating PM2.5 pollution. For example, the ratio of meteorological

stations with heavy pollution is 4.4 times that of light pollution and 3.9 times

that of moderate pollution. In addition, the correlation coefficients between

observations and forecasts are above 0.60 for all forecast leading times.

Statistical results show that the average accuracy for forecasts with the

leading times of 1–3 days, 4–7 days, and 8–15 days are 74.1%, 81.3%, and

72.9% respectively, indicating that the OIF-PM2.5 method has a high

reliability in forecasts with the leading times of 1–15 days. The OIF-PM2.5

method is further applied in a severe PM2.5 pollution episode in the

December of 2021, and the average forecast precision in forecasts with the

leading times of 6–8 days reaches as high as 100%, showing a certain reference

value for PM2.5 forecasts.

KEYWORDS

PM 2.5 pollution, ensemble forecast, forecast technology, objective identification and
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areas
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1 Introduction

In terms of economy, urbanization and population growth,

the Beijing-Tianjin-Hebei region (BTH) and its surrounding

areas are among the most developed regions in China.

Meanwhile, severe and frequent PM2.5 (fine particulate matter

with an aerodynamic diameter ≤2.5 μm) pollution in this region

has attracted more and more attention in recent years due to its

complex impacts on visibility, human health and ecological

environment (Liu et al., 2019; Li et al., 2021a; Cheng et al.,

2021; Sawlani et al., 2021; Zhang et al., 2021). The Chinese

government launched the “Air Pollution Prevention and Control

Action plan” in 2013 and “2017 Air Pollution Prevention and

Management Plan for the Beijing-Tianjin-Hebei Region and its

Surrounding Areas” to solve the severe PM2.5 pollution. A series

of control measures have been implemented to reduce pollutant

emissions, e.g., eliminating industries with high pollution and

emission, optimizing industrial and energy structures and

restricting vehicle use (Zhang et al., 2014; Chen et al., 2021;

Liu et al., 2021). Nonetheless, heavy PM2.5 pollution episodes are

still frequent in BTH and its surrounding areas, especially during

autumn and winter due to unfavorable meteorological conditions

(Zhang et al., 2018; Li et al., 2019; Bei et al., 2020). Accurate PM2.5

pollution forecasts can reduce the air pollutant exposure to

sensitive groups and provide necessary reference for making

pollution policies and starting control measures in advance,

especially before some importance events such as the Asia-

Pacific Economic Cooperation Summit 2014 and 70th

anniversary of the founding of the People’s Republic of China.

Therefore, medium- and long-term PM2.5 forecast is critically

important.

Various methods have been used for air pollution

forecasting. In general, the forecasting methods can be

categorized into three groups: empirical method, statistical

approaches and numerical simulations (Zhai and Chen, 2018;

Liu and Chen, 2019). The empirical method, also known as a

knowledge-based procedure, is based on previous

observations, which requires a comprehensive

understanding of the pollution dispersion/transport

mechanisms and physical-chemical processes (Garner and

Thompson, 2012; Yuval et al., 2012). Furthermore, the

empirical method is highly dependent on pollution sources

and meteorological factors, and previous studies (Zhou et al.,

2019; Wu et al., 2020; Samal et al., 2021) have demonstrated

that it performs poorly when compared with statistical

approaches. Statistical approaches consist of multiple linear

regression (Dimitriou and Kassomenos, 2014; Jeong et al.,

2021; Liu et al., 2022), Kalman filtering, artificial neural

network (Zhou et al., 2020; Bera et al., 2021), long short-

term memory (Gao and Li, 2021), support vector machine

(Wang et al., 2017) and other hybrid methods (Liu et al., 2020;

Huang et al., 2021). It is found that they can successfully

forecast the PM2.5 for their capacity of nonlinear mapping. In

addition, the deep learning technology has sparked a lot of

interest (Pak et al., 2020; Menares et al., 2021; Yang et al.,

2021) and proven its superiority in several fields. Deep

learning technology is proposed for analyzing the

characteristics of historical data. However, all of these

statistical approaches only focus on the historical data,

which ignore the atmospheric dispersion and transport

mechanisms. Furthermore, most of them could only

provide short-term forecasts that usually range from 24 to

FIGURE 1
Locations of the meteorological stations in Beijing-Tianjin-Hebei (BTH) and its surrounding areas.
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72 h (Jiang et al., 2021), while most planning and monitoring

actions have a greater demand for long-term forecasts.

Numerical simulations, such as the Community Multiscale

Air Quality Modeling System and the Comprehensive Air

quality Model with extensions, can simulate the chemical and

physical processes of PM2.5 pollution (Cai et al., 2017; Liu

et al., 2018) and thus provide a better understanding of the

transformations and distributions of PM2.5. Although

numerical models can provide reliable medium-term

forecasts, there may be some systematic errors in short-

term forecasts. Such models tend to be sensitive to initial

and boundary fields (Feng et al., 2020).

Over the past decades, ensemble forecast products have

been a major contributor to improving weather forecasts

(Yang et al., 2015; Zhao et al., 2022). These products take

into account the uncertainty of initial states and process

description in numerical weather forecasting models.

Ensemble forecasts include several members, representing a

set of possible atmospheric conditions in the future. In

contrast to deterministic weather forecasts, ensemble

forecasts increase the lead time of high-quality forecasts to

more than several days. The Observing-system Research and

Predictability Experiment (THORPEX) Interactive Grand

Global Ensemble (TIGGE) is a database of ensemble

forecasts in medium and long ranges conducted by

different forecasting centers established for scientific

research (Tao et al., 2014). Among all TIGGE data, the

European Centre for Medium-Range Weather Forecasts

(ECMWF) have presented advantages in the number of

ensemble members and spatial resolutions than other

forecasting systems (Sagar et al., 2017), consisting of

51 members with a resolution of approximate 0.5° for the

whole globe (Zhao et al., 2016). Regarding these advantages,

the ECMWF ensemble forecasts are widely applied in

forecasting precipitation (Cong et al., 2021), temperature

(Verkade et al., 2013), tropical cyclone track (Nishimura

and Yamaguchi, 2015) and water deficit depth (Zhao et al.,

2016). Based on the ECMWF ensemble forecasts, Schumacher

et al. (2011) studied a low-vortex induced rainstorm event in

southern United States, and investigated the impact of

disturbances in upstream weather systems on precipitation

forecasts. Besides, Schauwecker et al. (2021) also conducted a

research on the forecast performance of ECMWF Integrated

Forecasting System ensemble median run in a heavy

precipitation event over Switzerland. The uncertainty in

atmospheric forecasts mainly arises from the parameters,

initial states and model structure. In the past few years,

researchers have proposed various techniques to tackle the

uncertainties in ensemble forecasts from different aspects

(Demeritt et al., 2007; Yu and Meng, 2016; Ali et al., 2018).

For these uncertainties, the forecasting skill can be enhanced

by post-processing through multiple-modeling, statistical

methods and data assimilation (Li et al., 2021b; Whan

et al., 2021; Zhao et al., 2022). However, there are few

studies on ensemble forecasting post-processing techniques

in the field of PM2.5 forecasting.

FIGURE 2
The technical flowchart for the objective identification and forecast of PM2.5 pollution.

TABLE 1 Accuracy index categories.

Polluted day Forecasted PM2.5 pollution ratio

≥25th percentile < 25th percentile

Yes NA NC

NO NB ND
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In this study, objective identification and forecast method of

PM2.5 pollution (OIF-PM2.5) is established based on the

medium- and long-term ensemble forecasts with the leading

times of 1–15 days. Besides, this method is evaluated by the

forecast precision and its applicability is assessed in a PM2.5

pollution episode in BTH and its surrounding areas. The

remainder of this paper is organized as follows. Section 2

describes the study area, data and method. Section 3 presents

the results and discussions, including the characteristics of PM2.5

pollution, the performance of PM2.5 ensemble forecast and the

evaluation of OIF-PM2.5 method. Finally, Section 4 gives the

conclusions.

FIGURE 3
Observations of PM2.5 concentrations in BTH and its surrounding areas in (A) 2018, (B) 2019 and (C) 2020.

FIGURE 4
Observations of PM2.5 concentrations in Beijing, Tianjin and Shijiazhuang.
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2 Data and methods

2.1 Study areas

The BTH and its surrounding areas include two

municipalities (Beijing and Tianjin) as well as the provinces of

Hebei, Henan and Shandong. This region is home to the majority

of energy-intensive and polluting industries (Tong et al., 2019).

In addition, the unfavorable geographical conditions with the

Yanshan Mountains to its north and the Taihang Mountains to

its west are conducive to the accumulation of pollutants (Bei

et al., 2020).

2.2 PM2.5 observations

The medium- and long-term ensemble forecasts of PM2.5 are

established based on ground observations from meteorological

stations in China. The daily PM2.5 observations are obtained

through the neighboring-point interpolation algorithm

conducted on data from 417 meteorological stations set up by

the China National Environmental Monitoring Centre. All

observed samples are divided into two groups of training

dataset and testing dataset. The OIF-PM2.5 is established by

using the training dataset of the autumns and winters

(January, February, March, October, November and

December) from 2018 to 2020, and the testing dataset

contains the data of the autumn and winter of 2021. The

locations of meteorological stations in the study area is

presented in Figure 1.

FIGURE 5
Distributions of observed PM2.5 pollution ratios under (A) light
pollution, (B) moderate pollution and (C) heavy pollution in BTH
and its surrounding areas.

TABLE 2 Average PM2.5 pollution ratios at different polluted levels in
BTH and its surrounding areas.

Polluted level PM2.5 pollution ratio (unit: %)

Light Moderate Heavy

Light 35.8 ± 12.8 16.6 ± 8.4 10.4 ± 8.8

Moderate 20.9 ± 7.2 23.8 ± 8.2 35.3 ± 9.6

Heavy 13.1 ± 4.3 15.4 ± 6.4 59.5 ± 7.2

FIGURE 6
Forecasted PM2.5 pollution ratios with different forecast
leading times.
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2.3 PM2.5 ensemble forecast

Based on regional pollution characteristics, topography and

climate differences, the PM2.5 ensemble forecast products are

made by using the ECMWF ensemble products. These products

contain meteorological factors such as horizontal and vertical

diffusion capacities and dry and wet deposition conditions.

Furthermore, the forecast equations of daily PM2.5 at each

station is set up based on meteorological factors and pollution

characteristics in different regions. Finally, the ensemble average

forecast, control forecast and 51-members ensemble forecast

products are obtained, forming 1–15-day forecast products. In

this study, the ensemble average forecast is used to establish the

OIF-PM2.5.

FIGURE 7
(A) Biases (forecast minus observation) of PM2.5 pollution ratios and (B) correlation coefficients between observations and forecasts with
different forecast leading times.

TABLE 3 The first, second and third quartiles of forecasted PM2.5 pollution ratios with different forecast leading times.

Forecast leading time
(unit: day)

First
quartile (unit: %)

Second
quartile (unit: %)

Third
quartile (unit: %)

1 47.6 69.4 79.9

2 42.2 66.2 78.6

3 37.5 64.7 77.1

4 35.7 63.8 75.9

5 32.8 60.4 76.2

6 31.5 58.2 75.4

7 28.3 58.3 74.9

8 26.8 57.1 73.6

9 24.1 55.8 75.0

10 21.8 55.1 73.7

11 22.3 53.3 72.0

12 19.2 54.6 72.6

13 19.4 51.2 71.4

14 18.6 49.3 70.1

15 17.8 48.8 69.8
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2.4 Methods

The OIF-PM2.5 technical flowchart is presented in Figure 2. In

this study, the performance of PM2.5 ensemble forecast in varying

forecasting time ranges is considered. The 25th, 50th and 75th

percentiles of forecasted PM2.5 pollution ratios are chosen as the

identification thresholds for each forecasting time range

corresponding to each polluted day (PM2.5 ≥ 75 μg m−3) in the

training dataset. Here, the forecasted PM2.5 pollution ratio is defined

as the ratio of the number of stations with PM2.5 ≥ 75 μg m−3 in the

ensemble forecast to the total number of stations in this region in

each day.

To evaluate the performance and precision of the OIF-PM2.5

method, the 25th percentile is selected as the criterion, and the

accuracy as the statistical index. The principle of the accuracy (AC,

unit:%) index is listed in Table 1, where NA, NB, NC, and ND

variables represent different categories. NA variable represents the

forecasted PM2.5 pollution ratio exceeds the 25th percentile on the

polluted day, and NC variable means the forecasted PM2.5 pollution

ratio exceeds the 25th percentile on the polluted day is lower than

the 25th percentile on the polluted day. Consequently, NB and ND

variables represent the forecasted PM2.5 pollution ratio are higher or

lower than the 25th percentile on non-polluted day, respectively.

AC � NA +ND

NA +NB +NC +ND
× 100%. (1)

3 Results

3.1 Characteristics of PM2.5 pollution

The spatial distributions of average PM2.5 concentrations in

BTH and its surrounding areas from 2018 to 2020 are shown in

FIGURE 8
Values of accuracy under different forecast leading times.

FIGURE 9
Distributions of daily PM2.5 concentrations from December 8 to 12 of 2021 in BTH and its surrounding areas.
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Figure 3. It is worth noting that the PM2.5 concentrations in

northern Hebei are below the threshold for the daily average of

the China Ambient Air Quality Standard (GB 3095–2012) for

PM2.5 (Grade Ⅰ:35 μg m−3). However, the PM2.5 pollution in

2018 and 2019 is heavy in the south and light in the north of

the BTH and its surrounding areas, with the main pollution belts

concentrated in southern Hebei, central-eastern Henan and

western Shandong. In 2020, the PM2.5 level is low in Beijing,

Tianjin, Northern Hebei and Shandong, while slightly polluted in

Southern Hebei and Northern Henan. In addition, Beijing,

Tianjin and Shijiazhuang are selected for comparison

(Figure 4). It can be seen that the PM2.5 concentrations of

Beijing decrease from 53.4 μg m−3 in 2018 to 43.7 μg m−3 in

2020, while those in Tianjin fluctuate between 59.7 μg m−3 and

64.3 μg m−3 within the same period. In other words, the PM2.5

concentrations of 2020 are 1.2 times and 1.7 times the PM2.5

Grade Ⅰ in Beijing and Tianjin, respectively. What’s more, the

PM2.5 concentrations in Shijiazhuang decrease from 91.2 μg m−3

in 2018 to 77.2 μg m−3 in 2020 by 15.3%, which is the largest

decrease among the three cities. However, the magnitude of

PM2.5 concentrations in 2020 in Shijiazhuang is 2.2 times the

PM2.5 Grade Ⅰ.
The probability distributions and averages of observed PM2.5

pollution ratios under different polluted levels in BTH and its

surrounding areas are given in Figure 5, Table 2, respectively. As

can be seen, when the average PM2.5 concentration reaches the

light level, the ratio of the number of stations with light pollution

is the highest within the range of 34%–40%, and the distribution

curve follows the law of normal distribution. However, the

average PM2.5 pollution ratios for moderate pollution and

heavy pollution are 16.6% and 10.4%, respectively. What’s

more, the highest ratio of the number of stations with heavy

pollution rapidly increases to 35.3% under the level of moderate

pollution, which is 1.7 times that of light pollution and 1.5 times

that of moderate pollution. In addition, the number of stations

with heavy pollution are more than half of the total in this region.

Nevertheless, the heavy PM2.5 pollution ratio is 4.4 times that of

light pollution and 3.9 times that of moderate pollution. In

general, the ratio of polluted meteorological stations is

increasing as the PM2.5 pollution aggravates in this region.

3.2 Performance of PM2.5 ensemble
forecasts

Some studies (Wang and Huang, 2006; Zhao et al., 2021)

have revealed that the performance of forecasting products vary

with the forecast leading times. The forecasted PM2.5 pollution

FIGURE 10
Daily PM2.5 concentrations and PM2.5 pollution ratios from December 8 to 12 of 2021 in BTH and its surrounding areas.
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ratios with different forecast leading times are analyzed based on

the training dataset (Figure 6). For PM2.5 ensemble forecasts, the

ratio of stations being polluted decreases with the increasing

forecast leading times, which is consistent with other forecasting

products. The averages of forecasted PM2.5 pollution ratios with

the forecast leading times of 1–3 days, 4–7 days and 8–15 days

are 59.5%, 52.9% and 47.4%, respectively. That is, the PM2.5

pollution processes at more than 50% meteorological stations in

this region can be forecasted by 8 days in advance.

As illustrated in Figure 7A, the bias (forecast minus

observation) of PM2.5 pollution ratio increases with the

increasing forecast leading time, and the biases are all

negative, that is, the forecasted ratios are lower than the

observed ones. The biases of PM2.5 pollution ratio with the

forecast leading times of 1–6 days are less than −13%;

however, the bias remains between −14.1% and −15.4% when

the forecast leading time is more than 7 days. Besides, the

correlation coefficients of the ratios between the observations

and forecasts are more than 0.68 with the forecast leading times

being 1–3 days, while above 0.60 for other leading times

(Figure 7B). In general, although the forecasted ratios are

lower than the observed ones, the correlation between them

remains high values, indicating a good performance of the PM2.5

ensemble forecasts.

The forecasted PM2.5 pollution ratios of the autumns and

winters from 2018 to 2020 are calculated, and the

corresponding 25th, 50th and 75th percentiles are given in

Table 3. The 25th percentiles of the forecasted PM2.5

pollution ratios are below 50% for all forecast leading

times, which are below 20% for the leading times of

12–15 days. Besides, the 25th percentiles exceed 30% with

the forecast leading times of 1–6 days, with the ratios being

47.6% and 42.2% for the leading times of 1 day and 2 days,

respectively. The 50th percentiles are below 70% for all

forecast leading times, which are over 60% with the

forecast leading times of 1–5 days. Besides, the differences

of the 50th percentiles among different forecast leading times

are smaller than those of the 25th percentiles. The 75th

percentiles of the forecasted PM2.5 pollution ratios are

above 70% for most of the forecast leading times, which

exceed 75% with the leading times of 1–6 days. In

addition, the differences of the 75th percentiles among

different forecast leading times are further reduced when

compared with those of the 50 percentiles, being only 10.1%

between the 1-day and 15-day forecast leading times. In

summary, the forecasts of PM2.5 pollution ratio with

different leading times are indicative of the occurrence of

regional PM2.5 pollution events to some extent.

FIGURE 11
PM2.5 pollution ratios for forecasts under different forecast initial times and observations from December 8 to 12 of 2021 in BTH and its
surrounding areas.
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3.3 Evaluation of the OIF-PM2.5 method
and its application

3.3.1 Performance of the OIF-PM2.5 method
In this study, the accuracy for forecasts in the autumn and

winter of 2021 is examined. As illustrated in Figure 8, the

accuracy of the OIF-PM2.5 method show a trend of first

increase and then decrease, being over 60% for different

forecast leading times. The highest accuracy of 90.8% is

achieved for the forecasts with the leading time of 7 days. In

addition, the average accuracy for forecast leading times of

1–3 days, 4–7 days and 8–15 days are 74.1%, 81.3% and

72.9%, respectively. It is well documented that the ECMWF

has better predictability for ensemble forecasts with the

leading times of 4–7 days (Huang and Niu, 2017). The

evolution of accuracy with different forecast leading times is

consistent with that reported in Tao et al. (2017). It indicates that

the OIF-PM2.5 method has a high reliability in forecasts with the

forecast leading times of 1–15 days.

3.3.2 Application in a PM2.5 pollution process
A regional PM2.5 pollution event occurred in BTH and its

surrounding areas from December 8 to 12, 2021 (Figures 9, 10).

Most of the region was dominated by PM2.5 pollution of light

level on December 9, with the daily average PM2.5 concentration

being 88.7 μg m−3 and the pollution ratio being 69.5%. In

addition, the atmospheric dispersion conditions worsened in

this region during December 10–11. The areas with high

PM2.5 concentrations were mainly located in southern Hebei,

central and eastern Henan, and central and Western Shandong,

with the regional averaged PM2.5 concentrations reaching

118.3 μg m−3 on December 10 and 113.4 μg m−3 on December

11. In addition, the PM2.5 pollution ratio increased to 86.3% on

December 10 and 78.2% on December 11, indicating the

significant expansion and enhancement of the PM2.5

pollution. Eventually, the PM2.5 concentrations decreased

gradually from North to South due to the cold air on

December 12, and the air quality reached the excellent and

good level in most of the region.

Using different forecast initial times, the OIF-PM2.5 method

is applied to this pollution episode, and the forecast results are

shown in Figure 11. It can be seen that the forecasted PM2.5

pollution ratios for different initial times are consistent with the

observations, which is of indicative significance for the evolution

of pollution process. For themost polluted period of the pollution

process, the pollution ratio of stations on December 10 is 57.7%

with the forecast initial time being December 1, which even

exceeds the 50th percentile (55.8%). In addition, the values of

accuracy under different forecast leading times are also

calculated. The results show that the average accuracy reaches

90% (100%) under the leading times of 4–11 days (6–8 days),

indicating that the forecast stability of the OIF-PM2.5 method is

more stable and is of reference value for forecasts.

4 Conclusion and discussion

Based on the medium- and long-term ensemble forecasts of

PM2.5 concentrations, the OIF-PM2.5 method is developed in this

study. Specifically, different percentiles of forecasted PM2.5

pollution ratios for each forecast leading time from 2018 to

2020 are determined and analyzed. The OIF-PM2.5 method is

further evaluated and applied in a PM2.5 pollution episode in

2021. The main conclusions are as follows.

The observed PM2.5 pollution ratio increases with the

aggravation of PM2.5 pollution in this region. For example,

the heavy pollution ratio is 4.4 times the light pollution ratio

and 3.9 times the moderate pollution ratio. Besides, the

correlation coefficients between the observed ratios and

forecasted ratios are above 0.60 for all forecast leading

times in ensemble forecast products. Furthermore, the

statistical results show that the average accuracy for

forecasts with the leading times of 1–3 days, 4–7 days and

8–15 days in are 74.1%, 81.3% and 72.9%, respectively,

indicating that the OIF-PM2.5 method has a high reliability

in forecasts with the leading times of 1–15 days. The OIF-

PM2.5 method is further applied in a severe PM2.5 pollution

episode in the December of 2021. It is revealed that the average

accuracy for the forecasts with the leading times of 6–8 days

reaches as high as 100%, showing a certain reference value.

The findings of this paper help to understand the PM2.5

concentration forecasts with the forecast leading times of

1–15 days, which can help to minimize the adverse effects of

high PM2.5 pollution for society and public health. Moreover, it

will help decision makers to formulate pollutant control

strategies and take precautions.
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Floods inflict significant damage even outside the 100-year floodplain. Thus,
restricting flood risk analysis to the 100-year floodplain (Special Flood Hazard
Area (SFHA) in the United States of America) is misleading. Flood risk outside the
SFHA is often underestimated because of minimal flood-related insurance
requirements and regulations and sparse flood depth data. This study proposes
a systematic approach to predict flood risk for a single-family home using average
annual loss (AAL) in the shaded X Zone–the area immediately outside the SFHA
(i.e., the 500-year floodplain), which lies between the limits of the 1.0- and 0.2-
percent annual flood probability. To further inform flood mitigation strategy,
annual flood risk reduction with additional elevation above an initial first-floor
height (FFH0) is estimated. The proposed approach generates synthetic flood
parameters, quantifies AAL for a hypothetical slab-on–grade, single-family home
with varying attributes and scenarios above the slab-on-grade elevation, and
compares flood risk for two areas using the synthetic flood parameters vs existing
spatial interpolation-estimated flood parameters. Results reveal a median AAL in
the shaded X Zone of 0.13 and 0.17 percent of replacement cost value (VR) for a
one-story, single-family home without and with basement, respectively, at FFH0

and 500-year flood depth <1 foot. Elevating homes one and four feet above FFH0

substantially mitigates this risk, generating savings of 0.07–0.18 and
0.09–0.23 percent of VR for a one-story, single-family home without and with
basement, respectively. These results enhance understanding of flood risk and the
benefits of elevating homes above FFH0 in the shaded X Zone.

KEYWORDS

flood risk, average annual loss (AAL), flood mitigation strategy, special flood hazard area
(SFHA), shaded X Zone

1 Introduction

Flood is considered the costliest natural hazard worldwide (Wang & Sebastian, 2021).
Between 1980 and 2021, the United States of America was affected by 36 catastrophic floods
that caused a total $173.3 billion (consumer price index adjusted) in direct losses (NOAA,
2022). FEMA’s floodplain maps are used to determine flood risk zones and their base flood
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elevations (BFEs), which have been used to define flood risk regions
around the United States of America (Xian et al., 2015). FEMA’s
100-year floodplain–the area that has at least a one-percent chance
of experiencing flood in a given year–has been used to define high-
risk flood zones, known as the Special Flood Hazard Area (SFHA).
Many efforts have been made to quantify flood risk (Habete &
Ferreira, 2017; Armal et al., 2020; Mostafiz et al., 2021a), determine
minimum first-floor elevation requirements (American Society of
Civil Engineers (ASCE), 2014; FEMA, 2019) and identify the benefit
of applying mitigation strategies in the SFHA (Rath et al., 2018),
including regulations on development such as the mandatory
purchase of flood insurance for those with a federally-backed
mortgage (Wing et al., 2022).

Areas outside the SFHA, generally known in the United States of
America as X Zones, have received significantly less attention
because they have been considered as moderate-to-low flood risk
areas, with less than a one-percent annual chance of flood
occurrence (Technical Mapping Advisory Council, 2015).
However, average annual flood losses outside the SFHA have
mounted to $19.1 billion and are projected to increase by
21.2 percent in the United States of America by 2050 because of
climate change (Wing et al., 2022). Thus, significantly more
attention must be devoted to understanding flood risk in these
areas in order to reduce flood losses.

The area between the limits of the one-percent (bordering the
SFHA) and 0.2-percent (bordering the “non-shaded X Zone”)
annual flood probability inundation areas—the 500-year
floodplain, known in the United States of America as the
“shaded X Zone”—is particularly preferred for dense
development and is considered an area of likely population
growth (Association of State Floodplain Managers, 2020). Clearly,
it is important to assess the flood risk outside the SFHA, particularly
in the shaded X Zone. Notable examples of research on flood
hazards in the shaded X Zone include that of Hagen and
Bacopoulos (2012), who identified tropical storm characteristics
that induce flooding in Florida’s Big Bend Region. Likewise,
Ferguson and Ashley (2017) evaluated residential development in
Atlanta, Georgia. Kiaghadi et al. (2020) investigated the relation
between hurricane events and the housing price depreciation in
Miami-Dade County. Goldberg and Watkins (2021) analyzed flood
risk among three watersheds in the lower St. Johns River basin
landscape, and Hemmati et al. (2021) examined how flood risk
assessment affects residents’ location choices. However, there is a
dearth of research focusing on flood risk evaluation for residential
buildings in the shaded X Zone. Without a better understanding of
flood risk for areas in the shaded X Zone, the true costs and benefits
of flood mitigation strategies cannot be realized (Mostafiz et al.,
2022c).

Flood risk is assessed as the product of flood occurrence
probability and the associated consequences (Šugareková &
Zeleňáková, 2021). Average annual loss (AAL) has been used in
past research to represent flood risk (Hallegatte et al., 2013; Armal
et al., 2020; Rahim et al., 2021; 2022; Mostafiz et al., 2022a; Bowers
et al., 2022; Wing et al., 2022; Yildirim & Demir, 2022; Al Assi et al.,
2023b; Friedland et al., 2023) in terms of costs associated with direct
building loss, direct contents loss, and indirect losses such as use loss
while the building is being renovated (Al Assi et al., 2023a). AAL is
calculated as the integral of flood loss as a known function of the

flood probability (or flood return period), and the Gumbel
distribution function is one of the most widely accepted
probability functions (Singh et al., 2018; Patel, 2020). The
Gumbel parameters are the regression coefficients (slope and
y-intercept, respectively) in the relationship between flood depth
above the ground (d) and the double natural logarithm of
probability of non-exceedance probability (P) (Gnan et al., 2022a;
2022b).

Calculating flood risk in the shaded X Zone can be challenging due
to data limitations. As the shaded X Zone lies between the limits of the
one-percent and 0.2-percent annual chance of flood, land in this zone is
by definition unflooded until the 100-year flood event is exceeded.
Therefore, in the shaded X Zone, d is zero or null (i.e., d would be
negative and is therefore undefined) for flood events with return periods
less than 100 years. Given that return period depth grids typically include
the 10-, 50-, 100-, and 500-year events, all locations within the shaded X
Zone have a d value that is therefore zero or “null” for return periods
shorter than the 500-year event. Thus, locations within the shaded X
Zone have a d value for only one return period (i.e., 500 years), with the
consequence that the Gumbel flood parameters cannot be generated
from theGumbel distribution for any locationwithin the shadedXZone.
Without the Gumbel parameters, annual flood risk (or even the probable
range of annual flood risk) cannot be estimated in the shaded X Zone.
Further, although flood loss has been often observed in the shaded X
Zone, risk reduction from elevation cannot be estimated due to the lack
of flood risk estimates. Therefore, comparison of benefits and costs to
supportmitigation decisionmaking in the shadedXZone is not possible.

To overcome these challenges, this paper presents a systematic
approach to 1) provide a meaningful estimate of the range of expected
annual flood risk in the shadedXZone; and 2) calculate the reduction in
annual flood risk via elevation for homes in the shadedXZone. The lack
of flood hazard data in the shaded X Zone is addressed by developing a
library of combinations of synthetic, regression-derived Gumbel
parameters that meet the mathematical definition of the shaded X
Zone. These are used here by hypothetical type of single-family homes
in the United States of America (i.e., one vs two-plus stories, with vs
without basement) as input to the frameworkmethodology presented in
Al Assi et al. (2023a). The results of two case studies are compared with
the results generated from the Gumbel regression parameters produced
using Mostafiz et al.’s (2021b, 2022b) method, which extrapolated the
Gumbel parameters in the shaded X Zone using spatial interpolation, to
confirm the results of this method for a range of 500-year flood depths
in inland and coastal areas.

The contribution of this research is a novel conceptualization
and implementation of annual flood risk assessment in the shaded X
Zone–a location where little flood risk information has been
generated. This improved risk assessment provides a clearer
perception of the advantages of applying mitigation strategies in
those areas. The methodology and results generated in this paper
will benefit homeowners, builders, developers, community planners,
and other partners in the process of enhancing resilience to the flood
hazard via risk-informed construction techniques.

2 Background

Recent catastrophic events and studies regarding projected
trends under environmental change scenarios reveal that the area
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outside the presently designated SFHA is subjected to rapidly
increasing flood risk. For example, in 2005 Hurricane Katrina
inflicted severe damage outside the SFHA across Louisiana,
Mississippi, and Alabama, including massive structural damage
(Xian et al., 2015). Likewise, only 7 years later Hurricane Sandy
caused flooding far above the BFE and beyond the SFHA in New
York and New Jersey (FEMA, 2013). Only 5 years later, amazingly,
68 percent of the 31,000 homes that Hurricane Harvey flooded in the
Houston, Texas, area were outside the SFHA (Kousky et al., 2020b).
In the next year, 24 percent of the area flooded and 43 percent of the
residential structures damaged in North Carolina by Hurricane
Florence were outside the SFHA (Pricope et al., 2022). And in
2019, 62 percent of the 1,000+ Texas homes flooded in Tropical
Storm Imelda were outside the SFHA (Kousky et al., 2020b).
Kennedy et al. (2020) reported that Hurricane Michael in Florida
caused major wave and surge damage in X Zones. In a more general
sense, a trained model to predict flood damage probability in the
conterminous United States of America using a suite of geospatial
predictors and the location of historical reported flood damage
revealed that an astounding 68 percent of flood damage was outside
of FEMA’s high-risk zone (Collins et al., 2022). Significant attention
has been devoted to reducing flood damage exacerbated by climate
change and sea level rise (Botzen & van den Bergh, 2008; Hino &
Hall, 2017; Kousky et al., 2020a; Xian et al., 2017). Therefore, a need
exists to evaluate flood risk in the shaded X Zone more
comprehensively through improved assessment of economic
consequences to better identify and mitigate the risk.

Recent studies show that using the refined numerical integration
method shows promising results to predict AAL because it accounts
for losses across the full range of exceedance probabilities, and it
addresses the limitations of other approaches (Gnan et al., 2022a).
This refined numerical integration method models the annual
probability of exceedance for the expected flood depth using
available flood depth data. The Gumbel distribution is used to
determine the annual probability of exceedance at each given
depth. AAL is then estimated using trapezoidal Riemann sums to
aggregate the area under the loss-exceedance probability curve
(Meyer et al., 2009; Gnan et al., 2022a).

Specifically, the refined numerical integrationmethod has been used
to estimate annual flood risk formultiple home elevation scenarios above
the initial first-floor height to determine flood risk reduction (Gnan et al.,
2022a). Optimizing the effectiveness of the elevation strategy using such
scenarios is important for maximizing the benefit of federal government
grants, such as from FEMA or the U.S. Department of Housing and
Urban Development (HUD), for elevating such homes, to as many
people as possible. These elevation scenarios conform to or surpass the
National Flood Insurance Program (NFIP) requirement that the
minimum lowest-floor elevation is at the BFE, which is
approximately equal to the 100-year flood elevation (E100) (FEMA,
2019). However, because ASCE (2014) national technical standard
stipulates that adding one foot above E100 as the minimum
recommended elevation requirement for residential buildings in the
United States of America, higher elevation scenarios must also be
considered in assessing flood risk and risk reduction.

Elevating above FFH0 is often cost-effective (Taghinezhad et al.,
2021), especially at the time of construction (Rath et al., 2018). It is
already well-established that increasing first-floor heights in A and V
Zones (i.e., inundation and high-velocity zones within the SFHA,

respectively in the United States of America) at the time of
construction is wise, with costs recoverable in as few as 6 and
3 years, respectively, through insurance premium reduction (Rath
et al., 2018). The value of implementing a “smart” flood risk
mitigation strategy (Taghinezhad et al., 2020) applies equally to
homes in the shaded X Zone, especially now that it is becoming
apparent that these homes are not as flood safe as was recently
assumed, by using the refined numerical integration technique. Flood
risk reduction in dollars, represented as the difference between the AAL
before and after applying the mitigation strategy, can be promulgated as
a means of increasing awareness for homeowners and communities in
the shaded X Zone regarding the flood risk and the importance of
considering the mitigation strategies to decrease that risk.

3 Methodology

The computational framework to quantify AAL in the shaded X
Zone consists of three major steps (Figure 1). First, synthetic flood
parameters are generated based on shaded X Zone properties.
Second, AAL is quantified using the computational framework
developed by Al Assi et al. (2023a). In that approach, AAL is
partitioned to homes (I = 1 through n) separately for building,
contents, and use, with the AAL reduction calculated forM increases
of increment J in first-floor height above the FFH0 (Al Assi et al.,
2023a). Third, the results are confirmed using two separate areas by
comparing the AAL computed from synthetic data in this
framework against that calculated using the flood parameters
generated through the Mostafiz et al. (2021b) method.

3.1 Generate synthetic flood parameters

This research uses the two-parameter Gumbel distribution
function to estimate flood depth. Equation (1) shows the
cumulative distribution function (CDF) of the Gumbel
distribution, which represents the annual non-exceedance
probability (p).

F d( ) � p X≤ d( ) � exp −exp − d − u

a
( )( )[ ] (1)

Solving Eq. (1) for d yields:

d � u − a ln −ln p( )[ ] (2)
In Eqs (1), (2), d is flood depth, u represents the location

parameter or y-intercept of the Gumbel-generated regression line
(noting that Eq. (2) takes the form y � b +mx where x is
−ln [−ln(p)]; m is a,; b is u) of d as a function of the double
natural logarithm of p, and a is the scale parameter or slope of the
same Gumbel-generated regression line. p is expressed as a function
of flood return period (T) by:

p � 1 − 1
T

(3)

To overcome the absence of u and a values in shaded X Zone,
synthetic values of u and a are generated to estimate the range of
these parameters expected in the shaded X Zone.
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Generating the synthetic, unique u and a for the shaded X Zone
begins with substituting for p from Eq. (3) into Eq. (2), for the 100
(i.e., T)-year return period, for which d is assumed to be less than or
equal to zero in the shaded X Zone, as shown in Eq. (4):

0≥ u − a ln −ln 1 − 1
100

( )[ ] (4)

Likewise, if it is assumed that a point within the shaded X Zone
does flood within the 500 (i.e., T)-year flood, the generalized Eq. (2)
can be expressed for this specific scenario as:

0< u − a ln −ln 1 − 1
500

( )[ ] (5)

Solving Eqs (4)–(5) yields the ratio between u and a in the
shaded X Zone:

−6.214< u

a
≤ − 4.600 (6)

Thus, the range of the ratio of u to a in the shaded X Zone is
known, but the range of u and the range of a remain unknown. By
definition, a (i.e., the slope of the Gumbel-generated regression)
must be positive because longer-return-period flood events always
have higher d than shorter-return-period d. The upper limit of a is
assumed to occur in coastal areas. Therefore, this study updates d
values from flood events in Bohn’s (2013) data set that expresses
stillwater elevation at 10-, 50-, 100-, and 500-year return periods for
13 counties along the Gulf and Atlantic coasts (Supplementary Table
S1). This data set is then used to identify the upper limit of a
(Supplementary Table S2).

Because a is positive, by Eq. (6), umust be negative. A negative u
meets expectations, as this value represents the y-intercept of the
Gumbel-generated regression, with an equivalent return period of
1.58 years. The maximum allowable value of u is therefore
determined, subject to the restraints of Eq. (6).

Each combination of u and a values within the acceptable
range of each variable, as described above, at increments of
0.1 feet for each, is initially considered as potentially acceptable
values to describe the d vs return period relationship. Those
simultaneous combinations that have a u vs a ratio that falls
outside the range of acceptability (Eq. (6)) are discarded. The

FIGURE 1
Computational framework to quantify and confirm AAL in the shaded X Zone.

FIGURE 2
Case study areas in Santa Clarita, California, and Jefferson Parish,
Louisiana, highlighting the homes situated in the Special Flood Hazard
Area (SFHA) and shaded X Zone.
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remaining combinations of u and a are used to calculate d, with
the result considered potentially acceptable for inclusion, as
described in the next section.

Each combination of u and a that is derived and potentially
acceptable is used to determine possible d values at the 2-, 10-,
50-, 100-, 500-,1,000-, 5,000-, and 10,000-year return periods
(Eq. (2)), noting that d values for the 100-year and shorter return
periods are negative or zero. A plot of d vs the double natural
logarithm of return period based on these calculations is then
used to confirm the assumption that d is less than or equal to
zero for the 100-year and more than zero for the 500-year flood
events, in addition to visualizing d at longer return periods
(i.e., 500-, and 1,000- year).

3.2 Quantify annual flood risk and flood risk
reduction

3.2.1 Refined numerical integration method
AAL represents the sum of the expected annual flood risk to a

building (AALB), its contents (AALC), and its loss of use while
unoccupied due to flood (AALU). While AALB, AALC, and AALU
likely differ based on owner-occupant category (i.e., homeowner,
landlord, tenant), this study considers only AAL from the
perspective of a homeowner.

The method of Gnan et al. (2022a, 2022b, 2022c) is used to
calculateAALB andAALC as a proportion of home replacement cost
value (VR) by integrating the flood loss over all probabilities of
exceedance, as shown in Eqs. (7)–(8):

AALB/VR � ∫Pmax

Pmin

LB P( )dP (7)

AALC/VR � ∫Pmax

P min

LC P( )dP (8)

where LB and LC represent the building and contents losses as a
proportion of VR, which is the unit replacement cost per square foot
(CR) multiplied by the home area (A):

VR � A × CR (9)
By contrast,AALU is calculated from the number of months that

the building is inoperable, as shown in Eq. (10):

AALU months( ) � ∫Pmax

Pmin

LU P( )dP (10)

where LU represents the use loss in months.
Then, the three components of AAL are converted to absolute

currency values (in USD) for building (AALB), contents (AALC),
and use (AALU), as described by Eqs (11)–(13):

AALB$ � AALB/VR × VR (11)
AALC$ � AALC/VR × VR (12)

AALU$ � AALU months( ) × Rl (13)
where Rl is the monthly rent incurred by the homeowner, calculated
by assuming that 1 year of rent is equal to one-seventh of VR

(Amoroso & Fennell, 2008; Eq. (14)).

Rl � VR

84month
(14)

These values are then summed to give the total AAL as a
proportion of VR (AALT/VR) as shown in Eqs (15–16):

AALT/VR � AALB/VR + AALC/VR +
AAALU

84
( ) (15)
AALT$ � AALT/VR × VR (16)

To quantify the economic benefit of elevating above FFH0, AAL
is calculated with and without elevation, to reveal the annual flood
risk reduction, as generally expressed by Eq. (17):

ΔAAL � AALFFH0 –AALFFH (17)

3.2.2 Data processing
The MATLAB algorithm developed by Al Assi et al. (2023a) is

utilized here to analyze all simultaneously valid u and a
combinations; these combinations remain constant by home type
(i.e., one or two-or-more stories, with and without basement). The
input data include number of stories (1 or 2+), basement existence
(0 = No, 1 = Yes), living area in square feet (A), unit cost per square

TABLE 1 Descriptive statistics for synthetic flood parameters in the shaded X Zone.

Flood parameter Minimum 25th 50th 75th Maximum

u – 28.58 – 21.58 – 17.58 – 12.48 – 0.48

a 0.10 2.30 3.30 4.00 4.60

FIGURE 3
Flood depth-return period relationship for synthetic data.
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footage (CR, in USD/sf), FFH0, and flood parameters (u; a).
United States Army Corps of Engineers (USACE, 2000) depth
damage functions (DDFs) are incorporated by home type
(i.e., number of stories and basement existence). The AAL
reduction is calculated for each additional elevation J through
MJ feet (Figure 1) above FFH0.

3.3 Confirm results

Spatial interpolation is used to characterize the flood hazard (u;
a) in the shaded X Zone (Mostafiz et al., 2021b; 2022b) for a known
location where multiple return period flood depth data are available.
The flood parameters (u; a) are used to calculate annual flood risk by
using Eq. (2) and (7)–(17) and confirming the result produced from
the synthetic data.

4 Case study

Jefferson Parish, Louisiana, and Santa Clarita, California, are
selected as these areas have multiple return period (10–, 50–,
100–, and 500–years) flood depth data, which are needed to
estimate flood parameters using spatial interpolation (Figure 2).
Flood depth grids were developed at a scale of 3.048 m x 3.048 m,
by FEMA through its Risk Mapping, Assessment and Planning
(Risk MAP) program (FEMA, 2021). To demonstrate all possible
scenarios for synthetic and estimated flood parameters to
quantify annual flood risk and flood risk reduction in the
shaded X Zone, a hypothetical slab-on-grade, single-family
home with 2000 sq. ft. of living area is used, with the four
scenarios of home type (i.e., one or two-or-more stories, with
and without basement) calculated separately. Each combination
in the collection of synthetic and estimated Gumbel parameters
is input to evaluate the range of annual flood risk for each home
type. CR is assumed to be $135 according to the projected
2022 average construction cost of single-family homes in the
United States of America (Doheny, 2021), and FFH0 is assumed
to be 0.5 feet above the ground for slab-on grade foundations.
This assumption is made because there is no regulatory BFE in
the shaded X Zone and it is assumed that most homes are built
on non-elevated slab foundations. The flood damage initiation
point in the DDF is assigned at a fixed flood depth of zero in the
structure, as suggested by Pistrika et al. (2014). Annual flood risk
for homes with basements is calculated in the same way; thus, it
is assumed that the basement is not flooded until water is above

the FFH. The annual flood risk reduction is calculated for each
additional first-floor height of 1–4 feet above FFH0.

5 Results

5.1 Generate synthetic flood parameters

The ratio of flood parameters (Eq. (6)) along with the updated
stillwater elevation for coastal data are used to determine the flood
parameters’ range and combinations that satisfy shaded X Zone
properties. The analysis updating the results of Bohn (2013) suggests
that the maximum a is 4.60 (Eq. (18)). Thus, the range of u, subject
to the constraints of Eq. (6), is shown in Eq. (19).

0< a≤ 4.60 (18)
−28.58≤ u< 0 (19)

A total of 1740 combinations of u and a satisfies the flood
parameter ratio for the shaded X Zone (Eq. (6)). Table 1 shows the
descriptive statistics for u and a values resulting from all possible
combinations. Because the dataset is very large and is not normally
distributed, percentiles are provided along with the minimum and
maximum values. Possible values of u and a fall between – 28.58 and
– 0.48 feet and between 0.10 and 4.60, respectively.

The flood depth-return period relationships generated at the 2-,
10-, 50-, 100-, 500-, 1,000-, 5,000- and 10,000-year return periods for
these 1740 scenarios are shown in Figure 3. The d at return periods
less than or equal to 100-year is negative or zero, and d at 500-year
and longer return periods is positive, as expected. Descriptive
statistics of d at the 500-, 1,000-, 5,000-, and 10,000-year return
periods are shown in Table 2.

5.2 Quantify annual flood risk and flood risk
reduction

For the 1740 scenarios of valid u and a combinations, annual
flood risk and flood risk at additional elevations above FFH0 are
calculated as a proportion of VR by using FFH0 = 0.5 foot, and the
corresponding DDF for each home type. The results are presented
for the shaded X Zone for homes without and with basement by
categories of 500-year flood depths for one- and two-plus-story
homes (Table 3; Table 4, respectively), and by categories of a for one-
and two-plus-story homes (Table 5; Table 6, respectively). The
annual flood risk reduction is considered as the mean avoided
AAL, calculated at each additional increment above FFH0 for

TABLE 2 Descriptive statistics of flood depth at long return periods using synthetic data in the shaded X Zone.

Return period Minimum (feet) 25th (feet) 50th (feet) 75th (feet) Maximum (feet)

500-year 0.003 1.003 2.196 3.749 7.400

1,000-year 0.110 2.942 4.387 6.236 10.593

5,000-year 0.272 6.986 9.879 12.376 17.999

10,000-year 0.341 8.654 12.224 15.093 21.187
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TABLE 3 Descriptive statistics of annual flood risk as a proportion of VR (i.e., AALT/VR ) for slab-on-grade one-story single-family home with and without basement
using synthetic data, categorized based on 500-year flood depth.

500-year
Flood Depth (feet)

FFH (feet) Total average annual loss as a proportion of VR (i.e., AALT/VR) x10
−4

One Story without Basement One Story with Basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

<1

FFH0 0.82 10.68 13.31 15.08 18.17 1.40 14.59 17.20 19.15 27.55

FFH0 +1 0.00 5.19 8.56 11.24 14.55 0.00 7.17 11.16 13.84 17.36

FFH0 +2 0.00 2.53 5.78 8.50 11.65 0.00 3.58 7.43 10.46 13.90

FFH0 +3 0.00 1.26 3.87 6.39 9.37 0.00 1.74 4.98 7.87 11.15

FFH0 +4 0.00 0.62 2.59 4.84 7.54 0.00 0.86 3.31 5.96 8.97

1–2

FFH0 14.97 18.17 19.84 21.65 31.96 20.27 22.88 25.16 27.40 45.40

FFH0 +1 4.64 11.50 13.70 15.28 18.17 7.17 15.20 17.47 19.12 21.68

FFH0 +2 1.11 6.84 9.48 11.58 14.55 1.72 9.16 12.04 14.16 17.40

FFH0 +3 0.27 3.95 6.58 8.83 11.65 0.41 5.35 8.37 10.79 13.90

FFH0 +4 0.06 2.30 4.64 6.77 9.37 0.10 3.08 5.88 8.27 11.15

2–3

FFH0 22.68 24.97 27.30 29.88 41.31 27.16 30.89 33.84 38.61 55.47

FFH0 +1 14.97 18.05 19.60 21.17 24.43 20.27 22.62 24.37 26.39 32.81

FFH0 +2 7.35 12.34 14.22 15.57 18.17 10.33 15.89 17.74 19.24 21.68

FFH0 +3 3.60 8.12 10.17 11.91 14.55 5.06 10.56 12.78 14.51 17.36

FFH0 +4 1.76 5.34 7.38 9.23 11.65 2.48 6.95 9.29 11.10 13.90

3–4

FFH0 28.36 32.48 35.47 39.51 51.05 33.74 39.53 43.54 49.93 65.86

FFH0 +1 22.68 24.66 26.39 28.23 34.25 27.16 30.20 32.59 35.19 44.19

FFH0 +2 15.22 18.18 19.55 21.07 23.07 20.27 22.48 24.11 25.94 29.65

FFH0 +3 8.99 13.13 14.66 15.88 18.17 12.08 16.50 18.04 19.48 21.68

FFH0 +4 5.32 9.41 10.93 12.22 14.55 7.14 11.81 13.51 14.86 17.36

4–5

FFH0 35.23 40.96 44.44 48.88 59.42 41.92 49.55 54.05 60.40 74.38

FFH0 +1 28.36 31.71 33.88 36.17 43.07 33.74 38.44 41.36 44.86 53.93

FFH0 +2 22.68 24.15 25.74 27.44 31.22 27.16 29.49 31.62 33.51 39.09

FFH0 +3 16.19 18.37 19.63 21.05 22.68 20.56 22.48 23.95 25.65 28.32

FFH0 +4 11.09 13.84 15.09 16.21 18.16 14.23 17.06 18.33 19.72 21.68

5–6

FFH0 43.77 50.36 54.01 57.89 64.94 52.08 60.56 65.35 70.67 79.41

FFH0 +1 35.23 39.59 42.00 44.44 49.61 41.92 47.70 50.93 54.08 60.66

FFH0 +2 28.36 30.94 32.52 34.50 37.88 33.74 37.48 39.51 41.67 46.32

FFH0 +3 22.68 23.88 25.30 26.87 28.92 27.10 29.17 30.88 32.47 35.37

FFH0 +4 16.63 18.59 19.72 21.06 22.68 20.74 22.50 23.87 25.45 27.33

6–7.4

FFH0 54.37 60.77 64.34 67.47 73.65 64.69 72.90 77.56 81.62 87.62

FFH0 +1 43.77 48.23 50.74 53.38 59.30 52.08 58.05 61.04 64.09 70.55

FFH0 +2 35.23 38.29 40.13 42.55 47.74 41.92 46.03 48.19 50.90 56.80

FFH0 +3 28.35 30.28 31.73 33.82 38.43 33.74 36.22 38.07 40.36 45.72

FFH0 +4 22.79 23.84 25.15 26.97 30.93 27.16 28.70 30.18 32.32 36.80
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TABLE 4 As in Table 3, except for two-plus-story home.

500-year
Flood Depth (feet)

FFH (feet) Total average annual loss as a proportion of VR (i.e., AALT/VR) x10
−4

Two-plus-story without Basement Two-plus-story with Basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

<1

FFH0 0.63 7.94 9.97 11.46 14.06 1.11 12.14 14.11 15.47 21.80

FFH0 +1 0.00 3.84 6.44 8.58 11.26 0.00 6.10 9.10 11.34 14.22

FFH0 +2 0.00 1.87 4.32 6.48 9.03 0.00 3.02 6.07 8.57 11.38

FFH0 +3 0.00 0.93 2.89 4.87 7.26 0.00 1.49 4.06 6.46 9.16

FFH0 +4 0.00 0.46 1.93 3.69 5.84 0.00 0.75 2.70 4.89 7.36

1–2

FFH0 11.08 13.73 15.01 16.40 23.61 15.88 19.06 20.69 22.20 35.60

FFH0 +1 3.46 8.58 10.31 11.64 14.06 5.66 12.65 14.35 15.51 17.75

FFH0 +2 0.83 5.06 7.12 8.82 11.26 1.36 7.62 9.83 11.70 14.22

FFH0 +3 0.20 2.93 4.95 6.77 9.03 0.33 4.43 6.86 8.92 11.38

FFH0 +4 0.05 1.71 3.47 5.17 7.26 0.08 2.68 4.82 6.82 9.15

2–3

FFH0 17.19 18.98 20.71 22.41 30.59 22.29 25.69 27.67 31.33 43.47

FFH0 +1 11.08 13.63 14.86 16.12 18.10 15.88 19.00 20.20 21.58 25.71

FFH0 +2 5.43 9.21 10.75 11.87 14.06 8.10 13.26 14.67 15.74 17.75

FFH0 +3 2.66 6.07 7.68 9.10 11.26 3.97 8.88 10.55 12.01 14.22

FFH0 +4 1.30 3.99 5.58 7.04 9.03 1.94 5.82 7.67 9.26 11.38

3–4

FFH0 21.99 24.80 26.93 29.84 38.12 27.69 33.11 35.99 40.78 51.91

FFH0 +1 17.19 18.68 20.05 21.45 25.58 22.29 25.57 27.02 28.84 34.83

FFH0 +2 11.28 13.77 14.87 16.06 17.56 15.94 19.08 20.13 21.28 23.37

FFH0 +3 6.66 9.92 11.15 12.12 14.06 9.47 13.98 15.10 16.02 17.75

FFH0 +4 3.94 7.08 8.35 9.41 11.26 5.60 10.00 11.26 12.39 14.22

4–5

FFH0 27.32 31.35 33.89 36.93 44.85 34.40 41.82 45.05 49.86 59.20

FFH0 +1 21.99 24.33 25.87 27.53 32.51 27.69 32.86 34.67 36.96 42.92

FFH0 +2 17.19 18.48 19.62 20.97 23.56 22.29 25.56 26.47 27.67 31.11

FFH0 +3 12.15 14.02 15.03 16.12 17.56 16.28 19.48 20.33 21.25 22.54

FFH0 +4 8.30 10.53 11.55 12.40 14.06 11.23 14.77 15.62 16.38 17.75

5–6

FFH0 33.94 38.82 41.44 44.17 49.57 42.74 52.07 55.12 58.75 63.95

FFH0 +1 27.32 30.50 32.22 34.03 37.86 34.40 41.29 43.30 45.41 48.84

FFH0 +2 21.99 23.80 25.05 26.42 28.91 27.69 32.81 33.85 35.03 37.30

FFH0 +3 17.19 18.38 19.44 20.67 22.21 22.29 25.70 26.41 27.50 28.48

FFH0 +4 12.58 14.30 15.20 16.23 17.56 16.54 20.12 20.76 21.41 22.20

6–7.4

FFH0 42.17 46.99 49.60 52.07 57.12 53.09 69.62 70.37 71.14 71.91

FFH0 +1 33.94 37.34 39.03 41.26 45.99 42.74 56.05 56.66 57.28 57.90

FFH0 +2 27.32 29.48 30.88 32.80 37.02 34.40 45.12 45.62 46.11 46.62

FFH0 +3 21.99 23.32 24.49 26.18 29.80 27.69 36.32 36.72 37.12 37.52

FFH0 +4 17.45 18.40 19.41 20.81 23.99 22.29 29.23 29.56 29.87 30.20
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each single-family home type (Table 7; Table 8). Because the data set
is not normally distributed, the percentiles are provided along with
the minimum and maximum values to describe the annual flood risk
(Tables 3–6) and flood risk reduction (Tables 7 and 8) at each
category.

5.3 Confirm results

Table 9 demonstrates u and a parameters, and the 500-year
flood depths, in the shaded X Zone located in Jefferson Parish,
Louisiana, and Santa Clarita, California, using spatial
interpolation (Mostafiz et al., 2021b). The a parameter and
500-year flood depth for Jefferson Parish are less than 1 while

these values range from 0.97 to 1.37 and 1.00–1.70 feet,
respectively, in Santa Clarita. The AAL (i.e., annual flood
risk) results for a hypothetical home located in Jefferson
Parish and Santa Clarita, calculated through spatially
interpolated and synthetic parameters, are summarized in
Table 10 and Table 11, respectively.

6 Discussion

The derivation of the synthetic flood parameters (i.e., u; a)
for the shaded X Zone (Table 1) for establishing the relationship
between flood depth and return period (Figure 3) is useful for
providing decision-makers (e.g., construction specialists and

TABLE 5 As in Table 3 but categorized based on the a parameter.

a FFH (feet) Total average annual loss as a proportion of VR (i.e., AALT/VR) x10
−4

One Story without Basement One Story with Basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

<1

FFH0 0.82 5.30 8.05 12.65 25.04 1.40 8.11 12.52 19.43 37.47

FFH0 +1 0.00 0.77 1.84 3.29 8.26 0.00 1.27 2.83 5.03 12.36

FFH0 +2 0.00 0.11 0.46 0.92 2.72 0.00 0.18 0.72 1.39 4.07

FFH0 +3 0.00 0.02 0.11 0.26 0.90 0.00 0.02 0.17 0.40 1.34

FFH0 +4 0.00 0.00 0.02 0.08 0.29 0.00 0.00 0.04 0.12 0.44

1–2

FFH0 5.87 11.27 16.73 24.98 43.53 8.66 15.72 23.17 34.75 58.45

FFH0 +1 2.16 5.60 8.43 12.72 25.75 3.19 7.81 11.70 17.64 34.58

FFH0 +2 0.80 2.83 4.28 6.84 15.23 1.17 3.89 5.93 9.32 20.45

FFH0 +3 0.29 1.31 2.18 3.66 8.99 0.43 1.86 3.06 5.05 12.08

FFH0 +4 0.11 0.62 1.16 1.99 5.32 0.16 0.88 1.59 2.72 7.14

2–3

FFH0 9.39 15.63 23.10 34.75 56.76 12.56 20.15 30.26 45.05 71.71

FFH0 +1 5.70 10.38 15.50 23.05 40.24 7.59 13.43 20.06 29.92 50.85

FFH0 +2 3.46 6.93 10.30 15.39 28.52 4.61 8.92 13.33 19.87 36.04

FFH0 +3 2.10 4.59 6.87 10.24 20.21 2.79 5.93 8.87 13.25 25.54

FFH0 +4 1.27 3.05 4.57 6.87 14.32 1.69 3.97 5.89 8.87 18.10

3–4

FFH0 11.96 19.03 28.25 42.42 67.22 15.04 23.41 35.07 52.27 81.63

FFH0 +1 8.57 14.21 21.23 31.75 52.05 10.78 17.52 26.24 39.15 63.22

FFH0 +2 6.14 10.66 15.90 23.76 40.30 7.73 13.13 19.62 29.26 48.95

FFH0 +3 4.40 7.97 11.89 17.80 31.20 5.54 9.82 14.70 21.96 37.90

FFH0 +4 3.15 5.94 8.90 13.33 24.15 3.97 7.35 11.08 16.44 29.34

4–4.6

FFH0 14.00 21.38 31.85 47.66 73.65 16.95 25.65 38.44 57.28 87.62

FFH0 +1 10.91 16.95 25.35 37.78 59.30 13.20 20.33 30.24 45.45 70.55

FFH0 +2 8.49 13.43 20.05 30.27 47.74 10.29 16.13 24.07 36.01 56.80

FFH0 +3 6.62 10.65 15.90 23.78 38.42 8.01 12.78 19.18 28.65 45.72

FFH0 +4 5.15 8.44 12.62 18.83 30.93 6.24 10.13 15.13 22.66 36.80
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TABLE 6 As in Table 4 but categorized based on a parameter.

a FFH (feet) Total average annual loss as a proportion of VR (i.e., AALT/VR) x10
−4

Two-plus-story without Basement Two-plus-story with Basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

<1

FFH0 0.63 3.93 6.03 9.43 18.57 1.11 6.40 9.87 15.33 29.50

FFH0 +1 0.00 0.54 1.29 2.41 6.12 0.00 1.00 2.24 3.96 9.73

FFH0 +2 0.00 0.06 0.33 0.67 2.02 0.00 0.14 0.57 1.09 3.20

FFH0 +3 0.00 0.00 0.07 0.20 0.66 0.00 0.02 0.13 0.32 1.06

FFH0 +4 0.00 0.00 0.02 0.06 0.22 0.00 0.00 0.03 0.10 0.35

1–2

FFH0 4.35 8.33 12.38 18.47 32.24 6.81 12.32 18.20 27.26 45.81

FFH0 +1 1.60 4.15 6.23 9.39 19.07 2.51 6.12 9.19 13.90 27.10

FFH0 +2 0.59 2.10 3.17 5.05 11.28 0.92 3.06 4.66 7.30 16.02

FFH0 +3 0.22 0.97 1.61 2.71 6.66 0.34 1.46 2.20 3.95 9.47

FFH0 +4 0.08 0.46 0.86 1.47 3.94 0.12 0.69 1.25 2.13 5.60

2–3

FFH0 6.96 11.68 17.32 25.95 42.68 9.81 15.92 23.79 35.55 56.87

FFH0 +1 4.22 7.73 11.55 17.20 30.26 5.95 10.61 15.81 23.53 40.32

FFH0 +2 2.56 5.16 7.69 11.51 21.45 3.61 7.02 10.52 15.70 28.58

FFH0 +3 1.55 3.43 5.14 7.65 15.20 2.19 4.68 6.97 10.50 20.26

FFH0 +4 0.94 2.29 3.41 5.15 10.77 1.33 3.12 4.64 6.98 14.35

3–4

FFH0 9.01 14.41 21.47 32.22 51.49 11.95 18.81 28.05 42.09 66.00

FFH0 +1 6.46 10.80 16.13 24.08 39.87 8.56 14.09 21.05 31.40 51.12

FFH0 +2 4.63 8.12 12.09 18.07 30.87 6.14 10.51 15.74 23.47 39.59

FFH0 +3 3.32 6.05 9.05 13.57 23.90 4.40 7.87 11.79 17.61 30.64

FFH0 +4 2.38 4.53 6.77 10.11 18.50 3.15 5.89 8.85 13.17 23.72

4–4.6

FFH0 10.75 16.49 24.50 36.84 57.12 13.74 20.92 31.22 46.62 71.91

FFH0 +1 8.37 13.07 19.60 29.18 45.99 10.70 16.58 24.76 37.02 57.90

FFH0 +2 6.52 10.36 15.54 23.31 37.02 8.33 13.14 19.65 29.56 46.62

FFH0 +3 5.08 8.21 12.28 18.36 29.80 6.49 10.42 15.57 23.28 37.52

FFH0 +4 3.95 6.52 9.70 14.53 23.99 5.06 8.26 12.37 18.45 30.20

TABLE 7 Annual flood risk reduction by FFH elevation for one-story single-family home with and without basement using synthetic data.

FFH (feet) Total average annual loss reduction as a proportion of VR (i.e., Δ AALT/VR) x 10–4

One Story without Basement One Story with Basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

FFH0 0 0 0 0 0 0 0 0 0 0

FFH0 +1 0.82 4.81 7.20 10.78 18.22 1.39 6.11 9.14 13.66 26.07

FFH0 +2 0.82 8.09 12.14 18.15 28.78 1.39 10.28 15.45 23.07 38.56

FFH0 +3 0.82 10.37 15.62 23.46 36.79 1.39 13.17 19.79 29.63 47.15

FFH0 +4 0.82 12.08 18.10 27.27 43.33 1.39 15.28 22.93 34.36 53.90
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regional planners) sufficient information across a range of
return periods. Results suggest that generating u; a is obviate
the need for representing the relationship between flood depth vs
building, contents, and use loss separately, as in most
conventional DDF-based flood risk analyses. Instead, the
approach shown here provides estimates for total loss
(i.e., building, contents, and use) for wide range of 500-year
flood depths (Table 2) and thus the flood risk assessment (Tables
3; 4, 5,; 6) in the shaded X Zone. The applications are even more
valuable for risk assessment for construction with long expected
life spans and/or grave consequences for flooding, such as sites
of cultural or historical importance, hospitals, nursing homes,

and bridges, in which partitioning the loss into its components is
less important than estimating the long-term total loss.

Another strength of this approach is that it overcomes
complications associated with the changing value of assets
over time. This is because the total annual flood risk
(building, contents, and use) for single-family homes in the
shaded X Zone is expressed proportionally to VR. It is
anticipated that providing the results in this format will
garner more attention to the long-term flood risk in the
shaded X Zone with the actionable outcome of increasing
awareness of the benefits of applying mitigation actions.

The results show that the median AAL at FFH0 falls between
only 0.097 and 0.172 percent of VR, for a single-family home with
500-year flood depth less than one foot, regardless of home type.
These results are mainly affected by the unique DDFs based on
home type (Mostafiz et al., 2021c).

Not surprisingly, flood depth is the primary factor involved
flood risk, with greater depth causing more damage. Thus,
elevating the home is the primary strategy for flood risk
reduction, but the improvements vary by 500-year flood
depth. For example, while the flood risk reduction is
approximately 36, 57, 71, and 81% for one through four feet
above FFH0, respectively, when the 500-year flood depth less
than 1 foot for all home types (Tables 3; 4), that risk is reduced by
less and less with additional feet of elevation in 500-year
categories (i.e., 1–2 feet above FFH0, 2–3 feet, etc.,; Tables 3; 4).

The AALs for the case study subsets of Jefferson Parish
(Louisiana) and Santa Clarita (California) generated by spatial
interpolation-estimated flood parameters are within the range of
AAL results using synthetic flood parameters. In the case of Jefferson
Parish, the mean AAL values of $39, $61, $30, and $49 for one-story
without basement, one-story with basement, two-plus-story without
basement, and two-plus-story with basement single-family home,
respectively, calculated using the spatial interpolation-estimated
flood parameters, are between the minimum and 25th percentile
AAL for the appropriate 500-year flood depth and a values. For Santa
Clarita, the mean AAL values of $584, $839, and $658 for one-story
without basement, one story with basement, and two-plus-story with
basement single-family home, respectively, calculated using the
spatial interpolation-estimated flood parameters, are between the
75th quartile and maximum AAL for the appropriate 500-year flood

TABLE 8 Annual flood risk reduction by FFH elevation for two-plus-story single-family home with and without basement using synthetic data.

FFH (feet) Total average annual loss reduction as a proportion of VR (i.e., Δ AALT/VR) x10
−4

Two-plus-story without basement Two-plus-story with basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

FFH0 0 0 0 0 0 0 0 0 0 0

FFH0 +1 0.63 3.65 5.45 8.18 13.46 1.11 4.88 7.30 10.94 20.48

FFH0 +2 0.63 6.15 9.20 13.79 21.46 1.11 8.20 12.34 18.46 30.20

FFH0 +3 0.63 7.90 11.82 17.82 27.82 1.11 10.55 15.80 23.71 37.08

FFH0 +4 0.63 9.16 13.67 20.70 33.20 1.11 12.21 18.31 27.44 42.87

TABLE 9 Flood parameters and 500-year flood depth for the shaded X Zone
located in Jefferson Parish, Louisiana, and Santa Clarita, California, using
spatial interpolation.

Location u a 500-Year flood depth (feet)

Jefferson −1.09 0.19 0.10

−0.85 0.18 0.30

Santa Clarita

−6.84 1.34 1.40

−6.13 1.26 1.70

−6.19 1.28 1.70

−6.02 1.25 1.70

−5.71 1.15 1.40

−5.63 1.08 1.00

−4.89 0.97 1.10

−4.93 1.01 1.30

−5.35 1.04 1.10

−5.87 1.14 1.20

−7.02 1.35 1.30

−7.13 1.37 1.30

−6.45 1.32 1.60

−6.37 1.31 1.70

Frontiers in Earth Science frontiersin.org11

Al Assi et al. 10.3389/feart.2023.1051546

29

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1051546


depth and a values, while the mean AAL value of $432 for two-
plus-story without basement single-family home is between the
50th and 75th quartiles. While both techniques lead to similar
results, the spatial interpolation method requires multiple return

period flood depth data and is computationally intensive.
Additional work to confirm the range of areas for which
synthetic flood parameters is appropriate will further justify
the use of this technique.

TABLE 10 Average annual loss (i.e., annual flood risk) by type of single-family home in Jefferson Parish, Louisiana, and Santa Clarita, California, implementing
spatial interpolation parameters.

Location Average annual loss ($)

One-story without
Basement

One-storyWith
Basement

Two-plus-story without
Basement

Two-plus-story with
Basement

Jefferson
23 36 18 30

54 86 41 68

Santa Clarita

567 803 419 629

715 1,020 528 800

712 1,015 526 796

721 1,030 532 808

594 859 439 674

429 627 317 492

483 717 358 563

573 844 424 664

471 690 348 542

501 726 370 570

525 742 388 582

523 738 387 578

657 933 485 731

708 1,005 523 788

TABLE 11 Descriptive statistics of average annual loss ($; i.e., annual flood risk) by type of single-family home, after implementing synthetic flood parameters, by
500-year flood depth and a parameter.

Average annual loss ($)

One Story without Basement One Story with Basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

500-year flood depth <1 22 288 359 407 490 38 394 464 517 744

1–2 404 491 536 585 863 547 618 679 740 1,226

a parameter <1 22 143 217 341 676 38 219 338 525 1,012

1–2 155 304 452 674 1,175 234 424 626 938 1,578

Two-plus-story without Basement Two-plus-story with Basement

Min 25th 50th 75th Max Min 25th 50th 75th Max

500-year flood depth <1 17 214 269 309 380 30 328 381 418 589

1–2 299 370 405 443 638 429 514 559 599 961

a parameter <1 17 106 162 254 501 30 173 267 414 797

1–2 117 225 334 499 870 184 333 491 736 1,237
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7 Conclusion

Although areas outside the SFHA may be highly susceptible
to destructive and unanticipated floods at return periods beyond
100 years, they are often overlooked in flood risk assessments,
often because they seldom have sufficient data to predict flood
parameters. The increased need to have meaningful data outside
the SFHA to understand flood hazard risk motivated this new
approach to estimate AAL within the shaded X Zone using
synthetic flood parameters. The derivation of synthetic flood
hazard parameters enables the estimation of flood risk values in
the shaded X Zone to assist stakeholders in minimizing flood
risk. The major findings are:

• The synthetic data approach improves understanding of flood
risk in the shaded X Zone for 1740 scenarios that include a
wide range of 500-year flood depths.

• Flood depth-return period relationships provide vital
information regarding flood depths at longer return periods
that can be used to enhance flood resilience.

• For the analyzed synthetic data, the median AAL for all four
types of single-family homes (one- and two-plus-story, each
without and with basement) in the shaded X Zone falls
between 0.10 and 0.78 percent of VR for the full range of
500-year flood depths between 0.003 feet and 7.400 feet and a
values between 0.10 and 4.60.

• The median value of AAL reduction falls between 0.06 and
0.23 percent of VR when elevating by an additional 1 and
4 feet, respectively, above FFH0.

• For case study areas within Jefferson Parish (Louisiana) and
Santa Clarita (California), AAL values calculated from
spatial interpolation-estimated flood parameters fall
within the range of those computed from synthetic flood
parameters.

Although this study provides an important first step for
predicting and enhancing community understanding of the
flood risk in the shaded X Zone, some cautions need to be
considered. First, the numerical results will differ from those
suggested here in areas where the a parameter exceeds 4.60. Also,
the spatial interpolation-estimated flood parameters derived here
require depth grids for 10-, 50-, 100-, and 500-year events; these
results would be refined if 200- or 250- year depth grids are
available. Furthermore, location-specific and recent inflationary
trends may result in CR being much higher than the assumed
$135/sf, but AAL could be updated easily for future work. Despite
these cautions, this research contributes to the mitigation of the
damage and loss experienced outside the SFHA and to improved
awareness of the magnitude of flood risk in this region and the
benefit of applying mitigation strategies.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

AA developed the methodology, analyzed the data, interpreted the
findings, and developed the initial text. RM selected the case study area,
prepared the input data, and supervised the research. CF supervised the
research, provided insight and recommendation for the research, and
reviewed and edited the manuscript. RR reviewed and edited the
writing of the manuscript and provided insight and recommendations
for the research. MR reviewed and edited the manuscript.

Funding

This research was funded by the USDA National Institute of Food
andAgriculture, Hatch project LAB 94873, accession number 7008346,
U.S. Department of Homeland Security (Award Number: 2015-ST-
061-ND0001-01), the Louisiana Sea Grant College Program (Omnibus
cycle 2020–2022; Award Number: NA18OAR4170098; Project
Number: R/CH-03; Omnibus cycle 2022–2024; Award Number:
NA22OAR4710105; Project Number: R/CH-05), the Gulf Research
Program of the National Academies of Sciences, Engineering, and
Medicine under the Grant Agreement number: 200010880 “The New
First Line of Defense: Building Community Resilience through
Residential Risk Disclosure,” and the U.S. Department of Housing
and Urban Development (HUD; 2019–2022; Award No. H21679CA,
SubawardNo. S01227-1). The publication of this article is supported by
the LSU AgCenter LaHouse Resource Center.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

Any opinions, findings, conclusions, and recommendations
expressed in this manuscript are those of the author and do not
necessarily reflect the official policy or position of the funders.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/feart.2023.1051546/
full#supplementary-material

Frontiers in Earth Science frontiersin.org13

Al Assi et al. 10.3389/feart.2023.1051546

31

https://www.frontiersin.org/articles/10.3389/feart.2023.1051546/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2023.1051546/full#supplementary-material
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1051546


References

Al Assi, A., Mostafiz, R. B., Friedland, C. J., Rahim, M. A., and Rohli, R. V.
(2023a). Flood risk assessment for residences at the neighborhood scale by owner/
occupant type and first-floor height. Front. Big Data 5, 997447. doi:10.3389/fdata.
2022.997447

Al Assi, A., Mostafiz, R. B., Friedland, C. J., Rohli, R. V., Taghinezhad, A., and
Rahim, M. A. (2023b). Cost-effectiveness of federal CDBG-DR Road Home
Program mitigation assistance in Jefferson Parish, Louisiana. Nat. Hazards.
doi:10.1007/s11069-023-05904-3

American Society of Civil Engineers (Asce) (2014). Flood resistant design and
construction. ASCE Stand. 24–14, 1–75. doi:10.1061/9780784413791

Amoroso, S. D., and Fennell, J. P. (2008). “A rational benefit/cost approach to
evaluating structural mitigation for wind damage: Learning “the hard way’’ and looking
forward,” in Structures congress 2008 (Vancouver, Canada: ASCE). doi:10.1061/
41016(314)249

Armal, S., Porter, J. R., Lingle, B., Chu, Z., Marston, M. L., and Wing, O. E. J. (2020).
Assessing property level economic impacts of climate in the US, new insights and
evidence from a comprehensive flood risk assessment tool. Climate 8 (10), 116–120.
doi:10.3390/cli8100116

Association of State Floodplain Managers (2020). Flood mapping for the nation A
cost analysis for completing and maintaining the nation’s NFIP flood map inventory.
https://webapps.usgs.gov/infrm/estBFE/.

Bohn, F. H. (2013). Design flood elevations beyond code requirements and current
best practices. LSU Master’s Theses. Lsu Press, Baton Rouge, Louisiana, https://
digitalcommons.lsu.edu/gradschool_theses/69.

Botzen, W. J. W., and van den Bergh, J. C. J. M. (2008). Insurance against
climate change and flooding in The Netherlands: Present, future, and comparison
with other countries. Risk Anal. 28 (2), 413–426. doi:10.1111/j.1539-6924.2008.
01035.x

Bowers, C., Serafin, K. A., and Baker, J. (2022). A performance-based approach to
quantify atmospheric river flood risk. Nat. Hazards Earth Syst. Sci. 22 (4), 1371–1393.
doi:10.5194/nhess-22-1371-2022

Collins, E. L., Sanchez, G. M., Terando, A., Stillwell, C. C., Mitasova, H.,
Sebastian, A., et al. (2022). Predicting flood damage probability across the
conterminous United States. Environ. Res. Lett. 17 (3), 34006. doi:10.1088/
1748-9326/ac4f0f

Doheny, M. (2021). Square foot costs with RSMeans Cost data, 42. Gordian. Rockland,
MA, USA.

Fema (2013). Designing for flood levels above the BFE after hurricane Sandy. http://
www.region2coastal.com/.

Fema (2019). National flood insurance program flood mitigation measures for multi-
family buildings. https://floodawareness.org/wp-content/uploads/2020/08/16-J-0218_
Multi-FamilyGuidance_06222020.pdf.

Fema (2021). Risk mapping, assessment and planning (risk MAP). https://www.fema.
gov/flood-maps/tools-resources/risk-map.

Ferguson, A. P., and Ashley, W. S. (2017). Spatiotemporal analysis of residential flood
exposure in the Atlanta, Georgia metropolitan area. Nat. Hazards 87 (2), 989–1016.
doi:10.1007/s11069-017-2806-6

Friedland, C. J., Lee, Y. C., Mostafiz, R. B., Lee, J., Mithila, S., Rohli, R. V., et al.
(2023). FloodSafeHome: Evaluating benefits and savings of freeboard for
improved decision-making in flood risk mitigation. Front. Commun. 8,
1060901. doi:10.3389/fcomm.2023.1060901

Gnan, E., Friedland, C. J., Mostafiz, R. B., Rahim, M. A., Gentimis, T., Taghinezhad,
A., et al. (2022b). Economically optimizing elevation of new, single-family residences for
flood mitigation via life-cycle benefit-cost analysis. Front. Environ. Sci. 10, 889239.
doi:10.3389/fenvs.2022.889239

Gnan, E., Friedland, C. J., Rahim, M. A., Mostafiz, R. B., Rohli, R. V., Orooji, F.,
et al. (2022a). Improved building-specific flood risk assessment and implications
of depth-damage function selection. Front. Water 4, 919726. doi:10.3389/frwa.
2022.919726

Gnan, E., Mostafiz, R. B., Rahim, M. A., Friedland, C. J., Rohli, R. V., Taghinezhad, A.,
et al. (2022c). Freeboard life-cycle benefit-cost analysis of a rental single-family
residence for landlord, tenant, and insurer. Nat. Hazards Earth Syst. Sci. Discuss.
Prepr. [Preprint]. doi:10.5194/nhess-2022-222

Goldberg, N., and Watkins, R. L. (2021). Spatial comparisons in wetland loss,
mitigation, and flood hazards among watersheds in the lower St. Johns River basin,
northeastern Florida, USA. Nat. Hazards 109 (2), 1743–1757. doi:10.1007/s11069-021-
04896-2

Habete, D., and Ferreira, C. M. (2017). Potential impacts of sea-level rise and land-use
change on special flood hazard areas and associated risks. Nat. Hazards Rev. 18 (4),
4017017. doi:10.1061/(asce)nh.1527-6996.0000262

Hagen, S. C., and Bacopoulos, P. (2012). Coastal flooding in Florida’s big bend region
with application to sea level rise based on synthetic storms analysis. Terr. Atmos. Ocean.
Sci. 23 (5), 481–500. doi:10.3319/tao.2012.04.17.01(wmh)

Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J. (2013). Future flood
losses in major coastal cities. Nat. Clim. Change 3 (9), 802–806. doi:10.1038/
nclimate1979

Hemmati, M., Mahmoud, H. N., Ellingwood, B. R., and Crooks, A. T. (2021).
Unraveling the complexity of human behavior and urbanization on community
vulnerability to floods. Sci. Rep. 11 (1), 20085. doi:10.1038/s41598-021-99587-0

Hino, M., and Hall, J. W. (2017). Real options analysis of adaptation to changing flood
risk: Structural and nonstructural measures. ASCE-ASME J. Risk Uncertain. Eng. Syst.
Part A Civ. Eng. 3 (3), 4017005. doi:10.1061/ajrua6.0000905

Kennedy, A., Copp, A., Florence, M., Gradel, A., Gurley, K., Janssen, M., et al. (2020).
Hurricane Michael in the area of Mexico beach, Florida. J. Waterw. Port, Coast. Ocean
Eng. 146 (5), 5020004. doi:10.1061/(asce)ww.1943-5460.0000590

Kiaghadi, A., Govindarajan, A., Sobel, R. S., and Rifai, H. S. (2020). Environmental
damage associated with severe hydrologic events: A LiDAR-based geospatial
modeling approach. Nat. Hazards 103 (3), 2711–2729. doi:10.1007/s11069-020-
04099-1

Kousky, C., Palim, M., and Pan, Y. (2020a). Flood damage and mortgage credit risk: A
case study of hurricane Harvey. J. Hous. Res. 29 (1), S86–S120. doi:10.1080/10527001.
2020.1840131

Kousky, C., Shabman, L., Linder-Baptie, Z., and Peter, E. S. (2020b). Perspectives on
flood insurance demand outside the 100-year floodplain. https://riskcenter.wharton.
upenn.edu/wp-content/uploads/2020/05/Perspectives-on-Flood-Insurance-Demand-
Outside-the-100-Year-Floodplain.pdf.

Meyer, V., Haase, D., and Scheuer, S. (2009). Flood risk assessment in European river
basins-concept, methods, and challenges exemplified at the Mulde River. Integr.
Environ. Assess. Manag. 5 (1), 17–26. doi:10.1897/ieam_2008-031.1

Mostafiz, R. B., Assi, A. A., Friedland, C. J., Rohli, R. V., and Rahim, M. A. (2022a). “A
numerically-integrated approach for residential flood loss estimation at the community
level”, in EGU general assembly 2022 EGU (Vienna, Austria, 23–27. doi:10.5194/
egusphere-egu22-10827

Mostafiz, R. B., Bushra, N., Rohli, R. V., Friedland, C. J., and Rahim, M. A.
(2021a). Present vs. future property losses from a 100-year coastal flood: A case
study of grand isle, Louisiana. Front. Water 3, 763358. doi:10.3389/frwa.2021.
763358

Mostafiz, R. B., Friedland, C. J., Rahman, M. A., Rohli, R. V., Tate, E., Bushra, N.,
et al. (2021c). Comparison of neighborhood-scale, residential property flood-loss
assessment methodologies. Front. Environ. Sci. 9, 734294. doi:10.3389/fenvs.2021.
734294

Mostafiz, R. B., Friedland, C., Rahim, M. A., Rohli, R. V., and Bushra, N. (2021b). A
data-driven, probabilistic, multiple return period method of flood depth estimation. In
American geophysical union fall meeting Agu Fall Meeting Abstracts, Illinois, CH, USA,
https://www.authorea.com/doi/full/10.1002/essoar.10509337.1

Mostafiz, R. B., Rahim, M. A., Friedland, C. J., Rohli, R. V., Bushra, N., and Orooji, F.
(2022b). A data-driven spatial approach to characterize the flood hazard. Front. Big
Data 5, 1022900. doi:10.3389/fdata.2022.1022900

Mostafiz, R. B., Rohli, R. V., Friedland, C. J., and Lee, Y.- C. (2022c). Actionable
information in flood risk communications and the potential for new web-based tools for
long-term planning for individuals and community. Front. Earth Sci. 10, 840250. doi:10.
3389/feart.2022.840250

NOAA (2022). National centers for environmental information (NCEI) U.S. Billion-
dollar weather and climate disasters. https://www.ncei.noaa.gov/access/billions/
summary-stats/US/1980-2021.doi:10.25921/stkw-7w73

Patel, M. B. (2020). Flood frequency analysis using Gumbel distribution method at
garudeshwar weir, narmada basin. Int. J. Trend Res. Dev. 7 (1), 36–38. http://www.ijtrd.
com/papers/IJTRD21899.pdf.

Pistrika, A., Tsakiris, G., and Nalbantis, I. (2014). Flood depth-damage functions
for built environment. Environ. Process. 1 (4), 553–572. doi:10.1007/s40710-014-
0038-2

Pricope, N. G., Hidalgo, C., Pippin, J. S., and Evans, J. M. (2022). Shifting landscapes
of risk: Quantifying pluvial flood vulnerability beyond the regulated floodplain.
J. Environ. Manag. 304, 114221. doi:10.1016/j.jenvman.2021.114221

Rahim, M. A., Friedland, C. J., Rohli, R. V., Bushra, N., and Mostafiz, R. B. (2021). “A
data-intensive approach to allocating owner vs. NFIP portion of average annual flood
losses,” in AGU 2021 fall meeting, 13–17 december (New Orleans, LA, USA. AGU,
https://www.authorea.com/doi/full/10.1002/essoar.10509884.1.

Rahim,M. A., Gnan, E. S., Friedland, C. J., Mostafiz, R. B., and Rohli, R. V. (2022). “An
improved micro scale average annual flood loss implementation approach”, EGU, in
EGU general assembly 2022 (Vienna, Austria, 23–27. doi:10.5194/egusphere-egu22-
10940

Rath, W., Kelly, C. P., and Beahm, K. A. (2018). Floodplain building elevation
standards current requirements & enhancement options for connecticut
shoreline municipalities. University of Connecticut Center for Energy &
Environmental Law. University of Connecticut, Storrs, CT, USA, https://circa.

Frontiers in Earth Science frontiersin.org14

Al Assi et al. 10.3389/feart.2023.1051546

32

https://doi.org/10.3389/fdata.2022.997447
https://doi.org/10.3389/fdata.2022.997447
https://doi.org/10.1007/s11069-023-05904-3
https://doi.org/10.1061/9780784413791
https://doi.org/10.1061/41016(314)249
https://doi.org/10.1061/41016(314)249
https://doi.org/10.3390/cli8100116
https://webapps.usgs.gov/infrm/estBFE/
https://digitalcommons.lsu.edu/gradschool_theses/69
https://digitalcommons.lsu.edu/gradschool_theses/69
https://doi.org/10.1111/j.1539-6924.2008.01035.x
https://doi.org/10.1111/j.1539-6924.2008.01035.x
https://doi.org/10.5194/nhess-22-1371-2022
https://doi.org/10.1088/1748-9326/ac4f0f
https://doi.org/10.1088/1748-9326/ac4f0f
http://www.region2coastal.com/
http://www.region2coastal.com/
https://floodawareness.org/wp-content/uploads/2020/08/16-J-0218_Multi-FamilyGuidance_06222020.pdf
https://floodawareness.org/wp-content/uploads/2020/08/16-J-0218_Multi-FamilyGuidance_06222020.pdf
https://www.fema.gov/flood-maps/tools-resources/risk-map
https://www.fema.gov/flood-maps/tools-resources/risk-map
https://doi.org/10.1007/s11069-017-2806-6
https://doi.org/10.3389/fcomm.2023.1060901
https://doi.org/10.3389/fenvs.2022.889239
https://doi.org/10.3389/frwa.2022.919726
https://doi.org/10.3389/frwa.2022.919726
https://doi.org/10.5194/nhess-2022-222
https://doi.org/10.1007/s11069-021-04896-2
https://doi.org/10.1007/s11069-021-04896-2
https://doi.org/10.1061/(asce)nh.1527-6996.0000262
https://doi.org/10.3319/tao.2012.04.17.01(wmh)
https://doi.org/10.1038/nclimate1979
https://doi.org/10.1038/nclimate1979
https://doi.org/10.1038/s41598-021-99587-0
https://doi.org/10.1061/ajrua6.0000905
https://doi.org/10.1061/(asce)ww.1943-5460.0000590
https://doi.org/10.1007/s11069-020-04099-1
https://doi.org/10.1007/s11069-020-04099-1
https://doi.org/10.1080/10527001.2020.1840131
https://doi.org/10.1080/10527001.2020.1840131
https://riskcenter.wharton.upenn.edu/wp-content/uploads/2020/05/Perspectives-on-Flood-Insurance-Demand-Outside-the-100-Year-Floodplain.pdf
https://riskcenter.wharton.upenn.edu/wp-content/uploads/2020/05/Perspectives-on-Flood-Insurance-Demand-Outside-the-100-Year-Floodplain.pdf
https://riskcenter.wharton.upenn.edu/wp-content/uploads/2020/05/Perspectives-on-Flood-Insurance-Demand-Outside-the-100-Year-Floodplain.pdf
https://doi.org/10.1897/ieam_2008-031.1
https://doi.org/10.5194/egusphere-egu22-10827
https://doi.org/10.5194/egusphere-egu22-10827
https://doi.org/10.3389/frwa.2021.763358
https://doi.org/10.3389/frwa.2021.763358
https://doi.org/10.3389/fenvs.2021.734294
https://doi.org/10.3389/fenvs.2021.734294
https://www.authorea.com/doi/full/10.1002/essoar.10509337.1
https://doi.org/10.3389/fdata.2022.1022900
https://doi.org/10.3389/feart.2022.840250
https://doi.org/10.3389/feart.2022.840250
https://www.ncei.noaa.gov/access/billions/summary-stats/US/1980-2021
https://www.ncei.noaa.gov/access/billions/summary-stats/US/1980-2021
https://doi.org/10.25921/stkw-7w73
http://www.ijtrd.com/papers/IJTRD21899.pdf
http://www.ijtrd.com/papers/IJTRD21899.pdf
https://doi.org/10.1007/s40710-014-0038-2
https://doi.org/10.1007/s40710-014-0038-2
https://doi.org/10.1016/j.jenvman.2021.114221
https://www.authorea.com/doi/full/10.1002/essoar.10509884.1
https://doi.org/10.5194/egusphere-egu22-10940
https://doi.org/10.5194/egusphere-egu22-10940
https://circa.uconn.edu/wp-content/uploads/sites/1618/2018/03/Floodplain-Building-Elevation-Standards.pdf
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1051546


uconn.edu/wp-content/uploads/sites/1618/2018/03/Floodplain-Building-
Elevation-Standards.pdf.

Singh, P., Sinha, V. S. P., Vijhani, A., and Pahuja, N. (2018). Vulnerability assessment
of urban road network from urban flood. Int. J. Disaster Risk Reduct., 28, 237–250.
doi:10.1016/j.ijdrr.2018.03.017

Šugareková, M., and Zeleňáková, M. (2021). Flood risk assessment and flood damage
evaluation – The review of the case studies. Acta Hydrol. Slovaca 22 (1), 156–163. doi:10.
31577/ahs-2021-0022.01.0019

Taghinezhad, A., Friedland, C. J., and Rohli, R. V. (2021). Benefit-cost analysis of
flood-mitigated residential buildings in Louisiana. Hous. Soc. 48 (2), 185–202. doi:10.
1080/08882746.2020.1796120

Taghinezhad, A., Friedland, C. J., Rohli, R. V., and Marx, B. D. (2020). An imputation
of first-floor elevation data for the avoided loss analysis of flood-mitigated single-family
homes in Louisiana, United States. Front. Built Environ. 6, 138. doi:10.3389/fbuil.2020.
00138

Technical Mapping Advisory Council (TMAC) (2015). TMAC annual report 2015. https://
www.fema.gov/sites/default/files/documents/fema_tmac_2015_annual_report.pdf.

Usace (2000). “Economic guidance memorandum (EGM) 01-03, generic depth
damage relationships. 1–3”, in Memorandum from USACE (United States Army
Corps of Engineers) OCLC, (Washington, DC, USA.

Wang, Y., and Sebastian, A. (2021). Community flood vulnerability and risk
assessment: An empirical predictive modeling approach. J. Flood Risk Manag. 14
(3), 12739. doi:10.1111/jfr3.12739

Wing, O. E. J., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M.,
et al. (2022). Inequitable patterns of US flood risk in the Anthropocene. Nat. Clim.
Change 12 (2), 156–162. doi:10.1038/s41558-021-01265-6

Xian, S., Lin, N., and Hatzikyriakou, A. (2015). Storm surge damage to residential
areas: A quantitative analysis for hurricane Sandy in comparison with FEMA floodmap.
Nat. Hazards 79 (3), 1867–1888. doi:10.1007/s11069-015-1937-x

Xian, S., Lin, N., and Kunreuther, H. (2017). Optimal house elevation for reducing
flood-related losses. J. Hydrology, 548, 63–74. doi:10.1016/j.jhydrol.2017.02.057

Yildirim, E., and Demir, I. (2022). Agricultural flood vulnerability assessment
and risk quantification in Iowa. Sci. Total Environ. 826, 154165. doi:10.1016/j.
scitotenv.2022.154165

Frontiers in Earth Science frontiersin.org15

Al Assi et al. 10.3389/feart.2023.1051546

33

https://circa.uconn.edu/wp-content/uploads/sites/1618/2018/03/Floodplain-Building-Elevation-Standards.pdf
https://circa.uconn.edu/wp-content/uploads/sites/1618/2018/03/Floodplain-Building-Elevation-Standards.pdf
https://doi.org/10.1016/j.ijdrr.2018.03.017
https://doi.org/10.31577/ahs-2021-0022.01.0019
https://doi.org/10.31577/ahs-2021-0022.01.0019
https://doi.org/10.1080/08882746.2020.1796120
https://doi.org/10.1080/08882746.2020.1796120
https://doi.org/10.3389/fbuil.2020.00138
https://doi.org/10.3389/fbuil.2020.00138
https://www.fema.gov/sites/default/files/documents/fema_tmac_2015_annual_report.pdf
https://www.fema.gov/sites/default/files/documents/fema_tmac_2015_annual_report.pdf
https://doi.org/10.1111/jfr3.12739
https://doi.org/10.1038/s41558-021-01265-6
https://doi.org/10.1007/s11069-015-1937-x
https://doi.org/10.1016/j.jhydrol.2017.02.057
https://doi.org/10.1016/j.scitotenv.2022.154165
https://doi.org/10.1016/j.scitotenv.2022.154165
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1051546


Gaps in the governance of floods,
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Disaster risk reduction (DRR) and equitable resilience have cross-cutting
challenges relevant to the Sustainable Development Goals (SDGs), Sendai
Framework (SF) and Climate Change Adaptation (CCA). The capacity of
governments to assess, prevent, prepare, respond, and recover from disasters
depends on effective laws, planning, policies, governance instruments, equity
indicators, harmonized standards, and a holistic approach to cross-sectoral issues
and multi-scalar challenges. The principle of subsidiarity guides the
United Kingdom (UK) approach to disaster governance, with decisions taken at
lowest level and coordinated at different scales (national, sub-national, local).
Cross-scale work needed to address large-scale issues and enable the pooling of
resources, happens at a sub-national tier created especially for this purpose. At
national level, there is a government lead department for each risk identified in the
National Risk Assessment, with Department for Environment, Food and Rural
Affairs (DEFRA) serving as the lead for floods and droughts, while the Department
of Health and Social Care is the lead for heatwaves. In this paper we present the
current state of the art of the governance of floods, droughts, and heatwaves in the
UK, with a focus on pre-emergency phases and the shortage of indicators for
assessment of the effectiveness of adaptation for all three disasters, which also
compromise the realization and monitoring of targets across all three agendas.
The governance of floods counts with the most developed legal framework of the
three. Droughts are mainly dealt by the water sector, while heatwaves are treated
exclusively as a health issue, leaving gaps with regards to the multiple risks these
disasters pose to livelihoods and other sectors. Gaps and challenges that remain
are related to siloed institutional approaches, lack of adaptation indicators, lack of
cross-sectoral resilience standards, and lack of policy instruments and metrics to
promote equitable resilience. Commonly, actions have mainly focused on the
response and recovery strategies instead of risk reduction and adaptation to
address rising vulnerabilities and exposure.

KEYWORDS

climate adaptation, equitable resilience, governance, risk reduction, sdgs, sendai
framework

Introduction

Despite current global and national policy commitments to mitigate and adapt to climate
change, Earth’s mean temperature is projected to rise by approximately 2.7°C above pre-
industrial levels by the end of the century (Climate Action Tracker, 2022). This increase is
expected to result in more extreme weather events and recurring hazards. Six major storms
took place in the UK in 2022, which saw some of the highest wind speeds in over 30 years
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(Met Office, 2022c). These northerly winds led to widespread
damage in Northeast England and Scotland, including power line
damages and trees uprooted, with almost a million customers losing
power (Met Office, 2021; OFGEM, 2022). The last decade was the
warmest on record (WMO, 2022). The UK’s average land
temperature increased by about 1.2°C from pre-industrial levels
(Climate Change Committee, 2021). Sea levels have risen by 16 cm
since 1900 and could reach up to 30 cm by 2050, increasing flood
risks along a third of England’s coast (Climate Change Committee,
2021). The year of 2020 was the third warmest and fifth wettest in
history, which led to extensive flooding, particularly in the Northern
England andWales (Kendon et al., 2020). The economic damages of
the 2019/20 floods reached £333 million, but flood defences reduced
costs that would have been at least fourteen times greater without
such protection (ibid.). There are £200 billion worth of assets at risk
of flooding (Environment Agency, 2021a). The latest UK Climate
Change Risk Assessment (2022) identified that around 3.2 million
properties are at risk of surface water flooding in England (DEFRA,
2022). Increased flooding poses significant challenges to various
aspects of infrastructure, including energy systems, transportation
networks, water management, waste disposal, and digital
communication systems. Storm Arwen in 2022 caused significant
disruptions for a water company, leading to power outages at
140 wastewater sites and water treatment assets serving
17,500 properties, leaving them without water (Joint Committee
on the National Security Strategy, 2022). In 2018, the ‘Beast from the
East’ created substantial travel disruptions, complicating the efforts
of an energy company’s engineers to visit gas sites and address
technical faults (ibid.).

Annual average rainfall is increasing since 1980s in the UK and
in the last decade, the summers were 20% wetter than in the decade
before (1990–2000) (Climate Change Committee, 2021). There are
about 6.4 million people living under flood prone areas in the UK
(Sayers et al., 2017). From this total, around 1.8 million people are
exposed to significant risks of floods and estimates show this number
could reach 2.6 million people by 2050 in a two-degree scenario
(Climate Change Committee, 2016). The socially vulnerable
neighbourhoods are over-represented in areas prone to costal and
tidal flood (33% of all people exposed to this risk −590,000–are
within the 20% most vulnerable neighbourhoods in the UK) (Sayers
et al., 2017). Saline intrusion, coastal squeeze, coastal building
damage are high risks associated with coastal flooding and
erosion damage. By 2080, 10.8 million people could be exposed
to significant risks of floods in the UK, with the most vulnerable
neighbourhoods seeing the highest rise to 1.4 million people (ibid.).

Higher maximum temperature and longer warm spells have also
been the reality in the United Kingdom. England recorded
2,556 excess deaths across three heatwave periods in summer
2020. Notable heatwaves were registered in 1976, 1990, 1995,
2003, 2006 (Met Office, 2018), 2019, 2020 and 2022 (Met Office,
2022a). In 2003, the United Kingdom hit a record high of 38.5°

(Public Health England, 2020). In 2019, the United Kingdom broke
the 2003 record at 38.7° (Met Office, 2019). In 2022 a new record was
set at 40.3° (Met Office, 2022a). Close to 12 million people are in
danger of the risks of heatwaves, with most vulnerable more at risk
than others (e.g., elderly people and pre-existing health conditions)
(The Climate Coalition, 2021). Heat related mortality of elderly
people increased by 21% between 2004 and 2018 (ibid.). It could rise

by 250% without climate action and affect an additional 7.5 million
people aged 65 years and above by 2070 (ibid.). Heatwaves cause the
loss of life, but also the loss of productivity and overheating in
buildings, which has implication for health (Arbuthnott and Hajat,
2017). There are no specific policies addressing the overheating of
buildings and the lack of prevention and preparedness measures will
continue to expose to the most vulnerable, locking in major risks to
wellbeing (Climate Change Committee, 2021). Today, the best
practice is to follow the thermal comfort guidance of the
Chartered Institution of Building Services Engineers but estimates
show that more than 20% of buildings exceed maximum
temperature for a normal United Kingdom summer, which will
certainly aggravate with additional extreme heat (Brimicombe et al.,
2021).

Higher temperatures increase evaporation, causing soils to
become dryer which can potentially worsen drought impacts.
Even though droughts are the least frequent of the three disasters
in the United Kingdom, there are recent and notable events
registered in England between 1972 and 74, 1975-76, 1988-89,
1990-92, 1995-97, 2004-06, 2010-12 (Met Office, 2013) and 2022
(Environment Agency, DEFRA and Double, 2022). Droughts
represent risks to food security, land, insects, trade, economic
growth, carbon uptake, fish deaths, reduced breeding of birds
and poisonous algae. They are characterized for being a slow on-
set type of disaster, which vary in timeframe, impacts and nature
(environmental drought, agricultural drought, and water supply
drought) (Environment Agency, 2017). Areas most at risk of
droughts are in the southern parts of the United Kingdom
(Environment Agency, DEFRA and Double, 2022). In 2022 large
areas were moved into drought status (Devon and Cornwall/Isles of
Silly; Solent and South Downs; Thames; Hertfordshire and North
London; Kent and South London; East Anglia; Lincolnshire and
Northamptonshire; East Midlands; and Yorkshire) (ibid.). Many
areas of England are predicted to have water shortage by 2050 due to
prolonged hot and dry weather, impacting river flows and soil
dryness (Environment Agency and Bevan, 2019). Without further
investment in water storage and transfer infrastructure, coupled
with efforts to reduce water demand, the probability of facing a
severe drought before 2050 is of around 25% (Joint Committee on
the National Security Strategy, 2022).

Floods, heatwaves, and droughts are critically linked and have
compounding impacts. Heatwaves can exacerbate droughts and
wildfires, which can lead to dryer soils that are not able to retain
the heavy rainfall that usually come at the end of dry periods,
aggravating impacts of floods. The negative consequences for
people, environment, critically interlinked resources, and systems
of provision are unquestionable. However, the increasing risks of
droughts, floods and heatwaves are managed in fragmented and
siloed ways and count with different stages of governance maturity,
lacking indicators for adaptation and equitable resilience. There are
asymmetries in the capacity to assess, prevent, prepare, respond, and
recover from each of these disasters, which will continue to expose
the most vulnerable to their impacts. The governance of floods
counts with the most developed framework when compared to
heatwaves and droughts, including in terms of laws, plans,
policies, regulations, knowledge and information and prevention
mechanisms. DEFRA is the lead government department for floods
and droughts (DEFRA, 2015), while the Department of Health and
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Social Care is the lead department for heatwaves (Public Health
England, 2020). Heatwaves are treated as a health issue and together
with droughts their main governance instrument is a national plan,
leaving gaps and challenges with regards to the risks these disasters
pose to livelihoods, resources, and sectors in other domains (e.g.,
land, water, energy, transport, food and building sector). Siloed
institutional approaches, lack of adaptation and equity indicators,
and better integrated resilience strategies, sustainability and risk
reduction policies represent gaps and challenges for managing
multi-hazard risks. Compared to the Sendai Framework and
Climate Change Adaptation for which the United Kingdom is
still developing data approaches to measure many domestic
objectives (PHE, 2017; Climate Change Committee, 2021), the
SDGs count with a high number of indicators to measure
progress on the ground (180 of the total of 244) (DFID, 2019).
In general adaptation is not following the increasing risks the
United Kingdom is facing, which means it is less prepared now
than it was 5 years ago (Climate Change Committee, 2021), raising
environmental justice concerns. Loss of assets, income and
livelihood suffered by disadvantaged groups in context of climate
hazard aggravate inequalities and consequently the exposure and
vulnerability of these same groups to the risks of floods, droughts,
and heatwaves.

Disaster risk reduction under the Sendai Framework refers to a
wide range of opportunities for risk abatement and disaster
management, including prevention, preparedness, and part of the
recovery process, giving particular emphasis to the reduction of
vulnerability. Targets A-D of the Sendai Framework form the basis
of monitoring and reporting on disaster loss data, including on
reduction of disaster mortality, number of affected people, disaster
economic loss and damage to critical infrastructure (UNISDR,
2015b). About 60% of the Sendai reporting countries (from a
total of 87 in the last review) have a national database for
monitoring disaster losses, but the United Kingdom did not
report to have one (UNISDR, 2017). Under the Paris Agreement,
climate change adaptation (CCA) strategies and outcomes also aim
to reduce vulnerability to expected impacts of climate change. The
United Kingdom actions and indicators for CCA are developed
through its National Adaptation Strategy and National Adaptation
Plan, completed impacts, vulnerability, and adaptation assessments,
established meteorological observations, climate projects and
services, monitoring and reporting. At national level, the
adaptation indicator framework has been reviewed by the
Climate Change Committee in 2021 covering trends of risk
factors, adaptation actions and climate impacts, and many gaps
in the following areas: natural environment, business, infrastructure,
people, and the built environment (Climate Change Committee,
2021). The United Kingdom does not have measurable targets to
assess progress towards climate change adaptation and at least
34 areas of adaptation priorities do not present strong progress
(ibid.). Adaptation is yet to be mainstreamed into policy and
practice, while most adaptation priorities lack account of the
impacts under different warming scenarios (ibid.).

Climate change adaptation and disaster risk reduction are key to
manage risks and impacts of floods, droughts and heatwaves and
support equitable resilience in benefit of the Sustainable
Development Goals (SDGs). On the other hand, if development
follows a more sustainable path, reducing pressure on resources such

as water (SDG 6), energy (SDG 7), food (SDGs 2), ocean (SDG 14),
land (SDG 15), it can reduce risks and address the drivers of
vulnerabilities that aggravate impacts of floods, droughts, and
heatwaves. There are 25 targets and 35 indicators under the
Sustainable Development Goals, which can help monitor the
Sendai Framework and risk reduction and resilience (UNISDR,
2015a). The United Kingdom has data for 27 out of the
35 indicators, with actions that span across the Resilience
Capabilities Programme, the 25 Year Environment Plan,
Environment Bill, citizenship curriculum and abstraction plans
(DFID, 2019). Gaps remain with respect to lack of disaggregated
data and missing data for direct economic loss in relation to global
GDP, damage to critical infrastructure and number of disruptions to
services attributable to disasters (Climate Change Committee, 2021).
Even though the global targets share common objectives on
reduction of risk and vulnerability to communities, the
development basis of adaptation, risk reduction and equitable
resilience are not the reality. There is a need for better integrated
approaches towards implementation of the global targets of the
SDGs, CCA and SF that crosscut and intersect the latter objectives,
addressing the drivers of vulnerability as drivers of disaster risk, and
strengthening resilience across scales and sectors, with a focus on
equity and justice.

We present a review on the United Kingdom’s risk assessment
and governance of floods, droughts, and heatwaves in the context of
the three global policy frameworks (SDGs, Climate Change
Adaptation and Sendai Framework). We advocate that for these
frameworks to build on each other and advance fair processes and
outcomes in the implementation of targets relevant for risk
reduction and resilience, environmental justice has a role to play.
It serves well the purpose of addressing the inequitable outcomes for
people and places in relation to climate impacts and risks associated
with increasing frequency and magnitude of floods, droughts, and
heatwaves. Section 2 contains a review of the risk assessment
approach; Section 3 contains the governance review of the three
disasters in the United Kingdom. Conclusions are driven about
which one counts with the most or least developed framework to
safeguard that collectively and individually, everyone can prepare,
respond, and recover, while having their essential needs met (e.g.,
housing, energy, water, transport, telecommunication). Section 4
covers the criteria and approach for risk management across
national critical sectors in the United Kingdom with a focus on
the three disasters. We identify the lack of data on the vulnerability
of infrastructure to extreme weather and the gaps towards improved
resilience. The discussion and conclusions on Section 5 focuses on
the environmental justice implications of disparate governance
approaches towards these disasters, including main conclusions
and prospects to advance research and practice in the field of
risk reduction and resilience to floods, droughts, and heatwaves.

Shortcomings in risk assessment of
floods, droughts, and heatwaves

The United Kingdom produces every 2 years a classified
assessment of the risks of civil emergencies that have the
potential to cause significant disruption due to threats to human
welfare, environment, or security (Cabinet Office, 2017). This
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“National Risk Assessment” (NRA) analyses the key risks over a five-
year period, as a way of providing the government and local
responders with the means to plan, prioritise and proportionately
prepare for eventualities. The risk assessment considers
environmental hazard risks and others (e.g., pandemics) in terms
of likelihood, scale and extent of consequences, prioritizing the
eminent emergencies and the ways of responding to them (Cabinet
Office, 2020). The public has access to this assessment through the
National Risk Register (NRR), which serves as a resource for
individuals and organizations to prepare. The NRA helps the
local level to identify potential risks and prepare plans for either
preventing or mitigating the impact of incidents locally. This work is
coordinated through in England and Wales, Regional Resilience
Partnerships in Scotland, and Emergency Preparedness Groups in
Northern Ireland (Cabinet Office, 2013c). These multi-agency
partnerships are made up of representatives from local public
services, including the emergency services, local authorities, NHS,
and the environmental agencies. They also draw on the support by
other organizations such as Highways England and public utility
companies. Local Resilience Forums (LRF) are the building block for
emergency planning and response activities, while the Civil
Contingencies Secretariat in the Cabinet Office is responsible for
providing guidance on the preparation and work coordinated by
local partners. At the local level, Community Risk Registers (CCR)
are published by the Local Resilience Forums to provide an overview
of the risks based on local conditions, infrastructure, and geography
(Cabinet Office, 2020). Local Resilience Forums should follow a
uniform process of risk assessment developing Community Risk
Register (CRR), but discrepancies and errors have been identified,
which compromises a nationally consistent picture of local risks
(Deeming, 2017).

The NRR published in 2020 includes floods, droughts, and
heatwaves under the ‘reasonably worst-case scenario’ due their
likelihood assessment and impact (Cabinet Office, 2020). For
risks to be included in the NRA they need to have at least

20,000 chances of occurring in the United Kingdom in the next
5 years; and have an expected impact that reaches a minimum
threshold that typically translates into significant damage to
human welfare (ibid.). Likelihood scores between one and five
are developed for each risk, and under each step on the scale, the
probability of an event happening in the next 5 years increases
approximately tenfold (ibid.). For some risks, data such as historical
analysis and numeric modelling are used to inform estimates of
likelihood. Scientific expertise also informs the development and
review of risks (ibid.). Where possible, a combination of this analysis
and expert judgement is used to estimate the approximate likelihood
of an event occurring. The NRR of 2020 has 38 civil emergency risks
compared to the 21 risks highlighted in the previous NRR of 2017
(Cabinet Office, 2017). The impacts of risks under the NRR of
2017 were assessed according to the five criteria (fatalities,
causalities, social disruption, economic damage, psychological
impact), while in the NRR 2020 spans across seven criteria
(human welfare, behavioral, essential services, economic damage,
environmental impact, security and international) (Table 1). The
expansion of the assessment framework reflects the growing
complexities of risks and is a step forward towards a more
comprehensive understanding of their likelihood and impacts,
which can inform more effective risk management and
mitigation strategies. There are new challenges in terms of data
collection, analysis, and interpretation, including with regards to
cross-sectoral collaboration and coordination. Overall, there is a
growing need for more integrated and holistic approaches to risk
management across critical sectors and resilience building.

Under the 2020 NRR, heatwaves are the most likely to happen
(25–125 in 500) and has an impact score of three (Cabinet Office,
2020). Droughts are the least likely to happen (1–5 in 500) and has
the same impact score as heatwaves (ibid.). Coastal flooding and
river flooding are in between the two in terms of likelihood (5–25 in
500) but are considered to have the highest impact of all three. The
United Kingdom faces an adaptation deficit (Joint Committee on the

TABLE 1 Comparison of risk assessment criteria under the national risk registry.

Fatalities Number of fatalities directly attributable to the emergency 2017

Casualties illness or injury over the period following the onset of the emergency 2017

Social disruption Levels of disruption to people’s lives, from an inability to gain access to healthcare or schools to interruptions in supplies of essential
services such as food, water, transport, healthcareetc.

2017

Economic damage Such as lost tourism or working hours, with effects measured for the economy overall and not just the cost of repairs 2017

Psychological impact Widespread anxiety, loss of confidence in the Government, outrage that communities may experience 2017

Human welfare Fatalities directly attributable to the incident, causalities resulting from the incident (illness, injury and psychological impacts),
evacuation and shelter requirements

2020

Behavioral Changes to people’s behavior or public outrage 2020

Essential services Levels of disruption to people’s lives, from an inability to gain access to healthcare or schools to interruptions in supplies of essential
services such as food, water, transport, healthcareetc.

2020

Economic damage Such as lost tourism or working hours, with effects measured for the economy overall and not just the cost of repairs 2020

Environmental impact Widespread anxiety, loss of confidence in the Government, outrage that communities may experience 2020

Security Law enforcement and the criminal justice system 2020

International Damages to international relations 2020

Source (Cabinet Office, 2017; Cabinet Office, 2020).

Frontiers in Earth Science frontiersin.org04

Carvalho and Spataru 10.3389/feart.2023.1124166

37

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1124166


National Security Strategy, 2022) so questions remain about the
degree of preparedness to the compounding impacts of these latter
disasters, including the United Kingdom’s progress towards the
SDGs, SF and CCA targets. The United Kingdom’s Adaptation
Committee found in its 2021 Independent Assessment that the
country is unprepared for even the best-case climate change
scenario, with the gap between risk levels and adaptation efforts
widening since 2017 (CCC, 2021). Major adaptation deficit impacts
all the United Kingdom’s Critical National Infrastructure (CNI),
including energy, transport, water, waste and digital communication
(Joint Committee on National Security Strategy, 2022). The growing
potential for incidents like the August 2020 train derailment in
Stonehaven, Scotland, where heavy rainfall washed debris onto the
track, causing a collision that resulted in fatalities, raises concerns
(RAIB, 2022). Shortcomings were identified in the Network Rail’s
risk management processes, including weather forecasting accuracy,
risk assessment dependability, resource deployment, and real-time
monitoring of rainfall events (ibid.). The latter poses risk to effective
emergency evacuation planning, which is crucial for maintaining
safety and efficiency in transportation networks during impending
natural hazards (Dulebenets et al., 2019a).

Every 5 years, the United Kingdom Government presents a
Climate Change Risk Assessment (CCRA) to Parliament, based
on an independent analysis by the Adaptation Committee, a sub-
committee of the Climate Change Committee. In June 2021, the
committee identified eight urgent action areas, including climate-
related risks to the power system. The CCRA highlighted that, by
2050, the financial cost of infrastructure risks in a 2°C global
warming scenario would be “very high,” with economic costs
exceeding £1 billion per annum (UK Climate Change Risk
Assessment, 2022). There are still gaps in defining methodologies
for risk assessment that National Critical Infrastructure (CNI)
stakeholders from both government and operators can apply in
practice (Climate Change Committee, 2021). Clarifying these

methodologies and their related data requirements is crucial for
prioritizing investments in resilience and addressing climate-related
risks more effectively (United KingdomReadiness for Storms, 2022).
Unawareness of cascading risks may lead to delayed or absent
mitigation actions and increased casualties during disasters,
highlighting the need for cross-regulator collaboration due to the
interconnectedness of various sectors and their shared risks (House
of Lords Risk Assessment and Risk Planning Committee, 2021).

Asymmetries and gaps in the
governance of floods, droughts, and
heatwaves in the United Kingdom

Every risk of civil emergency has a government lead
department at national level that is responsible for the day-to-
day coordination, support and oversight of risks and
management of response by central government (Civil
Contingencies Secretariat, 2004; DEFRA, 2015). Figure 1 has
an overview of the governance structure for floods, droughts, and
heatwaves. The Department of Health and Social Care (DHSC) is
the lead government department for heatwaves (Figure 1). The
Department for Food and Rural Affairs (DEFRA) is the lead for
floods and droughts, providing funding for risk management
through grants to the Environment Agency, local authorities, and
drainage boards. New or revised flood policies are prepared with
other parts of government such as the Treasury, the Cabinet
Office (for emergency response planning) and the Department
for Communities and Local Government (e.g., for land-use and
planning policy). These national policies are delivered by Risk
Management Authorities (RMAs). RMAs have their own
mandates with respect to risk management but should co-
operate and share information in compliance with the national
and local Flood and Coastal Erosion Risk Management Strategies.

FIGURE 1
Cross-scale governance of floods, droughts and heatwaves.
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According to the principle of subsidiarity that guides the
United Kingdom’s governance of civil emergencies, decisions
should be taken at the lowest appropriate level with co-
ordination at the highest level (HM Government, 2004). Most
incidents are best managed by local authorities, affected
industries and emergency responders. Category 1 responders at
local level (emergency services, local authorities, NHS bodies) have
the duty to maintain plans for preventing emergencies, reducing,
controlling, and mitigating its effects, while acting when
emergencies happen by observing the formal arrangements to
warn, inform and advise the public accordingly (Cabinet Office,
2012). The latter should involve Category 2 responders, which
include electricity distributers and transmitters, gas distributers,
water and sewerage undertakers, telecommunication providers,
transport organizations, health bodies and government agencies)
and other relevant voluntary organizations when developing plans.
The local tier also provides the building block of the response to
disasters (Cabinet Office, 2013a). The United Kingdom has
developed a concept of operations specifically to guide how
different levels should respond and recover from emergencies by
working together (UK Cabinet Office, 2013). The Strategic and
Recovery Co-ordinating Groups act as the local mechanism during
the response and recovery phases of disasters (ibid.). To improve the
overall co-ordination and communication between the central
government and local responders, and other organizations, a sub-
national tier was created as a key element of the civil protection
framework (Cabinet Office, 2012). Under this tier, local responders,
and central government work in partnership to ensure a coordinated
planning and response, either through multi-agency setting or
directly between two or more responders (ibid.). This cross-
boundary work to address large-scale issues aims to enable the
pooling of resources, avoidance of duplication of work by LRF and
support for emergencies crossing local resilience areas (Cabinet
Office, 2013a). The Department for Communities and Local
Government has a Resilience and Emergencies Division, which
provides the platform for multi-LRF cooperation (ibid.). The
governance model in which United Kingdom civil protection is
delivered to protect people, businesses and infrastructure from
floods, droughts and heatwaves is the Integrated Emergency

Management in Table 2, which entails six key
phases–anticipation, assessment, prevention, preparation,
response, and recovery (Cabinet Office, 2013b).

Legislation plays a crucial role in the governance of disaster risk
reduction and equitable resilience. Table 3 has a snapshot of key laws
and plans that apply directly or indirectly to the reduction of risks to
floods, droughts, and heatwaves, with consideration of which global
policy agendas they relate to. They set out the norms and
frameworks for disaster risk governance, implementing strategies
and creating specific accountabilities and liabilities for public
officials, private sectors, and society. By regulating risk-related
decisions, actions and responsibilities, the law sets out how the
integration and coordination of local and national disaster risk
management and practices should happen, including the
distribution of resources and powers among different sectors and
institutions (Mehryar and Surminski, 2020). In the
United Kingdom, the Civil Contingencies Act provides an
overarching framework for reducing risks to civil emergencies,
including floods, droughts, and heatwaves, putting a duty on
emergency planners and responders to identify and assess the
risks affecting the area in which they operate (HM Government,
2004). Whereas the Act is responsible for setting the duties for civil
protection, the details of what the duties entail, how they should be
conducted and delivered is set under Regulations. Neither the Act or
Regulations impose a statutory duty for authorities to take a more
proactive approach towards reducing the likelihood of threats, so
responders can decide how to treat risks beyond the emergency
plans that are required by the Act, leaving prevention and pre-
emption out (Deeming, 2017).

Actions to manage the risks of floods and coastal erosion are set
under the Flood and Water Management Act (2010), which is the
principal legislation guiding preparedness and response to floods in
the United Kingdom. It includes the building sector, natural
processes, water levels, river or watercourse, shoreline, regulatory
instruments, financial support, forecast and warning, information
dissemination and education. The potential and/or confirmed
harmful consequences of floods for health, social and economic
welfare of individuals and communities, infrastructure, and the
environment (including cultural heritage) form the basis of risk

TABLE 2 Phases of the integrated emergency management in the UKa.

Phases Description

Anticipation Horizon-scanning for identification of risks and potential emergencies

Assessment Analysis of likelihood of occurrence and impact of emergencies. Risk knowledge (National Risk Registry)

Prevention Measures to stop a disaster event and/or prevent its harmful effects on communities and infrastructure (e.g., safety standards, flood defense, land
use regulations, building codes, preventive healthcare, education and provisions of basic needs and services)

Preparedness Measures to limit the impact of a disaster, including through quick and orderly reaction and structured response (e.g., warning systems,
evacuation, rescue and relief, counter-disaster plans, stockpiling of supplies, resource trade-off and/or conflict plans, community drills, education
and awareness)

Response Measures and decisions to deal with a disaster as soon as it happens, split in two objectives: (i) crisis management that includes measures to avert a
disaster, with protective actions that can mitigate its effects, prevent damage or disruption and secure livelihoods (e.g., fighting fires, search and
rescue, health advice; and (ii) impact management that includes steps to stop incident from escalating (restoring utility services, providing shelter)

Recovery Measure to rebuild, restore and rehabilitate the communities impacted by a disaster, which can take months or years (e.g., reconstruction of
infrastructure and restoration of people’s wellbeing - physical, mental, emotional, social and economic)

aInformation source retrieved from (Deeming, 2017).
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assessments and risk management strategies. England and Wales
need to prepare national and local (FCERMS) (Environment
Agency, 2020). At national level, the Environment Agency is
responsible for developing, applying, and monitoring these
strategies, while ‘Lead Local Authorities’ are responsible for local
flood risk management strategies. The FCERMS sets out who are the
flood and coastal erosion risk management authorities at national
and local scales (Environment Agency, Lead Local Flood
Authorities, District and Borough Councils, Coast protection
authorities, water and sewerage companies, Internal Drainage
Boards, and Highways Authorities), including their functions,
objectives, and measures proposed to achieve those objectives.
For example, how and when the latter should be implemented,
their costs and benefits, as well as how they will be paid. The
FCERMS strategy for England was first published in 2011 and the
latest revision was made available in 2020. Between 2015 and
2021 more than £2.6 billion of government funding has been
allocated to FCERMS (Environment Agency, 2021b). Between

2021 and 2027, the government has committed to double its
expenditure on FCERM to £5.2 billion, reaching the highest
amount ever allocated for protection against flood risks (ibid.).
Another £200 million have also been allocated to advance
resilience programme (ibid.). It is predicted that an additional
336,000 properties will be safeguarded, and twenty-five local
areas will be able to advance their actions and plans to protect
themselves against flood and coastal erosion risks (ibid.). However,
the lack of clear standards for flood protection across the
United Kingdom means that measures such as flood defences are
usually put in place only after severe disasters have occurred
(Cabinet Office, 2016). A reactive approach is also true in
relation to key legislation and policy instruments that have been
developed through time to manage the risks not only of floods, but
also of droughts, and heatwaves. Tables 4 shows that key measures
from the last 2 decades have been put in place after major disasters
happened (e.g., series of floods in 2007 that triggered the
United Kingdom Flood and Management Act 2010; Head Office

TABLE 3 Mapping key documents for managing floods, droughts, and heatwaves with global frameworks.

Key Legal Documents Floods Droughts
Heatwaves

Sendai Framework
Priorities

SDGs Climate Change
Adaptation

Water Act 2003 Droughts 1, 2, 3, 4 SDG 2, 3, 6, 11 Article 7

Drought Plans 2003 onwards Droughts 2 SDG 6, 13 Article 7

Civil Contingencies Act 2004 All 1, 2, 4 SDG 11, 13, 15, Article 7

Heatwave Plan for England 2004 onwards Heatwave 2 SDG 11, 13 Article 7

Climate Change Act 2008 All 1, 2, 3, 4 SDG 13 Articles 2, 7

Flood Risk Regulation 2009 Flood 3, 4 SDG 11, 13, 15 Article 7

Flood and Water Management Act 2010 Flood 1, 2, 3, 4 SDG 11 Article 7

Equality Act 2010 All SDG 5 Article 8, 11, 12,

Water Act 2010 Drought 2 SDG 6 Article 7

Health and Social Care Act 2012 Heatwave 1, 2 SDG 3 Article 11

First National Adaptation Programme
2013-18

Flood and droughts 4 SDG 13 Article 7 and 15

Resilience and Capabilities Programme
(2013)

All 4 SDG 11 Article 11

National Guidance on Risk Assessment
(2013)

All 1 SDG 13 Article 11

Flood RE Insurance Scheme 2016 - 2039 Flood 3, 4 SDG 13 Article 7

Drought Response Plan 2017 Drought 2 SDG 11, 13 Article 7

Second National Adaptation Plan (2018-23) All 2 SDG 11, 13 Article 7

Community Resilience Development
Framework 2019

All 1, 2, 3 SDG 13 Article 7

National Risk Register 2020 All 1, 2, 3 SDG 13 Article 4, 7

Environment Bill 2021 All 4 SDG 6, 11, 12, 13,
14, 15

Article 4, 7, 8

Flood risks and management plans 2021-27 Flood 1, 2, 3 SDG 13 Article 7, 11

Adverse Weather and Health Plan 2023-24 All 1, 2, 3 SDG 13 Article 7

Source: Paris Agreement, Sendai Framework, SDGs, UK Government.
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TABLE 4 Review of hazards and the legal framework (2000–2020).

Year Hazards United Kingdom general acts, statutory instruments, plans
and programmes

2000 Most widespread and severe flood events in October/November led to
10,000 properties flooded across 700 locations, with widespread disruption of
road and rail services (cost of £1bn) (Environment Agency, 2001)

2001 Highest sunshine value ever recorded since 1909 in England and Wales (2.60 h
per day)

Civil Contingencies Secretariat established; Emergency Planning Review
(Hodgkin and Sasse, 2022)

2002 Flooding in the end of December 2002 saw areas get 125%–150% of December’s
average rainfall

2003 Heatwave that led to 2,000 excess deaths over a 10-day period in August Water Act

2004 Flooding in North Cornwall Civil Contingency Act; Southern, Wessex and Anglian Flood Defense Committee
Order (The Wessex Regional Flood Defence Committee Order, 2004); Heatwave
Plan for England (Public Health England, 2020)

2004–06 Drought with severe impacts in east England. Fish deaths, reduced breeding and
green algae identified (Met Office, 2022b)

Southern Regional Flood Defense Committee Order

2005 Flooding in North Yorkshire and Carlie and Stormy spells First national Risk Assessment. Drought Plan Regulations 2005; Civil
Contingencies Act 2004 (Amendment of List of Responders) Order 2005; Civil
Contingencies Act 2004 (Contingency Planning) Regulations 2005; Wessex
Regional Flood Defence Committee Order; Anglian Regional Flood Defence
Committee (Abolition) Order; Social Fund Cold Weather Payments (General)
Amendment Regulations

2006 Heatwave with about 680 excess deaths (Met Office, 2018) Northwest Regional Flood Defence Committee Order; Severn-Trent Regional
Flood Defence Committee Order; Mid Kent Water (Non-Essential Use) Drought
Order; Southern Water Services (Kent Medway, Kent Thanet and Sussex
Hastings) (Non-Essential Use) Drought Order; Southern Water Services (Sussex
North and Sussex Coast) (Non-Essential Use) Drought Order; Sutton and East
Surrey Water plc (Non-Essential Use) Drought Order

2007 Flooding in Lake District, Cumbria. Floods had an economic cost of £3.9bn
(Environment Agency, 2021a)

The Flood Defence (Mimmshall Brook Works) Order 2007

2008 Heavy Rainfall and flooding First National Risk Register. Planning Act; Climate Change Act; National Risk
Register; Civil Contingencies Act 2004 (Amendment of List of Responders) Order

2009 Heatwave with around 300 excess summer deaths The Flood Risk Regulations; Flood Defence (Robertsbridge Works) Order

2010 2,500+ heat related deaths. Severe flooding in Cornwall. winter of 2010/11 had
coldest December in the United Kingdom series dating back to 1910 (Christidis
and Stott, 2021)

Flood and Water Management Act; Water Act (provides statutory definition of
flooding); Flood Risk Management Functions Order; Flood Risk (Cross Border
Areas) Regulations

2010–12 England and Wales drought. Driest 18 months for over 100 years. Two dry
winters led to low groundwater level and reservoir stocks hit lowest records,
requiring 7 water companies to impose temporary use bans in England. Ended
in 2012 with wettest April to September for over 100 years

2011 Exceptionally warm and dry spring National Flood and Coastal Erosion Risk Management Strategy for England; The
Incidental Flooding and Coastal Erosion (England) Order; The Thames Regional
Flood Defence Committee (Amendment) Order

2012 Overall, 2012 was the wettest on record since 1910 (CEH 2012), except for 2000
(Met Office, 2013)

Health and Social Care Act; Public Health England was created and is main body
managing heatwaves; National Drought Group; Head Office Drought Plan

2013 March 2013 was the coldest after 1962 in the national record dating back to
1910 and colder than the preceding winter months (according to the Met Office,
National Climate Information Centre)

The Flood and Water Management Act (Commencement No. 2, Transitional and
Savings Provisions) (England) Order; National Guidance on Risk Assessment;
Resilience Capabilities Programme

2013/14 Wettest winter in the region since the beginning of the record in 1948. The
period from December 2013 to February 2014 was the stormiest for at least
20 years according to the Met Office (Met Office 2014)

Flood risk maps for each river basin district

2014 The annual Central England temperature (CET) value for 2014 the highest in the
356-year series. At approximately 0.06 °C above the previous 2006 record, it
cannot be entirely certain that 2014 was the warmest on record

Water Act; Heatwave Plan for England

2014/15 winter 2014/15 was the sunniest in the United Kingdom since 1930

(Continued on following page)
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Drought Plan after droughts of 2010–12; and first Heatwave Plan for
England in 2004 after the excess deaths of heat in 2003).

The most important legislation and governance mechanisms
implemented tomanage droughts include: “Water Act 2003”, “Flood
and Water Management Act 2010”, “Water Use (Temporary Bans)
Order 2010”, “Head Office Drought Plan 2012”, “Drought Response
Framework for England 2017”, drought plans for each of the six
regions of the Environment Agency in England, and drought plans
for all water companies (Environment Agency, 2012). Accordingly,
water companies hold statutory obligation to develop such plans and
manage water supply to customers to guarantee supply. DEFRA is
responsible for policy and oversight by central government, while
the Environment Agency has the duty to safeguard water sources
and guarantee there is enough for everyone at reasonable costs and
protecting the environment. Drought permits, rota cuts, standpipes
and early actions by farmers are some of the key instruments to
manage the risks related to severe drought periods. These only come
into play when droughts become an emergency, with threats of
restrictions to public water supply.

For heatwaves the main governance instruments are a Heatwave
Plan and the system for heatwave alert. The plan has been in place
since 2004 and is updated every year (Public Health England, 2020).
In 2012, the heatwave plan changed significantly to reflect the
changes in the healthcare system and align it with Cold Weather
Plan and the Public Health Outcomes Framework (ibid.). The plan is
primarily for health and social care services and other public
agencies and professionals who interact with those most at risk
from excessive heat, such as the elderly and people with different
disabilities. Responsibilities are set for the DHSC, NHS, Met Office,
and community health services. The key measures to manage the
heatwave risks include mortality monitoring, defining critical
infrastructure, awareness, preparedness, and the resilience
capability programme. However, the social processes and
structures which influence vulnerability in high temperatures is
yet reflected in strategies and there is no longer-term preventive
approach.

The United Kingdom legal framework informing multi-hazard
risk assessment and governance of floods, droughts and heatwaves
counts with many laws, plans, policies, regulations, and programme

which were enacted after catastrophic events took place, as shown in
Table 4. Consequently, the existing measures often emphasize
response and recovery strategies, which are crucial for addressing
the immediate impacts of disasters. However, they lack focus on
addressing the root causes of vulnerability and promoting long-term
resilience to climate hazards. For example, the plans that serve as
main policy instrument to manage droughts and heatwaves are
essentially response plans. The heatwave plan is criticized for falling
short of social, environmental, and technical risk considerations
(Abeling, 2017) and insufficient efforts beyond health sector
(Brimicombe et al., 2021). The drought plans set the actions that
should be carried out by the Environment Agency, water companies,
DEFRA, and local councils when a drought occurs. However, it falls
short of considerations of disruptions due to network failures, water
quality incidents and dependencies across sectors (NIC, 2020).
Estimated impacts of climate change calls for more preventative
and proactive approaches to manage the cascading risks of hazards
and promote equitable resilience (e.g., water transfer networks to
prepare for future droughts; sustainable resource management;
addressing drivers of vulnerability). Better understanding of the
physical, economic, and environmental factors that increase the
susceptibility of an individual, assets, and resources to the
compounding impacts of hazard will be key to prevent and
prepare the most vulnerable to climate change. Laws, plans,
policies, and regulations that address risk reduction and
adaptation proactively are also key, so that community
preparedness, cross-sector collaboration, public awareness and
integrated approaches to multi-disaster risk assessment and
governance can be advanced.

The asymmetries and gaps in the governance of hazard and
disaster risks, and lack of adaptation indicators challenge the
understanding about sufficient funding, policies and planning
being allocated towards the right actions to protect the most
vulnerable. Consequently, environmental justice concerns are
raised (e.g., distribution, recognition, participation, and
capability). Low-income and vulnerable communities live in areas
with higher exposure to climate hazards, such as flood-prone zones
or urban heat islands and have fewer resources to adapt to or recover
from extreme weather events. Areas that are prone to coastal and

TABLE 4 (Continued) Review of hazards and the legal framework (2000–2020).

Year Hazards United Kingdom general acts, statutory instruments, plans
and programmes

2015 Dry early autumn, The United Kingdom provisionally set a record for the
greatest 24 h rainfall recorded

National Security and Strategic Defence Review; The Flood Reinsurance (Scheme
and Scheme Administrator Designation) Regulations 2015

2016 Strong winds and floodings from storm Angus; and exceptional warmth in
September

Flood RE-Re-insurance Scheme (2039)

2017 In Britain the United Kingdom Met Office reported that Wednesday, June
21 was the hottest June day in more than 40 years when temperatures reached
34.5°C at Heathrow

Drought Response Framework for England; National Drought Group

2018 Cold spell in the country in early March 2018. Extremely cold conditions steered
a massive Arctic airmass toward the British Isles at the end of February 2018,
where it collided with winter storm Emma in the first days of March

The Environment Agency (Teggsnose Reservoir and Langley Bottoms Reservoir)
Drought Order 2018

2019 A new highest ever maximum temperature of 38.7 °C was measured in
Cambridge. (Met Office, 2019)

The Floods and Water (Amendment, etc.) (EU Exit) Regulations

2020 Storm Ciara, Dennis, and Jorge led to flood problems Agriculture Act; Fisheries Act; Environment Bill
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tidal flooding in the United Kingdom are over-represented by
socially vulnerable neighbourhoods (Sayers et al., 2017). The
authors also highlighted that socially deprived communities are
at a higher risk of flooding due to a range of factors, including
inadequate infrastructure, substandard housing, and limited access
to resources and support. Similarly, in the case of floods, these
communities may be more likely to live in lower-quality housing
that is less resilient to water damage and may not have the financial
means to recover from the impacts of flooding. During heatwaves,
low-income households may lack access to adequate cooling systems
or green spaces that can help mitigate heat stress. Droughts
adversely affect agriculture and food production, resulting in
higher food prices and potential food shortages. These factors
can place an additional burden on already vulnerable
communities, exacerbating existing inequalities and health
disparities.

The SDGs (Menton et al., 2020), Sendai and CCA do not
explicitly mainstream environmental justice within their targets
and neither does the United Kingdom have targeted
interventions to address the issues of environmental justice.
However, distributive justice concerns are on the rise regarding
the ways in which the burdens of disasters, the benefits of adaptation
and responsibilities are allocated between different individuals and
groups. Recognitional justice concerns are also growing due to risks
to personal dignity of individuals and collective identities (ibid.)
across different phases of risk management. Recognitional justice
across all phases of risk management has the potential to ensure that
perspectives, needs, and priorities of all communities, are adequately
considered in the development and implementation of DR3 policies,
strategies, and actions. The capabilities approach to justice concerns
the distribution of goods and resources (ibid.) in ways that will
support people to flourish based on the multi-dimensions of
wellbeing. The latter is particularly relevant in the context of
disaster risk management, where the distribution of resources
and opportunities is crucial to helping communities build
resilience and recover from disasters. Procedural justice concerns
the institutional processes in which the unfair distribution of goods
and burdens, lack of recognition and lack of capabilities are
perpetuated through exclusion and inequitable participation in
decision-making processes (Schlosberg and Collins, 2014). In the

context of disasters, this can manifest in several ways, such as
inadequate representation of vulnerable groups in emergency
planning and response efforts, limited access to resources and
support, and disparities in disaster recovery outcomes.

The four key elements to build equitable resilience are based on
recognizing subjectivities, inclusion, and representation, working
across scales, and promoting transformative change (Ensor et al.,
2019). These four elements are closely connected to the categories of
resilience in socio-ecological systems applied to climate, disaster,
and development contexts developed by Bahadur et al. (2013). The
latter indicators include absorptive capacity, adaptive capacity,
transformative capacity, equity, and ecosystem services (ibid.).
We recommend that equitable resilience metrics be developed for
the United Kingdom, combining the four key elements identified by
Ensor et al. (2019), with the 10 categories of resilience in socio-
ecological systems, and the dimensions of environmental justice
(Table 5). Risk reduction, risk management and resilience happen in
the context of unequal power dynamics, complex resource trade-offs
and shifting vulnerabilities stemming for diverse sources and with
distinct impacts. Developing equitable resilience metrics will be key
to promote resilience-building efforts that can engage with drivers of
vulnerability.

Sectoral resilience to floods, droughts,
and heatwaves

The United Kingdom’s infrastructure faces risks from high
temperatures, flooding, drought, coastal erosion (Climate Change
Committee, 2021). Flood is considered the most impactful to energy,
transport, water, waste, and digital communication, with the
number of assets exposed to risks likely to double by 2080
(ibid.). Drought is the most impactful to water, food, and land,
with major impacts on biodiversity, agriculture, and forestry.
Heatwaves are the most impactful on crops, livestock,
productivity loss (2010 heatwave reached a total of £770 million),
building sector, transport infrastructure and disruption (ibid.). Some
flood protection measures have been implemented by electricity
supply, transmission, and distribution companies, reducing risks of
interruption of supply, but for other disasters and non-primary

TABLE 5 A combined framework for equitable resilience.

Elements of Equitable Resilience
Ensor et al. (2019)

Indicator categories of resilience in social ecological and
socio-ecological systems Bahadur et al. (2013)

Environmental justice dimensions
Menton et al. (2020)

Recognise subjectivities, inclusion, and
representation

Community involvement and inclusion of local knowledge Procedural justice

High diversity All justice dimensions

High degree of equity All justice dimensions

Social capital, values, and structures Distributional justice

Working across scales Effective governance institutions Procedural and distributional justice

Learning Recognitional and capabilities justice

Transformative change Non-equilibrium system dynamics Distributional justice

Preparedness and planning All justice dimensions

Acceptance of uncertainty and change Capabilities
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substations, gaps remain (DEFRA, 2020). For the Critical National
Infrastructure (CNI), the Cabinet Office commissions Lead
Government Departments (LDGs) (Table 6) to produce Sector
Security Resilience Plans (SSRP) (Cabinet Office, 2019). These
latter plans are prepared through consultations with
infrastructure owners and operators, regulators, and government
agencies (ibid.). They assess security and resilience considering the
risks to each sector, including some activities necessary to mitigate
and respond to these risks. However, the lack of understanding of
infrastructure interdependencies and the potential for cascading
climate risks underscores the need for greater clarity regarding the
roles and responsibilities of both state and non-state actors
(Environment Agency, 2022). DEFRA leads the Government
department for climate adaptation in the United Kingdom, while
the Cabinet Office is responsible for overseeing the resilience of
Critical National Infrastructure (CNI) and LGDs for each of the
13 CNI sectors (Joint Committee on the National Security Strategy,
2022) (Table 6). Under the support of the Cabinet Office, the LDGs
are tasked with resourcing and overseeing the preparedness levels to
the potential consequences of each risk in the National Security Risk
Assessment (ibid.). Relevant departments also produce National
Policy Statements for England and relevant reserved matters, to
guide significant infrastructure project decisions (e.g., on ports and
waste water), including adaptation requirements (ibid.).
Consequently, there are issues involving the allocation of
responsibilities for CNI resilience and climate adaptation across
Government (ibid.).

The elements of infrastructure considered critical across the
sectors are assets, facilities, systems, networks or processes and the
essential workers, so any losses involving them have major

detrimental impact on accessibility, security, and affordability of
essential services (PHE, 2017). Higher storm wind may greatly
impact power lines, data cables, offshore structures and wind
turbines. The National Infrastructure Commission (NIC) has
identified six key aspects of resilience: anticipate, resist, absorb,
recover, adapt, and transform (NIC, 2020). The latter is in line with
concept of resilience as an ability to “bounce back” after adversity.
However, more broadly, the “bounce back” approach adopted
within the United Kingdom’s civil emergency framework entails
risks of perpetuating inequalities and vulnerabilities that feed future
disasters (Deeming, 2017). The focus on rapid recovery and
restoration of normalcy after a disaster can result in the neglect
of vulnerable groups and their needs. This can lead to further
marginalization and social exclusion, exacerbating existing
inequalities and increasing the risk of future disasters. An
example of this can be seen in the United Kingdom’s response to
the 2015 floods, where the focus was primarily on repairing damaged
infrastructure and restoring, without sufficient consideration for the
needs of vulnerable groups (ibid.). As a result, some communities
were left without access to necessities like food, water, and shelter for
extended periods of time, and were more likely to experience long-
term negative impacts from the disaster.

The NIC provides expert advice on infrastructure challenges
involving energy, transport, water and wastewater, waste, flood and
risk management and digital communications, including on
framework under development for resilience standards. Land,
agriculture, schools, and hospitals are out of the scope of the
NIC’s expert work, which does not support the critical links
between these and those that are part of NIC’s work (e.g., energy
and water). The NIC recommends the implementation of a

TABLE 6 Lead Government Department (LGD) with Responsibilities on Resilience per Sector.

LDGs Sector

Department for Business, Energy and Industrial Strategy Chemicals

Department for Business, Energy and Industrial Strategy Civil Nuclear

Department for Digital, Culture, Media and Sport Department for Business, Energy and Industrial Strategy Communications

Ministry of Defence Defence

Department of Health and Social Care Emergency Services

Department for Transport

Home Office

Department for Business, Energy and Industrial Strategy Energy

HM Treasury Finance

Department for Environment, Food and Rural Affairs Food

Cabinet Office Government

Department of Health and Social Care Health

UK Space Agency Space

Department for Transport Transport

Department for Environment, Food and Rural Affairs Water

Source: (Cabinet Office, 2020).
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framework for resilience, protecting everywhere equally, but
providing a higher standard in urban areas due to services being
overwhelmed when compared to rural areas (ibid.). Regulators
should be responsible for setting out the initial plans for stress
test, as well as the costs and benefits of different resilience standards,
dependencies with standards and other sectors, and the range of
shocks and stresses that infrastructure services should be resilient to
(NIC, 2020). Government should partner with critical infrastructure
operators from the public and the private sectors to agree on a
common resilience vision for critical infrastructure nationwide and
on shared and achievable resilience objectives (ibid.). Questions
remain about how the measures and standards will help deliver on
cross-sectoral resilience and equity aspects. The latter are hard to
answer without data on vulnerability of infrastructure to extreme
weather, limited engagement with suppliers on climate change, little
assurance for key supply chains and business opportunities from
climate change adaptation that are not well reflected in national
plans or strategies (Foulkes et al., 2017).

The United Kingdom’s National Adaptation Plan sets out the
perspectives on resilience of core sectors. One of the main
requirements is for all infrastructure projects to leave the
environment in a measurable better state than found (UK NAP).
For business, there is a lack of indicators that support understanding
of effectiveness of adaptation over time and today most of them are
self-reported, which may not be representative for different sizes or
sectors (ibid.). The lack of data on interdependent risks and
resilience actions by infrastructure providers makes it hard to
assess whether actions by operators are really reducing risk
towards the cascading failures caused by climate-related
disruptions. The latter is aggravated by lack of data on how
climate risks are being considered in the design and selection of
places for new infrastructure as early as early as possible and through
the whole life cycle of the asset. When it comes to ports and airports,
resilience standards are left to individual operations, with very
limited data to assess the frequency of interruptions due to
extreme weather events and actions taken to lower those risks.
There remains a lack of data to assess the vulnerability of local roads
to specific climate risks and to assess progress in managing the
impact of climate risks on local roads. In May 2020, the Government
announced a £1.7 billion Transport Infrastructure Investment Fund
for local roads and motorways (and railways). It is not yet clear what
proportion of this additional funding will go towards reactive repair
and what resources will be allocated to adaptation and increasing
climate resilience. The rail sector remains at increasing risk of river
and surface waterflooding under a continuation of planned
adaptation action, and increased heat risk causing rails to buckle,
overhead cables to sag and signals to fail.

Discussion and conclusion

Risk assessment is a developed area in the United Kingdom.
However, at national level, long term adaptation plans and risk
assessment (Climate Change Risk Assessments) and shorter term ones
like the National Risk Assessment (NRA) are not aligned. Across scales,
national and local assessments face discrepancies and a full picture of local
risks is not clear. LRFs play a crucial role in developing local risk
assessment but are currently underfunded and facing issues to oversee

local climate risks. The overall lack of participation of local communities
in risk assessment procedures is problematic and raises issues of trust.
People’s trust affects their response to instructions during emergencies
(Dhellemmes et al., 2021). These shortcomings will increasingly impact
the United Kingdom’s adaptation to climate change and capacity to
develop robust evacuation and shelter planning. These plans need to
account for the specific risks faced by local communities and the
complexities involved in assessing people’s reactions to evacuation
orders (ibid.). Considering that evacuation and shelter planning in the
United Kingdom is based on local risk assessments, the National
Resilience Planning Assumptions, and the National Risk Assessment,
the identified discrepancies and likely impacts this bring to evacuation
plans represent a gap within the broader emergency planning and
preparedness in the United Kingdom, which can aggravate climate
injustices. Effective evacuation at local level is crucial for vulnerable
populations, who due to factors such as age, reduced cognitive functions,
mobility, and declining vision, are disproportionately affected by disasters
(Abioye et al., 2020). Unfortunately, these groups have also been
identified as the most difficult to evacuate (ibid.) and effective
allocation of evacuees among emergency shelters is a challenge,
compounded by limited capacity and the specific needs of certain
groups (e.g., individuals with disabilities, who require placement in
special-needs shelters) (Dulebenets et al., 2019b). There are growing
concerns in the United Kingdom about the capacity and accessibility of
emergency shelters, particularly for vulnerable populations such as
individuals with disabilities or the elderly.

Legislation, planning, policies, regulations, tools, governance
instruments, collaborations and partnerships exist to support the
United Kingdom to prepare and respond to multi-disaster risks and
develop its evolving frameworks to implement and monitor the
targets of the three global frameworks–SDGs, CCA and SF.
However, the United Kingdom faces an adaptation deficit, which
compromise targets of risk reduction and resilience across all three
agendas and environmental justice. Comparing to heatwaves and
droughts, floods count with most developed legal framework and
highest allocation of resources. The latter has a dedicated legislation
(Flood and Water Management Act, 2010), specific policy (Flood
and Coastal Erosion Risk Management Policy, 2020), and strategies
developed by local resilience forums, as well as a plethora of actors
with distinct responsibilities to help mitigate flood risks. Flooding is
the only disaster of the three that is explicitly reflected in the
adaptation plans and counts with a growing budget for
prevention and preparedness. Between 2021 and 2027, the
government has allocated the highest amount to manage floods
risks (£5.2bn), with an additional 336,000 properties being
safeguarded, and twenty-five local areas able to advance their
actions and plans against flood and coastal erosion risks (ibid.).
Flood insurance schemes, flood defense and regional flood defense
committees serve well the purpose of prevention and preparedness
to risks. By 2024, a new national assessment of flood risk will
compose the reforms to the United Kingdom’s planning system,
aimed at safeguarding that future flood risks are considered in
decision-making, including through policies and mechanisms that
can ensure that effectively (DEFRA, 2022). For the protection
against coastal flooding and coastal erosion, an additional
£1 million is allocated for the work conducted between
Environment Agency and coastal authorities updating the Shoreline
Management Plans that will set the priority areas of action and funds for
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adaptation. A roadmap to accelerate the uptake of property flood
resilience is also being developed together with several changes to
the Flood RE Scheme, so that additional funds (above the cost of a
claim) are available to flooded properties above the cost of a claim
(CCRA, 2022). There is also a strong commitment to develop national
set of indicators tomonitor trends and understand impacts of flood and
coastal erosion risk management policies, with aim to safeguard that
communities can build resilience (ibid.).

Heatwaves count with a heatwave plan as the main national policy
instrument formanaging the risks of extreme heat. A drought Plan is one
of the key national policy instruments for managing drought risks. Both
plans are essentially an emergency response plan. More preventative
approaches that can improve community resilience to risks of droughts
and heatwaves will need to consider the factors that can influence an
individual’s vulnerability to the risks of each type of disaster. For
heatwaves, quality of housing and built environment, local urban
geography, lifestyle, income, employment, tenure, social networks, and
self-perception of risk can influence the level of exposure and sensitivity to
extreme heat and capacity to anticipate, prevent, prepare, respond, and
recover. For droughts, actions to help lessen impacts includes building a
water transfer network, plans to deliver additional supply and reduce
demand in case of serious or prolonged droughts, reduce network
failures, water quality incidents, and assess dependencies across
sectors. Many risks are ignored for warmer scenarios, which are
aggravated in the context of missing indicators and lack of specific
laws, regulations, policies, instruments, and institutions relevant to
heatwave and its impacts beyond health. Altogether, it compromises
equitable risk reduction and resilience to all three disasters in the
United Kingdom. There are important governance mechanisms,
lessons and best practices developed to manage flood risks, which are
replicable to enhance the management of the other two types of disasters
beyond plans. For example, advanced flood maps that inform planning
and land-use, strategy for local flood authorities to manage local risks,
asset recovery and business continuity through affordable national
insurance, public-private flood reinsurance schemes and analysis of
impacts of disasters that translate into lessons learned replicable.

In terms of its Critical National Infrastructure better indicators,
analytical tools and cross-sectoral approaches are needed that enable
the assessment of vulnerability of infrastructure and impacts from
disruption due to extreme weather.

TheUnited Kingdom can expect to face warmer andwetter winters,
hotter and drier summers, and rising sea levels, according to the
independent Climate Change Committee looking forward to 2050.
Allocating resources to adaptation and increasing climate resilience
instead of following a reactive repair is necessary. Despite progressmade
with key sectors conducting individual risk assessments, adaptation
gaps are identified across all of them. The current regulatory model for
Critical National Infrastructure in the United Kingdom is based on a
vertical structure, where each sector is regulated and operated
separately, which mirrors the departmental oversight system,
contributing to fragmented approaches to climate adaptation
(Climate Change Committee, 2021; Joint Committee on the
National Security Strategy, 2022). As a result, formal connections
between sectors are lacking, creating gaps in preparedness and
response to climate risks. This will further increase inequalities and
result in long-term consequences for social and economic wellbeing. To
enhance collaboration on interdependencies and improve oversight of
adaptation and resilience, various mechanisms have been proposed,

such as creating a statutory forum for CNI regulators, setting clear
resilience standards for CNI operators, and implementing a stress
testing program against extreme weather and climate change effects.
Infrastructure needs urgent adapted to cope with the potential rapid
effects of climate change, presenting a significant challenge for the
government, operators, and regulators when it comes to all three
disasters we focused on: floods, droughts and heatwaves.

Limitations of study and future research

The National Risk Register has many listed risks, but we focus on
floods, droughts and heatwaves and leave many other climate related
hazard risks out of the in-depth review and analysis. Consequently,
limiting the insights and understanding of gaps in relation other types of
hazards (e.g., extreme cold temperatures). Considering that
approximately 75 local authorities (one-fifth of the country) have
50% of their population living in flood-prone areas (Sayers et al,
2017), further analysis of preparedness and climate adaptation with
focus on local level represents another limitation of this study. We
recommend that future research focuses on the preparedness of local
authorities, considering the barriers they face to manage the risk of
hazards and disasters at local level (e.g., underfunded LRFs). Other areas
for future research, with a focus on the United Kingdom include.

• Climate change adaptation of national infrastructure.
• Cross-sectoral resilience and preparedness considering
cascading impacts of climate related hazards on critically
interlinked sectors (e.g., energy and water).

• Development of equitable resilience metrics for the
United Kingdom.

• Improving analytical tools and methods for risk assessment
across scales and distinct timeframes.

• Public education campaigns on disaster risk reduction and
climate change adaptation.

• Public engagement and acceptance of adaptation measures
and resilience standards for critical national infrastructure,
given consumers will bear costs of high levels of investment to
advance these.

• Assessment of existing emergency evacuation plans and their
limitations in protecting areas with vulnerable population
when multiple infrastructure assets and sectors are affected
by hazards.
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Introduction: Landslide-dammed lake outburst floods (LLOFs) are common
natural disasters in high-mountain regions, posing serious safety threats to
residents’ livelihoods and properties and causing major damage to engineering
facilities. Giant landslides and river damming events commonly occur in the
Eastern Tibetan Plateau in southwestern China. Dam failure generate LLOFs that
formoutburst deposits (ODs). This phenomenon is particularly common in some
giant ancient landslide-dammed lakes.

Methods: This study conducted a detailed investigation of the sedimentary
characteristics of large-scale landslide-dammed lake outburst deposits in the
Diexi Reach of the Upper Minjiang River and Tangjiashan Reach of the Tongkou
River Basin, West Sichuan Plateau, China. Meanwhile, typical evidence of high-
energy ODs was recorded.

Results and Discussion: The longitudinal distribution of these ODs is similar to
an elongated fan-shaped terrace along the river channel, presenting a distinctive
sedimentary disordered–sub-ordered–ordered sequence from upstream to
downstream. Several typical units of “sedimentary facies” are developed in
the OD profiles, such as boulder units deposited by high-energy outburst
flood (OF) events and the gravel and sand units representing pulsating-flow
sedimentary environments during the recession stage. The grain size frequency
curves are bimodal, and the granularity accumulated curves are upward convex,
which reflect that the detrital characteristics of the sediment source area are
mainly composed of coarse gravel and boulders. This indicates that the coarse
gravel sediment gradually become decreased from upstream to downstream.
Moreover, the OD hydrodynamic intensity displays a gradual weakening, and
sediment sorting is improved. From upstream to the downstream, the mean
particle-size and sorting of the ODs gradually decrease. The skewness become
larger, and the kurtosis of the ODs is distributed in all the types. In addition,
the different combinations of quartz sand surface microtextures indicate the
transformation from high-to low-energy impacts over a short distance, which is
controlled by flood hydrodynamics and regime.

Significance: These sedimentary characteristics of ODs explain the
hydrodynamic changes during the propagation of OFs, and are also important
records for distinguishing between ODs, and “normal” floods.

KEYWORDS

landslide-dammed lake, dam breach, outburst floods (OFs), outburst deposits (ODs),
sedimentary characteristics, western Sichuan of China
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1 Introduction

Catastrophic flood events are the most destructive natural
disasters in the world (O'Connor et al., 2002; Herget and Fontana,
2019; Wang H. et al., 2022), and their complete frequencies
and magnitudes cannot be captured by direct observation or
measurement (Baker, 2008; Korup and Clague, 2009; Wang et al.,
2023a; Benito et al., 2023). It is crucial to reconstruct flood
records on the scale of millennia or thousands of years based on
geological, geomorphological and chronological flood indicators
(Carling, 2013; Chen et al., 2018; Ma et al., 2018; Baker et al.,
2022; Baker and Carling, 2022; O'Connor et al., 2022; Quesada-
Román et al., 2022). Affected by global warming, the hydrological
and climatic changes in the Tibetan Plateau are intensifying, which
increases the risk and occurrence of dammed lake OFs (Korup and
Montgomery, 2008; Roe et al., 2017; Shugar et al., 2020; Bazai et al.,
2021; Taylor et al., 2023). In recent years, an increasing number
of studies on catastrophic flood events have been conducted in
the Tibetan Plateau (Herget and Fontana, 2019; Baker et al., 2022;
O'Connor et al., 2022; Yang et al., 2022). In most of the catastrophic
flood cases, dammed lake OFs account for the largest number
and widest distribution (Carling, 2013; Srivastava et al., 2017;
Liu et al., 2019; Borgohain et al., 2020; Fan et al., 2020; Ma et al.,
2022; Yang et al., 2022; Wang et al., 2023b).

There are more than 200 dammed lake OFs known on Earth,
with peak discharges exceeding 108 m3/s, and their peak discharges
aremore than 100 times that of the knownmaximummeteorological
flood (O'Connor et al., 2002). In the research by O'Connor et al.
(2022), of the 241 cases of dammed lake OFs on Earth with
precise peak flow records, 25 were caused by landslide-dammed
lake outburst floods (LLOFs). Among these LLOFs, the high
mountainous areas of the Tibetan Plateau in southwest China have
the highest distribution. These LLOFs often have profound and
lasting impacts on regional geomorphological evolution (Korup
and Montgomery, 2008; Korup, 2012; Liu et al., 2018; Fan et al.,
2020; Ma et al., 2022). Moreover, the outburst floods (OFs) will
also cause a large influx of freshwater resources into the ocean,
which is closely related to the fluctuations of the Quaternary
climate (Teller et al., 2002). Therefore, reconstructing historical
floods on the Tibetan Plateau and analyzing their sensitivity to
climate conditions will contribute to a better understanding of the
impact of future climate change on extreme hydrological events
(Knox, 2000; Benito et al., 2015; Støren et al., 2016; Harrison et al.,
2018; Baker et al., 2022). In addition, the study of dammed lake
OFs has profound significance for river evolution, mountain
environmental changes, and human civilization development
(Baker, 2008; Peng and Zhang, 2013; Liu et al., 2019; Fan et al., 2020;
Wang et al., 2023b; Taylor et al., 2023).

For modern dammed lake OFs, there are usually historical
or detailed data records, such as the 1933 Diexi Earthquake (25
August 1933, Ms.7.5), which resulted in 11 landslide-dammed
lakes in the Diexi area, Sichuan, China, which breached on
October 9 and killed approximately 2,500 people (Li et al., 1986).
Another example is the Tangjiashan dammed lake induced by
the Wenchuan Earthquake in 2008 (Cui et al., 2012; Peng and
Zhang, 2013; Chen et al., 2015; Wang Z. et al., 2022) and the Baige
dammed lake in Jinsha River in 2018 (Tian et al., 2020; Zhong et al.,
2020; Liu et al., 2021; Zhang et al., 2023), both of which have

detailed data on the OFs. However, there are no records of
ancient OF events, particularly those that occurred during the
geologic era, which need to be deduced using geomorphology,
hydrology, sedimentology, meteorology, and other methods. The
OF sediments (outburst deposits, ODs) formed in the lower
reaches of the dams are become the most direct evidence of
OFs induced by dammed lakes. Analyzing the distribution and
sedimentary characteristics of ODs is of great significance for the
paleohydrological reconstruction of dammed lake OFs (Dai et al.,
2005; Carling, 2013; Chen et al., 2013; Wang P. et al., 2014; Ma et al.,
2022; Wang et al., 2023a; Wang et al., 2023b).

Currently, research cases and data on landslide-dammed lakes
and LLOFs mainly focus on the causes and processes of landslide
damming, lake evolution, dam stability and breach mechanism,
hazard assessment and mapping, geomorphic consequences, and
sedimentary and controlling effects of the LLOFs on mountain
topographic and climatic features (Costa and Schuster, 1988;
Huggel et al., 2002; Ermini and Casagli, 2003; Korup et al., 2010;
Peng and Zhang, 2012; Walder et al., 2015; van Gorp et al.,
2016; Zheng et al., 2021; Wu et al., 2022). Theoretical and model
experimental studies have mostly been conducted (Chang and
Zhang, 2010; Schmocker et al., 2014; Shi et al., 2015; Jiang et al.,
2018; Jiang and Wei, 2019; Zhou et al., 2019; Zhu et al., 2019;
Zhong et al., 2021). However, there are still some unresolved
problems in the study of the relationship between the sedimentation
process of ODs and the dynamic characteristics of flood evolution.
The theoretical system is not yet perfect, and there are conflicts
among many pieces of evidence. Therefore, new sedimentary
evidence is needed to support these issues (Lord and Kehew, 1987;
Cutler et al., 2002; Borgohain et al., 2020; Wang et al., 2023a). An
abundance of ODs was discovered to be preserved in the Diexi
Reach of the Upper Minjiang River and Tangjiashan Reach of
the Tongkou River Basin (Ma et al., 2018; Jiang and Wei, 2020;
Jiang et al., 2021; Ma et al., 2022). These ODs were formed by
LLOFs induced by a giant ancient landslide-dammed lake and
the Tangjiashan dammed lake, respectively, and they have good
comparability in terms of deposition distribution, sedimentary
characteristics and profile structures. Fromancient tomodern times,
these two cases present distinct contrasts and distinctive features,
providing important sedimentary evidence for the giant landslide-
dam breach events in Western Sichuan, China. The main purposes
of this study are as follows: i) to explore the geomorphological and
sedimentary characteristics of the ODs in the Diexi Reach of the
Upper Minjiang River and Tangjiashan Reach of the Tongkou River
Basin; ii) to analyze the hydraulic characteristics of the LLOFs;
and iii) to explore the discrimination indicators between dammed
lake OF events and other “normal flood” events. This study has
a good practical significance for flood disaster prediction and
mitigation of dammed-lakes’ failures at present and in the future
at the southeastern margin of the Tibetan Plateau.

2 Regional settings

The West Sichuan Plateau acts as a transition zone between
the Tibetan Plateau (the First Gradient Terrain, and the altitude
is more than 3,500 m) and the Sichuan Basin (the Second
Gradient Terrain, and the altitude is between 1,000 and 2,000 m)
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(Figure 1A), with a vertical drop of more than 2,000 m between
the two terrains. This region is in the “Tethys–Himalayas–Tectonic
Zone,” surrounded by triangular geological structures composed
of the Songpan–Ganzi geosynclinal fold belt (NWW direction),
the West Qinling geosynclinal fold belt (EW direction), and
the Longmenshan–Minshan fault zone (NE direction). Some
complex tectonic structures have developed in this area, such as
the well-known “NS-Trending Tectonic Zone” (Wang et al., 2011;
Zhang, 2013) and several groups of major active fault zones—the
Longmenshan–Minshan, Minjiang, Huya, and Yingxiu–Beichuan
fault zones (Figure 1A). The study area is characterized by frequent
fault activities, frequent earthquakes and poor stability. Several
historical large-magnitude earthquakes have occurred in the past
2,000 years, including some large-scale ancient seismic activities
(Ran et al., 2008; Wang et al., 2011).

The Diexi Reach belongs to the middle section of the Upper
Minjiang River, located between Songpan County (upstream)
and Maoxian County (downstream) in A’ba Prefecture, Sichuan
Province, with distances of 80 km and 60 km, respectively
(Figure 1A). Deep incisions along the Upper Minjiang River
resulted from intense tectonic uplift at the West Sichuan Plateau
in the southeastern margin of the Tibetan Plateau since the late
Cenozoic (Li et al., 1986; Burchfiel et al., 1995; Xue et al., 1998;
Gao et al., 2002). This region is characterized by high mountains
and deep valleys with heights of ∼3,000 and 1,500 m, respectively.
Owing to the deep incisions, U- or V-shaped gorges are the main
features of the valleys, with steep slopes, mostly above 60°. The
valleys are relatively wide, ranging from tens of meters to several
hundred meters. Many small canyons are distributed on both sides
of the river, mostly alternating between mountains and rivers.
According to the regional geological survey report of the Sichuan
Provence (RGSTS, 1975), the lithology in the area mainly consists
of sandstone, phyllite, limestone, and griotte. It is evident that these
rocks have experienced different degrees of regional metamorphism
(Figure 1B). The drought phenomenon in this region is relatively
serious, belonging to the subtropical plateau–continent monsoon
climate, with an average annual rainfall of only 420 mm. The
Minjiang River is a perennial hydrographic system in this region,
with an annual average flow of 21.178 billion m3, which is mainly
supplied by atmospheric precipitation (Ma et al., 2022). In addition,
the Diexi Haizi dammed lakes, caused by the 1933 Diexi Earthquake
are composed of Shanghaizi (or Dahaizi) Lake and Xiahaizi (or
Xiaohaizi) Lake, with a maximum width of 692 m, ∼80 m in depth
and length of more than 10 km (Figure 1C). The total catchment
area on the Diexi Haizi is approximately 3.15 km2, among which,
the catchment areas of the Shanghaizi and Xiahaizi Lakes are 1.8
and 1.35 km2, respectively, and the corresponding volumes are 7 ×
107 and 5 × 107 m3, respectively (Figure 1C).

The Tangjiashan dammed lake is located in the Tongkou Reach
of the FujiangRiver.The landslide dam is approximately 6.5 kmaway
from Beichuan County downstream and approximately 74.5 km
from the Diexi dammed lake. The Tangjiashan Reach is a V-shaped
valley with a steep right bank (40°–60°) and a gentle left bank
(∼30°) terrain, and many small gullies are developed. The water
level in the Tangjiashan Reach is approximately 0.5–4.0 m, with a
water surface elevation of approximately 664.7 m (dry season) and
width of <300 m before the 2008 Wenchuan Earthquake occurred
(Cui et al., 2012; Chen et al., 2015). The Tangjiashan region has

a subtropical monsoon climate with an uneven distribution of
rainfall and an average annual rainfall of 1,335 mm, which is
concentrated in summer (May to September). The inflow during
the formation stage of the barrier lake is approximately 80 m3/s
(Bo et al., 2015; Wang Z. et al., 2022). The landslide dam in the
Tangjiashan Reach is a long strip with a length of 803.4 m along
the river and a maximum width of 611.8 m in the transverse
direction. The top width of the landslide dam is approximately
300–310 m, and the lowest and highest points of the dam crest
have elevations of 752.1 m and 793.9 m, respectively. The estimated
volume is approximately 20.37 million m3, and the catchment
area of the Tangjiashan dammed lake is 3,550 km2. On 21 May
2008, the lake water elevation reached 711.0 m, with a volume of
approximately 72.5 million m3. A relatively wide new river channel
was formed after the completion of discharge, with a curved shape
protruding toward the right bank. The length and bottom width of
the new central river channel are approximately 890 m and 100 m,
respectively, with a depth of 40–60 m (Cui et al., 2012; Chen et al.,
2015; Zhao et al., 2018; Xiong et al., 2022).

3 Materials and methods

3.1 Sedimentological investigation

Previous studies have commonly used slack water deposits
(SWDs) (Jarrett and England, 2002) as paleo-stage indicators
(PSIs) of ancient floods (Guo et al., 2017; Ruiz-Bellet et al., 2017).
Paleoflood SWD-PSI is a type of suspended sediment with a sharp
decrease in flow velocity under high water level stagnation (or
backwater) environments, usually consisting of fine-grained sand,
clay and silt with parallel bedding (Guo et al., 2023; Mao et al.,
2023). It is considered to be a complete paleoflood deposit with
significant precise water level indicators (Baker and Carling, 2022;
Benito et al., 2022). SWDs are widely used for reconstructing
smaller-scale paleoflood events (Benito et al., 2003; Baker, 2008;
Huang et al., 2010; Wang L. et al., 2014; Mao et al., 2016). However,
SWDs in the alpine canyon river system in a large-magnitude and
high-energy OF environment are difficult to preserve but instead
formODsmainly composed of coarse gravel (Carling, 2013).TheOF
induced by a giant landslide-dammed lake is a typical “Megaflood”
(Baker and Carling, 2022; O'Connor et al., 2022), which forms an
abundance of ODs on the bank and riverbed downstream of the dam
(Wang P. et al., 2014; Chen et al., 2018; Ma et al., 2018).

Typical large-scale landslide-dammed lakeODswere discovered
in the Diexi Valley of the Upper Minjiang River and the Tangjiashan
Valley of the TongkouRiver.The sedimentary characteristics of these
ODs are significantly different from those of mountain river facies,
normal floods, alluvial fan, and debris flow. In this study, we focused
on examining and analyzing the geomorphologic environment and
sedimentary sequences of the ODs in the Diexi Valley of the Upper
Minjiang River and the Tangjiashan Valley of the Tongkou River,
including the following: i) investigating the outcropping sequence
strata and geomorphic characteristics of ODs, such as exposed
sites, channel expansions and constraints, channel bends, channel
branching, and obstacle shadows; ii) recording the sedimentary
characteristics of profile outcrops, including bed geometry, bed
thickness, bed contacts, color, grain size, texture, and internal
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FIGURE 1
Study area. (A) Map showing the study area and outline of the active tectonics in the East Tibetan Plateau; (B) Lithologies of the exposed bedrocks in
the Diexi region of the Upper Minjiang River, and the distribution of the Diexi ancient landslide-dammed lake, lacustrine sections, and ODs
(modified from Ma et al. (2022)); (C) Topography of the Diexi paleo landslide area. The base image was captured and modified from “Google Earth”
(date: 9 January 2016). The Diexihaizi lakes are modern dammed lakes induced by the Ms. 7.5 Diexi Earthquake that occurred in 1933.
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FIGURE 2
(A) Locations of the ODs sections and sampling sites. The base image was captured and modified from “Google Earth” (date: 9 January 2016); (B)
Scatter plot of the altitude and relative distance of sampling sites.

sedimentary structures, to determine the hydrodynamics during
the OF stage.

3.2 Sampling

In sedimentology, studying grain size characteristics is the
most important aspect of the sedimentary characteristics of
clastic sediments. Grain sizes can reflect the transporting dynamic
environment and are one of the main characteristics of the deposits.
In this study, the ODs distributions in the Diexi Reach of the Upper
Minjiang River in the vertical direction were divided into upper,
middle, and lower sections (Figure 2). 3 sets of grain size samples
were collected from per ODs profile, and each set contained 3
samples from different layers, with approximately 1 kg per sample.
A total of 72 grain size samples were collected. Table 1 shows the
characteristics of the sampling sits.

3.3 Granularity experiment

The ODs grain size characteristics were tested by laboratory
sieving analysis with a set of standard sieves measuring 4, 2, 1,
0.5, 0.25, 0.125, and 0.0625 mm. Then, an arithmetic method of
moments is utilized to determine the grain size parameters (mean

particle size, sorting coefficient, skewness, and kurtosis) of the
ODs in the study area (McManus, 1988). These are quantitative
indicators which effectively reflects the grain-size characteristics
and sedimentary environments (Gao and Collins, 1994; Blott and
Pye, 2001; Blott and Pye, 2012). Meanwhile, approximately 300 g
of fine ODs was collected from per grain size sample for the
surface microstructure analysis of quartz sand using a scanning
electronmicroscope (model: Zeiss supra 55). In previous researches,
microtextures have been recombined into several microstructure
families (Mahaney and Kalm, 2000; Costa et al., 2012; Molén, 2014),
which are used to distinguish depositional environments such
as desert and glacial sediments (Bellanova et al., 2016). In this
study, the comprehensive surface microstructure analysis of ODs
quartz sand was performed to classified different characteristics
(Immonen, 2013; Chen et al., 2019).

4 Results

4.1 Sedimentary records of landslide-dam
breach events

4.1.1 The Diexi Reach in the Upper Minjiang River
In this study, several typical sedimentary and geomorphological

features were discovered in the Diexi Reach of the Upper Minjiang
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TABLE 1 Descriptions and locations of the ODs sections and sampling sites.

Sampling
site

Distance
from the
relict
landslide
dam (km)

Exposed
length (m)

Maximum
thickness
(m)

Top
elevation
(m)

Sample
height
above
channel
bottom (m)

Location

Latitude/N Longitude/E

1 0.45 120 9.3 2024.7 8.4 32°01′24.86″ 103°41′08.84″

2 0.8 150 25 2032.9 6.0 32°01′20.81″ 103°40′57.71″

3 1.2 78 18 2027.2 13.2 32°01′11.38″ 103°40′58.11″

4 1.6 25 4.2 1972.8 8.4 32°00′57.56″ 103°40′45.00″

5 2.0 110 8.5 1964.3 8.5 32°00′48.91″ 103°40′40.22″

6 2.6 60 3.4 1949.4 5.2 32°00′30.36″ 103°40′37.12″

7 3.2 30 2.2 1929.2 4.7 32°00′11.77″ 103°40′33.35″

8 4.9 62 4.9 1893.5 1.9 31°59′23.22″ 103°40′25.27″

River. A relict paleolandslide dam in Jiaochang Village of Diexi
Town, lacustrine deposits with a length of approximately 30 km
upstream, and an abundance of outburst sediments at approximately
5 km downstream of the Minjiang River were well preserved
(Figure 3), indicating that a distinct damming incident had occurred
in the Upper Minjiang River that formed a giant paleodammed lake,
and that the dammed lake subsequently breached and caused a large
OF in the late Pleistocene (Ma et al., 2018).

EightODs sections (Table 1)were discovered onboth riverbanks
at the downstream reach of the Diexi paleo-dam (Figure 4A).
The lithology of the exposed ODs are detailed in Figures 4B–I.
These deposits present distinctive sedimentary sequences and
characteristics. From upstream to downstream, a depositional
model in a disordered–sub-ordered–ordered sequence is shown
in the distribution of sedimentary profiles. The deposits profile at
site 1 (near the breaching gate) are mixed and disordered, without
obvious bedding and sedimentary structures (Figure 4B).The gravel
in this profile section poorly arranges, with a maximum size of
3.5 m in diameter and “Floating Clasts” characteristics (Russell and
Knudsen, 1999; Carling, 2013). The profile and flat surface of the
gravel are slightly inclined downstream, with an inclination angle
of approximately 7°–9°. Approximately 300 m downstream from the
breaching gate, several sedimentary layers appear in the ODs profile,
and large boulders are clustered (Figure 4D). Sedimentary layers
and bedding characteristics become more obvious in the middle
and lower sections than that in the upper section, and a special
sedimentary structural unit with a rhythmic interbedding of coarse
and fine gravel layers appeared. The bedding is nearly horizontal or
slightly inclined downstream. The coarse- and fine-grained layers
composed of rhythmic units represent the various “cycles” at site 7
in the lower section (Figure 4H).

These special sedimentary features explain the hydrodynamic
changes of the OFs, and are also important indicators for
distinguishing the ODs from the other types of sediments in the
study area. Some typical “sedimentary facies” units of boulder

(Bcm), coarse gravel (Gm), fine gravel (Gfm), fine sand-gravel
(Grm), and sand (St, Sp, and Sh) can be identified from these
depositional profiles (Figures 4B–I) and are described as follows:

- Bcm: clast-supported massive coarse boulder gravel layer, with
gravel, cobbles, and sand matrix;

- Gm: clast-supportedmassive coarse gravel layer, with boulders,
cobbles, and sand matrix;

- Gfm: massive clast-supported fine gravel layer;
- Grm: massive matrix-supported fine granule-gravel layer;
- St: trough cross-bedded sand layer, with fine gravel;
- Sp: planar cross-bedded sand layer, with fine gravel;
- Sh: massive to thinly laminated medium-coarse sand layer,

with fine gravel.

The large boulders in the Bcm units were usually clustered
within all of the profiles were laterally extensive, which were
approximately horizontal throughout. This unit could be
continuously traced between every two profiles, with massive
and clast-supported structures. In addition, large numbers of
subrounded to rounded boulders were commonly distributed on the
riverbed, usually forming ODs terraces, which were mostly covered
with bushes and grass, indicating a low water level stage after a high-
energy flood flow. The gravel units (Gm, Gfm, and Grm) underlay
and overlay the Bcm units, with a lateral expansion from several to
tens of meters, which were typically structured by matrix-supported
or massive, medium-coarse sandy or silty sand matrices. Sand units
(St, Sp, and Sh) were found to exist among the Bcm and gravel units
in several sections, forming thin layers or lenses with a maximum
thickness of 0.5 m and appearing at different levels. The sand units
were horizontally stratified, and contained scattered pebbles.

4.1.2 The Tangjiashan Reach in the Tongkou River
Tangjiashan ODs are distributed from downstream of the

landslide dam to Beichuan County, with a length of approximately
5 km (Figure 5). Based on the Google Earth image on 25 December
2015, and field investigations, it was found that the ODs in the reach
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FIGURE 3
Sedimentary geomorphology features in the Diexi Reach of the Upper Minjiang River. (A) Spatial characteristics of sedimentary distribution and
topography; (B) Longitudinal profile showing the relict paleolandslide dam in Jiaochang Village of Diexi Town, lacustrine deposits in the upstream, and
ODs along the downstream of Minjiang River.

fromTangjiashan to Beichuan can be divided into the upper,middle,
and lower sections by the first right turning point of the river channel
and the Kuzhuba suspension bridge (Figure 5A). The sedimentary

characteristics of the ODs in the three sections are different and
form a corresponding relationship with river channel bending. In
addition, there were significant distribution changes in the middle
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FIGURE 4
Distribution and lithologic columns of the ODs sections of the Diexi paleolandslide-dammed lake. (A) Geomorphological characteristics of the Diexi
region, and locations of the ODs sections. The base image was captured and modified from “Google Earth” (date: 9 January 2016); (B–I) field
photographs and lithologic columns of the profiles at sites of ODs 1–8, respectively.

and lower sections of the ODs in the Google Earth image on 20
March 2020 (Figure 5B), which could have been caused by human
activities.

The ODs in the upper section (sites 1–4) are distributed in
the river valley at a distance of 1.5 km from the landslide dam to
the first river bending. Among them, ODs 1 is the largest one,
which is distributed in a long strip along the left bank of the river,
forming a large platform similar to an “accumulation terrace”. An
artificial prospecting trench with a length, width, and height of
approximately 5.0, 3.0, and 1.0 m respectively, was explored at the
tail of this accumulation profile, and the sedimentary characteristics
were clearly visible (Figure 6A). ODs 2 is distributed on the opposite
bank (right bank) of the prospecting trench, which is 1.0–2.0 m
above the water surface (Figure 6B). Moreover, ODs 3 is pendant-
shaped in the river channel, which is small in scale and originally
part of ODs 2, separated by river flow cutting.

The middle section of the Tangjiashan ODs is distributed
between the first and second major bends of the river channel
downstream of the landslide dam, with a length of approximately

2.0 km, including ODs 5–7. The most typical exposed profile in
this section is ODs 7 located near the Kuzhuba Hydroelectric
Station, which has good continuity and integrity (Figure 5A).
The planform of ODs 5 is shuttle shaped, with a prominent
vertical exposed profile developed at the end. Although the upper
part of the profile is covered by a pile of rubble, a certain
arrangement structure can still be recognized (Figure 6C). ODs
6 is distributed on the right bank of the river bend, protruding
outward, forming a flat half-moon shape. The fan-shaped ODs 7
extends along the left bank of the river. A typical vertical profile
is exposed on the southeast side of the Kuzhuba Hydroelectric
Station, with a thickness of approximately 4.0 m and well-developed
sedimentary features (Figure 6D). Approximately 200 m upstream
of the Kuzhuba suspension bridge at the end of the middle section,
gravel content is lower than that of the upper and middle parts, and
the gravel size decreases.

ODs 8–12 in the lower section are located at the third
river bend downstream of the Tangjiashan landslide dam, with
relatively scattered distributions and small scales (Figure 5A). ODs
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FIGURE 5
Distribution locations and geomorphological characteristics of Tangjiashan ODs in the Tongkou River Basin. (A) Distribution and geomorphological
characteristics of the ODs in 2017, with a “Google Earth” image date of 25 December 2015; (B) Distribution and geomorphological characteristics of the
ODs in 2017, with a “Google Earth” image date of 20 March 2020.

8, 10, and 12 lie in the river channel, forming gravel diara
deposits. These gravel diara are 2.0–3.0 m thick with high gravel
content and large gravel (Figure 6E). The presence of gravel diara
also indicates that this location is approaching the end of the
Tangjiashan ODs. ODs 9 and 12 are the two larger accumulations
in the lower section, both of which have a half-moon shape.

Several typical sedimentary structures develop in the profile
of ODs 9 (Figure 6F).

The Tangjiashan ODs can be longitudinally divided into five
depositional types: erosional residual-dam deposits, backwater
deposits, and fan-apex deposits in the upper section; fan-in
deposits in the middle section; and fan-margin deposits in the
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FIGURE 6
Distribution characteristics of Tangjiashan ODs. (A) The artificial trench at the end of ODs 1 in the upper section; (B) The distribution characteristics of
ODs 2 and 3 in the upper section; (C) Profile characteristics at the end of ODs 5 in the middle section; (D) Profile characteristics of ODs 7 on the
southeast side of the Kuzhuba Power Station in the middle section; (E) Gravel diara deposits in the river center of the lower section; (F) Profile
characteristics at the end of ODs 9 in the lower section (See Figure 5 for the locations).

lower section (Figure 7). Six types of sedimentary facies, including
Bcm,Gm,Gfm,Grm, and Sp/Sh, are presented in the vertical profiles
of the ODs.

The erosional residual-dam deposits is an accumulation unit on
the new river channel after lake discharge, which is characterized
by several juxtaposed large gravel diara deposits, mainly composed
of poorly sorted gravel. In addition, multiple boulders are scattered
on the top residual dam, either horizontally on the diara island
or in the river channel. The maximum boulder has a particle

size of approximately 8 m and weighs 300 t (Figure 8A). The
backwater deposits are composed of sorted sand and fine gravel,
with clear horizontal bedding and varying layer thicknesses. The
upper and lower parts of the backwater deposits are composed
of Grm, and the middle part is composed of multilayer sand
faces (St/Sh) (Figure 8B). This is due to the low flood level in
the early stage of dam failure, resulting in backflow on both
sides of the barrier dam (Figure 5A), which is a sign of early
water level drop.
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FIGURE 7
Schematic diagram of the longitudinal profile showing the Tangjiashan ODs’ sedimentary characteristics. The freehand sketch was
initially drawn by Cui et al. (2013).

The boulders on the riverbed and diara island of the fan-apex
deposits in the upper section, with particle sizes ranging from
a few centimeters to several tens of centimeters, are obviously
reduced.The exposed profile of the prospecting trench shows typical
sedimentary characteristics (Figure 8C). This vertical profile has
obvious stratification, but does not have rhythm.Thegravel in profile
likely formed into imbrication structure characteristics. In addition,
the ODs on the diara island and south bank of the river contain few
gravel components but more silt. There are loose gravel deposits at
the foot of the profile, indicating that the gravel structure in these
ODs is unstable and easily scatters under river erosion or gravity.

There are almost no large boulders (particle size >1 m) on
the riverbed and diara island in the middle section. A five-
story building of the Kuzhuba Hydropower Station buried by
the ODs 7. The estimated maximum thickness of the ODs in
this section must be more than 15 m (Figure 8D). This also
intuitively reflects the water depth of the Tangjiashan LLOFs at
the flood stage. Figure 8E shows sedimentary characteristics of
an exposed ODs 7 profile on the southeast side of the Kuzhuba
Hydropower Station, with clear bedding and structures. There is
a clear rhythmite-interbedded structure in the profile horizontal
bedding. Five “cycles” could be found in this profile, illustrating
that five flood peaks of the LLOF would occur in the dammed-
break period. This depositional profile has developed boulder facies
(Bcm) and gravel facies (Gm, Gfm and Grm). The coarser gravel
layer presents gravel support-stacked, cavitation, stone-in-line and
imbrication structures. Clustered gravel in the profile exhibits a
“huddling” phenomenon. These sedimentary characteristics explain
the regular changes in the hydrodynamic conditions of the OFs at
the time of breaching.

The gravel diara on the riverbed of the lower section is
mainly composed of fine gravel (<10 cm) and sand. The scale and
quantity of gravel diara have increased, resulting in more river
bifurcation. Because of the weakening of flood dynamic conditions
in the lower section, the pulsating-flow characteristics were also
weakened, which makes the stratification characteristics of the
ODs indistinct. The exposed profile of ODs 9 in this section
presents a combination pattern of an overhead gravel layer at the

lower part, a cemented dense diamicts layer in the upper part,
and a slightly inclined bedding layer downstream of the riverbed
(Figure 8F). The lower gravel layer of this profile is composed of
Gm facies and Bcm facies, with a maximum thickness of 20 cm.
Because of the low sand matrix content in the Bcm facies, the
gravel in the profile does not have a foundation, forming gravel
support-stacked and cavitation structures (Figure 8G). The top
part of the ODs 9 profile is a Bcm unit composed of a mixture
of large boulders and sand, with a thickness of approximately
50 cm. ODs 9 in the middle section extends to approximately
100 m. It is inferred that the lower Bcm and Gm units should
develop in anOF environment with weak hydrodynamic conditions,
whereas the upper Bcm unit represents a turbidity-current flood
environment with strong hydrodynamic conditions. A similar ODs
profile appears approximately 50 m downstream from the above site,
with a thickness of only 1.0 m, developing Bcm facies sandwiched
with a lens of thinGfm facies (Figure 8H).Most boulders in the Bcm
unit are poorly rounded and disorderly arranged, showing many
cavitation structures.These sedimentary characteristics indicate that
this profile must have been formed by the rapid accumulation of
high-energyOFs, and later eroded by low-energy floods, causing the
fine-grained matrix components to be washed away.

Under the Kuzhuba suspension bridge, the sedimentary profile
at the end of OFs 9 becomes more mixed (Figure 8I). Only a
clearly layered Gfm unit can be distinguished at the bottom of
the profile, which is mainly composed of fine gravel and sand
without cavitation. The particle size of the boulders distributed
in the overlying Bcm unit mostly ranges from 20 to 30 cm and
are mainly plate- or sheet-shaped, with poor rounding and mixed
arrangement. The sand content of the Gm unit in the upper
part of the profile is higher than that of the gravel, and the
flat surface of the gravel has an upstream tendency. The profile
generally presents disordered sedimentary characteristics, with
good cementation, which reflects the fact that when the OF reaches
the lower section, its pulsatility becomesweak due to the influence of
transmission distance and topography, but it still maintains a strong
hydrodynamic condition.
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FIGURE 8
Sedimentary characteristics of Tangjiashan ODs. (A) Sedimentary characteristics of residual-dam deposits. The field photo was provided by Cui et al.
(2013); (B) Sedimentary characteristics of backwater deposits. The field photo was provided by Cui et al. (2013); (C) Sedimentary characteristics of the
prospecting trench at the end of ODs 1 in the upper section; (D) Comparison before and after burring of the original Kuzhuba Power Station in the
middle section; (E) Sedimentary characteristics of the central part of ODs 7 in the middle section. (F–H) Sedimentary characteristics and structures of
the upper part of ODs 9 in the lower section; (I) Sedimentary characteristics of the exposed profile at the end of ODs 9 in the lower
section (See Figure 5 for the locations).
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TABLE 2 Grain size proportion and sample statistics using the arithmetic moment method of the ODs in the Diexi Reach.

Section

Grain size portion (%) Sample statistics

Gravel
(64–2 mm)

Sand
(2–0.0625 mm)

Silt and clay
(<0.0625 mm)

Mean
grain size
(mm)

Sorting Skewness Kurtosis

Upper 72.01 26.68 1.31 19.57 15.65 0.06 1.42

Middle 70.46 28.04 1.50 18.60 15.91 0.06 1.19

Lower 67.12 30.96 1.92 17.21 16.02 0.06 1.11

Average 69.86 28.56 1.58 18.46 15.81 0.06 1.24

4.2 Grain size characteristics

This study determined that the main components (with a
particle size of <64 mm) of the ODs in Diexi Reach are gravel
(69.86%), followed by sand (28.56%), with minimal content levels
of silt and clay (1.58%) (Table 2). Furthermore, from the upper to
the lower sections, the gravel content displays a gradual decrease,
whereas the sand content increases. The strong hydrodynamics of
the OF at the time of dam failure evidently result in rapid deposition
of coarse gravel components, while fine-grained components are
transported downstream. The fine particles (sand, silt and clay)
increased in the middle and lower sections of the ODs, which
illustrates that the OF hydrodynamics decreased. The maximum
granularity distribution of the ODs occurs at 4 mm, which is the
peak of the particle size frequency curve (Figure 9). Furthermore,
the large slope of the frequency curve between 4 and 2 mm indicates
that the granularity distributes in a small interval and that the
particles are relatively concentrated in gravel, which confirms that
the OF is in high energy and strong hydrodynamics, resulting
in gravel depositing quickly. There is a sub-peak (approximate
0.375 mm) of sand content in the upper section (Figure 9A), but
not in the middle and lower sections (Figures 9B,C). However,
the particle composition between 2 and 0.0625 mm (sand content)
increases from upstream to downstream (Table 2), indicating that
the OF energy gradually weakened, and the ODs sorting improved
which was similarly charactered to that of the channel sand
(Ma et al., 2018). In addition, the transport modes of the ODs in the
study area include pushing, saltation, and suspension (Figure 10),
which can reflect the material composition, particle sorting, and
intersection of transport medium (Visher, 1969). The pushing
sections of the grain size accumulated probability curves present
steep-slope characteristics, which reflects the material source is
coarse-grained detritals, consisting with the fact that the ODs
in the study area are mainly composed of gravel components.
Furthermore, the curve slopes of the saltation and suspension
sections quickly flattened and are much smaller than that of the
pushing sections, reflecting a rapid decrease in the content of
coarse-grained components from the upper section to the lower
section. From upstream to downstream, the intervals of the pushing
sections gradually increase, the intervals of the suspension sections
gradually decrease, and the interval differences of the saltation
sections are small. These findings indicate that the coarser-grain
compositions (gravel) decreased and finer-grain compositions (silt

and clay) increased, which resulted from gradually weakened OF
energy, stabilized sedimentary environment and, improved sorting
from upstream to downstream. In the current study, the grain size
characteristics in the upper section of the ODs are similar to those
of the debris flow deposits, whereas the grain size characteristics in
the middle and lower sections are similar to those of the channel
sand sediment. However, with regard to the precise definition of
this new type of sedimentary environment, further in-depth study
is recommended.

The mean particle-sizes of the upper, middle, and lower
segments were 19.57 mm, 18.65 mm, and 17.21 mm, respectively
(Figure 11A). From which we may learn that the mean particle-
size of the deposits has gradually decreased from the upper section
to the lower section. This indicates that a large amount of fine
particles have removed by the OF in the upper section, leaving the
larger particles behind. The average sorting coefficient values are
15.65, 15.91, and 16.02 for the upper, middle, and lower sections,
respectively, with an average sorting coefficient of 15.81, which is
characterized by very poor sorting (Figure 11B). However, from
the upper section to the lower section, the sorting coefficient value
tends to become gradually smaller, which indicates that the sorting
of sediment has improved. The average skewness value is 0.06 for
each section, which belongs to the symmetrical type (Figure 11C).
Thedeposits presents very coarse skewed-type characteristics, which
indicates that the fine particles have easily formed into suspended
matter, and then migrated to the lower section by means of
pushing and suspension. For the entire study area, the kurtosis
values of the sediment ranges between 1.02 and 2.15, with an
average value of 1.24. The very platykurtic kurtosis (<1.7) accounts
for 91.7%, therefore the ODs in the study area belongs to the
very platykurtic type of sediment (Figure 11D). It is determined
that the narrower the kurtosis is, the more concentrated the
particle-size distribution of the samples would be, which confirms
that at least a part of the sedimentary particulates are without
environmental modification, and have been directly transformed
into the environment in this area.

4.3 Surface mechanical microtextures of
quartz grain in outburst deposits

The mechanical microtextures of ODs in the Diexi Reach of
the Upper Minjiang River, such as fractured plate, conchoidal
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FIGURE 9
Frequency curves of the grain size samples from the ODs in Diexi
region. (A) Frequency curve from the samples of the upper section; (B)
Frequency curve from the samples of the middle section; (C)
Frequency curve from the samples of the lower section.

fracture, impact crater, and V-shaped pit, are shown in Figure 12.
The quartz sand surface of in ODs presents a microtexture of the
breakage block with similar large geometry size (Figures 12A,D),
which is generated by strong collisions. This type of microtexture
characteristic is commonly found in the upper section of the
ODs. However, the middle section of the ODs is characterized
by conchoidal fracture (Figures 12C,D), which usually occurs in

FIGURE 10
Accumulated probability curves of the grain size samples from the
ODs in the Diexi region. (A) Accumulated probability curve from the
samples of the upper section; (B) Accumulated probability curve from
the samples of the middle section; (C) Accumulated probability curve
from the samples of the lower section.

mineral particles lacking clear joints caused by strong impact
(Margolis and Krinsley, 1974; Chen et al., 2019). This study shows
that the breakage block frequency in the middle and lower sections
of the ODs is arranged from 25% to 33%, which is less than half
of that in the upper section. From upstream to downstream, the
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FIGURE 11
Grain size distribution curves of the ODs in the Diexi region obtained
using an arithmetic moment method. (A) Mean grain size; (B) Sorting
coefficient; (C) Skewness; (D) Kurtosis.

frequency of large (>100 μm) and medium (10–100 μm) conchoidal
fractures shows a decreasing trend. However, the frequency of
small (<10 μm) conchoidal fractures appearing in the upper and
lower sections was higher than that in the middle section. Among
them, the upper section has the highest frequency of 40.09%
induced by inherited microtextures. The middle and lower sections
have small frequencies of conchoidal fractures, with values of

27.83% and 32.08%, respectively, which reflects that the OF
energy decreased.

Previous studies indicated that impact crater, V-shaped pit,
triangular marks, and impact pit are typical markers observed only
in the lower section of the ODs (Figure 12F), whereas impact craters
are common in the three sections (Figures 12B–E). However, from
the upper section to the lower section of the ODs, the frequency of
impact craters did not increase or decrease significantly. In addition,
scratch, groove andupturned platemicrotextureswere also observed
in the ODs (Figures 12A–C), with a relatively low percentage of
approximately 5.5%. The smooth surface (Figure 12F) with a sparse
content of <6% in the lower section suggests a fast deposition rate at
the flood stage.

5 Discussion

5.1 Difference between the outburst
deposits and other sedimentary types

Overall, the longitudinal distribution of ODs is similar to that of
an elongated fan-shaped terrace along the river channel (Figure 13).
Based on the morphological characteristics and developmental
locations, ODs can generally be divided into upper, middle and
lower sections from upstream to downstream, which presents
an obvious development regulation and distinctive sedimentary
characteristics.

From the perspective of developmental characteristics, the
sedimentary sequences of the ODs are between alluvial and
debris flow facies (Bridge, 1984; Blair and McPherson, 1998;
Moscariello et al., 2002; Ferring, 2020; Miall, 2022). The graded
bedding texture in ODs is clearer than that in debris flow deposits,
but there is no reverse or positive bedding rhythm in alluvial
deposits. With regard to the macroscopic characteristics, the ODs
profiles exhibit the accumulation characteristics of normal fluvial
deposits, such as a large-scale rough sorting mechanism (Bridge,
2006; Dino et al., 2012; Miall, 2013). Meanwhile, on a microscopic
level, they also exhibit the characteristics of diluted debris flow
deposits (Eyles et al., 1988; Sohn et al., 1999), such as mixed sizes
of gravel fragments and extremely inhomogeneous particle sizes,
which reflects a rapid and erratic accumulation process (Ma et al.,
2018). In terms of sediment formation conditions and distribution,
ODs are also different from alluvial and debris flow deposits. On
the one hand, regardless of the scale or flow magnitude of the
material source, the formation conditions of ODs far exceed those
of fluvial deposits, which also results in the absence of rhythmic
characteristics of fluvial deposits in the ODs. On the other hand,
the ODs lack the ability to maintain integrity such as debris flow
deposits, which will still be affected by river transformation in
the later stage. In addition, the ODs’ surface is flat and has a
long extension, with a leading front edge angle generally below
30°, which is different from the sharp-surface sedimentary facies
of alluvial deposits and the large-angle front edge of debris flow
deposits (Blair and McPherson, 1994; Bernhardt et al., 2012; Alván
and von Eynatten, 2014; Chen et al., 2017).

In the microcosmic research of sediments, quartz sand surface
microtextures have been widely applied in the reconstruction of
sedimentary environments (Sweet and Soreghan, 2010; Vos et al.,
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FIGURE 12
Quartz sand surface microtextures of the ODs in the Diexi region (modified from Chen et al., 2019). (A) Quartz sand surface microtextures (Mag =
535×) from site 2; (B) Quartz sand surface microtextures (Mag = 607×) from site 3; (C) Quartz sand surface microtextures (Mag = 396×) from site 4; (D)
Quartz sand surface microtextures (Mag = 483×) from site 5; (E) Quartz sand surface microtextures (Mag = 530×) from site 7; (F) Quartz sand surface
microtextures (Mag = 422×) from site 8; (G) The main surface microtextures changes of quartz sand during the transport.

2014; Gobala krishnan et al., 2015). Based on the statistical results
of quartz grain surface microtextures in ODs, it indicates that
the combination of mechanical microtextures changes obviously
along the transporting distance of the ODs (Chen et al., 2019).
Near the breaching gate, the morphology of quartz grains is
controlled by the breakage blocks, which is similar to the grains
of colluvial deposits (Goudie and Bull, 1984). However, the
inherited microtextural features (e.g., fluvial sediments, lacustrine
sediments and landslide deposits) representing these morphological
modifications are uneven, which may be related to the high
concentrations and rapid deposit process. As the distance increases,
the quartz grains in the ODs become more similar to the grains
from debris flow (Deane, 2010), which are characterized bymedium
conchoidal fractures and impact craters. In addition, the roundness

of quartz sands and frequent V-shaped pits and impact pits also
improved with transporting distance (Figure 12G). The different
combinations of quartz sand surface textures indicated that the
transformation process changed from high energy collisions to low
energy collisions over a short distance, which was controlled by the
hydrodynamic conditions or flow regime (Chen et al., 2019).

In sedimentology, based on sedimentary bedding and sorting
degree, the sedimentary types can generally be divided into
ordered and disordered, or ordered, sub-ordered, and disordered,
and any sedimentary type can only possess one sedimentary
sequence (Harms et al., 1975; Reading, 2009; Cui et al., 2013; Miall,
2022). Nevertheless, due to the influence of dynamic and medium
composition changes during transportation and accumulation, the
ODs will form disordered sedimentary sequence in the upper
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FIGURE 13
Longitudinal plane schematic diagram of the distribution of ODs along the river channel.

section, whereas sub-ordered or ordered sedimentary sequences will
form in the middle and lower sections. It is completely absent in
sedimentary deposits (Ma et al., 2018).

5.2 Different characteristics of the
landslide-dammed lake outburst floods
from “normal” floods

In a “normal” flood stage, low discharge and intensity are
consistent throughout the entire basin, which should form similar
sedimentary characteristics in sediments (McKee et al., 1967;
Mutti et al., 2000; Wang et al., 2023a). However, the ODs exhibited
inconsistent characteristics in the deposits profiles. Near the
breaching gate, the OF is under large-discharge and high-energy,
thus forming disorganized deposits profiles with no obvious
beddings, which are similar to the characteristics of “normal”
flood accumulation. In addition, the gravel in these profiles is
disordered and mixed with some isolated boulders. Subsequently,
with an increase in the transporting distance, the OF discharge and
intensity decreased gradually, and the regularity of sedimentary
characteristics also gradually became observable, such as the
increasingly obvious stratification characteristics and the gradual
reduction of gravel particle size.

Different sedimentary units in the ODs profiles record
contrasting transportation mechanisms. The characteristics of
massive and clast-supported structures, gravel cavitation, no or
poor sorting, and profile thicknesses in the Bcm unit indicate that
its formation conditions are closely related to high-energy flow
(Smith, 1986; Maizels, 1997; Cutler et al., 2002). This is consistent
with the transporting and sedimentation characteristics of OFs,
speculating that they should be accumulated by OFs. Gm, Gfm, and
Grm represent the recession stage of ODs, whereas the thin-layer Sh,
St, and Sp represent a brief sedimentary period under stable weak
hydrodynamic conditions after the accumulation of boulder units
within the same flood peak “cycle”. The isolated boulders in deposits
profiles are transported and rapidly deposited by high-energy
flood flows (Russell and Knudsen, 2002), which provides strong
evidence of LLOFs. In addition, because of the high flow velocity
and transport energy of theOF,most of the fine-grained components

cannot be quickly deposited but are transported downstream for a
longer distance. Therefore, no extremely fine sand and clay units
were found in the ODs.

5.3 Reconstruction of catastrophic paleo
landslide-dammed lake outburst floods

According to the statistics of large floods recorded worldwide
in a previous research, the OFs caused by ice or landslide dams
are much larger than that caused by rainstorms (O'Connor and
Costa, 2004; Benito and Thorndycraft, 2020), and its erosive
geomorphology, sedimentation process, flood magnitude, and
flooding path have distinct temporal and spatial characteristics
(Baker et al., 1993; Carling, 2013). The reconstruction of
catastrophic paleo LLOFs is conducted on the basis of accurate
identification of geomorphological evidence and chronology. The
geomorphological map was completed along the flooding path
during the same period as the catastrophic paleo OFs. Then,
flood level indicators within ODs are identified by comparing and
analyzing the evidence of different types of paleo-flood topography
(O'Connor et al., 2022; Guo et al., 2023).

Hydraulic models for catastrophic paleoflood reconstruction
mainly have two types: stable and unstable. The calculation of
the flow surface profile in the stable hydraulic model assumes
that the geomorphological indicators of the paleoflood are in
close proximity to the maximum flood water level. However, it
is crucial to determine the water level and flow rate of the OF
in the unsteady simulating hydraulic model. In addition, the flow
discharge of the OFs also depends on the water elevation and
volume of the dammed lake and the breaching gate and cross-
section geometry. On the basis of the sensitivity assessment between
geomorphological evidence and water surface elevation changes
of the OFs, the simulating model’s validation was conducted
(Baker et al., 1993; Carling, 2013; Benito and Thorndycraft, 2020;
Benito et al., 2023). In terms of high-energy floods, such as OFs
or flash floods in mountain regions, flow or boulder competence
methods are applicable to estimate the hydraulics of floods using
the relationships between the energy parameters of the flow and the
geometric characteristics of the sediment particles being transported
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by the floods (Costa, 1983;O'Connor, 1993;Ma et al., 2022). Because
of the significant uncertainty of hydraulic parameters used in
these empirical formulas, it is necessary to verify the rationality of
calculating the results in combination with other geomorphological
evidence andmodels (Wohl, 1992; Greenbaum et al., 2020;Ma et al.,
2022). Therefore, detecting the estimated results of discharge and
evaluating the topographic changes caused by OFs is important in
the reconstruction of catastrophic paleo-OFs.

6 Conclusion

During the evolution of LLOFs, materials from the landslide
dam and bank slopes and riverbed are transported downstream
and gradually deposited, forming ODs in the river channel. This
phenomenon is particularly common in some ancient landslide-
dammed lakes. This study discovered the development of large-
scale ODs in the Diexi Reach of the Upper Minjiang River, and
thus obtained a preliminary understanding of ancient giant ODs
and LLOFs. Investigations and studies were also conducted on
Tangjiashan ODs. These have become important means of studying
giant landslide-dam breach events. The accumulation profile has
developed structural features such as imbrication, cavitation, gravel
support stacking, and rhythmic interbedding. Moreover, the ODs
possess some typical “sedimentary facies” Bcm, Gm, Gfm, Grm, and
sand (St, Sp, and Sh). Among them, the Bcm units are deposited by
high-energy OF events, and the gravel and sand units represent the
recession stage of the flood.

This study determined that the main components (with a
particle size of <64 mm) of the ODs in Diexi Reach are gravel,
followed by sand, with minimal content levels of silt and clay,
which mainly originate from the landslide dam. From the upper
to the lower sections, the coarser-grain compositions (gravel)
decreased and finer-grain compositions (silt and clay) increased,
which resulted from gradually weakened OF energy, stabilized
sedimentary environment and, improved sorting from upstream
to downstream. The mean particle-size and sorting of the ODs
all displays gradual decreases from the upper section to the
lower section, which indicates that the sorting of ODs tends to
improve. There is found to be a tendency for the skewness to
become larger from the upstream to the downstream, and the
ODs presents a very coarse skewed type. The kurtosis of the
ODs is distributed in all of the types. The narrower the kurtosis
is, the more concentrated the particle-size distribution of the
samples would be, which indicates that at least a portion of the
sedimentary particulates is without environmental modification,
and is directly transformed into the environment. In addition,
the different combinations of quartz sand surface microtextures
indicate the transformation from high-to low-energy impacts over
a short distance, which is controlled by flood hydrodynamics
and regime.

Overall, the longitudinal distribution of ODs is similar to
that of an elongated fan-shaped terrace along the river channel.
Disordered sedimentary sequences are formed in the upper
section, whereas sub-ordered or ordered sedimentary sequences
are formed in the middle and lower sections, which are completely
absent in sedimentary deposits. The sedimentary sequences of
the ODs lie between the alluvial and debris flow facies. The

graded bedding texture in ODs is clearer than that in debris
flow deposits, but there is no reverse or positive bedding
rhythm in alluvial deposits. With regard to the macroscopic
characteristics, theODsprofiles exhibit accumulation characteristics
of normal fluvial deposits. Meanwhile, on a microscopic
level, they also exhibit the characteristics of diluted debris
flow deposits.

The special sedimentary characteristics of ODs can explain
the hydrodynamic changes during the propagation of OFs and
are important indicators for distinguishing between ODs and
“normal” floods.
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Analysis of urban necessities 
reserve index and reserve 
quantity under emergency 
conditions
Qijun Jiang , Xiaoyang Ji * and Zhijie Rong 

School of Economics and Management, Shanghai Ocean University, Shanghai, China

While maintaining a robust reserve of daily necessities is crucial for urban safety, 
but there is a lack of scientific basis for determining “what to store” and “how 
much to store.” This paper address this gap by classifying and summarizing 
the emergency materials of urban necessities in Shanghai, and establishing a 
corresponding reserve list. By constructing an index model of daily necessities 
reserve, this paper provides a scientific foundation for “what to store.” 
Additionally, the reserve levels of different types of daily necessities are classified 
and managed, the reserve model of emergency daily necessities is constructed. 
This approach clarifies the scientific basis for “how much to store,” overcoming 
the problems of subjective factors interference and the potential mismatch 
between the results of objective weighting method and reality. Furthermore, 
to better cope with emergencies, countermeasures and suggestions are put 
forward: optimizing the material structure of emergency reserves, managing the 
material reserves at different levels, scientifically and reasonably planning the 
amount of emergency materials, and reducing the cost of reserves and improve 
the efficiency of emergency reserves.

KEYWORDS

necessities of life, reserve index, reserve quantity, emergency reserve, city

1 Introduction

Global warming intensifies the instability of the climate system, with frequent extreme 
cold and warm events, and frequent droughts and rainstorms becoming a new normal (1). 
This undescores the importance of constructing an urban necessities reserve system. Under 
the emergency situations of natural disasters, wars, public health incidents, accidents, and 
other serious disasters, such system is crucial for urban residents to maintain their normal 
lives, and it is also an important micro-embodiment of urban resilience (2). In recent years, 
the State Council has repeatedly proposed to improve the reserve mechanism of residents’ 
daily necessities in relevant documents concerning the circulation industry, emergency system, 
and economic system improvement (3). The efficient and accurate management of daily 
necessities in emergencies is a systematic work that requires considering many factors in the 
management process, and the storage requirements and conditions of each type of material 
are different (4). After the outbreak, megacities consolidated and optimized the experience 
model of epidemic prevention and supply, and many cities incorporated emergency supply of 
daily necessities into the smart governance of megacities and the construction of living 
materials support capacity in the strategic rear area according to the idea of “wartime supply, 
peacetime regulation, peacetime combination, and agile switching” (5).
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To improve the emergency support ability of daily necessities in 
emergencies such as public health emergencies, we can focus on four 
key areas: technology, management, storage, and logistics. First, 
we can rely on scientific and technological means to achieve efficiency 
emergency management of daily necessities. This includes establishing 
a scientific and technological support system and building an 
integrated emergency support platform for daily necessities (6). 
Second, it is necessary to improve the emergency material support 
mechanism. This involves creating a coordinated support system, 
identifying and evaluate risks (7), and establishing relevant 
management organizations to provide emergency support for the 
government’s emergency material allocation management (8). Third, 
we should also strengthen research and application of monitoring 
technology for emergency storage channels of daily necessities (9). 
We should further improve the storage system of daily necessities and 
establish a scientific material storage system (10). Fourth, building a 
robust emergency logistics system is essential. This system should 
encompass a command system, channel system, information 
management system, facilities and equipment system, and security 
system (11). At present, China has established a relatively well-
developed urban reserve management system, and the main challenge 
is the reserve of daily necessities. However, the scope of daily 
necessities evolves with societal development, and reserve and 
allocation in sudden disasters constantly face new challenges (12). 
Under the emergency situations, the city’s regular resource allocation 
system becomes easily disrupted. Determine the categories, storage 
quantities, and storage methods of daily necessities (13), and 
identifying approaches to ensure the supply of urban daily necessities, 
are urgent issues that need to be addressed.

The type, quality, and speed of the supply of necessities, as well as 
whether it can meet people’s needs in a timely manner, can indirectly 
reflect the local government’s ability to guarantee emergency response. 
Necessities of life are items that can satisfy the most basic needs of 
people’s survival and life. Although market serves as the primary 
supplier of necessities goods, during emergencies, local governments 
play a crucial role in emergency management by issuing notices 
related to the supply of necessities of life, and providing green channels 
and policy concessions for the relevant enterprises, to ensure that the 
supply of essential commodities meets public needs. While the 
National Classification and Coding of Emergency Materials and the 
Catalogue of Emergency Support Key Materials provide a clear 
description of emergency materials, there is no well-defined judgment 
basis for the confirmation standards of reserve varieties and reserve 
quantities of urban necessities in academic circles and industries. For 
the reserve of daily necessities, simply having more reserves is not 
necessarily better. Effectively improving the reserve efficiency of urban 
daily necessities is an important part of reserve management. This 
paper deepens the research on how government can guarantee 
necessities of life during emergencies such as public health 
emergencies. Existing research on public health emergencies in China 
focus on the exploration of the causes and the construction of the 
system, with less emphasis on the effective emergency reserve 
management under such events. At the same time, although the 
stockpiling of daily necessities has been strongly advocated, there are 
no clear regulations on the quantity and types of daily necessities to 
be stockpiled in cities. Taking Shanghai as an example, this paper 
analyzes the reserve index and reserve quantity of various types of 
daily necessities based on the risk characteristics, environmental 

characteristics and demand characteristics of daily necessities in 
Shanghai, comprehensive risk probability, urban population 
characteristics and other factors. This analysis clarifies the importance 
of different types of daily necessities reserves, improves the 
distribution method of daily necessities in emergencies, promotes the 
construction of the daily necessities reserve theory in emergencies that 
aligns with China’s national conditions and guides practical 
implementation, enriches the contents of emergency support such as 
public health, and has significance for effectively guiding the 
hierarchical management of daily necessities reserves, thereby 
improving urban residents’ livelihood security.

2 Literature review

2.1 Definition and classification of daily 
necessities

In response to emergencies, the government stockpiles a certain 
amount of relief materials to ensure the supply of urban necessities (14), 
especially in case of inconvenient transportation, such as the closure of 
the city caused by emergencies and the shortage of residents’ daily 
necessities. Local departments must then arrange and deploy resources 
in a timely manner to ensure the basic needs of the residents who during 
city closures. The necessities of life are the basic living aid materials used 
to ensure the emergency transfer and resettlement of personnel and 
meet their basic living needs in emergencies. The public’s understanding 
of the word “necessities” can vary (15), and personal views are influenced 
by individual circumstances, making it difficult to reach a consensus on 
the definition of necessities that are completely public-oriented (16). In 
a broad sense, necessities of life cover the protection of food, clothing, 
housing, transportation, medical care, sanitation, and other aspects, 
including but not limited to five functional categories: temporary 
residence, bedding, clothing, food, medical and epidemic prevention. 
From an economic point of view, the demand for daily necessities are 
mostly inelastic, such as food and medical services (17). In other words, 
even during economic fluctuations, the demand for these items remains 
relatively constant. From the perspective of daily life, it also includes 
items such as sanitary cleaning products that can meet the most basic 
needs of people’s survival and life. In 2011, Article 27 of the Emergency 
Management Measures for Market Supply of Necessities by the Ministry 
of Commerce proposed that “in the event of public health incidents 
which are easy to spread, such as mass diseases and animal epidemics, 
it is necessary to focus on the market supply of sanitary and cleaning 
products, protective products, grain, edible oil, salt, livestock and poultry 
products, and convenience foods” (18). Combining this information 
with the list of daily necessities outlined in the Tenth Five-Year Plan for 
Emergency Material Support, Shanghai List of Suggestions for Family 
Emergency Material Reserve and Guidelines for Disaster Relief Material 
Reserve Standards (19), this paper classifies the daily necessities into 
“clothing support, food support, temporary accommodation, sanitary 
products, medical drugs” and other varieties. The clothing support 
category includes regular clothes and warm clothes; Food security 
mainly includes drinking water, finished grain, convenience food, edible 
oil, edible salt, green leafy vegetables, radishes, potatoes, edible fungi, 
fruits, livestock meat, aquatic products, eggs, milk powder and liquid 
milk. Temporary accommodation mainly includes tents, movable tables 
and chairs, folding beds, bedding, pillows and moisture-proof mats. 
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Hygienic articles can be divided into cleaning and disinfection articles 
such as disinfectant alcohol, disinfectant and insecticide, daily necessities 
such as towels, toothbrushes, toothpaste, roll paper and garbage bags, 
and sanitary protection articles such as simple toilets, bath cars and 
garbage bins. Medical drugs are mainly emergency medical kits.

2.2 Differences in demand for daily 
necessities under different emergency 
levels

The State Emergency Management Bureau divides emergencies 
into four grades: I (particularly serious), II (serious), III (major), and 
IV (general). The emergency response is divided into four levels from 
high to low: I, II, III, and IV (20). Level IV refers to general public 
health emergencies, public health emergencies with more than 10 
casualties and less than 29, with more than one case of death and 
critical illness, and other events jeopardizing the safety of public life, 
which are also reported to the people’s government of the prefecture-
level administrative regions. Level III refers to major public health 
emergencies, public health emergencies with more than 30 casualties 
and less than 49 casualties, more than 3 cases of death and critical 
illness, and other events jeopardizing the safety of public life, also 
reported to the People’s Government of the prefecture-level 
administrative regions. Level II refers to major public health 
emergencies, cross-city (prefecture) public emergencies with serious 
casualties, and other events requiring emergency medical and health 
care rescue, and is guided by an expert group sent by the provincial 
government. Level I  refers to particularly significant public health 
emergencies, public emergencies with particularly serious casualties 
across provinces (districts and municipalities), and other events 
requiring medical and health emergency rescue, with the State Council 
sending an expert steering group (21). Taking the sudden flood disaster 
as an example (22), the level of impact on daily life varies depending on 
the emergency response level. When the level IV emergency response 
occurs, the daily life of most residents are minimally affected, and it 
may only increase the purchase of main and non-staple foods such as 
meat and vegetables. When Class III and Class II emergency responses 
occur, there may be more than dozens of casualties, leading to changes 
in demand of daily necessities. On the one hand, it is reflected in the 
increase of food reserves of residents’ families; on the other hand, it 
may be reflected in the increase of medication purchases due to the 
occurrence of casualties. When the level I emergency response occurs, 
not only casualties may occur, but also houses may collapse and people’s 
production and living materials suffer huge losses. This level of 
emergency triggers the need for temporary necessities such as clothing, 
food, temporary accommodation, medical drugs, and sanitary products.

3 Materials and methods

3.1 Model construction of single variety 
reserve index of daily necessities

3.1.1 Screening standard of daily necessities 
reserve

Due to the wide variety of daily necessities, it is impractical to 
reserve all of them. In order to comprehensively evaluate the 

importance and necessity of the reserve of each item of daily 
necessities, it is essential to thoroughly analyse the characteristics of 
daily necessities, reserve costs, and other factors. By constructing the 
single variety reserve index of emergency daily necessities, we can 
scientifically answer the question of “what to store.” This will allow us 
to optimize the category composition and allocation of daily 
necessities reserve, resulting in reduced costs and improved efficiency 
of emergency daily necessities reserves. The emergency necessities 
single product reserve index refers to the importance of maintain this 
particular product in daily necessities reserve. The higher the value, 
the more essential it is to have a sufficient stock of this 
particular product.

In recent years, Shanghai, Beijing, and Guangzhou have proposed 
the concept of establishing a 15-min life circle (23). The typical size of 
a 15-min community life circle generally ranges from 3 km2, with a 
permanent population of 50,000 to 100,000 people and a population 
density of 10,000 to 30,000 people/km2 (24). To understand the 
standard of the daily necessity reserve, we take the 15-min walking 
range as the spatial scale, and allocate various functions and facilities 
required by residents’ basic life (25). Daily necessities are the most 
needed materials for residents to deal with emergencies, and also the 
basic reserve materials to meet the needs of residents’ 15-min living 
circle. After an emergency, the emergency reserve of daily necessities 
can meet the basic needs of the victims. Therefore, meeting consumers’ 
consumption demand is the most important of the screening criteria.

When planning emergency supplies, it’s crucial to consider the 
unique challenges of emergencies and logistics. This means finding a 
balance between shelf life and convenient circulation of goods. To 
address these, it is necessary to implement a multi-item storage 
strategy, to meet the overall nutritional needs of the population while 
maintaining convenient circulation with a relatively small amount of 
single items (26). In addition, given the unexpected nature of the 
emergency and unknown duration, it is also necessary to take into 
account goods that have low storage requirements and extended 
shelf lives.

To sum up, based on the premise of “satisfying consumers’ needs, 
diversifying commodity categories and facilitating storage,” to meet 
the basic reserve material demand of residents’ 15-min living circle 
and improve the energy efficiency of daily necessities reserve, this 
paper puts forward the following screening criteria for the selection 
of daily necessities single product reserve: the selected emergency 
materials of daily necessities must be in the list of Emergency Materials 
Classification and Coding, and the reserve scope should cover four 
aspects: eating, wearing, living and using, which can meet the 
requirements. The reserve of daily necessities should be closely related 
to the needs of life, which is universal. The chosen items should be in 
high demand during disasters when many residents require them. To 
improve the reserve efficiency, it is necessary to give priority to the 
economical varieties, comprehensive in function, convenient to use, 
and easy to reserve (27).

3.1.2 Analysis of factors affecting single variety 
reserve index

When a disaster occurs, emergency managers should first consider 
whether there are available reserve materials. If there are, it will 
be  regarded as a direct acquisition of the materials; if not, it will 
be considered as internal acquisition and external acquisition of the 
materials. The main way of internal acquisition is direct production. 
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In case of emergency, the most important consideration is whether the 
material can be obtained through production in a timely manner. If 
the materials can be produced quickly during an emergency, they are 
considered to be available. Conversely, slow production necessitates 
reserve stockpiling. The primary factor for external acquisition or 
purchase is the market liquidity of the material. Materials with strong 
market liquidity are considered to be available. If the liquidity is not 
strong, the rational decision is to reserve the material for a rainy day. 
To sum up, when it is difficult to obtain a material internally and 
externally, the rational decision is to reserve it, and the storage cost 
and storage resistance of this material will further affect the storage 
strategy. Therefore, this study identifies four key factors for screening 
the single variety reserve index of daily necessities: market liquidity, 
production cycle, storage resistance, and storage cost of materials.

Market liquidity of reserve items. Market liquidity is the possibility 
and speed of market participants to reach a transaction at market price. 
Commercial reserves usually reserve emergency materials and 
equipment with large market liquidity, high storage costs, and short shelf 
life (28). The higher the market liquidity of materials, the easier it is for 
residents to buy such materials in case of emergency. Therefore, the 
influence of market liquidity on the reserves of such materials is negative.

Production cycle of reserved items. When an emergency happens, 
the demand for living materials has the characteristics of timeliness, 
suddenness, and universality. Therefore, when formulating the 
emergency material reserve strategy, the length of the production 
cycle of the material should be considered. Emergency materials with 
a long production cycle are difficult to produce quickly in response to 
an emergency (29), necessitating a larger reserve. Therefore, the 
impact of the production cycle on the reserve of such materials is 
positive. In the context of emergency procurement, emergency 
materials with large demand, short production cycles, and easy 
preservation are usually studied (30).

Storage resistance of reserved items. Storage resistance refers to 
the characteristics that materials can maintain their original quality 
without obvious adverse changes within a certain storage period. 
When considering the storage capacity of a single item, the storability 
of the single item is often considered to reduce the inventory cost of 
emergency materials and the waste caused by deterioration (31). The 
higher the storability of materials, the lower the risk of loss caused by 
storage time, and the influence of storability on the storage capacity of 
such materials is positive.

The reserve cost of a single item. During the storage of materials, 
there may be various storage expenses such as warehouse expenses, 
insurance expenses, inventory damage, and deterioration losses. The 
reserve cost may lead to the problem of overstock of inventory and 
capital occupation. If the materials are excessively reserved, it will 
increase the material reserve cost and lead to the waste of material 
resources. For example, to reduce the impact of disasters, the government 
reserves emergency materials to improve the efficiency of disaster relief, 
but it may not be able to meet the demand for emergency materials for 
unconventional emergencies due to factors such as reserve costs and 
management costs (32). Therefore, to improve the reserve efficiency, 
materials with high reserve costs need to be appropriately reduced.

3.1.3 Calculation of single variety reserve index of 
daily necessities

According to the above analysis, this paper comprehensively 
considers four factors of emergency necessities: market liquidity ∂i, 

storage resistance βi , production cycle γ i , and reserve cost θi. The 
subjective and objective combination method of the Delphi method 
and entropy weight method is used to calculate the weight of each 
index, which solves the problem that the subjective weighting method 
is too subjective and the objective weighting method is quite different 
from the actual situation. The data sources are the China Logistics 
Association Report, China Statistical Yearbook, China Retail 
Yearbook, and China Agricultural Statistical Yearbook. The 
implementation effect of each influencing factor index is evaluated, 
and the initial data set of each index is finally obtained.

Because the storage capacity and production cycle have a positive 
impact on the reserve, the βi  and γ i are positively standardized by 
Eq. (1). The influence of market liquidity and reserve cost on the 
reserve is negative, and ∂i and θi are inversely standardized by Eq. (2) 
to get the standardized index data set.

	
X

X X X X
X X X X X Xi

i i

i i

′ =
− ……( )
……( ) − ……( )

min

max min

1 2

1 2 1 2

   

       

,

, ,
�

(1)

	
X

X X X X
X X X X X Xi

i i

i i

′ =
……( ) −

……( ) − ……( )
max

max min

1 2

1 2 1 2

   

       

,

, ,
�

(2)

The specific steps are as follows:

	 ①	 For n indicators and m individual items, the value of the ith 
individual item under the kth indicator is the weight of that 
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	 ②	 Entropy value of the four evaluation indicators.

The entropy values of four evaluation indexes, such as market 
liquidity ∂i, storage resistance βi , production cycle γ i and reserve cost 
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The entropy weight of four evaluation indexes, such as market 
liquidity ∂i, storage resistance βi , production cycle γ i and reserve cost 

θi, is obtained by using the equation ωk = 1
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Substituting the standardized index data into the above equation, 
the entropy weights of market liquidity ∂i, storage resistance βi , 
production cycle γ i and reserve cost θi are 0.21, 0.11, 0.46, and 0.21, 
respectively.

Considering the market liquidity ∂i, storage resistance βi , 
production cycle γ i and reserve cost θi of emergency daily necessities, 
the single product storage index of daily necessities is calculated, as 
shown Eq. (3).

	
σ β γ θ µβ γ θ µi i i i i i i i i i ik k k k k= + + + +∂∂

′ ′ ′ ′
� (3)

Among them, k i∂ , k iβ , k iγ , k iθ , µik  respectively represent the 
entropy weight of liquidity, storage resistance, production cycle, and 
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reserve cost. Finally, the single variety reserve index of emergency 
materials is obtained as shown in Table 1.

It can be seen from Table 1 that the reserve index of temporary 
accommodation and office necessities such as tents, movable tables, 
and chairs, health protection articles, and bedding articles is the 
highest. During serious disasters, basic living facilities such as houses 
may be  seriously damaged, and emergency materials such as 
emergency tents, quilts, and pillows can provide temporary 
accommodation and office facilities for victims and staff who carry out 
the rescue. Moreover, temporary accommodation materials such as 
emergency tents, movable tables and chairs, and bedding articles have 
low market liquidity, convenient purchase, good corrosion resistance, 
and low storage cost, and can be  stored for a long time. Health 
protection articles also have high storage resistance. After a disaster 
breaks out, sanitation and disinfection are an indispensable part, so 
the importance of storage is the highest.

The reserve index is also high for food categorized by bottled 
water, ready-to-eat grain, radish, and other shelf-stable vegetables, 
convenience food, and other food security necessities. When 
typhoons, earthquakes, floods, and other natural disasters occur, there 
is likely a shortage of enough food and clean water, instant noodles, 
biscuits, bread, and other convenient foods. These food security 

necessities have the advantages of rapid collection, convenient 
transportation, resistance to damage (anti-fall, and anti-corrosion), 
and the reserve value is high, so the reserve is of high importance.

In the third place are sanitary necessities such as cleaning and 
disinfection products and daily necessities, mainly including sterilized 
alcohol, simple toilets, toilet paper, toothbrushes, laundry detergent, 
wet paper towels, towels, etc. These are the basic daily necessities for 
people’s daily lives for survival and maintaining personal hygiene and 
health, and protect them from diseases. In addition, sanitary 
necessities generally have a long shelf life, are relatively storable, and 
are relatively inexpensive to store, thus having a high storage necessity.

The fourth and fifth places in the reserve index are medical and 
pharmaceutical necessities such as first-aid medical kits and clothing 
protection necessities such as uniforms and warm clothes. Medical 
and pharmaceutical necessities play the role of timely prevention, 
control, and treatment of unexpected diseases or injuries, and prevent 
life damage caused by failure to seek medical treatment in time due to 
special emergencies. Appropriate storage can alleviate the drug 
demand of special people and special events, and clothing plays an 
important role as the defense line of the outer skin.

The lowest storage index is aquatic products, edible fungi, fruits, 
green leafy vegetables, and other non-staple foods. These have high 

TABLE 1  Emergency daily necessities single product reserve index.

Category Subdivision category Reserve index
Reserve index 

ranking
Average index

Clothing security category
Daily wear 0.30 13

0.290
Warm clothing 0.28 14

Food security category

Processed food 0.40 6

0.274

Instant food 0.35 10

Bottled drinking water 0.40 5

Edible oil 0.24 19

Salt 0.34 11

Leafy greens and other storage-

intolerant vegetables
0.18 22

Storage-resistant vegetables such as 

turnips and potatoes
0.39 7

Mushrooms 0.18 21

Fruits 0.11 23

Livestock meat 0.24 18

Aquatic products 0.23 20

Eggs 0.24 17

Liquid milk 0.26 16

Milk powder 0.30 12

Temporary accommodation 

category

12 m2 single tent 1.00 1

0.584
Bedding (bedding, pillows, 

moisture-proof mats, etc.)
0.83 4

Mobile tables and chairs 0.89 3

Hygiene products

Cleaning and disinfecting products 0.38 8

0.467Daily life supplies 0.38 8

Hygiene and security supplies 0.97 2

Medical drugs First aid medical kits 0.268 15 0.268
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nutritional value, but their short shelf life and high storage 
requirements (special storage conditions, high storage cost, and high 
storage risk) make them less suitable for large-scale reserves.

According to the principle of 3 s mathematical statistics, the 
standard deviation of 1–2 times the average value of different varieties’ 
reserve index is selected. In this study, the reserve grades of different 
types of daily necessities are classified as managed, which are: must 
reserve, should reserve, consider reserve, and not suitable for reserve. 
The specific classification is shown in Table 2.

3.2 Analysis of influencing factors of daily 
necessities reserve

Daily necessities are closely related to people’s daily life. The 
effective management of daily necessities reserves requires optimizing 
the role of policy guidance and market mechanism, while also 

strengthening resource integration to avoid redundant reserves and 
realizing resource sharing. This approach can better enhance the 
emergency response capability of daily necessities. To better meet the 
emergency needs, this paper focuses on the principle of “prevention 
first, combining peacetime with disasters; government-led and social 
participation; under the basic principle of hierarchical management 
and integration of resources (33).” From the perspective of ensuring 
the most basic living needs of urban residents, the main indicators that 
affect the reserve quantity of daily necessities include:

Size of regional resident population. The larger the regional 
population base is, the more people will be affected during crisis and 
the greater the consumption of daily necessities will be. Under 
emergency and crisis, local governments usually make detailed 
material reserve plans according to the size of the resident population, 
medical resources, and production capacity. Therefore, the size of the 
regional resident population is an important basis for the reference of 
daily necessities reserves.

The proportion of urban residents in the region. In areas with a 
high proportion of rural residents, the self-sufficiency rate of 
agricultural and sideline products and other necessities is relatively 
high. Cities with a higher proportion of urban residents have greater 
dependence on external supplies due to factors like logistics limitations 
during emergencies. When emergencies occur, there may be situations 
such as logistics blocking, isolation control, road closure, etc., which 
hinder the logistics supply, procurement, and retail of daily necessities. 
Therefore, such areas need to reserve more materials to deal with 
emergencies, so urban residents’ daily necessities are highly dependent 
on foreign countries.

Probability of disaster occurrence. Emergencies lead to 
uncertainty and interruption risk in the supply chain environment. In 
the emergency supply chain, mitigating such risks depends on the 
efficient distribution of emergency materials (34). Often, the greater 
the probability of regional disasters, the higher the demand for 
emergency materials (35), the greater the probability of mobilizing 
daily necessities reserves, the stronger the necessity of daily necessities 
reserves, and the more effective the storage of stored materials can be.

Population density. To a certain extent, population density is 
closely related to the urgency of demand (36). The greater the 
population density, the higher the urgency of the demand for 
necessities in an emergency, and the more reserve materials are 
allocated to this area.

Public budget. A larger public budgets signifies greater economic 
strength that can be  allocated towards reserves. This reflects the 
government’s willingness to support public undertakings.

Regional income level. Varying income levels across regions 
translate to different consumption structures. In the process of storing 
daily necessities, it is necessary to accurately match the diversified 
needs of consumers. In addition to meeting the minimum use value 
demand, the products and services provided should also consider the 
diversified and differentiated needs of the people and provide 
differentiated living materials protection.

4 Results

Taking into account the above influencing factors, combined with 
the results of the single-variety reserve index for necessities, the key 
variables are then sequentially identified to measure the number of 
reserves of necessities. First, determine the per capita demand for 

TABLE 2  Emergency necessities reserve level.

Category
Subdivision 
category

Suggested level

Clothing security 

category

Daily wear Consider reserves

Warm clothing Consider reserves

Food security category

Processed food Should be reserved

Instant food Should be reserved

Bottled drinking water Should be reserved

Edible oil Consider reserves

Salt Consider reserves

Leafy greens and other 

storage-intolerant 

vegetables

Not suitable for storage

Storage-resistant 

vegetables such as turnips 

and potatoes

Should be reserved

Mushrooms Not suitable for storage

Fruits Not suitable for storage

Livestock meat Consider reserves

Aquatic products Not suitable for storage

Eggs Consider reserves

Liquid milk Consider reserves

Milk powder Consider reserves

Temporary 

accommodation 

category

12 m2 single tent Must be reserved

Bedding Must be reserved

Folding bed Must be reserved

Pillows Must be reserved

Mobile table and chairs Must be reserved

Hygiene products

Cleaning and disinfecting 

products
Should be reserved

Daily life supplies Should be reserved

Hygiene and security 

supplies
Must be reserved

Medical drugs First aid medical kits Consider reserves
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various types of necessities by the “14th Five-Year Plan” for 
emergency material security. The food and nutrition development 
goals in the “China Food and Nutrition Development Program” 
issued by the State Council determine the per capita intake of food 
and nutrition. The per capita demand for clothing protection 
category, temporary accommodation category, hygiene supplies 
category, and medical drugs category materials refer to policy 
documents such as Classification and Coding of Emergency Supplies, 
Classification Catalog of Key Emergency Supplies for Emergency 
Protection, Suggested List of Emergency Supplies Reserve for 
Families in Shanghai, and Guidelines on the Standard of Reserve of 
Disaster Relief Supplies. The final organization is shown in Table 3.

Second, the number of people affected by the disaster is 
determined. This study determines the affected population 
according to the minimum value of the number of people in need 

of emergency relocation or emergency living assistance under the 
emergency response of the Shanghai Disaster Relief Emergency 
Plan, and the minimum number of people in need of emergency 
living assistance under the level I emergency response is 500,000, 
followed by 300,000 for level II, 100,000 for level III, and 30,000 for 
level IV. Based on these figures, the reserve quantity of necessities 
of life under the emergency response at all levels is calculated. The 
reason for this is that the above-mentioned emergency supplies for 
the living category are characterized by a large number of demand 
categories but a small demand, are not consumables, and can 
be used repeatedly. Compared to dietary protection supplies, the 
emergency supplies for the living category have longer storage and 
re-placement cycle. Therefore, the specific emergency supply 
reserve can be  calculated according to the number of people 
covered in the emergency response plan.

Finally, according to the intensity and coverage of different 
disaster situations, the dietary protection category of supplies is 
calculated as the amount to guarantee a 3-day and 7-day supply, 
respectively. Other categories of materials can be used for a long time 
without considering the number of days of supply, and the number 
of days of supply is set to 1. The result of the calculation of the total 
amount of emergency staples and supplementary foods in Shanghai 
for all levels and categories is shown in Table 4.

As can be seen from Table 4, among the necessities in the category 
of dietary security, packaged food and bottled water have the largest 
quantity of reserves. This is due to two factors: firstly, the high 
demand—an adult needs to consume 250 g of staple food and 1 kg of 
water a day as a basic need – with inelastic demand that remain 
consistent even during emergencies; and secondly, it is concluded from 
Table 2 that the reserves of these abovementioned necessities have a 
high priority, and the difficulty of stock-piling them is relatively low. 
Fresh vegetables, including green leafy vegetables, edible mushrooms, 
and other perishable vegetables, are not easy to reserve. Vegetable 
reserves primarily consist of radishes, potatoes, and other vegetables 
with longer storage life, which coincides with the reality of the 
emergency supply. The reserve quantities of livestock meat and eggs is 
not very different, reflecting the difficulty and the cost of maintaining 
the reserve, and can be considered to mix the reserve. For milk, while 
liquid milk is more popular than milk powder under normal 
circumstances, milk powder offers the same protein supply efficiency 
in a much small volume and a longer shelf life. Therefore, a certain 
amount of milk powder should be  included in reserves, which is 
consistent with the real-world scenarios. Similarly, for other categories 
of materials can be used for a long period without considering the 
number of days of supply, the number of days of supply is set to 1. The 
results of expanding the reserve of materials from the category of 
dietary protection to the categories of clothing protection, temporary 
accommodation, sanitary supplies, and medical drugs under various 
levels of emergency response are shown in Table 5.

5 Algorithmic test and material 
distribution

5.1 Algorithmic test

The number of people affected by floods is a key variable in the 
calculation of the number of reserves of necessities, the more the 
number of people affected by floods, the higher the demand for 

TABLE 3  Collation of per capita demand for necessities.

Category
Subdivision 
category

Per capita 
demand

Clothing security 

category

Daily wear 1 set/person

Warm clothing 1 set/person

Food security category

Processed food 1 kg/person/day

Instant food 500 g/person/day

Bottled drinking water 300 g/person/day

Edible oil 25 g/person/day

Salt 10 g/person/day

Leafy greens and other 

storage-intolerant 

vegetables

200 g/person/day

Storage-resistant vegetables 

such as turnips and 

potatoes

200 g/person/day

Mushrooms 200 g/person/day

Fruits 160 g/person/day

Livestock meat 45 g/person/day

Aquatic products 49 g/person/day

Eggs 43 g/person/day

Liquid milk 300 g/person/day

Milk powder 300 g/person/day

Temporary 

accommodation category

12 m2 single tent 0.25 tops/person

Mobile table and chairs 0.25 sets/person

Folding bed 1 piece/person

Futon 1 bed/person

Pillow 1Pc/person

Moisture-proof mat 1Pc/person

Hygiene products

Cleaning and disinfecting 

products
1 set/person

Daily life supplies 1 set/person

Hygiene and security 

supplies
0.1 set/person

Medical drugs First aid medical kits 1 set/person
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necessities. Therefore, this paper takes the affected population as the 
basis for the test of the amount of reserves of necessities.

The number of people affected by floods in Shanghai is 
estimated by the percentage of flood victims in the whole country, 
and the estimated number of affected people is compared with the 
number of relief population in the emergency response plan to 
check whether it can be covered by the number of relief population 
in the emergency response plan given in this paper, to verify the 
reliability of the study. According to the data from the National 
Bureau of Statistics, the number of people affected by natural 
disasters in 2021 is 107 million, of which 59.01 million people are 
affected by floods, and the number of people affected by floods 

accounts for 55.1% of the number of people affected by natural 
disasters in the country.

	

Percentage of national flooding
national flooding

national 
=

nnatural disaster

= =
0 0591

1 07
55 1

.

.
. %#

�

(4)

In 2021, the total population of Shanghai is 24.894 million. The 
number of people affected by natural disasters in Shanghai is 734,000 
people. According to the above Eq. (4) to get the national flood 

TABLE 4  Stockpile of materials in the category of dietary protection under various levels of emergency response (unit: tons).

Level I emergency 
response

Level II emergency 
response

Level III emergency 
response

Level IV emergency 
response

Category
Subdivision 

category
For 

3  Days
For 

7  Days
For 

3  Days
For 

7  Days
For 

3  Days
For 

7  Days
For 

3  Days
For 

7  Days

Food security 

category

Drinking water 1,500 3,500 900 2,100 300 700 90 210

Processed food 750 1750 450 1,050 150 350 45 105

Instant food 450 1,050 270 630 90 210 27 63

Edible oil 37.5 87.5 22.5 52.5 7.5 17.5 2.25 5.25

Salt 15 35 9 21 3 7 0.9 2.1

Storable vegetables 300 700 180 420 60 140 18 42

Livestock meat 67.5 157.5 40.5 94.5 13.5 31.5 4.05 9.45

Eggs 64.5 150.5 38.7 90.3 12.9 30.1 3.87 9.03

Milk powder 450 1,050 270 630 90 210 27 63

Liquid milk 450 1,050 270 630 90 210 27 63

TABLE 5  Stockpiles of clothing protection, temporary accommodation, hygiene supplies and medical drugs under various levels of emergency 
response.

Level 
I emergency 

response

Level II 
emergency 
response

Level III 
emergency 
response

Level IV 
emergency 
response

Category
Subdivision 
category

Reserve Unit

Clothing security 

category

Daily wear 500,000 300,000 100,000 30,000 Set

Warm clothing 500,000 300,000 100,000 30,000 Set

Temporary 

accommodation 

category

12 m2 single tent 125,000 75,000 25,000 7,500 Set

Mobile table and chairs 125,000 75,000 25,000 7,500 Set

Folding bed 500,000 300,000 100,000 30,000 Sheet

Futon 500,000 300,000 100,000 30,000 Piece

Pillow 500,000 300,000 100,000 30,000 Piece

Moisture-proof mat 500,000 300,000 100,000 30,000 Piece

Hygiene products

Cleaning and 

disinfecting products
500,000 300,000 100,000 30,000 Set

Daily life supplies 500,000 300,000 100,000 30,000 Set

Hygiene and security 

supplies
50,000 30,000 10,000 3,000 Set

Medical drugs First aid medical kits 500,000 300,000 100,000 30,000 Piece
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disaster proportion of the projected number of people affected by 
floods in Shanghai is 404,400 people.

	

The total population affected by natural

disasters in Shanghaii the proportion of national flooding

p

×
= × =73 4 55 1 404 400. . % , eeople �

(5)

The minimum number of people who need to be rescued in the 
level I emergency response to natural disasters in Shanghai is 500,000 
people, which can cover the projected value of 404,400 people derived 
from Eq. (5), so the number of reserves under the level I emergency 
response calculated in this paper can satisfy the emergency demand 
for necessities in Shanghai in different scenarios, and the results 
are informative.

5.2 Construction of a responsive material 
deployment system

5.2.1 Strengthen the monitoring of supply and 
demand of daily necessities

In case of emergency, continuously track and monitor the output, 
stock, and consumption of important emergency necessities, and 
monitor and collect the demand for daily necessities through multiple 
channels. Based on factors such as the severity, development trend, 
and influence range of disasters, the supply and demand of daily 
necessities are analyzed and predicted using expert analysis, auxiliary 
decision-making, consultation, and judgment, to accurately guide the 
preset and financing preparation of daily necessities and 
transportation capacity.

5.2.2 Improve cross-sectoral and cross-regional 
redeployment mechanisms

Refine and improve the response procedures for the deployment 
of daily necessities, and standardize the management of demand 
submission, allocation approval, instruction issuance, capacity raising, 
material transportation, reception, and use. At the same time, the 
centralized management and unified dispatch of daily necessities 
during emergency response can be strengthened, and daily necessities 
command and dispatch drills can be carried out regularly to improve 
the ability of material allocation and coordinated operations.

5.2.3 Improve material transportation capacity
Strengthen the emergency transport capacity reserve. Coordinate 

passenger transport, freight transport, heavy cargo, cold chain 
distribution, port shipping, and other emergency transport capacity 
reserves, and establish an emergency transport vehicle and driver 
information ledger to do dynamic management. By mobilizing state-
owned transport enterprises as the “mopping force” of the urban 
supply chain, logistics enterprises are selected to join the 
transportation in the city, and the business is carried out according to 
the time and place, and the regional multimodal transport is refined, 
the shared logistics model is promoted, and the application of 
technologies such as drone transportation is explored to improve the 
distribution capacity of daily necessities (37).

5.2.4 Strengthen the coordinated support of 
transportation

Improve the emergency transportation linkage mechanism, 
including the choice of various materials transportation modes, 
unified vehicle dispatching plan, and do a good job in emergency 
transportation guarantees such as emergency transportation of daily 
necessities, capacity dispatching, and timely repair (38). In case of 
emergency, a “green passage” for the transportation of daily necessities 
is set up to realize rapid passage, thus ensuring the priority 
arrangement and scheduling of daily necessities. Strengthen the 
coordination with the reserves of daily necessities in adjacent areas, 
establish channels for material transfer, promote the sharing and 
linkage of daily necessities across regions, and enhance the ability of 
mutual assistance and support. Actively mobilize logistics enterprises, 
enterprises and institutions, social organizations, and volunteers to 
participate in the delivery, receipt, and distribution of materials, and 
comprehensively improve the ability of material distribution.

Shanghai’s largest material storage warehouse is located in 
Minhang District, a food material guarantee warehouse established by 
the government. Shanghai Wusong International Logistics Park, 
located in Baoshan District, Shanghai, is an international large-scale 
warehouse. The two areas are located near the city center, with a large 
area and dense population, which is convenient to support other areas 
as logistics nodes while rescuing the local area. We can choose the area 
where the two warehouses are located as the supply point for 
dispatching in the city to allocate daily necessities to other regions. 
There is also the Pudong New Area, where the economy is developed 
and the transportation network is relatively perfect. The total 
transportation distance to other districts and counties in the 
community is short, the city’s comprehensive support ability is strong, 
and the logistics cost control options are wide (39). As a densely 
populated city with a large number of urban areas, Shanghai has a 
developed traffic network, but it is easy to cause traffic jams. It is also 
important to take the actual situation of highways into account and 
plan according to local conditions.

Based on comprehensively improving the above points, taking 
Shanghai as an example, under the background of flood disasters, 
we can use the distribution method of daily necessities supply points 
with the optimal supply and demand distribution model as the core. 
This method aims at minimizing the total distance to meet the 
demand. It considers the constraint of Shanghai market reserve points 
on the guaranteed supply of daily necessities to the original demand 
points to optimize the distribution of market reserve points for shelter 
supply. At the same time, based on the real road network, the reliability 
of road sections is evaluated by using the “degree,” “square 
agglomeration coefficient” and “daily traffic volume of road design” 
(40), and the road transit time is evaluated by considering the wading 
speed. With the goal of “shortest path travel time” and “highest path 
reliability,” the optimal distribution path evaluation model between 
stations is constructed, to compare various algorithms to optimize the 
distribution path.

6 Discussion

Taking Shanghai as an example, this paper calculates the variety 
and quantity of urban necessities reserve. Based on the definition and 
connotation of urban necessities, the model of the urban necessities 
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reserve index is established. It considers four aspects: market 
liquidity, production cycle, storage durability, and reserve cost. The 
subjective and objective combination method of the Delphi method 
and the entropy weight method is used to determine the weight of 
evaluation indicators, which solves the problems of subjective 
interference and the great difference between the results of the 
objective weighting method and reality. This approach provides a 
more practical way to categorize emergency supplies: necessities of 
life that must be  stockpiled, should be  stockpiled, should 
be considered for stockpiling, and are not suitable for stockpiling. 
Furthermore, the model clarify the scientific basis for determining 
“what to stock” and lays the scientific basis for “how much to 
stockpile” based on a model for emergency stockpiling of necessities 
of life. The local government needs to increase the financial guarantee 
for emergency materials reserves, provide certain policy support and 
financial subsidies for emergency materials production enterprises 
and daily necessities production enterprises (41), and pay attention 
to a stable supply of daily necessities for different groups of people 
during emergencies. Meanwhile, after settling on “what to store” and 
“how much to store,” we should think deeply about “how to store” 
and “who will store.” We  should also establish and improve the 
emergency storage and transportation mechanism, ensure smooth 
transportation, increase cooperation between the government and 
storage enterprises, entrust enterprises to produce, purchase, store, 
transport and dynamically track the necessary emergency necessities, 
ensure the use efficiency and allocation speed of materials, and 
provide stable and reliable inventory and transportation support for 
emergency work.

Based on the above analysis, this paper puts forward the 
following suggestions:

First, strengthen monitoring and early warning. (1) Enhance 
urban risk monitoring: systematically arrange and categorize the 
demand for emergency materials for natural disasters, accidents, 
disasters, social security and other emergencies according to 
Shanghai’s urban safety risks and potential hazards, improve the 
reserve layout, and optimize the reserve scale and structure of 
emergency necessities; (2) Strengthen market monitoring and 
supervision: strengthen data sharing, analysis and judgment, establish 
a linkage mechanism for store managers in surrounding supermarkets, 
implement dynamic monitoring and timely track and guide 
scheduling, to provide decision support for timely response 
to emergencies.

Second, revise and optimize the catalog of daily necessities 
according to the guiding catalog for storage stipulated by the local 
government. This will help reduce the storage cost and improve the 
storage capacity. Implement a multi-level management system for the 
essential reserves, recommended reserves, the reserves that should 
be considered, and the reserves of daily necessities that are not suitable 
for storage to improve the efficiency of emergency reserves.

Third, scientifically plan emergency material reserves. Consider 
factors like the proportion of urban residents, the number of 
permanent residents, the probability of disasters, the population 
density, the public budget, and the per capita disposable income of the 
region. This will ensure a scientifically and rational plan for the reserve 
of emergency materials and minimize the waste of reserve materials.

Fourth, improve personnel security, financial security and 
technical security. First, increase financial investment and allocate 
a reasonable budget for emergency expenditure, and ensure that 

emergency funds are in place in time. Second, establish an 
integrated platform for local risk early warning that enables 
information sharing. Leverage information technology to 
understand changes in the consumption demand of public 
necessities, and establish and improve the database of daily 
necessities. This allows for timely adjustments to the varieties of 
daily necessities monitored.

The deficiency of this paper lies in the factors that affect the single 
variety reserve index and the main indicators that affect the quantity 
of daily necessities reserve, which can be  further enriched and 
improved. The influencing factors listed in this paper come from the 
existing literature and research contents, and the more detailed 
screening of influencing factor indicators is necessary for real-world 
application. If it is to be applied to practical work, the index system 
needs to be further improved. Additionally, the research primarily 
focuses on Shanghai. In future practical work, we will further enrich 
the width of the evaluation index system by consulting the opinions 
of staff experts and scholars who have worked in the government 
extensively, and try to expand the research scope to other cities and 
countries to deepen the design of logistics models for the distribution 
of daily necessities.
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Landslide disasters, due to their widespread distribution and clustered
occurrences, pose a significant threat to human society. Rainfall is considered a
primary triggering factor, and the frequent clustering of landslides underscores
the importance of early warning systems for regional landslide disasters in
preventing andmitigating rainfall-induced landslides. Research on early warning
models is crucial for accurately predicting rainfall-induced landslides. However,
traditional models face challenges such as the complexity of landslide causes,
insufficient data, and limited analysis methods, resulting in low accuracy and
inadequate precision. This study focuses on Fujian Province, China, proposing a
four-step process for building a regional landslide early warning model based
on machine learning. The process includes data integration and cleaning,
sample set construction,model training and validation, and practical application.
By integrating and cleaning the latest and most detailed data, a training
sample set (15,589 samples) for the regional landslide disaster early warning
model is established. Three machine learning algorithms—Random Forest,
Multilayer Perceptron, and Convolutional Neural Network—are employed and
compared, the evaluation results indicated that the RF-based warning model
achieved an accuracy of 0.930–0.957 and an AUC value of 0.955. The CNN-
based warning model demonstrated an accuracy of 0.945–0.948 with an
AUC value of 0.940. The MLP-based warning model achieved an accuracy
of 0.930–0.953 and an AUC value of 0.930. The results showed comparable
accuracy metrics among the three models, with RF exhibiting a significant
advantage in AUC values. Finally, the models are applied to the regional
landslide disasters induced by heavy rainfall in Fujian Province on 5 August
2021. The results showed that in the binary classification warning strategy,
the accuracy of the Random Forest and Convolutional Neural Network was
92.9%, while that of the Multilayer Perceptron was 85.8%, all performing
well. In the multi-classification hierarchical warning strategy, the Random
Forest excelled, while the performance of the Convolutional Neural Network
and Multilayer Perceptron was relatively limited. The findings of this study
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contribute to valuable attempts in landslide disaster warning model research,
with anticipated further improvements through the gradual accumulation of
samples and practical application verification.

KEYWORDS

landslide disaster, machine learning, early warning model, Random Forest,
Convolutional Neural Network, Multilayer Perceptron

1 Introduction

Landslide disasters often result in the destruction of houses,
disruption of transportation routes, and pose a serious threat to
the safety of people’s lives and property (Froude and Petly, 2018;
Gatto et al., 2023). Given the predominant triggering effect of rainfall
and the frequent clustering of landslides in specific regions, early
warning systems for regional rainfall-induced landslide disasters
have become a critical tool in landslide disaster prevention, often
referred to as the primary defense against such disasters. Research
on landslide disaster early warning models is essential for accurate
predictions. Based on this, numerous scholars both domestically and
internationally have conducted extensive research on this matter.
For example, Caine studied the rainfall intensity-duration control of
shallow landslides and debris flows (Caine, 1980).

The earliest applied model is the statistical critical rainfall
threshold model (Cannon, 1985; Au, 1998; Aleotti, 2004;
Krøgli et al., 2018; Baum and Godt, 2010; Abraham et al., 2020).
Due to its simplicity, this model has been widely referenced and
applied in various regions (Liu et al., 2015; Hong et al., 2016a;
Ding et al., 2017; Peruccacci et al., 2017; Wei et al., 2018). Other
models, such as dynamic warning models, analyze the mechanism
of rainfall-infiltration-disaster occurrence, primarily based on the
mechanics of infinite slope stability analysis. These models couple
rainfall-infiltration hydrogeological models with infinite slope
stability mechanics to assess landslide stability (Ponziani et al.,
2013; Pennington et al., 2015; Mulyana et al., 2019). Despite their
clear physical significance, their complex parameter inputs and
uncertainties limit their use to small-scale studies.

In recent years, the vigorous development of artificial
intelligence technology has led to the maturation and widespread
application of machine learning algorithms across various
industries, including geological disaster prevention and control.
Machine learning algorithms such as artificial neural networks,
decision trees, support vector machines, and Random Forests have
been extensively used for landslide spatial evaluation and prediction
(Chen et al., 2017; Tien Bui et al., 2016, 2017; Liu et al., 2010;
Hong et al., 2016a; Trigila et al., 2015; Dong et al., 2024; Zeng et al.,
2024; Luti et al., 2020). For instance, Reichenbach et al. (2018)
provided a comprehensive review of statistically-based landslide
susceptibility models, while Ado et al. (2022) and Lima et al. (2022)
offered extensive literature surveys and bibliometric analyses on
machine learning applications in landslide susceptibility mapping.
Yilmaz (2009) used frequency ratio, logistic regression, and artificial
neural networks to generate landslide susceptibility maps in
Tokat County, Turkey, with the artificial neural network model
demonstrating superior performance. Micheletti et al. (2014)
applied adaptive support vector machines, Random Forests, and
AdaBoost for landslide susceptibility mapping in the Canton of

Vaud, Switzerland. Thai Pham et al. (2019) used ensemble learning
algorithms to assess susceptibility in Pithoragarh, India.

Furthermore, studies have integrated various machine learning
techniques with physical models for enhanced accuracy. For instance,
Jie Dou et al. (2015) combined the Certainty Factor method with
ANN technology for Sado Island, Japan. In Austria, J.N. Goetz et al.
(2015) found that Random Forest algorithms yielded the highest
accuracy for landslide susceptibility mapping. Miloš Marjanović et al.
(2009) and Sameen et al. (2020) used support vector machines, k-
nearest neighbors, and Convolutional Neural Networks for regional
assessments. Wei et al. (2021) developed a hybrid framework for
regional landslide susceptibility mapping that combines physical
models with Convolutional Neural Network.

Recent advancements have also focused on hybrid models
that integrate machine learning with dynamic rainfall indices for
improved early warning systems. Sun et al. (2022) proposed a
coupledmodel using RandomForest susceptibility and precipitation
factors, while Zhou et al. (2022) introduced an interpretable
model combining SHAP and XGBoost for global and local
susceptibility assessment. Yang et al. (2024) explored theCGBOOST
deep-learning algorithm, and Liu et al. (2022) validated the
feasibility of various machine learning algorithms for regional
early warning models. Yuan and Chen (2023) proposed a national-
level early warning method using hybrid neural networks and a
spatiotemporal transformer.

Additionally, Khan et al. (2022) developed a global landslide
forecasting system for hazard assessment and situational awareness.
Nocentini et al. (2023) explored the influence of rainfall parameters
and model settings on landslide space-time forecasting through
machine learning. Ren et al. (2024) combined dynamic rainfall
indices withmachine learningmethods for spatiotemporal landslide
susceptibility modeling. Lee et al. (2022) integrated rainfall period,
accumulated rainfall, and geospatial information for dynamic
landslide susceptibility analysis.

In summary, early warning systems for rainfall-induced
landslides are vital for disaster prevention. While traditional models
have laid the groundwork, the integration of machine learning
algorithms and hybrid models has significantly advanced the
field, offering more accurate and scalable solutions for landslide
prediction and risk assessment.

However, the aforementioned warning models face challenges
such as the complexity of geological disaster causes, insufficient
sample data, and limited analysis methods, resulting in low warning
accuracy and inadequate precision. To address these issues, this
paper introduces a four-step process for constructing a regional
landslide early warning model based on machine learning. The
steps include data integration and cleaning, construction of training
sample sets, model training and validation, and practical application
of the model. The study focuses on Fujian Province, one of
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the provinces in the southeast of China with a high frequency
of landslide disasters, providing a comprehensive demonstration
of the four-step process for building landslide warning models
using three algorithms: Random Forest (RF), Convolutional Neural
Network (CNN), and Multilayer Perceptron (MLP). By applying
these algorithms, the paper conducts a comparative study using real-
world examples, highlighting the advantages and disadvantages of
each model in the context of binary and multiclass landslide disaster
early warning strategies. This research represents a valuable attempt
to integrate AI technology andmachine learning algorithms into the
field of landslide disaster early warning.

2 Geological background of the study
area

China is one of the countries globally with the most extensive
distribution and severe consequences of geological disasters
(Liu et al., 2022). Landslide geological disasters are widespread in
the mountainous and hilly areas across the country, with nearly
a million known occurrences. On average, these landslides cause
hundreds of deaths and result in direct economic losses amounting
to tens of billions of yuan each year (Geological Hazard Technical
Guidance Center, Ministry of Natural Resources, 2019). Fujian
Province is one of the provinces in China where landslides occur
frequently.

The geographical location of Fujian Province lies mainly in the
hillymountainous area along the southeast coast of China (as shown
in Figure 1). Mountainous areas in Fujian Province account for
80.06% of the total land area, plains cover 8.03%, plateaus occupy
1.99%, and hills make up 9.92%. The distribution of terrain in the
study area is uneven, with hills and mountains mainly concentrated
in the central and western regions of Fujian Province, totaling
approximately 106,244 squaremeters in area.The elevation generally
ranges from 5 to 2,180 m. In the western part, the prominent feature
is the Wuyi Mountains, which run horizontally and are located
near the border between Jiangxi Province and Fujian Province. The
Huanggang Mountain, with an altitude of approximately 2,158 m,
is one of the main peaks. In the central part, there are mountain
ranges such as the Shengfeng Mountain-Daiyun Mountain-Boping
Ridge, which run in a north-northeast direction, consistent with
the direction of the coastline. In comparison to the central and
western regions of Fujian Province, the southeastern coastal area has
relatively lower elevations, characterized mainly by terrain features
such as hills, plateaus, and plains. The stratigraphy and lithology
of Fujian Province are highly developed, with predominant rock
types including granite, shale, sedimentary rock, metamorphic rock,
sandstone, tuff, and ignimbrite. In the southwestern part of Fujian
Province, there are thin layers of relatively soft mudstone and shale,
while the central and southern regions are primarily composed
of granite. Sedimentary and metamorphic rocks dominate in the
western parts, and tuff and ignimbrite are predominant in the
eastern parts. Fujian Province experiences a subtropical monsoon
climate characterized bywarm and humid conditionswith abundant
rainfall. Summers are hot and humid, autumns are rainy, andwinters
are relatively dry. The province receives ample precipitation, with
an annual average ranging from 1,000 to 2,500 mm, with higher
rainfall in summer and autumn and lower in spring and winter.

The geological environmental factor map is shown in Figure 2
(modified by Liu et al., 2022).

In recent years, geological disasters have occurred frequently in
Fujian Province, with collapses, landslides, debris flows, and ground
collapses being the most common types, and the majority of them
are of medium and small scale. Among them, landslides are the
most significant type of natural disaster. By the end of 2019, a total
of 21,176 geological disasters including collapses, landslides, debris
flows, and ground collapses had occurred in the province.

3 Research methods and processes

The process of constructing the regional landslide warning
model based on machine learning involves four main steps:
data integration and cleaning, creation of a training sample set,
development and validation of machine learning models, and
practical application of the model. The specific structure and
workflow are depicted in Figure 3.

3.1 Data integration and cleaning

Building the training sample set for regional landslide warning
mainly involves three types of datasets: geological environmental
data, historical landslide records, and rainfall-triggering factors.
Before constructing the sample set, it is necessary to collect,
organize, and clean these three types of data. Data cleaning typically
encompasses two categories:

(1) Data Missing and Anomaly Handling: Problems such as
human errors, data transmission errors, equipment failures,
and ambiguous geological information can impact the integrity
of the original dataset. These issues need to be addressed
through data preprocessing and cleaning. Typically, this
involves dealing with missing values through interpolation or
deletion, as well as identifying and correcting outliers.

(2) Feature Attribute Preprocessing: Given the varying scales
of input features in the training samples, it is essential
to standardize or scale these features uniformly. Different
machine learning algorithms react differently to variations
in input feature scales, necessitating distinct preprocessing
methods for input feature attributes. It is significant to
uniformly normalize or scale the input features of training
samples before model training to minimize differences in
feature ranges. Otherwise, this could directly impact the
model’s accuracy.

The study focused on Fujian Province, China, and collected
and organized historical landslide records, geological environmental
data, and rainfall data.The landslide disaster data were sourced from
the Fujian Province Landslide Disaster Sample Database spanning
from 2010 to 2018. Landslides are distributed across all counties
and districts in Fujian, but their frequency varies significantly. In
the western, northern, and central regions of Fujian, the number of
landslides is higher, mainly due to the rugged terrain and complex
geological conditions in these areas, leading to more developed
landslides. Specifically, in Youxi County, Datian County, and Dehua
County in the central region, landslide occurrences exceed 300
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FIGURE 1
The geographical location of Fujian Province.

FIGURE 2
Geological environmental factor map (A): grade; (B) geomorphic type; (C) formation lithology; (D): annual rainfall.

times. In most other areas, the occurrences are below 150 times.
However, in the southeastern coastal areas of Fujian, where the
terrain is flat with predominantly plains and plateaus, landslide
disasters are less likely to occur due to the flat terrain. The highest
number of landslides in Fujian Province occurred in 2011, with
2,456 incidents, while the lowest number was in 2018, with only
39 incidents. The number of landslides in 2011 was 63 times that
of 2018. Landslides in Fujian are mostly concentrated between
May and August, accounting for 76% of the annual total. This
is mainly due to Fujian’s subtropical monsoon climate, where the
rainy season occurs from May to August. Rainfall is a significant
factor in landslide disasters as it infiltrates the soil, reducing
its strength and making it prone to permeation deformation,
leading to soil failure and resulting in landslides. It has been

observed that landslide occurrences are primarily influenced by
heavy rainfall.

Data cleaning involved standardizing temporal and spatial
coordinates, handling erroneous attribute values, and addressing
missing fields in the historical landslide data. Geological
environmental data were obtained from the 1:20,000 and 1:50,000
geological environment and geological disaster investigation
databases of Fujian Province. Besides routine error data cleaning,
preprocessing steps such as projection standardization, feature
scaling, and normalization were conducted. Rainfall data were
sourced from hourly meteorological and hydraulic rainfall station
data from 2010 to 2018. Data cleaning tasks primarily included
site registration, interpolation of missing data, and elimination of
erroneous data. As shown in Table 1.
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FIGURE 3
Schematic overview of the overall framework.

TABLE 1 Main issues and corresponding solutions for data Existence.

Number Data type Main issues Corresponding solutions

1 Historical Landslide Recorded Data 1. Missing occurrence time;
2. Missing coordinates of occurrence location;
3. Coordinates in latitude and longitude do not
match the area described in the field, indicating
obvious errors;
4. Other types of disaster data

1. Remove the record;
2. If there is detailed description of the area in
the attribute field, supplement by sampling;
otherwise, remove the record;
3. If there is detailed description of the area in
the attribute field, supplement by sampling;
otherwise, remove the record;
4. Remove the record

2 Geological Environmental Data 1. Non-uniform coordinate system;
2. Missing key attributes;
3. Obvious errors in key attributes;
4. Key attributes in different factor layers are
qualitatively described;
5. Large quantitative differences in key
attributes between different factor layers

1. Projection transformation, uniform
coordinate system;
2. Query relevant documents and materials,
supplement directly if there is detailed
description; otherwise, supplement manually
based on relevant materials;
3. Query relevant documents and materials,
supplement directly if there is detailed
description; otherwise, supplement manually
based on relevant materials;
4. Use uncertainty coefficient method for
quantization;
5. Conduct feature scaling and normalization

3 Rainfall Data 1. Partial data missing in hourly rainfall station
database;
2. Abnormally large hourly rainfall at stations;
3. Blank missing data for hourly rainfall at
stations;
4. Large quantitative differences in daily rainfall
data for grid units compared to key attributes in
other factor layers

1. Interpolate using surrounding station data;
2. Remove outliers, interpolate using
surrounding station data;
3. Interpolate using surrounding station data;
4. Conduct feature scaling for rainfall attribute
(actual rainfall value/10)

3.2 Construction of training sample set

The construction of the training sample set involves extracting
environmental factor features and triggering factor features based

on sampling of positive and negative samples, to obtain input and
output feature parameters for the model. To construct the warning
model, it is necessary to divide the sample data into training and
testing sets.The optimized samples are randomlymixed and shuffled
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to ensure that the ratio of positive to negative samples in the training
and testing sets is nearly consistent, preventing an imbalance in
the number of positive and negative samples in either set. This
study employs the model_selection module from sklearn using the
Python language to divide all the landslide warning samples in
the Fujian Province region into training and testing sets at a 4:1
ratio. To maintain consistency in the ratio of positive to negative
samples within the training data, a specific percentage of each
category’s samples is selected as training data. Since the model
requires multiple training sessions, and to avoid changes in the
training data due to randomshuffling of the dataset each time,we use
a fixed random_state. This ensures that the division of data remains
the same for each training session.

3.2.1 Sampling of positive and negative samples
Positive sample sampling is based on historical landslide record

data. According to the requirements of model construction, the
selection criteria are as follows: the points must have definite spatial
geographic coordinates and time coordinates (accurate to each
day). Negative samples refer to points where landslides did not
occur, which cannot be directly obtained. Negative sample sampling
includes the following steps. See Figure 4 for a schematic diagram.

(1) Negative Sample Collection Outside the Buffer Zone of
Positive Samples

Determination of Negative Sample Spatial Location: Negative
samples are randomly sampled outside a certain buffer zone around
positive samples.The determination of the buffer zone radius should
consider both the minimum warning grid unit size in the study area
and the distribution of historical landslide points.

Assignment of Time Attributes to Negative Samples: The time
attributes of negative samples are typically constrained within the
range of timedistribution of positive samples. Sampling is conducted
using a random function, with the general formula:

T = RAND (T1,T2)

T is the randomly obtained time; T1 is the lower limit of the
period for randomly obtaining time; T2 is the upper limit of the
period for randomly obtaining time.

(2) Negative Sample Collection Within the Grid of
Positive Samples

Determination of Negative Sample Spatial Location: Negative
samples are randomly sampled within the grid of positive samples,
where the grid represents the warning grid units in the study
area. The number of negative samples collected can be determined
according to research requirements.

For the sampling of negative samples in this section, it
is recommended to use the same number of negative samples
as positive samples, meaning a 1:1 sampling ratio within grid
units containing positive samples. However, this ratio should be
specifically studied based on the particular research question, taking
into account the varying number of samples in different study areas.
Researchers are advised to collect and construct training sample
sets based on different sampling ratios, and then select the optimal
positive to negative sample ratio based on themodel training results.

Assignment of Time Attributes to Negative Samples: For this
portion, the time attributes of negative samples also use the random
function shown in formula (1). However, in addition to the upper
and lower limits of the period, an additional constraint is added: the
time attribute of the sampled negative samples should be different
from that of the positive samples.

In this study on early warning research in Fujian Province, the
minimum warning grid unit is set to 2 km. In some regions, the
density of historical landslide points is relatively high, so the buffer
zone radius is set to the size of the warning grid unit, which is
2 km. To ensure the balance between positive and negative samples,
the number of negative samples collected outside the buffer zone
of positive samples is approximately twice the number of positive
samples, while the number of negative samples collected within the
grid of positive samples is equal to the number of positive samples.
In summary, a total of 15,589 samples covering nearly 9 years

FIGURE 4
Schematic diagram of negative sample spatial sampling based on positive samples (modified by Liu et al., 2022)
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(2010–2018) were obtained for Fujian Province. Among them, there
are 3,562 positive samples and 12,027 negative samples, resulting in a
positive-to-negative sample ratio of approximately 1:3.4. The spatial
distribution of positive and negative samples is shown in Figure 5.

3.2.2 Extraction of model input and output
feature parameters

The model’s input feature parameters primarily encompass
geological environmental factors, rainfall-triggering factors, and
historical disaster information. The extraction of geological
environmental features and rainfall factors is predicated on an
analysis of the developmental distribution patterns and influencing
factors of landslide disasters in the study area. Geological

environmental factors influencing landslide disasters in the region
typically comprise topography, lithology, and human activities.
Rainfall-triggering factors influencing landslide disasters in the
region generally encompass daily rainfall, antecedent rainfall, or
antecedent effective rainfall.

Geological environmental factors and rainfall-triggering factors
are overlaid and analyzed with the subdivision units of the warning
grid (refer to Figure 6) to obtain the geological environmental
features and rainfall factors of the warning grid units.The geological
environmental feature database contains characteristic attributes of
geological environmental factors for each warning grid unit, while
the rainfall factor database includes daily rainfall feature attributes
or effective rainfall feature attributes for each warning grid unit.

FIGURE 5
Location and training sample set of Fujian province.

FIGURE 6
Schematic diagram of model input feature parameter extraction (modified by Liu et al., 2022)
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TABLE 2 Training sample input and output features and parameters (modified by Liu et al., 2022).

Number Input feature Input feature parameters Data source and
processing method

1 Slope/(°) ①0–15;②15–25;③25–35;④35–50;
⑤≥50

Quantification based on Fujian Province
1:100,000 slope map

2 Landform Type ①Plain;②Hilly Plateau;③Low
Mountains;④Low-Medium Mountains;
⑤Medium-High Mountains

Quantification based on Fujian Province
1:200,000 landform type map

3 Lithology ①Blocky Hard Granite Formation;
②Blocky Hard - Relatively Hard Diorite
Formation;③Blocky Hard - Relatively

Hard Tuff, Tuff Formation;④Medium to
Thick Layer Relatively Hard Sandstone
Formation;⑤Thin Layer Relatively Soft
Mudstone, Shale Formation;⑥Medium

Thick Layer Hard Quartz, Schist
Formation;⑦Medium Thick Layer

Relatively Hard Carbonate Formation;
⑧Loose Sand, Clay Layer

Quantification based on Fujian Province
1:200,000 lithology map

4 Annual Rainfall/(mm) ①1,400–1,450;②1,450–1,500;
③1,500–1,550;④1,550–1,600;
⑤1,600–1,650;⑥1,650–1700;
⑦1700–1750;⑧1750–1800;
⑨1800–1850;⑩1850–1900;
⑪1900–1950;

⑫1950–2000;⑬>2000

Quantification based on Fujian Province
1:500,000 geological disaster

investigation and zoning report,
classification quantification

5 Vegetation Type ①South subtropical rainforest area in
the east of Daiyun Mountain;②Daiyun
Mountain Yijiufeng Mountain Range;
③Evergreen mulberry-semi-evergreen
oak forest area;④South subtropical

rainforest area in southeastern Pingling;
⑤Coastal South Subtropical Rainforest
Area;⑥Evergreen mulberry tree leaf

forest area

Quantification based on Fujian Province
1:500,000 vegetation type map,
classification quantification

6 Distance to Water System/(m) ①0–500;②≥500 Extraction of water system distribution
layer from Fujian Province 1:500,000

susceptibility map, classification
quantification

7 Distance to Roads(m) ①0–500;②≥500 Extraction of road distribution layer
from 1:250,000 DLG data, classification

quantification

8 Distance to Buildings/(m ①0–500;②≥500 Extraction of building distribution layer
from 1:250,000 DLG data, classification

quantification

9 Population Density (people/km2) ①50–100;②100–150;③150–300;
④300–450;⑤450–600;⑥600–750;

⑦>750

Quantification based on the Sixth
National Population Census data,

classification quantification

10 Historical Disaster Points (count) The actual number of historical disaster
points in each grid unit/10

Scaling based on landslide hazard points
from Fujian Province 1:500,000

geological disaster investigation data
and National Geological Disaster

Database (2010–2008)

11 Daily Rainfall/(mm) Actual rainfall value/10
Interpolation calculation based on

hourly precipitation station data from
2010 to 2018 for meteorology and water

resources, scaling

12 Previous Day Rainfall/(mm) Actual rainfall value/10

13 Previous 2 Days Rainfall/(mm Actual rainfall value/10

(Continued on the following page)
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TABLE 2 (Continued) Training sample input and output features and parameters (modified by Liu et al., 2022).

Number Input feature Input feature parameters Data source and
processing method

Actual rainfall value/10

26 Rainfall in the Previous 15
Days/(mm)

Actual rainfall value/10

27 0 or 1 Positive Sample (1); Negative Sample
(0)

Positive samples taken from historical
landslide record data are assigned a
value of 1; negative samples obtained
through sampling are assigned a value

of 0

FIGURE 7
The importance of the input features.

FIGURE 8
Schematic diagram of random forest model.
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TABLE 3 Hyperparameters of the random forest model in the study area.

Hyperparameter Meaning Optimized
value

max_depth Maximum depth of
decision trees

13.8178

max_features Maximum number of
features

0.1

min_samples_split Minimum number of
samples to split

3.1664

'n_estimators Number of decision
trees

165.9397

The model’s output feature parameters are determined by the
attributes of positive and negative samples. The output feature
parameter for positive samples is set to 1, while the output feature
parameter for negative samples is set to 0.

In the study area of Fujian Province, China, this paper
extracted 10 feature factors including slope, landform type, lithology,
annual rainfall, vegetation type, hydrological influence, roads,
buildings, and actual occurrences of historical landslides (the
actual number of historical disaster points in each grid unit) as
input features representing geological environmental conditions.
Additionally, 16 rainfall-triggering factors such as daily rainfall
and rainfall over the previous 15 days were incorporated as input
features for rainfall-triggering factors. This resulted in a total
of 26 input feature attributes and one output feature attribute,
comprising a training sample set of 15,589 records (see Figure 6;
Table 2).

During the process of dividing the sample data into training
and testing sets, the optimized samples were randomly mixed to
ensure that the ratio of positive and negative samples in both
the training and testing sets was consistent. This was done to
prevent any imbalance in the number of positive and negative
samples in either the training or testing set. The division of the
Fujian Province landslide warning sample set into training and
testing sets was accomplished using the model_selection module
in sklearn, implemented in Python. The dataset was divided in
a 4:1 ratio. To ensure a balanced ratio of positive and negative
samples in the training data, a specific percentage was extracted
from each class of samples as training data. To maintain consistency
in data division across multiple training iterations and avoid
variations caused by random shuffling of the dataset, a fixed
random_state was employed to ensure consistent results in each
training division.

The above content selected 26 indicators as input features, but
different features have varying levels of importance and impact on
themodel. To investigate the influence of input features on themodel
and determine whether the selected input features are appropriate, a
study on the importance of input features was conducted using the
Random Forest algorithm model as an example.

The process for selecting input features is as follows:
First, calculate the importance of each input feature.

The formula for calculating the importance index is

as follows:

Pk =
∑n

i=1
∑t

j=1
DGkij

∑m
k=1
∑n

i=1
∑t

j=1
DGkij

× 100%

Where Pk represents the importance of the k input feature;
m is the number of input features; n is the number of decision
trees; t is the number of nodes in each decision tree; DGkij is the
decrease in Gini index for the k input feature at the j node of the i
decision tree.

The importance of each input feature to the model
output was calculated according to the Equation. The
ranking of the importance of each input feature is shown
in Figure 7.

The importance indices of the 26 input features in the study area
can be ranked into six levels:

Level 1: Rainfall on the current day and the previous
day, with importance indices of 39.6% and 13.5%,
respectively.

Level 2: Distribution of historical disaster points, with an
importance index of 7.0%.

Level 3: Rainfall from the second to the fifth day before, with
importance indices ranging from 3.2% to 5.8%.

Level 4: Rainfall from the sixth to the 15th day before, distance to
houses, and average annual rainfall, with importance indices ranging
from 1.0% to 2.2%.

Level 5: Vegetation type, population density, strata lithology,
slope, and geomorphological type, with importance indices ranging
from 0.3% to 0.7%.

Level 6: Distance to roads and distance to water systems, with
the lowest importance indices, both less than 0.1%.

The analysis of the importance ranking of each input feature
is closely related to the study scale. At the provincial scale of
this study in Fujian (with 2 km∗ 2 km warning grid units), the
input features in Level 5 are larger-scale geological environmental
factors with relatively smaller impacts. Additionally, the landslide
samples collected are mainly located near residential areas, while
landslides along roads were not included, directly resulting in the
importance indices of distance to roads and distance to water
systems being close to 0. The high importance values of features
such as rainfall on the current day, distribution of historical disaster
points, rainfall from the first to the fifth day before, and distance
to houses align with the recognized patterns of landslide disasters
and triggering factors in Fujian Province. Using the recursive
elimination method, the input feature with the smallest importance
indicator was removed each time, and the optimized RandomForest
algorithm was used to calculate the model accuracy. The results
showed that the model accuracy remained largely unchanged after
removing some features. Considering that the number of input
features in this study is not large, all 26 input features were retained
for the subsequent model.

3.3 Model construction and validation

This paper develops warning models using three machine
learning algorithms: the Random Forest model, the Convolutional
Neural Network (CNN) model, and the Multilayer Perceptron
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FIGURE 9
Schematic diagram of convolutional neural network (CNN) model.

(MLP) model. The Random Forest model is an ensemble learning
technique that combines weak learners (decision trees) by randomly
sampling data and aggregating their outputs through voting to
produce the final prediction. The Convolutional Neural Network
(CNN) is a type of feedforward neural network commonly used
in image recognition, speech recognition, and various other
applications. It comprises layers such as convolutional layers,
pooling layers, fully connected layers, as well as input and output
layers. The Multilayer Perceptron (MLP) model consists of multiple
layers of neurons, each resembling an artificial neural network layer.
Neurons within each layer receive inputs from the preceding layer,
apply nonlinear transformations via activation functions, and pass
the results to the subsequent layer, enabling effective solutions to
nonlinear problems.

3.3.1 Random Forest model
The Random Forest algorithm employs bootstrapping, where

n samples are randomly selected with replacement to form k new
sample training sets. This ensures that decision trees within the
Random Forest can distinguish between each other, thus increasing
the diversity of the decision trees and enhancing the reliability
of the analysis results, thereby improving model performance.
These k-decision trees are then combined into a Random Forest
through ensemble algorithms. Subsequently, each of the sample
mentioned above sets is used as a training set, and decision tree
models are applied to train these samples. By evaluating the output
probability values, the best decision tree nodes are selected for
splitting. Finally, the results generated by all decision trees are
combined using a simple majority voting mechanism to obtain the
final result. As shown in Figure 8.

The core of the Random Forest lies in treating any individual
decision tree as a base classifier. The samples are trained through
decision trees to obtain different classification models h1(X)……
hk(X), and the final classification result is obtained through a
voting mechanism. The formula for the final classification result
is as follows:

H(X) = argmax
z I(hi(x) = Z

In this context, “H(x)” represents the classification output result
of the Random Forest model, “ hi”stands foran individual decision

tree model, “Z” represents the output variable, and “ I(.)” is an
indicator function. This indicates that the Random Forest adopts a
majority voting decision method to determine the classification.

The study employs the training sample set from the research
area (Figure 6; Table 2) to optimize four hyperparameters within
the Random Forest model: max_depth, max_features, min_
samples_split, andn_estimators.Utilizing theBayesian optimization
algorithm, it searches for the optimal hyperparameter values and
outputs the values obtained during each iteration. By rounding
these values to integers, the optimal hyperparameter values are
determined as follows: {max_depth’: 13, ‘max_features’: 0.1, ‘min_
samples_split’: 3, ‘n_estimators’: 166}. The refined hyperparameters
for the Random Forest algorithm are illustrated in Table 3.

3.3.2 Constructing Convolutional Neural
Network (CNN) model

The Convolutional Neural Network (CNN) is a type of deep
learning model comprised of components such as convolutional
layers, pooling layers, and fully connected layers. The convolutional
layer serves as the core of CNN, detecting various features in
images, such as edges, textures, or shapes, by applying convolutional
operations on input data. These operations utilize learnable filters
(also known as kernels) to scan the input data and generate feature
maps. Pooling layers typically follow convolutional layers to reduce
the size of feature maps and retain the most important information.
They achieve this by downsampling the spatial dimensions of the
feature maps, either by taking the maximum value (max pooling)
or the average value (average pooling) within certain regions of
the feature maps. This helps reduce the number of parameters
and computational complexity while preserving crucial features.
Fully connected layers are usually positioned at the end of CNN
and are responsible for mapping the extracted features to the
final output categories or predictions. These layers flatten the
extracted features from the preceding layers and input them to fully
connected neurons in the neural network to performclassification or
regression tasks. As shown in Figure 9.

This study utilized the training sample set from the research area
(Figure 6; Table 2). The model architecture of the Convolutional
Neural Network (CNN) comprises an input layer, an output
layer, two convolutional layers, two max-pooling layers, a fully
connected layer, and a dropout module aimed at preventing
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TABLE 4 Hyperparameters of the convolutional neural network model.

Parameter Meaning Optimized value

filters1 Size of the first layer’s
convolutional kernel

512 × 1

filters2 Size of the second layer’s
convolutional kernel

32 × 1

dropout rate Dropout rate for each layer’s
neurons

0.1

activation1 Activation function for the first
layers

relu

activation2 Activation function for the
second layers

relu

activation3 Activation function for fully
connected layer

sigmoid

lr The learning rate for model
training

0.002

overfitting. Bayesian optimization algorithm was employed
to search for partially optimal hyperparameters of the CNN
model. This primarily involved determining the number of
neurons in certain layers, activation functions for each layer,
dropout rates for individual layer neurons, and the learning
rate for model training. Specifically, the number of neurons
in each layer was set to 512 x 1 for the initial convolutional
layer and 32 x 1 for the second convolutional layer. The
dropout rate for each layer was set to 0.1, with ReLU as the
activation function for the first and second layers. The learning
rate was fixed at 0.002. Other parameters were configured
to the default settings of the CNN algorithm. The optimized
hyperparameters of the Convolutional Neural Network are detailed
in Table 4.

3.3.3 Multilayer Perceptron (MLP) model
construction

Multilayer Perceptron (MLP) is a fundamental type of
feedforward artificial neural network. It consists of multiple
layers of neurons, including an input layer, at least one or more
hidden layers, and an output layer (Hinton, 2006). In an MLP,
each neuron is connected to all neurons in the previous layer,
with each connection having an associated weight. Information
flows from the input layer through the neurons and layers to the
output layer. The presence of hidden layers allows MLP to learn
and capture more complex patterns and features. MLP model are
often trained using backpropagation algorithms, adjusting weights
iteratively to minimize the error between predicted and actual
outputs. This model applies to various machine learning tasks
such as classification and regression. It is worth noting that MLP is
commonly used for processing unstructured data like images, text,
or time series data.WhileMLP is a simple and flexible model, it may
suffer from overfitting or require more complex model structures to
improve performance when dealing with complex problems.

TABLE 5 Hyperparameters of the multilayer perceptron model.

Parameter Meaning Optimized value

units1 Number of neurons in the first
layer

64

units2 Number of neurons in the
second layer

128

units3 Number of neurons in the third
layer

128

units4 Number of neurons in the
fourth layer

64

dropout rate1 Dropout rate of neurons in the
first layer

0.1

dropout rate2 Dropout rate of neurons in the
second layer

0.43

dropout rate3 Dropout rate of neurons in the
third layer

0.35

activation1 Activation function of the first
layer

relu

activation2 Activation function of the
second layer

sigmoid

activation3 Activation function of the third
layer

sigmoid

activation4 Activation function of the fourth
layer

sigmoid

lr Learning rate 0.0001

This paper employs the training sample set of the research
area (Figure 6; Table 2) to construct a Multilayer Perceptron (MLP)
model, comprising one input layer, four hidden layers, and three
dropout modules to mitigate overfitting. The optimization of the
deep neural network model’s hyperparameters is achieved through
the Bayesian optimization algorithm, considering factors such as the
number of neurons in each layer, activation functions, dropout rates,
and the learning rate. Specifically, the first layer has 64 neurons,
the second and third layers each have 128 neurons, and the fourth
layer has 54 neurons. The dropout rates for the neurons are 0.1,
0.43, and 0.35 for the first, second, and third layers, respectively.
ReLU activation is used for the first layer, while sigmoid activation is
applied to the subsequent layers, and the learning rate is set to 0.0001.
Other parameters adhere to the default settings of the deep neural
network algorithm. Table 5 presents the optimized hyperparameters
for the Multilayer Perceptron model.

3.3.4 Model optimization
When constructing artificial intelligencemodels,model training

aims to enhance accuracy. Model accuracy relies not only on
the learning algorithm’s performance but also on the selection
of hyperparameters and features. Optimizing the model can also
enhance accuracy, thus it is necessary to optimize certain parameters
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of eachmodel. Presently, hyperparameter optimizationmethods can
employ automatic tuning techniques. Automatic hyperparameter
tuning methods mainly consist of random search, grid search,
and Bayesian optimization algorithms. In contrast to grid search
and random search, the Bayesian algorithm utilizes Gaussian
processes, making full use of prior knowledge. Moreover, Bayesian
optimization can attain the optimal solution and is more robust
than random search. Consequently, this paper adopts the Bayesian
optimization algorithm to adjust the model’s hyperparameters (Lee
and Min, 2001).

Gaussian Process, also known as Gaussian distribution
random process, can represent the distribution of functions.
The characteristics of Gaussian distribution are determined by
covariance and mean. By calculating the posterior probability of
samples, the maximum posterior variance of the model output
can be obtained. Generally, Gaussian processes require calculating
the probability of each feature and multiplying them. However,
due to the large number of feature factors, it is necessary to use a
multivariate Gaussian regressionmodel and establish the covariance
matrix of features. Finally, the probability “p(χ) is calculated using
all feature values.

p(χ) =
n

∏
j
p(χj;μj;σ

2) =
n

∏
j

1
√2πσj

exp
{
{
{
‐[

[

(χj‐μj)
2

2σ2
]

]

}
}
}

Average of all features:

 μj =
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m
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i=1
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Covariance matrix:

∑= 1
m
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∑
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Multivariate Gaussian distribution probability model:
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2
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During the process of searching for optimal values and
optimizing hyperparameters, this process is a Gaussian process.

3.3.5 Model validation
To assess the performance of the model, two metrics, namely,

the confusion matrix and ROC curve, were selected to evaluate the
effectiveness of the regional landslide warning model. These metrics
are used to measure the accuracy and generalization ability of the
model, respectively.

(1) Confusion Matrix

The confusion matrix is a matrix used to evaluate the
performance of classification models, providing an intuitive
reflection of the model’s binary classification effectiveness. It
categorizes the classification results into four scenarios based on
the actual classes (true values) and predicted classes, namely,
True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). The specific relationships between these four
classification results are depicted in Table 6:

As shown in Table 6, TN represents the true negative value,
which is the number of samples predicted and not experiencing

TABLE 6 Confusion matrix.

True values 0 1 Total

Predicted Value
0 TN FN TN + FN

1 FP TP FP + TP

Total TN + FP FN + FP TN + FP + FN +
FP

landslides. FN represents the false negative value, indicating the
number of samples predicted as not experiencing landslides but
experiencing landslides. FP represents the false positive value,
indicating the number of samples predicted as experiencing
landslides but not. TP represents the true positive value, which
is the number of samples predicted and experiencing landslides.
Additionally, other classification metrics can be derived from the
confusion matrix, including accuracy, true positive rate (TPR),
sensitivity (recall), specificity, and negative predictive value (NPV),
aiding in assessing the model’s performance. The formulas and
meanings are presented in Table 7.

(2) ROC (Receiver Operating Characteristic) curve

The ROC curve is employed to comprehensively assess and
evaluate the performance of themodel. It is generated by plotting the
true positive rate against the false positive rate at various thresholds.
The value of AUC (Area Under the ROC Curve) represents the
generalization ability of the landslide warning model, serving as an
evaluation metric for model performance. AUC ranges from 0.5 to
1.0, with values closer to one indicating better model performance.

3.4 Model application

In practical applications, the pre-trained landslide warning
models can be directly accessed using the LOAD function. These
models have been previously trained, and saved, and can output
the probability of landslide disasters occurring. By adhering to
different warning strategies, the warning levels can be systematically
determined and classified.

3.4.1 Model input and computation
Acquiring model input parameters by dividing the study area

into grid cells of 2 km x 2 km. Each grid cell layer is then associated
with 26 input feature parameters. These parameters include slope,
terrain type, lithology, annual rainfall, vegetation type, distance to
watercourses, distance to roads, distance to buildings, population
density, and historical disaster points, which are derived from
geological environmental input features trained by the model. The
remaining 16 input feature parameters, such as rainfall for the
current day, rainfall for the previous 1 day, rainfall for the previous
2 days, and so forth up to rainfall for the previous 15 days, are
computed based on the specific time of the day for which the
warning calculation is performed. Ultimately, this process generates
input data files for each grid cell. These input data files are then
fed into the three machine-learning landslide warning models for
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TABLE 7 Formulas and meanings of metrics.

Metric Formula Meaning

Accuracy Accuracy = TP + TN
TP + TN + FP + FN

The proportion of correctly classified samples
among all samples

True Positive Rate (TPR) TPR = TP
TP + FP

The proportion of positive samples correctly
identified as positive

Sensitivity (Recall) Sensitivity = TP
TP + FN

The proportion of actual positive samples that are
correctly predicted as positive

Specificity Speci ficity = TN
TN + FP

The proportion of actual negative samples that are
correctly predicted as negative

Negative Predictive Value (NPV) TNR = TN
TN + FN

The proportion of negative samples that are
correctly identified as negative among all samples

predicted as negative

TABLE 8 Binary warning strategy based on machine learning landslide
warning models.

Probability
threshold range

(%)

Output warning
level

Risk of
geological
disaster

occurrence

≥50 Warning High Risk Risky

<50 No Warning Low Risk

computation, yielding the output of landslide hazard probabilities
within each grid cell.

3.4.2 Warning strategy
Based on the probabilities of landslides occurring in each grid

cell as output by the model, the final warning level is determined
according to the model’s output strategy. This paper proposes
two warning strategies: binary warning strategy and multiclass
warning strategy.

(1) Binary Warning Strategy

The binary warning strategy categorizes the final warning level
into two classes based on the probabilities of landslides occurring
in each grid cell as output by the model: no warning and warning.
We set the threshold for classification at 50% and use this threshold
to determine the landslide warning level. When the probability
of landslides in each grid cell output by the model is below the
50% threshold, the warning level is classified as “no warning,”
indicating a low risk of geological disaster occurrence. Conversely,
when the probability of landslides in each grid cell output by the
model is above the 50% threshold, the warning level is classified
as “warning,” still indicating a high risk of geological disaster
occurrence (Table 8).

(2) Multiple Classification Warning Strategy

The multiple classification warning strategy divides the final
warning level into several categories based on the landslide
occurrence probability output by the model for each grid cell.

TABLE 9 Multi-class warning strategy based on machine learning
landslide warning model.

Probability (%) Threshold range
warning level

Output warning
level

>80 Red Warning very high risk

60–80 Orange Warning High Risk

40–60 Yellow Warning Moderate Risk

<40 No Warning Low Risk

This study refers to the industry standard geological disaster
meteorological risk warning regulations, using thresholds of 20%,
40%, 60%, and 80% to categorize the warning levels into nowarning,
yellow warning, orange warning, and red warning. Specifically,
when the output probability is below 40%, the warning level
is “no warning,” indicating a relatively low risk of geological
disaster occurrence. When the output probability falls within
the range of 40%–60%, the warning level is “yellow warning,”
suggesting a higher risk of geological disaster occurrence. For
output probabilities between 60% and 80%, the warning level is
“orange warning,” indicating a high risk of geological disaster
occurrence. If the output probability exceeds 80%, the warning level
is “red warning,” indicating a very high risk of geological disaster
occurrence (Table 9).

4 Results and comparative analysis of
three warning models

4.1 Model validation results

(1) Confusion Matrix Results

According to the confusion matrix output results of the three
models (Table 10), it can be observed that when thresholds are set
to 0.25, 0.5, and 0.75 respectively, the accuracy of the Random
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Forest model is 0.930, 0.953, and 0.957, the accuracy of the
Convolutional Neural Network (CNN) model is 0.945, 0.947, and
0.948, and the accuracy of the Multilayer Perceptron (MLP) model
is 0.930, 0.937, and 0.953. According to the ROC results of the
three models (Figure 10), the AUC value of the Random Forest
model is 0.955, the AUC value of the CNN model is 0.940, and the
AUC value of the MLP model is 0.930. The test metrics of the three
models are very close, demonstrating good generalization ability and
accuracy of all threemodels, proving their reliability. Comparatively,
among the three models, the Random Forest model exhibits the
highest accuracy (0.957) and the highest AUC value (0.955).

(2) ROC Results

4.2 The effectiveness of model application
in early warning

As an example, let’s consider 5 August 2021, and apply themodel
input, model computation, and early warning strategy outlined in
Section 2.4. We’ll generate the risk warning levels for geological
disasters according to both the binary and multiclass warning
strategies. The results for the binary warning strategy are shown
in Figure 11, while the results for the multiclass warning strategy
are shown in Figure 12.

We’ll then collect and organize the actual landslide disaster
occurrences in the study area on 5 August 2021 (14 newly occurred
landslides). By mapping the coordinates of the actual landslide
points onto the warning result maps (Figures 11, 12), we’ll validate
the effectiveness of the model’s practical application.

From Figure 11 and Table 11, it is evident that in the results of
the binary warning strategy, among all 14 newly occurred landslide
points, 13 fall within the “Warning” level range of the Random
Forest (RF) model (Figure 11A), achieving a prediction hit rate of
92.9%; 13 newly occurred landslide points fall within the “Warning”
level range of the Convolutional Neural Network (CNN) model
(Figure 11B), with a prediction hit rate of 92.9%; and 12 newly
occurred landslide points fall within the “Warning” level range of
the Multilayer Perceptron (MLP) model (Figure 11C), achieving a
prediction hit rate of 85.7%.

From Figure 13 and Table 11, in the results of the multiclass
warning strategy, the Random Forest model’s warning results
(Figure 12A) show that among all 14 newly occurred landslide
points, 13 (92.9%) fall within the Random Forest model’s warning
zone, with approximately half falling into the “Yellow Warning” and
“Orange Warning” zones and no newly occurred landslide points
fall into the “Red Warning” zone. The CNN warning model results
(Figure 12B) indicate that among all 14 newly occurred landslide
points, 13 (92.9%) fall within the CNN model’s warning zone, with
no newly occurred landslide points falling into the “YellowWarning”
zone, and approximately 86% fall into the “Red Warning” zone. The
MLP warning model results (Figure 12C) show that among all 14
newly occurred landslide points, 12 (85.8%) fall within the MLP
model’s warning zone, with no newly occurred landslide points
falling into the “Orange Warning” zone, and 71.4% fall into the “Red
Warning” zone.

Comparative analysis shows that the Random Forest warning
model not only performs excellently in accuracy but also exhibits

outstanding performance in multi-level hierarchical warning. The
warning zones of different levels are distributed more evenly,
indicating that the Random Forest model is more suitable for multi-
level warnings. The CNN and MLP warning models demonstrate
good accuracy, but they perform inadequately in hierarchical
warning, with their output results tending toward the two extremes
of 0 and 1. Consequently, the majority of the warning zones in the
output results of these two models are in the “Red Warning” zone,
indicating their limitations in hierarchical warning applications.

4.3 Analysis of results

In the model training and evaluation phase, we employed three
machine learning algorithms: Random Forest (RF), Multi-Layer
Perceptron (MLP), and Convolutional Neural Network (CNN) for
learning, training, and validating the landslide disaster warning
models. The dataset was divided into training and testing sets in
a 4:1 ratio, and a Bayesian optimization algorithm was used to
optimize the model’s hyperparameters. The reliability of the models
was thoroughly tested on the testing set using confusion matrices
and ROC curves. Evaluation results showed that the accuracy of the
warning model based on the Random Forest algorithm ranged from
0.930 to 0.957, with an AUC value of 0.955; for the Convolutional
Neural Network-based warning model, the accuracy ranged from
0.945 to 0.948, with an AUC value of 0.940; and for the Multi-Layer
Perceptron-based warning model, the accuracy ranged from 0.930
to 0.953, with an AUC value of 0.930. The results indicate that the
accuracy of the three models’ testing metrics is comparable, but the
Random Forest algorithm demonstrates a clear advantage in terms
of AUC value. All three models exhibit good generalization ability
and precision. In terms of model application, methods for obtaining
and importing input feature parameters in practical warning
scenarios are proposed. Two standardized warning model output
feature strategies are suggested: binary classification warning and
multi-classification warning. In the binary classification warning
strategy, a threshold of 50% is used for the output probability,
dividing the warning results into “no warning” and “warning”
categories. In the multi-classification warning strategy, thresholds
of 40%, 60%, and 80% are utilized, categorizing the warning results
into “no warning,” “yellow warning,” “orange warning,” and “red
warning” classes. Taking thewidespread landslide disasters triggered
by heavy rainfall in Fujian Province, China on 5 August 2021,
as an example, the practical application of the models in real
scenarios was demonstrated. Results revealed that using the binary
classification warning strategy, out of the 14 landslide disasters
that occurred on 5 August 2021, 13 landslides (accounting for
92.9% of the total) fell within the “warning” areas predicted by the
Random Forest and Convolutional Neural Network (CNN) warning
models, while 12 landslides (85.7% of the total) fell within the
“warning” areas predicted by the Multi-Layer Perceptron (MLP)
warning model. This demonstrates the excellent performance of the
three warning models in the binary classification warning strategy.
When employing the multi-classification warning strategy, within
the output results of the Random Forest warning model, seven
landslides (50.0% of the total) fell into the “yellow warning” zone,
six landslides (42.9% of the total) fell into the “orange warning”
zone, and one landslide (7.1% of the total) fell into the “no warning”
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TABLE 10 Confusion matrix results of three warning models.

Threshold Actual value

Landslide Non-landslide

RF Model

0.25
Predicted Value

Landslide 2,581 255 Ture Positive Precision:0.910

Non-Landslide 312 10,124 Ture Negative Precision:0.970

Recall Rate:0.892 Specificity:0.975 Precision:0.957

0.5
Predicted Value

Landslide 2,267 29 Ture Positive Precision:0.987

Non-Landslide 626 10,350 Ture Negative Precision:0.943

Recall Rate:0.784 Specificity:0.997 Precision:0.953

0.75
Predicted Value

Landslide 1972 4 Ture Positive Precision:0.998

Non-Landslide 921 10,375 Ture Negative Precision:0.918

Recall Rate:0.682 Specificity:1.0 Precision:0.930

CNN Model

0.25
Predicted Value

Landslide 573 57 Ture Positive Precision:0.910

Non-Landslide 115 2,373 Ture Negative Precision:0.954

Recall Rate:0.833 Specificity:0.977 Precision:0.945

0.5
Predicted Value

Landslide 565 40 Ture Positive Precision:0.934

Non-Landslide 123 2,390 Ture Negative Precision:0.951

Recall Rate:0.821 Specificity:0.984 Precision:0.948

0.75
Predicted Value

Landslide 554 30 Ture Positive Precision:0.949

Non-Landslide 134 2,400 Ture Negative Precision:0.947

Recall Rate:0.805 Specificity:0.988 Precision:0.947

MLP Model

0.25
Predicted Value

Landslide 556 71 Ture Positive Precision:0.887

Non-Landslide 124 2,367 Ture Negative Precision:0.950

Recall Rate:0.818 Specificity:0.971 Precision:0.937

0.5
Predicted Value

Landslide 547 54 Ture Positive Precision:0.987

Non-Landslide 133 2,384 Ture Negative Precision:0.943

Recall Rate:0.784 Specificity:0.997 Precision:0.953

0.75
Predicted Value

Landslide 540 45 Ture Positive Precision:0.998

Non-Landslide 140 2,393 Ture Negative Precision:0.918

Recall Rate:0.682 Specificity:1.0 Precision:0.930

zone. In the output results of the CNN warning model, 12 landslides
(85.8% of the total) fell into the “red warning” zone, one landslide
(7.1% of the total) fell into the “orange warning” zone, and one
landslide (7.1% of the total) fell into the “no warning” zone. In the
output results of the MLP warning model, 10 landslides (71.4% of

the total) fell into the “red warning” zone, two landslides (14.3%
of the total) fell into the “orange warning” zone, and two landslide
(14.3% of the total) fell into the “no warning” zone. Comparative
analysis indicates that the Random Forest warning model not
only demonstrates excellent accuracy but also performs remarkably
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FIGURE 10
ROC Curve Results (A): RF Model; (B) CNN Model; (C) MLP Model).

FIGURE 11
Verification Results of Binary Warning Strategy Instance (A): RF Warning Model; (B) CNN Warning Model; (C) MLP Warning Model).

well in multi-classification hierarchical warning. The CNN and
MLP warning models exhibit good accuracy in warning but show
limitations in hierarchical warning effectiveness.

5 Discussion

This study uses three machine learning algorithms—Random
Forest (RF), Multi-Layer Perceptron (MLP), and Convolutional
Neural Network (CNN)—to provide a broader assessment of
model performance. The use of multiple algorithms allows for
a comparison of different methods, identifying their respective
strengths and weaknesses. Previous research typically focused on
a single algorithm, limiting the scope of comparative analysis
(Hastie et al., 2009). Implementing both binary and multiclass
classification strategies enhances the versatility and applicability of
the warning models. By categorizing warning results into different
risk levels, stakeholders can better prioritize and manage resources.
This dual-strategy approach is relatively unique and adds depth to
the predictive capability of the models (Breiman, 2001). The models
demonstrated strong generalization ability and high accuracy during

the testing phase, particularly the Random Forest algorithm, which
achieved the highest AUC value. This robustness is crucial for the
practical application of landslide prediction, where model reliability
is key (Zhou et al., 2020). Previous research on landslide warning
models often used single algorithms and simple classification
strategies. For example, studies by Dou et al. (2020) and Hong
et al. (2016b) mainly used logistic regression and support vector
machines, focusing on binary classification. This study employs
multiple algorithms and classification strategies, providing a more
detailed and comprehensive analysis. It demonstrates the relative
advantages of differentmethods in various contexts. Liu et al. (2022)
conducted a study on landslide disaster early-warning models using
six machine learning algorithms. Among them, the Random Forest
model performed the best, with the highest generalization ability
(AUC = 0.955) and no overfitting. The Artificial Neural Network
model followed with an AUC of 0.935, then the Nearest Neighbor
model, Logistic Regression model, and Support Vector Machine
model with AUCs of 0.924, 0.922, and 0.920, respectively. The
Decision Tree performed the worst, with an AUC value of 0.904 and
an accuracy of 0.937. In comparison, the AUC values of the three
early-warning models in this paper are 0.955 for the Random Forest
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FIGURE 12
Multiclass Warning Strategy Validation Results (A): RF Warning Model; (B) CNN Warning Model; (C) MLP Warning Model).

TABLE 11 Comparison of the actual application effectiveness of three models in warning.

Model
Warning

Binary warning strategy results Multi-class warning strategy results

Warning
Level

Landslides
(occurrences)

Percentage
of

Landslides
(%)

Warning
Level

Landslides
(occurrences)

Percentage
of

Landslides
(%)

RF Model
Warning 13 92.9

Red Warning 0 0

Orange Warning 6 42.9

Yellow Warning 7 50.0

No Warning 1 7.1 No Warning 1 7.1

CNN Model
Warning 13 92.9

Red Warning 12 85.8

Orange Warning 1 7.1

Yellow Warning 0 0

No Warning 1 7.2 No Warning 1 7.1

MLP Model
Warning 12 85.7

Red Warning 10 71.4

Orange Warning 0 0

Yellow Warning 2 14.3

No Warning 2 14.3 No Warning 2 14.3

algorithm, 0.940 for the Convolutional Neural Network-based
warning model, and 0.930 for the Multi-Layer Perceptron-based
warning model. The overall AUC value differences are relatively
small, and the values are higher, indicating that the early-warning
models established using these three algorithms are more stable.

The Random Forest algorithm typically yields excellent
predictive results, even when dealing with complex or high-
dimensional datasets. It can effectively handle large datasets and
exhibits good robustness towards missing data. Random Forest can

also fit nonlinear relationships in data quite well. However, it may
perform poorly when dealing with high-dimensional sparse data.
CNN excels in processing data with grid-like structures such as
images and speech because they can effectively capture local features.
Through mechanisms like weight sharing and local connections,
CNN reduces the number of parameters, thereby improving the
model’s training efficiency and generalization ability. However,
CNN may not perform well when dealing with sequential data
or non-grid structured data, as their architecture assumes input
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FIGURE 13
Schematic diagram of multilayer perceptron (MLP) model.

TABLE 12 The binary strategy and multiclass strategy.

Feature/Advantage-Disadvantage Binary strategy Multiclass strategy

Feature

Simple and intuitive, distinguishes only occurrence or
non-occurrence of disasters

Able to detail disaster types and levels, distinguishes
multiple disaster states

Easy to implement and understand Provides more detailed information on disaster states

Applicable to various scales and types of geological
disaster prediction

Adaptable to complex scenarios, such as multiple types
and levels of disasters

High prediction accuracy, provides detailed warning
strategiesAdvantage

High computational efficiency, direct decision-making

Able to more accurately reflect actual disaster
occurrence and development processes

Disadvantage

Information loss, relatively lower prediction accuracy
and comprehensiveness

High model complexity, requires more data and
computational resources

Unable to handle complex situations Greater implementation and understanding difficulty

data have a grid-like structure. CNN requires a large amount of data
for training to avoid overfitting issues. MLP can adapt to various
types of data, including structured and unstructured data. Their
model structure is relatively simple,making themeasy to understand
and implement. However, for high-dimensional or large-scale data,
MLP may not be efficient enough as they typically require a large
number of parameters to learn complex patterns. However, the
dataset established in this study features characteristics such as being
large and low-dimensional, making it suitable for the application
conditions of Random Forests, CNN, and MLP. This is also why
these three models perform well in predicting landslide outcomes.

Although the three models show small numerical differences
in validation metrics (such as AUC values and accuracy), these
minor differences can lead to significant differences in practical
applications. Specifically, we observed the following points:(1)
Geographical Distribution Differences: In practical applications,
different models show significant differences in the warning areas
on geographical distribution maps. Taking the landslide disasters
in Fujian Province on 5 August 2021, as an example, although the

RF and CNN models are very close in accuracy and AUC values,
they exhibit significant differences in the predicted warning areas.
The RF model tends to issue warnings in medium-risk areas, while
the CNN model issues more warnings in high-risk areas. (2)Reason
Analysis: This difference mainly stems from the sensitivity of the
models to input features. The RF model performs well in capturing
potential risk points due to its ability to handle highly nonlinear
relationships in the data. On the other hand, the CNN model
effectively captures spatial features through its convolutional layers,
leading to more accurate predictions in high-risk areas. (3)Impact
Analysis: These small differences in metrics can lead to significant
differences in practical applications. For example, the RF model
predicts more warnings in “yellow warning” and “orange warning”
areas, which is crucial for disaster prevention in medium-risk
regions. The high accuracy of the CNN model in “red warning”
areas means better preparedness in high-risk regions. The MLP
model also provides higherwarnings in some low-risk areas, offering
additional references for overall risk management. Through the
above analysis, we further illustrate that although the three models

Frontiers in Earth Science 19 frontiersin.org99

https://doi.org/10.3389/feart.2024.1419421
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1419421

have small differences in validation metrics, these differences can
translate into significant differences in practical applications. This
part of the discussion not only highlights the applicability of the
models in different scenarios but also provides valuable insights for
practical disaster warning work.

The article employs two warning strategies. The binary
warning strategy categorizes the final warning level into two
classes: no warning and warning, corresponding to low and
high predicted geological disaster risks, respectively. The binary
classification strategy is simple and intuitive, well-suited for
scenarios requiring direct disaster prediction and emphasizing
rapid decision-making. Involving only two categories contributes
to high computational efficiency and straightforward decision-
making, facilitating swift responses to emergencies. The multiclass
warning strategy classifies the final warning level intomultiple levels:
no warning, yellow warning, orange warning, and red warning.
These graded warnings (red, orange, yellow) correspond to very
high, high, and relatively high risks of geological disasters. The
multiclassification strategy distinguishes between various types
or different levels of disaster states, providing more detailed and
refined predictive outcomes. This strategy is suitable for regions
and situations characterized by diverse types of disasters and
higher complexity. It enables more accurate predictions for each
potential disaster state and corresponding emergency response
measures, thereby enhancing disaster preparedness capabilities. The
advantages and disadvantages of these strategies are summarized in
the following Table 12.

The application of these models in practical landslide prediction
demonstrates their potential. However, limitations such as handling
high-dimensional data and the data requirements of CNNs need to
be addressed in future research. To further improve the robustness
and applicability of landslide warning models, future studies should
consider integrating hybrid models that combine the strengths
of various algorithms. Additionally, exploring advanced machine
learning techniques such as ensemble learning, transfer learning,
and unsupervised learning can enhance model performance.
Subsequent optimization of input features and validation of models
using more diverse datasets will also be beneficial.

6 Conclusion

This study presents a comprehensive approach to constructing
regional landslide warning models utilizing machine learning,
demonstrated within the context of Fujian Province, China. The
outlined four-step process includes data integration and cleaning,
construction of training sample sets,machine learningmodel training
and validation, and practical model application. Employing Random
Forest (RF), Convolutional Neural Network (CNN), and Multilayer
Perceptron(MLP)algorithms, theresearchshowcases theeffectiveness
of these models in predicting rainfall-induced landslides.

(1) The dataset utilized for model development comprises 15,589
samples, incorporating 10 geological environmental condition
factors and 16 rainfall-induced features. This diverse dataset
provides a robust foundation for training and testing themodels.

(2) The training and evaluation phase highlights the performance
of RF, CNN, and MLP algorithms, revealing comparable

accuracy metrics. The RF algorithm notably excels with a
higher AUC value, indicating superior predictive capability.

(3) In practical model application, two standardized warning
strategies are proposed: binary classification and multi-
classification. The binary classification strategy distinguishes
between “no warning” and “warning” categories based on a
50% threshold, while the multi-classification strategy offers
nuanced warnings, dividing predictions into “no warning,”
“yellow warning,” “orange warning,” and “red warning” classes
using varying thresholds.

(4) Real-world application of the models during the 5 August
2021 landslide disasters in Fujian Province demonstrates
their efficacy. In the binary classification strategy, the models
successfully predicted the majority of landslide occurrences.
In the multi-classification approach, the RF model exhibits
superior hierarchical warning effectiveness compared to CNN
and MLP models.

In summary, this research significantly contributes to advancing
landslide disaster warning models by providing insights into
model construction, evaluation, and practical application. Further
refinement and validation of these models are anticipated through
continued data accumulation and real-world verification.

The paper only conducts statistical analysis on the relationship
between various factors and landslide occurrences, lacking sufficient
insight into the mechanism and causes of landslides. In the future,
it is necessary to employ more rational and complex nonlinear
methods for research. Although the sample set used in this study
achieves a balance between positive and negative samples through
the SMOTE algorithm, the generated synthetic samples are obtained
through linear interpolation, which may introduce errors compared
to the actual local conditions. Therefore, in future sample dataset
construction, it is essential to select positive and negative samples
proportionally. The warning methods studied in the paper have
implications for broader application. Currently, they are only used
in Fujian Province, but they could be applied to other regions in the
future. By collecting different disaster-causing factors to construct
sample sets, a regional geological disaster meteorological warning
model could be developed, thus further verifying its applicability.
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On 8 June 2017, a heavy storm struck the parallel ridge-valley area of
western Chongqing, resulting in serious urban waterlogging and landslides,
which led to severe impacts on infrastructure and damage to private property.
Based on high-resolution optical satellite images, this paper comprehensively
identified the landslides triggered by this rainfall event, and established a
corresponding landslide database. The database takes the landslide area density
and landslide number density as themain indicators, and combines the lithology
characteristics to analyze the spatial distribution of landslides. The results show
that this event triggered 487 landslides in an area of 583 km2, involving an
area of about 485,587 m2, accounting for about 0.083% of the study area.
The average landslide number density is 0.84 num/km2, the highest value of
landslide number density can reach 55.6 num/km2, and the maximum landslide
area density is about 6.4%. These landslides are mainly distributed in the
southern foothills of the Huaying Mountain, especially in the weak interlayer
lithology area. The database provides scientific reference and data support for
exploring the mechanism of landslides in western Chongqing and reducing
the risk of landslide disasters under the background of rapid development of
local society.

KEYWORDS

rainfall-triggered landslides, database, parallel range-valley area, satellite imagery,
western Chongqing

1 Introduction

Landslide disasters occur frequently, drawing extensive research from numerous
scholars (Huang et al., 2022; Huang et al., 2023), with the aim of better addressing this
challenge. Particularly in the current scenario of severe global climate change, the impact
of climate change on the frequency of landslides has become a matter of great concern
(Patton et al., 2019; Kirschbaum et al., 2020). The frequent incidence of extreme events
such as heavy rainfall and droughts, caused by climate change, aggravates the erosion
and loosening of the earth surface and increases the possibility of landslides occurrence.
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As a natural disaster, landslides are extremely destructive, posing
a serious threat to both human society and the environment.
Between 1 January 2004, and 31 December 2010, there were 2,620
fatal landslide events globally (excluding co-seismic landslides),
resulting in a total of 32,322 deaths, with the number of recorded
landslides showing an increasing trend each year (Petley, 2012).
Landslide disasters can cause direct or indirect damage to local
communities (e.g., destruction of infrastructure, power outages,
and water supply interruptions), significantly impacting the local
economy and social stability. The post-disaster reconstruction
costs are enormous, encompassing clearance and reconstruction
of facilities, imposing a heavy burden on local governments and
social resources (Vranken et al., 2013). Moreover, landslide disasters
can change the local landscape. Large-magnitude landslides may
result in drastic changes in topography, including collapses,
river diversion, etc., bringing profound impacts on surrounding
environments and ecosystems (Thapa et al., 2024). Compared
to post-disaster remedies, preventive measures beforehand are
particularly crucial (World Bank and United Nations, 2010).
By upgrading monitoring and warning systems, adjusting land
use plans, enhancing infrastructure resilience, etc., thereby the
frequency of landslides and the resulting losses and impacts can
be effectively reduced.

In recent years, the prominent geographic advantage of the
northwest part of Chongqing has garnered attention due to
the development of the Chengdu-Chongqing economic circle.
Positioned at the intersection of the Belt and Road and the Yangtze
River Economic Belt, this region holds a unique geographical
advantage in connecting the southwest and northwest of China
domestically, and bridging East Asia, Southeast Asia, and South
Asia internationally. Not only does this area boast abundant
ecological resources and energy, including mineral deposits, but
it also features densely populated urban areas and picturesque
landscapes. It stands as one of the most densely populated regions
in western China, with robust industrial foundations, strong
innovative capabilities, broad market potential, and high levels
of openness, playing a crucial strategic role in the country’s
overall development. However, the rapid development of the
Chengdu-Chongqing region also brings a series of challenges
and risks, including frequent landslide disasters. For instance, an
extreme rainfall event could trigger widespread landslides, severely
impacting the local socioeconomic and ecological environment.
Previous research in the region mainly focused on slope stability
assessment (Wang L. et al., 2019; Wu et al., 2023), landslide
susceptibility (Sun et al., 2020; Wei et al., 2021) and landslide
movement processes (Zhang et al., 2014; Guo et al., 2020), while
there is little research on the database of landslide triggered by a
single rainfall event.

Compiling a landslide inventory serves as a crucial data
foundation for further landslide studies, driven by multiple
factors. Firstly, it marks the spatial and temporal occurrences
of landslides (Shao et al., 2023a; Chen et al., 2023), providing
fundamental data for subsequent research. Through landslide
inventory, the mechanism, morphology, and mode controlled
by the lithology or geology can be deeply understood (Zhang,
2020; Li et al., 2021). Conducting susceptibility (Ciurleo et al.,
2021; Razavi-Termeh et al., 2021) and hazard assessments

(Thiery et al., 2020; Lin et al., 2021) are of significant importance
for geological disaster management. Developing landslide
early warning systems (Lagomarsino et al., 2013; Calvello and
Piciullo, 2016; Magrì et al., 2024) and taking proactive measures
aids in reducing economic losses and casualties caused by
landslides.

The advancement of science leads to technological innovations,
offering various methods for landslide detection and inventory
compilation. For instance, SAR data, characterized by all-weather
capability and low cost, is utilized for landslide identification
and displacementmonitoring (Handwerger et al., 2022; Zhang et al.,
2023). However, rapid deformation rates can lead to decorrelation,
rendering it unsuitable for detecting landslides triggered by
extreme rainfall events. Field surveys are commonly employed
for individual landslides and on-site verification of landslide
databases, but with high time and economic costs. Text mining
based on big data extracts landslide event locations and times
from social media (Franceschini et al., 2022), yielding abundant
but potentially redundant and incomplete landslide-related data,
posing huge challenges to researchers. Rapid development in
optical satellite technology, with high precision, wide coverage,
low cost, and multi-temporal, has received extensive attention.
Using high-resolution optical satellite images, Sun et al. (2024a)
identified 10,968 landslide traces in the Yinshan area; He et al.
(2021) found 167 landslides triggered by the Qiaojia Mw5.1
earthquake on 18 May 2020 in Yunnan, China; Huang et al.
(2021) established a database of earthquake-triggered landslides
in Milin, Tibet, including 3,130 co-seismic landslides. Xie et al.
(2023) took an extreme rainfall event in Jiexi County, Guangdong
Province in August 2018 as the research subject, and established
a database containing 1,844 landslides. Compared with the great
progress in earthquake-triggered landslide database construction,
the establishment of a rainfall-triggered landslide database using
optical satellite images is relatively slow. As of 2022, there are only
16 public databases (Ma et al., 2022) of heavy rainfall-triggered
landslides worldwide. Primarily because optical satellites are often
hindered by cloud cover during adverse weather conditions, making
it challenging to extract rainfall-triggered landslides occurring on
cloudy days.

The parallel ridge-valley region in Chongqing, being one
of the world’s three major fold mountain systems, provides a
unique setting for examining how rainfall initiates landslides
within its geological context. The area’s pronounced geological
features greatly intensify the need for research into a database
on rainfall-triggered landslide occurrences in this region and its
vicinity. This study focused on a localized heavy storm event
that occurred in the Huaying Mountains (in the parallel ridge-
valley region of western Chongqing) on 8 June 2017. It revealed
the spatiotemporal characteristics of this rainfall event. Using
satellite images, we extracted landslides triggered by this event to
establish a landslide database. This work not only enriches the
landslide database of the Chongqing, but also provides accurate
data support for subsequent analysis of landslides triggered by
the event. It will also directly contribute to the protection of
residents’ lives and property, reduce potential losses caused by
landslide disasters, and thereby ensure the long-term stability
and development of the community.
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FIGURE 1
Overview of the study area.

2 Study area

The study area is located in the northwest of Chongqing
(Figure 1). The coordinates of the study area’s corners are: 106.396°
E, 30.075° N; 106.192° E, 29.917° N; 106.321° E, 29.75° N; 106.525°
E, 29.909° N. The study area covers approximately 583 km2.
The climate in the region is subtropical humid monsoon. It’s
characterized by early springs, hot summers, rainy autumns, and
mild winters. The average annual temperature is 18.2°C. The
average annual precipitation is 1156.8 mm, concentrated from
May to September each year. The study area is situated at the
southern foothills of the Huaying Mountain, which lies within
the parallel ridge-valley region adjacent to the eastern Sichuan
Basin. The study area exhibits a terrain marked by anticlines
forming hills and synclines forming valleys, with elevations ranging
from 120 to 1,000 m. Flowing through the heart of the area,
the Jialing River provides abundant water resources. The strata
of the study area span a wide range from the Jurassic to the
Quaternary. Jurassic covers over 50% of the total area, mainly
distributed in flat valleys. These areas are composed of mudstone
interbedded with siltstone and feldspathic sandstone. In the
mountainous regions, the main underlying strata are Triassic,
accounting for over 30%, consisting of quartz sandstone, shale, and
limestone (Figure 2).

3 Data and method

From June 8th to 10th, 2017, Chongqing experienced an
unprecedented rainfall event, resulting in significant economic
losses for the region. The severely affected Hechuan District has
become the focus of media attention (CCTV, 2017; Lin and
Wu, 2017). In response, we utilized the GPM IMERG Final
Run product (Huffman et al., 2023) to analyze the precipitation
patterns during these three days in Chongqing. Through spatial
analysis, we identified the region with the highest precipitation.
According to the rainfall distribution, media attention, terrain
characteristics, and population density observed from satellite
images, we determined the study area, and then carried out research
on rainfall-triggered landslides in the study area.

In recent years, the field of landslide identification
technology has undergone significant technological innovation,
particularly with the application of deep learning techniques
(Wang et al., 2021; Yang et al., 2022), which have provided efficient
means of identification and high-precision results for disaster
emergency response. While the accuracy of deep learning
in landslide identification is satisfactory for simple surface
environments, its recognition accuracy significantly decreases when
dealing with complex surface environments, such as areas near
roads. Therefore, at the current stage of technological development,
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FIGURE 2
Underlying strata map of the study area.

the human-machine interactive method for landslide identification
maintains its irreplaceable position.

Our team has made substantial strides in the realm of
remote sensing interpretation for event-induced landslides, with a
wealth of experience specifically in extracting landslide data from
optical remote sensing images. We have successfully developed
interpretation criteria for earthquake-induced landslides (Xu et al.,
2015; Sun et al., 2024b; Shao et al., 2024) and have also achieved
significant breakthroughs in identifying rainfall-induced landslides
(Ma et al., 2023a; Cui et al., 2024; Gao et al., 2024). The insights
and standards developed for earthquake-induced landslides are
readily applicable to the recognition of rainfall-induced landslides
in this study, as both types of landslides present marked differences
from their surroundings on optical remote sensing images, which
is a key indicator for identification. Drawing from our previous
research, we have compiled an expert knowledge framework that
is a core to the process of landslide interpretation. This framework
combines the analysis of optical remote sensing imagery, terrain
and geomorphological characteristics, and the mechanisms that
trigger landslides, offering a robust scientific foundation for precise
landslide identification. Especially for shallow landslides triggered
by rainfall events, their distinctive morphological traits (such as
compact size and elongated forms) are vital for enhancing the
accuracy and efficiency of landslide interpretation.

In this study, based on high-resolution satellite images, all
landslide data were extracted by human-computer interaction visual
interpretation. We use the Planet satellite image with a resolution of
3 m as themain satellite image. Pre-event imagery dates back toMay
2017, captured in a global monthly composite image, while post-
event imagery was obtained in July 2017 (Figure 3). Given the spatial
resolution of the Planet and extensive traces of human activity in
the study area, precautions were taken to avoid misidentifying. For
a more accurate identification of landslides, we supplemented the
analysis with detailed validation using Google Earth imagery from
August 2016 and August 2017 (Figure 4).

The lithology data used in the study are from the China
Geological Survey (http://dcc.cgs.gov.cn/, accessed on 19
March 2024).

4 Results

4.1 Rainfall event

This study collected GPM IMERG Final Run daily precipitation
products from June 8th to 11 June 2017, to conduct spatial analysis of
the rainfall event in Chongqing (Figure 5). The results indicate that
theHechuanDistrict, Beibei District, BishanDistrict, Yubei District,
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FIGURE 3
The Planet images of the study area pre- and post-rainfall event. (A) May 2017 (B) July 2017.

FIGURE 4
The Google Earth image depicts the study area marked in yellow in Figure 3 (29.9°N, 106.341°E) pre- and post-rainfall event. (A) August 2016 (B)
August 2017.

and Tongliang District are the areas with the highest precipitation.
This rainfall event caused flooding, leading to waterlogging and
road inundation in urban areas. Notably, all 27 towns and streets
within Hechuan District experienced significant flooding, resulting
in severe submersion of agricultural lands. Due to ongoing river

diversion construction in Huangjin Village, river surged, causing 30
workers were trapped (Tianqi Network, 2017). Although all trapped
workers were successfully rescued by the firefighters, this incident
raised concerns about geological disaster prevention. Hechuan and
its surroundings, due to their unique geographical and climatic
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FIGURE 5
Spatial distribution of accumulation precipitation in Chongqing from 8 June 2017 to 10 June 2017.

conditions, are prone to geological disasters. The heavy storm
induced landslides pose a serious threat to public safety. Therefore,
studying the landslides triggered by this rainfall is critical. Through
scientific research and effective preventionmeasures, authorities can
better safeguard lives and property and mitigate the recurrence of
such disasters.

The rainfall process of the study area was analyzed temporally
using the 0.5-hour rainfall data from the GPM IMERG Final
Run. It was observed that the intense rainfall mainly occurred
from 3:00 p.m. on 8 June 2017, to 12:00 a.m. on 9 June 2017.
According to the standards outlined in the National Standard
of the People’s Republic of China (GBT28592-2012 Grade of
precipitation) and the rainfall intensity classification criteria issued
by the China Meteorological Administration (Table 1), the total
rainfall on June 8th was approximately 85 mm, reaching the
level of a heavy storm. Figure 6 shows that the rainfall intensity
reached the maximum at 17: 30 on the 8th, about 30 mm/h.
The event spanned three days, with a total precipitation of
about 87 mm.

4.2 Rainfall-induced landslide inventory

The occurrence of rainfall resulted in the initiation of 487
landslides, covering a total area of about 485,587 m2. This biggest

TABLE 1 Precipitation intensity grading standards promulgated by the
China Meteorological Administration.

Rainfall classification Total rainfall in 24 Hours(mm)

Light Rain <10

Moderate Rain [10,25)

Heavy Rain [25,50)

Heavy Strom [50,100)

Very Heavy Strom [100,250)

Extremely Heavy Strom ≥250

landslide covered an area of about 8,608 m2, while the smallest was
76 m2, with an average landslide area of around 997 m2. Based on
the data presented in Figure 7, there was a total of 205 landslides
with sizes less than 500 m2, which represents about 42% of the
total area of landslides. There were a total of 227 landslides, with
sizes ranging from 500 to 2,000 m2, which accounted for around
46% of the total. Furthermore, a total of 45 landslides occurred,
with sizes varying between 2,000 and 5,000 m2. There were ten
landslides with areas of more than 5,000 m2, all of which were
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FIGURE 6
Rainfall process curve of the study area from 8 June 2017 to 10 June 2017.

FIGURE 7
Landslide area classification statistics.

situated on the right bank of the Jialing River (Figure 8). Empirical
relationships of landslide area-volume proposed by Guzzetti et al.
(2009) were utilized for calculations. The findings reveal that the
largest volume of an individual landslide was roughly 35,574 m3,
the smallest was around 38 m3, and the average volume was
about 2,197 m3.

The studied region has an average landslide number density
(LND) of 0.84 num/km2. The area affected by landslides accounts
for approximately 0.083%. Based on the search radius of 1 km,
the raster resolution was set to 12.5 m, and the Kernel density
method was used to plot LND (Figure 9A) and landslide area
density(LAD, Figure 9B) maps of landslides. The highest LND
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FIGURE 8
(A) Rainfall-induced landslide inventory, (B) zooming of the landslide abundance area.

value reaches up to 55.6 num/km2. According to the distribution
of LND, it is divided into six levels. Specifically, the LND of
40–60 num/km2 covers about 2.5 km2, which represents 0.43% of
the total study area; the 20–40 num/km2 group takes up an area of
about 4 km2, accounting for 0.67% of the total; the 10–20 num/km2

group occupies 8.0 km2, and its proportion is 1.4%; the region of
5–10 num/km2 is around 10.2 km2, with a ratio of 1.8%; the area and
proportion of 2–5 num/km2 are 12.6 km2and 2.2%, respectively; the
group with less than 2 num/km2 hold an area of 545.6 km2 which is
93.6% of all. Correspondingly, the analysis of LAD shows that its
maximum is 6.4%. The area where LAD is less than 0.5% covers
approximately 562.2 km2, which accounts for 96.4% of the total
study area; the areawith LADbetween 0.5%and1% is about 9.0 km2,
representing 1.5% of all; the 1%–2% group takes up 4.8 km2 in area
and 0.82% in proportion; the 2%–4% covers an area of about 3.8 km2

which is 0.65%of the study area; the area of 4%–6% in LAD is around
3.1 km2, and its ratio is 0.54%; the region whose LAD is greater than
6% cover approximately 0.3 km2, accounting for about 0.04%.

In this study, we focused on showcasing localized areas
of high landslide density within the research zone, aiming to
investigate the phenomenon of rainfall-triggered landslides. As
depicted in Figure 10, we presented the topography at two different
periods (Planet images from May and July 2017), with locations
of landslides triggered by rainfall marked by red dashed lines.
Comparing these two images, we observe significant color changes

in the marked areas, primarily transitioning from vegetated regions
to exposed soil. Upon further observation, unlike deep-seated
landslides, rainfall-triggered shallow landslides exhibit elongated
fluid-like forms. Additionally, shallow landslides tend to have
relatively smaller areas, highlighting distinct differences compared
to deep-seated landslides. These observations emphasize the
varying impacts of different landslide trigger types on morphology,
resulting in different landslide morphologies and distribution
characteristics. This diversity serves as crucial evidence for landslide
identification, aiding in a deeper understanding of landslide
formation mechanisms and their significance in geological hazard
management.

5 Discussion

The interplay of various geological structures and climatic
backgrounds under different triggering events leads to
diversification of landslide phenomena (Tatard et al., 2010).
Furthermore, the ongoing warming of the Earth’s climate system
adds complexity and challenges to the understanding of landslide
processes (Gariano and Guzzetti, 2016). In this context, establishing
a landslide database is crucial for advancing landslide research.
Santangelo et al. (2023) have created a database of landslides
triggered by extreme rainfall events in the Marche-Umbria region
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FIGURE 9
Spatial density of landslides triggered by this rainfall event. (A) Landslide number density (LND); (B) landslide areal density (LAD).

of Italy through field reconnaissance, which includes records of
1,687 landslide events. Martha et al. (2015) mapped a total of 3,472
landslides in the Bhagirathi and Alaknanda river valleys in India
following an extreme rainfall event from June 15 to 17, 2013,
using satellite remote sensing imagery. This study focuses on the
parallel ridge-valley region in Chongqing, one of the world’s three
major fold mountain systems, which offers a new perspective for
landslide research due to its unique geographical location, geological
structure, and climatic environment.The rainfall patterns, geological
activity, and topographical features of this region significantly differ
from other study areas, most notably in the scale of landslides. The
establishment of this database not only enhances our understanding
of the characteristics of landslides in the parallel ridge-valley
region in Chongqing, but also provides valuable data support and
theoretical basis for global landslide research, especially in exploring
the triggering mechanisms and evolutionary processes of landslides
in fold mountain systems.

A preliminary statistical analysis of the rainfall-triggered
landslide was conducted, and its spatial distribution characteristics
were discussed. During this rainfall event, the maximum
precipitation reached 226 mm, which was recorded in the Baohe
(Wang Z. et al., 2019). The area with a high incidence of landslides
is primarily situated on the right bank of the Jialing River, exhibiting
a northeastward distribution trend, consistent with the orientation
of the central mountain range in the study area (Figure 8). Despite

the higher rainfall in the western region, the relatively gentle terrain
resulted in fewer triggered landslides. In contrast, the eastern
region, characterized by more rugged terrain, had fewer landslides
triggered, possibly due to its greater distance from the rainfall center.
The variation in landslide distributionmay be influenced bymultiple
factors, though currently only preliminary speculation can bemade.
Future research will focus on analyzing the influencing factors of
landslides to further elucidate their formation mechanisms.

By Figures 2, 8, landslides are mostly distributed in the Upper
Triassic strata. This geological stratigraphy is largely made up
of relatively hard quartz sandstone and interbedded shale with
poor permeability and lower hardness. The presence of these
weak interbeds makes them extremely vulnerable to deformation
and failure under external stresses, resulting in slope instability.
To further investigate the mechanisms behind rainfall-induced
landslides, we selected the western mountainous region as a
comparative area. This location is geographically near to the target
area, with similar landscape undulations. The geological features
of the western mountainous region reveal that the underlying
strata are from the Lower Triassic, and are predominantly
formed of limestone, marl and other rocks with comparable
characteristics. In contrast, these rock layers are more uniform
and less prone to significant deformation and damage, thus
posing a relatively lower risk of slope instability. By comparing
the lithology of these two areas, the distribution of landslides
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FIGURE 10
The high-density landslide area: (A) before rainfall event; (B) after rainfall event.

appears to be reasonable. This finding provides an important
geological basis for further study of the formation mechanism of
rainfall landslides.

In this study, we utilized the GPM IMERG Final Run daily
product with a spatial resolution of 0.1°. Pan et al. (2023) assessed
the applicability of GPM in the Chinese mainland. Their research
revealed that satellite rainfall data exhibited increasing errors
compared to national station data under moderate, heavy, and
torrential rainfall conditions. Spatially, the GPM IMERG product
performed well in the eastern and southern regions but relatively
poorly in the western and northern regions. Temporally, the IMERG
product could reasonably estimate the seasonal rainfall distribution
in China, with the best performance in summer and the worst
in winter. Despite the errors in estimating precipitation in the
Chinese mainland, these data still hold significant value. The
GPM IMERG precipitation product shows good performance in
exploring the spatial distribution of three-day cumulative rainfall
in Chongqing. However, for our specific area of interest, this spatial
resolution is relatively coarse, leading to discrepancies between the
rainfall amounts and those recorded by ground-based observation
stations. It should be noted that we believe these differences do not
hinder the analysis of spatial distribution characteristics and that of
rainfall trends.

Satellite technology plays a crucial role in landslide research,
among which Planet images, with its 3-meter resolution, provide
high accuracy, offering strong support for landslide extraction.
However, rainfall-triggered landslides often have small areas,
making precise delineation of landslide boundaries a challenging
task. Therefore, landslide interpretation personnel are required to
have extensive experience. To validate the spatial accuracy of the
established landslide database, a series of validation steps were
conducted. Firstly, we used sub-meter-level resolution Google Earth
images as a reference to carefully inspect the extracted landslide
boundaries. The results showed that although there were some
errors, they were still within an acceptable range. More importantly,
these errors did not significantly affect subsequent analysis and
research, ensuring the reliability and usability of the data obtained.

To obtain comprehensive information about the landslide event,
we acquired Planet images from one month before and after the
event, and introduced Google Earth satellite images on August 26
after the event as auxiliary evidence while considering the time
resolution. Despite the at least one-month interval before and after
images, we realize that rainfall landslides are usually triggered by
extreme rainfall events (Peruccacci et al., 2012; de Oliveira et al.,
2016; Zhang et al., 2022). Although the probability of such extreme
events is low, it does not rule out the possibility of other rainfall
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FIGURE 11
The Precipitation in the study area from May to August 2017.

events triggering landslides during this interval. To validate the
accuracy of our landslide database, we further utilized the GPM
IMERG Final Run daily product from May to August 2017 to
investigate the rainfall conditions in the study area (Figure 11).
The results show that from May to August, the maximum rainfall
occurred on June 8th (approximately 85 mm/day), while the second-
highest rainfall (approximately 39.8 mm/day) occurred on August
25th.The rest of the timemainly experienced light rain, with rainfall
much lower than the maximum value. In this study, we used Google
Earth images to assist in identifying buildings, farmland, and other
features. Now, we applied Google Earth images to examine whether
landslides were triggered between June 11th and August 25th (the
date of the second-highest precipitation). The results indicate that
no new landslides were triggered in this period.

Establishing a comprehensive and accurate database of rainfall-
induced landslides is crucial for enhancing the precision of landslide
risk assessment and optimizing management strategies. The high
accuracy of this database not only deepens our understanding of
the processes leading to landslides, but also provides critical data
support for the establishment of effective early warning systems. A
detailed and precise database of rainfall-induced landslides can be
used to train more sophisticated landslide semantic segmentation
models (Bragagnolo et al., 2021; Li et al., 2023), which play a vital
role in disaster emergency response. These models can quickly
identify potential landslide areas, issue timely warnings, and guide
evacuations, thereby effectively reducing casualties and property
damage. This has a long-term and profound impact on safeguarding
people’s lives and property, as well as the sustained development of
the social economy.

In the realm of landslide research, the rainfall-triggered
landslide threshold has always been a focal point. In earlier
studies, Caine (1980) proposed an empirical formula correlating the
intensity and duration of rainfall with the incidence of landslides
and debris flows, based on an integrated analysis of literature
available at that time. Subsequently, an increasing number of
scholars have employed statistical methods to investigate rainfall-
triggered landslide thresholds. For instance, Guzzetti et al. (2007)
exerted rainfall landslide databases of the Central EuropeanAdriatic
Danubian South-Eastern Space to establish the relationship between

rainfall intensity and duration, inferring threshold curves using
Bayesian statistical techniques. They further updated Caine’s model
by analyzing a database of 2,626 rainfall events worldwide that
caused landslides and debris flows (Guzzetti et al., 2008). Rosi et al.
(2015) updated 12 rainfall thresholds in Tuscany (Italy) using
the MaCumBA software (Segoni et al., 2014). Galanti et al. (2018)
derived rainfall thresholds for the Riviera Spezzina region in
Italy using least-squares linear fit, quantile regression, and logistic
regression, with logistic regression providing the most accurate
thresholds. While these studies have made some progress in
adjusting the parameters of empirical rainfall threshold formulas,
there are still some limitations. Differing from the statistical
methodsmentioned,Ma et al. (2023b) initially conducted a physics-
based spatiotemporal prediction and trigger mechanism analysis of
rainfall-induced landslides for four short-duration rainfall events
and long-duration intermittent rainfall that occurred from June
19 to 26 July 2013, in the Tianshui area of Gansu Province,
China. Building on this, they employed a method based on the
TRIGRS physical model, tailored to the specific geological and
climatic conditions of the area, to delve into the trigger thresholds
for rainfall-induced landslides (Ma et al., 2023c). Additionally,
the team conducted an in-depth analysis of the causes of loess
landslides triggered by this intense rainfall event (Shao et al.,
2023b), which has deepened our understanding of rainfall-induced
landslide thresholds. The physics-based modeling approach offers
a new perspective for understanding the physical processes of
landslides and complements statistical methods, jointly advancing
in-depth research in the field. Meanwhile, the advancement of
artificial intelligence algorithms has yieldedmore satisfactory results
(Chiang et al., 2022; Distefano et al., 2022).

In exploring the mechanisms behind landslide occurrence,
we focuses on the impact of moisture on soil physical properties
in this study, particularly the effect of rainfall on soil saturation
and shear strength. When rainfall reaches a certain level, the
physical properties of the soil undergo significant changes
(Moriwaki et al., 2004; Ahmadi-adli et al., 2017), which increases
the likelihood of landslides. Based on these observations, the study
posits a simplified linear relationship between rainfall volume
and the occurrence of landslides. This linear model streamlines
the geological processes, making the theoretical framework
clearer and easier to operate and validate. At the same time, it
provides a foundation for exploring more complex nonlinear
relationships, aiding in the understanding of the fundamental
conditions for landslide occurrence. The universality of the
model makes it applicable across different geological and climatic
conditions, facilitating its widespread use and meeting the need
for rapid and effective prediction of landslide risk in disaster risk
management. Based on the simplified linear model and considering
the differences between local observation station data and global
satellite precipitation data, it is speculated that the rainfall threshold
for the area is much higher than the 39.8 mm/day recorded on
August 25th. In fact, there is not a simple linear relationship between
precipitation and landslide occurrence. Future research could make
use of machine learning models to explore their more complex
relationship, aiming to obtain more accurate rainfall thresholds
and provide stronger support for landslide hazard assessments and
rainfall-induced landslide warning systems.
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6 Conclusion

Through preliminary analysis of a localized heavy storm event
near the Huaying Mountain in the parallel ridge-valley area of
western Chongqing on 8 June 2017, we established a landslide
database triggered by this event using high-resolution satellite
images. The study revealed that the rainfall event triggered 487
landslides, affecting an area of approximately 4,85,587 m2, which
accounts for 0.083% of the study area. The largest landslide
covered an area of about 8,608 m2, while the smallest was
76 m2. The maximum volume of a landslide was approximately
35,574 m3, while the minimum was 38 m3. The average LND
was 0.84 num/km2, with the highest LND reaching around
55.6 num/km2, predominantly distributed along the southern
foothills of the Huaying Mountain. The maximum LAD was
about 6.4%, highlighting the significant impact of extreme climate
events on geological disasters. Future research should analyze
the factors influencing landslides to reveal their mechanisms.
Additionally, more accurate landslide early warning systems
could be developed to effectively reduce the occurrence of
landslide disasters, thereby ensuring the safety of people’s lives
and property.
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Machine learning models have been increasingly popular in landslide
susceptibility mapping based on the correlations among landslides and their
inducing factors. However, mislabeled data in model training sets would
deteriorate model accuracy. This study employed a Bayesian network to
analyze influencing factors on landslides in Fujian Province, China, prone to
typhoons and landslides. An inventory of 5,992 historical landslides informs
Bayesian network modeling, with ten geoenvironmental factors as predictors.
We introduced a progressive noise filtering method to mitigate the mislabeling
effects of non-landslide points. The results show that altitude, wind speed, and
lithology are the most important factors of landslides in the study area. The
accuracy of the resultant landslide susceptibility map was verified using the area
under the receiver operating characteristic curve (AUC) and Moran’s I index.
The AUC value was improved from 0.838 to 0.931 during the progressive noise
filtering. The correlation between historical landslide number density (LND) and
resultant landslide susceptibility index (LSI) was evaluated. The Local Indicators
of Spatial Association based on Moran’s I index shows consistent distribution
patterns for high LND and high LSI regions. This study provides a useful reference
for reliable landslide susceptibility mapping in the study area and similar areas.

KEYWORDS

landslide susceptibility mapping, GIS, tropical cyclone, Bayesian network model, noise
filtering

1 Introduction

Landslides are natural geological phenomena characterized by the gravity-
driven downhill movement of earth or rocky materials, with the potential to cause
substantial damage to communities, infrastructure, and ecosystems. As per the
United Nations, landslides are one of the most destructive and widespread natural
hazards on a global scale (United Nations, 2019). Due to the global climate change,
the occurrence of extreme weather events such as typhoons and extreme rainfall
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has become increasingly frequent. It has notably heightened the
potential for landslide incidents. This surge has resulted in a
substantial upswing in the rates of mortality associated with
landslides (Tian et al., 2020; Yang et al., 2020). In response to this
challenge, landslide susceptibility mapping has been positioned as
an indispensable instrument to identify landslide-prone areas and
mitigate landslide hazards.

In recent years, machine learning techniques have gained
increasing popularity in landslide susceptibility modelling (LSM)
(Pradhan, 2013). Numerous machine learning (ML) algorithms,
including random forest (RF) (Yuan and Chen, 2022), convolutional
neural networks (CNN) (Youssef et al., 2022), Bayesian network
(BN) (Mihaljevic et al., 2021; Huang, et al., 2022), etc., have been
developed and applied in mapping landslide susceptibility. By
depicting a collection of stochastic attributes and their conditional
dependencies, BN is a probabilistic model widely used in solving
problems related to complex systems. The notable features of
BN lie in its incremental learning properties (Huang et al.,
2022). While getting an acceptable performance, the trained
model was applied to predict landslide susceptibility over the
whole study area (Cengiz and Ercanoglu, 2022). However, in
practical engineering, as new landslides occur in the study area,
the landslide dataset undergoes continuous updates over time.
Consequently, the training dataset should be adjusted accordingly
to incorporate the new knowledge (Huang et al., 2022). Another
distinctive characteristic of BN is found in their interpretability
(Mihaljevic et al., 2021), as many ML techniques exhibited a black-
box nature that was non-transparent to humans. In this regard, BN
can furnish decision-makers with a prioritized list of input landslide
controlling factors, along with potential interactions among
these factors. Given the aforementioned, an increasing number
of scholars are employing BN in LSM studies (Cui et al., 2022;
Lan et al., 2021).

The establishment of sample sets and the selection of evaluation
factors are critical for LSM (Singh et al., 2023). The construction
of sample data for machine learning models is typically based
on known landslide data (Chakrabortty et al., 2022). To extract
more information from limited sample data, many researchers
have focused on expanding landslide samples and selecting high-
quality non-landslide samples (Sukristiyanti et al., 2020). Yang et al.
(2023) have identified landslides from satellite maps to augment the
landslide samples. Huang et al. (2022) incorporated the temporal
attributes of landslide samples in LSM to analyze the characteristics
of landslides over different periods. However, previous studies
often randomly chose non-landslide samples from the study area,
which can introduce mislabeled samples and uncertainties into the
LSM (Abraham et al., 2023; Huang et al., 2020). The inclusion of
mislabeled samples can indeed impact the performance of machine
learning models, potentially resulting in suboptimal outcomes. In
this study, noise is progressively filtered from subsequent training
sets using a trained BN model as prior knowledge to identify and
filter out mislabeled data.

The triggering effect of tropical cyclones (TCs) on landslides
is manifested in the combined action of strong winds and
heavy rainfall. On one hand, rainwater infiltration increases the
gravitational force on the soil and reduces its shear strength; on the
other hand, strongwinds increase the instability of slopes by exerting
an uplift force on the vegetation (Qi et al., 2023; Zhuang et al.,

2022). Therefore, when modeling landslide susceptibility in coastal
areas and other regions prone to typhoons, considering only the
impact of rainfall on landslide triggering is insufficient. Although
some researchers have analyzed landslide characteristics under
individual typical typhoon events, they have not proposed a
general quantitative assessment method for typhoon impacts to be
integrated into LSM (Wu, 2019; Cui et al., 2022).

This study aims to construct a noise filtering method based on a
Bayesian Network model to mitigate the mislabeling effects of non-
landslidepoints.Tengeoenvironmental predictors are selected to form
the LSM. Additionally, considering the study area is a typhoon-prone
region, we used the Rankine vortex model to quantify and assess the
impact of historical tropical cyclones and the extreme rainfall.

2 Study area and data sources

2.1 Study area

Fujian Province (115°50′-120°40′E, 23°33′-28°20′N) is situated
in the southeast of China (Figure 1). It covers an area of 121,400 km2

with over 90% of it characterized by hills and mountains with an
altitude ranging from −51 m to 2,148 m. Shaped by the new Huaxia
structure, the elevational trend ascends towards the northwest and
descends towards the southeast (Lin et al., 2021). The geological
foundation of Fujian Province is typified by dynamism, with high-
angle faults and jointed structures. In the study area, magmatic
rocks consist of intrusive rocks alongside Jurassic and Cretaceous
volcanic formations. Igneous rocks form a significant component of
the lithology, occupying a substantial portion of the province’s land
area. Metamorphic rocks primarily characterize the northwestern
region, while sedimentary rocks constitute a smaller fraction of the
landscape, concentrated mainly in the southwest.

Fujian Province is located near the Tropic of Cancer. The
prevailing climatic pattern corresponds to a warm and humid
subtropical monsoon climate. The region experiences higher levels of
precipitation. Facing the Pacific Ocean on the east, Fujian Province
is vulnerable to maritime tropical cyclones in the Pacific Ocean.
Rainfall distribution displays notable heterogeneity across the region
(Ma et al., 2023; Ye et al., 2022). For instance, the coastal plains and
mountainous zones of Fujian Province typically encounter an annual
average rainfall within the range of 900 mm–1,100 mm. In contrast,
the hilly mountain areas experience heightened precipitation levels,
with figures approximating 1,500 mm–1,700 mm.

A combination of factors, including heavy rainfall, typhoons,
steep terrain, fractured rock, soil formations, and human
engineering activities, collectively contribute to geotechnical
hazards in the region. Generally, the geohazard profile of Fujian
Province is characterized by its widespread occurrence, frequent
events, and sudden emergence.

2.2 Data sources

The dataset employed for this study, as outlined in Table 1,
encompasses a comprehensive array of variables encompassing the
landslide inventory, a spectrum of contributing factors, tropical
cyclone data, and the counts of landslides and associated rainfall.
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FIGURE 1
Location of the study area and paths of TCs.

The landslide inventory encapsulates historical records detailing
5,992 instances of landslides that have transpired within Fujian
Province. A subset of the Digital Elevation Model (DEM),
integral to the analysis of landslide susceptibility, was derived
via DEM with a spatial resolution of 30 m through ArcGIS 10.6
software. Concurrently, the tropical cyclone dataset encompasses
a wealth of information about the geographical location, intensity
level, and wind speed of tropical cyclones within the northwest
Pacific Ocean. The dataset is sourced primarily from government
disaster reports and authoritative websites maintained by scientific
institutions.

2.3 Inventory of TCs in the period of
2007–2020

Mature TCs often generate spiral rainbands, which can result
in local winds, heavy rainfall, and storm surges (Tang et al., 2018).
These convective phenomena can trigger various disasters such as
landslides, floods, and urban waterlogging, particularly before and
after TC landfall. Situated in the coastal region of southeastern
China, the study area is highly susceptible to geological disasters
influenced by precipitation patterns. Although annual rainfall offers

a general overview of precipitation levels over the year, it may need
to accurately reflect the impact of short-term heavy rainfall events
associated with TCs. Hence, it is essential to consider TCs when
assessing the influence of slope failures.

TCs and their consequent rainfall wield a substantial influence in
instigating landslides within Fujian Province (Xiao et al., 2011). The
national standard “Grade of tropical cyclones” (GB/T 19201–2006)
classifies tropical cyclones into six categories based on wind speed,
as shown in Table 2. This study used all TCs from 2007 to 2020,
which are within a 250 km buffer from Fujian Province recorded.
The 250 km buffer was created as it averages the outer scale of the
TCs we used (Qi et al., 2023). Within this buffer zone, TCs were
primarily characterized as TY and STY. Over the interval spanning
from 2007 to 2020, Fujian Province experienced the landfall of 67
TCs, including 19 instances of TYs and 13 cases of STYs (Lu et al.,
2021; Ying et al., 2014). Typically, TCs undergo rapidweakening and
gradual dissipation following landfall. As depicted in Figure 1, the
intensity of TCs decreases swiftly from TY and STY strength over
the sea to TS and TD strength upon landfall. This transition, known
as the “after-landfall phase,” would extend for several days following
landfall. Though the intensity of TCs decreases during this period,
heavy rainfall persists, leading to increased runoff and exacerbating
landslide risks. As TCs continue to dissipate, the probability of
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TABLE 1 Data sources.

Factors Indicators Data sources

Topographic and Geomorphic
DEM Source and Environment Science and Data Center https://www.resdc.cn/

Slope Extract from DEM

Land cover

Land-use Source and Environment Science and Data Center https://www.resdc.cn/

Vegetation Source and Environment Science and Data Center https://www.resdc.cn/

NDVI Source and Environment Science and Data Center https://www.resdc.cn/

Geological
Earthquake intensity Source and Environment Science and Data Center https://www.resdc.cn/

Lithology National Earth System Science Data Center http://www.geodata.cn/

Human engineering activities Road density Source and Environment Science and Data Center https://www.resdc.cn/

Climatic environment
Rainfall National Earth System Science Data Center http://www.geodata.cn/

Wind speed Typhoon online https://www.typhoon.org.cn/

Landslide inventory Source and Environment Science and Data Center https://www.resdc.cn/

Tropical cyclones Typhoon online https://www.typhoon.org.cn/

Number of landslides during 2007–2021 Department of Natural Resources of Fujian Province https://zrzyt.fujian.gov.cn/

Rainfall during 2007–2021 Copernicus Climate Change Service (C3S) https://climate.copernicus.eu/

TABLE 2 Tropical cyclone classification table.

Grade of tropical
cyclones

Maximum average wind
speed near the bottom
center (m/s)

Tropical depression (TD) 10.8 ∼ 17.1

Tropical storm (TS) 17.2 ∼ 24.4

Severe tropical storm (STS) 24.5 ∼ 32.6

Typhoon (TY) 32.7 ∼ 41.4

Severe typhoon (STY) 41.5 ∼ 50.9

Super typhoon (Super TY) ≥51.0

new landslides occurring may decrease, enabling affected areas to
commence recovery from the initial impacts.

2.4 Distribution pattern of landslides

2.4.1 Spatial distribution pattern
Atotalof5,992 landslides acrossFujianProvinceweredetailedand

documented.Thedistributionpatternof landslides in theregionshows
an apparent spatial characteristic. Most landslides concentrate in the
hilly terrainsof thecentral andwesternareas, extendingnortheastward
through the region. Conversely, landslides occur less frequently in the

relatively flat terrain of the southeastern coastal areas. In this study,
we employed landslide number density (LND) as a metric to quantify
the level of aggregation, providing deeper insights into the spatial
distribution of landslide activity. As depicted in Figure 2, landslides
in Fujian Province cluster near the mountain belts in central and
western Fujian. Significant clustering was observed in cities such as
Quanzhou and Sanming, which experienced an accumulation of over
1,000 geological incidents during the specified period. In contrast,
southeastern coastal municipalities like Xiamen and Zhangzhou were
relatively less affected, recording fewer than 500 geological events
within the same timeframe.

The impact of the physical geography on landslides can be
categorized into internal and external triggering factors. External
triggers such as typhoons and prolonged heavy rainfall are
the primary causes of slope failures. Internal factors such as
steep slopes and loose soils create a conducive environment for
landslide occurrences. These unfavorable conditions are especially
pronounced in the hilly areas of the western and central regions.

2.4.2 Temporal distribution characteristics
Since the landslide inventory lacks temporal attributes, this

study supplemented by collecting a historical landslide dataset from
the Department of Natural Resources of Fujian Province spanning
from 2007 to 2021.This additional dataset enabled us to examine the
relationship between the frequency of landslides and the prevailing
conditions over time.

As depicted in Figure 3C, a consistent correlation is observed
between the frequency of landslides and the magnitude of rainfall
across varying temporal scales, encompassing monthly and yearly
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FIGURE 2
(A) Terrian of Fujian province; (B) Spatial distribution of landslides and landslide number density.

periods (Figures 3A, B). Monthly data reveals noticeable seasonal
variations in both precipitation and landslide occurrences. The
incidence of landslides increased during the rainy season from
May to August. Over 70% of landslides throughout the entire
year occurred during this period. Moreover, monthly average
precipitation exceeding 200 mm correlates with a monthly landslide
count surpassing 30 instances on average. The incidence of extreme
rainfall tends to precipitate a surge in landslide occurrences.
Annual data analysis underscores a pronounced positive correlation
between rainfall and landslide frequencies. In most instances,
peak rainfall coincides closely with the highest landslide events
throughout the year. By tracing back to periods with abnormally
high numbers of landslides, such as June 2010, May 2015, and July
2016, we found that the study area was indeed affected by typhoons
or heavy rainfall during these periods (Figure 3B).

2.5 Thematic layers of landslide-inducing
factors

It is crucial to comprehensively consider various inducing
factors to achieve an accurate LSA. Therefore, the selection of a
wide range of inducing factors is essential. These factors should
encompass all relevant environmental variables that may influence
landslide occurrence. In this study, we identified ten inducing factors
of landslides based on both the natural geographical environment
and human engineering activities (Figure 4). These factors were
classified into 5 clusters: topography (altitude and slope), land
cover (vegetation, NDVI, and land-use), geological (lithology and
earthquake intensity), human engineering activities (road density),
and climate environment (rainfall and wind speed). Differences

in environmental attributes can lead to landslides with different
degrees of aggregation, and selecting the inducing factors as
comprehensively as possible is a prerequisite for an accurate LSA.

3 Materials and methods

3.1 Modelling of the wind fields

Wind speed is the foundational metric for assessing the intensity
of a TC. It encapsulates the broader repercussions of a TC and its
associated secondary calamities. Aiming to explore the complexities
of TC influence on landslide susceptibility within Fujian Province,
we compiled the wind speed of the TCs into an inducing factor and
incorporated it into the LSA framework. In this study, the classical
Rankine vortex model was used to compute the wind fields of the
TCs within the study area. The formula employed to calculate the
wind speed is presented in Equation 1:

v =
{{
{{
{

vm
r
rm
,0 ≤ r ≤ rm

vm
r
, rm ≤ r ≤∞

(1)

In the equation, vm is the maximum wind speed of a TC, rm
is the radial distance from a TC center which is the distance from
a TC center to the place of maximum wind speed, and r is the
distance to a TC center. The Rankine vortex model conceptualizes
a TC as a solid rotating entity, where the allocation of tangential
wind speed is governed by two primary parameters: the maximum
wind speed and the radial distance from the TC center. At the center
of the TC, the tangential wind speed begins at a value of 0 m per
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FIGURE 3
The temporal distribution of landslides in Fujian Province (A) Monthly rainfall during 2007∼2021; (B) Monthly landslides; (C) Annual rainfall and
landslides.

second and linearly increases until it reaches the maximum wind
speed at the radius of maximum wind speed. Beyond this radius,
the wind speed decreases inversely as the distance from the center
increases. Valuable insights from Wu and Lei (2012) provided a
compilation of statistics regarding the averagemaximumwind speed
radius of TCs.

The computation of the wind field of TCswithin Fujian Province
was conducted using ArcGIS 10.7 software. The systematic process
was as follows (Figure 5): 1) Selection of Path Collection Points:
In the initial phase, path collection points were identified for
each TC located within a 250 km radius of Fujian Province. 2)
Application of the Classical Rankine Vortex Model: The wind field
emanating from each path collection point associated with a specific
TC was computed using the classical Rankine Vortex model. 3)
Identification of maximum wind field: Within the context of each
TC, the maximum wind field magnitude was determined from the
array of wind fields generated by the various collection points.
This pivotal value represented the characteristic wind field of the
respective cyclone. 4) Calculation of AverageWind Speed:Themean
value of the maximum wind speed was calculated across all TCs
within the study area. This value served as an indicative measure of
the mean wind speed. This systematic approach not only facilitated
the determination of wind field distribution but also allowed for the
quantification of cumulative influences resulting frommultiple TCs.

Figure 6 illustrates the wind speed factor derived from the
TCs. Wind speed gradually decreases from the southeastern coastal
areas of Fujian Province to the northwestern regions. The rapid
deterioration and dissipation of the TCs are attributed to several
factors, including the gradual depletion of energy sourced from
the ocean, an elevation in surface roughness, and alterations in
circulation pattern (Ito et al., 2020; Houze, 2010). These factors
contribute to the diminished wind speed experienced by TCs as
they move away from the coast. In Fujian province, the typhoon
is uplifted by the terrain of the inland mountainous areas, so that
a typhoon rainstorm center is formed in the east of the mountain
belts in central Fujian, which often leads to landslides, debris flows,
collapses and other disasters.

3.2 Bayesian network model

A BN model integrates Bayesian theory and graph theory. The
inference is based on a priori knowledge and objective evidence
and belongs to classification models. Its framework comprises two
essential elements: the network structure and network parameters,
as represented by the equation: BN = ⟨G,θ⟩ (Nie et al., 2019;
Song et al., 2012). The network structure, symbolized as G, adopts
the form of a Directed Acyclic Graph (DAG), offering a qualitative
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FIGURE 4
Inducing factors map of landslides in Fujian Province: (A) Lithology; (B) Earthquake intensity; (C) Land-use; (D) Vegetation; (E) NDVI; (F) Road density;
(G) Altitude; (H) Rainfall; (I) Slope.

examination of the inherent topological relationships among
network components. Concurrently, the network parameters
encompass the Conditional Probability Table (CPT), quantitatively
depicting the joint distribution probability. The joint probability
distribution is obtained by multiplying the probability distributions
associated with each variable, as expressed in Equation 2:

P(X1,X2,…,Xn) =∏
n
i=1

P(Xi|π(Xi)) (2)

3.2.1 Structure learning
This study determines the structure and parameters of a BN

and conducts inference by learning from the available data. The
Hill Climbing (HC) search strategy, coupled with the Bayesian
Information Criterion (BIC) scoring function, was employed to
learn the network relationships among the inducing factors in
the process of LSA. The HC algorithm emerges as a strategic

choice within structural learning algorithms, particularly when
dealingwith extensive datasets. Its effectiveness is particularly salient
in circumventing the challenges associated with local optima, a
common issue encountered by conventional greedy algorithms
during structural optimization. It effectively avoids being ensnared
in local optima by prioritizing an optimization approach grounded
in singular solutions. Simultaneously, the BIC scoring technique is a
robust tool for identifying the network structure yielding the most
favorable score. Incorporating a complexity penalty term within
the BIC framework mitigates overfitting, thereby ensuring that the
network structure retains its capacity for generalization. The visual
representation of the network structure derived from the structural
learning process is depicted in Figure 4.

3.2.2 Parameter learning
Within the context of independent identical distribution,

parameter learning commonly employs two principal
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FIGURE 5
Illustration of wind field calculation for a TC in the study area (The illustration shows a TC named bilis that made landfall from Fujian in 2000).

FIGURE 6
Wind speed factor calculated from TCs.

methodologies: Maximum Likelihood Estimation (MLE)
and Bayesian Estimation (BE). BE, in particular, stands
out as it utilizes prior parameter distribution and selection
principles, effectively mitigating the overfitting risks inherent
in MLE. The integration of hyperparameters refines BE,
rendering it robust and stable even when handling small-
sample data.

3.2.3 Inference
Bayesian inference relies on the interaction of the network

structure and the Conditional Probability Table (CPT). Within this
context, the Variable Elimination (VE) algorithm is a preferred
choice, simplifying the calculation process by decomposing
the joint distribution. VE’s key characteristics of simplicity
and generality align well with its exact inference. Moreover,
the versatility of VE allows it to handle complex network
scenarios effectively. Expanding upon VE’s framework, a suite
of algorithms, such as the bucket elimination algorithm, further
enhances the inference ability by accommodating various optimal
elimination orders.

3.3 Noise filtering

We conducted a noise filtering method to filter out mislabeled
data and enhance the quality of the model-training dataset. Detailed
steps of the noise filtering process are as follows (Figure 7): 1)
Dataset partitioning: The dataset was randomly divided into equal
subsets, with one segment earmarked for testing and the remaining
segments designated for training; 2) Initial training set selection:
Initially, one subset was chosen to train a BN model and predict
the subsequent subset.; 3) Noise filtering: If the difference between
the predicted value and the actual value for an instance within the
subset exceeded the predefined threshold “t,” the instance would be
removed. Conversely, the instance would be included in the training
set if the difference fell within the threshold. The threshold value “t”
is calculated using the equation: |LS− Pre| ≤ t, where LS is the actual
value; and Pre is the predicted value of an instance. This process was
iteratively repeated, progressively introducing clean data samples
from each subset into the training data. To update the entire dataset,
the study conducted nine rounds of noise filtering, each involving
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FIGURE 7
Illustration of the noise filtering process.

a thorough evaluation of prediction outcomes. The accuracy of the
samples was assessed using the test set after each round of noise
filtering.

3.4 Moran’s I index

This study utilized Moran’s I to investigate the spatial
relationship between landslide density and susceptibility. Moran’s
I is a widely employed metric for assessing spatial autocorrelation,
encompassing global and local Moran’s I. The computation of global
Moran’s I yields results within the range of [−1, 1], where a value
greater than zero indicates a positive spatial autocorrelation. There
is a clustering phenomenon across the entire spatial domain. The
magnitude of the index indicates the degree of clustering, with larger
values indicating more pronounced clustering. Conversely, a value
less than zero suggests a spatial negative correlation, indicating a
dispersion pattern in the spatial distribution of the study object. A
zero value denotes no spatial autocorrelation or an absence of spatial
correlation. The equation of Moran’s I is as Equation 3:

I =
n∑n

i=1
∑n

j=1
(Yi −Y)(Yj −Y)

∑n
i=1
∑n

j=1
wij(Yi −Y)

2 (3)

In the equation,n represents the total number of samples,wij denotes
the distance weight between i and j, Y i and Y j represent the variable
values for the i th and jth samples respectively, Y representing the
mean value across all samples.

Compared to global Moran’s I, local Moran’s I emphasize
assessing local spatial clustering patterns. While global Moran’s I

indicates overall spatial clustering, it lacks specificity in identifying
the regions where clustering phenomena occur. Additionally, even
if global Moran’s I indicates no overall spatial autocorrelation, local
spatial clusteringmay still manifest in specific areas.The equation of
local Moran’s I is as Equation 4:

I =
Yi −Y
L2 ∑

n
j≠i
wij(Yj −Y) (4)

In the equation, L2 = 1
n
∑(Yi −Y)

2.

4 Results

4.1 Correlations between landslides and
influencing factors

To better analyze the relationships between landslides and
inducing factors, the frequency density of landslides and landscape
(non-landslide) areas was compared, as shown in Figure 5. A slope is
more likely to fail where the frequency density of landslides is higher
than the landscape. Regions with a history of frequent landslides are
more susceptible to future landslides due to persistent geological and
environmental conditions that favor such occurrences.

4.1.1 Topographic and geomorphic factors
Topography, particularly micro-topography, significantly

contributes to landslide occurrences within Fujian Province,
particularly regarding slope angle and height. Most landslides
tend to occur on convex slopes. This study selected altitude and
slope as topographic and geomorphic factors. For the analysis
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FIGURE 8
Landslide frequency density estimates of the influencing factors; (A) NDVI; (B) Road density; (C) Slope; (D) Wind speed; (E) Altitude; (F) Rainfall; (G)
Land-use; (H) Vegetation; (I) Lithology; (J) Earthquake intensity.

of altitude (Figure 8E), landslides are more likely to transpire in
areas between 200–400 m, as these regions typically feature loose
deposits. Concerning slope, landslides are prevalent when the
slope ranges between 3°–10° (Figure 8C). Regions within this slope
interval tend to possess more loose sediments on the surface. As the
slope steepens, although it provides greater energy for sliding, the
heightened slope also indicates that the soil or rock has increased
strength, which can hinder landslide occurrences (Wu et al., 2021).

4.1.2 Basic geology factors
Geological factors are vital in shaping geomorphic features.

Different lithologies exhibit varying degrees of hardness and
weathering. The occurrence of landslides is influenced by the
lithology and weathering degree of the underlying bedrock. Soft

rocks and fragmented rock-soil materials are more prone to
landslides. Landslide densities are generally higher on metamorphic
rocks (Figure 8I). Earthquakes are usually accompanied by
varying collapse, landslides, and debris flow. Classification of
earthquake intensity also reflects the distribution of faults.
As shown in Figure 8J, landslides in Fujian tend to occur with
seismic intensity levels of VI degree or higher.

4.1.3 Land cover factors
In this study, we investigated the impact of land use practices

on shallow soil landslides, focusing on vegetation, NDVI, and land
use as land cover factors. For NDVI, higher values are commonly
associated with lower landslide susceptibility (Figure 8A). However,
the analysis results also reveal the complexity of landslide causation.
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FIGURE 9
Landslide susceptibility map of Fujian Province during the process of noise filtering; (A) 1st filtering; (B) 2nd filtering; (C) 3rd filtering; (D) 4th filtering; (E)
5th filtering; (F) 6th filtering; (G) 7th filtering; (H) 8th filtering; (I) 9th filtering.

Despite the perceived stability related to regions with high NDVI
and forests, landslides still occur in these areas. These regions
usually feature hilly and mountainous terrain, which are more

prone to landslides. Vegetation with well-developed roots stabilizes
the slopes, creating a complex network of fibers within the soil,
enhancing its shear strength. Thick roots can penetrate deep into
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FIGURE 10
Factor importance of wind speed factor.

the bedrock, serving as anchoring elements for the shallow soil.
These factors collectively contribute to the slope stability (Bordoloi
and Ng, 2020; Pandey et al., 2022). However, the stabilizing effect
of trees on slope stability may be limited under certain wind load
conditions (Zhuang et al., 2022). This observation may explain why
landslides are more prevalent in forested areas when considering
the vegetation factor (Figure 8H). Regarding the Land-use factor;
landslides are concentrated in cultivated land (Figure 8G). In Fujian
Province, where arable land is scarce, many farmers have reshaped
slopes for agricultural purposes, leading to numerous unstable cut
slopes and an increased risk of landslides.

4.1.4 Human engineering activities factors
As for road density, areas with higher road density generally

exhibit higher landslide densities (Figure 8B). The imbalanced
alteration of rock and soil mass resulting from construction projects
such as housing and road development, including excavation and
slope-cutting activities, can increase the susceptibility of mountain
slopes to instability and damage. Moreover, the high population
density and extensive engineering activities in these areas exacerbate
the occurrence of geological disasters. However, regions with the
highest road density are less susceptible to landslides due to their
high level of urbanization and superior infrastructuremanagement.

4.1.5 Climate environmental factors
Situated adjacent to the Pacific Ocean, Fujian Province and its

coastal areas are frequently affected by typhoon rainstorms. The
heavy rainfall accompanying typhoons decreases the mechanical
strength of the soil, serving as an important triggering factor
for landslides. Areas with annual rainfall ranging between
12,000–14,000 mm are more susceptible to landslides than those
with higher or lower rainfall levels (Figure 8D). These areas mainly
concentrate in central Fujian Province. The rapid uplift of the
terrain in the region creates a center of intense rainfall in its
vicinity. Additionally, areas with wind speeds in the range of
14–16 m/s also exhibit a higher density of landslides, which can

be attributed to the increased erosion and soil instability caused by
strong winds (Figure 8F).

4.2 Landslide susceptibility mapping

This study uses the landslide inventory consisting of 5,992
distinct points as a fundamental dataset.These pointswere identified
as positive samples and designated with a value 1. Additionally,
an equivalent number of points were randomly selected from the
study area, serving as negative samples designated with a value of
0. The dataset of this study consists of both landslide and non-
landslide points. The entirety of the modeling procedure proposed a
Bayesian Network model to analyze the distribution characteristics
of landslide disasters in Fujian Province. Within this method,
noise filtering was implemented after the inference of the Bayesian
Network model. This iterative process progressively filters noise
in the subsets, thereby reducing the impact of mislabeled data on
prediction accuracy (Figure 9).

This study incorporated a comprehensive array of factors as
inputs for the landslide susceptibility modeling. The variables
included altitude, slope, vegetation cover, land-use patterns, NDVI,
lithology, earthquake intensity, rainfall patterns, wind speed, and
road density. A noise filtering method was adopted to enhance
the accuracy of LSA, which served as a primary strategy in this
investigation. After the training process with noise filtering, the
landslide susceptibility index (LSI) was effectively forecasted. The
spatial distribution of landslide susceptibility predicted by noise-
filtered samples in Fujian Province is presented in Figure 9. It can
be seen fromFigure 9 that the high and extremely high susceptibility
areas in Fujian Province are mainly located near the mountain belts
in central and western Fujian which aligns with the actual spatial
distribution pattern of landslide occurrences.The relatively flat areas
in the East and southeast coast of the province are mostly low
and extremely low susceptibility. With the progress of the noise
filtering, the proportion of each susceptibility level changes, the
proportion of high and extremely high susceptibility areas increases,
and the identifiability of landslide susceptibility mapping gradually
increases.

4.3 Results analysis

4.3.1 Factor importance
Altitude, wind speed, and lithology respectively were identified

as the main controlling factors of landslides (Figure 10). Wind
speed stands out with a factor importance score of 0.23, ranking
as the second most influential factor in our landslide susceptibility
modelling. This highlights the significant impact of wind speed on
landslide occurrences in the study area, emphasizing the necessity of
incorporating this factor in landslide risk assessments.

4.3.2 Accuracy analysis
To assess the accuracy, the Area Under the Curve (AUC) metric

was adopted as the evaluation criterion for the performance of
the machine learning model. A higher AUC value signifies greater
accuracy in predictive results. The results of this evaluation are
depicted in Figure 11A, where the AUC value steadily increases
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FIGURE 11
Accuracy of each time noise filtering (A) AUC; (B) Accuracy; (C) Precision; (D) Recall; (E) F1-score.

from 0.838 to 0.931, while the standard deviation gradually
decreases. This trend indicates a consistent improvement in
model accuracy and reliability, as the model becomes more
consistent and dependable in its predictions. This trend highlights
the progressive efficacy of the noise filtering approach in
enhancing the precision and reliability of the machine learning
model for LSA.

Additionally, other key indicators including accuracy, precision,
recall, and the F1-score were also involved in the assessment
of model classification performance. Higher values of the
indicators indicate better classification performance of a model.
As shown in Figures 11B–E, these indicators collectively manifest
a demonstrably enhanced model performance as the noise filtering
times increase. A consistently increasing metric accompanied by a
gradually decreasing standard deviation suggests that the model is
enhancing and getting more stable throughout the noise filtering
process While precision is vital in minimizing false positives, a high
recall rate is essential for capturing all instances of landslides. In

the context of LSA, prioritizing recall is vital to correctly identify
potential landslide-prone areas. According to the results, although
both metrics showed improvement during the noise filtering
process, the precision reaches a maximum of 0.82 and the recall
reaches a maximum of 0.91.

4.3.3 Spatial correlation analysis
The LSI also possesses a high level of accuracy spatially. We

employed the GeoDa software to obtain Moran’s I and evaluate
the spatial correlation between LND and LSI. The calculated values
for Moran’s I, p-value, and Z-score were 0.335, 0.012, and 529,
respectively. At a 95% confidence level, both the p-value and z-
value passed the significance tests. These results indicate a positive
correlation between LNDandLSI, which indicates that the predicted
values closely align with actual values.

To further analysing local clustering patterns, we computed the
Local Indicators of Spatial Association (LISA) based on the local
Moran’s I index. Figure 12 depicts the LISA map for LND and LSI.
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FIGURE 12
Local Moran’s I index between LND and LSI.

Elevated high-high regions on themap indicate areaswith high LND
and LSI values, while low-low regions signify areas with low values
for both variables. The predominant distribution of high-high areas
closely aligns with regions characterized by high and very high LSI.
These regions are mainly in the central and western parts of Fujian
Province and run north-east through the province. Similarly, low-
low regions correspond to areas with low and very low LSI in the
southeastern coastal areas.These findings provide further validation
of the predictive accuracy of this study.

4.4 Landslide susceptibility assessment in
Fujian

Figure 13 presents the cumulative percentage of landslide
susceptibility levels for different cities and counties in Fujian
Province. In Figure 13A, the proportion of varying susceptibility
intervals within the cities. Correspondence between abbreviations
and full names is in Supplementary Table 1. Cities such as QZ and
ND have a higher percentage of high and very high susceptibility
areas, while cities like XM have a smaller percentage. Figure 13B
presents the percentage distribution of different susceptibility levels
across various cities. Most areas fall into the low susceptibility
category, followed by moderate and very low susceptibility. The
high and very high landslide susceptibility is the least prevalent,
accounting for less than 10%. Figure 13C displays the distribution
of susceptibility levels in subordinate counties and districts
across different cities. The susceptibility levels exhibit an uneven
distribution among the counties and districts of different cities.
Overall, the percentage of landslide susceptibility levels across
different cities is controlled by the mountainous regions of central

and western Fujian. The cities of SM, NP, and LY, traversed by the
mountain belt in western Fujian, have higher susceptibility levels.
The southeastern coastal cities of Xiamen and Putian with flatter
terrain thus have lower susceptibility levels. In cities such as QZ and
FZ, the western regions are characterized by the complex terrain
of the mountain belt in central Fujian, while the eastern regions
are coastal plains. The complex terrain results in highly uneven
susceptibility levels across districts and counties.

5 Discussion

The study of extremeweather and the disasters it brings has been
extended through various mathematical and physical methods. In
this research work, a wind speed factor was built based on Rankine
vortex model and history TCs. We have analyzed the landslide
distribution pattern and constructed a noise filtering method based
on the BN model to investigate how mislabeled samples impact the
model performance.

Mature TCs often produce spiral rainbands that can lead to
local winds, heavy rainfall, and storm surges (Tang et al., 2018). This
convective effect can cause a series of disasters, including landslides,
floods, and urban waterlogging, especially before and after a TC
makes landfall (Zhuang et al., 2022). While annual rainfall provides
an indication of the level of rainfall in a year, it may not accurately
reflect or measure the impact of short-term heavy rainfall brought
by TCs. The Rankine vortex model was used to quantify historical
tropical cyclone data and derive the wind speed factor (Figure 6).
Methods for quantifying the impact of typhoons include: 1) The
wind pressure model, which describes the relationship between
wind speed and distance from the typhoon center, enabling a more
accurate assessment of the damage caused by TCs and serving
as crucial tool for evaluating typhoon impacts; 2) Integration of
historical typhoons, which characterizes the impact of typhoons
by combining the intensity and frequency of historical events
(Batke et al., 2014; Qi et al., 2023). Qi et al. (2023) quantified the
destructiveness of TCs by this method.

The predictive performance of classification learning algorithms
is limited by data quality (Khoshgoftaar and Rebours, 2007;
Johnson and Khoshgoftaar, 2022). Non-landslide points in most
existing studies were just randomly selected from the entire
study area (Wu, 2019; Cui et al., 2022). There’s a possibility of
mislabeling some points with high landslide susceptibility as
non-landslide points, what is known as label noise. Huang et al.
(2020) highlighted the issue of selecting non-landslide samples and
chose non-landslide points from areas with very low susceptibility
under a semi-supervised algorithm. Our study proposes a noise
filtering method that gradually eliminates lower-quality samples,
which significantly improved the quality of non-landslide samples
(Figure 11). The threshold for the noise filtering method is set
to 0.7, effectively filtering out samples with large deviations
between predicted and actual values. Additionally, adjusting
the threshold allows for controlling the balance between the
acceptable sample deviation and the number of samples removed
(Khoshgoftaar and Rebours, 2007).

It’s worth acknowledging that certain limitations might be
associated with this study. Landslides are affected by terrain,
geology, hydrology, and other factors, leading it impossible to
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FIGURE 13
Percentage accumulation diagram of landslide susceptibility (A) Percentage accumulation diagram of each city; (B) Percentage accumulation diagram
of susceptibility level; (C) Percentage accumulation diagram of each county.

identify areas that will never experience landslides. Selecting
non-landslide points that are completely accurate and reliable is
challenging. Therefore, we can only work to improve this issue,
but we cannot entirely resolve it. The primary focus of our study
was to tackle sample noise and amplify the model’s classification
performance by addressing noise within the samples. The noise
instances that get filtered is contingent on the selected threshold
value. Although this study did not extensively delve into exploring
the optimal threshold value selection, this aspect doesn’t detract
from the performance enhancement achieved through the noise
filteringmethodology. Determining the optimal threshold value and
further enhancing the methodology may involve employing various
search algorithms, such as hill-climbing, simulated annealing, or
genetic algorithms.

6 Conclusion

We have analyzed the landslide distribution pattern and
constructed a noise filtering method based on the BN model to
investigate how mislabeled samples impact the model performance.
In the landslide-prone region, landslides are mainly located in the

central and western parts of Fujian Province and run north-east
through the province. Over 70% of landslides occurred during the
rainy season from May to August. In the landslide susceptibility
assessment process, 10 geoenvironmental factors have informed the
BN model as predictors. Moreover, we have calculated the historical
tropical cyclone dataset as a wind speed geoenvironmental factor to
consider the impact of tropical cyclones on landslides. And it was
proved to be the second most significant factor.

We have also progressively filtered the mislabeled data in non-
landslide sets with the noise filtering method in this study. As
expected, the AUC value has been improved from 0.838 to 0.931
during the process. Furthermore, the final landslide susceptibility
results have been made into a landslide susceptibility map. The
reliability was confirmed by Moran’s I index. The LISA shows
consistent distribution patterns for high LND and LSI regions,
further highlighting the reliability. The results demonstrate the
ability of the noise filtering method in the quality enhancement
of training sets and the performance of machine learning models.
The noise filtering method offers a viable approach for enhancing
the quality of the non-landslide dataset and a useful reference
for reliable landslide susceptibility mapping in the study area and
similar areas.
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Rapid and long-runout landslides characterized by their high speed, long
distance mobility, and huge capacity and volume would pose significant
threats to infrastructure and life safety. In this study, a rapid and long-runout
landslide that occurred in the Bingda village of the northeastern Tibetan
Plateau, which was triggered by heavy rainfall in June 2017, was preliminarily
investigated. On the basis of detailed field surveys, high-resolution satellite
imagery analysis, and laboratory tests, the morphological and sedimentological
features of the landslide were described, and the formation mechanism of
hummocky landforms and its insight into the extraordinary movement of the
Bingda landslide was deduced. The field investigation and satellite imagery
analysis showed that there were nearly 200 hummocks, mostly with normal
circular bases and with a height of ∼0.1 m–7.5 m, distributed in the transfer
and accumulation areas of the landslide. The height and number density of the
hummocks decreased away from the transfer area to the accumulation area
and displayed higher heights at the outer bends of the gully channel than that
at the inner bends of it. The characteristics of the spatial distribution and the
composition of hummocks indicated that significant generation and dissipation
of pore-water pressure within the loose and saturated silty clay layer in the
runout path was the most probable reason for the formation of hummocky
landforms. This study also provided insights into the hypermobility mechanisms
of the Bingda landslide, suggesting that this landslide began with the sliding
failure of the weathered colluvium in the source area, and then the landslide
debris traveled into the channel and impacted sudden undrained loading and
rapid shearing to the underlying silty clay layers in the gully. These processes
generated pore-water pressure and reduced the effective stress within the soil
particles, resulting in a decrease in the frictional resistance in the substrate, finally
facilitating the rapid and long-runout movement of the landslide.
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rapid and long-runout, landslide, hummock, Tibetan Plateau, rainfall
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1 Introduction

Rapid and long-runout landslides are characterized by their
extraordinary speed, long distance mobility, and huge capacity
and volume, resulting in catastrophic damage to infrastructure
and posing grave threats to life safety (Heim, 1882; Legros, 2002;
Hungr and Evans, 2004; Hungr et al., 2014). Extensive insights into
the kinematic progression of these landslides have been derived
from studies on their surface morphology and sedimentological
structures (Strom, 2006; Shea and van, 2008; Iverson et al., 2015;
Dufresne et al., 2016; Strom and Abdrakhmatov, 2018). The
hummock is one of the most striking and common morphological
features, seen as isolated or clustered mounds, either rounded or
conical in form, which could characterize high-speed sliding. The
hummocks have been documented in a wide spectrum of high-
energy geological events, including large landslides or rock-debris
avalanches (Hewitt, 1999; Linnell et al., 2011; Dai et al., 2019;
Wang et al., 2019; Dufresne and Geertsema, 2019; Zeng et al.,
2019; Zeng et al., 2021), volcanic edifices (Voight et al., 1981; Ui,
1983; Siebert, 1984; Andrade and van Wyk de Vries, 2010; Yoshida,
2013; 2014; Paguican et al., 2014), and glacier activities (Benn and
Evans, 1998; Haeberli et al., 2004; Iturrizaga, 2012; Jermyn and
Geertsema, 2015; Reznichenko et al., 2017).

A series of field investigation, laboratory experiments, and
model simulations have been conducted in order to explain the
formation mechanisms of hummocky landforms. Morphologic
studies of hummocks have been conducted on the quantitative
and semi-quantitative analyses of the relationship of the elements

of hummocks, including the size, orientation, and spacing, with
the flow direction of rock-debris avalanches (Yoshida and Sugai,
2010; Yoshida, 2014). Hummocky landforms may appear as
blocks ranging in size from a few meters to hundreds of meters
in diameter (Ui et al., 2000) or as discrete avalanche blocks
interspersed in a matrix of finer materials (Glicken, 1996); the
facts that have been explained to be due to the fault formation
during mass spreading (Shea and van, 2008; Paguican et al.,
2012) or due to basal shear and extensional regimes in the
moving mass (Dufresne and Davies, 2009). Paguican et al. (2014)
summarized that hummocks form along low-angle basal fault
and high-angle normal faults, proposing that the morphology
and spatial distribution of hummocks were attributed to the
interplay of the number density of normal, thrust, and strike–slip
faults (Dufresne and Geertsema, 2019). Shea and van (2008)
and Paguican et al. (2012) suggested that the morphology and
spatial distribution of hummocks were not only associated with
the fault formation during mass spreading but was also related
with the basal shear and extensional regimes in the moving
mass (Dufresne and Davies, 2009). Prominent elongated, sub-
parallel alignments hummocks have also been interpreted as
remnants of longitudinal ridges induced by parallel strike–slip
faults related to lateral velocity changes (Shea and van, 2008;
Dufresne and Davies, 2009; Andrade and van Wyk de Vries, 2010).
Undoubtedly, the hummocky landforms and their evolution and
formation mechanisms could provide valuable insights into the
kinematics and dynamics of landslides (Shea and van, 2008;
Paguican et al., 2012; Paguican et al., 2014).

FIGURE 1
(A) Geological background of the study area and the location of the Bingda landslide. (B) Geologic sketch setting of the Bingda landslide. (C) Rainfall
data of the Yushu area in 2017.
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FIGURE 2
(A) Topographic contour map of the Bingda landslide. (B) Panorama photo of the Bingda landslide. (C) Longitudinal geological profile of the Bingda
landslide and the sampling site of the river-cut section in the gully.

In this work, we studied a unique hummocky landform that
was well-preserved in a rapid and long-runout landslide in the
Bingda village of the northeastern Tibetan Plateau (Zhu et al., 2019;

Pan, 2023) (Figure 1). The Bingda landslide was triggered in June
2017 by heavy rainfall, and the average velocity of the landslide
mass reached approximately 24 m/s in the transfer area (Zhu et al.,
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FIGURE 3
Spatial distribution of hummocks in the Bingda landslide.

2019). On the basis of the field investigation, high-resolution satellite
imagery interpretation, and laboratory tests, the morphological and
sedimentological features of the landslide were examined with an
aim to understand the formation mechanisms of hummocks and
shed light on the extraordinary movement of the Bingda landslide.
This study contributed novel insights into the dynamic research of
rapid and long-runout landslides.

2 Geological setting

The Bingda landslide was located at 32°49′17″N, 96°54′48″E,
and 4,645 m above sea level (a.s.l.) in Yushu City in the northeastern
TibetanPlateau ofChina (Figure 1A).The study area is characterized
by its location in the alpine zone, proximal to the Batang basin to
the north. The left-lateral Yushu and Batang faults pass through this
region and control the regional tectonic activities and earthquake
events (Wu et al., 2014). This region mainly contains the Triassic
limestone slate and feldspar quartz sandstone with limestone, which
constitutes the main lithology of mountainous topography (Peng,
2013; Wu et al., 2014) (Figure 1B). The EW-trending Batang basin
is infilled with Quaternary alluvial and diluvial deposits. A drainage
channel of the Baqu River tributaries, which is a third-order
tributary of the Tongtian River, flows through the front of the
valley in the landslide area (Wu et al., 2014). The groundwater and
atmospheric precipitation are the primary sources of runoff for these
tributaries, contributing to the fragmentation and weathering of

the bedrock. The climate of this region is the plateau continental
monsoon climate, which is characterized by longer cold seasons
and shorter warm seasons. The mean annual temperature fluctuates
between - 4.3°C and 4.6°C, while the mean annual rainfall ranges
between 419.7 mm and 542.0 mm. Rainfall data from the Yushu
meteorological station between 2012 and 2017 indicate that the
predominant rainfall period is from June to October, receiving over
70% of the total annual rainfall (Pan, 2023). In 2017, the annual
rainfall reached 616.1 mm,with a significant surge in June, recording
a monthly total of 154.7 mm over 25 rainfall days (Figure 1C).

3 Methodology

The boundary and zonation of the Bingda landslide were
defined and verified utilizing 1.0-m resolution Century Space
satellite imagery and were consulted by utilizing 0.3-m resolution
Worldview 3 satellite imagery and high-resolution Google Earth
imagery. A topographic map of the study area was generated
from the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) digital elevation models (DEMs) at http://
www.gscloud.cn/home. Considering the study area’s proximity
(∼20 km) to Batang airport, which is designated as a national no-fly-
zone, a detailed field survey focusing on themapping andorientation
of hummocks across various scales was undertaken. Detailed
photographic documentation and descriptions of the landslide
deposits were recorded, employing a hammer for scale reference.
In addition, three samples (named S1 to S3) were systematically
collected from the river-cut section exposed in the gully to examine
the fundamental physical properties. Undisturbed soil samples were
extracted utilizing a ring knife with a diameter of 70 mm and a
height of 52 mm. Then, analyses were performed to determine the
water content, specific gravity, porosity, saturated and dry density,
and grain size distribution. Grain size analysis was carried out on a
Mastersizer 3000 laser particle size analyzer equipped at the Hebei
Institute of Regional Geology and Mineral Resources Investigation.

4 Basic characteristics of the Bingda
landslide

According to the high-resolution satellite image interpretation
and topographical field investigation of the landslide, the landslide
can be divided into three parts: source area, transfer area,
and accumulation area (Figure 2A). The landslide presents a
northeastward long and narrow channel shape (Figure 2B). The
vertical distance difference (H) and horizontal distance difference
(L) of the top and toe of the landslide are ∼552 m and ∼1,795 m,
respectively, and the corresponding equivalent friction coefficient
(H/L) is calculated as 0.308 < 0.33 (Heim, 1932; Scheidegger, 1973),
exhibiting the rapid and long-runout mobility (Figure 2C).

4.1 Source area

The source area of the landslide presents a spoon shape, with
the highest elevation of the main scarp reaching approximately
4,645 m, and the elevation of the toe of the rupture surface assessing
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FIGURE 4
(A) Distant view of the source area of the Bingda landslide. (B) The front view of the source area of the Bingda landslide, and the limestone bedrock and
colluvium deposits in the source area.

FIGURE 5
Hummocky landforms distributed in the transfer area (A–E) and the accumulation area (F) of the Bingda landslide.
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FIGURE 6
(A) Sediment profile of the accumulation area of the Bingda landslide. (B) Hummock distributed in the accumulation area of the Bingda landslide.

FIGURE 7
(A) Close photograph of a hummock located in the transfer area of the Bingda landslide. (B) Inner composition of the hummock in the transfer area. (C,
D) Liquefaction phenomenon.

approximately 4,570 m (Figures 3, 4A). According to the remote
sensing analyses and field surveys, the source area occupies ∼8.8 ×
103 m2, and the average depth of the rupture surface was ∼10 m;
thus, the total volume of the main body of the landslide in the source
area is approximately 8.8 × 104 m3. The slope of the main scarp
measures approximately 40°–50°, and the outcropping bedrock in the
source area is anti-dip gray limestone with the predominant attitude
of 300°<20°–30°. A platform of length ∼96 m and width ∼20 m
was formed on the lower part of the source area, and the surface
was covered by colluvium deposits mainly composed of weathered
limestone fragments (Figures 3, 4B).The particle size of the colluvium
deposits ranges from0.1 m to0.5 m, and the contentof theparticle size
of ∼0.1 m–0.3 m occupied approximately 70%. Under the platform,

the anti-dip purple sand shale with the attitude of 300°<20°–25° is
exposed, and it left distinct scrape marks on the surface of the bed-
rock. The slope structures with the upper limestone and lower sandy
shalecontrolledthe favorableconditions for thedifferentialweathering
and the deformation and failure of the slope.

4.2 Transfer area

The transfer area exhibits a long and narrow shape, with the
length of ∼1,557 m along the sliding axis and the width ranging
from approximately 28 m to 100 m (Figure 3). The transfer area
occupies a surface area of approximately 99.6 × 103 m2, covering
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FIGURE 8
(A) Sedimentary structures of the river-cut section in the gully. (B) Loose structure of the black silty clay layer. (C) Gully profile formed by water erosion.
(D) Water-rich and saturated silty clay layer.

TABLE 1 Results of the basic physical properties of gully samples.

Sample d50 (μm) Water (%) ρw (g/cm3) ρd (g/cm
3) Gs e (%)

S1 11.14 20.85 1.2 1 2.62 61.98

S2 7.04 37.76 1.63 1.18 2.63 55.03

S3 7.95 20.89 1.88 1.56 2.69 42.06

over 70% of the total landslide area. The landslide mass eroded
and entrained the substrate materials and the surface vegetation
in the movement path, forming apparent scrape boundaries at
both flanks of the landslide (Figures 5A–E). The upper part of the
gully deposits were eroded and entrained by the landslide mass,
amplifying the volume of the landslide mass by approximately
7.6 × 104 m3, while most of them were accumulated in the
movement path (Pan, 2023). The average slope of the transfer area
is approximately 18°, transitioning from a steep slope of ∼30° in
the source zone to a gentler slope of ∼15° in the front edge of the
transfer area (Figure 2C). Due to the transformation of the channel
direction, the landslide mass experienced three times the freeboard
phenomenon in the curved ways of the channel during the landslide
movement (Figure 2A).

4.3 Accumulation area

The accumulation area displays a fan-like shape, occupying
approximately 16.8 × 103 m2 area (Figures 3, 5F). The landslide
debris that surged from the gully was hindered by the opposite
mountain, causing the decrease in speed and ceasing of the
debris. The accumulation area was later eroded by the river,
exposing the internal sedimentary structure (Figure 6). The features
of the sediment profile indicate that the upper part of the
deposits primarily consists of limestone fragments, ranging in
particle size from ∼0.05 m to 0.5 m, while the lower part
comprises silt and silty clay deposits occasionally entrained
with individual limestone fragments, demonstrating an inverse
grading pattern.
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FIGURE 9
Grain size distribution of the samples collected from the gully section.

5 Morphology and sedimentology

5.1 Characteristics of hummocks

The most prominent morphological feature of the Bingda
landslide is hummocky landforms, which are mainly distributed
in the transfer and accumulation areas (Figures 3, 5, 6). The
hummocks generally display as mounds, either individual or
clustered, accounting for nearly 200 hummocks with the height
of ∼0.1 m–7.5 m. There are distributed 12 hummocks that are
higher than 3 m, 16 with the height between ∼3 m and 1 m, and
approximately 171 hummocks that are less than 1 m in height. The
hummocks in the transfer area exhibit higher height than those in
the accumulation area, showing the decreasing trend along with
the downward movement of landslide mass. In the accumulation
area, the average height of the hummocks decreased significantly
(Figures 3, 5F, 6). Moreover, the hummocks presented higher
heights at the outer bends of the gully channel than that at the inner
bends of the channel, especially at the places of super elevations
(Figure 3).Most hummocks display normal circular shapes and have
standard circular bases (Figure 7A), while the hummocks higher
than 1 m exhibit elliptical bases due to the slope topography.

The hummocks in the transfer area were primarily covered by
the gravelly and sandy limestone fragments, and the inner materials
were composed of the gravel–sand fragments and black silty clay
that originated from the underlying layers in the gully, which might
also be affected by surficial coarseness due to the transferring of
fine material by rainfall (Figure 7B). Moreover, in the transfer area,
a large amount of mounds with the black silty clay sediments
surrounded by limestone fragments are observed, indicating the
occurrence of liquefaction in the underlying silty clay layers due
to the generation of pore-water pressure (Figures 7C, D). The
hummocks in the accumulation area were composed of complicated
sand and silt matrices containing single, large boulders, suggesting
that the entrainment of the large blocks and silty clay sediments
with the landslide mass also happened in this area, influencing the
distribution and composition of the hummocks.

5.2 Sedimentological structures of the
landslide deposits

The sediment profile of the gully eroded by the surface water
well presented the inner structures of landslide and gully deposits
(Figure 8). The sedimentary profile exposed in the gully displays
a thickness ranging from approximately 1.5 m to 4 m, consisting
of three layers, namely, the landslide deposit, silty clay layer,
and alluvial deposits from the top to the bottom (Figure 8A).
The uppermost landslide deposits, averaging between about 0.2 m
and 1.0 m in thickness, primarily consist of sandy and gravelly
limestone fragments originating from the source area. The upper
landslide fragments outcrop as a thin layer with angular centimeter-
to-millimeter-sized blocks supported by a heterogeneous body
composed of gravel and sandy and silty clay, presenting an
inverse grading (Dufresne et al., 2016).

The black silty clay layer in the gully was distributed with
a thickness ranging from approximately 0.5 m to 3 m, displaying
a loose structure and water-saturated status (Figures 8B–D). The
upper part of the silty clay layer was disturbed and entrained by
the landslide deposits, with the entrained thickness of approximately
0.5 m–1.0 m of the silty clay layer. The bottom yellowish alluvial
diluvium deposit with a high consolidation degree was exposed
intermittently along the gully (Figure 8A). Table 1; Figure 9 presents
the laboratory results of the basic physical properties of three
samples, which were collected from the gully profile. The results
indicate that the S2 sample of the silty clay layer comprises 73%
of silt particles (0.005–0.075 mm). The clear trends of dry density,
increasing specific gravity, and decreasing porosity from the top to
the bottom in the profile are observed.

6 Discussion

6.1 Formation mechanism of hummocks

The hummocky landform is one of the most common
morphological features of large landslides or rock–debris
avalanches. Previous studies on the formation mechanisms of
hummocks mainly focused on extensional regimes during landslide
mobility (Dufresne and Davies, 2009) and faulting resulting from
landslide mass spreading (Shea and van, 2008; Paguican et al.,
2012). A hypothesis had also been proposed that the distribution
of large boulders could act as anchors, facilitating the accumulation
of debris around them, thereby forming mounds (Andrade and
van Wyk de Vries, 2010). These research highlights the relationship
between the features of hummock landforms and the kinematic
processes of the landslides, suggesting that the perpendicular
or parallel orientations of hummocky mounds are attributed to
the extrusion or stretching of the landslide mass. Permafrost
molards, which are conical mounds of loose debris that result
from the degradation of blocks of ice rich in sediments that are
mobilized by landslides (Morino et al., 2019; Beck et al., 2024),
also display similar shapes with hummocky landforms. However,
the hummocky landforms observed in this study exhibited a
consistently uniform, round shape without any evident directivity.
The composed materials of the hummocks and the inner structures
of the gully profile suggested that no fault activity induced by
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FIGURE 10
Schematic diagram of the formation processes of hummocks. (A) Before the landslide event, the silty clay sediments in the gully were in a saturated
and loose state. (B) During the landslide movement, the sudden undrained loading and rapid shearing surged into the silty clay layer and resulted in the
destruction of its loose structure. (C) The process of landslide movement induced the enhancement and concentration of the pore-water pressure
within the silty clay layer. (D) Along with upward dissipation of the pore-water pressure, the hummocks and liquefaction phenomenon formed in the
movement path of the landslide.

TABLE 2 Earthquake records in the study area in 2017 (http://data.
earthquake.cn).

Date M Coordinates Depth/km

2017/05/06 3.1 32.92°N, 97.18°E 11

2017/05/08 3.3 32.60°N, 97.45°E 9

2017/11/01 3.0 33.38°N, 96.16°E 10

2017/11/01 3.9 33.35°N, 96.18°E 10

the dynamic extension in the landslide mobility had occurred in
this area (Paguican et al., 2014). Moreover, the Bingda landslide
occurred in June, which was the rainy and high-temperature period
in this region, so permafrost molards seem not to have been formed
in this case. We supposed that the formation of hummocks in the
Bingda landslide is mostly associated with the generation of pore-
water pressure, and the loose and saturated silty clay sediments
distributed in the movement path played an important role in
this process.

During the landslide movement, the saturated and loose silty
clay layer in the gully suffered great impact forces from the
landslide mass (Figure 10A). The sudden undrained loading and
rapid shearing surged into the silty clay layer in the runout path
and resulted in the destruction of its loose structures (Figure 10B).
This process induced a rapid enhancement and concentration of
the pore-water pressure within the substrate and silty clay layer,
causing the reduction of the effective stress of soil particles and
the shear stress in the basal layer (Figure 10C). This could also be
supported by the theoretical model that the high motion of the
landslide would contribute to the generation of excess pore-water
pressure along the sliding surface and the saturated layer in the
movement path (Sassa, 1988). The low permeability of the silty clay
layer also promoted the congregation of the pore-water pressure
and hindered the timely dissipation of pore-water pressure. Along
with the deceleration and stabilization of landslide debris, the pore-
water pressure had gradually dissipated through the underlying
deposits, forming different scales of hummocks and the liquefaction

phenomenon in the movement path (Figures 10D, 7C, D). The
morphological features of the hummocks indicated that the height
and density of hummocks are likely influenced by factors including,
among others, the overlying stress of landslide deposits, movement
rate of landslide mass, and the properties of the silty clay layer. The
spatial distribution features of hummocks indicated that the stronger
loading, higher speed, looser structure, and finer particles of the
underlying sediments could benefit the generation of pore-water
pressure and the formation of hummocks.

6.2 Insights into the hypermobility of the
Bingda landslide

In this study area, the intense tectonic activities and long-term
weathering resulted in the steepening of the slope and the formation
of a mountainous-valley terrain (Figure 1), which provided a
favorable geological background for weakening the bedrock of the
slope in strength and the occurrence of landslide hazards. According
to the field investigation, the bedrock mainly exposed in the upper
part of the source area is anti-dip limestone, and the lower part
is anti-dip sand shale (Figure 4). Owing to the gravity forcing and
weathering, limestone gradually reduced in strength and fractured
intensely, forming thick colluvium deposits in the source area, of
which the weathering processes have also been accelerated by the
peri-glacial environment and the action of frost weathering in this
region. These basic conditions have controlled the deformation and
failure of the debris mass slopes in the source area.

According to the regional meteorological and historical
earthquake records in this period, this region has experienced
overall continuous 25 rainfall days in June 2017 (Figure 1C), but
there were no earthquake events recorded (Table 2). Although this
region has suffered long-term intense tectonic activities and strong
earthquakes, which could affect the fracture development of bed-
rocks, the earthquake trigger for the Bingda landslide could be
excluded. The heavy rainfall increased the high-level groundwater
and surface runoff in this region, inducing the stagnation of water
at the bottom of the source area and the saturation in the silty clay
layers in the transfer and accumulation areas. The Bingda landslide
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started from the sliding failure of the colluviums in the steep slope
and sheared out from the interface of the limestone and sand shale
bedrock. The landslide mass then traveled into the transfer area and
entrained the loose silty clay in the runout path and the surface
water present in the channel. In this process, the silty clay sediments
became subject to sudden undrained loading and rapid shearing,
and the substrate underwent a significant increase in pore-water
pressure (Sassa, 1985; Hungr et al., 2014) and the reduction of
effective stress within the soil particles and frictional resistance in
the substrate (Hutchinson and Bhandari, 1971; Wang et al., 2002;
Hungr and Evans, 2004; Sassa andWang, 2005), facilitating the rapid
and long-runout mobility of the Bingda landslide.

7 Conclusion

In June 2017, the heavy rainfall triggered a rapid and long-
runout landslide with the vertical distance difference of ∼552 m,
the horizontal distance of ∼1,795 m, and an estimated volume
of 8.8 × 104 m3. In the landslide area, we observed the striking
hummocky landforms, accounting for nearly 200 hummocks, with
the height ranging from ∼7.5 m to 0.1 m. The spatial distribution
and sedimentary features of hummocks suggested that the formation
mechanisms of the hummocks could be attributed to the generation
and dissipation processes of pore-water pressure in the saturated
and loose silty clay layers in the movement path. This study also
generalized that the landslide began with the sliding failure of the
weathered colluvium from the steep slope and traveled into the
gully channel. In these processes, the silty clay sediments suffered
the sudden undrained loading and rapid shearing of the upper
landslide mass, causing the generation and concentration of pore-
water pressure, and the reduction of the frictional resistance in the
substrate, resulting in the rapid and long-runout movement of the
Bingda landslide.
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