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Editorial on the Research Topic

Advances in statistical methods for the genetic dissection of complex
traits in plants

1 Multi-locus genome-wide association
study methods

In real data analysis, most commonly used genome-wide association study (GWAS)
methods often miss some important loci and trait heritability. To address these challenges,
Li et al. (2022a) established an innovative method named 3VmrMLM based on a
compressed variance component mixed model. In 3VmrMLM, all the effects in
quantitative trait nucleotide (QTN), QTN-by-environment interaction (QEI), and QTN-
by-QTN interaction (QQI) detection are compressed into an effect-related vector, while all
polygenic backgrounds are compressed into a vector-related polygenic background. This
method is especially well suited for species with a high proportion of heterozygous
genotypes, such as human, forests, chrysanthemums, and grasslands.

Can 3VmrMLM replace existing methods? The answer is no, despite 3VmrMLM
demonstrating superiority over existing methods. For the detection of loci dominated by
additive effects, existing methods remain appropriate, as observed in rice, wheat, and
soybean. Since GWAS is based on linkage disequilibrium from historical recombination,
there is complementarity between methods (Zhang et al., 2019). However, existing methods
face challenges in detecting dominant effects and small allele substitution effects (Zhang
et al., 2023).

When analyzing real data, the inflation factor or quantile-quantile plot serves as a
common metric to assess method performance. However, this is not crucial for our
mrMLM and 3VmrMLM methods (Zhang et al., 2020; Li et al., 2022a), because their
genome-wide scanning aims to select potentially associated markers rather than identify
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significant loci. A method is considered effective when it mines
some importantly known and candidate genes around these loci,
supported by strong evidence, as seen in 3VmrMLM. These
identified loci may be used for genomic selection (Su et al., 2024),
while more associated known and candidate genes can be mined
and highlighted in the Manhattan plot.

This Research Topic contains three articles focusing on
methodological studies and comparisons. Yang et al. proposed the
MTOTC method to transform hierarchical data of ordinal traits
into continuous phenotypes, which were then analyzed by multi-
locus methods. This showed that the combination of MTOTC with
any multi-locus method detects more QTNs. To identify QQI via
the IIIVmrMLM software (Li et al., 2022b), Han et al. performed
Levene’s test to obtain the top 5,000 loci for each trait, and these loci
were used to detect QTNs and QQIs associated with 11 flowering
time-related traits in 199 Arabidopsis accessions with 216,130
markers. Around 89 QTNs and 130 QQIs, 34 identified genes
were reported in previous studies, while 20 candidate genes were
predicted; in particular, AT1G12990 and AT1G09950 around QQIs
may have an interaction effect on flowering time. In addition, He
et al. measured five free amino acid levels in 448 rice accessions
across two environments, used nine GWAS methods to perform
association analysis between phenotypes and 4,325,832 SNPs, and
identified 88 stable QTLs, demonstrating the advantages of
3VmrMLM, including the most common QTNs, the highest LOD
score, and the highest proportion of all stable QTLs.

2 The applications of new multi-locus
GWAS methodologies in the genetic
dissection of complex traits

Yield is one of the paramount breeding objectives, with nine
articles in the Research Topic focusing on identifying QTNs and/or
QEIs for yield-related traits. Zhang et al. used 3VmrMLM to re-
associate 44,000 SNPs with eight yield-related traits from 413 rice
accessions across three environments. They identified 87 known
genes around QTNs and QEIs, including OsMADS5 and FZP.
Differential expression, functional enrichment, and haplotype
analysis revealed the association of LOC_Os04¢53210 and
LOC_0s07g42440 with yield, while LOC_Os04¢53210 around a QEI
potentially influenced flowering time. Zhao et al. employed
3VmrMLM to perform association analysis between three
measured grain size traits of 159 rice accessions in two
environments and 2,017,495 SNPs, identifying 393 QTNs and 8
QEIs. They found 22 genes around QTNs and 2 genes around QEIs
to be genuinely associated with these traits. Additionally, 14
candidate genes were significant in differential expression, GO
annotation, and haplotype analysis. Moreover, in a joint analysis of
main crop and ratoon rice, 4 known genes, 8 additional candidate
genes, and 2 candidate gene-by-environment interactions (GEIs)
were identifled as responsible for grain size-related traits.

Shu et al. evaluated plant height (PH) and ear height (EH) in
203 maize inbred lines at five locations and used 3VmrMLM to
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perform association analysis between phenotypes and 73,174
SNPs. They detected 23 significant QEIs and 53 corn belt-specific
QTNss for the two traits. Transcriptomic and haplotype analysis
highlighted the EH-related QEI S10_135 and the PH-related QEI
S4_4, as well as corn belt-specific QTNs (S10_4 and S7_1),
showcasing the power of 3VmrMLM in QEI discovery. Sun et
al. measured the tassel branch number (TBN) of 190 F,
individuals and F,.; families, using four methods to associate
the phenotypes with 4,136 SNPs. They identified 13 QTLs and 22
QTNs, including large-effect QTLs qTBN6.06-1 and qTBN6.06-2
on chromosome 6. RNA-seq analysis revealed 5 candidate genes
associated with TBN. Wen et al. identified 76 QTNs and 73 QEIs
for three yield-related traits in 300 tropical and subtropical
maize lines with 332,641 SNPs under well-watered, drought,
and heat-stress conditions. They reported 34 genes from
previous studies, confirming genes associated with drought
tolerance (ereb53 and thx12) and heat stress (hsftf27 and
myb60). Differential expression, tissue-specific expression, and
haplotype analysis confirmed 24 candidate genes, while three
yield GEIs (GRMZM2G064159, GRMZM2G146192, and
GRMZM2G114789) were predicted.

Feng et al. measured the boll weight (BW) of 290 cotton
accessions in nine environments and used GEMMA to perform
association analysis between the phenotypes and 25,169 SNPs and
2,315 InDels, identifying two major QTLs on chromosomes A08
and D13. Ghir_A08G009110 and Ghir_D13G023010 were
confirmed by both transcript-level and differential expression
analysis between high- and low-BW accessions during the ovule
development stage. Liu et al. measured three seed size-related traits
in 196 mung bean accessions across two environments and used
four methods to perform association analysis between the
phenotypes and 3,607,508 SNPs. V+KIX8, VrPATI14, VrEmp24/25,
VrIARI, VrBEE3, VrSUC4, and Vrflo2 around QTNs were
homologous to known seed development genes in rice and
Arabidopsis thaliana and further verified by differential
expression and RT-qPCR analysis. VrFATB, VrGSOI, VrLACS2,
and VrPATI4 around QEIs were homologous to known seed
development genes in A. thaliana. Hong et al. measured two
epicotyl length traits in 951 soybean accessions over two years
and used 3VmrMLM to perform association analysis between
phenotypes and 1,639,846 SNPs, identifying 180 QTNs and QEIs.
Based on transcript abundance, GO enrichment, and haplotype
analysis, 10 candidate genes were predicted to be involved in the
process of seed germination and seedling development, and it was
found that Glyma.04G122400 and Glyma.18G183600 may affect
epicotyl length elongation. Han et al. measured the flowering time
(FT) of 490 Brassica napus accessions in eight environments and
used 3VmrMLM to perform association analysis between the
phenotypes and 11,700,689 SNPs, identifying 19 stable QTNs and
32 QEIs for FT and 10 QTNs for FT-related climatic indices. A total
of 12 and 14 differentially expressed genes were found to be
candidate genes for stable QTNs and QEIs, respectively, while five
DEGs were found to be candidate genes for the indices. BnaFLCs,
BnaFTs, BnaA02.VIN3, and BnaC09.PRR7 were further validated.
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With the improvement in people’s living standards, crop quality
traits are becoming increasingly important. Yu et al. measured four
seed tocopherol content traits of 175 soybean accessions in three
environments, used six methods to perform association analysis
between the phenotypes and 23,149 SNPs, identifying 101 QTNs in
single-environment analysis and 57 QTNs and 13 QEIs in multi-
environment analysis. A total of 11 candidate genes residing in eight
novel QTLs were confirmed using haplotype, RNA-Seq, and RT-
qPCR analysis. Zheng et al. evaluated three cooking quality traits in
345 rice accessions over two years and used seven multi-locus
methods to perform association analysis between phenotypes and
193,582 SNPs, identifying 144 QTNs and 21 QEIs. Based on
analyses of mutation type, gene ontology classification, haplotype,
and expression pattern, OsSSIIIb, OsMT2b, wx, OsSSIla, and
OsSSIIIa, which are related to starch synthesis and endosperm
development, were found to influence grain expansion after
cooking. Azam et al. measured the seed isoflavone accumulation
of 1551 soybean accessions in five environments, used cMLM to
perform association analysis between the phenotypes and 6,149,599
SNPs, and revealed that the allelic variation of Glyma.11G108100
significantly influenced isoflavone accumulation.

Resistance, a key trait affecting crop yield, is the focus of two
articles in this Research Topic. Kou et al. measured the pre-harvest
sprouting of 629 Chinese wheat varieties in two environments, and
they used the mrMLM and IIIVmrMLM software to perform
association analysis between the phenotypes and 314,548 SNPs,
identifying 22 stable QTNs for PHS resistance, such as AX-
95124645 (r* > 36%). Importantly, all white-grained varieties with
the QSS.TAF9-3DTT haplotype showed resistance to spike
sprouting. Around this locus, TraesCS3D01G466100 and
TraesCS3D01G468500 were differentially expressed and found by
GO annotation to be related to pre-harvest sprouting resistance. He
et al. evaluated Pasmo resistance in 445 flax accessions over 5 years
and used four methods to perform association analysis between
phenotypes and 246,035 SNPs, identifying 132 tag QTNs and 50
QEIs. A total of 37 and 9 resistance gene analogs were considered
potential candidates for QTNs and QEIs, respectively.

In addition, Wu et al. evaluated eight traits of 226 sunflower
inbred lines under control and drought stress conditions and used
three methods to perform association analysis between these
phenotypes and 94,162 SNPs. Among the 118 genes around 80
QTNs, 14 candidate genes were validated by RNA-seq and RT-
qPCR analysis, and LOCI110885273, LOC110872899, LOCI10891369,
and LOCI110920644 were found to be abscisic acid-related protein
kinases and transcription factors.
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3 Future perspectives

To effectively identify QEIs across diverse environments and
QQIs across numerous markers, it is imperative to devise new
algorithms tailored to sample size, computational speed, and
minimal memory requirements to meet the needs of human large
data analysis. As the field advances, the genetic model for
quantitative traits may transition from the classic Fisher genetic
model to a more comprehensive framework through the integration
of artificial intelligence. We anticipate that our compressed variance
component mixed model will emerge as a pivotal tool in the genetic
analysis of complex traits and multi-omics data in the future.
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" College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China, 2 Institute of Crop Breeding and Cultivation,
Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China

Sunflower is one of the most important oil crops in the world, and drought stress
can severely limit its production and quality. To understand the underlying mechanism
of drought tolerance, and identify candidate genes for drought tolerance breeding,
we conducted a combined genome-wide association studies (GWAS) and RNA-seq
analysis. A total of 226 sunflower inbred lines were collected from different regions of
China and other countries. Eight phenotypic traits were evaluated under control and
drought stress conditions. Genotyping was performed using a Specific-Locus Amplified
Fragment Sequencing (SLAF-seq) approach. A total of 934.08 M paired-end reads were
generated, with an average Q30 of 91.97%. Based on the 243,291 polymorphic SLAF
tags, a total of 94,162 high-quality SNPs were identified. Subsequent analysis of linkage
disequilibrium (LD) and population structure in the 226 accessions was carried out based
on the 94,162 high-quality SNPs. The average LD decay across the genome was 20 kb.
Admixture analysis indicated that the entire population most likely originated from 11
ancestors. GWAS was performed using three methods (MLM, FarmCPU, and BLINK)
simultaneously. A total of 80 SNPs showed significant associations with the 8 traits (p
< 1.062 x 107%). Next, a total of 118 candidate genes were found. To obtain more
reliable candidate genes, RNA-seq analysis was subsequently performed. An inbred line
with the highest drought tolerance was selected according to phenotypic traits. RNA
was extracted from leaves at O, 7, and 14 days of drought treatment. A total of 18,922
differentially expressed genes were obtained. Gene ontology and Kyoto Encyclopedia
of Genes and Genomes analysis showed up-regulated genes were mainly enriched
in the branched-chain amino acid catabolic process, while the down-regulated genes
were mainly enriched in the photosynthesis-related process. Six DEGs were randomly
selected from all DEGs for validation; these genes showed similar patterns in RNA-seq
and RT-gPCR analysis, with a correlation coefficient of 0.8167. Through the integration
of the genome-wide association study and the RNA-sequencing, 14 candidate genes
were identified. Four of them (LOC110885273, LOC110872899, LOC110891369,
LOC110920644) were abscisic acid related protein kinases and transcription factors.
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These genes may play an important role in sunflower drought response and will be used
for further study. Our findings provide new insights into the response mechanisms of
sunflowers against drought stress and contribute to further genetic breeding.

Keywords: sunflower, drought stress, genome-wide association studies (GWAS), RNA-seq, single-nucleotide
polymorphisms (SNPs), specific-locus amplified fragment sequencing (SLAF-seq)

INTRODUCTION

Sunflower (Helianthus annuus. L) belongs to the Compositae
family (Schilling and Heiser, 1981), and is native to North
America (Schilling and Heiser, 1981). As one of the major oilseed
crops in the world, sunflower is considered an important source
of high-quality oil and dietary fiber for human health (Khan et al.,
2015). The world harvested area of sunflower seed has increased
by 20% (from 23.07 million hectares to 27.87 million hectares),
and the production has increased by more than 50% (from 31.45
million tons to 50.23 million tons) from 2010 to 2020 (FAO,
2021). China is the sixth-largest sunflower-producing country in
the world. The main production areas of sunflowers in China are
in the northwest region, such as Inner Mongolia Autonomous
Region and Xinjiang Uygur autonomous region. The sunflower
is an important economic source for local farmers, and the status
of sunflower production directly affects farmers’ living standards.

The global average temperature has risen by about 0.85°C
from the year 1880 to 2012 (Adopted, 2014), resulting in a series
of extreme weather events, such as heavy rains, flooding, drought,
and desertification. Among them, drought is the most serious
abiotic stress limiting global agricultural production (Wilhite
and Buchanan-Smith, 2005). A persistent drought can cause a
large number of deaths and force large-scale migration, while
severe droughts can even impact human civilization (Ault, 2020).
With the continued climate change and population growth,
drought may pose a serious threat to global and regional food
security in the coming decades (Riddell et al., 2018). Due to the
strong root system, the sunflower was considered to be relatively
tolerant to water stress. They are often seeded on beds and
ridges with poor moisture conditions where many other crops
are unable to survive (Hussain et al., 2018). As a result, it is more
susceptible to drought stress leading to yield reduction (Pasda
and Diepenbrock, 1990; Adeleke and Babalola, 2020; Grasso
et al., 2020). Studies have shown that drought stress in sunflower
seedlings can lead to severe yield loss (Mwale et al., 2003; Rauf
and Ahmad Sadaqat, 2008).

The sunflower drought stress response behavior involves a
series of changes in morphological, physiological, and molecular
levels. The drought stress negatively influenced seed germination
and seedling emergence at the germination stage (Kaya et al.,
2006). Drought stress at the vegetative stage reduces plant
height (PH), leaf surface area (LSA), and biomass production
while causing pollen sterility at the reproductive stage (Turhan
and Baser, 2004; Hussain et al., 2008). From a physiological
perspective, drought affects the uptake of water and nutrition,
leads to a reduction of relative water content (RWC), and
the turgor of cells (Hussain et al., 2008, 2016; Ibrahim et al.,

2016). Plants respond to drought stress by reducing water
evaporation through stomatal closure. As a result, it also reduces
the photosynthetic rate (Flexas et al., 2004). The decreased
photosynthesis rate leads to a decrease in CO, fixation, which
affects the regeneration of the final acceptor of the electron
transport chain (NADP™). The leaked electrons flow to O, to
produce reactive oxygen species (ROS) (Flexas et al., 2004). ROS
cause oxidation of membrane lipids, resulting in decreased cell
membrane stability. The decrease in cell membrane permeability
results in the accumulation of the relative electrical conductivity
(REC) and malondialdehyde (MDA) (Gunes et al., 2008). From
the molecular level, plants involve a series of pathways for
signal perception, transduction, gene expression, and other
stress metabolites to accommodate drought. Drought-induced
genes can mainly be classified into two groups. The first
group constitutes genes whose products directly function in
tolerance to stress, such as LEA proteins, osmolytes, proline
(Pro), CAT, POD. Another group includes genes playing a role in
signal transduction as well as the regulation of gene expression
including various transcription factors (TF), protein kinases
(PK), and transcriptional regulators (TR) (Lata et al., 2015).

Some agronomic measures can mitigate the damage of
drought impact on plants, such as exogenous applications
of plant hormones, osmotic regulators, and mineral nutrients
(Salami and Saadat, 2013; Rabert et al., 2014). However, these
changes are not heritable, and need additional labor, capital,
and technology investment. Coping with drought through the
breeding approach is usually the most effective and economical
strategy. The genetic modification within the plant is heritable.
Once a gene is introduced into a breeding material, it will be a
permanent source of drought tolerance (Rauf, 2008). Drought
tolerance in plants is a complex quantitative trait involving
many micro-effective genes (Blum, 2011). Molecular-based plant
drought resistance breeding is a hot spot in recent years (Wang
and Qin, 2017). Previous studies on the molecular mechanism
of sunflower drought resistance were mostly based on linkage
analysis (Kiani et al., 2007; Poormohammad Kiani et al., 2009;
Haddadi et al., 2011). However, the linkage analysis population
was on two parents with significantly different phenotypes
and the recombinant inbred lines (RILs). Only genes in RILs
that show a significant difference between parental lines could
be detected.

Genome wide association study (GWAS) is an observational
study to detect associations between genetic variants and traits
in individuals (Togninalli et al., 2018). Compared to linkage
analysis, GWAS uses a natural population, which eliminates
the need to construct a population. Therefore, the time
consumption is greatly reduced. The use of natural populations
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allows GWAS to simultaneously detect many natural allelic
variations (Ma et al., 2018). In addition, the natural population
contains all the historical recombination information and thus
provide relatively higher detection accuracy than bi-parental
populations (Kofsky et al., 2020). GWAS has been widely used
in plant drought research, such as wheat (Triticum aestivum L.),
cotton (Gossypium herbaceum L.), rice (Oryza sativa L.), and
potato (Solanum tuberosum L.) (Ma et al., 2016; Mwadzingeni
et al., 2017; Hou et al, 2018; Tagliotti et al., 2021). RNA-
sequencing (RNA-Seq) is another attractive omics tool to identify
differentially expressed genes (DEGs) under different conditions.
Further analysis can provide insight into the changes in the DEGs
expression level, important biological processes, and pathways
(Zhang et al, 2017). Combining GWAS with RNA-seq can
decrease the higher false-positive rate (FDR) inherent in GWAS
analysis, and improve the accuracy of gene selection (Xie et al.,
2019; Wang et al., 2022). However, to our knowledge, there are
no relevant studies on sunflowers.

Molecular marker-based genotyping is an important step in
GWAS analysis. Most traditional molecular markers were based
on sequence length polymorphism. However, it could not be
used for large-scale genotyping due to low throughput (Sun
et al.,, 2013b). Whole gene sequencing technology is restricted
in its use for non-model organisms due to population size and
price (Muir et al., 2016). One strategy to reduce the sequencing
cost was to reduce representation libraries (RRL). Specific
length amplified fragment sequencing (SLAF) is one of the
representative techniques, which uses specific enzymes to digest
the genomes, and select a given size range of restriction fragments
based on personalized research purposes (Sun et al., 2013b).
This approach maintains the marker density while reducing the
volume of sequencing, lowering the cost.

In this study, we performed a GWAS analysis of 226 sunflower
varieties based on SLAF-seq. Then, a drought-tolerant accession
was selected for RNA-seq analysis. Several important candidate
genes were obtained using a combined analysis. Our research
objectives were to (1) investigate the phenotypic variations
among accessions under different water conditions; (2) develop
new drought-related SNPs and identify genetic variants; (3)
understand gene expression patterns under different drought
stress time points, and reveal important biological processes
and pathways; (4) obtain important genes associated with
drought tolerance.

MATERIALS AND METHODS
Plant Materials and Growth Condition

A total of 226 sunflower inbred lines were collected from different
countries (Australia, U.S.A., and France) and different provinces
in China (Inner Mongolia, Ningxia, Xinjiang, Liaoning, Jilin).
Seventy-three of them were provided by the Inner Mongolia
Academy of Agriculture and Animal Husbandry, and 153 were
kept in our laboratory. The experiment was conducted in the
summer of 2019 at the Inner Mongolia Agricultural University,
China (111.71, 40.82, 1,000 m above sea level). Seeds with fully
mature, healthy, and uniform sizes were sorted for drought-
stress experiments. After sterilization with 0.2% (w/v) mercuric

chloride (HgCl,), all seeds were rinsed several times with distilled
water and soaked in deionized water for 24 h. Then the seeds were
sown in plastic flowerpots (25 x 19 x 16 cm) filled with 3 kg soil
(sandy soil and organic humus in a ratio of 2:1). Each pot was
planted with 10 seeds and each accession had 6 pots. To avoid
interference from natural rainfall and other factors, all pots were
placed in a greenhouse (light/dark cycles: 14 h/10 h; 28/22°C; 45
=+ 5% relative humidity) without water and nutritional limitation.

Experimental Design and Drought

Treatments

When seedlings grew to the stage of three leaves, six pots of
each accession were randomly and equally divided into two
groups. Each group contained three pots as three biological
replicates. The different watering regime was imposed on these
two groups. One group continued to irrigate with sufficient water,
and maintain the soil moisture content of 30 £ 2% as a control
group (WW). Another group kept the soil moisture content to
10 =+ 2% as a treatment group (DS). The soil moisture content
of each pot was determined at 9 a.m. every day using the weight
method described by Soni and Abdin (2017) and supplemented
with water according to the target soil moisture content.

Phenotypic Evaluation and Statistical

Analysis

The experiment lasted for 15 days, then 5 plants were randomly
selected from each pot for phenotypic evaluation. Plant height
(PH) was measured directly with a ruler. Leaf surface area
(LSA) was calculated by the leaf area co-efficient method (Alza
and Fernandez-Martinez, 1997). Root shoot ratio (RSR) was
measured by the gravimetric method. Total root length (RL),
root volume (RV), and root surface area (RSA) were measured
with an LA-S root scanner (Wanshen Testing Technology Co.,
Ltd., Hangzhou, China). The relative water content (RWC) was
detected using the saturate water method by Galmes et al.
(2011). The chlorophyll concentration was assessed using a
SPAD chlorophyll meter (TYS-A, TOP Instrument Co., Ltd.,
Hangzhou, China).

Data were analyzed using SPSS software (SPSS for Windows,
V20.0.0, SPSS, Chicago, Illinois). Normality distribution was
preliminarily assessed by a one-sample Kolmogorov-Smirnov’s
goodness-to-fit test (K-S test). For statistical differences between
WW and DS growth condition, the Student t-test (normal
distribution) and Wilcoxon signed-rank test (non-normal
distribution) was used. Spearman non-parametric correlations
were used to determine the correlation coeflicient and statistical
significance. Corrplot and Pheatmap R package were used to
visualize the correlation.

Genomic DNA Extraction and Restriction

Enzyme Selection

Total genomic DNA was extracted from 100mg of fresh
leaves by the CTAB method with a plant genomic DNA
kit DP305 (Tiangen Biotech, China). To ensure it met the
requirements for SLAF-seq (concentration > 20 ng/pl; volume >
30/u1), the concentration and quality of DNA were determined
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using a Nanodrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA).

The SLAF-seq technique requires breaking the genome
into small fragments using restriction enzymes. Then selecting
restriction fragments of a specific length range (defined as SLAF-
seq) for sequencing. To evaluate the number of target fragments
produced via different combinations of restriction enzymes, a in
silicon pre-experiment for enzyme selection was conducted. The
criteria for enzyme selection were as follows: (1) the proportion
of restriction fragments located in repetitive sequences is as low
as possible; (2) The restriction fragments are distributed evenly
on the genome as far as possible; (3) Consistency between the
length of restriction fragments and the specific experimental
system (Davey et al, 2013); (4) The number of restriction
fragments with lengths 364-464 pb (SLAF tags in sunflower)
should exceed 300,000.

SLAF Library Construction and High

Throughput Sequencing

The SLAF library construction and high-throughput sequencing
were performed as described by Sun et al. (2013b). After a
series of polymerase chain reactions (PCR), adapter ligation
reactions, and agarose gel purification, the SLAF-tags were
isolated and subjected to PCR amplification following the guide
of Illumine sample preparation. The paired-end sequencing
was performed on an Illumina HiSeq 2500 platform (Illumina
Inc., San Diego, CA, USA) at Beijing Biomarker Technologies
Corporation (Beijing, China). Sequencing quality was estimated
by measuring the guanine-cytosine (GC) content and Q30 ratio.
A Q value of 30 represents a 0.1% error probability and 99.9%
confidence level. Reads with >90% identity were clustered into
a single SLAF-tag using BLAT software, and SLAF-tags with a
sequence that varied across samples were defined as polymorphic
SLAF tags (Zhang et al, 2018). To test the accuracy of the
restriction enzyme digestion protocol, we used the genome of
Oryza sativa ssp. japonica as a control (374.30 Mb, http://rapdb.
dna.affrc.go.jp/).

SNP Genotyping and Linkage
Disequilibrium Analysis

All reads were processed for quality control and filtered using
Seqtk (https://github.com/lh3/seqtk) software. High-quality
paired-end reads were aligned to the reference genome (https:
//ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/4232/1
00/GCF_002127325.1_HanXRQr1.0/) using Burrows-Wheeler
Aligner (BWA) software (Li and Durbin, 2009). SNP calling
was conducted using the HaplotypeCaller function of Genome
Analysis Toolkit (GATK) (McKenna et al., 2010). The VCF files
obtained by GATK were converted to PLINK files using VCFtools
(v0.1.16) (Danecek et al., 2011). SNPs with an integrity ratio
of <0.8 and MAF <0.05 were filtered out via PLINK software
(v1.90b6.21) (Purcell et al, 2007). Linkage disequilibrium
(LD) was estimated by measuring the squared allele frequency
correlations (2) (VanLiere and Rosenberg, 2008) between pairs
of SNPs via PLINK software, with r* = 1 indicating complete LD,
and r? = 0 indicating absent LD. LD decay extent was defined as

the physical genomic distance at which the > decreased to half
of its maximum value. PopLDdecay software (Zhang et al., 2019)
was used to visualize the mean 2 of all chromosomes within the
100 kb region.

Population Structure Analysis

Based on the filtered SNPs, population analysis, phylogeny
analysis, and principal component analysis (PCA) were
performed in turns. Admixture software v1.3.0 (Alexander
et al., 2009) was used to analyze the population structure. The
number of underlying population groups K was predefined as
1-13 using the maximum likelihood estimation approach. The
cross-validation errors (CV) for each K value were calculated.
The K value with the lowest CV error was selected as the optimal
number of populations. The Pophelper R package was used
to make multiline plots (Francis, 2017). The genetic distances
were calculated using VCF2Dis-1.45 (https://github.com/BGI-
shenzhen/VCF2Dis). The FastME (v 2.0) software (Lefort et al.,
2015) was used to convert the mat file obtained in the previous
step into a distance matrix file (*nwk). The phylogenetic trees
were constructed using the neighbor-joining method in the iTOL
server (https://itol.embl.de/) (Letunic and Bork, 2021). PCA was
performed using PLINK software by the —pca function. The
first three components were used to plot the PCA via the rgl (v.
0.107.14) R package (Adler et al., 2003).

Genomic-Wide Association Study

The GWAS analysis was conducted using three methods: mixed
linear model (MLM), Fixed and random model Circulating
Probability Unificatin (FarmCPU), and Bayesian-information
and Linkage-disequilibrium Iteratively Nested Keyway (BLINK)
in GAPIT R package (Lipka et al., 2012). The phenotypic data
of each accession was represented using two indices: stress
tolerance index (STI) (Fernandez, 1992), and stress susceptibility
index (SSI) (Fischer and Maurer, 1978). These were calculated
as follows:

Y X Yy
ST =

Yv

1= i

Ypi

sSI = —2

1 — i

Ypi

where Yy = performance of a genotype under stress; Y, =

performance of the same genotype under control conditions;
Y, = mean Yj; of all genotypes, YPi = mean Y, of all genotypes.

The first three principal components were used as covariates.
The GAPIT uses genotype data to automatically generate kinship
matrix and calculate population structure according to the needs
of different methods. For the identification of true marker-trait
association, the significant p-value was set as p < 1.062 x 107° (p
= 0.1/n; n = total markers used, which is roughly a Bonferroni
correction, corresponding to —logio(p) = 5.97, blue line in the
Manbhattan plots) (Zhou et al., 2017). The Manhattan plot was
used to show the correlation between SNP and phenotypic traits.
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The Quantile-quantile (Q-Q) plot was used to display the level
of difference between observed and predicted values. Both the
Manhattan plots and Q-Q plots were constructed using CMplot
R package (Yin, 2018).

GWAS Candidate Gene Search and

Combined Analysis

The region of GWAS candidate genes was defined by
the average LD decay distance. Genes located within
20kb flanking regions on either side of the significantly
associated SNPs considered as candidate genes.
Function annotations were conducted using the Eggnog
(Huerta-Cepas et al, 2019) and Pfam (Bateman et al,
2004) software. The blast software was used to search for
Arabidopsis thaliana genes homologous to candidate genes in
the TAIR database (https://www.arabidopsis.org). Transcription
factors (TF), protein kinase (PK), and transcriptional
regulators  (TR) identified wusing iTAK software
(Zheng et al., 2016).

were

were

Material Screening and RNA-Sequencing
To reveal important biological processes and significant
pathways involved in sunflower drought-response, and narrow
down the candidate genes, RNA-seq was conducted. We
screened the 226 GWAS accessions based on phenotypic
evaluation results. A comprehensive drought tolerance
coefficient value (D-value) was used to evaluate the drought
tolerance of all accessions (Li et al., 2015). The D-value
integrated the results of multi-traits measured under two
watering regimes and can represent the comprehensive
drought tolerance of an accession. Finally, an inbred line
with the highest D-value was selected and named “K58”
(Zilong et al., 2021).

The drought stress experiment was the same as GWAS.
Young leaves were sampled at 0, 7, and 14 days after drought
treatment. Total mRNA was isolated using the RNA prep
pure plant kit DP411 (Tiangen Biotech, China) according to
the instruction manual. A total of 1 pg RNA per sample
was used for cDNA library construction. Sequencing libraries
were generated using NEBNext UltraTM RNA Library Prep
Kit for Illumina (NEB, USA) following the manufacturer’s
recommendations. The quality of libraries was assessed through
the Agilent Bioanalyzer 2100 system. After the quality test,
all samples were sequenced in the Illumina Novaseq 6000
system, and 150-bp paired-end sequences were obtained
(raw reads). Clean reads were obtained by eliminating reads
containing ploy-N, reads containing adapter and low-quality
reads from raw reads. The Q30, GC content of clean reads were
calculated simultaneously.

Analysis of Differentially Expressed Genes

Differentially expressed genes analysis was conducted using
the HISAT2-Stringtie(merge)-DESeq2 pipeline. High-quality
clean reads were aligned to the reference genome using the
Hisat2 software (version 2.2.1) (Kim et al., 2015) with default
parameters. In the gene count step, we used a “Transcript
merge mode” via StringTie software (Pertea et al., 2015). Briefly,

the alignment files (*.BAM) of each sample was converted
to GTF file using StringTie software. Then all the GTF files
were merged into one single file containing a non-redundant
set of transcripts. This file was then used as a reference
to recalculate the count for each gene. With this model,
novel genes/transcripts can be identified that differ from the
reference genome.

A python script [prepDE.py (https://ccb.jhu.edu/software/
stringtie/dl/prepDE.py)] was used to generate a gene count
matrix from the GTF file of each sample. Normalization and
differential expression analysis were performed using DESeq2
R packages (Love et al., 2014). By default, DESeq2 computes
a Benjamini-Hochberg adjusted p-value (Pug;) to control the
false discovery rate (FDR) (Anders and Huber, 2012). The “Fold
Changes” of a gene is the FPKM ratio at day 7 (or 14) to that at
day 0. For comparison purposes, we take the logarithm of the fold
change and calculate the absolute value (|logz(Fold Changes)|).
The |log2(Fold Changes) | of a gene equal to 1 means that the
expression level of this gene has doubled or halved. Genes with
Pugi < 0. 01 and [logy(Fold Changes) | > 1 was considered
as DEG.

Enrichment Analyses of Gene Ontology

and KEGG Pathways

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed to reveal the
biological functions and pathways of DEGs. The sequence file
of each gene was input into Eggnog software (version 2.0.1)
to obtain gene annotation (Huerta-Cepas et al, 2019). GO
and KEGG analysis was conducted using the ClusterProfiler
(version 4.0.0) R package (Yu et al, 2012). Only GO-terms
or KEGG pathways with p-value < 0.05 were screened
for subsequent analysis. The REVIGO program (http://
revigo.irb.hr/) was used to remove redundant GO-terms
(Supek et al., 2011).

RT-qPCR Validation

To validate RNA-seq results, reverse transcription quantitative
PCR (RT-qPCR) was conducted on 6 randomly selected DEGs
with three technical replicates. Experimental samples are the
same as for RNA-seq. Reverse transcription was conducted using
Biomarker Script II 1st Strand cDNA Synthesis Kit (Biomarker
Technologies, Beijing, China) with Oligo d(T),3 VN as a
primer, and qPCR reactions were performed with Biomarker
2X SYBR Green Fast qPCR Mix (Biomarker Technologies,
Beijing, China) on the FTC-3000 qPCR system (Funglyn Biotech
Inc., Toronto, ON, Canada). Gene expression levels were
calculated using the method of 274ACt according to Livak
and Schmittgen (Livak and Schmittgen, 2001), and standard
deviation was calculated among three biological replicates.
The 18S rRNA gene was used as the endogenous control
(Ebrahimi Khaksefidi et al., 2015).

Combined Analysis of GWAS and RNA-Seq
To reduce the number of candidate genes, we
conducted a combined analysis. The two gene sets
obtained by GWAS and RNA-seq were subjected to the
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intersection operation. Genes within the intersection were
considered to be important genes and were investigated
in depth.

RESULTS

Phenotypic Variation Among Accessions
Drought stress led to different degrees of changes in all
phenotypic traits (Figure 1; Table 1). Drought stress inhibited
plant height (PH). Mean PH was 31.37 cm (ranged from 15.07
to 56.10 cm) at WW condition, whereas it was 22.23 cm (ranged
from 6.4 to 38.55cm) under DS conditions. Over 90% of the
accessions (208/226) had a decrease in PH under drought stress.

Mean leaf surface area (LSA) was 46.34 cm® (ranged from
4.62 to 143.62 cm?) for the WW condition compared with 24.21
cm’ (ranged from 3.73 to 65.36 cm?) for the DS condition. Over
88% (200/226) of the accessions had a decrease in LSA under
drought stress.

The root-shoot ratio (RSR) increased slightly under the DS
condition compared with in WW condition. Mean RSR was 0.16
(ranged from 0.05 to 0.79) under DS condition, whereas it was
0.12 (ranged from 0.02 to 0.62) under WW condition, with 71.7%
(162/226) of the accessions showing an increased RSR under DS
conditions. Notably, drought stress significantly increased three
root-related traits, the average root length (RL), root volume
(RV), and root surface area (RSA) increased by 44.1, 131, and
76.4% under DS condition compared with plants under WW
condition. Among the 226 accessions, 77.4% (175/226), 83.2%
(188/226), 83.2% (188/226) of them showed an increased RL, RV,
and RSA under drought conditions, respectively. Drought stress
has relatively little effect on the relative water content (RWC) of
sunflower leaves, and the mean value was reduced from 0.74%
under WW condition to 0.69% under the DS condition, with
a reduction rate of 7.3%. Among 226 sunflower plants, 83.6%
(189/226) had lower RWC under the DS condition. Similarly,
the SPAD value was also decreased slightly in DS compared to
WW, with a reduction rate of 5.7%. Mean values were 31.08
(ranged from 22.1 to 39.77) and 29.31 (ranged from 18.6 to 38.67)
under WW and DS, respectively, and 72.6% (164/226) accessions
showed a decreased SPAD value under DS condition.

The coefficient of variation (CV) was used to describe the
variance within accessions. In this study, the CV of some traits
was very high, the average CV among all traits were 40.36%,
varying from 11.94 to 71.86%. It shows that our experiment
materials have strong heterogeneity. RSR had the highest CV
values (61.42-65.49%) while the SPAD value showed the lowest
CV values (11.94-14.09%) (Supplementary Table 1).

The correlation between the same indicator under different
conditions is shown in Supplementary Figure 1. The correlation
coefficients of LSA and SPAD were higher than 0.6 in the
WW vs. DS, while the correlation coefficients of RSA, RL, and
RSR were all lower than 0.1. The correlation between different
indicators under the same condition is shown in Figure 2.
The three root-related indexes (RL, RV, and RSA) showed
positive correlation under both WW and DS growth conditions.
Under DS conditions, RV was positively correlated with RSA
(spearman Cor. = 0.776). whereas negatively correlated with

PH (spearman Cor. = —0.59). Under WW conditions, LSA is
positively correlated with SPAD with a spearman correlation
coefficient of 0.61.

SLAF-Sequencing, Genotyping, and
Linkage Disequilibrium

Enzyme digestion efficiency is an important indicator of SLAF-
seq quality. According to the results of the pre-experiment,
Hae IIT was selected to digest the genomic DNA. The enzyme
digestion efficiency of control genome Oryza sativa ssp. japonica
was 94.12%, indicating the enzyme digestion reaction was
normal. A total of 934.08 MB paired-end reads were obtained,
with an average Q30 of 91.97% (89.04-93.44%) and a GC
content of 43.67% (42.13-45.56%) (Supplementary Table 2).
The mapping rate and the proper mapped rate were 98.20 and
90.96%, respectively (Supplementary Table 3).

A total of 565,668 SLAF tags were obtained, 243,291
of them were polymorphic SLAF tags. These SLAF-tags
were evenly distributed on 17 chromosomes (Figure 3;
Supplementary Table 4). SLAF tags on chromosome 13
had the highest polymorphic rate (48.25%), while chromosome
12 had the lowest polymorphic rate (38.85%). A total of 2,124,143
population SNP markers were developed via GATK software
(Supplementary Table 5; Figure4). After quality control,
94,162 high-quality SNPs were obtained for subsequent analysis
(Supplementary Table 6; Figure 5). Chromosome 10 harbored
the highest proportion of SNPs (8.68%, 8,173 of 94,162), while
the shortest chromosome 6 contained the lowest proportion
of SNPs (3.08%, 2,898 of 94,162). There were 31.37 SNP per
1MB on average across 17 chromosomes. Chromosome 10
had the highest SNPs/Mb ratio (47.68 SNPs per Mb), while
chromosome 6 had the lowest SNPs/Mb ratio (19.56 SNPs per
Mb) (Supplementary Table 6). LD was estimated as the r? value,
r? ranged from 0.135 on chromosome 6 to 0.218 on chromosome
10, with an average of 0.174, revealing differences in the level of
LD among chromosomes (Supplementary Table 7). The average
distance of LD decay was about 20 kb (Figure 6).

Genetic Diversity and Population Structure
Divergence of the 226 accessions during evolution was the major
factor leading to high rates of false positive errors in GWAS
analysis (Yu and Buckler, 2006). The admixture software was
used to analyze the population structure, and the CV for K
= 1-13 was examined. The results showed that when K =
11, the CV dropped to the lowest value (0.659), suggesting
the entire population most likely originated from 11 ancestors
(Figures 7, 8A). The phylogenetic tree has divided the accessions
into 7 main clusters with identical tree topologies (Figure 8B).
PCA analysis revealed that all the 11 principal components had
eigenvalues of over 1, and the first 8 principal components can
explain 85.73% of the total variance. The first three principal
components PC1 (with variance explain 15.71%), PC2 (with
variance explain 13.55%), and PC3 (with variance explain
11.77%) were displayed in Figure 8C. All these results showed
that our experimental materials are highly heterogeneous and is
ideal for GWAS analysis.
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FIGURE 1 | Vioplot visualizing the 8 physiological traits of sunflower in response to different water treatments. Y-axis represent the density distribution of all 226
samples. WW, well-water growth condition; DS, drought-stress growth condition.

Genome-Wide Association Analysis the significance threshold of p < 1.062 x 107°. Among them,
The GWAS was performed on 8 traits using 3 methods (MLM, 59 were obtained by STI, and 22 were obtained by SSI, and
FarmCPU, BLINK). A total of 80 SNPs were detected under  there was only one common SNP between the two indicators
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TABLE 1 | Descriptive statistics values for traits of 226 sunflowers under drought stress.

Traits Trt. Min. Max. Mean SD. CV. (%) Skewness Kurtosis
Plant height Ww 15.07 56.10 31.37 5.80 18.48 0.50 1.56
DS 6.40 38.55 22.23 6.16 27.72 0.25 —0.65
Leaf surface area Ww 4.62 143.62 46.34 33.30 71.85 0.91 0.30
DS 3.73 65.36 24.21 14.03 57.93 0.71 —0.31
Root shoot ratio WW 0.02 0.62 0.12 0.08 61.42 3.24 14.85
DS 0.05 0.79 0.16 0.11 65.49 3.21 13.05
Root length Ww 32.56 314.68 89.47 40.83 45.63 1.63 5.1
DS 49.66 279.06 128.90 46.76 36.28 0.96 0.86
Root volume Ww 0.04 0.56 0.22 0.11 46.99 1.21 1.53
DS 0.05 1.69 0.52 0.35 67.17 1.01 0.88
Root surface area WW 3.33 41.79 15.50 7.04 45.43 1.00 1.08
DS 4.22 73.59 27.34 13.19 48.23 0.74 0.88
Relative water content WW 0.23 1.43 0.74 0.1 14.59 0.84 11.26
DS 0.49 0.96 0.69 0.09 12.54 0.10 0.19
SPAD Ww 22.10 39.77 31.08 4.38 14.09 0.19 -0.97
DS 18.60 38.67 29.31 3.50 11.93 0.18 0.42

Trt., Treatment; Min., Minimum; Max., Maximum; SD, Standard deviation; CV, Coefficient of variance; CK, Well water condition; DS, Drought stress condition.
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FIGURE 2 | Spearman’s correlation analysis between the 8 drought-related traits under two water condition. Left: Under WW growth condition. Right: Under DS
growth condition. WW, well-water growth condition; DS, drought-stress growth condition; PH, plant height; LSA, leaf surface area; RSR, Root shoot ratio; RL, Root
length; RV, Root volume; RSA, Root surface area; RWC, Relative water content; SPAD, SPAD value. * and **Significant at the 0.05 and 0.01 probability levels between
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(Supplementary Figures 2, 3; Supplementary Table 8). A total
of 19, 44, and 33 SNPs were discovered by MLM, FarmCPU,
and BLINK methods, respectively. For 8 phenotypic traits, LSA
detected the most associated SNPs (27), followed by RWC
detected 13, SPAD, RSR, and PH detected 12, 11, and 11,
respectively. RL, RV, and RSA were detected 2, 4, and 3 SNPs,
respectively. A total of 118 genes were found within the 20kb
of 80 significant SNPs, 85 of them were protein-coding genes
(Supplementary Table 9).

RNA-Sequencing and Expression Analysis

A total of 70 Gb clean data were obtained after filtering
and quality control. The Q30 of each library ranged from
93.57 to 94.97%, and the GC content ranged from 44.86
to 45.68% (Supplementary Table 10). A total of 18,922
DEGs were obtained (Supplementary Table 11), 6,698 of
them were newly discovered. In general, there were more
DEGs under 14 days of drought stress compared with
the 7 days, and down-regulated DEGs were more than
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Enrichment Analysis
GO Analysis

up-regulated DEGs (Figure9). From day-7 to day-14, the
up-regulated DEGs were increasing from 3,848 to 7,174, whereas

the down-regulated DEGs were increasing from 5,201 to
8,521, respectively.

The up-regulated genes were enriched in 46, 90 GO-terms at
7, 14 days. On day-7, the most significant GO-terms were
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cellular amino acid catabolic process (GO:0009063), branched- RT-qPCR Validation

chain amino acid catabolic process (GO:0009083), and seed  To validate the accuracy of RNA-seq, RT-qPCR was performed.
maturation (GO:0010431). On day-14, the most significant GO-  Six genes were randomly selected from all DEGs. The
terms were leaf senescence (GO:0010150), aging (GO:0007568),  primer sequence was shown in Supplementary Table 12.
and carboxylic acid catabolic process (GO:0046395). For down-  Correlation analysis showed that RNA-seq was closely related
regulated genes, there were 127, and 199 GO-terms enriched  to RT-qPCR results. The correlation coefficient (R?) was
at 7, 14 days. On day-7, the most significant GO-terms  0.8167, endorsing our RNA-seq data were reliable (Figure 10;
were cellular polysaccharide metabolic process (GO:0044264),  Supplementary Figure 6).

cell wall biogenesis (GO:0042546), and photosynthesis, light

reaction (GO:0019684); At day-14, the most significant GO-

terms were photosynthesis (GO:0015979), photosynthesis, light ~ Candidate Genes Identification

reaction (GO:0019684), and plastid organization (GO:0009657)

By integrating the results of GWAS and RNA-seq analysis, a total
(Supplementary Figure 4).

of 18 common genes were obtained, 14 of them were protein-
coding genes (Table 2; Figure 11). These genes are distributed on

. chromosomes 4, 5, 8, 9, 10, 11, 12, 13, 16, and 17. Two genes are
KEGG Analysis associated with both LSA and PH. One gene is associated with

Up-regulated genes were enriched in 13 and 48 significant KEGG both LSA and SPAD. Their details are as follows.

pathways at 7 and 14 days. On day-7, the most significant

pathways were Valine, leucine and isoleucine degradation, MAPK

signaling pathway—plant, and FoxO signaling pathway; On day- ~ Candidate Genes Associated With Plant Height

14, the most significant pathways were valine, leucine, and  There were 2 candidate genes that were screened using combined
isoleucine degradation, MAPK signaling pathway—plant, and  analysis. Both of them were located on chromosome 13.
longevity regulating pathway. For down-regulated genes, there =~ The LOC110899235 gene encoding “inosine-uridine preferred
were 36, 48 significant KEGG pathways enriched at 7, 14 days.  nuclear hydrate” is homologous to the AT5G18860.2 gene in
On day-7 and day-14, the most significant KEGG pathways  Arabidopsis thaliana. Another LOC110899238 gene encoding
were both related to photosynthesis, such as photosynthesis ~ “ABC transporter ¢ family member 3-like” is homologous to the
proteins (BR:ko00194), photosynthesis-antenna proteins, and  AT3G13080.1 gene in Arabidopsis thaliana. Both two genes were
photosynthesis (Supplementary Figure 5). down-regulated with the extension of drought stress time in K58.
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Candidate Genes Associated With Leaf Surface Area
There were 8 common candidate genes associated with LSA,
2 of which were also associated with PH. The function of the
gene LOC10936334 located on chromosome 4 was annotated
as “Jacalin-like lectin domain”, which is homologous to the
AT1G73040.1 gene in Arabidopsis thaliana, and its expression
level continues to decrease under drought stress in K58. Gene
LOC110941963 located on chromosome 5 was annotated as
“microtubule-associated protein RP EB family member”, which

was homologous to the AT3G47690.1 gene in Arabidopsis
thaliana. This gene was down-regulated after 14 days of drought
stress in K58. At 19.52 kb upstream of an SNP (S10_123892851)
on chromosome 10, a gene (LOC110885273) encoding “Serine
threonine-protein kinase” was identified. It is worth noting that
the gene was also associated with SPAD. This gene belongs to the
protein kinase family of RLK-Pelle_SD-2b, and is homologous
to the Arabidopsis AT4G32300.1 gene. RNA-seq showed it was
down-regulated with the extension of drought stress in K58. Gene
LOC110894816 encoding “Equilibrative nucleotide transporter”
were down-regulated at 7, 14 days in K58, which is homologous
to AT1G70330.1 in Arabidopsis thaliana. Gene LOC110920644
belongs to the PLATZ transcription factor family. It was up-
regulated at 7 days and down-regulated at 14 days of drought
stress in K58. Gene LOCI110891369 encoding “receptor-like
protein kinase” was sharply up-regulated at 14 days. This protein
kinase belongs to the RLK-Pelle_SD-2b RLK-Pelle_CrRLK1L-1
protein kinase family.

Candidate Genes Associated With Root-Shoot Ratio
There were 2 candidate genes obtained by combined analysis.
One gene LOCI110937937 encoding “Component of the
peroxisomal and mitochondrial division machineries” was
up-regulated at 14 days post drought stress, another gene
LOC110915715 encoding “Protein of unknown function
(DUF1666)” were continuously down-regulated with the
drought stress.

Candidate Genes Associated With Three Root
Related Traits
Notably, there are relatively fewer SNPs related to three root
traits (RL, RV, and RSA). No genes were found within the 20 kb
region of RL associated SNPs. The combined analysis identified
2 genes associated with RV and 1 gene associated with RSA.
For RV, gene LOC110877324 on chromosome 9 was annotated
as “Belongs to the UDP-glycosyl transferase family”, which was
down-regulated in K58 after 14 days of drought stress. Another
gene (LOC110917707) located on chromosome 16 was annotated
as “domain presence in VPS-27, Hrs and Stam”, which was up-
regulated in K58 after 14 days of drought stress. These two genes
are homologous to the AT2G18570.1 gene and AT2G38410.1
gene in Arabidopsis thaliana, respectively.

For RSA, gene LOC110872899 was located on chromosome
8, and annotated as “Inactive leucine-rich repeat receptor-like
serine threonine-protein kinase”. This gene is homologous to the
Arabidopsis AT1G10850.1 gene. It was slightly up-regulated in
K58 at 7 days and then sharply down-regulated at 14 days of
drought stress.

Candidate Genes Associated With Relative Water
Content

LOC110941862 is the unique gene screened by the combined
analysis. This gene encodes the “Topless-related protein”, which
is homologous to the AT1G15750.3 gene in Arabidopsis thaliana.
RNA-seq results showed that this gene was continuously down-
regulated in K58 under drought stress.
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FIGURE 8 | Population structure analysis phylogenetic tree construction, and principal component analysis (PCA) of the 226 sunflower accessions. (A) Population
structure of sunflower accessions estimated by ADMIXTURE, each row represents a given number of clusters (K, K = 2-13), each vertical column represents one
individual and each colored segment in each column represents the percentage of the individual in the population. (B) The unrooted neighbor-joining three a of 226
sunflower accessions. Each branch indicates a sample, and the length of the branches represents the genetic distance, (C) PCA scatter plots shows the distribution
of 226 sunflower accessions defined by the eigenvectors of the first three principal components (PC). The three axes represent PC1, PC2, and PC3 respectively. Each

DISCUSSION

Global climate change threatens crop production worldwide.
Plants adopt diverse strategies to combat drought stress such
as reducing the stomatal conductance, decreased photosynthetic
rate, accumulation of different osmoprotectants, activation of
stress-responsive genes and transcription factors, etc. (Farooq
et al, 2009; Kaur and Asthir, 2017). Drought resistance is a
complex quantitative trait. One difficulty in drought-tolerant
genetic breeding is the unequivocal evaluation of plant response
to soil-water deficits (Pereyra-Irujo et al.,, 2007). Based on the
previous research, we evaluated 8 phenotypic traits among 226
accessions under WW and DS conditions. Compared to the WW
condition, the average PH, LSA, RWC, and SPAD value were
decreased, while RSR and three root related traits (RL, RV, RSA)
were increased under the DS condition.

It has long been known that drought stress at the vegetative
stage impedes phenotypic traits like PH, LSA, whereas an
increase in RL at the expense of above-ground dry matter occurs
resulting in higher RSR (Petcu et al, 2001; Hussain et al,
2010; Javaid et al., 2015). In our results, the change trends of
mean PH, RL, RSR, and LSA were consistent with previous
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FIGURE 9 | Number of differentially expressed genes (DEGs) in different
drought stress time.

studies. However, the mean RV increased under drought, which
was not consistent with a previous study. Geetha et al. (2012)
found that the RV decreased by 40.2% under drought stress
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DEGs.

among 29 sunflower varieties, while we found 83% of accessions
have an increase in RV. This may be due to differences in the
genotypes of the study materials. Different genotypes of plants
have different adaptability to drought stress (Petcu et al., 2001).
Even in the most consistent trend of variation in PH (92%
decreased under drought stress), there were still 16 accessions
increased under drought stress. These specific materials may
include important drought-tolerance genes and will be good
sources for our drought tolerance molecular breeding. In some
previous studies, the relationship between SPAD and chlorophyll
content per unit leaf area is fitted as linear regression. SPAD
value is often used to represent chlorophyll content (Costa et al.,
2001; Martinez and Guiamet, 2004). Our results show that under
WW growth conditions, SPAD value is positively correlated with
LSA. It demonstrates that a larger LSA has more chlorophyll,
which increases the photosynthetic rate (Espina et al., 2018).
The correlation coefficients of LSA and SPAD in WW vs. DS
conditions were higher than 0.6, indicating that drought affects
these two traits more by environment than by genotype. The
correlation coefficients of RSA, RL and RL were very low,
indicating that they were more influenced by genotype.

Studies have shown that the genetic relatedness of the
mapping population can increase the false positive risk of
GWAS results (Ali et al,, 2020). A population with enough
genotype and trait diversity is considered to be the expected
GWAS population (Flint-Garcia et al., 2005). In this study, the
population panel consisting of 226 accessions were collected
from different ecological regions. Three population structure
analysis methods (admixture, phylogenetic, and PCA) were
conducted. Results showed that 226 sunflower materials had large
genetic differences and were an ideal GWAS population. Linkage
disequilibrium (LD) is the basis of GWAS (Ali et al., 2020). When
LD declines rapidly with distance, LD mapping is potentially
very precise (Gaut and Long, 2003). Since our materials have
high genetic variability, the LD-decay distance is about 20kb.
Overall patterns of LD decay show chromosome specificity.
Chr10 showed the highest LD value, followed by Chr7, Chr5,

Chr13, and Chr17. This result is consistent with a previous study
conducted by Filippi et al. (2020). They have reported different
patterns of LD across chromosomes, with Chr10, Chr17, Chr5,
and Chr2 showing the highest LD. The extended LD in Chr10
and Chr5 were also reported by other researchers (Cadic et al.,
2013; Mandel et al., 2013). Owens et al. showed that the extended
LD on Chr10 could be the result of the wild introgression in the
fertility restoring male lines (Owens et al., 2019).

GWAS methods have evolved over years. Several new methods
are being developed to improve the statistical power and
reduce the computational time. FarmCPU uses a set of markers
associated with a casual gene as a co-factor instead of kinship
to avoid overfitting and eliminate confounding between kinship
and testing markers iteratively (Liu et al., 2016). More recently,
along with improvements in statistical power and reduction
in computing time compared to FarmCPU, the new method
called BLINK is set to eliminate FarmCPU requirement that
quantitative trait nucleotides (QTNs) are evenly distributed in
the genome (Huang et al., 2019). In the present study, we used
3 methods simultaneously to conduct GWAS. The FarmCPU
method detected 44 SNPs, the BLINK method detected 33
SNPs, and the MLM method detected the lowest of 19 SNPs,
respectively. There were 12 SNPs found simultaneously by
FarmCPU and BLINK method, and only 3 common SNPs were
found by 3 methods. Most SNPs were only found in one method.
Therefore, it may be prudent to use multiple methods to conduct
a GWAS survey (Nida et al,, 2021).

STI and SSI are two commonly used evaluation indexes in
the study of plant abiotic stress. According to the research
of Mehdi GHAFFARI, STI is more efficient for identifying
drought-resistant lines, and SSI is more efficient for identifying
drought-sensitive lines (Ghaffari et al., 2012). Applying both
indicators simultaneously could provide a complete and accurate
assessment of drought tolerance. Strangely, the calculation
methods of STT in different articles are inconsistent (Sukumaran
et al., 2018; Khanzada et al., 2020; Chaurasia et al., 2021). In
the present study, we carefully chose a scientific STI calculation
method for GWAS analysis. A total of 80 significant SNP markers
associated with 8 phenotypic traits were detected, 22 of them were
detected using SSI, and 59 of them were detected using STI, only
one common SNP was detected by both of the two indexes.

To further understand the biological processes, pathways, and
gene expression patterns in sunflowers under drought stress, we
conducted an RNA-seq analysis. Based on the phenotypic traits, a
drought-tolerant plant was selected from the GWAS population.
We sampled the leaves at 0, 7, and 14 days after drought stress. A
total of 18,922 differentially expressed genes were obtained.

There was a noticeable consistency between the results
of GO and KEGG analysis. For example, up-regulated genes
were enriched in GO-terms such as cellular amino acid
catabolic process (GO:0009063), branched-chain amino acid
catabolic process (GO:0009083), while KEGG analysis showed
“Valine, leucine and isoleucine degradation” was the most
significant pathway. Down-regulated genes were enriched in
photosynthesis (GO:0015979), photosynthesis, light reaction
(GO:0019684) according to GO analysis, while KEGG analysis
showed down-regulated genes enriched in pathways such as
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TABLE 2 | Detail information of 14 genes obtained by combine-analysis of GWAS and RNA-seq.

Traits Gene name Chromosome Gene_start Gene_end Description iTak Families
(PH/LSA)-STI LOC110899235 13 138759411 138769673 Inosine-uridine preferring
nucleoside hydrolase
LOC110899238 13 138795923 138801286 ABC transporter C family
member 3-like
(LSA/SPAD)- LOC110885273 10 123870286 123873341 Serine threonine-protein kinase  PK RLK-Pelle_SD-2b
(SSI/STI)
LSA-SSI LOC110894816 12 55570908 55573165 Equilibrative nucleotide
transporter
LOC110936334 4 60470023 60472767 Jacalin-like lectin domain
LOC110941963 5 200316650 200319863 Microtubule-associated protein
RP EB family member
LOC110891369 11 160106964 160111888 Receptor-like protein kinase PK RLK-
Pelle_CrRLK1L-1
LOC110920644 17 8881157 8883452 PLATZ transcription factor TF PLATZ
RSR-SSI LOC110937937 4 169924932 169927583 Component of the peroxisomal
and mitochondrial division
machineries. Plays a role in
promoting the fission of
mitochondria and peroxisomes
LOC110915715 16 39633096 39638580 Protein of unknown function
(DUF1666)
RV-STI LOC110877324 9 29925998 29927713 Belongs to the
UDP-glycosyltransferase family
LOC110917707 16 74795170 74799439 Domain present in VPS-27, Hrs
and STAM
RSA-STI LOC110872899 8 68366663 68376805 Inactive leucine-rich repeat PK RLK-Pelle_LRR-III
receptor-like serine
threonine-protein kinase
RWC-SSI LOC110941862 5 195719872 195730082 Topless-related protein

The content in brackets indicates simultaneous, for example, (PH/LSA)-STI, indicating that this gene is recognized by both PH-STI and LSA-STI.

Photosynthesis proteins (BR:ko00194), Photosynthesis—antenna
proteins, Photosynthesis. The branched-chain amino acids
(BCAAs), including isoleucine, leucine, and valine, are essential
for plants (Binder et al, 2007). Pires et al. (2016) results
highlight that catabolism of BCAA appears to play an important
role in the mechanism of tolerance to short-term drought,
most likely by delaying the onset of stress. Our results also
proved that the degradation of BCAA may be an important
mechanism of sunflower drought resistance. Abiotic stress
damage the thylakoid membrane, disturb its functions, and
ultimately decrease photosynthesis. Down-regulated expression
of photosynthesis-related genes under drought stress has been
reported in several plants, such as Arabidopsis (Bechtold et al.,
2016; Bouzid et al., 2019), wheat (Derakhshani et al., 2020),
and grapevines (Franck et al, 2020). In a previous study,
Escalante et al. found a down-regulation of photosynthesis-
related genes in the aerial part of sunflowers (Moschen
et al., 2017). However, another study revealed that the
expression levels of photosynthesis-related genes were increased
under drought stress in sunflowers (Escalante et al., 2020).
This difference may be caused by differences in drought
intensity and genotype, and our results were identical with
the former.

With the development of high-throughput technologies,
omics research is also undergoing a shift from a single-omics to
a large-scale multi-omics approach (Liu et al., 2020). Through
the multi-omics approach, researchers can obtain a deeper
understanding of the fundamental biological processes, a more
accurate prediction of the response variable, and gain further
insight into mechanistic aspects of the system (Cavill et al., 2015).
By integrating the transcriptome and metabolome, Sebastidn
Moschen et al. (2017) gained a deeper insight into the sunflower
drought-response mechanism. The integration of genomic and
transcriptomic analysis has also been reported in many recent
studies. This approach can be used as an effective way to
identify candidate genes. For example, eight salt stress-related
candidate genes were identified by a combination of GWAS
analysis and transcriptome analysis in Alfalfa (Medicago sativa
L.) (He et al, 2021). Seven candidate genes for seminal root
length in maize (Zea mays L.) were identified by integrating the
results of the GWAS, the common DEGs, and the co-expression
network analysis (Guo et al., 2020). Using a combined analysis,
we identified 18 common genes.

The total genes in the sunflower reference genome were
81,496, and we found 18,922 DEGs via RNA-seq. According to
this proportion, we should find at least 29 DEGs among the 118

Frontiers in Plant Science | www.frontiersin.org

22

May 2022 | Volume 13 | Article 847435


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Wu et al.

Combined Analyses of Sunflowers

LOC110936334

0.6 4
3
0.4
0.2
1
0.0

day-0 day-7 day-14

LOC110937937

FPKM

FPKM
° 3 8 g &

day-0 day-7 day-14

LOC110872899 LOC110877324
0.6 60-
0.4 40
= =
F3 3
£ £
0.2: 20-
0.0 0
day-0 day-7 day-14 day-0 day-7 day-14
LOC110894816 LOC110899235
4 1.5
3
1.0-
= =
£ 2 £
£ =
0.5
1
0 0.0
day-0 day-7 day-14 day-0 day-7 day-14
LOC110915715 LOC110920644

IS

FPKM
2 3 2 8 B
s & 8 2 3 2

w

FPKM

1]

day-0 day-7 day-14 day-0

day-7 day-14

FIGURE 11 | Expression profiles of 14 drought response candidate genes.

LOC110941963 LOC110941862
8 25
20
6
H] z 15
£ £
= )
2
5
o o
day-0 day-7 day-14 day-0 day-7 day-14
LOC110885273 LOC110891369
25 3
20
2
= 15 Z
F I3
£ &
10
1
0s
00 o
day-0 day-7 day-14 day-0 day-7 day-14
LOC110899238 LOC110917707

FPKM
FPKM

s
B
B

day-0 day-7 day-14 day-0 day-7 day-14

genes of GWAS. However, the number of common genes that
we have found was relatively small (18). This is because among
the 18,922 DEGs, only 12,124 of them exist in the reference
genome and the rest are novel genes. A subsequent chi-square
test using this number found no significant difference between
the two proportions (P = 0.908). Nonetheless, the proportion
of overlapped genes was still lower than we expected. The
reason we speculate is that GWAS candidate genes are mainly
regulatory genes that act in all accessions. A slight regulation of
expression level under drought stress, which did not reach the
threshold of significant difference, can affect the physiological
processes in plants, whereas the DEGs of RNA-seq are mainly a
series of drought-responsive functional genes that are regulated
in K58 under drought stress. The difference in the class and
function of the genes from these two gene sets results in a
low percentage of overlapping genes. Of course, this needs
further confirmation.

Among these 18 genes, 14 are protein-coding genes, of
which 3 are encoding PK and 1 encodes TF. These genes
may play an important role in drought response in sunflowers.

The LOC110885273 gene encodes G-type lectin S-receptor-
like serine/threonine-protein kinase (LecRLKs). The protein
kinase is involved in plant responses to biotic and abiotic
stresses (Bonaventure, 2011; Singh et al, 2012; Zhao et al.,
2016). Overexpression of G-type LecRLKs enhances the drought
tolerance of Arabidopsis thaliana (Sun et al., 2013a), which may
be achieved by controlling stomata size through interaction with
abscisic acid (ABA) (Arnaud et al., 2012). Pan et al. (2020)
identified a LecRLKs gene OsESGI in rice and found it could
be induced by treating with PEG, NaCl, and ABA. However,
we found the LOC110885273 gene was down-regulated under
drought stress, which may lead to the decrease of SPAD value
under drought stress.

The receptor like kinase (RLKs) family has been defined as
the most abundant gene family in Arabidopsis. Leucine rich
repeat-RLKs (LRRRLKs) are the largest group of receptor-
kinases in Arabidopsis, which is widely involved in responses
to various biotic and abiotic stresses (Diévart and Clark, 2003;
Lehti-Shiu et al., 2009). Osakabe et al. (2005) found that an
LRRRLKs gene (RPK1) is involved in the early steps in the
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ABA signaling pathway through a gene knock-out experiment.
The overexpression of receptor-like kinase rich in the Leucine
Repetition gene improves the Arabidopsis thaliana drought
resistance (Xing et al., 2011). Receptor-like cytoplasmic kinase
GUDK and OsSIK1 were shown to enhance drought tolerance
in rice (Ouyang et al., 2010; Harb et al., 2020). In the present
study, a down-regulated LRRRLKs gene LOC110872899 was
identified, which is located at chromosome 8, and associated
with RSA, maybe the mechanism of this gene in sunflower
drought tolerance response is different. Another receptor-like
protein kinase gene LOCI110891369 was up-regulated at 14-
days of drought stress in K58, which belongs to the family of
RLK-Pelle_CrRLKI1L-1, and is associated with LSA.

PLATZ transcription factors play important roles in plant
growth, development, and biotic and abiotic stress responses.
Liu et al. (2021) reveal that PLATZ4 interacts with AITR6 to
increase ABA sensitivity and drought tolerance in Arabidopsis by
regulating the expression of different genes. Zenda et al. (2019)
identified a PLATZ gene (Zm00001d051511) in maize. It was
up-regulated in tolerant line YE8112, whilst down-regulated in
drought-sensitive line after drought stress. This result indicated
the TF genes could be the key contributors to drought stress
tolerance in the drought-tolerant maize inbred line. This different
expression pattern was also proved in Ray’s research on rice
(Ray et al., 2011), PLATZ (LOC_Os10g42410) gene was down-
regulated in panicle, while up-regulated in vegetative tissues
under drought stress. Even in the same tissue at the same time,
it was found that the expression levels of two PLAZT genes were
up-regulated and down-regulated, respectively, which indicated
the complexity of drought stress regulation. In this study, a
PLAZT gene LOC110920644, which is related with LSA, was
up-regulated at the early stage in K58 under drought stress.

ABA is an important hormone for plant drought response
(Zotova et al., 2018). The cell ABA level increases under drought
stress, leading to stomatal closure and active several stress-
responsive genes (Cutler et al., 2010). Drought stress increased
ABA levels in sunflowers have been reported (Robertson et al.,
1985). In this study, the functions of the four TF/PK genes are
all related to ABA, indicating the important role of the ABA-
dependent process in the drought response of sunflowers.

CONCLUSION

Sunflower is one of the most important oil crops in the world,
which is often grown as a rainfed crop. Water limitation at
the seedling stage can severely reduce stand establishment and
negatively impact yields. However, the molecular mechanism
underlying drought resistance is still not fully understood. In
this study, we used SLAF-seq to perform GWAS for 8 important
phenotypic traits in 226 sunflower inbred lines. Using three
methods (i.e., MLM, FarmCPU, and BLINK) for sunflower
grown in two conditions (i.e., well-water and drought stress), we
identified a total of 80 SNP displaying a significant association
(p < 1062 x 107°). Candidate genes were searched in the
20kb up/down-stream of each SNP. There were 85 protein-
coding candidate genes possibly related to the 8 important

phenotypic traits. Next, we conducted an RNA-seq based on a
drought-tolerance inbred line (K58). A total of 18,922 DEGs
were identified on 7 and 14 days after drought treatment.
Up-regulated genes were mainly enriched in BCAA catabolic
process, while down-regulated genes were mainly enriched in the
photosynthesis process. Using a combined analysis, we found 14
common genes between GWAS and RNA-seq, three of them were
PK genes, and one of them was TF gene. LOC110885273 was
associated with LSA and SPAD, belongs to the RLK-Pelle_SD-
2b protein kinase family. LOC110872899 belongs to the RLK-
Pelle_LRR-IIT protein kinase family and is associated with RSA.
LOC110891369 belongs to the RLK-Pelle_ CrRLK1L-1 protein
kinase family and is associated with LSA. The PLAZT gene
LOC110920644 is related to LSA, and belongs to PLAZT TF
family. Through functional analysis, there are 4 genes involving
the ABA-dependent drought response pathway of plants.

The integrative analysis of omics data is a promising
approach to identify candidate genes for complex traits. This
study is the first attempt to combine GWAS and RNA-seq to
explore the genetic mechanism of sunflower drought tolerance
to our knowledge. We will further validate the functions of
these genes, possibly by overexpression or by CRISPER/Cas
genome editing. Our research reveals the phenotypic and
molecular mechanisms of drought response in sunflowers.
The results will be useful for the genetic enhancement of
drought-resistant sunflowers.
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of Forestry, Hainan University, Haikou, China, * Institute of Industrial Crops, Shandong Academy of Agricultural Sciences,
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Boll weight (BW) is a key determinant of yield component traits in cotton, and
understanding the genetic mechanism of BW could contribute to the progress of cotton
fiber yield. Although many yield-related quantitative trait loci (QTLs) responsible for BW
have been determined, knowledge of the genes controlling cotton yield remains limited.
Here, association mapping based on 25,169 single-nucleotide polymorphisms (SNPs)
and 2,315 insertions/deletions (InDels) was conducted to identify high-quality QTLs
responsible for BW in a global collection of 290 diverse accessions, and BW was
measured in nine different environments. A total of 19 significant markers were detected,
and 225 candidate genes within a 400kb region (£ 200kb surrounding each locus)
were predicted. Of them, two major QTLs with highly phenotypic variation explanation on
chromosomes A08 and D13 were identified among multiple environments. Furthermore,
we found that two novel candidate genes (Ghir_ A0O8G0097 10 and Ghir_D13G0230170)
were associated with BW and that Ghir_D13G023070 was involved in artificial selection
during cotton breeding by population genetic analysis. The transcription level analyses
showed that these two genes were significantly differentially expressed between high-
BW accession and low-BW accession during the ovule development stage. Thus, these
results reveal valuable information for clarifying the genetic basics of the control of
BW, which are useful for increasing yield by molecular marker-assisted selection (MAS)
breeding in cotton.
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INTRODUCTION

Cotton has an ancient history of cultivation dating back seven
thousand years or more according to the oldest archeological
evidence, which was found in Pakistan (Rajpal et al, 2016).
Subsequently, the invention of the cotton gin in the late 18
century caused massive growth in cotton production, and
cotton gradually became an important cash crop (Sunilkumar
et al., 2006). Previous studies have suggested that allotetraploids
emerged approximately 1.5 million years ago (MYA) through
a single allopolyploidization event in a propagule resembling
diploid cotton (Gossypium herbaceum L.) that dispersed across
the Atlantic Ocean from Africa to the New World and
subsequently hybridized with a resembling diploid cotton
(Gossypium raimondii) and produced upland cotton after long-
term evolution (Wendel, 1989; Sunilkumar et al., 2006; Liu et al.,
2015). Currently, upland cotton has become a predominant
cotton species in global cotton commerce, with ~ 27 million
metric tons produced per year. In addition, it also provides
natural fiber for the textile industry, which has high yield and
wider adaptation (Chen et al., 2007). In recent years, due to
population growth, climate change, and the challenges associated
with maintaining the grain-cotton balance in farmlands, the
cotton planting area has decreased. Therefore, the urgent need
to increase cotton production is particularly important.

The application of quantitative trait locus linkages or QTL-
related molecular markers of target traits by MAS can prevent
environmental interference and improve breeding efficiency (Yin
et al, 2003). The study of QTLs in cotton has focused mainly
on yield and fiber quality component traits (Said et al., 2015).
Cotton yield component traits include fruit branch number
(FBN), lint percentage (LP), boll number per plant (BN), boll
weight (BW), and seed index (SI), which were controlled by
QTLs and environmental factors. Among these traits, BW is
more stably inherited and has relatively high heritability (Fan
et al,, 2018; Liu et al., 2018; Zhang et al., 2019b; Gu et al,,
20205 Zhu et al., 2021). In the past three decades, BW has been
widely used for quantitative genetics studies, and a great number
of studies have been conducted to identify genetic locus for
BW distributed on almost all chromosomes via classic linkage
maps and genome-wide association studies (GWAS) using cotton
panels; over 170 QTLs for BW have been discovered (Said et al.,
2015; Liu et al., 2018; Wang et al., 2019b; Zhu et al., 2021). By
using F, and F,.3 populations derived from an upland cotton
intraspecific cross (Simian3 x TM-1), several yield-related QTLs
were identified by simple sequence repeat (SSR) and random
amplified polymorphic DNA (RAPD) markers, and common
QTLs explaining 15.6% of the phenotypic variation (PV) were
identified for BW and 100-seed weight on chromosome A09
(Yin et al., 2002). Wang et al. (2015) constructed a linkage map,
which included 178 loci spanning 2016.44 cM, and a total of 19
QTLs for BW were detected on seven chromosomes; two QTLs
were identified in more than two environments. In addition, a
previous study involving 356 cotton accessions identified four
favorable alleles for BW by a GWAS panel (Mei et al., 2013). The
elucidation of the genetic architecture of BW can provide strong
theoretical support for breeders to increase cotton production.

However, there still exists inadequacy in previous research, such
as the use of low-density linkage maps constructed based on
traditional molecular markers, incomplete genetic information
of the reference genome, and rough resolution of the mapping
interval, resulting in candidate genes that could not be directly
identified. SNP markers could be more effectively to explore the
genetic structure in important agronomic traits in biparental
map-based cloning and association analysis based on their highly
polymorphism, wide distribution, and low research costs (Van
Tassell et al., 2008; Ganal et al., 2009). Along with the reduction
in high-throughput sequencing costs, a great quantity of SNP
markers has been extensive development (Michael et al., 2018;
Sun et al, 2020), leading to more candidate genes can be
identified by QTL mapping and GWAS through SNP markers
(Zhou et al.,, 2020; Li et al., 2021). In recent years, candidate
genes for yield component traits in cotton have been wide-
ranging explored in genetic studies with SNP markers rather
than traditional molecular markers. For example, Zhang et al.
(2016) constructed a high-density genetic map containing 5,521
SNP markers developed with a recombinant inbred line (RIL)
population in 11 environments, and 344 candidate genes for
BW were annotated. In addition, Fang et al. (2017) employed
whole-genome resequencing using 1,871,401 high-quality SNP
markers in 258 diverse accessions and discovered that the
candidate gene Gh_D08G0312 may be a key gene determining
cotton yield. Moreover, two candidate genes associated with lint
percentage were uncovered using 276 upland cotton accessions
with 10,660 SNPs in multiple environments; these genes were
highly expressed during ovule and fiber development, indicating
that they may play important roles in influencing LP (Song
et al,, 2019). Although QTLs for yield component traits have
been extensively explored in upland cotton, compared to those
in important crops such as rice and maize, few candidate genes
have been identified.

For this study, to gain better insight into the genetic basics
of BW, specific locus amplified fragment sequencing (SLAF-
seq) was taken as for whole-genome identification of SNPs and
InDels in a natural population. PV for BW in nine environments
was evaluated across four representative agroecological regions.
In addition, several QTLs and candidate genes were further
identified by a GWAS. This study provides information regarding
a valuable cotton germplasm potentially useful for MAS in cotton
breeding practice for raising yield in upland cotton.

MATERIALS AND METHODS
GWAS Population and Field Experiments

A total of 290 elite upland cotton accessions were obtained
from CRICAAS (http://www.cricaas.com.cn/). Among these
accessions, 263 (90.7%) representative cultivars were collected
from four major cotton production regions of China: Northern-
Specific Early-Maturity region (NSER), Yellow River region
(YRR), Yangtze River region (YZRR), and Northwest Inland
region (NIR). The remaining 27 (9.3%) cultivars were introduced
from six different countries (USA, Azerbaijan, Israel, Kyrgyzstan,
Tajikistan, and Uzbekistan). Complete GWAS population
material of each accession is shown in Supplementary Table S1.
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A natural population of 290 upland cotton accessions was planted
at Anyang (36 08’N, 114 48’E) in three consecutive years (2014,
2015, and 2016) (E1: Anyang-2014, E2: Anyang-2015, and E3:
Anyang-2016); Shihezi (44 31'N, 86 O1'E) in three consecutive
years (2014, 2015, and 2016) (E4: Shihezi-2014, E5: Shihezi-
2015, and E6: Shihezi-2016); Huanggang (30 57°N, 114 92’E) in 2
years (2016 and 2021) (E7: Huanggang-2016 and E8: Huanggang-
2021); and Sanya (18 36'N, 109 17°E) from 2020 to 2021 (E9:
Sanya-2020-2021). Each environment was conducted with a
randomized complete block for three replications.

Phenotyping and Statistical Analysis of BW
In total, 20 mature cotton bolls were randomly harvested from
the middle branches and dried under sunlight for 2 days in
each line. The phenotypic data from all the environments were
analyzed with the base packages of R software (version: 3.5.0),
and the correlation analysis results were exhibited with the
“corrplot” (Wei et al., 2017). The broad-sense heritability (H?)
of BW progressed with the “sommer” (Covarrubias-Pazaran,
2016). In addition, the BLUP value of boll weight in the nine
environments for the GWAS analyses was conducted by the
“Ime4” (Bates et al., 2014).

Genome Sequencing and Variation

Detection

We collected young leaves at seedling stage of each line for
genotyping. The SLAF-seq libraries were constructed for each
accession based on the restriction enzymes Rsa I and Hae III
(New England Biolabs, NEB). All accessions were genotyped with
the Illumina HiSeq2500 platform. The detailed protocols used for
library preparation and sequencing using the SLAF strategy have
been described previously (Li et al., 2017). The quality control
process was employed by Trimmomatic (version: 0.32) (Bolger
et al., 2014), and then, the filter reads were aligned to reference
genomes of the three upland cotton accessions (“TM-1,” “CRI24,
and “NDMS8”) by using BWA (version: 0.7.17) (Li and Durbin,
2009; Yu et al., 2021). The high-quality SNPs and InDels were
detected using Genome Analysis Toolkit software (version: 3.8)
(McKenna et al., 2010).

GWAS and Genetic Diversity Analysis

For GWAS analysis, we first filtered the SNPs and InDels
with a minor allele frequency (MAF) less than 0.05 and a
missing rate greater than 80%. Second, population structure
was calculated as the covariate to reduce false positives
(Supplementary Figure S1). Finally, the linear mixed mode in
GEMMA (version: 0.98.3) (Zhou and Stephens, 2012) was used
for discovering the significant locus by high-quality markers and
BW values from each individual environment. The -log;o(P)
value was 4.43, which was used as 1/n (n = total number of SNPs
and InDels in the GWAS panel) according to the Bonferroni-
corrected method. The phenotypic variation explained (PVE) of
each marker was calculated by the formula as follows: PVE =
[28% x MAF x (1 - MAF)] / [28% x MAF x (1 - MAF) +
((se(B))? x 2 x N x MAF x (1-MAF))], where 8 and MAF were
obtained by the GEMMA software, and N represented the sample
size according to previous reports (Shim et al, 2015). The R

package “qqman” was used to generate Manhattan plots (Turner,
2014). The 290 accessions were split into three populations
based on the release years, including cultivars released before
the 1980s, cultivars bred within the 1980s—2000s, and cultivars
bred after the 2000s; VCFtools (version: 0.1.16) was used to
estimate nucleotide diversity (m) (Danecek et al, 2011) in the
three populations. LD block analysis was conducted with the
“LDheatmap” (Shin et al., 2006) to find existing LD blocks.

Haplotype Analysis and Candidate Gene

Identification

Haplotype analysis of associated markers on chromosomes A08
and D13 was conducted based on the phenotypic values and
genotype data, and box plots were created using the R package
“ggplot2” (Wickham, 2011). Candidate BW-related genes were
identified and annotated on the basis of the “TM-1" genome
released from COTTONGENE (https://www.cottongen.org/),
which was in the upstream and downstream of 200kb regions
by significant markers according to previous reports (Su et al.,
2018; Wang et al,, 2019a). GO enrichment was performed on
the agriGO to identify the enriched pathways by using default
parameters (Tian et al., 2017).

Gene Expression Level Analysis

The expression patterns in G. hirsutum L. “TM-1” and “CRI12”
at the ovule development stage (10 days post-anthesis (DPA),
20 DPA, 30 DPA, and 40 DPA) were analyzed using the
published RNA-seq dataset PRJNA248163 (Fang et al., 2017).
The TPM values were determined using GFOLD software
(version: 1.1.4) (Feng et al., 2012). We further performed qRT-
PCR analysis. All gene-specific primers used in this study
were designed using Primer3 (version: 0.4.0); they are listed in
Supplementary Table S2. Seeds of upland cotton (G. hirsutum
cv. “TM-1”7 and “CRI16”) were planted at Zhejiang A&F
University in Hangzhou. Flowers were tagged on the day of
anthesis. We collected bolls at 0, 5, 15, 20, and 25 DPA, and then,
the young seeds with fibers were stripped of hulls, frozen in liquid
nitrogen, and stored at —80°"°C. Total RNA was extracted from
the frozen 0, 5, 15, 20, and 25 DPA fibers and ovule using the
MolPure® Plant Plus RNA Kit (Yeasen, Shanghai, China), and
cDNA was synthesized using the MonScript™ RTIII Super Mix
with dsDNase (Monad, Shanghai, China). Then, real-time PCR
was performed to identify transcript levels using LightCycler
480 1I PCR System (Mannheim, Germany) and MonAmp™
ChemoHS qPCR Mix (Monad, Shanghai, China). The 2—AACT
method was applied to analyze the gene transcript abundance
with three biological replicates (Livak and Schmittgen, 2001).
Data visualization for qRT-PCR and RNA-seq was performed
using custom R scripts.

RESULTS

Detection of SNPs and InDels in Cotton

Genome
A total of 290 cotton accessions (Supplementary Table S1)
were selected from a wide global distribution, spanning over
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100 years of cotton breeding, and genotyped using the SLAF-
seq approach (Figure1). To identify high-quality SNPs and
InDels, we compared the mapping rates across seven high-
quality published reference genomes from multiple research
communities (Yu et al., 2014; Hu et al., 2019; Wang et al., 2019a;
Yang et al., 2019; Chen et al., 2020; Huang et al., 2020; Ma et al.,
2021). The number of SLAF reads with mapping rates ranging
from 98.62 to 98.93% revealed no evidence of a significant
difference, while HAU_v1 showed the largest number of high-
quality SNPs and InDels (Supplementary Table S3). Thus, we
selected HAU_v1 as a reference for further GWAS. A final set
of 25,169 SNPs and 2,315 InDels were obtained with a MAF
greater than 0.05 and missing data less than 20% in GWAS
population. The mean marker density was one per 80.3kb in
the At subgenomes and one per 81.8kb in the Dt subgenomes.
Moreover, chromosome A06 possesses the highest number of
markers (3,003 SNPs and 178 InDels), followed by chromosome
A08 (2,827 SNPs and 189 InDels), and the smallest number of
markers was observed on chromosome D03 (403 SNPs and 58
InDels) (Supplementary Figure S2).

PV of BW

The BW of 290 upland cotton accessions in nine environments
followed an approximately normal distribution according to
Shapiro-Wilk tests (Table 1). The frequency distributions of BW
in the natural population are summarized in Figure 2A. The
lowest average BW was 3.08 g in E7, and the highest average BW
was 8.21 g in E6, with an average variation from 4.16 £ 0.44 to
6.48 £ 0.57 across the nine environments, suggesting extensive
PV in the association panel (Table 1). The correlation analysis
for BW exhibited relatively high positive correlations between
environments (P < 0.001), with Pearson’s correlation coefficients
ranging from 0.26 to 0.75 (Figure2B). On the contrary, a
two-way ANOVA showed that genotypic variance (G) and the
genotype-by-environment variance (G x E) had significant
effects on BW (P < 0.001). This finding confirmed that a large
number of genetic variations existed in the natural population.
The H? for BW was calculated as 69.65%, indicating that BW was
mainly affected by the genotype, which was suitable for making
further efforts association analysis (Supplementary Table S4).

GWAS of BW in Upland Cotton

A GWAS of boll weight was performed with a linear mixed model
(LMM) (Figures 3A,B and Supplementary Figures S3, $4). In
total, 19 significant elite alleles with 16 SNPs and three InDels
were identified on six chromosomes (A06, A07, A08, DOI1,
D07, and D13) across nine individual environments and BW-
BLUP values. Each allele explained 5.58 to 10.95% of the PV,
and the -logjo(P) values ranged from 4.53 to 6.13 (Table 2). A
total of six loci were identified in at least two environments,
and two major QTLs flanked by four alleles (rsA08_30171616,
rsD13_60955253, rsD13_60955261, and rsD13_60955462) were
further associated with BW-BLUP values (Table2). Among
them, one QTL significantly associated with a SNP (-log;o(P) =
5.04) on chromosome A08 explained 9.38% of the PV. Notably,

another major QTL region on chromosome D13 (60,820,223—
60,955,462) was stably detected in six environments, and the BW-
BLUP values were based on two SNPs and an InDel. The PV
explained and -log;o(P) values ranged from 10.32 to 10.95% and
6.06 to 6.13, respectively.

Analysis of Candidate Genes Associated
With BW

Potential candidate genes linked to 19 significant BW-associated
markers were extracted based on the “TM-1” reference genome
(Wang et al, 2019a). A total of 225 candidate genes were
identified for BW, with most genes distributed on chromosome
D13 and only one candidate gene located on chromosome A08
within the 400kb genome region (Supplementary Table S5).
Then, we identified orthologs for 225 candidate genes based on
sequence similarity analysis by comparing the candidate genes to
the Arabidopsis thaliana reference genome, which included 215
annotated genes and 10 novel genes (Supplementary Table S5).
Furthermore, the expression levels of the 225 genes exhibited
extensive variation among different cotton tissues representing
vegetative growth processes, ovule developmental stages, and the
primary fiber developmental stages of initiation, elongation, and
secondary wall biosynthesis. The expression patterns of candidate
genes were categorized into three groups, referred to here as
lineages I, 11, and I1I, based on similarities among the expression
profiles (Figure 3C). Gene Ontology (GO) analysis found that
a large proportion of genes (33.22%) had unknown functions,
but most of the candidate genes were involved in metabolic
processes (42.68%), catalytic activity (38.85%), cellular processes
(38.22%), or single-organism processes (24.20%) (Figure 3D).
For example, Ghir_D13G021550 (PLA2-BETA) has been reported
to be involved in pollen development, germination, and stomatal
opening in response to light (Kim et al, 2011). Orthologs
of Ghir_A07G004250 (AT4G32280.1) have been reported to be
involved in the regulation of indoleacetic acid (IAA) signaling
(Shimizu et al., 2016) and have ovule-specific expression at 0 DPA
and 1 DPA (Supplementary Figure S5). In addition, six genes
in the Dt subgenome (Ghir_D01G001790, Ghir_D13G021810,
Ghir_D13G022780, Ghir_D13G023170, Ghir_D13G023060, and
Ghir_D13G023090) were shown to be involved in response to
stimulus, which is consistent with previous reports (Liu et al.,
2012; Su et al,, 2020). In addition, some genes were involved
in cellular component organization, organelle part, biological
regulation, and cell part, with proportions ranging from 3.18
to 13.38% (Figure 3C). Specifically, Ghir_D13G023010 (RHIPI)
encodes a protein predicted to have a three-stranded helical
structure, which has been previously shown to modulate early
seedling development in Arabidopsis (Huang et al., 2015).

Two Candidate Genes Pleiotropically

Increase BW in Cotton Accessions

Previous studies have indicated that QTLs for BW were widely
distributed on all the chromosomes of cotton, but few QTLs
mapped to chromosome A08 (Said et al.,, 2015; Li et al.,, 2016;
Zhang et al., 2016). In this study, a novel QTL with a significant
SNP (rsA08_30171616) on chromosome AO08 exhibited the

Frontiers in Plant Science | www.frontiersin.org

32

June 2022 | Volume 13 | Article 929168


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Feng et al.

GWAS for BW of Upland Cotton

& NIR
& NSER
@ YRR
& YZRR

B 98
42
ol
N 27
104 -~ N 19
@ NIR @ NSER @ YRR & YZRR @ Ameraisa
c 200
150

100

50=

Number of Accessions

FIGURE 1 | Map of the 290 cotton accessions. (A) Geographic distribution of the natural population; each accession is represented by a dot. (B) Pie chart of the
proportions of diverse cotton-growing areas in 290 accessions. NIR: Northwest Inland region in China; NSER: Northern-Specific Early-Maturity region; YRR: Yellow
River region; YZRR: Yangtze River region; and Amerasian: 27 accessions primarily introduced from six different countries (USA, Azerbaijan, Israel, Kyrgyzstan,
Tajikistan, and Uzbekistan). (C) Breeding stage distribution of the GWAS panel; Unknown: accessions that were not found among the pedigrees.

TABLE 1 | Phenotypic variation of BW in the natural populations.

Environment Minimum Maximum Mean SD Shapiro-Wilk P value
E1 (Anyang-2014) 3.43 7.61 5.44 0.73 0.86
E2 (Anyang-2015) 3.30 6.93 5.35 0.60 0.65
E3 (Anyang-2016) 3.42 7.81 5.72 0.63 0.05
E4 (Shihezi-2014) 3.87 6.94 5.55 0.45 0.00
E5 (Shihezi-2015) 4.03 7.15 5.57 0.47 0.09
E6 (Shihezi-2016) 3.97 8.21 6.48 0.57 0.01
E7 (Huanggang-2016) 3.08 5.38 4.16 0.44 0.40
E8 (Huanggang-2021) 3.22 6.48 4.76 0.57 0.63
E8 (Sanya-2020-2021) 3.24 7.07 5.11 0.58 0.13

strongest association with BW, explaining 9.38% of the PV in
two environments and the BW-BLUP (Figure 4A). This SNP
has two haplotypes AA and GG, which led to the accessions
carrying the GG haplotype having a significantly lower BW
than those carrying the AA haplotype in nine environments
(P < 0.05) (Figure4B). In addition, to gain insight into the
geographic distribution of the favorable haplotype (AA) for
rsA08_30171616, the 290 cotton accessions were divided into
five groups: NIR, NSER, YRR, YZRR, and Amerasian. NIR
and YRR had a high proportion of the lines (Figure 1B)
and showed an extraordinarily low AA frequency (Figure 4C),

while the lines obtained from YZRR and Amerasian had a
relatively high frequency of the favorable haplotype (>20%).
We further performed an LD analysis of the significant SNP
rsA08_30171616, and only one gene, Ghir_A08G009110, in the
LD block was found in this region (Figure 4A). The quantitative
reverse-transcription PCR (qRT-PCR) analysis and RNA-seq
data showed that Ghir_A08G009110 had higher expression
levels in “TM-1” (BW = 6.18 £0.83 g) carrying the AA allele
than in “CRI12” (BW = 5.28 £0.59¢) and “CRI16” (BW =
5.08 £0.97 g) with GG allele during ovule development stage
(Figures 4D,E). Through the above empirical results, we inferred

Frontiers in Plant Science | www.frontiersin.org

33

June 2022 | Volume 13 | Article 929168


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Feng et al.

GWAS for BW of Upland Cotton

E1 E2 E3
» 8
1) c e
s 8 28 g 8
@ % o @ Q
- 8 e g 3
g ¢ s 8
s 5 g 5 €
s ] _8 @ .
g E § -
3 z o 2 o
— | — — !
30 40 50 60 70 80 30 40 50 60 70 30 40 50 60 70 80
Boll weight (g) Boll weight (g) Boll weight (g)
E4 E5 E6

Number of accessions
0
Number of accessions
0 20 40 60 80 100
Number of accessions
0 20 4 6 8

[ e e s e [ s s e s s e | | s e e  man]
35 45 55 65 40 50 60 70 50 60 70 80

Boll weight (g) Boll weight (g) Boll weight (g)
E7 E8 E9
8
g @ g s g =
29 2 2 8
§ g §e
g s § o 8
5 R E ]
% e £z 2 g
: 2 2
z ° LI B S m— ° T T T T T T 1 = ° T T T T 1
30 35 40 45 50 3.0 40 5.0 6.0 30 40 5.0 6.0 70
Boll weight (g) Boll weight (g) Boll weight (g)

FIGURE 2 | Phenotypic variation analysis of boll weight. (A) Distributions of the mean values for boll weight in nine environments (E1: Anyang-2014, E2:
Anyang-2015, E3: Anyang-2016, E4: Shihezi-2014, E5: Shihezi-2015, E6: Shihezi-2016, E7: Huanggang-2016, E8: Huanggang-2021, and E9: Sanya-2020-2021).
(B) Correlation analysis of boll weight in nine environments (P < 0.001, **P < 0.01, and *P < 0.05).

B

DDA
- dDDDDND
R kP IEY
s QDAY
0.51 0.58 0.46 0.74 ES O @ @ @
0.48 0.56 0.58 0.59 0.60 E6 @ G @
0.58 0.59 0.68 0.43 0.37 0.52 E7 @ G
0.26 0.40 0.37 0.35 0.34 0.46 0.31 E8 @
0.43 0.52 0.63 0.37 0.34 0.42 0.56 0.35 E9

that Ghir_A08G009110 on chromosome AO08 has potential
role responsible for improving BW and may be beneficial to
cotton breeding.

We then focused on a stable QTL on chromosome D13
(Figure 5A). Two SNPs and one InDel in this interval were
stably associated with BW in six environments and with BW-
BLUP, which could explain the relatively high PV from 10.32
to 10.95% (Table 2). Notably, three genes (Ghir_D13G023000,
Ghir_D13G023010, and Ghir_D13G023020) were observed
and tightly linked within the candidate region (Figure 5B).
Furthermore, we found that the genetic diversity of this
interval decreased with the breeding period; cotton cultivars
released before the 1980s were dramatically more diverse
than the cultivars bred in the 1980-2000s, and the cultivars
bred after the 2000s showed the lowest diversity. These three
elite alleles generated two haplotypes (HapA and HapB) in
this LD block. Among them, rsD13_60955462 was located
in the 3> UTR of Ghir_D13G023010. Varieties carrying HapB
exhibited a higher average BW than those carrying HapA
(Figure 5C). The RNA-seq data showed that Ghir_D13G023010
had higher expression abundance level in the low-BW variety
“CRI12” than in the high-BW variety “TM-1" compared
with the other two genes during ovule development from
10 to 40 DPA (Figure5D). The qRT-PCR analysis also
showed that Ghir_D13G023010 had higher expression levels in
low-BW variety “CRI16” than in the high-BW variety “TM-
1”7 during ovule development (Supplementary Figure S6).
Thus, we inferred that Ghir_D13G023010 is a
novel gene that influences BW in cotton by
negative regulation.

DISCUSSION

Accurate Identification of SNPs and InDels
GWAS has become a commonly used method to identify elite
allelic variation and candidate genes for important agronomic
traits in cotton breeding and improvement (Fang et al., 2017;
Wang et al., 2017; Ma et al., 2018). However, accurate genome
sequence information enables the exploration and utilization
of key genes that control important agronomic traits. It has
been over 10 years since the first cotton genome sequence
was published (Paterson et al., 2012; Wang et al., 2012). Since
then, the number of cotton genomes sequenced has increased
continually via multiple research studies due to the improvement
in sequencing technologies in terms of cost, accuracy, and speed.
The high rate at which genome sequences are becoming available
is due to the development of next-generation sequencing (NGS),
third-generation sequencing (TGS), and chromosome-scale
scaffolding tools (Bio-Nano and Hi-C), with contig N50 values
ranging from 0.11 Mb to 13.15Mb in multiple upland cotton
accessions (“TM-1," “NDMS,” and “CRI24”) (Yu et al., 2014). A
previous study demonstrated that the development of different
reference-quality genomes could facilitate the investigation of
novel variation and found new genes that were not discovered
in previous SNP/InDel-based association analyses for important
agronomic traits. For example, in maize, Tao et al. (2019)
uncovered a novel causal mutation with an 8.9-kb insertion
of a grain-size QTL (qHKW1) in an RIL population with the
assistance of the newly assembled “SK” genome (Tao et al., 2019).
In this study, to obtain accurate genetic markers, we employed
a reference genome with a contig N50 greater than 100kb
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TABLE 2 | List of significant markers (SNPs and InDels) associated with boll weight.

Marker Marker type Chromosome Position Maijor allele Minor allele P value R? Environment
rsGhir_A06_26390257  SNP AO6 26,390,257 T G 6.84E-06  6.67 E2

rsGhir_A06_26390265  SNP A06 26,390,265 G A 2.07E-06 592 E2

rsGhir_A06_26390284  SNP AO6 26,390,284 G A 2.43E-06  6.04 E2

rsGhir_A06_26390468  SNP AO6 26,390,468 A C 2.97E-05 558 E2

rsGhir_A06_26390491 SNP AOB 26,390,491 A G 2.23E-06  6.09 E2

rsGhir_A06_32168831 Indel A06 32,168,831 G GT 2.14E-05  6.81 E8

rsGhir_A07_4798628 SNP AO7 4,798,628 G A 4.91E-06  8.36 E7, BLUP
rsGhir_A07_6937342 SNP AO7 6,937,342 C T 3.66E-06  8.57 BLUP

rsGhir_A07_6937395 SNP AO7 6,937,395 C T 3.66E-06  8.38 BLUP

rsGhir_A07_9574709 SNP AO7 9,674,709 C G 2.94E-05  7.69 E4, E5
rsGhir_A08_30171616 ~ SNP AO8 30,171,616 A G 9.20E-06  9.38 E6, E9, BLUP
rsGhir_D01_1229290 SNP DO1 1,229,290 A G 8.36E-07  9.25 E8

rsGhir_D01_1229442 SNP DO1 1,229,442 T C 1.94E-06  9.01 E8

rsGhir_D07_19492198  SNP Do7 19,492,198 G A 2.95E-06  6.71 E1

rsGhir_D13_59526001 SNP D13 59,526,001 G C 241E-06  6.19 E4, E5
rsGhir_D13_60955253  Indel D13 60,955,253 A AT 7.40E-07  10.95  E1, E2, E3, E4, E5, E6, BLUP
rsGhir_D13_60955261 SNP D13 60,955,261 G T 7.51E-07  10.88  E1, E2, E3, E4, E5, E6, BLUP
rsGhir_D13_60955462  SNP D13 60,955,462 A G 8.78E-07  10.32  E1, E2, E3, E4, E5, E6, BLUP
rsGhir_D13_62059670  Indel D13 62,059,670  GC G 4.99E-06  6.06 E3

for SNP and InDel calling. Although there was no significant
difference in mapping rate, the genome version of HAU_ vl
had more high-quality SNP and InDel markers. This genome
provided a genetic basis for us to find a novel BW-associated
locus. It is worth noting that 73.68% of associated BW loci
could be detected via the comparison of multiple genomes.
Five loci (rsGhir_A06_26390257, rsGhir_A06_26390265,
rsGhir_A06_26390284, rsGhir_A06_26390468, and
rsGhir_A06_26390491) on chromosome A06 are unique to
HUA and are likely due to the diversity within the species and
the quality of the reference genome. Therefore, the development
of multiple reference genomes would enable the integration of
these resources into high-quality pangenomes and will provide a
better understanding of genetic diversity and a comprehensive
guiding principle for the further exploration and utilization of
this diversity for cotton improvement.

Comparison of GWAS Results With
Previously Reported Results

BW is an important determinant of yield and profitability in
cotton and is controlled by multiple genes. Indeed, cotton
breeding has constantly focused on the improvement of BW.
Thus far, most QTLs for BW have been identified based on
linkage analysis in the CottonQTLdb by using traditional
molecular markers (Said et al., 2015). In addition, due to
the limitation of traditional markers with lower levels of
polymorphism and distribution density, it is difficult to attain
sufficient resolution for fine map-based cloning and direct
identification of candidate genes. GWAS has become a popular
and powerful method to detect variants associated with major
agricultural traits (Su et al,, 2016, 2018; Fang et al., 2017; Wan
et al,, 2017; Ma et al,, 2018; Zhang et al,, 2019a). However,

few studies have dissected the genetic basis of BW in cotton
via GWAS in combination with high-throughput SNPs and
diverse accessions across multiple environments in recent
years, and even fewer candidate genes have been reported.
In this study, 290 upland cotton accessions that were widely
collected worldwide were used to conduct GWASs using
high-throughput SNPs and diverse environments over multiple
years. In total, 19 significant loci were identified among six
different cotton chromosomes (Table 2), including 16 SNPs and
three InDels. The identification of cotton varieties with stable
yield and wide adaptation across a range of environments is
one of the important objectives of modern cotton breeding
programs in China. Although BW has relatively high heritability
(69.65%), still lower than other agronomic traits in cotton,
including oil content (96.6%) (Zhao et al., 2019), fiber length
(81%) (Zhang et al., 2019a), flowering time (79%) (Li et al.,
2021), and resulting, only a few stable QTLs were identified
in 19 significant loci. This indicates that the remaining QTLs
are affected by environment or genotype-by-environment.
Meanwhile, phenotypic variation analysis found the BW of
cotton grown in Huanggang is lower than that in Shihezi and
Anyang. It is mainly caused by the high temperature in summer
and the excessive rainfall in the later stage of cotton growth at
the Yangtze River basin, leading to the correlation coefficient
of E7 and E8 with other environments (E1-E6, E9) being
low. Furthermore, although the SNPs obtained by SLAF-seq
technology can well cover the whole genome of cotton, it must
be admitted that there are indeed fewer stable QTLs than those
obtained based on resequencing of GWAS. Therefore, we could
employ resequencing for GWAS analysis in further to obtain
more reliable QTLs for BW. To screen QTLs with high precision,
high stability, and small confidence intervals for MAS and
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(B) Box plots for BW between the two haplotypes mentioned above (** P < 0.01, * P < 0.05). (C) Differentiation of the genetic diversity distribution of the favorable
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and “CRI12” (green) during ovule developmental stages (10, 20, 30, and 40 DPA) by RNA-seq (** P < 0.01, * P < 0.05).

gene cloning, we further compared our results with published
studies based on SNP and SSR markers (Said et al., 2015).
Eleven reliable and significant markers located on chromosomes
A07, D01, D07, and D13 were reported in previous studies.
Three SNPs (rsGhir_A07_6937342, rsGhir_A07_6937395, and
rsGhir_A07_9574709) on chromosome A07 overlapped with
the region i49554Gh, which was named gGhLP-c7 by Huang
et al. (2017). rsGhir_D01_1229290, rsGhir_D01_1229442,
rsGhir_D07_19492198, and  rsGhir_D13_59526001  on
chromosomes D01, D07, and D13 were mapped to regions
adjacent to TM47842_TM47844, TM64105, and TMS82005,
respectively, as reported by Zhu et al. (2021). Most importantly,
we also discovered a major QTL that was detected in multiple
environments and with multiple BW-BLUP values and that could
explain more than 10% of the observed PV. Furthermore, this
region also overlapped with TM82122, as described by Liu et al.
(2018), and narrowed the candidate region to 60.82-60.95Mb
on chromosome D13 containing three candidate genes. To date,
few QTLs for BW on chromosome A08 have been identified in
previous studies. Interestingly, a tightly linked region flanked
by rsGhir_A08_30171616 on chromosome A08 was detected
in two environments and with BW-BLUP values. This region

contained only one gene (Ghir_A08G009110), which was not
reported to control the boll weight of cotton in previous studies.
Thus, these stable QTLs that are responsible for BW may have
a significant effect on further yield improvement in cotton with
appropriate BW.

Candidate Genes Related to BW

It is known that BW is a complex quantitative trait controlled
by many genes. Here, based on the association analysis,
candidate gene expression analysis, and genetic diversity analysis
of BW in 290 diverse cultivated upland cotton accessions,
Ghir_A08G009110 and Ghir_D13G023010 on chromosomes A08
and D13, respectively, were identified as candidate genes for
QTLs controlling BW in a natural population. Interestingly,
Ghir_A08G009110, a unique candidate gene within the strong
LD region 200 kb upstream and downstream of rsA08_30171616,
encodes a protein containing ankyrin and DHHC-CRD domains
in A. thaliana and is involved in root hair cell growth (Wan
et al, 2017). We also discovered that the candidate gene
Ghir_A08G009110 in this region was highly expressed during
the early stage of ovule development in the high-BW variety
(Figures 4D,E). In addition, Ghir_A08G009110 showed excellent
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FIGURE 5 | Variation analysis of the boll weight-related gene Ghir_D13G023010 on candidate region. (A) Local Manhattan plots for BW-related genes on
chromosome D13 and LD heatmap for the candidate region within the peak region of rsD13_60955253, rsD13_60955261, and rsD13_60955462. (B) Genetic
diversity across the three populations and exon-intron structure of Ghir_D13G0230170. (C) Box plots for BW of the two haplotypes mentioned above (** P < 0.01, * P
< 0.05). (D) Expression abundance analysis of Ghir_D13G023010 between “TM-1” (green) and “CRI12” (red) during ovule developmental stages (0, 10, 20, 30, and
40 DPA) by RNA-seq.

potential for improving cotton yield and was not associated with
other important agronomic traits in a previous QTL analysis
(Said et al., 2015). Therefore, it is reasonable to postulate that
Ghir_A08G009110 is a new candidate gene for influencing BW
in cotton. However, cotton accessions with rsA08_30171616-A
had a much higher allele frequency than those with the potential
superior alleles for Ghir_A08G009110 in NESR and Amerasian,
including accessions with a higher genomic proportion of some
early core accessions. YRR and NIR, which contained mostly
modern accessions, had a lower proportion of superior alleles for
Ghir_A08G009110 (rsA08_30171616-G). Thus, it is possible that
the locus rsA08_30171616-A associated with excellent BW was
screened out during the breeding process, so it is necessary to use
rsA08_30171616-A as a tagging SNP in MAS of cotton lines to
further improve yield.

Seed weight is also selected for during crop domestication,
and understanding the genetic and molecular mechanisms
controlling seed size has become an important research topic in
plant science (Lin et al., 2014). Cotton is the largest economically
important crop in the world, and breeders have expended a
great deal of effort in improving the yield of cotton during
long-term selection. Recently, Ghir_D03G011310 was considered
a candidate gene underlying the natural variation in cotton
that controls early maturity in a natural population during

long-term artificial selection, as stated in our previous report
(Li et al., 2021). Furthermore, Wang et al. (2017) found many
genes involved in the domestication of white fiber. However,
the genes underlying the natural variation in cotton BW are
still largely unknown. Here, we compared the genetic diversity
of the region from 60.91 to 60.97Mb on chromosome D13
containing Ghir_D13G023010 in different breeding periods, and
it was found that cultivars bred after the 2000s had lower genetic
diversity than cultivars released before the 1980s and cultivars
released in the 1980s—2000s. This result implied that with the
continuous increase in cotton yield during the breeding process,
this region is associated with artificial selection and with the
increase in the BW of cotton. In addition, Ghir_D13G023010
was the only RHIPI homolog in the cotton genome and was the
best match with Ghir_D13G023010 in the Arabidopsis genome.
RHIPI is an uncharacterized conserved protein that participates
in sugar signaling and plays significant role in negatively
regulating seeding development (Huang et al, 2015). In
particular, Ghir_D13G023010 has highly expression abundance
in the low-BW variety than in the high-BW variety (Figure 5D
and Supplementary Figure S6). From the above results, we
inferred that Ghir_A08G009110 and Ghir_D13G023010 were
major candidate genes that may play an important role in
influencing cotton boll weight.
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Genome-wide association
studies provide genetic insights
into natural variation of
seed-size-related traits in
mungbean

Jinyang Liu, Yun Lin, Jingbin Chen, Qiang Yan,
Chenchen Xue, Ranran Wu, Xin Chen* and Xingxing Yuan*

Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory
for Horticultural Crop Genetic Improvement, Nanjing, China

Although mungbean (Vigna radiata (L.) R. Wilczek) is an important legume
crop, its seed yield is relatively low. To address this issue, here 196
accessions with 3,607,508 SNP markers were used to identify quantitative
trait nucleotides (QTNs), QTN-by-environment interactions (QEls), and their
candidate genes for seed length (SL), seed width, and 100-seed weight (HSW)
in two environments. As a result, 98 QTNs and 20 QEls were identified
using 3VmrMLM, while 95, >10,000, and 15 QTNs were identified using
EMMAX, GEMMA, and CMLM, respectively. Among 809 genes around these
QTNs, 12 were homologous to known seed-development genes in rice and
Arabidopsis thaliana, in which 10, 2, 1, and 0O genes were found, respectively,
by the above four methods to be associated with the three traits, such
as VrEmp24/25 for SL and WrKIX8 for HSW. Eight of the 12 genes were
significantly differentially expressed between two large-seed and two small-
seed accessions, and VrKIX8, VrPAT14, VrEmp24/25, VrIARL, VIBEE3, VISUC4,
and Vrflo2 were further verified by RT-gPCR. Among 65 genes around
these QEls, VIFATB, VrGSO1, VrLACS2, and VrPAT14 were homologous to
known seed-development genes in A. thaliana, although new experiments
are necessary to explore these novel GEl-trait associations. In addition, 54
genes were identified in comparative genomics analysis to be associated
with seed development pathway, in which VrKIX8, VrABA2, VrABI5, VrSHBI,
and VrlIKU2 were also identified in genome-wide association studies. This
result provided a reliable approach for identifying seed-size-related genes in
mungbean and a solid foundation for further molecular biology research on
seed-size-related genes.

multiple genome-wide association studies, QTN-by-environment interactions,
VrEmp24/25, multi-omics analysis, RT-qPCR
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Background

Mungbean (Vigna radiata (L.) R. Wilczek) is a basic source
of protein and carbohydrate, as it contains approximately
20% protein and 75% carbohydrate, and is a traditional and
important legume in Asia (Somta et al, 2007). Due to its
short life cycle (60-75 days), relative drought tolerance, and
the ability to restore atmospheric nitrogen in association with
Rhizobium/Bradyrhizobium bacteria, mungbean plays a crucial
role in cropping systems and soil improvement (Somta et al,
2007; Alam et al., 2014).

The crop is generally grown as a cash crop in cereal-
based farming systems. However, the major constraint in
mungbean production is low seed yield. The average seed
yield of mungbean is only approximately 700 kg per ha (Islam
et al, 2015). Therefore, improving seed yield is the main
goal in mungbean breeding. Understanding the genetic basis
underlying seed-size-related traits is critical for the genetic
improvement of mungbeans. In mungbeans, the ideotype of
high-yielding cultivars are generally characterized by a large
seed size, a short and synchronous maturity, a low sensitivity
or insensitivity to day length, and the resistances to insects and
disease (Fernandez et al,, 1988). However, the knowledge on
genes related to seed size has been limited. Moreover, the genes
involved in the pathway of seed developments are not yet fully
known.

Seed weight is the most important yield component and
directly proportional to seed yield per plant in mungbean.
To date, there have been seven studies of QTLs for seed
weight in mungbean. Most of these studies are based on
bi-parental segregation populations derived from interspecific
crosses between cultivated and wild (V. radiata var. sublobata)
mungbeans, and only two studies have evaluated seed size in
more than one environments. The number of QTLs identified
in those studies ranged from 3 to 11. Humphry et al. (2010)
reported 11 loci for seed weight using SSR-marks, and Mei et al.
(2009) identified a major QTL associated with both bruchid
resistance and seed mass. Nonetheless, no candidate gene was
identified for this trait.

Although many genes for seed weight have been reported in
Arabidopsis (Plackett et al,, 2012; Ge et al,, 2016; Lu et al,, 20165
Cheng et al,, 2018; Zhang et al,, 2020), soybeans, and rice (Luo
et al,, 2013; Ge et al., 2016; Liu et al., 2020a; Hao et al., 2021;
Nguyen et al., 2021), few genes were reported in mungbean.

Abbreviations: GWAS, genome-wide association study; HSW, 100-seed
weight; FPKM, Fragments Reads Per Kilobases per Million reads; PPI,
protein—protein interaction; RNA-seq, RNA sequencing; QEls, QTN-
by-environment interactions; GEMMA, genome-wide efficient mixed-
model association; CMLMs, compressed mixed linear models; EMMAX,
efficient mixed-model association expedited; KIX8, KINASE-INDUCIBLE
DOMAIN INTERACTINGS8; Emp24/25, emp24/gp25L/p24 family; QTNs,
quantitative trait nucleotides; SNP, single nucleotide polymorphism; SW,
seed width; SL, seed length.
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In Arabidopsis, FATB (Bonaventure et al., 2003) was involved
in the synthesis of short-chain fatty acids and influenced seed
development. Although GA200X regulated Arabidopsis in late
floral development (Plackett et al., 2012), the overexpression
of GmGA200X in Arabidopsis enhanced seed size and weight.
KIX8 controlled seed size in Arabidopsis and soybeans (Liu et al.,
2020a; Nguyen et al,, 2021). BESI suppressed the cell elongation
and increased seed size in legume species (Ge et al.,, 2016). ERG2
promoted early seed development and influenced the length of
mature siliques (Cheng et al,, 2018). In soybeans, GA200X (Lu
et al, 2016), GmFAD3 (Singh et al,, 2011), GmLEC2 (Manan
et al,, 2017), GmPDAT (Liu et al,, 2020c), GmKIX8-1 (Nguyen
et al, 2021), and GmGA3oxI (Hu et al, 2022) were found
to influence seed size by regulating lipid accumulation or
increasing cell proliferation. In rice, DI (Sun et al., 2018), D2
(Fang et al., 2016), flo2 (She et al., 2010), GS3 (Sun et al., 2018),
OsBZR1 (Liuetal., 2021), GW2 (Hao et al.,, 2021), D11 (Wu et al,,
2016), and OsHT (Guo et al., 2020) were found to control seed
weight by regulating rice grain size or starch quality.

Knowledge regarding seed development pathway is
also a valuable source for transgenic strategies to improve
crop production. As reported, there are several signaling
pathways that control seed size, including the G-protein
signaling, ubiquitin proteasome pathways, mitogen-activated
protein kinase (MAPK) signaling, auxin pathways, and some
transcriptional regulators (Li et al, 2019). In Arabidopsis,
GPAI, AGB, and AGG3 were involved in G-protein-signaling
pathways. DAI, DA2, SOD2, UBP15, EODI, and SAMBA
were involved in ubiquitin proteasome pathways. In addition,
ABA2, ABI5, SHB1, MINI3, IKU2, and CKX were involved in
the HAIKU (IKU) pathway. Additional genes were found to
be related to seed size developments, but their pathways are
uncertain, such as KIX8, BES1, MESI, and KLU (Orozco-Arroyo
et al,, 2015; Li et al., 2019). However, some reports have been
focused on genetic foundation and molecular mechanism of
seed developments in mungbean.

Genome-wide association studies (GWASs), along with
multi-omics analysis, have been frequently used to mine
candidate genes for most important agronomic traits in crops.
Integrating GWAS with comparative genomics, transcriptome
analysis, and molecular experiments, genes have been identified
to be associated with complex traits (Liu et al, 2020c).
(2022) conducted a GWAS
with high-quality single nucleotide polymorphism (SNP)
data and seed-size traits, and found that Cla97C05G104360
and Cla97C05G104380, which are involved in abscisic acid
metabolism, played important role in regulating the seed
size in watermelon. Duan et al. (2022) identified GmST05
to be associated with soybean seed size through the GWAS

For example, Gong et al

of 1800 soybean germplasm resources, and GmST05 differed
significantly at the transcriptional level. Liu et al., 2022a,c used
GWASs and biological experiments to identify a pleiotropic
gene GmPDAT for seed size- and oil-related traits in
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soybean, and a salt-stress-tolerance gene V*rFROS8 in mungbean.
Nonetheless, the related genes responsible for seed-size-related
traits remained unknown in mungbean.

To address the above issues, 196 mungbean accessions with
3,607,508 SNP markers were used to conduct GWAS for seed
length (SL), seed width (SW), 100-seed weight (HSW) using
3VmrMLM (Li et al.,, 2022b), efficient mixed-model association
expedited (EMMAX) (Kang et al., 2010), genome-wide efficient
mixed-model association (GEMMA) (Zhou and Stephens,
2012), and compressed mixed linear model (CMLM) (Zhang
etal, 2010) methods. Candidate genes around quantitative trait
nucleotides (QTNs) and QTN-by-environment interactions
(QEIs) for the three traits were predicted by transcriptomics and
comparative genomics. Key candidate genes were verified by RT-
PCR analysis. Moreover, genes in seed-development-regulation
pathway were also mined by comparative genomics. It should be
noted that VrEmp24/25 and VrKIX8 were found to be associated
with SL and HSW, and a major gene VrPATI4 (LOD = 61.95,
% = 5.80%) was identified in QEI detection via 3VmrMLM.

Materials and methods

Plant materials and treatments

A diverse set of 196 mungbean accessions including 20 wild
and 176 cultivated accessions from 23 countries, were used
in this study (Supplementary Data Set 1). All the accessions
were planted in a randomized complete block design with
two replicates in an experimental field of Kasetsart University,
Kamphaeng Saen Campus, Nakhon Pathom, Thailand in 2018
and 2020. In each replicate, each accession was planted in a
single row 2.5 m long with 12.5 cm intra-row spacing (ca. 20
plants/row) and 50 cm inter-row spacing. Cultural practices
were performed according to Park (1978). SW (mm), SL (mm),
and HSW (g) were measured. At maturity. The SL and SW traits
for each accession were averaged based on 20 seeds and 100SW
for each accession was averaged based on three replicates.

Whole-genome resequencing

The young leaves of the above 196 mungbean accessions
were collected 1 week after planting. The DNA was extracted
in 2018, using the CTAB method (Smith et al,, 2005). Short
reads sequenced by an Illumina HiSeq 4000 platform (Illumina,
San Diego, CA, United States), and mapped to scaffolds using
Burrows-Wheeler-Alignment Tool (BWA) (Version 0.7.15)* (Li
and Durbin, 2009). Genome Analysis Toolkit (GATK) was used
to select SNP and indel® (McKenna et al., 2010). Sulv 1 genome

1 http://bio-bwa.sourceforge.net/bwa.shtml
2 https://gitee.com/mirrors/GATK
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was selected as the reference genome in the GATK analysis
(Yan et al,, 2020). High-quality SNPs and Indel variations were
obtained as the following steps. (a) Retaining concordant sites
both identified by GATK and VCFtools were retained (Danecek
et al,, 2011). (b) Filtering out SNP with quality value below
30, removing SNPs with an average coverage depth < 8x and
with minor allele frequency (MAF) less than 5%. (c) Deleting
insertions and deletions (InDels) with length less than10 bp were
deleted. A total of 3,607,508 SNPs were identified.

As described in Liu et al. (2022a), the number of
subpopulations was five (K = 5), and the population structure (Q
matrix) was calculated using ADMIXTURE software (version
is 1.3.0).> The K matrix was calculated using the above
CMLM (GAPIT version 3),4 EMMAX (GAPIT),> GEMMA
(Version 0.94.1)%, and 3VmrMLM programs (IIIVmrMLM)’
(Supplementary Data Set 2; Li et al., 2022a).

Genome-wide association study for
seed width, seed length, and 100-seed
weight

Only the SNPs with MAF > 0.05 and missing rate < 10%
were used in GWAS (Pongpanich et al,, 2010). The lines with
more than 95% missing for trait were filtered out (Liaw and
Wiener, 2002). SW, SL, and HSW, and the above SNP markers
in 196 mungbean accessions were used to conduct GWAS using
four different methods, including 3VmrMLM (Li et al., 2022b)
via software IIIVmrMLM (Li et al, 2022a), EMMAX (Kang
et al, 2010), GEMMA (Zhou and Stephens, 2012), and CMLM
(Zhang et al,, 2010). The probability threshold for significant
QTNs was set at 1/m = 2.77e-07 (m = 3,607,508) for all the four
methods (Xu et al., 2018; Zhang Y. M. et al,, 2019; Zhang Y. M.
et al,, 2019), and the LOD score threshold for suggested QTNs
was set at LOD > 3.0 for 3VmrMLM (Li et al., 2022b). Heatmaps
of the linkage disequilibrium was generated by LDheatmap
package (Shin et al., 2006), haplotype analysis was conducted by
LDheatmap package (Barrett et al., 2005). The averages for those
traits measured in 2018 and 2020 were used in GWAS.

Candidate gene identification

Candidate genes for salt tolerance were mined in the
follow steps. (a) All the genes between the 30 Kb around
regions for each of the significantly QTN were mined,
where the LD-value was about 20 Kb in mungbean, (b)

http://dalexander.github.io/admixture/download.html
http://zzlab.net/GAPIT
http://csg.sph.umich.edu//kang/emmax/download/index.html
https://github.com/genetics- statistics/ GEMMA
https://github.com/YuanmingZhang65/11IVmrMLM

N o o MW
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mined the Arabidopsis, rice and soybean homologous genes
of those candidate genes, which were reported related to
seed developments, seed production, phytohormone signaling
pathways and carbohydrate metabolism pathways, etc. (Li
et al,, 2019), as the candidate genes. (c) The selected genes
showing different expression between two groups of mungbean
accessions contrasting in seed size (large seed vs. small seed) (see
below) were considered as candidate genes.

Differentially expressed gene based on
RNA-sequenced data

Two large-seeded accessions [G141 and G143; 19.32 £ 7.09
(g)] and two small-seeded accessions [G169 and G171;
11.58 £ 5.93 (g)] were selected for RNA sequencing (RNA-
seq) analysis. Data in seed set were collected at three seed
development stages (10, 15, and 25 DAF) for RNA extraction
in 2021. Total RNA was extracted using RNAprep Pure Plant
Kit (DP441) according to the manufacturer’s instructions.
1 pg high-quality RNA samples (OD260/280 = 1.8~2.2;
0D260/230 > 2.0; RIN > 6.5; 285:18S > 1.0 and >10 jLg) were
used to construct the sequencing library (G9691B, Agilent). The
RNA were analyzed in an Illumina Novaseq Sequencer. Raw
reads were cleaned by trimmomatic® (Bolger et al.,, 2014), and
clean reads were mapped to reference sequences using Hisat2
(Pertea et al, 2016). The gene expression level was calculated
by using RPKM method by Subread package (Mortazavi et al.,
2008).

In the key candidate gene identification, the extracted
RNA in two large-seeded accessions at 10 and 25 DAF were
treated with RNase-free DNase I (Promega, Madison, WI,
United States). After reverse transcription, the cDNA was used
as a template for RT-qPCR using the Takara Bio TB Green
Premix Ex Taq (Tli RNase H Plus). The detail progress was
described by Liu et al. (2022b). Reactions were run on a Bio-
Rad CFX96 system. EVM0007380 (homologous of At3g18780)
was used as the CK in this experiment. Primers were designed
by NCBI and tested by RCR of tubulin. The t-test was adopted
in the hypothesis testing, P < 0.05, P < 0.01, and P < 0.001
indicated significant probability levels at 0.05, 0.01, and 0.001,
respectively. Information of the primers used is presented in
Supplementary Table 1.

Protein—protein interaction

The protein-protein interactions (PPIs) were detected used
the online tools STRING?® (Jensen et al,, 2009). The mungbean

8 http://www.usadellab.org/cms/index.php?page=trimmomatic
9 https://string-db.org//
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(V. radiata (L.) R. Wilczek) protein database was used as the
protein library.

Results

Phenotypic variation for mungbean
seed-size-related traits

100-seed weight, SW, and SL in 196 mungbean accessions
were measured in 2018 and 2020. The average-plus-standard
deviations for the three traits across the 2 years were
5.05 £ 1.91 (g), 3.48 =+ 0.51 (mm), and 4.64 = 0.99 (mm),
respectively, and their average coefficients of variation (CV)
across the 2 years were 38.5, 14.5, and 16.5 (%), respectively
(Supplementary Table 2). Although the trends for those traits
in the 2 years were similar (Figures 1A-C), HSW (38.5%) had
much larger phenotypic variation than SW (14.5%) and SL
(16.5%), indicating their large phenotypic variation and typical
quantitative traits. In general, the wild mungbeans showed low
seed weight (1.68 = 0.61) as well as short SW (2.45 £ 0.401) and
SL (3.12 £ 0.43), while the cultivated mungbeans had high seed
weights (5.29 % 1.68) as well as long SW (3.56 £ 0.41) and SL
(4.76 £ 0.92) (Supplementary Table 2). Moreover, significant
difference for each trait between the 2 years was observed
(P < 0.001), and these traits had significant correlations with
each other (r > 0.87, P < 0.001) (Figure 1D), indicating the
existence of common QTNs among these traits (Liu et al,
2020b).

Genome-wide association studies for
seed-size-related traits in mungbean

Detection of main-effect quantitative trait
nucleotides for seed-size-related traits in each
environment

After removing the SNPs with an average coverage
depth < 8x and with a MAF less than 5%, we identified more
than 3.6 million SNP markers. In the single-environment
analysis, the phenotypic observations for each trait in 196
accessions measured in 2018 and 2020 were used to associate
with 3,607,508 SNPs using 3VmrMLM, EMMAX, GEMMA,
and CMLM under the situations of five subpopulations
and polygenic background control (kinship matrix)
(Supplementary Data Set 3). As more than 10,000 QTNs
were identified by GEMMA for HSW in 2018, the relevant
results were not used in the subsequent analysis. As a result,
208 significant QTNs were identified for the above traits.
Thirteen significant QTNs were simultaneously identified in
two environments by two GWAS methods (Supplementary
Table 3; Supplementary Data Set 4), some significant QTNs are
presented in Figure 2. For example, Chr10-25206533-25223155

frontiersin.org


https://doi.org/10.3389/fpls.2022.997988
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://string-db.org//
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

Liu et al. 10.3389/fpls.2022.997988
A B
40~  Year Mean * SD 2018 50 Year Mean * SD 2018
2018 4.87 + 1.88 m 2020 2018 3.50 + 0.49 2020

a 2020 5.03 £ 1.97 40 2020 3.46 * 0.52
S 30
2
] 304
& 20
“5 20 -
S
Z 10 104

0- 0-

PR N S AL P S U I A
Q- \- !»- A,- &- 6- b- «- %- \. f». I». f». ﬁ}- P\). A;- h‘
HSW (g) SW (mm)
€ 40 Year Mean £ SD 2018 D
2018 4.64 £ 0.76 2020

e 2020 4.64 £ 1.17
S 301
2
g
= 20
-
=
)
Z 10+

0 -

NP N RN I CINC L S sW P<0.001 oL
ﬂa- ")' &- 6- %-
SL (mm) Pearson correlation analysis

FIGURE 1

The frequency distributions of seed-size-related traits. Frequency distributions of HSW (A) (g), SL (B) (mm), and SW (C) (mm) in 196 mungbean
accessions, which were measured in 2018 (brown bar) and 2020 (black bar). SD, standard deviation. The associations of HSW with SW and SL,
the average dates of those traits measured in 2018 and 2020 were used in the partial correlation analysis (D).

(LOD = 15.40~37.89, P = 3.16E-08~5.15E-09) was detected
in 2018 and 2020 by MLM, EMMAX, and 3VmrMLM to be
associated with HSW, SW, and SL (Table 1; Figures 2A-F),
and the Q-Q plot in the Supplementary Figures 1A-D, which
was corresponding to the GWAS results in Figure 2, except
3VmrMLM. And Chrl-71543546 (LOD = 7.70~12.44) was
detected in 2018 and 2020 by 3VmrMLM to be associated with
SW (Supplementary Table 3). These QTNs were distributed on
chromosomes 1-4, and 10 (=20 QTNs for each chromosome)
and had a 1.15% average proportion of their total phenotypic
variation explained by each QTN, and there were 47, 115, and
46 QTNs, respectively, for HSW, SL, and SW (Supplementary
Data Set 4).

Detection of quantitative trait nucleotides for
seed-size-related traits in multiple
environments

To detect more stable QTNs, three seed-size-related traits
of 196 mungbean accessions measured in 2018 and 2020
were used to associate with 3607508 SNP markers using two-
environment 3VmrMLM joint analysis. As a result, 32, 33,
and 18 significant QTNs were identified for HSW, SL, and
SW, respectively (Supplementary Table 3), and had a 1.08%
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average proportion of total phenotypic variation explained by
each QTN. Moreover, eight significant QTNs were identified
(Supplementary Table 4). For example, Chr1-8161305-8347626
(LOD 24.09~36.33) and Chrl0-25222572-25223133 loci
(LOD = 29.75~37.89) were detected to be associated with HSW
and SL, respectively (Supplementary Tables 3, 4).

Based on all the above main-effect QTNs in single-
and multiple-environment analysis, five stable QTNs across
various methods and/or two environments were found
(Supplementary Table 5), including Chrl-8161305-8347626
(LOD = 24.09~36.33), Chr2-12602704 (LOD = 17.71~38.08),
Chr4-10069367 (LOD 17.72~34.19), Chr5-10834954
(LOD = 9.53~30.03), and Chrl10-Chr10-25222572-25223133
(LOD = 29.75~37.89), especially, Chr1-8161305-8347626 and
Chr10-25222572-25223133 were simultaneously identified
across methods and two environments.

Detection of quantitative trait
nucleotide-by-environment interactions for
seed-size-related traits in multiple
environments

All the above datasets in GWAS were used to detect QEIs
using 3VmrMLM. As a result, 5, 10, and 5 significant QEIs were
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TABLE 1 Eight key candidate genes derived from genome-wide association studies for seed-related traits.

Trait Genome-wide association studies Comparative genomics Function Reference

Chromosome Position ~ LODscore 12 (%) Method Candidate genes P,-value log,FC Arabidopsis

e N

30U31DS JUe|d Ul SISIUOIS

640" UISIaIUO.Y

(bp) or Py-value homologs
Single_env: Detection of main-effect QTN for seed size-related traits
2018-HSW 1 52015258 21.84 0.81 3VmrMLM ~ EVMO0016442/TAR1 0.05* 0.39 AT1G68100 IAA-alanine resistance protein 1 Rampey et al., 2013
4 36876485 3525 1.3 3VmrMLM EVMO0019602/flo2 0.02% 1.09 AT4G36920 Seed development She et al,, 2010
11 3018112 25.95 2.62 3VmrMLM  EVMO0010067/ABA2 0.18 0.21 AT1G52340 Seed maturation Chauffour et al., 2019
2020-HSW 1 8177726 28.09 1.31 3VmrMLM  EVMO0032114/KIX8 0.03* 0.49 AT3G24150 Seed development Lietal., 2019
4 7755858 19.6 1.03 3VmrMLM  EVMO0015332/SUC4 0.02* 0.29 AT1G09960 Sucrose transport protein SUC4 Xu and Liesche, 2021
10 25206533 15.41 0.59 3VmrMLM  EVMO0015812/Emp24 0.02* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019
2018-SW 1 71543546 12.44 1.65 3VmrMLM EVMO0002784/BEE3 0.01* 1.24 AT1G73830 Seed development Moreno et al., 2018
2020-SW 1 30724948 29.81 1.74 3VmrMLM  EVMO0033315/SHB1 0.15 0.04 AT4G25350 Seed development Zhang H. et al,, 2017
1 71543546 7.70 0.57 3VmrMLM EVM0002784/BEE3 0.01* 1.24 AT1G73830 Seed development Moreno et al., 2018
6 13463604 12.93 0.55 3VmrMLM  EVMO0028931/ZIP6 0.02* —0.85 AT2G30080 Seed development Lee et al., 2021
9 24007163 61.96 5.8 3VmrMLM  EVMO0027211/PAT14 0.03* 1.19 AT3G60800 Leaf senescence Zhao et al., 2016
2018-SL 3 34837582 3.24E-08 NA EMMAX EVMO0028440/ABI5 0.19 0.25 AT2G36270 ABSCISIC ACID-INSENSITIVE 5 Lynch et al,, 2022
isoform X4
6 1650897 1.92E-08 NA EMMAX EVMO0030447/IKU2 0.43 0.78 AT3G19700 Embryo development Xiao et al., 2016
10 25223155 5.15E-09 0992  CMLM EVMO0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al,, 2019
10 25222572 1.91E-06 0.515  CMLM EVMO0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019
10 25223133 9.34E-09 2.264 CMLM EVMO0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al,, 2019
10 25223155 3.16E-08 3.411 CMLM EVMO0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al,, 2019
10 25223133 9.34E-09 NA EMMAX EVMO0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019
Multi_env: Detection of main-effect QTN for seed size-related traits
HSW 1 8161305 36.33 0.8 3VmrMLM  EVMO0032114/KIX8 0.03* 0.50 AT3G24150 Seed development Lietal, 2019
1 52015258 13.52 0.12 3VmrMLM  EVMO0016442/IAR1 0.06 0.39 AT1G68100 TAA-alanine resistance protein 1 Rampey et al., 2013
4 7755858 28.43 0.66 3VmrMLM  EVMO0015332/SUC4 0.02* 0.30 AT1G09960 Sucrose transport protein SUC4 Xu and Liesche, 2021
4 36876485 71.71 0.95 3VmrMLM EVMO0019602/flo2 0.02* 1.09 AT4G36920 Seed development She et al., 2010
10 25222572 37.89 0.67 3VmrMLM  EVMO0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019
SL 1 8347626 24.09 0.35 3VmrMLM  EVMO0032114/KIX8 0.03* 0.50 AT3G24150 Seed development Lietal,, 2019
4 19559337 16.8 0.32 3VmrMLM EVMO0022984/flo2 NA NA 0s04g0645100  Seed development She et al., 2010
10 25223133 29.75 0.64 3VmrMLM  EVMO0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019
SwW 6 13463604 27.54 1.62 3VmrMLM  EVMO0028931/ZIP6 0.02* —0.85 AT2G30080 Seed development Lee et al., 2021

The P, -values were calculated by CMLM, EMMA, and 3VmrMLM, The P;-values were calculated using paired t-test from the average FPKM values at three stages between two high seed weight (11 = 2) and tow seed weight (1, = 2) mungbeans, and their
significances were marked by * (0.05 level); FC and NA represent fold change and no expression, respectively.
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found to be associated with HSW, SL, and SW, respectively
(Supplementary Figure 2; Table 2). Among these QEIs, 5 had
zero dominant-by-environment interaction effects, and 7 had
zero additive-by-environment interaction effects. For example,
the two loci Chr4-26262890 and Chr4-31677341 for HSW
had only additive-by-environment interaction effects of 0.12
(Supplementary Figures 2A-C, LOD = 12.70; r* = 0.26) and
0.08 (Supplementary Figures 2A-C, LOD = 12.65; = 0.27),
respectively.

The two loci Chrl-155976 and Chrl-3598291 for HSW
had only dominant-by-environment interaction effects of —0.61
(LOD = 12.73; 2 = 0.25) and 0.44 (LOD = 13.25; % = 0.27),
respectively. Among the 20 QEIs, the loci Chr4-5255551 and
Chr7-16074671 had inconsistent directions between additive-
and dominant-by-environment interaction effects.

In addition, among these QEIs, the QEI locus Chr9-
24007163 for SW had large effect, and r* was 5.8%
61.95). The additive
and dominant effects in environment 1 were —0.14 and

(Supplementary Figure 2B, LOD =
—0.098, respectively.

Candidate genes for seed-size-related traits

A total of 6912 DEGs were identified between two high-
seed-weight and low-seed-weight mungbeans (FDR < 0.05)
(Supplementary Figures 3A,B; Supplementary Data Set
6). These DEGs were intersected with 809 genes around
significant QTNs for HSW, SL, and SW (Supplementary
Tables 3, 4; Supplementary Data Sets 4, 5). As a result, 53
out of 809 genes were differentially expressed (P < 0.05,
Log,FC > 0.5). Using comparative genomics analysis, 12
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out of 53 DEGs were homologous to previously reported
seed development related genes in rice and Arabidopsis
thaliana, in which KIX8, PAT14, Emp24/25, IARI, BEE3,
SUC4, flo2, and Zip6 had been confirmed via functional
analysis in rice and A. thaliana (Table 1), such as VrKIX8
(LOD = 24.09~36.33), VrEmp24/25 (LOD = 15.40~37.89,
P = 3.16E-08~5.15E-09), VrPAT14 (LOD = 61.96), and
VrZIP6 (LOD = 27.54). Among the eight genes, VrKIXS8,
VrEmp24/25, VrIARI, VrBEE3, VrSUC4, and Vrflo2 were
significantly upregulated in high-HSW accessions, VrPAT14 was
significantly downregulated, and VrZIP6 had no significant
difference (Figure 3A), as compared to those in low-HSW
accessions using the transcriptome data at 10, 15, and 25 DAF
(Supplementary Data Set 4). We conducted RT-qPCR analysis
to further confirm the eight key candidate genes. The results
showed that seven genes were confirmed, except VrZIP6, a
transcription factor related to seed development. All the seven
genes had higher expression levels in the early stage of seed
development (10 DAF) than in the late maturation stage of
seed development (25 DAF) (Figure 3B; Supplementary Data
Set 7), indicating their essential roles at early stage of seed
development.

Using the same approach described above, among 65
genes around 20 QEIs, four were homologous to previously
reported seed development related genes in rice and A. thaliana
(Table 2), although new experiments are necessary to explore
these novel GEI-trait associations. The four genes were
described as below. VrFATB was linked to the locus Chr4-
30176682 (Supplementary Figure 2A). As described in
Bonaventure et al. (2003) and Sun et al. (2014), FATB is
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TABLE 2 Twenty significant QTN-by-environment interactions for seed-size-related traits under multi-environments.

Trait 3VmrMLM Candidate genes P-value log;FC Arabidopsis Function References
homologs
Chr Position (bp) LOD Add Dom r? (%)
(QE) X X
Envl Envl
HSW 1 25048694 7.99 0.08 0.18 EVMO0010707; EVM0020394  EVMO0010707 0.11 0.05 NA NA
3 5498494 14.34 0.11 0.33 EVMO0013436; EVM0027482; EVMO0013436 0.21 1.53 AT3G61060 F-box protein PP2-A13
EVMO002290
4 30176682 15.23 0.12 0.38 EVMO0013210 EVMO0013210/ 0.09 0.50 AT1G08510 FATB Bonaventure et al.,
FATB 2003; Sun et al., 2014
4 42563100 6.50 0.08 0.15 EVMO0019039; EVM0011516 ~ EVM0019039/ 0.09 0.91 AT4G20140 Seed development Creff et al,, 2019
GSO1
5 8962133 10.49 0.09 0.23 EVMO0027740; EVM0007126 ~ EVMO0007126 0.05 —4.53 AT1G21450 Seed development
SL 1 155976 12.73 0.00 —0.61 0.25 EVMO0006618; EVM0002787; EVMO0006618 0.00 0.43 AT3G59910 Ankyrin repeat protein
EVMO0025368; EVM0002245; SKIP35 isoform X1
EVMO0007007
1 35982911 13.25 0.00 0.44 0.27 EVMO0014255 EVMO0014255 NA NA AT3G26570 Inorganic phosphate
transporter 2-1, chloroplastic
4 22723706 12.93 —0.01 —0.61 0.26 EVMO0015688 EVMO0015688 0.03 0.07 AT5G50920 Chaperone protein ClpC,
chloroplastic
4 26262890 12.70 0.00 —0.43 0.26 EVMO0003123; EVM0001918 ~ EVMO0003123 NA NA NA Citrate-binding protein-like
4 31677341 12.65 0.00 —0.61 0.27 EVMO0009176; EVMO0033509; EVMO0033630 0.03 NA AT3G57520 Probable galactinol-sucrose
EVMO0023714; EVMO0033630; galactosyltransferase 2
EVMO0032994 isoform X2
4 40101763 13.31 —0.01 —0.61 0.29 EVMO0000524; EVM0025504 EVMO0000524 0.21 NA AT4G33140 Uncharacterized protein
7 16074671 12.90 0.01 —0.61 0.25 EVMO0007632; EVM0003451; EVMO0007632 0.14 0.66 AT5G10330 Histidinol-phosphate
EVMO0005587; EVM0017922; aminotransferase,
EVMO0009325 chloroplastic
7 28608053 12.99 —0.01 —0.61 0.27 EVMO0025691; EVM0014665 EVMO0025691 NA NA AT2G34930 Hypothetical protein
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TABLE 2 (Continued)

Trait 3VmrMLM Candidate genes P-value log;FC Arabidopsis Function References
homologs
Chr Position (bp) LOD Add Dom r? (%)
(QE) X X
Envl Envl

8 32848165 12.70 0.00 —0.61 0.26 EVMO0033747; EVM0012210; EVMO0012210/ 0.03 —2.53 AT1G49430 Long chain acyl-CoA Schnurr et al., 2004;
EVMO0020228; EVM0006042; LACS2 synthetase 2 isoform X1 Bai et al., 2022
EVMO0026839; EVM0012261;
EVM0001209; EVM0016212;
EVMO0027531; EVM0030105;
EVM0021224; EVMO0011572

11 24829262 12.65 000  —061 025  EVMO0006035; EVM0003000; EVM0020076  0.03 0.22 AT1G59870 ABC transporter G family
EVMO0020076; EVM0004982 member 36

SW 2 29996834 9.66 0.02 0.26 0.62 EVMO0004520; EVM0005114  EVMO0004520 0.09 1.02 AT3G09300 Oxysterol-binding
Protein-related protein 3B
4 5255551 7.38 0.02 —0.12 0.48 EVMO0010724; EVMO0028229  EVMO0010724 0.11 NA AT1G80550 Pentatricopeptide
repeat-containing protein

4 19640302 16.41 0.00 —0.39 117 NA NA NA NA NA

7 18410421 9.28 —0.03 —0.20 0.61 EVMO0022194; EVMO0018119; EVMO0022194 0.08 0.47 AT1G68690 Proline-rich receptor-like
EVMO0020361; EVM0025547 protein kinase PERK9

9 24007163 61.96 —0.14 —0.10 5.80 EVMO0027211; EVM0026090; EVMO0027211/ 0.03 1.19 AT3G60800 Leaf senescence Zhao et al., 2016
EVMO0028888; EVM0024624; PAT14

EVMO0026781; EVM0029904;
EVMO0012085; EVM0004220

The P-values were calculated using paired t-test from the average RPKM values at three stages between two high seed weight (#; = 2) and tow seed weight (1, = 2) mungbeans, and their significances were marked by * (0.05 level); FC and NA represent

fold change and no expression, respectively.
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a major determinant of saturated fatty-acid synthesis, and
increases FATB activity at low temperature during seedling
establishment caused high saturated fatty-acid content in
plant. VrGSOI was linked to the locus Chr4-42563100
(Supplementary Figure 2A). As observed in Creff et al
(2019), GSOI1 was a stress signal-pathway-related gene, and
stress-associated MPK6 protein acted downstream of GSOI
in developing embryo. VrPATI14 was linked to the locus
Chr9-24007163 (Supplementary Figure 2B). In Zhao et al.
(2016), PAT14 was involved with NPR1-dependent salicylic-
acid signaling. VrLACS2 was linked to the locus Chr8-32848165
(Supplementary Figure 2C), in which VrLACS2 was essential
for normal cuticle development in Arabidopsis (Schnurr et al,,
2004) and CrLACS2 suppression resulted in 50% less oil, yet with
a higher amount of chloroplast lipids under N-deprivation (Bai
etal., 2022).

Haplotype analysis of the main candidate genes

Two DEGs, VrEmp24/25 and VrKIX8, were detected in
the single- and multi-environment analyses (Figures 4A,B),
and verified by RT-qPCR. Their haplotypic analyses were
described as below.

In the haplotype analysis of VrEmp24/25, five SNP markers
were found to be within VrEmp24/25 and the promoter
region (Supplementary Data Set 8), and the two SNP markers
in VrEmp24/25 were used to consist of three haplotypes
(Figure 4D). Among the three haplotypes, hap 1 (5.17 g) had
significantly higher HSW than hap 2 (1.58 g) and hap 3 (4.50 g;
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P = 2.11E-29) (Supplementary Table 7). Thus, hap 1 is elite
haplotype. And the elite haplotypes TT made up more than
90.9% (160/176) in the cultivated mungbeans. VrEmp24/25 with
elite haplotype frequencies less than 45% in wild mungbeans
(Supplementary Table 7; Figure 4) can be exploited for the
improvement of mungbean cultivars.

Around the significant QTN Chrl1-8161305-8347626
(Figure 5A; Supplementary Data Set 8), eight genes were found
distributed in the region (Figure 5B). And six polymorphic
loci, ie., Chrl_8243935, Chrl_8243938, Chrl_8243939,
Chrl_8243940, Chrl_8243945, and Chrl_8244001 were
found in VrKIX8 and the promoter region. All the six SNP
were used to conduct the haplotype analysis (Figure 5C).
Among the three haplotypes, hap 1 (5.09 g) had significantly
higher HSW than hap 2 (4.56 g), hap 3 (3.47 g), and
hap 4 (3.86 g) (Supplementary Table 7). Thus, hap 1 is
elite haplotype. The elite haplotypes ATCGAA made up
more than 73.2% (129/176) in the cultivated mungbeans,
while the haplotype frequencies of CGAGT and CTAGGA
were more than 25% (5/20) in wild mungbeans. Though
Chr1_8243945 and Chrl_8244001 were located within
the 5 UTR of VrKIX8, and the amino acid sequence
had not changed between cultivated mungbeans and
wild mungbeans (Figure 5D). The SNP in 5 UTRs
could influence the translation efficiency of VrKIXS8
(Evfratov et al, 2017). The HSW in hap 1 (5.16 g) was
significantly higher than that in hap 2 to hap 4 (3.50-4.66 g;
P =1.19E-21).
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wild accessions. Cul, the cultivated accessions.

Based on these results, we deduced that these two SNP and
six SNP cause the difference expression of the VrEmp24/25 and
VrKIX8 gene, respectively. The discovery of VrEmp24/25 and
VrKIX8 two domestication/improvement genes can accelerate
breeding selections and facilitate ideal crop designs.

Expression patterns of seed development
pathway genes in mungbean

As seed development pathway genes were largely unknown
in mungbean, we mined seed development pathway genes
by comparative genomics and transcriptomics analysis. As a
result, 54 genes in seed-development pathway were identified
in this study (Figure 6; Supplementary Data Set 9), such
as two GPAI, one AGB, and one AGG3. In the ubiquitin
proteasome pathways, two DAI, one DA2, one SOD2, one
EODI, and one UBPI15 rather than SAMBA were identified.
In the auxin pathways, two ABA2, one ABI5, three SHBI,
five IKU2, and three CKX2 rather than IKUl and MINI3
were identified (Figure 6A). Five transcription factors including
three BES1, and two SOD7 were identified. Moreover, 16
genes for seed size developments were found to be with
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uncertain pathways, including three KIX8, five MESI, and one
KLU (Figure 6A; Supplementary Data Set 9). Among the
54 genes, 13 genes were significantly differentially expressed
(P-value < 0.05, t-test) between two low-seed-weight (nos.
G169 and G171) and two high-seed-weight (no. G141 and
G143) accessions in the 196 mungbean accessions using
the transcriptome data at 10, 15, and 25 DAF (Figure 6B;
Supplementary Data Set 8). Moreover, almost 90% of the 54
genes (48/54) had higher expressions in the early stage of seed
development (10 and 15 DAF) than in the late maturation
stage (25 DAF), including VrKIX8 (EVM0032114), which was
commonly identified in the GWAS by 3VmrMLM for HSW
and SL. And EVMO0010067/VrABA2, EVMO0033315/VrSHBI,
EVMO0028440/VrABI5, and EVMO0030447/VrIKU2 were also
identified in the GWAS by 3VmrMLM, within 100 Kb region
of significant QTNs (Table 1).

We also did the PPI analysis among the seed development
pathway genes, and found five pairs of PPIs were larger
than the medium confidence value of 0.40 (Supplementary
Table 7), indicating the existence of significant PPIs, ie.,
EVMO0013794.1 (VrAGG3) and EVMO0006667.1 (VrDA2)

frontiersin.org


https://doi.org/10.3389/fpls.2022.997988
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

Liu et al.

HSW
Emp24/25

-log,
e
LOD

SL

1o
oy
LOD

5 6

1
R, Color Key

FIGURE 5

10.3389/fpls.2022.997988

Chr1-8177726

\ EVMO0033855; /7K LXS;

EVMO0027956;EVM0014767:EVM0020113:EVM0004914:EVM0019622:EVM0027926

[

VrKIX8

Promoter
EEE Exon
== UTR
Intron

NO. of NO. of
337 accessions in accessions in HSW (g)
cultivated group wild group

Haplotype -300 -166 -125  -66 281

hapl A T C G |A A 129 8 5.09
hap2 C G A T A A 26 A 4.56
hap3 C G A G G T 35 4 347
hap4 (o] T A G |G A 4 1 3.86

Cul- **MPR-----RPGS
Wil- **MPR-----RPGS

Genetic analysis of VrKIX8. Local Manhattan plots for HSW in multi-environments. LOD > 3.0 for the 3VmrMLM as the significant QTN (A). LD
heatmaps surrounding Chr1-8161305-8347626 loci (B). Genes around the significant QTN region, shown at the bottom (C). Haplotype analysis
of VrKIX8 (D). Wil, the wild accessions. Cul, the cultivated accessions. symbol “**" means omit the same sequence part.

(0.478), EVMO0033720.1 (VrAGB) and EV944.1 (VrGPAl-1)
(0.995), as well as EVM0033720.1 (VrAGB) and EVMO0015092.1
(VrGPA1-2) (0.995).

Discussion

The high-yield and efficiency breeding progress of
mungbeans have been limited by the lack of ideal yield-
related genes. At present, few QTNs or QTLs of yield-related
traits in mungbeans have been reported (Kang et al.,, 2014).
This study provided a genetic analysis of seed-size-related traits
in mungbeans, to improve the accuracy of significant QTNs,
we used multiple genome-wide MO0017 association studies
combined with multi-omics analysis to mine candidate genes
associated with yield-related traits. Firstly, a total of 98 QTNs
and 20 QEIs were identified using 3VmrMLM, while 95 and 15
QTNs were identified using EMMAX, and CMLM, respectively.
Then, in the identification of candidate genes, 12 key candidate
genes were mined, and seven of them including VrKIXS,
VrEmp24/25, and VrPAT14 were evidenced by transcriptome
analysis and RT-qPCR analysis. Lastly, through haplotype
analysis, the thirtieth amino acid of VrEmp24/25 in the elite
haplotype was changed from Ile to Phe. And there were six
SNP in the promoter and 5 UTRs of VrKIX8, however, the

Frontiers in Plant Science

53

amino acid sequence of VrKIX8 in the elite haplotype was not
changed. The results provided the theoretical basis for both
the functional identification of seed-size-related genes and for
quality improvements in mungbean breeding.

Multiple genome-wide association
studies methods combined with
multi-omics analysis in mining
candidate genes

In the GWAS, how to identify candidate genes around
significant QTNs has been a challenge. Liu et al. (2020c),
Zhang et al. (2021), and Gong et al. (2022) selected the 100-
kb interval upstream and downstream of the significant QTN
as the candidate interval in watermelon and soybeans. Usually,
the interval has been chosen according to the LD decay values.

In order to determine stable QTNs and key candidate genes
for seed-size-related traits, we adopted the following analyses.
Firstly, we used CMLM, EMMAX, GEMMA, and 3VmrMLM
to identify stable QTNs, as a result, five stable QTNs for
seed-size-related traits were detected in single- and multiple-
environments (Supplementary Table 5), i.e., Chr1-8161305-
8347626 (LOD = 24.09~36.33), and Chr10-25222572-25223133
loci (LOD = 29.75~37.89).
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Second, in the identification of candidate genes, we
conducted issue expression analysis, and comparative genomics
analysis. 53 out of the 809 candidate genes were significantly
differentially expressed between high and low HSW accessions
(P < 0.05, Logo,FC > 0.5). Among the 53 DEGs, Arabidopsis
homologous genes of the 12 key candidate genes had certain
molecular functions. Notably, 10 of those genes were identified
by 3VmrMLM (Table 1). Seven key candidate genes (VrKIX8,
VrEmp24/25, VrIARI, VrBEE3, VrSUC4, VrPAT14, and Vrflo2)
were significantly differentially expressed between the low-
seed-weight and high-seed-weight accessions, and further
verified by RT-qPCR analysis (Table 1; Figure 4). VrKIX8
(Chr1-8161305-8347626) and VrEmp24/25 (Chr10-25222572-
25223133) may be main genes in controlling seed-size-related
traits.

Notably, 3VmrMLM showed more powerful ability in the
detection of significant QTN than GEMMA, EMMAX, and
CMLM, as it found more differentially expressed key candidate
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genes than other methods. The combination of 3VmrMLM
and multi-omics analysis in the genetic analysis of complex
traits was helpful.

Genome-wide association study
provided potential genes VrEmp24/25
and VrKIX8 for mungbean
seed-size-related traits

VrEmp24/25 was an important seed-size traits related gene,
the evidence was as below: Firstly, Chr10-25206533-25223155
locus for seed size traits was detected in 2018 and 2020
by CMLM, EMMAX, and 3VmrMLM (Figure 2), and there
were 10 genes in its interval (Figure 4C). Secondly, among
the 10 genes, only VrEmp24/25 (EVMO0015812) (P = 0.014,
Log,FC = 0.67) had deferentially expressed across different
phenotype accessions (Figure 4C; Supplementary Data Set 4).
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Besides, in maize, the loss function of EMP24 and Emp25
would impair embryo and endosperm development (Xiu
et al, 2020). EMP24 was required for the splicing of nad4
(Ren et al, 2019), and the lack of either Nad4 or Nad5
blocked the assembly of complex I holoenzyme in Arabidopsis
(Ligas et al, 2019). The loss of the steady-state level of
mitochondrial nad5 mature mRNA blocked the assembly of
complex I and caused an arrest in endosperm development
(Zhang Y. F. et al, 2017). Lastly, the elite haplotypes of
VrEmp24/25 (TT) made up the main proportion of more
than 90.9% in cultivated mungbeans, 45% in wild mungbeans
(Figure 4E). The HSW in hap 1 haplotypes accessions was
significantly higher than that in hap 2 and hap 3 (P = 2.11E-
29). It was reported that a single amino acid completely
prevented the appearance of the enzyme in the medium,
and we inferred that the related variation could lead to the
change in enzyme activity (East et al, 1990; Alfson et al,
2018).

There have four evidences to take VrKIX8 as another
important seed-size trait gene. Firstly, VrKIX8 associated
with Chrl-8161305-8347626 (LOD = 24.09~36.33) for HSW
and SL were detected in multi-environment by 3VmrMLM
(Figure 5A; Supplementary Table 5). Secondly, VrKIX8
(LOD = 24.09~36.33) had significantly differentially expressed
between high- and low-HSW accessions (Figure 3A). Then,
in Arabidopsis, the disruption of KIX8/9 and PPDI/2 could
cause large seeds due to increased cell proliferation and cell
elongation in the integuments (Liu et al., 2020a). In soybeans,
the loss of the function GmKIX8-1 showed a significant increase
in the size of seeds and leaves. In addition, the increase in
organ size was due to the increased cell proliferation, rather
than cell expansion. GmKIX8-1 showed negatively regulated
cell proliferation in plants (Nguyen et al, 2021). Lastly, the
elite haplotypes of VrKIX8 (ATCGAA) made up the main
proportion of more than 73% in cultivated mungbeans, 40%
in wild mungbeans. Moreover, there are four SNPs in the
promoter and of VrKIX8, and two SNPs in the CDS region,
however the amino acid sequence did not change between
the elite haplotypes and the other haplotypes (Figure 5C).
The HSW in hap 1 haplotypes accessions was higher than
that in hap 2 to hap 4 (P = 1.19E-21). We supposed that
the mutations may have influenced the translation efficiency
of VrKIX8 and caused low expression in cultivated accessions
during mungbean domestication.

Genes participate in seed development
progress

The genes controlling seed development progress in
mungbean are largely unknown (Ha et al, 2021). In this
study, we identified fifty-four candidate genes in the seed-
development pathways, i.e., aba2 (Cheng et al., 2014; Chauffour
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et al, 2019), ABI5 (Lynch et al, 2022), SHBI, MINI3,
and IKU2 (Garcia et al, 2003; Xiao et al, 2016; Zhang
H. et al, 2017), mutants of those genes induced abnormal
seed development in Arabidopsis. And, five genes were also
commonly identified via GWAS (Table 1). Those five genes
(VrKIX8, VrABA2, VrSHBI1, VrABI5, and VrIKU2) are more
likely to be reliable, especially for VrKIXS8, as described
above.

We also analyze the possible correlation between the
main seed development pathways. Among the 54 genes, five
genes (VrAGG, VrDA2, VrAGB, VrGPAI-1, and VrGPAI-
2) consisted of five pairs of significant PPIs. Interestingly,
four pairs PPIs were found to be in the G-protein-signaling
pathway, and one pair of PPIs was found to be in the
G-protein-signaling and the ubiquitin proteasome pathways
(Figure 6; Supplementary Table 6). Ubiquitin proteasome
pathway is an important pathway for the selective degradation
of proteins and seed development (Smalle and Vierstra, 2004),
and the G-protein-signaling pathway is a ubiquitous cell
transmembrane signal transduction pathway in eukaryotes
(Huang et al., 2006). Moreover, mutations in GPAI or AGBI
could cause short flowers (Lease et al, 2001; Ullah et al,
2001). The overexpression of AGG3 promoted seed and
organ growth by increasing cell proliferation, and loss-of-
function mutations in AGG3 caused small seeds and organs
(Chakravorty et al, 2011; Li et al, 2012). The ubiquitin
receptor DAL could control seed size by restricting cell
proliferation in maternal integuments (Li et al, 2008). DAl
functioned synergistically with DA2 to restrict seed growth,
and DA2 physically interacted with DA1 in vitro and in vivo
(Song et al, 2007; Xia et al, 2013). This interaction could
mediate the interactions between the G-protein-signaling
pathway and the ubiquitin proteasome pathway, which might
offer an important clue in the mechanism analysis of seed
development.

In addition, 48 genes had higher expressions in the early
stage of seed development than in the late maturation stage
of seed development, indicating that seed-development-related
genes function primarily in the early stages of seed development,
which was consistent with the findings of Zuo et al. (2022) in
soybean.

Conclusion

This study conducted GWAS for seed-size-related traits
in mungbeans. 98 QTNs and 20 QEIs were identified using
3VmrMLM, while 95, >10,000, and 15 QTNs were identified
using EMMAX, GEMMA, and CMLM, respectively. A total of
12 key candidate genes were mined, which were homologous
to known seed-development genes in rice and A. thaliana.
VrEmp24/25 and VrKIX8 were identified as main candidate
genes around two stable QTNs, the two candidate genes were
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further confirmed by RT-qPCR and haplotype analysis, and
prevalent haplotypes of VrEmp24/25 and VrKIX8 may be useful
in mungbean breeding.
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Rice, which supports more than half the population worldwide, is one of the
most important food crops. Thus, potential yield-related quantitative trait
nucleotides (QTNs) and QTN-by-environment interactions (QEls) have been
used to develop efficient rice breeding strategies. In this study, a compressed
variance component mixed model, 3VmrMLM, in genome-wide association
studies was used to detect QTNs for eight yield-related traits of 413 rice
accessions with 44,000 single nucleotide polymorphisms. These traits
include florets per panicle, panicle fertility, panicle length, panicle number
per plant, plant height, primary panicle branch number, seed number per
panicle, and flowering time. Meanwhile, QTNs and QEls were identified for
flowering times in three different environments and five subpopulations. In the
detections, a total of 7~23 QTNs were detected for each trait, including the
three single-environment flowering time traits. In the detection of QEls for
flowering time in the three environments, 21 QTNs and 13 QEls were identified.
In the five subpopulation analyses, 3~9 QTNs and 2~4 QEls were detected for
each subpopulation. Based on previous studies, we identified 87 known genes
around the significant/suggested QTNs and QEls, such as LOC_Os06g06750
(OsMADS5) and LOC_0Os07947330 (FZP). Further differential expression
analysis and functional enrichment analysis identified 30 candidate genes. Of
these candidate genes, 27 genes had high expression in specific tissues, and 19
of these 27 genes were homologous to known genes in Arabidopsis. Haplotype
difference analysis revealed that LOC_Os04g53210 and LOC_Os07g42440 are
possibly associated with yield, and LOC_Os04g53210 may be useful around a
QEl for flowering time. These results provide insights for future breeding for
high quality and yield in rice.
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Introduction

Rice (Oryza sativa L.), one of the most important food crops,
supports more than half the population in the world. Therefore,
rice is crucial to improving the safety, quality, stability, and
sustainability of the global food supply (Muthayya et al., 2014).
In China, rice production is second only to maize, accounting for
31.64% of the total grain produced in 2020 (http://www.stats.
gov.cn/tjsj/ndsj/, accessed on June 2022). Moreover, from 1994
to 2020, rice accounted for 27.17% of the total grain produced in
the world, which is 657.85 million tons per year (http://www.fao.
org/faostat/en/#data/QC/visualize, accessed on June 2022).
There is an urgent, ongoing global demand for highly
productive rice varieties due to growth in the human
population in particular in developing nations, in which rice is
the primary source of calories (Toriyama, 2005); climate change;
and the labor-, land-, and water-intensive nature of rice
cultivation (Greenland, 1997). Furthermore, climate has an
impact on the most crucial traits of rice, such as production
and quality. Weather catastrophes are becoming increasingly
severe across the world because of accelerating global climate
change, which poses a significant challenge to the production of
sustainable food. Developing resilient crops is an efficient
strategy for coping with climate change. A wealth of plant
breeding and genomic resources have been developed by the
scientific community to assist in this endeavor, including high-
quality genome sequences (Gofl et al., 2002; Yu et al,, 2002),
dense SNP maps (McNally et al., 2009; Ebana et al., 2010; Huang
etal,, 2010), extensive germplasm collections (Ebana et al., 2008;
McNally et al., 2009; Agrama et al., 2010), and public databases
of genomic information (Tanaka et al,, 2008; McNally et al,
2009; Huang et al., 2010; Youens-Clark et al., 2011). Yet despite
the emergence of these scientific resources, traditional
quantitative trait locus linkage mapping is most often used to
understand the genetic structures of complex traits in rice.

Genome-wide association study (GWAS) mapping enables
the simultaneous screening of huge numbers of accessions for
genetic variation in a variety of complex traits. Humongous
genetic variants for agronomic and economic traits have been
extensively studied using single-locus GWAS methods, such as
MLM (Zhang et al., 2005; Yu et al., 2006), EMMA (Kang et al.,
2008), and GEMMA (Zhou and Stephens, 2012). Such single-
locus GWAS methods have a limited ability in detecting
quantitative trait nucleotides (QTNs) with marginal effects that
are affected by the polygenic background and stringent
Bonferroni correction (Wang et al., 2016). Even if adjusting
for polygenic background enhances the statistical power of QTN
detection, it is still difficult to identify the majority of small-effect
QTNs related to complex traits using single-locus
GWAS methods.

To address the issue in single-locus GWAS methods, multi-
locus GWAS methods were developed as a multidimensional
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method of genome analysis, which simultaneously estimate the
effects of all markers (Cui et al., 2018). In particular, to address
the selection of cofactors in multi-locus GWAS models with
millions of markers, researchers have proposed MLMM (Segura
et al,, 2012), FarmCPU (Liu et al., 2016), mrMLM (Wang et al.,
2016), pLARmEB (Zhang et al, 2017), and FASTmrEMMA
(Wen et al., 2018). However, the dominance (d) or QTN-by-
environment interaction (QEI) were not fully considered in the
above models. Moreover, when additive (a) and dominance (d)
effects, additive-by-environment (axe) interaction, dominance-
by-environment (dxe) interaction, and their polygenic
backgrounds are simultaneously included as random effects in
a mixed model of genome-wide analysis, there are 10 variance
components, which creates a huge computational burden.

To improve calculation efficiency, a mixed model with three
variance components was combined with mrMLM to establish a
new methodological framework, namely, 3VmrMLM, that
identifies all types of loci and estimates their effects while
controlling all possible polygenic backgrounds (Li et al.,
2022a). In GWAS, QEI can be used extensively to explore the
genetic structures of complex traits to meet the needs of
phenotypic plasticity research and global climate change.
3VmrMLM was expanded to cover QEI using the same
thinking as in QTN detection models.

The data set of 413 rice accessions with 44,000 SNPs from
the Rice Diversity database (www.ricediversity.org, accessed on
April 2022) is suitable for GWAS, which has been performed by
many researchers. Although this data set contains a wealth of
information, including data on yield-related traits closely related
to human life, phenotypic data on a given trait in different
locations, and data on different subpopulations with the same
trait, it has been seldom studied for further both QTN and QEI
detection simultaneously. Therefore, in this study, we reanalyzed
eight yield-related traits in this natural population of 413 rice
accessions using the proposed multi-locus method, 3VmrMLM.
Our goals were to detect the significant QTNs and QEIs related
to rice yield, mine candidate genes, speed up molecular marker-
assisted breeding, and increase rice production.

Material and methods
Phenotypic data and statistical analysis

We used 3VmrMLM (Li et al,, 2022a, 2022b) to reanalyze
413 accessions with 36,901 SNPs in rice (Oryza sativa L.) in
Zhao et al. (2011) to detect significant QTNs and QEIs for eight
yield-related traits. Phenotypic data were downloaded from the
Rice Diversity database (www.ricediversity.org, accessed on
April 2022). The yield-related agronomic traits were florets per
panicle (FPP), panicle fertility (PF), panicle length (PL), panicle
number per plant (PNPP), plant height (PH), primary panicle
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branch number (PPBN), seed number per panicle (SNPP), and
flowering time in three environments, Aberdeen (FTAB),
Arkansas (FTAR), and Faridpur (FTF). In Zhao et al. (2011),
detailed information on the experimental designs is described.
Flowering time at the three locations (FTAB, FTAR, and FTF)
was used to detect QEIs for multi-environment analysis and also
to detect QTN for single-environment analysis. The other seven
traits were phenotyped at the same locations for single-
environment analysis to detect QTNs in this study.

To illustrate the variability of gene-environment interactions
in subpopulations in rice, we also analyzed rice flowering time in
FTAB, FTAR, and FTF for five subpopulations derived from
Zhao et al. (2011), including Admixed (ADMIX), Australia
(AUS), Indica (IND), Temperate japonica (TE]), and Tropical
japonica (TRJ), with sample sizes of 43, 50, 52, 69, and
78, respectively.

To visualize all eight traits, descriptive statistical analysis for
each phenotypic data was performed, including the mean,
minimum, maximum, range, standard deviation, and
coefficient of variation (CV) for each trait (Table 1). Pearson
correlation analysis (Figure 1) for all phenotypic data was
performed in R version 4.1.2 (https://www.r-project.org/).

Genotypic data

Genotypic data for the 413 rice accessions were obtained
from the Rice Diversity database (www.ricediversity.org,
accessed on April 2022). The data set consisted of a well-
distributed 36,901 SNP array across the 12 chromosomes of
rice with call rate > 70% and minor allele frequency > 0.01 (Zhao
etal, 2011). To visualize the genotype in this study, Figures 2A,
B illustrate the distribution of the minor allele frequency and the
density distribution of loci on each chromosome. These were
relatively uniform, which indicates that this data set is suitable
for genetics dissection in rice.

TABLE 1 Statistical analysis of eight rice yield-related traits.

Trait Mean Max
FPP 5.056 5.836
PF 0.824 0.980
PL 24.375 35.683
PNPP 3.247 4172
PH 116.583 194.333
PPBN 9.943 17.000
SNPP 4.854 5.635
FTAB* 107.050 306.000
FTAR? 87.944 150.500
FTF* 71.770 110.000

“indicates flowering time in three different environments in the single-environment analysis.
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The IIIVmrMLM software (Li et al., 2022b) of 3VmrMLM
method (Li et al., 2022a) was downloaded from github (https://
github.com/YuanmingZhang65/IIIVmrMLM). We performed
QTN and QEI detection using the IITVmrMLM function,
specifying the parameters of “=Single_env” for the QTN
detection model and “=Multi_env” for the QEI detection
model. The thresholds of significant and suggested QTN or
QEI were set at P-value = 0.05/m and LOD = 3.00, respectively,
where m is the number of markers (Li et al., 2022a).

SNP annotation and the identification of
known genes

The China Rice Data Center database (https://ricedata.cn/,
accessed on June 2022) was used to annotate the genes around
significant/suggested QTNs and QEIs identified by 3VmrMLM.
For all identified loci, regions within 200 kb were used to search
for known genes (which were reported in previous studies and
identified by 3VmrMLM simultaneously) according to linkage
disequilibrium decay.

Functional enrichment analysis and the
identification of candidate genes

We performed differential expression analysis using the
online tool GEO2R (https://www.ncbinlm.nih.gov/geo/geo2r/,
accessed on September 2022) on four data sets (GSE19024,
GSE21396, GSE136746, and GSE166053) from the Gene
Expression Omnibus database (https://www.ncbinlm.nih.gov/
geo/, accessed on September 2022). The datasets contain
transcriptomic data related to rice development. Differentially
expressed genes (DEGs) were screened by adjusted P-values less

Min SD (6)%
3.909 0.323 0.064
0.372 0.105 0.127
15.633 3.537 0.145
2.234 0.413 0.127
67.750 21.092 0.181
5.556 1.781 0.179
3.445 0.330 0.068
45.000 38.957 0.364
54.500 12.627 0.144
39.000 8.510 0.119
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Distribution of eight yield-related traits in rice and Pearson coefficients. FTAB, FTAR, and FTF are the flowering time in three different
environments in the single-environment analysis. Linear regression statistics between the two traits are below the diagonal, the diagonal
histogram represents the distribution of each trait, and correlation coefficients are above the diagonal (positive numbers represent positive
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than 0.05, and then intersected with genes around
significant/suggested QTNs or QEIs to obtain DEGs
significantly associated with the target traits. For the functional
annotation analysis, information of the above DEGs related to

the target traits was submitted to the web-based tool DAVID
(https://david.nciferf.gov/home.jsp, accessed on September
2022) to perform Kyoto Encyclopedia of Genes and Genomes
functional enrichment analysis. Fisher’s exact test (P < 0.05) was
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used to select enrichment KEGG pathways. Genes that were
enriched in these significant pathways were considered as
candidate genes.

Tissue specific expression and blast of
homologous genes in Arabidopsis

The database Rice Genome Annotation Project (http://rice.
uga.edu/, accessed on September 2022) was used to investigate
the expression of all candidate genes in various tissues to further
illustrate the association between genes and phenotypic
variations. The R package pheatmap was used to create a
heatmap of the FPKM expression of the candidate genes.
Protein sequence information of the candidate genes was
submitted to the Rice Genome Annotation Project (http://rice.
uga.edu/analyses_search_blast.shtml, accessed on September
2022) to mine homologous Arabidopsis genes.

Analysis of haplotype and
phenotypic difference

To validate the associated loci between candidate genes and
traits, the HaploView software package (http://www.broad.mit.
edu/mpg/haploview/; Barrett et al., 2005) was used to perform
linkage disequilibrium and haplotype block analyses and to
estimate the frequency of haplotype populations in candidate
genes. For each gene, significant variations were used for
haplotype division, and the phenotypic differences between
haplotypes was analyzed via ¢ test using the t.test function in R.

Results
Phenotypic variation

Eight yield-related traits (including FPP, PF, PL, PNPP, PH,
PPBN, SNPP, and flowering time in FTAB, FTAR, and FTF)
were reanalyzed to determine whether there exists any
significant genetic variation in these traits across 413 rice
accessions. Descriptive statistics for all traits are listed in
Table 1. Let us consider CV as an example, for flowering time
in each single-environment, FTAB had the highest CV at 36.4%,
which indicates that flowering time at Aberdeen had the largest
variation. Furthermore, the CVs for FTAR and FTF were 14.4%
and 11.9%, both relatively large, which indicates large variation
and environmentally sensitive for flowering time. In addition,
the CVs for the other six traits (PF, PL, PNPP, PH, PPBN, and
SNPP) were 12.7%, 14.5%, 12.7%, 18.1%, 17.9%, and 6.8%, and
FPP had the lowest CV at 6.4%.

Pearson correlation coefficients (PCCs) were calculated
among the eight traits (Figure 1). FPP and PNPP were
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negatively correlated (PCC = -0.33), and a negative correlation
was also observed between FPP and PF (PCC = -0.11). FPP was
positively correlated with PPBN (PCC = 0.7) and SNPP (PCC =
0.83). In addition, PL was positively correlated with PH (PCC =
0.64), SNPP (PCC = 0.34), and FPP (PCC = 0.39), which
indicates the close genetic relationship between panicle length
and panicle number. With regard to flowering time across
environments, FTAB was positively correlated with FTAR
(PCC = 0.74) and FTF (PCC = 0.50), and FTAR and FTF
were positively correlated (PCC = 0.54). These results
demonstrate that the eight rice traits play a crucial role in
controlling the rice yield and significantly correlate to
one another.

Identification of QTNs for yield-related
traits using 3VmrMLM

We reanalyzed all eight yield-related traits using the single-
environment QTN detection model in 3VmrMLM to identify
QTNs, where flowering time was measured in three different
environments. A total of 165 significant/suggested QTNs
(Supplementary Table S1; Supplementary Figure S1) were
detected as associated with at least one of the eight yield-
related traits. Of these QTNs, 17, 16, 16, 21, 23, 17, 15, 15, 18,
and 7 QTNs (Supplementary Table S1; Supplementary Figure
S1) were associated with FPP, PF, PL, PNPP, PH, PPBN, SNPP,
FTAB, FTAR, and FTF, respectively. The proportion of total
phenotypic variance explained by QTNs for each single trait
were 72.61%, 73.29%, 75.48%, 51.99%, 64.17%, 71.64%, 58.55%,
58.04%, 77.07%, and 44.60% calculated by the R package
ITVmrMLM. Tt shows that most QTNs had only additive
effects. Note that some QTNs, such as id3005865 for FPP,
id5014747 for PF, and id4007762 for PH, had both additive
and dominance effects.

A total of 17 QTN hotspots (Supplementary Table SI;
Supplementary Figure S1A) were detected as significantly
associated with FPP, with P-values of 2.19E-32~7.60E-07 and
LOD scores of 5.31~31.66, respectively. A total of 16 QTNs
(Supplementary Table S1; Supplementary Figure S1B) associated
with PF were detected with P-values of 1.08E-44~1.07E-06 and
LOD scores of 4.97~32.90. A total of 16 QTNs (Supplementary
Table S1; Supplementary Figure S1C) were associated with PL,
with P-values of 2.33E-56~1.02E-05 and LOD scores of
4.23~54.34, and id7004886 located on chromosome 7 had the
maximum phenotypic variance explained at 22.04%
(Supplementary Table S1). Moreover, 21 QTNs (Supplementary
Table S1; Supplementary Figure S1D) associated with PNPP were
detected with P-values of 1.78E-37~9.71E-06. For PH, 23 QTNs
(Supplementary Table S1; Supplementary Figure S1E) were
detected with P-values of 1.15E-38~7.60E-05 and LOD scores of
3.40~37.94. A total of 18 QINs (Supplementary Table S1;
Supplementary Figure S1F) were detected as associated with
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PPBN; they were widely located on chromosomes 1, 2, 4, and 9,
with P-values of 2.05E-39~1.31E-05 and LOD scores of
4.13~37.47. Among these QTNs, id1009181 located on
chromosome 1 explained 16.03% of the phenotypic variance.
For SNPP, 15 QTNs (Supplementary Table S1; Supplementary
Figure S1G) were detected with P-values of 3.95E-41~2.11E-05
and LOD scores of 3.93~39.18. For the three flowering time
environments, 30 QTNs (Supplementary Table S1;
Supplementary Figure S1H-]) were detected on all chromosomes
except chromosome 12 were detected, with P-values of 1.15E-
32~2.17E-05 and LOD scores of 1.40~11.30. id4000121,
ud7002024, and id4004217 explained the maximum phenotypic
variance, which were 14.47%, 11.30%, and 7.75%, respectively.

Known genes around significant/
suggested QTNs

We compared genomic regions of 165 significant/suggested
QTNs (200 kb up- and down-stream of each significant/suggested
QTN) to the genomic positions of reported genes related to rice
yield. A total of 73 known genes were around the significant/
suggested QTNS, including 9, 7, 3, 14, 17, 6, 6, 2, 7, and 2 known
genes for FPP, PF, PL, PNPP, PH, PPBN, SNPP, FTAB, FTAR, and
FTF, respectively (Table 2; Supplementary Figure SI). Marker

10.3389/fpls.2022.995609

id1019150 located on chromosome 1 around LOC_Os01g54810
was simultaneously associated with PL and PH (Table 2;
Supplementary Figure S1). Moreover, id1002863 and id7004587
around LOC_Os01g07480 and LOC_Os07g41250, respectively, on
chromosomes 1 and 7 were associated with FPP and SNPP (Table 2;
Supplementary Figure S1). It is interesting that a QTN can overlap
with multiple known genes (e.g., three genes, LOC_Os02g45054,
LOC_0s02g45070, and LOC_0s02g45110 were simultaneously
around 1d2012042 on chromosome 2, Table 2; Supplementary
Figure S1). sdI is associated with PH (Zhao et al., 2011).
Moreover, OsRA2, located on chromosome 1 and simultaneously
associated with FPP and SNPP, modifies panicle architecture by
regulating pedicellength (Leranetal,, 2014; Luetal., 2017). OsPTR4
controls FPP and SNPP (Leran et al.,, 2014).

Detection of QEls for rice flowering time
using 3VmrMLM

In the multi-environment analysis, flowering time at three
locations (Aberdeen, Arkansas, and Faridpur) was reanalyzed
using the QEI detection model in 3VmrMLM to identify QEIs. A
total of 21 significant/suggested QTNs (Table 3; Supplementary
Figure S2A) and 13 significant/suggested QEIs (Table 4;
Supplementary Figure S2B) were simultaneously detected.

TABLE 2 Known genes identified for rice yield-related traits using the QTN detection model in 3VmrMLM.

Trait Marker Chr Position add
FPP id1002863 1 3481990 -0.049
id1002863 1 3481990 -0.049
id1003144 1 3801746 -0.057
id3000495 3 871080 0.117
id7004587 7 24790535 0.056
id7004587 7 24790535 0.056
id7005660 7 28221129 -0.124
id7005660 7 28221129 -0.124
id12009959 12 27218159 0.083
PF id1023500 1 37274860 -0.024
id1023500 1 37274860 -0.024
id3000828 3 1499569 -0.036
id8007916 8 28208958 0.035
id9002415 9 7894310 0.027
id9002415 9 7894310 0.027
id12006848 12 21130413 0.046
PL id1017530 1 29565162 0.788
id1019150 1 31662509 -1.275
id10003476 10 13216045 -1.350
PNPP id1001128 1 1401052 -0.047
id2000516 2 647801 -0.086
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Variance (%) Gene Symbol ID
0.002 1.700 OsRA2 LOC_Os01g07480
0.002 1.700 FIB LOC_0s01g07500
0.003 2.030 OsREI LOC_Os01g07880
0.007 5714 Ehd4® LOC_0s03g02160
0.002 1.338 OsPTR4 LOC_0s07g41250
0.002 1.338 OsMADSI18 LOC_Os07g41370
0.010 7.409 OsCOL13 LOC_0s07g47140
0.010 7.409 FZP LOC_0s07g47330
0.007 5.143 OsPAPI10c LOC_Os12g44020
0.000 2.519 OsABI5 LOC_Os01g64000
0.000 2,519 RELI LOC_Os01g64380
0.001 7.357 OsmiR528 LOC_Os03g03724
0.000 1.994 OsNTL5 LOC_0s08g44820
0.001 3.126 OsEMF2b LOC_Os09g13630
0.001 3.126 SDG724 LOC_0s09g13740
0.000 2.8543 OsVIL2 LOC_Os12g34850
0.574 3375 OsLFLI LOC_Os01g51610
1.134 6.672 THISI® LOC_Os01g54810
1.544 9.088 Brd2 LOC_Os10g25780
0.002 1.257 MHZ4 LOC_Os01g03750
0.003 1.662 DHD4 LOC_0s02g01990

(Continued)
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TABLE 2 Continued

Trait Marker

id2012042
1d2012042
id2012042
1d3003977
id3003977
1d3006138
id4010447
id5011783
id7000258
id8001120
id8001120
ud8000279
PH id1018978
id1024441
id1018978
id1018978
1d1024441
id4007762
1d4007762
1d4007762
id4010574
id4010574
id4010574
id6004564
wd6000736
1d7005417
id8006905
1d8006905
id9007929
PPBN 1d1009181
id1014302
1d1022478
id1022478
1d1024948
id3005659
SNPP id1002863
id1013159
id3005721
1d3005721
id6015132
1d7004587
FTAB* id1027324
1d6002745
FTAR® id1021120
id3002064
1d3002064
id3002064
ud7001067
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27371812 -0.131 - 0.004 2.237
27371812 -0.131 - 0.004 2.237
27371812 -0.131 - 0.004 2.237
7327105 -0.088 - 0.008 4.398
7327105 -0.088 - 0.008 4.398
12008635 0.046 - 0.002 1.185
30843940 -0.062 - 0.004 2125
25197731 0.109 - 0.012 6.746

1588172 -0.079 - 0.005 2.844
3438707 0.050 - 0.002 1.427
3438707 0.050 - 0.002 1427
4363409 -0.071 - 0.005 2.710
31452220 4470 - 13.040 2,931
38537795 7.133 - 17.140 3.853
31452220 -4.470 - 13.040 2,931
31452220 4470 - 13.040 2,931
38537795 7.133 - 17.140 3.853
23286717 -7.695 3.480 15.326 3.445
23286717 -7.695 3.480 15.326 3.445
23286717 -7.695 3.480 15.326 3.445
31138553 3210 - 9.981 2.243
31138553 3210 - 9.981 2.243
31138553 3210 - 9.981 2.243
7097190 -3.206 - 8.230 1.850
10282460 -3.939 - 10.962 2.464
27547556 -2.096 - 4.341 0.976
24940725 5.109 - 17.476 3.928
24940725 5.109 - 17.476 3.928
22920706 2.891 - 7.000 1.574
13926463 -0.807 - 0.640 16.026
24275703 -0.447 - 0.174 4361
35621886 0.593 - 0.335 8.400
35621886 0.593 - 0.335 8.400
39308177 -0.460 - 0.122 3.050
10842947 0.479 - 0.091 2.291
3481990 -0.049 - 0.002 1.894
22950277 0.171 - 0.004 3481
10922512 0.087 - 0.003 2.449
10922512 0.087 - 0.003 2.449
26966327 0.061 - 0.004 3275
24790535 0.074 - 0.003 2.665
42152363 -10.893 - 27.056 1.783
3330294 9.162 - 80.673 5316
34082456 -3.468 - 11.006 5.050
3766414 -4.491 - 19.461 8.930
3766414 -4.491 - 19.461 8.930
3766414 -4.491 - 19.461 8.930
15702110 4474 - 17.692 8.119
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Gene Symbol

SIDI
OsAGOla
OsMTA2
OsAPC6
LPA1
OsPHRI1
OsAP2-39
OsmtSSB1
OSHI15
OsCOMT
OsCCAI
DTHS8
OsCesA4
sd1®
THISI
OsVOZ1
OsCrll3
TDD1
OsALDHI0A5
dl1
OsAP2-39
OsKS1
ECI
YPDI
OsNF-YB9
Fd-GOGATI
RCN11
OsDOG
OsDRPIE
IPI1
OsATG7
LAXI
OsBAG4
EGI
SSD1
OsRA2
LOG
SDG718
SRL2
OsSPLI0
OsPTR4
OsMLH1
OsMADS5
0OsGCD1
DPW*
CYP704B2"
OsSUT1”
ORMDL

ID

LOC_0s02g45054
LOC_0s02g45070
LOC_0s02g45110
LOC_0s03g13370
LOC_0s03g13400
LOC_0s03g21240
LOC_0s04g52090
LOC_Os05g43440
LOC_0s07g03770
LOC_0s08g06100
LOC_0s08g06110
LOC_0s08g07740
LOC_0s01g54620
LOC_0Os01g66100
LOC_0Os01g54810
LOC_0s01g54930
LOC_0s01g66590
LOC_0s04g38950
LOC_0s04g39020
LOC_0s04g39430
LOC_0s04g52090
LOC_0s04g52230
LOC_0s04g52280
LOC_0s06g13050
LOC_0Os06g17480
LOC_0s07g46460
LOC_0s08g39380
LOC_0s08g39450
LOC_0s09g39960
LOC_0s01g24880
LOC_0Os01g42850
LOC_0Os01g61480
LOC_0Os01g61500
LOC_Os01g67430
LOC_0s03g19080
LOC_0s01g07480
LOC_0s01g40630
LOC_0s03g19480
LOC_0s03g19520
LOC_0s06g44860
LOC_0Os07g41250
LOC_0s01g72880
LOC_0s06g06750
LOC_0s01g58750
LOC_0s03g07140
LOC_0s03g07250
LOC_0s03g07480
LOC_0s07g26940

(Continued)
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TABLE 2 Continued

Trait Marker Chr Position add dom
id9006822 9 19210667 -2.851 -8.826
id11011548 11 28322308 3318

FTF® id4004217 4 14176927 2,677
id6006288 6 10090472 1.900

3VmrMLM and EMMA simultaneously.

Among them, id6006118 located on chromosome 6 had
additive-by-environment interaction and dominance-by-
environment interaction in all three environments.

We compared genomic regions of the significant/suggested
QTNs or QEIs (200 kb up- and down-stream around the
significant/suggested QTNs or QEIs) to the positions of
previously reported genes related to rice flowering time. 4 QTNs
(Table 3; Supplementary Figure S2A) and 1 QEI (Table 4;
Supplementary Figure S2B) overlapped with the known genes.
Notably, id6002690, which was adjacent to LOC_Os06g06750
(OsMADS5), was demonstrated to have both QTN and QEI
effects. Microarray-based expression profiling and genome-wide
molecular characterization of the genes that encode the MADS-
box transcription factor family was presented by Arora et al.
(2007). OsMADS5 in this gene family is associated with the

10.3389/fpls.2022.995609

Variance r*(%) Gene Symbol ID
3.567 1.637 OsDFR2A LOC_0s09g32025
2.462 1.130 EDTI LOC_Os11g47330
5.804 7.747 0sACOSI12 LOC_Os04g24530
3.609 4.329 OsNF-YB9 LOC_Os06g17480

indicates no dominance effect for this QTN. “indicates flowering time in three different environments in the single-environment analysis. indicates known gene which was detected by

development of inflorescence. Recently, Zhu et al. (2022) also
revealed the function of OsMADS5 in the development of
inflorescence and showed that OsMADS5 is involved in limiting
branching and promoting the transition to spikelet meristem
identity, partly by repressing RCN4 expression.

For five different subpopulations (ADMIX, AUS, IND, TE], and
TR]), flowering time in FTAB, FTAR, and FTF was also analyzed to
illustrate the variability in gene-environment interactions. A total of
25 QTNs and 15 QEIs (Supplementary Table S2; Supplementary
Figures S2C-L) were simultaneously detected with the multi-
environment detection model in 3VmrMLM, including 3, 3, 6, 9,
and 4 QTNs and 4, 2, 4, 3, and 2 QEIs for ADMIX, AUS, IND, TEJ,
and TRJ, respectively. Note that there was no overlap in QEI between
different subpopulations, which may indicate that these QEIs come
from different ecological adaptations.

TABLE 3 Significant/suggested QTNs for rice flowering time in three environments detected using the QTN-by-environment detection model in 3VmrMLM.

Marker CHR Positions LOD add dom Variance
id1001009 1 1095730 9492 2.180 - 4486
id1007272 1 9815262 19.756  -3.224 - 3.810
id1008137 1 11376832 16619  -2.991 - 8.260
id1012744 1 22493100  11.948 2765 - 7.583
id1014639 1 24595570 9958  -2241 - 2.662
ud3000099 3 1400496 24223 -3.680 - 12.997
id3004539 3 8656816 34038  -4.261 - 14.612
id3008283 3 16551139 4319 1.506 - 2.092
dd3001061 3 27836287 17230  3.294 - 8.646
id4001482 4 3628149 8959  2.138 - 4134
id4005251 4 17893016 9.178  -2.435 - 5.598
id5000013 5 44370 11405 2395 - 4778
id5008977 5 21268048 21538  3.386 - 6.812
id5012857 5 26783289  13.681  2.640 - 2.135
id6002690 6 3289852 27.063  3.816 - 13.218
id6005322 6 8185001 49742 -5.502 - 8.540
ud7000660 7 8553942 15086  -2.944 - 6.661
id7004583 7 24784697  24.039  3.582 - 7.380
id8000022 8 51045 23711 -3.509 - 7.457
id10000202 10 1012769 32396  -4.148 - 12.160
id110107061 11 26711260  13.869  -2.654 - 2.831

indicates no dominance effect or reported gene for this QTN.
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’(%) P-value Reported Gene Reference
1.147 3.810E-11 - -

0.974 1.456E-21 - -

2.112 2.169E-18 - -

1.939 1.192E-13 SaF Xie et al., 2017
0.681 1.272E-11 - -

3.323 4.490E-26 - -

3.736 5.814E-36 OsSTRL2 Zou et al., 2017
0.535 8.203E-06 - -

2211 5.220E-19 - -

1.057 1.335E-10 - -

1.431 7.982E-11 - -

1.222 4.259E-13 - -

1.742 2.302E-23 - -

0.546 2.068E-15 - -

3.380 6.148E-29 OsMADS5 Arora et al.,, 2007; Zhu et al., 2022
2.184 9.554E-52 - -

1.703 7.754E-17 - -

1.887 6.889E-26 OsUAM3 Konishi et al., 2007
1.907 1.475E-25 - -

3.109 2.618E-34 - -

0.724 1.332E-15 - -
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TABLE 4 Significant/suggested QEls for rice flowering time in three environments detected using the QTN-by-environment detection

model in 3VmrMLM.

Marker

id1000015 1 149005 21.318  4.569 - -1.336 -
1d1000947 1 1042817 10.498 -3.007 - 0.422 -
id1008137 1 11376832  14.763 -3.871 - 1.145 -
ud2000978 2 17730153 9.539  -3.236 - 1.034 -
1d4002940 4 8211710 16.440 -4.001 - 1.251 -
id5000766 5 1128994 10.402 -2.418 - -0.647 -
1d6002690 6 3289852 6.107  1.782 - 0.622 -
id6005330 6 8234981 8.562 -2.930 - 1.146 -
id6006118 6 9651785 33572 -5915 -0.010 2.086  1.406
id6007539 6 12322330  20.565 4.618 - -1.690 -
id7004142 7 23351238 8336 2.802 - -0.792 -
id10006353 10 20022516  13.901 4.031 - -1.259 -
id11006398 11 17823963  15.862 -3.984 - 1.500 -

“-” indicates no dominance effect or reported gene for this QEL

Functional enrichment analysis of
candidate genes

In addition to the aforementioned significant/suggested
QTNs and QEIs with known genes, we also detected several
new QTNs and QEIs that have not been reported in previous
studies, such as id2005901, id6007721, id12008098, and
id9001769 (Supplementary Table S1; Supplementary Figure
S1). To identify the candidate genes, we considered genes in
regions 200 kb up- and down-stream around each significant/
suggested QTN and QEIJ, including all studies of population and
each subpopulation. There are about 8000 genes within these
200kb regions, of which 755 are DEGs that show different
expression between test and control groups of rice accessions.

In the Kyoto Encyclopedia of Genes and Genomes analysis, 30
genes significantly involved in 4 biological processes (terpenoid
backbone biosynthesis, butanoate metabolism, carbon metabolism,
and alanine, aspartate and glutamate metabolism) were defined as
candidate genes. Figure 3A shows results for the candidate genes in the
rectangular boxes, the most significant pathways are marked in red.

The results of the functional enrichment analysis (Figure 3A)
showed that some candidate genes around the new QTNs and
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CHR Positions LOD addl doml add2 dom2 add3 dom3 Variance

-3.233

2.586

2.726

2.202

2.749

3.064

-2.404

1.785

3.829

-2.928

-2.010

-2.772

2.484
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r* P-  Reported Reference
(%) value Gene
- 11.037  2.822 4.819E- - -
22
- 5.303 1356 3.180E- - -
11
- 7910 2023 1.729E- - -
15
- 5465 1397 2.893E- - -
10
- 8377 2142 3.637E- - -
17
- 5218 1334 3.971E- - -
11
- 3.113 0.796 7.813E-  OsMADS5 Arora et al., 2007; Zhu
07 et al., 2022
- 4362 1115 2.747E- - -
09
-1.396 17.945 4588 2.106E- - -
32
- 10917 2791 2.730E- - -
21
- 4174 1.067 4.615E- - -
09
- 8506 2175 1.259E- - -
14
- 8097 2070 1.377E- - -
16

QEIs were involved in many biological and metabolic processes
during rice growth, which have not been reported in previous
studies, such as flower development, which indicates that these
candidate genes have a non-negligible influence on the target
traits. For example, LOC_Os01g02020 (Figure 3A), a candidate
gene detected in PH and SNPP, was involved in terpenoid
backbone biosynthesis, butanoate metabolism, and carbon
metabolism. In addition, the candidate gene LOC_Os04g52450
(Figure 3A) was directly involved in butanoate metabolism and
in alanine, aspartate, and glutamate metabolism. Moreover,
some candidate genes detected in the multi-environment
analysis for each subpopulation, including LOC_Os03g16050
for IND, LOC_Os04g53210 for AUS, and LOC_0Os07g09060
and LOC_0s07g09190 for TR] (Figure 3A), were involved in a
series of biological and metabolic processes.

Expression profile of candidate genes
The Rice Genome Annotation Project database (http://rice.

uga.edu) demonstrates the expression of the candidate genes in
various tissues or organs, including shoots, roots, seeds, leaves,
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FIGURE 3

panicles, anthers, pistils, post-emergence, pre-emergence, and
embryos. The heatmap of the candidate genes presented in
Figure 3B shows the FPKM expression of the candidate genes
in tissues and organs.

For QTN, LOC_Os04g52450 and LOC_Os08g36320 had
high expression in leaves, panicles, shoots, and seedlings in
rice (Figure 3B). Furthermore, LOC_0Os03g16050 had the
highest expression in pre-emergence inflorescence, leaves,
shoots, and seedlings. Some earlier studies (Zhao et al., 2011;
Weng et al., 2014) suggested that inflorescence, anthers, pistils,
and panicles play important roles in regulating yield.

For QEIs of flowering time, LOC_0Os03g16050,
LOC_0s04g53210, LOC_0s07g09060 had high expression in
post-emergence inflorescence and pre-emergence inflorescence,
which might indicate a potential association between these
candidate genes and flowering time (Figure 3B).

Among the 30 candidate genes, LOC_0Os03g19275,
LOC_0s06g36880, and LOC_0Os07g34520 were not expressed
in panicles or inflorescence; thus, these genes were not
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Heatmap of the functional enrichment analysis and tissue-specific expression analysis. (A) Heatmap of the functional enrichment analysis for the
candidate genes. (B) Heatmap of FPKM expression for the part of candidate genes. The y-axis is log2(FPKM+1). Candidate genes in the red box
correspond to QTNs. Blue box: QEls for flowering time, remaining: candidate genes not expressed in specific tissue.

considered in further analyses. Among the 27 candidate genes
identified here after tissue-specific expression analysis, 19
candidate genes are listed in Table 5 for their homologous
Arabidopsis genes.

Haplotype and phenotypic difference
analysis of candidate genes

To further verify the association between the candidate genes
and target traits, we performed haplotype analysis of the
candidate genes using SNPs within the candidate genes and 2
kb upstream of the candidate genes. LOC_Os04g53210 (CDS
coordinates [5'-3']: 31688717 ~ 31692592) was analyzed to
reveal the intragenic variation affecting the rice yield and to
identify favorable haplotypes. Figure 4A shows the linkage
disequilibrium and haplotype block with two SNPs (id4010894
at 31688182 bp and i1d4010904 at 31691252 bp). The 413
accessions were classified into 4 haplotypes based on these two
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TABLE 5 Orthologous information of candidate genes with higher tissue expression.

Trait gene Marker Arabidopsis Putative function
Orthologous
gene
FT_Q/ LOC_0s01g02880 id1001009/ AT2G01140 Aldolase superfamily protein
TR]_Q id1001003
TEJ_Q LOC_0s01g45460 id1015276 ATI1G26120/ alpha/beta-Hydrolases superfamily protein/prenylcysteine methylesterase
AT3G02410/
AT5G15860
PPBN LOC_0s02g38840 id2009400 AT3G27300/ glucose-6-phosphate dehydrogenase 6
AT5G40760
PPBN LOC_0s02g39160 id2009400 AT5G60600 4-hydroxy-3-methylbut-2-enyl diphosphate synthase
PNPP LOC_0s03g13300 id3003977 AT5G17330 glutamate decarboxylase
IND_QE/ LOC_0s03g16050 id3004734/ AT3G54050 high cyclic electron flow 1
FT_Q 1d3004539
PF LOC_0Os04g33190 1d4006172 AT5G36880 acetyl-CoA synthetase
AUS_QE/  LOC_Os04g53210 1d4010914/ AT4G18360 Aldolase-type TIM barrel family protein
FTAB/FTF id4010930/
1d4010984
FT_Q LOC_0s05g35580 id5008977 AT2G16570/ GLN phosphoribosyl pyrophosphate amidotransferase 1/GLN phosphoribosyl
AT4G34740 pyrophosphate amidotransferase 2
PL/PH LOC_0s06g01630 id6000302 AT1G54220/ Dihydrolipoamide acetyltransferase, long form protein
AT3G13930
FTAB/ LOC_0s06g07120 id6002745/ AT2G17570 Undecaprenyl pyrophosphate synthetase family protein
FT_Q 1d6002690
TRJ_QE LOC_0s07g09060 id7000656 AT2G14170 aldehyde dehydrogenase 6B2
FT_QE LOC_0s07g38970 id7004142 AT5G08300/ Succinyl-CoA ligase, alpha subunit
AT5G23250
FT_QE LOC_0s07g39270 id7004142 AT2G18620/ Terpenoid synthases superfamily protein/
AT4G36810 geranylgeranyl pyrophosphate synthase 1
FT_Q/FPP/ LOC_Os07g41680 id7004583/ AT2G17570 Undecaprenyl pyrophosphate synthetase family protein
SNPP id7004587
PH LOC_0s07g42440 id7004779 AT3G14130/ Aldolase-type TIM barrel family protein
AT3G14150
PL/FPP LOC_0s07g42924 id7004886/ AT1G22430/ GroES-like zinc-binding dehydrogenase family protein/Zinc-binding alcohol
id7004865 AT1G22440/ dehydrogenase family protein/GroES-like zinc-binding dehydrogenase family protein
AT4G22110
PH LOC_0s08g39300 1d8006905 AT2G13360 alanine: glyoxylate aminotransferase
FT_QE LOC_Os10g37180 id10006353 ATI1G32470/ Single hybrid motif superfamily protein/
AT2G35370 glycine decarboxylase complex H

Qand QE indicate significant/suggested QTNs and QEIs in the multi-environment analysis, respectively. AUS, IND, TE], and TR] indicate subpopulations of the 413 rice accessions. Other
abbreviations indicate results of the single-environment analysis.

SNPs (id4010894 and id4010904). Among these haplotypes, among the 4 haplotypes. Supplementary Figure S3B shows the
haplotypes TT and CT had the highest mean phenotypic results of the haplotype block and phenotype difference in

values of FTAB (109.54) and FTF (78.25), respectively, LOC_0s07g42440, which was detected in PH. We infer that
whereas haplotype TC presented the lowest FTAB (87.33) and the candidate gene LOC_Os04g53210 might be a gene-
FTF (60.00; Figures 4B, C). A t test showed that significant environment interaction for flowering time and that

differences in FTAB and FTF existed between haplotypes CT and LOC_0Os07g42440 might be associated with yield in rice.
TT (P-values = 4.93E-02 and 3.84E-04, respectively). There was

also a significant difference in FTF between haplotypes CT and

CC (P-values = 1.23E-04). Therefore, we infer the candidate Discussion

gene LOC_0s04g53210 to be associated with flowering in rice.

LOC_0s04g53210 was also detected in the multi- Classic single-locus methods, such as MLM and general
environment analysis for the AUS subpopulation. linear model (GLM), have been used extensively to detect
Supplementary Figure S3A shows the differences in phenotype genetic variants in many cereals (Price et al., 2006; Sant’Ana
Frontiers in Plant Science frontiersin.org
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Results of haplotype and phenotypic difference analysis for the candidate gene LOC_0Os04g53210. (A) Linkage disequilibrium and haplotype
block with two SNPs inside for LOC_0Os04g53210. (B) Comparison of FTAB among haplotypes CT, CC, TC, and TT. (C) Comparison of FTF

among haplotypes CT, CC, TC, and TT.

et al., 2018; He et al.,, 2019). However, these models suffer from
multiple test corrections (e.g., Bonferroni correction) for critical
values and neglect the overall effects of multiple loci (Zhong
et al, 2021). For example, many robust quantitative trait loci, in
particular small-effect quantitative trait loci, are missing because
of the stringent threshold (Zhang et al., 2005). Therefore, multi-
locus GWAS models, which are relatively closer to the real
genetic architecture of animals and plants, have been developed.
Geneticists developed these models to reduce the bias associated
with estimating effects by controlling the population structure
and polygenic background (Zhang et al., 2005; Yu et al., 20065
Zhang et al., 2010). In this study, a multi-locus GWAS method
3VmrMLM was used to detect QTN for eight yield-related traits
in 413 rice varieties with 36,901 SNPs. We detected 17, 16, 16,
21, 23,17, 15, 15, 18, and 7 significant/suggested SNPs and 9, 7,
3,14, 17,6, 6, 2, 7, and 2 known genes for FPP, PF, PL, PNPP,
PH, PPBN, SNPP, FTAB, FTAR, and FTF, respectively, using the
QTN detection model in 3VmrMLM (Supplementary Table SI).
Furthermore, we compared 3VmrMLM to a single-locus
method, EMMA (Kang et al., 2008) by Zhao et al. (2011). We
detected 4, 3, 3, 6, 5, 2, 1, 14, 6, and 2 QTNs by EMMA,; thus,
3VmrMLM detected more significant QTNs than EMMA.
Among these significant QTNs, 1, 1, 1, 1, 1,0, 0, 1, 1, and 0
were detected by the two methods simultaneously, including
id3000495, 1d2004552, id1019150, id12008894, id1101154,
id8006573, and id3002064. 1, 0,2, 1, 1, 0, 0, 1, 3, and 1 known
gene were detected by EMMA, which were less than 3VmrMLM.
Among these known genes, 6 were detected by EMMA and
3VmrMLM simultaneously, including End4, THISI, sd1, DPW,
CYP704B2, and OsSUTI (Table 2). In addition to these 6 known
genes, we identified 3 candidate genes for EMMA by performing
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differential expression analysis and functional enrichment
analysis, and there was no overlap in candidate genes between
the two methods. Moreover, the QTNs detected by 3VmrMLM
explained a higher proportion of total phenotypic variance
(72.61%, 73.29%, 75.48%, 51.99%, 64.17%, 71.64%, 58.55%,
77.07%, and 44.60%) than those detected by EMMA (17.1%,
8.1%, 10.9%, 7%, 38.6%, 6%, 0.1%, 31.3%, and 8.1%), except for
FTAB. Overall, the multi-locus GWAS method are flexible to
detect more QTNs and validate more known genes and
candidate genes than the single-locus GWAS method.

The contribution of QEI to the genetic analysis of complex
traits in plant, animal, and human genetics is growing. As a
result of accelerating global climate change, weather disasters
in a variety of regions are becoming increasingly severe, posing
a substantial obstacle to sustainable food production. An
efficient way of adapting to climate change is to develop
climate-resilient crops. However, it is first necessary to detect
QEIs and mine their genes. In addition, the environment has
an impact on important traits, such as quality, yield,
adaptability, and resistance, but studies on physiological
effects, molecular mechanisms, and functional analyses of
QEI genes under a variety of environments are not insightful
enough because of the algorithms used. Moreover, joint
analysis of multiple environments can enhance statistical
power and experimental accuracy in the detection of QTN
and QEL. In this study, three flowering time environments were
used to identify QEIs for rice using a multi-environment
detection model in 3VmrMLM, and 21, 3, 3, 6, 9, and 4
QTNs and 13, 4, 2, 4, 3, and 2 QEIs were detected for all
populations and each subpopulation (Tables 3, 4;
Supplementary Table S2).
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Pleiotropy was verified in this study. Among all the 165
significant/suggested QTN for the eight traits detected using the
QTN detection model in 3VmrMLM, some QTNs were
significantly associated with more than one trait. 5 QTNs
simultaneously related to FPP and SNPP were detected
because of the strong correlation (PCC = 0.83) between these
two traits, including id1002863, id3000495, id6009226,
id7004587, and id11010822. Around these 5 QTNs, genes the
OsRA2, Ehd4, and OsPTR4 genes were identified (Gao et al,
2013; Lu et al,, 2017; Huang et al., 2019). Id2005901 located on
chromosome 2 was associated with both FPP and PPBN (PCC =
0.70). For PH and PL with a positive correlation (PCC = 0.64),
id6000302 located on chromosome 6 was simultaneously
detected. Moreover, id11011548 located on chromosome 11
was found to affect both PH and FTAR (PCC = 0.47), where
the EDTI gene was identified (Bai et al., 2019).

Among the total of 117 genes around the significant/
suggested QTNs and QEIs in this study, 87 were known genes
that have been reported in previous studies. For these known
genes with QTN effects (Table 2), sdlis associated with PH
(Zhao et al., 2011). OsMADSI8 from the MADS-box
transcription factor family affects panicle development
(Kobayashi et al., 2012). Moreover, OsRA2, located on
chromosome 1, which simultaneously affects FPP and SNPP,
modifies panicle architecture by regulating pedicel length (Lu
etal,, 2017). Notably, OsMADS5 was demonstrated to have both
QTN effect and QEI effect, which was associated with
inflorescence development in several previous studies (Arora
et al., 2007; Zhu et al., 2022).

In addition to the above-mentioned 87 known genes, 30
candidate genes around the significant/suggested QTNs and
QEIs that have not previously been reported were also
detected in this study. These candidate genes were shown to
be involved in many biological processes of rice growth, which
indicates underlying associations between the identified
candidate genes and the target traits (Figure 3A). Among these
30 candidate genes, 27 candidate genes had high expression in
specific tissues, such as panicles and inflorescence (Figure 3B). In
addition, 19 candidate genes associated with different traits had
homologous genes in Arabidopsis (Table 5). LOC_Os04g53210
and LOC_Os07g42440 were demonstrated to be potentially
associated with flowering and yield, respectively, by haplotype
and phenotypic difference analysis (Figure 4; Supplementary
Figure S3B). LOC_Os04g53210 especially might be a key gene in
gene-environment interaction for flowering time
(Supplementary Figure S3A).

3VmrMLM represents a significant advancement in GWAS
methodologies and practical applications. First, 3VmrMLM
correctly detects both QTNs and QEIs and produces unbiased
estimations of their effects, unlike current GWAS methods that
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only detect QTNs and estimate genetic effects (Li et al., 2022a).
Second, despite the fact that Feldmann et al. (2021) discovered
that the phenotypic variance explained and the percentage of
marker-associated genetic variance of large-effect loci were
overestimated in analyses of complex traits, maximum
likelihood estimation using ANOVA with the linear invariance
property theoretically guarantees accurate loci detection and
unbiased estimation of effects. Moreover, 3VmrMLM uses a
compressed mixed model with three variance components to
overcome the huge computational burden in traditional GWAS
models. Therefore, 3VmrMLM is a good choice for detecting
QTNs and QEIs associated with rice yield-related traits.

Conclusion

In this study, a compressed mixed model with three variance
components in GWAS, 3VmrMLM, was used to detect QTNs and
QEIs related to rice yield traits. A total of 165 QTNs were
identified. Moreover, 75 known genes were identified adjacent
to the QTNs based on genome annotation and previous studies. In
terms of QTN-by-environment detection, 21, 3, 3, 6, 9, and 4
QTNs and 13, 4, 2, 4, 3, and 2 QEIs were detected for all
populations and each subpopulation. Moreover, 12 known
genes were identified adjacent to the QTNs and QEIs. As a
result of further differential expression and functional
enrichment analysis, 30 candidate genes were detected.
LOC_Os04g53210 and LOC_0Os07g42440 were confirmed as
main candidate genes by tissue-specific expression analysis,
comparison of homologous Arabidopsis genes, and haplotype
and phenotypic difference analysis. LOC_Os04g53210 might be
useful in gene-environment interaction for a flowering time trait.
These results could be helpful for detecting genes related to
rice yield.
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Genome-wide association studies (GWAS) is an efficient method to detect
quantitative trait locus (QTL), and has dissected many complex traits in soybean
[Glycine max (L.) Merr.]. Although these results have undoubtedly played a far-
reaching role in the study of soybean biology, environmental interactions for
complex traits in traditional GWAS models are frequently overlooked. Recently, a
new GWAS model, 3VmrMLM, was established to identify QTLs and QTL-by-
environment interactions (QEls) for complex traits. In this study, the GLM, MLM,
CMLM, FarmCPU, BLINK, and 3VmrMLM models were used to identify QTLs and
QEls for tocopherol (Toc) content in soybean seed, including 8-Tocotrienol (8-
Toc) content, y-Tocotrienol (y-Toc) content, a.-Tocopherol (a-Toc) content, and
total Tocopherol (T-Toc) content. As a result, 101 QTLs were detected by the
above methods in single-environment analysis, and 57 QTLs and 13 QEls were
detected by 3VmrMLM in multi-environment analysis. Among these QTLs, some
QTLs (Group I) were repeatedly detected three times or by at least two models,
and some QTLs (Group ) were repeatedly detected only by 3VmrMLM. In the two
Groups, 3VmrMLM was able to correctly detect all known QTLs in group |, while
good results were achieved in Group I, for example, 8 novel QTLs were detected
in Group Il. In addition, comparative genomic analysis revealed that the proportion
of Glyma_max specific genes near QEls was higher, in other words, these QEls
nearby genes are more susceptible to environmental influences. Finally, around
the 8 novel QTLs, 11 important candidate genes were identified using haplotype,
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and validated by RNA-Seq data and gRT-PCR analysis. In summary, we used
phenotypic data of Toc content in soybean, and tested the accuracy and reliability
of 3VmrMLM, and then revealed novel QTLs, QEls and candidate genes for these
traits. Hence, the 3VmrMLM model has broad prospects and potential for analyzing
the genetic structure of complex quantitative traits in soybean.

KEYWORDS

GWAS, 3VmrMLM, soybean, tocopherol content, QTL, candidate genes

Introduction

Soybean [Glycine max (L.) Merr.] is an important crop, and
provided a great source of protein, oil, vitamin, and other
nutrients for humans around the world. As one of the
functional nutrients of soybean, tocopherol (Toc) has strong
antioxidative capabilities and benefits to human health. It can
scavenge free radicals in the body and increase immune function
(Meagher et al, 2001; Kumar et al., 2009). According to the
chemical structure, Tocs are composed of four members: o-
tocopherol (0.-Toc), B-tocopherol (B-Toc), y-tocopherol (y-Toc),
and 8-tocopherol (8-Toc) (Wan et al., 2008; Rozanowska et al.,
2019; Barouh et al,, 2022). Among them, o.-Toc has the highest
activity (Shaw et al., 2016). Edible oil is one of the main sources
of Toc (Packer and Fuchs, 1993). As the most widely produced
vegetable oil in the world, soybean oil has the highest total-Toc
content, however, y-Toc in soybean oil accounts for more than
70%. Although y-Toc has antioxidant and other physiological
activities, o-Toc is more excellent (Bramley et al., 2000). Hence,
elevating the o-Toc content and total-Toc content in soybean
genetics is important for quality improvement.

The Toc content of soybean seed is a typical quantitative
trait, and it is difficult to breed this target trait of soybean variety
using traditional breeding. This requires a lengthy selection
process (Britz et al., 2008; Seguin et al, 2010). As an ancient
tetraploid plant (Blanc and Wolfe, 2004), the soybean owing to
its large and complex genome background brings great
challenges and difficulties in genetic improvement (Young and
Bharti, 2012; Tian et al., 2020; Lemay et al., 2022).

Genome-wide association studies (GWAS) is a powerful
genomics tool, and it can base on natural populations to detect
quantitative trait locus (QTL) underlying complex quantitative
traits (Burton et al.,, 2007; Hamblin et al., 2011). GWAS has the
advantage of high-resolution and high-throughput, thus, this
method for analysis provides great convenience for the study of
genetic variation in soybean (Anderson et al., 2020). Since the
first GWAS conducted in soybean until now, almost all the
important agronomic traits have been covered and dissected
(Zhou et al.,, 2015; Fang et al.,, 2017). And yet, different GWAS
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models yield different GWAS results when we owe high-quality
genotype and phenotype data (Chatterjee et al,, 2013). Therefore,
selecting the most suitable model for GWAS analysis can
increase the accuracy to identify QTLs.

The general linear model (GLM) (Price et al, 2006), the
mixed linear model (MLM) (Yu et al., 2006), and the compressed
mixed linear model (CMLM) (Zhang et al., 2010) are single-
marker genome-wide scan models, and these models can
comprise a one-dimensional genome scan by testing one
marker at a time. Among them, CMLM is frequently used in
the genomic dissection of soybean quantitative traits (Jing et al.,
2018; Zhao et al., 2019; Sui et al., 2020). However, single-marker
genome-wide scan models require Bonferroni correction and
multiple tests (Wang et al, 2016). Bonferroni correction is a
stringent criterion, although greatly reduced false positive rates,
many important loci associated with the target traits were missed
(Zhang et al,, 2019). With the rapid development of statistical
methods, several multi-locus GWAS approaches have been
developed to improve the power of QTL detection (Segura
et al., 2012; Wen et al, 2018). Such as the Bayesian-
information and linkage disequilibrium iteratively nested
keyway (BLINK) (Huang et al., 2018), and the fixed and
random model circulating probability unification (FarmCPU)
(Liu et al., 2016). The obvious advantage of these methods is not
a Bonferroni correction, they can reduce the amount of
calculation and improve the accuracy.

Recently, a novel model was presented, named 3V multi-
locus random-SNP-effect mixed linear model (3VmrMLM) (Li
etal.,, 2022a). It is a multi-marker genome-wide scan model, this
model not only provides high QTL detection power and
sensitivity, at the same time, but it can also detect the QTL-
by-environment interaction (QEI) and the QTL-by-QTL
interaction (QQI). In this study, based on 23,149 SNPs and
175 soybean germplasms, we used six models (including
3VmrMLM, BLINK, FarmCPU, GLM, MLM, and CMLM) and
conducted GWAS of individual and total-Toc content across
three environments. The aim of this study is to reveal novel
QTLs and QEIs of soybean Toc content and screen
candidate genes.
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Materials and methods

Plant materials, field trials, and
phenotypic evaluation

The material used in this study included 175 diverse soybean
accessions (Table S1), which encompassed most of the northeast
regions of China and other countries. These materials were
collected from the Chinese National Soybean GeneBank
(CNSGB) and can represent the genetic diversity inside and
outside of China. In this study, all experimental materials were
planted at Harbin (117°17'E, 33°18'N), Liaoning (41°48'N, 123°
25'E), and, Jilin (124°82'E, 43°50’N) in 2021. The field trials used
a single-row plot (3 m-long rows and spaced 0.65 m) and were
arranged in a randomized complete block design with three
replicates per test environment. After full maturity, mature
kernels of 10 randomly selected plants in each line were
collected and used for evaluation of individual and total Toc
content. The soybean seed Toc extraction and measurement
were performed according to previous reports (Ujiie et al., 2005).

DNA isolation and sequencing

The genomic DNA of each sample from 175 tested accessions
was isolated from young leaf was isolated by the method of CTAB
(Han et al, 2015), and simplified-sequenced via specific locus
amplified fragment sequencing (SLAF-seq) (Sun et al., 2013). The
digest enzyme group of Msel (EC: 3.1.21.4) and Haelll (EC:
3.1.21.4) (Thermo Fisher Scientific Inc, Waltham, MA, USA.)
were used to obtain more than 50,000 sequencing tags, each 300-
500 bp in length. The obtained markers were evenly distributed in
unique genomic regions of the 20 soybean chromosomes. The
short oligonucleotide alignment program 2 software (SOAP2) was
used to align the raw paired-end reads to the soybean reference
genome. Based on over 58,000 high-quality SLAF labels from each
test sample, raw reads from the same genomic location were used
to define SLAF groups. Genotypes were considered heterozygous
if the minor allele depth or total allele depth of the sample was
greater than 1/3 (Han et al., 2016).

Population structure evaluation and
linkage disequilibrium analysis

The principle component analysis (PCA) was performed
using the genome association and prediction integrated tool
(GAPIT) R package to analyze the population structure of the
natural panel (Lipka et al., 2012). The linkage disequilibrium
(LD) parameter (r*) for estimating the degree of LD between
pair-wise SNPs (MAF > 0.05 and missing data < 10%) was
calculated by TASSEL 5.0 (Bradbury et al., 2007). Unlike GWAS,
missing SNP genotypes were not classified as major alleles prior
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to LD analysis. Parameters in the program included MAF (>
0.05) and completeness (> 80%) for each SNP.

Genome-wide association studies

In total, 23,149 polymorphic SNP markers and 175 tested
accessions were used to perform GWAS, it was performed using
six models, including three single-locus model: MLM, GLM,
CMLM, and three multi-locus models: FarmCPU, BLINK,
3VmrMLM. Among these, the GLM, MLM, CMLM,
FarmCPU, and BLINK models were implemented with the R
package “GAPIT” and visualization used scripts from the R
package “qgman” (https://cran.r-project.org/package=qqman)
and “CMplot “ (https://github.com/YinLiLin/R-CMplot).

The significant threshold value for the association between SNP
and traits were determined by -log10 (P) > 4, which is equivalent to
P <0.0001, for MLM, GLM, CMLM, FarmCPU, and BLINK. The R
software IIIVmrMLM (Li et al., 2022b) of the 3VmrMLM method
(Li et al., 2022a) was downloaded from GitHub website (https://
github.com/YuanmingZhang65/IITVmrMLM). In this study, we
used the single environment and multiple-environment methods
to identify QTLs and QEIs. The significant threshold value was
determined by LOD score > 4.

Prediction of candidate genes

Candidate genes located in the 200-kb genomic region
(100 kb upstream and 100 kb downstream) of each significant
or suggested QTL then identified and annotated the candidate
genes with the soybean reference genome (Wm82.a2.v1, http://
www.soybase.org) (Cheng et al., 2017). The gene ontology (GO)
enrichment analysis of candidate genes using the online tool
(https://www.soybase.org/goslimgraphic_v2/dashboard.php). In
addition, the whole genome and QEIs candidate genes among
soybean relatives were compared using OrthoVenn2 (https://

orthovenn2.bioinfotoolkits.net/task/create) (Xu et al., 2019).

Association analysis of candidate genes

Genome resequencing data were used to select the SNP
variations within candidate genes. These SNP were located in
exonic, intronic regions, upstream and downstream regions.
Then, we combined the phenotype values of 56 soybean
germplasms in three environments, these soybean germplasms
were selected from the 175 diverse soybean accessions (Table S1)
(including 9 high and low individual and total Toc germplasms),
using the general linear model (GLM) in TASSEL 5.0 to identify
SNPs of candidate genes that related to individual or total Toc
content (Bradbury et al., 2007). Significant SNPs associated with
the target trait were claimed when the test statistic was P < 0.01.
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Haplotype analysis

The haplotypes were classified based on all of the SNPs with
an MAF >0.05 in each candidate gene. Best linear unbiased
predictors (BLUP) value were calculated using the “Phenotype”
(https://cran.r-project.org/package=Phenotype) in R package.
For each Toc component, haplotypes containing 18 soybean
germplasms accessions were used for comparative analysis. One-
way ANOVA and Two-tailed unpaired t -test were used to
compare the differences in TC-BLUP value among the
haplotypes. Finally, we compared the individual or total Toc
content among these different haplotypes.

RNA-Seq data analysis of candidate
genes

For candidate genes expression pattern analysis, first, we
performed a differential expression pattern analysis at different
tissues by downloading the RNA expression data from the plant
public RNA seq database (PPRD) (http://ipf.sustech.edu.cn/pub/
soybean/), which integrated all publicly available RNA-Seq
soybean libraries (4,085) (Yu et al, 2022). Then, we also
analyzed the expression of candidate genes in the development
stage (R6) at different germplasms using the transcriptome data
(unpublished data) from our laboratory. Additionally, we
constructed a heat-map plot, and it was performed using the R
package pheatmap (Kolde, 2012).

Quantitative real-time PCR (QRT-PCR)

Total RNA was isolated using the RNAprep pure Plant Kit
(DP432, Tiangen). First-strand ¢cDNA was synthesized from

10.3389/fpls.2022.1026581

total RNA using TIANScript RT kits (KR104, Tiangen). And
qRT-PCRs were performed using SYBR Green (FP205, Tiangen)
reagents on an ABI 7500 fast real-time PCR platform. All qRT-
PCRs were performed in three independent repeats, and the
relative levels of transcript abundance were calculated using the
2724€T method (Livak and Schmittgen 2001). The GmActin4
(Glyma.12G063400) was used as an internal control for data
normalization. Primer sequences for candidate genes were
obtained from the qPrimerDB database (Table S2) (Lu
et al., 2018).

Statistical analysis

Descriptive statistical analysis of phenotypic data including
mean, minimum, maximum, coefficient of variation (CV),
heritability, skewness, and kurtosis was performed using IBM
SPSS statistics 25.0 (SPSS, Chicago, USA). One-way ANOVA
with Dunnett’s multiple comparisons test and unpaired two-
tailed t-test were performed using GraphPad Prism 9.4.1.

Results

Statistical and variation analysis of Toc
content

Statistical analysis showed a wide range of phenotypic
variations in the levels of the individual and total Toc content
of the 175 soybean accessions from Harbin, Liaoning, and Jilin in
2021 (Table 1). The coefficient of variation (CV%), skewness,
and kurtosis of Toc content of the association panel are also
presented in Table 1. The CV varied a lot among different Toc
content, especially the o-Toc content under three locations were

TABLE 1 Statistical and variation analysis of tocopherol content in the tested soybean population (n = 175).

Traits Location Min(ng/g) Max(ng/g) Mean(ug/g) Ccv Skewness Kurtosis Heritability
o-Toc content Harbin 6.59 52.43 22.69 35.21% 0.74 0.80 0.51
Liaoning 517 51.12 23.42 44.90% 0.42 -0.64
Jilin 5.65 49.62 21.48 41.68% 0.41 -0.33
¥-Toc content Harbin 86.97 2447 164.97 15.65% 0.35 0.17 0.59
Liaoning 99.01 234.15 161.01 14.63% 0.38 0.55
Jilin 88.78 235.8 167.24 15.22% 0.29 0.26
8-Toc content Harbin 53.1 195.1 107.17 27.71% 0.63 -0.12 0.72
Liaoning 55.6 162.29 93.23 21.04% 0.54 0.21
Jilin 43.64 159.24 91.73 25.92% 0.70 0.12
Total- content Harbin 179.49 407.31 294.83 13.09% 0.03 0.24 0.64
Liaoning 190.37 358.14 277.66 12.45% 0.01 -0.21
Jilin 188.34 371.91 280.44 11.41% -0.04 -0.33

Min, minimum; Max, maximum; CV, coefficient of variation.
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observed from 35.21% to 44.9%, but all Toc content was no
significant skewness or kurtosis (Figure 1). These results showed
that Toc content was mainly influenced by genetic factors with
less effect by environmental factors. Therefore, the tocopherol
content of soybean in this study was appropriate for GWAS.

SNP genotyping, linkage disequilibrium
estimating, and population structure for
the GWAS panel

The genotyped samples included 175 soybean germplasms
(including landraces and elite cultivars). The genomic DNA of
these 175 accessions was sequenced using SLAF-seq. A total of
23,149 high-quality markers (MAF > 0.05, missing data < 10%)
were identified from 153 million paired-end reads with 45 bp-
read lengths and the sequencing depth was about 6.5 fold. The
number of SNPs varied across the 20 soybean chromosomes.
The highest number of SNPs was observed in Chr.18 (1732) and
the lowest was detected in Chr.11 (685) (Figure 2A).

We assessed the mapping power of GWAS by the average
distance of LD decay. The mean LD decay of the population was
estimated at 97466 bp, when r* dropped to 0.2 (Figure 2B). Then,
all 23,149 SNPs were used for scanning the population stratification
of association panels through the principal component (PC), and
evaluation of the variation of the first 10 PCs analysis revealed an
inflection point at PC3, which demonstrated that the first 3 PCs
dominated the population structure on the association mapping
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(Figures 2C, D). Additionally, a lower level of genetic relatedness
among the 175 tested accessions based on pairwise relative kinship
coefficients was observed (Figure 2E).

Quantitative trait locuss associated with
Toc content by GWAS

GWAS was conducted using GLM, MLM, CMLM, FarmCPU,
BLINK, and 3VmrMLM models. All of which accounted for
kinship and population structure. First of all, we used different
thresholds of significance (by -log10 (P) or LOD score= 3, 4, 5, 6, 7,
8, and 9) for testing six GWAS models and counted the number of
QTLs detected (Figure 3A).Then, when -logl0(P) > 4 as significant
thresholds, a total of 86 QTLs significantly associated with
individual and total Toc concent in soybean seeds were detected
via GLM, 18 QTLs were detected by MLM, 41 QTLs by CMLM, 41
QTLs by BLINK, and 34 QTLs by FarmCPU (Figure 4A, Figures
S1-55 and Tables 53-57). Among them, only 4 QTLs were co-
detected by all six models (Figure 3B). Furthermore, the largest
number of QTLs were detected with the 3VmrMLM model. Among
them, the single-environment method detected 101 QTLs (Figure
56, Table S8), the multiple-environments method detected 57 QTLs
(Figure S7, Table S9), and 13 QEIs (Figure S8, Table S10). Among
them, 11 QTLs were co-detected by single-environment and
multiple-environment method (Figure 3C). The results showed
that the number of QTLs detected by 3VmrMLM are more
abundant and stable under different significance thresholds.
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soybean accessions.

Finally, the QTLs, which were repeatedly detected in multiple
GWAS models, were selected as reliable QTLs—group I. As
shown in Figure 3B, Table 2, 19 QTLs were co-detected by at
least three times or at least two models, which were distributed
among 24 genomic regions in 14 chromosomes. Among these, 9
QTLs (rs9337368, rs1834346, rs17125409, rs330000, rs9782629,
rs19530677, rs5680781, rs17266245, and rs53062844) were
located in genomic regions or QTLs reported by previous
studies, confirming the accuracy of QTL detection. We regard
the remaining 15 QTLs as the novel QTLs (rs39895210,
rs2960931, rs19310064, rs31044180, rs7543892, rs4992837,
rs14593163, rs24979561, rs588498, rs19962490, rs6204830,
18720462, rs37558520, rs34774232, and rs35815938). Moreover,
a total of 161 QTLs were identified by 3VmrMLM (Figure 3A), in
order to test the reliability of the 3VmrMLM model, we selected
the QTLs only detected in 3VmrMLM. 9 QTLs (detected by at
least two times) were repeatedly detected as specific QTLs—group
IT (Table 3), which were distributed among 9 genomic regions in 8
chromosomes. rs41784197 was located in genomic regions or
QTLs reported by previous studies. Again, we regard the
remaining 8 QTLs as the novel QTLs (rs7167202, rs9140707,
rs18105573, rs2669053, rs40595691, rs43000771, rs5779917,
and rs46814888).
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Prediction of candidate genes for Toc
content in soybean seeds

Based on annotations for the soybean reference genome in
SoyBase, we further predicted candidate genes within the 200-kb
flanking regions of the novel QTLs. In two group novel QTLs, a
total of 248 genes were obtained (Table S11). And a total of 134
genes were obtained in QEIs (Table S12). Then, we used GO
annotation to perform enrichment analysis for group I and
group II genes. The results categorized as molecular function,
cellular component, and biological process, were shown in
Figure 4. Both group I and group II candidate genes are
involved in a variety of functions, such as carbohydrate
metabolic process, translation, protein binding, cytoplasm
component, DNA binding, and so on.

Comparative genome analysis

In order to predict the authenticity of the QEIs, firstly,
we selected four closely related species, Glyma_max,
Vigna_radiate, Vigna_augularis, and Phaseolus_vulgaris,
for comparative genomic analysis. A total of 12847 core gene
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Statistics of QTLs in GWAS results under three models. (A) Statistics on the number of QTLs detected at different significance thresholds by
different models or methods. (B)Venn diagram representing the number of unique and shared QTLs with six models. (C) Venn diagram
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3VmrMLM-S represents 3VmrMLM single-environment method, 3VmrMLM-M represents QTL detection of 3VmrMLM multiple-environment
method, 3VmrMLM-QEl represents QEI detection of 3VmrMLM multiple-environment method.

clusters were found in the four species, and 1197 gene clusters
were unique to Glyma_max (Figure 5A), specific genes clusters
account for 5.4% (1197/22159). Then, we used candidate gene of
QEIs for comparative genomic analysis, 12 gene clusters were
unique to candidate gene of QEIs (Figure 5B), specific genes
clusters account 9.23% (12/130), this result shown that these
QEIs have more abundant specific genes. As shown in Figure 5C,
these specific genes are involved in various biological processes,
metabolic processes, response to stimulus, etc. More detailed
statistics on the number of shared gene clusters are shown in
Figure 5D. Figure 6F is count of proteins by type of cluster.

Gene-based association analysis of
candidate genes

Two groups of candidate gene association analysis were
performed using the GLM model with the TASSEL, using the
genome resequencing of 56 germplasms (including 9 high and low
individual and total Toc germplasms). A total of 4537 SNPs with
MAF 2 0.05 were identified among 248 candidate genes. Among
them, a total of 50 SNPs from 11 candidate genes were found to
reach the threshold with -logl0(P) = 2.0 (Table S13), of these, 4
SNPs are located in upstream regions, 10 SNPs are located in
intronic regions, 26 SNPs are located in exonic ;regions, and 10
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SNPs are located ;in downstream regions. Those SNPs are
considered to be significantly associated with individual and total
Toc concentrations in soybean seeds. Among these genes, 4
candidate genes from group I and 7 candidate genes from group
II. These genes can be considered potential candidate genes for
individual and total Toc-related. For example, as shown in
Figure 6A, the significant SNPs correlated to o-Toc and 8-Toc on
basis of association analysis for two candidate genes were
respectively identified (Glyma.17G188700 and Glyma.20G235100
were shown in Figure 6A, others were shown in Figure S9).

Haplotype analysis of candidate genes

For the haplotype analysis, first, all the SNP markers within
each gene are used to construct haplotypes. Then, we performed
one-way ANOVA with TC-BLUP values of each soybean
accession. The results are shown in Table 4, each gene contains
haplotypes that are significant differences from TC-BLUP values.
In addition, 14 haplotypes of 11 candidate genes respectively
conferred an increased individual and total Toc content in
soybean seeds (Glyma.17G188700 and Glyma.20G235100 were
shown in Figure 6B, others were shown in Figure S10). Therefore,
these haplotypes are beneficial and can be adjusted for individual
and total Toc content in soybean seeds.
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TABLE 2 SNPs associated with Toc content of soybean seeds and known QTLs overlapped with peak SNPs of group 1.

SNP Chr. Position Allele

1s9337368 2 9337368

r$39895210 3 39895210

152960931 6 2960931

rs1834346 8 1834346

rs19310064 8 19310064

rs31044180 9 31044180
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GLM
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FarmCPU
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GLM

Significance Environment -logl0

SIG

SIG

SIG

SIG

SIG

81

Harbin

Harbin

Harbin

Harbin

Liaoning

Liaoning

Liaoning

Liaoning

Liaoning

Liaoning

Liaoning

Harbin

Harbin

Harbin

Harbin

Harbin

Harbin

Jilin

Jilin

Jilin

Jilin

Jilin

Jilin

Jilin

(P)
6.48
6.15
4.03
4.49
6.33
4.15
4.52
4.53
19.38
4.45
4.47
10.47
10.45

4.16

11.02
9.02
11.84
9.02
9.43
443
5.15
422
4.30

4.43

4.22

Known QTL

SSR02_0458-
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Sat_383-BARC-
037229-06749
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SNP Chr. Position Allele Traits Model/  Significance Environment -logl0 Known QTL References
Method (P)

§-Toc 3V-S SIG Jilin 18.07
content

157543892 10 7543892 T/G 3-Toc BLINK Jilin 7.07
content
3-Toc FarmCPU Jilin 4.55
content
d-Toc GLM Jilin 425
content
8-Toc 3V-M SIG - 11.13
content

1549928375 10 49928375 G/T o-Toc CMLM Harbin 5.04
content
a-Toc FarmCPU Harbin 4.67
content
a-Toc MLM Harbin 491
content
a-Toc GLM Harbin 5.74
content
a-Toc 3V-S SIG Harbin 17.93
content

rs17125409 12 17125409 C/A a-Toc CMLM Jilin 521 - Zhan et al., 2020
content
a-Toc BLINK Harbin 6.09
content
o-Toc BLINK Jilin 10.27
content
a-Toc FarmCPU Harbin 7.63
content
a-Toc GLM Harbin 4.56
content
a-Toc 3V-M SIG - 46.05
content

1s330000 13 330000 G/A 8-Toc FarmCPU Liaoning 4.76 - Zhan et al., 2020
content
3-Toc GLM Harbin 4.76
content
§-Toc GLM Liaoning 4.96
content
8-Toc 3V-S SIG Liaoning 9.65
content
3-Toc 3V-M SUG - 4.35
content

159782629 14 9782629 G/T ¥-Toc CMLM Harbin 5.63 BARC-059251- Shaw et al., 2017
content 15691-Sct_034
¥-Toc BLINK Harbin 7.27
content
¥-Toc FarmCPU Harbin 4.59
content
¥-Toc MLM Harbin 4.71
content
¥-Toc GLM Harbin 4.89
content
v-Toc 3V-QEI SIG - 15.98
content
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TABLE 2 Continued

10.3389/fpls.2022.1026581

SNP Chr. Position Allele Traits Model/  Significance Environment -logl0 Known QTL References
Method (P)
Total-Toc 3V-QEI SIG - 18.12
content
1519530677 16 19530677 T/A ¥-Toc CMLM Harbin 7.33 Sat_259-Sat_370 Li et al.,2010/Li
content et al.,2016
Total-Toc CMLM Harbin 6.67
content
¥-Toc BLINK Harbin 9.16
content
Total-Toc BLINK Harbin 4.23
content
¥-Toc FarmCPU Harbin 6.10
content
¥-Toc MLM Harbin 528
content
v-Toc GLM Harbin 6.20
content
v-Toc 3V-QEI SIG - 32.05
content
rs14593163 17 14593163 T/G 8-Toc BLINK Harbin 6.42
content
Total-Toc BLINK Harbin 4.56
content
Total-Toc FarmCPU Harbin 7.49
content
Total-Toc MLM Harbin 5.35
content
8-Toc GLM Harbin 4.73
content
Total-Toc GLM Harbin 6.12
content
1524979561 17 24979561 G/A o-Toc CMLM Harbin 5.87
content
a-Toc BLINK Harbin 7.86
content
a-Toc FarmCPU Harbin 7.56
content
a-Toc MLM Harbin 5.87
content
a-Toc GLM Harbin 6.53
content
a-Toc 3V-S SIG Harbin 18.72
content
rs588498 18 588498 G/A a-Toc FarmCPU Liaoning 4.26
content
a-Toc GLM Liaoning 4.26
content
a-Toc 3V-S SUG Liaoning 4.53
content
1s5680781 18 5680781 G/T Total-Toc CMLM Jilin 5.04 - Zhan et al., 2020
content
¥-Toc BLINK Jilin 4.62
content
Total-Toc BLINK Jilin 5.61
content
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TABLE 2 Continued

10.3389/fpls.2022.1026581

SNP Chr. Position Allele Traits Model/  Significance Environment -logl0 Known QTL References
Method (P)
¥-Toc 3V-S SIG Jilin 9.07
content
1517266245 18 17266245 T/G ¥-Toc BLINK Jilin 4.31 Satt038-Sat_164 Sui et al., 2020/ Zhan
content et al., 2020
¥-Toc 3V-s SIG Jilin 16.18
content
¥-Toc 3V-M SIG - 11.10
content
1519962490 18 19962490 T/C 8-Toc MLM Harbin 5.42
content
Total-Toc MLM Harbin 439
content
8-Toc GLM Harbin 4.84
content
Total-Toc GLM Harbin 4.37
content
rs53062844 18 53062844 G/T o-Toc CMLM Liaoning 491 Satt472-Satt038 Sui et al., 2020
content
a-Toc BLINK Liaoning 12.82
content
a-Toc FarmCPU Liaoning 5.73
content
a-Toc MLM Liaoning 4.87
content
a-Toc GLM Liaoning 5.73
content
a-Toc 3V-M SIG - 23.60
content
156204830 19 6204830 T/G a-Toc MLM Liaoning 4.10
content
a-Toc 3V-§ SIG Liaoning 15.42
content
o-Toc 3V-§ SIG Jilin 7.40
content
158720462 19 8720462 G/A 3-Toc BLINK Harbin 7.38
content
8-Toc FarmCPU Harbin 4.37
content
8-Toc FarmCPU Liaoning 4.48
content
3-Toc GLM Harbin 6.82
content
§-Toc GLM Liaoning 4.48
content
8-Toc 3V-S SUG Harbin 5.61
content
8-Toc 3V-M SUG - 4.01
content
rs37558520 19 37558520 T/C Total-Toc FarmCPU Liaoning 4.06
content
Total-Toc GLM Liaoning 4.09
content
o-Toc 3V-S SIG Liaoning 9.34
content
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TABLE 2 Continued

10.3389/fpls.2022.1026581

SNP Chr. Position Allele Traits Model/  Significance Environment -logl0 Known QTL References
Method (P)
rs34774232 20 34774232 A/G 8-Toc FarmCPU Harbin 4.72
content
8-Toc GLM Harbin 4.82
content
8-Toc 3V-M SIG - 13.07
content
rs35815938 20 35815938 T/C 8-Toc FarmCPU Liaoning 4.14
content
8-Toc GLM Liaoning 412
content
8-Toc 3V-M SIG - 10.32
content

3V-S represents 3VmrMLM single-environment method, 3V-M represents QTL detection of 3VmrMLM multiple-environment method, 3V-QEI represents QEI detection of 3VmrMLM
multiple-environment method, SIG represents significant QTLs, and SUG represents suggested QTLs.

RNA-Seq data analysis of candidate
genes for Toc content in soybean

In order to confirm the possible effect of candidate genes in
the regulation of Toc content, we firstly used PPRD to analyze the
expression patterns of 11 candidate genes in different tissues. The
result showed that all candidate genes were expressed in soybean
seed (Figure S11), and Glyma.10G171600 is most abundantly

expressed in seed compared with other tissues. Then, for the 11
candidate genes of 56 soybean germplasms at the development
stage (R6), RNA-Seq data analysis was done. The result showed
that the expression levels of the 11 candidate genes in low and high
Toc content germplasms were different. Among them,
Glyma.17G188700 can regulate o-Toc content in soybean seeds.
The range of the expression levels of Glyma.17G188700 in higher
o-Toc germplasms was much higher than those of lower. Other

TABLE 3 SNPs associated with Toc content of soybean seeds and known QTLs overlapped with peak SNPs of group II.

SNP Chr. Position Allele Traits

rs7167202 1 7167202 G/T ¥-Toc content 3VmrMLM-S

Total-Toc content 3VmrMLM-S

Total-Toc content 3VmrMLM-M

rs41784197 1 41784197 T/C ¥-Toc content 3VmrMLM-S
¥-Toc content 3VmrMLM-M

rs9140707 7 9140707 G/T o-Toc content 3VmrMLM-S
o-Toc content 3VmrMLM-M

rs18105573 8 18105573 AIG &-Toc content 3VmrMLM-S
§-Toc content 3VmrMLM-M

1rs2669053 9 2669053 T/C ¥-Toc content 3VmrMLM-S
¥-Toc content 3VmrMLM-QEI

Total-Toc content 3VmrMLM-S
Total-Toc content  3VmrMLM-QEI

1540595691 10 40595691 C/T ¥-Toc content 3VmrMLM-M
Total-Toc content 3VmrMLM-M

1543000771 15 43000771 C/T ¥-Toc content 3VmrMLM-S
Total-Toc content 3VmrMLM-M
155779917 19 5779917 G/T a-Toc content 3VmrMLM-QEI

¥-Toc content 3VmrMLM-S

rs46814888 20 46814888 T/G 8-Toc content 3VmrMLM-§
§-Toc content 3VmrMLM-M

Model/Method Environment —log(lf,) Known QTL References Significance

Jilin 513 SUG
Jilin 6.43 SIG
- 16.28 SIG
Jilin 11.64 Sattl79-Sat_201 Lietal, 2016 SIG
- 12.32 SIG
Liaoning 17.35 SIG
- 33.30 SIG
Jilin 6.44 SIG
- 5.58 SUG
Harbin 16.30 SIG
- 11.49 SIG
Harbin 12.13 SIG
- 5.23 SUG

- 4.35 SUG

- 7.34 SIG
Liaoning 4.07 SUG
- 4.57 SUG

- 8.90 SIG
Harbin 7.76 SIG
Harbin 8.64 SIG
- 8.70 SIG

3V-S represents 3VmrMLM single-environment method, 3V-M represents QTL detection of 3VmrMLM multiple-environment method, 3V-QEI represents QEI detection of 3VmrMLM
multiple-environment method, SIG represents significant QTLs, and SUG represents suggested QTLs.
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FIGURE 4
Gene ontology term enrichment analysis of candidate genes. Note: The categorized percentage and the quantity statistics of gene ontology
term enrichment analysis of candidate genes, (A) represents group | candidate genes and (B) represents group Il candidate genes.

genes regulate Toc content as shown in Figure 7. Interestingly,
Glyma.01G054800, Glyma.09G032100, and Glyma.10G171600 can
regulate both the y-Toc and Total-Toc content. Glyma.09G032100
in higher y-Toc and total-Toc germplasms were much higher than
those expression levels of lower. However, Glyma.01G054800, and
Glyma.10G171600 in higher y-Toc germplasms have higher
expression levels, but in higher total-Toc germplasms have
lower expression levels. Moreover, these candidate genes results
of qQRT-PCR are consistent with the RNA-seq data (Figure S12).
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Discussion

As one of the vitamin E family members, Toc plays a crucial
role for humans, plants, and animals (Bramley et al., 2000). For
humans, daily Toc supplementation can decrease the risk for
cancer and cardiovascular disease (Shaw et al., 2016). For plants,
Toc can protection of chloroplasts from photooxidative damage
(Munne-Bosch and Alegre, 2002). For animals, Toc must be
added to animal feed to improve and maintain growth and
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health (Pinelli-Saavedra et al., 2008). Soybean is a major crop
used worldwide as a source of food, oil, and animal feed. Soybean
oil compared to other oil crops contains a higher total Toc
content, but y-Toc comprises 70% (Park et al, 2019). The
physiological activity of y-Toc was lower than that of a-Toc
(Wan et al., 2008). Therefore, increasing the a-Toc and total Toc
content in soybean seeds is important to improve the nutritional
variety and feed quality of soybean. However, the genetic
background of Toc content is complex quantitative
inheritance. The reason why quantitative traits are complex is
that they are controlled by unequal polygenes and are susceptible
to environmental influences. In this study, individual and total
Toc content of 175 soybean accessions were evaluated. The
results showed that the Toc content of tested germplasms was
relatively stable to the environment, and Toc content had a wide
range of variation among the different germplasms.

GWAS has been widely used in the mining of QTLs in most
crops including soybean. It is a method to identify the genetic
variation among the natural populations to establish genetic
markers based on linkage disequilibrium (LD) (Yano et al., 2019;
Xiao et al., 2022). How improve the power of GWAS has been a
major challenge for the last decade. In recent years, a variety of new
methods have been proposed, with the rapid development of

10.3389/fpls.2022.1026581

computing technology and sequencing technology (Wang et al,
2016; Huang et al,, 2018; Xiao et al., 2021; Li et al,, 2022a). Although
this propelled much of the practicability of GWAS, it is particularly
important to select the appropriate sequencing method and suitable
model for improving the positioning efficiency according to the
research needs (Liu et al,, 2017; Kim et al,, 2021). For this study, we
adopted six models (GLM, MLM, CMLM, BLINK, FarmCPU, and
3VmrMLM), to conduct GWAS of Toc content in soybean seeds.
And the results were divided into two groups, revealed a total of 23
novel QTLs, other QTLs were located in the regions of QTLs in
previous studies or overlapped our previous GWAS studies, and
these known QTLs are all covered by 3VmrMLM.

3VmrMLM is a new algorithm, different from other
algorithm, the 3VmrMLM use single-marker genome-wide
scanning to select potentially associated markers and uses
empirical Bayes and the likelihood ratio test in a multi-locus
model to identify significant QTLs, this undoubtedly improves
its detection capability (Li et al., 2022a). Additionally, it can be
simultaneously estimated in a vector manner that QEI and QQI
effects. Although the QQI detection in this study did not achieve
good results, the 3VmrMLM still showed better detection ability
than the GLM, MLM, CMLM, BLINK, and FarmCPU,
indicating a more reliable tool for complex trait dissection.

Phaseolus_vulgaris Vigna_angularis
N 174 E " "
Glycine_max =0 Vigna_radiata
©
D & ©
+ & & &®
& o7 S &
&7 a&‘) 'ozc 'o@
S K 7 b
oF «® & & &
G D G
G D G G—
D D G L 4
[ L
D Gl L
D G D G
(] G
L]

FIGURE 5

Cluster count

1

1

4
12
6
24
146
167
185
82

17 cellular metabolic process

Phaseolus_vulgaris Vigna_angularis

1493 75

QEls Vigna_radiata

13

[ RNA processing
[ translation

B proteolysis

M transport

1 cellular process

I biological process
‘metabolic process
I response to stimulus
B macromolecule metabolic process

Protein count
3
5 I

20 m—— L |
24 I
28 mm—— —
126 pmm—— N —
377
397 I
47
542 pmm—— pa—

® Glycine_max
@ Vigna_radiata
@ Vigna_angularis
® QEis

Phaseolus_vulgaris

Comparative genome analysis candidate genes of QEls. (A). Venn diagram representing the core orthologs and specific genes cluster for
Glyma_max, Vigna_radiate, Vigna_augularis, and Phaseolus_vulgaris. (B). Venn diagram representing the core orthologs and specific genes
cluster for candidate genes of QEls, Vigna_radiate, Vigna_augularis, and Phaseolus_vulgaris. (C). Gene ontology term enrichment analysis of
unique candidate genes of QEls. (D). Shared gene clusters of orthologous groups categories. (E). Protein families count shared between
Glyma_max, Vigna_radiate, Vigna_augularis, Phaseolus_vulgaris, and candidate genes of QEls.

Frontiers in Plant Science

87

frontiersin.org


https://doi.org/10.3389/fpls.2022.1026581
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yu et al.

FIGURE 6

-log10(P)

a-Toc content

— 8-Toc of Harbin
— 8-Toc of Liaoning
— 8-Toc of Jilin

" Glyma.17G188700 — a-Toc of Harbin Glyma.20G235100
— o-Toc of Liaoning
— a-Toc of Jilin P
™ 4 _~
=1 _—
&
2
E e
0 ® - & w N3 — 0 [ =) o
< ® - 3 w =3 [sg) w —
S8 %28 8§ g § &
— — — o o o k< *° g
A & & & & & = ~ ~
S 33 3 3 3 2 2 2
Physical position Physical position
. Glyma.17G188700 Glyma.20G235100
00 prey 300
o *k
80
-1
200
60 £
S
40 g
& 100
NS
0 0
Hapl Hap2 Hap3 Hapl Hap2
Haplotype Haplotype

10.3389/fpls.2022.1026581

Gene-based association analysis and haplotypes analysis. (A). Gene-based association analysis of candidate genes that related to Toc content.
(B). Haplotypes analysis of candidate genes that related to Toc content. Horizontal line indicates that the threshold is set to 2.0, the * and **
was significance at P < 0.05 and P < 0.01, respectively, Glyma.17G188700 from group |, and Glyma.20G235100 from group I

In soybean and other plants, only a few definite genes have

been characterized, associated with an individual or total Toc.

Among them also includes most of the key enzyme genes

(Dwiyanti et al, 2011; Zhang et al,, 2013). To accurately screen
candidate genes, we selected a total of 248 genes within the 200-kb

FIGURE 7
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association by the GLM method, a total of 11 genes were finally

determined to be significantly related to individual or total Toc in
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haplotypes. Glyma.06G038000 encoded alpha/beta-Hydrolases
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TABLE 4 Haplotype analysis of candidate genes.

Gene ID Traits Hap Total Mean TC- P Significance Functional annotation References
number BLUP value value

Glyma.03G186200 Total-Toc Hapl 9 241.55 - - RAB GTPase homolog C2A
content  papy 3 307.98 0.0007 ot
Hap3 6 310.88 <0.0001 R
Glyma.03G186500 Total-Toc Hapl 9 241.55 - - Transducin family protein/WD-40 repeat family
content  prap) 7 30521 <0.0001 ok protein
Hap3 2 326.38 0.0002 b
Glyma.06G038000 8-Toc Hapl 9 79.08 - - Alpha/beta-Hydrolases superfamily protein Albert et al.,
content  py,» 9 129.63 <0.0001 ok 2022
Glyma.17G188700 a-Toc Hapl 7 12.19 - - hAT dimerisation domain-containing protein/
content  py» 6 28.82 0.0053 - transposase-related
Hap3 5 33.21 0.0013 o
Glyma.01G054800 v-Toc Hapl 4 107.76 - - Plant protein of unknown function (DUF863)
content  pap) 5 107.66 >0.9999 ns
Hap3 3 206.32 0.0002 b
Hap4 6 201.99 <0.0001 Rl
Total-Toc  Hapl 4 271.77 - -
content  papy 5 298.58 0.6572 ns
Hap3 3 262.08 0.9795 ns
Hap4 6 266.15 0.9932 ns
Glyma.08G222300 8-Toc Hapl 4 93.7 - - O-fucosyltransferase family protein
content  pyap) 3 120.1 0.5826 ns
Hap3 3 156.71 0.0548 ns
Hap4 8 199.39 0.0003 b
Glyma.09G032100  Total-Toc  Hapl 5 247.64 - - MYB domain protein 78
content  paps 4 233.93 0.5327 ns
Hap3 9 300.91 0.0002 b
v-Toc Hapl 5 102.56 - -
content  pap) 4 114.14 0.6506 ns
Hap3 9 203.43 <0.0001 e
Glyma.10G171600  Total-Toc  Hapl 5 306.77 - - RAB GTPase homolog A5A
content  pyap) 4 313.84 0.9366 ns
Hap3 4 238.98 0.0013 b
Hap4 5 243.6 0.0014 b
v-Toc Hapl 5 105.48 - -
content  prap) 4 110.49 0.9775 ns
Hap3 4 200.26 <0.0001 R
Hap4 5 205.98 <0.0001 e
Glyma.20G235100 5-Toc Hapl 8 86.25 - - Indeterminate(ID)-
content 5y 10 118.84 0.0089 o domain 2
Glyma.20G235400 8-Toc Hapl 6 84 - - P-loop containing nucleoside triphosphate
content Hap2 4 91.82 0.7330 ns hydrolases superfamily protein
Hap3 8 131.88 0.0004 b
Glyma.20G235800 §-Toc Hapl 6 91.24 - - Transducin/WD40 repeat-like superfamily
content  y,5 5 78.23 0.2695 ns protein
Hap3 7 134.25 0.0002 b

Hap represents Haplotype, TC represents individual and total Toc content. P < 0.05 was considered significant, * Significance was P < 0.05, ** Significance was P <0.01, *** Significance was P
< 0.001, **** Significance was P < 0.0001 and ns stands for no significance.
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superfamily protein. Glyma.01G054800 encoded plant proteins of
unknown function, Glyma.03G186500 encoded a WD-40 repeat
family protein, Glyma.20G235800 encoded a WD40 repeat-like
superfamily protein, Glyma.03G186200 is a RAB GTPase homolog
C2A, Glyma.10G171600 encoded a RAB GTPase homolog A5A,
Glyma.17G188700 encoded transposas, Glyma.09G032100
encoded a myb domain protein, Glyma.20G235100 encoded an
indeterminate domain protein, Glyma.20G235400 encoded a P-
loop containing nucleoside triphosphate hydrolases superfamily
protein. Of these genes, Glyma.01G054800 and Glyma.10G171600
are the most special, and these two genes are higher expressed in
higher y-Toc content germplasms, but lower expressed in higher
total-Toc content germplasms. The soybean oil contains a higher
proportion of y-Toc, this is very different from the other oil crops
(Cahoon et al., 2003). Therefore, we conclude that the
Glyma.01G054800 and Glyma.10G171600 inhibited the
transformation of a-Toc and 8-Toc, resulting in the excessive
accumulation of y-Toc, while the total-Toc content decreased. This
requires further experiments to prove. The precise functions and
mechanisms of 11 candidate genes will be planned in
future studies.

In general, the 3VmrMLM algorithm achieved good results in
the GWAS. In this study, Toc content in soybean seed in group I
QTLs, 10 known QTLs are all covered by 3VmrMLM. The results
of GO enrichment analysis showed that group I; and group II
candidate genes had similar GO biological process terms. for the
11 candidate genes finally identified in this study, 7 genes were
alone identified by the 3VmrMLM. All candidate genes were able
to detected by the 3VmrMLM. In addition, a higher percentage of
the Glyma_max specific genes have also been found in candidate
genes near QEIs by comparative genomic analysis. These results
have preliminarily determined the detection efficiency of the
3VmrMLM algorithm. Thus, we hope that using 3VmrMLM
could be used to dissect more important complex quantitative
traits in the future, and this algorithm is advantageous to
promoting the development of soybean breeding.
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Genome-wide association
studies of five free amino
acid levels in rice

Ligiang He ™", Huixian Wang", Yao Sui*, Yuanyuan Miao'?,
Cheng Jin*? and Jie Luo™*

!College of Tropical Crops, Hainan University, Haikou, China, 2Sanya Nanfan Research Institute of
Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China

Rice (Oryza sativa L.) is one of the important staple foods for human consumption
and livestock use. As a complex quality trait, free amino acid (FAA) content in rice is of
nutritional importance. To dissect the genetic mechanism of FAA level, five amino
acids’ (Val, Leu, Ile, Arg, and Trp) content and 4,325,832 high-quality SNPs of 448 rice
accessions were used to conduct genome-wide association studies (GWAS) with
nine different methods. Of these methods, one single-locus method (GEMMA),
seven multi-locus methods (mrMLM, pLARmMEB, FASTmrEMMA, pKWmEB,
FASTmrMLM, ISIS EM-BLASSO, and FarmCPU), and the recent released 3VmrMLM
were adopted for methodological comparison of quantitative trait nucleotide (QTN)
detection and identification of stable quantitative trait nucleotide loci (QTLs). As a
result, 987 QTNs were identified by eight multi-locus GWAS methods;
FASTmrEMMA detected the most QTNs (245), followed by 3VmrMLM (160), and
GEMMA detected the least QTNs (0). Among 88 stable QTLs identified by the above
methods, 3VmrMLM has some advantages, such as the most common QTNs, the
highest LOD score, and the highest proportion of all detected stable QTLs. Around
these stable QTLs, candidate genes were found in the GO classification to be
involved in the primary metabolic process, biosynthetic process, and catalytic
activity, and shown in KEGG analysis to have participated in metabolic pathways,
biosynthesis of amino acids, and tryptophan metabolism. Natural variations of
candidate genes resulting in the content alteration of five FAAs were identified in
this association panel. In addition, 95 QTN-by-environment interactions (QEls) of
five FAA levels were detected by 3VmrMLM only. GO classification showed that the
candidate genes got involved in the primary metabolic process, transport, and
catalytic activity. Candidate genes of QEls played important roles in valine, leucine,
and isoleucine degradation (QEI_09_03978551 and candidate gene
LOC_0Os09g07830 in the Leu dataset), tryptophan metabolism (QEI_01_00617184
and candidate gene LOC_0Os01g02020 in the Trp dataset), and glutathione
metabolism (QEI_12_09153839 and candidate gene LOC_QOs12916200 in the Arg
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dataset) pathways through KEGG analysis. As an alternative of the multi-locus GWAS
method, these findings suggested that the application of 3VmrMLM may provide
new insights into better understanding FAA accumulation and facilitate the
molecular breeding of rice with high FAA level.

KEYWORDS

rice, free amino acid level, genome-wide association study, quantitative trait locus,
quantitative trait nucleotide-by-environment interactions

Introduction

Rice (Oryza sativa L.) is one of the most important crops
worldwide and provides energy, amino acid, and dietary fiber for
human consumption. In addition to the basic unit in protein
biosynthesis, amino acids are involved in several cellular
responses to affect physiological processes in plants, such as plant
growth and development, intracellular pH control, production of
metabolic energy or redox capacity, signal transduction, and
response to abiotic and biotic stresses (Moe, 2013; Watanabe
et al, 2013; Zeier, 2013; Fagard et al, 2014; Galili et al., 2014;
Pratelli and Pilot, 2014: Hausler et al., 2014; Hildebrandt et al.,
2015). Free amino acids (FAAs) not only play essential roles in plant
growth, development, and responses to stress, but also serve as
important nutrients for human health (Pathria and Ronai, 2021;
Yang et al, 2022). Of all the amino acids, tryptophan (Trp),
isoleucine (Ile), leucine (Leu), and valine (Val) are essential amino
acids that are based on plants and cannot synthesize from external
sources (Galili et al,, 2016). In plants, branched-chain amino acids
are important compounds in several aspects. Besides their function
as building blocks of proteins, they get involved in the synthesis of a
number of secondary products in plants and regulate plant growth
by affecting the homeostasis of mineral elements in rice (Diebold
etal., 2002; Jin et al., 2019). Arginine (Arg) is a semi-essential amino
acid and involved in the regulation of various molecular pathways,
which regulates key metabolic, immune, and neural signaling
pathways in human cells (Patil et al., 2016). Branched-chain
amino acids mainly including leucine, valine, and isoleucine
generally participate in regulating protein synthesis, metabolism,
food intake, and aging (Le Couteur et al, 2020). Arginine is a
precursor of amino acids, polyamines, and nitric oxide (NO) for
protein synthesis and is an important metabolite for many cells at
the developmental stage (VanEtten et al., 1963; King and Gifford,
1997). Arginine is generally a major nitrogen storage form also in
underground storage organs, roots of trees, and other plants
(Bausenwein et al, 2001; Rennenberg et al, 2010). Tryptophan
(Trp) is an aromatic amino acid that is synthesized through the
shikimate/chorismate pathway. Notably, Trp is decarboxylated to
tryptamine in vivo; subsequently, hydroxylase catalyzes the
conversion of tryptamine to 5-hydroxytryptamine (5-HT). 5-HT
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is an important neurotransmitter associated with a range of human
behavior problems such as personality and emotional disorders
(Muller et al,, 2016). Tryptophan provides the structural backbone
for numerous plant secondary metabolites including the
indoleamines, auxin [indole-3-acetic acid (IAA)], alkaloids, and
benzoxazinoids (Erland and Saxena, 2019). Numerous loci with
small effect underlying the natural variation of primary metabolites
were found in previous studies (Rowe et al., 2008; Chan et al., 2010;
Joseph et al., 2013; Fernie and Tohge, 2017). However, as one of
primary metabolites, the genetic mechanism underlying these five
FAA levels in rice is largely unknown, which is a limitation to the
molecular breeding of rice with high-level FAAs.

Genome-wide association studies (GWAS) provide an
insight into unraveling the genetic basis of complex traits in
plants, especially for the trait controlled by small-effect genes
(Zhu et al., 2008). Since the landmark GWAS of 107 Arabidopsis
accessions (Atwell et al., 2010), GWAS of several agronomical
traits in plants have been reported, which included starch
content in wheat (Hao et al., 2020), flowering time and grain
yield in rice (Yang et al., 2014; Liu et al.,, 2021), and seed protein
and oil in soybean (Kim et al., 2021). With the technical progress
and cost reduction of metabolomics, metabolite-based genome-
wide association study (mGWAS) has been successfully applied
in several functional genomics and metabolomics studies in
plants (Luo, 2015; Fang et al., 2016; Fang and Luo, 2019).

Previous studies have proven the effectively controlled
spurious association of widely adopted single-locus GWAS
methods (Yu et al., 2006; Zhou and Stephens, 2012). However,
the stringent Bonferroni correction is commonly used as the
significant threshold of marker—trait associations (MTAs),
which may result in the low power of polygenic loci detection
in these methods (Zhang Y.M. et al, 2019). Thus, multi-locus
GWAS methods have been proposed and identified quantitative
trait nucleotide/locus (QTN/QTL) with small effect in a powerful
manner (Segura et al, 2012). For instance, the improved
statistical power and short computing time have been shown
in the implementation of the FarmCPU method (Liu et al,
2016). The improvement of power and accuracy of the multi-
locus GWAS method mrMLM have been reported (Wang et al.,
2016). Additionally, a series of multi-locus models were
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proposed and released in R package mrMLM, which contained
mrMLM (Wang et al,, 2016), pPLARmEB (Zhang et al., 2017),
FASTmrEMMA (Wen et al., 2017), pPKWmEB (Ren et al., 2017),
FASTmrMLM (https://cran.r-project.org/web/packages/
mrMLM/index.html), and ISIS EM-BLASSO (Tamba et al,
2017). However, the additive and dominance effects of trait-
associated loci remain unclear. To address this issue, a new
multi-locus GWAS method, 3VmrMLM, was proposed to
estimate the genetic effects of three marker genotypes (AA, Aa,
and aa) by controlling all the possibly polygenic backgrounds.
Subsequently, these effects were further divided into additive and
dominance effects for QTNs. Moreover, QTN-by-environment
interactions (QEIs) were also able to be detected by 3VmrMLM
for dissecting the genetic architecture of complex and multi-
omics traits in GWAS (Li et al., 2022a).

To identify the QTLs associated with five FAAs levels,
GWAS was performed on a genetic panel including 448
accessions with 4,325,832 SNPs from the rice core collection
using nine statistical methods. Of these methods, one single-
locus method, seven previous released multi-locus methods, and
the recent proposed 3VmrMLM method were employed to
determine the reliable approaches for main-effect QTLs and
QEI detection of five FAA contents.

Materials and methods

Genetic panel for GWAS

A genetic panel of 448 rice accessions from our lab—a
previously released core collection by Chen et al. (2014)—was
used in Huazhong Agricultural University. It included 293 indica
and 155 japonica accessions, of which 362 varieties are from Asia,
22 varieties are from America, 8 rice accessions are from Africa, 13
accessions are from Europe, 3 varieties are from Oceania and, 40
varieties have unknown geographical information.

Metabolite profiling and sequencing

Two biological replicates of the 448 rice accessions grew in
the normal rice growing season at two different blocks of
Huazhong Agricultural University, Wuhan, China. For each
replicate, randomly designed planting materials were used to
harvest leaves at the five-leaf stage in liquid nitrogen of three
different plants in each row of the field for metabolite extraction.
Then, mix the material for biological replicate of each accession.
The broad-sense heritability H* was calculated by using the data
collected from different biological replicates at two different
experimental bases of Huazhong Agricultural University. A
scheduled multiple reaction monitoring (MRM) method with
an MRM detection window of 80 s and a target scan time of 1.5 s
were used to quantify the FAAs (Chen et al, 2013). Log,-
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transformed metabolite data were used for further analysis to
improve normality.

To identify the genetic variation of 448 rice accessions,
approximately 448 Gb high-quality genome sequences of these
accessions were obtained from the Illumina HiSeq 2000 platform
(Chen et al,, 2014). Rice reference genome sequence MSU 6.1
(Nipponbare, version 6.1) and corresponding annotation were
downloaded from Rice Genome Annotation Project (http://rice.
uga.edu/index.shtml). Clean reads were mapped to the rice
reference genome using BWA software (https://sourceforge.
net/projects/bio-bwa/) with default settings. The mapping files
were processed with SAMtools software (Li et al., 2009).
HaplotypeCaller, CombineGVCFs and GenotypeGVCFs
functions with default settings in GATK software (https://gatk.
broadinstitute.org/hc/en-us) were used for SNP joint-calling and
filter of the 448 accessions. Filtered high-quality SNPs (-maf
0.05 and -geno 0.1 in PLINK software, https://zzz.bwh.harvard.
edu/plink/) were used for subsequent analysis.

PCA and phylogenetic analysis

To summarize the genetic structure and variation of 448 rice
accessions, principal component analysis (PCA) was conducted
by PLINK software using the obtained high-quality SNPs.
Furthermore, SNP-based phylogenetic analysis of all accessions
was performed by MEGA-CC with a pairwise gap deletion
method for 1,000 bootstrap replicates (Kumar et al., 2012).

Population structure and
linkage disequilibrium

ADMIXTURE software was employed to estimate the
population stratification of all accessions (Alexander et al.,
2009). To evaluate LD decay across the whole genome, the
squared correlation coefficient (?) between SNPs was computed
and plotted using PopLDdecay software (Zhang C. et al., 2019).

Genome-wide association study

GWAS were performed on the association panel containing 448
rice accessions with 4,325,832 high-quality SNPs. In total, nine
models were implemented for GWAS, which included a single-
locus model GEMMA (Zhou and Stephens, 2012) and eight multi-
locus models, namely, FarmCPU (Liu et al., 2016), mrMLM (Wang
etal, 2016), pLARmEB (Zhang et al., 2017), FASTmrEMMA (Wen
et al, 2017), pKWmEB (Ren et al.,, 2017), FASTmrMLM (https://
cran.r-project.org/web/packages/mrMLM/index.html), ISIS EM-
BLASSO (Tamba et al, 2017), and 3VmrMLM (Li et al., 2022a).
The R package mrMLM composed of six multi-locus methods
mrMLM, pLARmMEB, FASTmrEMMA, pKWmEB, FASTmrMLM,
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and ISIS EM-BLASSO was applied to test the marker and trait
association. mrMLM parameter for six methods:
Likelihood=“REML”, SearchRadius=20, CriLOD=3,
SelectVariable=50, and Bootstrap=FALSE. These six methods in
the mrMLM package were developed and released from the same
research group that were referred to as “mrMLM series methods”.
The LOD score > 3 was used to detect the association signals of
mrMLM series methods by default. The new released 3VmrMLM
method, implemented by the IIIVmrMLM software (Li et al,
2022b), was used to detect main-effect quantitative trait
nucleotide (QTN) and QTN by environment interaction (QEI).
3VmrMLM parameter for main-effect QTL: method="Single_env”,
SearchRadius=20, and svpal=0.01. 3VmrMLM parameter for QEL
method=“Multi_env”, SearchRadius=20, and svpal=0.01. The
threshold of significant association of other methods was
determined by a critical p-value at the 0.05 significant level
subjected to Bonferroni correction (p-value = 1.16 x 107°). All
methods used in this study were implemented with default
parameters. Manhattan and QQ plots were drawn using R
CMplot, mrMLM, and 3VmrMLM packages with default settings.

Analysis of candidate genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway annotation of candidate genes was
analyzed by the Plant GeneSet Enrichment Analysis Toolkit
(PlantGSEA) (Vi et al., 2013). The annotation of SNP effects on
gene body was obtained from the RiceVarMap database (http://
ricevarmap.ncpgr.cn/) and further used for haplotype and

TABLE 1 Descriptive statistics of five FAA content datasets.

Trait Val Leu
Number 448 448
Mean 23.68 2341
Standard deviation 0.65 0.83
Variance 0.42 0.69
Mean squared error 0.03 0.04
Median 23.72 23.40
Trimmed 23.70 2342
Median absolute deviation 0.61 0.87
Minimum 21.69 20.96
Maximum 25.83 25.51
Range 4.14 4.55
Skewness -0.26 -0.07
Kurtosis 0.06 -0.31
# Coefficient of variation (%) 45.03 58.83
Confidence interval of 0.95 0.06 0.08
H 0.32 0.51

10.3389/fpls.2022.1048860

content analysis of potential candidate genes. Haplotype
network was generated according to all information of a
candidate gene from RiceVarMap database (http://ricevarmap.
ncpgr.cn/). Temporal and spatial expression of potential
candidate genes were assayed based on the expression data
from electronic fluorescent pictograph Browser (ePlant)
(http://bar.utoronto.ca/).

Results
FAA levels of rice genetic panel

The five FAA levels (Val, Leu, Ile, Arg, and Trp) were
quantified by LC-MS/MS to evaluate the phenotypic variation
in 448 rice accessions. The CV of them were 45.03%, 58.83%,
71.25%, 92.30%, and 58.21%, respectively (Table 1).
Furthermore, significant differences on five FAA levels were
observed between indica and japonica accessions in this rice
genetic panel (Figure 1). High correlation of five FAA contents
was observed among them. For instance, the Val dataset was
highly correlated with the Leu (r = 0.83) and Ile (r = 0.90)
datasets, and the Leu dataset was highly correlated with the Ile
(r=0.93) dataset (Supplementary Figure 1). The skewness and
kurtosis of five FAA levels were less than 1, which showed the
nature of quantitative traits (Supplementary Figure 1;
Table 1). The broad-sense heritability (H?) for Val, Leu, Ile,
Arg, and Trp ranged from 0.32 to 0.51 (Table 1). These
indicated the natural variation of five amino acids present in
this genetic panel.

Ile Arg Trp
448 448 448
21.80 17.91 2220
0.92 0.97 0.78
0.84 0.95 0.61
0.04 0.05 0.04
21.81 17.93 22.20
21.80 17.91 22.20
0.98 1.02 0.82
19.42 15.01 20.36
24.94 21.87 2447
5.52 6.86 4.11
0.05 0.10 0.04
-0.17 049 -0.27
71.25 92.30 58.21
0.09 0.09 0.07
0.46 038 043

“Calculated from the original dataset.

Frontiers in Plant Science

96

frontiersin.org


http://ricevarmap.ncpgr.cn/
http://ricevarmap.ncpgr.cn/
http://ricevarmap.ncpgr.cn/
http://ricevarmap.ncpgr.cn/
http://bar.utoronto.ca/
https://doi.org/10.3389/fpls.2022.1048860
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

He et al.

10.3389/fpls.2022.1048860

?

Indica(n=293) Japonica(n=155)

Indica(n=293) Japonica(n=155)

Tk

?

A B
Total(n=448)
[ D
*kk
—
26
26
" 24
S -
€24 8
S 5
= o
22
] 2
22
20
20 - "
Total(n=448) Indica(n=293) Japonica(n=155) Total(n=448)
E . F
1
22 26
25
<= 20 —
5 s
= c
8 §24
<E:’18 §
23
16
22
14 21
Total(n=448) Indica(n=293) Japonica(n=155) Total(n=448)

FIGURE 1

Indica(n=293) Japonica(n=155)

Geographic distribution and five FAA levels of genetic panel. (A) Geographic distribution of indica and japonica accessions in the genetic panel;
indica accessions are indicated in red, and blue represents japionica accessions. (B—F) Violin plots of Val, Leu, Ile, Arg, and Trp contents for all,

indica, and japonica accessions; *** indicate statistical significance at the 0.1% probability level

Popu[ation structure and phy[ogenetic these accessions into two groups were observed in principal

re[ationship of rice genetic pane[ component analysis (PCA) (Figure 2B). Moreover, the population
structure of rice genetic panel was identical with those obtained in

To dissect the genetic basis underlying the natural variation of NJ tree and PCA (Figure 2C). Linkage disequilibrium (LD) analysis

FAAs, the relationship assessment of rice genetic panel was based showed that LD decayed fastest before 122 kb, and subsequently
on 4,325,832 SNPs. According to the Neighbor-joining (NJ) tended to be flat for the rice genetic panel (Figure 2D). Therefore,
phylogenetic tree, 448 rice accessions were mainly divided into the 122- kb flanking region of each QTN was used for putative
two clades which contained 293 indica accessions and 155 japonica candidate gene prediction hereafter. Additionally, indica accessions
accessions, respectively (Figure 2A). Likewise, the classification of showed the highest decay rate in Figure 2D.
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Population analyses of the genetic panel. (A) Phylogenetic tree of 448 rice accessions. (B) Principal component analysis of 448 rice accessions.
(C) Population structure estimated by ADMIXTURE. (D) LD decay analysis of the genetic panel; LD decay of all 448 rice accessions, indica
accessions, and japonica accessions is indicated in black, red, and blue, respectively.

Identification of five FAA-associated QTLs

In this study, a total of 987 QTNs are identified using nine
GWAS methods (a single-locus method, seven multi-locus
methods, and the recently released 3VmrMLM method) for five
FAA content datasets. Detected QTNs varied resulting from
statistical methods (Supplementary Table 1). 3VmrMLM detected
160 QTNs and the largest number of common QTNs, while no
QTN was detected by GEMMA. In addition, the largest number of
QTNs were identified in the Trp dataset (214) by eight multi-locus
GWAS methods (B3VmrMLM, mrMLM, FASTmrEMMA,
pLARmEB, FASTmrMLM, pKWmEB, ISIS EM-BLASSO, and
FarmCPU), followed by the Val dataset (207), the Ile dataset
(203), the Arg dataset (195), and the smallest number of detected
QTNs in the Leu dataset (168) (Figures 3A-E and Supplementary
Figures 2A-E; Supplementary Table 1). Six mrMLM series methods
were compared together; FASTmrEMMA detected the most QTNs
(245), followed by pLARmEB (160), mrMLM (151), FASTmrMLM
(145), pPKWmEB (77), and ISIS EM-BLASSO, which detected the
least QTNs (25) (Supplementary Figures 2A-E; Supplementary
Table 1). Different R* values of common QTNs across methods
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were observed, such as the R* value (%) of 3VmrMLM-detected
QTNs that ranged from 0.78 to 6.95, while the R? value (%) of the
mrMLM-detected QTN dataset was from 0.43 to 17.61. The average
R? value (%) of ISIS EM-BLASSO-detected QTNs was the highest
(2.93) among nine GWAS methods, whereas the average R* value
(%) of the QINs detected by FarmCPU was the lowest (0.24)
(Table 2). Tag QTNs were selected and referred to as
QTLs hereafter.

In addition, some common QTLs were detected in different
FAA datasets. Intriguingly, QTL_01_10944343 (this QTL ID
refers to QTL_Chromosome_Position) and QTL_05_19754561
were associated with Val and Ile datasets, respectively;
QTL_01_23419417 was co-detected in the Leu and Ile
datasets; QTL_02_24189963 was co-localized in the Leu and
Trp datasets; QTL_09_16065720 was detected in the Arg and
Trp datasets simultaneously; and QTL_10_17905052 was
identified in the Ile and Arg datasets (Supplementary
Figure 3). Among nine GWAS methods, most p-values of the
3VmrMLM-detected common QTLs were the lowest and most
of their LOD scores were the highest correspondingly (Table 2;
Supplementary Table 1; Supplementary Figure 3). These results
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indicated that the common QTLs detected by 3VmrMLM across
traits were more significant than those detected by other eight
GWAS methods.

Stable FAA-associated QTLs and
candidate genes

A QTL detected by no less than two methods of 3VmrMLM,
mrMLM series methods (mrMLM, pLARmEB, FASTmrEMMA,
pKWmEB, FASTmrMLM, and ISIS EM-BLASSO), FarmCPU,
and GEMMA was defined as a stable QTL. A total of 88 stable
QTLs were identified in five FAA datasets (Supplementary
Table 2). Fifteen stable QTLs were detected in the Val dataset
(Figures 3A, 4A). In particular, QTL_01_10944343 was
identified by seven GWAS methods (3VmrMLM, mrMLM,
FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and
FarmCPU), and the QTL was also detected in Ile
(Supplementary Figure 3A; Supplementary Table 2). For the
Trp dataset, 23 stable QTLs were identified (Figures 3E, 4E). Of
these QTLs, QTL_09_16065720 was identified by six GWAS
methods (3VmrMLM, FASTmrMLM, FASTmrEMMA,
pLARmMEB, pKWmEB, and ISIS EM-BLASSO), and it was

Frontiers in Plant Science

99

detected in the Arg dataset simultaneously (Supplementary
Figure 3E; Supplementary Table 2). Additionally, 16, 20, and
14 stable QTLs were detected in Leu, Ile, and Arg datasets
(Figures 3B-D, 4B-D). Significant correlations between NPQTL
(the number of QTL with positive-effect or favorite alleles) and
five FAA contents were observed in Figures 5A-E (r = 0.53-
0.69). The highest correlation was shown in the Trp dataset
(r = 0.69) (Figure 5E).

To understand the molecular basis controlling the five FAA
levels, the biological function of candidate genes was
investigated. According to functional annotations, these
candidate genes were primarily categorized as protein, protein
kinase, glycosyltransferase, and transcription factor
(Supplementary Table 3). Furthermore, GO analysis showed
that these genes were classified into 51 GO terms, such as the
primary metabolic process, biosynthetic process, and catalytic
activity (Supplementary Figure 4). Meanwhile, KEGG analysis of
candidate genes showed that most of them were involved in
metabolic pathways; biosynthesis of amino acids; glycine, serine,
and threonine metabolism; and tryptophan metabolism
(Supplementary Figure 5), for instance, biosynthesis of amino
acids in five FAA datasets (Supplementary Figures 5A-E);
glycine, serine, and threonine metabolism in the Leu dataset
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TABLE 2 Comparison of QTN/QTL identification for different GWAS methods.

Statistical method No. of detected QTNs No. of stable QTLs Average R (%) R? range (%) LOD range

3VmrMLM 160 83 1.99 0.78-6.95 3.04-46.29
FASTmrEMMA 245 29 1.01 0.01-8.93 3.01-24.01
FASTmrMLM 145 48 1.14 0.03-5.22 3.03-9.95
ISIS EM-BLASSO 25 9 2.93 0.98-6.89 3.01-10.65
mrMLM 151 19 2.54 0.43-17.61 3.06-21.49
pKWmEB 77 22 2.82 0.79-10.46 3.01-9.20
pLARmEB 160 34 1.46 0.01-14.39 3.02-14.80
FarmCPU 24 9 0.24 0.09-0.50 NA
GMMEA 0 0 NA NA NA
A B

miiLM 8 ) miLM

GEMMA

C !t miviLM D armCPU miMLM

miLM

GEMMA

FIGURE 4
Venn diagrams of unique QTNs detected by different GWAS methods from Val (A), Leu (B), Ile (C), Arg (D), and Trp (E) datasets. mrMLM
represents mrMLM series methods including mrMLM, FASTmrEMMA, pLARmMEB, pKWmEB, ISIS EM-BLASSO, and FASTmrMLM.
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(Supplementary Figure 5B); and tryptophan metabolism in the
Trp dataset (Supplementary Figure 5E).

The candidate gene LOC_Os01g19220 encoding beta-D-
xylosidase was identified in the Val and Ile datasets, which
presented three types of alleles: Hapl (AAGG) was concentrated
in japonica accessions, while Hap2 (GGAA) and Hap3 (GGGG)
were mainly concentrated in indica accessions, and the Val and Ile
content of Hapl was significantly different with the contents of
Hap2 and Hap3. A lower Val and Ile content in Hap2 and Hap3
was observed than that in Hapl, which directly indicated the
relatively high Val and Ile content present in japonica accessions
compared with indica accessions (Figures 6A-C; Supplementary
Table 4). Based on previous transcriptome and haplotype network
analysis, LOC_Os01g19220 was mainly expressed in seed (S1),
inflorescence (P5), and seedling root. In the haplotype network,
haplotype II of LOC_Os01g19220 was mainly presented in
japonica accessions; however, haplotypes I and III gathered in
indica accessions (Figures 6D, E). Moreover, the gene
LOC_0Os01g12940 encoding the phosphorylase domain
containing protein detected in the Leu dataset had three types
of allelic variation. Hap2 (TTGG) was concentrated in indica
accessions, whereas Hap3 (TTTT) was concentrated in japonica
accessions. A vast majority of japonica accessions with Hap3
showed significantly higher Leu level than indica accessions with
Hap2 (Figures 6F, G; Supplementary Table 4). LOC_Os01g12940
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was highly expressed in seedling root. In the haplotype network,
haplotype I of LOC_Os01g12940 was concentrated in japonica
accessions, while haplotypes Il and V were concentrated in indica
accessions (Figures 611,1). In addition, the gene LOC_Os05¢49760
encoding the dehydrogenase is identified in the Arg dataset, which
was involved in glutathione metabolism and had three types of
allelic variation. Hapl (AAGG) and Hap3 (GGGG) were enriched
in indica accessions, and Hap2 (GGAA) was enriched in japonica
accessions. Significant differences of Arg content were observed
among accessions with Hap2, Hap1, and Hap3. Correspondingly,
the Arg level of japonica accessions carrying Hap2 was higher
than the indica accessions with Hapl and Hap3 (Figures 7A, B;
Supplementary Table 4). Relatively high abundance of
LOC_0s05¢49760 was found in SAM (shoot apical meristem),
young leaf, and inflorescence (P5). In the haplotype network,
haplotype II was concentrated in japonica accessions, while
haplotypes I and III gathered in indica accessions (Figures 7C,
D). Moreover, the gene LOC_Os11g06900 encoding amidase
family protein detected in the Trp dataset had two alleles. Hapl
(CC) gathered in indica accessions, and Hap2 (TT) was mostly
present in japonica accessions. Significant differences of Trp
content were observed among accessions with Hap2 and Hapl.
Subsequently, the Trp level of japonica accessions carrying Hap2
was higher than the indica accessions with Hapl (Figures 7E, F;

Supplementary Table 4). High expression of LOC_Os11g06900
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(C) Three haplotypes of LOC_0Os01g19220 and their distribution in indica and japonica accessions. (D) Haplotype network of LOC_0Os01g19220.
(E) Expression profile of LOC_0s01g19220 based on ePlant transcriptome analysis in rice; expression strength coded by color from yellow (low)
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was observed in inflorescence (P5). In the haplotype network,
haplotypes L, III, IV, and V of it gathered in indica accessions,
whereas haplotype II was concentrated in japonica accessions
(Figures 7G, H).

QEIl detection of five FAAs

In total, 95 QEIs of five FAAs were detected by 3VmrMLM
(Supplementary Table 5). Of them, 23, 16, 16, 18, and 22 QEIs
were identified in the Val, Leu, Ile, Arg, and Trp datasets
(Table 3). However, no QEI was detected on some
chromosomes in five FAA datasets (Figure 3; Supplementary
Figure 6). For instance, no QEI on chromosomes 8 and 3 was
found in the Val and Trp datasets, respectively (Figures 3A, E);
none of the QEIs on chromosomes 3, 10, and 11 were detected in
the Leu dataset (Figure 3B); no QEI located on chromosomes 6,
8, and 9 was identified in the Ile dataset (Figure 3C); and no QEI
located on chromosomes 4 and 9 was identified in the Arg
dataset (Figure 3D). Based on biological process, molecular
function, and cellular component in GO analysis, candidate
genes of these detected QEIs were classified into 47 GO terms,
such as metabolic process, transferase activity, and transport
(Supplementary Figure 7). Furthermore, KEGG pathway
analysis showed that candidate genes were mainly involved in
glutathione metabolism (QEI_12_09153839 and its candidate
gene LOC_Os12¢16200 in the Arg dataset), valine leucine and
isoleucine degradation (QEI_09_03978551 and its candidate
gene LOC_0s09¢07830 in the Leu dataset), and tryptophan
metabolism (QEI_01_00617184 and its candidate gene
LOC_0s01g02020 in the Trp dataset) (Supplementary Figure 8
and Supplementary Table 6). In addition, cysteine and
methionine metabolism in the Val dataset (Supplementary
Figure 8A); tryptophan metabolism in the Trp dataset
(Supplementary Figure 8E); and valine, leucine, and isoleucine
degradation in the Leu dataset (Supplementary Figure 8B) are
also shown in Supplementary Figure 8. According to ePlant
analysis, high expression of LOC_0Os12¢16200 encoding
glutathione synthetase was observed in seedling root and
mature leaf. LOC_0s09g07830 encoding acetyl-CoA
acetyltransferase was highly expressed in seedling root and
SAM. Relatively high abundance of LOC_0s01¢g02020

10.3389/fpls.2022.1048860

encoding acetyl-CoA acetyltransferase was found in young leaf
and mature leaf.

Discussion
Methods comparison

Due to the difference of algorithm in different GWAS
methods, the varied number of detected QTNs was observed
accordingly. The FASTmrEMMA method detected the most
QTNs (245), followed by 3VmrMLM (160), pLARmEB (160),
mrMLM (151), FASTmrMLM (145), pPKWmEB (77), ISIS EM-
BLASSO (25), FarmCPU (24), and GEMMA, which detected the
least QTNs (0) (Supplementary Table 1). Meanwhile, 3VmrMLM
detected the largest number of common QTNs (Figure 4). Similar
to the result obtained in this study, no QTN was identified in Xu
etal. (2017) and Li et al. (2018) by GEMMA (Xu et al,, 2017; Li
et al, 2018). These were consistent with previous studies
suggesting that multi-locus methods outperform single-locus
methods on the statistical power of QTL detection, especially on
the accuracy of QTN effect estimation and reduction of false-
positive rate (Misra et al., 2017; Chang et al., 2018; Cui et al., 2018;
Hou et al., 2018; Ma et al., 2018). The results of 3VmrMLM and
mrMLM were compared as 3VmrMLM was a new three-variance
component integrated with the mrMLM methodological
framework. Most p-values of 3VmrMLM-detected QTNs were
lower than those in mrMLM, and the LOD value of QTNs
measured by 3VmrMLM was larger than the other eight
methods (Supplementary Figure 3). These results indicated that
the QTNs identified by 3VmrMLM were more significant than
those identified by mrMLM. Additionally, the average R* value
(%) of 3VmrMLM-detected QTNs was lower than that of
mrMLM. The average R? value of ISIS EM-BLASSO (2.93) was
the highest, followed by pKWmEB (2.82), mrMLM (2.54),
3VmrMLM (1.99), pLARmEB (1.46), FASTmrMLM (1.14),
FASTmrEMMA (1.01), and FarmCPU (0.24) (Table 2).
Notably, in this study, stable QTL_05_19754561 detected by
3VmrMLM/pLARmEB in the Val dataset, QTL_01_07646091
and QTL_07_08680072 detected by 3VmrMLM/mrMLM/
pLARmEB/FarmCPU in the Ile dataset, QTL_11_22412156
detected by 3VmrMLM/pLARmEB in the Arg dataset, and

TABLE 3 QTN-by-environment interactions (QEls) detected from five FAA content datasets.

Trait No. of detected QEIs R? range (%)
Val 23 0.33-2.42
Leu 16 0.57-2.41
Tle 16 0.46-2.94
Arg 18 0.34-1.22
Trp 22 0.36-2.60

LOD range add*envl range add*env2 range
5.09-35.28 -0.13-0.15 -0.15-0.13
5.07-21.31 -0.15-0.12 -0.12-0.15
4.83-29.92 -0.19-0.12 -0.12-0.19
6.16-21.15 -0.14-0.14 ~0.14-0.14
4.63-34.53 -0.16-0.11 -0.11-0.16
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QTL_01_23592545 detected by 3VmrMLM/FASTmrEMMA in
the Trp dataset were reported in a previous study (Chen et al,
2014). Furthermore, QTN-0315484798 detected by 3VmrMLM
only and QTN-0134428638 (~5.55 kb downstream of QTN-
vg0134424130 detected by mrMLM in Ile dataset; QTN-
0107646091 detected by FarmCPU/mrMLM in the Val/Trp
dataset; QTN-0100694213, QTN-0727264573, and QTN-
1203473916 detected by mrMLM/ISIS EM-BLASSO/pLARmMEB
in the Arg dataset; and QTN-0619805830 detected by ISIS EM-
BLASSO and QTN-0805618520 detected by mrMLM in the Trp
dataset were consistent with previous studies (Chen et al.,, 2014;
Sun et al., 2020). Six QTLs (QTL_01_10944343,
QTL_01_23419417, QTL_02_24189963, QTL_05_19754561,
QTL_09_16065720, and QTL_10_17905052) were identified in
more than one FAA dataset by no less than three methods
(Supplementary Figure 3). Thus, the present complementarity of
different methods suggested that the combined utilization of
various single-locus and multi-locus GWAS methods may
facilitate the identification of all potential QTLs with large and
small effects in a powerful and robust manner, and the
3VmrMLM method may be used as an alternative for other
multi-locus methods.

Candidate genes for five FAA levels

A total of 88 stable QTLs were identified by no less than two
methods. Genes co-localized in the 122-kb flanking region of
stable QTL were identified for further analysis. Based on GO
classification and KEGG pathway analysis, four potential
candidate genes were found related to five FAA levels in rice,
and the Beta-glucosidase gene (LOC_Os01g19220) involved in
cyano amino acid metabolism (map00460) was a candidate gene
of QTL_01_0944343 on chromosome 1, which was identified in
both the Val and Ile datasets. According to KEGG pathway
information, beta-glucosidase plays an important role in cyano
amino acid metabolism, in which L-isoleucine and L-valine are
required. The Adenosylhomocysteine nucleosidase gene
(LOC_Os01¢12940) associated with Leu content was identified
in QTL_01_07089989 on chromosome 1 and involved in
biosynthesis of amino acids (map01230) according to KEGG
annotation. The Isocitrate dehydrogenase gene
(LOC_0s05¢49760, IDH) involved in glutathione metabolism
(map00480) was detected in QTL_05_28394307 from the Arg
dataset according to KEGG annotation. The IDH gene has been
reported as a key enzyme in glutathione metabolism (Koh et al,
2004; Reitman et al., 2011; Tang et al, 2020). Glutathione is
formed by the binding of y-glutamate and cysteine via peptide
bonds via the y-glutamylcysteine synthetase (GSHI1) and the
binding of glycine catalyzed by glutathione synthetase (GSH2)
(Noctor et al,, 2012). As the essential precursor of glutathione,
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glutamate plays an important role in the biosynthetic and
catabolism pathway of arginine. For instance, ornithine is
synthesized from glutamate either in a cyclic or in a linear
pathway and subsequently further converts to arginine; arginine
catabolism begins with the degradation of arginine to ornithine,
followed by the generation of glutamate through ornithine
degradation (Winter et al., 2015; Majumdar et al., 2016).
Genetic variation of LOC_0s05¢49760 resulted in the content
alteration of Arg in this study (Figure 7A). The Amidase gene
(LOC_Os11g06900) that participated in tryptophan metabolism
(map00380) was a candidate gene of QTL_11_03441584 on
chromosome 11, which was associated with Trp level in rice. In
Arabidopsis, amidase catalyzes the conversion of indole-3-
acetamide (IAM) to indole-3-acetic acid (IAA), which is an
alternative terminal reaction step of IAA synthesis (Pollmann
etal, 2009). TAA is the predominant auxin in plants, which can be
synthesized from the Trp-dependent pathway. It has been
confirmed that amidase promotes the synthesis of IAA, which is
formed from tryptophan (Dharmasiri et al., 2005; Mockaitis and
Estelle, 2008; Erland and Saxena, 2019). The natural variation of
LOC_Os11g06900 caused the content alteration of Trp in this
study (Figure 7E). Moreover, bZIP18, BCAT2, and BCAT4 genes
have been validated to control the FAA levels in rice and other
plant studies (Schuster et al., 2006; Angelovici et al., 2013; Sun
et al,, 2020). However, they were not found to be candidate genes
offive FAA datasets in this study. Some transcript factors were co-
localized with stable QTLs, which may contribute to the natural
variation of FAA level in rice. Hence, the molecular mechanism of
these candidate genes underlying the variation of FAA levels is
warranted for further validation in the laboratory.

Candidate gene prediction based on
detected QEl

Compared with the other eight methods, 3VmrMLM is able to
detect the QEI of five FAA levels. Based on the 95 detected QEIs,
their predicted candidate genes were subjected to further functional
analysis (Supplementary Table 6). According to KEGG annotation,
the candidate gene LOC_Os12¢16200 of QEI_12_09153839 (this
QEI ID refers to QEI_Chromosome_Position) encoding
glutathione synthetase was identified in glutathione metabolism
(map00480) in the Arg dataset. Glutathione synthetase (GSH) is an
important enzyme to catalyze the formation of glutathione via the
binding of y-glutamate and cysteine (Noctor et al., 2012). Glutamate
not only is an essential precursor for glutathione synthesis, but also
participates in the biosynthetic and catabolism pathway of arginine
(Noctor et al, 2012; Winter et al, 2015). LOC_Os09g07830 of
QEI_09_03978551 encoding acetyl-CoA acetyltransferase was
identified in the Leu dataset, which was involved in valine leucine
and isoleucine degradation (map00280) according to KEGG
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annotation. In the Trp dataset, LOC_0Os01g02020 gene harbored in
QEI_01_00617184 encoding acetyl-CoA acetyltransferase was
involved in tryptophan metabolism (map00380). These results
suggested that a few QEIs may contribute to a small proportion
of total variation on five FAA levels in rice.

Breeding applications of FAA-
associated QTLs

Significant correlations between NPQTL and five FAA
contents were observed (r = 0.53-0.69), which indicated the
additive effect of these QTLs, especially for the Trp dataset (r =
0.69) (Figure 5). It was observed that the highest levels of Arg
were present in some rice accessions carrying nine QTLs with
positive-effect or favorite alleles (PQTLs), such as C063 and
WO088. In addition, the Trp levels in accessions with 18 PQTLs
(C119, etc.) were higher than those with 19 PQTLs (C197)
(Supplementary Table 7). These suggested that the accessions
carrying these PQTLs hold the potential in FAA biofortified rice
breeding through the pyramiding of loci. This strategy has been
successful in the improvement of FHB resistance in wheat
(Buerstmayr et al, 2008). In five FAA datasets, FAA content
in japonica accessions was generally higher than that in indica
accessions (Figures 1B-F; Supplementary Table 4). This
suggested that japonica accessions have more breeding
potential than indica accessions in terms of these five FAA
levels. These japonica accessions are good parents for genetic
improvement of high FAA level by directly hybridizing with elite
varieties. The average R* value of QTL detected in all five FAA
datasets by 3VmrMLM was lower than that by mrMLM
(Table 2). QTLs with a small effect have been successfully
applied in genomic selection (GS) breeding for the
improvement of disease resistance and yield in crops (Crossa
et al, 2017; Wang et al, 2018; Xu et al, 2021). Hence, these
relatively small-effect QTLs detected by 3VmrMLM might be
applicable for genomic selection breeding in rice with high FAA
levels; in particular, the 3VmrMLM method is beneficial for the
QTL detection of an association mapping population consisting
of heterozygous individuals (Li et al., 2022a).

Conclusion

In this study, a total of 987 QTNs were detected in five FAA
datasets by nine GWAS methods. The large number of detected
QTNs demonstrated five FAA levels in rice were controlled by
polygenes. 3VmrMLM has advantages in several aspects
compared to other GWAS methods; 3VmrMLM detected the
largest number of common QTNs, more significant on QTN
detection, and relatively moderate R* values of QTLs were
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detected in multi-locus methods. The combined use of GWAS
methods may facilitate the identification of all potential QTLs
with large and small effects in a powerful and robust manner.
Additionally, 15, 16, 20, 14, and 23 stable QTLs were detected in
Val, Leu, Ile, Arg, and Trp datasets. Natural variations of the
LOC_Os01g19220 gene resulting in the content alteration of Val
and Ile demonstrated that some potential candidate genes may
play an important role in the crosslinking of different pathways.
Of these QTLs, KEGG analysis of the candidate genes of five
FAA-associated stable QTLs showed that they participated in
biosynthesis of amino acids in five FAA datasets; glycine, serine,
and threonine metabolism in the Leu dataset; and tryptophan
metabolism in the Trp dataset. Moreover, 23, 16, 16, 18, and 22
QEIs were identified in the Val, Leu, Ile, Arg, and Trp datasets.
KEGG pathway analysis showed that candidate genes were
mainly involved in valine, leucine, and isoleucine degradation
(QEI_09_03978551 and its candidate gene LOC_0Os09g07830 in
the Leu dataset), tryptophan metabolism (QEI_01_00617184
and its candidate gene LOC_Os01g02020 in the Trp dataset),
and glutathione metabolism (QEI_12_09153839 and its
candidate gene LOC_Os12¢16200 in the Arg dataset). To sum
up, the combined utilization of 3VmrMLM with other GWAS
methods will facilitate the mining of genes controlling complex
traits and genomic selection breeding in rice.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

LH conceived and designed this research project. YS, HW, and
YM undertook the analysis of all available data. LH and HW
contributed to resources and the writing of the original draft. JL and
HL discussed the results, guided the entire study, participated in
data analysis, and revised the manuscript. All authors contributed to
the article and approved the submitted version.

Funding

This study was supported by the Natural Science Foundation
of Hainan Province (No. 321RC1148), the Key Research and
Development Program of Hainan (No. ZDYF2020066), the
“111” Project (No. D20024), the Hainan University Startup
Fund KYQD (ZR) 1866 to J.L, and the Hainan University
Startup Fund (RZ2100003217).

frontiersin.org


https://doi.org/10.3389/fpls.2022.1048860
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

He et al.

Acknowledgments

We appreciate Wei Chen and other authors in Chen et al.
(2014) for their great contribution to rice metabolic research
field and public accessed data availability for reusage in
this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/
fpls.2022.1048860/full#supplementary-material

References

Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based
estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664.
doi: 10.1101/gr.094052.109

Angelovici, R., Lipka, A. E., Deason, N., Gonzalez-Jorge, S., Lin, H., Cepela, .,
et al. (2013). Genome-wide analysis of branched-chain amino acid levels in
arabidopsis seeds. Plant Cell. 25, 4827-4843. doi: 10.1105/tpc.113.119370

Atwell, S., Huang, Y. S., Vilhjalmsson, B. J., Willems, G., Horton, M., Li, Y., et al.
(2010). Genome-wide association study of 107 phenotypes in arabidopsis thaliana
inbred lines. Nature 465, 627-631. doi: 10.1038/nature08800

Bausenwein, U., Millard, P., Thornton, B., and Raven, J. A. (2001). Seasonal
nitrogen storage and remobilization in the forb rumex acetosa. Funct. Ecol. 15,
370-377. doi: 10.1046/j.1365-2435.2001.00524.x

Buerstmayr, H., Ban, T., and Anderson, J. (2008). QTL mapping and marker
assisted selection for fusarium head blight resistance in wheat. Cereal Res.
Commun. 36, 1-3. doi: 10.1556/CRC.36.2008.Suppl.B.1

Chang, F., Guo, C,, Sun, F., Zhang, J., Wang, Z., Kong, J., et al. (2018). Genome-
wide association studies for dynamic plant height and number of nodes on the
main stem in summer sowing soybeans. Front. Plant Sci. 9. doi: 10.3389/
fpls.2018.01184

Chan, E. K., Rowe, H. C., Hansen, B. G., and Kliebenstein, D. J. (2010). The
complex genetic architecture of the metabolome. PloS Genet. 6, €1001198.
doi: 10.1371/journal.pgen.1001198

Chen, W, Gao, Y., Xie, W., Gong, L., Lu, K., Wang, W., et al. (2014). Genome-
wide association analyses provide genetic and biochemical insights into natural
variation in rice metabolism. Nat. Genet. 46, 714-721. doi: 10.1038/ng.3007

Frontiers in Plant Science

107

10.3389/fpls.2022.1048860

SUPPLEMENTARY FIGURE 1

Dot plots (lower triangle), histograms (diagonal) and Pearson correlations
(upper triangle) between five FAAs datasets. Best curves are fitted in dot
plots and histograms. *** indicates statistical significance at the 0.1%
probability level probability level, and the size of the coefficient value is
proportional to the strength of the correlation.

SUPPLEMENTARY FIGURE 2
Venn diagrams of unique QTNs detected by mrMLM series methods from
Val (A), Leu (B), lle (C), Arg (D) and Trp (E).

SUPPLEMENTARY FIGURE 3

Common QTNs detected in different FAA datasets by different methods.
(A): QTN-0110944343; (B): QTN-0123419417; (C): QTN-0224189963;
(D): QTN-0224189963; (E): QTN-0519754561; (F): QTN-0916065720;
(G): QTN-1017905052. The size of the circle is proportional to the
significance level.

SUPPLEMENTARY FIGURE 4
GO classification of candidate genes harbored in stable QTLs in Val (A),
Leu (B), Ile (C), Arg (D), Trp (E) datasets.

SUPPLEMENTARY FIGURE 5
KEGG pathway analysis of candidate genes harbored in stable QTLs in Val
(A), Leu (B), Ile (C), Arg (D) and Trp (E) datasets.

SUPPLEMENTARY FIGURE 6

Manhattan plots for five FAA levels detected QEls by 3VmrMLM. QEls in
Val (A), QElsin Leu (B), QEls in lle (C), QEls in Arg (D), QEls in Trp (E). Black
horizontal lines in the Manhattan plots represent the genome-wide
significant threshold.

SUPPLEMENTARY FIGURE 7
GO classification of candidate genes harbored in QEls in Val (A), Leu (B),
Ile (C), Arg (D) and Trp (E) datasets.

SUPPLEMENTARY FIGURE 8
KEGG pathway analysis of candidate genes harbored in QEls in Val (A), Leu
(B), Ile (C), Arg (D) and Trp (E) datasets.

Chen, W,, Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X,, et al. (2013). A novel
integrated method for large-scale detection, identification, and quantification of
widely targeted metabolites: application in the study of rice metabolomics. Mol.
Plant 6, 1769-1780. doi: 10.1093/mp/sst0

Crossa, J., Perez-Rodriguez, P., Cuevas, J., Montesinos-Lopez, O., Jarquin, D., de
Los Campos, G., et al. (2017). Genomic selection in plant breeding: Methods,
models, and perspectives. Trends Plant Sci. 22, 961-975. doi: 10.1016/
j.tplants.2017.08.011

Cui, Y., Zhang, F., and Zhou, Y. (2018). The application of multi-locus GWAS
for the detection of salt-tolerance loci in rice. Front. Plant Sci. 9. doi: 10.3389/
fpls.2018.01464

Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005). The f-box protein TIR1 is
an auxin receptor. Nature 435, 441-445. doi: 10.1038/nature03543

Diebold, R., Schuster, J., Daschner, K., and Binder, S. (2002). The branched-
chain amino acid transaminase gene family in arabidopsis encodes plastid and
mitochondrial proteins. Plant Physiol. 129, 540-550. doi: 10.1104/pp.001602

Erland, L. A. E,, and Saxena, P. (2019). Auxin driven indoleamine biosynthesis
and the role of tryptophan as an inductive signal in Hypericum perforatum (L.).
PloS One 14. doi: 10.1371/journal.pone.0223878

Fagard, M., Launay, A., Clement, G., Courtial, J., Dellagi, A., Farjad, M., et al.
(2014). Nitrogen metabolism meets phytopathology. J. Exp. Bot. 65, 5643-5656.
doi: 10.1093/jxb/eru323

Fang, C., and Luo, J. (2019). Metabolic GWAS-based dissection of genetic bases
underlying the diversity of plant metabolism. Plant J. 97, 91-100. doi: 10.1111/
tpj.14097

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2022.1048860/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.1048860/full#supplementary-material
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1105/tpc.113.119370
https://doi.org/10.1038/nature08800
https://doi.org/10.1046/j.1365-2435.2001.00524.x
https://doi.org/10.1556/CRC.36.2008.Suppl.B.1
https://doi.org/10.3389/fpls.2018.01184
https://doi.org/10.3389/fpls.2018.01184
https://doi.org/10.1371/journal.pgen.1001198
https://doi.org/10.1038/ng.3007
https://doi.org/10.1093/mp/sst0
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.3389/fpls.2018.01464
https://doi.org/10.3389/fpls.2018.01464
https://doi.org/10.1038/nature03543
https://doi.org/10.1104/pp.001602
https://doi.org/10.1371/journal.pone.0223878
https://doi.org/10.1093/jxb/eru323
https://doi.org/10.1111/tpj.14097
https://doi.org/10.1111/tpj.14097
https://doi.org/10.3389/fpls.2022.1048860
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

He et al.

Fang, C., Zhang, H., Wan, J., Wu, Y., Li, K,, Jin, C,, et al. (2016). Control of leaf
senescence by an MeOH-jasmonates cascade that is epigenetically regulated by
OsSRT1 in rice. Mol. Plant 9, 1366-1378. doi: 10.1016/j.molp.2016.07.007

Fernie, A. R, and Tohge, T. (2017). The genetics of plant metabolism. Annu.
Rev. Genet. 51, 287-310. doi: 10.1146/annurev-genet-120116-024640

Galili, G., Amir, R, and Fernie, A. R. (2016). The regulation of essential amino
acid synthesis and accumulation in plants. Annu. Rev. Plant Biol. 67, 153-178.
doi: 10.1146/annurev-arplant-043015-112213

Galili, G., Avin-Wittenberg, T., Angelovici, R., and Fernie, A. R. (2014). The role
of photosynthesis and amino acid metabolism in the energy status during seed
development. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00447

Hao, C,, Jiao, C., Hou, ], Li, T., Liu, H., Wang, Y, et al. (2020). Resequencing of
145 landmark cultivars reveals asymmetric Sub-genome selection and strong
founder genotype effects on wheat breeding in China. Mol. Plant 13, 1733-1751.
doi: 10.1016/j.molp.2020.09.001

Hausler, R. E,, Ludewig, F., and Krueger, S. (2014). Amino acids-a life between
metabolism and signaling. Plant Sci. 229, 225-237. doi: 10.1016/j.plantsci.2014.09.011

Hildebrandt, T. M., Nunes Nesi, A., Araujo, W. L., and Braun, H. P. (2015).
Amino acid catabolism in plants. Mol. Plant 8, 1563-1579. doi: 10.1016/
j.molp.2015.09.005

Hou, S., Zhu, G., Li, Y., Li, W., Fu, J., Niu, E., et al. (2018). Genome-wide
association studies reveal genetic variation and candidate genes of drought stress
related traits in cotton (Gossypium hirsutum 1.). Front. Plant Sci. 9, 1276.
doi: 10.3389/fpls.2018.01276

Jin, C,, Sun, Y., Shi, Y., Zhang, Y., Chen, K,, Li, Y., et al. (2019). Branched-chain
amino acids regulate plant growth by affecting the homeostasis of mineral elements
in rice. Sci. China Life Sci. 62, 1107-1110. doi: 10.1007/s11427-019-9552-8

Joseph, B., Corwin, J. A, Li, B., Atwell, S., and Kliebenstein, D. J. (2013).
Cytoplasmic genetic variation and extensive cytonuclear interactions influence
natural variation in the metabolome. Elife 2, e00776. doi: 10.7554/eLife.00776

Kim, M. S., Lozano, R., Kim, J. H., Bae, D. N, Kim, S. T., Park, J. H,, et al. (2021).
The patterns of deleterious mutations during the domestication of soybean. Nat.
Commun. 12, 97. doi: 10.1038/s41467-020-20337-3

King, J. E., and Gifford, D. J. (1997). Amino acid utilization in seeds of loblolly
pine during germination and early seedling growth (I. arginine and arginase
activity). Plant Physiol. 113, 1125-1135. doi: 10.1104/pp.113.4.1125

Koh, H. J,, Lee, S. M., Son, B. G, Lee, S. H,, Ryoo, Z. Y., Chang, K. T,, et al.
(2004). Cytosolic NADP"-dependent isocitrate dehydrogenase plays a key role in
lipid metabolism. J. Biol. Chem. 279, 39968-39974. doi: 10.1074/jbc.M402260200

Kumar, S., Stecher, G., Peterson, D., and Tamura, K. (2012). MEGA-CC:
computing core of molecular evolutionary genetics analysis program for
automated and iterative data analysis. Bioinformatics 28, 2685-2686.
doi: 10.1093/bioinformatics/bts507

Le Couteur, D. G., Solon-Biet, S. M., Cogger, V. C., Ribeiro, R., de Cabo, R.,
Raubenheimer, D., et al. (2020). Branched chain amino acids, aging and age-related
health. Ageing Res. Rev. 64, 101198. doi: 10.1016/j.arr.2020.101198

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N,, et al. (2009).
The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078
2079. doi: 10.1093/bioinformatics/btp352

Li, J., Tang, W., Zhang, Y. W., Chen, K. N, Wang, C, Liu, Y., et al. (2018).
Genome-wide association studies for five forage quality-related traits in sorghum
(Sorghum bicolor 1.). Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01146

Liu, X., Huang, M., Fan, B., BucKler, E. S., and Zhang, Z. (2016). Iterative usage
of fixed and random effect models for powerful and efficient genome-wide
association studies. PloS Genet. 12, €1005767. doi: 10.1371/journal.pgen.1005767

Liu, C., Tu, Y., Liao, S., Fu, X,, Lian, X., He, Y., et al. (2021). Genome-wide
association study of flowering time reveals complex genetic heterogeneity and
epistatic interactions in rice. Gene 770, 145353. doi: 10.1016/j.gene.2020.145353

Li, M., Zhang, Y. W,, Xiang, Y., Liu, M. H,, and Zhang, Y. M. (2022a).
IIIVmrMLM: The r and c++ tools associated with 3VmrMLM, a comprehensive
GWAS method for dissecting quantitative traits. Mol. Plant 15, 1251-1253.
doi: 10.1016/j.molp.2022.06.002

Li, M., Zhang, Y. W., Zhang, Z. C,, Xiang, Y., Liu, M. H,, Zhou, Y. H,, et al.
(2022b). A compressed variance component mixed model for detecting QTNs and

QTN-by-environment and QTN-by-QTN interactions in genome-wide association
studies. Mol. Plant 15, 630-650. doi: 10.1016/j.molp.2022.02.012

Luo, J. (2015). Metabolite-based genome-wide association studies in plants.
Curr. Opin. Plant Biol. 24, 31-38. doi: 10.1016/j.pbi.2015.01.006

Majumdar, R, Barchi, B., Turlapati, S. A., Gagne, M., Minocha, R, Long, S., et al.
(2016). Glutamate, ornithine, arginine, proline, and polyamine metabolic
interactions: The pathway is regulated at the post-transcriptional level. Front.
Plant Sci. 7. doi: 10.3389/fpls.2016.00078

Frontiers in Plant Science

10.3389/fpls.2022.1048860

Ma, L, Liu, M,, Yan, Y., Qing, C., Zhang, X., Zhang, Y., et al. (2018). Genetic
dissection of maize embryonic callus regenerative capacity using multi-locus
genome-wide association studies. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00561

Misra, G., Badoni, S., Anacleto, R., Graner, A., Alexandrov, N., and Sreenivasulu,
N. (2017). Whole genome sequencing-based association study to unravel genetic
architecture of cooked grain width and length traits in rice. Sci. Rep. 7, 12478.
doi: 10.1038/541598-017-12778-6

Mockaitis, K., and Estelle, M. (2008). Auxin receptors and plant development: a
new signaling paradigm. Annu. Rev. Cell Dev. Biol. 24, 55-80. doi: 10.1146/
annurev.cellbio.23.090506.123214

Moe, L. A. (2013). Amino acids in the rhizosphere: from plants to microbes. Am.
J. Bot. 100, 1692-1705. doi: 10.3732/ajb.1300033

Muller, C. L., Anacker, A. M. J., and Veenstra-VanderWeele, J. (2016). The
serotonin system in autism spectrum disorder: From biomarker to animal models.
Neuroscience 321, 24-41. doi: 10.1016/j.neuroscience.2015.11.010

Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia,
B., et al. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ.
35, 454-484. doi: 10.1111/j.1365-3040.2011.02400.x

Pathria, G., and Ronai, Z. A. (2021). Harnessing the Co-vulnerabilities of amino
acid-restricted cancers. Cell Metab. 33, 9-20. doi: 10.1016/j.cmet.2020.12.009

Patil, M. D., Bhaumik, J., Babykutty, S., Banerjee, U. C., and Fukumura, D.
(2016). Arginine dependence of tumor cells: targeting a chink in cancer’s armor.
Oncogene 35, 4957-4972. doi: 10.1038/0onc.2016.37

Pollmann, S., Duchting, P., and Weiler, E. W. (2009). Tryptophan-dependent
indole-3-acetic acid biosynthesis by ‘TAA-synthase’ proceeds via indole-3-
acetamide. Phytochemistry 70, 523-531. doi: 10.1016/j.phytochem.2009.01.021

Pratelli, R., and Pilot, G. (2014). Regulation of amino acid metabolic enzymes
and transporters in plants. J. Exp. Bot. 65, 5535-5556. doi: 10.1093/jxb/eru320

Reitman, Z. J., Jin, G., Karoly, E. D., Spasojevic, L, Yang, J., Kinzler, K. W., et al.
(2011). Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the
cellular metabolome. Proc. Natl. Acad. Sci. U. S. A. 108, 3270-3275. doi: 10.1073/
pnas.1019393108

Rennenberg, H., W ildhagen, H., and Ehlting, B. (2010). Nitrogen nutrition of
poplar trees. Plant Biol. (Stuttg.) 12, 275-291. doi: 10.1111/j.1438-
8677.2009.00309.x

Ren, W. L., Wen, Y. ], Dunwell, J. M., and Zhang, Y. M. (2017). pPKWmEB:
integration of kruskal-Wallis test with empirical bayes under polygenic background
control for multi-locus genome-wide association study. Heredity. (Edinb). 120,
208-218. doi: 10.1038/s41437-017-0007-4

Rowe, H. C.,, Hansen, B. G., Halkier, B. A., and Kliebenstein, D. J. (2008).
Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome.
Plant Cell. 20, 1199-1216. doi: 10.1105/tpc.108.058131

Schuster, J., Knill, T., Reichelt, M., Gershenzon, J., and Binder, S. (2006).
Branched-chain aminotransferase4 is part of the chain elongation pathway in the
biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell. 18,
2664-2679. doi: 10.1105/tpc.105.039339

Segura, V., Vilhjalmsson, B. J., Platt, A., Korte, A., Seren, U., Long, Q., et al.
(2012). An efficient multi-locus mixed-model approach for genome-wide
association studies in structured populations. Nat. Genet. 44, 825-830.
doi: 10.1038/ng.2314

Sun, Y., Shi, Y., Liu, G, Yao, F,, Zhang, Y., Yang, C,, et al. (2020). Natural

variation in the OsbZIP18 promoter contributes to branched-chain amino acid
levels in rice. New Phytol. 228, 1548-1558. doi: 10.1111/nph.16800

Tamba, C. L, Ni, Y. L., and Zhang, Y. M. (2017). Iterative sure independence
screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association
studies. PloS Comput. Biol. 13, €1005357. doi: 10.1371/journal.pcbi.1005357

Tang, X, Fu, X,, Liu, Y., Yu, D, Cai, S. J,, and Yang, C. (2020). Blockade of
glutathione metabolism in IDHI1-mutated glioma. Mol. Cancer Ther. 19, 221-230.
doi: 10.1158/1535-7163.MCT-19-0103

VanEtten, C. H., Wolff, I. A, Jones, Q., and Miller, R. W. (1963). Amino acid
composition of seeds from 200 angiospermous plant species. J. Agric. Food Chem.
11, 399-410. doi: 10.1021/jf60129a016

Wang, S. B,, Feng, J. Y., Ren, W. L., Huang, B., Zhou, L., Wen, Y. ], et al. (2016).
Improving power and accuracy of genome-wide association studies via a multi-
locus mixed linear model methodology. Sci. Rep. 6, 19444. doi: 10.1038/srep19444

Wang, X,, Xu, Y., Hu, Z., and Xu, C. (2018). Genomic selection methods for crop
improvement: Current status and prospects. Crop J. 6, 330-340. doi: 10.1016/
j.¢j.2018.03.001

Watanabe, M., Balazadeh, S., Tohge, T., Erban, A., Giavalisco, P., Kopka, J., et al.
(2013). Comprehensive dissection of spatiotemporal metabolic shifts in primary,
secondary, and lipid metabolism during developmental senescence in arabidopsis.
Plant Physiol. 162, 1290-1310. doi: 10.1104/pp.113.217380

frontiersin.org


https://doi.org/10.1016/j.molp.2016.07.007
https://doi.org/10.1146/annurev-genet-120116-024640
https://doi.org/10.1146/annurev-arplant-043015-112213
https://doi.org/10.3389/fpls.2014.00447
https://doi.org/10.1016/j.molp.2020.09.001
https://doi.org/10.1016/j.plantsci.2014.09.011
https://doi.org/10.1016/j.molp.2015.09.005
https://doi.org/10.1016/j.molp.2015.09.005
https://doi.org/10.3389/fpls.2018.01276
https://doi.org/10.1007/s11427-019-9552-8
https://doi.org/10.7554/eLife.00776
https://doi.org/10.1038/s41467-020-20337-3
https://doi.org/10.1104/pp.113.4.1125
https://doi.org/10.1074/jbc.M402260200
https://doi.org/10.1093/bioinformatics/bts507
https://doi.org/10.1016/j.arr.2020.101198
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.3389/fpls.2018.01146
https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.1016/j.gene.2020.145353
https://doi.org/10.1016/j.molp.2022.06.002
https://doi.org/10.1016/j.molp.2022.02.012
https://doi.org/10.1016/j.pbi.2015.01.006
https://doi.org/10.3389/fpls.2016.00078
https://doi.org/10.3389/fpls.2018.00561
https://doi.org/10.1038/s41598-017-12778-6
https://doi.org/10.1146/annurev.cellbio.23.090506.123214
https://doi.org/10.1146/annurev.cellbio.23.090506.123214
https://doi.org/10.3732/ajb.1300033
https://doi.org/10.1016/j.neuroscience.2015.11.010
https://doi.org/10.1111/j.1365-3040.2011.02400.x
https://doi.org/10.1016/j.cmet.2020.12.009
https://doi.org/10.1038/onc.2016.37
https://doi.org/10.1016/j.phytochem.2009.01.021
https://doi.org/10.1093/jxb/eru320
https://doi.org/10.1073/pnas.1019393108
https://doi.org/10.1073/pnas.1019393108
https://doi.org/10.1111/j.1438-8677.2009.00309.x
https://doi.org/10.1111/j.1438-8677.2009.00309.x
https://doi.org/10.1038/s41437-017-0007-4
https://doi.org/10.1105/tpc.108.058131
https://doi.org/10.1105/tpc.105.039339
https://doi.org/10.1038/ng.2314
https://doi.org/10.1111/nph.16800
https://doi.org/10.1371/journal.pcbi.1005357
https://doi.org/10.1158/1535-7163.MCT-19-0103
https://doi.org/10.1021/jf60129a016
https://doi.org/10.1038/srep19444
https://doi.org/10.1016/j.cj.2018.03.001
https://doi.org/10.1016/j.cj.2018.03.001
https://doi.org/10.1104/pp.113.217380
https://doi.org/10.3389/fpls.2022.1048860
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

He et al.

Wen, Y. J., Zhang, H,, Ni, Y. L,, Huang, B, Zhang, J., Feng, J. Y., et al. (2017).
Methodological implementation of mixed linear models in multi-locus genome-
wide association studies. Brief Bioinform. 19, 700-712. doi: 10.1093/bib/bbw145

Winter, G., Todd, C. D., Trovato, M., Forlani, G., and Funck, D. (2015).
Physiological implications of arginine metabolism in plants. Front. Plant Sci. 6.
doi: 10.3389/fpls.2015.00534

Xu, Y., Ma, K, Zhao, Y., Wang, X., Zhou, K,, Yu, G,, et al. (2021). Genomic
selection: A breakthrough technology in rice breeding. Crop J. 9, 669-677.
doi: 10.1016/j.¢j.2021.03.008

Xu, Y., Xu, C, and Xu, S. (2017). Prediction and association mapping of
agronomic traits in maize using multiple omic data. Heredity. (Edinb). 119, 174—
184. doi: 10.1038/hdy.2017.27

Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G, Jiang, N., et al. (2014).
Combining high-throughput phenotyping and genome-wide association studies to
reveal natural genetic variation in rice. Nat. Commun. 5, 5087. doi: 10.1038/
ncomms6087

Yang, J., Zhou, Y., and Jiang, Y. (2022). Amino acids in rice grains and their
regulation by polyamines and phytohormones. Plants (Basel) 11, 1581.
doi: 10.3390/plants11121581

Yi, X,, Du, Z,, and Su, Z. (2013). PlantGSEA: a gene set enrichment analysis
toolkit for plant community. Nucleic Acids Res. 41, W98-103. doi: 10.1093/nar/
gkt281

Frontiers in Plant Science

109

10.3389/fpls.2022.1048860

Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I, Yamasaki, M., Doebley, J. F,, et al.
(2006). A unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat. Genet. 38, 203-208. doi: 10.1038/ng1702

Zeier, J. (2013). New insights into the regulation of plant immunity by amino
acid metabolic pathways. Plant Cell Environment. 36, 2085-2103. doi: 10.1111/
pce.12122

Zhang, C., Dong, S.-S., Xu, J.-Y., He, W.-M,, Yang, T.-L., and Schwartz, R.
(2019). PopLDdecay: a fast and effective tool for linkage disequilibrium decay
analysis based on variant call format files. Bioinformatics 35, 1786-1788.
doi: 10.1093/bioinformatics/bty875

Zhang, ]., Feng, J. Y., Ni, Y. L., Wen, Y. J,, Niu, Y., Tamba, C. L., et al. (2017).
PLARmEB: integration of least angle regression with empirical bayes for multilocus
genome-wide association studies. Heredity. (Edinb). 118, 517-524. doi: 10.1038/
hdy.2017.8

Zhang, Y. M., Jia, Z., and Dunwell, J. M. (2019). Editorial: The applications of
new multi-locus GWAS methodologies in the genetic dissection of complex traits.
Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00100

Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis
for association studies. Nat. Genet. 44, 821-824. doi: 10.1038/ng.2310

Zhu, C., Gore, M., Buckler, E. S., and Yu, J. (2008). Status and prospects of
association mapping in plants. Plant Genome. 1, 5-20. doi: 10.3835/
plantgenome2008.02.0089

frontiersin.org


https://doi.org/10.1093/bib/bbw145
https://doi.org/10.3389/fpls.2015.00534
https://doi.org/10.1016/j.cj.2021.03.008
https://doi.org/10.1038/hdy.2017.27
https://doi.org/10.1038/ncomms6087
https://doi.org/10.1038/ncomms6087
https://doi.org/10.3390/plants11121581
https://doi.org/10.1093/nar/gkt281
https://doi.org/10.1093/nar/gkt281
https://doi.org/10.1038/ng1702
https://doi.org/10.1111/pce.12122
https://doi.org/10.1111/pce.12122
https://doi.org/10.1093/bioinformatics/bty875
https://doi.org/10.1038/hdy.2017.8
https://doi.org/10.1038/hdy.2017.8
https://doi.org/10.3389/fpls.2019.00100
https://doi.org/10.1038/ng.2310
https://doi.org/10.3835/plantgenome2008.02.0089
https://doi.org/10.3835/plantgenome2008.02.0089
https://doi.org/10.3389/fpls.2022.1048860
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

& frontiers | Frontiers in

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Shang-Qian Xie,
University of Idaho, United States

REVIEWED BY
Liu Jinyang,

Jiangsu Academy of Agricultural
Sciences (JAAS), China

Shibo Wang,

University of California, Riverside,
United States

*CORRESPONDENCE
Yingpeng Han
hyp234286@aliyun.com

Lijuan Qiu

giulijuan@caas.cn

"These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

RECEIVED 31 August 2022
AccepTED 04 October 2022
PUBLISHED 14 November 2022

CITATION
Hong H, Li M, Chen Y, Wang H,
Wang J, Guo B, Gao H, Ren H,

Yuan M, Han Y and Qiu L (2022)
Genome-wide association studies for
soybean epicotyl length in two
environments using 3VmrMLM.

Front. Plant Sci. 13:1033120.

doi: 10.3389/fpls.2022.1033120

COPYRIGHT

© 2022 Hong, Li, Chen, Wang, Wang,
Guo, Gao, Ren, Yuan, Han and Qiu. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) and the
copyright owner(s) are credited and
that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Plant Science

TvPE Original Research
PUBLISHED 14 November 2022
D0110.3389/fpls.2022.1033120

Genome-wide association
studies for soybean epicotyl
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Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China, Qigihar Branch of
Heilongjiang Academy of Agricultural Sciences, Qigihar, China

Germination of soybean seed is the imminent vital process after sowing. The status
of plumular axis and radicle determine whether soybean seed can emerge
normally. Epicotyl, an organ between cotyledons and first functional leaves, is
essential for soybean seed germination, seedling growth and early morphogenesis.
Epicotyl length (EL) is a quantitative trait controlled by multiple genes/QTLs. Here,
the present study analyzes the phenotypic diversity and genetic basis of EL using
951 soybean improved cultivars and landraces from Asia, America, Europe and
Africa. 3VmrMLM was used to analyze the associations between EL in 2016 and
2020 and 1,639,846 SNPs for the identification of QTNs and QTN-by-
environment interactions (QEls)”A total of 180 QTNs and QEls associated with
EL were detected. Among them, 74 QTNs (ELS_Q) and 16 QEls (ELS_QE) were
identified to be associated with ELS (epicotyl length of single plant emergence),
and 60 QTNs (ELT_Q) and 30 QEls (ELT_QE) were identified to be associated with
ELT (epicotyl length of three seedlings). Based on transcript abundance analysis,
GO (Gene Ontology) enrichment and haplotype analysis, ten candidate genes
were predicted within nine genic SNPs located in introns, upstream or
downstream, which were supposed to be directly or indirectly involved in the
process of seed germination and seedling development., Of 10 candidate genes,
two of them (Glyma.04G122400 and Glyma.18G183600) could possibly affect
epicotyl length elongation. These results indicate the genetic basis of EL and
provides a valuable basis for specific functional studies of epicotyl traits.

KEYWORDS

genome-wide association analysis, single nucleotide polymorphism, candidate genes,
3VmrMLM, epicotyl length
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Introduction

Epicotyl length (EL), an important complicated and
agronomically trait, was significantly related to plant density
and sowing depth of soybean (Camargos et al, 2019). EL
exhibited the higher genetic variability at the early
developmental stages of soybean, especially at V, and V;
development stages (Matsuo et al., 2012). EL also affected
plant height and yield of soybean (Hanyu et al, 2020). As a
typical quantitative trait, EL, with relatively high heritability
(more than 95%), was controlled by a few large-effect genes and
a series of polygenes (Chaves et al,, 2017). EL was significantly
affected by environment, genotype their interactions (Chaves
et al, 2017; Hanyu et al, 2020). Several studies showed that
genetic and environmental variation approximately accounted
for half of experimental observation. Although EL has been
considered as the important feature of variety during the long-
term soybean breeding, development of soybean cultivar with
reasonable and stable EL through traditional selection method
was still difficult (Chaves et al., 2017). It required evaluation in
multiple environments over several years, and traditional
selection method was expensive, time-consuming and labor-
intensive (Chaves et al., 2017).

Molecular marker could effectively improve traditional
selection efficiency by increasing the allele’s frequency of
desirable quantitative trait loci (QTLs). Presently, linkage
analysis and association analysis, were two major strategies
utilized to identify QTLs of important traits in crops (Li et al,
2020; Liu et al., 2020; Wang et al., 2021). Segregating population
based linkage analysis strategy is a well-known approach to obtain
QTLs, followed by fine mapping using larger secondary
population or other types of population with sufficient map
resolution, then candidate genes could be cloned for functional
characterization. (Dinka et al,, 2007) mapped four additive QTLs
for the length of hypocotyl in soybean. However, none of EL QTLs
of soybean has been reported to date. Based on
diversegermplasms, Genome-Wide Association Study (GWAS)
take advantages of historical recombination events offered another
strategy to effectively fine map QTL with rapid decay of linkage
disequilibrium (LD) (Flint-Garcia et al., 2003). Due to the
advances in next-generation sequencing (NGS) technologies or
Chip with high-density SNPs, GWAS has been widely extensively
utilized to dissect genetic architecture of important traits in crops
including soybean, e.g. biotic stress (Zhao et al., 2015; Zhao et al,
2017), abiotic stress (Zhang et al,, 2015; Jia et al., 2017), yield-
related trait including seed weight (Yan et al., 2017), maturity time
(Contreras-Soto et al., 2017), and seed composition including seed
oil content (Cao et al., 2017; Li et al., 2018), seed protein content
(Zhang et al., 2019), tocopherol (Sui et al., 2020) and isoflavone
concentration (Wu et al., 2020). Liang et al. (2014) identified four
additive QTLs for the length of hypocotyl in soybean using linkage
analysis. However, no EL QTLs in soybean has been reported
to date.
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Since the establishment of mixed linear model (MLM)
method in genome-wide association studies (GWAS) (Zhang
et al., 2005; Yu et al, 2006; Kang et al, 2008), these methods
have proven to be useful in controlling for population structure
and relatedness of individuals. However, these methods are
computationally challenging for large datasets. Thus, a series
of fast MLM-based algorithms have been developed and widely-
used, such as CMLM (Zhang et al., 2010), EMMAX (Kang et al,,
2010), FaST-LMM (Lippert et al., 2011), and GEMMA (Zhou and
Stephens, 2012). In these methods, single marker genome
scanning was used to identify significant QTNs. This is involved
in multiple tests. To control false positive rate, Bonferroni
correction is frequently adopted. The stringent significant
criterion frequently results in the missing of some important
loci, especially in crop GWAS. To overcome this issue, several
multi-locus mixed model methods have been proposed and widely
used (Segura et al., 2012; Wang et al., 2016; Wen et al., 2017). As
we know, there are frequently three genotypes for each marker in
GWAS. Two effects should be estimated, while their polygene
backgrounds should be controlled. In most GWAS methods,
however, only one confound effect is estimated, while
its polygene background is controlled. To solve this issue,
recently, Li et al. (2022b) established a three-variance-
component mixed linear model framework, 3VmrMLM, to
identify QTNs, QTN-by-environment interactions (QEIs), and
QTN-by-QTN interactions under controlling all the possibly
polygene backgrounds.

Cytokinins and light can sometimes elicit similar
morphological and biochemical responses. In the absence of
light plant seedlings have long epi- or hypocotyls and appressed
leaves with the plastid development blocked at the stage of
etioplasts or amyloplasts. The 16 ight-i6 ndependent p6
hotomorphogenesis (lipl) mutant of pea shows many of the
characteristics normally associated with light-grown seedlings
when grown in complete darkness, such as expanded leaves, a
short epicotyl and partially developed chloroplast (Frances et al.,
1992). Chory et al. the effects of cytokinin treatment on epicotyl
growth inhibition of lipl i n darkness are comparable to a
hypocotyl growth inhibition observed in Arabidopsis(Chory
et al., 1994), Tt appears that the effect of cytokinin on the
growth of the axis of young hypogeal (e.g., Arabidopsis) and
epigeal (e.g., pea) seedlings is similar. The phenotype of wild-
type Arabidopsis plants following cytokinin treatment is similar
to that of the amp1 mutant of Arabidopsis, suggesting that light
and cytokinin act through a common signaling pathway (Chory
et al.,, 1994; Seyedi et al., 2001). genetic analysis of Arabidopsis
has provided unequivocal evidence that the brassinosteroids
(BRs) are essential phytohormones (He et al., 2003).
Brassinolide (BL), an end product of campesterol oxidationis
is required for the regulation of cell elongation, stress response,
male fertility, pigment biosynthesis, and numerous other
developmental and physiological responses in higher plant
(Grove et al., 1979), The Arabidopsis CYP90A1 (constitutive
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photomorphogenesis and dwarfism, CPD) has been identified to
functions as the C-23 hydroxylase in the biosynthetic pathway of
brassinosteroids, and cpd mutant exhibited the most
pronounced effect in dwarf phenotype than another five
cytochrome P450 mutants. The biosynthetic model of BRs has
been clearly identified in Arabidopsis, we supposed a similar
model, It has been proved in 1998 that the transcription of
Arabidopsis CYP90A1 was negatively controlled by exogenous
brassinolide (Mathur et al., 1998).

To address above mentioned issues, 951 landraces and
cultivarsselected from Chinese primary core collection in the
Chinese National Soybean GeneBank (CNSGB), were
phenotyped for EL in 2016 and 2020, and genotyped by
1,639,846 SNPs in order to identify QTNs, QEls, and their
candidate genes for EL in soybean.

Materials and method

Plant materials, filed trials and epicotyl
length evaluations

To construct a diversity panel of EL, a total of 951 landraces
was selected from more than 20,000 samples, which delegated
much of the representatives of diversity of the collection at the
Chinese National Soybean GeneBank (CNSGB). These tested
materials were planted with the single row plots (3-m long and
0.35-m between rows), which was performed with the
completely randomized design and three replications in Sanya,
Hainan China in 2016 and 2020.

A total of 3 randomly selected plants from each plot were
phenotyped for EL by measuring the distance between the
cotilenodary knot and the unifoliate leaves pair knot using
vernier caliper.

DNA isolation and genome sequencing

The genomic DNA of each tested samples were isolated from
fresh leaves of a single plant, and then resequenced. Sequencing
libraries were constructed based on TruseqNano® DNA HT
sample preparation Kit (Illumina USA), and index codes were
added to attribute sequences to each accession according to the
method described by (Li et al., 2020a). The Illumina Hiseq X
platform was used to analyze the libraries of these samples. A
total of 10.58 Tb raw sequences with 150-bp read length, were
obtained. After sequence quality filtering, the clean read of all
tested samples, were aligned to soybean reference genome via
Short Oligonucleotide Alignment Program 2 (SOAP2) software.
The SNPs were calling based on MAF > 0.05. The genotype was
regarded as heterozygous if the depth of minor allele/the total
depth of the sample was more than 1/3.
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Population structure evaluation and
linkage disequilibrium (LD) analysis

The population structure of GWAS panel were evaluated
based on principle component analysis (PCA) programs of
Software package GAPIT (Lipka et al, 2012). LD was called
with SNP (MAF > 0.04 and missing data < 10%) based on
TASSEL version 3.0 (Bradbury et al., 2007).

Association analysis of epicotyl
length of soybean

A total of 1,639,846 SNPs from 951 landraces samples were
utilized to detect association signals of EL in soybean. Imputed
genotype of total sample panel was first transformed in to *.fam,
*bed, and *.bim format, ELS and ELT in two different
environments were adopted as phenotype, evolutionary
population structure encoded as B (Landrace) and C (Improved
cultivar), and kinship were employed as covariates for multi-
environment joint analysis with significant level of 0.01 using
IIIVmrMLM software of Li et al. (2022b); Li et al. (2022¢).
Linkage disequilibrium (LD) of 250kb up- and down-stream of
significantly associated SNP were calculated by PLINKI.9, and
threshold of regional average LD > 0.9 was used to define
credible associated region. Functional annotation of candidate
genes was performed based on annotation by phytozome (https://

phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a2_v1).

Definition and verification of
candidate genes

Then SNP variations in the coding region of candidate genes
were analyzed to screen candidate genes with mutation type of
nonsynonymous, stoploss, stopgain, or alternative splicing. To
further screen candidate genes, fixation index (Fsr) was
calculated by published genome sequences data of 2214
soybeans (Li et al., 2022d) using vcftools (0.1.13) with window
size of 100bp, and coding regions with Fgr > 0.6 were regarded as
potential domestication gene (Song et al., 2013). Subsequently,
spatial and temporal expression of candidates were analyzed
using publicly available soybean transcriptome integration
dataset (Yu et al., 2022). Functional annotations of all
candidate genes were performed based on the SoyBase
database (http://www.soybase.org) and the Kyoto Encyclopedia
of gene and genomes (KEGG).

Haplotype analysis

Gene region were defined using *.gff, regional genotype of
hapmap diploid were extracted from imputed genotype,
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then haplotypes were inferred based on regional genotype
classified according to its location relative to the gene
structure. Significance of traits between different haplotypes
were performed by Kruskal-Wallis (P<0.01) (Theodorsson,
1986). Haplotype TCS network was inferred using PopART
(Bandelt et al., 1999; Clement et al., 2002; French et al., 2014).
Geographic mapping of different haplotypes was performed
using R scripts.

Results

Distribution of the landraces used
in the experiment

Globally, the improved cultivars selected for the experiment
mainly comes from America and Asia, with few from Europe
and Africa. Landraces were all obtained from Asia (Figure 1). To
better understand the genetic architecture of these germplasms,
geographical distribution and ecological types were taken into
account for classification. Both domestic and foreign varieties
can be divided into southern (SR), northern (NR) and central
(HR) varieties, namely domestic varieties (SR, HR, NR) and
foreign varieties (WDD_SR, WDD_HR, WDD_NR). Domestic
NR sources are the maximum, and foreign WDD_HR varieties
account for more than half of the total foreign varieties
(Figure 2A and Table SI). According to ecological types,
domestic cultivars can be divided into northeast spring type
(NESp), northern spring type (NSp), Huang-huai spring type
(HSp), Huang-huai summer type (HSu), Southern spring
type (SSp), Southern summer type (SSu) and Southern
autumn type (SAu), with NESp ranking the first place. The
selected foreign varieties were mainly divided into spring type
(WDD_Sp) and summer type (WDD_Su), and the quantity of
WDD_Sp was twice as much as WDD_Su (Figure 2B and Table
52). These results demonstrated that nearly 80% of the varieties

10.3389/fpls.2022.1033120

used in the experiment came from China, and 60% of the
varieties obtained abroad were spring varieties in the
central region.

Statistical analysis for inflorescence
length of the association panel

The EL of 951 landraces in Sanya, Hainan China in 2016 and
2020, were evaluated, respectively. The skewness and kurtosis of
EL the three environments were less than +1, which exhibited a
continuous variation and the near normal distribution (Table
S3). Therefore, EL of the association panel in this study,
were appropriate.

Distribution of SNPs and analysis of
mapping population

Based with the frequency > 0.05 as the minor allele and the
missing data less than 0.03, a total of 1,639,846 single nucleotide
polymorphisms (SNPs) were unevenly distributedon 20
chromosomes of soybean genome. with a density of578.8 bp
per SNP on average, and varied from 337.3bp~1334.4bp per
SNP. In detail, there were 168,498 SNPs on Chrl with the
highest density (337.3bp/SNP), 31,650 SNPs on Chr5 with
lowest density (1334.4bp/SNP). (Figure 3). Based on these
SNPs, principal component analysis and phylogenetic analysis
were performed on the association panel. The results showed
that the first PCs explained 24.52% of the genetic variation, the
951 varieties were divided into two categories with apparent
discrepancy of genetic relatedness (Figure 4). For a preferably
clearer study of epicotyl traits, they were also divided into two
categories, ELS and ELT. Statistical methods were used to test
that ELS and ELT showed normal distribution in different
environments among varieties (Figure 5).

50°N

0°N

Latitude

50°S |

Improved cultivar

50°S Landrace
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FIGURE 1
The geographical distribution of the tested accessions

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2022.1033120
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

10.3389/fpls.2022.1033120

Hong et al.

WDD_SR ‘“ Ty = SAu

m- ™. ==

=WDD,NR / ;/» =:§:
.NR i : /' Eagg:::

== NESp

%;%%/ | \ ’ /;Q/ | } §\§ |
‘/WAW mw’\& ‘i AZA\Z/'{'H MQW >
FIGURE 2

951 species construct phylogenetic tree according to geographical distribution and ecological type. (A) Variety Geographical Distribution
Evolutionary Tree. WDD_: Oversea_; NR: Northern Region; HR: Central Region; SR: Southern Region (B) Variety Ecotype Evolutionary Tree. SAu,
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summer soybean; NSp, Northern spring soybean; NESp, Northeast Spring Soybeans; WDD_Su, Oversea summer soybean; WDD_Sp, Oversea

spring soybean.

Quantitative trait nucleotide associated
with epicotyl length-related traits
by GWAS

QTN (Q) and QTN-by-environment interaction (QEI)
detection method in the 3VmrMLM was used to analyze SNP-
trait associations in two EL two-environment datasets, ELS
(2016 and 2020) and ELT (2016 and 2020). A total of 180
QTNs and QEIs associated with epicotyl length were detected.
Among them, 74 QTNs (ELS_Q) and 16 QEIs (ELS_QE) were
identified to be associated with ELS, and 60 QTNs (ELT_Q) and
30 QEIs (ELT_QE) were identified to be associated with ELT.

Figure 6 Of these, three sites (Gm_09_28400545,
Gm_11_31100989, Gm_19_557643) could be found in all
these four result datasets (Table S4).

Prediction of candidate genes for
epicotyl length traits

We performed candidate gene prediction analyses with peak
SNP of +100 kb based on the physical locations of 180 SNPs
associated with epicotyl length. A total of 1945 genes were
included in these regions (Table S4). Functional annotation of
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1945 genes were completed by using Arabidopsis annotation
information. site contribution rate, Transcription abundance of
candidate genes in epicotyl of two representative soybean
germplasms including cultivar Williams 82 with a long
epicotyl of 3.93 cm and cultivar Jack with a short epicotyl of
2.13 cm were analyzed using publicly available soybean
transcriptome integration dataset (Yu et al., 2022). By
comparing the epicotyl lengths of Williams 82 and Jack, a very
significant difference was found (Figures 7A, B). Based on the
transcriptome data of epicotyls from Williams 82 and Jack, 585
out of 1945 genes were not expressed in both epicotyls of
Williams 82 and Jack, 94 genes were expressed only in the
epicotyl of Jack and 60 genes were expressed only in the epicotyl
of Williams 82. A total of 1206 genes were expressed in both
epicotyls of Williams 82 and Jack, of them, 157 genes were
significantly differentially expressed in Williams 82 and Jack.
Combined with Arabidopsis annotation information, 103 genes
were identified as potentially candidate genes for epicotyl length
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(Table S5, Figure 7C). These differentially expressed genes in
long and short epicotyl cultivars might be related to the length of
epicotyl of soybean.

To further elucidate whether the differentially expressed genes
were related to the length of the epicotyl, GO enrichment analysis
was performed (http://amigo.geneontology.org/). GO enrichment
analysis showed all genes were assigned to one of three GO
categories: biological process (BP), molecular function (MF),
and Cellular component (CC) (Figure 8).

Further, haplotype analysis was performed for 103 potentially
candidate genes screened by the above analysis. epicotyl

In order to determine the role of the selected potential genes
in soybean epicotyl growth, 22 potential candidates were screened
by combining gene GO annotation and transcriptome differential
expression analysis, and referring to Arabidopsis annotation
information. Haplotype analysis identified 10 significantly
different genesepicotyl. The Hapl and Hap2 of Glyma.01G005900
in different years of ELS(P=0.0039) and ELT (P=0.039)showed
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Results of association mapping of soybean epicotyl length traits. (A) Manhattan plot of locus distribution;

extremely significant differences (P<0.01). The Hapl and
Hap3 of Glyma.18G183600(2016_ELS P=1.1e-09; 2020_ELS
P=0.00013; 2016_ELT P=3.4e-06; 2020_ELT P=0.69),
Glyma.18G185300(2016_ELS P=0.0083; 2020_ELS P=1.2¢-08;
2016_ELT P=0.02; 2020_ELT P=0.0031), exhibited extremely
significant differences (P<0.01), while the Hapl and Hap3
of Glyma.01G050100(2016_ELS P=4.4e-05; 2020_ELS P=0.0021),
Glyma.04G122400(2016_ELS P=1.6e-08; 2020_ELS P=0.0006),
Glyma.18G183600(2016_ELS P=1.1e-09; 2020_ELS P=0.00013) in
different years of ELS had a very significant difference in 2016
(P<0.01), but there was no significant difference in 2020. The
candidate gene Glyma.18G185300 showed a very significant
difference in the two years of EL (P<0.01), and the ELT revealed
a significant difference in 2016(2016_ELT P=0.02) and showed a
very significant difference in 2020(2020_ELT P=0.0031) (Figure 9).
Meanwhile, we counted the variation sites of 10 gene
haplotypes (Table S7). The results demonstrated that
Glyma.04G122400, Glyma.10G031900 and Glyma.18G183600 exist
in exon variation sites, of which Glyma.04G122400 and
Glyma.18G183600 exist non-synonymous mutations, hence, we
speculate that Glyma.04G122400 and Glyma.18G183600 are
candidate genes for epicotyl differences. At the same time, we
combed the geographical origin of the two gene haplotypes
and the distribution of variety characteristics. From the
geographical distribution, we could see that Hapl, Hap2, Hap3
and Hap4 haplotypes of the two candidate genes were absolutely
dominant in the selected varieties. In terms of ecological
characteristics of cultivars, Hapl and Hap2 haplotypes of the two
genes accounted for more than Landrace haplotypes in improved
cultivars (Figure 10).

We predicted ten plant growth-related genes, namely
Glyma.03G142200 (Ribosomal protein S10p/S20e family
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(B) phenotype fitting results.

protein), Glyma.04G122400 (DCD domain protein),
Glyma.04G145000 (nuclear factor Y, subunit B13),
Glyma.10G0319000 (indole-3-acetic acid 7), Glyma.10G056000
(SAUR-like auxin-responsive protein family), Glyma.13G270800
(ubiquitin-conjugating enzyme 35), Glyma.17G005900
(Pollen Ole e 1 allergen and extensin family protein),
Glyma.17G18500 (NAC domain containing protein
83), Glyma.18G183600 (far-red elongated hypocotyl 1),
and Glyma.18G255300 (thioredoxin H-type 5). These
results suggest that soybean epicotyl length may be regulated
by multiple signaling pathways (Table 1).Additionally,
none of these 10 cadidates were identified to be differentiated
among wild soybean, landrace and improved cultivar
(Figure S1).

Discussion

As an important feature of soybean variety, many studies
indicated that EL affected 43.12% of seeds germination
and 57.12% of seedlings emergence for soybean (Hanyu et al,
2020) estimated the genotypic determination coefficient
of EL was more than 80% regardless of the evaluation
period. (Matsuo et al,, 2012) also obtained similar results.
The genotypic determination coefficient was significantly
related to inheritability, thus, it made the inference
about genotypes possible (Vasconcelos et al,, 2012; Hanyu
et al., 2020). Through screening a large enough and
reasonable gene database from more than 20,000 varieties,
the SNPs and potential genes related to epicotyl traits
were analyzed by GWAS technology. By elucidating
the epicotyl related loci, it has a potential role in the study of
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early seed germination, seedling germination and stem strength extensively studied. SNP mapping of soybean root-related traits
of soybean. at seedling stage revealed that HL is regulated by multiple
To date, many seedling crop traits have been studied and additive genes. Seven QTLs in HL associated with seedling
elucidated, but epicotyl traits have been largely ignored and photomorphology were identified by using recombinant inbred
poorly studied. Four of Chr.2, Chr.4, Chr.7 and Chr.10 were (RIL) populations obtained from biparental crosses between
identified in the F2 population of adzuki bean “Tokeill21” Patagonia (Pat) and Colombia (COL0) (Matsusaka et al,
(T1121, long epimorph) and cultivar “Erimol167” (ordinary 2021). Compound spacer and epitaxial array localization
ectomorph) with EL associated SNP) (Mori et al., 2021). There methods were also used to identify HL loci associated with
are no reports on EL-related SNP sites in other plants. The light-responsive quantitative traits (Wolyn et al, 2004). To
genetic mechanism of the hypocotyl length trait (HL) has been pinpoint trait-associated loci, the combination of GWAS and
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TABLE 1 Gene based association of candidate genes.

10.3389/fpls.2022.1033120

Chr. Physical position (bp) Gene model Trait R? (contribution rate) Pvalue Functional annotation

3 35863419 Glyma.03G142200 ELT_Q 0.5768 6.09167E-21 Ribosomal protein S10p/S20e family protein

4 15439303 Glyma.04G122400 ELT_Q 0.4336 8.01377E-07 DCD (Development and Cell Death) domain protein
4 26351924 Glyma.04G145000 ELS_Q 0.2279 4.20387E-22 nuclear factor Y, subunit B13

10 2738580 Glyma.10G031900 ELS_Q 0.5234 1.14306E-11 indole-3-acetic acid 7

10 5143580 Glyma.10G056000 ELT_Q 0.5294 5.84009E-32 SAUR-like auxin-responsive protein family

13 37284883 Glyma.13G270800 ELT_Q 1.5012 7.02497E-35 ubiquitin-conjugating enzyme 35

17 637613 Glyma.17G005900 ELT_Q 0.5942 5.10164E-10 Pollen Ole e 1 allergen and extensin family protein
17 23689587 Glyma.17G185000 ELS_Q 0.7863 4.96905E-13 NAC domain containing protein 83

18 44381201 Glyma.18G183600 ELS_QEI 2.1064 1.12718E-32  far-red elongated hypocotyl 1

18 44381201 Glyma.18G185300 ELS_QEI 2.1064 1.12718E-32  one helix protein

transcriptome can be used to identify major genes affecting HL
(Luo et al,, 2017). These studies suggest that hypocotyl play a
role in root growth and photomorphological responses. (Huang
et al, 2006) studied the regulatory effect of brassinolide on
epicotyl under low temperature conditions by proteomics. How
xylan content in the gravitational bending direction of the
epicotyl of adzuki bean affects its internal xylan content
(Tkushima et al., 2008). Inhibitory effect of red light of the
active form of phytochrome (Pfr) on epicotyl elongation in
pea seedlings (Okoloko et al., 1970). These indicate that
epicotyl play a non-negligible role in a variety of crops,
especially dicotyledonous crops. Faced with this situation, this
study used the soybean EL association panel to analyze the
natural variation of epicotyl length and the related genetic
structure, and analyzed the Hypothetically revealing a set of
candidate genes controlling epicotyl development by GWAS
analysis is undoubtedly a key step in filling in the relevant loci
for epicotyl trait mapping.

Putative genes involved in
epicotyl length

Through the Arabidopsis annotation information, candidate
gene phenotype contribution rate, and combining with Yu et al.
(2022) Williams 82 and Jack transcriptome results of extremely
different genes, we screened 22 potential genes from 103
hypothetical genes. These genes are located in SNP peak
within 100Kb.10 significantly different candidate genes were
identified by haplotype analysis, these genes were genotyped
significantly and distinctly of ELS and ELT. Glyma.03G142200 is
a Ribosomal protein S10p/S20e family protein, proteins involved
in photosynthesis (Bah et al., 2010). Wycoff found that a lectin
protein, analogous to ribosomal proteins, is detected in roots,
hypocotyls and leaves and involved in soybean nodule formation
(Wycoff et al., 1997).

Glyma.04G122400 DCD (Development and Cell Death)
domain protein, thought to be involved in the hypersensitive
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response and programmed (Ludwig and Tenhaken, 2001,
Enhaken et al., 2005), In previous studies, DCD domain
proteins was believed to be involved in extracellular matrix or
cytoskeleton proteins involved in growth and differentiation
processes (Ichinose et al., 1990, Massimiliano et al., 2007).

Glyma.04G145000 nuclear factor Y, subunit B13, Nuclear
factor Y is one of the largest transcription factor gene families in
plants, The NUCLEAR FACTOR Y (NF-Y) transcription factors
are heterotrimeric complexes composed of NF-YA and histone-
fold domain (HFD) containing NF-YB/NE-YC (Siriwardana
et al, 2016), NF-Y subunits are emerging as transcriptional
regulators with essential roles in diverse plant processes (Zanetti
et al,, 2010). playing key roles in development and in response to
adverse environmental conditions (Nelson et al., 2007; Li et al.,
2008)AtNF-YB6 (L1L) and AtNF-YB9 (LEC1) are involved in
embryo development in seeds (Yamamoto et al, 2009).
Overexpression of PANF-YB7 in Arabidopsis exhibited earlier
seedling establishment, longer primary roots, larger leaf areas,
and increased photosynthetic rate that conferred drought
tolerance and improved WUE in transgenic plants. In
Arabidopsis, AtNF-YB3 plays an important role in the pro-
motion of flowering specifically under inductive long-day
photoperiodic conditions. Consistent with this, the
overexpression of PANF-YB7 in Arabidopsis caused earlier
seedling germination time and enhanced the development of
both vegetative and reproductive organs (Xiao et al., 2013), also
found that overexpression of AtNF-YB2 enhanced primary root
elongation due to a faster cell division and/or elongation(Ballif
et al,, 2011)

The soybean epicotyl is the basis for the formation of true
leaves after seed germination, which ensures the normal
development of seedlings, and the synthesis of related
hormones is also important. The Glyma.10G056000 and
Glyma.17G005900 encoding SAUR-like auxin-responsive
protein and allergen and elongation protein, respectively, are
annotated through multiple omics networks in the Arabidopsis
genome (Depuydt and Vandepoele, 2021). Glyma.10G031900
encodes an indole-3-ACID 7 protein that functions as the
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principal component of the ABA-and auxin dependent reactions
during post-germination seed growth (Belin et al, 2009).
Glyma.13G270800 ubiquitin-conjugating enzyme 35, Previous
studies have shown that ubiquitination plays important roles in
plant abiotic stress responses, Protein ubiquitinations play
crucial roles for numerous cellular processes such as cell
growth, development, and response to diverse biotic and
abiotic stresses. (Takahashi et al.,, 2009; Zhou et al., 2010), The
ubiquitin-depen-dent protein degradation pathway is involved
in photo-morphogenesis, hormone regulation, floral homeosis,
senescence, and pathogen defense (Suzuki et al., 2002; Devoto
et al., 2003).

Glyma.17G185000 NAC domain containing protein 83, The
NAC (for NAM-ATAF1/2-CUC2) transcription factors constitute
one of the largest transcription factor families in plant genomes
(Ooka et al, 2004; Olsen et al., 2005b). Roles of many NAC
transcription factors have been demonstrated in diverse develop-
mental processes and plant responses to biotic and abiotic stresses,
such apical meristem formation (Hibara et al, 2003), cell cycle
control (Kim et al., 2006), AtNAC2 functioning in root
development (He et al, 2005). cell divi-sion (Riechmann et al,
2000; Kim et al,, 2006), NTM2 inte- grates auxin and salt signals in
regulating Arabidopsis seed germination (Park et al, 2011), In
Arabidopsis thaliana, 105 genes are predicted to encode NAC
proteins (Ooka et al., 2004). Song et al. study found The highly
homologous NAC transcription factors ANAC060, ANAC040 and
ANACO089 regulate important transitions in the early phases of plant
development. All three genes play a role in the interplay between the
environment and the developmental switch that results in
germination and/or seedling development (Song et al., 2022). For
germination and seedling development to occur, the protein has to be
released from the membrane, which for ANACO089 was shown to be
directly affected by changes in the cellular redox status (Albertos
et al, 2021).

Glyma.18g183600 far-red elongated hypocotyl 1,
Phytochrome A (phyA) is the primary photoreceptor for
mediating the far-red high irradiance response in Arabidopsis
thaliana.FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and
its homolog FHY1-LIKE (FHL) define two positive regulators in
the phyA signaling pathway (Shen et al., 2009). Most abundant in
young seedlings in the dark.encodes FHY1 protein that mediates
the transfer of phytochrome A (phyA) to the nucleus.
Phytochrome A (phyA) acts as red and far red (FR) sensing
photoreceptors to regulate plant growth and development
(Helizon et al., 2018). Multiple metabolic pathways are required
to regulate the length of soybean epicotyl (Clouse et al., 1992; Hao
et al., 2014).

Glyma.18G185300 one helix protein, The cellular functions of
two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1
and OHP2 (also named LIGHTHARVESTING-LIKE2 [LIL2] and
LILS6, respectively, because they have sequence similarity to light-
harvesting chlorophyll a/b-binding proteins), OHP1 and OHP2
play an essential role in chloroplast development as well as in
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vegetative growth, The photosynthetic capacity of ohpl-1 and
ohpl-2 mutants also was decreased significantly (Myouga et al,
2018).The protein is localized to the thylakoid membrane and its
transcript is transiently induced by exposure to high light
conditions. increased expression of OHP1 is observed under
light stress (Jansson et al., 2000). may constitute a novel
mechanism of photoprotection in the plant photosynthetic
apparatus (Psencik et al,, 2020).

We speculate that traits during soybean domestication are
gradually selected, and the priority traits are yield-related traits,
such as seed size, oil content, and protein content (Wang et al.,
2020). The epicotyl length involved in this study is not a major
direct yield trait and therefore demonstrated weak signal of
domestication selection.

In general, It is certain that most of the above candidate genes are
related to the regulation of light and temperature, For example, the
candidate gene Glyma.18G183600 is a phytochrome A (phyA) gene,
which is the main photoreceptor mediating the far-red high-
irradiation response in Arabidopsis. Cellular function of
Glyma.18G185300 with sequence similarity to light-harvesting
chlorophyll a/b binding protein, Glyma.03G142200 is a protein
involved in photosynthesis, and the analysis results show that they
are all involved in the growth and development of soybean epicotyl.
This is consistent with the results that soybean epicotyl length is
greatly affected by different environments. These results can be
reflected from the haplotype analysis of ten candidate genes, which
can be reflected in the significant differences in different
environments (Figure 9).epicotyl However, further functional
verification is needed to clarify the whole mechanism of action.
More importantly, since the epicotyl is located in the country of
cotyledons and true leaves, it is not only involved in seed germination
and seedling growth, but also affects early morphogenesis of
seedlings. Understanding and regulating the molecular regulatory
network of epicotyl length has important guiding significance for
crop breeding.
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Flowering time is strongly related to the environment, while the genotype-by-
environment interaction study for flowering time is lacking in Brassica napus.
Here, a total of 11,700,689 single nucleotide polymorphisms in 490 B. napus
accessions were used to associate with the flowering time and related climatic
index in eight environments using a compressed variance-component mixed
model, 3VmrMLM. As a result, 19 stable main-effect quantitative trait
nucleotides (QTNs) and 32 QTN-by-environment interactions (QEls) for
flowering time were detected. Four windows of daily average temperature
and precipitation were found to be climatic factors highly correlated with
flowering time. Ten main-effect QTNs were found to be associated with these
flowering-time-related climatic indexes. Using differentially expressed gene
(DEQ) analysis in semi-winter and spring oilseed rapes, 5,850 and 5,511 DEGs
were found to be significantly expressed before and after vernalization. Twelve
and 14 DEGs, including 7 and 9 known homologs in Arabidopsis, were found to
be candidate genes for stable QTNs and QEls for flowering time, respectively.
Five DEGs were found to be candidate genes for main-effect QTNs for
flowering-time-related climatic index. These candidate genes, such as
BnaFLCs, BnaFTs, BnaA02.VIN3, and BnaC09.PRR7, were further validated by
the haplotype, selective sweep, and co-expression networks analysis. The
candidate genes identified in this study will be helpful to breed B. napus
varieties adapted to particular environments with optimized flowering time.
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Introduction

As the world’s most important oilseed crop, planting of
Brassica napus spans a wide range of growth periods and climate
zones (Yang et al., 2014). To meet the needs of adaptation, B.
napus adjusts the correct time to flower. Flowering time
determines the transition from the vegetative to the
reproductive phase, and therefore, the nutrients are available
for remobilization at seed filling (Han et al., 2021). Early
flowering facilitates mechanical harvesting and rotation with
other crops, whereas late flowering enhances stem development,
thus improving lodging resistance (Cui et al., 2021). Although
previous studies have revealed the genetic basis of flowering time
in B. napus, no studies have been reported on the genetic
dissection of flowering time plasticity, namely, genotype-by-
environment interaction (G by E).

The genetic basis of flowering time has been well-studied in
the model plant Arabidopsis thaliana (Mouradov et al., 2002;
Putterill et al., 2004; Bouche et al., 2016). The genetic networks
underlying flowering consist of six major pathways
interconnected, namely, photoperiod, vernalization, gibberellin,
autonomous, thermal clock, and aging pathways (Putterill et al.,
2004). Epigenetic regulation, miRNAs, phytohormones, sugar
status, and signaling also play important roles in flowering time
control (Bouche et al., 2016). In B. napus, the polyploid nature of
B. napus has resulted in flowering-time-related genes
undergoing extensive subfunctionalization (Schiessl, 2020). It
has been demonstrated that there is a sophisticated network of
interactions among FLOWERING LOCUS C homologs with
different expression patterns in organs and development stages
(Zou et al., 2012). LOWERING LOCUS T and TERMINAL
FLOWER 1 were found to have pleiotropic effects on flowering
time, despite their redundancy in B. napus genome (Guo et al.,
2014). Therefore, it demands more genetic basis research on
flowering time in B. napus.

Flowering time is strongly influenced by the environment. A
decrease in day length delays flowering in B. napus. A period of
cooler temperature will determine vernalization and ensure
reproductive development (Matar et al., 2021). Precipitation
has been reported to have different effects on flowering
phenology in different species (Zhang et al., 2018). Many
genes have been reported to influence flowering time in
response to the environment. FLOWERING LOCUS T (FT)
was found to induce flowering through long-distance signaling
by activating seasonal changes in day length (Corbesier et al.,
2007). The epigenetic silencing of FLC accelerates flowering by
prolonged cold vernalization (Bastow et al, 2004). H2A.Z
incorporates BraA.FT.a chromatin at high ambient
temperature and delays flowering time in B. rapa (Del Olmo
et al,, 2019). In B. napus, Cycling Dof Factorl delays the
flowering time and was induced in response to low
temperature (Xu and Dai, 2016). BuNAC485 altered flowering
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time in response to abiotic stress (Ying et al., 2014). However, B.
napus has developed two eco-types in China, namely, semi-
winter oilseed rapes (SWORs) and spring oilseed rapes (SORs),
to adapt different geographical environments and climates,
leading to more complex molecular mechanisms of flowering
time (Song et al., 2020).

In response to climate change, G by E is of fundamental
importance in plant breeding and adaptation (Arnold et al,
2019; Zhao et al,, 2022). In B. napus, the G by E of seed yield and
oil content were found to exert specific adaptation to climates
(Zhang et al., 2013a). Genotype and temperature interactions of
seed oil content were found to be differential at the level of gene
expression profiles (Zhu et al., 2012). Moreover, quantitative and
population genetics have shown great power to bridge the gap
between genomic diversity and phenotypic plasticity (Wu, 1998;
Kusmec et al,, 2017; Liu et al, 2021). For G by E studies on
flowering time, four environmentally sensitive quantitative trait
loci for flowering time identified in 473 Arabidopsis accessions
were found to be related to adaptation (Li et al., 2010). It has
been found that interacting flowering-time-related genes
differentially respond to the temperature at the early growth
stage in rice (Guo et al, 2020). Quantitative trait nucleotide
(QTN)-by-environment interaction (QEI) mapping for
flowering time has been performed in a doubled haploid B.
napus population (Shen et al., 2018). Although many genome-
wide association studies (GWAS) for flowering time have been
reported in B. napus (Xu et al., 2016; Song et al., 2020; Helal
etal, 2021; Hu et al,, 2022), knowledge about QEI for flowering
time detected by GWAS is scarce.

Recently, the newly published method 3VmrMLM provides
a solution for QEI detection in GWAS (Li et al., 2022a). Here, we
investigated the landscape of flowering time plasticity of 490 B.
napus accessions in eight environments. A total of 11,700,689
single nucleotide polymorphisms (SNPs) were used to detect
main-effect QTNs for flowering time and related climatic index
and QEIs for flowering time. The transcriptome of SWORs and
SORs before and after vernalization was used to identify the
candidate genes around QTNs and QEIs. Co-expression,
haplotype, and selection sweep analysis were used to further
validate the candidate flowering time genes in specific eco-
oilseed rapes. Our finding will facilitate the breeding for
adaptation to particular environments with optimized
flowering time in B. napus.

Materials and methods

Germplasm, phenotypic, and
genomic data

A diversity panel of 490 B. napus accessions collected from
Xu et al. (2016) was used in this study. This panel was cultivated

frontiersin.org


https://doi.org/10.3389/fpls.2022.1065766
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

in eight natural environments, i.e., Wuhan 2013 and 2014
(WH2013 and WH2014), Changsha 2013 and 2014 (CS2013
and CS$2014), Nanjing 2013 and 2014 (NJ2013 and NJ2014),
Ezhou 2013 (EZ2013), and Chongqing 2013 (CQ2013).
Additionally, the Gangan and ZS11 cultivars for RNA-seq
were planted in Wuhan 2018 at the experimental stations of
Huazhong Agricultural University. The design of field trial of the
above materials and the acquisition of phenotypic data were the
same as those used in the previous study (Xu et al.,, 2016). The
re-sequencing genome data were obtained from Tang et al.
(2021). The B. napus genome (B. napus ZS11 v0) from BnPIR
(Song et al., 2020; Song et al., 2021) (http://cbihzau.edu.cn/
bnapus/index.php) was used as the reference genome.

Statistical analysis for phenotypic data

By using the “lme4” R package (Bates et al., 2015), the best
linear unbiased prediction (BLUP) model was fitted to each B.
napus accession:

Phenotype ~ (1|Accession) + (1|Environment)

Taking into account the variations between eight
environments as phenotypic variance derived from
environmental factors, broad-sense heritability (h3) was
estimated using the following equation by treating populations
as a random effect and the environments as an environment
effect, where 07 and o is the variance derived from genetic and
environmental effects, respectively (Knapp et al., 1985).

2
O-g

2 2
o; +0;

2
B

Identification of flowering-time-related
climatic index

Climatic data for daily average temperature (TAVG, °F) and
precipitation (PRCP, in) were retrieved from the National
Oceanic and Atmospheric Administration (https://www.noaa.
gov/weather). Due to the lack of climatic data for Ezhou, there
were climatic datasets of seven environments in total, i.e.,
WH2013 and WH2014 (114.05°E, 30.60°N; Station ID:
GHCND: CHMO00057494), CS2013 and CS2014 (112.87°E,
28.23°N; GHCND: CHMO00057687), NJ2013 and NJ2014
(118.90°E, 31.93°N; GHCND: CHMO00058238), and CQ2013
(106.48°E, 29.58°N; GHCND: CHMO00057516). Climatic data
were obtained from the day after being planted to the 200 days
after planting (DAP). For each window from a starting day (3
DAP) to an end day (41 DAP) during B. napus growth, the
average value of the climatic index and their correlation with the
environmental mean vector for flowering time was calculated by
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CERIS analytical package (Li et al, 2021; https://github.com/
jmyu/CERIS_JGRA). The most relevant climatic index for
flowering time was chosen according to the highest correlation
between environmental means and climatic index with
corresponding window. Reaction norms were calculated as
described in Guo et al. (2020) and Liu et al. (2020), using
environmental mean and environmental climatic index as x-
axis and phenotype as y-axis. Each line represented an individual
and was shown by fitted linear regression. The intercept and
slope were used to perform GWAS further.

Detecting QTNs and QEls by GWAS

The intersection of the accessions in phenotypic and
genotypic datasets, ie., 490 accessions with 11,700,689 SNPs,
were used for GWAS using 3VmrMLM (Li et al,, 2022a) via
software IIIVmrMLM (Li et al,, 2022b). Flowering time QTNs
were obtained from separate analyses of phenotypic data from
eight environments and joint environmental analyses of these
datasets. The reaction norms between flowering time and climatic
index were also used to conduct GWAS by 3VmrMLM. QEIs for
flowering time were obtained by joint environment analyses of the
above phenotypic datasets in eight environments. Population
structure and kinship matrix were considered in 3VmrMLM
analysis, and the “svpal” parameter was set as 0.01. According
to Tang et al. (2021), the population structure calculated as K=3
was used in the analysis. The threshold was set at 0.05/m for
significant QTNs and QEIs and LOD score > 3.0 for suggested
QTNs and QEIs, where m is the number of markers (Li et al.,
2022a; Li et al., 2022b). According to the LD interval estimated by
Tangetal. (2021), stable QTNs were defined as QTNs identified in
at least three environments within the 100-kb upstream and
downstream regions.

Identification of candidate genes

To identify candidate genes for flowering-time-related
QTNs and QEIs, genes within the 100 kb upstream and
downstream regions of each QTN or QEI were extracted
according to the LD interval estimated by Tang et al. (2021).
Then, two strategies were employed. First, the B. napus
homologs of Arabidopsis flowering time genes downloaded
from FLOR-ID (http://www.flor-id.org) were selected and
considered as known genes. Second, new candidate genes were
identified using differentially expressed genes (DEGs) in two
SWORs (Gangan and ZS11) before and after vernalization and
in two SORs (Westar and No. 2127). The t-test was adopted in
the hypothesis testing for haplotype analysis; p< 0.05, p< 0.01,
and p< 0.001 indicated the significances at 0.05, 0.01, and 0.001
probability levels, respectively.
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Differential expression analysis
based on RNA-seq

The leaves of Westar, No. 2127, Gangan, ZS11 at 24 and 147
DAP were collected for RNA-seq with two biological replicates.
Total RNA was extracted using the TTANGEN RNAprep Pure
Plant Kit. Sequencing libraries were generated using the
NEBNext® UltraTM RNA Library Prep Kit for Tlumina®
(NEB, USA) and were sequenced on an Illumina Hiseq 4000
platform. The detailed processes were described in Tan et al.
(2022). We used MultiQC (Ewels et al., 2016) to perform quality
control and Salmon (Patro et al., 2017) to quantify the RNA-seq
reads of annotated genes in the reference ZS11. DESeq2 was used
for differential expression analysis (Love et al, 2014). The
threshold for DEG is set as the absolute value of
log,FoldChange >1 and adjusted p< 0.05 (two-tailed Student’s
t-test; Tan et al., 2022).

Identification of selective sweep signals

To detect the regions under selective sweeps between SWOR
and SOR, XP-CLR (v1.1.1), a genome scan using the composite
likelihood approach was performed in sub-populations (Chen
et al, 2010). Each chromosome was analyzed using the XP-CLR
command with the parameters “-1d 0.99 —-phased —maxsnps 200
-size 100000 -step 10000.” Non-overlapping 20-kp windows
within the top 20% XP-CLR scores were merged into one single
region, and then, these regions in the top 1% of XP-CLR scores
were considered as candidate selective regions (An et al., 2019).

Construction of co-expression network

According to the above RNA-seq datasets, Pearson
correlation analysis was calculated between candidate genes
and DEGs in SWORs and SORs, respectively. Significant genes
were considered to be co-expressed when Pearson correlation
coefficient was >0.80 and p-value was<0.05. Network
visualization was implemented with the Cytoscape package
(Shannon et al., 2003).

Results

Flowering time plasticity and related
climatic index for B. napus

Complex flowering time variation was observed in diversity
group of 490 B. napus oilseed rapes, including 49 SORs, 20
winter oilseed rapes, 326 SWORs, and 95 mixed type oilseed
rapes, grown in eight natural environments (Figure 1A;

Frontiers in Plant Science

10.3389/fpls.2022.1065766

Supplementary Table S1). The means plus standard deviations
of the eight environments WH2013, WH2014, CS2013, CS2014,
NJ2013, NJ2014, CQ2013, EZ2013, and BLUP values were
155.49 + 3.80, 153.56 + 9.61, 160.27 * 4.29, 166.55 + 5.44,
160.50 + 5.49, 167.55 + 6.38, 151.31 + 7.82, 162.57 + 5.30, and
159.68 + 4.83 (DAP), respectively (Figure 1B). The correlation of
each pair of environments ranged from 0.37 to 0.72 (0.50 + 0.09).
The coefficients of variation, skewness, and kurtosis of the trait
in eight environments illustrated that flowering time is a typical
quantitative trait (Supplementary Table S2). The broad-sense
heritability for flowering time is 0.86. More importantly, joint
regression analysis modeled with environmental mean showed
the presence of a significant phenotypic plasticity (Figure 1C).

Climate change is altering the environment in which all
plants grow. To understand the effect of climatic index on
flowering time plasticity, the correlation between
environmental means and climatic index (TAVG and PRCP)
for different growth windows was predicted by CERIS
(Supplementary Table S3). The results of the correlation
pattern between TAVG and flowering time showed a positive
correlation at early seedling stage and a negative trend after
bolting stage, while the pattern of PRCP was exactly opposite
(Figure 1D; Supplementary Figure S1A; Supplementary Table
54). The windows with the highest negative (TAVG35_144 and
PRCP;_y4;) and positive correlations (TAVGj,_;9 and PRCP;35_
160) were chosen as the most related climatic index for further
analysis (Figures 1E, F; Supplementary Figures S2A-F;
Supplementary Table S4). TAVGy3s_144 (r = —0.986) showed
higher correlation with flowering time than PRCP; 4 (r =
-0.809). TAVGig_19 (r = 0.922) showed higher correlation
with flowering time than PRCP33 169 (r = 0.901). It is noted
that these windows are surrounded by other windows with
slightly decreasing correlation values (Figure 1D;
Supplementary Figure S1).

Detection of QTNs for flowering time

To detect QTN for flowering time, the phenotypes in each
of the eight environments were used to associate with 11,700,689
SNPs using 3VmrMLM under population structure and
polygenic background control. As a result, 55, 57, 42, 49, 54,
50, 44, and 43 significant QTNs at the critical p-value of 4.27¢
—09 (=0.05/m, where m is the number of markers) and 10, 5, 14,
10, 8, 13, 13, and 13 suggested QTNs (with the LOD score > 3.0
but the p > 0.05/m) were identified for WH2013, WH2014,
CS2013, CS2014, NJ2013, NJ2014, CQ2013, and EZ2013,
respectively (Supplementary Table S5; Supplementary Figure
$3). In addition, flowering phenotypes from eight
environments were used to perform joint analysis by
3VmrMLM. Sixty-eight significant and 11 suggested QTNs
were identified. Based on the above QTNs in single and
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FIGURE 1

Plasticity of flowering and reaction norm of its associated window to daily average temperature (TAVG). (A, B) Characteristics and pairwise
correlations of flowering time of 490 B napus in eight environments. WH2013, Wuhan in 2013; WH2014, Wuhan in 2014; CS2013, Changsha in
2013; CS2014, Changsha in 2014; NJ2013, Nanjing in 2013; NJ2014, Nanjing in 2014; CQ2013, Chongqing in 2013; EZ2013, Ezhou in 2013;
BLUP, the best linear unbiased prediction value. (C) Reaction norm for flowering time based on a numerical order of environmental mean. Dots
are the observed flowering time phenotypic values. The line with black color represents the ZS11 cultivar. The color of the line represents the
value of the slope. (D) Search for the window to TAVG, which is highly correlated with environmental mean of flowering time (from planting to
200 days after planting, DAP). TAVG within the window of 10-19 and 135-144 DAP was chosen and denoted as TAVGig_19 and TAVGi3s5_144.
(E, F) Significant correlation and reaction norm between TAVGi3s_144 and environmental mean of flowering time.

multiple environments analyses, 19 stable QT'Ns were identified

in at least three environments (Figure 2A; Table 1).

Detection of QTN-by-environment
interactions for flowering time in
multiple environments

All the datasets in eight environments were used to

conduct joint analysis for identifying QEIs using 3VmrMLM.
As a result, 32 significant QEIs and 4 suggested QEIs were
identified, including 10 significant QEIs overlapped with the
above stable QTNs (Supplementary Table S6). Among these
significant QEIs, 20 were found to have the highest absolute

value of additive-by-environment interaction effects in WH2014

than those in other environments (Figures 2B, D),
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e.g., BnvaC0967693730 has an additive-by-environment
interaction effect of —1.85 in WH2014 than those in other
environments (Supplementary Table S6; LOD = 67.17; R* =
1.07%). The two loci BnvaC0967693730 and BnvaA0406097547
have the highest R* (LOD = 67.17; R? = 1.07% and LOD = 66.42;
R® = 1.06%, respectively).

Detection of QTNs for flowering-time-
related climatic index

To obtain reaction norms of flowering-time-related climatic
index, joint regression analyses were performed on phenotypes
and the above flowering-time-related climatic indexes
(TAVGi35-144, PRCP3 41, TAVGyg 19, and PRCPy33 1695
Supplementary Table S4). The intercept and slope of reaction-
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Stable QTNs in multiple environments
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Manhattan plots for flowering time of 490 B napus accessions. (A) Nineteen stable main-effect QTNs and their candidate genes for flowering
time in eight single environment analyses and multiple environments joint analysis. (B) QTN-by-environment interactions (QEls) and their
candidate genes for flowering time in multiple environments joint analysis. (C) Ten main-effect QTNs for slope and intercept of reaction norm
for flowering-time-related climatic indexes. (D) Additive-by-environment interaction effects of 32 QEls in eight environments. The size of dot:
absolute value of additive-by-environment interaction effect. Red/blue dot: positive/blue value. WH2013, Wuhan in 2013; WH2014, Wuhan in
2014; CS2013, Changsha in 2013; CS2014, Changsha in 2014; NJ2013, Nanjing in 2013; NJ2014, Nanjing in 2014; CQ2013, Chongging in 2013;

EZ2013, Ezhou in 2013

norm parameters were used to detect QTNs for flowering-time-
related climatic indexes using 3VmrMLM. As a result, 10 QTNs
for reaction norm parameters of B. napus flowering time were
commonly identified with the above stable QTNs or QEIs,
including 5, 2, 1, and 2 for TAVGj35_144, PRCP3_45, TAVGq_
19» and PRCPy3;3_ 169, respectively (Figure 2C; Supplementary
Table S7).

Prediction of candidate genes for
flowering time

To mine candidate genes among the above QTNs and QElIs,
DEGs analysis was conducted before and after vernalization. A
total of 5,511 DEGs were identified in two SORs before and after
vernalization (Figure 3A; Supplementary Table S8), and 5,850
DEGs were identified in two SWORs before and after
vernalization (Figure 3A; Supplementary Table S9). Then,
according to Arabidopsis gene annotation, 12 candidate genes
were found to be associated with flowering time in
approximately above 19 stable QTNs, including 7 known
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flowering-time-related homologs in Arabidopsis and 5 newly
discovered genes (Table 1). Using the same methods, 14
candidate genes were identified to be located in the above 32
QEIs, including 9 homologs of known genes, in which their
homologs are related to flowering time and environments in
Arabidopsis and 5 newly identified genes (Table 2). In addition,
five candidate genes were found to be associated with flowering-
time-related climatic index, including two genes (BnaC02.DDB2
and BnaA05.COL9) commonly identified in QEIs and three
genes (BnaA02.VIN3, BnaC02.RUGI, and BnaA06.UBC2)
commonly found to be associated with the flowering time
QTNs (Supplementary Table S7).

Among these candidate genes, BnaFTs, BnaA05.COLY,
BnaA08.SRC2, and BnaA03.DREBIB were significantly
upregulated before vernalization in both SWORs and spring
SORs, while BnaFLCs, BnaA01.FSDI1, BnaC02.RUGI,
BnaC05.PLGG, and BnaC03.PSAK were significantly
upregulated after vernalization (Figures 3A, B). Interestingly,
BnaA02.VIN3 and BnaCO02.FPGS were only significantly
upregulated before vernalization in SOR, which may indicate
different functions between eco-types.

frontiersin.org


https://doi.org/10.3389/fpls.2022.1065766
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

10.3389/fpls.2022.1065766

TABLE 1 Nineteen stable QTNs for B. napus flowering time and their candidate genes.

Genome-wide association studies

Comparative genomics analysis

Chr Pos Marker LOD R? Environments® Gene ID Abbr. Function Reference
(bp)
A10 24056113- BnvaA1024056153, BnvaA1024056113, 39.96- 0.49- El, E3, E4, E5, E6,
24056153 BnvaA1024056139 117.88 2.10 E7, E9
Co8 912878 BnvaC0800912878 7.94- 0.53- El, E3, E4, E5, E6, BnaC08G0010300ZS CRY2 Cryptochrome-2 Sharma
8249 242 E7, E8 et al,, 2022
C05 1376324 BnvaC0501376324 13.31- 0.12- El, E2, E6, E7, E9  BnaC05G0024000ZS GBF4 G-BOX BINDING
36.7 0.81 FACTOR 4
A09 56413085~ BnvaA0956413085, BnvaA0956414961, 22.79- 0.14- El, E2, E9, E7
56417605 BnvaA0956417605 3942 143
Al10 23668965~ BnvaA1023770033, BnvaA1023668965 23.22- 0.11- El, E2, E4, E8 BnaA10G0244800ZS FLC MADS-box protein Tadege
23770033 84.79 211 FLOWERING et al,, 2001
LOCUS C
A02  9020851-  BnvaA0209020851, BnvaA0209054089, 9.42—- 0.08- El, E2, E3, E9 BnaA02G0156900ZS FT Protein FLOWERING ~ Wang et al.,
9105883 BnvaA0209105883 24.67 145 LOCUS T 2009
C02  2400090-  BnvaC0202402020, BnvaC0202400090,  8.82—- 0.30- E3, E5, E6, E7 BnaC02G0039100ZS FLC MADS-box protein Tadege
2502621 BnvaC0202502621, BnvaC0202402023  29.63  1.47 FLOWERING et al,, 2001
LOCUS C
C07  55454986—  BnvaC0755455005, BnvaC0755454986  30.53— 0.14- El, E4, E5 BnaC07G0458500ZS AGL24 MADS-box protein Yu et al,,
55455005 43.11  0.67 AGL24 2002
C02 1592445 BnvaC0201592445 47.10- 0.19- E1, E9 BnaC02G0022200ZS FPGSI1  Folylpolyglutamate
59.13  1.06 synthase
A01 8566494-  BnvaA0108643230, BnvaA0108602009, 13.70- 0.55- E5, E6, E8 BnaA01G0146300ZS FSDI Fe superoxide
8643230 BnvaA0108566494 3797  1.29 dismutase. Superoxide
dismutase
A05 19689622 BnvaA0519689622 14.27- 0.13- El, E4, E7
3531 048
A08 27196633~ BnvaA0827196633, BnvaA0827207043, 12.21- 0.13- E1, E7 BnaA08G0296600ZS SRC2 soybean gene regulated
27207043 BnvaA0827196973 30,51 1.71 by cold-2
A02  8776765-  BnvaA0208833814, BnvaA0208776765 16.66— 0.24- El, E2, E4
8833814 36.12  0.76
A03 25426194~ BnvaA0325426194, BnvaA0325520626 13.14- 0.37- E2, E4, E9
25520626 19.74  0.63
Co06 17894906 BnvaC0617894906 20.65- 0.15- El, E2, E6
33.50 0.41
C06 39070745~  BnvaC0639079766, BnvaC0639070745  7.60- 0.08— El, E2, E4 BnaC06G0286700ZS HTH Omega-Hydroxy Fatty
39079766 1255 0.55 Acyl Dehydrogenase
C06 42697888 BnvaC0642697888 16.35- 0.31- El, E2, E6 BnaC06G0323800ZS FT Protein FLOWERING =~ Wang et al,,
63.64 0.74 LOCUS T 2009
A02 1946991-  BnvaA0201946991, BnvaA0202001373, 4.53- 0.07- El, E3, E8 BnaA02G0035100ZS FLC MADS-box protein Tadege
2001373 BnvaA0202001103 41.57 1.03 FLOWERING et al., 2001
LOCUS C
A09 24518838- BnvaA0924518838, BnvaA0924519761 9.29- 0.24- E4, E3, E6
24519761 2799  0.65

“E1: multi-environments joint GWAS; E2: WH2013; E3: WH2014; E4: CS2013; E5: CS2014; E6: NJ2013; E7: NJ2014; E8: CQ2013; E9: EZ2013.

Validation of candidate genes

To validate the above flowering time candidate genes, we
conducted selective sweep, haplotype, and co-expression analysis.
First, by performing XP-CLR between SWORs and SORs, 954
selective sweeps were detected (Supplementary Table 510). Eleven
candidate genes for flowering time were found in the selective
sweep, e.g., BnaFLCs, BnaFTs, BnaC02.FPGSI, BnaA08.SRC2,
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BnaA01.FSD1, BnaA02.VIN3, and BnaC09.PRR7. Second,
haplotype analyses were further conducted in these genes. For
BnaA02.FT, BnaAlO.FLC, BnaA02.VIN3, and BnaC09.PRR7,
significant difference exists between each haplotype in different
environments (Figures 4A-D; Supplementary Figures S4A-D).
Interestingly, the haplotype for early flowering tends to exist in
SORs, while the haplotype for late flowering prefers to exist in
SWORs. Moreover, the co-expression networks of BnaA02.VIN3
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FIGURE 3

Differentially expressed gene (DEG) analysis before and after vernalization and selection sweeps between semi-winter and spring oilseed rapes
(SWORs and SORs). Volcano plots of DEGs in SORs (A) and SWORs (B). The y-axis is the adjusted p-value and the x-axis is log, fold-change (FC)
before and after vernalization. Gray lines are at the absolute value of log,FC = 1 or adjusted p-value = 0.05. (C) The expression profiling of 27
candidate genes around main-effect QTNs and QEls for flowering time in two SWORs and two SORs in the 2018-2019 growing season in
Wuhan. DAP, days after planting. (D) Selective sweeps between SWORs and SORs by XP-CLR. The horizontal dashed lines indicate the cutoff in
the top 1% of XP-CLR scores. Candidate genes for flowering time are marked above the selective sweep peaks.

and BnaC09.PRR7 have been constructed using DEGs in SWORs
and SORs, respectively (Figures 5A, B). The co-expressed genes of
BnaA02.VIN3 mainly participated in the circadian clock,
photoperiodism, light perception, and signaling. Eight genes are
specific co-expressed in SORs, including BnaA07.ZEP and
BnaC09.ABCG22 in response to water deprivation. Five genes
are specific co-expressed in SWORs. On the other hand, the co-
expressed genes of BnaC09.PRR7 mainly participated in the
circadian clock and autonomous pathway. Five and one genes
are specific co-expressed in SORs and SWORs, respectively.
BnaCKA2s and BnaPKDM7s participated in epigenetic regulation.

Discussion

Although flowering time is strongly related to the
environment, G by E studies for flowering time are lacking in B.
napus. The current study analyzed the G by E for flowering time in
the following three aspects. First, four windows of flowering-time-
related climatic index were identified (TAVG35_144, PRCP3_y41,
TAVGig_19, and PRCP;33_169) by CERIS. Second, 19 stable QTNs
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and 32 QEIs were found to be significantly associated with
flowering time of 490 B. napus accessions in eight
environments, and 10 QTNs were found to be associated with
flowering-time-related climatic index. Finally, based on DEGs and
homology with Arabidopsis, 12, 14, and 5 candidate genes were
found to be associated with stable QTNs, QEIs, and QTNs for
flowering-time-related climatic index, respectively. These
candidate genes were further validated by the haplotype,
selective sweep, and co-expression network analysis.

Flowering-time-related climatic index in
B. napus whole growth stages

It is well-known that the flowering time regulation of B.
napus is in response to day length or vernalization (Reeves and
Coupland, 2000). This study calculated the correlations between
two climatic factors, TAVG and PRCP, and flowering time in
seven environments. TAVG correlated positively with flowering
time in vernalization and negatively with flowering time after the
seedling stage (Figure 1D). In a previous study, a reduction in
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TABLE 2 Fourteen candidate genes for B. napus flowering time around significant QTN-by-environment interactions.

Genome-wide association studies

Chr

Co09

Co5

Co3

C02

A05

A03

C02

Co3

C02

A08

A01

Co1

C02

A03

Pos
(bp)

67693730

38307735

64354328

1592445

42071520

16879521

9413473

27148748

30403413

27196633

7152286

50758439

1725158

26932605

Marker

BnvaC0967693730

BnvaC0538307735

BnvaC0364354328

BnvaC0201592445

BnvaA0542071520

BnvaA0316879521

BnvaC0209413473

BnvaC0327148748

BnvaC0230403413

BnvaA0827196633

BnvaA0107152286

BnvaC0150758439

BnvaC0201725158

BnvaA0326932605

LOD

67.17

62.47

60.84

58.92

50.18

42.43

34.92

30.92

28.66

24.73

17.37

16.63

12.62

11.96

R2
(%)

1.07

1.01

0.97

0.94

0.79

0.55

0.48

0.45

0.38

0.27

0.18

Comparative genomics analysis

Gene ID

BnaC09G0614800ZS

BnaC05G0345200ZS

BnaC03G0665500ZS

BnaC02G0022200ZS

BnaA05G0456200ZS

BnaA03G0318500ZS

BnaC02G0132800ZS

BnaC03G0400500ZS

BnaC02G0311500ZS

BnaA08G0296600ZS

BnaA01G0121900ZS

BnaC01G0442400ZS

BnaC02G0024600ZS

BnaA03G0486700ZS

Abbr.

PRR7

PLGGI

PSAK

FPGS1

COL9

FLD

DDB2

CPNB2

GRF2

SRC2

EBS

NF-YA6

UBPI12

DREBIB

autumn or winter chilling delays floral transition in B. napus

(O’Neill et al., 2019). An elevated growth temperature is equally

efficient in inducing the flowering of Arabidopsis

(Balasubramanian et al., 2006). However, the transition or

critical point of these two stages is unclear. For PRCP, this

study reported the relationships between PRCP and flowering

time in B. napus for the first time. Although the correlation
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Function

Two-component
response regulator-
like APRR7

Plastidal glycolate/
glycerate
translocator

Photosystem I
reaction center
subunit K

Folylpolyglutamate
synthase

Zinc finger protein
CONSTANS-LIKE
9

FOLOWERING
LOCUS D

Damaged DNA-
binding proteins 2
required for UV-B
tolerance

Chaperonin 60
subunit beta
G-box binding
factor GF14 omega
encoding a 14-3-3
protein

Involved in Protein
Storage Vacuole
targeting.

PHD finger family
protein

Nuclear factor Y,
subunit A6

Ubiquitin carboxyl-
terminal hydrolase
12

Dehydration-
responsive element-
binding protein 1B

Reference Environment

Nakamichi
et al., 2007

Cheng and
Wang, 2005

=2

Zhang et al.,
2013b

Al Khateeb
and
Schroeder,
2007

Liu et al.,
2012

Lopez-
Gonzalez
et al., 2014
Siriwardana
et al,, 2016

Cui et al,,
2013

Seo et al.,
2009

Evidences for environmental
interaction

Circadian clock

Circadian clock

Circadian clock

Light signaling

Unclear

Epigenetic
regulation

Photoperiod

Circadian clock

Cold

Differences of
flowering time
under various
environments

prr7 single mutant is late
flowering under LD
conditions

col9 single mutant is
early flowering under LD
conditions

fld single mutant is late
flowering under both SD
and LD conditions

ddb2 suppressed the
early flowering time of
det] under long-day
conditions

BnGRF2a transgenic
lines delays flowering

ebs mutants repressed
flowering

NF-YA can be positive
regulators of photoperiod
dependent flowering
ubpl2 single mutant is
slightly early flowering
under both SD and LD
conditions

Response to ABA
treatment

coefficients are lower than TAVG, PRCP was found to be
correlated negatively with flowering time in early development

and positively later (Supplementary Figure S1). This result

is consistent with a previous study in Arabidopsis

that flowering time correlated negatively with fall and winter

precipitations and positively with summer precipitation (Vidigal

et al., 2016).
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FIGURE 4

Haplotype analysis of BnaC02.FT, BnaA10.FLC, BnaC09.PRR7, and BnaA02.VIN3 (A—D). In the boxplot, significant differences for flowering time
between each haplotype are calculated in eight environments with t-test. In pie plots, the haplotype frequencies of each gene in semi-winter
and spring oilseed rapes are marked. WH2013, Wuhan in 2013; WH2014, Wuhan in 2014; CS2013, Changsha in 2013; CS2014, Changsha in
2014; NJ2013, Nanjing in 2013; NJ2014, Nanjing in 2014; CQ2013, Chongging in 2013; EZ2013, Ezhou in 2013. *p = 0.05, **p = 0.01, and

**xp = 0.001.

Genetic basis for flowering time
in B. napus

In this study, multi-environment joint GWAS improved the
power on identifying more QTNs than single environment
GWAS. We dissected the genetic basis for flowering time in
the following three aspects. First, 12 flowering time candidate
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genes were mined in approximately 19 stable QTNs for
flowering time. Seven genes are previously reported, e.g.,
BnaFLCs (Tadege et al, 2001), BnaFTs (Wang et al., 2009),
BnaAGL24 (Yu et al., 2002), and BnaCRY2 (Sharma et al., 2022),
whereas five genes are newly identified, which are differentially
expressed before and after the vernalization of different ecotypes
(Figure 3; Supplementary Tables S8, S9). Second, it is worth
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noting that this study focused on the mining of flowering time
genes related to the environments. Fourteen candidate genes
were identified around 32 QEIs, including 9 known flowering
time genes related to environments. For example, BnaCOL9 and
BnaUBPI12 are regulated by the circadian clock in the
photoperiod pathway (Cheng and Wang, 2005; Cui et al,
2013). BnaFLD is subjected to the direct regulation by
brassinosteroids (Zhang et al., 2013b). It has been reported
that the overexpression of BnaDREBIB not only delayed
flowering but also responded to cold (Seo et al., 2009). BnaEBS
functions in the chromatin-mediated repression of floral
initiation by H3K4me3 (Lopez-Gonzalez et al., 2014). Finally,
five genes were found to be associated with flowering-time-
related climatic index. BnaC02.DDB2 and BnaA05.COL9 were
commonly identified in QEIs, and BnaA02.VIN3,
BnaC02.RUGI, and BnaA06.UBC2 were commonly found to
be associated with the main effect flowering time QTNs.

In this study, the missing heritability exists, in which the
total phenotypic variance explained of QEIs and QTNs is much
less than the estimated broad-sense heritability. This can be
explained in several ways. First, the population is not enough to
detect rare variants. Second, allelic heterogeneity may be the
reason for this phenomenon. Lastly, epigenetic variation is likely
to be a source of missing heritability (Brachi et al., 2011).
Moreover, some candidate genes for stable QTNs, e.g.,
BnaA02.FT and BnaAlO0.FLC, were found to be related to
environments but were not identified in QEIs (Figure 4). This
result is explained by multiple facets, e.g., the difference in
phenotypic data among environments, the diversity of
population accessions, and the power of QEI detection. In the
previous study, COL9 and FLD have been reported to regulate
FT and FLC, respectively (Cheng and Wang, 2005; Jiang et al,,
2009). BnA05.COL9 and BnaA03.FLD were found to be
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candidate genes for QEIs in this study. We hypothesized that
QEI may be associated with direct environmental response
upstream regulators due to the complexity of transcription and
epigenetic regulations of flowering (Bouche et al., 2016).

BnaA02.VIN3 and BnaC09.PRR7 are
potential G by E genes for flowering time

In Arabidopsis, VIN3 acts together with PRC2 to repress
histone marks at FLC in response to vernalization (Kim and
Sung, 2013). PRR7 was reported to coordinate with PRR9 and
PRR5 and regulate flowering time through the canonical CO-
dependent photoperiodic pathway (Nakamichi et al., 2007). In
this study, BnaA02.VIN3 and BnaC09.PRR7 have been shown to
be crucial G by E genes for flowering time. There are three pieces
of evidence. First, BnaA02.VIN3 is significantly associated with
ChrA02-6152101 (LOD = 13.14) for flowering-time-related
climatic factors and with ChrA02-6374324 (LOD = 12.17) for
flowering time in WH2013. BnaC09.PRR7 is significantly
associated with the QEI, ChrC09-67693730 (LOD = 67.17), by
multi-environment GWAS. Second, BnaA02.VIN3 and
BnaC09.PRR7 are DEGs before and after vernalization and in
the selective sweep between SORs and SWORs (Figure 2). Then,
in these genes with significant haplotype differences, their
haplotypes for early flowering tend to exist more in SORs
(Figures 4C, D). Lastly, co-expression networks were
constructed for BnaA02.VIN3 and BnaC09.PRR7. Some
relationships have been proven, e.g., PRR7 with LHY (Liu
et al.,, 2013), PRR7 with PRR5 (Nakamichi et al., 2007), and
VIN3 with CCAI and LHY (Kyung et al.,, 2022).

In summary, we dissected the G by E for flowering time for
B. napus from different eco-types in eight environments. Four
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windows of flowering-time-related climatic index were
identified. Stable QTNs and QEIs for flowering time and their
candidate genes were identified. These findings provide valuable
information that can be used to breed B. napus varieties with
optimized flowering time by pyramiding favorable alleles. The
candidate genes will also greatly promote the dissection of
flowering time mechanisms in different eco-types.

Data availability statement

The original contributions presented in the study are
publicly available. This data can be found here: NGDC,
PRJCA012445 and CRA008501.

Author contributions

LG and XH conceived this study. QT, LX, ZG, JT, and BY
performed the field experiments. XH performed the bioinformatics
analysis and wrote the manuscript. JT, BY, KL, XY, SL, and LG
revised the manuscript. All authors approved the submitted version.

Funding

This work was supported by grants from the National
Natural Science Foundation of China (U2102217), Key
Research and Development Program of Hubei (2021ABA011)
and Higher Education Discipline Innovation Project (B20051).

References

Al Khateeb, W. M., and Schroeder, D. F. (2007). DDB2, DDB1A and DET1
exhibit complex interactions during arabidopsis development. Genetics 176, 231-
242. doi: 10.1534/genetics.107.070359

An, H,, Qi, X,, Gaynor, M. L., Hao, Y., Gebken, S. C., Mabry, M. E,, et al. (2019).
Transcriptome and organellar sequencing highlights the complex origin and
diversification of allotetraploid Brassica napus. Nat. Commun. 10, 2878.
doi: 10.1038/s41467-019-10757-1

Arnold, P. A,, Kruuk, L. E. B,, and Nicotra, A. B. (2019). How to analyse plant
phenotypic plasticity in response to a changing climate. New Phytol. 222, 1235-
1241. doi: 10.1111/nph.15656

Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent
induction of Arabidopsis thaliana flowering by elevated growth temperature. PloS
Genet. 2, e106. doi: 10.1371/journal.pgen.0020106

Bastow, R, Mylne, J. S, Lister, C., Lippman, Z., Martienssen, R. A., and Dean, C.
(2004). Vernalization requires epigenetic silencing of FLC by histone methylation.
Nature 427, 164-167. doi: 10.1038/nature02269

Bates, D., Michler, M., Bolker, B. M., and Walker, S. C. (2015). Fitting linear
mixed-effects models using Ime4. J. Stat. Software 67, 1-48. doi: 10.18637/jss.v067.i01

Bouché, F., Lobet, G., Tocquin, P., and Périlleux, C. (2016). FLOR-ID: an
interactive database of flowering-time gene networks in Arabidopsis thaliana.
Nucleic Acids Res. 44, D1167-D1171. doi: 10.1093/nar/gkv1054

Brachi, B., Morris, G. P., and Borevitz, J. O. (2011). Genome-wide association
studies in plants: The missing heritability is in the field. Genome Biol. 12, 232.
doi: 10.1186/gb-2011-12-10-232

Frontiers in Plant Science

135

10.3389/fpls.2022.1065766

Acknowledgments

We would like to thank Prof. Yuan-Ming Zhang (College of
Plant Science and Technology, Huazhong Agricultural
University, Wuhan) for improving the language within
the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/
fpls.2022.1065766/full#supplementary-material

Cheng, X. F., and Wang, Z. Y. (2005). Overexpression of COL9, a CONSTANS-
LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis
thaliana. Plant J. 43, 758-768. doi: 10.1111/j.1365-313X.2005.02491.x

Chen, H., Patterson, N., and Reich, D. (2010). Population differentiation as a test
for selective sweeps. Genome Res. 20, 393-402. doi: 10.1101/gr.100545.109

Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, L, et al. (2007). FT
protein movement contributes to long-distance signaling in floral induction of
arabidopsis. Science 316, 1030-1033. doi: 10.1126/science.1141752

Cui, X, Lu, F,, Li, Y., Xue, Y., Kang, Y., Zhang, S., et al. (2013). Ubiquitin-specific
proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering
regulation in arabidopsis. Plant Physiol. 162, 897-906. doi: 10.1104/pp.112.213009

Cui, Y., Xu, Z,, and Xu, Q. (2021). Elucidation of the relationship between yield
and heading date using CRISPR/Cas9 system-induced mutation in the flowering
pathway across a large latitudinal gradient. Mol. Breed. 41, 23. doi: 10.1007/s11032-
021-01213-4

Del Olmo, L, Poza-Viejo, L., Pifieiro, M., Jarillo, J. A., and Crevillén, P. (2019).
High ambient temperature leads to reduced FT expression and delayed flowering in

Brassica rapa via a mechanism associated with H2A.Z dynamics. Plant J. 100, 343
356. doi: 10.1111/tp;j.14446

Ewels, P., Magnusson, M., Lundin, S., and Killer, M. (2016). MultiQC:
summarize analysis results for multiple tools and samples in a single report.
Bioinformatics 32, 3047-3048. doi: 10.1093/bioinformatics/btw354

Guo, Y., Hans, H., Christian, J., and Molina, C. (2014). Mutations in single FT-
and TFLI-paralogs of rapeseed (Brassica napus 1) and their impact on flowering
time and yield components. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00282

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2022.1065766/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.1065766/full#supplementary-material
https://doi.org/10.1534/genetics.107.070359
https://doi.org/10.1038/s41467-019-10757-1
https://doi.org/10.1111/nph.15656
https://doi.org/10.1371/journal.pgen.0020106
https://doi.org/10.1038/nature02269
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1093/nar/gkv1054
https://doi.org/10.1186/gb-2011-12-10-232
https://doi.org/10.1111/j.1365-313X.2005.02491.x
https://doi.org/10.1101/gr.100545.109
https://doi.org/10.1126/science.1141752
https://doi.org/10.1104/pp.112.213009
https://doi.org/10.1007/s11032-021-01213-4
https://doi.org/10.1007/s11032-021-01213-4
https://doi.org/10.1111/tpj.14446
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.3389/fpls.2014.00282
https://doi.org/10.3389/fpls.2022.1065766
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

Guo, T., Mu, Q., Wang, J., Vanous, A. E.,, Onogi, A., Iwata, H,, et al. (2020).
Dynamic effects of interacting genes underlying rice flowering-time phenotypic
plasticity and global adaptation. Genome Res. 30, 673-683. doi: 10.1101/
gr.255703.119

Han, X,, Xu, Z. R,, Zhou, L., Han, C. Y., and Zhang, Y. M. (2021). Identification
of QTNs and their candidate genes for flowering time and plant height in soybean
using multi-locus genome-wide association studies. Mol. Breed. 41, 39.
doi: 10.1007/s11032-021-01230-3

Helal, M. M. U,, Gill, R. A,, Tang, M., Yang, L., Hu, M,, Yang, L., et al. (2021).
SNP- and haplotype-based GWAS of flowering-related traits in Brassica napus.
Plants 10, 2475. doi: 10.3390/plants10112475

Hu, J., Chen, B, Zhao, J., Zhang, F., Xie, T., Xu, K,, et al. (2022). Genomic
selection and genetic architecture of agronomic traits during modern rapeseed
breeding. Nat. Genet. 54, 694-704. doi: 10.1038/s41588-022-01055-6

Jiang, D., Gu, X,, and He, Y. (2009). Establishment of the winter-annual growth
habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS ¢ in
arabidopsis. Plant Cell 21, 1733-1746. doi: 10.1105/tpc.109.067967

Kim, D. H,, and Sung, S. (2013). Coordination of the vernalization response
through a VIN3 and FLC gene family regulatory network in arabidopsis. Plant Cell
25, 454-469. doi: 10.1105/tpc.112.104760

Knapp, S. J., Stroup, W. W., and Ross, W. M. (1985). Exact confidence intervals
for heritability on a progeny mean basis. Crop Sci. 25, 192-194. doi: 10.2135/
cropscil985.0011183X002500010046x

Kusmec, A., Srinivasan, S., Nettleton, D., and Schnable, P. S. (2017). Distinct
genetic architectures for phenotype means and plasticities in zea mays. Nat. Plants
3, 715-723. doi: 10.1038/s41477-017-0007-7

Kyung, J., Jeon, M., Jeong, G., Shin, Y., Seo, E., Yu, ], et al. (2022). The two clock
proteins CCA1 and LHY activate VIN3 transcription during vernalization through
the vernalization-responsive cis-element. Plant Cell 34, 1020-1037. doi: 10.1093/
plcell/koab304

Li, X,, Guo, T., Wang, J., Bekele, W. A., Sukumaran, S., Vanous, A. E,, et al.
(2021). An integrated framework reinstating the environmental dimension for
GWAS and genomic selection in crops. Mol. Plant 14, 874-887. doi: 10.1016/
j.molp,2021403.010

Li, Y., Huang, Y., Bergelson, J., Nordborg, M., and Borevitz, J. O. (2010).
Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis
thaliana. Proc. Natl. Acad. Sci. 107, 21199-21204. doi: 10.1073/pnas.1007431107

Li, M., Zhang, Y. W,, Xiang, Y., Liu, M. H., and Zhang, Y. M. (2022a).
IIIVmrMLM: The r and c++ tools associated with 3VmrMLM, a comprehensive
GWAS method for dissecting quantitative traits. Mol Plant 15, 1251-1253.
doi: 10.1016/j.molp.2022.06.002

Li, M., Zhang, Y. W., Zhang, Z. C,, Xiang, Y., Liu, M. H,, Zhou, Y. H,, et al.
(2022b). A compressed variance component mixed model for detecting QTNs, and
QTN-by-environment and QTN-by-QTN interactions in genome-wide association
studies. Mol. Plant 0. doi: 10.1016/j.molp.2022.02.012

Liu, T., Carlsson, J., Takeuchi, T., Newton, L., and Farré, E. M. (2013). Direct
regulation of abiotic responses by the arabidopsis circadian clock component
PRR7. Plant J. 76, 101-114. doi: 10.1111/tpj.12276

Liu, J., Hua, W., Yang, H. L., Zhan, G. M., Li, R. ], Deng, L. B,, et al. (2012). The
BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production
through regulating cell number and plant photosynthesis. J. Exp. Bot. 63, 3727-
3740. doi: 10.1093/jxb/ers066

Liu, J. Y., Zhang, Y. W., Han, X,, Zuo, J. F,, Zhang, Z., Shang, H,, et al. (2020). An
evolutionary population structure model reveals pleiotropic effects of GmPDAT for
traits related to seed size and oil content in soybean. J. Exp. Bot. 71, 6988-7002.
doi: 10.1093/jxb/eraa426

Liu, N, Du, Y., Warbuton, M. L., Xiao, Y., and Yan, J. (2021). Phenotypic
plasticity contributes to maize adaptation and heterosis. Mol. Biol. Evol. 38, 1262—
1275. doi: 10.1093/molbev/msaa283

Lopez-Gonzalez, L., Mouriz, A., Narro-Diego, L., Bustos, R., Martinez-Zapater, J.
M, Jarillo, J. A., et al. (2014). Chromatin-dependent repression of the arabidopsis
floral integrator genes involves plant specific PHD-containing proteins. Plant Cell
26, 3922-3938. doi: 10.1105/tpc.114.130781

Love, M. I, Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
doi: 10.1186/s13059-014-0550-8

Matar, S., Kumar, A., Holtgriwe, D., Weisshaar, B., and Melzer, S. (2021). The
transition to flowering in winter rapeseed during vernalization. Plant Cell Environ.
44, 506-518. doi: 10.1111/pce.13946

Mouradov, A., Cremer, F., and Coupland, G. (2002). Control of flowering time:
Interacting pathways as a basis for diversity. Plant Cell 14, S111-S130. doi: 10.1105/
tpc.001362

Nakamichi, N, Kita, M., Niinuma, K, Ito, S., Yamashino, T., Mizoguchi, T., et al.
(2007). Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and

Frontiers in Plant Science

136

10.3389/fpls.2022.1065766

PRR5 coordinately and positively regulate flowering time through the canonical
CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822-832.
doi: 10.1093/pcp/pem056

O’Neill, C. M., Lu, X., Calderwood, A., Tudor, E. H., Robinson, P., Wells, R,, et al.
(2019). Vernalization and floral transition in autumn drive winter annual life
history in oilseed rape. Curr. Biol. 29, 4300-4306.e2. doi: 10.1016/j.cub.2019.10.051

Patro, R., Duggal, G., Love, M. L, Irizarry, R. A., and Kingsford, C. (2017).
Salmon provides fast and bias-aware quantification of transcript expression. Nat.
Methods 14, 417-419. doi: 10.1038/nmeth.4197

Putterill, J., Laurie, R., and Macknight, R. (2004). It’s time to flower: the genetic
control of flowering time. BioEssays 26, 363-373. doi: 10.1002/bies.20021

Reeves, P. H., and Coupland, G. (2000). Response of plant development to
environment: control of flowering by daylength and temperature. Curr. Opin. Plant
Biol. 3, 37-42. doi: 10.1016/S1369-5266(99)00041-2

Schiessl, S. (2020). Regulation and subfunctionalization of flowering time genes
in the allotetraploid oil crop Brassica napus. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.605155

Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y. S., et al. (2009). Crosstalk
between cold response and flowering in arabidopsis is mediated through the
flowering-time gene SOCI and its upstream negative regulator FLC. Plant Cell
21, 3185-3197. doi: 10.1105/tpc.108.063883

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Res. 13, 2498-2504. doi: 10.1101/gr.1239303

Sharma, P., Mishra, S., Burman, N., Chatterjee, M., Singh, S., Pradhan, A. K,,
et al. (2022). Characterization of Cry2 genes (CRY2a and CRY2b) of B. napus and
comparative analysis of BnCRY1 and BnCRY2a in regulating seedling
photomorphogenesis. Plant Mol. Biol. 110, 161-186. doi: 10.1007/s11103-022-
01293-6

Shen, Y., Xiang, Y., Xu, E., Ge, X., and Li, Z. (2018). Major co-localized QTL for
plant height, branch initiation height, stem diameter, and ﬂowering time in an alien
introgression derived Brassica napus DH population. Front. Plant Sci. 9.
doi: 10.3389/fpls.2018.00390

Siriwardana, C. L., Gnesutta, N., Kumimoto, R. W, Jones, D. S., Myers, Z. A,,
Mantovani, R, et al. (2016). NUCLEAR FACTOR vy, subunit a (NF-YA) proteins
positively regulate flowering and act through FLOWERING LOCUS t. PloS Genet.
12, €1006496. doi: 10.1371/journal.pgen.1006496

Song, J., Guan, Z., Huy, J., Guo, C,, Yang, Z., Wang, S., et al. (2020). Eight high-
quality genomes reveal pan-genome architecture and ecotype differentiation of
Brassica napus. Nat. Plants 6, 34-45. doi: 10.1038/s41477-019-0577-7

Song, J., Liu, D., Xie, W., Yang, Z., Guo, L., Liu, K, et al. (2021). BnPIR: Brassica
napus pan-genome information resource for 1689 accessions. Plant Biotechnol. J.
19, 412-414. doi: 10.1111/pbi.13491

Tadege, M., Sheldon, C. C., Helliwell, C. A., Stoutjesdijk, P., Dennis, E. S., and
Peacock, W. J. (2001). Control of flowering time by FLC orthologues in Brassica
napus. Plant J. 28, 545-553. doi: 10.1046/j.1365-313X.2001.01182.x

Tang, S., Zhao, H,, Lu, S., Yu, L., Zhang, G., Zhang, Y., et al. (2021). Genome-
and transcriptome-wide association studies provide insights into the genetic basis
of natural variation of seed oil content in Brassica napus. Mol. Plant 14, 470-487.
doi: 10.1016/j.molp.2020.12.003

Tan, Z., Xie, Z., Dai, L., Zhang, Y., Zhao, H., Tang, S., et al. (2022). Genome- and
transcriptome-wide association studies reveal the genetic basis and the breeding
history of seed glucosinolate content in Brassica napus. Plant Biotechnol. J. 20, 211-
225. doi: 10.1111/pbi.13707

Vidigal, D. S., Marques, A. C. S. S., Willems, L. A. ], Buijs, G., Méndez-Vigo, B.,
Hilhorst, H. W. M., et al. (2016). Altitudinal and climatic associations of seed
dormancy and flowering traits evidence adaptation of annual life cycle timing in
Arabidopsis thaliana. Plant Cell Environ. 39, 1737-1748. doi: 10.1111/pce.12734

Wang, J., Long, Y., Wu, B,, Liu, ], Jiang, C., Shi, L., et al. (2009). The evolution of
Brassica napus FLOWERING LOCUS t paralogues in the context of inverted
chromosomal duplication blocks. BMC Evol. Biol. 9, 271. doi: 10.1186/1471-
2148-9-271

Wu, R. (1998). The detection of plasticity genes in heterogeneous environments.
Evolution 52, 967-977. doi: 10.1111/j.1558-5646.1998.tb01826.x

Xu, J., and Dai, H. (2016). Brassica napus cycling dof Factorl (BnCDFI) is
involved in flowering time and freezing tolerance. Plant Growth Regul. 80, 315-322.
doi: 10.1007/s10725-016-0168-9

Xu, L., Hu, K,, Zhang, Z., Guan, C., Chen, S., Hua, W., et al. (2016). Genome-
wide association study reveals the genetic architecture of flowering time in rapeseed
(Brassica napus 1.). DNA Res. 23, 43-52. doi: 10.1093/dnares/dsv035

Yang, C.,, Gan, Y., Harker, K. N., Kutcher, H. R., Gulden, R,, Irvine, B., et al.
(2014). Up to 32 % yield increase with optimized spatial patterns of canola plant
establishment in western Canada. Agron. Sustain. Dev. 34, 793-801. doi: 10.1007/
§13593-014-0218-5

frontiersin.org


https://doi.org/10.1101/gr.255703.119
https://doi.org/10.1101/gr.255703.119
https://doi.org/10.1007/s11032-021-01230-3
https://doi.org/10.3390/plants10112475
https://doi.org/10.1038/s41588-022-01055-6
https://doi.org/10.1105/tpc.109.067967
https://doi.org/10.1105/tpc.112.104760
https://doi.org/10.2135/cropsci1985.0011183X002500010046x
https://doi.org/10.2135/cropsci1985.0011183X002500010046x
https://doi.org/10.1038/s41477-017-0007-7
https://doi.org/10.1093/plcell/koab304
https://doi.org/10.1093/plcell/koab304
https://doi.org/10.1016/j.molp.2021.03.010
https://doi.org/10.1016/j.molp.2021.03.010
https://doi.org/10.1073/pnas.1007431107
https://doi.org/10.1016/j.molp.2022.06.002
https://doi.org/10.1016/j.molp.2022.02.012
https://doi.org/10.1111/tpj.12276
https://doi.org/10.1093/jxb/ers066
https://doi.org/10.1093/jxb/eraa426
https://doi.org/10.1093/molbev/msaa283
https://doi.org/10.1105/tpc.114.130781
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1111/pce.13946
https://doi.org/10.1105/tpc.001362
https://doi.org/10.1105/tpc.001362
https://doi.org/10.1093/pcp/pcm056
https://doi.org/10.1016/j.cub.2019.10.051
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1002/bies.20021
https://doi.org/10.1016/S1369-5266(99)00041-2
https://doi.org/10.3389/fpls.2020.605155
https://doi.org/10.3389/fpls.2020.605155
https://doi.org/10.1105/tpc.108.063883
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1007/s11103-022-01293-6
https://doi.org/10.1007/s11103-022-01293-6
https://doi.org/10.3389/fpls.2018.00390
https://doi.org/10.1371/journal.pgen.1006496
https://doi.org/10.1038/s41477-019-0577-7
https://doi.org/10.1111/pbi.13491
https://doi.org/10.1046/j.1365-313X.2001.01182.x
https://doi.org/10.1016/j.molp.2020.12.003
https://doi.org/10.1111/pbi.13707
https://doi.org/10.1111/pce.12734
https://doi.org/10.1186/1471-2148-9-271
https://doi.org/10.1186/1471-2148-9-271
https://doi.org/10.1111/j.1558-5646.1998.tb01826.x
https://doi.org/10.1007/s10725-016-0168-9
https://doi.org/10.1093/dnares/dsv035
https://doi.org/10.1007/s13593-014-0218-5
https://doi.org/10.1007/s13593-014-0218-5
https://doi.org/10.3389/fpls.2022.1065766
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

Ying, L., Chen, H., and Cai, W. (2014). BnNAC485 is involved in abiotic stress
responses and flowering time in Brassica napus. Plant Physiol. Biochem. PPB 79,
77-87. doi: 10.1016/j.plaphy.2014.03.004

Yu, H, Xu, Y., Tan, E. L., and Kumar, P. P. (2002). AGAMOUS-LIKE 24, a
dosage-dependent mediator of the flowering signals. Proc. Natl. Acad. Sci. U. S. A.
99, 16336-16341. doi: 10.1073/pnas.212624599

Zhang, H., Berger, J. D., and Milroy, S. P. (2013a). Genotypexenvironment
interaction studies highlight the role of phenology in specific adaptation of canola
(Brassica napus) to contrasting Mediterranean climates. Field Crops Res. 144, 77—
88. doi: 10.1016/j.fcr.2013.01.006

Zhang, Y., Li, B,, Xu, Y., Li, H, Li, S., Zhang, D., et al. (2013b). The cyclophilin
CYP20-2 modulates the conformation of BRASSINAZOLE-RESISTANTI, which
binds the promoter of FLOWERING LOCUS d to regulate flowering in arabidopsis.
Plant Cell 25, 2504-2521. doi: 10.1105/tpc.113.110296

Frontiers in Plant Science

137

10.3389/fpls.2022.1065766

Zhang, J., Yi, Q. Xing, F., Tang, C., Wang, L., Ye, W, et al. (2018). Rapid shifts of
peak flowering phenology in 12 species under the effects of extreme climate events
in Macao. Sci. Rep. 8, 13950. doi: 10.1038/s41598-018-32209-4

Zhao, H., Savin, K. W,, Li, Y,, Breen, E. J., Maharjan, P., Tibbits, J. F., et al.
(2022). Genome-wide association studies dissect the G x E interaction for
agronomic traits in a worldwide collection of safflowers (Carthamus tinctorius
1.). Mol. Breed. 42, 24. doi: 10.1007/s11032-022-01295-8

Zhu, Y., Cao, Z., Xu, F., Huang, Y., Chen, M., Guo, W., et al. (2012). Analysis of
gene expression profiles of two near-isogenic lines differing at a QTL region affecting
oil content at high temperatures during seed maturation in oilseed rape (Brassica
napus 1.). Theor. Appl. Genet. 124, 515-531. doi: 10.1007/s00122-011-1725-2

Zou, X., Suppanz, I, Raman, H., Hou, ], Wang, J., Long, Y., et al. (2012). Comparative
analysis of FLC homologues in brassicaceae provides insight into their role in the
evolution of oilseed rape. PloS One 7, e45751. doi: 10.1371/journal.pone.0045751

frontiersin.org


https://doi.org/10.1016/j.plaphy.2014.03.004
https://doi.org/10.1073/pnas.212624599
https://doi.org/10.1016/j.fcr.2013.01.006
https://doi.org/10.1105/tpc.113.110296
https://doi.org/10.1038/s41598-018-32209-4
https://doi.org/10.1007/s11032-022-01295-8
https://doi.org/10.1007/s00122-011-1725-2
https://doi.org/10.1371/journal.pone.0045751
https://doi.org/10.3389/fpls.2022.1065766
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

& frontiers | Frontiers in

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Jianlong Xu,
Institute of Crop Sciences (CAAS), China

REVIEWED BY
Chenwu Xu,

Yangzhou University, China

Longbiao Guo,

China National Rice Research Institute
(CAAS), China

Dali Zeng,

Zhejiang Agriculture and Forestry
University, China

*CORRESPONDENCE

Ya-Wen Zhang
yawen@mail.hzau.edu.cn

Jiaming Mi
mjm@mail.nzau.edu.cn

These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Plant Breeding,

a section of the journal
Frontiers in Plant Science

RECEIVED 09 December 2022
ACCEPTED 13 January 2023
PUBLISHED 02 February 2023

CITATION

Zhao Q, Shi X-S, Wang T, Chen Y, Yang R,
Mi J, Zhang Y-W and Zhang Y-M (2023)
Identification of QTNs, QTN-by-
environment interactions, and their
candidate genes for grain size traits in
main crop and ratoon rice.

Front. Plant Sci. 14:1119218.

doi: 10.3389/fpls.2023.1119218

COPYRIGHT
© 2023 Zhao, Shi, Wang, Chen, Yang, Mi,
Zhang and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License

(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Plant Science

TvpPE Original Research
PUBLISHED 02 February 2023
D01 10.3389/fpls.2023.1119218

|ldentification of QTNs, QTN-by-
environment interactions, and
their candidate genes for grain
size traits in main crop and
ratoon rice
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Rui Yang'?, Jiaming Mi**, Ya-Wen Zhang™
and Yuan-Ming Zhang*

*College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China, 2National
Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan),
Huazhong Agricultural University, Wuhan, China

Although grain size is an important quantitative trait affecting rice yield and quality,
there are few studies on gene-by-environment interactions (GEls) in genome-
wide association studies, especially, in main crop (MC) and ratoon rice (RR). To
address these issues, the phenotypes for grain width (GW), grain length (GL), and
thousand grain weight (TGW) of 159 accessions of MC and RR in two environments
were used to associate with 2,017,495 SNPs for detecting quantitative trait
nucleotides (QTNs) and QTN-by-environment interactions (QEls) using
3VmrMLM. As a result, 64, 71, 67, 72, 63, and 56 QTNs, and 0, 1, 2, 2, 2, and 1
QEls were found to be significantly associated with GW in MC (GW-MC), GL-MC,
TGW-MC, GW-RR, GL-RR, and TGW-RR, respectively. 3, 4, 7, 2, 2, and 4 genes
were found to be truly associated with the above traits, respectively, while 2 genes
around the above QEls were found to be truly associated with GL-RR, and one of
the two known genes was differentially expressed under two soil moisture
conditions. 10, 7, 1, 8, 4, and 3 candidate genes were found by differential
expression and GO annotation analysis to be around the QTNs for the above
traits, respectively, in which 6, 3, 1, 2, 0, and 2 candidate genes were found to be
significant in haplotype analysis. The gene Os03g0737000 around one QEI for GL-
MC was annotated as salt stress related gene and found to be differentially
expressed in two cultivars with different grain sizes. Among all the candidate
genes around the QTNs in this study, four were key, in which two were reported to
be truly associated with seed development, and two (0s0290626100 for GL-MC
and Os0290538000 for GW-MC) were new. Moreover, 1, 2, and 1 known genes,
along with 8 additional candidate genes and 2 candidate GEls, were found to be
around QTNs and QEls for GW, GL, and TGW, respectively in MC and RR joint
analysis, in which 3 additional candidate genes were key and new. Our results
provided a solid foundation for genetic improvement and molecular breeding in
MC and RR.
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rice, grain size, QTN, QTN-by-environment interaction, ratoon rice, 3VmrMLM
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Introduction

Rice (Oryza sativa L.) is the principal food for more than half of
the population in the world (Rosegrant and Cline, 2003). Effective
panicle number per plant, grain number per panicle, and thousand-
grain weight (TGW) are three main yield component factors (Xing
and Zhang, 2010). Thus, increasing grain weight is an effective way to
increase rice yield. TGW is mainly determined by grain size and
grouting degree, in which the grain size is determined by grain length
(GL), width (GW), and grain thickness (GT). These grain size-related
traits are quantitative traits. In addition, grain size not only affects the
rice yield but also affects its taste and appearance (Lou et al., 2009;
Zhao et al., 2018). Therefore, it is necessary to investigate genetic
mechanisms of GL, GW, and TGW.

With the completion of rice genome sequencing, more than 400
quantitative trait nucleotides (QTNs) for rice grain size in different
genetic populations have been identified in previous studies (Huang
et al., 2013). Among these loci, some of them have been fine-mapped,
such as gw9.1 (Xie et al,, 2008), gGL7 (Bai et al,, 2010), gGL3-2 (Liang
et al, 2021), and gGSN5 (Yuan et al,, 2022a). At present, at least 22
QTLs/genes for grain size traits in rice have been cloned and
functionally identified (Jiang et al., 2022), for example, GW2 (Song
et al., 2007), GS2 (Duan et al., 2015), GS5 (Li et al., 2011), GS9 (Zhao
et al., 2018), GS3 (Fan et al., 2006), GL3.1 (Qi et al., 2012), GL3.3 (Xia
etal, 2018),qGL3 (Zhang et al., 2012), gTGW2 (Ruan et al., 2020) and
qTGW3 (Hu et al,, 2018) were mined by map-based cloning, while
GSE5 (Duan et al., 2017) and OsSPL13 (Si et al., 2016) were detected
by GWAS. Clearly, most were identified by map-based cloning, being
a time-consuming work in developing near-isogenic lines. Moreover,
it has been shown that the grain size is affected by environmental
factors in many previous studies (Arshad et al., 2017; Bahuguna et al.,
2017; Wu et al, 2022). However, few QTL-by-environment
interactions (QEIs) have been identified in rice grain size. Although
many QEIs have been detected in other rice traits in recent years, such
as qGT9 (Rahimsoroush et al., 2021), gPC6, gPC7, and qGLU6 (Fiaz
et al., 2021), they were identified by linkage analysis rather than
genome-wide association studies (GWAS).

Ratoon rice has been considered as an efficient, green, and cost-
saving rice cultivation mode, which has been popularized in many
countries (Firouzi et al., 2018; Ziska et al., 2018; Wang et al., 2020).
Compared with main crop, lower temperature after heading stage
affects grain filling to reduce yield and improve quality of ratoon rice
(Huang et al., 2020). However, QEIs for grain size between main crop
and ratoon rice were rarely reported in previous studies, although
main crop is used to identify QTNs and their candidate genes for
grain size traits. More importantly, at present, most GWAS report
only stable QTNs rather than QEIs, owing to the lack of feasible
methodology of QEI detection in multiple environments (Kang et al.,
2010; Zhang et al., 2010; Zhou and Stephens, 2012; Jiang et al., 2019b).
To address this issue, Li et al. (2022a) and Li et al. (2022b) established
a new compressed variance component mixed model method, namely
3VmrMLM, to identify QTNs, QEIs, and QTN-by-QTN interactions
under controlling all the possible polygenic backgrounds.

To address the above issues, single environment analysis and two-
environment joint analysis via 3VmrMLM (Li et al., 2022b) were used to
identify QTNs and QEIs for GW, GL, and TGW in main crop (MC) and
ratoon rice (RR) of 159 rice accessions with 2,017,495 SNPs. Previously
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reported genes around QTNs and QEIs for the three traits were mined
and their candidate genes were predicted by comparative genomics and
confirmed by gene haplotype analysis. In this study, we identified 202
QTNs and 3 QEIs in MC and 191 QTNs and 5 QEIs in RR, 18
previously reported genes around QTNs and two previously reported
genes around QEIs were found to be truly associated with grain size in
previous studies, and one of two genes around QEIs had the evidence of
environmental interaction. Among 25 candidate genes identified by GO
annotation and differential expression analysis, 12 were further
confirmed by gene haplotype analysis, especially, four candidate genes
and one candidate GEI for grain size are more important. In addition,
the MC and RR datasets were jointly analyzed as well using 3VmrMLM,
as a result, one, two, and one known genes were found to be around
QTNs for GW, GL and TGW, respectively, 8 additional candidate genes
and 2 candidate GEIs were also mined, in which 3 additional candidate
genes are new and key in rice grain size related traits.

Material and methods

Plant materials and phenotyping of grain
size related traits

All the 159 indica rice accessions were planted, with a randomized
complete block design, in Wuhan in 2021. This experiment was
replicated two times in different fields, namely environments 1 and 2.
Each material was planted in one plot with 10 seedlings, row spacing
was 16.7 cm x 20 cm, and one line empty between cells. At yellow
ripening stage, GW (mm), GL (mm), and TGW (g) for each accession
in MC and RR were measured for three times, and their averages were
regarded as their trait phenotypes. GL in MC is abbreviated as GL-
MG, and it is true for other traits.

Statistical analysis for the phenotypic data

The minimum, maximum, mean, standard deviation (SD),
kurtosis, skewness (Si), and coefficient of variation (CV), along
with broad-sense heritability (Hf;) , for all the above traits were
calculated by R software 111;164 v1.1.28. The Hj for each trait was
calculated by H3 =W x 100% , where ()'g2 is genetic
variance, o7 is residual variance, G;e is the variance of genotype-by-
environment interaction, / is the number of environments, and r is the
number of replicates. The analysis of variance (ANOVA) for
phenotypic data was conducted using the R function aov. Normal
distribution test for phenotypic data was conducted using the R
function shapiro.test.

Genotyping data

The genotypic data of the 159 rice accessions used in this study
consisted of two parts. The genotypic datasets of 134 accessions were
derived from RiceVarMap database (http://ricevarmap.ncpgr.cn/),
and the DNAs of leaves were extracted to conduct 1K Genobaits to
verify their authenticity. The genotypic datasets of twenty-five
modern breeding cultivars were obtained by double-terminal
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sequencing with coverage of approximate 10x based on illumina’s
Hiseq 4000 technology sequencing platform at Novogene Technology
Company. Then, extract the common SNPs from the genotype
dataset of 134 public database accessions and 25 modern breeding
cultivars to obtain new genotypic datasets with 2,019,008 SNPs. The
software plink v1.90 was used to filter all the 2,019,008 SNPs based on
minimum allele frequencies (MAFs) < 0.05 and all variants with
missing call rates > 10%, where sliding window distance, step length,
and R? were set as 1000 kb, 1, and 0.3, respectively. As a result, a total
of 2,017,495 SNPs were used in subsequent GWAS.

Linkage disequilibrium decay and
population structure

All the 2,017,495 SNPs were used to conduct linkage disequilibrium
(LD) analysis using popLDdecay (https://github.com/BGIShenzhen/
PopLDdecay). The LD decay was determined by plotting the r* values
against the genetic distance of a pair of loci (kb) for each chromosome. G-
matrix and cluster analysis for all the 159 accessions were performed
using the 2,017,495 SNPs by R package sommer v4.2.0 and amap v0.8.19,
respectively. Principal component analysis (PCA) was analyzed using R
function prcomp, and the first two principal components were plotted
using the R package ggplot2 v3.3.6. ADMIXTURE v1.3.0 (http://
dalexander.github.io/admixture) was used to determine population
structure (Alexander et al., 2009), where the number of subgroups (K)
was set from 1 to 10, and the K value corresponding to the minimum CV
error is the most likely subgroup number.

Multi-locus genome-wide association
studies for grain size related traits

A total of 2,017,495 SNPs of 159 rice accessions were used to
associate with GW, GL, and TGW in two environments in MC and RR
using the 3VmrMLM method and its IITVmrMLM software (https://
github.com/YuanmingZhang65/IITVmrMLM; Li et al., 2022a; Li et al,,
2022b). All parameters were set as default values. Population structure
adopts the first three principal components. The K matrix was
calculated using the IIIVmrMLM software. The probability threshold
was set at 0.05/m = 2.48e-08 for significant QTNs and QEIs, where m
was the number of markers. To reduce the loss of important candidate
genes, some insignificant QTNs and QEIs with LOD score > 3.0 were
regarded as suggested QTNs and QEIs (Li et al., 2022a; Li et al,, 2022b).

Identification of candidate genes for grain
size related traits in rice

Candidate genes for grain size traits were mined based on the
below steps. First, all the genes were found in the 200 kb regions of
upstream and downstream around each significant QTN without
previously reported gene, because the LD decay distance was 150 kb
using popLDdecay. Then, RNA-seq datasets of Zhenshan 97 and
Minghui 63 at endosperm 7, 14, and 21 days after pollination (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19024) were used
to conduct differential expression analysis using NCBI (https://www.
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ncbinlm.nih.gov) GEO2R online tool, and the thresholds of
significant difference were set as p-value < 0.05 and | Log2FC | > 1.
Finally, all the differentially expressed genes (DEGs) were further
analyzed by GO annotation using AgBase (https://agbase.arizona.
edu), and the significant E-value was set as 10e-50. If biological
process is related to the reported molecular mechanisms of grain size,
the DEGs in the biological process were regarded as candidate genes.

Haplotype analysis of candidate genes

The software plink v1.90 was used to extract all the significant
SNP information (P < 0.05) after single marker genome scanning
within one candidate gene and its upstream 2 kb, R v4.1.3 was used to
calculate its haplotypes of the candidate gene, and the 159 rice
accessions were grouped based on these haplotypes. Thus, ANOVA
was performed using R function aov to test the significance of the
QTN-associated trait across these haplotypes at a 5% probability level.

Result
Phenotypic variation

The averages plus standard deviations of GW-MC, GL-MC, TGW-
MC, GW-RR, GL-RR, and TGW-RR in 159 rice accessions in two
environments were 2.44 + 0.33 ~ 2.47 + 0.34 (mm), 8.41 + 0.85 ~ 8.42 +
0.84 (mm), 23.92 + 3.01 ~ 24.03 + 2.98 (g), 2.38 + 0.29 ~ 243 + 0.28
(mm), 8.00 + 0.79 ~ 8.05 + 0.81 (mm), 21.74 + 2.84 ~ 22.32 + 3.09 (g),
and their coefficients of variation (CV) were 13.57 ~ 13.70, 9.91 ~ 10.12,
1240 ~ 12,58, 11.50 ~ 12.17, 991 ~ 10.08, and 13.04 ~ 13.83 (%),
respectively, having large phenotypic variations (Supplementary Table
S1). The analysis of variance was conducted and the results were listed in
Supplementary Table S2. As a result, genotypes, environments, and their
interactions for all the three traits in MC and RR were significant at the
0.05 probability level (Supplementary Table S2), and the Hj of GW, GL,
and TGW ranged from 96.39% to 99.07% in MC and from 90.21% to
98.37% in RR, indicating large genetic variations (Supplementary Table
S1). In addition, main crop had higher trait averages than ratoon rice,
especially for GL and TGW (Figure 1). The phenotypes of TGW-MC and
GW-RR in two environments, GL-RR in environment 2, and TGW-RR
in environment 1 were found to obey normal distribution, while GW-
MC and GL-MC in two environments, and GL-RR and TGW-RR in
environment 1 were found to approximately obey normal distribution
(Figure 1; Supplementary Table S1).

Population structure and linkage
disequilibrium analysis

To determine the LD decay distance, LD decay analysis was
performed using all the 2,017,495 SNP markers. The r* gradually
decreases with the increase of distance. When it drops to half of the
maximum value, the corresponding distance is regarded as the
average distance of LD decay. In this study the LD decay distance
was 150 kb, when r* dropped to half of its maximum value (r* =
0.3) (Figure 2C).
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Phenotypic distributions for grain length (GL), grain width (GW), and thousand grain weight (TGW) of 159 accessions of main crop and ratoon rice in two environments.

The number of sub-populations was determined by principal
component analysis (PCA), population structure analysis, and cluster
analysis. The results were showed in Figure 2. In PCA, the first two
principal components separated all the 159 accessions into three
subgroups: indica I, indica II, and indicia Intermediate (Figure 2A). In
population structure analysis via the ADMIXTURE software, cross-
validation (CV) error is the lowest when the number of subgroups is
three (Figures 2D, E), which is consistent with that in cluster analysis
(Figure 2B). Thus, the first three principal components were used in

genome-wide association studies.

Identification of QTNs and QEls in main
crop and ratoon rice

Identification of QTNs and QEls when two
environments in MC or RR were separately and
jointly analyzed via 3VmrMLM

The 3VmrMLM method, implemented by its IIIVmrMLM
software, was used to identify QTNs and QEIs for the three traits in
this study. As a result, we identified 64, 71, and 67 QTNs for GW, GL
and TGW in main crop, respectively, and 72, 63, and 56 QTNs for
GW, GL, and TGW in ratoon rice, respectively (Supplementary
Tables 53-520). Among these QTNs for the above three traits in
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MC, there were 18, 17, and 13 significant QTNs and 2, 1, and 3
suggested QTNs in environment 1, there were 10, 18, and 17
significant QTNs and 2, 2, and 1 suggested QTNs in environment 2
(Supplementary Tables $3-S5, S9-511), and there were 27, 32, and 27
significant QTNs and 5, 1, and 3 suggested QTNs detected in multi-
environment joint analysis (Supplementary Tables S15-517). In
ratoon rice, there were 16, 13, and 16 significant QTNs and 4, 3,
and 2 suggested QTNs in environment 1, there were 20, 13, and 12
significant QTNs and 0, 3, and 4 suggested QTN in environment 2
(Supplementary Tables S6-58, S12-514), and there were 29, 29, and
20 significant QTNs and 3, 2, and 2 suggested QTNs in multi-
environment joint analysis (Supplementary Tables S18-520). More
importantly, one GL and two TGW QEIs were detected in main crop,
and two GW, two GL, and one TGW QEIs were detected in ratoon
rice (Supplementary Tables S15-S20).

Identification of QTNs and QEls when the MC and
RR datasets were jointly analyzed in each
environment via 3VmrMLM

The MC and RR datasets in each environment were jointly
analyzed using the IIIVmrMLM software. As a result, 34, 35, and
42 QTNs and 7, 1, and 14 QEIs were identified for GW, GL, and
TGW, respectively (Supplementary Tables 529-534). Among these
QTN s and QEIs, there were 32, 30, and 37 significant QTNs, 2, 5, and
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Population structure and LD decay of 159 rice accessions. (A) Principal component analysis (PCA) of the association panel. (B) Cluster analysis results of
159 rice accessions with 2,017,495 SNPs. (C) The entire genome LD decay of the population. (D) Population structure estimates (K = 3), the areas of the
three colors illustrate the proportion of each subgroup. (E) cross-validation (CV) error line graph of subgroups (K = 3).

5 suggested QTNs, 4, 0, and 10 significant QEIs, and 3, 1, and 4
suggested QEIs for GW, GL, and TGW, respectively.

Known genes around QTNs and QEls

Known genes were searched within 200 kb upstream and
downstream regions of QTNs and QEIs. Among the QTNs and
QEIs, 3, 4, and 7 known genes were found in main crop to be truly
associated with the above three traits, respectively, and 2, 4, and 4
known genes were found in ratoon rice to be truly associated with the
above three traits, respectively. Among these known genes, 4 were
simultaneously found in main crop and ratoon rice, and 3 were found
across multiple traits. 3, 5, and 9 known genes were found to be
around significant QTNs and QEIs for the above three traits,
respectively, and 0, 1, and 2 known genes were found to be around
suggested QTN for the above three traits, respectively (Tables 1, 2).

Around the above QTNs, some known genes were simultaneously
mined in single-environment analysis and two-environment joint
analysis. GW5 was identified to be associated with GW-MC and GW-
RR in two single-environment analyses and two-environment joint
analysis, VLN2 was identified to be associated with GW-MC in two-
environment joint analysis and GW-RR in the first environment
analysis (Figures 3A-C; Supplementary Figure 1), GS3 was found to
be associated with GL-MC and GL-RR in two single-environment
analysis and two-environment joint analysis, and GW5 was found to
be associated with GL-MC in the second environment analysis and
two-environment joint analysis (Supplementary Figures 2A-C, 3).
For TGW, all known genes were separately detected in a single-
environment analysis or two-environment joint analysis
(Supplementary Figures 4A-C, 5).

Around the above QEIs, two known genes, OsACOT and GWéa,
for GL-RR were mined (Table 2). Among the two known genes,
OsACOT was found to be interacted with environments. In detail, its

Frontiers in Plant Science

expression level under moderate soil drying treatment was higher
than that under well-watered control (Teng et al., 2022) (Table 2).

In the joint analysis of the MC and RR datasets, 1, 2, and 1 known
genes were found to be around significant QTNs and to be truly
associated with GW, GL, and TGW, respectively (Supplementary
Tables S35; Figures 3D, E; Supplementary Figures 2, 4D, E). Among
these known genes, most of them were consistent with the above
known genes, such as GW5, GS3, and gTGW3, but PGL2 was found
only in the MC and RR joint analysis.

Prediction of candidate genes

Around other QTNs without known genes, all the genes within
200 kb upstream and downstream regions were used to conduct
differential expression analysis. All the differential expression genes
(DEGs) were used to conduct gene annotation analysis. In gene
annotation analysis, the significant biological processes were mainly
included the below categories: cytokinin, abscisic acid and other plant
hormone metabolism (e.g., 0s02g0197600, Os02g0621300,
0s502¢0626100, and Os02g0178800), protein ubiquitination
(0s07g0166800), sucrose starch metabolism (Os04¢g0169100,
Os12¢0112500, and Os08¢0205900), protein phosphorylation
(0s02¢0126400, and 0s03¢0717700), and endosperm development
(050240538000, Os12¢0277500, and Os01g0280500) (Supplementary
Tables S21, 522), which are highly consistent with the previously
reported regulatory pathways in Zuo and Li (2014); Cai et al. (2018),
and Li et al. (2019). These genes were regarded as candidate genes. As
aresult, there were 10, 7 and 1 candidate genes for GW, GL and TGW
in main crop, respectively, and 8, 4, and 3 candidate genes for GW, GL
and TGW in ratoon rice, respectively (Supplementary Tables
S21, S22).

For candidate genes for GW, Os02¢0126400 and Os03g0717700
were predicted to be related to protein phosphorylation,
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TABLE 1 Known genes around QTNs for grain length (GL), grain width (GW), and thousand grain weight (TGW) in main crop (MC) and ratoon rice (RR).

LOD scores of QTN detection

Comparative genomics analysis

Trait MC/RR No. Posi (bp) i igeote Sl r* (%) Significance Reference
I+ 1l Known genes Distance (kb)
GW Both 1 3 13768754~13863861 14.58 34.25 0.92~1.57 Significant VLN2 8.379~75.176 Wu et al,, 2015
Both 2 5 5357438~5361276 28.87~32.99 21.43~44.21 55.83~93.69 3.75~17.29 Significant GW5 3.846~7.684 Liu et al,, 2017
MC 3 7 24771358 18.09 1.96 Significant GW7 102.037 Wang et al,, 2015a
GL Both 1 3 16708508~16845802 32.72~40.25 47.94 22.1~36.57 2.02~13.09 Significant GS3 11.033~110.693 Mao et al., 2010
MC 2 3 35504491 5.28 0.68 Suggested qTGW3 112.509 Ying et al., 2018
MC 3 5 5357676~5456085 10.46 3337 0.73~1.41 Significant GW5 7.446~89.384 Liu et al., 2017
Both 4 7 24533051~24800887 10.73 12.68 0.15~0.88 Significant GW7 131.277~136.719 Wang et al., 2015a
TGW MC 1 1 800544 597 0.88 Significant SPL33 129.340 Wang et al,, 2017
MC 2 2 8196020 13.19 224 Significant GW2 74.369 Song et al., 2007
RR 3 2 26049877 17.19 2.10 Significant OsVPE3 148.959 Lu et al,, 2016
RR 4 2 28749717 15.39 1.74 Significant GS2 113.557 Hu et al., 2015
MC 5 3 35437797 11.11 0.43 Significant qTGW3 45.815 Ying et al,, 2018
RR 6 4 4570606 24.24 4.63 Signiﬁca.nt ETR2 167.769 Wuriyanghan et al., 2009
MC 7 5 5356835 31.77 3.19 Significant GW5 8.287 Liu et al,, 2017
MC 8 6 1540336 4.83 191 Suggested SSG6 89.442 Matsushima et al., 2016
MC 9 7 7640833 16.51 2.47 Significant SSH1 90.919 Jiang et al., 2019a
RR 10 8 6110721 6.11 225 Suggested UAPI 126.728 Wang et al,, 2015b
MC 11 8 25154283 13.02 3.19 Significant OsSPL14 120.258 Jiao et al., 2010

T'and II: QTN detection in environments I and II, respectively; I + II: joint analysis of datasets in environments I and II. The same is true for Table 3.
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TABLE 2 Two known genes around QEls for rice grain size traits in ratoon rice (RR) and the evidence of gene-by-environment interactions.

Known
gene

\[o} 2
LOD (%)

Significance

Evidence for environmental interaction genes

Difference of
indicator under
various
environments

Reference

Environment Indicator

Moderate soil Expression The expression of Zhao et al.,
1 X]
1 GL-RR 4 20228091 | 157721  0.7362  Significant OsACOT dryin levzl OsACOT increased after = 2019; Teng
rying MD treatment et al,, 2022
S t al,
2 GL-RR | 6 26752211 212258 10259 | Significant GW6a 28?5 o

GW, grain width; GL, grain length; TGW, thousand grain weight.

0502¢0178800 and 0Os03g0592500 were predicted to respond to
abscisic acid, 0s02¢g0197600 was found to be related to cytokinin,
0s07¢0166800 was found to be related to the process of protein
ubiquitination, 0s02¢0538000 and Os12¢0277500 were found to be
associated with embryonic development at the end of seed
dormancy, and 0s08g0205900 and Os04g0169100 were predicted
to be related to sucrose metabolism and starch synthesis
metabolism, respectively.

For candidate genes for GL, Os02g0197600, Os02g0621300,
0s502¢0626100, Os04g0514800, and Os03g0108600 were predicted to
respond to cytokinin, abscisic acid, gibberellin, auxin, and ethylene,
respectively, Os01g0280500 and Os02g0538000 were found to affect
embryonic development, and Os04¢0169100 and Os12¢0112500 were

predicted to be related to starch synthesis. In Wuriyanghan et al.
(2009), Os04g0169100 was reported to affect the ethylene sensitivity of
seeds to substantially enhance TGW of mutant. Here there is one
issue pending, that is, whether the TGW increase is caused by the
GL increase.

For candidate genes for TGW, Os02g0621300 was predicted to be
related to response to abscisic acid, Os03g0411500 was predicted to be
related to photosynthesis, Os03g0607400 was predicted to be related to
positive regulation of unidimensional cell growth, and Os05¢0445900
was predicted to participate in DNA demethylation, which is consistent
with that in Zhou et al. (2021), in detail, Os05¢0445900 encodes rice
DNA glycosylase, and the mutation of DNG701 can lead to embryo
retardation or abortion of part seeds (Zhou et al,, 2021).
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36 ows r24
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FIGURE 3
Manhattan plots for grain width in ratoon rice (A—C) and grain width in the joint analysis of main crop and ratoon rice (D, E). Known genes around QTNs
were marked with magenta color, and candidate genes around QTNs were marked with dark green color.
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For the DEG 0s03¢0737000 (P=7.77E-03, log2FC=-1.29) around
the QEI of chr3-30340995 for GL-MC, Os03g0737000 was predicted
to be related to “response to salt stress” (Table 3). In the future, new
experiments are necessary to explore these novel gene-trait and GEI-
trait associations.

In the joint analysis of the MC and RR datasets, there were 22
candidate genes around QTNs to be responsible for the above three
traits, but only two were consistent with the above 25 candidate genes
(Supplementary Table S36). The significant biological processes of
these candidate genes were mainly included the below categories:
plant hormone metabolic pathway (e.g., 0s02¢0126400,
0s05¢0563400, and Os12g0288000), protein phosphorylation
(0s03g0838100, 0s08g0200500, and 0s05g0514200), embryo
development (0s02¢0538000 and Os08g0428100), and protein
ubiquitination (05090294300 and Os12¢0111500). In addition, we
also mined two additional DEGs for TGW around QEIs, among
which Os06¢0154200 was predicted to be related to “positive
regulation of response to water deprivation” and Os11g0600900 was
predicted to be related to “response to light intensity” (Table 3).

Haplotype analysis

To further verify the reliability of candidate genes, we conducted
haplotype analysis. As a result, 12 of the above 25 candidate genes had
significant differences among the phenotypes of the traits
corresponding to the haplotypes of each gene (Figure 4). Among
the 12 significant candidate genes, 7, 3, and 3 were found to be
associated with GW, GL, and TGW, respectively, of which there are 6,
3, and 1 significant candidate genes in main crop and 2, 0, and 2
significant candidate genes in ratoon rice (Figure 4). Os08¢0205900
for GW was mined in both MC and RR, and 0s02¢0621300 was found
in both GL and TGW (Figure 4). It should be noted that 8 of 22
candidate genes, which were mined in the MC and RR joint analysis,
were significant in haplotype analysis, and the eight genes were
different from the 12 significant candidate genes in the above
haplotype analysis (Figure 4).

Discussion

To address the studies on gene-by-environmental interactions,
especially, across main crop and ratoon rice, in this study we
conducted genome-wide association studies for GW, GL, and TGW
using 3VmrMLM. As a result, a total of 202 QTNs and 3 QEIs in main
crop, and 191 QTNs and 5 QEIs in ratoon rice were identified.
Around these QTNs and QEIs, 18 and 2 known genes were found to
be truly associated with the grain size related traits, in which 4 were
common across main crop and ratoon rice, and 12 candidate genes
were mined through differential expression analysis, GO annotation,
and haplotype analysis, in which one was common across main crop
and ratoon rice. More importantly, four key candidate genes around
QTNs were predicted, in which two were new and all identified in
main crop. In addition, we identified a new candidate GEI
0s03¢0737000, which was predicted to be related “response to salt
stress”. In the joint analysis of the MC and RR datasets, furthermore, 8
additional candidate genes and two additional GEIs were minded, and
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3 of 8 additional candidate genes were new and key for grain size
related traits in this study.

Comparison of QTNs, QEls, known genes,
and candidate genes across main crop and
ratoon rice

Ratoon rice is a new mode of rice planting, which can effectively
save costs and increase benefits (Shen et al., 2021). Although it is
generally accepted that RR has higher quality than MC, there are still
many controversies in the studies on grain size related traits (Alizadeh
and Habibi, 2016; Huang et al., 2020; Yuan et al., 2022b).

In this study, 64, 71, and 64 QTNs and 0, 1 and, 2 QEIs in MC,
and 72, 63 and 56 QTNs and 2, 2, and 1 QEIs in RR were identified to
be associated with GW, GL and TGW, respectively. Among these
QTNs, 4 known genes were commonly detected in main crop and
ratoon rice to be truly associated with grain size related traits,
including GW5 and VLN2 for GW, and GS3 and GW7 for GL
(Table 1). Some known genes were found only in main crop or
ratoon rice, such as gTGW3, SPL33, and OsSPL14 were detected only
in main crop, and OsVPE3, GS2, ETR2, and UPAI were found only in
the ratoon rice (Table 1). Among all the candidate genes, one was
commonly found in main crop and ratoon rice, and 12 were detected
only in main crop or ratoon rice (Figure 4). No common QEIs were
detected between main crop and ratoon rice.

Based on the above results, main crop can detect more known
genes (14), candidate genes (10) and candidate GEIs (1) than ratoon
rice (8, 4, and 0). Although some known and candidate genes can be
commonly found in main crop and ratoon rice, there are still some
specific candidate genes in main crop or ratoon rice. In the
independent and joint analyses of the MC and RR datasets, most
candidate genes and candidate GEIs were different across the two
analyses. This indicated that more known and candidate genes and
GEIs can be identified while the datasets in main crop and ratoon rice
are simultaneously or jointly analyzed.

Key candidate genes for GW, GL, and TGW
in rice

The candidate genes were mined by expression and GO
annotation analysis, and further validated through haplotype
analysis. In this study we identified five new and key candidate
genes that were predicted to be closely related to the three traits,
among which 3 were mined to be around QTNs in the MC and RR
joint analysis (Table 3), the evidence was as below.

0502g0626100 for GL-MC, and Os02¢g0538000 for GW-MC were
differentially expressed. In GO annotation analysis, the two genes
were annotated as “response to gibberellin”, and “embryo
development ending in seed dormancy”, respectively, in which
these biological processes are highly consistent with metabolic
pathways of important grain size traits in rice (Li et al, 2018; Li
et al,, 2020; Jiang et al., 2022). In haplotype analysis, significant GL/
GW differences were observed across 2 and 5 haplotypes from 1 and
11 significant SNPs within the two genes and their 2 kb upstream.
Thus, the two genes may be important candidate genes for GL/GW.

frontiersin.org


https://doi.org/10.3389/fpls.2023.1119218
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

35U3IDS JUB|d Ul SISUOIS

640°UISIaIUOY

TABLE 3 Key candidate genes and gene-by-environment interactions for grain size related traits in rice.

LOD scores Gene differential expression analysis GO annotation analysis
P-value in
log2 haplotype
|+l MC+RR Gene_ID (Fold P-value analysis GO_ID GO_name E-value Reference
Change)
embryo
development
QTN GW-MC 2 20073320 11.87 047 | 0s02¢0538000 123 6A7E-03 150E-06 | GO:0009793 “op! 0
ending in seed
dormancy
t
QTN GL-MC 2 24992114 1356 075 | 050290626100 127 9.33E-03 730E-03 | GO0009739 | POmseto 0
gibberellin
regulation of Wurivanehan
. )
QTN GW-RR 4 4591488 14991 097 0s04g0169100 120 2.76E-03 406E-15 | GO2000904  starch metabolic 0 o yzoi
process b
DNA Zhou et al.,
QIN TGW-MC = 5 | 22017452 1027 182 | 0s05g0445900 119 1.48E-02 132E-03 GO:0080111 , 0 ow et
demethylation 2021
tarch cataboli
QTN TGW 8 17687290 1162 | 171 00840379300 118 2.72E-02 720E-03 | GO:0005983 ;:;;SSC“ o 0
"
QIN GW 9 | 6986114 1417 | 079 050940294300 16 3.46E-03 170E05 | GO:0016567 o 2.71E-288
ubiquitination
t
QTN GL 12 22006272 1245 | 152 0s12g0557800 1.79 4.95E-03 130E06 | GO:0009737 = o oponseto 5.65E-216
abscisic acid
to salt
GEI GL-MC 3 30340995 6.39 020 | 0s03g0737000 129 7.778-03 GO:0009651 :SPS :nse oS 0
e
positive regulation
GEI TGW 6 2928548 1319 | 291 Os06g0154200 122 1.11E-02 GO:1902584  of response to 0
water deprivation
to light
GEI TGW 11 22930659 521 108 | Os11g0600900 -1.14 2.01E-02 GO:0009642 _reip Or?:; o8 0
mtenst

GW, grain width; GL, grain length; TGW, thousand grain weight; MC, main crop; RR, ratoon rice.
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FIGURE 4

Haplotype analysis for candidate genes for grain width (GW), grain length (GL) and thousand grain weight (TGW) in main crop (MC), ratoon rice (RR), and the
joint analyses of MC and RR. The P-values indicate the significance of trait averages across gene haplotypes for GW, GL, and TGW in one-way ANOVA

In the same way, Os08¢0379300 for TGW, 0s09g0294300 for GW,
and Os12¢0557800 for GL were found to be DEGs around the QTNs
in the MC and RR joint analysis. In GO annotation analysis, the three
gene were predicted to be related to “starch catabolic process”,
“protein ubiquitination”, and “response to abscisic acid”,
respectively, which have been confirmed to be important regulatory
pathways of rice grain size (Li et al., 2008; Choi et al., 2018; Gao et al,,
2021). In haplotype analysis, significant TGW/GW/GL difference was
observed across 7, 6, and 16 haplotypes from 6, 6, and 16 significant
SNPs within the genes and their 2 kb upstream. Thus, the three genes
may be important candidate genes for TGW/GW/GL.

In addition, two candidate genes have been reported to be related to
rice seed development. In Wuriyanghan et al. (2009), Os04g0169100,
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identified for GW-RR in this study, significantly increased TGW of
mutants by increasing the sensitivity of seeds to ethylene. In Zhou et al.
(2021), the mutant of 0s05g0445900, identified for TGW-MC in this
study, participated in DNA methylation process causing the endosperm
of some seeds to be stunted or aborted.

Identification of known and candidate GEls
for grain size traits in rice
Around the QEIs, OsACOT for GL-RR has been confirmed to be

differentially expressed under two soil moisture treatments (Teng
et al.,, 2022; Table 2).
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Around QEIs in the independent analysis of MC or RR,
0s03g0737000 for GL-MC was found to be differentially expressed, and
its biological process in GO annotation was predicted to be related to salt
stress. We speculate that Os03g0737000 may be affected by
environmental factors, such as different salt treatments. Around QEIs
detected in the MC and RR joint analysis, Os06¢0154200 and
Os11g0600900 for TGW were found to be differentially expressed, and
the biological processes in their GO annotations were predicted to be
related to water deprivation and light intensity, respectively. Thus, we
speculate that Os06g0154200 may be affected by the moisture content of
the environment and OsI1g0600900 may be affected by the intensity of
external light. The molecular functions of above three candidate GEIs
need to be verified by subsequent molecular biology experiments.

Comparison of known genes across two
types of interval lengths

To investigate the effect of interval length on mining known genes,
two types of interval lengths were compared. One was 200 kb upstream
and downstream regions of QTNs and QEIs, which was determined
based on LD decay distance, while another was 1000 kb for QT'Ns and
1500 kb for QEIs. The results are listed in Table 1 and Supplementary
Table S37. As a result, 3, 4, 7, 2, 2, and 4 known genes around QTNs
and 0, 0, 0, 0, 2, and 0 known genes around QEIs were found to be
located on their corresponding 200 kb upstream and downstream
regions and to be truly associated with GW-MC, GL-MC, TGW-MC,
GW-RR, GL-RR, and TGW-RR, respectively, while 6, 7, 21, 7, 6, and 16
known genes for the above six traits were found to be located on 1000
kb upstream and downstream regions of QTNs, and 0, 0, 1, 2, 2, and 0
known genes for the above six traits were found to be located on 1500
kb upstream and downstream regions of QEIs. This indicates that large
intervals can find more known genes. Thus, it is very important to
determine a suitable interval length in mining known genes.

Comparison of QTNs, QEls, and known
genes across various population structures

To investigate the effect of population structure on genome-wide
association studies, we compared the results from evolutionary
population structure (Liu et al, 2020), Q matrix, and PCA in this
study. As a result, 323, 283, and 393 QTNs, 9, 6, 8 QEIs, and 11, 12,
and 20 known genes were identified from evolutionary population, Q
matrix and PCA, respectively (Supplementary Tables 5$23-528). Clearly,
the PCA result is the best, followed by evolutionary population, and the
worst is the Q matrix result in this study. Thus, population structure is an
important parameter in genome-wide association study.
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Introduction: Pre-harvest Sprouting (PHS) seriously affects wheat quality and yield.
However, to date there have been limited reports. It is of great urgency to breed
resistance varieties via quantitative trait nucleotides (QTNs) or genes for PHS
resistance in white-grained wheat.

Methods: 629 Chinese wheat varieties, including 373 local wheat varieties from 70
years ago and 256 improved wheat varieties were phenotyped for spike sprouting
(SS) in two environments and genotyped by wheat 660K microarray. These
phenotypes were used to associate with 314,548 SNP markers for identifying
QTNs for PHS resistance using several multi-locus genome-wide association study
(GWAS) methods. Their candidate genes were verified by RNA-seq, and the
validated candidate genes were further exploited in wheat breeding.

Results: As a result, variation coefficients of 50% and 47% for PHS in 629 wheat
varieties, respectively, in 2020-2021 and 2021-2022 indicated large phenotypic
variation, in particular, 38 white grain varieties appeared at least medium resistance,
such as Baipimai, Fengchan 3, and Jimai 20. In GWAS, 22 significant QTNSs, with the
sizes of 0.06% ~ 38.11%, for PHS resistance were stably identified by multiple multi-
locus methods in two environments, e.g., AX-95124645 (chr3D:571.35Mb), with the
sizes of 36.390% and 45.850% in 2020-2021 and 2021-2022, respectively, was
detected by several multi-locus methods in two environments. As compared with
previous studies, the AX-95124645 was used to develop Kompetitive Allele-Specific
PCR marker QSS.TAF9-3D (chr3D:569.17Mb~573.55Mb) for the first time, especially,
it is available in white-grain wheat varieties. Around this locus, nine genes were
significantly differentially expressed, and two of them (TraesCS3D01G466100 and
TraesCS3D01G468500) were found by GO annotation to be related to PHS
resistance and determined as candidate genes.

Discussion: The QTN and two new candidate genes related to PHS resistance were
identified in this study. The QTN can be used to effectively identify the PHS
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resistance materials, especially, all the white-grained varieties with QSS. TAF9-3D-
TT haplotype are resistant to spike sprouting. Thus, this study provides candidate
genes, materials, and methodological basis for breeding wheat PHS resistance in

the future.

KEYWORDS

wheat, pre-harvest sprouting, genome-wide association study, RNA-seq, KASP, mrMLM

1 Introduction

Wheat is a major worldwide food crop, and China is the largest
wheat producer and consumer in the world. In 2022, Chinese wheat
harvest area was 22,911.2 thousand hectares, and the total yield
reached 135.76 million tons. In Henan, wheat harvest area and
yield accounts for 24.8% and 28.1% in China, respectively, being
the largest main wheat producing area in China. Its genetic
improvement of wheat varieties has played an important role in its
continuous improvement of wheat production capacity.

Pre-harvest Sprouting (PHS) refers to the phenomenon of seeds
germinating and sprouting on the spike under rainy or humid conditions
before wheat harvest. It is a worldwide natural disaster, and has been
reported in China (Zhou et al., 2017), Japan (Kashiwakura et al., 2016),
the United States (Nonogaki et al., 2014), Canada (Cabral et al., 2014),
Europe (Rakoczy-Trojanowska et al,, 2017), South Africa (Sydenham and
Barnard, 2018), and Australia (Barrero et al, 2010). In China, the
frequent and severe PHS spike hazards happened in the middle and
lower reaches of Changjiang River winter wheat zone, southwest winter
wheat zone, and northeast spring wheat zone (Jin, 1996; Zhang et al,
2010). In these zones, PHS resistance depends on dormant genes linked
to red seed coat. In northern China, such as Henan, however, white-
grained wheat varieties are used in production, and with the overall
popularization of wheat mechanization harvest, that wheat should be
harvested after being fully mature and dehydrated in the field. The
varieties with PHS susceptibility have an increased probability of spike
sprouting due to rainfall during the mature harvest period. Therefore, it is
of great urgency to breed resistance varieties via PHS resistance
quantitative trait nucleotides (QTNSs) or genes of white-grained wheat.

Wheat PHS resistance is a complex quantitative trait controlled
by multiple genes (Imtiaz et al., 2008). Thus, it is very important and
necessary to identify these resistance loci and develop their molecular
markers in crop breeding. In previous linkage analysis, a series of
QTLs for PHS resistance has been located on all the 21 wheat
chromosomes (Mohan et al.,, 2009; Cabral et al., 2014; Cao et al,
2016; Fakthongphan et al., 2016), in which repeatedly and stably
QTLs were found on chromosome 3 (Kato et al,, 2001; Osa et al,,
2003; Kulwal et al., 2004; Mori et al., 2005; Liu and Bai, 2010).
Currently, red-grained wheat varieties generally exhibit higher PHS
resistance, because the PHS resistance genes on chromosomes 3A, 3B
and 3D are thought to be closely linked to red seed coat, which is
controlled by R dominant allele (Himi et al., 2011). Recently, genome-
wide association studies (GWAS) have been used to identify QTLs
and their candidate genes for wheat grain weight and plant height
(Zanke et al., 2014; Chen et al., 2016; Wang et al., 2017), especially,
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Zhu et al. (2019) identified some QTLs and developed their molecular
markers on wheat chromosomes 1AL, 3BS, and 6BL for PHS
resistance, and Lin et al. (2017) identified two candidate genes for
PHS resistance in 80 wheat varieties. However, the studies on wheat
PHS resistance are relatively limited.

Chinese wheat local varieties showed higher PHS resistance than
improved varieties (Wang et al, 2011; Liu et al., 2014), which
provided valuable genetic resources for mining the loci of PHS
resistance. In this study, 629 wheat varieties were measured for
PHS resistance in 2020-2021 and 2021-2022, including 373 wheat
local varieties over 70 years ago and 256 wheat improved varieties
over the last 70 years in Henan Province, China. To mine some
valuable QTNs for PHS resistance, these phenotypes were used to
associate with SNP markers in the above 629 wheat varieties using
several multi-locus GWAS methods. The results were validated by
RNA-seq datasets between PHS resistance and susceptibility varieties,
one confirmed QTN was used to develop Kompetitive Allele-Specific
PCR (KASP) marker, and the KASP marker was further confirmed to
be associated with PHS resistance. Thus, this study provides a
valuable locus and white-grained wheat PHS resistance materials,
which is available in main producing zones.

2 Materials and methods

2.1 Materials

In association mapping population, there were 629 Chinese wheat
varieties, including 373 local wheat varieties from 70 years ago and
256 improved wheat varieties (lines). In autumns of 2020 and 2021,
these varieties were planted in the experimental field of Henan
Modern Agricultural Research and Development Base (East
longitude: 113.707°, North latitude: 35.011°). The winter wheat
varieties were provided by Institute of Crops Molecular Breeding,
Henan Academy of Agricultural Sciences.

2.2 Measurement of PHS resistance in 629
wheat varieties

Based on the agricultural industry standards of the People’s
Republic of China, NY/T 1939-2009, namely “standard” hereinafter,
we harvested the varieties in the dough stage in turn, and 20 main
stem spikes of each variety were stored in the refrigerator at -20°C.
After all the varieties were harvested, we measured the PHS
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phenotypes of all the varieties on phytotron with temperature of 22°C
+ 1°C and relative humidity of 95% * 5%. Samples were removed
from phytotron after 96 hours, and dried at 60°C for counting, spike
sprouting (SS) was calculated from the formula x=(n/N)*100%,

where 7 is the number of sprouted grains per spike, and N is the
total number of grains per spike. The relative SS index “I” of each
variety to be tested was calculated from I=x1/x2.

where x; is the SS of each variety to be tested, and x; is the SS of
the control variety, being Zhoumai 18 or a local variety with similar
PHS phenotype with Zhoumai 18. Based on the criteria of PHS
resistance in Supplementary Table S1, pre-harvest sprouting grade of
each variety was determined.

2.3 Multi-locus GWAS for wheat PHS
resistance in 629 varieties

As described in the reference (Du et al., 2021), all the 629 varieties
were genotyped by wheat 660K microarray, and high quality genotypes of
314,548 SNP markers were obtained based on four screening criteria:
alleles = 2, minor allele frequency (MAF) > 0.01, missing < 10%, and
heterozygosity < 10%. The best linear unbiased prediction (BLUP) values
in 2020-2021 and 2021-2022 years was calculated by R language package
(R4.2.1). These marker genotypes were used to associate trait phenotypes
or BLUP values in the 629 wheat varieties using the IITVmrMLM (Li
et al,, 2022a; Li et al,, 2022b) and mrMLM (Zhang et al., 2020) software
packages, in which the latter included mrMLM (Wang et al, 2016),
FASTmrMLM (Tamba and Zhang, 2018), FASTmrEMMA (Wen et al.,
2017), pLARmMEB (Zhang et al.,, 2017), ISIS EM-BLASSO (Tamba et al.,
2017), and pKWmEB (Ren et al, 2018) methods. The population
structure was determined using admixture_linux-1.3.0 software. The
number of subgroups (K) was scanned from 2 to 5 using the
admixture software and determined as two. The kinship matrix was
calculated using the mrMLM software. The critical LOD score for
significant QTLs was set as LOD = 3.0, which is equivalent to P-value
= 2e-4. The Manhattan plots were drawn using the mrMLM software.
The LD decay distance was calculated using vcftools v0.1.13, plink-v1.07,
and PopLDdecay 3.41 softwares. The 2.192 Mb region was regarded as
the upstream and downstream of a significant QTL.

2.4 Design and analysis of molecular
markers for PHS resistance loci

0.2-0.3g fresh leaves were taken from each of 629 wheat varieties,
pre-cooled with liquid nitrogen, crushed, and placed into 1.5mL
centrifuge tube, and wheat genomic DNA was extracted based on
Gawel and Jarret (1991).

2.4.1 Design of KASP molecular marker for PHS
resistance locus

The forward and reverse primers (FT: 5-ATCAATTATCAG
CTCTGGAT-3’; FC: 5-ATCAATTATCAGCTCTGGAC-3; R: 5-
AATCTTGACCTGTGTCCCGA - 3’) of KASP molecular markers
were designed in the upstream 20 bp and downstream 155 bp
according to the physical location information of significantly
associated locus in reference to the Chinese spring sequence
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information of wheat Whole Genomics website (http://202.194.139.
32/jbrowse-1.12.3-release/?data=Chinese_Spring1.0 ). HEX (red, 5-
GAAGGTCGGAGTCAACGGATT-3’) was added to the 5" end of FT
primer sequence and FAM (blue, 5-GAAGGTGACCAAG
TTCATGCT-3’) was added to the 5 end of FC primer sequence,
respectively. These primers were synthesized by Sangon Biotech
(Shanghai) Co., Ltd. PCR reactions were performed in an
Hydrocycler-thermal cycler in a total volume of 3uL, including
1.5uL KASP 2x Master Mix (LGC Technology (Shanghai) Co.,
Ltd.), 80 ng of template DNA, 0.06uL KASP Assay mix(100uM of
Forward primer-FT, Forward primer-FC, Reverse primer-R and
ddH20 mixed in a 12:12:30:46 volume ratio). PCR amplification
were 94°C for 15min, 10 cycles of 94°C for 20s, 61°C-55°C for 60s by
0.6°C decrease per cycle, and with a final extension is 29 cycles of 94°C
20s, 55°C 60s.

2.4.2 Sequence analysis of the KASP marker
amplified product

The KASP molecular marker reaction products of Zhoumai 18
and Shengsimai were separated by 1% agarose gel electrophoresis, the
target fragments were recovered and purified, which was cloned with
pMDTMI19-T vector (Takara Biomedical Technology (Beijing) Co.,
Ltd.), and sequenced by Sangon Biotech (Shanghai) Co., Ltd. At least
10 clones were sequenced for each variety. DNAMAN software was
used to analyze the allelic variation of the amplified product
sequences of KASP marker primers, and then BLAST (basic local
alignment search tool) at EnsemblPlants database (http://plants.

ensembl.org/index.html).

2.5 RNA-seq sample selection preparation
and differential gene expression analysis

2.5.1 RNA-seq sample selection preparation

According to the identification results of spike sprouting in
association population, the highly resistant red-grained variety
Shengsimai, the white-grained variety Baipimai, and the highly
susceptible white-grained variety Zhoumai 18 were selected as
RNA-seq samples. The sample processing method was carried out
according to the standard. At the wax-ripening stage, all the three
samples were cut from 15 cm below the spike, 9 spikes were taken
from each material, which were divided into 3 portions, each spike
was a biological replicate. And then, after soaking for 4 hours, one of 3
portions was taken out of liquid

Nitrogen and frozen for the 0-point control of RNA-seq (Oh). The
remaining two portions were further tested for PHS identification. A
total of 96 hours were required for PHS identification. Samples were
taken out and frozen in liquid nitrogen at 48 hours (48h) and 96 hours
(96h). The subsequent RNA extraction library preparation,
sequencing, and analysis results of RNA-seq were provided by
Beijing Biomarker Technologies Co., Ltd.

2.5.2 RNA-seq differential expression
analysis of genes

Differential gene expression analysis of RNA-seq samples was
performed on the website of Beijing Biomarker Technologies Co., Ltd.
(http://www.biomarker.com.cn/). FDR < 0.05 was used as the
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standard for screening differentially expressed genes, and the
difference groups were set according to the PHS resistance and
susceptibility, and the PHS resistance of different seed coat colors,
as shown in Supplementary Table S2. Using the differential gene
expression datasets, the P-values were calculated by GO annotation
enrichment tool of the Beijing Biomarker Technologies (https://
international.biocloud.net/).

3 Results

3.1 Phenotypic analysis for PHS resistance in
629 wheat varieties

The spike sprouting method was used to identify the phenotypes
of 629 wheat varieties (Supplementary Table S3), including 333 red-
grained and 296 white-grained varieties. Among them, the numbers
of red-grained varieties and white-grained varieties resistant to spike
germination in the two years were 293 and 38, respectively. Red-
grained varieties were generally more resistance than white-grained
varieties. Among the 373 local varieties, 305 were red-grained
varieties, 68 were white-grained varieties, and 298 were resistant
to spike sprouting in both the two years. Among the 256 improved
varieties, 28 were red-grained varieties, 228 were white-grained
varieties, and 33 were resistant to spike sprouting in both the two
years (Figure 1). This indicates that the grain color of wheat varieties
in Henan Province has changed greatly from the local varieties
before 1950 to the later improved varieties, and red-grained varieties
were gradually changed to white -grained varieties. In the past two
decades, all the varieties developed have been white-
grained varieties.

In the identification of PHS resistance, the ranges of spike
sprouting rates in 2020-2021 and 2021-2022 were 0.51%~99.22%
(Mean + SD: 35.38% =+ 0.29%) and 0.00%~97.47% (Mean + SD:
33.63% + 0.25%), respectively, indicating abundant phenotypic
variation in both environments. Analysis of variance showed that
the spike sprouting rates were significant across genotypes,
environments, and their interactions, and the heritability was 0.88
(P-value < 0.001; Supplementary Table S4), indicating that wheat PHS
resistance was mainly determined by genotypes and modified
by environments.

10.3389/fpls.2023.1118777

3.2 GWAS for PHS resistance index in 629
wheat varieties

The phenotypes for PHS resistance index in 629 wheat varieties in the
two years were used to associate with all the SNP markers using six multi-
locus GWAS approaches. As a result, a total of 22 QTNs were stably
detected by multiple methods or environments, and their proportions of
total phenotypic variation explained by each QTN (R?) was from
0.00001% to 38.1121% (Table 1). Among these loci, two loci, AX-
95124645 on chromosome 3D and AX-109028892 on chromosome 5D,
had been identified by Zhou et al. (2017), while other loci were identified
for the first time, especially, AX-111020384 on chromosome 3A and AX-
95124645 on chromosome 3D were identified by all the seven methods in
the two software packages in all the two environments, and their R values
were 12.8% and 38.1%, respectively (Figure 2), indicating the major QTN
around AX-95124645 for wheat PHS resistance. As compared with the
GWAS results for PHS resistance in 272 local varieties genotyped by
Wheat660 SNP markers (Zhou et al., 2017), the resistance allele of AX-
95124645 was found to be associated with only red-grained varieties in
Zhou et al. (2017) and with both red-grained and white-grained varieties
in this study. In linkage disequilibrium analysis, the LD decay distance in
association mapping population was found to be 2.192Mb. This means
that 2.192 Mb upstream and downstream regions of the significant QTL,
that is QSS.TAF9-3D (chr3D:569.167Mb ~ 573.551Mb), may be used to
mine candidate genes.

3.3 KASP marker of QSS.TAF9-3D

Using the KASP marker around a major QTN AX-95124645, two
haplotypes were found in the 629 wheat varieties(Figure 3), namely
QSS.TAF9-3D-TT and QSS.TAF9-3D-CC, which is completely
consistent with the results of marker AX-95124645 obtained from
629 wheat varieties scanned by 660K chip. We also used T-A cloning
and sequencing of the amplified products of Zhoumail8 (QSS.TAF9-
3D-CC) and Shengsimai (QSS.TAF9-3D-TT), which there was only a
T/C allele mutation at 26 bp in the amplified products of Zhoumai 18
and Shengmai. Using EnsemblPlants database (http://plants.ensembl.
org/index.html), it was found that the above T/C alleles in the
amplified products are exactly consistent with those at the physical
location of marker AX-95124645 (Figure 3). QSS.TAF9-3D-TT and
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Frequency for PHS resistance. (A—C): frequencies of PHS resistance for 629 varieties at 2020-2021, 2021-2022, and their BLUP values, respectively; 1 to
5: highly resistance, resistance, middle resistance, susceptibility, and highly susceptibility, respectively.
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TABLE 1 Significant QTNs for PHS resistance index detected by multiple multi-locus GWAS methods in two environments.

Marker Position (Mb) Methods —log10(P-value) R? (%) Reference

QTNI 1A AX-110511933 12.859 3 2,4 5.355~5.3664 0.5869~0.6868

QTN2 1A AX-109827872 545.852 3 3,5 4.0032~6.3289 0.4481~1.0833

QTN3 2A AX-94559008 21.208 13 1,4 4.2459~6.2418 1.1445~2.3547

QTN4 2A AX-109841146 716.163 1 1,24 4.3164~6.8085 0.0652~1.6299

QTIN5 3A AX-111020384 10.159 1,23 1~7 4.3263~36.0266 3.1246~12.8725

QTN6 5A AX-111670342 569.991 L3 3 4.4955~5.8588 0.00001~0.7568

QTN7 6A AX-110436229 590.075 2 1,2 4.4267~4.7556 0.7937~1.1922

QTNS8 6A AX-94617998 608.969 3 1,2,5 3.8013~5.7994 0.4255~0.7798

QTN9 7A AX-110492207 20.188 13 1~5,7 3.8284~24.2651 0.6686~3.1246

QTN10 1B AX-94741303 3.181 2,3 1,2,4,6 4.5796~8.3543 0.5791~1.886

QTN11 2B AX-111503288 765.578 L3 1,4,6 5.5209~12.389 1.4445~3.8593

QTN12 3B AX-111703196 16.805 2,3 3,4,7 3.9937~9.9601 0.8401~1.7144

QTNI13 5B AX-94487480 469.826 L3 2,5 3.7531~4.4669 0.49~1.1933

QTN14 5B AX-108862465 511.697 1 1,2,4 5.009~8.1404 0.0551~1.318

QTNI15 5B AX-108932221 536.054 3 2,4 4.4563~5.4732 0.2389~0.3166

QTN16 1D AX-94392070 58.087 1,3 4,5,6 4.0595~7.3964 0.915~1.557

QTN17 1D AX-110332164 458.942 2,3 1,4 4.1832~5.235 0.6609~0.905

QTNI18 3D AX-95124645 571.359 1,23 1~7 5.0794~48.9107 4.9300~38.1121a Zhou et al, 2017
QTN19 4D AX-108916749 19.09 L3 2,3 4.2911~6.551 0.00001~3.6386

QTN20 5D AX-109028892 45711 1 1,56 10.6444~27.0823 7.2283~11.2516 Zhou et al,, 2017
QTN21 6D AX-109716798 143583 3 3,5 3.9008~5.7168 0.4118~0.5253

QTN22 6D AX-109293498 472.945 1,3 1,2,3,4,6 4.2369~7.5779 0.5624~1.7955

Env 1, 2, and 3: the PHS resistance indices in 2020-2021, 2021-2022, and their BLUP values, respectively. Methods 1 to 7: mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, ISIS EM-BLASSO,
pKWmEB, and IITVmrMLM, respectively. “a”: the R” value is greater than 30%.
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QSS.TAF9-3D-CC haplotypes could be distinguished by KASP
molecular marker, having 261 QSS.TAF9-3D-TT haplotypes and
368 QSS.TAF9-3D-CC haplotypes in 629 wheat varieties.

The KASP marker was used to conduct haplotype analysis in 629
wheat varieties. The results were listed in Supplementary Table S5. The
results showed that QSS.TAF9-3D-TT haplotype had significantly higher
PHS resistance than QSS.TAF9-3D-CC haplotype. TAF9-3D-TT/CC
markers accounted for 36.390% and 45.850% of phenotypic variation in
SS_2021 and SS_2022, respectively. The QSS.TAF9-3D-TT haplotype was
negatively correlated with the PHS resistance index, indicating that the
QSS.TAF9-3D-TT haplotype was mainly distributed in varieties with high
PHS resistance. Among 261 varieties with QSS.TAF9-3D-TT haplotype,
253 and 252 were resistant to spike sprouting in 2020-2021 and 2021-2022,
respectively. Among the 38 white-grained resistant PHS varieties, 11 white
grained varieties with QSS.TAF9-3D-TT showed PHS resistance
(Supplementary Table S6). We considered that PHS resistance in the
remaining 27 varieties was dependent on other related genes or QTLs.

3.4 RNA-seq analysis

3.4.1 Validation of GWAS results by RNA-seq
Differentially expressed genes (DEGs) in QSS.TAF9-3D region
were listed in Table 2. The results showed the existence of differential
expressions between the PHS resistance varieties (Baipimai and
Shengsimai) and the PHS susceptibility variety (Zhoumail8),
indicating the association of QSS.TAF9-3D with PHS resistance.
With the increase of treatment time, the number of DEGs between
the two resistant varieties and one susceptible variety significantly
increased. The number of DEGs in the two resistance varieties of
Baipimai and Shengsimai with different seed coat colors increased
first and then decreased with the increase of treatment time,
indicating the association of seed coat color with PHS resistance.

4.1 Candidate genes around QSS.TAF9-3D

In the region of QTL QSS.TAF9-3D, there were 56 genes. Using the
RNA-seq datasets, 9 genes were found to be differentially expressed, as
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Sequence alignment of KASP marker amplification products at significant locus of QSS.TAF9-3D. (A) sequence alignment of the amplified products of
Shengsimai and Zhoumail8; (B) Sequence alignment of Shengsimai amplification products from EnsemblPlants database; (C) Sequence alignment of
Zhoumail8 amplification products from EnsemblPlants database; (D) Red and blue: varieties with QSS.TAF9-3D-TT and QSS.TAF9-3D-CC haplotypes,
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signal values of FAM and HEX, respectively.

shown in Figure 4. Among them, TraesCS3D01G466100 GO
annotation showed that it encodes ubiquitin protein transferase, and
the NCBI conserved domain analysis showed that it encodes RING-
type E3 ubiquitin ligase. In recent years, a large number of studies have
shown that RING E3 is widely involved in abiotic stress processes (Cho
et al., 2017). TraesCS3D01G468500 gene encodes initiation
transcription factor TAF9. At present, the function of TAF9 has been
reported in both human and yeast (Frontini et al, 2005; Knoll et al,
2020). However, TAF9 has limited studied in plants. Thus, the two
genes were regarded as new candidate genes in this study.

4 Discussion

Genome-wide association studies for wheat PHS resistance in 629
local and improved varieties (lines) in Henan Province, China provide
new insights into the genetic foundation of the important trait and
variety breeding. In previous studies, most of them focused on the
PHS resistance in southwest and southern wheat zones in China, for
example, Zhou et al. (2017) found that the landraces in Chinese wheat
zones with high precipitation showed strong PHS resistance in 717
Chinese wheat landraces, but there were few studies on PHS
resistance in northern wheat zones with less rain. In this study, 373
local varieties before 1950 and 256 improved varieties after 1950 in
Henan Province were included. It was found that genes for wheat PHS
resistance were gradually lost in the process of selection and breeding
for yield, quality, and other important breeding traits. The main
reason is that most of the loci or genes for wheat PHS resistance are
found to be linked with red seed coat, while most improved varieties
are white grained, resulting in the generally reduced PHS resistance of
modern improved varieties. In this study, 38 white grain resistant
varieties were observed, and this study provides a material basis for
breeders to select white-grained resistant varieties for PHS.

Zhou et al. (2017) found three major PHS resistant QTLs on
chromosomes 3A, 3D, and 5D, in which the marker AX-95124645
was located on Chr 3D. In this study, AX-95124645 locus was
identified by several multi-locus methods in two environments to
be associated with PHS resistance, especially, its R? value was 38%.
However, this study provides three new results compared with
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TABLE 2 No. of differentially expressed genes in QSS.TAF9-3D region.

Baipimai vs Zhoumai18

10.3389/fpls.2023.1118777

Comparison

Shengsimai vs Zhoumai18

Baipimai vs Shengsimai

Down 0 2 0
Total 1 2 1
48h Up 6 7 5
Down 1 5 2
Total 7 12 7
96h Up 3 3 4
Down 8 9 0
Total 11 12 4

Time point indicates sample treatment time; DEG indicates differentially expressed genes, Up indicates that "vs" is less expressed in the former than in the latter, and Down indicates that "vs" is more

expressed in the former.

previous studies. First, resistant and susceptible PHS varieties were
used to conduct RNA-seq analysis, and 9 DEGs were found in the
2.192 Mb upstream and downstream intervals of AX-95124645, and
two candidate genes were predicted. Then, the KASP marker
QSS.TAF9-3D-TT/CC was developed based on the AX-95124645
locus. The results showed that QSS.TAF9-3D-TT/CC haplotypes
with only one T/C base allele variation could completely distinguish
all the PHS resistant and susceptible varieties. Finally, all the
QSS.TAF9-3D-TT haplotypes were found in 11 white-grained
varieties to be resistant for PHS.

It should be point out that the KASP marker QSS.TAF9-3D
developed in this study is valuable. First, the KASP marker was used
to select 11 white-grained resistant varieties with excellent haplotype
QSS.TAF9-3D-TT, indicating its possibility of marker-assisted
selection in white-grained varieties for PHS resistance. But among
629 varieties, the numbers of white-grained varieties resistant to spike

germination in the two years was 38. Because Wheat PHS resistance
controlled by multiple genes (Imtiaz et al., 2008), so we consider the
spike sprouting resistance of the remaining 27 white grain varieties
was caused by other genes or QTLs. Second, this marker uses high-
throughput KASP genotyping technology. In particular, KASP is
based on conventional PCR and fluorescence detection, which can
meet the requirements of low, medium, and high throughput
genotyping on the basis of ordinary laboratory operation (Semagn
et al, 2014), indicating that it is flexible, cheap, high-throughput,
automated, and accurate. As we known, KASP, as an alternative to
TaqMan, is similar in principle to TagMan (also based on terminal
fluorescence reading), but it differs from TagMan technology in the
following ways. It uses a universal probe, which can be used with a
variety of different gene-specific primers, without the need for probe
synthesis for each specific site, which greatly reduces the reagent cost
of the experiment (Majeed et al., 2018). In conclusion, QSS.TAF9-3D-
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TT/CC markers can be used for higher throughput and more accurate
screening of PHS resistance varieties, especially in white-grained
varieties, which provides a strong theoretical basis for molecular
mark-assisted breeding.

Myb10 is an important regulatory gene in the pathway of pigment
synthesis. The earliest MYB-type transcription factor identified was
maize Colorless 1 (Paz-Ares et al,, 1987). In wheat, Tamybl0 gene is
believed to be related to seed dormancy, because it may affect the
sensitivity of wheat embryo to ABA. Lang et al. (2021) found that
mybl0-D gene, as a candidate gene for PHS-3D, not only regulates the
synthesis of flavonoid compounds, but also increases the ABA
concentration in developing seeds, thus inhibiting the wheat PHS. In
this study, the candidate gene TraesCS3D01G468400 was found to be
consistent with Tamyb10-D in the annotation information of 61 genes
in the QSS.TAF9-3D region. Although Himi et al. (2011) designed the
Tamybl0-D marker to screen PHS resistance materials, Tamybl0-D is
an important regulatory gene involved in the pigment synthesis of
wheat seed coat so that its corresponding molecular marker is mainly
used to screen the PHS resistance of red-grained wheat varieties,
indicating its difficulty in the application of white-grained varieties.
We identified two differentially expressed genes TraesCS3D01G466100
and TraesCS3D01G468500 in the QSS.TAF9-3D region using RNA-
seq. TraesCS3D01G466100 GO annotation shows that it encodes
C3HC4-RING fifinger E3 ubiquitin ligase. Yang et al. (2016)
identified AtAIRP4 in Arabidopsis, which is induced by ABA and
other stress treatments. AfAIRP4 encodes a cellular protein with a
C3HC4-RING finger domain in its C-terminal side, which has in vitro
E3 ligase activity. A large number of studies have shown that the
dormancy period of wheat seeds is negatively correlated with the degree
of PHS (Flintham et al., 2000; Biddulph et al., 2008; Shu et al., 2016),
and ABA plays a crucial role in promoting seed dormancy and
inhibiting seed germination (Martinez-Andtjar et al,, 2011). Thus, it
is possible for TraesCS3D01G466100 to affect PHS resistance by
regulating seed ABA levels. TraesCS3D01G468500 gene encodes the
initiation transcription factor TAF9. Yang (2015) cloned a gene
CpTAF9 in the woody ornamental plant Chimonanthus melanoides.
Salt stress, high temperature or ABA application promoted the
expression of CpTAF9 gene in leaves. ABA is an important hormone
regulating seed dormanness. TraesCS3D01G468500 gene may affect
wheat spike germination by indirectly regulating seed ABA content. We
selected these two genes as new PHS resistance candidate genes.

5 Conclusion

We firstly identified 38 white-grained varieties with PHS resistance
in 629 wheat varieties (lines) from Henan Province, China, stably
identified a major QTN AX-95124645 on chromosome 3D, and
developed its KASP marker QSS.TAF9-3D-TT/CC. This marker
haplotype can effectively detect the PHS resistance materials,
especially, all the white-grained varieties with QSS.TAF9-3D-TT
haplotype are resistant to spike sprouting, which can be used for
molecular mark-assisted breeding of spike sprouting resistance in
white-grained varieties. This study provides material and
methodological basis for breeding wheat PHS resistance in the future.
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Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology Ministry of Agriculture and
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Introduction: Isoflavones are the secondary metabolites synthesized by the
phenylpropanoid biosynthesis pathway in soybean that benefits human and plant health.

Methods: In this study, we have profiled seed isoflavone content by HPLC in 1551
soybean accessions grown in Beijing and Hainan for two consecutive years (2017
and 2018) and in Anhui for one year (2017).

Results: A broad range of phenotypic variations was observed for individual and total
isoflavone (TIF) content. The TIF content ranged from 677.25 to 5823.29 ug gt in the
soybean natural population. Using a genome-wide association study (GWAS) based on
6,149,599 single nucleotide polymorphisms (SNPs), we identified 11,704 SNPs
significantly associated with isoflavone contents; 75% of them were located within
previously reported QTL regions for isoflavone. Two significant regions on
chromosomes 5 and 11 were associated with TIF and malonylglycitin across more than
3 environments. Furthermore, the WGCNA identified eight key modules: black, blue,
brown, green, magenta, pink, purple, and turquoise. Of the eight co-expressed modules,
brown (r = 0.68***), magenta (r = 0.64***), and green (r = 0.51**) showed a significant
positive association with TIF, as well as with individual isoflavone contents. By combining
the gene significance, functional annotation, and enrichment analysis information, four
hub genes Glyma.11G108100, Glyma.11G107100, Glyma.11G106900, and
Glyma.11G109100 encoding, basic-leucine zipper (bZIP) transcription factor, MYB4
transcription factor, early responsive to dehydration, and PLATZ transcription factor
respectively were identified in brown and green modules. The allelic variation in
Glyma.11G108100 significantly influenced individual and TIF accumulation.

Discussion: The present study demonstrated that the GWAS approach, combined
with WGCNA, could efficiently identify isoflavone candidate genes in the natural
soybean population.

KEYWORDS

soybean, isoflavone, genome-wide association study (GWAS), WGCNA, RNA-Seq
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1 Introduction

Soybean isoflavones are of great importance because of their
positive impact on human health, including the treatment and
prevention of various types of cancers (prostate cancer, breast
cancer etc.) (Nielsen and Williamson, 2007; Phetnoo et al., 2013),
cardiovascular disease, osteoporosis, and metabolic syndrome (Cai
et al., 2004; Mozaffarian et al., 2011; Bradbury et al., 2014). In plants,
isoflavones can resist adverse stress and promote the growth and
reproduction of rhizobia, root nodule development, and nitrogen
fixation (Sugiyama et al., 2017; Darwish et al.,, 2022; Wang et al.,
2022). Soybean seed isoflavones contain 12 components which are
divided into four groups, daidzein, genistein, glycitein (aglycones),
daidzin, glycitin, genistin (glycosides), acetyldaidzin, acetylglycitin,
and acetylgenistin (acetylglycosides), and malonyldaidzin,
malonylglycitin, malonylgenistin (malonylglycosides) (Kim et al,
2014; Azam et al,, 2021). The malonyldaidzin, malonylglycitin, and
malonylgenistin are the most abundant form of the isoflavones, while
aglycones are present in very small amounts but have higher
phytoestrogenic activity and more bioavailability in humans
(Nielsen and Williamson, 2007; Park et al., 2016; Azam et al,,
2020). Improving soybean isoflavone content through conventional
breeding and metabolic engineering is a complementary way for the
biofortification of food crops to combat isoflavone deficiency (De
Steur et al., 2014).

Isoflavone content is controlled by multiple genes, and there are
often complex interaction mechanisms among various enzyme genes
in its synthesis path, which jointly determine isoflavone biosynthesis.
The metabolic pathway controlling the synthesis of soybean
isoflavones in plants is very complex (Wang and Murphy, 1994;
Bennett et al., 2004). The synthesis of soybean isoflavones starts from
the synthesis of phenylpropionic acid. The original substrate of
isoflavones is phenylalanine, which is catalyzed by phenylalanine
lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarin
coenzyme A ligase (4CL), respectively to produce p-coumaroyl
COA, Isoliquiritigenin chalcone and chalcone were formed with
malonyl COA of 3 molecules under the co catalysis of chalcone
synthase (CHS) and chalcone reductase (CHR). Isoliquiritigenin
chalcone is catalyzed by chalcone isomerase (CHI) to produce
liquiritigenins (Ralston et al, 2005), which are then catalyzed by
isoflavone synthase genes (IFSI and IFS2) to their corresponding
isoflavones (Akashi et al., 1999; Jung et al., 2000; Dhaubhadel et al.,
2003). Among isoflavone synthase genes, IFS2 has a higher expression
level in the embryo and seed pods, while IFSI has higher expression in
roots and seed coats. In addition, various kind of MYB transcription
factors (CCA1, R2R3, and R1) helps in isoflavone accumulation by
regulating the isoflavone synthesis genes related to phenylpropanoid
biosynthesis pathways (Bian et al, 2018; Sarkar et al, 2019). The
R2R3-MYB transcription factor GmMYB29, GmMYBI102,
GmMYB280, MYB502, GmMYBI100 regulate isoflavone
accumulation by activating the IFS1, IFS2 and CHS8 enzymes (Yan
etal, 2015; Sarkar et al., 2019). The CCA1-like R1 MYB transcription
factor GmMYBI33 regulates isoflavone biosynthesis by activating the
promoters of CHS8 and IFS2 (Bian et al., 2018). A dual-function
C2H2 zinc-finger transcription factor GmZFP7 has recently been
shown to divert metabolic flow to isoflavone by increasing the
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expression of GmC4H, Gm4CL, GmCHS, GmCHR, and GmIFS2
while decreasing the expression of GmF3H1 in soybean seeds. (Feng
et al., 2023).

Soybean isoflavones are quantitative traits regulated by multiple
genes. The genotyping by sequencing (GBS) approach and SNP
genotyping have substantially expanded the application of GWAS
to soybeans (Lee et al,, 2015; Sonah et al., 2015; Torkamaneh and
Belzile, 2015). Natural population based GWAS have more
recombination events than biparental populations, resulting in less
short LD regions and higher precision and accuracy of marker
phenotype association (Duan et al., 2022; Liang et al., 2022). These
approaches have been utilized in GWAS to identify genomic regions
associated with resistance to biotic and abiotic stress, including
soybean cyst nematode, abiotic stress, seed quality traits such as oil
and protein content, and yield related traits (Hwang et al., 2014; Cao
et al, 2017; Zeng et al,, 2017; Zhao et al., 2017). Furthermore,
weighted gene co-expression network (WGCNA) analysis is a
powerful tool for describing gene expression correlations using
microarray or RNA-seq data. The WGCNA is an effective method
to narrow down the range of candidate genes (Schaefer et al., 2018).
Recently, GWAS combined with WGCNA has been applied to
identify the genes responsible for salt tolerance in maize, silique
length in Brassica napus, and root growth dynamics in rapeseed (Li
etal, 2021; Ma et al,, 2021; Wang et al,, 2021). However, no study has
used the GWAS and the WGCNA to explain the gene networks and
molecular regulatory mechanisms that govern isoflavone regulation
in soybean. Therefore, the present study aimed to identify the
genomic regions and candidate genes involved in the isoflavone
biosynthesis pathway using GWAS coupled with WGCNA in 1551
soybean accessions.

2 Research materials and methods
2.1 Planting materials

A total of 1551 natural population panel of diverse soybean
accessions was used in this study. The accessions were selected
from a mini core collection developed by Qiu et al. (2009) based on
their availability at the soybean genetic resource research group of the
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
(CAAS). The origin and number of soybean accessions from each
country are Brazil (8), Canada (6), China (1283), Colombia (1), East
Europe (3), Germany (4), Italy (2), Japan (21), Nigeria (1), North
Korea (1), Russia (22), South Korea (4), Thailand (1), USA (194).
Information on each accession is also presented in Supplementary
Table 1. Field trials were conducted at three locations (Changping,
Beijing (40" 13’ N and 116 12’ E), Sanya, Hainan (18 24’ N and 109’
5" E) in 2017 and 2018, while, for only 2017, planted in Hefei, Anhui
(33°61" N and 117 °E). A randomized incomplete block design was
employed to sow the cultivars, with the various planting sites serving
as replications. The cultivars were replicated across different sites due
to a large number of cultivars and the scarcity of available land
resources. Each cultivar’s seeds were sown in 3 m long rows with
0.5 m inter-row and 0.1 m intra-row spacing. Fertilizer containing
30 kg/ha, 40 kg/ha, and 60 kg/ha of nitrogen, phosphorous, and
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potassium was applied to the field, respectively. From planting until
harvest, the advised agronomic procedures were used. The seeds from
each accession were pooled and used for soybean seed isoflavone
determination (Azam et al., 2020; Azam et al., 2021).

2.2 Extraction and quantification
of isoflavones

The isoflavone contents were determined using a previously
reported method (Sun et al, 2011) and as follows. Around 20 g
seeds of each accession were grounded by a cyclone mill (IKA, A10
basic, Rheinische, Germany). Approximately 0.1 g of the finely
ground powder was placed in a 10 mL tube pre-filled with 5 mL of
a solution containing 0.1% (v/v) acetic acid and 70% (v/v) ethanol and
shaken for 12 hours on a twist mixer (TM - 300, AS ONE, Osaka,
Japan). The mixture was centrifuged for 10 min at 6000 rpm, and the
supernatant was filtered using a 0.2 um YMC Duo filter (YMC Co.,
Kyoto, Japan). Samples were stored at 4°C prior to use and measured
for isoflavones using an Agilent HPLC system (Agilent 1260, Santa
Clara, CA, USA) having YMC ODS AM-303 column (250 mm x
4.6 mm LD., S-5 um, 120 A, YMC Co., Kyoto, Japan). The
identification and quantification of the isoflavone contents were
carried out using the following isoflavone standards: daidzein (DE),
glycitein (GLE), genistein (GE), daidzin (D), glycitin (GL), genistin
(G), malonyldaidzin (MD), malonylglycitin (MGL), malonylgenistin
(MG), acetyldaidzin (AD), acetylglycitin (AGL), and acetylgenistin
(AG). The detected isoflavone component concentrations were
determined using the formula provided by (Sun et al., 2011).

2.3 Association analysis and candidate gene
prediction and annotation

A total number of 6,149,599 SNPs with MAF 0.01 from previously
sequenced 2,241 soybean accessions were used for GWAS analysis (Li
et al,, 2022). GWAS was performed using the compressed mixed linear
model (c(MLM) in the GAPIT program (Lipka et al., 2012), where the
first three principal component analysis (PCA) values were included as
fixed effects in the mixed model to correct for stratification. The
threshold for significance was estimated to be approximately P = 1 x
10°° (that is, 1/6,149,599) by the Bonferroni correction method. These
6,149,599 SNPs were distributed equally across the 20 soybean
chromosomes (one SNP per 154.3 bp). The extent of model fitting was
confirmed using a quantile-quantile (Q-Q) plot for the expected and
obtained p-values of each SNP to evaluate how much a significant result
was produced by the analysis than expected by chance. The Manhattan
plots for the isoflavone contents for each of the five environments were
generated from GAPIT (Lipka et al., 2012). The Phytozome database
(http://www.phytozome.org/) and the SoyBase database (http://www.
soybase.org/) were used to predict and annotate the candidate genes.

2.4 RNA seg-analysis

The four soybean varieties Luheidou (LHD), Zhonghuang 13
(ZH13), Zhonghuang 35 (ZH35), and Nanhuizao (NHZ), varying in
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their isoflavone contents, were used as materials for RNA seq-analysis.
About 20 seeds were harvested at different developmental stages (R5 to
R8) after 7 days intervals. Each sample was set with three replications
for isoflavone contents, and RNA extraction. The total RNAs were
extracted using the TRIzol method. The high-quality RNA samples
were sent for RNA-seq analysis to BLgene co. LTD (Beijing, China).
HISAT2 was used to map the clean RNA-seq data onto the reference
genome (Kim et al., 2015). FeatureCounts calculated the
transcriptional abundance and gene expression count matrix (Liao
etal, 2014). TPM (transcripts per million) was used as the expression
level, and log10 (TPM + 1) was used to standardize it (Feng et al., 2023).

2.5 Weighted gene co-expression
network analysis

The transcriptome data of (LHD, NHZ, ZH13, and ZH35) at different
seed developmental stages was used for the WGCNA. The R WGCNA
(v1.47) package was used to create the weighted gene co-expression
network (Langfelder and Horvath, 2008). The gene expression values
were imported into WGCNA to construct co-expression modules using
the automatic network construction with default settings. The phenotype
data was imported into the WGCNA package, and correlation-based
connections between phenotypes and gene modules were computed
using the default settings. Pearson’s correlation between all gene pairs
was first determined to create a matrix of adjacencies. Using the TOM
similarity function, this matrix was transformed into a Topological
Overlap Matrix (TOM) (Zhang and Horvath, 2005). Finally, modules
on the dendrogram were discovered using the R package
dynamicTreeCut method (Langfelder et al., 2008). The hub genes are
usually characterized by high gene significance (GS, association between
gene expression and traits) and module membership (MM, correlation
between gene expression and module eigengene) values.

2.6 Gene ontology analysis

The GO enrichment analysis was performed to identify GO
categories based on the SoyBase database (http://soybase.org/) and
detect those over/under-represented. The significant enriched GO
terms (P < 0.05) for biological processes, the cellular process, and
molecular processes were further identified using PlantRegMap
online tool (http://plantregmap.cbi.pku.edu.cn/go_result.php) and
were visualized REVIGO (http://revigo.irb.hr/) (Supek et al., 2011).

3 Results

3.1 Variations among seed isoflavone
contents in soybean natural population

The individual and TIF content was profiled in soybean
accessions collected from distinct regions of China and other
countries that have grown across three locations over two years.
The mean TIF content of the 1551 soybean natural population grown
across five environments is presented in Supplementary Table 1. The
mean TIF content of the soybean accessions ranged from 677.25 to
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5823.29 ug g'1 (Azam et al., 2020; Azam et al., 2021). The individual
and TIF content of the soybean accessions in five environments are
presented in Figure 1. The correlations among the five environments
for individual and TIF content are presented in Supplementary
Figure 1. The higher levels of daidzin (172.7 ug g'*), genistin (290 ug
g!) were observed in Hainan 2018, followed by Hainan 2017 (daidzin
(152.4 pg g, genistin (218.8 pg g'). The higher levels of
malonyldaidzin (888.3 pg g'), malonylgenistin (1574.1pg g'), and
TIF (3012.3 pg g'') were observed in Beijing 2017, followed by Hainan
2017 (malonyldaidzin (789.9 ug g'), malonylgenistin (1183.1 pg g'*)
and TIF (2685.5 ug g''), while Anhui 2017 showed lower levels of these
components (malonyldaidzin (589.2 ug g'), malonylgenistin (984.1 ug
g'l) and TIF (2153.1 pg g'l). While higher levels of malonylglycitin
(208.2 ug g™) were observed in Hainan 2017, followed by Anhui 2017
(168.2 ug g'') and lowest in Hainan 2018 (100.1 ug g™") (Figure 1).
Furthermore, Pearson’s correlation was performed to reveal the
association between individual and TIF content. TIF content was
positively associated with individual isoflavone contents (Figure 2).
Malonylgenistin, Malonyldaidzin, genistin, and daidzin showed the
highest correlation with TIF content (r = 0.93***, r = 0.91***, r =
0.89***, r = 0.82***, respectively), followed by malonylglycitin and

10.3389/fpls.2023.1120498

glycitin (r = 0.48***, r = 0.47***, respectively). Furthermore,
glycosides showed highly significant positive correlations with their
respective malonylglycosides, genistin and malonylgenistin (r =
0.90***), daidzin and malonyldaidzin (r = 0.89***), and glycitin and

malonylglycitin (r = 0.87%**) (Figure 2).

3.2 GWAS reveals candidate loci underlying
seed isoflavone contents

The phenotypic and genotypic data for 1551 diverse soybean
accessions were used for GWAS analysis to identify putative loci
associated with isoflavone contents in the individual environment
(Hainan 2017, Hainan 2018, Beijing 2017, Beijing 2018, and Anhui
2017). The principal component analysis (PCA) was used for
scanning the population stratification. The landrace group
overlapped partially with the improved cultivar group, indicating a
broad genetic variation within this set of 1551 soybean accessions.
Meanwhile, clear clustering based on planting region was observed;
the first two PCs accounted for 40.47% of the genetic variation,
demonstrating that the first two PCs uncommonly affect the mapping
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TIF

Correlation analysis among the individual and TIF content in soybean seeds. *, **, and *** represent significance at p < 0.05, 0.01, and 0.001,

respectively. D, Daidzin; GL, Glycitin; G, Genistin; MD, Malonyldaidzin; MGL,

population. The average distance over which LD decays to half of its
maximum value in soybean was 97kb (Supplementary Figures 2A, B)
GWAS identified 11704 genome-wide distributed SNPs that were
significantly (-logl0P>6) associated with isoflavone levels with P-
values ranging from 9.99e-07 to 7.30e-30, the detailed information is
listed in Supplementary Table 2. Of the 11704 significant SNPs, 53.8%
were annotated in intergenic regions, 19.9% in the upstream and
downstream regions, 14% in the intron regions. Herein, 8786 SNPs
(75%) identified from the GWAS were located within the regions of
previously reported QTLs for isoflavone in soybean. In total, 2,018
known genes were mapped by the significant SNPs, which include 29
isoflavone biosynthesis enzymes and 18 MYB transcription factors; of
these, 417, 261, 316, 428, 307, 847, and 230 genes were significantly
associated with daidzin, glycitin, genistin, malonyldaidzin,
malonylgenistin, malonylglycitin, and TIF content, respectively
(Supplementary Tables 2, 3). Interestingly, a significant region
(8147595 to 8315102bp) has been identified on chromosome 11
across four environments associated with malonylglycitin and
contains 18 genes (Figures 3A, B), including eight enzymes and
three transcription factors MYB (1), bZIP (1) and zinc finger (1).
Furthermore, a significant region on Chromosome 5 related to TIF
content across three environments spanning from 41760764 to
42234431 bp encoded 63 candidate genes (Figures 3C, D),
including seven key enzymes, and four transcription factors WD40
(1), bZIP (1) and zinc finger (2) (Supplementary Tables 4, 5).

3.3 Identification of key modules possessing
candidate genes via WGCNA

The transcriptome data of different seed developmental stages
were used for WGCNA, which provided new genomic insights to
better understand the molecular mechanisms underlying isoflavone
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accumulation in soybean seed. The candidate genes identified in the
linkage disequilibrium regions obtained through GWAS analysis were
blast searched against the transcriptome data of soybean cultivars
collected at different seed developmental stages (R5-R8) to identify
common genes for WGCNA analysis. The WGCNA identified eight
key modules, namely, black, blue, brown, green, magenta, pink,
purple, and turquoise, possessing 253, 1251, 316, 426, 82, 113, 83,
and 1275 genes, respectively (Figures 4A, B).

To further investigate the modules containing genes involved in
isoflavone synthesis, Pearson’s correlation analysis was performed. Of
the eight co-expressed modules, brown (r = 0.68***), magenta (r =
0.64***), and green (r = 0.51**) showed significant positive
correlations with TIF, as well as with individual isoflavone contents.
The sample dendrogram and trait heat map also revealed that the
isoflavone accumulation is higher at late seed developmental stages
(Figures 4C, D). Furthermore, genes in brown, magenta, and green
modules showed higher expression patterns at late seed
developmental stages. It is already established that higher isoflavone
accumulations were observed in the soybean seeds at later
developmental stages (Figure 5). To further investigate the
relationship of genes in each of the positive modules with
isoflavone synthesis, the correlation between gene significance (GS)
and module membership (MM) was carried out. Out of 8 modules,
the brown module showed a highly positive correlation with TIF (r =
0.71***), followed by magenta (r = 0.7***), while the lowest was
observed in the green module (r = 0.44***) (Supplementary Figure 3).
Furthermore, the GO enrichment analysis revealed that the brown
module possesses genes linked to defense response to bacterium
(GO:0042742), defense response to other organism (GO:0098542),
defense response, incompatible interaction (GO:0009814), response
to reactive oxygen species (GO:0000302). Similarly, genes present in
the magenta module are response to stress (GO:0006950), response to
water deprivation (GO:0009414), cellular response to red or far-red
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(A) Manhattan plots of malonylglycitin for five environments, (B) Venn plot for malonylglycitin genes in five environments, (C) Manhattan plots of TIF
content for five environments, (D) Venn plot for TIF content genes in five environments.

light (GO:0071489) enzyme regulator activity (GO:0030234), and
genes in the green module are involved in the regulation of
circadian rhythm (GO:0042752), response to UV (GO:0009411),
response to salt stress (GO:0009651) are engaged in biotic and
abiotic stresses (Figures 6A-D). Current results suggest that genes
present in the above-mentioned modules, i.e., brown, magenta, and
green, might be involved in isoflavone accumulation in soybean seeds;
they can play important roles in the isoflavone synthesis pathway.
Further, gene annotation and gene significance information were
used to identify hub genes in brown, magenta, and green modules.
Based on the gene significance and annotation information, 27 key
candidate genes were identified and are presented in Table 1. These
candidate genes include 9 transcription factors (4 MYB, 3 WD40, 1
WRKY, and 1 Zinc finger) and 12 key enzymes, including glucosyl
transferases, isoflavone 2’-hydroxylase, etc. Two MYB transcription
factors in the brown module, MYBI133 (Glyma.07G066100) and
MYBI21 (Glyma.15G176000) were identified as positive regulators
of isoflavone biosynthesis from previous studies. While in the
magenta module, we identified a cytochrome P450 enzyme,
isoflavone 2’-hydroxylase (Glyma.16G149300), a positive regulator
of isoflavones. Interestingly, four hub genes Glyma.11G108100,
Glyma.11G107100, Glyma.11G106900, and Glyma.11G109100
encoding, basic-leucine zipper (bZIP) transcription factor, MYB4
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transcription factor, early responsive to dehydration, and PLATZ
transcription factor, respectively were identified in brown and green
modules. These four hub (Glyma.11G108100, Glyma.11G107100,
Glyma.11G106900, and Glyma.11G109100) genes were also present
in the candidate region located on Chromosome 11 identified by
GWAS and matched with previously identified QTLs. Isoflavones
play an important role in biotic and abiotic stress in plants, and MYB
transcription factors help in isoflavone accumulation by regulating
key isoflavone synthase genes (IFSI and IFS2). Therefore, the
identified transcription factors (bZIP, MYB, PLATZ) might be
involved in the isoflavone accumulation as they are also helping
plants to adapt to various kinds of biotic and abiotic stresses.

3.4 Natural variation in Glyma.11G108100
contributes to isoflavone accumulation

Natural variation of Glyma.11G108100 was identified by using the
soybean functional genomics & breeding (SoyFGB v 2.0) database
(https://stgb.rmbreeding.cn/) (Zheng et al, 2022). Based on the
phytozome database (https://phytozome-nextjgi.doe.gov), the coding
region of Glyma.11G108100 contains 813 nucleotides, which encodes
270 amino acids with two exons and one intron. The causal SNP was in
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the exonic region (Figure 7A). Williams82 provided the reference allele ~ The regional distribution of these alleles showed significant differences
(C), while the polymorphism that occurred resulted in the alternate  in malonylglycitin content in NR, HR, and SR regions. The distribution
allele (G). The geographical distribution of C and G alleles is presented ~ of the C allele in NR, HR, and SR regions is 37%, 63%, and 72%,
in Figure 7B. The overall variation revealed significant differences in  respectively, while the G allele is 63%, 37%, and 28%, respectively. The C
malonylglycitin content for C and G alleles which have 58% and 42% allele had higher malonylglycitin content in NR (150.4ug g'), HR
distribution in the soybean germplasm. The C allele had higher  (222.1ug g'), and SR (159.7ug g') compared with the G allele
malonylglycitin content (183.3 ug g) than the G allele (126.8 pg g').  (Figure 7C). Furthermore, the natural variation of Glyma.11G108100
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(A) GO categories for biological process, brown module. (B) GO categories for molecular function, brown module. (C) Categories for biological process,

green module. (D) Categories for biological process, magenta module.

also influenced the TIF content accumulation in soybean seed. The
overall variation revealed significant differences in TIF content for C and
G alleles, with 58% and 42% distribution in the soybean germplasm. The
C allele had higher TIF content (2568.8 pg g) compared with the G
allele (2387.7 pg g'). The regional distribution of these alleles showed
significant differences for TIF content in the HR region, while non-
significant differences for NR and SR regions. The distribution of the C
allele in the HR region is 63%, and the G allele is 37%. The TIF content
of the C allele (2793.9 ug g') was significantly higher than the G allele
(2509.5 pg g) in the HR region (Figure 7D). The polymorphism in
Glyma.11G108100 showed significant variations for individual and TIF
content across soybean germplasm and regions, suggesting that it might
be associated with isoflavone accumulation in soybean.

4 Discussion

Soybean isoflavones are of great interest owing to their beneficial
impact on plant and human health. Increasing isoflavone concentration
in soybean is one of the major goals of soybean breeders; however, the
narrow genetic diversity of the soybean germplasm constrains the
improvement of the isoflavones (Qiu et al,, 2009). In this study, we
determined the isoflavone composition from the core germplasm of
soybean accessions grown at three locations for two years. Significant
differences were observed for individual and TIF content across different
environments. The TIF concentration ranged from 677.25 to 5823.29 ug
g across all the examined environments. Malonylglycosides were
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identified as major isoflavone contents (Zhang et al., 2014; Azam et al.,
2020). Furthermore, glycosides and malonylglycosides showed positive
associations as they are synthesized by the action of key isoflavone
biosynthesis enzymes (glucosyltransferase and malonyltransferase) via
common branches in the phenylpropanoid pathway (Yu and Mcgonigle,
2005; Barnes, 2010). The phenotypic variation of individual and TIF
content demonstrated significant differences among the soybean
accessions, growing environments, and growing years which suggests
that genetic as well as environmental factors affect isoflavone
accumulation in soybean seeds (Tsai et al., 2007; Rasolohery et al.,
2008; Zhang et al., 2014; Pei et al., 2018; Azam et al., 2023).
Isoflavones are typical quantitative traits; many QTLs for
individual and TIF content distributed on most soybean
chromosomes have been detected in several studies (Akond et al.,
2013; Pei et al,, 2018; Wu et al,, 2020). Alternatively, genome-wide
association studies (GWAS) based on the use of natural population, in
contrast to linkage analysis using bi-parental populations, have more
extensive recombination events and, thus, result in less short LD
segments leading to increased resolution and accuracy of marker-
phenotype associations (Duan et al., 2022; Liang et al., 2022). In this
study, hundreds of SNPs loci were found to be significantly associated
with the individual and TIF content, and they were distributed across
all 20 chromosomes of soybean. Furthermore, many of these SNPs
were simultaneously identified in five environments, as observed in
malonylglycitin, malonylgenistin, and four environments like total
isoflavones, malonyldaidzin, malonylgenistin, malonylglycitin, etc.
Most of the significantly associated SNPs were observed for
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TABLE 1 List of candidate genes for individual and TIF content in brown, magenta, and green modules.

Gene ID Module GS.TIF p.GS.TIF Annotation
Glyma.11G108100 Brown 0.77 1.73E-08 Basic-leucine zipper (bZIP) transcription factor
Glyma.17G085800 Brown 0.76 2.02E-06 S-adenosyl-L-methionine methyltransferase
Glyma.07G100700 Brown 0.76 2.20E-06 MYB transcription factor

Glyma.08G125100 Brown 0.75 3.10E-06 Cytochrome P450

Glyma.06G094900 Brown 0.74 5.79E-06 ‘WDA40 repeat family protein
Glyma.11G109100 Brown 0.74 1.73E-08 PLATZ transcription factor
Glyma.11G106900 Brown 0.72 1.26E-05 Early responsive to dehydration
Glyma.13G069200 Brown 0.67 0.000121 Zinc finger family protein
Glyma.14G054400 Brown 0.66 0.000115 UDP-glucosyl transferase

Glyma.07G066100 Brown 0.62 0.000402 MYB transcription factor MYB133
Glyma.18G114800 Brown 0.61 0.000646 ‘WD40 repeat family protein
Glyma.15G053400 Brown 0.61 0.000851 Potassium transporter

Glyma.08G240800 Brown 0.59 0.000852 WRKY transcription factor
Glyma.15G176000 Brown 0.56 0.001773 MYB transcription factor MYBI121
Glyma.03G187700 Green 0.79 3.37E-07 UDP-glucosyl transferase

Glyma.15G048600 Green 0.69 4.01E-05 Mitogen-activated protein kinase
Glyma.01G092100 Green 0.64 0.000216 Zinc finger family protein
Glyma.10G216200 Green 0.55 0.002163 Heat shock protein

Glyma.06G171900 Green 0.53 0.003656 4-coumarate-coa ligase

Glyma.02G267800 Green 0.46 0.013048 WDA40 repeat protein

Glyma.05G242800 Green 0.41 0.034201 ATP-dependent RNA helicase A-like protein
Glyma.11G107100 Green 0.44 0.018738 Transcription factor MYB4
Glyma.04G243600 Green 0.36 0.041367 MYB transcription factor

Glyma.17G112400 Magenta 0.66 0.000119 N-acetylglucosaminyltransferase
Glyma.14G198600 Magenta 0.65 0.000161 UDP-Glycosyltransferase

Glyma.02G263500 Magenta 0.61 0.000663 S-adenosyl-L-methionine methyltransferases
Glyma.16G149300 Magenta 0.42 0.023798 Isoflavone 2’-hydroxylase

GS.TTF, gene significance total isoflavone; p.GS.TIF, significant level.

individual and total isoflavones, underlying that a high portion of the
G. max genome has genomic regions harboring many candidate SNPs
based on the wide diverse panel of soybean accessions utilized in the
current study. These findings are consistent with a previous study
(Wu et al,, 2020) that found significant loci for both individual and
TIF content across several sites in a natural soybean population.
WGCNA analysis is an effective technique for categorizing the
transcriptome data into co-expression modules to reduce the number
of potential candidate genes (Hollender et al., 2014; Greenham et al.,
2017; Schaefer et al., 2018; Azam et al., 2023). In this study, out of eight
modules, three modules were positively associated with individual and
TIF content. The expression patterns of genes present in these modules
revealed a higher expression at the late seed development stage.
Previous studies also reported that the accumulation of isoflavones
mainly occurs at the late stage of seed development (Jung et al., 2000;
Dhaubhadel et al., 2003; Cheng et al., 2008; Azam et al,, 2023). In
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addition, GO analysis of these modules revealed some significant GO
terms related to biotic and abiotic stresses. Devi et al. (2020) reported
that biotic and abiotic stresses lead to an increase isoflavone
accumulation by the upregulation of IFSI and IFS2 genes at the late
seed development stage. While Uchida et al. (2020) also found that
isoflavone O-methyltransferase (GmIOMT1I) produced higher levels of
glycitein in response to biotic stress. Therefore, identifying genes
involved in these modules would provide new genetic resources to
better understand the isoflavone biosynthesis pathway.

We have identified 27 key candidate genes from brown, magenta,
and green modules. Brown module, which showed the highest
correlation and gene significance with TIF, contained a cytochrome
P450 (Glyma.08G125100). A branch of the phenylpropanoid pathway
synthesizes isoflavones. Cytochrome P450 play a crucial role in the
biosynthesis of a wide variety of plant metabolites (Chapple, 1998).
Isoflavone synthases (IFSI and IFS2) are the members of cytochrome
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P450 super gene family and play a vital role in isoflavone accumulation
by producing the 2-hydroxyisoflavone by catalyzing the flavone
intermediates (naringenin and liquiritigenin) (Liu et al., 2002). The
MYB transcription factors play crucial roles in the regulation of
isoflavone biosynthesis by triggering the gene expression of key
isoflavonoid biosynthesis enzymes, namely, chalcone isomerases
(CHI), chalcone synthases (CHS), isoflavone synthases (IFSI! and
IFS2) (Yi et al,, 2010; Chu et al., 2017). We identified MYB133 as a
key candidate gene which was previously identified by (Bian et al.,
2018) as a positive regulator of isoflavones through genome-wide
analysis, which directly activates IFS2 and CHS8 and promotes
isoflavone accumulation. We identified the natural variation of
MYBI33 in the natural population of soybean, which showed a
higher TIF level across different regions, landraces, and cultivars
(Supplementary Figure 4). Furthermore, the natural variation in the
bZIP transcription factor caused synonymous mutation which
revealed significant variations for individual and total isoflavones.
Previous studies also reported that the synonymous mutations are not
just silent but also cause a significant change in the phenotypes (Chu
and Wei, 2020; Shen et al,, 2022). The bZIP transcription factors are
previously reported to control isoflavone accumulation by interacting
with MYB transcription factors and play an important role against
biotic and abiotic stresses in soybean (He et al., 2020; Yang et al., 2020;
Anguraj Vadivel et al., 2021). In addition to MYB and bZIP
transcription factors, different zinc-finger transcription factors, such
as GmZFP7, GmVOZs, and GsVOLZs, regulate isoflavone and stress
responses in soybean. (Rehman et al,, 2021; Feng et al., 2023)

These findings suggest that most identified key candidate genes
include enzymes and transcription factors from important gene families
involved in isoflavone biosynthesis. So, the functional validation of these
key candidate genes will provide new insights to better understand the
molecular mechanism underlying isoflavone biosynthesis.
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5 Conclusion

The current study demonstrated that GWAS analysis using
natural populations is an effective strategy for identifying candidate
genes in soybean. Based on the GWAS and WGCNA, 3 modules were
identified that were highly correlated with individual and TIF content.
Within these modules, we have identified four key candidate genes
and the natural variation present in Glyma.11G108100 revealed that it
influences the isoflavone accumulation in soybean seed. The
functional analysis of Glyma.11G108100 will provide new insight to
better understand the isoflavone synthesis pathway.

Data availability statement

The original contributions presented in the study are publicly
available. This data can be found here: https://sfgb.rmbreeding.cn/
search/gemplasm, 16NF1005_1006, corresponding accession name
Dongnong4hao, ID number ZDD00023.

Author contributions

MAz, Investigation, data curation, visualization, writing-original
draft preparation, SZ, L], supervision, conceptualization, methodology,
investigation, data curation, MAh, KGAB, JQ, resources, formal analysis,
software, YF, YL, LQ and BL resources, project administration,
conceptualization, writing-review, and editing, JS, funding acquisition,
supervision, conceptualization, visualization, writing-review, and
editing. All authors contributed to the article and approved the
submitted version.

170 frontiersin.org


https://sfgb.rmbreeding.cn/search/gemplasm
https://sfgb.rmbreeding.cn/search/gemplasm
https://doi.org/10.3389/fpls.2023.1120498
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Azam et al.

Funding

This research was funded by the National Natural Science
Foundation of China (32272178, 32161143033, 31671716, and
32001574) and the Agricultural Science and Technology Innovation
Program of CAAS (2060203-2).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

Akashi, T., Aoki, T., and Ayabe, S. (1999). Cloning and functional expression of a
cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in
biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121, 821-828. doi:
10.1104/pp.121.3.821

Akond, M., Richard, B., Ragin, B., Herrera, H., Kaodi, U., Akbay, C., et al. (2013).
Additional quantitative trait loci and candidate genes for seed isoflavone content in
soybean. J. Agric. Sci. 5, 20. doi: 10.5539/jas.v5n11p20

Anguraj Vadivel, A. K., Mcdowell, T., Renaud, J. B., and Dhaubhadel, S. (2021). A
combinatorial action of GmMYBI176 and GmbZIP5 controls isoflavonoid biosynthesis in
soybean (Glycine max). Commun. Biol. 4, 356. doi: 10.1038/s42003-021-01889-6

Azam, M., Zhang, S., Abdelghany, A. M., Shaibu, A. S., Feng, Y., Li, Y., et al. (2020).
Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in
China. Food Res. Int. 130, 108957. doi: 10.1016/j.foodres.2019.108957

Azam, M., Zhang, S., Huai, Y., Abdelghany, A. M., Shaibu, A. S., Qi, J., et al. (2023).
Identification of genes for seed isoflavones based on bulk segregant analysis sequencing in
soybean natural population. Theor. Appl. Genet. 136, 1-12. doi: 10.1007/500122-023-
04258-5

Azam, M., Zhang, S., Qi, J., Abdelghany, A. M., Shaibu, A. S., Ghosh, S,, et al. (2021).
Profiling and associations of seed nutritional characteristics in Chinese and USA soybean
cultivars. J. Food Compos. Anal. 98, 103803. doi: 10.1016/j.jfca.2021.103803

Barnes, S. (2010). The biochemistry, chemistry and physiology of the isoflavones in
soybeans and their food products. Lymphat. Res. Biol. 8, 89-98. doi: 10.1089/
1rb.2009.0030

Bennett, J. O., Yu, O., Heatherly, L. G., and Krishnan, H. B. (2004). Accumulation of
genistein and daidzein, soybean isoflavones implicated in promoting human health, is
significantly elevated by irrigation. J. Agric. Food Chem. 52, 7574-7579. doi: 10.1021/
jf049133k

Bian, S, Li, R, Xia, S., Liu, Y,, Jin, D., Xie, X,, et al. (2018). Soybean CCA1-like MYB
transcription factor GmMYB133 modulates isoflavonoid biosynthesis. Biochem. Biophys.
Res. Commun. 507, 324-329. doi: 10.1016/j.bbrc.2018.11.033

Bradbury, K. E., Appleby, P. N., and Key, T. J. (2014). Fruit, vegetable, and fiber intake
in relation to cancer risk: Findings from the European prospective investigation into
cancer and nutrition (EPIC). Am. J. Clin. Nutr. 100, 394S-398S. doi: 10.3945/
ajen.113.071357

Cai, D. J., Zhao, Y., Glasier, J., Cullen, D., Barnes, S., Turner, C. H., et al. (2004).
Comparative effect of soy protein, soy isoflavones, and 17B-estradiol on bone metabolism
in adult ovariectomized rats. J. Bone Miner. Res. 20, 828-839. doi: 10.1359/JBMR.041236

Cao, Y., Li, S, Wang, Z., Chang, F., Kong, J., Gai, ]., et al. (2017). Identification of major
quantitative trait loci for seed oil content in soybeans by combining linkage and genome-
wide association mapping. Front. Plant Sci. 8, 1222. doi: 10.3389/fpls.2017.01222

Chapple, C. (1998). Molecular-genetic analysis of plant cytochrome P450-dependent
monooxygenases. Annu. Rev. Plant Biol. 49, 311. doi: 10.1146/annurev.arplant.49.1.311

Cheng, H., Yu, O., and Yu, D. (2008). Polymorphisms of IFSI and IFS2 gene are
associated with isoflavone concentrations in soybean seeds. Plant Sci. 175, 505-512. doi:
10.1016/j.plantsci.2008.05.020

Chu, S., Wang, J., Zhu, Y., Liu, S., Zhou, X,, Zhang, H., et al. (2017). An R2R3-type
MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PloS
Genet. 13, €1006770. doi: 10.1371/journal.pgen.1006770

Chu, D., and Wei, L. (2020). Genome-wide analysis on the maize genome reveals weak
selection on synonymous mutations. BMC Genom. 21, 333. doi: 10.1186/512864-020-
6745-3

Darwish, D. B. E,, Ali, M., Abdelkawy, A. M., Zayed, M., Alatawy, M., and Nagah, A.
(2022). Constitutive overexpression of GsIMaT2 gene from wild soybean enhances

Frontiers in Plant Science

10.3389/fpls.2023.1120498

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1120498/

full#supplementary-material

rhizobia interaction and increase nodulation in soybean (Glycine max). BMC Plant
Biol. 22, 431. doi: 10.1186/s12870-022-03811-6

De Steur, H., Mogendj, J. B., Blancquaert, D., Lambert, W., van der Straeten, D., and
Gellynck, X. (2014). “Genetically modified rice with health benefits as a means to reduce
micronutrient malnutrition: global status, consumer preferences, and potential health
impacts of rice biofortification,” in Wheat and rice in disease prevention and health (San
Diego, Academic Press). 283-299.

Devi, M. K. A., Kumar, G., and Giridhar, P. (2020). Effect of biotic and abiotic elicitors
on isoflavone biosynthesis during seed development and in suspension cultures of
soybean (Glycine max 1.). 3 Biotech. 10, 98. doi: 10.1007/s13205-020-2065-1

Dhaubhadel, S., Mcgarvey, B. D., Williams, R., and Gijzen, M. (2003). Isoflavonoid
biosynthesis and accumulation in developing soybean seeds. Plant Mol. Biol. 53, 733-743.
doi: 10.1023/B:PLAN.0000023666.30358.ae

Duan, Z., Zhang, M., Zhang, Z., Liang, S., Fan, L., Yang, X,, et al. (2022). Natural allelic
variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol. J. 20,
1807-1818. doi: 10.1111/pbi.13865

Feng, Y., Zhang, S., Li, J., Pei, R, Tian, L., Qi, J., et al. (2023). Dual-function C2H2-type
zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in
soybean. New Phytol. 237, 1794-1809. doi: 10.1111/nph.18610

Greenham, K., Guadagno, C. R., Gehan, M. A., MocKler, T. C., Weinig, C., Ewers, B. E.,
et al. (2017). Temporal network analysis identifies early physiological and transcriptomic
indicators of mild drought in Brassica rapa. Elife 6, €29655. doi: 10.7554/eLife.29655.026

He, Q. Cai, H., Bai, M., Zhang, M., Chen, F., Huang, Y., et al. (2020). A soybean bZIP
transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in
plant. Int. J. Mol. Sci. 21, 4701. doi: 10.3390/ijms21134701

Hollender, C. A., Kang, C., Darwish, O., Geretz, A., Matthews, B. F., Slovin, J., et al.
(2014). Floral transcriptomes in woodland strawberry uncover developing receptacle and
anther gene networks. Plant Physiol. 165, 1062-1075. doi: 10.1104/pp.114.237529

Hwang, E. Y., Song, Q,, Jia, G., Specht, J. E,, Hyten, D. L., Costa, ], et al. (2014). A
genome-wide association study of seed protein and oil content in soybean. BMC Genom.
15, 1. doi: 10.1186/1471-2164-15-1

Jung, W., Yu, O,, Lau, S. M. C,, O'keefe, D. P., Odell, J., Fader, G., et al. (2000).
Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of
isoflavones in legumes. Nat. Biotechnol. 18, 208. doi: 10.1038/72671

Kim, J. K, Kim, E. H., Park, L., Yu, B. R,, Lim, J. D., Lee, Y. S., et al. (2014). Isoflavones
profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with
metabolic pathways. Food Chem. 153, 258-264. doi: 10.1016/j.foodchem.2013.12.066

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: A fast spliced aligner with
low memory requirements. Nat. Methods 12, 357-360. doi: 10.1038/nmeth.3317

Langfelder, P., and Horvath, S. (2008). WGCNA: An r package for weighted correlation
network analysis. BMC Bioinform. 9, 559. doi: 10.1186/1471-2105-9-559

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical
cluster tree: The dynamic tree cut package for r. Bioinform 24, 719-720. doi: 10.1093/
bioinformatics/btm563

Lee, Y. G, Jeong, N, Kim, J. H,, Lee, K,, Kim, K. H., Pirani, A., et al. (2015).
Development, validation and genetic analysis of a large soybean SNP genotyping array.
Plant J. 81, 625-636. doi: 10.1111/tpj.12755

Li, Y. H,, Qin, C,, Wang, L., Jiao, C,, Hong, H., Tian, Y., et al. (2022). Genome-wide
signatures of the geographic expansion and breeding of soybean. Sci. China Life Sci. 19, 1-6.
doi: 10.1007/s11427-022-2158-7

Li, K., Wang, J., Kuang, L., Tian, Z., Wang, X, Dun, X,, et al. (2021). Genome-wide
association study and transcriptome analysis reveal key genes affecting root growth
dynamics in rapeseed. Biotechnol. Biofuels. 14, 178. doi: 10.1186/s13068-021-02032-7

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2023.1120498/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1120498/full#supplementary-material
https://doi.org/10.1104/pp.121.3.821
https://doi.org/10.5539/jas.v5n11p20
https://doi.org/10.1038/s42003-021-01889-6
https://doi.org/10.1016/j.foodres.2019.108957
https://doi.org/10.1007/s00122-023-04258-5
https://doi.org/10.1007/s00122-023-04258-5
https://doi.org/10.1016/j.jfca.2021.103803
https://doi.org/10.1089/lrb.2009.0030
https://doi.org/10.1089/lrb.2009.0030
https://doi.org/10.1021/jf049133k
https://doi.org/10.1021/jf049133k
https://doi.org/10.1016/j.bbrc.2018.11.033
https://doi.org/10.3945/ajcn.113.071357
https://doi.org/10.3945/ajcn.113.071357
https://doi.org/10.1359/JBMR.041236
https://doi.org/10.3389/fpls.2017.01222
https://doi.org/10.1146/annurev.arplant.49.1.311
https://doi.org/10.1016/j.plantsci.2008.05.020
https://doi.org/10.1371/journal.pgen.1006770
https://doi.org/10.1186/s12864-020-6745-3
https://doi.org/10.1186/s12864-020-6745-3
https://doi.org/10.1186/s12870-022-03811-6
https://doi.org/10.1007/s13205-020-2065-1
https://doi.org/10.1023/B:PLAN.0000023666.30358.ae
https://doi.org/10.1111/pbi.13865
https://doi.org/10.1111/nph.18610
https://doi.org/10.7554/eLife.29655.026
https://doi.org/10.3390/ijms21134701
https://doi.org/10.1104/pp.114.237529
https://doi.org/10.1186/1471-2164-15-1
https://doi.org/10.1038/72671
https://doi.org/10.1016/j.foodchem.2013.12.066
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1111/tpj.12755
https://doi.org/10.1007/s11427-022-2158-7
https://doi.org/10.1186/s13068-021-02032-7
https://doi.org/10.3389/fpls.2023.1120498
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Azam et al.

Liang, Q., Chen, L., Yang, X, Yang, H., Liu, S., Kou, K,, et al. (2022). Natural variation
of Dt2 determines branching in soybean. Nat. Commun. 13, 6429. doi: 10.1038/s41467-
022-34153-4

Liao, Y., Smyth, G. K, and Shi, W. (2014). featureCounts: An efficient general purpose
program for assigning sequence reads to genomic features. Bioinform 30, 923-930. doi:
10.1093/bioinformatics/btt656

Lipka, A. E., Tian, F., Wang, Q,, Peiffer, J., Li, M., Bradbury, P. ], et al. (2012). GAPIT:
Genome association and prediction integrated tool. Bioinform 28, 2397-2399. doi:
10.1093/bioinformatics/bts444

Liu, C. ., Blount, J. W, Steele, C. L., and Dixon, R. A. (2002). Bottlenecks for metabolic
engineering of isoflavone glycoconjugates in arabidopsis. Proc. Natl. Acad. Sci. 99, 14578-
14583. doi: 10.1073/pnas.212522099

Ma, L., Zhang, M., Chen, J., Qing, C., He, S., Zou, C,, et al. (2021). GWAS and WGCNA
uncover hub genes controlling salt tolerance in maize (Zea mays 1.) seedlings. Theor. Appl.
Genet. 134, 3305-3318. doi: 10.1007/s00122-021-03897-w

Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C., and Hu, F. B. (2011). Changes in
diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364,
2392-2404. doi: 10.1056/NEJMoal014296

Nielsen, I. L. F., and Williamson, G. (2007). Review of the factors affecting
bioavailability of soy isoflavones in humans. Nutr. Cancer. 57, 1-10. doi: 10.1080/
01635580701267677

Park, M. R,, Seo, M. ], Lee, Y. Y., and Park, C. H. (2016). Selection of useful germplasm
based on the variation analysis of growth and seed quality of soybean germplasms grown
at two different latitudes. Plant Breed. Biotechnol. 4, 462-474. doi: 10.9787/
PBB.2016.4.4.462

Pei, R,, Zhang, ], Tian, L., Zhang, S., Han, F.,, Yan, S,, et al. (2018). Identification of
novel QTL associated with soybean isoflavone content. Crop J. 6, 244-252. doi: 10.1016/
1.¢j.2017.10.004

Phetnoo, N., Werawatganon, D., and Siriviriyakul, P. (2013). Genistein could have a
therapeutic potential for gastrointestinal diseases. Thai J. Gastroenterol. 2013, 120-125.

Qiu, L., Li, Y., Guan, R, Liu, Z, Wang, L., and Chang, R. (2009). Establishment,
representative testing and research progress of soybean core collection and mini core
collection. Acta Agron. Sin. 35, 571-579. doi: 10.3724/SP.J.1006.2009.00571

Ralston, L., Subramanian, S., Matsuno, M., and Yu, O. (2005). Partial reconstruction of
flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone
isomerases. Plant Physiol. 137, 1375-1388. doi: 10.1104/pp.104.054502

Rasolohery, C. A., Berger, M., Lygin, A. V., Lozovaya, V. V., Nelson, R. L., and Dayde, J.
(2008). Effect of temperature and water availability during late maturation of the soybean
seed on germ and cotyledon isoflavone content and composition. J. Sci. Food Agric. 88,
218-228. doi: 10.1002/jsfa.3075

Rehman, S. U., Qanmber, G., Tahir, M. H. N,, Irshad, A., Fiaz, S., Ahmad, F., et al.
(2021). Characterization of vascular plant one-zinc finger (VOZ) in soybean (Glycine max
and Glycine soja) and their expression analyses under drought condition. PloS One 16,
€0253836. doi: 10.1371/journal.pone.0253836

Sarkar, M., Watanabe, S., Suzuki, A., Hashimoto, F., and Anai, T. (2019). Identification
of novel MYB transcription factors involved in the isoflavone biosynthetic pathway by
using the combination screening system with agroinfiltration and hairy root
transformation. Plant Biotechnol. 36, 241-251. doi: 10.5511/plantbiotechnology.19.1025a

Schaefer, R. J., Michno, J. M., Jefters, J., Hoekenga, O., Dilkes, B., Baxter, L, et al. (2018).
Integrating coexpression networks with GWAS to prioritize causal genes in maize. Plant
Cell. 30, 2922-2942. doi: 10.1105/tpc.18.00299

Shen, X,, Song, S., Li, C., and Zhang, J. (2022). Synonymous mutations in representative
yeast genes are mostly strongly non-neutral. Nature 606, 725-731. doi: 10.1038/s41586-
022-04823-w

Sonah, H., O'donoughue, L., Cober, E., Rajcan, L, and Belzile, F. (2015). Identification
of loci governing eight agronomic traits using a GBS-GWAS approach and validation by
QTL mapping in soyabean. Plant Biotechnol. J. 13, 211-221. doi: 10.1111/pbi.12249

Frontiers in Plant Science

172

10.3389/fpls.2023.1120498

Sugiyama, A., Yamazaki, Y., Hamamoto, S., Takase, H., and Yazaki, K. (2017).
Synthesis and secretion of isoflavones by field-grown soybean. Plant Cell Physiol. 58,
1594-1600. doi: 10.1093/pcp/pcx084

Sun, J., Sun, B. L, Han, F. X,, Yan, S. R, Yang, H., and Akio, K. (2011). Rapid HPLC
method for determination of 12 isoflavone components in soybean seeds. Agric. Sci. China
10, 70-77. doi: 10.1016/S1671-2927(11)60308-8

Supek, F., Bosnjak, M., Skunca, N., and Smuc, T. (2011). REVIGO summarizes and
visualizes long lists of gene ontology terms. PloS One 6, €21800. doi: 10.1371/
journal.pone.0021800

Torkamaneh, D., and Belzile, F. (2015). Scanning and filling: ultra-dense SNP
genotyping combining genotyping-by-sequencing, SNP array and whole-genome
resequencing data. PloS One 10, e0131533. doi: 10.1371/journal.pone.0131533

Tsai, H. S.,, Huang, L. J., Lai, Y. H,, Chang, J. C, Lee, R. S,, and Chiou, R. Y. (2007).
Solvent effects on extraction and HPLC analysis of soybean isoflavones and variations of
isoflavone compositions as affected by crop season. J. Agric. Food Chem. 55, 7712-7715.
doi: 10.1021/jf071010n

Uchida, K., Sawada, Y., Ochiai, K., Sato, M., Inaba, J., and Hirai, M. Y. (2020). Identification
of a unique type of isoflavone O-methyltransferase, GmIOMT1, based on multi-omics analysis
of soybean under biotic stress. Plant Cell Physiol. 61, 1974-1985. doi: 10.1093/pcp/pcaall2

Wang, J., Fan, Y., Mao, L., Qu, C,, Lu, K., Li, ], et al. (2021). Genome-wide association
study and transcriptome analysis dissect the genetic control of silique length in Brassica
napus l. Biotechnol. Biofuels. 14, 214. doi: 10.1186/s13068-021-02064-z

Wang, H. J.,, and Murphy, P. A. (1994). Isoflavone content in commercial soybean
foods. J. Agric. Food Chem. 42, 1666-1673. doi: 10.1021/jf00044a016

Wang, X., Song, S., Wang, X,, Liu, J., and Dong, S. (2022). Transcriptomic and
metabolomic analysis of seedling-stage soybean responses to PEG-simulated drought
stress. Int. J. Mol. Sci. 23, 6869. doi: 10.3390/ijms23126869

Wu, D, Li, D,, Zhao, X., Zhan, Y., Teng, W., Qiu, L., et al. (2020). Identification of a
candidate gene associated with isoflavone content in soybean seeds using genome-wide
association and linkage mapping. Plant J. 104, 950-963. doi: 10.1111/tp;j.14972

Yan, J., Wang, B., Zhong, Y., Yao, L., Cheng, L., and Wu, T. (2015). The soybean R2R3
MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis.
Plant Mol. Biol. 89, 35-48. doi: 10.1007/s11103-015-0349-3

Yang, Y., Yu, T. F., Ma, J., Chen, J., Zhou, Y. B., Chen, M,, et al. (2020). The soybean
bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in
transgenic plants. Int. J. Mol. Sci. 21, 670. doi: 10.3390/ijms21020670

Yi, J,, Derynck, M. R, Li, X, Telmer, P., Marsolais, F., and Dhaubhadel, S. (2010). A
single-repeat MYB transcription factor, GmMYBI176, regulates CHS8 gene expression and
affects isoflavonoid biosynthesis in soybean. Plant J. 62, 1019-1034. doi: 10.1111/j.1365-
313X.2010.04214.x

Yu, O., and Mcgonigle, B. (2005). Metabolic engineering of isoflavone biosynthesis.
Adv. Agron. 86, 147-190. doi: 10.1016/S0065-2113(05)86003-1

Zeng, A., Chen, P., Korth, K., Hancock, F., Pereira, A., Brye, K,, et al. (2017). Genome-
wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines.
Mol. Breed. 37, 30. doi: 10.1007/s11032-017-0634-8

Zhang, J., Ge, Y., Han, F,, Li, B,, Yan, S, Sun, J,, et al. (2014). Isoflavone content of
soybean cultivars from maturity group 0 to VI grown in northern and southern China.
J. Am. Oil Chem. Soc 91, 1019-1028. doi: 10.1007/s11746-014-2440-3

Zhang, B., and Horvath, S. (2005). A general framework for weighted gene co-
expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 17. doi: 10.2202/1544-
6115.1128

Zhao, X., Teng, W., Li, Y., Liu, D., Cao, G., Li, D., et al. (2017). Loci and candidate genes
conferring resistance to soybean cyst nematode HG type 2.5. 7. BMC Genom. 18, 462. doi:
10.1186/512864-017-3843-y

Zheng, T., Li, Y., Li, Y., Zhang, S., Ge, T., Wang, C,, et al. (2022). A general model for"
germplasm-omics” data sharing and mining: A case study of SoyFGB v2. 0. Sci. Bull. 67,
1716-1719. doi: 10.1016/j.scib.2022.08.001

frontiersin.org


https://doi.org/10.1038/s41467-022-34153-4
https://doi.org/10.1038/s41467-022-34153-4
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/bts444
https://doi.org/10.1073/pnas.212522099
https://doi.org/10.1007/s00122-021-03897-w
https://doi.org/10.1056/NEJMoa1014296
https://doi.org/10.1080/01635580701267677
https://doi.org/10.1080/01635580701267677
https://doi.org/10.9787/PBB.2016.4.4.462
https://doi.org/10.9787/PBB.2016.4.4.462
https://doi.org/10.1016/j.cj.2017.10.004
https://doi.org/10.1016/j.cj.2017.10.004
https://doi.org/10.3724/SP.J.1006.2009.00571
https://doi.org/10.1104/pp.104.054502
https://doi.org/10.1002/jsfa.3075
https://doi.org/10.1371/journal.pone.0253836
https://doi.org/10.5511/plantbiotechnology.19.1025a
https://doi.org/10.1105/tpc.18.00299
https://doi.org/10.1038/s41586-022-04823-w
https://doi.org/10.1038/s41586-022-04823-w
https://doi.org/10.1111/pbi.12249
https://doi.org/10.1093/pcp/pcx084
https://doi.org/10.1016/S1671-2927(11)60308-8
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1371/journal.pone.0131533
https://doi.org/10.1021/jf071010n
https://doi.org/10.1093/pcp/pcaa112
https://doi.org/10.1186/s13068-021-02064-z
https://doi.org/10.1021/jf00044a016
https://doi.org/10.3390/ijms23126869
https://doi.org/10.1111/tpj.14972
https://doi.org/10.1007/s11103-015-0349-3
https://doi.org/10.3390/ijms21020670
https://doi.org/10.1111/j.1365-313X.2010.04214.x
https://doi.org/10.1111/j.1365-313X.2010.04214.x
https://doi.org/10.1016/S0065-2113(05)86003-1
https://doi.org/10.1007/s11032-017-0634-8
https://doi.org/10.1007/s11746-014-2440-3
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1186/s12864-017-3843-y
https://doi.org/10.1016/j.scib.2022.08.001
https://doi.org/10.3389/fpls.2023.1120498
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

& frontiers | Frontiers in

‘ @ Check for updates

OPEN ACCESS

EDITED BY

Zhenyu Jia,

University of California, Riverside,
United States

REVIEWED BY

Liu Jinyang,

Jiangsu Academy of Agricultural Sciences
(JAAS), China

Suhong Bu,

South China Agricultural University, China
Melaku Gedil,

International Institute of Tropical
Agriculture (IITA), Nigeria

*CORRESPONDENCE
Jin Zhang
zhangjin@njau.edu.cn

"These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

RECEIVED 21 September 2022
AccepTED 01 February 2023
PUBLISHED 15 February 2023

CITATION

Wen Y-J, Wu X, Wang S, Han L, Shen B,
Wang Y and Zhang J (2023) Identification
of QTN-by-environment interactions for
yield related traits in maize under
multiple abiotic stresses.

Front. Plant Sci. 14:1050313.

doi: 10.3389/fpls.2023.1050313

COPYRIGHT

© 2023 Wen, Wu, Wang, Han, Shen, Wang
and Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science

TvpPE Original Research
PUBLISHED 15 February 2023
D01 10.3389/fpls.2023.1050313

|ldentification of QTN-by-
environment interactions for
yield related traits in maize
under multiple abiotic stresses

Yang-Jun Wen™*, Xinyi Wu', Shengmeng Wang", Le Han*,
Bolin Shen*, Yuan Wang* and Jin Zhang™*

*College of Science, Nanjing Agricultural University, Nanjing, China, ?Key Laboratory of Crop Genetics
and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China

Introduction: Quantitative trait nucleotide (QTN)-by-environment interactions
(QEls) play an increasingly essential role in the genetic dissection of complex
traits in crops as global climate change accelerates. The abiotic stresses, such as
drought and heat, are the major constraints on maize yields. Multi-environment
joint analysis can improve statistical power in QTN and QEI detection, and further
help us to understand the genetic basis and provide implications for
maize improvement.

Methods: In this study, 3VmrMLM was applied to identify QTNs and QEls for three
yield-related traits (grain yield, anthesis date, and anthesis-silking interval) of 300
tropical and subtropical maize inbred lines with 332,641 SNPs under well-watered
and drought and heat stresses.

Results: Among the total 321 genes around 76 QTNs and 73 QEls identified in this
study, 34 known genes were reported in previous maize studies to be truly
associated with these traits, such as ereb53 (GRMZM2G141638) and thx12
(GRMZM2G016649) associated with drought stress tolerance, and hsftf27
(GRMZM2G025685) and myb60 (GRMZM2G312419) associated with heat stress.
In addition, among 127 homologs in Arabidopsis out of 287 unreported genes, 46
and 47 were found to be significantly and differentially expressed under drought vs
well-watered treatments, and high vs. normal temperature treatments,
respectively. Using functional enrichment analysis, 37 of these differentially
expressed genes were involved in various biological processes. Tissue-specific
expression and haplotype difference analysis further revealed 24 candidate genes
with significantly phenotypic differences across gene haplotypes under different
environments, of which the candidate genes GRMZM2G064159,
GRMZM2G146192, and GRMZM2G114789 around QEls may have gene-by-
environment interactions for maize yield.

Discussion: All these findings may provide new insights for breeding in maize for
yield-related traits adapted to abiotic stresses.

KEYWORDS

multiple abiotic stresses, QTN-by-environment interaction, GWAS, 3VmrMLM, yield-
related traits, maize
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Introduction

Maize (Zea mays) is a vital and strategic cereal crop cultivated in a
variety of agroecological zones across the world. Growing on non-
irrigated fields exposes them to various environmental stresses, such
as drought stress, heat stress, and their combination. Heat waves
mixed with acute and persistent drought stress can have disastrous
consequences for agriculture, as well as economic and social stability,
especially affecting drylands utilized for grain production across the
world (Ciais et al., 2005; Mittler, 2006; Zandalinas et al., 2020). The
vulnerability of maize to drought and heat stresses can lead to yield
losses of 15-20% every year (Khan et al., 2016). Such losses are likely
to rise as a result of climate change, especially in emerging nations
with rising maize consumption (Campos et al., 2006). To fulfill the
future demands of the world’s rising population, high yielding and
drought tolerant maize cultivars are seen as the most economically
feasible answer (Monneveux et al., 2006).

Due to the poor heritability of grain production (Edmeades et al.,
1999) and the likelihood of drought occurring at several growth
periods, direct selection for grain yield under drought circumstances
is frequently challenging (Chen et al., 2012). The use of secondary
traits in breeding programs has become one of the finest methods for
choosing the genotypes that perform the best under stress situations
(Parajuli et al., 2018). Due to the separation of male and female
flowers, maize is more vulnerable to drought than any other crop,
especially when temperatures are rising above 35°C (Huang et al,
2006). Consequently, the rise in anthesis-silking interval is one of the
primary effects of drought stress in maize (Binziger et al., 2000). The
anthesis date keeps a strong genetic correlation with grain yield and
remains highly heritable and cost-effective to measure (Cerrudo et al.,
2018). These studies demonstrated that the secondary traits
comprising anthesis-silking interval and anthesis date have been
included in breeding programs to promote indirect selection for
grain yield.

As global climate change accelerates, quantitative trait nucleotide
(QTN)-by-environment interactions (QEIs) play an increasingly
essential role in the genetic dissection of complex traits in plants
(Lukens and Doebley, 1999). There are currently accessible
methodologies and software tools for identifying QEIs. Crossa et al.
(1999) developed a factorial regression model for QEI in tropical
maize. In its basic form, an additional covariate needs to be
introduced for each putative QTL, thus least squares estimate
approaches fail when there are a large number of genotypic or
environmental covariables. To detect QEIs, Zhu and Weir (1998)
and Wang et al. (1999) developed the mixed-model based composite
interval mapping (MCIM) approach, but the results may be
susceptible to the specified model of multiple QTL (Piepho, 2000).
Li et al. (2015) expanded the inclusive composite interval mapping
(ICIM) main-effect genetic model into a QEI model. In real data
analysis, it is challenging to uncover small QEIs. However, these
approaches are suitable in bi-parental segregation populations.
Although Moore et al. (2019) proposed the structured linear mixed
model (StructLMM) to detect QEIs, only allelic substitution was
detected, and its polygenic background was controlled. To over
these issues, recently, Li et al. (2022a, 2022b) proposed a
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compressed variance component mixed model (3VmrMLM) to
detect and estimate all the effects in QTN and QEI detection under
controlling all the possibly polygenic backgrounds in genome-wide
association studies (GWAS). Based on a full mixed-model framework,
the numbers of variance components in QTN and QEI detection were
compressed from 5 and 10 to 3, respectively, showing very good
performances in computational efficiency. Furthermore, 3VmrMLM
can identify QTNs and QEIs accurately and estimate their genetic
effects unbiasedly (Zuo et al., 2022; Zhao et al,, 2023).

From now, lots of genes response to abiotic stresses were
identified in Arabidopsis, rice and maize. For example, in
Arabidopsis, DREB2A is one of the transcription factors that
activates the expression of heat-stress-responsive genes (Sakuma
et al,, 2006a). DREB2A has a conserved ERF/AP2 DNA-binding
domain and recognizes a dehydration-responsive element (DRE).
This DRE was reported to function as a heat-stress-responsive
element (Sakuma et al., 2006b). Liu et al. (2013a) reported that dil9
functions as a transcriptional regulator and is involved in Arabidopsis
responses to drought stress through up-regulation of pathogenesis-
related PRI, PR2, and PR5 gene expressions. In rice, OsGRAS23 can
bind to the promoters of several target genes and modulate the
expressions of a series of stress-related genes. Overexpression of
OsGRAS23 conferred transgenic rice plants with improved drought
resistance (Xu et al, 2015). The RING finger ubiquitin E3 ligase
OsHTAS functions in leaf blade to enhance heat tolerance through
modulation of hydrogen peroxide-induced stomatal closure. In maize,
ZmHsf11 decreases plant tolerance to heat stress by negatively
regulating the expression of oxidative stress-related genes, thus
increasing reactive oxygen species levels and decreasing proline
content. It is a negative regulator involved in high temperature
stress response (Qin et al., 2022). In addition, the overexpression of
ZmPIS in maize plants under drought stress might lead to the
increased synthesis of unsaturated phospholipid and galactolipid
species, which are involved in the maintenance of membrane
permeability and fluidity that might contribute to plant adaptation
to drought stress (Liu et al., 2013b). However, seldom maize gene-by-
environment interactions (GEIs) were identified, most of the maize
genes were identified by transcriptome analysis and comparative
genome analysis (Shi et al., 2017; Zhao et al,, 2019). Mining QEIs
and related GEIs would provide excellent genes for the genetic
improvement of high tolerance to biological stress breeding in maize.

In this study, 3VmrMLM was used to detect QTNs and QEIs for
three yield-related traits in an association-mapping panel of 300
tropical and subtropical inbred maize lines each with 955,690 single
nucleotide polymorphisms (SNPs) from the DTMA (Drought
Tolerant Maize for Africa, https://www.cimmyt.org/projects/
drought-tolerant-maize-for-africa-dtma/) in four environments. The
transcriptomic data of drought treatment vs. well-watered and high
vs. normal temperature, respectively, were used to identify
differentially expressed genes. Functional enrichment, tissue-specific
expression, and haplotype and phenotypic difference analysis were
used to further validate the candidate maize genes in drought and heat
stresses. Multi-environment joint analysis will be helpful for
identifying candidate genes related to yield under multiple abiotic
stresses in maize.
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Materials and methods
Phenotypic data and statistical analysis

The DTMA panel datasets were achieved from International
Maize and Wheat Improvement Center (CIMMYT, http://hdl.
handle.net/11529/10548156), including 300 inbred lines of tropical
and subtropical maize gathered and tested against CML-539 (Wen
et al, 2011). Three yield-related traits, grain yield (GY, ton/hectare),
anthesis date (AD, day), and anthesis-silking interval (ASI, day), were
investigated to detect QTNs and QEIs. The yield trial data were
collected from Mexico, Kenya, Thailand, Zimbabwe, and India
between 2008 and 2011 under environments of well-watered
(WW), drought stress (DS), heat stress (HS), and combined
drought and heat stress (DHS). The detailed description and
calculated best linear unbiased prediction values for each yield-
related trait under the various scenarios were provided by Cairns
et al. (2013).

To better understand the patterns of variation of three yield-
related traits under various environments, we calculated Pearson
correlation coefficients and carried out significance tests for 12
trait-environment combinations using cor.test function based on R
(Version 4.2.1). The violin plots were adopted to illustrate the
variation of three traits under four environments by using the
ggbetweenstats function in ggstatsplot package of R (Patil, 2021),
and the Kruskal-Wallis one-way analysis of variance by ranks was
conducted with the parameter "type" set to "nonparametric” to test
whether the phenotypic mean of each trait differed significantly across
four environments.

Genotypic data

We obtained the original genotypic data from http://hdLhandle.
net/11529/10548156, with a total of 955,690 SNPs. Then we
performed quality control on the SNP dataset by filtering markers
with minor allele frequency (MAF) < 0.01 and missing genotype rate
>25% by PLINK (Version 1.9). The imputation of the absent markers
was carried out by Beagle (Version 5.4) with the default settings
(Browning et al., 2018). Ultimately, we obtained 332,641 SNPs with
known physical positions and high quality for further research. To
visualize the genotype in this study, PopLDdecay (Version 3.31,
https://github.com/BGI-shenzhen/PopLDdecay) was used to
calculate linkage disequilibrium (LD) on SNP pairs within a 10-kb
window. In addition, the distribution of 332,641 SNPs across 10
chromosomes was plotted by CMplot package in R.

GWAS method

We performed GWAS for the detection of QEIs and QTNs using
the IIIVmrMLM package (https://github.com/YuanmingZhang65/
HIVmrMLM; Li et al, 2022b) in R, with high computational
efficiency. It mainly used the IIIVmrMLM function, where the
parameter "method" was set to "Multi_env". The kinship matrix was
also calculated via the package. In the 3VmrMLM method, the P-
value thresholds for significant and suggested QTNs or QEIs were
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based on Bonferroni correction (P-value < 0.05/m, where m is the
number of markers) and logarithm of odds (LOD) score > 3.0,
respectively. In the following analysis, as long as one of them was
satisfied, we considered it as QTNs or QEIs significantly associated
with the target traits. In addition, the package can automatically
generate the attractive Manhattan diagrams.

Differential expression and functional
enrichment analyses

Genes situated within or contiguous 5 kb (5 kb upstream and
downstream, total 10 kb, according to LD decay shown in Figure 1A)
of the QTNs and QEIs significantly associated with the target traits
were extracted following the B73 AGPV2 (MaizeGDB, https://www.
maizegdb.org/) reference genome assembly (Woodhouse et al., 2021).
The DNA sequence of all detected genes was used for similarity search
on BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) in order to
determine the Arabidopsis ortholog.

For the above Arabidopsis homologous genes, excluding the known
genes reported in the literatures, we performed differential expression
analysis of the series GSE124340 and GSE154373 from the Gene
Expression Omnibus (GEO, https://www.ncbinlm.nih.gov/geo/)
database for the unreported genes to identify differentially expressed
genes (DEGs) responding to drought stress and heat stress, respectively.
The series GSE124340 contains transcript per million (TPM) value of
maize under well-watered condition (WW) and drought treatments
(DT) at various levels (DT2, DT3, and DT4 represent soil moistures for
maize plants were 30-35%, 20-25%, and 10-15% respectively). Each
treatment has 2 biological replicates. Meanwhile, the series GSE154373
contains fragments per kilobase of feature per million (FPKM) values
for maize plants (inbred line W22) at different temperature treatments
(31°C, 33°C, 35°C, and 37°C), with three replicates for each treatment.
DEGs between two pairwise samples (DT2 vs. WW, DT3 vs. WW, DT4
vs. WW, 33°C vs. 31°C, 35°C vs. 31°C, and 37°C vs. 31°C) were
discovered by limma package in R, with a cutoff of the absolute value
of log,FoldChange greater than 1 and P-value less than 0.05.
Simultaneously, these DEGs responding to drought stress and heat
stress were intersected with the detected genes, respectively, and thus
we obtained the DEGs responding to multiple abiotic stresses for yield-
related traits.

For gene ontology-based functional enrichment analysis,
information of the above DEGs related to traits were
simultaneously submitted to the web-based program AgriGO (Tian
etal., 2017). We performed singular enrichment analysis and Fisher's
exact test with P-value less than 0.05 to select enrichment gene
ontology (GO) terms (Xu et al,, 2014).

Tissue-specific expression, analysis of
haplotype and phenotypic difference, and
identification of candidate genes

The database MaizeGDB (https://www.maizegdb.org/) was used
to investigate the expression of genes in various tissues to illustrate the
association between genes enriched in significant pathways and
phenotypic variations. The HaploView software (Version 4.1) was

frontiersin.org


http://hdl.handle.net/11529/10548156
http://hdl.handle.net/11529/10548156
http://hdl.handle.net/11529/10548156
http://hdl.handle.net/11529/10548156
https://github.com/BGI-shenzhen/PopLDdecay
https://github.com/YuanmingZhang65/IIIVmrMLM
https://github.com/YuanmingZhang65/IIIVmrMLM
https://www.maizegdb.org/
https://www.maizegdb.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/geo/
https://www.maizegdb.org/
https://doi.org/10.3389/fpls.2023.1050313
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wen et al. 10.3389/fpls.2023.1050313
A B
LD decay The number of SNPs within 1Mb window size
OMb 33Mb 66Mb 99Mb 132Mb 165Mb 198Mb 231Mb 264Mb 297Mb
87 ot 1 00O
. S U L R
: cres | |10 0
r st 0NN, 0O | 1
SR R i
3 cre: | 1 O 0 ¢ 111 I?é’s
enr | 1 A | 10 | B
=J I 436
s o {11 N M T 10 523
' 610
T e 111 IR | 11 o
e
Distance(Kb)
c Distribution of QEls and QTNs on chromosomes
16 B o=
14 15 14 . QTN
12
E 0 . 10 10
§ 8 7 7 7 7 7
P-4 6 6 6 6
5
4 3 3
1
0
1 2 3 4 5 6 7 8 9 10
Chromosome
FIGURE 1
(A) LD decay plot for high-quality SNPs. (B) Distribution of high-quality SNPs on chromosomes. (C) Distribution of QEls and QTNs across all chromosomes.

used to perform linkage disequilibrium and haplotype block studies,
as well as estimate the frequency of haplotype populations in genes
widely expressed in various tissues of maize (Barrett et al., 2005), for
validating the associated loci between genes and traits. Significant
variants were utilized for haplotype division for each gene, and
phenotypic differences across haplotypes were examined using the
t.test function in R. Genes with significant differences in phenotypes
across haplotypes under different environments were considered as
the candidate genes.

Results
Phenotypic variation and correlation

The phenotypic performance of each trait varied under each
environment, suggesting that the DTMA panel seemed to have
large variation (Figure 2). All three traits examined under WW
condition performed much better than those under stress situations
including DS, HS, and DHS. The average performance for trait GY
was much higher under WW than under all other situations
(Figure 2A). On the other hand, the phenotypic variations for traits
AD and ASI measured under WW were smaller than those under
stress situations (Figures 2B, C). Except for DHS condition, the
average value of AD was larger under WW than that under stress
conditions (Figure 2B). The mean ASI value under WW was,
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however, smaller than that under stress conditions (Figure 2C). The
P-values in the Kruskal-Wallis test for all three traits under four
different environments were 6.98E-209, 1.76E-172, and 1.54E-143,
respectively, and the P-values in any pairwise comparison test were
less than 1.29E-03 (Figure 2), indicating that mean phenotypic values
significantly differ across environments.

The phenotypic correlations among all yield-related traits under
the same environment varied (Supplementary Figure 1). The
correlations for GY under diverse situations were slight, favorable,
and significant especially under WW. The correlations were favorable
and extremely significant for AD between all situations. Only WW,
DS, and HS had significant phenotypic correlations with ASI, while
ASI under DHS was strongly linked with DS. On the whole, GY was
negatively and strongly correlated with ASI under each condition,
with a range of -0.67 to 0.08, confirming the previous findings (Ribaut
et al., 2009). Nevertheless, none significant associations were found
between GY and AD, or between AD and ASI under the
same condition.

The phenotypic correlations between the same traits under
various environments also varied (Supplementary Figure 1). For
AD, the correlations between any two situations fluctuated from
0.55 to 0.95. The majority of correlations for GY and ASI under
diverse situations varied from 0.09 to 0.60. The trait GY under DHS
was not strongly correlated with DS or HS circumstance; furthermore,
indirect correlations were observed between GY under DHS and that
under DS or HS. The trait ASI under WW was positively correlated
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FIGURE 2
Violin plots of phenotypic distribution of three yield-related traits (A) grain yield (GY, ton/hectare), (B) anthesis date (AD, day), and (C) anthesis-silking
interval (ASI, day) under the four evaluation conditions, i.e., drought stress (DS), combined drought and heat stress (DHS), heat stress (HS), and well-
watered (WW).

with DS or HS situation, but ASI under HS was uncorrelated with
DHS situation.

Combined with the above analysis shown in Figure 2 and
Supplementary Figure 1, it can be justified that the DTMA panel is
suitable for application in multi-environment joint analysis.

Multi-environment joint analysis
using 3VmrMLM

In total, 300 inbred lines with 332,641 SNPs were applied to carry
out GWAS for each of three traits jointly analyzed in the four
environments. LD decay measured the physical distance at which
the Pearson’s correlation efficient dropped to half of the maximum
(Figure 1A). These SNPs were evenly distributed across the 10
chromosomes (Figure 1B). The 3VmrMLM method used in this
study identified 73 QEIs (57 significant and 16 suggested QEIs,
Supplementary Table 1) and 76 QTNs (64 significant and 12
suggested QTNs, Supplementary Table 2) that were strongly
associated with the yield-related traits.

In general, these QEIs and QTNs were distributed on all
chromosomes (Figure 1C). For QEIs, the loci were spread out
relatively evenly on the chromosomes, it was most distributed on
chromosome 4 with 13 and least distributed on chromosome 3 with
only 5 (Figure 1C). The highest number of QTNs was found on
chromosomes 1 and 8, and the least on chromosome 9 (Figure 1C).
On chromosomes 4 and 8, there were relatively more QTN as well as
QEISs, suggesting that these two chromosomes have a greater effect on
the genetic variation of yield-related traits; while on chromosome 6,

Frontiers in Plant Science

177

there were twice as many QEIs as QTNs, which may implicate that
chromosome 6 may be more susceptible to environmental
influences (Figure 1C).

A total of 29 QEIs were detected significantly related to GY, with
P-values of 7.176E-129~8.065E-08 and LOD scores of 5.069~132.822,
respectively (Figure 3A; Supplementary Table 1). Only 7 QEIs were
distinguished for AD, with P-values of 6.123E-62~5.420E-10 and
LOD scores of 7.130~65.274 (Figure 3B; Supplementary Table 1). The
most QEIs were identified to be significantly associated with ASI in
the multi-environment analysis, 37 QEIs were detected with P-values
of 5.496E-121~1.978E-08 and LOD scores of 3.063~124.884
(Figure 3C, Table 1, and Supplementary Table 1).

On the other hand, numbers of the significantly associated QTNs
of each trait under four environments varied from 20 for ASI to 34 for
AD (Supplementary Figure 2, Supplementary Table 2). 22 QTNs
related to GY were detected with P-values of 6.021E-30~9.862E-08
and LOD scores of 5.886~29.221(Supplementary Figure 2A,
Supplementary Table 2). 34 QTNs were associated with AD, with
P-values of 1.414E-41~8.291E-08 and LOD scores of 3.387~40.851
(Supplementary Figure 2B, Supplementary Table 2), and moreover,
20 QTNs associated with ASI were detected with P-values of 3.386E-
32~2.295E-08 (Supplementary Figure 2C, Supplementary Table 2).
The loci S1_18891169 and S5_205942859 were also identified for AD
in the previous study (Yuan et al,, 2019).

Meanwhile, the total phenotypic variance explained (PVE) of
QEIs for ASI was 71.214% (Table 1 and Supplementary Table 1),
higher than the PVE of QTNs 8.966% (Supplementary Table 2).
Among these 37 QEIs, S1_29787938 located on chromosome 1 had
the maximum PVE of 9.549% (Table 1 and Supplementary Table 1).
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Manhattan plots using 3VmrMLM for QEls on three yield-related traits (A) GY, (B) AD, and (C) ASI under four environments. Y-axis on the left side
represents -logl10 (P-values) of QEls, which are obtained from single-marker genome-wide scanning for all markers, while y-axis on the right-side
represents LOD scores, which are obtained from likelihood ratio test for QEls, with the threshold of LOD = 3.0 (dashed line). These LOD scores are
shown in points with straight lines. Highlighted text is the corresponding known gene of the loci.

Although the PVE of QTNs for GY was relatively low at 0.515%, the
PVE of QEIs was nearly four times higher at 1.974% (Supplementary
Tables 1, 2). For AD, the PVE of QTNs was 2.659%, which was higher
than the PVE of QEIs (Supplementary Tables 1, 2).

The dominance and additive effects for ASI were relatively
significant in all four environments, as listed in Table 1 and
Supplementary Table 1. The interaction effect of dominance with
the third environment HS for ASI was generally large, with an effect of
8.005 for S1_29787938 located on chromosome 1 and an effect of
4907 for S6_141276881 located on chromosome 6 (Table 1 and
Supplementary Table 1). The interaction effect of additive effect with
the first environment DS for AD was positive and moderate,
S9 567464 located on chromosome 9, where its effect was 0.488
(Supplementary Table 1). For ASI, the interaction effect of additive
with environment DS was also relatively high, the effect of
$2_23529006 was 0.647, simultaneously, the effect of S5_160123104
was 0.524 (Table 1 and Supplementary Table 1). In summary, the
higher effect of interaction with the environment indicated that the
effect of heat and drought stresses on crop yield is not negligible.
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Known genes around QEls and QTNs
for yield-related traits under multiple
abiotic stresses

In multi-environment joint analysis, a total of 321 genes (5 kb
upstream and downstream) were found to be around their significant
loci based on MazieGDB against the B73 AGPV2 genome. 161 out of
321 genes were homologous to Arabidopsis and their functional
annotations were listed in Supplementary Table 3. Number of genes
varied among the three traits. In total, 117, 78, and 126 genes were
found to be around the significant loci for GY, AD, and ASI,
respectively (Supplementary Table 3). For ASI, 74 and 52 genes
were found to be around QEIs and QTNs, respectively. At the same
time, 63 and 54 genes were found to be around QEIs and QTN for
GY, respectively. However, for AD, 58 genes were found to be around
QTNs, but only 20 were found to be around QEIs (Supplementary
Table 3). Highlighting in Figure 3 and Supplementary Figure 2, 34
known genes were annotated according to the previous literatures
(Augustine et al., 2016; Qi et al., 2017; Li et al., 2019).
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TABLE 1 Results of 37 QEls for trait ASI using multi-environment joint analysis of 3VmrMLM.
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Pos (bp) LOD (QEl)
S1_29787938 29787938 124.884 0.001 -1.342 -1.345 -4.045 1.172 8.005 0.172 -2.618 9.549 5.496E-121 SIG
S1_47457445 47457445 6.976 -0.145 0.062 -0.038 -0.140 0.355 0.112 -0.171 -0.034 0.412 1.544E-05 SUG
S1_62226889 62226889 46.714 -0.349 -2.227 0.110 -0.494 0.737 5.252 -0.498 -2.531 2999 1.143E-43 SIG
S1_229206706 229206706 13.043 0.020 0.358 0.379 -0.340 -0.403 -0.332 0.004 0.313 0.776 4.369E-11 SIG
S1_297750016 297750016 16.830 -0.149 -0.672 -0.040 -0.636 0.363 2123 -0.175 -0.816 1.029 1.172E-14 SIG
S1_298273269 298273269 51.094 0.297 -0.731 0.220 2.949 -0.919 -1.212 0.402 -1.006 3.317 5.696E-48 SIG
S2_2682470 2682470 10.180 0.109 -0.002 -0.396 -0.809 0.102 0.371 0.185 0.439 0.599 1.978E-08 SIG
$2_23529006 23529006 101.660 0.647 -1.729 0.382 -0.275 -1.446 4.059 0.417 -2.055 7.393 6.103E-98 SIG
S3_147588583 147588583 11.834 -0.151 0.284 0.344 0.666 -0.116 -1.342 -0.076 0.392 0.698 5.856E-10 SIG
$3_218123483 218123483 7.944 0.010 -0.290 -0.085 -1.586 0.255 2.819 -0.180 -0.943 0.468 2.126E-06 SUG
$3_226979707 226979707 8.521 0.067 -0.221 0.301 0.417 -0.321 -0.015 -0.047 -0.181 0.502 6.430E-07 SUG
S4_35625212 35625212 17.580 0.197 -1.786 0.083 -0.119 -0.347 4.782 0.067 -2.877 1.055 2.269E-15 SIG
S4_73208150 73208150 6.586 -0.056 -0.171 0.301 0.701 -0.131 0.392 -0.115 -0.923 0.385 3.405E-05 SUG
S4_167022069 167022069 25.660 -0.044 -0.660 -0.630 -0.003 0.314 -0.027 0.360 0.690 1.566 3.958E-23 SIG
S4_186691903 186691903 17.815 -0.031 -0.259 -0.070 -2.715 0.226 2474 -0.125 0.500 1.069 1.355E-15 SIG
S4_202589250 202589250 11.007 -0.211 0.188 -0.047 0.257 0.353 -1.050 -0.095 0.605 0.652 3.426E-09 SIG
S4_223836871 223836871 15.310 -0.083 0.063 0.513 0.471 -0.260 -0.125 -0.169 -0.408 0912 3.224E-13 SIG
S5_2353940 2353940 19.387 -0.006 -0.800 0.094 0.025 -0.020 2.037 -0.068 -1.263 1.213 4.279E-17 SIG
S5_14841812 14841812 17.978 -0.062 1.120 0.415 0.264 -0.222 -2.051 -0.131 0.667 1.078 9.482E-16 SIG
S$5_160123104 160123104 52.683 0.524 1.284 -0.732 -2.472 -0.296 -0.251 0.503 1.439 3.378 1.561E-49 SIG
S6_656139 656139 11.863 0.154 -0.321 -0.450 0.359 0.226 0.150 0.070 -0.188 0.700 5.511E-10 SIG
S6_137397546 137397546 3.063 -0.108 -0.657 0.071 0.423 0.107 -0.297 -0.070 0.531 0.178 2.850E-02 SUG
S6_141276881 141276881 29.009 -0.336 -2.635 0.409 0.341 0.041 4.907 -0.114 -2.612 1.776 2.257E-26 SIG
S6_152209037 152209037 10.937 0.174 -1.475 -0.212 4.005 -0.117 -1.473 0.155 -1.056 0.576 3.975E-09 SIG
S6_163662312 163662312 11.361 0.156 -1.277 -0.004 3.920 -0.096 -0.857 -0.056 -1.785 0.671 1.611E-09 SIG
S6_167325529 167325529 15.302 0.010 0.262 -0.459 -0.552 0.383 0.335 0.067 -0.045 0.914 3.280E-13 SIG
S7_126213664 126213664 40.770 0.345 -0.367 -0.475 -1.435 -0.499 1.477 0.629 0.326 2.579 7.667E-38 SIG
S7_130495196 130495196 7.833 0.015 0.372 -0.281 -0.274 0.232 -0.692 0.033 0.594 0.461 2.672E-06 SUG
(Continued)
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For QEIs, 11 known genes related to GY, 3 known genes related to
8 g
AD, and 2 known genes related to ASI were identified (Figure 3;

99 é S\ % § 9 9 Supplementary Table 3). The known genes thx12 (GRMZM2G016649,
= around the locus S2_21790763) and thxl6 (GRMZM2G063203,
g around the locus S4_149899538) related to GY (Figure 3A;
=9

Nle g 3 3 % o8 8 g oz Supplementary Table 3) are Trihelix transcription factors (also

g % g 9 § § 5 § % 2 known as GT transcription factors) that are unique to plants and

e | S e e | F ] F e | S E play important roles in abiotic drought stress (Du et al., 2016). The
E known gene hsftf27 (GRMZM2G025685) around the locus
9 g

e v g 2 o o5 2 8 = EO S7_169176208 (Figure 3A; Supplementary Table 3), which acts as a

=2 3 F 5 2 2 8 = 5 heat shock transcription factor, helps to resist many environmental
; stresses and is involved in the regulation of primary metabolism, was
g also related to GY (Haider et al., 2021). Moreover, the expression of

) o = n wn o — 53 D ]

g E § s 3 § S5 °2° 8|2 known gene myb60 (GRMZM2G312419) around the locus

T ) 7 i - ) =] \ o | 2
3 $8_2763002 (Figure 3A; Supplementary Table 3) in response to
L;L jasmonic acid was up-regulated in heat-tolerant maize variety,

g 2 T 2 = 3 =z v 9 3 which is considered to be important signaling substances with

- — — = — = g

s | o | o 2 e S s & 2 § respect to plant stress responses (Wang et al., 2020). The known
-

é: gene eadl (GRMZM2G329229) around the locus S5_194560419
g (Figure 3A; Supplementary Table 3) plays a critical role in malate-
§_ g g & &8 § & 8 = mediated female inflorescence development and provides a promising

o =3 3 =1 S <

' R R £ genetic resource for enhancing maize grain yield (Pei et al., 2022).
; Moreover, emp25 (GRMZM2G312954, around the locus

2 2 0 2 05 o8 g 8o H S7_166553957) (Figure 3A; Supplementary Table 3) functions in

Nl | n e g a = - 9 s s . . . .

S S 3 S S S 5 S & the splicing of nad4 introns, and is essential to maize kernel
= development (Xiu et al., 2020). The known gene erebl00
§ (AC209257.4_FGO006) around the locus S6_153235783 related to AD

B 3§ &2 § § 8 8 8 8 = (Figure 3B; Supplementary Table 3) belongs to the APETALA2/

S w S S S 9 3 S =

© ' R é Ethylene-responsive factor (AP2/ERF), which plays an active role in
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g growth, development, and adaptation to abiotic stresses in maize

Nt e 9 glelale @ E (Zhang et al., 2022). Drg5 (GRMZM2G135877, around the locus
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s 8| s 32 Slzlzglegle E S1_29787938) related to ASI (Figure 3C; Supplementary Table 3) is
v shown to be rhythmically expressed under dark and light-dark cycles
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é (Dong et al., 2020).

58 3 8 § 2.3 8 3 € For QTNs, 3 known genes were related to GY (Supplementary

R L R B I I B B Figure 2A and Supplementary Table 3), of which dek2
g g pp y
2 (GRMZM2G110851, around the locus S1_299093763) is a

@ 3 8 2 2 % 2 e = § pentatricopeptide repeat protein that affects the splicing of
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slg|s|s|z|8|]8|3|3s é mitochondrial nadl intron 1 and is required for mitochondrial
=
E function and kernel development (Qi et al, 2017). Meanwhile, 9
5 known genes were detected for AD (Supplementary Figure 2B and
£

o o Supplementary Table 3), among which ereb53 (GRMZM2G141638,
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283 s 288 2 8 % around the locus S3_166796324) and ereb60 (GRMZM2G131266,

h g around the locus S1_211326173), among the largest transcription
k] factors in plants, were shown to exhibit differential expression
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2 atterns at different developmental stages in maize confirmed b
[sa) =N a S Q=

% § é SO % % & % c the previous study (Zhang et al., 2022), especially in response to three

2 8 g g E g & 2 & % different abiotic stresses, suggesting their important roles in abiotic
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é stress tolerance (Zhang et al., 2022). A total of 7 known genes were
S found to be related to ASI (Supplementary Figure 2C and
~ vl o = gl e|g o £ Supplementary Table 3), of which bzip22 (GRMZM2G043600,
2 pp Y P
. g around the locus S7_140710756) is a transcription factor from the
Q 3
2 £ basic leucine zipper family, and they are involved in stress responses
£ el 2/g 3 8 8 8|8 3 £ and hormone signaling (Cao et al., 2019).
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wn [ wn < (=3 (= o o <+ =}
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= 8 8 5 2 5 5 5 05 5 gene homologous to Arabidopsis observed for GRMZM2G064159
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between a QTN of GY and a QEI of AD (Supplementary Table 3).
Only one known gene naat2 (GRMZM2G006480) around the locus
S4 3890824, which was confirmed to be related to GY, was
overlapped between QTN and QEI (Figure 3; Supplementary
Figure 2, and Supplementary Table 3). This finding showed the
challenge of enhancing maize GY response to numerous abiotic
stress tolerances at the same time. The more detailed information
about the genes around QTNs and QEIs identified by the 3VmrMLM
method can be referred to Supplementary Table 3.

Response to multiple abiotic stresses and
GO enrichment pathway

The differential expression analysis was used to determine the
response of genes to DS and HS stresses. Among 127 homologs in
Arabidopsis out of 287 unreported genes, 46 were identified as
DEGs under DT vs. WW treatments and 47 were identified as
DEGs under high temperature vs. normal temperature treatments.
Among them, 29 DEGs were identified in both DS and HS tolerance
(Supplementary Table 4). GRMZM2G152549 was simultaneously
found in six comparison groups (Supplementary Table 4), but it
was lowly expressed under different levels of drought treatment
relative to WW condition. The absolute value of log,FoldChange
for GRMZM2G016084 was as high as 205.14, followed by
GRMZM5G896082 and GRMZM2G048836, which had absolute
values of log,FoldChange of 200.905 and 198.9, respectively
(Supplementary Table 4). The two genes GRMZM5G896082 and
GRMZM2G048836 were highly expressed after severe drought
treatment and heat treatment (Supplementary Table 4).

According to outcomes of the GO functional enrichment analysis,
a total of 37 genes among the above 46 and 47 DEGs significantly
enriched to 13 GO terms associated with various biological processes
(Figure 4A; Supplementary Figure 3, 4). Such as, 17 genes around
QEIs and QTNs were enriched to organic substance metabolic
process (GO: 0071704), among which 2 genes GRMZM2G109651
and GRMZM2G048836 were also participated in the cellular
component and molecular function (Supplementary Figures 3 and
4). Pleiotropic gene GRMZM2G064159 which simultaneously
identified around the locus S10_123819112, a QTN for GY and a
QEI for AD was also involved in organic substance metabolic process
(GO: 0071704, Supplementary Figures 3 and 4). Under adverse
environment, plant metabolism is profoundly involved in signaling,
physiological regulation, and defense responses (Fraire-Velazquez
and Balderas-Hernandez, 2013). Cellular components are the
complex biomolecules and structures of which cells, and thus living
organisms, are composed. In the last layer in Supplementary Figure 3,
6 genes were enriched to intracellular organelle part (GO: 0044446).

Moreover, the expression levels of some genes were significantly
different under different treatment conditions. Under drought
treatments (Figure 4B), most of the 33 genes were responded to
drought stress. GRMZM2G004377 around the locus S9_149252534, a
QEI associated with GY, combined with candidate genes around the
QEIs significantly associated with ASI such as GRMZM2G140609,
GRMZM2G084767, and GRMZM2G070797 had high expression
under DT4 treatment and low expression under WW conditions
(Figure 4B). In contrast, the gene GRMZM2G431039 around the locus
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S7_155070876 associated with ASI had lower expression values under
severe drought treatment and higher expression values under
sufficient water conditions (Figure 4B). The expression levels of the
25 genes varied under different temperature treatments (Figure 4C).
The gene GRMZM2G146192 around the locus S4_2488289, a QEI
associated with GY had a high expression value at 37°C, while
GRMZM2G178829 and GRMZM2G139600 around QTNs
significantly associated with AD had low expression values at high
temperature (35°C and 37°C) (Figure 4C). A total of 21 genes
responded to drought stress and heat stress, simultaneously
(Figures 4B, C). Genes around QEIs significantly associated with
ASI, such as GRMZM2G016084 and GRMZM2G084806, were highly
expressed under 37°C and DT3 treatment (Figures 4B, C). Gene
GRMZM2G02170 had low expression values under both high
temperature at 37°C and extreme drought DT4 treatment
(Figure 4B, C). In addition, some genes were expressed at different
levels under drought stress and heat stress treatments. For example,
the gene GRMZM2G455476 had high expression value under DT4
treatment but low expression value under high temperature treatment
at 37°C (Figures 4B, C). The gene GRMZM2G070709 had high
expression under DT3 treatment, but low expression value under
high temperature treatment at 35°C (Figures 4B, C). This information
may be useful in providing some biological basis for newly discovered
heat and drought tolerant genes in maize.

Haplotype and phenotypic difference
analysis of candidate genes and tissue-
specific expression profiles

Based on the results of tissue-specific expression, almost all the 37
genes significantly enriched to the pathways, except for
AC202120.3_FGO003, were expressed in various maize tissues. To
further confirm the association between the genes and yield-related
traits, we performed haplotype analysis of the remaining genes using
SNPs within these genes and 2 kb upstream of them. A total of 24
genes differed significantly in phenotypes across haplotypes under
different environments, and were considered as the candidate genes
(Table 2). Among 24 candidate genes, there were 13 genes around
QEIs and 13 genes around QTNs, with two candidate genes,
GRMZM2G006480 and GRMZM2G064159, being detected around
both QEIs and QTNs. The more detailed results were listed in Table 2
and Supplementary Table 5.

Pleiotropic candidate gene GRMZM2G064159 (CDS coordinates
[5'-3"]: 123811073 ~ 123815007) around the locus S10_123819112, a
QEI for AD and a QTN for GY (Table 2; Supplementary Tables 3 and
5), was analyzed to reveal the intragenic variation affecting the yield and
to identify favorable haplotypes. Figure 5A exhibited the tissue-specific
expression profile of the candidate gene GRMZM2G064159, which has
a much higher expression value of 747.60 in Anther-2.0mm-W23 and
is also commonly expressed in spike, embryo, and root-associated
tissues. Figure 5B showed the linkage disequilibrium and haplotype
block with 15 SNPs. The 300 inbred lines were classified into 7
haplotypes based on 14 SNPs (S10_123811034, S10_123811055,
S$10_123811069, S10_123811287, S10_123811289, S10_123814031,
S$10_123814100, S10_123814124, S10_123814202, S10_123814715,
S10_123814731, S10_123814738, S10_123814750, S10_123814751).
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For AD, haplotype VI (GCGGCAACAGGACA) had the highest mean
phenotypic values in DS (72.63) and DHS (76.17) conditions, whereas
haplotype IV (AAGGCAGCGCCGCT) presented the lowest mean
phenotypic values in DS (70.45) and DHS (74.48) conditions
(Figure 5C). A t test showed that significant differences in DS
condition existed between haplotypes II and IV (P-value = 4.62E-04,
Supplementary Table 5). There was also a significant difference

in DHS condition between haplotypes II and IV (P-value
4.13E-03, Supplementary Table 5). For GY, haplotype VII
(GCGGCAGCGCCGCT) had the highest mean phenotypic values in
DS (2.63) and DHS (1.21) conditions, while haplotype IV had the
lowest mean phenotypic values under DS (2.35) and HS (1.14)
conditions (Figure 5D). A t test showed that significant differences in
HS condition between haplotypes IV and VI (P-value = 1.21E-02,
Supplementary Table 5). Therefore, we hypothesized that the candidate
gene GRMZM2G064159 may interact with environments for yield-
related traits in maize.

The candidate gene GRMZM2G146192 (CDS coordinates [5'-3']:
2481257 ~ 2484641) was detected around the locus S4_2488289, a
QEI for GY (Table 2; Supplementary Tables 3 and 5). Supplementary
Figure 5A showed the tissue-specific expression profile of
GRMZM2G146192, with higher expression values in root and leaf-
associated tissues. Supplementary Figure 5B, C revealed the results of
the haplotype block and phenotype difference. We inferred that the
candidate gene GRMZM2G146192 might also respond to various
environment conditions for maize yield.

GRMZM2G114789 (CDS coordinates [5'-3']: 10541987 ~
10545884) was also detected around the locus S5_10542293, a QEI
for AD (Table 2; Supplementary Tables 3 and 5). Supplementary
Figure 6A showed the tissue-specific expression profile of the
candidate gene GRMZM2G114789, with higher expression values in
root and embryo-associated tissues. Supplementary Figures 6B, C
revealed the results of the haplotype block and phenotype difference.
Haplotype II (CCGGCCCAAGGCT) had the highest mean
phenotypic values in DS (75.27), DHS (77.12), HS (60.29), and
WW (75.27) conditions, whereas haplotype V

10.3389/fpls.2023.1050313

(TCGGCCCAAGGCT) presented the lowest mean phenotypic
values in DS (69.56), DHS (74.88), HS (56.4), and WW (71.42)
conditions. Supplementary Figure 6C showed significant
differences in all conditions between haplotypes II and V,
haplotypes II and VI (TCGGCCCAAGGTT), and haplotypes II and
VII (TCGGCTTCAGGTT). Therefore, we inferred that the candidate
gene GRMZM2G114789 might be also a gene that interacted with
environments related to yield in maize.

In summary, we supposed that the three candidate genes around
QEIs mentioned above might have potential gene-by-environment
interactions, including GRMZM2G064159, GRMZM2G146192, and
GRMZM2G114789. In addition, some candidate genes around QTNs
differed significantly in phenotypes across haplotypes under different
environments (Supplementary Table 5). For example, the candidate
gene GRMZM2G166987 (CDS coordinates [5'-3']: 213939500 ~
213945050) identified around the QTN S3_213937689, which was
significantly associated with ASI (Table 2; Supplementary Table 3),
showed that its haplotype I (GAGGCAG) and haplotype III
(GCTACAG) were significantly different to the phenotype under
DS, HS, and DHS conditions by t test (Supplementary Table 5).
However, whether these candidate genes around QTNs have gene-by-
environment interactions for yield-related traits in maize needs to be
further verified by new experiments.

Discussion
Tolerance to drought and heat stresses

Drought stress and heat stress are the most significant abiotic
restrictions in the present and future climate change scenarios. Any
additional rise in the frequency and severity of these stressors, either
separately or in combination, would have a devastating impact on
world agricultural yield and food security. Although they impede
agricultural output at all phases of development, the level of
damage during the blooming stage, particularly during the seed
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(A) Results of gene ontology-based functional enrichment analysis. (B) Clustered heatmap of expression values for 33 genes under different drought level
treatments. WW stands for well-watered condition, DT2, DT3, and DT4 represent soil moistures for maize plants were 30-35%, 20-25%, and 10-15%,
respectively. (C) Clustered heatmap of expression values for 25 genes under different temperature treatments (31°C, 33°C, 35°C, and 37°C). The

numerical data represent the Z-score of mean TPM of two or three replicates.
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filling phase, is essential and causes significant yield losses. Cultivating
climate-resilient crops is thus an efficient means of adapting to
climate change.

We only obtained the transcriptomic data for drought stress and
heat stress, and couldn’t obtain ones for combined drought and heat
stress. Then, 46 and 47 DEGs were found to be significantly expressed
under drought vs. well-watered treatments, and high vs. normal
temperature treatments, respectively. Among them, 29 genes were
identified in both DS and HS tolerance (Supplementary Table 4).
However, most of the candidate genes did not show significant
differences in combined drought and heat stress across haplotypes
(Supplementary Table 5). This finding indicated that tolerance to
individual stresses in maize is genetically distinct from tolerance to
combined drought and heat stress, and tolerance to either stress alone
does not confer tolerance to combined drought and heat stress, which
was confirmed in the previous study (Cairns et al., 2013).
Identification of genes tolerance to combined drought and heat
stress will be the further work.

10.3389/fpls.2023.1050313

Genetic basis for yield-related traits in maize

3VmrMLM identified 73 QEIs and 76 QTNs significantly
associated with three yield-related traits under four environments in
this study. The total PVE of all significant QEIs was 73.191%, which is
six times that of QTNs (Supplementary Tables 1 and 2). Moreover, this
study found a higher contribution by QEIs to total variation (PVE =
71.214%) than QTNs (PVE = 8.967%) for ASI (Table 1; Supplementary
Tables 1 and 2). For ASI, 4 out of QEIs had a PVE value greater than 5%
(Table 1 and Supplementary Table 1). Among these four QEIs, drg5
(GRMZM2G135877) around the locus S1_29787938 (r* = 9.549%,
Table 1; Supplementary Tables 1 and 3) is a known gene that has
been verified by transcriptome analysis in the previous study (Dong
et al., 2020).

The two known genes thx12 (GRMZM2G016649) around the QEI
$2_21790763 (P-value = 2.299E-11, LOD = 13.341, Figure 3A;
Supplementary Tables 1 and 3) and thx16 (GRMZM2G063203)
around the QEI S4_149899538 (P-value = 8.289E-22, LOD =24.292,

TABLE 2 Results of 24 candidate genes and functional annotation of Arabidopsis homologous genes.

Trait QTN/QEI Marker Candidate Gene Phytozome Annotations
GY QEI S4_2488289 GRMZM2G146192 beta-xylosidase 2
QTN&QEI S4_3890825 GRMZM2G006480 Tyrosine transaminase family protein
QEI S4_238951599 GRMZM2G019597 tRNA (guanine-N-7) methyltransferase
QTN S6_113109041 GRMZM2G048836 FTSH protease 6
QEI S7_160600156 GRMZM2G058197 C2H2-like zinc ﬁnger protein
QEI S9_47606538 GRMZM2G131482 surp domain-containing protein
QEI §9_149252534 GRMZM2G004466 seed storage 2S albumin superfamily protein
QIN $10_123819112 GRMZM2G064159 porphyromonas-type peptidyl-arginine deiminase family protein
AD QTN S1.279123888 GRMZM2G351582 ZPR1 zinc-finger domain protein
QTN S4_6553499 GRMZM2G054651 HVA22 homologue A
QEI S$5_10542294 GRMZM2G114789 RNA-binding (RRM/RBD/RNP motifs) family protein
QTN S7_161438376 GRMZM2G178829 ARM repeat superfamily protein
QTN S7_174741307 GRMZM2G134480 ubiquitin activating enzyme 2
QIN S8_14796428 GRMZM2G139600 gamma-glutamyl transpeptidase 4
QIN $8_62998618 GRMZM2G109651 Cyclin/Brfl-like TBP-binding protein
QEI $10_123819112 GRMZM2G064159 porphyromonas-type peptidyl-arginine deiminase family protein
ASI QEI S1_47457445 GRMZM2G300692 galacturonosyltransferase-like 7
QEI §1_297750017 GRMZM2G016084 Nucleic acid-binding proteins superfamily
QIN $3_213937689 GRMZM2G166987 GDSL-like Lipase/Acylhydrolase superfamily protein
QTN S4_2764858 GRMZM2G126453 AAA-type ATPase family protein
QEI S6_141276882 GRMZM2G084806 Leucine-rich repeat protein kinase family protein
QEI S6_152209037 GRMZM2G140587 GDA1/CD39 nucleoside phosphatase family protein
QEI S6_167325529 GRMZM2G051055 casein kinase 1
QIN §10_96835918 GRMZM2G021170 Nucleic acid-binding OB-fold-like protein
QIN §10_127370470 GRMZM2G005939 basic helix-loop-helix DNA-binding superfamily protein
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FIGURE 5

(A) Tissue-specific expression profile, (B) Linkage disequilibrium, and haplotype block with 14 SNPs inside for the candidate gene GRMZM2G064159.
(C) Comparison of trait AD among haplotypes | (MACGCAACAGGACA), Il (AACGCAGCGCCGCT), lll (A ACGCAGCGGCATA), IV (AAGGCAGCGCCGCT), V
(AAGGCAGCGGCATA), VI (GCGGCAACAGGACA) and VIl (GCGGCAGCGCCGCT). (D) Comparison of trait GY among haplotypes I, II, Ill, IV, V, VI, and VII.
The number of stars represents the result of t test at different significance levels (*:0.05; **:0.01; ***:0.001).

Figure 3A, Supplementary Tables 1 and 43), related to GY and
homologous to the Arabidopsis gene ATIG76890, are the GT
factors and play important roles in drought stress (Du et al., 2016).
The mRNA expression levels of GT factors were determined
for maize under drought stress. Moreover, the known gene hsftf27
(GRMZM2G025685) around the QEI S7_169176208 (P-value =
1.996E-08, LOD = 13.335, Figure 3A; Supplementary Tables 1 and
Supplementary Table 1 and 3), which acts as a heat shock
transcription factor, helps to resist many environmental stresses
and is involved in the regulation of primary metabolism (Haider
et al,, 2021), was also related to GY. The expression of known gene
myb60 (GRMZM2G312419) around the QEI S8_2763002 (P-value =
2.331E-11, LOD = 10.176, Figure 3A; Supplementary Tables 1 and 3)
in response to jasmonic acid is up-regulated in heat-tolerant maize
variety, which is considered to be important signaling substances with
respect to plant stress responses (Wang et al., 2020). Thx12 and thx16
exhibited high expression levels in immature leaves and at the base of
two leaves stage. Hsftf27 and myb60 had higher expression values in
root tissue at all stages. Roots and leaves are major tissues in coping
with drought and heat stresses (Du et al., 2016).

In addition, the known gene ereb60 (GRMZM2G131266) around
the QTN S1_211326173 (P-value = 1.181E-08, LOD = 7.928,
Supplementary Figure 2B, Supplementary Tables 2 and 3)
significantly associated with AD exhibited obvious spatial and
temporal expression profiles, specifically expressed in embryos
(Zhang et al., 2022), implying that it was involved in maize growth
and development regulation. The known gene ereb53
(GRMZM2G141638) around the QTN S3_166796324 (P-value =
4.437E-11, LOD =
Supplementary Tables 2 and 3) significantly associated with AD

10.353, Supplementary Figure 2B,
was highly up-regulated after drought stress by transcriptome

analysis (Zhang et al., 2022). The known gene bzip22
(GRMZM2G043600) around the QTN S7_140710756 (P-value =
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Supplementary Tables 2 and 3) significantly associated with ASI

12.155, Supplementary Figure 2C,

has been demonstrated to play essential roles in drought stress
primarily through the ABA signal transduction pathway in the
reported literature (Cao et al, 2019). This finding implied that
the main effect of QTNs may also reflect an influence of
environmental interactions.

Except for the above known genes, we also detected 24
new candidate genes in this study (Table 2). Among them,
GRMZM2G064159, GRMZM2G146192, and GRMZM2G114789
around QEIs have been shown the potential gene-by-environment
interactions for yield-related traits in maize. First, GRMZM2G064159
was a pleiotropic candidate gene which was simultaneously identified
around the locus S10_123819112, a QEI for AD (P-value = 1.128E-05,
LOD = 7.130, Supplementary Table 1) and a QTN for GY (P-value =
3.032E-18, LOD = 17.519, Supplementary Table 2).
GRMZM2G146192 was found to be around the locus S4_ 2488289, a
QEI for GY (P-value = 2.058E-05, LOD = 6.835, Supplementary
Table 1). GRMZM2G114789 was found to be around the locus
S5_10542293, a QEI for AD (P-value = 4.598E-07, LOD = 8.6818,
Supplementary Table 1). Second, they are homologous to Arabidopsis
(Table 2; Supplementary Table 3). GRMZM2G146192 is homologous
to AT1G02640 (BXL2, Table 2; Supplementary Table 3), which
increased enzymatic saccharification efficiency in Arabidopsis
(Ohtani et al,, 2018). GRMZM2G064159 is homologous to
AT5G08170 (EMBI1873, Table 2; Supplementary Table 3), which
acted upstream of or within embryo development ending in seed
dormancy. EMB genes encoded proteins with an essential function
required throughout the life cycle (Muralla et al., 2011).
GRMZM2G114789 is homologous to the RNA-binding family
protein AT4G17720 (BPLI, Table 2; Supplementary Table 3) which
contains classical RNA recognition motif domains and is implicated
in the response to cytokinin (Marondedze et al., 2016). Third, they
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were DEGs under DT vs. WW treatments or under high vs. normal
temperature treatments (Figures 4B, C; Supplementary Table 4), and
GRMZM2G064159 and GRMZM2G146192 both involved in organic
substance metabolic process (GO: 0071704, Supplementary Figure 3),
GRMZM2G114789 involved in binding (GO:0005438, Supplementary
Figure 3). Moreover, their phenotypic differences across
haplotypes were significant under four environments (Figure 5C;
Supplementary Figures 5C, 6C, and Supplementary Table 5). Lastly,
GRMZM2G064159 was commonly expressed in spike, embryo, and
root-associated tissues (Figure 5A). High expression in embryo
implies that it may be involved in maize growth and development
regulation (Zhang et al., 2022). The root system is the primary site
that perceives drought stress signals (Seo et al., 2009). Besides,
GRMZM2G146192 was highly expressed in root and leaf-associated
tissues (Supplementary Figure 5A). GRMZM2G114789 was expressed
at various stages in root, leaf, internode, seed, and embryo-associated
tissues, with higher expression values in root and embryo-related
tissues (Supplementary Figure 6A). Therefore, we supposed that the
candidate genes GRMZM2G064159, GRMZM2G146192, and
GRMZM2G114789 around QEIs may have gene-by-environment
interactions for yield-related traits in maize, although new
experiments such as functional validation are necessary to explore
these novel GEI-trait associations. Although the results for known
genes suggested that genes around QTNs may reflect an influence of
environmental interactions (such as ereb60, ereb53, and bzip22,
Supplementary Figure 2B, C and Supplementary Table 3), whether
the candidate genes identified around QTN in this study (Table 2)
have gene-by-environment interactions needs to be further explored.

In addition, for ASI, the dominance effect in HS situation was
positive and significant, ranging from -2.051% to 8.005%. In contrast,
the dominance effect in DS situation was relatively negative and
moderate, with a range mostly concentrated from -2.635% to 0.284%
(Table 1 and Supplementary Table 1). While on the other hand, the
overall PVE of QTNs and QEISs significantly associated with GY were
relatively low, largely clustered at 0.01% to 0.56% (Supplementary
Tables 1 and 2). These findings suggested that trait GY and secondary
trait AST under abiotic stress would be regulated by small effect QTNs
or QEIs that are dispersed across the genome in maize. This also
suggested that it is relatively difficult to use marker-assisted selection
to improve maize yield due to the complexity of traits under multiple
environments. And in real data application, introducing secondary
yield-related traits to assist maize breeding might be a good choice,
which is also consistent with the findings in Bolanos and
Edmeades (1996).

Methods comparison

We also performed a single-environment analysis in the DTMA
panel using the IITVmrMLM package. The PVE of QTNs for ASI
under each environment ranged from 50.25% to 58.04%
(Supplementary Table 6), while the total PVE of QEIs for ASI in
the multi-environment joint analysis was as high as 71.214% (Table 1
and Supplementary Table 1). Moreover, 102 QTNs and 221 genes for
ASI were detected in the single-environment approach, of which 5
QTN overlapped with QEIs in the multi-environment joint analysis,
and 11 genes overlapped (Supplementary Tables 3 and 6), of which
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one known gene drgs (GRMZM2G135877) was confirmed to be
dark response gene in the previous literature (Dong et al, 2020).
There were few overlapped loci detected in single- and multi-
environment analyses, further illustrating that the yield-related traits
in maize are complex and relatively susceptible to environmental
influences. The more detailed results were listed in Supplementary
Table 6. To address this issue, it is necessary to optimize the
“SearchRadius” parameter.

Under the framework multiple-locus association studies, a few
multi-year and multi-location GWAS methods are applicable for
high-dimensional data analysis, and the DTMA panel with 332,641
SNPs has been seldom applied to reveal QEIs. Compared to the
above single-environment analysis in 3VmrMLM, the significant loci
overlapped fewer. We also compared 3VmrMLM with ICIM method
(Li et al,, 2015). Firstly, to reduce the computational burden, we used
Levene's test (Brown and Forsythe, 1974) in R and set the threshold to
0.05 to downscale the DTMA dataset. That is because the ICIM
method is very slow in handling high-dimensional dataset and
Levene's test can be used to detect potential loci for heterogeneity of
variances due to potentially interacting SNPs such as QTN-by-
environment interactions. 58,000~71,000 significant markers for
each trait were identified by Levene's test. Then, the linkage map
was converted according to the ratio of genetic distance to physical
distance of 1.296 cM/Mb (Guo et al., 2015). Finally, we performed a
multi-environment joint analysis for the above data using the QTL
IciMapping 4.2 software (Meng et al., 2015). A comparison was listed
in Supplementary Table 7. The threshold was set to LOD (A) > 3 for
additive QTLs and LOD (A by E) > 3 for additive QTLs by
environment interactions in ICIM approach. 3vmrMLM detected
more QTNs or QEIs than additive QTLs or additive QTLs by
environment interactions. In particular, for ASI, 3VmrMLM
detected 37 QEIs (PVE = 71.214%), but ICIM detected only 6
additive QTLs by environment interactions (PVE = 9.34%).
3VmrMLM added the polygenic effect and population structure to
control the genetic background, thus it might be relatively close to the
true genetic models of plants and animals. In addition, the computing
time for GY, AD, and ASI ranged from 1~2 days, while 3VmrMLM
consumed less than 7 hours for each trait, which took about one
fourth of ICIM’s. 3VmrMLM reduces the dimensionality of SNPs by
single-locus method, and constructs the multi-locus model based on
the remaining markers, which decreases computational volume and
computational complexity. In summary, 3VmrMLM presents well-
performance results with higher statistical power, lower false positive
rate and high computational efficiency, and it is a recommended
method in multi-environment joint analysis.

Conclusion

In this study, we identified QTN-by-environment interactions for
three yield-related traits in maize under four abiotic stresses using the
newly proposed 3VmrMLM method. A total of 73 QEIs and 76 QTNs
were identified. Moreover, 34 known genes and 24 candidate genes
were identified in the vicinity of QEIs and QTNs. Among 34 known
genes, ereb53 (GRMZM2G141638) & thx12 (GRMZM2G016649), and
hsftf27 (GRMZM2G025685) & myb60 (GRMZM2G312419) were
confirmed to play important roles in drought and heat stresses,
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respectively, by transcriptome and bioinformatics analysis in previous
maize studies. Among 24 candidate genes, 13 genes around QEIs and
13 genes around QTNs were validated functioning in drought and
heat stresses by homologous genes miming, differential expression,
functional enrichment, tissue-specific expression, and haplotype and
phenotypic difference analysis in this study. Importantly,
GRMZM2G064159, GRMZM2G146192, and GRMZM2G114789
around QEIs may have gene-by-environment interactions for yield.
These findings will facilitate the mining of genes involved in maize
breeding under the abiotic stresses.
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SUPPLEMENTARY FIGURE 1

Pearson correlation coefficients and test for three yield-related traits under four
environments in the DTMA panel. (Upper right) Pearson correlation coefficients,
when the color is darker, the association is stronger; (Lower left) Pearson
correlation test, the number of stars represents the different significance level
(*: 0.05; **: 0.01; ***: 0.001). NS indicates non-significant.

SUPPLEMENTARY FIGURE 2

Manhattan plots using 3VmrMLM for QTNs on three yield-related traits (A) GY,
(B) AD and (C) ASI under four environments. Y-axis on the left side represents
-logl0 (P-values) of QTNs, which are obtained from single-marker genome-
wide scanning for all markers, while y-axis on the right-side represents LOD
scores, which are obtained from likelihood ratio test for QTNs, with the
threshold of LOD = 3.0 (dashed line). These LOD scores are shown in points
with straight lines. Highlighted text is the corresponding known gene of the loci.

SUPPLEMENTARY FIGURE 3

Hierarchical tree graph of overrepresented GO terms in biological process
category generated by singular enrichment analysis. Boxes in the graph
represent GO terms labeled by their GO ID, term definition and statistical
information. The significant (P-value < 0.05) and non-significant terms are
marked with color and white boxes, respectively. The diagram, the degree of
color saturation of a box is positively correlated to the enrichment level of the
term. Solid, dashed, and dotted lines represent two, one, and zero enriched
terms at both ends connected by the line, respectively.

SUPPLEMENTARY FIGURE 4
Expression map of GO for the 37 genes.

SUPPLEMENTARY FIGURE 5

(A) Tissue-specific expression profile, (C) Linkage disequilibrium, and haplotype
block with 6 SNPs inside for the candidate gene GRMZM2G146192. (C)
Comparison of trait GY among haplotypes | (GTCTCC), Il (CTTGGC), I
(CTCTCCQ), and IV (CACTCT). The number of stars represents the result of t
test at different significance levels (*: 0.05; **: 0.01; ***: 0.001).

SUPPLEMENTARY FIGURE 6

(A) Tissue-specific expression profile, (B) Linkage disequilibrium, and haplotype
block with 13 SNPs inside for the candidate gene GRMZM2G114789.. (C)
Comparison of trait AD among haplotypes | (CCGGCCCAACACT), Il
(CCGGCCCAAGGCT), Il (CCGGCCCAAGGTT), IV (TCGGCCCAACACT), V
(TCGGCCCAAGGCT), VI (TCGGCCCAAGGTT), and VII (TCGGCTTCAGGTT).
The number of stars represents the result of t test at different significance
levels (*: 0.05; **: 0.01; ***: 0.001).
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Tassel branch number is an important agronomic trait that is closely associated
with maize kernels and yield. The regulation of genes associated with tassel
branch development can provide a theoretical basis for analyzing tassel branch
growth and improving maize yield. In this study. we used two high-generation
sister maize lines, PCU (unbranched) and PCM (multiple-branched), to construct
an F, population comprising 190 individuals, which were genotyped and mapped
using the Maize6H-60K single-nucleotide polymorphism array. Candidate genes
associated with tassel development were subsequently identified by analyzing
samples collected at three stages of tassel growth via RNA-seq. A total of 13
quantitative trait loci (QTLs) and 22 quantitative trait nucleotides (QTNs)
associated with tassel branch number (TBN) were identified, among which,
two major QTLs, gTBN6.06-1 and qTBN6.06-2, on chromosome 6 were
identified in two progeny populations, accounting for 15.07% to 37.64% of the
phenotypic variation. Moreover, we identified 613 genes that were differentially
expressed between PCU and PCM, which, according to Kyoto Encyclopedia of
Genes and Genomes enrichment analysis, were enriched in amino acid
metabolism and plant signal transduction pathways. Additionally, we
established that the phytohormone content of Stage | tassels and the levels of
indole-3-acetic acid (IAA) and |IAA-glucose were higher in PCU than in PCM
plants, whereas contrastingly, the levels of 5-deoxymonopolyl alcohol in PCM
were higher than those in PCU. On the basis of these findings, we speculate that
differences in TBN may be related to hormone content. Collectively, by
combining QTL mapping and RNA-seq analysis, we identified five candidate
genes associated with TBN. This study provides theoretical insights into the
mechanism of tassel branch development in maize.
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1 Introduction

As one of the most important food crops worldwide, maize is
widely used in industry, agriculture, and animal husbandry (Huang
et al., 2022). Indeed, in recent decades, the demand for maize has
steadily increased to meet the needs of a rapidly expanding global
population and economy. As such, breeding maize varieties with
optimal agronomic traits is a key objective to achieve the desired
increases in yield (Wang et al., 2018). In this regard, the tassel of
maize, which was domesticated from the wild ancestor teosinte, is
considered an important agronomic trait (Doebley et al., 1990;
Matsuoka et al., 2002; Wei et al., 2018). During growth, the ear and
tassel develop simultaneously and compete for nutrients when the
overall nutrient uptake of maize remains unchanged (Lambert and
Johnson, 1978; Brown et al., 2011). However, appropriately
reducing the tassel volume and branch number can contribute to
yield increases (Brewbaker, 2015). Compared with wild-type maize,
yield increases of between 5% and 19% can be obtained by using
artificially emasculated strains (Hunter et al., 1969; Lambert and
Johnson, 1978). Given that reducing the TBN can increase the light
transmittance and photosynthetic efficiency of the upper leaves
(Duncan et al., 1967; Xu et al., 2017), breeders are more inclined to
select for smaller tassels, with the aim of promoting increases in
yield (Gao et al., 2007). However, a larger number of tassel branches
can ensure sufficient pollen production, which in turn contributes
to adequate seed quantity.

TBN is a complex quantitative trait controlled by multiple
genes. Previous studies have analyzed the genetics of maize tassels
by constructing numerous genetic populations with germplasm
materials from different backgrounds. For example, an F,
population comprising 6,872 individuals was constructed using
the LX1 and LX2 lines for QTL mapping, resulting in the
identification of Ub4, a potential candidate gene located on
chromosome 6 (Li et al., 2019). Moreover, SICAU1212 and the
maize-inbred lines 3237 and B73 were used to construct BC1S1, the
subsequent analysis of which revealed 21 QTLs associated with
TBN on chromosomes 2, 3, 5, and 7 (Chen et al.,, 2017). However,
the establishment of high-density genetic maps of single-nucleotide
polymorphism (SNP) markers and genome-wide association study
(GWAS) analysis of natural populations provide powerful tools for
the fine mapping and analysis of quantitative traits. For instance,
Qin employed Mo17 as a test inbred line to conduct whole-genome
association analysis and identified the tassel branch-related gene
QP*™ (Qin et al., 2021). Using a similar strategy, Wu identified 63
QTLs distributed on 10 chromosomes, primarily concentrated on
chromosomes 1, 2, and 7, that are associated with tassel branches
(Wu et al,, 2016). Moreover, several SNPs associated with tassel
branching have been obtained based on the GWAS analysis of 513
inbred lines using a nonparametric model (Yang et al, 2014).
However, most of the QTLs identified to date have been found to
have small effect values or are readily affected by environmental
factors, and consequently have not been applied in
breeding practices.

With the rapid development of molecular biotechnology and
bioinformatics, various key genes associated with tassel branch
development have been identified, and their functions have been
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characterized. For example, ramosall (Ral) and Ra2 are
transcription factors, whereas Ra3 encodes a trehalose 6-
phosphate phosphatase (TPP), and it has been established that
Ra2 and Ra3 promote the expression of Ral. Moreover, it has been
observed that ral, ra2, and ra3 are associated with an increased
TBN phenotype (Vollbrecht et al., 2005; Bortiri et al., 2006; Satoh-
Nagasawa et al., 2006; Claeys et al., 2019). Genes from different
transcription factor families are also involved in the regulation of
TBN, notable among which is barren stalk 1 (Bal), which encodes a
basic helix-loop-helix (PHLH) transcription factor that influences
TBN by regulating meristem transformation processes (Gallavotti
et al., 2004). The ethylene response factor (ERF) family encoding
the APETALA2 (AP2) transcription factor indeterminate spikelet 1
(Ids1) and sister of indeterminate spikelet 1 (Sidl) has also been
demonstrated to regulate tassel development (Chuck et al., 1998;
Chuck et al,, 2008). Furthermore, three genes, namely, tassel sheath
4 (Tsh4), unbranched 2 (Ub2), and Ub3, belonging to the squamosa
promoter binding-box transcription factor family, have been found
to contribute to TBN regulation. Notably, these three genes are
characterized by functional redundance, with single, double, and
triple mutant plants showing marked reductions in TBN and an
increase in the number of rows of spikes (Chuck et al., 2014). In
addition, mutants of the gene liguleless 2 (Lg2), which regulates leaf
angle, can also be characterized by lower TBNs (Walsh et al., 1998;
Walsh and Freeling, 1999).

TBN development is also regulated by different plant hormones,
including auxins, cytokinins (CKs), and strigolactones (SLs) (Isbell
and Morgan, 1982; Ongaro and Leyser, 2008; Umehara et al., 2008;
McSteen, 2009). Among these, auxins are synthesized in the shoot
apical meristem (SAM) and transported downward by polar auxin
transport, thereby inhibiting branch formation and inducing apical
dominance. Contrastingly, CKs are synthesized in roots and stems
and promote the synthesis of auxins and, thus, the development of
collateral branches (Mueller and Leyser, 2011). CKs also regulate
apical meristem size, whereas a loss of function of the lonely guy
(Log) and wuschel (Wus) genes influences CK synthesis and
transport, leading to early SAM termination, and modification of
TBN development (Ongaro and Leyser, 2008; Umehara et al., 2008).
As carotenoid-derived plant hormones, SLs are also involved in the
regulation of branching. For instance, transgenic corn plants
overexpressing maize Dwarf 53 (ZmD53) are characterized by
excessive tillering and reduced TBN, whereas ZmD53 interacts
with the SL receptor ZmDI4A/B in a rac-Gr24-dependent manner
(Liu et al., 2021). In this way, SLs influence auxin transport by
regulating auxin export carrier proteins, thereby leading to altered
TBN (Ongaro and Leyser, 2008; Durbak et al., 2012).

To gain further insights into the genetic regulation of maize
TBN, in this study, we employed the Maize6H-60K gene array to
produce a high-density genetic linkage map of the F, population
generated using two sister lines, namely the unbranched inbred line,
PCU, and multi-branched inbred line, PCM. Subsequently, the
genetic linkage map and two-year phenotypic data were used to
map QTLs associated with TBN. By analyzing the RNA-seq data, we
compared the changes in gene expression between the two parents
at different stages of tassel development. Furthermore, the results of
QTL mapping and RNA-seq analysis were combined to screen for
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candidate genes regulating TBN. Our findings in this study can be
used as a reference for verifying the function of genes associated
with TBN and provide a theoretical basis for genetic improvement
of the maize tassel branch trait and associated molecular breeding.

2 Materials and methods

2.1 Plant materials and construction of
mapping populations

The sister lines PCU and PCM were bred using the parents
Xianyu 335 and Zheng 58, in which PCU was the non-branching
material (TBN, 0) and PCM was the multi-branched material (TBN,
5-8), both of which were provided by the Special Maize Research
Institute of Shenyang Agricultural University (Liaoning, China). A
total of 994 pairs of simple sequence repeat (SSR) markers and SNP
markers were used to assess PCU and PCM, which were established
to have a genetic similarity of 93.17%. Subsequently, a single F,
population comprising 190 plants was developed by crossing PCU
and PCM within the experimental field of Shenyang Agricultural
University (Shenyang, Liaoning, 41.48°N, 123.25°E). The F,;
population was planted at the Southern Breeding Base of
Shenyang Agricultural University (Sanya, Hainan, 18.15°N,
109.30°E). The width and length of the single-row plot were 65
cm and 4 m, respectively, and the spacing between the plants was 20
cm, according to standard field management methods.

2.2 Determination and analysis of
phenotype data

After the maize tassels had matured, we investigated the TBN
phenotypes, with branches bearing more than one pair of small
flowers being considered effective branches. The average branching
number was used as the phenotype data for the F,.; population. The
statistical parameters of TBN in the F, and F,.; populations were
calculated using SPSS software version 24.0. Pearson correlation
coefficients and phenotype frequency distribution maps were
visualized using the R package ggpubr performance analytics.

2.3 Genetic mapping and QTL and
QTN detection

The parent plants and 190 F, individuals were genotyped using a
Maize6H-60K SNP array (Tian et al, 2021). Linkage analysis was
performed using QTL ICIMAPPING 4.2 software (Meng et al., 2015),
in which markers with no polymorphism between parents and a
deletion rate > 10% were removed. The TBN was assessed using the
inclusive composite interval mapping method (ICIM) in the software
QTL ICIMAPPING 4.2 (Meng et al, 2015), composite interval
mapping method (CIM) in the Windows QTL Cartographer 2.5
(Wang et al,, 2012), and genome-wide composite interval mapping
(GCIM) (https://cran.r-project.org/web/packages/QTL.gCIMapping/
index.html) (Wen et al, 2019) and dQTG-seq2 (https://cran.r-
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project.org/web/packages/dQTG.seq/index.html) (Li et al, 2022).
QTLs were evaluated based on 1,000 permutation tests with a
significance level of 0.05 to determine the logarithm of the odds
(LOD) threshold and thereby identify QTLs. A slightly more
stringent criterion (P-value = 0.00316) was applied to denote
significant QTLs, which was converted from an LOD score of 2.50.
When adopting the dQTG-seq2 method, we used the 20% plants with
the highest TBN as the high pool and the 20% of plants with the
lowest TBN as the low pool.

2.4 RNA isolation and RNA-seq

The tissues of PCU and PCM tassels collected at three different
stages of development, namely, the growth cone elongation stage
(Stage I), the early stage of tassel differentiation (Stage II), and the
later stage of tassel differentiation stage (Stage IIT), were immersed
in an RNA storage solution (Li et al., 2019). PCU and PCM had
similar tassel-branching stem tips during Stage I. However, it is
uncertain as to whether the lateral meristems differentiated into
tassel branches during Stage II. During Stage III, tassel branches at
the base of PCU and PCM could be clearly distinguished. RNA
extraction was performed using the TRIzol method (Rio
et al., 2010).

For each line at each stage, we obtained three duplicate biological
samples, and used the total 18 samples to construct a cDNA library.
Construction and sequencing of the library were performed by Beijing
Nohezhiyuan Bioinformation Technology Co., Ltd (Tianjin). Using an
Nlumina HiseqTM4000 high-throughput sequencing platform to obtain
100-bp double-terminal sequence reads, and FastQC tools (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to
control the read quality. Low-quality reads were removed using
Trimmomotic 0.36 (Bolger et al., 2014). The reference genome
(AGPv4) was obtained from the maize database MaizeGDB (https://
maizegdb.org). To calibrate the FastQC output, gene expression levels
were normalized based on gene length and the number of reads, and
the number of transcription fragments per kilobyte/million mapping
reads (FPKM) was calculated. The DESeq software package was used to
identify those genes that were differentially expressed (DEGs) between
PCU and PCM (Anders and Huber, 2010).

Functional annotation and Gene Ontology (GO) analysis of
genes were performed using Blast2go 4.1 (Conesa et al., 2005).
whereas Kyoto Encyclopedia of Genes and Genomes (KEGG)
Orthology-based Annotation System KOBAS 2.0 software (http://
kobas.cbi.pku.edu.cn) was used to perform pathway enrichment
analysis. The P-value of each gene was adjusted using the Benjamini
and Hochberg method to control the false discovery rate. P-values <
0.05 and | log2FC | = 1 were applied as thresholds to identify DEGs.

Venn diagrams are drawn by online sites. (https://

bioinfogp.cnb.csic.es/tools/venny/index.html)

2.5 qRT-PCR

RNA derived from tassels collected at the three stages (Stage I,
I, and IIT) was assessed via qQRT-PCR, for which primers were
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designed using Primer BLAST (https://www.ncbinlm.nih.gov/
tools/primer-blast) (Table S8). All primers were synthesized and
supplied by Shenggong Biotech Co., Ltd. The housekeeping gene
Gapdh was used as the internal reference gene, the relative
expression levels of which were calculated using the 274" method.

2.6 Determination of hormone content

Tassels collected at Stage I were exfoliated, flash frozen in liquid
nitrogen, and stored at -80°C. A standard plant hormone solution
was prepared using a 50% formaldehyde solution, and 10 pL of an
internal standard plant hormone solution was added to 50 UL of a
concentration gradient of standard plant hormone solutions.
Thereafter, 1 mL of methanol/water/formic acid mixture (15:4:1,
v/v/v) was added, followed by vortexing for 10 min (until
thoroughly mixed), and the resultant mixture was allowed to
stand for 12 h. The auxin, CK, ethylene (ETH), abscisic acid
(ABA), gibberellin (GA), and SL contents of the tassels were
determined by analyzing the resultant supernatant via liquid
chromatography in conjunction with tandem mass spectrometry
(LC-MS/MS).

2.7 ldentification of candidate genes

Genes located in the vicinity of large loci with an R* value >
10%, and which were stable across 2 years, were used for gene
annotation. Gene annotation information was obtained using
MaizeGDB (https://maizegdb.org) and Phytozome (http://
phytozome.jgi.doe.gov). Gene expression in PCU and PCM was
analyzed using RNA-seq data and applied to predict gene function
that might be associated with tassel branching in maize.

2.8 Cloning and sequence alignment
of Zm00001d038537

The candidate gene Zm00001d038537 was extracted from the
genomic DNA and cDNA of PCU and PCM. The primers used for
amplification are listed in Supplementary Table S8. DNA sequence
alignment was performed using SnapGene software (https://

Www.snapgene.com/).

3 Results

3.1 Statistical differences in plant
architectural traits and phenotypic analysis
in sister lines

Architectural traits of plants of the sister lines PCU and PCM
were compared and analyzed. Apart from leaf length, leaf width, leaf
angle, and TBN, we detected no significant differences between the
two lines with respect to plant architecture (Table 1). Notably, over
the 2 years of the study, we detected a significant difference between
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the parent lines with respect to TBN, with PCM being characterized
by a larger number of tassel branches, whereas under certain
environmental conditions, PCU had no branches, thereby
indicating that these phenotypic traits of the parents are probably
stable (Table 2).

The TBN of the F, population ranged from 0 to 11, with a
coefficient of variation of 99.65%, whereas in the F, ; population, the
TBN ranged from 0 to 5.43, with a coefficient of variation of 76.92%.
In both offspring populations, the number of tassel branches was
maintained at an average of that of the two parents (Table 2).
Moreover, we detected a highly significant correlation between F,
and F,.;. The TBN of the two offspring groups was biased toward
PCU and exhibited a continuous distribution trend (Figure 1). In
addition, the skewness and kurtosis results revealed that both
populations conformed to the quantitative trait characteristics of
skewed normal distribution and polygene control (Table 2).
Accordingly, the two progeny populations were assumed to meet
the requirements for QTL mapping.

3.2 QTL and QTN identification and
effect calculations

The F, population was genotyped using the Maize6H-60K SNP
array, which contains 61,214 SNP markers covering the entire
maize genome. A genetic linkage map was constructed by
screening high-quality genotype-independent SNP markers with
deletion rates < 10% between the two parents, from which we
obtained 4,136 SNP markers (Table S1). The linkage map covered a
distance of 2,095.02 c¢M, with an average distance of 0.51 cM
between markers. The number of SNP markers on each
chromosome ranged from 46 to 710, with a linkage distance
ranging from 37.22 to 410.78 ¢M (Table 3). As the two parents
are higher generation sister lines with high background similarity,
the SNP differences detected on chromosomes 4 and 9 were
small (Figure 2).

Combined with phenotype data of the two populations and the
F, genetic linkage map, QTLs for the TBN of F, and F,; were
identified using ICIM, CIM, and GCIM methods. Within the two
populations, we detected 13 QTLs associated with TBN on
chromosomes 3, 6, and 7, with LOD values ranging from 5.10 to
40.78 and accounting for 6.86% to 37.64% of the phenotypic
variation (Table 4; Figure 54). Excluding gTBN-3-4 and gqTBN-3-
5, which exhibited a positive additive effect attributable to the PCM
allele, the other QTL sites showed negative additive effects
associated with the PCU allele. In addition, we identified 22 SNPs
significantly associated with TBN based on dQTG-seq2 mapping.
Compared with other methods, we identified new SNPs on
chromosomes 1, 2, 4, and 5 when using dQTG-seq2. The
upstream and downstream 50 kb of the significantly associated
SNPs were used as the intervals for predicting candidate genes
(Table 5; Figure S5) (Li et al., 2013).

On the basis of statistical analysis of QTLs and QTNs, we
identified two QTLs on chromosome 6 with R* > 10%, namely,
qTBNG6.06-1 (157846342-159598073 bp) and gTBN6.06-2
(159648428-159792909 bp) (Table 4). Moreover, we identified
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TABLE 1 Statistical difference of agronomic traits in sister lines.

10.3389/fpls.2023.1202755

Traits
Plant height(cm) 2234 4.4 220.1 37
Ear height(cm) 88.4 2.1 85.7 24
Leaf angle(®) 31.2 3.0 67.7%* 4.0
Leaf length(cm) 76.3 3.0 66.1%* 3.0
Leaf width(cm) 10.9 0.4 8.6%* 0.5
TBN 0.0 0.0 5.1% 1.2
Stem diameter(mm) 26.5 2.0 25.6 1.9
Ear length(cm) 15.7 1.1 15.4 0.9
Ear diameter(mm) 36.9 0.9 36.4 0.7
Ear rows 14.0 0.0 14.0 0.0
Hundred grain weight(g) 26.7 1.1 25.3 0.9

# 8D, Standard Deviation. The asterisks (*or **) represent the significant differences at P < 0.05 or P< 0.01, respectively.

candidate genes in the two QTLs based on the physical location of
the SNP markers. gTBN6.06-1 and gTBN6.06-2 contained 73 and 14
genes, respectively (Table S2). In contrast to the findings of previous
studies, we failed to identify any TBN-related genes in gTBN6.06-1
and qTBNG6.06-2. Hence, we used the online tool Web Gene
Ontology Annotation Plot (WEGO) 2.0 (Ye et al,, 2018) to
annotate the candidate genes within the two QTL intervals. The
results revealed that binding (G0:0005488), metabolic process
(GO:0008152), and cellular process (GO:0009987) were the three
main GO entries for the 84 genes in the two QTLs (Figures S1; 52),
and consequently, we speculate that tassel development is
associated with these processes.

3.3 RNA-seq analysis

Despite our GO enrichment analysis of genes within the
localized intervals, differences in gene expression during tassel
development remained undetermined. Consequently, to identify
the genes responsible for tassel branch development, we compared
the DEGs (|Log2-fold change| > 1 and P-value < 0.05) between PCU
and PCM at the three assessed developmental stages. We analyzed
DEGs common to Stages I, II, and III, among which, 317 and 292
genes were up- and downregulated, respectively (Figures 3A-Dj
Table S3). GO enrichment analysis revealed a significant
enrichment of 118 biological processes (Table S4), which are

primarily associated with the growth and development of tissues
or cells, including pollen tube growth, cell tip growth, amino acid
kinase activity, developmental cell growth, and the endoplasmic
reticulum lumen (Figure 4A). In addition, we identified enrichment
of several pathways associated with enzyme activity, including those
of endonuclease, endoribonuclease, mitogen-activated protein
(MAP) kinase, inositol-3-phosphate synthase, and glyceraldehyde-
3-phosphate dehydrogenase (NADP+) (phosphorylating).
Therefore, we speculate that the activities of different enzymes
also influence TBN.

KEGG enrichment analysis further revealed that DEGs were
enriched in glycine, serine, and threonine metabolism; taurine and
taurine metabolism; plant hormone signal transduction; ATP-
binding cassette (ABC) transporter superfamily (Figure 4B; Table
S6). In maize, BARREN INFLORESCENCE2 (Bif2) encodes a
serine/threonine protein kinase Bif2 phosphorylates ZmPINla,
Bif2 regulates auxin transport through direct regulation of
ZmPINla during maize inflorescence development (Skirpan et al,
2009; Forestan et al., 2012). The main functions of ABCB protein in
ABC transporter family are auxin transport. In Arabidopsis thaliana
studies, it was found that ATABCBI, ATABCB6, ATABCBI14,
ATABCBI15 and ATABCB20 all participated in auxin transport in
inflorescence axis, which further affected the growth and
development of inflorescence axis (Okamoto et al., 2016). Thus,
the above pathways may be involved in TBN development. Among
these, 12 genes were enriched in plant hormone signaling pathways,

TABLE 2 Mean, extreme, Standard Deviation (SD), Coefficient of Variation (CV), Skewness and Kurtosis of the TBN in parents and F,, F,.5 populations.

Parents offspring of PCUXPCM

PCU ¢ SD?® CV (%) © Skewness Kurtosis
F, 0 5.1 0 11 2.55 2.54 99.65 0.97 0.36
Fas 0 4.9 0 543 171 1.32 76.92 0.52 -0.57

* Mean TBN of PCU and PCM calculated from 10 plants per parent in two rows. ® SD, Standard Deviation; ¢ Coefficient of Variation.
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FIGURE 1
Frequency distribution and correlation of TBN of F, and F,.3, ***P<0.001. (A) The horizontal coordinate is TBN and the vertical coordinate is the
frequency. (B) The TBN distribution of the F, population in the horizontal coordinate and the F,.3 population in the vertical coordinate. (C): The
horizontal coordinate is TBN and the vertical coordinate is the frequency.

TABLE 3 Total SNP numbers and linkage distances of chromosomes in F, population.

Chromosome Number of SNPs Linkage Distance(cM) Average Distance between Markers(cM)
1 726 348.72 0.48
2 235 171.88 0.73
3 759 374.11 0.49
4 46 37.22 0.81
5 678 41078 0.61
6 809 340.48 042
7 341 182.79 0.54
8 249 103.97 0.42
9 103 46.73 045
10 190 78.34 0.41

Total 4136 2095.02 051
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seven of which were associated with indole-3-acetic acid (IAA)
signaling. Other pathways were primarily associated with amino
acid anabolism. Accordingly, KEGG pathway analysis provided
evidence to indicate that tassel branch development might be
associated with hormone and energy metabolism (Figure 4C).

Simultaneously, we annotated the DEGs, on the basis of which
we retrieved 64 transcription factors, among which myeloblastosis
(MYB)-related genes (seven) were the most common, followed by
ERF (six), bHLH (five), and C2H2 (Cys2/His2-type; four) genes. In
addition, we also identified three auxin response factors (ARFs).
Interestingly, the expression of most MYB-related genes in PCU
was higher than that in PCM, whereas ERF transcription factor
expression was downregulated in PCM (Figure 4D; Table S7).

We also performed GO enrichment analysis for genes
differentially expressed in only one of the three assessed stages.
Those exclusively identified in Stage I were primarily enriched in
the regulation of nitrogen compound metabolic processes,
regulation of primary metabolic processes, and regulation of
nucleic acid-templated transcription, which are closely associated
with plant growth and development (Table S5). Moreover, certain
genes known to regulate tassel development in maize were analyzed
(Figure 4E), most of which were differentially expressed in Stage I,
with the variance fold change being greater than that in the other
two stages. On the basis of these findings, we assume that Stage I is
critical to the regulation of tassel development.

3.4 Determination of hormone content

Our KEGG results provided evidence to indicate that DEGs
were enriched in plant hormone signal transduction, and we
speculated that Stage I was the key stage responsible for the
observed differences between PCU and PCM with respect to
TBN. We thus used samples of Stage I PCU and PCM tassels to
quantify hormone content, which revealed that the content of IAA
in PCU was slightly higher than that in PCM, whereas the respective
contents of tryptamine (TRA) and tryptophan (TRY), two
important precursors in the auxin synthesis pathway, were
significantly higher in PCU. In addition, the content of IAA-glc,
an important form of stored IAA. was found to be 7.9-fold higher in
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PCU than in PCM, whereas in contrast, the content of 5-
deoxymonopolyl alcohol (5DS), the first active product of the SL
biosynthetic pathway, was found to be significantly higher in PCM
than in PCU. However, we detected no significant differences
between the lines with respect to the levels of ABA, trans-zeatin
(tZ), or 1-aminocyclopropanecarboxylic acid (ACC). On the basis
of these observations, we can speculate that differences in the tassel
branching phenotypes of the two parent lines are attributable, at
least in part, to differences in the contents of TAA and
5DS (Figure 5).

3.5 Predicting candidate genes

To screen for candidate genes, we selected 614 common DEGs
to cross-analyze the mapping interval. The interval qTBNG6.06-1
comprised 73 protein-coding genes, 27 of which were negligibly
expressed during the three stages of tassel development, and 38
showed no significant differences. Only two genes,
Zm00001d038519 and Zm00001d038523, were differentially
expressed at all three stages. Of the 14 protein-encoding genes
present within gTBN6.06-2, only Zm00001d038546 and
Zm00001d038552 were identified as being differentially expressed
during the three stages.

These four candidate genes were annotated using Phytozome
(https://phytozome-next.jgi.doe.gov/), using which,
Zm00001d038519 was predicted to contain a putative S-adenosyl-
L-methionine-dependent methyltransferase domain, which
regulates plant growth and development via methylation. We
thus inferred that Zm00001d4038519 might have a similar
function. Zm00001d038546 was found to contain a Myb-like
DNA-binding domain and thus could be a member of the MYB
family of transcription factors that are primarily involved in
inflorescence development and the segregation of lateral organs.
However, using this approach, we were unable to predict structures
for Zm00001d038523 or Zm00001d038552. The four candidate
genes were verified via qRT-PCR analysis, and the results were
consistent with those obtained based on RNA-seq (Figure 6).

In addition, our annotation of genes in the gTBN6.06-1 interval
revealed a gene encoding the F-box structural domain
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TABLE 4 Analysis of TBN-related QTLs in offspring population from PCUxPCM.

Mapping interval/ " LOD Additive Dominant R%(% .
PpPINg b Position z 51 ) Generation Method
bp effect effect
TBN-
1 y 3 179394655-179625328 96 6.59 -0.96 0.05 9.25 F, ICIM
3 179392238-179900293 9% 6.40 -0.95 0.09 6.98 F, GCIM
TBN-
1 P 3 134150716-178936874 98 6.37 124 0.10 7.84 F, CIM
qTBN-
P 3 182413848-182508246 48 6.80 -0.40 0.15 6.80 Fas ICIM
qTBN-
s 3 2019660-2050620 333 8.35 0.03 0.62 8.34 Fas ICIM
TBN-
1 s 3 1473821-1548536 353 5.39 0.09 -0.49 539 Fp3 ICIM
qTBN-
Py 6 157846342-159598073 2359 38.89 147 023 37.64 Fas CIM
6 157846342-159598073 237 40.78 127 -0.08 40.77 Fas ICIM
6 159231856-159316218 240 20.83 -1.91 -0.30 34.63 F, ICIM
6 159231856-159316218 240 15.46 -1.88 027 27.63 F» GCIM
6 159116395-159231856 2425 33.35 127 -0.05 34.81 Fas CIM
6 159141240-159355691 2438 15.62 -1.87 027 15.07 F» CIM
6 159355691-159538438 244.8 4.62 -0.64 -0.68 18.40 Fas GCIM
qTBN-
62 6 159648428-159792909 2465 33.84 -1.36 0.00 37.02 Fas CIM
qTBN-
63 6 160665895-160691260 253 5.04 -0.93 -0.82 34.54 Fas GCIM
TBN-
1 ) 6 160691260-160895678 2547 11.03 -1.80 -0.38 9.39 F» CIM
6 160691260-160895678 254.7 28.63 -1.38 -0.13 28.94 Fas CIM
TBN-
1 65 6 168094283-168363228 307 4.77 -0.80 -0.43 461 F» GCIM
6 168200733-168363228 318 5.10 -0.77 -0.35 6.86 F, ICIM
6 169161160-169372663 319 6.52 037 0.00 6.52 Fas ICIM
TBN-
1 i 7 127691371-128260837 149 5.39 -0.77 037 7.34 F» ICIM
7 127691371-128260837 149 4.77 -0.72 -0.40 461 F, GCIM
TBN-
1 s 7 123889115-125102662 145 542 032 0.02 542 Fps ICIM
TBN-
1 3 7 128260837-172487130 111.8 5.50 -0.47 -0.15 4.63 Fas CIM
7 125921578-127728775 128.6 5.38 -0.37 0.03 436 Fas CIM

*QTL detected in different methods and generations at the same, adjacent, or overlapping marker intervals was considered as the same QTL. "Physical position of the 95% confidence interval for
the detected QTL. ‘LOD (Logarithm of odds) value at the peak likelihood of the QTL. dPheno'rypic variance (R®) explained by the detected QTL.

Zm00001d038537. Members of the F-box family of proteins can  provided evidence to indicate that phytohormone signaling,
play roles in forming Skpl-Cullin-F-Box (SCF) structural particularly IAA signaling, might contribute to the observed
complexes that ubiquitinate specific proteins and thereby promote  differences in TBN, as well as differences in the IAA content of
their degradation, which is similar to processes that can also occur ~ parent tassels. Although Zm00001d038537 was not differentially
in the TAA metabolic pathway. The KEGG enrichment results  expressed in the parents, we inferred that Zm00001d038537 might
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TABLE 5 Significant QTNs for TBN in F, and F,.3 using dQTG-seq2 method.

10.3389/fpls.2023.1202755

Generation Maker Chromosome Position Mapping interval/bp Gw ¢ Smooth_Gw °

F, AX-108052314 1 227992408 227942408-228042408 691 7.78
AX-108019986 3 178936874 178886874-178986874 7.52 8.43
AX-107939474 3 180214656 180164656-180264656 10.77 1031
AX-86317565 6 159792909 159742909-159752909 102.67 102.02
AX-91021926 6 172603449 172553449-172653449 17.68 18.41

Fos AX-247233306 2 223266472 223176472-223276472 9.03 9.81
AX-107941057 3 110309750 110259750-110359750 8.41 8.85
AX-108009558 3 117879603 117829603-117929603 8.84 8.68
AX-108061753 3 130582492 130532492-130632492 10.67 9.7
AX-90827906 3 132093889 132043889-132143889 9.84 9.73
AX-108019986 3 178936874 178886874-178986874 11.11 17.48
AX-247236770 4 824775 774775-874775 109 10.65
AX-107945551 4 3672068 3622068-3722068 8.29 9.15
AX-178079230 5 7392849 7342849-7352849 10.66 9.24
AX-107981631 5 212584879 212534879-212634879 9.47 12.15
AX-107989634 5 222130069 222080069-222180069 10.13 10.07
AX-108011870 6 150255513 150205513-150305513 27.67 26.13
AX-91016539 6 153616434 153566434-153666434 16.88 14.1
AX-86317565 6 159792909 159742909-159752909 6231 64.83
AX-86294633 6 163542081 163492089-163592089 59.83 58.99
AX-86301494 6 166848539 166798539-166898539 24.81 24.47
AX-91021926 6 172603449 172553449-172653449 17.57 18.92

* Gw: The value of statistic Gw calculated by the dQTGseq2 method. ® Smooth_Gw: smooth Gw value of one marker via the window size method.

be a candidate gene responsible for TBN differences. Cloning and
sequencing of this gene in both parents revealed three SNPs, the
first and third of which encoded different amino acids (Figure 7),
resulting in different encoded proteins. These differences were
found to influence TAA signaling and led to differences in the
number of male spike branches. Consequently, Zm00001d038537
was included as a candidate gene.

4 Discussion

In this study, in which we sought to gain insights into the
genetic regulation of tassel development in maize, we used the
unbranched parent PCU and multi-branched parent PCM, two
high-generation sister lines with high background similarity, to
construct a genetic linkage map with a small distribution of markers
on a single chromosome. PCU was characterized by an absence of
tassel branching under different environmental conditions, thereby
indicating that the branching trait in this line is not subjected to
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environmental control. However, on the basis of our field
observations and analysis of natural seed setting rates, we
identified no significant differences between the PCU and
PCM lines.

Thirteen QTLs were identified on chromosomes 3, 6, and 7.
Maize chromosomes 3 and 7 are known hotspots for QTL
localization, containing genes associated with tassel development,
including Lg2, nana plant 1 (Nal), Bal, Sidl, Tsh4, and Ra3 (Walsh
and Freeling, 1999; Satoh-Nagasawa et al., 2006; Chuck et al., 2007;
Chuck et al., 2008; Gallavotti et al., 2008; Hartwig et al., 2011;
Phillips et al., 2011). Previously, Chen et al. (2014) constructed an
F, population comprising 708 individual strains and detected seven
TBN-related QTLs, among which the location results obtained for
chromosome 3 coincided with gTBN-3-3. Moreover, Wang
performed similar analyses on the progeny of natural and
doubled-haploid populations, and accordingly identified 12 loci
(distributed on chromosomes 1, 2, 3, 4, 6, and 7) consistent with
multiple environments. Among these, the QTLs located on
chromosome 3 overlap with the those observed in the current
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FIGURE 3
Numbers of PCU and PCM differentially expressed genes in Stage I, Il and lll. (A) Comparison of the number of differentially expressed genes in
different stages and between different parents. (B) Number of co-differentially expressed genes in Stage I, Stage Il, and Stage III. (C) The number of
genes is co-upregulated in three stages. (D) The number of genes is co-downregulated in three stages.

study. Moreover, our transcription data also revealed notable
differences in the predicted candidate gene Zm00001d4042794
(Wang et al,, 2019). Therefore, we identified a new QTL (qTBN-
3-1) on chromosome 6, which coincides with Lg2, a gene that has
been established to control leaf angle and TBN in maize. In
addition, qgTBN-7-3 was found to harbor Tsh4 (which is
associated with tassel development) and Ra3 (which is known to
regulate the number of tassel branches), which coincide respectively
with the gBTBN7-1 and gXTBN7-1 loci mapped by Wang
et al., 2018.

In this study, the QTL identified on chromosome 6 accounted
for 9.39% to 40.77% of the phenotypic variation and was detected in
different environments. Similarly, previous studies have identified
14 TBN-related loci on chromosome 6, classified into seven groups
on the basis of their physical locations (Li et al., 2019). However,
these loci contributed to less than 10% of the observed phenotypic
differences and did not coincide with the results of the present
study. Furthermore, although the QTLs localized in the present
study overlap with those reported by Yi et al. (2018), the
distribution range detected by Yi et al. was relatively large,
making it difficult to directly compare the respective QTLs.

Auxin is an important hormone involved in plant growth and
development and is one of several hormones known to influence
tassel branching in plants. V2 (vanishing tassel 2) (Phillips et al,,
2011) and Spil (sparse inflorescence 1) (Gallavotti et al., 2008) have
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been identified as genes involved in auxin synthesis, the mutation of
which has been found to coincide with a reduction in maize TBN,
thereby providing evidence to indicate that these genes are involved
in the initiation and growth of the axillary meristem during maize
tassel development. In the present study, we combined our
hormone determination results with the findings of KEGG
pathway enrichment analysis to elucidate the regulatory pathways
from hormones to response genes (Figure 5; Table S3). Auxin
synthesis pathways can be divided into two main categories,
namely, tryptophan (TRP)-dependent and TRP-independent
(Mano and Nemoto, 2012), and the pathways involved in IAA
metabolism primarily include TAA oxidation and methylation,
resulting in the formation of conjugates with polysaccharides and
amino acids (Zhao, 2012). In this study, we assessed the auxin
synthesis pathway by synthesizing TAA via TAM, which entailed
analyses of the contents of TRP, TAM, IAA, TAA-Glu, TAA-glc,
TAA-ASP, MelAA, and oxIAA. By mapping the auxin anabolic and
gene response pathways based on KEGG results, we found that the
contents of TRP and TAM in the PCU line were significantly higher
than those in the PCM line, whereas IAA contents in the two lines
was relatively similar, with only slightly higher levels being detected
in PCU. Among the assessed IAA metabolites, only the content of
IAA-glc was markedly higher in PCU than in PCM. On the basis of
these observations, we thus infer that whereas larger amounts of
IAA are synthesized in PCU, a large proportion is stored in the form
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FIGURE 4

GO and KEGG analysis and changes in the expression levels of differentially expressed genes (DEGs). (A) GO enrichment analysis was executed with
DEGs identified between PCU and PCM. The ordinate and abscissa represent the main biological process GO terms and -Log10(P-value),
respectively. (B) KEGG enrichment analysis was executed with DEGs identified between PCU and PCM. The ordinate and abscissa represent the
major KEGG biological pathways and rich factor, the size of the dots represents the number of genes enriched, respectively. (C) Expression levels of
plant hormone signal transduction pathway-related genes. (D) Gene expression levels of different transcription factor families. (E) The expression
levels of genes related to tassel development are known. The value is the log2 fold-change (log2(FC)) of each gene. The colors of the boxes

represent upregulated (red) and downregulated (blue) genes.

of IAA-glc, and thus the levels of IAA detected in the two the
parental lines tend to be similar (Figure 8).

Auxin signal transduction is regulated by multiple genes, and
TAA enters the cell nucleus through the amino acid permease input
carrier protein (auxin resistant-like aux1, AUX/LAX) (Swarup and
Peret, 2012). In response to low IAA concentrations, auxin/indole-
acetic acid genes (AUX/IAA) form a heterodimer with ARFs
(Enders and Strader, 2015), thereby inhibiting the expression of
downstream genes. Conversely, when present at high
concentrations, IAA combines with transport inhibitor resistant
1/auxin signaling F-box (TIR1/AFB) and AUX/IAA. TIR1/AFB
participates in the formation of SCF E3 ubiquitin ligase
(Fendrych et al, 2018), resulting in the polyubiquitination of
AUX/IAA, subsequent degradation via 26S proteasome, and the
release of ARF inhibition. This also promotes or inhibits the
expression of downstream IAA response genes [AUX/IAA, Gh3,
and SAUR (small auxin upregulated RNA)]. We speculate that the
slightly higher levels of IAA detected in PCU may have resulted in
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the degradation of AUX/IAA, and a correspondingly enhanced
expression of ARFs, AUX/IAA, and SAUR, thus regulating tassel
development and branching. Furthermore, given that we detect no
significant difference in the expression of the IAA polar transport
gene peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PINI)
between the two parental lines, it is reasonable to assume that the
regulation of tassel branching is unrelated to the polar transport of
auxin (Figure 8).

Tassel development and branching are assumed to be regulated
by multiple hormones. In this regard, CK can alleviate apical
dominance and promote lateral branch growth (Bangerth, 1994;
Turnbull et al.,, 1997; Tanaka et al., 2006; Hoyerova and Hosek,
2020). However, CK activity is often regulated by auxin, which in
turn promotes the growth of lateral buds by promoting the polar
transport of IAA in stems and upregulating IAA synthesis in buds.
Furthermore. it has been demonstrated that ARFI19 can inhibit the
expression of isopentenyl transferases (IPTs) and control the
synthesis of CTK (Li et al., 2006). Although in the present study,
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respectively.

we detected the upregulated expression of certain ARFs, we
observed no significant differences in IPT gene expression or tZ
content in the sister lines studied. Moreover, whereas we recorded
high levels of N6-isopentenyl-adenine-9-glucoside (iP9G) content
in PCM, this compound was not detected in PCU, and we
accordingly speculate that iP9G could be involved in the
regulation of TBN (Figure S3).

5 Conclusion
In this study, we used the sister maize lines PCU and PCM,

characterized by significant differences in tassel branch number, as
parents to produce an F, population, and applied a genetic

Frontiers in Plant Science

microarray to genotype the parents and F, population, and to
construct an associated genetic linkage map. On the basis of
phenotypic and genotypic data, we identified two major QTLs,
qTBNG6.06-1 and gTBN6.06-2, on chromosome 6. RNA-seq analysis
of material collected at three stages of tassel development revealed
that DEGs were enriched in amino acid metabolism and
phytohormone signaling. Additionally, we established that levels
of TAA, TAA-glc, TRP, and TAM were higher in PCU than in PCM,
whereas in contrast, PCM was characterized by higher levels of 5DS.
By combining our localization results and transcriptome data, we
able to identify five candidate genes that putatively contribute to the
regulation of tassel branching. Our findings in this study provide a
theoretical basis that will potentially contribute to improving tassel
traits in maize breeding.
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key enzymes in anabolism.
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Fuzhou, Fujian, China, *Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops,

Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, “Department
of Botany, Mawlamyine University, Mawlamyine, Myanmar

Cooking-caused rice grain expansion (CCRGE) is a critical trait for evaluating the
cooking quality of rice. Previous quantitative trait locus (QTL) mapping studies on
CCRGE have been limited to bi-parental populations, which restrict the
exploration of natural variation and mapping resolution. To comprehensively
and precisely dissect the genetic basis of CCRGE, we performed a genome-wide
association study (GWAS) on three related indices: grain breadth expansion index
(GBEI), grain length expansion index (GLEI), and grain length-breadth ratio
expansion index (GREI), using 345 rice accessions grown in two years
(environments) and 193,582 SNP markers. By analyzing each environment
separately using seven different methods (3VmrMLM, mrMLM, FASTmrMLM,
FASTmrEMMA, pLARMEB, pKWmEB, ISIS EM-BLASSO), we identified a total of
32,19 and 27 reliable quantitative trait nucleotides (QTNs) associated with GBEI,
GLEI and GREI, respectively. Furthermore, by jointly analyzing the two
environments using 3VmrMLM, we discovered 19, 22 and 25 QTNs, as well as
9, 5 and 7 QTN-by-environment interaction (QEls) associated with GBEI, GLEI
and GREI, respectively. Notably, 12, 9 and 15 QTNs for GBEI, GLEI and GREI were
found within the intervals of previously reported QTLs. In the vicinity of these
QTNs or QEls, based on analyses of mutation type, gene ontology classification,
haplotype, and expression pattern, we identified five candidate genes that are
related to starch synthesis and endosperm development. The five candidate
genes, namely, LOC_0Os04g53310 (OsSSlIllb, near QTN qGREI-4.5s),
LOC_0Os05g02070 (OsMT2b, near QTN gGLEI-5.1s), LOC_Os06904200 (wx,
near QEl gGBEI-6.1i and QTNs qGREI-6.1s and gGLEI-6.1t), LOC_0Os06912450
(OsSSlla, near QTN gGLEI-6.2t), and LOC_Os08g09230 (OsSSllla, near QTN
gGBEI-8.1t), are predicted to be involved in the process of rice grain starch
synthesis and to influence grain expansion after cooking. Our findings provide
valuable insights and will facilitate genetic research and improvement of CCRGE.

KEYWORDS

rice, grain breadth expansion index (GBEI), grain length expansion index (GLEI), grain
length-breadth relative expansion index (GREI), Genome-wide association
study (GWAS)
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1 Introduction

Rice (Oryza sativa L.) is a crucial cereal crop that serves as a staple
food for over half of the global population. It is the only cereal crop
that is primarily consumed as whole grains, which underscores its
significance in the field of rice breeding (Hossain et al., 2009). The
quality of rice is assessed based on several factors, including
appearance, milling, cooking, sensory properties, and nutrition
(Cheng et al, 2005; Feng et al, 2017). Among these factors,
cooking quality is a critical determinant for the economic value of
rice. The cooking quality of rice refers to the characteristics of cooked
rice, including its texture, tenderness, stickiness, and overall
palatability. As starch accounts for up to 95% of the dry weight of
a polished rice grain (Fitzgerald et al., 2009), the cooking quality of
rice is mainly determined by starch. During the cooking process, rice
grains absorb water and undergo gelatinization, leading to a
noticeable expansion in volume (Golam and Prodhan, 2013). The
extent of this cooking-caused rice grain expansion (CCRGE) can
affect the texture, tenderness and overall quality of cooked rice, and is
significantly influenced by the properties of starch (Pang et al., 2016).
In general, rice varieties with a higher amylose content (AC) tend to
absorb more water and exhibit greater increase in volume after
cooking (Frei et al, 2003). Hence, CCRGE is a complex trait
closely related to the cooking quality of rice. As the desired cooking
quality can vary depending on the type of rice and the culinary
preferences of individuals or cultural cuisines (Suwannaporn and
Linnemann, 2008), the corresponding suitable degree of CCRGE is
also diverse. To meet the varying demands for the cooking quality of
rice, different goals should be established in rice breeding. Dissecting
the genetic basis of CCRGE will facilitate the efforts toward the goals.

For this purpose, a number of studies have been conducted to
map quantitative trait loci (QTLs) underlying CCRGE. To date, 47
QTLs for grain length expansion (Ahn et al., 1993; Li et al., 2004;
Zhang et al., 2004; Ge et al., 2005; Shen et al., 2005; Tian et al., 2005;
Wang et al., 2007; Amarawathi et al., 2008; Liu et al., 2008;
Govindaraj et al., 2009; Shen et al., 2011; Swamy et al., 2012; Li
etal, 2015; Arikit et al., 2019), 10 QTLs for grain breadth expansion
(Ge et al,, 2005; Govindaraj et al., 2009), and 15 QTLs for grain
length-breadth relative expansion (He et al., 2003; Jiang et al., 2008;
Liu et al,, 2008; Thi et al., 2020; Malik et al., 2022) have been
reported, demonstrating that CCRGE is a very complex trait.
However, none of these QTLs have been cloned.

All the QTLs reported for CCRGE were identified through
conventional linkage analysis methods utilizing various populations
derived from bi-parental crosses, including F, (Arikit et al., 2019),
F; (Ahn et al.,, 1993), F, 5 (Jiang et al., 2008; Thi et al., 2020), BC,F,
(Swamy et al,, 2012), BC3F, (Li et al., 2004), doubled haploid (DH)
(Zhang et al., 2004; Tian et al., 2005; Govindaraj et al., 2009), and
recombinant inbred lines (RILs) (He et al., 2003; Malik et al., 2022).
The linkage-based QTL mapping methods are limited by two main
factors. First, it can only investigate the variation between two
parents. Second, it has a low mapping resolution due to strong
linkage disequilibrium in the mapping population used.
Consequently, the mapped QTLs can only account for a small
portion of the related genetic variations in the rice germplasm.
Therefore, further studies are necessary.
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During the domestication process, rice germplasm resources
have accumulated a rich array of natural variations in the genome.
The advent of high-throughput DNA sequencing technologies has
facilitated the use of genome-wide association study (GWAS) as an
effective method for identifying natural genomic variations
associated with quantitative traits (FHuang et al., 2010; Zhao et al,,
2011). Unlike the linkage-based QTL mapping method, GWAS
utilizes high-density single nucleotide polymorphisms (SNPs) as
genetic markers and is performed on diverse natural populations.
As linkage disequilibrium is much weaker in natural populations,
GWAS achieves higher resolution in QTL mapping (Huang and
Han, 2014; Burghardt et al., 2017). GWAS has been successfully
employed to map genes or QTLs for numerous important traits in
rice, such as flowering time (Huang et al, 2012), grain yield
components (Eizenga et al., 2019), grain qualities (Misra et al,
2017; Wang et al,, 2020), and so on. However, to date, no GWAS
has been conducted to identify QTLs underlying CCRGE.

In this study, we performed GWAS on three traits of CCRGE
based on two replicated experiments conducted in two different years
(environments) and using seven different methods to analyze the
data. We detected 165 related quantitative trait nucleotides (QTNs),
including some exhibiting only the effect of QTN-by-environment
interaction (QEI). Based on the detected QTNs, we identified five
candidate genes through gene ontology (GO), haplotype, and
expression pattern analyses. Our findings will facilitate further
genetic research and the genetic improvement of CCRGE.

2 Materials and methods
2.1 Plant materials and field experiments

A set of 345 rice accessions among the list of the 3K Rice
Genomes Project (2014) were utilized for this research (Table S1).
These accessions included 108 japonica, 177 indica, 48 circum-Aus
group (cA), 2 circum-Basmati group (cB), and 10 admixed (between
major groups) according to Wang et al. (2018). All accessions were
grown at the Experimental Farm of Fujian Agriculture and Forestry
University in Yangzhong (E118.485841, N26.287161) during the
normal growing season (April to October) in 2017 (E1) and 2018
(E2). In both years, 20 seeds of each accession were sown on a
seedbed after pregermination, and 14 seedlings were transplanted
onto the paddy field 25 days later with a 20-cm spacing between
plants and between rows. Field management followed standard
agronomic procedures. Mature seeds were harvested from each
accession, and subjected to sun, then stored at the room
temperature. The newly harvested seeds were utilized for the
measurement of CCRGE traits in each year.

2.2 Measure of cooking-caused
grain expansion

The procedure for quantifying the characteristics of cooking-

caused rice grain expansion was performed according to Thi et al.
(2020). The experiment was conducted in three replicates for each
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accession. In each replicate, 30 intact white rice grains were soaked
(for 30 min) and boiled (for 45 min), and the average length and
average breadth of 30 uncooked grains (L, and B,) and 15 unbroken
and straight cooked grains (L, and B;) were measured.
Subsequently, the grain breadth expansion index (GBEI), grain
length expansion index (GLEI) and grain length-breadth relative
expansion index (GREI) of each accession were calculated
according to the formulae described by Thi et al. (2020), where
GLEI = L,/Ly, GBEI = B,/B,, and GREI = (L,/B,)/(Le/Bo) = (L,/Lo)/
(B,/B,) = GLEI/GBEL

2.3 Collection of SNP data

The SNP data of the 345 rice accessions were obtained from the
3K Rice Genomes Project (http://iric.irri.org/resources/3000-
genomes-project). The core genome set of 404K SNPs (https://
snp-seek.irri.org/download.zul, accessed on 1 September 2021) was
employed for the analysis. A stringent quality control process was
performed, which involved removal of the SNPs that had more than
20% missing calls and a minor allele frequency (MAF) smaller than
5%. As a result, a total of 193,582 SNPs were retained for
subsequent analysis.

2.4 Clustering, population structure and
linkage disequilibrium analyses

The genetic distances between 345 accessions were calculated
based on SNP data, and a phylogenetic tree was constructed using
the MEGA 11 software. Population structure was analyzed using
principal component analysis (PCA) plots and the Admixture
program as described by Alexander and Lange (2011). The
linkage disequilibrium (LD) between pairwise SNPs located
within 1 megabase (Mb) on each chromosome or across the
entire genome was estimated by computing the determination
coefficient (R?) using the plink software (Purcell et al., 2007).

2.5 Genome-wide association studies

GWAS was performed on GLEI, GBEI and GREI with two
strategies: (1) single-environment analysis, namely, analyzing each
environment separately; and (2) two-environment analysis, namely,
analyzing the two environments jointly. For single-environment
analysis, we employed two R packages: 3VmrMLM (Li et al., 2022;
https://github.com/YuanmingZhang65/IIIVmrMLM) and mrMLM
v4.0.2 (Zhang et al, 2020). The former includes the method
3VmrMLM, while the latter contains six methods, namely,
mrMLM (Wang et al,, 2016), FASTmrMLM (Tamba and Zhang,
2018), FASTmrEMMA (Wen et al., 2018), pLARmMEB (Zhang et al.,
2017), pKWmEB (Ren et al.,, 2018), and ISIS EM-BLASSO (Tamba
et al, 2017). The option “method=Single_env” was chosen in
3VmrMLM, while default parameters were used for the other
methods. Two-environment analysis was conducted using
3VmrMLM only, with the option set to “method=Multi_env”.
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This method allowed for the estimation of the main effect of a
QTN and the effect of QTN-by-environment interaction. For
distinction, a QTN showing only the effect of QTN-by-
environment interaction was denoted as QEI. Each QTN or QEI
was named following the nomenclature “q + trait + chromosome +
number + s/t/i”, where “s” and “t” indicate that the QTN was
detected based on single- or two-environment analysis, respectively,
and “1” indicates a QEIL According to Zhang et al. (2019), the QTNs
identified by multiple methods were deemed as reliable QTNs, with
particular emphasis on those identified in multiple environments,
which were considered stable QTNs.

2.6 Prediction of candidate genes

Based on the distinct LD decay in each rice chromosome, the left
and right R half-decay regions flanking each QTN or QEI were
determined to identify potential candidate genes. The following
sequential steps were executed: (1) the SNP effect prediction software
snpEffivl.9 (Cingolani et al,, 2012) was employed to evaluate the effects
of SNPs on the regional genes, and annotated genes with effective
mutation types, such as non-synonymous substitution, splice site, and
UTR-5" mutation, were selected; (2) GO classifications related to starch
synthesis or endosperm development were searched in the rice
database (https://www.ricedata.cn/ontology/), and all genes with these
GO classifications were retrieved; and (3) genes that meet both steps 1
and 2 were screened out and then subjected to haplotype analysis,
where different haplotypes exhibiting #-test significance were
considered as candidate genes.

2.7 Tissue specific expression of
candidate genes

The expression profiles of the candidate genes in various tissues
were obtained from the Rice Genome Annotation Project database
(http://rice.uga.edu), including shoots (library name in NCBI:
SRR042529), leaves-20 days (OSN_AA and OSN_CA), pre-
emergence inflorescence (OSN_AC), post-emergence
inflorescence (OSN_AB), anther (OSN_AD), pistil (OSN_AE),
seed-5 DAP (days after pollination; OSN_AF), seed-10 DAP
(OSN_AK), embryo-25 DAP (OSN_AG) and endosperm-25 DAP
(OSN_AH and OSN_BH). A heatmap was generated to visualize
the gene expression patterns across the different tissues.

3 Results
3.1 Trait performance

The traits GBEI, GLEI, and GREI exhibited a continuous
unimodal distribution in both environments, suggesting that these
traits are quantitative and controlled by multiple genes (Figure 1).
After performing the Brown-Forsythe Test for assessing homogeneity
of variances, the analysis revealed that the error variances of each
accession in both environment for the three traits were
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homogeneous, indicating that the collected data is suitable for
subsequent analysis of variance (ANOVA). Although the
population means of these traits were similar in both environments
(GBEL 1.822 and 1.765; GLEL 1.752 and 1.740; GREIL 0.990 and
1.016), ANOVA revealed statistically significant variation between
the two environments and genotype-by-environment interaction
(Table 1). These results indicated that all the three traits exhibited
significant variation across macro-environments. However, there
were still significant correlations between the two environments in
these traits, particularly in GLEI and GREI (Table 2).

GREI exhibited significant positive and negative correlations
with GLEI and GBEI, respectively (Table 2). This is understandable,
as GREI is a composite trait that is influenced by both GLEI and
GBEIL However, the correlation between GLEI and GBEI was found
to be low (-0.155 in E1 and -0.101 in E2) (Table 2), implying that
grain length expansion and breadth expansion during cooking are
two relatively independent processes with potentially distinct
genetic bases.

3.2 Population structures and
linkage disequilibrium

A set of 193,582 SNPs meeting the requirements of MAF > 5% and
missing data < 20% were obtained. The SNPs were not evenly

10.3389/fpls.2023.1250854

distributed in the genome (Figure 2). SNPs were the densest on
chromosome 11 but the sparsest on chromosome 3, respectively
(Table 3). On average, there was one SNP every 1928 bp in the genome.

The results of phylogenetic analysis (Figure 3A), PCA
(Figure 3B), and admixture analysis (Figures 3C, D) all indicated
that the population of the 345 rice accessions could be basically
divided into three distinct groups (subpopulations), namely, indica
group, japonica group, and aus group (Figures 3C, D).

The average LD (mean R?) decreased with the increase of
physical distance on every chromosome as well as in the whole
genome (Figure 4). The average LD half-decay distance (HDD) and
the average distance of LD decay to 0.1 (DDO0.1) in the whole
genome were about 378 kb and 196 kb, respectively (Table 3).
However, the HDD and DDO0.1 on different chromosomes varied
greatly, ranging from 158.4 kb and 62.1 kb on chromosome 2 to
715.7 kb and 712.1 kb on chromosome 7, respectively (Table 3).
Therefore, chromosome 2 had the highest LD decay rate, while
chromosome 7 had the lowest.

3.3 QTNs detected by single-
environment analysis

In total, 386 QTNs were detected by single-environment
analysis using seven different methods, with 145, 127 and 128
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TABLE 1 ANOVA of GBEI, GLEI and GREI on genotypes and environments, and their interactions.

GREI
F value P value F value P value F value P value
Genotype (G) 11.279 2.5E-239 15.489 1.01E-306 48.364 0
Environment (E) 74.890 1.36E-17 1.843 0.1748481 130.473 6.15E-29
GxE 6.437 1.4E-138 7.070 1.35E-153 14.398 1.3E-290
Test of HOV 0.780 1.000 0.811 0.999 0.674 1.000

Test of HOV (homogeneity of variance) was performed using the method of Brown-Forsythe Test, in which Fy 5 = 1.1134 (df; = 689, df, = 1380).

TABLE 2 Coefficients of correlation between different traits in each environment and between different environments in each trait.

GBEI GLEI GREI
GBEI 0.317* -0.101 -0.677*
GLEI ~0.155% 0.487** 0.750*
GREI -0.767* 0.736** 0.542*

The data in the diagonal are correlations between the two years. The data in the lower triangle and the upper triangle are correlations between the three traits in E1 (2017) and in E2 (2018),

respectively. ** indicates p-value < 0.01.

QTNs found to be associated with GBEI, GLEI and GREI,
respectively (Table 4; Figures S1, S2). However, only 78 (19.5%)
QTNs were identified as reliable (Tables 4, S2). The total number of
QTNs detected by each method varied greatly, ranging from 32
(FASTmrEMMA) to 131 (3VmrMLM; Table 4). The number and
the percentage of reliable QTNs detected by each method also
differed significantly (Table 4). Interestingly, there was a positive
correlation between the number of reliable QTNs and the total
number of QTNs detected by each method (correlation coefficient
80.5%), but a negative correlation between the percentage of reliable
QTNs and the total number of QTNs detected by each method
(correlation coefficient -88.2%). This indicates that the increase in
the number of total QT'N's and reliable QTNs detected by a method
comes at the cost of a decrease in the percentage of reliable QTNs.

Among the three traits, GBEI had the most reliable QTNs,
followed by GREIL, and GLEI had the fewest (Table 5). Consistently,
GBEI had highest proportion of phenotypic variance explained
(PVE) by the reliable QTNs, followed by GREI, and GLEI had the
lowest (Table 5). More reliable QTNs were detected and therefore
there were higher PVEs in E1 than in E2 for GLEI and GREI, but the
results in the two environments were similar for GBEI (Table 5).

Most QTN identified in this study were found to be reliable
because they were detected by multiple methods, while only four
QTNs (qGBEI-5.4s, qGLEI-3.3s, qGREI-5.2s and qGREI-5.6s) were
found to be stable because they were detected in the two
environments simultaneously (Table S2). In addition, there were a
few SNPs exhibiting pleiotropic effects in one environment,
including 3:16774870 (detected as QTNs qGLEI-3.5s and qGREI-
3.6s) and 6:25062099 (qGLEI-6.4s and qGREI-6.4s), both of which
were associated with GLEI and GREIL; and 5:5369111 (qGBEI-5.3s
and qGREI-5.2s), which was associated with GBEI and GREI
(Table S2).
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3.4 QTNs detected by two-
environment analysis

The two-environment analysis detected 11, 14 and 19 significant
QTN (P-value < 0.05/m = 2.58E-07, where m = 193,582, the number
of markers) and 8, 8 and 6 suggested QTN (P > 2.58E-07 but LOD >
3.0) associated with GBEI, GLEI and GREI, respectively (Figures 5A-
C; Table S3). These QTNs explained 35.41%, 46.37% and 41.49% of
the total phenotypic variation in GBEI, GLEI and GREI, respectively.
The SNP marker chr5:5369111 was found to be associated with both
GBEI and GREI, and was named qGBEI-5.2t and qGREI-5.3t,
respectively. This marker was also detected as QTNs gGBEI-5.3s
and gqGREI-5.2s in the single-environment analysis, indicating its
reliability. Marker chr6:25000609 was associated with both GLEI and
GREI, while chr11:23854971 was associated with both GBEI and
GREI. Additionally, SNPs chr2:24264276, chr3:2521638,
chr3:35669404 and chr5:14585838 were all detected in both single-
and two-environment analyses.

The two-environment analysis also detected 6, 4 and 5 significant
QEIs and 3, 1 and 2 suggested QEIs associated with GBEI, GLEI and
GREL respectively. These QEIs accounted for 24.83%, 14.79% and
21.22% of the total phenotypic variation in GBEI, GLEI and GREI,
respectively (Figures 5D-F; Table 54). Notably, there was no common
site between the QTNs and QEIs detected, indicating that all the
SNPs exhibiting significant main (additive and/or dominance) effects
in the two-environment analysis did not show significant effects of
interaction with the environment, and vice versa (namely, all the
SNPs exhibiting significant effects of interaction with the
environment did not show significant main effects). Nonetheless,
the SNP markers of two QEIs, gGREI-2.3i (SNP 2:19642336) and
qGLEI-5.6i (SNP 5:25726382) were also detected as QTN qGREI-2.2s
and qGREI-5.8s in the single-environment analysis, respectively
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Distribution of 193,582 SNPs in the rice genome.

(Tables S2, 54). Interestingly, the targeted traits of gGLEI-5.6i and
qGREI-5.8s were not the same. In addition, the interaction between
SNP marker 8:22185608 and environment was found to be associated
with both GLEI (as qGLEI-8.3i) and GREI (as qGREI-8.5i)
simultaneously (Table 54).

3.5 Prediction of candidate genes for GBEI,
GLEI and GREI

In total, the two-environment analysis detected 66 QTNs and 21
QEISs for the three traits. Plus the 78 reliable QT Ns detected in the

TABLE 3 Number and density of SNPs and LD decay distances in the
rice genome.

single-environment analysis, this study detected a total of 165
QTNs/QEIs. These QTNs/QEIs were mainly located on
chromosomes 5, 11, 12, 3 and 2, and very rare on chromosomes
1 and 10 (Figure 6).

Considering that CCRGE may be largely determined by the
starch in endosperm, we tried to predict the candidate genes
involved in starch metabolism and endosperm development. By
searching 20 related Gene Ontology/Term Ontology (GO/TO)
classifications on the China Rice Data Center’s website (https://
www.ricedata.cn/ontology/), 119 genes were found, of which 26
were located within the R* half-decay distance around the detected
QTNs/QEIs (Table S5). By analyzing the SNP variations in the
genes with the software snpEff v1.9, five genes were found to carry
effective mutations, including non-synonymous, splice site and
UTR-5" mutations (Table 6; Figure S3). So, these genes were
considered to be candidate genes.

Chromotome Number ?;:::?r?ge HDD DDO.1 We ther% performed haplotype analysis to assess the reliability of
of SNPs (%) %) the candidate genes. LOC_0Os04¢53310 (OsSSIIIb),
LOC_0s06¢g04200 (wx) and LOC_0s08¢g09230 (OsSSIIIa)
1 20,083 21546 651.1 603.9 exhibited significant haplotype differences for GBEI;
2 18.756 1916.0 158.4 62.1 LOC_0s04g¢53310, LOC_0s05¢g02070 (OsMT2b) and
LOC_0s06¢12450 (OsSSIIa) displayed significant haplotype
’ 12674 20030 7 2073 differences for GLEI; and all of the genes except for
4 19,298 1839.7 2231 94.6 LOC_0Os06¢12450 showed significant haplotype differences for
5 12,058 24845 3333 3745 GREI (Figure 7). These findings strongly suggested a close

. s 505 o5 103 association of these five genes with the CCRGE.
To further verify the potential impact of these candidate genes
7 13,389 22181 7157 712.1 on the regulation of starch synthesis and endosperm development,
3 18,850 1508.9 513.7 295.8 we analyzed the expression patterns of the five candidate genes in
0 10978 20963 1205 o various tissues based on data from the Rice Genome Annotation
Project database (Figure 8). The results showed that
10 11,946 1942.7 688.1 3882 LOC_0Os04¢53310 (OsSSIIIb) was expressed mainly in leaf and
11 24,068 1205.8 178.9 78.5 pre-emergence inflorescence but not in seed or endosperm;
LOC_0s05¢02070 (OsMT2b) was expressed mainly in post- and

12 16,599 1658.6 485.2 83.9

pre-emergence inflorescence and in embryo of 25 DAP (days after
Whole genome 193,582 1928.1 377.9 196.1 pollination), but not in endosperm. This suggests that these two

HDD, LD half-decay distance; DDO.1, distance of LD decay to 0.1.

Frontiers in Plant Science

genes maybe not closely or indirectly associated with endosperm

frontiersin.org


https://www.ricedata.cn/ontology/
https://www.ricedata.cn/ontology/
https://doi.org/10.3389/fpls.2023.1250854
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2023.1250854
A ' m B
8
= 2
% Y ¢ ot
2 3 ”
~' \ 3
2 / Subgroup1 Subgroup2  Subgroup3
(] D
subgroup subgroup
0.1 o gj-adm 0.1 ® ® GJ-adm
. © GJtm : © GJ
2 o §:-?dAnE < ° 33;3"#
® XI- &® o XI-1A
2 v; o’ Q> o X.1B & °, o XI-1B
§ 00 = © admix = 00] qgaent® o8 o © admix
N ® o' . %ﬁ(/t\rt;S) 3 © cA(Aus)
A ® GJ-tr
a ® cB(Bas) a ° cB(BzFi)s)
Y - o X|-
1 ©® GJ-sbtrp © GJ-sbtrp
010 005 0.00 0.05 0.10
0.1 00 01
PC1 (31.88%) PC2 (22.86%)
FIGURE 3

Genetic structure analysis of the population of 345 rice accessions. (A) Phylogenetic tree. (B) Population structure estimated by the software

Admixture. (C, D) PCA plots of the first three principal components.

development. In contrast, LOC_0s06¢04200 (wx),
LOC_0s06g12450 (OsSSIIa) and LOC_0Os08g09230 (OsSSIIla)
exhibited high expression in 10 DAP seed, and the highest
expression in 25 DAP endosperm, but no expression in embryo,
indicating their potential involvement in starch synthesis or
endosperm development.

4 Discussion

When analyzing single environmental data, only QTNs, gGREI-
5.2s and qGREI-5.6s, were commonly detected in two
environments. This may be due to changes in the relative effects
of different genes for these traits in different environments,

TABLE 4 Numbers of QTNs for GBEI, GLEI and GREI detected by seven methods in two different environments.

Method Reliable QTNs
3VmrMLM 21 19 40 20 24 44 27 21 47 131 31 (23.5%)
mrMLM 10 9 19 7 6 13 16 7 23 55 25 (45.5%)
FASTmrMLM 13 49 62 11 19 29 12 10 22 114 40 (35.1%)
FASTmrEMMA 4 7 11 6 5 11 3 7 10 32 21 (65.6%)
pLARmEB 11 9 20 16 18 34 19 22 41 95 40 (42.1%)
pKWmEB 11 7 18 9 10 19 12 8 20 57 23 (40.4%)
ISIS EM-BLASSO 13 14 27 4 2 6 5 4 9 42 21 (50.0%)
Total' 56 90 145 55 73 127 70 60 128 400 78 (19.5%)

1. Redundancy was removed in the totals. 2. The number and proportion of reliable QTNs among the total detected by each method or in the whole experiment.
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distance and the y-axis represents the average pairwise R2. The

TABLE 5 Statistics of reliable QTNs for GBEI, GLEI and GREI detected in each environ

ment.

No. of reliable QTNs LOD range PVE range (%) Total PVE (%)
E2 Total E1 E2 El E2 E2 Average
GBEI 16 17 32 3.9-13.7 3.5-12.2 2574 1.7-5.3 63.8 61.9 62.85
GLEI 13 6 19 32-143 3.9-8.5 02-7.2 0.1-4.0 415 12.8 27.15
GREI 16 12 27 3.6-14.9 3.9-12.9 1.3-7.7 0.0-9.0 47.8 36.8 4230
Total 45 35 78

PVE, proportion of phenotypic variance explained.
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TABLE 6 Candidate genes for GBEI, GLEI and GREI .

Gene name Chr.

Nearby QTN/QEI

No. of

Mutation type Annotation

Haplotypes

0s04¢53310  OsSSIIIb qGREI-4.5s 4 5 non-synonymous, UTR-5 soluble starch synthase 3, chloroplast
mutation precursor

0s05g02070  OsMT2b qGLEI-5.1s 5 2 UTR-5" mutation metallothionein

0506804200  wx; gGC-6; Wx-mgq; qGBEI-6.1i, qGREI-6.1s, 6 4 non-synonymous, UTR-5’ granule-bound starch synthase

Wx-op qGLEI-6.1t mutation

0s06¢12450 = ALK; OsSSIIa qGLEI-6.2t 6 3 non-synonymous, splice site soluble starch synthase 2-3,
mutation chloroplast precursor

0s08g09230 | OsSSIlla; Flo5 qGBEI-8.1t 8 2 non-synonymous mutation starch synthase IIT

1. The full gene ID includes a prefix LOC_Os.

indicating that the genes controlling these traits interacted with the
environments. Joint analysis of the two environmental datasets
using the 3VmrMLM method revealed 21 QEIs for three traits, also
indicating the interaction between QTN and environment. Actually,
ANOVA results showed significant genotype-by-environment
interaction in the three traits (Table 1). However, there were no
overlapping sites between QEI and QTNs detected based on two
environmental data, indicating that all QEIs had no significant
additive or dominant effect, but only the interaction effect between
additive or dominant and environment, while all the QTNs in two-
environment jointly analyze were opposite. Using the same
3VmrMLM method in previous studies, the overlapping sites
between QEI and QTNs were also few, ranging from 1-3 sites
(Han et al., 2022; He et al,, 2022; Yu et al,, 2022; Zhang et al., 2022;
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Jiang et al., 2023; Zhao et al., 2023), except for the study of Zou et al.
(2022), which found 13 overlapping sites. From the perspective of
the effect of QEI since most QEIs do not have a significant additive
or dominant effect, their reliability needs to be further confirmed.
In this study, among the 78 QTNs detected by single-
environment analysis, only four QTNs were detected in both
environments simultaneously (Table 4; Supplemental Table 2),
indicating that only a small proportion (~5%) of QTNs exhibited
stable significant effects across the environments. Interestingly, these
four stable QTNs appear to represent four different types in terms of
the way of being detected (Supplemental Table 2). The first type is
qGREI-5.6s, which was detected by the same method in both
environments, and no other methods detected it in either
environment. The second type is qGBEI-5.4s, which was detected
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Haplotype analysis of candidate genes for GBEI, GLEI and GRELI. *, ** and *** indicate significance at P<0.05,
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P<0.01 and P<0.001, respectively.

by one method in one environment, but by another method in the
other environment. The third type is qGREI-5.2s, which was detected
by one method in one environment, but by multiple other methods in
the other environment. The fourth type is gGLEI-3.3s, which was also
detected by one method in one environment and by multiple
methods in the other environment, but with one method being the
same in the two environments. It is noticeable that three of the four
stable QTNs were detected in two different environments due to the
use of multiple methods. These findings highlight the advantages of
employing multiple GWAS methods to analyze the data collected
from diverse environmental conditions.

According to the definitions, GREI is a composite trait that
comprises various levels of component traits, which exhibit
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correlation with grain length and grain breadth before cooking
(Lo and By) or after cooking (L; and B;), and is directly proportional
to GLEI while inversely proportional to GBEIL Evidently, genes
governing GBEI and GLEI may also impact GREI in principle. In
other words, the QTLs for GREI may exhibit pleiotropic effects on
its component traits or correlated traits. In this study, we did
identify 4 QTNs that simultaneously influence GREI and GLEI,
and 2 QTNs that simultaneously affect GREI and GBEI (Table 7).
This was consistent with the high correlation between GREI and
GLEI and GBEI (Table 2). As expected, there were no QTNs
pleiotropic on GLEI and GBEI, which is in line with the
conclusion that GLEI and GBEI are independent traits and have
different genetic bases. Moreover, 3 QTNs controlling GLEI and
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GREI respectively were detected simultaneously in single and two
environments, demonstrating the stability of these QTNs.

As mentioned above in the introduction, there were 10, 47 and 15
reported QTLs controlling length, width and length-width expansion
caused by cooking in rice grain. Upon comparing these QTLs with
the QTNs mapped in this study, we observed that 12,9, and 15 QTNs
for GBEL, GLEI, and GREI detected in this study were located within
the intervals of one or more previously reported QTLs (Table S6).
These comparisons provide evidence for the reliability of the QTLs
detected in this study. Notably, the four putative genes
(LOC_0s05g02070, LOC_0Os06g04200, LOC_Os06¢12450, and
LOC_0s08g09230) identified in this study were found to be in close
proximity to four of the aforementioned QTLs).

Due to the swelling of starch granules during cooking, rice grain
cooking-caused expansion traits, such as GBEI, GLEI and GRE]I, is

expected to be influenced by starch-related traits which include two
typical traits: chalkiness rate and amylose content. Chalkiness rate is
a crucial parameter for assessing the visual quality of rice, as high
chalkiness rate can lead to easy breakage of grains during
processing, low amylose content, and poor eating quality. Thi
et al. (2020) utilized a genetic population to map GREI and
discovered a positive correlation between amylose content and
GREI, with high AC content leading to increased GREIL. OsMT2b
encodes a metallothionein that binds to metal ions and scavenges
reactive oxygen species (ROS). Wu et al. (2022) reported that
WCRI, a negative regulator of rice chalkiness rate, functions to
regulate OsMT2b (LOC_Os05¢02070) transcription level and inhibit
26S proteasome-mediated OsMT2b protein degradation, thereby
facilitating ROS clearance, delaying programmed cell death (PCD)
of endosperm cells, and ultimately increasing the accumulation of

TABLE 7 Common QTLs between GREI, GBEI and GREI, or between different analysis aspects.

Chr. QTN name Trait QTN pos. (bp)
2 qGREI-2.2s, qGREI-2.3i GREI 19,642,336
2 qGLEI-2.25, qGLEI-2.2¢ GLEI 24,264,276
3 qGLEI-3.35, qGLEI-3.2¢ GLEI 2,521,638
3 qGLEI-3.5s, qGREI-3.5s GLEI 16,774,870
3 qGREI-3.95, gqGREI-3.8t GREI 35,669,404
5 qGBEI-5.3s, qGREI-5.25, qGBEI-5.2t, qGREI-5.3t GBEL, GREI 5,369,111
5 qGREI-5.65, qGREI-5.5¢ GREI 14,585,838
5 qGLEL-5.6i, qGREI-5.85 GLEI, GREI 25,726,382
6 qGLEI-6.3t, gGREI-6.3 GLEI, GREI 25,000,609
6 qGLEI-6.45, qGREI-6.4s GLEI, GREI 25,062,099
8 qGLEI-8.3i, qGREI-8.5i GLEI, GREI 22,185,608
11 qGBEI-11.8t, qGREI-11.3t GBEL, GREI 23,854,971
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storage substances, and reducing chalkiness rate. In this study, a
SNP site is present in the 5-UTR region of OsMT2b near qGLEI-
5.1s (Figure S3), which may disrupt the expression of OsMT2b,
thereby affecting the change in rice cooking caused expansion in the
analyzed population. Furthermore, considering the expression
pattern of OsMT2b, it is noteworthy that its expression level
exhibits a significant reduction in the endosperm. This
observation implies its potential indirect influence on starch
synthesis or endosperm development.

wx (LOC_0s06¢04200), OsSSIla (LOC_Os06g¢12450), and
OsSSIIIa (LOC_0Os08g09230) are crucial genes involved in the
biosynthesis of starch in rice grains. wx gene encodes granule-
bound starch synthase (GBSS), a major enzyme responsible for
amylose synthesis (Kharshiing and Chrungoo, 2021). It exerts a
direct influence on the amylose content in the endosperm and
pollen of rice, as well as the gel consistency of grains (Su et al., 2011).
OsSSIIa encodes a soluble starch synthase II, and mutations in this
gene may affect the activity of starch synthase, which in turn affects
the synthesis of medium-length branched chains of amylopectin,
changes the crystal layer structure, and ultimately alters the
gelatinization temperature (Gao et al., 2003). OsSSIIla encodes
soluble starch synthase III, the second key enzyme involved in
rice starch synthesis (Zhou et al., 2016). Mutations in OsSSIIIa can
affect the structure of amylopectin, amylose content, and
physicochemical properties of starch in rice grains. Double
mutants of OsSSIla and OsSSIIIa exhibited increased chalkiness
and amylose content, increased gelatinization temperature, and
decreased viscosity (Zhang et al., 2011). In this study, these three
genes exhibited the SNP loci with genetic effects. In haplotype
analysis, significant differences in GBEI, GLEIL, or GREI were
observed across different haplotypes caused by SNPs within these
genes. In expression pattern analysis, these three genes were highly
expressed in the endosperm and seeds 10 days after pollination. All
the evidence supported the hypothesis that these three genes were
candidate genes controlling CCRGE.

In addition, OsSSIIIb (LOC_Os04¢53310) is a gene that encodes
soluble starch synthase in rice. Its expression level and activity
directly impact the synthesis and quality of starch in rice
endosperm. OsSSIIIb can interact coordinately with OsSSIIIa, and
loss of function of both genes leads to an increase in resistant starch
content in cooked rice (Wang et al.,, 2023). Although its protein
function is redundant with OsSSIIIa, its expression pattern differs
significantly from OsSSIIIa which is expressed in the endosperm.
OsSSIITb is mainly expressed in leaves but not endosperm
(Figure 8). In this study, the five haplotypes generated by the four
SNP loci contained in the OsSSIIIb gene exhibit significant
differences in three traits. The evidence proves that OsSSIIIb may
indirectly participate in starch sythesis and subsequently
affect CCRGE.

5 Conclusion

In this study, data of GBEI, GLEI and GREI, three traits related
to rice grain cooked expansion, were collected from 345 rice
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accessions in two distinct environments. Utilizing 193,582 SNP
markers, seven methods were employed to identify QTNs based on
single-environment data, while the 3VmrMLM method was utilized
to identify QTNs and QEIs based on two-environment data. A total
of 165 reliable QTNs/QEIs were detected, with 60, 46 and 59 of
them being associated with GLEI, GBEI and GREI, respectively.
Additionally, 26 genes related to starch synthesis or endosperm
development were found to be located around these QTNs/QEIs.
Further haplotype and expression pattern analyses led to the
identification of five candidate genes, namely LOC_Os04¢53310
(OsSSI1Ib), LOC_0s05¢02070 (OsMT2b), LOC_Os06g04200 (wx),
LOC_0s06¢12450 (OsSSIla), and LOC_0s08g09230 (OsSSIlIa).
These findings can be instrumental in identifying genes and
conducting in-depth genetic research on CCRGE.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Author contributions

YZ and WW conceived and designed the experiment. KT, LL,
EK, EN, ML, WN and SA measured the phenotypes of the traits. YZ,
KT and XX analyzed the data. YZ and KT wrote the draft. WW
revised the manuscript. All authors contributed to the article and
approved the submitted version.

Funding

This work was supported by Natural Science Foundation of
Fujian Province (CN) (202010009, 2022J01596), Cooperation
Project on University Industry-Education-Research of Fujian
Provincial Science and Technology Plan (CN) (2022N5011),
Lancang-Mekong Cooperation Special Fund (2017-2018),
International Sci-Tech Cooperation and Communication Program
of Fujian Agriculture and Forestry University (KXGH17014).

Acknowledgments
We thank Mr. Jinzhong Li for his help in field experiments. We

also thank Dr. Weiqi Tang and Mr. Likun Huang for their help in
data analysis.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fpls.2023.1250854
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al.

Publisher's note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1250854/

full#supplementary-material

References

Ahn, S., Bollich, C.,, Mcclung, A., and Tanksley, S. D. (1993). RFLP analysis of
genomic regions associated with cooked- kernel elongation in rice. Theor. Appl. Genet.
87 (1-2), 27-32. doi: 10.1007/BF00223739

Alexander, D. H,, and Lange, K. (2011). Enhancements to the ADMIXTURE
algorithm for individual ancestry estimation. BMC Bioinf. 12, 246. doi: 10.1186/
1471-2105-12-246

Amarawathi, Y., Singh, R,, Singh, A. K,, Singh, V. P., Mohapatra, T., Sharma, T. R,,
et al. (2008). Mapping of quantitative trait loci for basmati quality traits in rice (Oryza
sativa L.). Mol. Breed. 21, 49-65. doi: 10.1007/s11032-007-9108-8

Arikit, S., Wanchana, S., Khanthong, S., Saensuk, C., Thianthavon, T., Vanavichit, A.,
et al. (2019). QTL-seq identifies cooked grain elongation QTLs near soluble starch
synthase and starch branching enzymes in rice (Oryza sativa L.). Sci. Rep. 9 (1), 1-10.
doi: 10.1038/541598-019-44856-2

Burghardt, L. T., Young, N. D., and Tiffin, P. (2017). A guide to genome-wide
association mapping in plants. Curr. Protoc. Plant Biol. 2 (1), 22-38. doi: 10.1002/
cppb.20041

Cheng, F., Zhong, L., Wang, F., and Zhang, G. P. (2005). Differences in cooking and
eating properties between chalky and translucent parts in rice grains. Food Chem. 90 (1-
2), 39-46. doi: 10.1016/j.foodchem.2004.03.018

Cingolani, P, Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., et al. (2012). A
program for annotating and predicting the effects of single nucleotide polymorphisms,
SnpEff: SNPs in the genome of Drosophila melanogaster strain w1''®; iso-2; iso-3. Fly 6
(2), 80-92. doi: 10.4161/fly.19695

Eizenga, G. C,, Jia, M. H,, Jackson, A. K., Boykin, D. L., Ali, M. L., and Shakiba, E.
(2019). Validation of yield component traits identified by genome-wide association
mapping in a tropical japonicaxtropical japonica rice biparental mapping population.
Plant Genome 12 (1), 1-18. doi: 10.3835/plantgenome2018.04.0021

Feng, F., Li, Y., Qin, X,, Liao, Y., and Siddique, K. H. M. (2017). Changes in rice grain
quality of Indica and Japonica type varieties released in China from 2000 to 2014. Front.
Plant Sci. 8. doi: 10.3389/fpls.2017.01863.eCollection.2017

Fitzgerald, M. A., McCouch, S. R., and Hall, R. D. (2009). Not just a grain of rice: The
quest for quality. Trends in. Plant Sci. 14, 133-139. doi: 10.1016/j.tplants.2008.12.004

Frei, M., Siddhuraju, P., and Becker, K. (2003). Studies on the in vitro starch
digestibility and the glycemic index of six different indigenous rice cultivars from the
Philippines. Food Chem. 83, 395-402. doi: 10.1016/S0308-8146(03)00101-8

Gao, Z., Zeng, D., Cui, X,, Zhou, Y., Yan, M., Huang, D, et al. (2003). Map-based
cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci.
China C Life Sci. 46 (6), 661-668. doi: 10.1360/03yc0099

Ge, X,, Xing, Y. Z,, Xu, C. G., and He, Y. Q. (2005). QTL analysis of cooked rice grain
elongation, volume expansion, and water absorption using a recombinant inbred
population. Plant Breed. 124 (2), 121-126. doi: 10.1111/j.1439-0523.2004.01055.x

Golam, F., and Prodhan, Z. H. (2013). Kernel elongation in rice. J. Sci. Food Agr. 93
(3), 449-456. doi: 10.1002/jsfa.5983

Govindaraj, P., Vinod, K., Arumugachamy, S., and Maheswaran, M. (2009).
Analysing genetic control of cooked grain traits and gelatinization temperature in a
double haploid population of rice by quantitative trait loci mapping. Euphytica 166 (2),
165-176. doi: 10.1007/s10681-008-9808-0

Frontiers in Plant Science

10.3389/fpls.2023.1250854

SUPPLEMENTARY FIGURE 1

SNP site and its resulting mutation type in five candidate genes. The blue
boxes represent exons; the horizontal purple lines represent introns; the
white boxes represent 5" or 3'-UTR. The direction of a white box indicates the
direction of the gene in the genome.

SUPPLEMENTARY FIGURE 2

Manhattan plots of single environment anlalyses by six methods in mrMLM R
package on GBEI (A, D), GLEI (B, E) and GREI (C, F). The horizontal dashed
lines indicate the LOD = 3.0 threshold. The left vertical axis is the -log;g (P-
value), while the right vertical axis is the LOD score for each SNP marker. Pink
dots indicate QTNs detected by more than one method. Blue dots indicate
QTNs detected by only one method.

SUPPLEMENTARY FIGURE 3

Manhattan plots of two-environment analyses by 3VmrMLM on GBEI (A, D),
GLEI (B, E) and GREI (C, F). The horizontal dashed lines indicate the LOD = 3.0
threshold. The left vertical axis is the -log;o (P-value), while the right vertical
axis is the LOD score for each SNP marker. Pink dots indicate significant
(-logso(P-value) > 6.588) or suggested (-log;o(P-value) < 6.588 but LOD > 3)

Han, X, Tang, Q., Xu, L, Guan, Z,, Tu, J., Yi, B, et al. (2022). Genome-wide detection
of genotype environment interactions for flowering time in Brassica napus. Front. Plant
Sci. 13. doi: 10.3389/fpls.2022.1065766

He, L., Wang, H,, Sui, Y., Miao, Y., Jin, C, and Luo, J. (2022). Genome-wide
association studies of five free amino acid levels in rice. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.1048860

He, Y, Xing, Y., Ge, X, Li, X,, and Xu, C. (2003). Gene mapping for elongation index
related traits on cooked rice grain quality. Mol. Plant Breed. 1 (5/6), 613-619.
doi: 10.3969/j.issn.1672-416X.2003.05.004

Hossain, M. S., Singh, A. K., and Zaman, F. U. (2009). Cooking and eating
characteristics of some newly identified inter sub-specific (indica/japonica) rice
hybrids. ScienceAsia 35 (4), 320-325. doi: 10.2306/scienceasial 513-1874.2009.35.320

Huang, X,, and Han, B. (2014). Natural variations and genome-wide association
studies in crop plants. Annu. Rev. Plant Biol. 65, 531-551. doi: 10.1146/annurev-
arplant-050213-035715

Huang, X., Wei, X,, Sang, T., Zhao, Q., Feng, Q., Zhao, Y., et al. (2010). Genome-wide
association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42 (11), 961.
doi: 10.1038/ng.695

Huang, X., Zhao, Y., Li, C., Wang, A., Zhao, Q., and Li, W. (2012). Genome-wide
association study of flowering time and grain yield traits in a worldwide collection of
rice germplasm. Nat. Genet. 44 (1), 32. doi: 10.1038/ng

Jiang, S., Huang, C., Xu, Z., and Chen, W. (2008). QTL dissection of cooked rice
elongation in rice (Oryza sativa L. Japonica). Plant Physiol. Commun. 44, 1091-1094.
doi: 10.13592/j.cnki.ppj.2008.06.022

Jiang, H,, Lv, S., Zhou, C,, Qu, S,, Liu, F., Sun, H,, et al. (2023). Identification of QTL,
QTL-by-environment interactions, and their candidate genes for resistance HG Type 0
and HG Type 1.2.3.5.7 in soybean using 3VmrMLM. Front. Plant Sci. 14. doi: 10.3389/
fpls.2023.1177345

Kharshiing, G., and Chrungoo, N. K. (2021). Wx alleles in rice: relationship with
apparent amylose content of starch and a possible role in rice domestication. J. Genet.
100, 65. doi: 10.1007/s12041-021-01311-4

Li, Y., Tao, H., Xu, ], Shi, Z., Ye, W., Wu, L,, et al. (2015). QTL analysis for cooking
traits of super rice with a high-density SNP genetic map and fine mapping of a novel
boiled grain length locus. Plant Breed. 134 (5), 535-541. doi: 10.1111/pbr.12294

Li, J., Xiao, J., Grandillo, S., Jiang, L., Wan, Y., Deng, Q., et al. (2004). QTL detection
for rice grain quality traits using an interspecific backcross population derived from
cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47 (4), 697—
704. doi: 10.1139/g04-029

Li, M,, Zhang, Y. W, Xiang, Y., Liu, M. H,, and Zhang, Y. M. (2022). IIVmrMLM: The
R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for
dissecting quantitative traits. Mol. Plant 15, 1251-1253. doi: 10.1016/j.molp.2022.06.002

Liu, L., Yan, X. Y,, Jiang, L., Zhang, W. W., Wang, M. Q., Zhou, S. R,, et al. (2008).
Identification of stably expressed quantitative trait loci for cooked rice elongation in
non-Basmati varieties. Genome 51 (2), 104-112. doi: 10.1139/g07-106

Malik, A., Kumar, A., Ellur, R. K., Krishnan, S. G., Dixit, D., Bollinedi, H., et al.
(2022). Molecular mapping of QTLs for grain dimension traits in Basmati rice. Front.
Genet. 13. doi: 10.3389/fgene.2022.932166

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2023.1250854/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1250854/full#supplementary-material
https://doi.org/10.1007/BF00223739
https://doi.org/10.1186/1471-2105-12-246
https://doi.org/10.1186/1471-2105-12-246
https://doi.org/10.1007/s11032-007-9108-8
https://doi.org/10.1038/s41598-019-44856-2
https://doi.org/10.1002/cppb.20041
https://doi.org/10.1002/cppb.20041
https://doi.org/10.1016/j.foodchem.2004.03.018
https://doi.org/10.4161/fly.19695
https://doi.org/10.3835/plantgenome2018.04.0021
https://doi.org/10.3389/fpls.2017.01863.eCollection.2017
https://doi.org/10.1016/j.tplants.2008.12.004
https://doi.org/10.1016/S0308-8146(03)00101-8
https://doi.org/10.1360/03yc0099
https://doi.org/10.1111/j.1439-0523.2004.01055.x
https://doi.org/10.1002/jsfa.5983
https://doi.org/10.1007/s10681-008-9808-0
https://doi.org/10.3389/fpls.2022.1065766
https://doi.org/10.3389/fpls.2022.1048860
https://doi.org/10.3969/j.issn.1672-416X.2003.05.004
https://doi.org/10.2306/scienceasia1513-1874.2009.35.320
https://doi.org/10.1146/annurev-arplant-050213-035715
https://doi.org/10.1146/annurev-arplant-050213-035715
https://doi.org/10.1038/ng.695
https://doi.org/10.1038/ng
https://doi.org/10.13592/j.cnki.ppj.2008.06.022
https://doi.org/10.3389/fpls.2023.1177345
https://doi.org/10.3389/fpls.2023.1177345
https://doi.org/10.1007/s12041-021-01311-4
https://doi.org/10.1111/pbr.12294
https://doi.org/10.1139/g04-029
https://doi.org/10.1016/j.molp.2022.06.002
https://doi.org/10.1139/g07-106
https://doi.org/10.3389/fgene.2022.932166
https://doi.org/10.3389/fpls.2023.1250854
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al.

Misra, G., Badoni, S., Anacleto, R., Graner, A., Alexandrov, N., and Sreenivasulu, N.
(2017). Whole genome sequencing-based association study to unravel genetic
architecture of cooked grain width and length traits in rice. Sci. Rep. 7 (1), 12478.
doi: 10.1038/s41598-017-12778-6

Pang, Y., Ali, ], Wang, X, Franje, N. J,, Revilleza, J. E,, Xu, J., et al. (2016).
Relationship of rice grain amylose, gelatinization temperature and pasting properties
for breeding better eating and cooking quality of rice varieties. PloS One 11, e0168483.
doi: 10.1371/journal.pone.0168483

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D, et al.
(2007). PLINK: a tool set for whole-genome association and population-based linkage
analysis. Am. J. Hum. Genet. 81, 559-575. doi: 10.1086/519795

Ren, W. L., Wen, Y. J,, Dunwell, J. M., and Zhang, Y. M. (2018). pKWmEB:
integration of kruskal-Wallis test with empirical bayes under polygenic background
control for multi-locus genome-wide association study. Heredity 120, 208-218.
doi: 10.1038/s41437-017-0007-4

Shen, N,, Lai, K,, Nian, J., Zeng, D., Hu, J., Gao, Z., et al. (2011). Mapping and genetic
analysis of quantitative trait loci for related traits of cooked rice. Chin. J. Rice Sci. 25 (5),
475-482. doi: 10.3969/j.issn.1001-7216.2011.05.004

Shen, S., Zhuang, J., Wang, S., Shu, Q., Bao, J., Xia, Y., et al. (2005). Analysis on the
QTLs with main, epistasis and genotype- environmental interaction effects for cooked
rice elongation. Chin. J. Rice Sci. 19, 319-322. doi: 10.3321/j.issn:1001-7216.2005.04.006

Su, Y., Rao, Y., Hy, S, Yang, Y., Gao, Z., Zhang, G, et al. (2011). Map-based cloning
proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by
Waxy in rice (Oryza sativa L.). Theor. Appl. Genet. 123 (5), 859-867. doi: 10.1007/
s00122-011-1632-6

Suwannaporn, P., and Linnemann, A. (2008). Rice-eating quality among consumers
in different rice grain preference contries. J. Sens. Stud. 23, 1-13. doi: 10.1111/j.1745-
459X.2007.00129.x

Swamy, B. P. M., Kaladhar, K., Rani, S. N,, Prasad, G. S. V., Viraktamath, B. C,,
Reddy, G. A, et al. (2012). QTL analysis for grain quality traits in 2 BC,F, populations
derived from crosses between Oryza sativa cv. Swarna and 2 accessions of O. nivara. J.
Hered. 103 (3), 442-452. doi: 10.1093/jhered/esr145

Tamba, C. L., Ni, Y., and Zhang, Y. (2017). Iterative sure independence screening
EM-bayesian LASSO algorithm for multi-locus genome-wide association studies. PloS
Comput. Biol. 13, €1005357. doi: 10.1371/journal.pcbi. 1005357

Tamba, C., and Zhang, Y. M. (2018). A fast mrMLM algorithm for multi-locus
genome-wide association studies. bioRxiv 7, 341784. doi: 10.1101/341784

The 3,000 rice genomes project (2014). The 3,000 rice genomes project. GigaScience
3, 7. doi: 10.1186/2047-217X-3-7

Thi, K. M., Zheng, Y., Khine, E. E,, Nyein, E. E,, Lin, M. H. W., Oo, K. T., et al. (2020).
Mapping of QTLs conferring high grain length-breadth relative expansion during
cooking in rice cultivar Paw San Hmwe. Breed. Sci. 70, 551-557. doi: 10.1270/
jsbbs.20040

Tian, R, Jiang, G. H., Shen, L. H,, Wang, L. Q., and He, Y. Q. (2005). Mapping
quantitative trait loci underlying the cooking and eating quality of rice using a DH
population. Mol. Breed. 15 (2), 117-124. doi: 10.1007/s11032-004-3270-z

Wang, S. B, Feng, J. Y., Ren, W. L., Huang, B., Zhou, L., Wen, Y. J,, et al. (2016).
Improving power and accuracy of genome-wide association studies via a multilocus
mixed linear model methodology. Sci. Rep. 6, 19444. doi: 10.1038/srep19444

Wang, A, Jing, Y., Cheng, Q., Zhou, H., Wang, L., Gong, W, et al. (2023). Loss of
function of SSIITa and SSIIIb coordinately confers high RS content in cooked rice. Proc.
Natl. Acad. Sci. U. S. A. 120 (19), €2220622120. doi: 10.1073/pnas.2220622120

Frontiers in Plant Science

217

10.3389/fpls.2023.1250854

Wang, L. Q,, Liu, W.J,, Xu, Y., He, Y. Q,, Luo, L. ], Xing, Y. Z., et al. (2007). Genetic
basis of 17 traits and viscosity parameters characterizing the eating and cooking quality
of rice grain. Theor. Appl. Genet. 115 (4), 463-476. doi: 10.1007/s00122-007-0580-7

Wang, W., Mauleon, R,, Hu, Z., Chebotarov, D., Tai, S., Wu, Z, et al. (2018).
Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43—
49. doi: 10.1038/s41586-018-0063-9

Wang, Q., Tang, J., Han, B.,, and Huang, X. (2020). Advances in genome-wide
association studies of complex traits in rice. Theor. Appl. Genet. 133 (5), 1415-1425.
doi: 10.1007/s00122-019-03473-3

Wen, Y. J., Zhang, H,, Ni, Y. L., Huang, B., Zhang, J.,, Feng, J. Y., et al. (2018).
Methodological implementation of mixed linear models in multi-locus genome wide
association studies. Brief. Bioinform. 19, 700-712. doi: 10.1093/bib/bbw145

Wu, B, Yun, P, Zhou, H., Xia, D., Gu, Y., Li, P, et al. (2022). Natural variation in
WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain
quality. Plant Cell 34, 1912-1932. doi: 10.1093/plcell/koac057

Yu, K., Miao, H., Liu, H., Zhou, J., Sui, M., Zhan, Y., et al. (2022). Genome-wide
association studies reveal novel QTLs, QTL-byenvironment interactions and their
candidate genes for tocopherol content in soybean seed. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.1026581

Zhang, G., Cheng, Z., Zhang, X., Guo, X, Su, N,, Jiang, L., et al. (2011). Double
repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.)
uncovers interactive effects on the physicochemical properties of starch. Genome 54 (6),
448-459. doi: 10.1139/g11-010

Zhang, J., Feng, J. Y., Ni, Y. L, Wen, Y. J,, Niu, Y., Tamba, C. L, et al. (2017).
pLARmMEB: integration of least angle regression with empirical Bayes formultilocus
genome-wide association studies. Heredity 118, 517-524. doi: 10.1038/hdy.2017.8

Zhang, Y. M,, Jia, Z., and Dunwell, J. M. (2019). Editorial: The applications of new
multi-locus GWAS methodologies in the genetic dissection of complex traits. Front.
Plant Sci. 10. doi: 10.3389/fpls.2019.00100

Zhang, Y. W., Tamba, C. L., Wen, Y. J,, Li, P, Ren, W. L,, Ni, Y. L, et al. (2020).
mrMLM v4.0.2: an R platform for multi-locus genome-wide association studies.
Genomics Proteomics Bioinf. 18 (4), 481-487. doi: 10.1016/j.gpb.2020.06.006

Zhang, J., Wang, S., Wu, X, Han, L., Wang, Y., and Wen, Y. (2022). Identification of
QTNs, QTN-byenvironment interactions and genes for yield-related traits in rice using
3VmrMLM. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.995609

Zhang, G. H., Zeng, D. L., Guo, L. B, Qian, Q.,, Zhang, G. P., Teng, S., et al. (2004).
Genetic dissection of cooked rice elongation in rice (Oryza sativa L.). Yi Chuan 26 (6),
887-892. doi: 10.3321/j.issn:0253-9772.2004.06.021

Zhao, Q., Shi, X. S., Wang, T., Chen, Y., Yang, R., Mi, J., et al. (2023). Identification of
QTNs, QTN-by-environment interactions, and their candidate genes for grain size
traits in main crop and ratoon rice. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1119218

Zhao, K., Tung, C. W, Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H,, et al.
(2011). Genome-wide association mapping reveals a rich genetic architecture of
complex traits in Oryza sativa. Nat. Commun. 2, 467. doi: 10.1038/ncomms1467

Zhou, H., Wang, L., Liu, G., Meng, X,, Jing, Y., Shu, X, et al. (2016). Critical roles of
soluble starch synthase SSIITa and granule-bound starch synthase Waxy in synthesizing
resistant starch in rice. Proc. Natl. Acad. Sci. U. S. A. 113 (45), 12844-12849.
doi: 10.1073/pnas.1615104113

Zou,]. F., Chen, Y., Ge, C, Liu, J. Y., and Zhang, Y. M. (2022). Identification of QTN-

by-environment interactions and their candidate genes for soybean seed oil-related
traits using 3VmrMLM. Front. Plant Sci. 13, 1096457. doi: 10.3389/fpls.2022.1096457

frontiersin.org


https://doi.org/10.1038/s41598-017-12778-6
https://doi.org/10.1371/journal.pone.0168483
https://doi.org/10.1086/519795
https://doi.org/10.1038/s41437-017-0007-4
https://doi.org/10.3969/j.issn.1001-7216.2011.05.004
https://doi.org/10.3321/j.issn:1001-7216.2005.04.006
https://doi.org/10.1007/s00122-011-1632-6
https://doi.org/10.1007/s00122-011-1632-6
https://doi.org/10.1111/j.1745-459X.2007.00129.x
https://doi.org/10.1111/j.1745-459X.2007.00129.x
https://doi.org/10.1093/jhered/esr145
https://doi.org/10.1371/journal.pcbi.1005357
https://doi.org/10.1101/341784
https://doi.org/10.1186/2047-217X-3-7
https://doi.org/10.1270/jsbbs.20040
https://doi.org/10.1270/jsbbs.20040
https://doi.org/10.1007/s11032-004-3270-z
https://doi.org/10.1038/srep19444
https://doi.org/10.1073/pnas.2220622120
https://doi.org/10.1007/s00122-007-0580-7
https://doi.org/10.1038/s41586-018-0063-9
https://doi.org/10.1007/s00122-019-03473-3
https://doi.org/10.1093/bib/bbw145
https://doi.org/10.1093/plcell/koac057
https://doi.org/10.3389/fpls.2022.1026581
https://doi.org/10.1139/g11-010
https://doi.org/10.1038/hdy.2017.8
https://doi.org/10.3389/fpls.2019.00100
https://doi.org/10.1016/j.gpb.2020.06.006
https://doi.org/10.3389/fpls.2022.995609
https://doi.org/10.3321/j.issn:0253-9772.2004.06.021
https://doi.org/10.3389/fpls.2023.1119218
https://doi.org/10.1038/ncomms1467
https://doi.org/10.1073/pnas.1615104113
https://doi.org/10.3389/fpls.2022.1096457
https://doi.org/10.3389/fpls.2023.1250854
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Yuan-Ming Zhang,
Huazhong Agricultural University, China

REVIEWED BY
Jian-Fang Zuo,

Huazhong Agricultural University, China
Maria Samsonova,

Peter the Great St. Petersburg Polytechnic
University, Russia

*CORRESPONDENCE

Sylvie Cloutier
Sylviej.cloutier@agr.gc.ca

Frank M. You
frank.you@agr.gc.ca

Ligiang He
heligiang66@126.com

These authors have contributed equally to
this work

RECEIVED 26 May 2023
ACCEPTED 24 July 2023
PUBLISHED 25 October 2023

CITATION
He L, Sui Y, Che Y, Wang H, Rashid KY,
Cloutier S and You FM (2023) Genome-
wide association studies using multi-
models and multi-SNP datasets provide
new insights into pasmo resistance in flax.
Front. Plant Sci. 14:1229457.

doi: 10.3389/fpls.2023.1229457

COPYRIGHT

© 2023 Yao Sui, Yanru Che, Huixian Wang,
and His Majesty the King in Right of Canada,
as represented by the Minister of Agriculture
and Agri-Food Canada for the contribution
of Ligiang He, Khalid Y. Rashid, Sylvie
Cloutier and Frank M. You. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Plant Science

TvpPE Original Research
PUBLISHED 25 October 2023
DO110.3389/fpls.2023.1229457

Genome-wide association
studies using multi-models and
multi-SNP datasets provide
new insights into pasmo
resistance in flax

Ligiang He™***, Yao Sui®, Yanru Che?®, Huixian Wang?,
Khalid Y. Rashid®, Sylvie Cloutier™ and Frank M. You™

!Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada,
2School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University,
Haikou, China

Introduction: Flax (Linum usitatissimum L.) is an economically important crop
due to its oil and fiber. However, it is prone to various diseases, including pasmo
caused by the fungus Septoria linicola.

Methods: In this study, we conducted field evaluations of 445 flax accessions
over a five-year period (2012-2016) to assess their resistance to pasmo A total of
246,035 single nucleotide polymorphisms (SNPs) were used for genetic analysis.
Four statistical models, including the single-locus model GEMMA and the multi-
locus models FarmCPU, mrMLM, and 3VmrMLM, were assessed to identify
quantitative trait nucleotides (QTNs) associated with pasmo resistance.

Results: We identified 372 significant QTNs or 132 tag QTNs associated with
pasmo resistance from five pasmo resistance datasets (PAS2012—-PAS2016 and
the 5-year average, namely PASmean) and three genotypic datasets (the all SNPs/
ALL, the gene-based SNPs/GB and the RGA-based SNPs/RGAB). The tag QTNs
had R? values of 0.66-16.98% from the ALL SNP dataset, 0.68-20.54%from the
GB SNP dataset, and 0.52-22.42% from the RGAB SNP dataset. Of these tag
QTNs, 93 were novel. Additionally, 37 resistance gene analogs (RGAs)co-
localizing with 39 tag QTNs were considered as potential candidates for
controlling pasmo resistance in flax and 50 QTN-by-environment interactions
(QEls) were identified to account for genes by environmental interactions. Nine
RGAs were predicted as candidate genes for ten QEls.

Discussion: Our results suggest that pasmo resistance in flax is polygenic and
potentially influenced by environmental factors. The identified QTNs provide
potential targets for improving pasmo resistance in flax breeding programs. This
study sheds light on the genetic basis of pasmo resistance and highlights the
importance of considering both genetic and environmental factors in breeding
programs for flax.
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Introduction

Flax (Linum usitatissimum L.) is a valuable economic crop that
provides linseed and stem fiber to humans (Singh et al., 2011; You
et al, 2017). However, flax production is often constrained by
pasmo, a disease caused by the fungus Septoria linicola, which
reduces seed yield and fiber quality (Halley et al., 2004; He et al,,
2018; Islam et al., 2021). The fungus infects flax from the seedling to
the ripening stages. At the flowering stage, despite the application of
fungicide, susceptible varieties have been reported to experience up
to a 75% seed yield loss (Hall et al., 2016; Islam et al, 2021).
Therefore, developing resistant varieties is a cost-effective and
environmentally-friendly approach to protect flax from pasmo
and its effects on yield.

Disease resistance in plants is typically quantitatively inherited
and influenced by the environment. It is primarily governed by
major resistant genes called R genes, which have been the topic of
many studies (Marone et al., 2013; Yang et al., 2017). Most cloned R
genes in plants belong to the nucleotide-binding site-leucine-rich
repeat domain (NBS-LRR) class, also known as NLRs. For example,
a cluster of NLR receptor-encoding genes confers durable resistance
to Magnaporthe oryzae in rice (Deng et al.,, 2017), and the rpl gene
in maize and its homolog in barley confer race-specific resistance to
rust fungal diseases (Collins et al, 1999; Ayliffe et al., 2000).
Receptor like kinase (RLK) genes also account for a significant
proportion of R genes. For instance, the RLK-encoding barley Rpgl
gene confers resistance to stem rust (Brueggeman et al., 2002), and
rice Pi-d2 gene confers resistance against rice blast (Chen et al,
2006). Transmembrane coiled-coil proteins (TM-CC) are another
essential type of R gene-encoded proteins. The Rph3 gene,
originating from wild barley, is a TM-type R gene that encodes a
protein that differs from all known plant disease resistance proteins
and can significantly enhance barley leaf rust resistance (Dinh et al.,
2022). The mutation-induced recessive mlo allele of the barley Mlo
gene also encodes a TM domain protein, and confers broad-
spectrum resistance to the fungal pathogen Erysiphe graminis
(Buschges et al., 1997). Resistance gene analogs (RGAs) are key
resistance gene candidates and have been well-characterized in flax
(Sekhwal et al., 2015; You et al., 2018b). A total of 1327 RGAs have
been categorized into 11 types: RLK (receptor-like protein kinase),
TM-CC (transmembrane coiled-coil protein), RLP (receptor-like
protein), TNL (TIR-NBS-LRRs), TX (TIR-unknown), NL (NBS-
LRR), CNL (CC-NBS-LRR), TN (TIR-NBS), NBS (NBS domain
only), CN (CC-NBS), and OTHERS.

Genome-wide association studies (GWAS) have emerged as a
powerful and efficient approach for unraveling the genetic basis of
complex traits in flax. Compared to traditional linkage mapping,
GWAS can achieve higher resolution and more accurate mapping of
quantitative trait nucleotides (QTNs) (He et al., 2018; You et al., 2018a;
Soto-Cerda et al., 2021; You et al., 2022). However, GWAS has some
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limitations, including a higher risk of false-positive associations and a
lower effectiveness in detecting quantitative trait loci (QTL) associated
with rare alleles than biparental populations. Single-locus GWAS
models, such as GEMMA and MLM, have proven to be effective in
controlling spurious associations using the stringent Bonferroni
correction but they are not suited to detecting minor QTL (Yu et al,
2006; Zhou and Stephens, 2012). To enhance the power of polygenic
loci detection, multi-locus GWAS models have been developed (Segura
et al, 2012; Zhang et al,, 2019b). For instance, FarmCPU improves
statistical power and reduces confounding associations (Liu et al,
2016), and mrMLM increases power, reduces the false positive rate,
and has a shorter running time (Wang et al,, 2016). However, these
models do not fully assess the effects of QTN-by-environment
interactions (QEIs) and QTN-by-QTN interactions (QQIs). To
address these, a new multi-locus GWAS model called 3VmrMLM
was proposed (Li et al,, 2022b). This model estimates the genetic effects
of three marker genotypes (AA, Aa and aa) while controlling all
possible polygenic backgrounds. It is designed to detect QEIs and
QQIs. Our previous study has shown that pasmo resistance in flax is
controlled by polygenes (He et al, 2018). However, the small
proportion of resistant accessions in the original core collection was
limiting and additional research is warranted to detect main-effect
QTNs and their corresponding causal genes. Furthermore, the QEIs
associated with flax pasmo resistance are still largely unknown.
Therefore, the newly released 3VmrMLM model to identify main-
effect QTNs and QEISs is expected to improve our understanding of
pasmo resistance in flax towards the better design of breeding solutions.

Our previous study has identified a total of 500 QTL associated
with pasmo resistance in flax, including 67 stable and large-effect
QTL and many additional small effect and environment-specific
QTL (He et al,, 2018). Here only 8.3% of the flax core collection was
found to be resistant or moderately resistant to pasmo, based on the
average pasmo severity over five consecutive years (2012-2016). To
increase the proportion of resistant lines in the collection while
simultaneously improving genetic diversity, 75 sequenced breeding
lines were added to the core collection. Pasmo resistance data for
these new lines, were collected between 2012 and 2016, alongside
data from the existing 370 original accessions of the flax core
collection (You et al., 2022; Zheng et al.,, 2023).

To gain a deeper understanding of pasmo resistance in flax at
the genetic level, we conducted a GWAS on a diverse panel of 445
flax accessions, which included 370 accessions of the core collection
and 75 selected breeding lines (SBLs). Compared to GWAS that use
all SNPs (ALL) as genotypic data, gene-based SNPs (GB) and RGA-
based SNPs (RGAB) GWAS have demonstrated higher power and
resolution in QTL detection and candidate gene identification
(Zhang et al,, 2021; You et al, 2022). Thus, three genotypic
datasets consisting of 246,035 SNPs (ALL), 65,147 SNPs within
genes (GB), and 3,510 SNPs within RGAs (RGAB) were used in the
analysis, along with four different GWAS models. These models
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included one single-locus model (GEMMA) and three multi-locus
models (FarmCPU, mrMLM, and 3VmrMLM), employed to detect
quantitative trait nucleotides (QTNs) and QTN-by-environment
interactions (QEIs) associated with pasmo resistance across five
individual years (2012-2016). Our goal was to identify potential
candidate genes conferring pasmo resistance in flax.

Materials and methods

Genetic panel for GWAS

A genetic panel of 445 flax accessions was used for GWAS. The
panel included 370 accessions from the flax core collection, which
was previously assembled from a worldwide collection of 3,378 flax
accessions (Diederichsen et al., 2012; Soto-Cerda et al., 2013; He
et al, 2018), and 75 breeding lines that were selected based on their
resistance to pasmo, Fusarium wilt and powdery mildew diseases
(You et al., 2022). The flax core collection included accessions from
11 geographical origins, and were classified based on their
morphotype into 80 fibre and 290 linseed accessions. This panel
included 17 landraces, 85 breeding lines, 232 cultivars, and 36
accessions of unknown improvement status (Figure 1A) (You et al,,
2017). By adding the 75 SBLs to the core collection, the statistical
power of the GWAS was increased. This diverse genetic panel
allows for a more comprehensive analysis of the genetic variation

10.3389/fpls.2023.1229457

within flax, and can provide insights into the genetic basis of
resistance to pasmo disease and other traits of interest.

Phenotyping of pasmo resistance and
statistical analysis

The 445 accessions of the diversity panel were evaluated for field
resistance to pasmo over a period of five years (2012-2016) at
Agriculture and Agri-Food Canada, Morden Research and
Development Center’s farm in Morden, Manitoba, Canada. A
Type-2 modified augmented design (MAD2) was employed for
the field experiments as described by You et al. (2017). The seeds
were sown in mid-May each year, and 30-centimeter tall flax plants
were inoculated with approximately 200 grams of pasmo-infected
chopped straw from the previous growing season. To ensure disease
infection and development, a spray system was operated for 5
minutes every half hour for 4 weeks.

Pasmo resistance was evaluated at the early brown boll stage
(21-30 days after the flowering) by assessing the leaves and stems
of all plants (~300) in a single row plot using a pasmo severity
scale of 0-9. Ratings of 0-2 were classified as resistant (R), 3-4 as
moderately resistant (MR), 5-6 as moderately susceptible (MS),
and 7-9 as susceptible (S). Pasmo severity data were recorded for
five individual years (PAS2012, PAS2013, PAS2014, PAS2015, and
PAS2016). These five datasets and the five-year average
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FIGURE 1

Geographic distribution and phenotyping for pasmo resistance in flax accessions. (A) Geographic distribution of 445 flax accessions. (B) Distribution

and correlation matrix of pasmo severity in five consecutive years (2012-2
significant correlation at the 0.1% probability level. (C) Violin plot of pasmo
and the 75 selected breeding lines. PAS2012, PAS2013, PAS2014, PAS2015,

016), mean, BLUP and BLUE pasmo severity over years. *** indicates
severity for the 80 fibre and 290 linseed accessions of the core collection
PAS2016, PASmean, PASBLUP and PASBLUE represent pasmo severity

datasets for 2012, 2013, 2014, 2015, 2016, the 5-year average, the best linear unbiased prediction values and the best linear unbiased estimation
values of pasmo severity over five years. *** and **** indicate statistical significance at the 0.1% and 0.01% probability level, respectively.
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(PASmean) were used as the phenotypic data for all analyses in
this study.

To account for environmental variation, the R package Ime4
was used to generate the best linear unbiased prediction (BLUP)
and best linear unbiased estimate (BLUE) datasets for the pasmo
severity of the five years (Bates et al., 2015). A mixed linear model
that treated accessions and years as random effects was used to
calculate the BLUP values, while another mixed linear model that
treated accessions as fixed effects and years as random effects was
employed to obtain the BLUE values. The R package
PerformanceAnalytics was used to analyze the correlations
between the pasmo severity datasets, and to generate histograms
and scatter plots (https://cran.r-project.org/web/packages/
PerformanceAnalytics/index.html).

Re-sequencing for SNP discovery of the
diversity panel

Genome re-sequencing was performed to obtain the genetic
variation of 445 flax accessions. As previously described in He et al.
(2018), the Illumina HiSeq 2000 platform (Illumina Inc., San Diego,
USA) was used to generate 100-bp paired-end reads with an average
coverage of ~15.5X of the reference genome. All raw reads were
mapped to the flax reference genome using the BWA v0.6.1
mapping tool with a base-quality Q score in Phred scale > 20 and
other default parameters (Jo and Koh, 2015). The mapped files were
processed using SAMtools and an improved AGSNP pipeline for
SNP calling (Li et al,, 2009; You et al., 2011; You et al,, 2012). The
detected SNPs were further filtered with a minor allele frequency
(MAF) > 0.05 and a SNP genotyping call rate > 60% using PLINK
(https://zzz.bwh harvard.edu/plink/). After linkage disequilibrium
(LD) filtering with pairwise correlation coefficients () among
neighboring SNPs within 200kb > 0.8 and Beagle imputation with
default parameters (Browning and Browning, 2007), a total of
246,035 high-quality SNPs were retained for further analysis. The
genetic variant annotation and functional effect prediction of each
SNP were characterized by snpEft software (Cingolani et al., 2012)
based on the reference genome and corresponding annotation (You
et al., 2018b).

Population structure analysis

To dissect the genetic structure and variation of the 445 flax
accessions, principal component analysis (PCA) was performed
using the obtained high-quality SNPs. The analysis was carried out
with the PLINK software (Elhaik, 2022). For the SNP-based
phylogenetic analysis, MEGA-CC was employed, using a pairwise
gap deletion method for 1,000 bootstrap replicates (Kumar et al.,
2012). The resulting phylogenetic tree was visualized using the
Interactive Tree of Life (iTOL) tool (Letunic and Bork, 2021). The
population stratification was estimated using ADMIXTURE
(Alexander et al., 2009). The genome-wide LD decay was assessed
using PopLDdecay v3.42 software to the squared correlation
coefficient (?) between SNPs (Zhang et al., 2019a).
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Genome-wide association study

The GWAS analysis for pasmo resistance was conducted using
the five individual year (PAS2012, PAS2013, PAS2014, PAS2015,
and PAS2016) and the five-year average (PASmean) datasets with
four GWAS models. The models used included the single-locus
model GEMMA and the multi-locus models FarmCPU (Liu et al.,
2016), mrMLM (Wang et al, 2016) and 3VmrMLM (Li et al,
2022b). The kinship matrices were estimated using the protocol
suggested by each GWAS software package. The genotypic data for
the association panel comprised 246,035 high-quality SNPs (ALL)
obtained from 445 flax accessions. Of these, the 65,147 SNPs that
mapped to the genic regions constituted the gene-based (GB) SNP
dataset, and the 3,510 SNPs that mapped to RGAs formed the RGA-
based (RGAB) SNP dataset. These datasets were used in sequential
analyses. The GEMMA software and R package GAPIT were
employed to detect QTNs using default settings (Zhou and
Stephens, 2012; Wang and Zhang, 2021). The R package mrMLM
was applied to detect QTNs using parameters SearchRadius = 20,
CriLOD = 3, and Bootstrap = FALSE (Zhang et al,, 2020). The R
package IIIVmrMLM implementing the 3VmrMLM model was
used to detect main-effect QTNs and the QEIs (Li et al., 2022a). For
the detection of the main-effect QTNs, the R package IIIVmrMLM
was used with the following parameters: method = “Single_env”,
SearchRadius = 20, and svpal = 0.01. For QEI detection, the
parameters used were method = “Multi_env”, SearchRadius = 20,
and svpal = 0.01. The association signals of the 3VmrMLM model
were detected using a LOD score > 3 (Li et al., 2022a). The threshold
of significant association of GEMMA and FarmCPU was
determined using a critical P-value at the 5% significant level that
was subjected to Bonferroni correction (P-value = 2.03 x 1077 for
the ALL dataset, P-value = 7.67 x 10~ for the GB dataset, and P-
value = 1.42 x 107° for the RGAB dataset). Manhattan plots were
generated using the IIIVmrMLM package with default settings.

QTN identification, candidate gene
prediction, allele and haplotype analysis

In order to identify QTNs associated with pasmo resistance in
flax, a GWAS was performed using individual year datasets
(PAS2012-PAS2016) and a five-year average dataset (PASmean)
in combination with the ALL, GB and RGAB genotypic datasets.
QTNs detected in different genotypic datasets were analyzed
independently and common QTNs were identified based on
detection by two or more models or detection in two or more
phenotypic datasets. Mann-Whitney U tests were used to validate
significant differences between QTN alleles associated with pasmo
severity. The significant QTNs were represented by tag QTNs for
downstream analyses. R® values were calculated to determine the
proportion of total variation explained by the pasmo resistance
associated QTNs/QEIs. A total of 1,327 RGAs have previously been
identified in the flax reference genome (You et al., 2018b). The co-
localized RGAs within an estimated 4 kb distance of the averaged
whole genome LD decay and local LD block defined flanking
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regions of the detected QTNs/QEIs were considered as candidate
genes. LDBlockShow v1.40 (Dong et al., 2021) was utilized to
estimate the local LD block regions on the chromosomes. For
allele analysis, the single SNP with HIGH functional effect
prediction on the coding region (CDS) of each candidate gene
were selected and tested for significant differences in pasmo severity
using the Wilcox non-parametric test at the 5% probability level.
Likewise, for haplotype analysis, all the SNPs within each candidate
gene that were predicted with HIGH or MODERATE functional
effect were considered. Subsequently, these SNPs underwent testing
using the Wilcox non-parametric test at the 5% probability level to
identify significant differences. A SNP with a HIGH functional
effect prediction is assumed to have a disruptive impact on the
protein, while a SNP with a MODERATE functional effect
prediction is expected to be non-disruptive but could possibly
change the protein’s effectiveness.

Results
Evaluation of pasmo resistance

Pasmo resistance was evaluated in 445 flax accessions over five
consecutive years (PAS2012-PAS2016). The geographic
distribution and morphotypes of these accessions are shown in
Figure 1A. Correlation coefficients were calculated among PAS2012,
PAS2013, PAS2014, PAS2015, PAS2016, PASmean, pasmo best
linear unbiased prediction (PASBLUP) and pasmo best linear
unbiased estimation (PASBLUE) datasets, and ranged from 0.33
to 1.00, with the highest correlation observed between PASmean
and PAS2014 (r=0.83) (Figure 1B). PASmean was further analyzed
due to its almost identical correlation coefficients with PASBLUP
and PASBLUE (r = 1.00). The coefficient of variation (CV) of
PAS2012-PAS2016 and PASmean datasets ranged from 24.17% to
39.24% (Supplementary Table S1). Significant differences in pasmo
severity were observed between linseed, fibre accessions, and SBLs
in this flax genetic panel. High resistance (low severity) to pasmo
was observed in the 75 SBLs compared to the 370 accessions from
the flax core collection (Figure 1C). The average pasmo severity
over five years was 6.56 * 1.05 for the 290 linseed accessions, 4.98 +
1.50 for the 80 fibre accessions, and 4.13 + 1.35 for the 75 breeding
lines (Figure 1C). The data distribution and correlation analysis
indicated that resistance against pasmo in flax is controlled by
polygenes and potentially genetic by environment interactions.

Population structure

To analyze the genetic structure of the 445 flax accessions, a
population structure analysis was performed using the ALL SNP
dataset of 246,035 SNPs. The results indicated the 445 accessions
were divided into five populations (Figure 2A). Population one
consisted of 19 linseed accessions and 75 SBLs; population two was
composed of 67 fibre accessions and 51 linseed accessions;
population three contained 11 fibre accessions and 72 linseed
accessions; population four comprised 39 linseed accessions, while
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population five consisted of only two fibre accessions and 109
linseed accessions. PCA and phylogenetic analysis by neighbor-
joining (NJ) (Chen et al., 2014) also showed identical classification
of the flax genetic panel into five groups (Figures 2B-D and
Supplementary Figure S1). Therefore, a population structure Q
matrix with K = 5 was adopted for downstream GWAS analyses.
The linkage disequilibrium (LD) analysis showed that the LD
decayed rapidly before 4 kb and subsequently became flat for this
flax genetic panel (Figure 2E). Therefore, the 4 kb flanking region of
each QTN was used for putative candidate gene prediction in
subsequent analyses.

Identification of QTNs associated with
pasmo resistance

A total of 372 significant QTNs were identified using six pasmo
resistance datasets (PAS2012-PAS2016 and PASmean) and three
genotypic datasets (ALL, GB and RGAB) using the single-locus
model GEMMA and the multi-locus models FarmCPU, mrMLM
and 3VmrMLM (Figure 3 and Supplementary Table S2). When the
ALL genotypic dataset was used, 3VmrMLM detected the most
QTNs (149), followed by mrMLM (89), FarmCPU (25), and
GEMMA (4) (Table 1). Forty-seven QTNs were detected by both
3VmrMLM and mrMLM, two by 3VmrMLM, mrMLM, and
FarmCPU, and another two by mrMLM, FarmCPU, and
GEMMA (Figure 3A). Only one QTN (QTN-Lu4-14738243) was
detected in three out of the six phenotypic datasets (PAS2012-
PAS2016 and PASmean) (Figure 3B and Supplementary Table S2).

For the GB genotypic dataset, 3VmrMLM detected the most
QTN (105), followed by mrMLM (90), and GEMMA detected a
single QTN (Table 1). Among these, 67 were detected by both
3VmrMLM and mrMLM, four by 3VmrMLM, mrMLM, and
FarmCPU, and one by mrMLM, FarmCPU, and GEMMA
(Figure 3C). Moreover, the same common QTN (QTN-Lu4-
14738243) was detected in three out of the six phenotypic
datasets (Figure 3D and Supplementary Table S2).

Similarly, 3VmrMLM detected the most QTNs (55) in the
RGAB genotypic dataset, followed by mrMLM (28), FarmCPU
(10), and GEMMA (2) (Table 1). Interestingly, QTN-Lul0-
11656889 was detected by all four models (Figure 3E and
Supplementary Table S2). Besides, three common QTNs (QTN-
Lu8-23634276, QTN-Lul0-11656889, and QTN-Lul5-14719354)
were detected in three out of six phenotypic datasets (Figure 3F and
Supplementary Table S2). Notably, QTN-Lul4-2333894 was
detected by all three genotypic datasets (Supplementary Figure
S2A and Supplementary Table S2).

In summary, 3VmrMLM detected the highest number of total
QTNs and common QTNss in the six phenotypic datasets regardless
of the genotypic dataset. The largest number of QTNs detected in
multiple environments (three out of six phenotypic datasets) was
identified using the RGAB genotypic dataset.

All significant QTNs were evaluated for consistency across
multiple phenotypic datasets and models, and those detected in >
two datasets or > two models were retained for further analysis. A
total of 55, 80, and 32 QTNs were thus identified from the ALL, GB,
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Population structure of 445 flax accessions. (A) Population structure estimated by ADMIXTURE. (B, C) Scatter plots of the first three principal
components (PCs) of 445 flax accessions. (D) Phylogenetic analysis of 445 flax accessions based on 246,035 single nucleotide polymorphisms
(SNPs). Accessions of clades one, two, three, four and five are indicated in blue, green, yellow, mauve and red, respectively. (E) Genome-wide LD

decay analysis of the genetic panel.

and RGAB genotypic datasets, respectively (Supplementary Table
§2). In agreement with the total number of QTNs detected, the
majority of the retained QTNs were detected by 3VmrMLM across
all three genotypic datasets, with 52 QTNs in ALL, 75 QTNs in GB,
and 32 QTNs in RGAB (Table 1 and Supplementary Table S2).
Allelic test of significance for these QTNs were performed using the
Mann-Whitney U test for the dataset from which the QTNs were
detected. A total of 82 non-significant QTNs (U test at the 5%
probability level) were removed, leaving 132 significant QTNs used
as tag QTNs in subsequent analyses (Figure 4 and Supplementary
Tables 52, S3). The majority of the tag QTNs were detected by
3VmrMLM across all three genotypic datasets, with 41 in ALL, 62 in
GB, and 30 in RGAB (Table 1). The R? values of the 132 tag QTNs
ranged from 0.52% to 22.42% (Table 1 and Supplementary Table
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S3), and varied across the four models due to the differences in
statistical models. For example, the R* of 3VmrMLM-detected tag
QTNs in the ALL genotypic dataset ranged from 0.66% to 16.98%,
while the R* of GEMMA-detected tag QTN ranged from 1.11% to
10.00%. Similar results were observed in the GB and RGAB
genotypic datasets (Table 1). Of note, eight tag QTNs were
identified in both ALL and GB genotypic datasets, and explained
1.06% to 12.72% of the total variation for pasmo severity
(Supplementary Table S3 and Supplementary Figure S2B). The
position of all tag QTNs for pasmo severity are illustrated on a
CIRCOS map (Figure 4). A total of eight tag QTNs were considered
large-effect QTNSs, i.e., R* > 10% (Table 2 and Supplementary Table
S4). Based on these QTNs, significant negative correlations were
observed between the number of favorable alleles (NFAs) in an
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accession and the six pasmo severity datasets (PAS2012-PAS2016
and PASmean) (r = —0.39 ~ —0.71) (Supplementary Figure S3A-F),
with the strongest correlation observed in the PASmean dataset
(r = -0.71) (Supplementary Figure S3F).

Candidate genes for pasmo resistance

To identify the genes putatively involved in pasmo resistance in
flax, we scanned resistance gene analogs (RGAs) within the
estimated 4 kb flanking region of the QTNs identified from the
ALL genotypic dataset, and identified the tag QTNs located within

Frontiers in Plant Science

Venn diagrams of QTNs detected using four GWAS models (GEMMA, FarmCPU, mrMLM, and 3VmrMLM) for the three single nucleotide
polymorphism (SNP) datasets: ALL (A), GB (C), and RGAB (E), and QTNs detected using six different phenotypic datasets (PAS2012-PAS2016 and
PASmean) for the three SNP datasets: ALL (B), GB (D), and RGAB (F). ALL, all SNPs; GB, gene-based SNPs; RGAB, resistance gene analog (RGA)

RGAs as candidate genes for the QTNs identified from the GB or
RGAB genotypic dataset. The 37 RGAs that co-localized with 39 tag
QTNs were considered candidates for pasmo resistance in flax
(Supplementary Table 54). These RGAs were mainly classified into
eight types, including receptor-like protein (RLP), receptor-like
kinase (RLK), TIR-NBS-LRRs (TNL), TIR-unknown (TX), NBS-
LRR (NL), TIR-NBS (TN), transmembrane-coiled coil protein
(TM-CC), CC-NBS-LRR (CNL), and others. The majority of
these RGAs were RLK (19) followed by TM-CC (5) (Figure 5).
Out of the 132 tag QTNs, QTN-Lul0-11656889 was identified by
four models from the RGAB genotypic dataset, and explained 22.42%
of the total variation. This QTN was located within the NL gene
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TABLE 1 Comparison of quantitative trait nucleotide (QTN) identification for different GWAS models and genotypic datasets.

Statistical Genotypic NO. of detected = NO. of common QTNs by models NO. of non- NO. of tag

model dataset QTNs or datasets significant QTNs QTNs

GEMMA ALL 4 2 0 2 1.11-10.00
FarmCPU ALL 25 6 0 6 1.11-12.11
mrMLM ALL 89 51 10 41 0.66-12.72
3VmrMLM ALL 149 52 12 41 0.66-16.98
GEMMA GB 1 1 0 1 L11
FarmCPU GB 17 8 1 7 1.11-13.30
mrMLM GB 90 74 12 62 0.68-20.54
3VmrMLM GB 105 75 13 62 0.68-20.54
GEMMA RGAB 2 2 0 2 9.34-22.42
FarmCPU RGAB 10 9 2 7 0.54-22.42
mrMLM RGAB 28 25 4 23 0.52-17.40
3VmrMLM RGAB 55 32 3 30 0.52-17.40

ALL, all SNPs: GB, gene SNPs: RGAB, resistance gene analog (RGA) based SNPs.
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FIGURE 4

Circos map of quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEls) for pasmo severity in flax. Track A: 15 flax
chromosomes. Track B: Heatmap of SNP density with bin sizes of 0.1 Mb for the ALL dataset (246,035 SNPs). Track C: Heatmap of SNP density with
bin size of 0.1 Mb for the GB dataset (65,147 SNPs). Track D: Heatmap of SNP density with bin size of 0.1 Mb for the RGAB dataset (3,510 SNPs).
Track E: QTNs detected using four statistical models: GEMMA, FarmCPU, mrMLM, and 3VmrMLM. Track F: QTNs identified using all four statistical
models. Track G: QEls detected using the 3VmrMLM model. ALL, all SNPs; GB, gene-based SNPs; RGAB, resistance gene analog (RGA)-based SNPs.
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TABLE 2 Large-effect quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEls) detected in two genotypic datasets.

GD R? (%) QTN/QEI Chr Pos Gene ID Annotation
RGAB 10.79 QTN-Lud-14335180 4 14335180 Lus10041466 TM-CC
RGAB 2734 QEI-Lu5-1569144 5 1569144 Lus10004719 TNL
RGAB 16.77 QTN-Lu5-1715943 5 1715943 Lus10008486 RLK
RGAB 13.34 QTN-Lu5-15543693 5 15543693 Lus10024053 TM-CC
RGAB 11.88 QEI-Lu5-15543693 5 15543693 Lus10024053 TM-CC
RGAB 10.07 QTN-Lul0-11256857 10 11256857 Lus10032735 RLK
RGAB 2.42 QTN-Lul0-11656889 10 11656889 Lus10032759 NL
RGAB 17.40 QTN-Lul0-11657307 10 11657307 Lus10032759 NL
RGAB 15.77 QTN-Lul2-5214501 12 5214501 Lus10018309 ™

GB 13.77 QTN-Lu14-2333894 14 2333894 Lus10025565 TM-CC

GD, genotypic dataset: Chr, chromosome: Pos, position: TM-CC, transmembrane coiled-coil protein: TNL, TIR-NBS-LRRs: RLK, receptor-like protein kinase: NL, NBS-LRR. GB, gene-based
SNPs: RGAB, resistance gene analog (RGA)-based SNPs.

Lus10032759 (Supplementary Figure S4A and Supplementary Table  relatively large effect (R* = 13.77%), as detected from the GB
S4) which had four haplotypes Hapl (AAAA, n = 336), Hap2  genotypic dataset (Supplementary Figure S4C and Supplementary
(TTAA, n = 18), Hap3 (TTGG, n = 89), and Hap4 (AAGG, n =2)  Table 54). The pasmo severity of accessions with Hap2 (CCAA,
(Figure 6A). Significant differences in pasmo severity were observed  n = 283) was significantly different from those with other two
between accessions with the Hapl and Hap3 in all six phenotypic  haplotypes, with lower pasmo severity observed in Hap2
datasets, with accessions carrying Hap3 exhibiting lower pasmo  accessions than in Hapl (CCCC, n = 125) and Hap3 (TTAA,
severity than those carrying Hapl (Figure 6A). QTN-Lu5-1715943  n = 37) accessions (Figure 6C).

also had a relatively large effect (R* = 16.77%) in the RGAB genotypic

dataset. The candidate gene for this QTN was the RLK-type RGA

Lus10008486 (Supplementary Figure S4B and Supplementary Table  QEI detection and candidate genes

54). The accessions with Hap2 (TTGG, n = 83) showed significantly

lower pasmo severity than those with Hapl (TTAA, n = 333), Hap3 Using the 3VmrMLM model, a total of 50 QEIs underlying
(GGGG, n = 26), and Hap4 (GGAA, n = 3), again in almost all six =~ pasmo resistance in flax were identified from the ALL, GB, and
phenotypic datasets (Figure 6B) In addition, the TM-CC type RGA ~ RGAB genotypic datasets across the five individual year phenotypic
Lus10025565, identified by the QTN-Lul4-2333894, also had a  datasets (PAS2012-PAS2016), as shown in Figures 4, 7A-C, and
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Distribution of candidate resistance gene analogs (RGAs) associated with tag quantitative trait nucleotides (QTNs) and QTN-by-environment
interactions (QEls). RLP, receptor like protein: RLK, receptor like kinase: CNL, CC-NBS-LRR: TNL, TIR-NBS-LRRs: TX, TIR-unknown: NL, NBS-LRR:
TN, TIR-NBS: TM-CC,transmembrane-coiled coil protein.
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Analyses of the candidate genes Lus10032759, Lus10008486 and Lus10025565 for pasmo resistance for the five individual years and the mean over
years. (A) Haplotype and pasmo severity analysis of Lus10032759 in 445 flax accessions. (B) Haplotype and pasmo severity analysis of Lus10008486
in 445 flax accessions. (C) Haplotype and pasmo severity analysis of Lus10025565 in 445 flax accessions. Letters indicate significant differences at

the 5% probability level.

Supplementary Table S5. Overall, 27, 18, and nine QEIs were
identified from the ALL, GB, and RGAB genotypic datasets,
respectively. Four of these QEIs were detected in both the ALL
and GB genotypic datasets: QEI-Lul-3346281, QEI-Lu3-4320878,
QEI-Lu4-14847340, and QEI-Lu9-17104439. Notably, no QEI loci
for pasmo resistance were detected on chromosomes 8 and 15
(Supplementary Table S5).

The following four QEIs located on genes and detected from the
GB or RGAB dataset were also identified as tag QTNs: QEI-Lu5-
15543693 (R* = 11.88%), QEI-Lull-19819154 (R* = 5.10%), QEI-
Lul4-2333894 (R® = 6.01%), and QEI-Lul4-1935665 (R> = 2.85%)
(Supplementary Table S2, S5 and Supplementary Figure S5).

The nine RGAs predicted as candidate genes for ten QEIs were
further analyzed (Supplementary Table S6 and Figure 5). The TM-CC
type RGA Lus10024053 was the candidate gene for the large-effect QEI-
Lu5-15543693, with Hapl (GGAA, n = 301), Hap2 (GGTT, n = 9),
Hap3 (AATT, n = 54), and Hap4 (AAAA, n = 81). The severity of
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pasmo infection in accessions with Hap4 was significantly lower than
that of accessions with the other three haplotypes in the PAS2012,
PAS2013, PAS2014, and PAS2016 datasets (Figure 8A; Supplementary
Figure S4D; Supplementary Table S6). Additionally, the RLK type RGA
Lus10025492 was identified as the candidate gene of QEI-Lul4-
1935665, with Hapl (AAAA, n = 53), Hap2 (AAGG, n = 269),
Hap3 (CCGG, n = 122), and Hap4 (CCAA, n = 1). A significantly
lower pasmo severity of Hap2 was observed in PAS2013, PAS2014, and
PAS2016 compared to Hap3 (Figure 8B; Supplementary Figure S4E;
Supplementary Table S6). Similarly, the RLK RGA Lus10040160 was
identified as the candidate gene of QEI-Lu7-4573781. Lus10040160
hasHapl (TTTT, n = 271), Hap2 (GGTT, n = 88), and Hap3 (TTCC,
n = 86), and significant differences in pasmo severity were observed
between the Hapl and Hap3 in the PAS2013, PAS2014, and PAS2016
datasets. The pasmo resistance level of accessions with Hap3 was
significantly higher than that of accessions with Hapl in those years
(Figure 8C; Supplementary Figure S4F; Supplementary Table S6).
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Manhattan plots for pasmo resistance associated QTN-by-environment interactions (QEls) identified using the 3VmrMLM model for three single
nucleotide polymorphisms (SNPs) datasets: ALL (A), GB (B), and RGAB (C). Black horizontal lines in the Manhattan plots represent the genome-wide
significant threshold. The red arrows indicate the QEls co-detected in ALL (A) and GB (B) SNP datasets. The green and blue arrows indicate the
candidate genes detected in ALL, GB, and RGAB SNP datasets. ALL, all SNPs; GB, gene SNPs; RGAB, resistance gene analog (RGA)-based SNPs.

Discussion
Comparison across GWAS models

The detection of QTNs in GWAS can vary depending on the
statistical algorithms implemented in the models. In this study,
three genotypic datasets (ALL, GB, and RGAB) were evaluated
across six phenotypic datasets for pasmo resistance. The results
showed that the 3VmrMLM model detected the most QTNs,
followed by mrMLM and GEMMA. Most of the QTNs detected
by at least two models were identified by 3VmrMLM. These
findings support previous studies indicating that multi-locus
models outperform single-locus models in QTN detection, and
suggest that 3VmrMLM high statistical power and low false positive
rate are advantageous (Cui et al., 2018; Hou et al., 2018; Zhong et al.,
2021; He et al., 2022; Li et al., 2022b; Liu et al., 2022; Yu et al., 2022;
Zhang et al., 2022).

After removing non-significant QTNs, the most tag QTN's were
also identified by 3VmrMLM, followed by mrMLM and FarmCPU.
The largest R* ranges were also observed in 3VmrMLM identified
tag QTN in all four models used, indicating its ability to identify
tag QTNs with either large or small effects. Taken together, the
3VmrMLM model seems a good alternative to other single-locus
and multi-locus models in GWAS. The 3VmrMLM model was
developed to effectively detect main-effect QTNs, QEIs, and QQIs
while providing unbiased estimates of their effects through an
analysis of variance (ANOVA) model. This model builds upon
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the framework of compressed variance component mixed model
(Li et al,, 2022a) and presents technical improvements. One key
reason for the superior performance of the 3VmrMLM model is its
ability to consider all genetic effects in the mixed genetic model
while simultaneously controlling for all polygenic backgrounds
(Li et al., 2022a; Li et al., 2022b).

Evaluation of QTNs associated
with pasmo resistance

Flax pasmo resistance is a quantitative trait, characterized by
features of quantitative genetics. The challenge of visually
measuring the resistance prompted us to adopt the pasmo
severity scale (0-9) as a means to assess the severity of pasmo
disease symptoms in our experimental genotypes. This severity
scale provides a practical and standardized approach for
quantitatively representing pasmo disease symptoms, despite its
categorical appearance in scoring pasmo resistance. By utilizing this
scale, we were able to capture the gradation in the expression of the
trait among different genotypes, enabling a more comprehensive
evaluation of the potential genetic factors influencing pasmo
severity. Notably, this method has been commonly used for
evaluating powdery mildew resistance in flax (You et al., 2022).

Using the multiple years’ flax pasmo severity data, a total of the
132 tag QTNs were detected in this study, out of which 29 were
previously reported in a study of the flax core collection consisting of
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Analyses of the candidate gene Lus10024053, Lus10025492 and Lus10040160 for pasmo resistance associated QTN-by-environment interactions
(QEls) for the five individual years. (A) Box plot of pasmo severity of Lus10024053 haplotypes. (B) Box plot of pasmo severity of Lus10025492
haplotypes. (C) Box plot of pasmo severity of Lus10040160 haplotypes. Letters indicate significant differences at the 5% probability level.

370 accessions that utilized the same phenotyping method (He et al.,
2018). In the aforementioned study, which focused on the 370 flax
accessions, a subset of the current study, a total of 67 QTLs with large
effects were identified by GWAS using various models, including
GLM, MLM, FarmCPU, GEMMA, mrMLM, FASTmrEMMA, ISIS
EM-BLASSO, pLARmMEB, pKWmEB and FASTmrMLM models (He
et al, 2018). Furthermore, four tag QTNs (QTN-Lu8-17271798,
QTN-Lul3-2007925, QTN-Lul5-974597, and QTN-Lul3-
14282050) were found to be situated within 1.01-16.97 kb
upstream/downstream of QTLs previously reported in He et al
(2018) (Supplementary Table S3). To identify novel QTNs and their
corresponding candidate genes associated with pasmo resistance in
flax, multi-model and multi-environment GWAS were conducted
using the ALL, GB, and RGAB genotypic datasets. A total of 31 (ALL),
49 (GB), and 27 (RGAB) novel tag QTNs were identified using 445
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flax accessions (370 core accessions and 75 SBLs), which is an
improvement compared to our previous study. Eight tag QTNs
(R? = 1.11%-12.72%) were identified in both the ALL and GB
datasets. Additionally, one and seven out of eight large-effect QTNs
(R* = 10.00%) were identified from the GB and RGAB datasets
respectively (Table 2 and Supplementary Table S3). Among the tag
QTNs with the top five R? (16.98%-22.42%), two, two and one tag
QTNs were identified from the GB, RGAB, and ALL datasets,
respectively (Supplementary Table S3). These results are consistent
with previous studies suggesting that using gene-based or RGA-based
SNPs for GWAS is beneficial for detecting QTNs with large effects and
predicting key candidate genes (Huang et al., 2011; Zhu et al., 2018;
Deng et al., 2020; You et al,, 2022; Zhang et al., 2022). Therefore, the
use of gene-based or RGA-based SNPs for GWAS is a powerful and
efficient approach for identifying QTNs with large and small effects.
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Candidate genes associated with pasmo
resistance and their effects on main-effect
QTNs and QEls

Main-effect QTNs are QTNs with stable effects across different
environments, while QEIs represent loci that may be effective only
in some environments. Given the needs of global climate change
and phenotypic plasticity research, QEIs have the potential to be
exploited to dissect complex traits in future GWAS. In this study,
candidate gene prediction of QTNs and QEIs was based on well-
characterized RGAs in flax. RGAs have been identified as key
candidate genes underlying plant disease resistance in several
studies (Kassa et al., 2017; He et al.,, 2018; Fu et al.,, 2020; You
et al, 2022). A total of 37 RGAs were identified as potential
candidate genes of 39 tag QTNs and nine as candidates for ten
QEIs. They were summarized into RLK, TM-CC, and NBS-LRR
type RGAs. In general, the RLK, TM-CC, and NBS-LRR genes
account for a large proportion of R genes, playing important roles
in plant disease resistance against fungal pathogens. Well-known
examples include wheat leaf rust resistance conferred by the Lr21
(NBS-LRR) gene (Huang et al., 2003), resistance to the hemi-
biotrophic fungus Phytophthora infestans conferred by the potato
R7 (NBS-LRR) gene (Leister et al., 1996; Hammond-Kosack and
Jones, 1997), broad-spectrum mildew resistance conferred by the
Arabidopsis RPW8 (TM-CC) gene (Xiao et al.,, 2001), and rice blast
resistance conferred by the Pi-d2 (RLK) gene (Chen et al., 2006).
The RLK, TM-CC, and NBS-LRR type RGAs associated with pasmo
resistance in this study may contribute to a better understanding of
the genetic mechanisms underlying pasmo resistance in flax.
Furthermore, the molecular mechanisms of these candidate genes
warrant further validation.

Breeding applications of pasmo resistance
associated QTNs

The present study revealed significant differences in pasmo
resistance levels between linseed, fibre accessions, and SBLs
within a flax genetic panel. Interestingly, 75 SBLs exhibited higher
pasmo resistance levels than the flax core collection, which included
370 accessions (Figure 1C). Moreover, the number of favorable
alleles (NFA) in fibre accessions was greater than in linseed
accessions, and fibre accessions with more favorable alleles were
found to be more resistant to pasmo than linseed accessions
(Supplementary Figure S6), as demonstrated in a previous study
(He et al., 2018). Flax have obtained commercial importance due to
the utilization of the stem for high quality fiber (Oomah, 2001; You
etal, 2019; Rahman and Hoque, 2023). One of the major objectives
in the fiber flax breeding program is to improve fiber yield and
quality (Galinousky et al.,, 2020; Rahman and Hoque, 2023). The
productivity of fiber flax is severely affected by devastating fungal
disease pasmo, which causes yield loss and fiber quality reduction
(Yadav et al, 2022). Therefore, the 75 SBLs represent valuable
genetic resources for improving pasmo resistance in elite varieties
through direct hybridization.
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Negative correlations were observed between the NFA and
pasmo resistance of the five-year pasmo severity (PAS2012-
PAS2016) and PASmean datasets in Supplementary Figure S3A-F
(r = -0.39 ~ —0.71), with the highest correlation found in the
PASmean dataset (r = —0.71). This additive effect of identified tag
QTN suggests that accessions carrying more favorable alleles are
suitable for high pasmo resistance breeding through the pyramiding
of loci. For example, SBL 8031 had 17 favorable alleles (PASmean =
2.2), SBL 8040 had 17 favorable alleles (PASmean = 2.4), and SBL
8032 had 18 favorable alleles (PASmean = 2.4).

Although large-effect tag QTNs, such as QTN-Lul0-11656889
(R* = 22.42%) and QTN-Lul2-2992110 (R> = 16.68%), may be
available for improving pasmo resistance through marker-assisted
selection (MAS), several tag QTNs with small effects would be
better captured through genomic prediction/selection with the aim
to transform flax breeding from a slow and labor-intensive mode
into an efficient and accurate one. The breeding values of complex
traits, such as pasmo resistance, are predicted by cross-validated
models, which are an alternative strategy to MAS (Lipka et al., 2015;
Poland and Rutkoski, 2016; He et al., 2019; You et al., 2022).
Marker-assisted backcrossing and genomic selection/prediction
strategies have already significantly enhanced disease resistance in
many crops (Buerstmayr et al., 2008; Buerstmayr et al., 2009; Poland
and Rutkoski, 2016; Crossa et al., 2017; He et al., 2019; Xu
et al,, 2021).

The QEI loci identified in this study constitute an alternative
genetic information for improving flax pasmo disease, specifically to
cope with environmental changes. These QEI loci can be useful for
predicting the performance of flax varieties in specific
environments. By identifying specific genetic markers associated
with QEI loci, breeders can develop flax varieties that are better
adapted to specific environmental conditions. The combined
utilization of pasmo resistance-associated QTNs and QEIs holds
the promise of driving the molecular breeding of flax with broad-
spectrum and durable resistance against Septoria linicola.

Conclusion

Our study demonstrates that pasmo resistance in flax is a
complex trait, controlled by multiple genes, and influenced by
gene-environment interactions. The 3VmrMLM model, which
detected more QTNs and QEIs, is a promising alternative to
other multi-locus GWAS models. Gene-based and RGA-based
SNPs as genotypic datasets in GWAS proved to be efficient for
identifying QTNs with both large and small effects and predicting
candidate genes. Our research identified 372 significant QTNs and
50 QEIs, providing potential targets for improving pasmo resistance
in flax breeding programs. Furthermore, we identified 37 RGAs for
39 tag QTNs and nine RGAs for ten QEIs, suggesting the potential
involvement of RLK, TM-CC, and NBS-LRR genes in pasmo
resistance. Our findings on gene-environment interactions can
guide breeding strategies that account for environmental factors.
The 50 QEI loci identified in our study can help improve our
understanding of the genetic mechanisms involved in pasmo
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resistance and its interactions with environmental factors,
ultimately leading to the development of more resilient and better
adapted flax varieties. Our study has important implications for the
sustainable production of flax and provides valuable information
for developing improved flax varieties with enhanced pasmo
resistance, which is critical for ensuring the long-term viability of
this important oil and fiber crop. The large-effect QTNs and
candidate genes identified in this study can be used as molecular
markers for marker-assisted selection in future studies to accelerate
the breeding process for pasmo-resistant flax varieties.
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Introduction: Ordinal traits are important complex traits in crops, while
genome-wide association study (GWAS) is a widely-used method in their gene
mining. Presently, GWAS of continuous quantitative traits (C-GWAS) and single-
locus association analysis method of ordinal traits are the main methods used for
ordinal traits. However, the detection power of these two methods is low.

Methods: To address this issue, we proposed a new method, named MTOTC, in
which hierarchical data of ordinal traits are transformed into continuous
phenotypic data (CPData).

Results: Then, FASTmrMLM, one C-GWAS method, was used to conduct GWAS
for CPData. The results from the simulation studies showed that, MTOTC
+FASTmrMLM for ordinal traits was better than the classical methods when
there were four and fewer hierarchical levels. In addition, when MTOTC was
combined with FASTmMrEMMA, mrMLM, ISIS EM-BLASSO, pLARmEB, and
pKWmMEB, relatively high power and low false positive rate in QTN detection
were observed as well. Subsequently, MTOTC was applied to analyze the
hierarchical data of soybean salt-alkali tolerance. It was revealed that more
significant QTNs were detected when MTOTC was combined with any of the
above six C-GWAs.

Discussion: Accordingly, the new method increases the choices of the GWAS
methods for ordinal traits and helps to mine the genes for ordinal traits in
resource populations.

KEYWORDS

ordinal trait, genome-wide association study, salt-alkali tolerance, soybean,
hierarchical data
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1 Introduction

The hierarchical data (HData), phenotypic data for ordinal
traits, is commonly used to describe many important traits in
crop germplasm resources. This includes count data for
quantitative traits and hierarchical data for resistance traits, such
as the number of main stem nodes (Chang et al., 2018), the number
of branches (Shim et al., 2019), and disease resistance (Megerssa
et al, 2020). Ordinal traits are important in crop breeding and have
a considerable impact on crop yield and quality. Genome-wide
association studies (GWAS) for ordinal traits can further promote
the mining of relevant excellent genes, which plays a key role in
molecular design breeding and gene cloning. Cuevas et al. (2018)
divided the degree of infection of anthracnose-inoculated sorghum
leaves into five levels and identified three loci for anthracnose
resistance in chromosome 5 using the GWAS methods. Chang
et al. (2018) detected three loci significantly associated with “the
number of nodes on the main stem” in 368 soybean cultivars with
62,423 SNPs. Meanwhile, Shim et al. (2019) identified five
quantitative trait nucleotides (QTNs) for soybean branch number
via GWAS and linkage analysis and mined a candidate
gene Glyma.06¢210600.

Ordinal traits are discrete traits that are controlled by multiple
genes. However, their phenotypic data is hierarchical and non-
continuous and contains relatively limited information;
accordingly, GWAS for ordinal traits is more complex than that
for continuous quantitative traits. The threshold model represents a
reasonable method for the genetic analysis of ordinal traits, and
most association mapping methods are developed under this
framework (Xu et al., 2005; Osval et al., 2015). Generalized linear
model is based on the threshold model and link phenotypic data
with latent variables through a link function. They are widely used
for genetic analysis of ordinal traits and can deal with non-normal
data (Feng et al., 2013; Song et al., 2016; Wang et al., 2018). The
logistic regression model is another classical way for dealing with
association studies of ordinal traits (Tan et al., 2007; Hoggart et al.,
2008; Wu et al, 2009; Jiang et al, 2021). When sample size is
limited, the application of a set-valued (SV) system model can
improve the statistical power and the accuracy of parameter
estimation (Bi et al., 2015). Bayesian and maximum likelihood
methods are both widely used for parameter estimation in GWAS
(Xu et al., 2005; Hoggart et al., 2008; Wang et al., 2018), while
several studies have also employed non-parametric methods for
association analysis of ordinal traits (Sun et al., 2016; Wang et al.,
2017; He and Kulminski, 2020). However, most of them were either
single-locus or were only suitable for the analysis of binary traits,
and they had very few applications in crop. GWAS for continuous
quantitative traits and single-locus methods are currently the main
methods used for association analysis of ordinal traits; however,
both have low power in QTN detection.

Accordingly, in this study, we proposed a method for
transforming ordinal phenotypes into continuous phenotypes
(MTOTC). First, the hierarchical phenotypic data for ordinal
traits (HData) was transformed into continuous phenotypic data
(CPData). Subsequently, FASTmrMLM (Tamba and Zhang, 2018),
one GWAS method suitable for continuous quantitative traits, was
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used to perform GWAS for CPData. In Monte Carlo simulation
studies, we validated the feasibility of the new method through the
statistical power, false-positive rate in QTN detection and the
accuracies for the estimates of QTN effects and positions, and
obtained the number of hierarchical levels suitable for MTOTC
+FASTmrMLM. The new method was validated by re-analyzing the
salt-alkali resistance traits in soybean germplasm resource
population of Zhang et al. (2014) and Zhou et al. (2015). This
study provides more choices for association analysis of ordinal traits
and helps to identify excellent genes for important complex traits
in crops.

2 Theory and methods

Here we proposed a method, named MTOTC, to transform the
discrete hierarchical data (HData) of ordinal traits into continuous
phenotypic data. Then, GWAS for continuous quantitative traits
(C-GWAS) are used to analyze the transformed continuous
phenotypic data. The new method was described as below.

2.1 Genetic mapping population

In Monte Carlo simulation studies, 199 Arabidopsis thaliana
lines harboring 10,000 SNPs with a minimum allele frequency >0.1
(Atwell et al, 2010) were selected as the genetic mapping
population. For real data analysis, the population was comprised
of 286 soybean cultivars assessed for salt-alkali tolerance, the
phenotypic data consisted of the main root length index in 2009
and 2010 (Zhang et al,, 2014), and the marker data were 54,296
high-quality SNP markers present in Zhou et al. (2015).

2.2 Method for transforming ordinal
phenotypes into continuous phenotypes

To transform ordinal phenotypes into continuous phenotypes,
we proposed the MTOTC method. In detail, the Chi-square test and
logistic regression were used to initially select the SNPs that were
significantly related to the trait. Subsequently, these significant
SNPs and ordinal phenotypes were used to construct a multi-
locus model, Bayesian method was used to estimate the SNP
effects, and the effect estimates were used to predict the
continuous phenotypic data (CPData). This is MTOTC. Then, the

MTOTC

Hierarchical data Chi-square st
(HData)

Logistic regression ] ; —
linear mixed model

Multi-locus

Continuous phenotypic data
CPData

FIGURE 1
Technology framework of the MTOTC method in this study.
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predicted CPData is analyzed by C-GWAS methods, such as
FASTmrMLM (Figure 1).

2.2.1 The Chi-square test and logistic regression

The Chi-square test in R 4.0.5 (function “chisq.test”) was used
to scan the SNPs in the whole genome using a single marker method
(P-value <0.05). To further improve the quality of the significant
correlated SNPs in the initial screening for reducing interference
and improving detection accuracy, logistic regression was used as a
secondary SNP screening method. Logistic regression was
performed using function “glm” (2 hierarchical levels) and “polr”
(the number of hierarchical levels greater than 2) with a P-value
<0.05. The aim of this step was to further eliminate SNPs that were
not associated with the traits for simplifying the iterations in the
following multi-locus genetic model.

2.2.2 Multi-locus genetic model

Based on the potentially associated markers identified in the
above-described initial screening, a multi-locus model was
established to transform ordinal phenotypes into continuous
phenotypes. The linear model is expressed as:

y=Wao+>L XB+e (1)

where y represents n x 1 ordinal phenotype vector, with n
representing sample size; W = (wy, w,, ..., w.) represents n x c
matrix of covariates (fixed effects), including a column vector of 1
and population structure, and represents ¢ x lvector of fixed effects,
including intercept; X;and represent respectively n x lgenotype
vector and effect of the i-th potential associated SNP; g represents
the number of SNPs selected in the initial screening step; ¢~ MVN,,
(0, 671,) represents n X lerror vector.

The population structure Q matrix used in the linear model was
calculated using Structure software (Pritchard et al., 2000). Based on
the Q matrix, the population is divided into corresponding
subgroups, and the optimal subgroup number K value is
determined according to the corresponding standard, yielding the
final Q matrix. The optimal value of the Arabidopsis population
structure was calculated as K=2, and the optimal value of the salt-
alkali tolerant soybean population structure in the actual study
was K=3.

2.2.3 Parameter estimation

In the second step of the novel method, a multi-locus linear
mixed model for transforming ordinal phenotypes into continuous
phenotypes was established, based on the empirical Bayesian
algorithm (Xu, 2010). And significant loci were screened in
threshold value LOD=3.0.

In model (1), set f; to obey the following prior normal
distribution:

P(B|o?) = N(0|o?)

(O]
Pols, @) o= (@) xexp (-2
i
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The parameters were estimated using empirical Bayes, as
follows, and the Newton-Raphson method.

o = E(ﬁiTﬁi) + 0

i T+3

a=WvIw)ywivly
1
ol = ;(y -wa)'(y-Wa -3 XEB))

EB) =X/ V'(y-Wa)

Among them,

E(B'B) = E(BDE(B) + tr[Var(B,)]
Var(B,) = 167 - X! V' X;07
(tr, w)=(0, 0)

V=31 XX/ o +1o;

Then, the empirical Bayesian estimates of these SNPs effects
were obtained in the multi-locus model (1) based on the selected
significant SNP markers and ordinal phenotype, and estimates of
these effect were used to predict the phenotype, obtaining the
continuous phenotypic data (CPData) of ordinal trait.

2.3 GWAS with MTOTC method for ordinal
trait

When continuous phenotypic data was obtained by the above
MTOTC method, a C-GWAS method could be used to detect
significant loci. In this work, FASTmrMLM, one C-GWAS method,
was used. So loci significantly associated with ordinal traits were
detected by FASTmrMLM using the obtained continuous
phenotypic data and the potential associated markers identified in
the above-described initial screening. The GWAS method is
henceforth referred to as MTOTC+FASTmrMLM. Moreover, the
effects of five other C-GWAS (FASTmrEMMA, mrMLM, ISIS EM-
BLASSO, pLARmEB, and pKWmEB) methods are also discussed
based on the MTOTC method for ordinal trait, in order to verify the
feasibility of MTOTC.

2.4 Monte Carlo simulation datasets for
ordinal trait

We conducted six simulation studies to evaluate the feasibility
of the new method. For each study, the loci 278, 2143, 2054, 3698,
1716, 6178, and 8501, located on chromosomes 1, 2, 2,2, 1, 4, and 5,
respectively, were selected as the causal loci related to the simulated
trait. There were three types of phenotypic data in the simulation
experiment—original data (OData), which were continuous and

frontiersin.org


https://doi.org/10.3389/fpls.2023.1247181
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yang et al.

generated by Monte Carlo simulation; HData, which were
generated from the above OData according to specific
distribution proportions (i.e., classification proportion of
phenotype distribution); and CPData, which were generated from
the above HData by MTOTC. Then, FASTmrMLM, one multi-
locus C-GWAS algorithm, was used to conduct GWAS for CPData.

3 Results
3.1 Monte Carlo simulation studies

3.1.1 Threshold value in the initial screening

To determine the most suitable threshold value for the Chi-
square test and logistic regression in the initial screening, four
probability thresholds (0.0001 [i.e., 1/SNP number], 0.01, 0.05, and
0.10) were set for the Chi-square test in the first simulation study,
while three probability thresholds (0.0001 [i.e., 1/SNP number], 0.01,
and 0.05) were set for logistic regression. The Chi-square test can
eliminate a large number of SNPs that are not significantly related to
a given phenotype. However, the simulation study showed that some
SNPs screened in the above Chi-square test (those with a P-value
>0.98 and an unusually large absolute value of effect estimate in
logistic regression) were not truly related to the phenotype and
interfered greatly with subsequent association analysis. Therefore,
to further improve the quality of the screened significantly related
SNPs and detection accuracy, logistic regression was used as a
secondary screening method for SNPs in MTOTC.

In the Chi-square test, the single-locus retention rate decreased
with decreasing P-values (i.e., threshold values) (Figure 2A). For
instance, the single-locus retention rate at loci 278 and 2143 with P-
values of 0.05 and 0.10 was as high as 96.62%~99.68%, which are
very close. When the P-value was 0.01, the single-locus retention
rate began to decrease, and when the P-value was 0.0001, the
retention rate dropped to between 59.06% and 68.45%. Moreover,
the total retention rate (i.e., the proportion of retained loci among
the total loci after chi-square test screening) was the lowest when
the P-value was 0.0001, followed by 0.01, 0.05, and 0.10 (Figure 3A).

In logistic regression after the Chi-square test, the single-locus
retention rate was the highest when the P-value was 0.05
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(Figure 2B). For instance, the retention rates of loci 278 and 2143
were as high as 97.56%~99.68% when the P-value was 0.01 or 0.05;
when the P-value was 0.0001, the retention rate dropped to between
60.51% and 69.88%. Additionally, the total retention rate was the
lowest (only 0.22%) when the P-value was 0.0001, followed by 0.01
and 0.05 (Figure 3B).

Owing to too low single-locus retention rate at the P-values of
0.01 and 0.0001, the two P-values were unsuitable as a threshold for
initial screening. Although the total retention rate was high when
the P-value was 0.10, this P-value retains more loci that are not
associated with the trait, in which it did not contribute to
simplifying the model. Therefore, the probability threshold
P=0.05, which is commonly used in statistics, was selected as the
probability threshold for the Chi-square test and logistic regression
of the initial screening in this study. In addition, we also
investigated the effect of threshold value on the single-locus
retention rate and the total retention rate under different
proportions distribution in binary data and the similar results
were observed.

3.1.2 MTOTC+FASTmrMLM displayed greater
power than other classical mapping methods

In Monte Carlo simulation studies, the GWAS results of
hierarchical data using MTOTC+ FASTmrMLM were compared
with those using two classical mapping methods (Chi-square test
and logistics regression) (Table 1). The results showed that these
methods had greater power at the three loci 278, 2143, and 3698, but
had less power (<10%) at the other four loci. Compared with the
two classical mapping methods, MTOTC+FASTmrMLM had
higher power at the three loci 278, 2143, and 3698, and lower
false-positive rate, when the number of hierarchical levels of HData
was <4. The power of the classical methods was higher in a few
instances, it was less than 1.5-fold that of MTOTC+FASTmrMLM,
but their false-positive rates were 6.8-9.5-fold higher than that of
MTOTC+FASTmrMLM. In addition, the results showed that when
the number of hierarchical levels was<5, MTOTC+FASTmrMLM
was more suitable for HData analysis as compared with
FASTmrMLM alone. Moreover, in Table 1, MTOTC
+FASTmrMLM had a relatively higher F1 score, especially for
binary data (HData with two hierarchical levels). Here the F1

[10.0001 [70.01 WO0.05 WO.1

278 2143 2054 1716 3698 6178

The effect of threshold value on the single-locus retention rate after the initial screening. (A) is the single-locus retention rate after chi-square test
screening; (B) is the single-locus retention rate after logistic regression screening.
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The effect of threshold value on the total retention rate after the initial screening. (A) is the total retention rate in chi-square test; (B) is the total

retention rate in logistic regression.

score combines the precision and recall, it is used to effectively
measure the accuracy of the statistical methods and balance power
and FPR. Therefore, MTOTC is recommended for the analysis of
HData under four or fewer hierarchical levels.

3.1.3 The effect of the number of hierarchical
levels on the new method

The third simulation study investigated the effect of the number
of hierarchical levels on MTOTC. Based on symmetrical
distribution, the number of hierarchical levels was set to 2, 3, 4,
and 5, respectively, and the number of replicates was 10,000.

TABLE 1 Comparison of different genome-wide association study methods.

1
15 10
12 1 8 -
9- 6_
6 4
3- I 2_
0 — 0
0.05 0.1

10.3389/fpls.2023.1247181

B
2 -

0.0001 0.01 0.05

Meanwhile, we compared the results of OData, HData and
CPData using FASTmrMLM.

Compared with CPData from the other hierarchical levels, the
distribution of CPData2 (i.e., the CPData converted from the HData
of 2 hierarchical levels by MTOTC) was closer to the original data
(OData). First, the frequency distribution of the CPData was closer
to that of the OData when the hierarchical level was low, especially
when it was equal to 2 (Figure 4). As the number of hierarchical
levels increased, the peak of CPData began to shift to the right and
was far from the peak of the OData, which was expected to affect the
GWAS results. The frequency distribution of the OData and the

. . . o . MTOTC+
Hierarchical number Chi-square test logistic regression FASTmrMLM FASTmrMLM

2 278 66.20 22.50 41.85 57.38

Power(%) 2143 57.70 19.40 28.62 55,98

3698 18.40 10.10 9.89 2276
Mean of Power (%) 20.87 7.60 13.84 19.54

FPR (%o) 7.27 0.07 0.44 0.77

FI1 score 0.04 0.13 0.16 0.17

3 278 62.00 71.30 53.41 70.87

Power(%) 2143 56.40 57.20 45.76 66.64

3698 20.00 26.90 19.66 36.82

Mean of Power (%) 20.47 23.30 22.06 26.53

FPR (%o) 6.15 4.77 0.45 0.70

F1 score 0.04 0.06 0.24 0.24

4 278 68.40 80.30 65.70 75.98

Power(%) 2143 58.50 65.40 58.71 71.83

3698 20.80 37.30 27.76 45.69

Mean of Power (%) 21.77 27.37 28.29 28.53

FPR (%o) 8.11 5.90 0.45 0.63

F1 score 0.03 0.06 0.29 0.26
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FIGURE 4

The frequency distribution of the OData and the corresponding CPData for different hierarchical levels in the 10th and 613th repetition. (A-D) is the
10th repetition, (E-H) is the 613th repetition. CPData2 transformed from HData of two hierarchical levels by MTOTC; CPData3 transformed from
HData of three hierarchical levels by MTOTC; CPData5 transformed from HData of five hierarchical levels by MTOTC.

corresponding CPData with different hierarchical levels in the 10th
and 613th replicates, randomly selected out of the 10,000 replicates
using the uniformly distributed random number generator in R, is
shown in Figure 4. Second, the range of the coefficient of variation
(CV) of the OData was between 29.5% and 55.5%. Among the
10,000 replicates, the number of replicates beyond the CV range of
the OData (4.09%, 18.94%, 21.47%, and 25.37% of CPData2,
CPData3, CPData4, and CPData5, respectively) also increased
with increasing hierarchical level. Thus, the CV range of CPData2
was the closest to that of the OData. Third, among the 10,000
replicates, the skewness range between the CPData and the OData
was the closest at 2 hierarchical levels. Among them, the skewness
range of the OData was between —1.00 and 0.46 and the range of
CPData2 was between —1.28 and 0.35. As the number of
hierarchical levels increased, the skewness of the CPData
gradually deviated from that of the OData; the kurtosis showed
the same tendency as the skewness.

MTOTC performed well for the estimates of QTN position
under different numbers of hierarchical levels. The position
estimates via MTOTC+FASTmrMLM (i.e., the position estimates
of the CPData via FASTmrMLM) were unbiased at loci 278, 2143,
and 3698 (Supplementary Table 1). Although the position estimates
at loci 2054 and 8501 in CPData2, and at loci 1716 and 6178 in all
the CPData were biased, the relative mean absolute deviations of
their position estimates were all less than 8.96E-05. The accuracy of
the estimates of QTN positions for ordinal traits was significantly
improved by MTOTC when the number of hierarchical levels was
less than 5, i.e., the estimates of QTN positions for the CPData were
better than those for the HData when FASTmrMLM was used
(Supplementary Table 1).

The effect of MTOTC on the relative power at loci 278, 2143,
and 3698 was the greatest when the number of hierarchical levels is
equal to 2 (Supplementary Figure 1). Here, “the effect of MTOTC
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on the relative power” refers to the increment of the relative power
of CPData compared to the relative power of HData. The relative
power of the CPData (50%~100%) was significantly higher than
that of the HData (22%~88%) and was relatively closer to the power
of the OData. When the number of the hierarchical levels of the
CPData was less than or equal to 5, the relative power exhibited an
increasing trend with increasing the number of hierarchical levels
and was significantly superior to that of the HData.

The false-positive rates of CPData2, CPData3, CPData4, and
CPData5 via MTOTC+FASTmrMLM were 0.77%o, 0.70%o, 0.63 %o,
and 0.55%o, respectively.

3.1.4 The effect of the number of replicates on
the new method

The fourth simulation study assessed the impact of the number
of replicates on the estimates of QTN effects and positions, relative
power, and false-positive rate using MTOTC+FASTmrMLM. Based
on the results of CPData2 (1:1), CPData3 (1:3:1), and CPData5
(1:2:4:2:1), 10 replicates were set at equal intervals from 1,000 to
10,000. As a result, the results across various numbers of replicates
at each locus and for each hierarchical levels (CPData2, CPData3,
and CPData5) were insignificant (Figure 5). This indicated that the
number of replicates did not affect the power, false-positive rate,
and the estimates of QTN effects and positions. Therefore, 1,000
replicates were used in subsequent simulation studies.

3.1.5 The effect of distribution proportion
skewness on the new method

In the fifth simulation study, we investigated the effect of
distribution proportion skewness on the new method under three
hierarchical levels. Here the distribution proportion skewness were
set as symmetrical distribution (distribution proportion, 1:2:1),
uniform distribution (1:1:1), and skewed distribution (4:2:1). The

frontiersin.org


https://doi.org/10.3389/fpls.2023.1247181
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yang et al.

7 1:2:1

N
o

S
S

@

,V.,
Sl
tetetytel
Sate%s|
92!

3
o9
%
55
X5

.,.
oo

505
2%

=)

5
05

<
5
ha%

SeTeSoTes
s
3
Sa¥at

2

%
oS

%%

o

MSE of QTN effect

2
oo
%
o%es
(o5

%
%S

258
Yotateta®

o0

%
'ﬁg
Yo%

2
<

"%
RS
e

o
—
i

(9]

0.8 4

1:4:1
N I
0

1:4:1

x:

%)
X
%!
3
ot

.
5
&

3z
::'go
S

%

S
oot
%%
SRR

o
2N

TRRETETE

X
5
o2els

X
&
5
355
9280,

%%
X5

=
PSS

FPR(%o)
RN

%
5%
0SS
29563
XX

v,‘v.v
25
o5
3%
QX

R AR
R
oS
oSreesies
9,099

o

ZZXT

35
ole

25
o33
4598

eteses

I

FIGURE 5

10.3389/fpls.2023.1247181

E 141

B
54

@ 1:5:1

ES

o

X
o5
%S

34

09

7
22

3%%
2

w
I
X%

toteteetetets

35
2t

o

oo
0:5
%
o5
2

%
=
tolels

N
X
%

%

ol¢

5
5%
?’
1%

MAD of QTN effect
XL

e

SRR

%
5

%

%
o*0% %
B

1:5:1

S
%
et

0.8 4

BRZRZ

e
%
258

%

s
%%
$%6%8

odsle

%5
5

7
=
25K

0.6 4

,
<
22

%
5
%
%

e
o208

oo
5
o3l

o
!

R0
0005
oo

2

0.4 4

Relative Power
: KRS
Jodsae:

R RRRRR

355
osededs

02 A

%%
oSeteteds
o{o‘:’.:
205o70%8S
20K

X

25

o
o
2

XX XX
o
poriedolels

250

35
%%
35

ok

1:2:1

Iy

The impact of repetition number of simulation experiment on the association analysis results of CPData (2143 Locus). (A, B) MSE and MAD of QTN

effect at 2143, respectively; (C) false-positive rates; (D) relative power.

indicators were the relative power, false-positive rate, the estimates
of QTN effects and positions. The skewed distribution had the
lowest relative power at loci 278, 2143, and 3698, followed by the
uniform distribution, and the symmetrical distribution
(Supplementary Figure 2). The MAD and mean squared error
(MSE) of QTN position estimates showed unbiasedness under the
three distribution proportion skewness. The skewed distribution
(7.09%0) was slightly higher false-positive rate than symmetrical
distribution (6.71%o) and uniform distribution (6.82%o). When the
kurtosis values of the three distributions for the CPData and the
OData were compared, it was found that the steepness of the
CPData under 1:2:1 was closer to that of the OData (the kurtosis
values for the OData, 1:2:1 CPData, 1:1:1 CPData, and 4:2:1 CPData
ranged from 2.163-5.415, 1.963-5.412, 1.958-5.196, and 1.980-
3.830, respectively). The CPData under 1:2:1 and 1:1:1 and the
OData were relatively close in terms of skewness (the skewness of
OData, 1:2:1 CPData, 1:1:1 CPData, and 4:2:1 CPData were in the
range of —1.001~0.462, -1.466~0.319, —1.256~0.282, and
-0.812~0.777, respectively). The skewness of the CPData under
4:2:1 and the OData differed markedly. Therefore, the accuracy of
symmetric distribution via MTOTC+FASTmrMLM was higher
than that of uniform distribution and skewed distribution.

3.1.6 The effect of distribution proportion
kurtosis on the new method

Here we studied the effect of distribution proportion kurtosis on
the new method. The proportions were set as 1:2:1, 1:4:1, and 1:5:1.
The association detection results of the 1:2:1 proportion had the
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best, e.g., the relative powers of the 1:2:1 proportion at loci 2143,
278, 3698, and 1716 via MTOTC+FASTmrMLM was better than
those under others distribution proportion (Figure 6A). The MSE
and MAD of effect estimates at locus 278, 2143, and 3698 were
lower at 1:2:1 than at 1:4:1 and 1:5:1; however, the differences were
insignificant (Figures 6B, C), while the trends at the other loci were
unclear. Under the three distribution proportions, the MSE and
MAD of QTN position estimates were all unbiased at loci 278, 2143,
2054, and 3698. However, a lower false-positive rate was observed
with the 1:2:1 distribution proportion (Figure 6D). Moreover, the
steepness of the CPData under distribution proportion 1:2:1 was
closer to that of the OData (the kurtosis values of the OData, 1:2:1
CPData, 1:4:1 CPData, and 1:5:1 CPData were 2.163~5.415,
1.963~5.412, 1.967~7.343, and 1.974~7.920, respectively). The
skewness showed the same tendency as the kurtosis (the skewness
ranges of the OData, 1:2:1 CPData, 1:4:1 CPData, and 1:5:1 CPData
were —1.001~0.462, —1.466~0.319, —1.788~0.142, and
-1.796~0.150, respectively). In summary, the distribution of the
CPData at the 1:2:1 proportion was closer to that of the OData, and
MTOTC worked better, compared with the other
distribution proportions.

3.1.7 The performance of MTOTC with different
GWAS methods

The HData of ordinal trait were transformed by MTOTC, and
the obtained CPData were found to be suitable for association
analysis via FASTmrMLM when there were five or fewer
hierarchical levels, owing to high power. Meanwhile, similar
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The effect of phenotype distribution kurtosis on the association detection results of MTOTC+FASTmrMLM. (A, B) MSE and MAD of QTN effect at

2143, respectively; (C) false-positive rates; (D) relative power.

results were obtained when MTOTC was combined with others
methods in the mrMLM software (Zhang et al., 2020)
(Supplementary Figure 1; Supplementary Table 1). They were also
suitable for GWAS for the CPData of ordinal traits, having the
characteristics of high relative power, low false-positive rates, and
high accuracy of position and effect estimates. Moreover, similar
trends from FASTmrMLM in the simulation experiments with the
number of the hierarchical levels and their distribution proportions
were observed as well (Supplementary Figure 2). MTOTC +
FASTmrMLM had the best performance, followed by mrMLM
(Wang et al,, 2016), ISIS EM-BLASSO (Tamba et al., 2017), and
FASTmrEMMA (Wen et al, 2018); and finally by pLARmEB
(Zhang et al., 2017) and pKWmEB (Ren et al., 2018). Therefore,
MTOTC can be integrated with different methods to conduct
GWAS for ordinal traits. Considering the diversity and
complexity of phenotypic data in ordinal traits in practice,
multiple methods might be simultaneously used in a
complementary manner. Accordingly, MTOTC improves the
performance in identifying significant loci for ordinal traits.

3.2 Real data analysis

To validate the new method, the salt-alkali tolerant data in 286
soybean accessions obtained in 2009 and 2010 from Zhang et al. (2014)
was re-analyzed in this study. The experiments were conducted in a
completely randomized Design, and the number of high-quality SNP
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markers in this population was 54,296 (Zhou et al., 2015). First,
MTOTC was applied to obtain the CPData. Then, the index data,
HData5 [hierarchical data generated from the index data by 1:1:1:1:1
(Shao, 1986)], CPData2 (continuous phenotypic data generated from
HData2 by MTOTC), and CPData5 (continuous phenotypic data
generated from HData5 by MTOTC) for salt-alkali tolerance in
soybean were analyzed using the mrMLM, ISIS EM-BLASSO,
pLARmMEB, FASTmrEMMA, pKWmEB, and FASTmrMLM methods.

3.2.1 QTNs significantly associated with soybean
salt-alkali tolerance

For the four types of phenotypic data of salt-alkali tolerance, a
greater number of significant QTNs were detected in CPData than
in the index data or HData. Six GWAS methods mapped 65 and 99
QTNs in CPData2 and CPData5 of salt tolerance traits, respectively,
and 134 and 60 QTNs in CPData2 and CPData5 of alkali tolerance
traits, respectively. pPLARmEB detected a greater number of QTNs
in CPData (116 for salt tolerance traits and 166 for alkali tolerance
traits) compared with the other five GWAS methods, which may be
related to its relatively higher false-positive rate. Additionally, the
numbers of significant QTNs detected by pKWmEB, mrMLM, and
FASTmrMLM in CPData (44, 25, and 14 for the salt tolerance trait
and 25, 21, and 19 for the alkali-tolerance trait, respectively) were
second only to the number of QTNs detected with pLARmMEB.

Four QTNs (locus 9682 on chromosome 2 [Chr2-9682], Chrll-
54042, Chr13-64738, and Chr13-65248) for salt tolerance were
simultaneously detected in the index data and at least one CPData;
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however, none of them was detected in HData5. For instance, Chr13-
64738 was simultaneously detected in CPData2 by five methods and
in the salt tolerance index data by two methods. Chr13-65248 was
detected in CPData5 by four methods and in both CPData5 and the
index data by FASTmrMLM. Three QTNs (Chr7-34669, Chrl3-
67342, and Chr20-105040) for alkali tolerance were simultaneously
detected in the index data and in at least one CPData, two of them
were also detected in HData5.

The results of six GWAS methods for the CPData of salt-alkali
tolerance showed that only a few significant QTNs were coincident
between 2009 and 2010, which can be explained by the differences
in environmental influences between the two years. For salt

10.3389/fpls.2023.1247181

tolerance, no QTNs were found to overlap between 2009 and
2010 in the six methods. For alkali tolerance, only Chr1-5051 and
Chr16-82333 were detected in both years. There was indeed an
environmental (year) effect according to variance analysis of the
phenotypic results for the two years (Zhang et al., 2014).

3.2.2 Candidate genes for salt-alkali tolerance
Potential candidate genes were mined from 100 kb upstream to
100 kb downstream (Liu et al., 2020) of significant QTNs that were
detected in at least two types of data or by two methods (Tables 2
and 3). Functional annotation information in the SoyBase database
(Error! Hyperlink reference not valid. http://www.Soybase.org/)

TABLE 2 Salt stress-related candidate genes from six genome-wide association study methods.

Candidate QTN . . Arabidopsis
o Methods Functional annotation P
genes positions homologous
Glyma02¢38320 43804331 mrMLM"**, pLARmEB*** transmembrane transport AT5G22900
Glyma02g38350 43804331 mrMLM"**, pLARmEB*** Pentatricopeptide repeat (PPR AT5G37570
-like) superfamily protein
Glyma02¢38370 43804331 mrMLM"**, pLARmEB*** zinc ion binding AT2G40770
Glyma02g38380 43804331 mrMLM"**, pLARmEB*** catalytic activity AT5G05200
Glyma02¢38395 43804331 mrMLM"**, pLARmEB*** respiratory burst involved in AT5G05190
defense response
Glyma04g13670 13441084 FASTmrEMMA**, mrMLM>**, pLARmEB>** oxidoreductase activity AT4G25240
Glyma05¢25331 7 | 31519270 FASTmrEMMA?®*, ISIS EM-BLASSO®*, mrMLM™*, pKWmEB™, WRKY DNA-binding domain AT2G34830
pLARmEB**
Glyma05¢25420 * 31519270 FASTmrEMMA™, ISIS EM-BLASSO™, mrMLM™, pKWmEB**, zinc ion binding AT5G37930
pLARmEB™
Glyma05¢25450 © 31519270 FASTmrEMMA®*, ISIS EM-BLASSO*, mrMLM™, pKWmEB™*, catalytic activity AT5G44440
pLARmEB**
Glyma05¢25460 © | 31519270 FASTmrEMMA?®*, ISIS EM-BLASSO®*, mrMLM™, pKWmEB™*, catalytic activity AT2G34790
pLARmEB**
Glyma08g13260 9687628 FASTmrEMMA®*, FASTmrMLM™>*, ISIS EM-BLASSO***, Serine/threonine protein kinase AT3G16030
mrMLM***, pPKWmEB>**, pLARmEB>**
Glymal0g40400 * | 47864560 FASTmrMLM?™, ISIS EM-BLASSO®*, mrMLM?*, pKWmEB™*, zinc ion binding AT5G67450
pLARmEB**
Glymal0g40510 " 47864560 FASTmrMLM™, ISIS EM-BLASSO™, mrMLM?>, pKWmEB™, zinc ion binding AT4G15090
pLARmEB**
Glymal0g40520© | 47864560 FASTmrMLM?*, ISIS EM-BLASSO™, mrMLM?*, pKWmEB?*, oxidoreductase activity AT4G33910
pLARmEB™*
Glymallgl4030 * 10094063 mrMLM"**, pKWmEB"**, pLARmEB*** protein serine/threonine kinase AT3G20830
activity
Glymallg14040 * 10094063 mrMLM"**, pPKWmEB'**, pLARmEB>** sequence-specific DNA binding AT1G51190
transcription factor activity
Glymallgl14050 * 10094063 mrMLM"™*, pPKWmEB'**, pLARmEB3** zinc ion binding AT1G51200
Glymallgl4081 " | 10094063 mrMLM"**, pPKWmEB'**, pLARmEB*** catalytic activity AT3G18080
Glymallg14090 * 10094063 mrMLM"**, pPKWmEB'**, pLARmEB>** transmembrane transport AT3G20870
Glymallgl4100 " | 10094063 mrMLM"**, pPKWmEB'**, pLARmEB*** zinc ion binding AT1G51220
Glymallgl4110* | 10094063 mrMLM"**, pKWmEB'**, pLARmEB*** Zinc finger, C3HC4 type (RING AT3G63530
finger)
(Continued)
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TABLE 2 Continued

10.3389/fpls.2023.1247181

Candidate QTN . . Arabidopsis
o Methods Functional annotation P
genes positions homologous

Glyma12g03490 2356018 FASTmrEMMA™, FASTmrMLM?, ISIS EM-BLASSO™, transmembrane transporter AT2G21050
mrMLM?*, pKWmEB®*, pLARmEB*

Glymal2403570 2356018 FASTmrEMMA™, FASTmrMLM?*, ISIS EM-BLASSO™, catalytic activity AT4G34980
mrMLM?**, pKWmEB**, pLARmEB*

Glyma12g03580 2356018 FASTmrEMMA™, FASTmrMLM™, ISIS EM-BLASSO?*, transmembrane transporter AT5G09220
mrMLM?**, pKWmEB**, pLARmEB*

Glymal3g25266 © | 28469311 FASTmrEMMA®**, FASTmrMLM"***, ISIS EM-BLASSO***, hyperosmotic salinity response AT1G61120
pKWmEB**, pLARmEB"***

Glymal3g27630 * 30845044 FASTmrEMMA™*, FASTmrMLM"***, mrMLM>**, pPKWmEB>*  protein serine/threonine kinase AT3G20530

activity

Glymal13g27680 7 | 30845044 FASTmrEMMA®*, FASTmrMLM"***, mrMLM**, pKWmEB>*  transmembrane transport AT1G61800

Glymal3g27691 * 30845044 FASTmrEMMA™*, FASTmrMLM"***, mrMLM?**, pPKWmEB™* | zinc ion binding AT4G14220

Glymal3g27701 7 | 30845044 FASTmrEMMA™*, FASTmrMLM "%, mrMLM>*, pKWmEB>* | response to oxidative stress AT3G06050

Glymal3g27710 * 30845044 FASTmrEMMA>*, FASTmrMLM"***, mrMLM***, pKWmEB>** response to oxidative stress AT3G06050

Glymal3g27740 7 | 30845044 FASTmrEMMA**, FASTmrMLM"***, mrMLM>**, pKWmEB*** | oxidoreductase activity AT3G06060

Glymal13g27770 * 30845044 FASTmrEMMA®**, FASTmrMLM"***, mrMLM>**, pKWmEB*** sequence-specific DNA binding AT1G54830

transcription factor activity

Glyma15¢42440 49869431 FASTmrEMMA®, mrMLM?>, ISIS EM-BLASSO™, pKWmEB**, Myb-like DNA-binding domain AT2G44430
pLARmEB**

Glymal5g42460 49869431 FASTmrEMMA?*, mrMLM?*, ISIS EM-BLASSO**, pKWmEB>*, Serine/threonine protein kinase AT2G32850
pLARmEB**

1: index data; 2: continuous phenotypic data (CPData2) generated from HData2 by MTOTC; 3: continuous phenotypic data (CPData5) generated from HData5 by MTOTG; *: 2009; **: 2010, *:

candidate genes were further screened by haplotype block analysis.

was also used to screen candidate genes. A total of 34 potentially
candidate genes for salt tolerance and 25 potentially candidate genes
for alkali tolerance were mined.

For salt tolerance, 19 candidate genes were detected
simultaneously in the index data and CPData5. Among them,
Glyma05¢25331, Glyma05¢25420, Glyma05¢25450, and
Glyma05¢25460 were all detected by five GWAS methods in
CPData5 in 2009. Only one gene, Glymal3g25266, was detected
in both the index data and CPData2 detected by five GWAS
methods in CPData2 and two methods in the index data in 2010.
In addition, five candidate genes were detected only in CPData2 by
five methods, and nine candidate genes were detected only in
CPData5 by three or more methods. No overlapping genes were
found between HData5 and the index data or the CPData (Table 2).

For alkali tolerance, 7 candidate genes for alkali stress were
concurrently detected in the index data and CPData5. For instance,
Glyma07g20380 was simultaneously detected by 2, 1, and 6 GWAS
methods in the index data, HData5, and CPData5 in 2010,
respectively (Table 3). Two candidate genes were detected in the
index data and CPData2. Ten candidate genes were simultaneously
detected in CPData2 and CPData5. Glymal0g02920 was detected by
one GWAS method in CPData2 and five GWAS methods in
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CPData5 in 2009. Glyma07¢20380 was detected by all six
association analysis methods in CPData5 in 2010.

3.2.3 QTN based haplotype and phenotypic
difference analysis

Based on the above 34 salt stress-related candidate genes and 25
alkali stress-related candidate genes, Haploview software was used
to perform haplotype block analysis. And the phenotypic
differences across haplotypes were examined using the t-test in
SAS9.4. Four stable QTN for salt tolerance and six stable QTNs for
alkali resistance were screened to form haplotype blocks based on
linkage disequilibrium (Supplementary Figures 3 and 4).

In haplotype block with the significant QTNs Chr13-64738 for
salt tolerance, t-test showed significant phenotypic differences
between haplotypes ACAT and AATT (P=0.0341 in 2009 and
P=0.0083 in 2010), between haplotypes TCAT and AATT
(P=0.0091) in 2010, and between haplotypes TCAT and TCTT
(P=0.0471) in 2010. However, for haplotype blocks of other salt
tolerance QTNs, it was showed that the significant phenotypic
differences existed between haplotypes only in a single year, and
the haplotype pairs with significant differences included haplotype
AGTGC and TACCC (P=0.0348), AGTGC and TGTCA (P=0.0345)
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TABLE 3 Alkali stress-related candidate genes from six genome-wide association study methods.

Candidate QTN . . Arabidopsis
genes positions Methods Functional annotation homologpous

Glyma01g41510 * 53035914 pLARmEB>** Protein serine/threonine kinase AT5G60900
activity

Glyma01g41520 * 53035914 pLARmEB>** sequence-specific DNA binding AT4G17500
transcription factor activity

Glyma01g41527 % | 53035914 pLARmEB>** sequence-specific DNA binding AT5G47230
transcription factor activity

Glyma01g41560 © | 53035914 pLARmEB>** zinc ion binding AT5G53110

Glyma01g41581 * 53035914 pLARmEB>** sequence-specific DNA binding AT5G47370
transcription factor activity

Glyma01g41610© | 53035914 pLARmEB>** sequence-specific DNA binding AT3G13540
transcription factor activity

Glyma03g28210 7 | 36121029 FASTmrEMMA®**, pLARmEB>** F-box family protein AT2G32560

Glyma03¢282227 | 36121029 FASTmrEMMA™*, pLARmMEB*** F-box family protein AT2G26850

Glyma03¢28234 7 | 36121029 FASTmrEMMA®*, pLARmMEB>** F-box family protein AT2G32560

Glyma03g28247 * 36121029 FASTmrEMMA?**, pLARmEB*** F-box family protein AT2G26850

Glyma07g20380 % | 20580766 FASTmrEMMA***, FASTmrMLM"***, ISIS EM-BLASSO™**, Pentatricopeptide repeat (PPR) AT3G48810

mrMLM***, pPKWmEB**, pLARmEB"*** superfamily protein

Glymal3g44560 * | 43999096 FASTmrMLM"*, pLARmEB"**, pPKWmEB* transmembrane transport AT3G19640

Glymal13g44570 7 | 43999096 FASTmrMLM"*, pLARMEB"**, pKWmEB** sequence-specific DNA binding AT4G37850
transcription factor activity

Glymal3g44582 * 43999096 FASTmrMLM", pLARmEB"**, pKWmEB>* sequence-specific DNA binding AT2G22760
transcription factor activity

Glymal3g445947 | 43999096 FASTmrMLM'*, pLARmEB"**, pPKWmEB>* sequence-specific DNA binding AT4G37850
transcription factor activity

Glymal3gd4640 " | 43999096 FASTmrMLM'*, pLARmEB"**, pPKWmEB™ Serine/threonine-protein kinase AT1G80640
PBS1

Glymal3g44660 © | 43999096 FASTmrMLM'*, pLARmEB"**, pPKWmEB™ sequence-specific DNA binding AT5G25190
transcription factor activity

Glymal16g25280 * 29252235 pLARmEB>** sequence-specific DNA binding AT2G18350
transcription factor activity

Glymal6g25310 7 | 29252235 pLARmEB>** transmembrane transport AT1G75220

Glymal6g25320 * 29252235 pLARmEB>** transmembrane transport AT1G75220

Glymal19g39270 46014852 FASTmrMLM", pKWmEB"*, pLARmEB"* response to oxidative stress AT4G11290

Glyma19g39320 46014852 FASTmrMLM"*, pPKWmEB'*, pLARmEB"* oxidoreductase activity AT4G03140

Glyma19g39340 46014852 FASTmrMLM'*, pPKWmEB'*, pLARmEB'* Regulation of transcription AT5G62000

Glyma20g31790 © | 40400845 pLARmEB"* zinc ion binding AT3G52300

Glyma20g31800 * | 40400845 pLARmEB"?* transmembrane transport AT2G35800

1: index data; 2: continuous phenotypic data (CPData2) generated from HData2 by MTOTG; 3: continuous phenotypic data (CPData5) generated from HData5 by MTOTC; *: 2009; **: 2010, *:

candidate genes were further screened by haplotype block analysis.

for Chr5-24153; haplotype GCG and ATA (P=0.0408) for Chrl0-
52140; haplotypes GTAGA and GTAGT (P=0.0397), GTAGT and
AAGTT (P=0.0540) for Chr11-54042.

There were two significant QTNs Chr16-82333 and Chr3-14262
for alkali tolerance with significant phenotypic differences across
haplotypes in both years. The Chr16-82333 recorded significant
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differences between haplotypes CTGACG and CCGGAG (P=0.0158
in 2009, P=0.0614 in 2010), between haplotypes CTGACG and
CCGGAG (P=0.0005 in 2009), between haplotypes CTGACG and
CCGAAG (P=0.0231 in 2009), between haplotypes TCGAAG and
CCGAAG (P=0.0619 in 2009, P=0.0261 in 2010), and between
haplotypes CCAAAG and CCGGAG (P=0.0296 in 2010). For Chr3-
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14262, the haplotype pairs with significant differences were detected
as follows: TTT and TCT (P=0.0217 in 2009, P=0.0085 in 2010),
TTT and GCT (P=0.0102 in 2010), GCT and TCT (P=0.0171). The
other haplotype blocks of alkali tolerance showed significant
phenotypic differences between haplotypes only in a single year
and they include: GTGT and TTAT (P<0.0001), TTGT and TTAC
(P=0.0038), TTAT and TAGT (P=0.0132) for Chr13-67342; CAG
and TGT (P=0.0183) for Chr1-5051; ATCG and GATC (P=0.0009)
for Chr7-34669; TAGGCG and AATGCA (P=0.0157), and
TAGGCG and TATGCG (P=0.0128) for Chr20-105040.

Genes with significant phenotypic differences across haplotypes
were considered as the candidate genes (Tables 2 and 3), including
22 salt stress-related candidate genes and 22 alkali stress-related
candidate genes. Among them, six salt stress-related candidate
genes (Glyma05¢g25420, Glymallgl4030, Glymallgl4040,
Glymallgl4050, Glymal3g27691, Glymal3g27701) and six alkali
stress-related candidate genes (Glyma03g28222, Glyma03g28234,
Glyma03g28247, Glymal6g25320, Glyma20g31790,
Glyma20g31800) were found in the haplotype block.

4 Discussion

In this study, we established a method for transforming ordinal
phenotypes into continuous phenotypes (MTOTC) based on
hierarchical data for ordinal trait phenotypes and molecular
marker data in resource populations. Therefore, the process of
association analysis for ordinal traits is as follows: first, MTOTC is
used to transform HData into continuous phenotypic data
(CPData), and then a C-GWAS method (i.e. GWAS method for
continuous quantitative traits) is selected to analyze the CPData to
identify the QTNs that are significantly associated with
ordinal traits.

In this study, simulation experiments and soybean saline-alkali
tolerance analysis indicated that the new method, MTOTC, is
suitable for ordinal traits when they are less than five hierarchical
levels. Moreover, the combination of MTOTC with any one of the
proposed C-GWAs methods exhibited high power, low false-
positive rates, and low bias in estimating the positions and effects
of the QIN. The purpose of MTOTC is to provide a different
approach for undertaking GWAS for ordinal traits. The feasibility
of the MTOTC method was verified in real data analysis of soybean
salt-alkaline tolerance using 286 soybean accessions. Compared
with HData5 (i.e., the data classified as five hierarchical levels), a
greater number of significant QTNs was detected concurrently by at
least two GWAS methods or in two years, and more candidate genes
for salt and alkali stress were screened in the CPData for salt and
alkali tolerance traits. A greater number of QTNs was detected
simultaneously by multiple GWAS methods in the CPData than in
the index data and HData for salt-alkaline tolerance. For the three
types of data, the number of QTNs detected simultaneously was
respectively 4, 1, and 1 in salt tolerance and respectively 5, 2, and 3
in alkali resistance. When the phenotype distribution of the CPData
generated by the new method were closer to those from the index
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data of salt-alkali tolerance, the GWAS results were better, and a
greater number of candidate genes could be mined. This may be
beneficial for selecting the appropriate distribution proportion to
obtain hierarchical data of ordinal trait, screening stable QTNs, and
promoting the development of molecular breeding. We also applied
symmetric distribution (1:2:4:2:1) to generate HData5 for the salt
tolerance index data and used MTOTC to generate the
corresponding CPData5. The phenotype distribution of CPData5
with symmetric 1:2:4:2:1 exhibited a large deviation from that of the
index data, and the phenotype distribution of CPData5 with
uniform 1:1:1:1:1 was closer to that of the index data. Under the
six methods, there were no overlapping QTNs in CPData5 and the
index data for salt tolerance, which was far inferior to the above
uniform distribution observed with the distribution proportion
1:1:1:1:1, under which three coincident QTNs were detected in
CPData5 and the index data. This result corresponded precisely to
the results presented in simulation study 5.

MTOTC performed well in the initial SNP screening. After
preliminary screening under a P < 0.05 threshold, a large number of
SNPs that were significantly unrelated to the trait could be
eliminated. Meanwhile, the simulation experiment showed that
the retention rates of related loci remained high. MTOTC serves
to simplify the model and save a substantial amount of computing
time for subsequent association studies.

MTOTC helps to improve association analyses of ordinal traits.
Regarding coefficient of variation, skewness, kurtosis, and frequency
distribution, compared with the HData, the results obtained for the
CPData were closer to those of the OData. Meanwhile, the results
using six GWAS methods showed that the statistical power, the
false-positive rate, and the position estimates in CPData were better
than those in HData. Moreover, MTOTC performed better when
the frequency distribution of the CPData was close to that of
the OData.

The fewer hierarchical levels, the more suitable MTOTC is.
Regarding the relative power in CPData under different hierarchical
levels, a trend of increasing relative power with increasing number
of hierarchical levels was found for all six methods when there were
four or less hierarchical levels. When there were five hierarchical
levels, the power of MTOTC+FASTmrMLM was close to that of
FASTmrMLM in HData, but slightly lower than the power from
logistic regression; only three GWAS methods had higher relative
power in CPData than in HData. In addition, MTOTC had a
tendency to increase variation, especially with increasing numbers
of hierarchical levels. This indicates that MTOTC is more suitable
for ordinal traits with fewer hierarchical levels, especially those with
two or three levels. Among the six GWAS methods,
FASTmrEMMA, FASTmrMLM, and mrMLM are significantly
better when combined with MTOTC. This is partly attributed to
that the distribution and parameter estimation principles set in
MTOTC were relatively consistent with those in these three
GWAS models.

This study will contribute to further research in association
analysis of ordinal traits. This is especially in improving the

retention rate of small-effect loci in preliminary screening,
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reducing the impact on variability when transforming ordinal
phenotypes into continuous phenotypes, and developing novel
methods for association analyses of ordinal traits.
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and Yibo Wang?**
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Plant height (PH) and ear height (EH) are important traits associated with biomass,
lodging resistance, and grain yield in maize. There were strong effects of genotype x
environment interaction (GEI) on plant height and ear height of maize. In this study,
203 maize inbred lines were grown at five locations across China’'s Spring and
Summer corn belts, and plant height (PH) and ear height (EH) phenotype data were
collected and grouped using GGE biplot. Five locations fell into two distinct groups
(or mega environments) that coincide with two corn ecological zones called
Summer Corn Belt and Spring Corn Belt. In total, 73,174 SNPs collected using GBS
sequencing platform were used as genotype data and a recently released multi-
environment GWAS software package IlIVmrMLM was employed to identify QTNs
and QTN x environment (corn belt) interaction (QEls); 12 and 11 statistically
significant QEls for PH and EH were detected respectively and their phenotypic
effects were further partitioned into Add*E and Dom*E components. There were 28
and 25 corn-belt-specific QTNs for PH and EH identified, respectively. The result
shows that there are a large number of genetic loci underlying the PH and EH GEls
and lIIVmrMLM is a powerful tool in discovering QTNs that have significant QTN-by-
Environment interaction. PH and EH candidate genes were annotated based on
transcriptomic analysis and haplotype analysis. EH related-QEl S10_135
(Zm00001d025947, saur76, small auxin up RNA76) and PH related-QEl S4_4
(Zm00001d049692, mads32, encoding MADS-transcription factor 32), and corn-
belt specific QTNs including S10_4 (Zm00001d023333, sdgl127, set domain
genel?2?7) and S7_1 (Zm00001d018614, GLR3.4, and glutamate receptor 3.4 or
Zm00001d018616, DDRGK domain-containing protein) were reported, and the
relationship among GEls, QEls and phenotypic plasticity and their biological and
breeding implications were discussed.

KEYWORDS

maize, multi-environment-GWAS, plant height, ear height, QTN, QTN-by-Environment
interaction (QEI)

Abbreviations: QEI, QTN that shows QTN-by-environment interaction; GWAS, genome-wide

association study.
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Introduction

Maize is a cereal plant of the grass family (Poaceae) and its
domesticated form, the grain corn, is one of the most important
crop for food, feed, energy, and industrial materials in the world.
China is the second largest grain corn producer after USA and
Summer corn belt (33%) and Spring corn belt (47%) are ecological
regions that contribute 80% of China’s total corn grain output (Shu
et al,, 2021; Dai et al., 2010). Plant height and ear height are two
important maize traits that affect biomass, lodging resistance, and
corn grain yield. Enhancing yield and yield stability through
genetically controlling plant height and ear height have been
important goals in maize genetics and corn breeding. A large
number of QTL and QTN loci in maize that associated with plant
height and ear height have been identified and reported by
quantitative trait loci (QTL) mapping and genome-wide
association studies (GWAS) and verified by genetic fine mapping,
transcriptomic analyses, and functional genetic analysis (Bai et al.,
2010; Zhang et al., 2011; Li et al., 2016; Zheng et al., 2016; Ding
et al,, 2017; Si et al., 2020; Wang et al., 2023; Jin et al., 2023; Napier
et al,, 2023; Zhou et al, 2023); among them, Dwarf 8, Dwarf 9
encodes maize DELLA proteins (Lawit et al., 2010), Ga30x2 encodes
a GA3 b-hydroxylase (Teng et al., 2013), ZmTEI, likely regulates
auxin signaling, cell division, and cell elongation (Wang et al,
2022a), ZmRPHI that regulate both plant height and ear height,
encodes a microtubule-associated protein (Li et al., 2020), ZmDLEI
is associated with a candidate gene that effectively regulate maize
plant height and ear height (Zhou et al., 2023), and a set of growth
regulating factors genes (ZmGRF) that co-express with a large set of
plant height and ear height loci (Si et al, 2020). In the classic
Brachytic2 locus (Multani et al., 2003), a number of different alleles
or genetic variants have been reported that show various degree of
phenotype effect on plant height and ear height and that
differentially regulate downstream genes involved in gibberellin
and brassinosteroid biosynthesis, auxin transport and cellulose
synthesis (Xing et al., 2015; Wei et al,, 2018).

Phenotypic plasticity is the property of a given genotype to
produce different phenotypes in response to distinct environmental
conditions (Pigliucci, 2001) or the ability of a single genotype to
produce different phenotypes in response to environmental stimuli
(Napier et al,, 2023) and it is a joint result of overall environmental
effect and genetic effects across environments (Li et al., 2018; Liu
et al, 2020b). Genotype x Environment Interaction (GEI) is a
special case of environmental plasticity where the two genotypes
respond in opposite directions to the changes in the environment
(Mather and Caligari, 1974; Laitinen and Nikoloski, 2019).
Genotype x Environment Interaction (GEI) on corn yield and
agronomic traits has been a major goal of the USA Maize
Genomes to Fields Initiative (Alkhalifah et al., 2018; Rogers et al.,
2021). Phenotypic plasticity and GEI in maize and other crops have
been well-known in plant height and ear height (Wallace et al,
2016; Perrier et al., 2017; Mu et al., 2022). Some environmental
factors, such as the difference between day and night temperature
(also referred to as DIF) have been shown to influence internode
length and plant height (Myster and Moe, 1995). Corn inbred lines
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with tropical germplasm introgression have been shown to respond
to daylength or photoperiod (Coles et al., 2010; Lin et al., 2021; Su
et al,, 2021; Fei et al,, 2022; Osnato et al,, 2022). Explaining and
predicting phenotypes requires the holistic examination of
genomes, environments, and their interaction throughout the
spatial and temporal dimensions of an organism’s life cycle (Li
et al., 2021; Schneider, 2022). In traditional G x E studies, a
genotype is treated as a black box of the entire genome, and
various statistical models were developed to understand the
pattern and mechanism of GEI (Mather and Caligari, 1974; Shu
and Fan, 1986; Cooper and DeLacy, 1994; Malosetti et al., 2013).
Further partitioning Genome x Environmental interaction or GEI
into QTN x E (QEI) or Gene x E (GEI)) is a breakthrough and only
becomes feasible in recent years with the availability of whole
genome sequencing technology, transcriptomic technology, the
availability of abundant DNA polymorphic markers such as SNP
and SSR, and improved GWAS methodologies (Xiao et al., 2017;
Laitinen and Nikoloski, 2019; Li et al., 2022a; Li et al., 2022b; Jin
et al., 2023; Napier et al., 2023).

In this study, we have conducted a multi-environment GWAS
using the newly released GWAS software package developed by Li
etal. (2022a); Lietal. (2022b) called IITVmrMLM with the objective
of detecting QEIs and QTNs, and estimating their additive-by-
environment (add*E) and dominance-by-environment (dom*E)
interaction effects of QEIs, and additive effects(add) and
dominant effects(dom) of corn-belt specific QTNs. Candidate
genes in the surrounding chromosomal regions of these QEIs and
QTNs are mined and verified by transcriptomic analysis and
haplotype analysis, and their implications to understanding the
GEL and phenotypic plasticity of PH and EH were discussed.

Materials and methods
Germplasm and phenotype evaluation

A diversity panel of 490 inbred lines from Shu et al. (2021) was
used for this study, 203 inbred lines (accessions) that grow and seed
well in both the Summer Corn Belt and Spring Corn Belt were
elected for phenotyping in 2013. Five locations or environments
with different latitudes across the Summer and Spring Corn Belt
that produce over 80% of China’s grain corn were selected for
phenotyping, which include a location at the southern end of the
Summer Corn Belt, Dancheng (DC, latitude 33.645°N, and
longitude 115.177°E) and a location at the northern end of
China’s Spring Corn Belt, Binxian (BX, latitude 45.759°N, and
longitude 127.486°E), and three locations in between: Zhengzhou
(ZZ, latitude 34.859°N, and longitude 113.368°E, Summer Corn
Belt), Ningjin (NJ, latitude 37.652°N, and longitude 116.800°E,
Summer Corn Belt), and Tieling (TL, latitude 42.547°N, and
longitude 124.159°E, Spring Corn Belt). At all five locations, the
same set of 203 inbreds were planted in the same three-row plots in
a complete randomized design (Niu et al., 2013) and five individuals
were randomly sampled from each plot to measure plant height and
ear height.
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Phenotype and environment analysis

The mean values of each inbred for PH and EH in each location
(Table S1) were used in the summary statistics, correlation analysis,
GGE biplot, and Two-way ANOVA. Summary statistics were
obtained by R package ‘pastecs’, and correlation analysis and
plots between different environments for plant height and ear
height were completed by R package ‘PerformanceAnalytics’.
Mega-environments were identified by GGE biplot using the
GGEBiplotGUI_1.0-9 package (Frutos et al., 2014) in RStudio
software (RStudio, PBC, Boston, MA, USA). Relationships
between PH and EH in each location were examined using
Pearson correlation coefficients by R. The mean values of plant
height and ear height in each mega-environment group were used
as phenotype values to identify the significant QTN-by-
environment interactions (QEIs). Two-way ANOVA was carried
out using the SAS 9.3 (SAS Institute Inc., Cary, NC, USA).

DNA sequencing, genotyping, linkage
disequilibrium and population structure

Leaf sample from each inbred line was used for DNA extraction
with a CTAB procedure. DNA sequencing follows a protocol of Elshire
et al. (2011). Genomic DNA was digested with the restriction enzyme
ApeK1. Genotyping-by-Sequencing or GBS libraries were constructed
in 96-plex and sequenced on Illumina HiSeq 2000. SNP calling was
performed using the TASSEL-GBS pipeline (Glaubitz et al,, 2014) and
B73 RefGen V2.0 as the reference genome. Initially, 876,297 SNP was
filtered with minor allele frequency (MAF) > 5%, missing rate < 20%
(Shuetal, 2021; Shu et al,, 2023), and data for 73,174 high-quality SNP
loci was kept for genome-wide association studies (GWAS). Minor
allele frequency (MAF) and proportion heterozygous of filtered SNPs
(73,174 SNPs) was calculated by TASSEL 5.2.25. The percentage of
SNP with different Minor allele frequency (MAF) and proportion
heterozygous was counted and shown in a bar chart (Figure SI).

Linkage disequilibrium (LD) analysis was carried out by
TASSEL 5.2.25 (https://www.maizegenetics.net/tassel, Bradbury
et al., 2007) with LD window size 50 for all filtered SNP on each
chromosome. Structure 2.3.4 (Hubisz et al., 2009) was used to detect
the population structure among all 203 maize inbred lines using
7296 Tag-SNP extracted from 73175 SNPs by Haploview 4.2
(Barrett et al., 2005). Burn-in period and Monte Carlo Markov
Chain (MCMC) replication number were set as 5,000 and 50,000
respectively for each run. Seven independent runs were performed
with subpopulation number k= 3 to 9. The delta K values were
estimated and output by Structure 2.3.4.

Genome wide association studies
by HIVmrMLM

IIVmrMLM, A software package that implements the 3VmrMLM
model (Li et al,, 2022a; Li et al., 2022b) was employed for genome-wide
association studies (GWAS). In the single-locus module, 3VmrMLM
includes two steps: 1) genome-scanning was employed, and SNP loci
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that were significant (p < 0.01) in Wald test were kept for the following
analysis. A midresult file is output after step 1; 2) all the loci identified
in step 1 were incorporated into the Multi-locus Model, all the effects
were estimated by empirical Bayes, and the loci with LOD score larger
than 3.0 of likelihood ratio test were outputted.

In this study, 73,174 filtered SNPs were used as genotype data,
the Q matrix was calculated by the Structure 2.3.4 software under
the best K value, the parameter “method” was set to “Multi_env”
mode, other parameters were set as default values. The critical P-
value and LOD score were set as 0.05/m and 3.0, respectively, for
significant and suggested QTNs and QEIs, where m is the number
of markers (Li et al., 2022b).

To identify QEIs, the phenotype data from five locations were
grouped into the summer corn belt group (E1) containing data from
three locations (Dancheng, Zhengzhou, Ningjin) and the spring
corn belt group (E2, containing data from Tieling and Binxian), the
mean value of all locations within each corn-belt group was
calculated for each genotype and used as input data to
IIIVmrMLM software under “Multi_env” module. The additive-
by-environment (add*E) and dominance-by-environment (dom*E)
interaction effects of QEIs were estimated and outputted in the
final result.

To identify summer corn belt specific QTNS, the trait phenotype
data of a genotype from three locations within the Summer Corn Belt
was used, and the phenotype value at each location was used as input
data for the IITVmrMLM software under “Multi_env” module. Similarly,
phenotype data from two locations within the spring corn belt was used
to identify spring corn belt specific QTNs. The additive effects(add) and
dominant effects(dom) of corn-belt specific QTNs were estimated and
outputted in the final results of Summer and Spring Corn Belt.

Candidate gene annotations of QEls and
QTNs, and patterns of QTN x E interaction

The fasta sequences containing significant QEIs and QTNs
identified by IIIVmrMLM were re-aligned to the B73 v4 reference
genome using NCBI BLAST-2.12.0+ (Camacho et al,, 2009) to obtain a
more accurate physical position for better gene annotations (https://
www.maizegdb.org/gbrowse). To identify candidate genes that are
associated with a QEI or QTN, we first conducted a primary
screening within the chromosomal region 100kb up and down the
significant QEI or QTN, then software ANOVAR was used for further
screening; ANOVAR only output a candidate that meets the following
criteria: the significant QTN or QEI is located within the transcriptional
sequence of the candidate (further categorized as in Exon (synonymous
or non-synonymous), Intron,3’-UTR, and 5'-UTR or within 1kb
upstream or downstream of the candidate. The patterns of key QEIs
were visualized by line chart.

Candidate gene identification and tissue-
specific expression analysis

The polymorphic SNPs surrounding key significant QEIs and
QTNs and their PH and EH phenotype association from the
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midresult file and the relationship between SNPs and gene
structures was studied using scatter and gene structure diagram.
For each candidate gene, transcriptomic databases at MaizeGDB
(MaizeGDB, https://www.maizegdb.org/) were searched for its
expression profiles in different organs and tissues across different
developmental stages. Haplotype analysis was used to verify the
phenotype effect of important QTNs.

Results

Phenotypic analyses and mega-
environment grouping

The descriptive statistics for PH and EH at five locations or
growth environments are presented in Table 1. Variation of PH,
measured by CV ranges from 12% to 15% within each location. The
range and the degree of variation in PH in the Spring Corn Belts is
larger than in the Summer Corn Belt. The absolute values of
kurtosis and skewness were all less than 1 (Table 1), indicating
that the phenotype data do not significantly depart from a normal
distribution and are suitable for GWAS. Variation of EH measured
by CV ranges from 19.3% to 29.6% within each location, Which is
larger than PH. The range of variation in EH in the Spring Corn
Belt is much larger than in the Summer Corn Belts.

The phenotypic correlation between each environment-pair for
PH and EH among three Summer Corn Belt locations [Dancheng
(DC), Zhengzhou (ZZ), and Ningjin (NJ)] and between two Spring

10.3389/fpls.2023.1284403

Corn Belt locations Tieling (TL) and Binxian (BX), are shown in
Figures 1A and C. As the scatter plot and correlation coefficients in
Figure 1A show, the within-corn belt location-pair correlation
coefficients (PH*PH) are 0.77, 0.77, and 0.66 for three Summer
Corn Belt locations and 0.66 for two Spring Corn Belt locations for
PH, which are significant at 0.01 level. Whereas, the six between-
corn belt correlation coefficients are from 0.03 to 0.12, which are not
significant at the 0.05 level. The same pattern was observed for EH
(Figure 1C), suggesting a high location-location correlation within
each corn belt and nearly zero location-location correlation between
the two corn belts. The lack of phenotypic correlation between the
two corn belts was also revealed by biplot for PH (Figure 1B) and
EH (Figure 1D), which shows that the location vectors within the
same corn belts form tight bundles, and the two vector bundles
form a nearly vertical angle. Thus, GGE biplot groups the five
locations into two mega environments which fit well with the
assignment of five locations into two corn belts widely adopted by
maize breeders and grain corn growers. The above analyses revealed
the high similarity in a growth environment and in PH and EH
phenotype within a corn belt and large divergences in growth
environment and PH and EH phenotype between the two corn
belts. The correlation coefficients between PH and EH (PH*EH)
within each location range from 0.51 to 0.75 (Table 1), which is
significant at 0.001 level.

To verify the results of environmental grouping, variance
analysis was conducted to reveal the differences between mega
environments (Table S2). The results showed that there were
significant genotype x mega environment interactions in both PH

TABLE 1 Descriptive statistics for PH, EH among 203 accessions across five environments.

. Corn . . [\ (oo} . .
Traits Environments Latitude Skewness Kurtosis CC(with EH)
belt Inbreds
178.0 +
DC 336°N 202 110-241 s 12 0.13 0.14 0.56%%*
1743 +
El 77 349° N 203 1382636 144 049 0.42 0.75%%*
184.6 +
PH NJ 37.7°N 201 115-250 vas 132 037 0.04 0.65%*
209.3 +
TL 42.5°N 203 149-290 . 142 | 023 -0.46 0.65*
E2
169.6 +
BX 45.8° N 202 89-245 e 15 -0.16 0.07 0.510%
66.8 +
DC 336°N 202 32-109 Iag 207 001 -0.29
68.7 +
El 77 349° N 203 30.4-115.8 133 193 | -0.06 0.35
743 +
EH NJ 37.7°N 201 40-110 144 193 | 021 -0.06
85.1 +
TL 42.5°N 203 43-130 187 22 0.06 0.7
E2
602 +
BX 45.8° N 201 23.5-114.1 . 296 | 021 -0.14

DC, Dancheng; ZZ, Zhengzhou; NJ, Ningjin; TL, Tieling; BX, Binxian. CC, Correlation coefficient. ***P < 0.001.
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and EH. Genotype x mega environments accounted for 30.7% and
31.2% of the total variance for PH and EH respectively. Whereas
genotype variance accounted for 32.2% and 29.2% of the total
variance for PH and EH, respectively. Therefore, genotype x mega
environments interaction is a very important factor in determining
the phenotypic plasticity observed in PH and EH.

Characteristics of genotype data, linkage
disequilibrium and population structure

Among the 876,297 SNPs collected from 203 inbred lines,
73,174 high-quality SNP loci after a filtering procedure (see
Material and Methods) were kept for all analyses in this project.
The minor allele frequency (MAF) distribution (see Figure S1A)
indicates the existence of abundant allelic polymorphism for
genome-wide marker-trait association. About 60% of SNPs with
heterozygosity less than 5% are only suitable to additive allelic effect
analysis (see Figure S1B), the other 40% of SNPs with
heterozygosity higher than 5% are suitable to both additive and
dominant allelic effect analysis. The LD decay across all 10

2

chromosomes reached down to r* = 0.1 when the distance
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between two adjacent SNP increased up to 60 kb (Figure S2A).
The population structure analysis showed that the delta K value
reached the peak at K=3, indicating that this diversity panel of 203
inbreds can be divided into three subgroups (Figure S2B), namely,
M-Reid+P, SS+lodent+Lan, and LRC+TSPT, respectively
(Figure S2C).

Identification of significant QEls and the
patterns of QTN x E interactions

12 significant QEIs for PH and 11 significant QEIs for EH were
identified and reported in Table 2 and they are visualized as pink
dots on the Manhattan plots (Figure S3A, B), 9 of 12 QEIs for PH
and 8 of 11 QEIs for EH are QEIs with additive effect as a key effect,
whereas 3 of 12 QEIs for PH and 3 of 11 QEIs for EH are QEIs with
dominant effect as a key effect. S3_224 and S10_135 are two QEIs for
EH with the largest LOD (QE) and variance.

To visualize and verify the QTN x environment interaction in
QEIs identified from IIIVmrMLM graphically, the patterns of QTN
x environment interaction of five QEIs from Table 2 were shown by
line chart (Figure 2). The QTN x environment interaction was
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TABLE 2 QEls between two mega-environmental groups and associated candidate genes for PH and EH.

Ma;kbe;rgv‘l' Chrit R;’ﬁ;’; LOD  \4d*El Dom*El Add*E2 D‘Eg’* r2 (%) ] Gene ID Category
PH S1_185 1 184855257 G/A 7.0 3.1 4.8 -3.1 -4.8 10.7 2.6 0.09 1.57 add Zm00001d031277, ZAT3/ Upstream
Zm00001d031278 DOFL6
S2_85 2 85448512 A/C 10.1 -4.4 4.4 19.3 4.6 0.12 0.00 add Zm00001d004132 cl36164_1 UTR5
S2_237 2 236504893 G/A 8.1 1.9 11.1 -1.9 -11.1 13.1 3.1 0.08 5.85 dom Zm00001d007630 RPS2 Non-syn.
S3_156 3 155997977 AIG 9.3 0.2 -7.2 -0.2 7.2 14.5 3.5 0.28 29.39 dom Zm00001d042199 PSB28 Syn.
S3_159 3 158641942 A/C 6.6 3.4 6.4 -34 -6.4 11.9 29 0.02 1.90 add - Intergenic
S4_40 4 40463790 T/C 11.5 -4.5 1.4 4.5 -14 19.8 4.7 0.02 0.30 add Zm00001d049691, mads32 Syn.
Zm00001d049692
S6_66 6 66264336 G/A 6.7 -34 -3.2 34 3.2 11.5 2.7 0.08 0.94 add Zm00001d036014 E3/UBPL Intronic
S6_133 6 133125635 A/G 16.6 -5.5 -34 5.5 34 28.6 6.8 0.11 0.62 add Zm00001d037655 - Non-syn.
S7_48 7 47993521 C/G 10.3 -4.1 4.1 16.8 4.0 0.11 0.00 add Zm00001d019648 nbpl Syn.
S8_7 8 7205104 T/G 9.1 0.3 7.7 -0.3 -7.7 14.1 34 0.23 24.27 dom Zm00001d008396 - UTR5
S$10_149 10 148903473 C/T 13.5 6.4 1.1 -6.4 -1.1 21.6 52 0.49 0.17 add Zm00001d026606 cdj5 Non-syn.
EH SI1_33 1 32857527 G/T 11.5 -3.1 -1.7 3.1 1.7 7.0 4.4 0.35 0.55 add Zm00001d028386 Downstream
S1_86 1 86353115 G/A 5.7 -2.3 0.6 2.3 -0.6 29 1.9 0.46 0.28 add Zm00001d029772 prhi26 Non-syn.
S1_283 1 283402157 A/C 7.7 2.3 -1.9 -2.3 1.9 5.1 3.2 0.01 0.85 add Zm00001d034076 mmpl65 Non-syn.
$2.2 2 1669905 T/C 8.7 -14 -3.8 14 3.8 49 3.1 0.24 2.63 dom Zm00001d001837 mybl33 Non-syn.
S3.94 3 94315573 C/A 7.0 -2.5 0.7 2.5 -0.7 39 2.5 0.41 0.29 add Zm00001d041064 NUP1 Non-syn.
S3.224 3 223519980 C/T 17.3 3.3 1.5 -33 -1.5 10.3 6.5 0.04 0.44 add Zm00001d044272 bhlh94 UTR5
$4.38 4 37703788 | AIG 538 19 49 19 49 37 23 0.01 257 dom Zm00001d049616 gpat9 Syn.
S4_225 4 224650169 T/C 14.2 3.6 -0.1 -3.6 0.1 8.1 5.1 0.36 0.01 add - - Intergenic
S5_1 5 1080954 T/C 7.6 -2.6 -0.3 2.6 0.3 49 3.1 0.27 0.10 add Zm00001d012848 - Non-syn.
S§5_215 5 214720899 A/C 10.3 3.0 0.7 -3.0 -0.7 5.6 3.6 0.41 0.23 add Zm00001d018122 E3/UBPL Non-syn.
S8_174 8 174327122 C/A 5.0 -1.2 2.4 1.2 -2.4 2.7 1.7 0.29 2.07 dom Zm00001d012428 - Non-syn.
S10_135 10 134518892 G/C 20.9 34 3.4 -34 -34 11.8 7.4 0.03 0.99 add Zm00001d025947 saur76 Intergenic

EH, ear height; PH, plant height; LOD(QE), LOD score for QEIs; Add*E1, additive effect of E1(Summer Corn Belt); Dom*El, dominant effect of E1(Summer Corn Belt); Add*E2, additive effect of E2(Spring Corn Belt); Dom*E2, dominant effect of E2(Spring Corn Belt);
Var, the variance of each QTN; Het., proportion heterozygous; [dom|/|add|, namely |dom*E1|/[add*E1| or [dom*E2|/|add*E2[; Key effect: if [dom|/|add|<2, or Proportion Heterozygous >0.05, Key effect would be add; if |[dom|/|add|>2, and Proportion Heterozygous>0.05,
Key effect would be dom. Category: location of SNPs in genes and effect, upsteam, downstream, UTRS5, intergenic, intronic represent SNP locate the region of the candidate gene, Non-syn.(non-synonymous) represent the SNP locate in the exonic region of the candidate
genes which cause an amino acid change, Whereas syn.(synonymous) represent the SNP locate in the exonic region of the candidate genes which do not cause an amino acid change.
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further partitioned into add*E and dom*E as shown in Table 2.
§3_156 is a QEI for PH with large negative dom (dominance)*El
interaction (-7.2) at E1(Summer Corn Belt) locations and large
positive dom (dominance)*E2 interaction (7.2) at E2 (Spring Corn
Belt) locations, and with an absolute dom/add ratio of 29.39,
Figure 2A illustrates the interaction pattern of its three genotypes
and shows that heterozygotic AG genotype has significantly shorter
PH than both “AA” and “GG” genotype at Summer Corn Belt (E1),
but has much taller PH at Spring Corn Belt (E2). Another QEI with
a dominant effect as key effect is S8_7 for PH (Figures 2C), with a
high absolute dom/add ratio of 24.27. The QEIs S4_40 for PH and
§3_224 for EH are QEIs with additive effect as key effect and
absolute dom/add ratio of 0.3 and 0.44, respectively (Table 2), the
genotype CC and TT show opposite phenotype performance in the
Summer and Spring Corn Belts (Figures 2B, D). The QEI S10_135
has an absolute dom/add ratio of 0.99 (Table 2), indicating a nearly
equal amount of dom*E and add*E interaction (Table 2; Figure 2E).
The candidate genes for S3_224 and S10_135 are Zm00001d044272
(bhlh94, bHLH-transcription factor 94) and Zm000014025947
(saur76, small auxin up RNA76), respectively. The candidate

10.3389/fpls.2023.1284403

genes for S4_40 are Zm00001d049691(SDH6, Succinate
dehydrogenase subunit 6 mitochondrial) and Zm00001d049692
(MADS32, MADS-transcription factor 32), likely an important
QEI for PH.

Identification of significant corn-belt-
specific QTNs and annotations

28 and 23 QTNs for PH and EH respectively were identified
from Summer Corn Belt data, thus are called summer-corn-belt-
specific QTNs (Table S3; Figure 3). 25 and 26 QTNs for PH and EH
respectively were identified within the Spring Corn Belt, and thus
are called spring corn belt specific QTNs. Among the total 102 corn-
belt specific QT'Ns reported in Table S3, 56 QTNs show an additive
effect as key effect (|dom/add|<2.0) and 46 QTNs show a dominant
effect as key effect (|dom/add|>2.0).

QTN S10_4 (Zm00001d023333, sdgl27, set domain genel27)
and S7_1 (Zm00001d018614, GLR3.4: glutamate receptor 3.4 or
Zm00001d018616, DDRGK domain-containing protein) are two

A $3_156 B S4_40 C s8_7 D S3_224 E $10_135
200 200 200 105 105
195 195 195 ] 95
190 _1s0 190 _85 _ 85
£ A 3 T £ £
S185 ;185 5185 % 75 % 75
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180 180 T 180 Y65 Y65 =
175 175 175 55 55
170 170 - 170+ 45+ T 45 T
summer spring summer spring summer spring summer spring summer spring
—o— AA-B- AG—+— GG —+—CC—=-TT ——GT —&TT ~+-CC-=TT —e—CC GG

FIGURE 2

Patterns of QTN x E interaction in Summer and Spring Corn Belts for PH and EH. (A—C) three QEls S3_156 (A), S4_40 (B) and S8_7 (C) for PH;

(D, E) two QEls S3_224 (D) and S10_135 (E) for EH.

TABLE 3 Corn-belt-specific QTNs for PH and EH in Summer and Spring Corn Belt.

mtk:t:br) Chr# mit;c")'; (LC?)D Add S;r:fml Category

PH El S1_255 1 255244221 7.8 2.5 0.9 5.6 1.0 0.05 0.37  add Zm00001d033230 RLK29 Non-syn.
PH | EI §1_259 | 250066746 558 73 0.0 216 38 006 001 add Zm00001d033325 dof39 upstream
PH El S7_1 7 910582 18.5 4.2 -4.8 17.9 3.1 0.06 1.15  add Zm00001d018614 GLR3.4 Non-syn.
PH | EI S10.4 10 3618262 92 29 26 83 14 006 088 add Zm00001d023333 sdgl27 Non-syn.
PH E2 S7_151 7 150642747 76.4 17.2 2.1 34.7 3.0 0.12 0.12  add Zm00001d021386 ZFP2 Non-syn.
PH | E2 S10_15 10 15032123 679 70 164 193 17 073 234 dom Zm00001d023677 sweetlda | Syn.

EH El S1.273 1 273051629 8.8 2.2 -0.3 4.3 2.1 0.07 0.13  add Zm00001d033765 MAPKK9 upstream
EH E1 S4.118 4 117960613 29.5 -3.9 -1.0 9.5 4.8 0.01 0.25  add Zm00001d050715, invan3 upstream

Zm00001d050716

EH | El $7.1 7 1024439 66| -16 6 25 12 006 097 add Zm00001d018615 GLR34  Non-syn.
EH El S10_4 10 3618262 7.1 1.9 -0.1 3.5 1.7 0.06 0.07  add Zm00001d023333 sdg127 Non-syn.
EH E2 S1.7 1 7065140 16.4 -0.9 7.9 15.3 3.0 0.28 8.98 dom ;:ggggijg;;;g: IC)ZIE(SP/ Non-syn.
EH E2 S4_41 4 41323782 21.1 53 10.2 2.0 0 0 add ;I:ggggijgiz;i? iaal6 Syn.

the abbreviation in this table is same as Table 1 and 2. |dom|/|add]: the absolute ratio of dominant effect to additive effect.
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FIGURE 3

Manhattan plots of corn-belt-specific QTNs for PH and EH in Summer and Spring Corn Belt. (A,B) corn-belt-specific QTNs and candidate genes for
PH in Summer Corn Belt (A) and Spring Corn Belt (B); (C, D) corn-belt-specific QTNs and candidate genes for EH in Summer Corn Belt (C) and

Spring Corn Belt (D).

significant summer corn belt specific QTNs for both PH and EH
(Tables 3, S3). There are a set of candidate genes located within 7.0
Mb region of chromosome 1, near the three summer corn belt
specific QTNs SI_255, S1_259, and S1_262; Zm00001d033319 (V4:
chr1:258878226:258879592, Auxin-responsive protein IAA4) is
located 200kb from SI_259 (V4:chr1:259066746) and
Zm00001d033369 (V4:chr1:260633725:260634703, Gibberellin-
regulated protein 1) is located between SI_259 and S1_262 (Teale
et al.,, 2006; Wang et al., 2017; Luo et al., 2018; Wang and Wang,
2022b; Wu et al.,, 2023). Another spring corn belt specific QTN,
S1_263 (V4: chrl:262565751) is also located in this region. QTN
S1_255,81_259,and S1_262 have additive effects as key effects in the
Summer Corn Belt, and the QTN S1_263 has a dominant effect as
key effect in the Spring Corn Belt (Tables 3, S3).

Candidate genes association mapping and
tissue-specific expression analysis

Candidate gene search has found that the significant QEI
§3_224 identified by 3VmrMLM is located on the 5UTR region
of Zm00001d044272 (bhlh94), its gene structure is shown in Figure
S4. Another QEI, S4_40 (full ID: S4_40463790, V4: chr4:40463790)
is on the exon of two partially overlapping candidate genes
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Zm00001d049691(V4:chr4:40460274 - 40464504) and
Zm00001d049692 (chr4:40462578 - 40464305) (Figure 4. Tables 2,
S4). Tissue-specific expression analysis shows Zm00001d049691
(SDH6) expresses in stems, leaves, embryos, roots, spikelets, and
silks, Zm00001d049692 (MADS32) expresses in stems, splikelets,
and silks, and Zm00001d049690 (CY P89A2) only expresses in roots
(Figure S5). SDH encodes succinate dehydrogenase, which is
activated by salt stress (Fedorin et al., 2023) and is also regulated
by light (Eprintsev et al, 2016). Another MADS-transcription
factors, ZmMADS4 and ZmMADS67 both increase leaf number
and delayed flowering, indicating that they promote the floral
transition (Sun et al, 2020) and overexpression of ZmMADS69
causes early flowering (Liang et al.,, 2019).

Three SNPs surrounding QTN SI10_4 located in
Zm00001d023333 are significant at 0.01 level (-logl0-P >2) for
PH and EH in the Summer Corn Belt (Figures 5A, B). Two of them:
the S10_3620568 and S10_3620675 are located on 5UTR and the
$10_3618266 is located on CDS (Figures 5C, D). Zm00001d023333
(Chr10:3606398-3621010, sdgl127, SET domain genel27) encodes a
histone-lysine N-methyltransferase ATXR7. Another two SET
domain family genes, SET domain group 8 (SDG 8) in
Arabidopsis thaliana (Zhao et al., 2005) and SDG712 in rice
(Zhang et al., 2021) could delay flowering by repressing the
expression of FLOWERING LOCUS C (FLC) and florigen genes,
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Association of SNPs surrounding significant QEl S4_40 with candidate genes. (A) associations of the twelve SNPs using mean value of PH in Summer
and Spring Corn Belt; (B) gene distribution around S4_40(V4:chr4:40463790).

respectively. The above research findings suggest that
Zm00001d023333 we identified in this study might affect PH and
EH by delaying flowering time and lengthening vegetative growth.
Haplotype analysis has shown that the three SNPs can form six
haplotypes (Hap0, Hapl, Hap2, Hap3, Hap4, Hap5) (Figure 5E).
Hap 1 (ATA) and Hap 4(GCC) are the major haplotypes, with 36
and 32 inbreds, respectively. Hap 1 (ATA) is higher than Hap 4
(GCCQ) in terms of both PH and EH (Figures 5F, G).

Several SNPs significantly associated with PH and EH are
identified surrounding QTN locus S7_I. Some of them are
located on the CDS of the two candidate genes Zm00001d018614
and Zm00001d018616. Expression of Zm00001d018616 (about 30
FPKM) at the mRNA level is ten times higher than
Zm00001d018614 (about 3 FPKM) in the stem (Figure S6).
Zm00001d018614 and Zm00001d018615 are genes encoding
glutamate receptor, which are involved in seed germination
inhibition and seedling heat tolerance (Kong et al., 2015; Li et al,,
2019). Another candidate gene, Zm00001d018617 (ga2ox12,
gibberellin 2-oxidasel2, Chr7:1105512-1106576), is a member of
gibberellin oxidase gene family which might affect PH (Paciorek
et al., 2022), but its expression is not detected in stem tissues of
maize (Figure S6).

Three SNPs associated with PH are identified surrounding
QTN SI0_I5, a spring-corn belt specific QTN and they are all
located in the CDS region of candidate gene Zm00001d023677
(sweetl3a, V4:chr10:15030181-15032801) (Figure S7); two SNPs,
$10_15032123 and S10_15032153, are synonymous SNV whereas
the third SNP, S10_15032160, is nonsynonymous SNV which
causes an amino acid change (Table S5). Haplotype analysis has
shown that the three SNPs can form four haplotypes (H1, H2, H3,
H4). The PH of heterozygous haplotype H2 (CG/CG/TG) is
significantly higher than that of the homozygous haplotype H2
(CC/GG/GQG) (Figure S7). The candidate gene Zm00001d023677
(sweet13a) encodes a SWEET protein of the MtN3/saliva family
(Xuvan et al, 2013). Another SWEET protein coding gene
CmSWEET17, has been reported to be involved in the process of
sucrose-induced axillary bud outgrowth in strawberry (C.
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morifolium), possibly via the auxin transport pathway (Liu
et al., 2020a).

Discussion

Mega environment, phenotypic plasticity,
and mega-environmental GEI and QEI

Partitioning multi-environments into a set of environment
clusters or mega environments has been well-studied in which,
the multi-environments were grouped using PCA, clustering, and
GGE biplot (Shu and Fan, 1986; Yan and Kang, 2003). Yan (2015)
defined a mega-environment as a group of geographical
environments that share the same (sets of) genotypes consistently
across years. Other researchers have defined a mega-environment
as a group of growing environments that are similar in terms of
genotype response and that show a repeatable relative performance
of a set of crop genotypes across years (Yan and Rajcan, 2002).
Mega-environments are often identified through the analysis of
multiple-environment trial data for a set of genotypes. The purpose
of the mega-environment analysis is to understand the nature of
environmental variation across experimental locations, whether
there is structure or segmentation among the locations. Our result
shows that there is significant segmentation among the 5 locations
and they can be divided into two mega-environments, there is very
little variation among locations within a mega environment and the
two segments fall right into the two corn belts that have been widely
adopted by breeders and corn growers. Our results also show that
the GGE model, with a biplot display, is an effective tool for
displaying environment structure and segmentation which explain
why it has become popular in analyzing multiple-environment trial
data to determine environment cluster (Yan and Kang, 2003; Yan
et al., 2011; Yan, 2015; Dai et al., 2010).

Understanding the genetic basis of phenotypic plasticity in
general and the genotype x environment interaction (GEI) in
particular is of primary importance in traditional crop genetics
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Association of SNPs surrounding significant QTN S10_4 with candidate genes and their haplotype Effects. (A, B) associations of the 11 SNPs with PH
(A) and EH (B) in Summer Corn Belt. The dot is red with the threshold of -logl0(PValue)>2; (C) gene distribution around QTN S10_4(V4:
chr10:3618266); (D) gene structure of Zm00001d023333; (E) haplotypes of the three significant SNPs; (F, G) boxplots of haplotypes for PH (F) and

EH (G) in Summer Corn Belt.

and plant breeding, and a large body of literature on models and
strategies is available (Shu and Fan, 1986; Cooper and DeLacy, 1994;
Malosetti et al., 2013; Li et al., 2018; Liu et al., 2020b; Schneider,
2022). The genetic bases of genotype x environment interaction
(GEI) for PH and EH are difficult to study due to environment
structure and segmentation among experiment locations and the
multi-locus nature of their genetic control. In this study, we deal
with multi-environmental segmentation by grouping multiple
locations into mega-environments using GGE biplot and deal
with multi-locus nature by dissecting it into QTN x environment
interaction or QEIs using multi-environmental GWAS. Our results
show that genotype x mega environment interaction (GEI)
accounted for about 30% of the total variation for both PH and
EH, almost equal to the genotypic variation among 203 inbred lines
in proportion (which is also about 30%). Therefore, genotype x
mega environments interaction has a significant contribution to the
phenotypic plasticity observed in PH and EH.

Understanding the molecular mechanism underlying the detected
pattern of phenotypic plasticity in general and G x E, in particular, has
been a major effort in the last decade. QTL mapping and genome-wide
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association studies (GWAS) have been shown effective means in
identifying a large number of QTL/QTN and QEIs (Xiao et al., 2017;
Jin et al,, 2023; Napier et al., 2023) and transcriptomic analysis and
functional genomics have been shown as important ways to identify
candidate genes and verify their biological functions (Seyfferth et al,
2021; Han et al., 2023; Napier et al., 2023; Wang et al., 2023). Various
statistical models and bioinformatic algorithms have been proposed to
improve the effectiveness of GWAS but no significant progress has
been made on GWAS that can partition GEI and identify QEIs. We
have shown that the 3VmrMLM GWAS models and the IITVmrMLM
software package recently released can effectively identify QEIs. The
software package has also been applied to data from rice, soybean, and
other crops to identify QEIs and hunt candidate genes underlying QEIs
(Zhang et al., 2022; Zuo et al,, 2022; Zhao et al., 2023). We have shown
that by employing 3VmrMLM multi-environment GWAS models, we
were able to go beyond the traditional G x E interaction analysis and
were able to identify and annotate a set of QEIs for PH and EH.
Among the candidate genes annotated by transcriptomic
analysis, Zm00001d049692 (MADS32) surrounding QEI S4 40,
might affect PH in different ecological zones by both increasing
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leaf number, delay flowering time, and lengthen vegetative growth
period, similar to ZmMADS4 and ZmMADS67 (Sun et al., 2020).
Zm00001d044272 (bhlh94) surrounding QEI S3_224 might be
involved in low-temperature responsiveness, MeJA-
responsiveness, abscisic acid responsiveness because of its cis-
regulatory elements and affect root growth and elongation in
response to stressful conditions as the manner of RICE SALT
SENSITIVE3 (RSS3) in rice (Toda et al., 2013). These findings
will facilitate the understanding of the molecular basis of the G x E
observed in PH and EH.

Corn belt-specific QTNs

As has been partly described in the Material and Method
section, the summer corn-belt average and spring corn-belt
average were used to identify QEI, which is defined as the QTN
that shows significant QTN x corn-belt interaction by IIIVmrMLM.
When QTN x environment interaction is significant, the significant
positive and negative genotype effects were canceled out during
averaging, therefore the QTN main effects become less meaningful.
We obtain corn belt specific QTNs by feeding the IIIVmrMLM
software with multi-location data within a corn belt. A corn belt
specific QTN is a QTN that shows a significant genotype effect
within either summer or spring corn belt data. QEIs explain the
phenotypic plasticity across different corn belts and are frequently
the targets to select against by breeders seeking stress tolerance and
trait stability whereas corn-belt specific QTNs expain the genetic
variation within a corn-belt and are frequently targets to select for
by breeders seeking genetic gain and stable phenotypic performance
in the corresponding corn belt.

We have identified a set of main effect QTNs or corn belt
specific QTNs. In the Summer Corn Belt, four candidate genes

10.3389/fpls.2023.1284403

Zm00001d018614, Zm00001d018615, Zm00001d018616, and
Zm00001d018617 are identified surrounding QTNs S7_I
(Figures 6, S6). Zm00001d018617 is also identified by Zhang et al.
(2019) as a candidate gene for PH. Zm000014033230 surrounding
QTN S1_255 (V4:chrl: 255244221, Tables 3, S3; Figure 3) is
associated with PH in the Summer Corn Belt in our study, which
is also identified as a candidate gene associated with PH in Zmdlel,
a dwarf and low ear maize mutant (Zhou et al., 2023).
Zm00001d049715 (IAA25) surrounding QTN S4_41 is associated
with EH in the Spring Corn Belt, which is also identified as a
candidate gene for PH by Zheng et al. (2016) through meta-
QTL analysis.

3VmrMLM multi-environment
GWAS models

The selection of appropriate statistical models to detect and measure
association is critical to the success of GWAS. The models should be
able to deal with various features of phenotypic and genotype data, such
as continuity and normality of phenotypic data, population structure
and kinship in genotype data, and various confoundings from other
covariables in a model. The R software package provided by Zhang’s
group, IIIVmrMLM V1.0 (Li et al, 2022a; Li et al,, 2022b), is a GWAS
model that fits the data of strong G x E. Under the framework of a
compressed variance component mixed model, each marker on the
maize chromosome was first scanned for statistical significance and a
less stringent Banforroni correction was adopted in the statistical test
and the significant marker loci identified were then incorporated into a
new multi-locus genetic model and their effects were estimated by
Empirical Bays and all non-zero effects were further evaluated by the
likelihood ratio test. Another feature of the 3VmrMLM model is that it
can take advantage of heterozygosity discovered in genomic sequence
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FIGURE 6

Significant QTN S7_1 and associated SNPs on candidate gene Zm00001d018614 (GLR3.4) and Zm00001d018616 (DDRGK domain-containing
protein). (A, B) associations of the 28 SNPs for PH (A) and EH (B) in Summer Corn Belt; (C) gene distribution around S7_1 (V4:chr7:910582);
(D, E) gene structure of Zm00001d018614 (D) and Zm00001d018616 (E).
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data. Heterozygosity has been detected in many DNA sequence projects
in corn inbred lines that have been selfed for 6-10 generations,
Traditionally, this so-called residual heterozygosity is treated as
sequencing errors, or as missing data and is filtered out and ignored.
The recent hi-fi sequencing technology has shown this heterozygosity is
not a sequencing error and is instead a true variation in inbred lines. The
3VmrMLM model can utilize this important information to reveal QTN
x QTN and QTN x environment interaction.
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Introduction: Epistasis is currently a topic of great interest in molecular and
quantitative genetics. Arabidopsis thaliana, as a model organism, plays a crucial
role in studying the fundamental biology of diverse plant species. However, there
have been limited reports about identification of epistasis related to flowering in
genome-wide association studies (GWAS). Therefore, it is of utmost importance
to conduct epistasis in Arabidopsis.

Method: In this study, we employed Levene’s test and compressed variance
component mixed model in GWAS to detect quantitative trait nucleotides (QTNs)
and QTN-by-QTN interactions (QQls) for 11 flowering-related traits of 199
Arabidopsis accessions with 216,130 markers.

Results: Our analysis detected 89 QTNs and 130 pairs of QQls. Around these loci,
34 known genes previously reported in Arabidopsis were confirmed to be
associated with flowering-related traits, such as SPA4, which is involved in
regulating photoperiodic flowering, and interacts with PAP1 and PAPZ2,
affecting growth of Arabidopsis under light conditions. Then, we observed
significant and differential expression of 35 genes in response to variations in
temperature, photoperiod, and vernalization treatments out of unreported
genes. Functional enrichment analysis revealed that 26 of these genes were
associated with various biological processes. Finally, the haplotype and
phenotypic difference analysis revealed 20 candidate genes exhibiting
significant phenotypic variations across gene haplotypes, of which the
candidate genes AT1G12990 and AT1G09950 around QQIs might have
interaction effect to flowering time regulation in Arabidopsis.

Discussion: These findings may offer valuable insights for the identification and
exploration of genes and gene-by-gene interactions associated with flowering-
related traits in Arabidopsis, that may even provide valuable reference and
guidance for the research of epistasis in other species.
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Introduction

Arabidopsis thaliana, an important flowering plant, has
emerged as a model organism for molecular plant genetics
research in recent years (Koornneef and Meinke, 2010). Its
compact genome, short life cycle, ease of cultivation, and
abundant genetic resources make it widely utilized in
fundamental biology, crop enhancement, and biotechnology. The
flowering phase of Arabidopsis plays a crucial role in determining
the precise timing of reproduction, seed, and fruit development.
Therefore, studying the regulation and molecular mechanisms of
flowering time in Arabidopsis remains an important area of
research. By discovering the genetic factors and regulatory
pathways affecting flowering time in Arabidopsis, it is possible to
identify homologous genes and manipulate their expression in
agronomic crops, optimize crop flowering time to adapt to
specific environments and agricultural practices, improve crop
yields, and produce crops that are more adapted to climate
change and stress resistance.

Flowering in Arabidopsis has complex regulatory mechanisms
and pathways, and the phenotypic material of flowering under
different regulatory pathways is particularly important to elucidate
the genetic mechanism of flowering (Qi et al, 2018). In the
photoperiodic pathway, Arabidopsis perceives light signals
through photoreceptors and transmits them to its biological
clock. The biological clock, responsive to changes in day length,
ultimately transforms the light signals into flowering signals via the
CONSTANS (CO) gene (Imaizumi and Kay, 2006). Under long-day
treatments, the CO gene facilitates flowering, whereas under short-
day treatments, it retards the process (Teper-Bamnolker and
Samach, 2005; Balasubramanian et al., 2006). In addition,
vernalization plays a vital role in regulating flowering. By
suppressing the activity of the FLOWERING LOCUS C protein,
low-temperature induction during vernalization unlocks
Arabidopsis’s flowering potential (Helliwell et al, 2015). In
additional to the vernalization pathway, it was shown that the
flowering time of Arabidopsis in 25-27°C short days was similar that
in 23°C long days, suggesting that higher temperature promotes
flowering in Arabidopsis (Balasubramanian et al, 2006). These
studies indicate that in the research on flowering-related traits of
Arabidopsis, factors such as photoperiod, vernalization, and
temperature need to be considered.

Epistasis, referred to as loci-locus interactions (He et al., 2019),
plays an important role in phenotypic variation and has received
much attention over the years. As a major factor in molecular
evolution (Breen et al, 2012), epistasis plays a crucial role in
quantitative genetic analysis and is now one of the main causes of
‘missing heritability’ (Mackay and Moore, 2014; Upton et al., 2016).
In Arabidopsis, flowering time as a complex quantitative trait is
regulated by genes such as photoperiod, but also by other
physiological processes such as temperature signaling and
vernalization, which are both independent and interrelated.
Therefore, these physiological processes involve a large number of
loci and even genes that often interact with each other, and
individual genetic loci or genes may have a small effect on
flowering time in Arabidopsis, but together with other genes may
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have a large effect on phenotypic variation (Zhang et al., 2014),
making it particularly important to investigate epistatic loci for
flowering-related traits in Arabidopsis.

Recently, researchers have proposed many epistasis detection
algorithms for complex traits based on traditional genome-wide
association studies (GWAS) or artificial intelligence (AI). The most
basic approach to explore epistasis is regression-based methods
such as PLINK (Purcell et al., 2007), which has the advantage of
high computational efficiency, rapid analysis of tens of thousands of
markers and epistasis, and wide application in case-control datasets,
but a high false positive rate. BOOST (Wan et al., 2010), which uses
a Boolean representation of genotype data, can save memory space
and improve computational speed at the same time, but it can only
handle binary phenotype data and not for continuous quantitative
traits such as yield and flowering time, which is a very limited
application scenario. For continuous traits in plants, mixed linear
model (MLM)-based methods perform better due to accounting for
environmental factors, controlling for population stratification, and
explaining cryptic correlations among individuals. QTXNetwork is
a multi-locus mixed model proposed by Zhang et al. (2015). This
method first detects each marker to identify potential quantitative
trait nucleotides (QTNs), QTN-by-environment interactions
(QEIs), and all the pairs of markers to identify potential QTN-by-
QTN interactions (QQIs), and then all the potential QTNs, QEIs,
and QQIs are placed into a genetic model to identify significant loci.
However, the associated polygenic backgrounds in the first step
were not taken into account. Ning et al. (2018) proposed a rapid
epistatic mixed-model association analysis (REMMA) algorithm,
which used the best linear unbiased prediction (BLUP) to predict
additive and dominant effects, their epistatic effects and their
variances, and then Wald Chi-squared test was used to identify
the significance of all the effects. However, their power could be
further improved. Multifactor dimensionality reduction (MDR)
(Moore, 2004), a classical nonparametric machine learning
method, was originally designed for identifying epistasis in case-
control studies. Quantitative MDR (QMDR) (Gui et al.,, 2013; Yu
et al., 2015) represents a robust, model-free extension of MDR
accommodated for quantitative phenotypes. None of them,
however, effectively address the challenges posed by limited
interpretability and overfitting in AI and lengthy computation
times required for genome-wide markers.

To overcome the above issues, Li et al (2022a; 2022b).
established a compressed variance component mixed model
method, named 3VmrMLM, to detect QTNs, QEIs, and QQIs
while controlling for all the possible polygenic backgrounds. It
reveals epistatic effects by reducing the number of variance
components, while ensuring high statistical power. Additionally,
the method efficiently reduces computation time and effectively
addresses potential confounding factors arising from various
polygenic backgrounds.

A number of gene-by-gene interactions associated with
flowering time have been identified in Arabidopsis. For example,
Zhao et al. (2022) identified a novel flowering repressor, UBAZc,
and showed that the expression of a key flowering repressor gene,
FLM, is promoted by inhibiting the histone modification
H3K27me3, thereby suppressing premature flowering in plants.
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Hanano and Goto (2011) found that the interaction of FD with
TFL1 by BiFC assay induces Arabidopsis flowering repressor genes
to fine-tune flowering time and inflorescence meristem tissue
development, which in turn affects flowering time. However, most
gene-by-gene interactions related flowering in Arabidopsis have
been obtained by biological methods such as transcriptome analysis,
and few gene-by-gene interactions have been identified by GWAS.

In this study, QQIs and QTNs for eleven flowering-related traits
in natural populations of Arabidopsis were investigated using
3VmrMLM with data from https://www.Arabidopsis.org.
Differentially expressed genes were identified under temperature,
photoperiod, and vernalization treatments. Candidate genes and
gene-by-gene interactions were identified by functional enrichment,
haplotype and phenotypic difference analysis. Epistasis for
flowering-related traits of Arabidopsis will help identify
interacting genes and provide references for studying epistasis in
other crops.

Materials and methods
Genotypic and phenotypic data

The dataset of Arabidopsis (Atwell et al.,, 2010) including the
phenotypic and genotypic data were obtained from https://
www.Arabidopsis.org. The dataset consisted 23 flowering-related
traits, 199 individuals, and 216,130 markers.

Among 23 traits, we focused on eleven traits related to flowering
under three different environmental conditions, including
temperature, photoperiod, and vernalization treatments. They were
Days to flowering time under Long Day (LD), Days to flowering time
under Long Day with vernalization at 4°C during 5 weeks (LDV),
Days to flowering time under Short Day with vernalization at 4°C
during 5 weeks (SDV), Days to FT under LD with vernalization for 0
weeks, 2 weeks, 4 weeks, 8 weeks (OW, 2W, 4W, 8W), Flowering time
at 10°C, 22°C (FT10, FT22), leaf number at flowering time at 10°C,
22°C (LN10, LN22) (Supplementary Data.zip).

To explore the relationship among the above flowering-related
traits, we computed the Pearson correlation coefficients (PCCs)
using the cor.test function in R (Version 4.2.1) and generated a
phenotypic correlation heatmap using the ggcorrplot function from
the ggcorrplot package. A hierarchical cluster analysis of the
phenotypes was also performed using the hclust function in R to
divide traits into groups that correlated more significantly into the
same group (Figure 1A).

GWAS method

To rapidly and accurately analyze epistasis for GWAS, we
combined Levene’s test (Brown and Forsythe, 1974) with
3VmrMLM. Firstly, we conducted Levene’s test from the OSCA
software tool (http://cnsgenomics.com/software/osca; Zhang et al.,
2019) for mining the potential epistatic single nucleotide
polymorphisms (SNPs) as well as alleviating computational
burden. We utilized “~-vqtl -mtd 2” for Levene’s test with median
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and “--maf 0.01” for removing data with minor allele frequency
(MAF) < 0.01 in OSCA, resulting in the top 5,000 loci for each trait.
Subsequently, we used the IIIVmrMLM package (https://
github.com/YuanmingZhang65/IIIVmrMLM; Li et al, 2022b) in
R to detect QQIs and QTNs, with parameter set to “Epistasis”.
3VmrMLM determines the significance of QQIs or QTNs using
either Bonferroni correction (P-value < 0.05/[m X (m-1)]/2, where
m is the number of markers) for significant association or a
logarithm of odds (LOD) score of 3.0 for suggestive association,
either criterion indicates a significant association with the traits. We
used V}, = Vepi + Viaaa + V; (Figure 2) for each trait to calculate the
proportion of the sum of epistatic variance (V) to the phenotypic
variance (V},), where V44 is the sum of additive variance of detected
QTNs and V; is the residual variance.

Identification of known genes

We identified genes located within a 20 kb distance around
significant loci, specifically focusing on known genes that have been
previously reported in relevant articles. Then the Arabidopsis
Information Resource (TAIR) (https://www.arabidopsis.org/) and
National Center for Biotechnology Information (NCBI) (https://
www.ncbi.nlm.nih.gov/) were employed for gene annotation.
Known gene mining involved three steps. First, extracting genes
within a 20 kb region around significant loci detected by
3VmrMLM from the Arabidopsis gene library downloaded from
TAIR. Second, screening for genes impacting flowering-related
traits and containing relevant keywords. Third, confirming the
association between genes and flowering time in Arabidopsis, as
well as their confirmed epistatic interactions with other genes by
retrieving literature from TAIR and NCBI. Finally, known genes
will be identified.

Differential expression and functional
enrichment analyses

After excluding known genes reported in the literature, we
performed differential expression analysis on the remaining
unreported genes using the Gene Expression Omnibus (GEO)
database (https://www.ncbinlm.nih.gov/geo/). We utilized the
GSE197581, GSE190748, and GSE40455 series for targeting
differentially expressed genes (DEGs) in response to different
temperature, photoperiod, and vernalization treatments. The
GSE197581 series included two samples of Arabidopsis at 22°C and
10°C, with three biological replicates. The GSE190748 series consisted
samples subjected to long-day (16h light/8h dark) and short-day (8h
light/16h dark), with two biological replicates. The GSE40455 series
included samples to four weeks of vernalization and samples
subjected without vernalization treatment, with four biological
replicates. For the GSE190748 and GSE40455 series, we used the
“analyze with GEO2R” tool to identify genes with an absolute
log,FoldChange greater than 1 and a P-value less than 0.05. For
the GSE197581 series, we used the provided data from the website
and identify genes with an absolute log,FoldChange greater than 1
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FIGURE 1
(A) Pearson correlation coefficients and correlation clustering of flowering-related traits. The lower diagonal represents the correlation coefficients, and the
red boxes indicate the clustering results. (B) Distribution of QQls, QTNs, and known genes across all chromosomes for eleven flowering-related traits.

and the false discovery rate (FDR) less than 0.05. Subsequently, the ~ based functional enrichment analysis, we submitted the above
DEGs obtained above were intersected with the detected unreported ~ flowering-related DEGs information to the DAVID platform
genes around QQIs and QTNs, resulting in identification of DEGs  (https://david.ncifcrf.gov/), and selected the enriched gene ontology
associated with flowering-related traits. For gene ontology (GO)  terms with a significance threshold of P-value less than 0.05.
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FIGURE 2
Phenotypic variation explained by the epistatic and additive effects for eleven flowering-related traits. (A—K) correspond to the traits LD, LDV, SDV,
FT10, FT22, OW, 2W, 4W, 8W, LN10, and LN22, respectively.

Frontiers in Plant Science 265 frontiersin.org


https://david.ncifcrf.gov/
https://doi.org/10.3389/fpls.2023.1283642
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

Haplotype analysis for identifying
candidate genes

We used the HaploView software (Version 4.1) to perform
linkage disequilibrium and haplotype block studies (Barrett et al.,
2005) based on the SNPs within these genes and 2 kb upstream of
them, which are obtained from GO enrichment analysis.
Meanwhile, we employed the t.test function in R to examine the
phenotypic differences among haplotypes. Candidate genes were
identified as those exhibiting significant phenotypic differences
across various haplotypes. This approach allowed us to identify
potential genes associated with the traits of interest.

Results
Phenotypic correlation and clustering

PCCs were obtained from correlation analysis of eleven
quantitative traits (Figure 1A). The phenotypic correlations of all
flowering-related traits showed positive. There were two pairs of
PCCs more than 0.90, 2W and 4W (PCCs = 0.93), FT22 and LN22
(PCCs = 0.92), and only one pair of PCCs less than 0.50, LN10 and
8W, but their PCCs also reached 0.48. The above results indicate
that eleven traits play an important role in the regulation of
flowering time in Arabidopsis, and there is a very significant
positive correlation between any two pairs.

Hierarchical cluster analysis of all traits by the hclust function in
R ranked the phenotypes with more significant correlations and
divided them into three groups (Figure 1A). The first group was
SDV and 8W with a correlation coefficient of 0.69; the second group
was OW, FT22, and LN22 with PCCs ranging from 0.83 to 0.92; and
the third group was FT10, LN10, LDV, LD, 2W, and 4W with PCCs
ranging from 0.68 to 0.93. Clustering of these phenotypes revealed a
higher overall correlation between these traits and a greater
likelihood of interactions between loci, which was further
confirmed following by the pleiotropy of known genes (Table 1).

Epistasis mining using 3VmrMLM

After Levene’s test in the raw dataset, 3VmrMLM used in the
top 5,000 markers detected 130 QQIs (107 significant and 23
suggested QQIs; Supplementary Table 1) and 89 QTNs (61
significant and 28 suggested QTNs; Supplementary Table 2) that
were strongly associated with the flowering-related traits.

Overall, QQIs and QTN are distributed on all chromosomes
(Figure 1B). For QQIs, 3VmrMLM detected a large number of loci,
with the highest distribution on chromosome 1 and 5, with 71 and
70 loci, respectively. Although it has a relatively small distribution
on chromosomes 2 and 4, it also has more than 35 loci (Figure 1B).
For QTNs, the distribution of loci on chromosome 2 was relatively
uniform, with the number ranging from 14 ~27, except for a
minimum of 7 loci on chromosome 2 (Figure 1B). On
chromosome 1 and chromosome 5, QQIs and QTNs are relatively
large, and we can analyze that these two chromosomes have a great
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influence on the genetic variation of flowering-related traits
(Figure 1B). In addition, the number of QQIs far exceeded the
number of QTNs, indicating that epistasis is a very important link
to explore the genetic mechanism of traits related to flowering time,
and the interaction between loci is relatively common.

Six of the 11 traits obtained more than 10 QQIs (Supplementary
Table 1). FT22 detected the most QQIs, reaching 19 QQIs, with P
values of 2.965E-09~1.386E-04, LOD scores of 3.154~7.645,
respectively, and 7 positive effects (Figure 3B; Supplementary
Table 1). FT10 detected 11 QQIs with P values of 2.293E-10~
9.951E-05 and LOD scores of 3.289~8.730, where SNP72738 on
chromosome 2 and SNP167863 on chromosome 5 also were the
QQIs for 2W and LN22 traits, respectively (Supplementary
Figure 1C; Supplementary Table 1). LN10 detected 16 QQIs,
second only to FT22, with P values of 1.327E-10~5.173E-05 and
LOD scores of 3.558~8.962, respectively (Figure 3D; Supplementary
Table 1). LN22 detected 10 QQIs, with P values of 6.250E-
10~1.190E-04 and LOD scores of 3.216~8.304, respectively
(Supplementary Figure 1G; Supplementary Table 1). LDV
detected 14 QQIs, with P values of 4.326E-15~1.174E-04 and
LOD scores of 3.221~13.365, 7 positive effects, respectively
(Figure 3A; Supplementary Table 1). SDV detected 14 QQIs, with
P values of 4.136E-11~1.379E-04, LOD scores of 3.156~9.457, and 4
positive effects, respectively. Notably, SNP200347 on chromosome
5 was involved in interactions with both SNP179236 and
SNP32689. Trait OW detected 12 QQIs, with P values of 2.605E-
14~1.318E-05 and LOD scores of 4.123~12.608, respectively
(Supplementary Figure 1D; Supplementary Table 1). Trait 2W
detected 14 QQIs, with P values of 3.985E-09~8.515E-05 and
LOD scores of 3.353~7.520, respectively, and SNP72738 was
found to be involved in intercrossing with SNP2739 and
SNP72795 simultaneously in this trait (Figure 3C;
Supplementary Table 1).

8 QQIs were detected for both 4W and 8W, with P values of
5.906E-13 ~3.681E-06, LOD scores of 4.652~11.266, respectively,
and only 2 positive effects for 4W (Supplementary Figure 1E;
Supplementary Table 1). P values of 4.899E-08~1.064E-04 and
LOD scores of 3.261~6.462 for 8W (Supplementary Figure 1F;
Supplementary Table 1). Although LD obtained the least number of
QQIs, only four, with P values of 2.792E-08~8.968E-07 and LOD
scores of 5.242~6.699, respectively, the phenotypic contribution of
all four pairs of epistatic loci was >4%, with the pair SNP66960 and
SNP71678, located on chromosome 2, having the largest percentage
of phenotypic variance explained (PVE) of all QQIs at 8.187%.
(Supplementary Table 1).

For QTNs, a total of 89 significant/suggestive QTNs were
detected to be associated with at least one of the 11 flowering-
related traits (Figure 3; Supplementary Figure 1; Supplementary
Table 2). Among these QTNs, 3, 4, 8, 10, 6, 6, 13, 11, 11, 13, and 7
QTNs were associated with LD, LDV, SDV, FT10, FT22, 0OW, 2W,
4W, 8W, LN10, and LN22, respectively (Supplementary Table 2),
and the PVE of all QTNs for each trait were 22.193%, 21.875%,
22.864%, 34.906%, 18.446%, 25.868%, 24.760%, 28.297%, 34.328%,
45.205%, and 28.797%, respectively, with P values ranging from
1.757E-10 to 1.986E-04 and LOD scores of 3.006 to 8.843 (Figure 2;
Supplementary Table 2). Notably, SNP31054 and SNP101868 on
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TABLE 1 Pleiotropic genes reported around QQIs/QTNs.

10.3389/fpls.2023.1283642

Gene Bp Marker QQI/QTN Trait Annotation Reference
AGL17 chr2:9618207..9622163 SNP66970 QQI LD MADs domain containing protein involved in Han et al., 2008
(AT2G22630) promoting flowering
SNP66990 QQI LN22
SNP67001 QQI FT22
LUH chr2:13866721..13872246 | SNP72705 QTN 2W WD40 repeat and LUFS domain containing protein that is Stahle et al., 2009
(AT2G32700) similar to LUG
SNP72736 QQI FT22
SNP72738 | QQI FT10
BOP2 chr2:17237727..17240609 | SNP77354 QQI 2W cytoplasmic and nuclear-localized NPR1 like protein Chahtane
(AT2G41370) et al, 2018
SNP77376 | QQI LN10
ATHI chr4:15914670..15918153 =~ SNP157833 = QQI LDV increased levels of ATH1 severely delay flowering Li et al, 2012
(AT4G32980) SNP157883 = QQI
ow
CPL3 chr4:460395..461246 SNP125917 | QTN 2W Myb-related protein similar to CPC Zhang and
(AT4G01060) Shen, 2022
SNP125988 = QTN FT10
FIGURE 3

Chord diagrams for QQls and QTNs detected by 3VmrMLM. (A—-D) correspond to the traits LDV, FT22, 2W, and LN10, respectively. The inner circle
displays the detected QQls or QTNs (/\ indicates overlapping loci between QQls and QTNs), the height of red dots represents the epistatic effects
of QQI pairs, and the height of blue dots represents the additive effects of corresponding QTNs. The outer circle indicates the known genes in

vicinity of significant loci.
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chromosomes 1 and 3 were involved in both 2W and 4W
phenotypic variants, and in addition, SNP103582 on chromosome
3 was detected on both LN10 and FT10 (Figure 3D; Supplementary
Figure 1C; Supplementary Table 2).

The total PVE for each trait, considering both additive and
epistatic effects, was calculated using the IIIVmrMLM package in R,
and the results were visualized in Figure 2. The PVE of QQIs for the
traits LD, LDV, and FT22 were 25.856%, 23.438%, and 19.163%,
respectively, as shown in Figures 2A, B, E. Accordingly, these values
were higher than the PVEs of the corresponding QTNs. The
analysis of QQIs and QTNs revealed that most locus exhibited
either epistatic or additive effects in contributing to phenotypic
variation of each trait (Figure 2; Supplementary Tables 1, 2).
However, we also identified some specific SNPs, such as
SNP42592 for LDV, both SNP103582 and SNP29978 for LN10,
SNP200347 for SDV, SNP125854 for OW, SNP101868 for 4W, both
SNP111498 and SNP181717 for 8W, which were involved in both
additive and epistatic effects (Figures 3A, D; Supplementary
Figures 1B, D, E, F; Supplementary Tables 1, 2).

Known genes around QQls and QTNs for
flowering-related traits in Arabidopsis

TAIR (https://www.arabidopsis.org/) was used to mine the
known genes around QQIs and QTNs (20 kb upstream and
downstream of each locus). A total of 34 known genes were
found to be located around the significant/suggested loci,
including 29 QQIs and 12 QTNs (Figure 3; Supplementary
Figure 1; Supplementary Table 3).

For QQIs, 3, 4, 2, 1, 6, 4, 2, 0, 1, 5, and 1 known genes were
explored in LD, LDV, SDV, FT10, FT22, 0W, 2W, 4W, 8W, LN10,
and LN22, respectively (Supplementary Table 3). Specifically, the
known genes BRN2 (ATI1G03457, near SNP1471) and FKFI
(AT1G68050, near SNP44317) associated with LDV (Figure 3A;
Supplementary Table 3) interact with the AtBRN and CDF2 protein
to promote or repress flowering in Arabidopsis, respectively (Kim
et al,, 2013; Lee et al,, 2018). The known gene SPA4 (AT1G53090)
associated with FT22 is located near SNP32482 (Figure 3B;
Supplementary Table 3). There has been reported that SPA4 is
involved in regulating photoperiodic flowering in Arabidopsis and
interacts with the flower inducer CO to regulate flowering stability,
while it interacts with PAPI and PAP2 and is involved in repressive
regulation at the transcriptional level, affecting light conditions
growth of Arabidopsis under light conditions (Laubinger et al,
2006; Maier et al., 2013). Two known genes, FT (AT1G65480) and
FASI (AT1G65470), were detected simultaneously near SNP42063
(Figure 3D; Supplementary Table 3), and two known genes, ASAI
(AT3G02260) and AGL4 (AT3G02310), were detected near
SNP81934 under LN10 (Figure 3B; Supplementary Table 3),
where FT interacts with FD(AT4G35900) and 14-3-3 proteins to
produce a florigen-activation complex, control flowering time, and
correct the expression of floral homologs to promote flowering
(Collani et al., 2019); the known gene AGL4 interacts with DNA
and may be involved in forming a tetrameric DNA-binding
complex to control flower development and thus affect flowering
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time (Jetha et al., 2014). The known gene HOSI (AT2G39810, near
SNP76337) associated with trait OW (Supplementary Figure 1D;
Supplementary Table 3) is localized to the nuclear membrane and
interacts with Nup96, and loss of function of Nup96 would lead to
disruption of HOSI protein, resulting in excessive accumulation of
CO protein, a key activator of flowering under long-day that
suppresses early flowering in Arabidopsis under long-day (Lazaro
et al., 2015).

For QTNs, 1, 2, 1, 2, 3, 1, and 2 known genes were explored in
LDV, SDV, FT10, FT22, 2W, 4W, and LN22, respectively, and only
QQI-related genes were obtained for the remaining four traits
(Supplementary Table 3). Among the significant loci associated
with SDV, FD (AT4G35900) was found to be located near
SNP159681 (Supplementary Figure 1B; Supplementary Table 3),
and it was shown that FD acts as a transcriptional activator of floral
tissue identity genes to regulate flowering time in Arabidopsis, while
the FD transcription factor was shown to interact with TFLI by
BiFC assay to induce flowering time and inflorescence meristem
tissue by Arabidopsis repressor genes development is fine-tuned
(Hanano and Goto, 2011; Gorham et al., 2018). In the case of FT22,
two known genes, AN (AT1G01510) and AGL28 (AT1G01530),
were detected simultaneously near SNP350 (Figure 3B;
Supplementary Table 3), and AN has been shown to control leaf
morphology and thus indirectly affect flowering time in
Arabidopsis. (Stern et al., 2007); AGL28 can act as a flower
activator by up-regulating the expression of known flower
promoters within the autonomous pathway, and its
overexpression will up-regulate the expression of FCA and
LUMINIDEPENDENS, leading to early flowering in Arabidopsis
(Yoo et al,, 2006). One known gene associated with LDV, MBR2
(AT4G34040), located near SNP158615 (Figure 3A; Supplementary
Table 3), was shown in earlier studies to promote flowering through
a PFT1 dependent and independent mechanism (Inigo et al., 2012).
The gene SPAI (AT2G46340, near SNP80254) is known to be
associated with 2W (Figure 3C; Supplementary Table 3), and is a
key repressor of light signaling in the ovary to regulate flowering
time by regulating the photoperiod (Ranjan et al., 2011). Near the
QTN SNP135761, which is significantly associated with LN22,
CRY1 (AT4G08920; Supplementary Figure 1G; Supplementary
Table 3) is known to mediate blue light to promote flowering in
Arabidopsis, which is more sensitive to flowering photoperiod
under blue light, suggesting that CRY1 plays an important role in
flowering regulation (Mockler et al., 2003).

Interestingly, out of these 34 known genes, five pleiotropic genes
were involved in the performance variation of at least two traits in
terms of QQI or QTN (Table 1). In terms of QQI, the known gene
AGL17 (AT2G22630), which was detected around SNP67001,
SNP66970, and SNP66990 and was associated with FT22, LD,
and LN22 (Table 1; Figure 3B; Supplementary Figures 1A, G), has
been confirmed to play a role in the photoperiodic pathway of
Arabidopsis and is positively controlled by the photoperiodic
pathway regulator CO. It can promote the flowering of
Arabidopsis thaliana (Han et al, 2008). At the same time, the
known gene ATHI (AT4G32980, around SNP157833), which is
related to LDV and OW (Table 1; Figure 3A; Supplementary
Figure 1D), is necessary for controlling the morphology of
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Arabidopsis flower stalk. In addition, there is an interaction between
ATHI and KNAT2, and the protein complex plays a role in
regulating flower pedicle development (Li et al, 2012). BOP2
(AT2G41370), detected near SNP77354 and SNP77376, is
associated with two traits, 2W and LN10 (Table 1; Figures 3C,
D), and studies have shown that the LFY and BOP2 proteins
physically interact to inhibit bracteal formation and reduce
flowering time in a short period of time under certain conditions
(Chahtane et al, 2018). In terms of QTN, a known gene CPL3
(AT4G01060, near SNP125917 and SNP125988) was detected to
have additive effects on both 2W and FT10 (Table 1; Figure 3C;
Supplementary Figure 1C), and CPL3 gene has pleiotropic effects on
flowering development and epidermal cell size of Arabidopsis by
regulating internal duplication (Zhang and Shen, 2022).

Notable is, known gene LUH (AT2G32700), located near
SNP72736, SNP72705, and SNP72738, exhibited associations with
FT22, 2W, and FT10 (Table 1; Figures 3B, C; Supplementary
Figure 1C). Furthermore, it displayed both additive and epistatic
effects (Table 1; Figures 3B, C; Supplementary Figure 1C). LUH
showed epistatic effect at FT10 and FT22, and additive effect at 2W. It
was shown that LUH interacts with YAB to regulate distal axis
pattern, lateral organ growth, and inflorescence foliation. At the
same time, its leaf-based signaling pathway promotes paraxial cell
identity in leaves and initiation and maintenance of embryo bud
apical meristem SAM (Stahle et al., 2009). More detailed information
about the genes surrounding QTNs and QQIs identified by
3VmrMLM can be found in Supplementary Table 3.

Response to different treatments and GO
enrichment pathway

We conducted a comprehensive analysis of gene expression
changes under different treatments to gain insights into their
responses. Through differential expression analysis on the unreported
genes, we successfully identified distinct expression patterns of the 35
genes (Supplementary Table 4). Specifically, we found 18 genes that
exhibited significant differential expression between 22°C and 10°C
treatments (Figure 4A; Supplementary Table 4), 15 were significantly
upregulated at 10°C, while only three genes showed significant
downregulation at this temperature. For instance, AT3G55980,
located near the SNP120225 locus associated with LN22, exhibited a
log,FoldChange of 2.79 and a P-value of 1.05E-07, as illustrated in the
upper right corner of the volcano plot. This gene was found to be
enriched in the nucleus (Figure 4A; Supplementary Table 4). Similarly,
14 genes showed significant differential expression between long-day
and short-day treatments (Figure 4B; Supplementary Table 4),
suggesting their involvement in light-dependent processes.
Specifically, eight genes exhibited significant upregulation under
short-day treatments, while six genes were significantly upregulated
under long-day treatments. Additionally, we observed differential
expression in 3 genes between 4 weeks and 0 weeks treatments
(Figure 4C; Supplementary Table 4), highlighting their role in a
time-dependent response. These findings offer valuable insights into
the biological underpinnings of the newly identified genes associated
with flowering-related traits in Arabidopsis.
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To gain further functional insights, we performed GO functional
enrichment analysis on the identified DEGs. This analysis revealed
that out of the 35 DEGs, 26 genes were significantly enriched in 4
distinct GO terms associated with various biological processes
(Figure 4D). Furthermore, it was shown that 20 genes located in
proximity to QQIs and QTNs were specifically enriched in the
nucleus (GO:0005634) (Figure 4D). For example, AT3G55980,
known as AtSZFI, has been reported to be associated with the
nucleus and is involved in the Arabidopsis salt stress response (Sun
et al.,, 2007). Notably, AT4G01870 and AT4G31800 were found to be
simultaneously associated with three important biological processes
(Figure 4D). Specifically, AT4G31800, known as WRKY18, enhances
developmentally regulated defense responses in transgenic plants
without causing significant negative effects on plant growth
(Pandey et al.,, 2010). On the other hand, AT4G01870 is involved in
the chemical reactions and pathways leading to the synthesis of
camalexin, an indole phytoalexin (https://www.arabidopsis.org/). In
addition, we observed three genes AT1G52040, AT4G03230, and
AT1G48930 related to carbohydrate binding (Figure 4D), with
ATI1G48930 possessing a carbohydrate-binding structural domain
(CBM49) that plays a role in Arabidopsis root hair and endosperm
development, among other functions (del Campillo et al., 2012).
Interestingly, we identified a pair of QQIs, ATIG09950 and
ATIGI12990, in close proximity to the SNP5324 and SNP7584 loci,
respectively (Table 2). ATIG09950 is involved in cellular
components. It affects seed germination and early seedling growth
by increasing sensitivity to abscisic acid (Ren et al., 2010). Meanwhile,
ATIGI12990 is associated with the regulation of the defense response
(GO:0031347) and the defense response against bacteria
(GO:0042742) for glycosyltransferase activity (https://

www.arabidopsis.org/).

Haplotype and phenotypic difference
analysis of candidate genes

To further validate the association between genes and
flowering-related traits, we performed haplotype analysis on the
SNPs within the 2 kb upstream regions of the 26 genes identified
from the GO enrichment analysis. In total, 20 candidate genes were
identified, which significant phenotypic differences were observed
among their haplotypes (Table 2). These genes were associated with
six different traits, namely LDV, SDV, FT10, FT22, LN10, and LN22
(Table 2). Among them, 16 genes were located near QQIs, while 4
genes were located near QTNss. It is worth noting that the loci near
ATI1G03445 and AT1G68040, which correspond to these genes, also
contain previously reported known genes. More detailed
information was listed in Table 2; Supplementary Table 5.

Figure 5 illustrates the analysis of ATI1G12990 (CDS coordinates
[5°-3’]: 4433605-4436102), AT4G01870 (CDS coordinates [5-3’]:
808376-810611), and AT3G62610 (CDS coordinates [5°-3’]:
23154630-23156585) to reveal intragenic variations impacting
flowering time and identify favorable haplotypes. Figure 5A
presents the linkage disequilibrium and haplotype block with 8
SNPs for the gene AT1G12990, located near the SNP7584 locus, a
QQI for FT22 (Table 2). After removing 53 missing values from the
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FIGURE 4

Volcano plots for expression values of (A) 18 genes under different temperature treatments (22°C vs. 10°C), (B) 14 genes under different photoperiod
treatments (long-day vs. short-day), and (C) 3 genes under different vernalization time treatments (4 weeks vs. O weeks). (D) Results of functional
enrichment analysis based on gene ontology. The genes highlighted within the red, blue, and green boxes belong to the group of significant DEGs
between 22°C vs. 10°C treatments, long-day vs. short-day treatments, and 4 weeks vs. 0 weeks treatments, respectively.

phenotypic data, the remaining 146 individuals were classified into
four haplotypes based on seven SNPs (SNP7613, SNP7614,
SNP7615, SNP7617, SNP7618, SNP7619, and SNP7620).
Haplotype IV (TGTGTTT) exhibited significantly higher median
phenotypic values for FT22 compared to the other three haplotypes
(Figure 5B). Haplotype IV consisted 25 individuals, among which
12 had a maximum phenotypic value of 250 for the FT22 trait, while
the other three haplotypes had values of 1, 4, and 1, respectively.
Additionally, a t-test demonstrated significant differences between
haplotype IV and haplotypes I (CGGGGTG, P-value = 5.65E-07), 11
(CGGGTTG, P-value = 9.16E-06), and III (TGGGTTG, P-value =
7.98E-07; Supplementary Table 5). Similarly, the candidate gene
ATIG09950 (CDS coordinates [5-3’]: 4433605-4436102), located
near the SNP5324 locus, showed an interaction effect with the
SNP7584 locus for the FT22 trait. Supplementary Figure 2A depicts
the linkage disequilibrium and haplotype block analysis using 11
SNPs. After removing 42 missing values from the phenotype data,
the remaining 157 individuals were divided into three haplotypes
based on seven SNPs (SNP5265, SNP5266, SNP5267, SNP5268,
SNP5269, SNP5271, and SNP5272). Supplementary Figure 2B
demonstrates significant differences between haplotype I
(ATATAGT) and haplotype III (GAGGTCT, P-value = 1.73E-02;
Supplementary Table 5). Therefore, we inferred that the candidate
genes AT1G12990 and AT1G09950 may interact with each other
and play a role in flowering time regulation in Arabidopsis.
Figures 5C, D present the haplotype block and phenotype
differences of the candidate gene AT4G01870, detected around the
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SNP126845 locus, a QQI for FT10 (Table 2; Supplementary
Table 5). Haplotype III (TTGTTT) exhibited the highest median
phenotypic values and showed significant differences with
haplotype I (GTCTGG, P-value = 4.20E-02) and haplotype II
(TTGTTG, P-value 6.87E-03; Supplementary Table 5).
Similarly, the candidate gene AT3G62610 was detected around the
SNP124387 locus, a QQI for LDV (Table 2; Supplementary
Table 5). Figures 5E, I illustrate the haplotype block and
phenotype differences. Hence, we suggest that the candidate genes
AT4G01870 and AT3G62610 may influence the flowering time
in Arabidopsis.

Additionally, the candidate gene AT4G01250 (CDS coordinates
[5°-3’]: 522530-524249) was detected around the SNP126164 locus,
a QTN for FT10, while the candidate gene AT4G00970 (CDS
coordinates [5°-3’]: 418327-421885) was detected near the
SNP125834 locus, a QTN for LN10 (Table 2; Supplementary
Table 5). Supplementary Figures 2C-F display the haplotype

block and phenotype differences of these two genes. We
hypothesize that the candidate genes AT4G01250 and AT4G00970
may also affect the flowering time in Arabidopsis.

In summary, we propose that the four candidate genes
mentioned above, located near QQIs, may exert potential
influence on their corresponding traits, among them AT1G12990
and AT1G09950 might have gene-by-gene interaction.
Furthermore, several candidate genes near QTNs exhibited
significant differences in phenotypes across haplotypes
(Supplementary Table 5). However, further experimental
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TABLE 2 Results of 20 candidate genes and functional annotation.

10.3389/fpls.2023.1283642

Trait QQI/QTN Marker Candidate Gene Bp Annotation
LDV QQI SNP1471 ATI1G03445 chr1:854410..859701 erine-threonine protein phosphatase
QQI SNP11417 ATIGI9050 chr1:6577833..6579314 two-component response regulator
QQI SNP44317 AT1G68040 chr1:25502864..25505263 = S-adenosyl-L-methionine-dependent methyltransferases
superfamily protein.
QQI SNP124387 = AT3G62610 chr3:23154630..23156585  regulates flavonol biosynthesis.
QQI SNP161720 = AT4G39260 chr4:18273829..18275216 | verprolin
SDV QQI SNP66659 AT2G21830 chr2:9303713..9306025 encodes a putative DegP protease.
QQI SNP128333 = AT4G03230 chr4:1418841..1423337 G-type lectin S-receptor-like Serine/Threonine-kinase.
QTN SNP90818 AT3G16540 chr3:5626290..5628857 encodes a putative DegP protease.
FT10 QQI SNP126845 = AT4G01870 chr4:808376..810611 tolB protein-like protein
QTN SNP126164 = AT4G01250 chr4:522530..524249 involved in regulation of dark induced leaf senescence.
FT22 QQI SNP5324 ATI1G09950 chr1:3240531..3241863 response to aba and salt 1
QQI SNP7584 ATIG12990 chr1:4433605..4436102 beta-1,4-N-acetylglucosaminyltransferase family protein
QQI SNP73495 AT2G34010 chr2:14368536..14370438 | verprolin
LN10 QQI SNP14480 AT1G23390 chr1:8308965..8310916 kelch domain-containing F-box protein
QQI SNP119021 = AT3G54150 chr3:20050564..20052931 | S-adenosyl-L-methionine-dependent methyltransferases
superfamily protein
QTN SNP125834 = AT4G00970 chr4:418327..421885 encodes a cysteine-rich receptor-like protein kinase.
QTN SNP151832 = AT4G23180 chr4:12137995..12140930 | encodes a receptor-like protein kinase.
LN22 QQI SNP45945 ATI1G70090 chr1:26400694..26402815 = encodes a protein with putative galacturonosyltransferase activity.
QQI SNP90174 AT3G15750 chr3:5334844..5336485 essential protein Yael
QQI SNP120225 = AT3G55980 chr3:20776220..20778952 = CCCH-type zinc finger protein involved in salt stress and
immune responses.

verification is required to determine whether these candidate genes
interact with each other in regulating flowering in Arabidopsis.

Discussion
Levene’s test for potential epistasis

Due to the substantial computational requirements in QQI
detection, particularly when considering the population structure
and polygenic backgrounds in 3VmrML), it is advisable to limit
the number of markers to less than 5,000 (Li et al., 2022a; Li et al,,
2022b). To obtain the potential epistasis and alleviate the
computational burden, we employed Levene’s test, which can be
used to detect potential loci for heterogeneity of variances due to
potentially interacting SNPs such as QTN-by-QTN interactions
(Zhang et al., 2019). However, the direct application of Levene’s test
to the raw data did not reveal any significant interacting loci due to
the large number of markers and the stringent threshold of the
Bonferroni correction. Moreover, potential limitations of Levene’s
test include no covariates are allowed and only equality of variances,
but not means, can be tested (Dumitrascu et al., 2019), that is, it
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could neither consider the population structure nor obtain the effect
estimate of markers. Therefore, for each trait, we firstly selected the
top 5,000 significantly associated variance-controlling SNPs
detected by Levene’s test, which also exhibited that P values were
less than 0.05, and then performed QQI detection of 3VmrMLM
using these top 5,000 loci for input. Combining potential epistasis
loci selection with 3VmrMLM significantly improves detection
accuracy while greatly reducing computation time.

Genetic basis for flowering-related traits
in Arabidopsis

3VmrMLM detected 130 QQIs and 89 QTNs significantly
associated with 11 flowering-related traits in the analysis of
epistasis. Among them, the PVE of QQIs for the traits LD, LDV,
and FT22 were 25.856%, 23.438%, and 19.163%, respectively
(Figures 2A, B, E), which were higher than those of QTNs at
22.193%, 21.863%, and 18.446% (Figures 2A, B, E), indicating that
QQIs contribute more to phenotypic variation than QTNs for these
three traits and epistasis is a non-negligible factor contributing to
phenotypic variation. Notably, A pair of loci SNP66960 and
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FIGURE 5

Linkage disequilibrium and haplotype block analysis for the candidate genes (A) ATIG12990 associated with FT22, (C) AT4G01870 associated with
FT10, and (E) AT3G62610 associated with LDV, respectively. (B) Comparison of FT22 across various haplotypes | (CGGGGTQ), Il (CGGGTTG), Il
(TGGGTTG), and IV (TGTGTTT). (D) Comparison of FT10 across various haplotypes | (GTCTGG), Il (TTGTTG), and Ill (TTGTTT). (F) Comparison of LDV
across various haplotypes | (AAAG), Il (AGTA), and Il (CGTA). In the boxplots, the center line represents the median, the box limits indicate the upper
and lower quartiles, and the whiskers extend 1.5 times the interquartile range. Data points beyond the whiskers are considered outliers and plotted
individually. The number of stars indicates the significance level from t-test (*0.05, **0.01, ***0.001).

SNP71678, located on chromosome 2 under LD, had the highest
PVE among all traits in terms of QQI, at 8.187% (Supplementary
Table 1). In its vicinity, the known gene SVP (AT2G22540;
Supplementary Figure 1A; Supplementary Table 3) has been
shown to be an important regulator during the transition to
flowering and floral development, while SVP interacts with
OsMADS22 and OsMADS47 to interfere with normal Arabidopsis
flower development (Fornara et al., 2008).

The known genes BRN2 (AT1G03457) located near QQI
SNP1471 (P-value = 4.32628E-15, LOD = 3.2212) and FKFI
(AT1G68050) located near QQI SNP44317 (P-value = 1.37721E-
07, LOD = 5.8963; Figure 3A; Supplementary Table 3) are both
associated with LDV and interact with AtBRN, CDEF2 protein to
promote or repress flowering in Arabidopsis, respectively (Kim
et al,, 2013). The known gene SPA4 (AT1G53090) associated with
FT22 is located near QQI SNP32482 (P-value=1.35181E-08,
LOD=7.0044; Figure 3B; Supplementary Table 3). SPA4 is
involved in regulating Arabidopsis photoperiodic flowering and
was found to interact with both CO, PAPI and PAP2 to jointly
regulate flowering stability and growth under light conditions
(Laubinger et al,, 2006; Maier et al., 2013).Two known genes, FT'
(AT1G65480) and FAS1 (ATI1G65470), were detected
simultaneously near QQI SNP42063 (P-value=9.97104E-07,
LOD=5.6226) under the LN10 trait (Figure 3D; Supplementary
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Table 3), where FT interacts with FD (AT4G35900), and 14-3-3
proteins interact to produce florigen-activation complex to control
flowering time and correct expression of floral homologs and
promote flowering (Collani et al., 2019). On the other hand, the
known genes with QTN effects FD (AT4G35900, near QTN
SNP159681; Hanano and Goto, 2011; Gorham et al., 2018),
AGL28 (AT1G01530, near QTN SNP350; Yoo et al., 2006), MBR2
(AT4G34040, near QTN SNP158615; Inigo et al., 2012) and 8 other
genes have been reported to influence flowering through different
pathways to exert either facilitative or repressive effects on flowering
(Figure 3; Supplementary Figure 1; Supplementary Table 3).

Note that we also uncovered five pleiotropic known genes that act
on multiple traits in terms of QQI or QTN. The known gene AGLI17
(AT2G22630), detected around QQI SNP67001, SNP66970, and
SNP66990, is associated with three traits FT22, LD, and LN22
(Table 1; Figure 3B; Supplementary Figures 1A, G). It has been
shown to be positively regulated by the photoperiod pathway
regulator CO to promote flowering in Arabidopsis (Han et al,
2008). The known genes ATHI (AT4G32980, around QQI
SNP15783; Table 1; Figure 3A; Supplementary Figure 1D)
associated with LDV and OW are required for the control of
Arabidopsis flower stem morphology and interact with KNAT2 to
help regulate flower tip development (Li et al., 2012). BOP2
(AT2G41370) was detected around QQI SNP77354 and QQI
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SNP77376 were detected in the vicinity, associated with 2W and
LN10 (Table 1; Figures 3C, D), and BOP2 proteins interaction with
LFY has been reported to shorten flowering time in a short period of
time (Chahtane et al,, 2018). The known gene CPL3 (AT4G01060,
around QTN SNP125988 and QTN SNP125917) was detected to
have additive effects on both FT10 and 2W (Table 1; Figure 3C;
Supplementary Figure 1C), confirming a pleiotropic effect on
flowering development in Arabidopsis (Zhang and Shen, 2022). The
known gene LUH (AT2G32700, around QQI SNP72736, QTN
SNP72705, and QQI SNP72738) was uncovered to be involved not
only in three traits FT22, 2W, and FT10, but also found to have
additive and epistatic effects (Table 1; Figures 3B, C; Supplementary
Figure 1C), and studies showed that LUH interacts with YAB and
plays a regulatory role on lateral organ growth and inflorescence leaf
management (Stahle et al., 2009). The phenotypic association results
of BOP2 (AT2G41370) and CPL3 (AT4G01060) were consistent with
the phenotypic clustering results shown in Figure 1A. Additionally,
the traits LN22 and FT22 associated with AGLI7 (AT2G22630), as
well as the traits 2W and FT10 associated with LUH (AT2G32700),
were also grouped together (Figure 1A; Table 1). These findings
further support the reliability of our analysis.

Except for known genes, we also identified 20 candidate genes in
this study (Table 2). Among them, ATI1G12990, AT1G09950,
AT4G01870, and AT3G62610, located near QQIs, specially, former
two genes showed potential gene-by-gene interactions related to
flowering traits in Arabidopsis. Specifically, AT1G12990 was found
in proximity to the SNP7584 locus, while ATI1G09950 was found near
the SNP5324 locus, and remarkably, these loci coincided with a
significant pair of QQIs associated with the trait FT22 (P-value =
7.08064E-05, LOD = 3.4287; Supplementary Table 1). AT4G01870
was detected near the SNP126845 locus, forming a QQI with
SNP185421 for FT10 (P-value = 5.12209E-08, LOD = 6.443;
Supplementary Table 1). Additionally, AT3G62610 was found
around the SNP124387 locus, forming a QQI with SNP69012 for
LDV (P-value = 4.70143E-06, LOD = 4.5505; Supplementary
Table 1). These candidate genes also showed differential expression
under 22°C vs. 10°C and long-days vs. short-days treatments
(Figures 4B, C; Supplementary Table 4). ATIGI2990 and
AT4G01870 were associated with the regulation of defense response
(GO:0031347) and defense response to bacterium (GO:0042742),
while AT1G09950, AT4G01870, and AT3G62610 were involved in
nucleus-related functions (GO:0005634). Notably, significant
phenotypic differences were observed across different haplotypes.
Therefore, we hypothesize that these candidate genes, namely
ATIGI2990, AT1IG09950, AT4G01870, and AT3G62610, in
proximity of QQIs, may play a role in influencing flowering in
Arabidopsis. Specially, ATIG12990 and AT1G09950 might exist
potential gene-by-gene interaction. However, further experimental
validation, such as functional validation, is necessary to explore these
gene-by-gene interactions for flowering-related traits.

Methods comparison

To better analyze the QQIs results obtained from the
3VmrMLM method, we performed epistasis analysis in the raw
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dataset using PLINK (Purcell et al.,, 2007). The command used for
detecting pairs of epistatic loci was “plink —file genotype —pheno
phenog.txt —epistasis —epil P-value —allow-no-sex —out result”, with
a threshold using Bonferroni correction. The number of significant
interacting loci detected for each trait using PLINK ranged from
2,903 to 41,132 (Supplementary Table 6). It is well-known that
PLINK uses a simple linear model, which computes quickly even
with large sample sizes, but it does not consider the polygenic
background, leading to an increased false positive rate (Purcell et al,
2007). In addition, except for trait OW, the number of significant
QQIs detected by PLINK that overlap with those detected by
3VmrMLM ranged from 1 to 34. Among them, for trait FT22,
PLINK detected a total of 41,132 QQIs, out of which 34 were
simultaneously detected by 3VmrMLM (Supplementary Table 6).
This suggests that QQIs detected by 3VmrMLM are likely to be
potential interacting loci.

We also employed the REMMA method (Ning et al., 2018), a
mixed linear model-based approach, for conducting epistasis analysis
in the raw dataset. This method incorporates both additive and
dominance relationship matrices, offering theoretical control over
Type I errors when examining pairwise epistatic SNPs. Among the
eleven traits, three (SDV, FT22, and 8W) showed significant
interacting loci, with 429, 72, and 3,541 loci detected, respectively
(Supplementary Table 6). The QQIs associated with SDV overlapped
with those detected by 3VmrMLM (Supplementary Table 6).

Similarly, we employed the QMDR approach (Yu et al., 2015)
based on machine learning to analyze epistasis. Because no results
were obtained in the raw dataset due to the large number of markers
and strict Bonferroni correction threshold. Thus, the strategy for top
5,000 marker selection and LOD scores greater than 3.0 was identical
to that described for 3VmrMLM in order to be comparable. As listed
in Supplementary Table 6, only six traits (LD, SDV, FT22, LN22, 4W,
and 8W) showed significant interaction loci, while the remaining
traits did not. Overall, 3VmrMLM excels in both efficiency and
accuracy when analyzing epistasis.

Conclusion

In this study, we performed the novel 3VmrMLM method in
GWAS to investigate the epistatic association with eleven flowering-
related traits in Arabidopsis. A total of 130 pairs of QQIs and 89
QTNs were successfully detected. Furthermore, through genome
annotation and previous research, 29 known genes around QQIs
and 12 known genes around QTNs were identified. Among the
above known genes, five genes, namely AGL17 (AT2G22630), ATH1
(AT4G32980), BOP2 (AT2G41370), CPL3 (AT4G01060), and LUH
(AT2G32700), were demonstrated an epistatic or additive effect for
at least two traits. Moreover, 16 candidate genes around QQIs and 4
candidate genes around QTNs were validated using differential
expression analysis, functional enrichment analysis, and haplotype
and phenotypic difference analysis. Notably, ATIG12990 and
ATI1G09950 around QQIs exhibited potential gene-by-gene
interactions influencing flowering. These findings contribute to
the identification and exploration of epistasis associated with
flowering-related traits in Arabidopsis.
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outlying points that are plotted individually. The number of stars represents
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