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HOTTIP Mediated Therapy
Resistance in Glioma Cells Involves
Regulation of EMT-Related miR-10b

Zhang Li, Ming Li, Pengcheng Xia and Zhiming Lu*

Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University,
Jinan, China

The advanced grade glioblastomas are characterized by dismal five-year survival rates
and are associated with worse outcomes. Additionally, resistance to therapies is an
additional burden responsible for glioma associated mortality. We studied the resistance
against temozolomide (TMZ) as a surrogate to understand the mechanism of therapy
resistance in glioma cancer cells. Screening of three glioma cells lines, A172, LN229 and
SF268 revealed that SF268 glioma cells were particularly resistant to TMZ with the IC-50
of this cell line for TMZ ten times higher than for the other two cell lines. A role of INCRNAs in
glioma progression has been identified in recent years and, therefore, we focused on
INcRNAs for their role in regulating TMZ resistance in glioma cancer cells. INncRNA HOTTIP
was found to be particularly elevated in SF268 cells and over-expression of HOTTIP in
both A172 and LN229 remarkably increased their TMZ IC-50s, along with increased cell
proliferation, migration, clonogenicity and markers of angiogenesis and metastasis. As a
mechanism we observed increased expression of MIRNA-10b and mesenchymal markers
Zeb1/Zeb?2 and reduced expression of E-cadherin in SF268 cells indicating a role of EMT
in TMZ resistance. A172 and LN229 cells with overexpressed HOTTIP also had similarly
induced EMT and the elevated miR-10b levels. Further, silencing of miR-10b in HOTTIP
overexpressing cells as well as the SF268 cells reversed EMT with associated sensitization
of all the tested cells to TMZ. Our results thus present a case for HOTTIP in native as well
as acquired resistance of glioma cells against chemotherapy, with a key mechanistic role
of EMT and the miR-10b. Thus, HOTTIP as well as miR-10b are critical targets for glioma
therapy, and need to be tested further.

Keywords: glioma, HOTTIP, miR-10b, temozolomide, EMT

INTRODUCTION

Glioma is a brain tumor which is fairly common and represents about one-thirds of all brain
tumors. Less than a quarter of glioma patients survive for more than five years and the median
survival is less than 2 years (1). It is an aggressive cancer in adults and largely considered incurable
(2). The clinical management of glioma patients involves surgical resection, if possible, followed by
temozolomide (TMZ) together with radiotherapy and finally adjuvant TMZ (1). This underlines the
importance of TMZ in clinical management of glioma patients, particularly in view of the use of
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TMZ for almost two decades (3). Despite this importance of
TMZ in glioma, the resistance against this drug is fairly common
with almost half of the patients failing to respond to it (4). Even
with the relative wealth of information on possible mechanisms
that can lead to TMZ resistance, including epigenetic ones that
include aberrations in DNA methyltransferase, the topic remains
poorly understood (5). In view of the high mortality cause by
therapy resistance, it is important to better understand the
overall mechanism of TMZ resistance in gliomas.

LncRNAs are increasingly being investigated for their role in
diagnosis, prognosis and treatment of cancers (6), including
gliomas (7). They are also being investigated for possible role
in determining resistance against therapies (8, 9), including in
gliomas (8, 10). In view of this knowledge, we focused our study
to understand the IncRNA mediated TMZ resistance in glioma.
For the model system, we hypothesized that the glioma cells with
endogenous resistance against TMZ might be the best models,
relative to TMZ-sensitive glioma cells. Thus, we screened a
number of cell lines in order to find the appropriate working
model. Our study identified IncRNA HOTTIP as the IncRNA of
interest. Previously, IncRNA HOTTIP has been shown to
mediate hypoxia-induced EMT (epithelial-mesenchymal
transition) in glioma cells U87 and U251 (11), thus increasing
confidence in our work. We further elucidated the mechanism of
TMZ resistance by looking at underlying mechanism and
confirmed EMT induction that also involved microRNA-10b
(miR-10b).

MATERIALS AND METHODS

Cell Lines and Culture

A172 (ATCC: CRL-1620), LN229 (ATCC: CRL-2611) and SF268
glioma cell lines were all purchased from ATCC (Virginia, USA)
and regularly screed for mycoplasma in the laboratory. All of
these cell lines were cultured in DMEM culture medium with
added FBS at 10% final concentration and added antibiotics
penicillin and streptomycin at 1% final concentrations (Life
Technologies, China). Cells were cultured in certified
incubators at 37°C under humidified conditions and 5% CO,.

TMZ and Dilutions

TMZ was purchased from Sigma Chemical Company (China).
Stock of TMZ was prepared in DMSO at a concentration of
20mg/ml and further dissolved in culture medium, as needed for
individual assays. TMZ treatment was done for a 3 day cycle as
also described earlier by Perazzoli and co-workers (12).

HOTTIP Transfections

We transfected full-length HOTTIP into pcDNA3.1 vector
(GenePharma, Shanghai, China) and the control plasmid
without HOTTIP was used as a negative control, similar to the
method described elsewhere (13). HOTTIP was transfected into
the glioma cells, using Lipofectamine 3000 (Life Technologies,
China), as per the instructions supplied by the company for the
transfection reagent.

MTT Assay

For proliferation assay, we conducted MTT assays. Cells were
seeded in 96-well plates at a density of 3500 cells/well. Once the
indicated assays were done, 20 pL reconstituted MTT reagent (5
mg/mL) was added to all wells for 2 hours. Then the wells were
emptied and filled with 100 uL. DMSO. The optical density (OD)
was measured at 570 nm using a Shimadzu colorimeter (Japan).

Migration Assay

Migration assays were performed using QCM cell migration
assay kits (Millipore, China), which assess the potential of cells to
migrate colorimetrically, and as described in an earlier
publication (14). Glioma cancer cells were seeded into the
upper chamber with media that did not contain FBS. This
initiated migration towards the lower chamber which was filled
with complete media that contained 10% FBS. The cells that
migrated were stained with crystal violet and absorbance was
read using a Shimadzu colorimeter (Japan).

ELISA Assays

Angiogenesis and metastasis potentials were assessed by
quantitating VEGF and MMP-9, respectively, in the
supernatants of the glioma cell cultures, using quantitative
ELISA kits (Sigma, China). Exact protocol recommended by
the manufacturer was followed and the absorbance at 450nm was
read using a Shimadzu colorimeter (Japan).

IncRNA and miRNA Detection

Total RNA was extracted using Trizol reagent (Life
Technologies, China). IncRNAs as well as miRNAs (using
Tagman primer-probes) were quantitated using commercially
available reagents from ThermoFisher Scientific (USA). This
included reagents needed for all IncRNAs, miRNAs and
the controls.

Anti-Pre-miRNA Transfections

Anti-miR-10b was purchased from ThermoFisher Scientific
(USA) and transfected in cells using G-fectin (Genolution,
South Korea). The protocol of manufacturer was used without
any modification to accomplish successful transfection
of miRNA.

Reverse Transcription-Quantitative Polymerase
Chain Reaction (RT-qPCR)

Total RNA was extracted from the cells using Trizol reagent (Life
technologies, China). cDNA was prepared by reverse
transcription using 1 pug RNA. We sued Prime ScriptTM RT
Master Mix (Takara Bio, Japan) for cDNA preparation. The
mRNAs of EMT related genes were amplified using SYBR®
Premix Kits (Takara Bio, Japan) and quantitated using
CFX96™ real-time machine (Bio-Rad, China). GAPDH was
used as internal control for mRNA quantitation.

Statistical Analysis

All of the statistical evaluations were carried out using SPSS
statistical software (SPSS Inc., Chicago, IL, USA). The values of
p < 0.05 were considered significant. The experiments were
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repeated at least three time with atleast duplicate samples in each
run. Student’s t-test was used for sample comparisons.

RESULTS

TMZ Resistance Glioma Models

We started our study by looking for the most appropriate model
system to investigate TMZ resistance. We screened a number of
glioma cell lines and finally shortlisted three, viz. A172, LN229
and SF268 glioma cell lines. These three cell lines were selected
because of their sensitivity/resistance to TMZ. MTT assays
revealed that the two cell lines A172 and LN229 were relatively
sensitive to TMZ (Figure 1A) while the third cell line SF268 was
relatively resistant to TMZ (Figure 1B). The IC-50 values of the
three cell lines were 13.7 £ 1.2 uM, 14.4 + 1.0 uM and 155.1 £ 1.7
uM for A172, LN229 and SF268 respectively (Table 1). Thus,

Relative Growth Rate (%) >

0 5 10 15 20 25
TMZ concentration (uM)
C D
1.00 £ 1.00
s 2
® 0.75 S 0.75
R 2
s j<)
® 0.50] *% £ 0.50-
2 @
g E
$ 0.25 B 0.25-
14
0.00- 0.00-
c ™Z

SF268 cells were quite resistant to TMZ as their IC-50 for TMZ
was more than ten-times that of both A172 and LN229 cells.
Next, we confirmed the TMZ resistance nature of SF268 cells
by carrying out a number of assays that are determinants of
cancer aggressiveness. We chose a dose of TMZ that was little
higher than the IC-50 of these cells i.e. 160 LM and then tested a
few different parameters, viz. migration, angiogenesis and
metastasis. Migration was performed using boyden chamber
assay and we found that the migration was reduced by more
than half in SF268 cells by the 160 uM dose (Figure 1C).
Angiogenesis was measured by quantitating the release of
biomarker VEGF by ELISA and we found reduction in release
of VEGF by more than half when SF268 cells were treated with
160 uM TMZ (Figure 1D). Metastasis was measured by
quantitating the release of MMP-9 by ELISA and our assay
revealed that the used TMZ dose resulted in significantly reduced
MMP-9 secretion (reduced by more than half) (Figure 1E).
Thus, these experiments confirmed that a dose of 160 pM TMZ

100 SF268

Relative Growth Rate (%) @

T T T T T T T T
0 25 50 75 100 125 150 175 200
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E
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8
» 0.75-
S
%%k g
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FIGURE 1 | SF268 are resistant to TMZ. MTT assays were performed to test the sensitivity of (A) A172 and LN229 and (B) SF268 glioma cells against TMZ after 3
day cycle. Vehicle treated control vs. 160uM TMZ treated SF268 cells were subjected to assays for migration (C), VEGF secretion (D) and MMP-9 secretion (E).
VEGF and MMP-9 were detected by ELISA as surrogates for angiogenesis and metastasis, respectively. The values of controls were regarded as ‘1’ and relative
values of TMZ-treated SF268 cells are reported. C: control, TMZ: TMZ-treated SF268 cells **p < 0.01.

TABLE 1 | IC-50 values of glioma cells against Temozolomide.

Cell Line Condition 1C-50 (uM)
SF268 Native 15561 £1.7
+i10b 1001 £1.2
A172 Native 18.7 1.2
+HOTTIP 546 +1.5
+H+i10b 26.3£0.7
LN229 Native 144 +1.0
+HOTTIP 63.8+1.8
+H+i10b 250+ 09

+ i10b: silenced for miR-10b, +HOTTIP: transfected with HOTTIP, +H+ i10b: Transfected with HOTTIP and silenced for miR-10b.
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was more than IC-50 and significantly impacted the various
parameters that lead to TMZ-resistance associated mortality.

HOTTIP Is Elevated in TMZ Resistant Cells

Since our aim was to find a potential IncRNA that can mediate TMZ
resistance in glioma cells, we compared TMZ-sensitive A172 and
TMZ-resistant SF268 cells for their expression of several IncRNAs.
Our screening revealed that a number of IncRNAs, such as
HOTTIP, H19, LINC00152, SUMO1P3, LINC01116 and
AGAP2-AS1 were significantly overexpressed in SF268 cells,
relative to A172 cells (Figure 2), indicating their role in mediating
TMZ resistance. While AGAP2-AS1, LINC01116 and SUMO1P3
were less than doubled, IncRNAs LINC00152, H19 and HOTTIP
were elevated many folds. Of these, HOTTIP was found to be
particularly elevated with its levels increased more than nine-folds in
TMZ-resistant SF268 cells.

HOTTIP Induced Changes in TMZ
Sensitive Cells

With the observation that IncRNA HOTTIP was relatively highly
expressed in TMZ resistant SF268 cells, we hypothesized that
HOTTIP was involved in determining the resistance of SF268
against TMZ. To test this hypothesis, we transfected HOTTIP in
the otherwise TMZ sensitive glioma cells and tested the various
cancer parameters that are connected with therapy resistance.
First, we transfected A172 cells with HOTTIP and evaluated the
resulting effect on cell growth/proliferation, migration,
angiogenesis and metastasis. Transfection of HOTTIP into A172
cells, significantly increased their proliferation, migration as well
as the secretion of VEGF and MMP-9 (Figure 3A). To further
confirm our results, we transfected the other TMZ sensitive cells
LN229 with HOTTIP as well and evaluated the same parameters.
As shown in Figure 3B, HOTTIP transfection significantly
increased the proliferation, migration and the release of VEGF
and MMP-9 from LN229 cells as well. Thus, our results

established a role of HOTTIP in inducing several parameters in
glioma cells that can impact resistance against therapy.

miR-10b Is Also Elevated in TMZ

Resistant Cells

The wealth of literature on IncRNAs in cancer has taught us that
their functions involve regulation of miRNAs (15, 16). Therefore,
our next task was to find a miRNA that is relevant to TMZ
resistance in our glioma models. For this, we again compared
TMZ-sensitive A172 and TMZ-resistant SF268 cells, this time for
their expression of miRNAs. We found a number of miRNAs that
were significantly different between the two cell lines and the top
ones are presented in Figure 4. miR-10b stood out as the most
overexpressed miRNA in the TMZ resistant SF268 cells with its
expression more than ten-folds, compared to A172 cells. A few
other miRNAs were also increased in SF268 cells which included
miR-21 and miR-221. A number of other miRNAs, on the other
hand, were significantly reduced in TMZ resistant SF268 cells and
these included miR-125b, miR148a, miR-216a, miR-615 and miR-
744. No other miRNAs was significantly changed in resistant cells as
the miR-10b and, therefore, we chose this miRNA for further
involvement and mechanism-based studies.

EMT Is Induced in TMZ Resistant Cells

Among many potential mechanisms that can play a part in
resistance against therapy, EMT is a promising one. Therefore, we
next checked for the possible involvement of EMT in the induction
of TMZ resistance in glioma cells. When we compared the gene
expression of various EMT markers, viz. ZEB1, ZEB2 and e-
cadherin in resistant vs sensitive cells, we found that
mesenchymal markers ZEB1 and ZEB2 were significantly elevated
whereas the epithelial marker E-cadherin was significantly
decreased in resistant SF268 cells (Figure 5A). We also checked if
HOTTIP overexpression in sensitive cells could impact miR-10b
levels, and found that overexpression of HOTTIP in both A172 and
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LN229 cells significantly increased miR-10b levels (Figure 5B). This
meant that the relationship between HOTTIP and miR-10b is valid
in all glioma cells that turn resistant against TMZ. In A172 cells with
overexpressed HOTTIP, we also found evidence of EMT as
evidenced by increased mesenchymal markers and decreased
epithelial marker (Figure 5C). In LN229 cells as well,
overexpression of HOTTIP led to increased mesenchymal
markers and decreased epithelial marker (Figure 5D). Similar
induction of EMT was also evident in A172 as well as LN229
cells when, instead of HOTTIP overexpression, they were subjected
to miR-10b overexpression (Figures 5E, F). Again, mesenchymal

markers ZEB1 and ZEB2 were increased while the epithelial marker
E-cadherin was decreased. In summary, these observations
increased our confidence in the finding that HOTTIP increases
miR-10b and over expression of both leads to EMT in glioma cells.

Role of miR-10b in HOTTIP Mediated

TMZ Resistance

We also further experimentally confirmed our hypothesis for the
involvement of miR-10b in HOTTIP mediated TMZ resistance of
glioma cells. Firstly, in the comparison between resistant SF268 and
sensitive A172 cells where EMT markers were found elevated in
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SF268 cells, we added an additional group i.e. SF268 cells with
silenced miR-10b. We checked for the efficiency of miR-10b
silencing and found reduction in miR-10b levels of anywhere
between 62% and 45% of the non-specific controls (results not
shown). We found that antagonizing miR-10b significantly reversed
EMT as evidenced by significantly reduced ZEB1 and ZEB2 while
significantly increased E-cadherin (Figure 6A). Similar observations
were made when A172 cells and the LN229 cells with overexpressed
HOTTIP were subjected to silencing of miR-10b. Again, EMT was
reversed by silencing of miR-10b (Figures 6B, C). As a final
experiment to firmly link miR-10b with HOTTIP mediated TMZ
resistance, we compared SF268 and miR-10b silenced SF268 cells
for their sensitivity to TMZ by exposing the cells to increasing
concentrations of TMZ. We found that silencing of miR-10b
significantly reduced the resistance of SF268 cells against TMZ
(Figure 6D) with IC-50 value dropping to 100.1 + 1.2 uM (Table 1).
On similar lines, when A172 or the LN229 cells with HOTTIP
overexpression were silenced for miR-10b, their IC-50 also
significantly reduced (Figures 6E, F) dropping from 54.6 + 1.5
and 63.8 = 1.8 UM, respectively for the A172 and LN229 HOTTIP
overexpressed cells to 26.3 + 0.7 and 25.0 £ 0.9 UM, respectively, for
the A172 and LN229 HOTTIP overexpressed cells with silenced
miR-10b.

DISCUSSION

Glioma is an aggressive cancer with poor prognosis and
outcomes, thus making it important to find novel targets of

therapy. In particular, resistance against therapy, both inherent
as well as acquired, such as resistance against TMZ is a major
clinical challenge making the condition of patients worse and
increasing the mortality. LncRNAs are quickly emerging as the
molecules of interest, particularly according to reports in recent
years (17, 18). This prompted us to investigate TMZ resistance of
glioma as regulated by IncRNAs.

The IC-50 values of glioma cell lines that we tested and
reported in this manuscript have been reported by other
researchers as well. In a report published by Perazzoli and co-
workers, A172 cells had an IC-50 of 14.1 uM, LN229 cells had an
IC-50 of 14.5 uM and SF268 had an IC-50 of 147.2 uM (12). Our
results, as reported here are in general agreement with those
previously reported values as we also report A172 and LN229
cells as the cell lines sensitive to TMZ with IC-50 values with IC-
50 values 13.7 uM and 14.4 uM respectively, which are very close
to what was reported by Perazzoli et al. (12). Moreover, we also
show that SF268 cells are comparatively resistant to TMZ with
IC-50 value of 155.1 pM. Interestingly, our analysis reveal a little
more than ten-times higher IC-50 value for SF268 cells,
compared to A172 and LN229 cells, which is also in general
agreement with the results from study by Perazzoli et al. (12).

For the IncRNAs that can positively impact glioma cells
resistance against TMZ, in addition to playing a role in glioma
cells’ proliferation, invasion and metastasis, we tested a total of
thirty IncRNAs, based on the reported literature. The top six
IncRNAs have been proven to exhibit multiple effects against
glioma cells. H19 IncRNA has been shown to promote the
proliferation, migration and invasion of glioma cells (19)
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through targeting of miR-200a. LINC00152 is similarly
expressed at higher levels in gliomas where it increases
proliferation and invasion (20). SUMOI1P3 is also elevated in
gliomas and associates with poor survival of glioma patients (21).
Its knock down negatively affects proliferation and invasion of
cells. LINCO01116 is highly expressed in gliomas and promotes
proliferation and invasiveness of glioma cells by targeting miR-
744 (22). Finally, the last IncRNA, AGAP2-AS1, regulates
proliferation and metastasis of glioma cells (23).

We show effect of HOTTIP on EMT. In glioma, there is one
published report on the role of HOTTIP in EMT. This study (11)
focused on hypoxia mediated EMT and found an important role of
IncRNA in the process. HOTTIP was identified based on IncRNA
array analysis between U87 glioma cells with and without hypoxia.
Hypoxia was found to promote HOTTIP expression and metastasis,
which also correlated with poor patient survival. However, a
different mechanism was identified as this published study
reported an involvement of miR-101 in HOTTIP action while we
report an involvement of miR-10b. It is important to note that
whereas miR-101 is sponged by HOTTIP as reported in the hypoxia
report (11), we found elevated miR-10b in cells that also had
increased HOTTIP levels. Additionally, the hypoxia report used
U87 and U251 cells whereas we report our findings in three
completely different cells, viz, A172, LN229 and SF268. Thus, a
cell line effect can also not be ruled out. It might be important to
conduct a study that uses all of these five cell lines. In addition to the
one report on a connection between HOTTIP and EMT in glioma,
there are a few other reports connecting HOTTIP with EMT in
some other cancers. Examples include the effect of HOTTIP on

EMT in breast cancer (24), gastric cancer (25), osteosarcoma (26),
ovarian cancer (27). Such EMT induction by HOTTIP has been
linked to cisplatin resistance in gastric cancer (28), thus further
validating HOTTIP mediated EMT in resistance against therapies.

Interestingly, one of the other shown IncRNA, H19 also seems to
affect EMT in glioma cells (19). The very indication that this H19
affects MET comes through the miRNA it targets as this miRNA is
very well known to be involved in regulation of EMT (29), thus
making this miRNA an attractive cancer biomarker (30). Similar to
our findings reported here, H9 was found to regulate EMT marker
ZEB1 (19) which thus appears to be important EMT gene regulated
by IncRNAs. Similarly, IncRNA SUMOI1P3 also seems to affect
EMT as it regulates another EMT biomarker e-cadherin (21).
Finally, IncRNA AGAP2-ASI also affects EMT (23). This is one
of the top IncRNAs with possible role in TMZ resistance, based on
its elevated levels in resistant cells, as observed in this study.
AGAP2-AS] regulates EMT genes that can explain the observed
effects of its downregulation on cellular behaviors.

Elucidation of a miRNA, downstream of HOTTIP in glioma
cells, particularly those resistant to therapy, was another
important goal of this study and for this we screened thirty
potential miRNAs, based on available literature. Of these, we
presented here the data we obtained on the top eight. One of the
criteria for screening was proven targeting of miRNA in question
by HOTTIP in addition to screening of some promising miRNAs
based on their relevance to therapy resistance. miR-125b belongs
to the category of miRNAs that have earlier been shown to be
regulated by HOTTIP (31). Other miRNAs shown here that were
reported to be regulated by HOTTIP in earlier studies are miR-
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216a (32), miR-615 (33), miR-148a (34) and miR-744 (35). All
these five miRNAs that have earlier been reported to be regulated
by HOTTIP are inversely associated with HOTTIP expression
i.e. their expression is negatively regulated by HOTTIP, similar
to the general reports in sponging of miRNAs by IncRNAs.
However, for over study we also evaluated a few miRNAs that are
positively correlated with therapy resistance. These are miR-10b,
miR-21 and miR-221. There is a lot of published literature on
involvement of these miRNAs in therapy resistance in different
cancers (36-38), however, we are the first to provide a
mechanism of miR-10b mediated EMT in the HOTTIP-
regulated TMZ resistance of glioma cells.

miR-10b is a well-studied miRNA in terms for its role in
therapy resistance. A report published a decade back suggested
the role of miR-10b in conferring resistance against 5-
fluorouracil in colorectal cancer cells (39). In an agreement
with our findings, Zhang and co-workers found that miR-10b
regulates EMT to participate in resistance against therapy (40).
Their focus was on nasopharyngeal cancer and their study found
a role of miR-10b in cisplatin resistance of nasopharyngeal
carcinoma cells (40). In other reports, miR-10b was shown to
regulate tamoxifen resistance in breast cancer cells (41) and
cisplatin resistance of ovarian cancer cells (36).
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Objectives: miR-181a/b and miR-410 downregulation and miR-155 upregulation has
been shown to play important roles in the oncogenesis and progression of gliomas
including high-grade gliomas. However, the potential role of plasma miR-181a/b, miR-410
and miR-155 in the diagnosis and prognosis of high-grade gliomas remains poorly known.

Methods: \We retrieved published articles from the PubMed, the Cochrane Central Register
of Controlled Trials, and Web of Science database and obtained different sets of data on
microRNAs (miRNAs) expression profiling in glioma and highlighted the most frequently
dysregulated miBRNAs and their gene-targets (PDCD4, WNT5A, MET, and EGFR) in high-
grade gliomas. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was
carried out to measure the pre- and postoperative plasma levels of miR-181a/b, miR-410
and miR-155 in 114 Grade 3-4 glioma patients, 77 Grade 1-2 glioma patients and 85
healthy volunteers as control group. The diagnostic and prognostic value of circulating miR-
181a/b, miR-410 and miR-155 as biomarker was estimated by the Receiver Operating
Characteristic (ROC) curve and the area under the curve (AUC) and Kaplan—-Meier analysis.

Results: We found a plasma miRNA signature including three downexpressed miRNAs
and one overexpressed (MiR-181a, miR-181b and miR-410; miR-155) in high-grade
glioma patients in comparison with low-grade glioma patients control group. The ROC
curve AUC of these four circulating miRNAs were > 0.75 for high-grade glioma patients in
before and after surgery. Higher circulating miR-155 and lower miR-181a/b and miR-410
expression is associated with clinical data, clinic pathological variables, worse overall
survival (OS) of patients and negative correlated with potential gene-targets expression.
Moreover, Kaplan-Meier analysis showed that miR-181a/b, miR-410 and miR-155 were
independent predictors of OS in high-grade glioma patients.

Conclusions: Our data, for the first time, demonstrated that circulating miR-181a/b, miR-
410 and miR-155 could be a useful diagnostic and prognostic non-invasive biomarkers in
high-grade gliomas.

Keywords: high-grade glioma, circulating, diagnosis, prognosis, biomarker, miRNA
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1 INTRODUCTION

In recent decades, there has been a steady trend towards an
increase in both the general oncological incidence in general and
the general incidence of central nervous system (CNS tumors)
tumors in particular. Gliomas are the most common and
aggressive type of primary tumor in adults. The largest
proportion among CNS tumors are gliomas (50-55%), which
are malignant in 50-70% of cases (1). According to the 2021
World Health Organization (WHO) classification of CNS
tumors, gliomas were classified into four main histological
groups (Grades 1-4) according to their microscopic
characteristics (such as cytological atypia, anaplasia, mitotic
activity, microvascular proliferation and necrosis) and clinical
manifestations (2). Glioblastoma (WHO Grade 4) and anaplastic
astrocytoma (WHO Grade 3), a type of high-grade gliomas, are
the most common primary brain tumors, affecting patients of all
ages. Despite all the achievements of modern medicine, the
prognosis for patients with high-grade gliomas remains
unsatisfactory. So, with anaplastic astrocytomas, the average
life expectancy is 2-3 years, and with glioblastomas - from 8 to
15 months (3). In this regard, in order to improve the diagnosis
and optimization of ongoing therapy, as well as predict the
course of the disease and understand the mechanisms of
oncogenesis, an active search is being carried out for
biomarkers that are informative and public accessibility. The
possibility of accurate diagnosis and prognosis of the course of
the disease, along with the improvement of the treatment of
patients with high-grade gliomas is an urgent problem. Despite
significant recent advances in the diagnosis of gliomas using
various modifications of imaging techniques followed by
histopathological examination, tumor detection is still limited
by its size and location, as well as by the heterogeneity of its tissue
(4). In this regard, it is necessary to develop new diagnostic
approaches that, together with the available methods, will
improve the accuracy of diagnosis. A promising approach for
diagnosis in CNS tumors is fluid biopsy, which involves finding
and measuring the level of various circulating biomolecules in
human body fluids, such as blood or cerebrospinal fluid (CSF).

MicroRNAs (miRNAs) are small non-coding RNAs
consisting of 18-20 nucleotides that play an important role in
the regulation of gene expression at the post-transcriptional level
by interacting with 3’-untranslated regions (3’-UTR) of
messenger RNAs (mRNA)-targets (5). MiRNAs are involved in
the regulation of such physiological processes as cell
proliferation, differentiation, apoptosis, angiogenesis, etc.
MiRNAs play an important role in the regulation of both
physiological processes (5). On the other hand, miRNAs have
been found to be involved in the oncogenesis of many human
tumors, acting as tumor suppressors or oncogenes (6). MiRNAs
are capable of influencing all events considered in terms of tumor
progression, including tumor growth, invasion, metastasis, and
angiogenesis. The significance of miRNAs in high-grade gliomas
has been proven both by changes in their expression and
by dysregulation of the expression of mRNA-targets (7).
MiR-155is one of the most well-known oncogenic miRNA,
miR-155 overexpression has been documented in gliomas,

extraordinarily in high-grade glioma cells and tissue. Wu et al.
in their research found that the high level of miR-155 in U87-
MG cell line can promote the proliferation, invasion and
migration of tumor cells, inhibit their senescence and
apoptosis, and activate the phosphatidylinositol 3-kinase
(PI3K)/AKT signaling pathway (8). In other study results
showed that the level of miR-155 was up-regulated in glioma
patients, accompanied by high pathological grade (9). In
addition, miR-155 may activates the growth of U87 glioma
cells and increases the sensitivity of glioblastoma to
temozolomide (TMZ) by targeting Six1 in vivo (10).

Some number of studies about miR-18la/b and miR-410
therapeutics have been carried out, and verified its tumor-
suppressive role in gliomas. For instance, the expression of
miR-181 family members has been decreased in glioma (11).
While miR-181c¢ has been the most down-regulated one in the
WHO Grade I gliomas, miR-181a/b exhibited the fastest decrease
rate, with a significant decrease in the glioblastoma (11, 12).
Forced up-regulation of miR-18la/b remarkably suppressed
high-grade glioma cell lines (U87, TJ905, and U251) tumor
growth, proliferation, invasion and promote tumor cells
apoptosis (13). In the other research, Chen et al. demonstrated
that high-grade glioma expressed comparatively higher MET
expression and lower miR-410 while low-grade glioma with
lower MET and higher miR-410 (14). The authors concluded
that miR-410 directly targets 3’-UTR of MET mRNA and may
affect high-grade glioma cell proliferation and invasion through
MET regulated AKT signaling.

It is known that circulating miRNAs are in a stable form and
are detected in human biological fluids such as blood, urine,
cerebrospinal fluid (CSF) and saliva. In this regard, circulating
miRNAs are considered as new biomarkers of interest in a
number of diseases, including tumors (15). Circulating miR-
181a/b, miR-410 and miR-155 can be released into the biological
fluids in response to activation of process oncogenesis. Thus, the
present study examined the expression profile of these
circulating miRNAs in the plasma of patients with high-grade
glioma. Furthermore, we evaluated the association among gene-
targets expression, clinical data, clinic pathological variables, and
diagnostic or prognosis value.

2 MATERIALS AND METHODS

2.1 Patients and Clinical Samples

We enrolled 301 subjects in this study from January 2019 to
August 2020 in Federal Center of Neurosurgery (Tyumen,
Russia), including 85 healthy volunteers as control group and
191 newly diagnosed glioma patients with various stages. Glioma
patients were diagnosed by brain magnetic resonance imaging
(MRI), computed tomography (CT) perfusion imaging (Canon
Aquilion One, Iomeron 400 mg - 50 ml), dynamic susceptibility
contrast (DSC) perfusion (General Electric Discovery W750 3T,
Gadovist 7.5 ml) (Figures 1A, B, 2A, B) and histological
examination based on the WHO categories, and all patients
were classified according to 2021 WHO classification system,
including 16 cases of pilocytic astrocytoma (Grade 1), 61 diffuse
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FIGURE 1 | Cases of low-grade glioma patients (A, B). (A) A large intracerebral tumor of the right temporo-occipital areas with a heterogeneous cystic-solid
structure, contrasted as a group of nodules and small closed rings in the solid part. The contents of the cysts are similar to the cerebrospinal fluid in terms of signal
characteristics, with the exception of a cyst in the pole of the temporal lobe, where a protein admixture and traces of hemorrhage are detected, the walls of the cysts
do not increase. Diffusion restriction in the structure of education is not determined. In the posterior sections, a node with elevated median cerebral blood volume
(CBV) values according to multi-slice computed tomography (MSCT) perfusion. (B) Predominantly in the middle frontal gyrus of the left frontal lobe, an intracerebral
mass with diffuse distribution, clear contours and a sign of T2/fluid attenuation inversion recovery (FLAIR) mismatch. The tumor involves white and gray matter with
“swelling” of the cortical plate. There is no restriction of diffusion, contrasting in the formation. Reliable areas of hyperperfusion according to dynamic susceptibility
contrast (DSC) MR perfusion are not determined.

FIGURE 2 | Cases of high-grade glioma patients (A, B). (A) Intracranial tumor of the right frontal lobe and genu corpus callosum, in addition to the white matter,
involving the cortical plate with a mass effect on the anterior horn of the right lateral ventricle. The parasagittal solid component has small foci of hyperperfusion on
dynamic susceptibility contrast (DSC) MR perfusion and areas of increased cellularity in apparent diffusion coefficient (ADC), is heterogeneous in signal in T2 weighted
image (T2WI), and shows heterogeneous contrast enhancement. (B) A large “intra-axial” area of in homogeneously elevated signal in T2 and fluid attenuation
inversion recovery (FLAIR) in the right frontal lobe and basal ganglia, extending into the gray matter, the opposite hemisphere along the genu corpus callosum, with a
group of subpial (and one subependial) nodules of homogeneous intense contrast enhancement. Against the background of uneven diffusion, zones of increased
relative cerebral blood volume (fCBV) are revealed along the lateral contour of the right frontal lobe.
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astrocytoma (Grade 2), 76 cases of anaplastic astrocytoma
(Grade 3), and 38 cases of glioblastoma (Grade 3) (2). All
patients were grouped into low-grade (WHO Grade 1-2, 77/
191) or high-grade (Grade 3-4, 114/191). Plasma samples of
patients with low-grade gliomas were collected 3 days before
medical preparation for the surgical intervention. Plasma
samples of patients with high-grade gliomas were collected
twice: 1) 3 days before medical preparation for the surgical
intervention; and 2) 10 days after the surgery, usually on the
day of discharge from the hospital. None of the patients had
received chemotherapy or radiotherapy prior to surgery. In
addition, we excluded patients with other tumors,
cardiovascular diseases, immune diseases, injuries, organ
failure, and infections in their past medical history since these
diseases may influence the levels of circulating miRNAs in our
patients. All patients with high-grade were followed up at
intervals of 1 month in the initial 1-2 years and every 3
months thereafter. Clinical follow-up of 114 patients was
finished by August 2021 (44 months). Overall survival time
was defined as the period between the initial operation and
death, and disease-free survival was the period between the initial
operation and tumor recurrence or death. This study was
approved by the Ethics Committee of Federal Center of
Neurosurgery (Tyumen, Russia) and implemented in
accordance with the principles of the Helsinki Declaration.
Written informed consent was obtained from all subjects.
Patient characteristics are summarized in Table 1.

2.2 Study Design

The study was separated into four steps. We performed a
comprehensive search for original articles demonstrating the

dysregulated miRNAs and their gene-targets in high-grade
gliomas. Databases including PubMed, the Cochrane Central
Register of Controlled Trials, and Web of Science were used to
obtain all relevant studies up to February 2021. Keywords
including “glioma” or “high-grade glioma” or “anaplastic
astrocytoma” or “glioblastoma” or “malignant brain tumors” or
“primary”, “microRNA” or “miRNA” or “miR” or “non-coding
RNAs” or “cell-free” or “circulating” or “diagnosis” or
“prognosis” or “biomarker” and “gene-targets” or “epigenetic
regulation” or “oncogenesis” were used. However, our current
study did not find statistically significant identified 4 from 12
circulating miRNAs expression in plasma samples of glioma
patients and control group. The flow diagram of the study design
is shown in Figure 3.

2.3 Plasma Preparation

All 10 ml venous blood was collected into tubes containing
ethylenediaminetetraacetic acid (EDTA) and centrifuged, where
hemolyzed blood samples were excluded. After the first
centrifugation at 1600 x g for 10 min at 4°C, the supernatants
were carefully removed and transferred to a new tube follow by
centrifugation again at 16,000 x g for 10 min at 4°C to remove
residual blood cells. Plasma was then stored at —80°C until
further processing.

2.4 Total RNA Extraction

Total RNA was extracted from 200 pL plasma samples of all
glioma patients and healthy controls using the miRNeasy Serum/
Plasma Kit for purification of total RNA, including miRNA
(Qiagen, Germany) and QIAzol Lysis Reagent (Qiagen,

TABLE 1 | Clinicopathological characteristics of glioma patients for the study of circulating miRNAs.

Clinical variables (n = 191) No. of cases P value
Age 0.002
<50 83

>50 108

Sex 0.09
Male 141

Female 50

Tumor size (cm) 0.013
<38 132

>3 59

WHO grade <0.001
Low-grade (I-1l) 77

High-grade (llI-IV) 114

Extent of resection for high-grade gliomas patients <0.05
Total 71

Partial 43

Tumor location 0.40
Supratentorial 171

Infratentorial 20

KPS score 0.008
<90 68

>90 123

Recurrence for high-grade gliomas patients 0.039
Yes 77

No 37

WHO, World Health Organization; KPS score, Karnofsky Performance Scale.
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reverse transcription polymerase chain reaction; miRNAs, microRNAs.

FIGURE 3 | Flow diagram illustrating the steps for microRNAs (miRNAs) selection, expression profiling and differential expression analysis. gRT-PCR, quantitative

Germany) according to the manufacturer’s instructions. Total
RNA purity and concentration were determined using a
NanoDrop 2000 spectrophotometer (Thermo Scientific, USA)
and consistently yielded A260:A280 and A260:A230 ratios close
to 2.0. All isolated total RNA was stored at a —80°C freezer
until use.

2.5 Synthesis of Complementary DNA

c¢DNA was synthesized using Transcriptor First Strand cDNA
Synthesis Kit (Roche, Germany) by reverse transcription
according to the manufacturer’s instructions. Reverse
transcription was carried out in 20 pl solution that contained
0.5 pul 20 U/ul Transcriptor reverse transcriptase, 4l
Transcriptor RT Reaction Buffer (5x concentrated), 2 ul
Deoxynucleotide Mix, 0.5 ul 40 U/ul protector RNase
inhibitor, 2 pul 10 mmol/ml stem-loop RT primers
(Invitrogen), 7 pl DEPC water (Invitrogen, USA), and 4 pl
total RNA template. After being mixed gently, the reaction
mixtures were incubated at 25°C for 10 min, 55°C for 30 min
and then 85°C for 5 min. The final cDNA products were stored

at —20°C until use. U6 and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were used as the reference genes.
The sequence of all primers used in the present study is
provided in Table 2.

2.6 Quantitative Reverse Transcription
Polymerase Chain Reaction

qRT-PCR was carried out following the manufacturer’s protocol
of FastStart Universal SYBR Green Master (Rox) (Roche,
Germany) with 2 uL ¢cDNA template. The PCR mixture
(18 uL) contains 10 UL SYBR Green (Rox) (Roche, Germany),
1 uL 10 mmol/mL forward primer (Invitrogen, USA), 1 uL 10
mmol/mL reverse primer (Invitrogen, USA) and 6 uL DEPC
water (Invitrogen, USA). PCR reaction was performed in
duplicates. All PCR reactions were carried out on an ABI 7500
Real-Time PCR machine (Thermo Fishers, USA). Reaction
conditions were 95°C for 10 minutes, followed by 40 cycles of
95°C for 10 s and 60°C for 10 seconds. U6 and GAPDH were
used as the reference genes. The sequence of all primers used in
the present study is provided in Table 2.
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TABLE 2 | Sequence of all primers.

miRNA/Gene-target/Reference gene Primer Sequence (5’-3')

miR-181a RT:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTCACCGA
Forward: GCCCGAACATTCAACGCTGT
Reverse: GTGCAGGGTCCGAGGT

miR-181b RT:CCTGTTGTCTCCAGCCACAAAAGAGCACAATATTTCAGGAGACAACAGGACCCACG;
Forward: CGCCGAACATTCATTCATTGCTGTC
Reverse: CAGCCACAAAAGAGCACAAT

miR-410 RT:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACAGGCCA
Forward: GTCAGCGCAATATAACACAG
Reverse: GTGCAGGGTCCGAGGT

miR-155 RT:CCTGTTGTCTCCAGCCACAAAAGAGCACAATATTTCAGGAGACAACAGGACCCCTA
Forward: CGCCGTTAATGCTAATCGTGA
Reverse: CAGCCACAAAAGAGCACAAT

PDCD4 Forward: GAAGGTTGCTGGATAGGC
Reverse: ATAAACACAGTTCTCCTGGTCATCA

WNT5A Forward: GTGCAATGTCTTCCAAGTTCTTC

MET Reverse: GGCACAGTTTCTTCTGTCCTTG

EGFR Forward: AACACCCTGGTCTGGAAGTACG
Reverse: TCGTTGGACAGCCTTCAAGACC

GAPDH Forward: GTCTCCTCTGACTTCAACAGCG
Reverse: ACCACCCTGTTGCTGTAGCCAA

ue Forward: CTCGCTTCGGCAGCACA

Reverse: AACGCTTCACGAATTTGCGT

miRNA, microRNA; RT, reverse transcription; miR, microRNA; WINT5A, Wnt family member 5A; PDCD4, programmed cell death 4, DFFA, DNA fragmentation factor subunit ajpha; EGFR,
epidermal growth factor receptor; GAPDH, GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

2.7 Statistical Analysis

Relative levels of the circulating miR-181a/b, miR-410 and miR-
155 were quantified using the 2-AACq method. ROC curves and
the area under the curve (AUC) was applied to analysis the
diagnostic values of the circulating miR-181a/b, miR-410 and
miR-155. Kaplan-Meier analysis was used to generate and
analyze survival time data. The univariate Cox proportional
hazards regression was used for univariate and multivariate
analyses. The Student t-test, ANOVA, chi-square analysis, or
Mann-Whitney test was applied, where appropriate. A
probability of p<0.05 (*) or p<0.001 (**) or p<0.0001 (***) was
considered statistically significant. The statistical analyses were
carried out with the IBM SPSS 13.0 software and the graphs were
generated by using Graphpad Prism 7.0.

3 RESULTS

3.1 Detection of Circulating miRNAs in
Plasma Samples From Glioma Patients
Before Surgery

To verify the expression profiles of circulating miR-181a/b, miR-
410 and miR-155 in presurgery plasma samples of glioma
patients, we detected the expression levels of circulating miR-
181a/b, miR-410 and miR-155 in 114 high-grade glioma patients
with compare 77 low-grade glioma patients and 85 subjects as
control group using QRT-PCR. The results of qRT-PCR assay in
Figures 4A-D show that the expression levels of circulating
miR-155 in plasma of high-grade glioma patients was

significantly higher than in low-grade glioma patients and
control group (p < 0.05, p<0.001). However, the expression
levels of circulating miR-181a/b and miR-410 in plasma of
high-grade glioma patients was significantly lower than in low-
grade glioma patients and control group (p < 0.05, p<0.001). Our
results indicated that increased circulating miR-155 and
decreased miR-181a/b and miR-410 levels might play a role in
glioma oncogenesis particularly high-grade gliomas. In this case,
miR-155 may acts as a potential oncomiR were miR-181a/b and
miR-410 may play as a potential tumor suppressive role.

3.2 Circulating miRNAs Expression in
Before and After Surgery Plasma Samples
From Patients With High-Grade Glioma

The results of the circulating miRNA analysis of plasma samples
high-grade glioma patients acquired pre- and post-operatively
(10 days after surgery) indicated significant upregulation of
circulating miR-181a (p=0.045), miR-181b (p<0.001) and miR-
410 (p=0.017), and insignificant downregulation of miR-155
(p<0.001) with compare control group (Figures 5A-D).

3.3 Circulating miRNA Expression in
Paired Before vs. After Surgery Plasma
Samples From Patients With High-

Grade Glioma

We next asked if these circulating miRNAs were different in the
plasma of the high-grade glioma patients before and after
surgery. We identified that the expression levels of miR-155
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FIGURE 4 | Circulating miR-181a/b, miR-410 and miR-155 expression levels within different grade gliomas and control group (A-D). (A) The expression levels of
circulating miR-155 in the plasma of high-grade glioma patients were significantly higher than in low-grade glioma patients and control group. In the same time,
(B-D) the expression levels of circulating miR-181a, miR-181b and miR-410 in the plasma of high-grade glioma patients were significantly lower than in low-grade
glioma patients and control group. A probability of p < 0.05 (*) or p < 0.001 (**) was considered statistically significant.

(p=0.001) were found to be decreased in the plasma 10 days after
surgery compared to that before operation, while miR-181a
(p<0.001), miR-181b (p<0.001) and miR-410 (p<0.001) were
increased more than ten-fold in the plasma after surgery
(Figures 6A-D).

3.4 Diagnostic Value of Circulating
miRNAs in Glioma Patients

The diagnostic value in before and after surgery of circulating
miR-181a/b, miR-410 and miR-155 in differentiating the high-
grade glioma patients group from the low-grade glioma patients
and control group was also examined (Figures 7A-D, 8A-D).
Our circulating miRNA-based signature could perform well in
distinguishing high-grade glioma patients in before and after
surgery time from control group as evidenced by a high AUC
(diagnostic value AUC=0.75) (16). These findings suggest
that circulating miR-181a/b, miR-410 and miR-155 had high
power to distinguish high-grade glioma patients in before
and after surgery time from low-grade glioma patients
and control group. More detailed information about the ROC
curves for diagnostic value of circulating miRNAs are presented
in Tables 3, 4.

3.5 Expression Levels of Circulating miR-
181a/b, miR-410 and miR-155 Predicts a
poor Prognosis of High-Grade

Glioma Patients

The prognostic value of circulating miR-181a/b, miR-410 and
miR-155-based signature in overall survival (OS) was detectable
through the Kaplan-Meier curve of two cohorts (total tumor
resection or partial tumor resection) of high-grade glioma
patients as shown in (Figures 9A-H). The relative expression
of these circulating miRNAs in high-grade glioma patients were
divided into a higher-expression group and a lower-expression
group. Our analysis showed that high-grade glioma patients in
the higher-expression group of circulating miR-155 had a poorer
OS (Figure 9A; p= 0.001) particularly in high-grade glioma
patients with partial tumor resection (Figure 9E; p=0.05). On the
other hand, high-grade glioma patients in the lower-expression
group of circulating miR-181a, miR-181b, miR-410 had a poorer
OS (Figures 9B-D; p=0.001) particularly in high-grade glioma
patients with partial tumor resection (Figures 9F-H; p=0.05).
Based on these findings, we suggest that circulating miR-181a/b,
miR-410 and miR-155 expression can be used as an independent
factor to predict the survival of high-grade glioma patients.
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3.6 Interaction Between Potential Gene-
Targets and miRNAs

We screened out the possible gene-targets of the aforementioned
circulating miRNAs by using common miRNA target predicting
datasets: DIANA-microT, mirSVR, PicTar5, RNA22, RNAhybrid,
TargetScan, PITA, MirTarget2, TargetMiner, miRanda, and
TmiRWalk2.0. In order to improve the reliability of the
predicted target genes, we extracted only the corresponding
target regulations that emerged from at least five of the datasets
listed above. The selected eight genes, targeted by the miRNAs
panel, were MET, phosphatidylinositol 3-kinase (PI3KCA), Wnt
family member 5A (WNT5A), programmed cell death 4
(PDCD4), DNA fragmentation factor subunit alpha (DFFA),
epidermal growth factor receptor (EGFR), fibroblast growth
factor receptor 1/2 (FGFR1/2). Primer sequences for each gene
are provided in Table 2.

3.6.1 Relationship Between Expression Circulating
miRNAs and Expression Gene-Targets of High-
Grade Gliomas Patients

The expression level of circulating miR-155 correlated positively with
oncogene PDCD4 (p < 0.0001, r = 0.753) in plasma samples of high-
grade glioma patients (Figure 10A). However, circulating miR-155,
miR-410, and miR-181a/b showed a negative correlation with tumor

suppressive gene WNT5A (p < 0.0001, r = -0.671; Figure 10B)
and with oncogenes MET (p < 0.0001, r = -0.4778; Figure 10C),
EGFR (p < 0.0001, r = -0.5235, r = -0.5217; Figures 10D, E).
Consequently, the expression of circulating miR-155, miR-410, and
miR-181a/b and its putative gene-targets PDCD4, WNT5A, MET,
and EGFR had a strong inverse relation in high-grade glioma,
thereby suggesting that the potential roles of miR-155, miR-410,
and miR-181a/b in oncogenesis of glioma tumors.

4 DISCUSSION

Gliomas are the most common and aggressive type of primary
brain tumor in adults. It should be noted that for gliomas, the
progression of the disease to a higher class of anaplasia is not
excluded (e.g. anaplastic astrocytoma and glioblastoma) (3).
Despite all the achievements of modern medicine, the prognosis
for patients with high-grade gliomas remains unsatisfactory.
Current treatment strategies of high-grade gliomas are based on
open surgery, radio- and chemotherapy (1, 3). However, none of
these treatments, alone or in combination, is considered effective
in controlling the disease, resulting in an average life expectancy
after diagnosis of about than 12-15 months. Thus, the issues of
timely diagnosis and prognosis of the outcomes of this type of
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tumors do not lose their relevance. The concept of molecular
biomarkers has been widely developed in the last decade. The use
of biomarkers contributes to the understanding of the
pathogenetic mechanisms of gliomas, promotes early detection
of tumors, stratification of the risk of recurrence, control and
timely correction of the treatment strategy, and, consequently, a
more favorable prognosis. Circulating miRNAs are one of the
widely studied biomarkers, and although they are not currently
used in clinical practice, advances in this field indicate that the
effectiveness of circulating miRNAs in the diagnosis and prognosis
of high-grade gliomas can be critical and replace specific steps in
modern diagnostic practice (15).

In this study, expression levels of circulating miR-155, miR-
410, and miR-181a/b in 114 high-grade glioma patients, 77 low-
grade glioma patients and 85 healthy volunteers as control group
were first screened using qRT-PCR arrays. We found that the
expression levels of circulating miR-155 were significantly higher
in high-grade glioma patients than in low-grade glioma patients

204

Relative expression value for circulating miR-410

Before surgery After surgery

Relative expression value for circulating miR-181b

Before surgery After surgery

FIGURE 6 | The dynamic change of circulating miR-181a/b, miR-410 and miR-155 in plasma samples of high-grade glioma patients before and after surgery. The
expression levels of the 4 circulating miRNAs in the patients before and after surgery (A=D). Each point represents the mean of the triplicate samples. A probability of

in the before surgery period and control group. Wherein, the
expression levels of circulating miR-410 and miR-181a/b were
significantly lower in high-grade glioma patients than in low-
grade glioma patients in the before surgery period and control
group. In addition, using ROC curve analysis, we demonstrated
that the circulating miR-155, miR-410, and miR-181a/b had high
accuracy in glioma diagnosis, especially in patients with high-
grade gliomas in before surgery where AUC 20.75, respectively
(see Table 3) (16). Furthermore, we saw that in the 10 days after
surgery the expression levels of circulating miR-155 were
insignificantly lower in high-grade glioma patients while and in
the same patients group there was a significantly decrease in the
expression levels of circulating miR-410, and miR-181a/b than in
the control group. The AUC for the diagnosis value of circulating
miR-155, miR-410, and miR-181a/b after surgery was 0.87, 0.76,
0.84, and 0.87, respectively (see Table 4). In addition, to analyze
the association of these circulating miRNAs expression with
prognosis, the Kaplan-Meier analysis showed that higher
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suggesting that these circulating miRNAs can distinguish high-grade glioma patients after surgery from control group.

TABLE 3 | Receiver Operating Characteristic (ROC) curves for diagnostic value of circulating miR-181a/b, miR-410 and miR-155 for glioma patients in before
surgery time.

miRNAs Area Under the ROC Curve (95% CI) Sensitivity (%) Specificity (%) p value
Control group vs. low-grade

miR-155 0.68 (95% Cl: 0.6019 to 0.7636) 66.7 76.9 p<0.0001
miR-410 0.67 (95% Cl: 0.5898 to 0.7533) 65.7 741 p<0.0001
miR-181a 0.83 (95% Cl: 0.7671 to 0.8902) 73.34 86.00 p<0.0001
miR-181b 0.78 (95% Cl: 0.7122 to 0.8499) 68.21 82.75 p<0.0001
Control group vs. high-grade

miR-155 0.92 (95% Cl: 0.882 to 0.9573) 82.3 84.1 p<0.0001
miR-410 0.97 (95% Cl: 0.9467 to 0.9858) 86.8 94.21 p<0.0001
miR-181a 0.97 (95% Cl: 0.9602 to 0.9927) 87.5 96.7 p<0.0001
miR-181b 0.94 (95% Cl: 0.9154 to 0.975) 93.1 88.7 p<0.0001
Low-grade vs. high-grade

miR-155 0.83 (95% Cl: 0.7688 to 0.89) 73.24 85.95 p<0.0001
miR-410 0.93 (95% Cl: 0,8885 to 0,9573) 90.2 82.4 p<0.0001
miR-181a 0.79 (95% Cl: 0.7303 to 0.8618) 70.21 83.75 p<0.0001
miR-181b 0.78 (95% Cl: 0.719 to 0.8534) 68.51 83.11 p<0.0001

ROC, Receiver Operating Characteristic; Cl, Confidence interval.
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TABLE 4 | Receiver Operating Characteristic (ROC) curves for diagnostic value of circulating miR-181a/b,

surgery time.

miR-410 and miR-155 for high-grade glioma patients in after

miRNAs Area Under the ROC Curve (95% CI) Sensitivity (%) Specificity (%) p value
Control group vs. high-grade

miR-155 0.87(95% ClI: 0.8211 to 0.9225) 66.7 76.9 p<0.0001
miR-410 0.76 (95% Cl: 0.6956 to 0.8436) 65.7 741 p<0.0001
miR-181a 0.84 (95% Cl: 0.7617 to 0.9205) 73.34 86.00 p<0.0001
miR-181b 0.87 (95% CI: 0.8087 to 0.9312) 68.21 82.75 p<0.0001

ROC, Receiver Operating Characteristic; Cl, Confidence interval.
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FIGURE 9 | Kaplan-Meier curves of overall survival (OS) for high-grade glioma patients based on the circulating miR-155, miR-410, miR-181a and miR-181b
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FIGURE 10 | Relative expression of circulating miR-181a/b, miR-410 and miR-155 and its potential gene-targets, programmed cell death 4 (PDCD4), Wnt family
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between miR-410 expression and MET levels in in plasma samples (p < 0.0001; Spearman rank correlation test: r = -0.4778). (D, E) Correlation between circulating miR-
181a/b expression and EGFR levels in plasma samples (p < 0.0001; Spearman rank correlation test: r = -0.5235, r = -0.5217).

circulating miR-155 the expression levels and lower circulating
miR-410 and miR-181a/b the expression levels showed a shorter
OS in high-grade glioma patients. Wherein in the patients group
with partial tumor resection with higher-expression of circulating
miR-155 and lower-expression miR-410 and miR-181a/b had a

poorer OS than in the patients with total tumor resection. To the
best of our knowledge, the present study was the first
comprehensive study on the expression and clinical significance
of the expression levels of panel circulating miR-155, miR-410,
and miR-181a/b in high-grade glioma patients.
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Previous studies in vitro and in vivo have identified that miR-
155, miR-410, and miR-181a/b is important miRNAs in
regulating the oncogenesis in glioma, including high-grade
gliomas. For instance, Wu et al. demonstrated that miR-155
could effectively accelerate proliferation, migration and invasion
of U-87 MG cell line through targeting the PI3K/AKT signaling
pathway (8). In other study, using data from The Cancer
Genome Atlas (TCGA) dataset for clinical information of 480
glioblastoma samples had demonstrates that miR-155 could
serve as prognostic and predictive biomarkers for survival of
glioblastoma patients (17). Moreover, miR-155 highly expressed
in glioma cells and demonstrated to regulate caspase-3 gene
expression, were the target of PNA-based induction of apoptosis
in the TMZ-resistant T98G glioma cell line (10). MiR-410, and
miR-181a/b has tumor suppressive roles in glioma, and their
reduced expression leads to abnormalities in cellular processes,
such as an increase in apoptosis, enhanced cell growth, invasion
and decreased sensitivity to radio- and chemotherapy through
negative suppression of oncogene function (18-22). Wang et al.,
showed that miR-410 was significantly down-regulated in glioma
tissues and in glioma cell lines (U87MG, SF126, LN229, and
U251MG). These results indicate that decreased expression of
miR-410 correlates with poor prognosis of glioma patients. In
additional, the authors indicated that miR-410 exerts tumor-
suppressing functions (inhibitory effects on tumor cell
proliferation, migration, and invasion) in glioma by directly
targeting mRNA 3’-untranslated regions (3’'UTR) Ras-related
protein 1A (RAP1A) (23). Wang et al. demonstrated that long
non-coding RNA (IncRNA) colon cancer-associated transcript-1
(CCAT1) promoted U251 cell line proliferation and colony
formation, induced the cell cycle arrest in GO/G1 phase and
promoted the tumor cells apoptosis via inhibiting miR-410. In
other words, these results indicated that miR-410 mediated the
tumor-suppressive effects of CCAT1 knockdown on
glioblastoma (24). Zhang et al. indicated that upregulation of
miR-181b targets B-cell lymphoma 2 (Bcl-2) directly and may
function as an important modifier to sensitize U87MG and U251
cells line to TMZ (25). Shi et al. demonstrated that miR-181a and
miR-181b are low expression in human gliomas (WHO Grade
1-4) and glioma cell lines, U87, TJ905, and U251 (13). Moreover,
miR-181a and miR-181b has great biological effect on tumor cells
growth, proliferation, invasion and apoptosis, and may function
as tumor suppressors in high-grade gliomas.

Given the roles of miR-155, miR-410, and miR-181a/b in the
glioma oncogenesis, we used the online tools DIANA-microT,
mirSVR, PicTar5, RNA22, RNAhybrid, TargetScan, PITA,
MirTarget2, TargetMiner, miRanda, and TmiRWalk2.0 to
predict the possible genes candidate as targets for these
miRNAs. The selected eight genes, targeted by the miRNAs
panel, were MET, PI3KCA, WNT5A, PDCD4, DFFA, EGFR,
and FGFR1/2. As result, the current study showed that
circulating miR-155 correlated positively with PDCD4 in
plasma of high-grade glioma patients. In the same time, miR-
155, miR-410, and miR-181a/b correlated negatively with
WNT5A, MET, and EGFR in plasma of high-grade glioma
patients. Latest reports have shown that these miRNAs by
regulation PDCD4, WNT5A, MET, and EGFR also serves

certain biological function in the progression of various human
tumors including glioma. For instance,

These results further suggest that miR-155, miR-410, and miR-
181a/b may play a significant role in the development and
progression of glioma by regulation PDCD4, WNT5A, MET,
and EGFR. Future studies in vitro and in vivo may address
whether targeting miR-155, miR-410, and miR-181a/b and these
potential gene-targets may provide a novel therapeutic strategy to
suppress the progression of high-grade gliomas.

In summary, ours is the first study to systematically
interrogate the clinical significance of panel circulating miR-
155, miR-410, and miR-181a/b in glioma, and we provide
comprehensive evidence that miR-155, miR-410, miR-181a/b
may act as an oncomiR and tumor suppressive miRNAs, as well
as a non-invasive diagnostic and prognostic biomarkers in
gliomas, particularly high-grade gliomas.

5 CONCLUSIONS

We verified that increased the expression levels of circulating
miR-155 and reduced of circulating miR-181a/b and miR-410
are a prospective candidate non-invasive biomarker for high-
grade glioma diagnosis and prognosis. Moreover, miR-155, miR-
18la/b and miR-410 may participate in the molecular
mechanism of high-grade glioma by interaction PDCD4,
WNT5A, MET, and EGFR. Confirming the potential role of
miR-155, miR-181a/b and miR-410 in the oncogenesis of glioma
and confirming it as non-invasive biomarkers in diagnosis and
prognosis of high-grade glioma requires more clinical trials and
in vitro and in vivo studies.
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Purpose: Studies reported that 5-methylcytosine (mM5C) RNA transferase alters tumor
progression; however, studies of m5C-related INcCRNA remain lacking. This article intends
to study the INncRNA modified by m5C RNA transferase in hepatocellular carcinoma using
a combination of computational biology and basic experiments.

Method: We identified 13 m5C RNA transferase-related genes and selected long non-
coding RNAs with a Pearson correlation coefficient greater than 0.4. Univariate Cox
regression analysis was used to screen m5C RNA transferase INcRNA related to survival
phenotype. We divided TCGA-LIHC into two types of m5C RNA using non-negative
matrix decomposition. According to WGCNA, the co-expression models of two INncRNA
regulation modes were constructed to analyze the characteristic biological processes of
the two m5C RNA transferase-related INCRNA gene models. Then, a predictive model of
m5C RNA transferase INncRNA was using LASSO regression. Finally, we used cell
experiments, transwell experiments, and clone formation experiments to test the
relationship between SNHG4 and tumor cell proliferation in Hep-G2 and Hep-3b cells line.

Results: We identified 436 m5C RNA transferase-related INcRNAs. Using univariate Cox
regression analysis, 43 prognostic-related INcCRNAs were determined according to P <
0.001. We divided TCGA-LIHC into two regulation modes of m5C RNA transferase using
non-negative matrix factorization. The two regulation modes showed significant
differences in overall and disease-free survival. We used LASSO to construct mb5c-
related INcRNA prognostic signature. Thus, a predictive m5C-IncRNA model was
established using four INcRNAs: AC026412.3, AC010969.2, SNHG4, and AP003392.5.
The score calculated by the m5C-IncRNA model significantly correlated with the overall
survival of hepatocellular carcinoma. The receiver operating characteristic curve and
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decision curve analysis verified the accuracy of the predictive model. We observed a more
robust immune response in the high-risk score group. The transwell experiments and
clone formation experiments suggested that m5C RNA transferase-related IncRNA
SNHG4 promotes the proliferation and migration of Hep-G2 and Hep-3b cells line.

Conclusion: Two INcRNA expression patterns regulated by m5C RNA transferase were
identified. The difference between the two expression patterns and the survival phenotype
in the biological process was pointed out. A 5-methylcytosine RNA methyltransferases-
related INcRNA overall survival signature was constructed. These results provide some
understanding of the influence of m5C transferase on hepatocellular carcinoma. The
prediction model of m5C transferase INCRNA has potential clinical value in managing
hepatocellular carcinoma.

Keywords: 5-methylcytosine RNA methyltransferases, long non-coding RNA, weighted gene co-expression
network analysis (WGCNA), liver hepatocellular carcinoma, prognosis model

INTRODUCTION

Hepatocellular cancer (HCC) is the sixth most common cause of
malignant tumors. In 2020, there will be 900,000 new cases of
stem cell cancer worldwide, making HCC the third leading cause
of tumor-related death worldwide (1). HCC accounts for nearly
90% of primary liver cancers (2). Because the initial symptoms of
HCC are not apparent, many patients are diagnosed with
advanced liver cancer, hampering the success of treatment. In
recent years, chemoradiotherapy for HCC has benefited patients
with progressive disease; however, some patients remain with
poor outcomes. Therefore, predicting the outcome of HCC
patients by gene sequencing technology can assist clinicians in
diagnosis and treatment strategies.

High heterogeneity is a significant feature of HCC. The
primary characteristics of high heterogeneity are multiple
genomic alterations and epigenetic modifications. Of these,
epigenetic modifications are closely associated with tumor
progression and metastasis and can be used as targets for
cancer treatment. Epigenetics consists of the modification of
DNA, RNA, and protein levels. Compared with the relatively
limited spectrum of DNA modifications (six types), the
abundance of RNA modifications is much higher. Post-
transcriptional modification of RNA is an area of intense
study. Of the 170 post-transcriptional modifications of RNA
discovered to date, 2/3 are methylation modifications, including
mlA, m6A, m5C, and m7G (3). Methylation of RNA 5-
methylcytosine (m5C) is methylation at the fifth carbon atom
of an RNA cytosine. This modification was discovered in rRNA
in the 1970s and then successively in transport RNA, messenger
RNA, and long non-coding RNA (IncRNA). M5C modification
of RNA exists widely in cells and plays an essential role in

Abbreviations: LIHC, Liver hepatocellular carcinoma; M5C, 5-Methylcytosine
RNA methyltransferases; NMF, non-negative matrix factorization; WGCNA,
Weighted correlation network analysis; LASSO, Least absolute shrinkage and
selection operator; GSEA, Gene Set Enrichment Analysis; ESTIMATE, Estimation
of Stromal and Immune cells in Malignant Tumor tissues using Expression data;
SSGSEA, single sample gene set enrichment analysis.

regulating gene expression and RNA stability. In addition, m5C
methylation is associated with proto-oncogene activation, and
m5C modified methyltransferase NSUN2 is differentially
expressed in tumor and para cancer tissues.

LncRNA is defined as a DNA transcript with no coding
protein action over 200 bp in length (4), first proposed in a
study of mouse cDNA sequencing (5). LncRNA is classified as
IncRNA, antisense IncRNA, bidirectional IncRNA, intragenic
IncRNA, and intergenic IncRNA, depending on its location in
the genome (6). RNA methylation of IncRNA has been
demonstrated in cancer progression. For example, in HCC, the
m6A “writer” METTL3 increases the stability of LINC00958 and
promotes cancer progression (7). Similarly, m6A “eraser”
ALKBH5 increases the invasion and metastasis of gastric
cancer tumor cells by inhibiting the methylation of NEAT1 (8).

In the present study, we analyze 5mC RNA methyltransferase-
related IncRNA using computational biology and basic experiments
to provide a basis for studying the heterogeneity of HCC.

METHODS

Expression Collection

The gene transcripts and clinical features of the tumor tissues of
patients with HCC were obtained from TCGA (https://
cancergenome.nih.gov/), including 374 samples of HCC tissues
and 50 samples of normal adjacent tissues. The clinical
characteristics of patients included gender, survival status,
survival time, tumor stage, and TNM stage.

Screening for Differential m5C-Related
IncRNA

The “EdgeR” program package in RStudio software used applied,
and “FDR <0. 1, | log2FC |> 2” was the standard initially to
screen the differentially expressed m5C related IncRNA. The
“DEseq2” program package was used to identify differentially
expressed m5C-related IncRNA according to “Padj < 0.05 and
[log2EC| > 2.”
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Negative Matrix Factorization (NMF)
Clustering of m5C Related IncRNAs

Gene Sets

Thirteen m5C-related genes were collected from literature
mining (9-20). Based on Pearson coefficient >0.4 and cox
coefficient P<0.001. The m5C related IncRNAs were uploaded
as Supplementary Table 1—the 43 m5C related IncRNA genes
for non-negative matrix dimensionality reduction clustering
NMF. The non-negative matrix dimensionality reduction
method was implemented using the “NMF” R package (21).

Weighted Correlation Network Analysis

A weighted standard expression network was constructed using the
R language WGCNA package (22). The pickSoftThreshold function
was used to obtain the optimal value of weighting parameters of
adjacent parts, which was used as a soft threshold for subsequent
network construction. Then, the weighted adjacency matrix was
then constructed, and the related gene modules were built using
hierarchical clustering based on the dissimilarity measure (1-Tom)
of the topological overlap matrix (23). To determine the biological
significance of each module, the potential correlation between genes
and clinical traits was calculated using the characteristic genes of
each module as the main component, and the expression patterns of
genes of each module were summarized. Then, the correlation
between the module significance and the average gene significance
within the module was calculated. Finally, the correlation between
the co-expression module and the expression pattern of NMF
clustering subtypes was calculated.

LASSO Regression

The LASSO (24) regression algorithm was used to identify genes
related to the outcome and survival of hepatocellular cancer
patients and construct a risk-scoring model. The model’s
predictive performance was evaluated by the time-dependent
receiver operating characteristic curve (ROC). Kaplan-Meier
survival curves were used to compare survival differences of
HCC patients between the two groups using the log-rank test.

GSEA

We used GSEA 4.1.0 software with the c2.cp.kegg.v7.0.symbols.gmt
dataset in the Molecular Signature Database as the functional gene
set to perform GSEA for patients in different risk groups (25). The
iterative operations were set to 1000, and other parameters were set
to default values.

The Proportion of Infiltrating Immune Cells
in HCC
We used six methods to evaluate the relative proportion of immune
infiltrating cells in the immune microenvironment, namely
CIBERSORT (26, 27), EPIC (28), quanTIseq (29), MCPcounter (30),
XCELL (31), and TIMER (32) algorithms to evaluate the immune
response of different risk scores. We used Heatmap to analyze the
differences in immune responses using the various algorithms.

The Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data (ESTIMATE) is an algorithmic
tool. The detailed algorithm is shown in Supplementary File 2.

The Correlation Between Risk Score and
Immune Inflammation Response

We selected several classic immune-related sub-gene sets,
including primary histocompatibility complex class II,
lymphocyte-specific kinase, hematopoietic cell kinase,
immunoglobulin G, signal transduction, and activation
transcription 1, costimulatory molecule, interferon, and TNF
gene sets (33). Genes with concentrations are displayed in
Supplementary Table 3. We analyzed the association between
risk scores and the genes associated with immune responses.

Cell Culture

The Hep-G2 and Hep-3b cell line was provided by the Shanghai
Cell Bank of the Chinese Academy of Sciences. Cells were
cultured in a complete DMEM medium containing 10% fetal
bovine serum and placed in an incubator at 37°C and 5% CO,.
Cells were seeded in 6-well plates at 4x10° cells per well, and
we observed cell fusion after culturing overnight for
subsequent experiments.

Cell Transfection Experiment

We selected Hep-G2 and Hep-3b cells in the logarithmic growth
phase, trypsinized them, and seeded them in 6-well plates. After
adherence, according to the lentivirus packaging manual, we
transfected the cells with a multiplicity of infection of 10. After 24
hours, we added two pl of polybrene at a final concentration of 5
ug/ml for screening for 1-2 weeks, incubated at 37°C, and
changed the medium once according to cell status 8-12 hours.
We transferred the successfully transfected cells from each group
to the cell flask and continued culturing to obtain stable cells.
Cells were grouped as follows: Si-NC group, sil-SNHG4 group,
and si2-SNHG4 group. Si-SNHG4F: GTCAGCGAGCGAA
CCCAATTGGC; R: CCGATCGGCAGCCGCGCGCGA.

RT-PCR Detection of SNHG4

Gene Expression

We extracted the total RNA from each group of cells after
transfection and reverse transcribed the RNA into cDNA
according to kit instructions. We designed the primer sequence
and used the cDNA containing the amplified sequence as a
template for PCR reaction. After the response, the results of each
group were recorded, and GAPDH was used as an internal
control to compare and analyze the expression of SNHG4 in
each group. SNHG4 F: CCGCCGATAGGAGCGACACCCC
AAC, R: AACCATCGAGCGGGGGCTCTCGCAAA.

Clone Formation Experiment to Observe
the Effect of SNHG4 Gene on the
Proliferation of Hep-G2 and Hep-3b Tumor
Cell Line

After the cells were transfected, we transferred cell suspensions to
1.5 mL Eppendorf tubes, mixed and diluted, and inoculated 6-
well plates at 20,000/well. We changed the medium once every
three days and cloned for about ten days to observe the
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formation of cloning groups. The medium was then aspirated,
and the cells were washed and fixed in 4% paraformaldehyde for
15 min, followed by staining with 0.1% crystal violet for 15 min.
Finally, cells were washed, dried, and photographed to count
clonal cell clusters and perform statistical analysis.

Transwell Method to Observe the Effect of
SNHG4 Gene on the Migration of Hep-G2
and Hep-3b Cells

We added 200 uL of HepG2 cell line suspension (1x10* cells) to
the upper chamber of the Transwell chambers. The experiment
was divided into regular cell group (si-NC), SNHG4 gene
knockdown 1 group (sil-SNHG4), and SNHG4 gene
knockdown 2 Group (si2-SNHG4). Cells were placed in a 37 ©
C incubator for 24 hours, after which the upper chamber was
removed and washed with PBS three times. Cells were then fixed
with paraformaldehyde for 20 minutes, stained with 0.1% crystal
violet for 30 minutes after air-drying, and we randomly selected
five fields under the microscope for counting. The number of
cells and the ratio of the number of penetrating cells between the
experimental and control groups represent cell migration
changes. The Hep-3b cells line was tested using the HepG2
cell line.

Western Blotting

First, we used precooled RIPA buffer containing protease
inhibitor (Thermo Scientific, USA) (Beyotime, Shanghai,
China) to extract total protein from cells. Equivalent amounts
of protein samples were isolated with 4-12% SDS-Page
(GenScript, Nanjing, China) and then transferred to 0.45um
PVDF membrane (Millipore, USA). The membrane was sealed
with TBST containing 5% skim milk for two h and incubated
with primary antibody at four °C overnight. After washing with
TBST 3 times, the antibody was coupled with HRP and incubated
for one h at room temperature. Immunoblots were detected by
an imaging system (Bio-Rad, USA) using an enhanced
chemiluminescence detection kit (Servicebio, Wuhan, China).
Western blots were performed using an imaging system (Bio-
RAD, USA) using an enhanced chemiluminescence assay kit
(Servicebio, Wuhan, China). The primary antibodies consisted of
beta-catenin (Proteintech, 51067-2-AP), cyclin D1 (Cell
Signaling Technology, 55506S), and GAPDH (Cell Signaling
Technology, 5174S). The above antibodies are used in
accordance with manufacturer’s agreement and instructions

RESULTS

The Molecular Subtypes of IncRNA
Regulated by m5C in HCC Based on the
NMF Classification Method

The flow chart of the article is shown in Figure 1A. The coxph
function in R was used to evaluate the predictive value of m5C-
regulated IncRNA. According to the Pearson correlation
coefficient greater than 0.4, we identified 436 m5C-related
IncRNAs (Figures 1B, C). Then, according to the standard of

single-factor Cox regression P < 0.01, we obtained 436 cancer
outcome-related m5C-regulated IncRNA genes. The significance
and risk ratio of m5C-regulated IncRNA significant genes are
shown in Figure 2A. We then performed non-NMF on these
prognostic-related hepatocellular cancer IncRNA-related genes
using 50 iterations. We conducted nine clusters; the number of
collections k was 2-10, and the minimum sample of each group
was set to 10 using the ‘NMF R package. According to three
parameters (cophenetic, dispersion, and silhouette), we choose
the ideal cluster group to be 2 (Figures 2B, C). We found that
patients with different IncRNA gene expression patterns showed
differences in overall survival and disease survival rates
(Figure 2D; log-rank p = 0.01).

WGCNA Gene Co-Expression Network
Analysis to Identify the Biological
Characteristics of Different

IncRNA Groups

We included the protein-coding genes and clinical samples in HCC
into a WGCNA input file. In the subsequent investigation, we
followed the omics cluster analysis to include samples with similar
expression patterns. According to the cut-off value of 10000 and the
[B-value setting at 5, the gene in the smallest module is set to 30, and
18 co-expression modules are finally obtained (Figures 3A, B). The
C1 IncRNA feature group strongly correlates with the brown
module (Figure 3C; Cor = 0.58). We enriched the genes in the
brown module that were associated with greater than 0.4 with the
C1 group and found that the genes in the brown module were
involved in the biological processes of oxidative phosphorylation
and ATP metabolic process (Figure 3D). The IncRNA feature
group of the C2 group had the strongest correlation with the
yellow module (Figure 3C; Cor = 0.28). We enriched the genes in
the yellow module that correlate greater than 0.4 with the C2 group.
We found that yellow genes in the module were involved in the
small molecule catabolic process, carboxylic acid catabolic process,
and cellular amino acid metabolic process (Figure 3D).

Construction of HCC Outcome Model
Based on IncRNA-Related

Prognostic Genes

First, we randomly divided the entire TCGA-LIHC queue into
training and validation sets. We arranged them in ascending order
according to the ID of the sample and used SPSS to assign a
random number to each sample for classification. The
classification results satisfy the following criteria: 1) the two
groups were similar in age distribution, clinical staging, follow-
up time, and patient mortality; and 2) the gene expression profiles
of the two randomized data sets were similar. Then we used
LASSO regression to construct the IncRNA-related outcome
model. First, we used the 43 prognostic-related m5C-related
IncRNAs obtained above as input data and regression based on
the overall survival rate as clinical follow-up data. This number of
genes is not conducive to clinical detection. Therefore, to reduce
the range of m5C-related IncRNAs while maintaining high
accuracy, the R package glmnet was used to perform LASSO
regression analysis with the trajectory of each independent
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variable (Figure 4A). As the lambda increased, the independent
coefficients also gradually increased, and the same was obtained
for the independent coefficients. Three-fold cross-validation was
used to build the model and analyze the confidence interval under
each lambda. Finally, we constructed a predictive risk model
containing the four genes. RiskScore = 0.75 * expAC026412.3 +
0.13 * expAC010969.2 + 0.15 * expSNHG4 + 0.33 *
expAP003392.5 We calculated the RiskScore according to the
expression level of the gene, and obtained the RiskScore

distribution of the sample (Figure 4B). The death rate of the
high-risk samples was significantly higher than that of the samples
with a low-risk score, indicating that the samples with high
RiskScore had a worse outcome. We divided the RiskScore into
high- and low-risk groups and drew Kaplan-Meier curves; there
was a significant difference between the two (Figure 4C). We used
ROC to classify RiskScore. We analyzed the 1.3 and 5-year forecast
classification efficiency. The 5-year AUC area was 0.612, the 3-year
AUC area was 0.636, and the 1-year AUC area was 0.746. Finally,
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FIGURE 2 | (A) Univariate Cox regression analysis of prognostic m5C-related IncRNAs. (B) Consensus map of non-negative matrix factorization clustering.
(C) Consensus clustering parameter. (D) Overall survival and disease-free survival prognostic survival curves of two molecular subtypes. NA, Not application.

the variables in the model were used as independent prognostic
factors to assess patient risk (Figure 4D).

Evaluation of Model Results

We drew Kaplan-Meier curves for risk scores in the training and
validation sets and found a significant difference between the high-
and low-risk groups in the training and validation sets (Figure 5).

We analyzed the prediction classification efficiency of risk scores 1,
3, and 5 years in the training and validation sets (Figure 5). The 5-
year AUC area in the training set was 0.629, the 3-year AUC area
was 0.658, and the 1-year AUC area was 0.771. In the verification
set, the 5-year AUC area was 0.578, the 3-year AUC area was 0.608,
and the 1-year AUC area was 0.692. We included risk scores into
different subgroups, such as age, stage, and others. We grouped
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FIGURE 3 | (A) Network topology analysis for different soft threshold powers. (B) A hierarchical clustering tree was constructed, with each leaf representing a gene
and each branch representing a co-expression module. A total of 18 co-expression modules were generated. (C) The correlation coefficients between two molecular
phenotypes, T stages, grade, and co-expression modules. (D) The primary enrichment biological pathways of co-expression modules of two molecular types.

them according to subgroup indicators to evaluate the prognostic
assessment ability of risk scores in the various subgroups
(Figure 6A). The risk score distinguished patients with different
outcomes in the whole cohort and patients in groups with
characteristics such as age, stage, and others (Figure 6A). We
then compared the area under the AUC curve of the nomogram,
RiskScore, age, and staging and found that the area under the curve
of the risk score in the training set was the largest, with the AUC
area in the training set 0.749 (Figure 6B).

GSEA Analysis

We performed GSEA analysis in high- and low-risk patients to
determine pathways related to the patient’s prognostic risk. As
shown in Figure 6C, in patients with high-risk scores of HCC,
cell cycle, cytokine-cytokine-receptor interaction, ECM receptor
interaction, and other tumor-related pathways were enriched. In
patients with low-risk scores of HCC, butanoate metabolism,
fatty-acid metabolism, and tryptophan metabolism were
enriched in several tumor metabolism-related pathways.
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The Relationship Between Risk Score and
Immune Microenvironment

The risk score positively correlated with inflammatory and
immune responses. These reactions were induced by
hematopoietic cell kinases, immunoglobulin G, interferon,
lymphocyte-specific kinase, primary histocompatibility
complex class I, major histocompatibility complex class II, and
activator of transcription 1. Patients with higher risk scores had
more clustered immune-inflammatory responses (Figure 7A).

The Relationship Between Risk Score and
Immune Infiltration

The relationship between the level of immune cell infiltration
and risk score evaluated based on the six methods of
CIBERSORT, EPIC, quanTIseq, MCPcounter, XCELL, and
TIMER is shown in Figure 7B. We found significant
differences in the level of infiltration of macrophages and
CD8" T cells in different RiskScore groups.

The Effect of Knocking Out the SNHG4
Gene on the Clone Formation Ability of
Hep G2 and Hep-3b Cells

The above paper constructed a predictive scoring model
based on M5C methylation-related long non-coding RNA.
The predictive scoring gene model contained four long non-
coding RNAs: AC026412.3, AC010969.2, SNHG4, and
AP003392.5. SNHG4 has been extensively studied in
several cancers. Long Non-Coding RNA SNHG4 was a
biomarker in Non-Small Cell Lung Cancer in colorectal
cancer (34, 35). However, there are not enough studies on
the effect of SNHG4 on liver cancer, and we used a cell assay
to analyze the impact of SNHG4 in liver cell carcinoma.
Clone formation experiments showed that the number of
clones formed by Hep G2 and Hep-3b cell lines in the sil-
SNHG4 and si2-SNHG4 groups after culture and staining
was significantly lower than that of the si-NC group (P <
0.05) (Figures 8A, B).
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Transwell Assay

Compared with the si-NC control group, the number of Hep-G2
and Hep-3b cells passing through the Transwell chamber in the
Sil-SNHG4 and si2-SNHG4 groups was significantly lower,
suggesting SNHG4 promotes the migration of Hep-G2 and
Hep-3b cells (P < 0.05) (Figures 8C, D).

Knocking SNHG4 Affects Wnt

Signaling Pathways

After pathway enrichment analysis in the TCGA-LIHC cohort,
SNHG4 was found to be closely associated with liver cancer
progression. To verify the specific effect mechanism of SNHG4
on liver cancer, hepatocyte carcinoma cell lines of HEP-G2 and
HEP-3B cells with SNHG4 knockdown cell lines were used for
Western blotting analysis. The results showed that the expression
level of cyclin D1 and f3 -catenin protein in the SNHG4 knockout
group was significantly lower than that in the negative control
group (NC) (Figures 9A, B). Three repeated experiments

demonstrated that knocking down SNHG4 down-regulated the
WNT signaling pathway and affected the expression of cyclin D1.

DISCUSSION

The mechanism of m5C methylation modification of IncRNA is
unclear; therefore, we attempted to comprehensively analyze
IncRNA related to m5C methylation modification using
computational biology. The m5C methylation modification of
RNA is dynamically regulated by methyltransferase and
demethyltransferase. Under the action of methyltransferase,
RNA undergoes m5C modification and then combines with
recognition protein to exert specific biological functions (3).
The methyltransferases modified by m5C include NSUNI,
NSUN2, NSUN3, NSUN4, NSUN5, NSUN7, and DNMT?2.
The point is a structurally conserved cysteine residue that
catalyzes m5C methylation in various types of RNA with the
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help of the methylated donor S-adenosine-L-methionine.
Therefore, we focused on the IncRNA, regulated by the
aforementioned transferases.

It is believed that m5C methyltransferase regulates IncRNA in
liver cancer. The role of m5C methylation in the occurrence and
progression of cancer has been identified in liver cancer,
including mRNA, microRNA, IncRNA, and other types of
RNA. The m5C modification of RNA plays an essential
regulatory role in the occurrence and progression of tumors
(13). The m5C methyltransferase NSUN4 recognizes protein
ALYREEF associated with liver cancer outcomes. A study found

that expression levels of H19 IncRNA in cancer tissues were
significantly higher than those in adjacent tissues. Other studies
found that this effect was due to the m5C modification on H19
IncRNA mediated by NSUN2, which increases the stability of
H19 IncRNA. H19 IncRNA with m5C change specifically binds
to G3BP1 protein, further leading to the accumulation of
oncoprotein and promoting the occurrence and progression of
liver cancer (36).

We identified SNHG4 as an m5C methylation modification
IncRNA in the present study. SNHG4 encodes small nucleolar
RNA host gene 4. Some IncRNAs encode small nuclear RNA host
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genes. In recent years, many studies have found that the abnormal
expression of snRNAs may play the role of oncogenes in the
development of tumors. For example, Chen found that SNHGS8
was upregulated in non-small cell lung cancer (37). Other
investigators found that the expression trend of SNHGS8 in
glioma and liver cancer was consistent with these studies (38-40).

There are few in-depth studies discussing the predictive value
of SNHGs. SNHGI1, SNHG3, and SNHG20 are predictive
biomarkers for neuroblastoma (41), ovarian cancer (42), and
colorectal cancer (43), respectively. Zhu et al. conducted a
bioinformatics analysis of IncRNA and found that SNHG4
may be a valuable prognostic marker in HCC (40). In the
present study, we reached the same conclusion that the
expression of SNHG4 was an independent predictor of poor
outcomes in HCC. We further studied the predictive value of

SNHGH4 in the subgroups and found its limitations in women
and young patients, which may help direct precision therapy.

There are some limitations to our paper. We only analyzed
IncRNAs associated with m5C transferase in TCGA; more
sequencing cohorts are needed to validate our findings. This paper
only conducted a comprehensive analysis of m5C related IncRNA
and did not include a complete regulatory mechanism study.

CONCLUSION

We immediately identified 436 m5C transferase-related long non-
coding RNAs and 43 prognostic-related IncRNAs related to m5C
transferase. Four IncRNA were determined by LASSO regression to
reduce the screening range further. Finally, we found that SNHG4
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was significantly associated with the protein-coding gene of m5C
methyltransferase. Cell experiments showed that knocking down
SNHG4 affected the proliferation and migration of HCC. This
comprehensive analysis of IncRNA regulated by m5C transferase
provides a basis for future research on the methylation regulation of
long-chain non-coding RNA.
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Long Intergenic Noncoding
RNAO00265 Enhances Cell Viability
and Metastasis via Targeting miR-
485-5p/USP22 Axis in Osteosarcoma

Ting Chen, Jinxin Liu, He Zhang, Jiatong Li and Guanning Shang”*

Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China

Osteosarcoma is one of the bone malignancies in children and adolescents. Long
noncoding RNAs (IncRNAs) have been demonstrated to participate in osteosarcoma
development and progression. Linc00265 has been shown to involve in osteosarcoma
oncogenesis; however, the underlying mechanism is largely unclear. In this study, we
investigated the function of linc00265 in osteosarcoma cells, including cell viability,
migration and invasion. Moreover, we elucidated mechanistically the involvement of
linc00265 in osteosarcoma. We found that [incO0265 overexpression promoted
viability, migration and invasion of osteosarcoma cells. Notably, linc00265 sponged
miR-485-5p and increased the expression of USP22, one target of miR-485-5p, in
osteosarcoma cells. Strikingly, inc00265 exerted its oncogenic function via regulating
miR-485-5p and USP22 in osteosarcoma. Taken together, targeting linc00265 is a
promising approach for treating osteosarcoma patients.

Keywords: Linc00265, osteosarcoma, miR-485-5p, USP22, viability

INTRODUCTION

Osteosarcoma is one of the common bone malignancies, which often happens in children and
adolescents (1, 2). The standard therapeutic strategy is surgery in combination with chemotherapy
for osteosarcoma patients (3-5). Notwithstanding the treatment and diagnostic approaches have
been improved, some osteosarcoma patients still have worse prognosis due to resistance to
chemotherapy and distant metastasis (6-8). Hence, more investigations need to determine the
mechanism of osteosarcoma carcinogenesis and discover the new promising agents for improving
the efficiency of treatment outcome in osteosarcoma patients.

LncRNA is one type of noncoding RNA without protein encoding functions, which has more
than 200 nucleotides (9). LncRNAs affect the cellular functions via modulating gene expression at
multiple regulatory levels, such as transcriptional and post-transcriptional levels (10, 11). LncRNAs
have been demonstrated to play a necessary role in a number of types of cancers, including
osteosarcoma (12-15). Evidence has revealed that 1inc00265 is critically involved in carcinogenesis
and tumor progression in multiple type cancers (16). For example, studies have shown that the
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expression of 1inc00265 was increased in bone marrow and
serum of acute myeloid leukemia (AML) patients, which was
associated with poor overall survival (16, 17). Linc00265
regulated proliferation, migration and invasion via activation
of phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway
in AML cell lines (17). Moreover, linc00265 overexpression
increased autophagy and attenuated apoptosis of AML cells via
sponging miR-485-5p and subsequent upregulation of
interferon-regulatory factor 2 (IRF2) (16). Similarly, another
study also showed that 1inc00265 expression was elevated in
peripheral blood and bone marrow in leukemia patients (18).

Studies have demonstrated that 1inc00265 downregulation
blocked colorectal cancer (CRC) oncogenesis via enhancement
of zinc finger MIZ-type containing 2 (ZMIZ2) expression due to
sponging several miRNAs, including miR-375, miR-30c-2-3p,
miR-324-3p and miR-130-3p, leading to upregulation of
ubiquitin specific peptidase 7 (USP7) and stabilization of -
catenin (19). Moreover, Ge et al. showed that linc00265
knockdown attenuated the expression of epidermal growth
factor receptor (EGFR) in CRC cells, resulting in suppression
of proliferation, invasion and induction of apoptosis in CRC cells
(20). Furthermore, 1inc00265 enhanced glycolysis and lactate
production via binding to miR-216b-5p and elevating the
expression of tripartite motif containing 44 (TRIM44) in CRC
(21). Clinically, higher expression of linc00265 was correlated
with poorer prognosis in CRC patients, indicating that linc00265
might be an independent prognostic marker (21, 22). In lung
adenocarcinoma, linc00265 was uncovered to interact with miR-
7 and subsequently upregulate fibroblast growth factor 2 (FGF2),
contributing to lung cancer tumorigenesis (23). The role of
linc00265 in osteosarcoma has not been fully investigated.
Thus, we aimed to determine the function and molecular
insight of 1linc00265 in osteosarcoma progression.

Ubiquitin-specific protease 22 (USP22) can act as a
deubiquitinating enzyme and exhibit its implication in
oncogenesis due to regulation of proliferation, cell cycle,
apoptosis, cancer stemness and chemoresistance (24). USP22 is
abnormally expressed in several cancer types and facilitates
tumor malignant progression. For example, USP22 can
stabilize the E2F6 stability and activate Akt pathway in
hepatocellular carcinoma (HCC), leading to aggressive
progression of HCC (25). USP22 inhibits HER2-mediated
breast cancer aggressiveness via reducing the unfolded protein
response (26). Moreover, USP22 regulates necroptosis in tumor
cells via governing receptor-interacting protein kinase 3 (RIPK3)
stability (27). USP22 expression was increased in osteosarcoma
tissues and linked to osteosarcoma progression (28). The detailed
mechanism of USP22-mediated osteosarcoma is still elusive.

In the present study, we investigated the expression and
biological functions of 1inc00265 in osteosarcoma cells.
Moreover, we further explored the molecular mechanism of
linc00265-mediated carcinogenesis in osteosarcoma. Our study
demonstrated that linc00265 promoted cell viability, migration
and invasion via targeting miR-485-5p/USP22 axis in
osteosarcoma, suggesting that 1inc00265 might be a useful
target for osteosarcoma therapy.

MATERIALS AND METHODS
Cell Culture

The osteosarcoma cell lines, MG63 and U20S, were cultured in
Dulbecco’s modified eagle medium (DMEM) medium with 10%
fetal bovine serum (FBS). SAOS-2 cell line was cultured in
McCoy’s 5A modified medium with 10% FBS. The human
osteoblast (HOB) cells were cultured in MEM-F12 medium
with 10% FBS. The cells were maintained in the presence of
5% CO, at 37°C.

CCK-8 Cell Viability Assay

The cell counting kit-8 (CCK-8) kit (Beyotime, Shanghai, China)
was used to measure viability of osteosarcoma cells after different
treatments. Osteosarcoma cells were seeded on 96-cell plates and
incubated in medium for 24, 48, and 72 hours, respectively.
Then. 10 ul CCK-8 reagent was added and incubated for 3 hours
at 37°C. The OD values were measured at 450 nm by a
microplate reader (Sunnyvale, CA, USA).

Colony Formation Assay

The treated osteosarcoma cells were seeded into 6-well plates and
maintained with 5% CO, at 37°C in a humidified incubator for
14 days. The culture media was removed and the cells were fixed
with 4% paraformaldehyde for half hour after the cells were
washed by PBS. Then, 0.1% crystal violet was added to stain the
cell colony for 15 minutes. Finally, we counted the number of
cell colony.

Quantitative Real-Time Reverse
Transcription-PCR Analysis

The treated osteosarcoma cells were harvested and total RNA
was extracted using TRIzol agent. The mRNA was reverse-
transcribed by the cDNA Reverse Transcription Kit (Thermo
Fishes, USA) following the manufacturer’s instructions. Then,
qRT-PCR was conducted using SYBR Green PCR Master Mix
Kit as described previously (REF). The primers are: USP22,
forward primer, 5-AGC CAA GGG TGT TGG TCG CG-3,
and reverse primer, 5-ACT GCC ACC ACG CCC GAA AG-3.
GAPDH, forward primer, 5'- ACC CAG AAG ACT GTG GAT
GG -3'; reverse primer, 5- CAG TGA GCT TCC CGT TCA
G- 3.

Western Blotting Analysis

The treated osteosarcoma cells were harvested and lysed in a lysis
buffer containing protease inhibitor cocktail. The protein
concentration was measured by the bicinchoninic acid (BCA)
assay. The protein was determined by SDS-PAGE and probed
with antibodies against USP22 (SC-390585, Santa Cruz, USA,
1:1000) and tubulin (#19028, Sigma-Aldrich, St. Louis, MO,
USA, 1:5000) as described previously (29). The quantitative
results were analyzed by Image] software (NIH, USA).

Transfection Assay
Osteosarcoma cells were seeded into 6-well plates and
transfected with different plasmids by Lipofectamine 2000 as
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described previously (29). USP22-specific shRNA, USP22
lentiviral particles, miR-485-5p mimics, miR-485-5p inhibitors
and control vectors were provided by GenePharma Company
(Shanghai, China). After cells were transfected for 48 hours, the
cells were subjected to analysis for cell viability, migration and
invasion, which were described under the result sections.

Wound Healing Assay

The treated osteosarcoma cells were seeded on 6-well plates for
overnight. Then, we created a wound via scratch approach by a
100 pl pipette tip after cell confluence reached to higher than
90%. The wound area was photographed at 0 hour and 20 hours
using an inverted microscope, respectively. The distance of
wound closure was analyzed by Image]J software.

Transwell Invasion Assay

The treated osteosarcoma cells were seeded on the upper layer of
24-well inserts (Corning Incorporated, NY, USA) with 200 ul
serum-free medium. The membrane of the upper layer was
precoated with Matrigel. In addition, 500 pl complete medium
with 10% FBS were added in the under layer. After 20 hours
incubation, the invaded cells through the membrane were
stained by 4 pg/ml Calcein AM. The invaded cells were
photographed by a microscope.

Luciferase Report Assay

The wild-type or mutant binding sequence of miR-485-5p in
1linc00265 or USP22 3’'UTR was sub-cloned into pmirGLO dual-
luciferase vector. The dual luciferase report assay system
(Promega, Madison, WI, USA) was utilized to measure
luciferase activity as described previously (30).

Statistical Analysis

Data are presented as mean + SEM. Two-way ANOVA followed
by Tukey’s test was conducted for comparison among multiple
groups. Student’s t-test was used for comparison between two
groups. P < 0.05 was considered statistically significant.

RESULTS

Linc00265 Overexpression Promotes
Viability of Osteosarcoma Cells

Several studies have uncovered that linc00265 exerts tumor
promotive functions in a number of cancer types. We are
wondering whether 1inc00265 upregulation could inhibit
viability of osteosarcoma cells. First, we used real-time RT-
PCR analysis to detect the expression of linc00265 in normal
human osteoblasts (HOB) and osteosarcoma cells (U20S, MG63
and SW1353). The results showed that 1inc00265 was highly
expressed in osteosarcoma cell lines compared with HOB cells
(Figure 1A). To investigate the biological function of 1inc00265
in osteosarcoma cells, we transfected linc00265 plasmid and shR-
linc00265 into MG63 and U20S cells. As shown in Figure 1B,
MG63 and U20S cells after transfection with 1inc00265 plasmid
exhibited higher expression of 1inc00265 compared with

pcDNA3 transfection (Figure 1B). Osteosarcoma cells treated
with shR-1inc00265 plasmid displayed the lower expression of
1inc00265 compared with PSilencer transfection in both MG63
and U20S cell lines (Figure 1B). Next, we aimed to explore the
cell viability in MG63 and U20S cells after linc00265 modulation
by CCK-8 assay. The results from CCK-8 assay clearly
demonstrated that downregulation of 1inc00265 attenuated cell
viability in U20S cells and MG63 cells (Figure 1C). In line with
this finding, upregulation of linc00265 facilitated viability of
osteosarcoma cells in both osteosarcoma cell lines (Figure 1D).
Moreover, colony formation assay was performed to examine the
ability of colony formation in both MG63 cells and U20S cells
after 1inc00265 changes. We observed that downregulation of
1linc00265 suppressed colony formation capacity in U20S cells,
while overexpression of 1linc00265 stimulated colony formation
ability of MG63 cells (Figure 2A). Taken together, linc00265
governs cell viability and colony formation in osteosarcoma cells.

Linc00265 Overexpression Enhances
Invasion and Migration of Osteosarcoma
Cells

Studies have reported that linc00625 regulates migratory and
invasive capacities in a spectrum of cancers. Here, we explored
the invasiveness and migration of osteosarcoma cells after
linc00625 overexpression and depletion. We observed that
linc00265 plasmid transfection facilitated cell invasion in
MG63 and U20S cells (Figure 2B). Consistently, shR-
linc00265 transfection reduced the cell invaded numbers
through Matrigel membrane in both osteosarcoma cell lines
(Figure 2B). Next, wound healing assays were conducted to
examine the motility of osteosarcoma cells after 1inc00265
upregulation or downregulation. As demonstrated in Figure 3,
increased linc00265 promoted closure in wound area in
osteosarcoma cells. In contrast, decreased linc00265 retarded
closure of wound area in MG63 and U20S cells (Figure 3). The
wound healing data indicated that 1inc00265 could control
migratory and invasive capacity in osteosarcoma cells.

Linc00265 Sponges miR-485-5p in
Osteosarcoma Cells

It has been known that linc00265 often sponges specific miRNAs
to regulate its downstream genes. The potential miRNAs that
might bind with 1inc00265 were predicted using starBasev2.0.
From this database, we predicted that miR-485-5p could be a
sponging miRNA of 1inc00265 because this IncRNA has a
position interacting with miR-485-5p (Figure 4A). We
transfected miR-485-5p mimics and inhibitors into
osteosarcoma cells and observed that miR-485-5p expression
was elevated in mimics-treated group, while miR-485-5p levels
were downregulated in inhibitor-treated group (Figure 4B). To
validate whether the miR-485-5p is the downstream target of
linc00265, the luciferase reporter assay was performed using a
wild-type or mutant target site from linc00265. We found that
miR-485-5p mimic decreased luciferase activity in the wild-type
linc00265 reporter, but not in mutant linc00265 reporter
(Figure 4C). At the same time, we uncovered that the
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FIGURE 1 | Linc00265 overexpression promotes viability of osteosarcoma cells. (A) Real-time RT-PCR was utilized to examine the expression levels of linc00265 in
HOB cells and three osteosarcoma cell lines, including MG63, Sa0S-2 and U20S. (B) Real-time RT-PCR was performed to examine linc00265 expression levels in
MG63 and U20S cells after various plasmid transfections. (C) CCK-8 assay was conducted to detect the viability of osteosarcoma cells after linc00265 knockdown
for 24 h, 48 h, and 72 h. (D) CCK-8 assay was utilized to detect the cell viability in lincO0265-overexpressing osteosarcoma cells for 24 h, 48 h, and 72 h. *P < 0.05,
P < 0.01, P < 0.001 vs. control.

expression levels of miR-485-5p were decreased in osteosarcoma
cells after linc00265 overexpression (Figure 4C). Meanwhile, the
levels of miR-485-5p were elevated in osteosarcoma cells after
1inc00265 depletion. Therefore, 1inc00265 might target miR-485-
5p in osteosarcoma cells.

MiR-485-5p Mimics Inhibits Cell Viability,
Which Is Abrogated by linc00265

To evaluate the association between miR-485-5p and linc00265
in osteosarcoma cells, MG63 and U20S cells were transfected
with miR-485-5p mimic, miR-485-5p inhibitor and matched

controls. The data from CCK-8 assay suggested that miR-485-5p
mimics repressed viability of osteosarcoma cells (Figure 4D).
Meanwhile, miR-485-5p inhibitors facilitated cell viability in
both MG63 and U20S cells. Moreover, miR-485-59-mediated
effect on cell viability was abrogated by linc00265 overexpression
in osteosarcoma cells (Figure 4D). To further confirm this
phenotype, colony formation assay was utilized in
osteosarcoma cells after co-transfection of miR-485-5p mimics
and 1inc00265 plasmid. The results indicated that miR-485-5p
mimics attenuated colony formation ability of MG63 cells, which
was rescued by linc00265 overexpression (Figure 4E).
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FIGURE 2 | Linc00265 overexpression promotes colony formation and invasion of osteosarcoma cells. (A) Colony formation assay was used to detect the ability of
colony formation in osteosarcoma cells after linc00265 downregulation (U20S cells, Top) and upregulation (MG63 cells, Bottom). The quantitative data were
ilustrated (Right panel). (B) Transwell invasion assays were conducted in MG63 and U20S osteosarcoma cells after inc00265 overexpression or downregulation.
The quantitative data of invasion ability were shown (Bottom panel). **P < 0.01, **P < 0.001 vs. control.

Consistently, miR-485-5p inhibitor treatment enhanced colony ~ complementary binding sites with miR-485-5p (Figure 5A).
formation capacity of U20S cells, which was abolished by shR- ~ Luciferase reporter results revealed that miR-485-5p mimic

linc00265 infection (Figure 4E). decreased luciferase activity for the WT USP22 reporter, but
. . not for mutant USP22 reporter. Meanwhile, miR-485-5p
USP22 Is a Direct Target of miR-485-5p inhibitor increased luciferase activity for the WT USP22

Evidence has demonstrated that miRNAs regulate the  reporter (Figure 5B). RT-PCR was performed to examine the
expression of targets due to that miRNAs contain special  expression of USP22 mRNA in osteosarcoma cells after miR-
sequences that are complementary to downstream targets. The ~ 485-5p mimic treatment or inhibitor exposure. As
TargetScan database was utilized to predict the downstream  demonstrated in Figure 5C, miR-485-5p mimic treatment
targets of miR-485-5p. We found that USP22 3°UTR has the  reduced the USP22 mRNA expression in U20S cells, while
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vs. control.

miR-485-5p inhibitor enhanced the USP22 mRNA levels in
MG63 cells. Western blotting data further validated that miR-
485-5p overexpression reduced the expression of USP22
protein, whereas miR-485-5p downregulation increased the
USP22 protein levels in osteosarcoma cells (Figure 5D). To
check whether 1inc00265 could regulate the expression of
USP22, RT-PCR and western blotting analysis were utilized to
test the expression of USP22 in osteosarcoma cells after
1linc00265 changes. Our results suggested that linc00265
upregulation increased the expression of USP22 at mRNA and
protein levels, and 1inc00265 downregulation attenuated the
USP22 expression levels in osteosarcoma cells (Figures 5E, F).

Linc00265 Exerts Its Functions via
miR-485-5p/USP22 Axis

Lastly, we examined whether miR-485 and USP22 were involved
in linc00265-mediated oncogenic function in osteosarcoma cells.
MG63 cells were transfected with miR-485-5p or USP22 plasmid
or linc00265 plasmid or shR-USP22 or combination treatments.
Then, CCK-8 assay, colony formation, wound healing assay, and
Transwell invasion assays were done to determine cell viability,
colony formation ability, migratory capacity and invasive ability

in osteosarcoma cells, respectively. CCK-8 data showed that
USP22 overexpression accelerated viability of osteosarcoma
cells, which was rescued by miR-485-5p upregulation
(Figure 6A). Overexpression of linc00265 increased cell
viability in MG63 cells, which was abolished by
downregulation of USP22 (Figure 6A). In line with this result,
USP22-mediated promotion of colony formation was abrogated
by overexpression of miR-485-5p. Moreover, 1inc00265-induced
colony formation was rescued by inhibition of USP22 in
osteosarcoma cells (Figure 6B). Furthermore, USP22-induced
cell migration and invasion were abolished by miR-485-5p
overexpression in osteosarcoma cells (Figures 7A, B).
Linc00265-triggered motility of osteosarcoma cells was blocked
by upregulation of miR-485-5p in osteosarcoma cells
(Figures 7A, B). Altogether, 1inc00265 exerted its functions in
part via regulation of miR-485-5p/USP22 axis.

DISCUSSION

A line of evidence uncovered that linc00265 plays an essential
role in tumorigenesis. Yang et al. revealed that linc00265
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FIGURE 4 | Linc00265 sponges miR-485-5p in osteosarcoma cells. (A) The target gene of linc00265 was predicted by starbase database. (B) The efficacy of
transfection was confirmed by gRT-PCR in MG63 and U20S osteosarcoma cells. (C) Luciferase reporter assay was used to confirm miR-485-5p as a target of
linc00265 (Left and middle panels). The expression of miR-485 was detected by gRT-PCR in MG63 and U20S osteosarcoma cells after inc00265 changes (Right
panel). (D) Cell viability was examined by CCK-8 assay in MG63 and U20S osteosarcoma cells after inc00265 modification and miR-485-5p changes. (E) The
colony formation ability was measured in MG63 and U20S osteosarcoma cells after inc00265 modification and miR-485-5p changes (Left panel). The quantitative
data of colony formation ability were demonstrated for colony formation (Right panel). **P < 0.01, **P < 0.001 vs. control. ns, no statistic difference..
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FIGURE 5 | USP22 is a downstream target of miR-485-5p. (A) The TargetScan database was utilized to predict the downstream target of miR-485-5p. USP22
3'UTR has the complementary binding sites with miR-485-5p. (B) Luciferase reporter assay was used to confirm USP22 as a target of miR-485-5p in MG63 and
U20S cells. (C) The expression of USP22 mRNA levels was detected by gRT-PCR in MG63 and U20S osteosarcoma cells after miR-485 changes. (D) The
expression of USP22 protein levels was detected by Western blotting in osteosarcoma cells after miR-485 changes (Left panel). The quantitative data were
demonstrated for USP22 protein levels (Right panel). (E) The expression of USP22 mRNA levels was detected by gRT-PCR in osteosarcoma cells after inc00265
changes. (F) The expression of USP22 protein levels was detected by Western blotting in osteosarcoma cells after linc00265 changes (Left panel). The quantitative
data were demonstrated for USP22 protein levels (Right panel). **P < 0.01, **P < 0.001 vs. control. ns, no statistic difference.

stimulated cell proliferation via interaction with miR-144-3p and
increasing chromobox 4 (CBX4) in gastric cancer (31). In
bladder cancer cells, 1inc00265 was found to facilitate cell
viability, proliferation and migratory ability via inhibition of
miR-4677-3p and promotion of fibroblast growth factor 6
(FGF6) expression (32). Xiao and colleagues reported that

linc00265 facilitated cell angiogenesis via sponging miR-382-
5p, leading to upregulation of Spermidine/spermine
acetyltransferase-1 (SAT1) and vavguanine nucleotide
exchange factor 3 (VAV3) in osteosarcoma, which caused
suppression of proliferation, motility and angiogenesis in
osteosarcoma cells (33). Moreover, 1inc00265 was highly
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FIGURE 6 | Linc00265 promoted cell viability and colony formation via miR-485-5p/USP22 axis. (A) Cell viability was examined by CCK-8 assay in osteosarcoma
cells after linc00265 modification, miR-485-5p changes, or USP22 modification or combination. (B) The colony formation ability was measured in osteosarcoma
cells after linc00265 modification, miR-485-5p changes, or USP22 modification or combination. The quantitative data were demonstrated for colony formation
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vs. control.

expressed in osteosarcoma patients and correlated with a poor  via targeting dual-specificity tyrosine regulated kinase 1A
prognosis (33). Here, we reported that linc00265 facilitated (DYRKIA) (38). In breast cancer cells, USP22 positively
osteosarcoma progression via targeting miR-485-5p/USP22 axis. ~ regulated ERol expression via maintaining its stability (39).

Evidence has shown that miRNAs critically participate in ~ Moreover, USP22 downregulation repressed cell proliferation,
oncogenesis of numerous types of cancer, including  invasion and epithelial-mesenchymal transition (EMT) via
osteosarcoma. For example, miR-485-5p retarded cell  inactivation of PI3K/Akt signaling pathway in osteosarcoma
proliferation and metastasis via inhibition of CX3CL1 in cells (28). Moreover, inhibition of USP22 reduced
osteosarcoma cells (34). Similarly, one study reported osteosarcoma tumor growth and metastasis in mice (28). Liu
that miR-495-5p targeted heat shock protein (Hsp90) et al. also found that miR-140 attenuated osteosarcoma
expression and inactivated Aktl phosphorylation and blocked  progression via interference of USP22-involved lysine-specific
PI3K/Akt pathway, resulting in suppression of cell proliferation =~ demethylase 1 (LSD1) stabilization and elevating p21 expression
in osteosarcoma (35). Another study showed that miR-485-5p (40). We also confirmed that USP22 enhanced viability and
can downregulate the expression of baculoviral IAP repeat  motility of osteosarcoma cells.
containing 5 (BIRC5) and block the malignant phenotype
of osteosarcoma (36). In our study, we found that miR-485-5p
inhibited the expression of USP22 in osteosarcoma cells,
leading to suppression of viability and motility of CONCLUSIONS
osteosarcoma cells.

USP22 promoted tumor development and progression in  In summary, linc00265 promoted cell viability, migration and
certain cancer types. For instance, USP22 enhanced cell  invasion in osteosarcoma cells, indicating that linc00265 is an
proliferation via increasing surviving stability in renal cell ~ oncogene in osteosarcoma. Moreover, linc00265 sponged
carcinoma (RCC) cells (37). In pancreatic ductal = miR-485-5p and suppressed its expression in osteosarcoma
adenocarcinoma (PDAC) cells, USP22 stimulated cell growth  cells. Furthermore, we identified that USP22 is a direct target
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FIGURE 7 | Linc00265 enhanced migration and invasion via miR-485-5p/USP22 axis. (A) Cell invasion was examined by Transwell invasion assay in osteosarcoma
cells after linc00265 modification, miR-485-5p changes, or USP22 modification or combination. (B) Cell migration was measured by wound healing assay in
osteosarcoma cells after linc00265 modification, miR-485-5p changes, or USP22 modification or combination (Left panel). The quantitative data were demonstrated
for wound healing assay (Right panel). 1: Blank. 2: pcDNA3 + miR-NC. 3: pcDNAS + pUSP22. 4: miR-485 + pUSP22. 5. Linc00265 + pSilencer. 6. Linc00265 +

of miR-485-5p in osteosarcoma cells. Thus, miR-485-5p/
USP22 axis was critically involved in linc00265-induced
oncogenesis. Together, inhibition of 1linc00265 could be a
potential strategy for osteosarcoma therapy. It is necessary
to mention that in vivo mouse study will further validate the
function of 1inc00265 in osteosarcoma development and
progression. Moreover, it is required to explore the
association between linc00265 levels and prognosis in
osteosarcoma patients. In addition, linc00265 could have
multiple miRNAs to sponge downstream targets. USP22 and
miR-485-5p could have several downstream targets, which
need to be further explored in osteosarcoma cells.
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Nasopharyngeal carcinoma (NPC) is often associated with the infection of Epstein-Barr
virus in nasopharynx and is mainly happened in South China and Southeast Asia.
Recently, noncoding RNAs have been reported to regulate NPC carcinogenesis.
LncRNA OIP5-AS1 participates in tumorigenesis and progression; however, the
inherent mechanism of OIP5-AS1-mediated progression of NPC is unclear. In the
current study, we aimed to explore the role of OIP5-AS1 in NPC progression. We
measured the cell viability, apoptosis, migration, and invasion in NPC cells after OIP5-
AS1 modulation. Moreover, we determined whether OIP5-AS1 exerts its oncogenic
functions via sponging miR-183-5p in NPC. Furthermore, we determined whether
glutamate ammonia ligase (GLUL) was a downstream target of miR-183-5p. We found
that OIP5-AS1 downregulation inhibited the viability, migration and invasion of NPC via
targeting miR-183-5p. We also identified that GLUL might be a potential downstream
target of miR-183-5p in NPC cells. Mechanistically, OIP5-AS1 promotes cell motility via
regulating miR-183-5p and GLUL in NPC cells. We concluded that OIP5-AS1 performed
its biological functions via targeting miR-183-5p and GLUL in NPC cells.

Keywords: nasopharyngeal carcinoma, OIP5-AS1, miR-183-5p, GLUL, viability

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is often associated with the infection of Epstein-Barr virus in
nasopharynx (1). This disease generally has ethnic and geographic features, such as in South China
and Southeast Asia (2). Many factors have been believed to contribute to NPC development,
including EBV infection, genetic susceptibility, dietary habits, smoking, epigenetic alterations. The
current therapy for NPC patients includes chemotherapy and radiotherapy (3-5). NPC patients
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often have recurrence, leading to poor overall survival (6).
Therefore, it is important to determine the molecular
mechanism of NPC development and progression, which is
still not thoroughly elucidated.

Recently, noncoding RN As have been reported to regulate NPC
carcinogenesis (7, 8). Several studies have revealed that IncRNA
OIP5-AS1 participates in tumorigenesis and progression (9-11).
Higher expression of OIP5-ASI could be associated with an
advanced stage and a poor survival in multiple cancer types (12).
Zhang et al. reported that depletion of OIP5-AS1 suppressed cell
proliferation, EMT and metastasis via upregulation of miR-186a-5p
and inhibition of ZEB1 in hepatoblastoma cells (13). Wang et al.
found that OIP5-AS1 increased cell proliferation via sponging miR-
378a-3p in lung cancer (14). Similarly, OIP5-AS1 enhanced lung
cancer stemness via promotion of Oct4 mRNA stability (15). One
group identified that OIP5-AS1 facilitated cell proliferation and
invasive activity via interacting with miR-143-3p and increasing
integrin alpha6 expression in cervical cancer (16). Similarly, OIP5-
AS1 promoted viability, migration and invasion of cervical cancer
cells via binding with miR-143-3p and upregulating SMAD3
expression in cervical cancer cells (17). OIP5-AS1 increased
invasion, migration and EMT via targeting miR-147a and IGF1R
in cervical cancer (18). OIP5-AS1 inhibited miR-92a and increased
cell growth and metastasis via upregulation of ITGA6 in ovarian
cancer (19). OIP5-ASI interacted with miR-34a and increased the
PD-L1 expression in NSCLC cells (20). Depletion of OIP5-AS1
retarded cell growth, migration and stimulated apoptosis via
targeting miR-129-5p and SOX2 in breast cancer (21).
Knockdown of OIP5-AS1 expression attenuated cell viability,
triggered cell cycle arrest and activated apoptosis in bladder
cancer (22).

Multiple researches demonstrated that OIP5-AS] exerts anti-
tumor functions in various types of cancers. For example, one
study showed that OIP5-AS1 reduced clonogenic survival and
induced apoptosis in colorectal cancer cells after irradiation via
targeting miR-369-3p and DYRKIA, suggesting that OIP5-AS1
enhances radio-sensitivity in colorectal cancer (23). One study
revealed that OIP5-AS1 enhanced NPC progression via sponging
miR-203 (24). The inherent mechanism of OIP5-AS1-mediated
progression of NPC is unclear. In the current study, we
investigated the role of OIP5-AS1 in NPC progression. To
achieve this goal, we measured the cell viability, apoptosis,
migration, and invasion in NPC cells after OIP5-AS1
modulation. Moreover, we determined whether OIP5-AS1
exerts its oncogenic functions via sponging miR-183-5p in
NPC. Furthermore, we explored whether glutamate ammonia
ligase (GLUL) was a downstream target of miR-183-5p. Our
results showed that OIP5-AS1 performed its biological functions
via targeting miR-183-5p and GLUL in NPC cells.

MATERIALS AND METHODS

Cell Culture and Reagents

Human NPC cells(CNE1, CNE2 and HNE1), which are Epstein-
Barr virus (EBV)-negative cells, were cultured in RPMI-1640
medium supplemented with 10% fetal bovine serum (FBS). MTT

[3-(4,5-dimethythi-azol-2-yl)-2,5-diphenyl tetrazolium
bromide] was obtained from Sigma Company. Matrigel was
bought from BD Biosciences Company. Lipofectamine 3000
was obtained from Invitrogen Company. The anti-GLUL and
anti-tubulin antibodies were purchased from Cell Signaling
Technology Company.

Cell Viability Assay

The transfected CNE1 and CNE2 cells were seeded in 96-well
plates for 72 hours. MTT assay was performed to measure cell
viability by a spectrophotometer at 570 nm as described
previously (25).

Transfection

The NPC cells were seeded in 60 mm dishes overnight and then
transfected with different plasmids (GenePharma, Shanghai,
China) using Lipofectamine 3000 following the manufacture’s
instruments (25, 26).

Real-Time Quantitative RT-PCR

Total RNAs were extracted from the transfected NPC cells and
then reversely transcribed into ¢cDNA. The RT-1PCR was
performed as described before (26). The mRNA levels were
calculated using “*Ct methods.

Wound Healing Assay
The transfected NPC cells were seeded in 6-well plate. After the
cells grew to around 100% confluence, the scratch wound was
created using a pipette tip and the cells were washed by PBS. The
cells were cultured for 20 hours. The photographs were taken at 0
hour and 20 hours, respectively.

Transwell Matrigel Invasion Assay

The invasive activity of NPC cells was determined by Transwell
Matrigel invasion assay using 24-well Transwell inserts with
precoated Matrigel. The transfected NPC cells were seeded in
upper level of the inserts with serum-free medium. The bottom
level of the insert was added completed medium. After 24 hours,
the cells that invaded on the bottom level were stained and
photographed by a microscope.

Western Blotting Analysis

The transfected cells were washed and harvested and then lysed
by protein lysis buffer. The concentrations of proteins were
measured using BCA assay. After SDS-PAGE was used to
separate the protein samples, the proteins were transferred
onto PVDF membranes. The membranes were incubated with
5% milk for 1 hour and then immunoblotted with anti-GLUL
antibody overnight at cold room. Then, TBST was used to wash
the membranes for three times and subsequently probed with the
proper secondary antibody for 1 hour. The expression level of
proteins was measured by ECL assay. Tubulin expression was
used to act as a control.

Dual Luciferase Reporter Gene Analysis
The GLUL wild-type, GLUL mutant, OIP5-AS1 wild-type, and
OIP5-AS1 mutant were amplified and cloned in pmirGLO vector
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with luciferase. Cells were treated with different plasmids. OIP5-
AS1 mutant has the mutated binding sites of miR-183-5p. GLUL
mutant has the mutated binding sites of miR-183-5p. After 48
hours, the dual luciferase reporter gene analysis was detected
following the manufacturer’s protocols (Promega, Madison,
WI, USA).

Statistical Analysis

Statistical analysis was measured by GraphPad Prism 5.0 (CA,
USA). The significance was analyzed using the two-tailed
Student’s t-test for comparing with two different groups.
ANOVA was used for comparing with multiple groups. Data
are shown with means + SEM.

RESULTS

Inhibition of OIP5-AS1 Suppressed Cell
Viability in NPC Cells

We examined the expression of IncRNA OIP5-AS1 in NP69,
CNE1, CNE2 and HNEI cell lines by real-time RT-PCR analysis.
We found that the expression of OIP5-AS1 was highly expressed
in NPC cells compared with NP69 nasopharyngeal normal cell
line (Figure 1A). Next, we used shRNA to knockdown the
expression of OIP5-AS1 in CNEI and CNE2 cells, which had
the high expression of OIP5-AS1. We found that sh-OIP5-AS1
transfection led to downregulation of OIP5-ASI in both CNE1
and CNE2 cells (Figure 1B). In the following study, we used sh-
OIP5-AS1#2 to investigate its function in CNE1 and CNE2 cells.
To measure the effect of OIP5-AS1 downregulation in NPC cells,
we examined the cell viability in CNE1 and CNE2 cells after
OIP5-AS1 knockdown. We observed that knockdown of OIP5-
AS]1 attenuated the viability of NPC cells (Figure 1C). Moreover,
we performed the colony formation study to further determine
the function of OIP5-ASI1 in NPC cells. Our data showed that
depletion of OIP5-AS1 reduced the colony formation activity in
CNE1 and CNE2 cells (Figure 1D). Altogether, knockdown of
OIP5-AS1 inhibited viability of NPC cells.

Inhibition of OIP5-AS1 Reduced Migration
and Invasion in NPC Cells

It is known that OIP5-ASI participates in cell migration and invasion
in cancer. Therefore, we measured the migratory and invasive
capacity of NPC cells after OIP5-AS1 knockdown. Our wound
healing assay data showed that knockdown of OIP5-ASI retarded
would closure in both CNE1 and CNE?2 cells (Figure 2A). Moreover,
transwell invasion assay data demonstrated that knockdown of OIP5-
AS1 reduced the invasiveness activity in CNE1 and CNE2 cells
(Figure 2B). Taken together, OIP5-AS1 knockdown retarded the
migrative and invasive capacity in NPC cells.

OIP5-AS1 Targets miR-183-5p in

NPC Cells

According to the database from website RAID v2.0, OIP5-AS1
could bind to hsa-miR-183-5p. Moreover, the data from
mircode.org also showed that OIP5-AS1 can interact with hsa-
miR-183-5p. There were binding sites between miR-183-5p and

IncRNA OIP5-AS1 (Figure 3A). To further validate this concept,
we performed the dual luciferase reporter gene analysis. We
found that the luciferase activity of OIP5-AS1 was decreased in
the miR-183-5p mimics group when compared with miRNA
control group (Figure 3B). In consistent, the activity of OIP5-
AS1 mutation did not change in the both miR-183-5p mimics
and miRNA control groups (Figure 3B). This result indicated
that OIP5-AS1 might bind to miR-183-5p in NPC cells.

GLUL Is a Potential Target of miR-183-5p
We used bioinformatic analysis to predict the downstream target of
miR-183-5p. From the several public algorithms, such as TargetScan,
miRanda, microRNA.org, PicTar, GLUL was revealed to be a target of
miR-183-5p. The GLUL sequence has specific binding regions to
interact with miR-183-5p (Figure 3C). To demonstrate whether
miR-183-5p bound to GLUL, we conducted the dual luciferase
reporter gene analysis. We observed that the luciferase activity of
the GLUL was inhibited in the miR-183-5p mimic transfection
group, whereas its luciferase activity did not change in the miR-
183-5p mutation group (Figure 3D). Thus, GLUL might be a
potential downstream target of miR-183-5p in NPC cells.

OIP5-AS1 and miR-183-5p Target

GLUL Expression

Next, we determined whether miR-183-5p could regulate the
expression of GLUL in NPC cells. Our western blotting results
showed that miR-183-5p mimic transfection inhibited the
expression of GLUL in CNE1 and CNE2 cells (Figure 4A).
Moreover, downregulation of miR-183-5p by its inhibitors
increased the expression of GLUL in CNE1 and CNE2 cells
(Figure 4B). Furthermore, overexpression of OIP5-AS1 rescued
the inhibitory effect of miR-183-5p mimics on GLUL expression
in NPC cells (Figure 4A). Consistently, depletion of OIP5-AS1
abrogated the promotive effect of miR-183-5p inhibitors on
GLUL expression level in both NPC cell lines (Figure 4B).
Therefore, GLUL might be a downstream factor of miR-183-5p.

OIP5-AS1 Promotes Cell Viability via
Regulating miR-183-5p in NPC Cells

We tested whether OIP5-AS1 governs cell viability via regulation of
miR-183-5p in NPC cells. Our MTT assay showed that OIP5-AS1
downregulation inhibited cell viability in CNE1 and CNE2 cells
(Figure 5A). Downregulation of miR-183-5p rescued the inhibitory
effects of ShRNA OIP5-AS1 transfection on cell viability in NPC
cells (Figure 5A). Moreover, overexpression of GLUL abolished the
suppression of cell viability by shRNA OIP5-AS1 transfection
(Figure 5A). Consistently, colony formation experiments showed
the similar trends in CNE1 and CNE2 cells (Figure 5B). Altogether,
downregulation of OIP5-AS1 inhibited viability of NPC cells via
regulation of miR-183-5p and its target GLUL.

OIP5-AS1 Promotes Cell Motility via
Regulating miR-183-5p and GLUL in

NPC Cells

We explored whether OIP5-AS1 regulates cell migration and
invasion through targeting miR-183-5p and GLUL in NPC cells.
The invasive ability was measured by Transwell invasion assay in
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FIGURE 1 | Knockdown of OIP5-AS1 inhibits viability of NPC cells. (A), RT-PCR assay was used to measure the expression of OIP5-AS1 in several NPC cell lines.
***P<0.001 vs control. (B), RT-PCR was used to detect the efficacy of OIP5-AS1 knockdown in CNE1 and CNE2 cells. ***P<0.001 vs control. (C), MTT assay was
used to measure the viability of NPC cells after OIP5-AS1 knockdown. **P<0.01 vs control. (D), Cell colony formation was performed in NPC cells after OIP5-AS1
knockdown (Left panel). Quantitative data are represented (Right panel). **P<0.01 vs control.

NPC cells after modification of OIP5-AS1, GLUL and miR-183-
5p. The results showed that shRNA OIP5-AS1 transfection
reduced cell invasion capacity in CNE1 and CNE2 cells
(Figure 6A). Overexpression of GLUL blocked the inhibitory
function of OIP5-AS1 knockdown on cell invasion in NPC cells
(Figure 6A). Moreover, suppression of miR-183-5p abolished
the inhibitory effects on NPC cells that were induced by OIP5-
AS1 knockdown (Figure 6A). Wound healing assay data
demonstrated that knockdown of OIP5-AS1 retarded cell

migratory ability, which could be rescued by overexpression of
GLUL and inhibition of miR-183-5p in both NPC cell lines
(Figure 6B). Taken together, OIP5-AS1 regulated cell invasion
and migration via targeting miR-183-5p and GLUL in NPC cells.

DISCUSSION

LncRNAs have been reported to involve in carcinogenesis and
tumor progression in many types of cancers (27-31). Evidence has
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FIGURE 2 | Knockdown of OIP5-AS1 inhibits migration and invasion of NPC cells. (A), Wound healing assays were utilized to measure the migratory activity of NPC
cells after OIP5-AS1 knockdown (Top panel). Quantitative data are represented (Bottom panel). * P<0.05 vs control; ***P<0.001 vs control. (B), Transwell matrigel
invasion analysis was utilized to test the invasiveness capacity of NPC cells after OIP5-AS1 knockdown (Top panel). Quantitative data are represented (Bottom panel)
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revealed that OIP5-AS1 aggravated cell growth and migratory
ability via interaction with EZH2 and downregulation of NLRP6
in gastric cancer (32). Wang et al. reported that OIP5-AS1 enhanced
cell proliferation and promoted cell cycle via sponging miR-641 in
gastric cancer (33). Song et al. observed that OIP5-AS1 facilitated
cell proliferation and blocked apoptosis via targeting miR-143-3p/
ROCK1 axis in cervical cancer (34). Tao et al. found that OIP5-AS1
increased cell growth and suppressed apoptosis via modulation of
the miR-367-3p/HMGA?2 pathway in gastric cancer (35). Moreover,
OIP5-AS1 accelerated cell growth via affecting miR-422a and
ANOL1 axis in gastric cancer cells (36). Similarly, Zhi et al. found
that OIP5-AS1 enhanced gastric cancer progression via sponging

miR-153-3p and targeting ZBTB2 axis (37). Furthermore, OIP5-
AS] facilitated growth of pancreatic cancer cells via decoying miR-
342-3p and activation of AKT/ERK pathway (38). OIP5-AS1
silencing led to inhibition of cell proliferation and apoptosis in 5-
8F cells and CNEI cells via sponging miR-203 in NPC (24). Herein,
our study showed that OIP5-AS1 downregulation inhibited the
viability of NPC via targeting miR-183-5p.

OIP5-AS1 was reported to enhance the proliferation, motility
activity and EMT via decoying miR-204-5p and increasing ZEB1
in laryngeal squamous cell carcinoma (39). Knockdown of OIP5-
AS1 repressed proliferation and migration via regulating miR-
3163/VEGFA axis in liver cancer cells (40). Moreover, OIP5-AS1
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FIGURE 3 | OIP5-AS1 targets miR-183-5p. (A), Potential binding sites between OIP5-AS1 and miR-183-5p are shown. (B), Dual luciferase reporter assays were
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FIGURE 4 | GLUL is a target of miR-183-5p. (A), Western blotting assay was performed to measure the expression of GLUL in NPC cells after miR-183-5p mimic
and pcDNA OIP5-AS1 co-transfections. (B), Western blotting analysis was used to measure the expression of GLUL in NPC cells after miR-183-5p inhibitor and
shRNA OIP5-AS1 co-transfections.
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FIGURE 5 | OIP5-AS1 knockdown suppressed cell viability via regulating miR-183-5p in NPC cells. (A), MTT assay was used to measure the viability of NPC cells after
OIP5-AS1 knockdown, GLUL overexpression and miR-183-5p downregulation. **P<0.01 vs control. (B), Cell colony formation was performed in NPC cells after OIP5-
AS1 knockdown, GLUL overexpression and miR-183-5p downregulation (Top panel). Quantitative data are represented (Bottom panel). **P<0.01; **P<0.001 vs control.
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facilitated the tumor malignant progression via targeting miR-
429/FOXDI1/ERK axis in pancreatic cancer (41). OIP5-AS1
silencing led to inhibition of cell migration and invasion in 5-
8F and CNEI cells via sponging miR-203 in NPC (24). Our study
demonstrated that OIP5-AS1 knockdown suppressed cell
invasion and migration via regulating miR-183-5p and GLUL
in NPC cells. Tang et al. found that miR-183-5p is a biomarker
for patients with NPC (42). This study reported that miR-183-5p
expression was negatively associated with lymph node status in
NPC patients (42). GLUL has been identified to participate in
carcinogenesis and tumor progression (43). GLUL is involved

in tumorigenesis in a variety of cancers; however, the function of
GLUL in NPC is unclear. Here, we found that GLUL was
involved in OIP5-AS1-mediated tumor promotion in NPC cells.

It has been reported that OIP5-AS1 is involved in drug
resistance in various malignancies. Song et al. reported that
OIP5-AS1 increased cisplatin resistance via binding with miR-
340-5p and upregulating LPAATP and PI3K/AKT/mTOR
pathway in osteosarcoma (44). Similarly, OIP5-AS1 promoted
cisplatin resistance via regulating miR-27b-3p/TRIM14 axis in
oral squamous cell carcinoma (45). Liang et al. reported that
OIP5-AS1 targeted miR-137 and increased L-OHP sensitivity in
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(Right panel) *

colon cancer cells (46). Another group found that OIP5-AS1
increased doxorubicin resistance via sponging miR-137-3p and
upregulating PTN in osteosarcoma (47). Moreover, exosomal-
OIP5-AS1 promoted trastuzumab chemoresistance via decoying
miR-381-3p and increasing HMGB3 in breast cancer (48). OIP5-
AS1 increased cell resistance to imatinib via targeting miR-30e-
5p and ATGI12 in chronic myeloid leukemia cells (49). However,
it is unclear whether OIP5-AS1 is involved in drug resistance in
NPC, which needs to further investigate.
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FIGURE 6 | OIP5-AS1 knockdown inhibits cell motility via regulating miR-183-5p and GLUL in NPC celis. (A), Transwell Matrigel invasion analysis was utilized to test the
invasiveness capacity of NPC cells after OIP5-AS1 knockdown, GLUL overexpression and miR-183-5p downregulation. (Left panel). Quantitative data are represented
P<0.05 vs control; ** P<0.01; **P<0.001. (B), Wound healing assays were utilized to measure the migratory activity of NPC cells after OIP5-AS1
knockdown, GLUL overexpression and miR-183-5p downregulation (Left panel). Quantitative data are represented (Right panel). *P<0.05; **P<0.01; **P<0.001.

CONCLUSION

In summary, OIP5-AS1 downregulation suppressed the viability,
migration and invasion of NPC via targeting miR-183-5p. GLUL
might be a potential downstream target of miR-183-5p in NPC
cells. Moreover, OIP5-AS1 promotes cell motility via regulating
miR-183-5p and GLUL in NPC cells. Therefore, OIP5-AS1
exerted its biological functions via targeting miR-183-5p and
GLUL in NPC.
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Background: Different matrisomal patterns are shared across carcinomas. However, little
is known about whether there exists a unique tumor matrisome that modulates GC
progression and immune regulation.

Methods: \We conducted a genome-wide analysis based on matrisomal-related INcCRNAs
(MRLs) in 375 patients with GC from the Cancer Genome Atlas (TCGA) database. Patients
were split into the training set and validation set at a ratio of 1:1 using the R package cart.
Pearson correlation analysis (PCA) was performed to identify INcRNAs that correlated with
matrisome based on differential expression genes. Subsequently, we performed univariate
Cox regression analyses and lasso Cox analysis on these INcRNAs to construct a risk
model. Considering the primary effect of GRASLND on the GC prognosis, we chose it for
further validation in an experimental setting.

Results: We identified a 15-MRL signature to predict overall survival and immune cell
infiltration of patients with GC. The AUC values to predict 5-year outcome in three sets
were 0.89, 0.65, and 0.78, respectively. Further analyses suggested that the high-risk
group showed more obvious immune cell infiltration, and demonstrated an
immunologically “cold” profile. In vitro, knockdown of GRASLND could inhibit the
invasion capability of GC cells, and downregulate the protein expression of crucial
matrisomal-related gene MMP9.

Conclusions: The 15-MRL gene signature might serve as a relatively good predictive tool
to manage patients with GC.

Keywords: matrisomal pattern, gastric cancer, overall survival (OS), immune regulation, risk model
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INTRODUCTION

Gastric cancer (GC) represents one of the most common digestive
malignancies worldwide, particularly in East Asia. The number of
deaths was 768,793 in 2020 (1). Despite recent advances in GC
treatment, a significant proportion of GC patients are diagnosed at
the time of later disease progression (2). The outcomes of GC patients
still need to be improved. Chemotherapy has been widely applied as a
clinical treatment for advanced GC (3). However, these drugs show
few satisfactory therapeutic effects due to chemoresistance or other
adverse events (4), which limited their further application in some
cases. As a promising innovative therapy, immunotherapy provides
an effective strategy for the treatment of GC (5). Seeking effective
immune therapeutic indicators for GC remains a unique challenge
(6). Therefore, we aimed to establish a novel risk model associated
with immune infiltration and survival outcome of GC patients based
on large cancer datasets.

The extracellular matrix (ECM) consists of a complex network of
cross-linked proteins and has been extensively investigated in recent
years. Alterations in the composition, ultrastructure, and
mechanical properties of ECM elements could have an impact on
the phenotype of the cell, thus participating in the tumorigenesis
and development of cancers. Long non-coding RNAs (IncRNAs)
exert a variety of biological functions through various gene-
regulatory mechanisms (7). Aberrant expression of IncRNAs
contribute to the progression of cancers, including GC (8). Several
lines of evidence have demonstrated that IncRNAs are mainly
involved in the regulation of ECM through several crucial ECM-
related regulators. Previous studies revealed that TGFBI, as an
important player in the ECM, was negatively regulated by
IncRNA H19 via the IncRNA H19/miR-675 axis (9, 10). Gu et al.
indicated that IncRNA CTD-2589M5.4 could inhibit ovarian cancer
progression via regulation of ECM remodeling (11). LINC01089 is a
novel conserved IncRNA, which could function as the inhibitor of
ECM invasion in breast cancer (Sas-12). Moreover, a recent study
has also found that the miR-150-related regulatory axis was
involved in biological processes that relied on the ECM in
hepatocellular carcinoma (13). Therefore, ECM-related IncRNAs
might play crucial roles in tumor progression and immune
response. Nevertheless, direct lines of evidence about matrisomal-
related IncRNAs in GC are still lacking and need further study.

In this study, we conducted a genome-wide analysis about
matrisomal-related IncRNAs and developed a new and robust gene
signature based on the TCGA database. This new classification could
accurately predict survival outcome and was associated with immune
infiltration. Furthermore, several experiments in vitro showed that
knockdown of GRASLND could regulate matrisomal-related gene
MMP9. This might provide new insights into exploring the
regulatory roles of matrisomal-related IncRNAs in GC.

METHODS

Data Source
We downloaded high-throughput sequencing profile data of 375
GC patients from the TCGA public database and removed four

samples missing clinical follow-up information. LncRNAs and
protein-coding RNAs were annotated based on the GENCODE
project (https://www.gencodegenes.org/) (14). A total of 1,068
matrisomal-related genes were obtained from the M.LT.
“Matrisome Project” website (www.matrisomeproject.mit.edu/
other-resources/human-matrisome). The workflow is
illustrated in Figure 1.

Identification of Matrisomal-Related
LncRNAs

The Pearson coefficient was used to investigate links between the
potential IncRNAs and the matrisomal-related genes. The
absolute value of a correlation coefficient of more than 0.4 and
a p-value of less than 0.001 were set as threshold values (15-17).
The candidate matrisomal-related IncRNAs were considered for
subsequent analyses.

Construction of a Matrisomal-Related
LncRNA Risk Model

Differentially expressed matrisomal-related IncRNAs (DE-
MRLs) between the cancer and normal tissues were firstly
obtained based on R package “limma”. Our criteria were set as
[log2 fold change (FC)| > 1 and FDR < 0.05. Based on the survival
information for patients with GC, we screened out prognostic
matrisomal-related IncRNAs (p < 0.001) using univariate Cox
regression analysis. Then, GC patients were randomly split into
the training and validation set at a ratio of 1:1 using the R
package “caret.” We applied lasso analysis in the training set
using the R package “glmnet”. A coefficient for each prognostic
matrisomal-related IncRNAs was generated accordingly.
Multivariate Cox regression analysis was performed to propose
the following formula:Risk Score = > bi  Si. GC patients were
classified into high- and low-risk groups using the threshold of
median value.

Evaluation of the Prognostic Signature
Kaplan-Meier survival analysis was employed to investigate overall
survival discrepancy between the different risk groups.
Subsequently, receiver operating characteristic (ROC), decision
curve analysis (DCA), and concordance index (C-index) were
used to evaluate the performance of this prognostic model.
Additionally, we constructed a nomogram to predict 1-, 3-, and
5-year survival status. Meanwhile, the calibration curve was
performed to evaluate the predictive power of the nomogram.

Immune Cell Infiltration Analysis

Seven immune infiltration prediction algorithms based on RNA-
seq were utilized to compare tumor-infiltrating immune cell
(TIC) infiltration between the different risk groups.
Subsequently, we examined the relationship between the
proportions of TICs and candidate matrisomal-related
IncRNAs using the CIBERSORT algorithm. Additionally, we
performed ssGSEA analysis to quantify the immune regulatory
roles. Finally, several common immune checkpoint genes and
TIDE score were selected and evaluated between two groups.
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FIGURE 1 | The flowchart of this study.
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Cell Lines and Transfection

Human GC cell lines, AGS and MKN45, were obtained from the
Cell Bank of the Chinese Academy of Science. Two cell lines were
cultured in RPMI 1640 medium containing 10% fetal bovine
serum (FBS: Gibco). GenePharma (Shanghai) synthesized small
interfering RNA (siRNA) specific for GRASLND. siRNA was
diluted into 100 pl of Opti-MEM Medium, and then transfected
into AGS and MKN45 cells using 100 pl of Opti-MEM Medium
with Lipofectamine 3000 (Invitrogen, CA, USA). Knockdown
efficiency of the siRNA was assessed using quantitative PCR. The
sequence was as follows (18):

GRASLND sense-1 GCUUUGACUUAGACUUCUAGC
GRASLND antisense-1 UAGAAGUCUAAGUCAAAGCUU
GRASLND sense-2 CUGUGAUGGUUAAUGUUAAGU
GRASLND antisense-2 UUAACAUUAACCAUCACAGGG

Quantitative Real-Time PCR

TransScript One step gDNA kit (TransGen, China) was utilized
to achieve complementary DNA (cDNA) synthesis following the
manufacturer’s instructions. RT-PCR was performed using
TransStart Top Green qPCR SuperMix (TransGen, China).
The genetic expression level was normalized to the internal
control GAPDH. The standard 27**“" method was utilized to
analyze the relative IncRNA abundances. Specific primers
utilized in this study are as follows (18):

GRASLND Forward AGGATTCAGGGGATGCACAG
GRASLND Reverse TGGGCTGAAGATGAGACGTT

Invasion Assays

Cell invasion assays were conducted as previously described (19).
Matrigel was diluted at a ratio of 1:8 with PBS. After transfection,
1 x 10° cells were added to the upper chamber with 200 pl of
serum-free medium. Complete cell culture medium (600 pl) was
added to the lower chamber. Then, they were incubated for 48 h
at 37°C. Finally, 4% PFA was used to fix all the inserts for 20 min.
The inserts were immersed in 0.5% crystal violet for 20 min and
quantified using a microscope.

Western Blot Analysis

The procedures of Western blotting were followed as described
in previous reports (20). The primary antibody used was MMP9
(1:1,000, CST). The endogenous protein GAPDH (1:1,000, CST)
was utilized for normalization.

RESULTS

Identification of Matrisomal-Related
LncRNAs in Gastric Cancer

Firstly, we identified 2,256 matrisomal-related IncRNAs (Table
S1). Subsequently, we carried out differential gene expression
analysis between the tumor and normal tissues, and obtained 912
differential expression non-coding RNAs. Finally, 54 IncRNAs
were found to be significantly associated with the OS of GC
patients using univariate Cox regression analysis (Figure 2A).

Development and Validation of the
Matrisomal-Related LncRNA Risk Model

A total of 371 GC patients were randomly segregated into two
sets at a ratio of 1:1. Lasso Cox analysis was further performed in
the training set, and a coefficient for each prognostic matrisomal-
related IncRNA was generated accordingly. A 15 matrisomal-
related IncRNAs model was eventually developed using the
coefficient value (Figures 2B, C). The risk score of each sample
was as follows:

risk score = AL353693.1 % 0.064 + Z69666.1 %(~0.325)
+GRASLND # 0.953 + AC009283.1 *

0.004 + AC245100.5 % 0.242 + AC007277.1 %(~0.157)
+LINC02544  0.0221+

AC068790.7 * 0.253 + AC022509.2 * 0.033 + UBE2R2
~AS15%(~0.007) + LINC00460 *

0.010 + AC005165.1 % 0.050 + LINC00857 s(—0.052)
+AL355574.1 %(~0.178) +
AP000695.2 % 0.0323

GC patients were split into two different risk groups based on
the median risk value. Kaplan-Meier analysis was employed to
investigate OS discrepancy between two groups. As shown in
Figures 3A-C, GC patients in the high-risk group exhibit
significantly shorter median OS (p < 0.001). Furthermore, we
found that patients with high grade, metastasis, and immune
score were associated with higher risk scores, suggesting that
there exists a potential relationship between the risk score and
the immune status (Figures 3D-K).

Kaplan-Meier Survival Analysis Based on
Clinicopathological Characteristics

To assess the prognostic value for established MRL signature, GC
patients were split into multiple subgroups based on their
clinicopathological characteristics to perform Kaplan-Meier
analysis. As shown in Figures 4A-N, the results demonstrated
that GC patients in the high-risk group were correlated with
worse survival in most groups.

Independent Prognostic Value of the
Matrisomal-Related LncRNA Signature
Next, we visualized the distribution of risk score, overall survival
status, and matrisomal-related IncRNA expression in multiple
datasets. We observed that higher risk scores appeared depending
on the increasing risk in the training (Figure 5A), validation
(Figure 5B), and total (Figure 5C) set. Moreover, the results from
two regression analyses indicated that the risk score was closely
linked to OS (p < 0.001) after adjusting for age, gender, grade, and
stage in the training (Figure 5D), validation (Figure 5E), and total
sets (Figure 5F), suggesting that the risk score could be used as a
potential independent prognostic variable.

Evaluation of the Validity of the Model
The results in Figure 6 showed the accuracy of this signature based on

time-dependent ROC curves in three sets. The AUC value for 1, 3,
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and 5 years was 0.773,0.794,and 0.893 in the training set (Figure 6A),
0.666, 0.624, and 0.648 in the validation set (Figure 6B), and 0.718,
0.712, and 0.784 (Figure 6C) in the total set, respectively. Moreover,
we compared the risk score with multiple clinicopathological features
(Figures 6D-F). The risk score in three sets was more effective than
other factors in predicting GC prognosis. Finally, we employed C-
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FIGURE 2 | Screening of matrisomal-related IncRNAs and construction of a risk model. (A) Forest plot shows the p-value and the hazard ratio of 54 matrisomal-
related INcRNAs via univariate Cox regression analysis. (B). The change trajectory of each independent candidate variable. (C). The optimal model was eventually
determined when lambda = 15.

index (Figure 6G) and DCA (Figure 6H) to assess the performance
of the risk model. PCA was further performed to reflect the
distribution of the overall samples in different statuses
(Figures 7A-D). The results showed that GC samples were
distributed more obviously in distinct directions, indicating a good
discrimination for the risk model.
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ImmuneScore

Construction and Validation

of the Nomogram

In order to promote the clinical application of the risk model, the
nomogram was eventually built to predict 1-, 3-, and 5-year OS.

Several clinical variables, including age, gender, grade, stage, T

>

N, M, and risk score, were used to establish the nomogram
(Figure 8A). Moreover, calibration curves were introduced to
predict 1-, 3-, and 5-year OS (Figures 8B-D). The stability and
accuracy of this hybrid nomogram could plausibly function in
the areas of GC management.
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Functional Enrichment Analysis

of the Risk Signature

To determine potential biological roles that were correlated with risk
signature, we performed functional enrichment analysis for DEGs
between two groups. A total of 241 DEGs were further identified
between the low- and high-risk subgroups. Gene Ontology (GO)
analysis consisted of cellular component (CC), molecular function
(MF), and biological process (BP). The CC GO terms showed that
the top 4 enriched pathways were collagen-containing ECM, contractile
fiber, contractile fiber part, and myofibril (Figure 9). The MF GO terms
indicated that the top 4 enriched pathways were ECM structural

constituent, glycosaminoglycan binding, heparin binding, and sulfur
compound binding (Figure 9). The BP GO terms demonstrated that the
top 4 enriched pathways were muscle system process, muscle
contraction, extracellular structure organization, and ECM
organization (Figure 9). These results indicated that the risk signature
might be functionally implicated in the regulation of ECM networks.

Functional Enrichment Analysis

of the Risk Signature

To confirm the association between the risk score and infiltration
of immune cells, we conducted further analysis based on seven
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algorithms (Figure 10A). The heatmap was used to display the
tumor-infiltrating cell proportions in the different groups. As
shown in Figure 10A, GC patients in the high-risk group
showed higher tumor-infiltrating cell proportions. Macrophage
infiltration has been mostly observed in the high-risk group using
six algorithms. We further showed the results based on
CIBERSORT algorithm as an example, M2 macrophage
infiltration was easier to detect in the high-risk group
(Figure 10B). The results indicated that the proportions of M2
macrophage in the high-risk group might contribute to immune
evasion or tumor-promoting effects. Afterwards, we analyzed the
potential correlation between the risk score and immune function.

As is shown Figures 10C, D, the contents of the primary antigen
presentation process showed higher proportions in the high-risk
group. However, lower MHC_class_I was observed in the high-
risk group. The results indicated that this might be associated with
the immunosuppressive microenvironment. As is seen in
Figure 10E, most of the immune checkpoint genes (CD86,
CD200, LAIRI, CD44, TNFSF9, PDCD1LG2, NRP1CD276,
CD48, and HAVCR2) were dramatically upregulated in the
high-risk group. The abnormal expression of genes might
contribute to the immunosuppressive microenvironment. To
confirm this speculation, we further examined the TIDE score in
the different groups. As we expected, our high-risk group showed a
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higher TIDE score, suggesting that the risk score could
discriminate subgroups of GC patients with different immune
responses (Figure 10F).

Effects of LncRNA GRASLND on the

Regulation of Matrisome in Gastric Cancer
Furthermore, we sought to prove that these IncRNAs in the risk
model contribute to the regulation of ECM. Since IncRNA
GRASLND showed the highest coefficient and hazard ratio, we
chose it to evaluate the potential effects on the regulation of ECM
in GC. AGS and MKN45 cell lines were transfected with two si-
GRASLNDs, respectively. Subsequently we performed qRT-PCR
analysis to confirm the knockdown efficiency (Figure 11A).
Afterwards, GRASLND depletion significantly decreased the
invasive capacity of AGS and MKN45 (Figures 11B, C).
Furthermore, we analyzed the protein expression of the key
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enzyme of ECM, MMP9. We found that MMP9 was significantly
downregulated after IncRNA GRASLND knockdown in GC
(Figure 11D). Together, our results suggest that there is a
strong correlation between IncRNA GRASLND and the
regulation of ECM in GC.

DISCUSSION

Although surgical resection has been proven to improve the
curative effect of GC, the therapeutic effect of advanced and
metastatic GC is still not fully satisfactory. Several remarkable
advances and breakthroughs have been witnessed in the
management of advanced cancers, especially immunotherapy
(21, 22). In recent years, researchers have pointed out the
dominant roles of tumor heterogeneity in drug resistance and
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treatment failure (23). Moreover, the complexity of the tumor
microenvironment has also exerted a distinct effect on these
processes (24, 25). Considering the roles of ECM during tumor
progression and immunotherapy resistance, we sought to explore
the potential roles of matrisomal-related genes in prognosis
prediction and immune regulation.

In this study, we constructed the risk model with a good
performance based on matrisomal-related IncRNAs. This model
could achieve the robustness of prognosis prediction and assess
the robustness of prognosis prediction. Firstly, we obtained 1,068
matrisomal-related genes from the M.L.T. and identified
matrisomal-related IncRNAs by Pearson correlation analysis.
Among these candidate matrisomal-related IncRNAs, 54
prognostic-related IncRNAs were firstly selected and
introduced to the lasso regression. Ultimately, 15 optimal
matrisomal-related IncRNAs were obtained for risk model
construction. The 1-, 3-, and 5-year AUCs were 0.718, 0.712,
and 0.784, respectively, suggesting that the model showed good
predictive power for the prognosis of GC patients. The predictive
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FIGURE 8 | Establishment and validation of a nomogram for predicting the overall survival of GC patients. (A) The nomogram was used for predicting the 1-, 3-,
and 5-year OS of patients in the total set. Calibration curves of the nomogram predicting OS of 1 year (B), 3 years (C), and 5 years (D).

efficiency of the risk model was better than common
clinicopathological variables. Multivariate analysis further
demonstrated that the risk score was an independent
prognostic factor for GC. In addition, to better guide clinical
application, a nomogram model was established to predict the
prognosis of GC patients. This nomogram model showed a better
performance in the prediction of OS. Moreover, we uncovered a
positive correlation between risk score and M2 macrophage
infiltration. Finally, the experimental validation presented in
this study suggested the strong correlation between IncRNA
GRASLND and the regulation of ECM in GC.

Recent studies have demonstrated that specific matrix gene
sets were predictors of immunosuppression, and thus might
predict the efficacy of anti-PD1 therapy (26). Furthermore,
Erkan et al. have also identified several stromal signatures that
served as predictive and prognostic indicators for patients with
pancreatic cancer (12). These results suggested the potential link
between matrisome and anti-tumor immunity. Tumor immune-
infiltrating cells not only exert an impact on tumor progression,
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Term

but also induced immune responses to the anti-tumor therapy.
Therefore, we explored tumor immune-infiltrating cells to
further reveal the underlying mechanisms of immune evasion.
In this study, we explored the correlation between risk score and
the immune microenvironment. Our results showed that M2
macrophage infiltration was significantly altered in the high-risk
group. Several studies demonstrated that M2 macrophage was
associated with poor prognosis and disease processes (27, 28).
Increasing lines of evidence suggested that different patterns of
tumor-associated macrophages (TAMs) played a crucial role in
immune escape. M2 macrophages have been proven to be
associated with inhibitory cytokine secretion and immune cell
infiltration, further attracting negative regulatory factors to the
favorable immunosuppressive TME (29, 30). The mechanisms
on how M2 macrophages mediated tumor immune escape was
complex according to previous studies. Several cells like Th2,
Tregs, and MDSCs could achieve M2 macrophage polarization
and enhance its infiltration via different pathways (31).
Conversely, cross-talk among these cells could also lead to a
consequent immunosuppressive effect. These findings highlight
the crucial roles of M2 macrophage in immune escape. As such,
our risk model shows the close relation to M2 macrophage
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FIGURE 9 | The GO enriched pathways in the different risk subsets obtained from the 15 matrisomal-related IncRNA-based signature.

infiltration. Therefore, this model might offer important and
unique advantages in the future of cancer immunotherapy.

Subsequently, we studied the interaction between risk score and
immune functions. The results of ssGSEA showed that the contents
of the antigen presentation process significantly differed in the high-
risk group. The above findings further explained the reasons for the
tumor-promoting status in the high-risk group and revealed that
the immunosuppressive microenvironment exists in this group.
These results supported findings from immune cell infiltration
analysis. Due to the significance of ICIs, we further assessed the
genetic basis of expression of ICI genes, and found the difference
between two groups. Interestingly, we found that CD86, CD200,
LAIR1, CD44, TNFSF9, PDCD1LG2, NRP1, CD276, CD48, and
HAVCR?2 were significantly higher in the high-risk group. Finally,
the TIDE score was introduced to predict immune response. We
found that the high-risk score was associated with a high TIDE
score. Collectively, these observations suggested that these patients
demonstrated an immunologically “cold” profile not to gain
from immunotherapy.

Considering that GRASLND showed the primary effect on the
prognosis of GC patients and had a larger coefficient in the risk
model, we finally chose GRASLND to conduct functional
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FIGURE 10 | Differential immune features in the high-risk and low-risk subsets. (A) The association between infiltrating immune cells and risk scores using seven algorithms.
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heatmap and boxplot show the correlation analysis between immune functions and risk score. (E) Box plots revealed the differential expression of the immune checkpoint
genes between two groups. (F) Correlation of risk score and TIDE score in different risk subgroups. ns no statistical significance, *p < 0.05, *p < 0.01, and **p < 0.001.

experiments and explore the correlation with matrisome in GC
cells. Our results indicated that knockdown of IncRNA
GRASLND could decrease the protein expression of the key
enzyme of ECM, MMP9. MMP9 plays a crucial role in the
degradation of the ECM (32-34). Moreover, the upregulation of

MMP9 was related to metastasis in GC (35, 36). Thus, our
experiments confirmed that IncRNA GRASLND was the
potential contributor towards regulation of ECM. However,
there are still several limitations to our study. External
validation of the risk model would be beneficial for its wide
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INcRNA GRASLND decreased the invasive ability of AGS cells. (D) Knockdown of INcRNA GRASLND decreased the protein level of MMP9. *p < 0.05, *p < 0.01.

MKN45

Ea Negative control
B3 si-GRASLND-1
B3 si-GRASLND-2

0.5

Relative GRASLND expression

0.0

200
Ea Control

B3 si-GRASLND-1
B3 si-GRASLND-2

-
a
S

-
=
1=

o

Cell numbers per field
8

o

AGS MKN45

Cell type

MKN45

use. Hence, clinical samples would also be collected for further
verification despite being time-consuming. Furthermore, further
experiments are also needed to clarify the unknown functions
and the potential mechanism of these IncRNAs.

CONCLUSION

In conclusion, we first constructed the 15 matrisomal-related
IncRNAs model with a good performance in predicting the
prognosis of GC patients. The risk signature might serve as a
relatively good predictive tool to manage patients with GC.
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Objective: Many studies have drawn their attention to the immunotherapy of bladder
urothelial carcinoma in terms of immunologic mechanisms of human body. These include
immunogenicity of the tumor cells and involvement of long non-coding RNA (IncRNA). We
constructed a necroptosis-related long noncoding RNA (nrlncRNA) risk factor model to predict
BLCA outcomes and calculate correlations with chemosensitivity and immune infiltration.

Methods: Transcriptomic data from BLCA specimens were accessed from The Cancer
Genome Atlas, and nrincRNAs were identified by performing co-expression analysis.
Univariate analysis was performed to identify differentially expressed nrincRNA pairs. We
constructed least absolute contraction and selector operation regression models and
drew receiver operating characteristic curves for 1-, 3-, and 5-year survival rates. Akaike
information criterion (AIC) values for survival over 1 year were determined as cutoff values
in high- and low-risk subgroups. We reassessed the differences between subgroups in
terms of survival, clinicopathological characteristics, chemotherapy efficacy, tumor-
infiltrating immune cells, and markers of immunosuppression.

Results: We identified a total of 260 necroptosis-related INCRNA pairs, of which we
incorporated 13 into the prognostic model. Areas under the curve of 1-, 3-, and 5- year
survival time were 0.763, 0.836, and 0.842, respectively. We confirmed the excellent
predictive performance of the risk model. Based on AlC values, we confirmed that the
high-risk group was susceptible to unfavorable outcomes. The risk scores correlated with
survival were age, clinical stage, grade, and tumor node metastases. The risk model was
an independent predictor and demonstrated higher predictive power. The risk model can
also be utilized to determine immune cell infiltration status, expression levels of immune
checkpoint genes, and the sensitivity to cisplatin, doxorubicin, and methotrexate.

Conclusion: We constructed a novel necroptosis-related signature that predicts
BLCA outcomes and performs satisfactorily in the immune landscape and
chemotherapeutic responses.

Keywords: bladder urothelial carcinoma, necroptosis-related, IncRNA signature, outcomes, immune checkpoint,
chemotherapeutic response
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INTRODUCTION

Bladder urothelial carcinoma (BLCA) is the 9" most prevalent
malignancy worldwide (1, 2). More than 199,000 people died from
the disease in 2018, and more than 549,000 new cases were
confirmed in 2018 (3). The number of BLCA events has been
increasing worldwide over the past two decades, and the incidence
of BLCA has been increasing yearly due to population aging and
environmental pollution (4, 5). Treatment options for BLCA
include transurethral resection, radical cystectomy, radiotherapy,
and chemotherapy; nevertheless, BLCA remains an aggressive
neoplasm with a substantial incidence of recurrence, metastasis,
rapid progression, and unfavorable outcomes (6-8). One study
in the United States estimated 80,470 new diagnoses of BLCA
cases and at least 1,767 deaths in 2019 (9). Once the tumor
has progressed and metastasized, the combination of systemic
chemotherapy and surgery tends to be ineffective (10, 11). At least
30% respond to immunotherapies and immune checkpoint
inhibitors (ICIs) (12). There is a need for research to construct
reliable prognostic biomarkers through molecular profiling to
identify prognostic markers and therapeutic targets for BLCA to
improve outcomes.

Necroptosis is programmed cell death triggered by MLKL,
RIP1, and RIP3 (13, 14). Several lines of evidence suggest that
necroptosis is involved in Parkinson’s disease, infectious
diseases, cancer, and other diseases (14, 15). Researchers found
that necroptosis is a critical factor influencing tumor metastasis
and T cell death (16). Interestingly, necroptosis has been related
to antitumor immunity (13). As a substitute mode of
programmed cell death to control apoptosis resistance,
necroptosis plays a role in antitumor immunity in cancer
therapy (13). Studies showed that necroptosis is a crucial
cellular response that regulates many tumors’ onset,
progression, and metastasis (17). Studies also found that
necroptosis can serve as a biomarker in some diseases,
particularly cancer (18, 19). Necroptosis enhances cancer cell
migration and invasion in pancreatic carcinoma via the
production of CXCL5 (20). Nevertheless, the precise functions
of necroptosis in BLCA and the molecular mechanisms
remain undetermined.

Long non-coding RNAs (IncRNAs) are a family of RNAs with
no capacity for protein-coding that are more than two hundred
nucleotides in length (21). A body of evidence suggests that
necroptosis-related IncRNAs (nrlncRNAs) influence tumor
progression and metastasis by triggering immune system
processes and immune responses (17, 22). Studies showed that
nrlncRNAs are associated with outcomes of various tumors
(18, 22, 23). Bioinformatics analysis based on The Cancer
Genome Atlas (TCGA) revealed that IncRNAs are associated
with the progression of BLCA via immune-related pathways (24).

Abbreviations: BLCA, bladder urothelial carcinoma; TCGA, The Cancer Genome
Atlas; nrIncRNA, necroptosis-related long noncoding RNA; DEnrincRNA, differentially
expressed necroptosis-related long noncoding RNA; AIC, Akaike Information Criterion;
ICIs, immune checkpoint inhibitors; FDR, false discovery rate; LASSO, Least Absolute
Shrinkage and Selector Operation; ROC, receiver operating characteristic; AUC, area
under the curve; IC50, half inhibitory concentration.

Differentially expressed nrlncRNAs may serve as prognostic
indicators and drug targets in BLCA. This study utilized gene
expression profiles of high-throughput sequencing data from
TCGA to identify IncRNAs targeting necroptosis-related genes
and to develop necroptosis-related prognostic signatures for
patients with BLCA.

MATERIALS AND METHODS

Datasets and Preprocessing

We queried TCGA data portal (https://tcga-data.nci.nih.gov/
tega/) (level 3 data, FPKM value) to obtain RNA sequencing
profiles of 414 BLCA and 19 normal bladder specimens. We set
the workflow type to “HTSeq-FPKM” and the data type to “Gene
Expression Quantification” in the dataset download. To conduct
subsequent analysis, normalization of the expression profiles to
transcripts kilobase million values was carried out, and all
analyses were conducted using R (version 4.1.1). Gencode
(version 26) GTF files were obtained through Ensembl (http://
asia.ensembl.org) for annotation and differentiation of IncRNAs
and mRNAs (25). Sex, age, clinical stage, and survival rates were
obtained from TCGA for clinical data after removing specimens
with insufficient clinical data or a survival duration of 0 days.
Finally, we included 19 normal bladder specimens and 408
BLCA specimens. Supplementary Table 1 displays the
clinical characteristics.

Identification of Necroptosis-Related
IncRNAs

We accessed the Gene Set Enrichment Analysis site (http://www.
gsea-msigdb.org/gsea/index.jsp) and obtained the necroptosis
gene set M24779, which included eight necroptosis genes. We
combined prior reports on necroptosis and obtained 67
necroptosis-related genes, details of which are displayed in
Supplementary Table 2. We calculated Pearson correlations
between necroptosis-related genes and identified IncRNAs.
Correlation coefficients > 0.5 and p < 0.001 were used to
identify IncRNAs linked to necroptosis.

Identification of Differentially Expressed
Necroptosis-Related IncRNAs

We acquired 67 nrlncRNAs and used the R language version
4.1.1 “limma” package to identify differentially expressed
necroptosis-related IncRNAs (DEnrlncRNAs) between BLCA
and normal bladder specimens. The screening conditions were
[log fold-change| > 1.0 and p < 0.05 (26). The expression matrix
of differentially expressed IncRNAs was visualized using the
heatmap package.

Paired DEnrincRNAs

DEnrIlncRNAs were identified using several pairing cycles,
assuming that C was equal to the sum of IncRNA A and
IncRNA B. A 0 or 1 matrix was then created. If IncRNA A
expression level was greater than the level of IncRNA B, C was
defined as 1; otherwise, C was defined as 0. The 0-or-1 matrix
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was then re-evaluated. The correlation between pairs and patient
outcomes was not evaluated if the expression level of IncRNA
pairs was 0 or 1 because no pair ranks could accurately anticipate
patient survival outcomes. In cases where the number of IncRNA
pairs with an expression level of 0 or 1 accounted for more than
20% of the total logarithm, it was considered a valid match;
otherwise, re-pairing was required.

Development of a Necroptosis-Related
Prognostic Risk Model

According to BLCA data obtained from TCGA, univariate Cox
proportional hazards regression analysis was utilized to identify
IncRNA pairs associated with outcomes from necroptosis-related
IncRNAs (p < 0.05). We then performed least absolute contraction
and selector operation (LASSO) regression with 10-fold cross-
validation and a p-value of 0.05 and ran 1,000 loops. For each
cycle, 1000 random stimuli were set to prevent overfitting. We
then selected the best-paired combination to obtain nrlncRNA
pairs in constructing the Cox risk coefficient model. By creating
Cox univariate and multivariate analysis models, the risk
coefficient for every necroptosis-related IncRNA pair associated
with the outcomes of patients with BLCA was determined, and the
risk score for each tumor specimen was determined. The
aggregated risk score for every BLCA sample was the sum of
the expression levels of each necroptosis-related IncRNA pair in
the sample multiplied by the risk factor. The formula is as follows:
risk score = > 7 risk coefficient ; x nrlncRNA expressioni. The
survminer and survival tools in R software were used to
visualize the findings of the Cox analysis.

Assessing the Predictive Power of
Prognostic Risk Model

The area under the curve (AUC) was evaluated to ascertain the
predictive capacity of the risk model for determining patient
outcomes, and receiver operating characteristic (ROC) curves
were produced using the survivalROC module in the R software,
which included ROCs at 1, 3, and 5 years. To compute the Akaike
information criterion (AIC) value at every point on the 1-year
ROC curve to obtain threshold values that optimize the aggregate
of specificity and sensitivity in separating low-risk from high-risk
individuals, we conducted a Kaplan-Meier analysis to identify
disparities in survival between individuals in the high- and low-
risk groups, which we demonstrated using survival curves to
calculate this cutoft value.

Prognostic Risk Model Validation

We performed the chi-square test to examine the correlation
between the model and clinical and pathological features to
assess the clinical significance of the constructed model. The
Wilcoxon signed-rank test was performed for these
clinicopathological variables to examine the difference in
riskScore between groups. The analysis findings were displayed
using box plots. We conducted univariate and multivariate Cox
regression analyses between clinicopathological parameters and
riskScore to determine whether the model could serve as an
independent outcome predictor. To present the results, we

generated forest plots. Survival, Heatmap, and ggupbr were the
R packages we used.

Analysis of Tumor-Infiltrating

Immune Cells

We used CIBERSORT to determine the association between risk
scores and immune cell signatures (http:/cibersort.stanford.edu/)
(27), TIMER (version 2.0; http://timer.cistrome.org/) (28),
QUANTISEQ (http://icbi.at/quantiseq) (29), Microenvironmental
Cell Population Counter (30), EPIC (http://epic.gfellerlab.org) (31)
and XCELL (http://xCell.ucsf.edu/) (32) to determine immune
infiltration status in patients with BLCA. The Wilcoxon signed-
rank test was performed to determine the differences in the content
of immune infiltrating cells between the high- and low-risk groups
of the constructed model. The findings were expressed in bubble
charts. The ggplot2 tool in R software was used to visualize the data.

Analysis Between Immune Checkpoints
and Risk Models

To investigate the relationship between the expression of
immune checkpoint-related genes (TIM-3, PDL1, LAG3 PD1,
GALY, TIGIT, PD1LG2, and CTLA4) and the model, we
compared high- and low-risk subgroups and visualized them
using the ggstatsplot package and violin plots.

The Value of Risk Models in

Clinical Management

The half-inhibitory concentration (ICsy) of frequently used
chemotherapeutic medicines for BLCA was determined in the
dataset to assess the model’s utility in medical therapy. The
Wilcoxon signed-rank test was performed to calculate difterences
in ICsy between high- and low-risk groups. The data were
presented using the R software packages ggplot2 and
PRRophetic (33).

Statistical Analyses

This study used R software (version 4.1.1) for statistical analysis.
Differences between the two subgroups were estimated using the
Wilcoxon rank-sum test. All statistical tests were two-way when
p < 0.05 indicated statistical significance.

RESULTS
Identification of DEnrincRNAs

Figure 1 demonstrates this study’s flowchart. The initial step was
to obtain transcriptome data for BLCA from TCGA. Finally, we
included 19 normal samples and 414 BLCA samples. In the
second step, data were annotated in accordance with the Gene
Transfer Format files from Ensembl. We combined prior reports
on necroptosis and obtained 67 necroptosis-related genes,
according to 67 necroptosis-related genes and DEnrlncRNAs
between normal and tumor samples (|log fold-change]
>1.0 and p < 0.05), we identified a total of 291 nrlncRNAs
(Supplementary Table 3), of which 89 were classified as

Frontiers in Oncology | www.frontiersin.org

83

June 2022 | Volume 12 | Article 928204


http://cibersort.stanford.edu/
http://timer.cistrome.org/
http://icbi.at/quantiseq
http://epic.gfellerlab.org
http://xCell.ucsf.edu/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Hou et al.

A Necroptosis-Related IncRNA of BLCA

DEnrIncRNAs (Figure 2A); 76 underwent upregulation, and 13
underwent downregulation (Figure 2B and
Supplementary Table 4).

Development of DEnrincRNAs Pairs and a
Risk Model

Using multiple rounds of matching of 89 DEnrlncRNAs, 3101
necroptosis-related IncRNA pairs were identified (Supplementary
Table 5). Next, univariate Cox regression analysis was performed to
extract 260 DEnrIncRNA pairs affecting survival (Supplementary
Table 6). To create a risk model, LASSO regression analysis was
conducted to identify 13 necroptosis-related IncRNA pairs
(Figures 2C, D). Then, univariate and multivariate Cox
regression analyses were conducted on these 13 nrlncRNA pairs
(Figures 2E, F), and each nrlncRNA pair’s risk coefficient was
calculated (Table 1).

Evaluating the Risk Model’s Outcomes
Predictive Capability

The 13 nrlncRNA pairs were used to construct the 1-, 3-, and 5-
year ROC curves of BLCA patients (Figure 3A), and the 1-year

AUC was computed as a maximum of 0.763 (Figure 3B). The
AUC values for three and five years were 0.836 and 0.842,
respectively, demonstrating that this risk model can also be
used to predict 3- and 5-year outcomes for BLCA. According
to best fit, the threshold value for differentiating between high
and low-risk groups of BLCA patients was 1.189 (Figure 3C).

Clinical Assessment by the Risk Model

We classified the patients into high- and low-risk groups based
on the threshold value. We assigned 204 patients to the low-risk
and 195 to the high-risk subgroup (Figure 4A). Figure 4B
demonstrates the distribution of survival status in the
subgroups. The high-risk subgroup had more deaths than the
low-risk subgroup, and the differences in survival time between
subgroups were compared. Figure 4C illustrates that, compared
to high-risk patients, low-risk patients had better outcomes
(p < 0.001). We then conducted several chi-square tests to
determine the relationship between risk scores and clinical and
pathological features and generated a heatmap using the
Wilcoxon signed-rank test (Figure 5A). Scatterplots showed
that survival (Figure 5B), age (Figure 5C), grade (Figure 5E),
clinical stage (Figure 5F), T stage (Figure 5G), M stage
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FIGURE 1 | Study workflow.
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FIGURE 2 | Development of a risk model with DEnrincRNA pairs. (A) The volcano plot of necroptosis-related INcRNAs. (B) The heatmap of necroptosis-related
INncRNAs between BLCA and normal tissues. (C) LASSO coefficient distribution of 13 necroptosis-related INncRNAs. (D) Ten-fold cross-validation for variable selection
in LASSO models. (E) A forest map revealing 13 DEirlncRNA pairs detected using univariate Cox regression analyses. (F) A forest map revealing 13 DEirlncRNA pairs
detected using multivariate Cox regression analyses.

(Figure 5H), and N stage (Figure 5I) were significantly
associated with risk scores. Gender (Figure 5D) was not
significantly associated with risk scores. Then, the univariate
and multivariate Cox regression analyses were performed on risk
scores and clinical correlation factors, and forest maps were
drawn (Figures 6A, B). In univariate Cox analysis, we found that
T stage, N stage, and riskScore were significantly associated with

outcomes (Figure 6A). Multivariate Cox regression analysis
revealed that only riskScore could be utilized as an
independent predictor for BLCA (Figure 6B). ROCs were used
to compare the differences in 1-year survival prediction
performance. This risk model had the greatest AUC value
(0.763) (Figure 6C), suggesting that it has an excellent capacity
to predict outcomes.
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TABLE 1 | Thirteen pairs of prognostic necroptosis-related INcRNA pairs multivariate Cox regression analysis results.

LncRNAs Coefficient HR HR.95L HR.95H P-value
LINCO1355|AL136531.1 -0.4742 0.6224 0.4338 0.8929 0.0100
AP002761.1|AC024361.1 0.3702 1.4480 1.0168 2.0621 0.0401
AC073534.2|SNHG14 -0.3631 0.6955 0.4969 0.9735 0.0343
AC127024.4|AL731567.1 0.4944 1.6395 1.1278 2.3834 0.0096
NDUFB2-AS1|GHRLOS 0.4520 15714 1.0273 2.4039 0.0372
LINC02178|AC092279.1 0.5151 1.6738 1.1356 2.4670 0.0093
AC097641.2|AC018521.6 -0.4155 0.6600 0.4620 0.9428 0.0224
AL136084.3|AC008115.3 0.7651 2.1492 1.5099 3.0592 2.16E-05
AC092279.1]AC010186.3 0.5996 1.8214 1.2704 2.6113 0.0011
AC245884.8|AC024361.1 -0.5008 0.6060 0.4261 0.8620 0.0053
AC024560.3|/AC011503.2 0.5758 1.7785 1.2497 2.5311 0.0014
LINCO1876|GAS6-DT -0.2690 0.7641 0.5434 1.0744 0.1218
ZKSCAN2-DT|AC007128.1 -0.5047 0.6037 0.4306 0.8463 0.0034

HR, hazard ratio; HR.95L, 95% Cl lower limit; HR.95H, 95% Cl upper limit.

Correlation Analysis Between Risk Models
and Tumor-Infiltrating Immune Cells

We used CIBERSORT-ABS, QUANTISEQ, XCELL, EPIC,
TIMER, CIBERSORT, and MCPCOUNTER, to study whether
the risk model is correlated with the tumor immune
microenvironment. The link between the risk model and
tumor immune infiltrating cells was investigated by performing

the Pearson correlation test. The screening criterion was P < 0.05
(Supplementary Table 7). Data visualization was performed
using R language software (Figure 7). The high-risk subgroup
positively correlated with tumor-infiltrating immune cells such
as cancer-related fibroblasts, T cell CD8+, M2 macrophages, and
macrophage and was negatively associated with T cell CD4+ and
T cell follicular helper cells (Supplementary Figure 1).
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Correlation Analysis Between Risk Models
and Immune Checkpoints

ICIs are therapeutic agents for management of BLCA. We
determined whether the risk model was associated with biomarkers
related to ICIs and found that PDLI (p < 0.001; Figure 8A),
HAVCR2 (p < 0.001; Figure 8C), LAG3 (p < 0.001; Figure 8D),
PDCDILG2 (p < 0.001; Figure 8G), and TIGIT (p < 0.001;
Figure 8H) expression levels were significantly elevated in high-
risk patients. Expression levels of CTLA4 (p > 0.05; Figure 8B) and
PD1 (p > 0.05; Figure 8F) were increased; however, the differences
were not significant. GAL9 (p < 0.001; Figure 8E) expression was
attenuated in high-risk patients. These genes could be used as
therapeutic targets for BLCA.

Correlation Analysis Between Risk Models
and Chemotherapy Drugs

In addition to ICIs, chemotherapy is the first-line treatment for
individuals with advanced BLCA. We also explored the
correlation between risk models and the efficacy of
conventional cancer medicines in BLCA. We found that a
higher risk score was related to a reduced ICs, for
chemotherapy drugs including cisplatin (p < 0.001; Figure 9A)
and doxorubicin (p < 0.001; Figure 9B), while it was associated

with a higher ICsy for methotrexate (p < 0.01; Figure 9D),
gemcitabine (Figure 9C), and vinblastine (Figure 9E). Values
were not significantly different between high- and low-risk
groups, suggesting that the risk model predicts chemosensitivity.

DISCUSSION

An imbalance between tumor cell death and growth causes
tumor formation and progression (34). Excessive cell growth
or prevention of natural cell death exacerbates cancer
progression. Some investigators argue that immortal cell
proliferation and cell death suppression are distinct
characteristics of malignant tumors (35). Necroptosis is a
recently discovered type of cell death with morphological
characteristics similar to necrosis. By contrast, necrosis refers
to passive death induced by external physicochemical stress (e.g.,
inflammation or infection) and is not modulated by signaling
pathways, while necroptosis is governed by programmed cell
death (36). Many studies linked necroptosis to cancer incidence,
progression, and metastasis (37, 38). Necroptosis is also a viable
strategy for eliminating cancer cells (39).

Many studies investigated the role of IncRNAs in tumor
onset and progression. Abnormally expressed IncRNAs in
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FIGURE 7 | Correlation analysis of tumor-infiltrating immune cells and risk models of patients with BLCA.

malignancies can be used as markers for clinical diagnosis,
predicting outcomes, and developing targeted therapies (34). In
BLCA, IncRNAs have been linked to cancer immunology and the
tumor microenvironment (35). The IncRNA urothelial
carcinoma-associated 1, the most studied IncRNA in BLCA,
participates in several processes in the development of BLCA
and is responsible for BLCA resistance (36, 37). Based on the
literature, several immune-related IncRNA models have been
developed (24, 38). These signature models were created using
quantification of necroptosis-related IncRNA expression. To the
best of our knowledge, there are no studies exploring the
relationship between necroptosis-related IncRNAs and BLCA
outcomes and underlying molecular mechanisms. We identified
nrlncRNA pairs and developed a robust and independent risk
profile of nrlncRNAs to determine the relationship between the
model and BLCA outcomes and the potential impact on the
BLCA tumor microenvironment and its corresponding
treatment responses.

Zhang et al. evaluated the expression levels of ten hypoxia-
related IncRNAs to establish a signature predicting survival in
BLCA (39). However, there is currently no study of nrlncRNAs
in BLCA. Because of the critical role of nrlncRNAs, we developed
a risk model with 13 DEnrlncRNAs pairs. This novel model is
clinically useful, can distinguish high- or low-risk cases, and
determine outcomes. In addition, we determined the correlation
between the risk factor score and various clinical markers for
each BLCA sample and found that the risk factor score
independently predicted outcomes. We constructed ROC
curves for clinically relevant indicators and compared the 1-
year ROC curves in the same chart. We confirmed that the risk
factor score was the best predictor of BLCA outcome at 1 year,
suggesting the robustness of the risk model. Then, we evaluated
each of the DEnrlncRNAs identified in our model and found that
they participate in the malignant phenotype of different cancer
types, while IncSNHG14 overexpression promoted breast cancer
proliferation and accelerated cell cycle progression (40). Wu et al.
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found that IncRNA GHRLOS can be a biomarker for colorectal
cancer metastasis and outcomes (41). LncRNA AC092279.1 was
reported in a thyroid cancer prognostic model (42). LncRNA
ACO008115.3 was reported in a head and neck squamous cell
carcinoma prognostic model (43). LncRNA AC010186.3 was
reported in an ovarian Cancer prediction signature (44). LncRNA
AC011503.2 and AC007128.1 were reported once in a bladder
cancer predictive signature (45, 46). Regarding AL136531.1,
AC024361.1, AL731567.1, AC018521.6, AC024361.1, and GAS6-
DT, there are no reports yet.

Immune checkpoints and immune cell infiltration in cancerous
tissues are critical for enhancing or inhibiting cell growth, invasion,
and migration; immunotherapy is a novel therapeutic approach for
managing diseases like BLCA (29). To explore the relationship
between nrlncRNA signatures and immune cell infiltration, we
used XCELL, TIMER, QUANTISEQ, EPIC MCPCOUNTER,
CIBERSORT, and CIBERSORT-ABS algorithms to compare the
content of immune cells in different risk score groups and found
that the high-risk group was positively correlated with tumor-
infiltrating immune cells such as cancer-associated fibroblast, T cell
CD8+, M2 macrophages, and macrophages. It was negatively
associated with T cell CD4+ and T cell follicular helper. Jozwicki
reported that breast cancer patients with reduced CD4+ T cell
infiltration had shorter overall survival, and CD4+ T cells are a
critical prognostic indicator, consistent with our findings (47).
These findings suggest that this risk model could be used to
anticipate the response to immunotherapy in patients with BLCA.

We also performed a correlation analysis of immune
checkpoint genes and risk models and found that the PDLI,
HAVCR2, LAG3, PDCD1LG2, and TIGIT expression levels were
substantially higher in high-risk patients, and expression levels of
GAL9 lower decreased in high-risk patients. These genes could
be used as therapeutic targets for BLCA.

Bladder cancer is a complex malignant tumor, and
chemotherapy is one of its essential treatment options. The
guidelines recommend neoadjuvant chemotherapy before
radical cystectomy of patients with BLCA, and the survival
benefit of patients is close to 5-10%; nevertheless, some
patients still do not respond to chemotherapy (48). Therefore,
identifying predictors can avoid missing the optimal timing of
surgery and minimize the adverse effects of chemotherapy. Here,
we correlated BLCA chemotherapeutic agents with risk models
and found that high-risk patients were more responsive to
cisplatin and doxorubicin than low-risk individuals.
Conversely, low-risk subjects were more responsive to
methotrexate than high-risk subjects. These findings suggest
that the risk model may help predict the sensitivity to
doxorubicin, methotrexate, and cisplatin in patients with BLCA.

Although we employed rigorous approaches and algorithms
to construct the model, this study has a few limitations. This
study lacks external data to confirm the robustness of our risk
model because the existing public databases do not include valid
external data for verification. In a subsequent study, we will
gather more clinical data and expand the sample size.

Finally, our findings revealed that a new signature created by
nrlncRNAs might predict outcomes of BLCA and describe the
immune landscape and chemotherapeutic therapy.
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The functions of long
noncoding RNAs on regulation
of F-box proteins in
tumorigenesis and progression

Lu Xia, Jingyun Chen, Min Huang, Jie Mei and Min Lin*

Center for Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of
Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University,
Wenzhou, China

Accumulated evidence has revealed that F-box protein, a subunit of SCF E3
ubiquitin ligase complexes, participates in carcinogenesis and tumor progression
via targeting its substrates for ubiquitination and degradation. F-box proteins could
be regulated by cellular signaling pathways and noncoding RNAs in tumorigenesis.
Long noncoding RNA (IncRNA), one type of noncoding RNAs, has been identified
to modulate the expression of F-box proteins and contribute to oncogenesis. In
this review, we summarize the role and mechanisms of multiple INcCRNAs in
regulating F-box proteins in tumorigenesis, including IncRNAs SLC7A11-AS1,
MT1JP, TUGL, FER1L4, TTN-AS1, CASC2, MALATI, TINCR, PCGEM1, linc01436,
linc00494, GATA6-AS1, and ODIR1. Moreover, we discuss that targeting these
INcRNAs could be helpful for treating cancer via modulating F-box protein
expression. We hope our review can stimulate the research on exploration of
molecular insight into how F-box proteins are governed in carcinogenesis.
Therefore, modulation of INncRNAs is a potential therapeutic strategy for cancer
therapy via regulation of F-box proteins.

KEYWORDS

cancer, IncRNAs, F-box protein, treatment, oncogenesis, noncoding RNA

Introduction

F-box protein is a subunit in Skp1-Cullinl-F-box protein (SCF) E3 ubiquitin ligase
complexes (1). It has been well documented that F-box proteins target their substrates via
ubiquitination and proteasome degradation (2). It has been accepted that F-box proteins
have 69 members in human genome (3). According to specific motifs in F-box proteins,
these proteins are classified into three types: 10 FBXW proteins (WD40 repeat domains),
and 22 FBXL proteins (leucine-rich repeat motifs), 37 FBXO proteins (other motifs) (4).
Accumulated evidence demonstrated that F-box proteins participate in cancer initiation
and progression via regulation of cell proliferation (5-7), apoptosis (8), motility and
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metastasis (9), cell cycle (10), EMT (11), cancer stem cells (12,
13), drug resistance (14, 15) and autophagy (16).

Noncoding RNAs have little or no protein coding capacity to
encode proteins (17). Based on the lengths of nucleotides, noncoding
RNAs are classified multiple types: long noncoding RNA (IncRNA,
high than 200 bp), short noncoding RNA (17-30 bp) and mid-size
noncoding RNA (31-200 bp) (18). It has been known that microRNA
(miRNA) has approximately 22 nucleotides and targets gene
expression via regulation of post-transcription (19, 20). Now,
noncoding RNAs have been validated to critically participate in
oncogenesis in various types of cancers (21-25). Not surprisingly,
noncoding RNAs regulated numerous cellular biological processes
and dysregulated noncoding RN Aslead to various diseases, including
cancer (26-29). In recent years, accumulated evidence suggests that
noncoding RNAs targets the expression of F-box proteins, leading to
carcinogenesis and malignant progression. One review has well
summarized the role of noncoding RNAs in regulation of F-box
proteins in carcinogenesis (30). However, this review mainly
described the role of microRNAs in governing the expression of F-
box proteins. Here, we summarized the functions and mechanisms of
IncRNAs in controlling F-box protein expression, leading to tumor
development and progression.

LncRNAs regulate the expression of
F-BOX proteins

Targeting FBXW family by IncRNAs

LncRNA SLC7A11-AS1 regulates B-TrCP1
SLC7A11-AS1 was downregulated in tumor tissues in
patients with gastric cancer, and correlated with poor
prognosis in these patients (31). Depletion of SLC7A11-AS1
contributed to tumor growth in cells and in mice via controlling
the ASK1/p38/JNK signaling pathway in gastric cancer (31). In
lung cancer cells, SLC7A11-AS1 facilitated tumor progression
via suppressing miR-4775 and increasing the expression of
TRAIP (32). SLC7A11-AS1 has been revealed to play a key
role in chemoresistance in various types of cancers (33). Luo

Abbreviations: CASC2, Cancer Susceptibility 2; FER1L4, Fer-1 Like Family
Member 4; GATA6-AS1, GATA6 Antisense RNA 1; HCC, Hepatocellular
carcinoma; LncRNA, Long noncoding RNA; MALAT1, Metastasis-associated
lung adenocarcinoma transcript 1; MT1JP, Metallothionein 1], pseudogene;
NRF2, Nuclear factor erythroid-2-related factor 2; ODIRI, osteogenic
differentiation inhibitory regulator 1; PCGEMI, Prostate cancer gene
expression marker 1; PDAC, Pancreatic ductal adenocarcinoma; ROS,
Reactive oxygen species; SLC7A11-AS1, Solute carrier family 7 member 11
antisense RNA 1; SCF, Skpl-Cullinl-F-box protein; STAT3, Signal
transducer and activator of transcription 3; TCPTP, T-cell protein tyrosine
phosphatase; TINCR, Terminal differentiation-induced non-coding RNA;
TUGI, Taurine up-regulated 1; TTN-AS1, TTN Antisense RNA 1.
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et al. found that SLC7A11-AS1 targeted miR-33a-5p and
changed the expression of xCT, weakened cell growth,
promoted ROS levels, and regulated cisplatin resistance in
gastric cancer (34).

SLC7A11-AS1 was found to be significantly increased in PDAC
tissues (35). PDAC cells with gemcitabine resistance have a high
expression of SLC7A11-AS]1, indicating that SLC7A11-AS1 could
play an essential role in regulation of drug resistance. In fact,
downregulation of SLC7A11-AS1 potentiated gemcitabine
sensitivity in resistant PDAC cells and inhibited the PDAC
stemness. In line with this, overexpression of SLC7A11-ASl
increased gemcitabine resistance via suppressing intracellular ROS
levels by maintaining NRF2 stability (35). Mechanically, SLC7A11-
AS1 can bind to the F-box motif of B-TrCP1 (also known as
FBXWT1), which blocks the ubiquitination and degradation of
NRE2. Therefore, SLC7A11-AS1 attenuated B-TrCP-mediated
degradation of NRF2, reduced ROS levels, and increased cancer
stemness, which promoted gemcitabine resistance in PDAC (35).
Hence, targeting SLC7A11-AS1 could overcome gemcitabine
resistance to improve treatment benefits in PDAC patients.

LncRNA PCGEM1 regulates B-TrcP2

B-TrcP2, also known as FBXW11, has been characterized to
take part in tumorigenesis (36). FBXW11 activated the [B-catenin/
TCF and NF-kappa B pathways and increased cell proliferation in
lymphocytic leukemia (37). FBXW11 maintained stem-cell-like
characters and enhanced liver metastasis via governing SIRT1
transcription in colorectal cancer (38). LncRNA PCGEMI has
been found to participate in the initiation and development of a
variety of cancers via regulating several signaling pathways (39).
LncRNA PCGEMI expression was remarkably increased in cervical
cancer specimens, which was associated with FIGO stage, lymph
node metastasis, poor survival and distant metastasis in cervical
cancer patients (40). PCGEMI1 upregulation stimulated
proliferation, invasion, migration, and cell cycle process and
reduced apoptosis in cervical cancer cells (40). PCGEM1 can
work as a ceRNA to sponge miR-182 and suppress its expression,
leading to upregulation of FBXW11. Moreover, PCGEM1 can
activate the NF-kappa B and B-catenin/TCF pathways, and this
activation by PCGEM1 can be abrogated by knockdown of
FBXW11 (40). Altogether, PCGEM1 exerted cervical cancer
progression via modulation of miR-182 and FBXW11.

Several IncRNAs regulates
FBXWY7 expression

F-box and WD repeat domain containing 7 (FBXW?7) is well
studied and acts as one tumor suppressor gene in human
carcinogenesis and tumor progression (41-43). One study
identified that several IncRNAs are correlated with Fbxw7
deficiency in radiation-mediated thymic lymphoma (44). In
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mice with Fbxw?7 deficiency, microarray dada from radiation-
induced thymic lymphomas revealed that 372 IncRNAs are
differentially expressed in tumor tissues. Among these
IncRNAs, 170 IncRNAs were decreased, while 202 IncRNAs
were increased in thymic lymphomas (44). Moreover, these
FBXW?7-associated IncRNAs were found to participate in
DNA repair, cell cycle processes, lymphocyte activation and
cell differentiation. Two IncRNAs (IncRNA position: 5119300,
5162836) were observed to be linked to Anxa2, Cecr2, Zebl and
Zfp438 expressions, whereas one IncRNA (position: 182808654)
was decreased and associated with Ampdl, Cdé, Clipl, Dap,
Edaradd and Ptk2b (44). Furthermore, IncRNA
A_30_P01032978 is correlated with poor disease free survival
in patients with breast cancer (44). In this section, we will discuss
how the several IncRNAs regulated the expression of FBXW?7
in carcinogenesis.

LncRNA MT1JP regulates FBXW7

LncRNA MT1JP has been reported to be a tumor suppressor
via promotion of the translation of p53 by interaction with TIAR
(45). In retinoblastoma, MT1JP plays a tumor suppressive role via
targeting Wnt/B-catenin signaling pathway (46). In breast cancer
cells, MT1]JP repressed oncogenesis and reversed cisplatin resistance
through sponging miR-24-3p and inhibiting the Wnt/B-catenin
(47). Consistently, MT1JP exhibited tumor suppressive functions
via sponging miR-92-3p and targeting miR-214/RUNX3 axis in
breast cancer cells (48, 49). In lung cancer cells, MT1JP blocked cell
proliferation, migration and invasion through modulation of miR-
423-3p/Bim axis (50). In glioma, MT1JP retarded tumor
progression via competitively binding with miR-24 (51). In
osteosarcoma cells, MT1JP was reported to increase the inhibitory
function of miR-646 on FGF2 expression (52). In HCC cells,
upregulation of MT1JP modulated cell apoptosis and migratory
abilities via targeting miR-24-3p and regulating AKT, RUNX3 and
p21 (53-55). Furthermore, MT1JP regulated miR-24-3p/Bcl2L2
signaling pathway and reduced lenvatinib sensitivity via
suppression of apoptosis in HCC (56). Moreover, MT1JP
upregulation abrogated the PTEN inactivation via miR-32
reduction in HCC cells (57).

In intrahepatic cholangiocarcinoma, MTIJP acted as a
protective IncRNA via regulation of miR-18a-5p and FBP1 (58).
MT1JP regulated miR-214-3p/RUNX3 signaling pathway and
subsequently inhibited proliferation and migration of gastric
cancer (59). Notably, low expression of MT1JP was related with
poor prognosis in patients with gastric cancer (60). LncRNA
MT1JP was downregulated in gastric cancer tissues compared
with adjacent normal tissues (61). Gastric cancer patients had a
better prognosis, who often have higher expression of MT1JP. In
vitro experiment data showed that IncRNA MT1JP upregulation
suppressed proliferation, invasion and migration and enhanced
apoptosis of gastric cancer cells (61). In vivo data revealed that
IncRNA MTI1JP reduced tumor sizes and tumor metastasis.
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Mechanistical analysis demonstrated that IncRNA MTI1JP
sponged miR-92a-3p and upregulated FBXW?7 in gastric cancer
(61). Rescue experiments exhibited that downregulation of
FBXW7 reversed MT1JP-induced inhibition of proliferation,

invasion and migration in gastric cancer (61).

LncRNA TUGL regulates FBXW7

Numerous studies have demonstrated the critical role of
IncRNA Taurine upregulated gene 1 (TUGI) in cancer initiation
and progression. LncRNA TUGI underlined a tumor promotive
property via impairing miR-421-mediated suppression of KDM2A
and activating the ERK signaling in colorectal cancer cells (62).
TUGLI suppressed cancer progression via targeting Siglec-15-
mediated anti-immune activity in HCC (63). Moreover, TUGI
was reported to sponge miR-328-3p and increase the SRSF9 mRNA
expression in HCC cells, leading to promotion of proliferation,
invasion and migration (64). Xiu et al. found that TUGI enhanced
tumor malignant progression via binding with miR-516b-5p and
increasing H6PD expression (65). Xia et al. reported that TUG1
stabilization by IGF2BP2 increased cisplatin resistance via targeting
autophagy in colorectal cancer (66). One group identified that
TUGI governed the miR-320a/FOXQ]1 axis and caused promotion
of bladder tumor malignant phenotypes (67).

Sun et al. discovered that TUGI increased chemoresistance
and enhanced cancer stem cell behaviors via stabilizing GATA6
protein in colorectal cancer (68). TUGI targeted AKT/mTOR
signaling pathway via sponging miR-582-3p, which promoted
ovarian cancer malignant behaviors (69). TUG1 sponged miR-
29¢-3p and upregulated the expression of VEGFA, which
facilitated malignant phenotypes in stomach cancer (70). In
addition, TUG1 competitively interacted with miR-29a and
triggered the expression of IFITM3 in HCC cells (71). TUG1
promoted tumor progression and metastasis via modulating
miR-140-3p and Annexin A8 axis in bladder cancer cells (72).
Zhang et al. reported that TUGI targeted miR-187-3p and TESC
and modulated the NF-kappa B signaling pathway, which
governed progression of pituitary adenoma (73). Li group
reported that miR-199a-3p/MSI2 signaling pathway was
involved in TUGIl-mediated promotion of cell migration,
invasion and proliferation in Ewing’s sarcoma (74). TUGI
upregulated the expression of XBP1 by sponging miR-498 in
ESCC cells, which enhanced tumor metastasis and growth (75).
One study revealed that TUGI1 upregulated the expression of
FBXW?7 and induced FBXW?7-triggered SIRT1 ubiquitination
and degradation (76). Moreover, TUG1 compromised neuronal
mitophagy via targeting TUG1/FBXW?7 axis in cerebral ischemia
and reperfusion injury (76). It is necessary to explore whether
TUGTI regulates the expression of FBXW7 in carcinogenesis.

LncRNA FER1L4 regulates FBXW7
LncRNA Fer-1-like protein 4 (FER1L4) has been discovered to
be involved in development of human cancer (77). Xia and

frontiersin.org


https://doi.org/10.3389/fonc.2022.963617
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Xia et al.

colleagues found that FER1L4 knockdown suppressed cell growth
and cell cycle progression via interacting with miR-372 and
upregulating E2F1 expression in gliomas (78). In lung cancer
cells, FER1L4 suppressed metastasis and growth and enhanced
apoptosis via control of PI3K/AKT and p53 signaling pathways (79,
80). In osteosarcoma cells, FER114 regulated cell apoptosis and
EMT via suppression of miR-18a-5p and promotion of SOCS5 and
activation of PI3K/AKT pathway (81). In clear cell renal cell
carcinoma (ccRCC) tissues, FER1L4 expression is higher than
that in adjacent normal tissues (82). High expression of FER1L4
was linked to tumor grade, stage, metastasis and tumor
aggressiveness and patient survival (82). In oral squamous cell
carcinoma, FER1L4 facilitated tumor progression through
regulation of miR-133a-5p/Prx1 axis (83). In colorectal cancer
patients, FER1L4 expression levels were downregulated, while
RB1 expression was upregulated. FER1L4 expression was
associated with RB1 expression in colorectal cancer patients (84).

FER114 sponged miR-1273g-3p and increased the expression
of PTEN and led to cell cycle arrest and metastasis suppression in
colorectal cancer (85). One study showed that downregulation of
FER114 inhibited the mRNA levels of RB1 in gastric cancer (86).
Moreover, FER1L4 reduced cell growth via binding with miR-106a-
5p and increased the expression of PTEN at both mRNA and
protein levels in gastric cancer (87). Similarly, FER1L4 reduced
growth, invasion, migration and metastasis by suppressing the
Hippo-YAP signaling pathway in gastric cancer (88). Qiao et al.
found that FER1L4 repressed cell proliferation and blocked cell
cycle at GO/G1 phase as well as enhanced apoptosis via upregulation
of PTEN in endometrial carcinoma (89). Furthermore, FER1L4
overexpression was correlated with favorable survival outcome in
endometrial carcinoma patients (90). Ma et al. reported that
FER1L4 decreased cell invasion and growth and promoted cell
apoptosis and cell cycle arrest at GO/G1 phase in ESCC cells (91). In
HCC cells, overexpression of FER114 attenuated cell migration and
proliferation, increased apoptosis through targeting PI3K/AKT
signaling pathway (92).

In ovarian cancer cells, FER1L4 upregulation reduced paclitaxel
tolerance via modulation of the MAPK signaling pathway (93). The
lower expression of IncRNA FER1L4 was observed in prostate
cancer samples compared with normal prostate tissues (94). Early
stage of prostate cancer patients had the higher expression of
FER1L4 in prostate cancer specimens. Upregulation of FER114
decreased proliferation and increased apoptosis in prostate cancer
cells via sponging miR-92a-3p and upregulating FBXW7 (94).
Depletion of FBXW?7 abrogated inhibition of cell proliferation
caused by upregulation of FER1L4 in prostate cancer cells,
indicating that FER11L4 exerted antitumor activities via miR-92a-
3p/FBXW? axis (94).

LncRNA TTN-AS1 targets FBXW7

LncRNA Titin-antisense RNA1 (TTN-AS1) has been reported
to be involved in tumorigenesis in various type cancers, including
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esophageal squamous cell carcinoma (ESCC), cervical cancer,
gastric cancer and lung cancer (95-98). Lin et al. reported that
TTN-AS1 worked as an oncogene and was highly expressed in
ESCC cells and tumor specimens, and overexpression of TTN-
AS1 enhanced ESCC proliferation and metastasis (95).
Mechanistically, TTN-AS1 competitively interacted with miR-
133b and increased the expression of Snaill, leading to EMT
cascade in ESCC cells (95). In addition, TTN-AS1 sponged miR-
133b and increased the expression level of FSCN1 and resulted in
invasion cascades in ESCC cells (95). Chen et al. reported that
TTN-ASI enhanced growth and metastasis of cervical cancer cells
via regulation of miR-573/E2F3 axis (96). Dong et al. revealed that
TTN-ASI stimulated gastric cancer development via interacting
with miR-376b-3p and KLF12 (97). Luo et al. observed that TTN-
AS1 contributed to tumor progression via modulating PTEN/
PI3K/AKT signaling pathway in lung adenocarcinoma (98).
Similarly, TTN-AS1 activated cell invasion and migration via
governing miR-4677-3p/ZEB1 axis in lung adenocarcinoma (99).
In prostate cancer cells, TTN-AS1 reduced cell apoptosis and
facilitated cell proliferation via binding with miR-193a-5p (100).

LncRNA TTN-AS1 sponged miR-134-5p and increased the
expression of malignant brain tumor domain containing 1
(MBTD1), contributing to promotion of viability and drug
resistance, inhibition of apoptosis in osteosarcoma cells (101).
TTN-AS1 interacted with miR-376a-3p and subsequently
upregulated KLF15, resulting in promotion of colorectal
cancer progression (102). Cui et al. also reported that TTN-
AS1 facilitated the cell invasion and growth through activation
of miR-497-induced PI3K/AKT/mTOR pathway in colorectal
cancer (103). Fang et al. found that TTN-AS1 enhanced
invasion, EMT and cell growth via governing miR-139-5p/
ZEB1 axis and miR-524-5p/RRM2 axis in breast cancer cells
(104, 105). One group studied the role of TTN-ASI in clear cell
renal cell carcinoma and found that TTN-ASI acted as a
sponging RNA of miR-195 to increase the expression of cyclin
D1 and promote tumor progression (106). It has been reported
that IncRNA TTN-AS1 can sponge miR-15b-5p and regulate the
expression of FBXW?7 in ovarian cancer (107). The low
expression of TTN-AS1 was found in ovarian cancer cells and
tumor tissues. Upregulation of TTN-AS1 reduced proliferation
and colony formation and stimulated apoptosis in ovarian
cancer cells (107). Moreover, knockdown of FBXW?7
attenuated the functions of TTN-AS1 upregulation on cell
behaviors, suggesting that TTN-AS1 exerts its biological
behaviors via upregulating FBXW?7 in ovarian cancer cells (107).

LncRNA CASC2 targets FBXW7

LncRNA cancer susceptibility candidate 2 (CASC2) has been
reported to serve as a tumor suppressor in carcinogenesis by
sponging several miRNAs (108, 109). Upregulation of IncRNA
CASC2 attenuated cell viability, induced apoptosis and affected
autophagy via regulation of miR-19a and NF-kappa B signaling
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pathway in colon cancer (108). In line with this finding, IncRNA
CASC2 enhance apoptosis and autophagy through targeting
TRIM16 expression in colon cancer cells (110). CASC2
promoted berberine-mediated cytotoxicity via inhibition of
Bcl2 in colorectal cancer (111). One group showed that
CASC2 overexpression exhibited antitumor activities through
sponging miR-24-3p in thyroid cancer (109). Another group
reported that CASC2 increased radiotherapy sensitivity via
sponging miR-155 in papillary thyroid cancer (112). Similarly,
IncRNA CASC2 increased irradiation-triggered endoplasmic
reticulum stress via regulation of PERK signaling pathway in
NSCLC cells (113). In pancreatic cancer cells, IncRNA CASC2
increased the expression of PTEN and retarded cell metastasis
via sponging miR-21 (114).

LncRNA CASC2 overexpression suppressed cell
proliferation and tumor growth in mice in hepatocellular
carcinoma (HCC) (115, 116). LncRNA CASC2 enhanced
apoptosis and suppressed viability via targeting miR-24-3p in
HCC cells (116). In TNF-related apoptosis-inducing ligand
(TRAIL)-resistant HCC cells, CASC2 targeted miR-18a/
receptor-interacting serine/threonine-protein kinase 1 (RIPK1)
axis and the NF-kappa B pathway, whereas in TRAIL-sensitive
cells, CASC2 affected miR-221/caspase-3 and miR-24/caspase-8
(115). In clinical tissues, HCC patients have lower expression of
CASC2, which is associated with a poor overall survival rate
(115, 117). Sun et al. observed that IncRNA CAS2 reduced cell
viability, invasion and migratory activities via directly inhibiting
miR-183 in HCC cells (118). Wang et al. reported that IncRNA
CASC2 inhibited epithelial-mesenchymal transition (EMT) via
targeting miR-367 and FBXW7 in HCC cells (117).
Overexpression of IncRNA CASC2 repressed invasion and
migration of HCC cells and suppressed EMT and blocked
metastasis via sponging miR-367. In addition, FBXW7 was
found to be a downstream target of miR-367 in HCC cells
(117). Therefore, CASC2 regulates the expression of FBXW?7 via
regulation of miR-367 in HCC cells.

LncRNA MALAT1 targets FBXW7

LncRNA metastasis associated lung adenocarcinoma
transcript 1 (MALAT1) has been known to be correlated with
tumor metastasis in human cancer (119). MALAT1 expression
was linked to the WHO grade, tumor size and poor survival in
glioma patients (120). MALAT1 depletion increased
proliferation of glioma stem cells and inhibited the expression
of Nestin and Sox2, two stemness markers (121). MALATI-
mediated cell proliferation promotion was due to activation of
ERK/MAPK signaling pathway in glioma cells (121). Han et al.
found that MALAT1 downregulated MMP2 and blocked ERK/
MAPK signaling pathway as well as exhibited tumor suppressive
behaviors in glioma cells (122). Xiang et al. reported that
knockdown of MALAT1 induced apoptosis via reduction of
Cyclin D1 and Myc in U87 and U251 glioma cells (123). Studies
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showed that MALAT]1 inhibited cell apoptosis and increased cell
growth and activated autophagy via targeting miR-101 and
derepressing Rap1B, RAB5A, ATG4D and STMNI1 expression
in glioma (124, 125).

MALAT]1 was identified to recruit FBXW7 to stimulate the
degradation of CRY2 and regulate trophoblast invasion and
migration (126). MALAT1 was significantly downregulated in
glioma samples and associated with tumor grade, tumor size and
Karnofsky Performance status in glioma patients (127).
MALAT]1 repressed viability of glioma cells via suppressing
miR-155 in vitro. Moreover, FBXW7 was identified as a key
downstream molecule of miR-155 in glioma cells. Notably,
FBXW?7 mediated miR-155-triggered oncogenesis in U87 and
SHG139 glioma cells. Strikingly, MALAT1 reduced cell viability
by upregulation of FBXW?7 expression due to downregulation of
miR-155 (127). Hence, MALATI1 might be a potential
therapeutic target for glioma.

LncRNA TINCR targets FBXW7

LncRNA terminal differentiation-induced IncRNA (TINCR)
have been implicated in carcinogenesis and tumor progression
(128). TINCR can reduce cell invasion and growth, and induce
apoptosis through controlling the expression of miR-424-5p and
LATS1 in cutaneous malignant melanoma (129). TINCR
attenuated cell invasion and growth via targeting miR-210 and
BTG in laryngeal squamous cell carcinoma (130). In HCC cells,
TINCR enhanced cell invasion and growth via regulation of
STAT3 pathway by binding to TCPTP (131). In breast cancer,
TINCR governed cell metastatic ability and cell growth via
regulating miR-761 and targeting OAS1 and EGFR (132-134).

In lung cancer tissues, TINCR expression levels were
downregulated (135). In lung cancer cells, TINCR
upregulation retarded cell invasion and proliferation via acting
as a sponge of miR-544a. Moreover, FBXW?7 was validated as a
downstream target of miR-544a in lung cancer cells. In a rescue
experiment, depletion of FBXW?7 abrogated the suppression of
TINCR on invasion and proliferation (135). Altogether, IncRNA
TINCR performed anti-proliferative and invasive abilities in
lung cancer cells through modulating miR-544a/FBXW?7 axis.
However, one study found that TINCR promoted tumor
progression by BRAF-induced MAPK pathway in NSCLC
(136). Therefore, further investigation is essential to determine
the role of TINCR in lung cancer progression.

LncRNA MALATI targets FBXWS8

MALAT1 has been validated to have a role in cancer
diagnosis, prognosis and therapy (137). Emerging study has
shown that MALAT1 can regulate the expression of FBXW38 in
human cancer (138). FBXWS8 has been reported to involve in cell
growth and cell cycle progression in choriocarcinoma (139).
Depletion of FBXW8 by siRNA transfection suppressed cell
growth and induced cell cycle arrest at G2/M phase in
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choriocarcinoma JEG-3 cells (139). Overexpression of FBXW8
exhibited the opposite functions on cell growth and cell cycle.
FBXWS8 can regulate the expression of CDK1, CDK2, p27,
Cyclin A and Cyclin Bl in choriocarcinoma cells (139). One
study reported that miR-218 suppressed the cell proliferation via
inhibition of FBXWS in choriocarcinoma JEG-3 cells (140).

In choriocarcinoma cells, MALAT]1 upregulation increased
cell proliferation, while depletion of MALAT1 hindered cell
growth (138). Moreover, MALAT1 exerted its biological
behaviors via targeting miR-218 in choriocarcinoma cells.
Depletion of MALAT1 reduced the tumor growth in vivo.
What is more, FBXW8 was found to be a direct target of miR-
218 and was involved in MALAT1-meidiated promotion of cell
proliferation in choriocarcinoma (138). Hence, MALAT1
promoted cell proliferation via interaction with miR-218 and
upregulation of FBXW38 in choriocarcinoma.

Targeting FBXO family by IncRNAs

Linc01436 regulates FBXO11

Linc01436 was reported to be controlled by E2F6 and served
as a tumor promoter in NSCLC cells (141). Linc01436 worked as
a miR-30a-3p sponge to increase the expression of EPASI in
NSCLC, resulting in promotion of cell growth, invasion and
migration in vitro and enhancement of tumor growth and tumor
metastasis in mice (141).

Emerging evidence has revealed that linc01436 plays an
oncogenic role in gastric cancer progression (142-144).
Linc01436 repressed the expression of miR-585-3p and
increased mitogen-activated protein kinase 1 (MAPKI)
expression, which contributed to gastric cancer development
(143). Similarly, linc01436 triggered gastric cancer progression
through modulation of miR-513a-5p and apurinic/apyrimidinic
endodeoxyribonuclease 1 (APEI) (144). The higher expression
of 1linc01436 was observed in tumor tissues of gastric cancer
patients and was associated with a poor survival in gastric cancer
cases (142). Moreover, using in vitro experiments, knockdown of
linc01436 retarded metastasis and blocked proliferation in
BGC823 gastric cancer cells, while increased linc01436
promoted metastasis and proliferative activity in AGS gastric
cancer cells (142). Mechanistically, miR-585 can bind to
linc01463 and FBXOL11, suggesting that linc01436 sponges
miR-585 and inhibit it, leading to indirect promotion of
FBXOI11 expression in gastric cancer (142). Taken together,
linc01463 targets miR-585/FBXO11 axis and subsequently
promotes progression of gastric cancer.

LincRNA GATA6-AS1 regulates FBXO11

Xu et al. reported that lincRNA GATAG6-AS1 regulated
invasive and migratory capacities and viability via binding to
miR-19a-5p and increasing TET2 in ovarian cancer cells (145).
LincRNA GATA6-AS1 promoted GATA6 expression and
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controlled the behaviors of lung cancer cells (146). In lung
cancer cells, lincRNA GATAG6-AS1 suppressed cell
proliferation and invasive ability (147). Using several
approaches, including RNA sequencing dataset, RT-qPCR and
TCGA data, one group found that GATA6-AS1 expression levels
were downregulated in lung cancer tissues (147). Moreover,
GATAG6-AS1 overexpression increased the expression of
FBXOI11 and SP1 via sponging miR-324-5p, contributing to
enhancement of invasion and proliferation in lung cancer cells.
Furthermore, miR-324-5p overexpression abolished the effects
of GATAG6-AS1 upregulation in lung cancer (147). In a word,
lincRNA GATAG6-AS1 might regulate miR-324-5p/FBXO11 axis
and facilitated lung cancer development.

LncRNA ODIR1 regulates FBXO25

FBXO25 has been reported to participate in cancer
development and malignant behaviors (148, 149). Impairing
PRKCD-FBXO025-HAX-1 signaling pathway led to
lymphomagenesis and reduced the apoptotic reaction (150).
FBXO25 facilitated cell invasion, migration and proliferation
via regulation of YAP, cyclins, MMPs and [-catenin in NSCLC
cells (148). Clinically, FBXO25 had the higher expression in the
nucleus and cytoplasm of tumor tissues in lung cancer patients,
and was associated with lymph node metastasis and TNM stage
and overall survival (148). In cutaneous squamous cell
carcinoma cells, FBXO25 increased cell growth and metastasis
via binding with Oct-1, a Cyclin D1 repressor, and stabilization
of Cyclin D1 (149). One study showed that IncRNA RP11-
527N22.2, also known as osteogenic differentiation inhibitory
IncRNA 1 (ODIR1), interacted with FBXO25 and promoted the
destruction of FBXO25 protein by recruiting Cullin 3 (151).
FBXO25 promoted H2BK120 ubiquitination and increased the
trimethylation of H3K4 (H3K4me3), which increased osterix
transcription and the expression of osteocalcin, osteopontin and
ALP (151). In human umbilical cord-derived mesenchymal stem
cells, downregulation of ODIRI contributed to osteogenic
differentiation, while upregulation of ODIR1 suppressed
osteogenic differentiation (151). It is required to investigate the
role of ODIR1-mediated FBXO25 disruption in oncogenesis
and progression.

Linc00494 regulates FBXO32

FBXO32 promoter hypermethylation has been revealed to be
linked to poor prognosis in patients with ovarian cancer (152).
FBXO32 has been involved in carcinogenesis and tumor
malignant behaviors. FBXO32 worked as an E3 ligase for
PHPT1 ubiquitination, leading to reduction of PHPTI1
accumulation, inactivation of the ERK/MAPK axis, which
inhibited the proliferation of lung cancer cells (153). FBXO32
repressed tumorigenesis by targeting KLF4 for ubiquitination
and proteasomal degradation in breast cancer (154). Linc00494
was predicted to bind with NF-kappa Bl by bioinformatics
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analysis in ovarian cancer cells (155). Dual-luciferase reporter
assay, RIP and RNA pull-down confirmed the interaction
between 1inc00494 and NF-kappa B1. Linc00494 increased the
activity of NF-kappa BI after their interaction. Moreover, NF-
kappa B1 suppressed the transcription of FBXO32 via binding
with the promoter region of FBXO32. Linc00494 upregulation
accelerated the expression of NF-kappa B1 and caused invasion,
migration and tumorigenesis in ovarian cancer cells. In
consistent, upregulation of FBXO22 reversed the 1linc00494-
mediated tumorgenicity in ovarian cancer (155). Strikingly,
linc00494 expression levels were highly upregulated in ovarian
cancer tissues, while FBXO32 has a lower expression in ovarian
tumor specimens (155). In summary, linc00494 modulated NF-
kappa Bl and FBXO32 and enhanced progression of
ovarian cancer.

Conclusions and
future perspectives

In conclusion, multiple IncRNAs have been reported to
regulate the expression of several F-box proteins in

FIGURE 1

Multiple IncRNAs regulate the expression of FBXW7 in human cancer. Multiple IncRNAs, including MT1JP, FER1L4, TTN-AS1, CASC2 and MALATZ,
have been demonstrated to regulate the expression of FBXW7 in tumorigenesis.
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tumorigenesis, including IncRNAs SLC7A11-AS1, MT1JP,
TUGI1, FER1L4, TTN-AS1, CASC2, MALATI1, TINCR,
PCGEM1, linc01436, 1inc00494, GATA6-AS1, and ODIRI1
(Figures 1 and 2). Modulation of these IncRNA expressions
is a potential therapeutic strategy for cancer therapy via
regulation of F-box proteins. Besides IncRNAs, miRNAs
and circRNAs have also participated in modulation of F-
box protein in carcinogenesis. It is necessary to note that
several issues need to be addressed for clarifying the functions
of IncRNAs in oncogenesis via targeting F-box proteins. For
example, there are thousands of IncRNAs. However, only
about a dozen IncRNAs were identified to regulate the
expression of F-box proteins. More IncRNAs should be
discovered, which modulate the F-box protein expression in
cancer. Among the 69 F-box proteins, no IncRNA was
discovered to target FBXL proteins in tumorigenesis. In
addition, one IncRNA can target several F-box proteins. For
example, MALAT1 targets both FBXW7 and FBXW38 in
cancer cells. It is unclear whether MALAT1 targets two F-
box proteins at the same time in carcinogenesis. Hence,
further in-depth investigation is pivotal to determine
whether regulation of F-box proteins by related IncRNAs is
a therapeutic strategy for cancer treatment.
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Multiple IncRNAs regulate the expression of F-box proteins in human cancer. Multiple IncRNAs, including SLC7A11-AS1, MALAT1, PCGEM1,
linc01436, linc00494 and GATA6-AS], regulate the expression of several F-box proteins in tumorigenesis.
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The long non-coding RNA (IncRNA) PVT1 was first found to activate variant
translocations in the plasmacytoma of mice. Human IncPVTL is located on
chromosome 8qg24.21, at the same locus as the well-known MYC oncogene.
LncPVT1 has been found to promote the progression of various malignancies.
Chemoresistance and radioresistance seriously affect tumor treatment efficacy
and are associated with the dysregulation of physiological processes in cancer
cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC),
hypoxia, epithelial-mesenchymal transition (EMT), and DNA damage repair.
Previous studies have also implicated IncPVT1 in the regulation of these
physiological mechanisms. In recent years, IncPVT1 was found to modulate
chemoresistance and radioresistance in some cancers. In this review, we
discuss the mechanisms of IncPVTl-mediated regulation of cellular
chemoresistance and radioresistance. Due to its high expression in malignant
tumors and sensitization effect in chemotherapy and radiotherapy, IncPVT1 is
expected to become an effective antitumor target and chemotherapy and
radiotherapy sensitizer, which requires further study.

KEYWORDS

PVT1, IncRNA, chemoresistance, radioresistance, cancer

Introduction

Long non-coding RNAs (IncRNAs), a class of functional RNA molecules larger than
200 nucleotides that cannot be translated into proteins, play an important regulatory role
in epigenetics (1). LncPVT1I is an important member of the IncRNA family and was first
found to activate variant translocations in the plasmacytoma of mice (2). Human
IncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known
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oncogene MYC (3) (Figure 1). It not only interacts with MYC to
promote cancer progression but also performs different
oncogenic functions independent of MYC (4). LncPVT1 has
been reported to be overexpressed in many types of malignant
tumors, promoting cancer progression (5-9) (Figure 2).
Moreover, IncPVT1 can regulate proliferation, invasion,
autophagy, apoptosis, epithelial-mesenchymal transition
(EMT), hypoxia, stemness (for cancer stem cells, CSC),
exosomes, and other important physiological mechanisms
(10-14).

Chemotherapy is an important cancer treatment regimen
that kills cancer cells primarily through the systemic or local use
of chemosynthetic drugs and has a significant clinical benefit for
patients (15). Chemoresistance leads to cancer recurrence and
metastasis, hindering patient survival; hence, it remains the main
obstacle in cancer treatment. Therefore, we need to understand
the detailed regulatory mechanisms underlying chemoresistance
to improve tumor cell sensitivity to chemotherapy (16). The
currently reported molecular mechanisms associated with
chemoresistance include the action of oncogenes, tumor
suppressor genes, mitochondrial changes, DNA repair,
autophagy, EMT, CSC, and exosomes (17). These pathways
often intersect to increase the tolerance of tumors to cytotoxic
drugs; therefore, the inhibition of these pathways will
significantly improve the sensitivity of tumors to chemotherapy.

Radiotherapy is also an important form of cancer treatment.
It can be used alone or in combination with other forms of

10.3389/fonc.2022.959208

treatment, either curative or palliative, for all stages of cancer.
More than 50% of patients with cancer receive radiotherapy (18).
Unfortunately, radioresistance reduces the efficacy of
radiotherapy and seriously affects the quality of life of patients
with cancer (19). Radiation therapy kills cancer cells directly or
indirectly by causing DNA damage (20). However, ionizing
radiation can also activate multiple prosurvival signaling
pathways to promote DNA damage checkpoint activation,
DNA repair, autophagy, apoptosis inhibition, and CSC. These
signaling pathways conjointly protect cancer cells from radiation
injury and promote radioresistance (21). Current literature
indicates that the tumor microenvironment is closely related
to radioresistance. Under hypoxic conditions, it has been shown
that the radiosensitivity of tumor cells decreased significantly
(22, 23).

LncPVT1 has gradually become a research hotspot regarding
the regulation of chemoresistance and radioresistance, as studies
have found that the regulatory mechanism of IncPVTI in
tumors is also associated with these processes. In recent years,
IncPVT1 has been reported to regulate the chemoresistance of
tumor cells through various pathways (Table 1). LncPVT1
silencing has also been shown to enhance radiosensitivity in
nasopharyngeal carcinoma and lung cancer (Table 2). In this
review, we summarize the various mechanisms through which
IncPVT1 regulates chemosensitivity and radiosensitivity. We
further emphasized that IncPVTI is expected to be a new
sensitizer of chemotherapy and radiotherapy and that it can be
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Figure 1 Graphical representation of the IncPVT1 genomic locus.
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The expression level of IncPVT1 is upregulated in all reported cancers.

used to develop better clinical therapeutic strategies for patients
with cancer.

PVT1 and Chemoresistance
Pancreatic cancer

Pancreatic cancer is a highly malignant tumor with an
extremely poor prognosis. The 1- and 5-year survival rates of
this disease are only 24% and 9%, respectively (55). Gemcitabine
is a first-line chemotherapeutic agent for advanced
pancreatic cancer, and resistance to gemcitabine and other
chemotherapeutic drugs is an important factor in the poor
prognosis of this malignancy (56).

The expression level of IncPVT1 is significantly increased in
pancreatic cancer. Moreover, IncPVT1 has been reported to
promote the proliferation and migration of pancreatic cancer
cells (13). Previous reports have suggested that decreased
IncPVT1 levels can increase sensitivity of pancreatic cancer
cells to gemcitabine chemotherapy (57, 58). Studies have
shown that the activation of the Wnt/B-catenin pathway can
induce chemoresistance in cancer cells (59). Autophagy is an
important mechanism for tumor cell survival and has been
proven to improve the tolerance of tumor cells to radiotherapy
and chemotherapy (60). LncPVT1 competitively binds to
microRNA-619-5p (miR-619-5p) to regulate the expression of
Pygo2, mediating the Wnt/B-catenin pathway to increase the
chemoresistance of pancreatic cancer cells to gemcitabine. At the
same time, the autophagy-related protein ATGI14 is also
regulated by IncPVT1/miR-619-5p to increase autophagy,
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thereby promoting gemcitabine resistance in pancreatic
cancer (24).

06-Methylguanine-DNA methyltransferase (MGMT) is a
DNA repair enzyme regulated by Wnt/B-catenin that protects
cells from physicochemical damage by repairing damaged DNA
(61). In addition, the Hedgehog (Hh) signaling pathway has
been shown to be closely associated with tumor resistance and
regulates autophagy (62, 63). Its terminal transcription factor Gli
is responsible for transmitting signals into the nucleus and
promoting transcriptional activation to upregulate the
expression level of downstream target genes, MGMT (64, 65).
Based on these studies, Yu Shi et al. found that IncPVT1 acts as a
competing endogenous RNA (ceRNA) of miR-409 in pancreatic
cancer cells. At the same time, miR-409 directly targets The
Sonic Hedgehog (SHH) and regulates apoptosis and autophagy
through the SHH/GLI/MGMT pathway, thus mediating the
resistance of pancreatic cancer to gemcitabine (25).
Furthermore, the hypoxia-inducible factor 1-alpha (HIF-1c)/
vacuole membrane protein 1 (VMP1) axis mediates therapeutic
resistance in colon cancer cells (66). Researchers recently found
that IncPVT1 competitively binds to miR-143 and that
decreased IncPVT1 levels and upregulated miR-143 levels
increase the chemosensitivity of pancreatic cancer cells to
gemcitabine through the HIF-1a/VMPI axis (26).

In addition, IncPVT1 regulates the sensitivity of pancreatic
cancer cells to gemcitabine by inhibiting enhancer of zeste
homolog-2 (EZH2) at polycomb repressive complex 2 (PRC2),
where EZH2 upregulates the expression of IncPVT1. LncPVT1,
as an enhancer of MYC, promotes the expression of c-Myec, thus
stimulating the activity of CSCs. The dysregulation of CSC in
pancreatic cancer can induce chemoresistance (67). Another
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TABLE 1 Molecular mechanisms underlying the IncPVT1-induced regulation of drug resistance.

Cancer Pathway

Pancreatic cancer
miR-409/SHH/GLI/MGMT axis
miR-143/HIF-10/VMP1 axis

Curcumin regulates the PRC2/PVT1/C-MYC axis and then targets CSC
HAT]1 binds EZH2 to prevent its degradation and promote IncPVT1 expression
Drosha and DGCR8 promote IncPVT1 to encode miR-1207-5p and miR-1207-3p,

miR-619-5p/Pygo2/Wnt/B-catenin axis; miR-619-5p/ATG14 axis

thereby regulating the expression of SRC and RhoA, respectively

Gastric Cancer mTOR/HIF-10/P-gp and MRP1 pathway

Kanglaite (KLT) inhibits the expression of MDR1 and MRP1 by suppressing the

expression of IncPVT1

miR-3619-5p/TBL1XR1 axis

Bcl2 activation to inhibit apoptosis
Ovarian cancer TGF-B1/p-Smad4/caspase-3 axis
miR-370/FOXMI axis
JAK2/STAT3/PD-L1 axis

Colorectal cancer

Inhibiting apoptosis and upregulating the expression of MRP1, P-gp, mTOR, and Bcl-2

Bladder cancer ‘Wnt/B-catenin axis

MDM2/AURKB/p53 axis

Inhibiting apoptosis and upregulating the expression of MDRI and MRP1

Lung cancer

Breast Cancer
Osteosarcoma

Glioma

miR-216b/Beclin-1 axis

HIF-10/miR-140-3p/ATG5/autophagy

Preventing Nrf2 protein degradation by inhibiting the binding of Keap1 and Nrf2
miR152/c-MET/p-PI3K/p-AKT axis

Apoptosis pathways

miR-365/ELF4/SOX2 axis

Cervical cancer

Decreasing miR-195 expression by enhancing histone H3K27me3 in the miR-195

promoter region and also via direct sponging of miR-195

Head and neck squamous cell
carcinoma (HNSCC)

By sponging miR-124-3p

Prostate Cancer Not mentioned

Drug References
Gemcitabine resistance (24)
Gemcitabine resistance (25)
Gemcitabine resistance (26)
Gemcitabine resistance 27)
Gemcitabine resistance (28)
Gemcitabine resistance (29)
Cisplatin (DPP) resistance (30)
Cisplatin (DPP) resistance (31)
Cisplatin (DPP) resistance (32)
5-Fluorouracil resistance (33)
Cisplatin (DPP) resistance (34)
Cisplatin (DPP) resistance (35)
Cisplatin (DPP) resistance (36)
Cisplatin (DPP) resistance (37)
5-Fu resistance (38)
Doxorubicin (DOX) and (39)
Cisplatin (DDP) resistance
Doxorubicin (ADM) resistance (40)
Cisplatin (DPP) resistance (41)
Cisplatin (DPP) resistance (42)
Doxorubicin resistance (43)
Gemcitabine resistance (44)
Paclitaxel resistance (45)
Temozolomide (TMZ) (46)
resistance
Paclitaxel (PTX) resistance (47)
Cetuximab resistance (48)*
Castration resistance (49)*

*LncPVTI regulates resistance to immunotherapy and castration therapy.

study has concluded that curcumin downregulates cancer
stemness by inhibiting the PRC2/IncPVT1/c-MYC pathway,
increasing the sensitivity of pancreatic cancer cells to
gemcitabine (27). Sun et al. found that histone
acetyltransferase 1 (HAT1) promotes the binding of
bromodomain-containing 4 (BRD4) to the IncPVT1 promoter
to enhance IncPVT1 expression. Simultaneously, HAT1
competitively binds to the N-terminus of EZH2 with the

TABLE 2 Molecular mechanisms underlying PVT1-induced radioresistance.

Cancer Pathway

Nasopharyngeal carcinoma (NPC)

Non-small-cell lung cancer (NSCLC) By sponging miR-195

miR-424-5p/CARM1 axis
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ATM/Chk2/p53 axis; caspase-9/caspase-7/PARP axis
KAT2A/H3K9ac/TIF1B/NF90/HIF-10 axis
miR-515-5p/PIK3CA/p-AKT axis

ubiquitin protein ligase E3 component n-recognin 4 (UBR4),
preventing the ubiquitination of EZH2. Thus, HAT1 promotes
gemcitabine resistance in pancreatic cancer cells (28). Based on
this mechanism, tripolyphosphate (TPP)-siHAT1 nanoparticles
have been developed to inhibit HAT1 expression and overcome
gemcitabine resistance in pancreatic cancer cells. However, the
efficacy and safety of TPP-siHAT1 nanoparticles require
further validation.

Mechanism References
DNA repair, apoptosis (50)
Hypoxic (51)
Apoptosis (52)
Apoptosis (53)
Apoptosis (54)
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You et al. have also discussed the mechanism of gemcitabine
resistance in pancreatic cancer cells. They found that Drosha
ribonuclease IIT (Drosha) and DGCR8 promote the IncPVT1-
mediated processing of miR-1207-5p and miR-1207-3p. The
generated products miR-1207-5p and miR-1207-3p inhibit
sarcoma gene (SRC) and ras homolog family member A
(RhoA), respectively, to increase the sensitivity of pancreatic
cancer cells to gemcitabine chemotherapy (29). These studies
highlight IncPVT1 as a promising target for improving the
sensitivity of pancreatic cancer cells to gemcitabine.

Gastric cancer

Gastric cancer remains the most common malignancy of the
digestive system, ranking fifth in incidence and third in causing
cancer-related deaths worldwide (68). Although radical
resection is the standard treatment for early gastric cancer,
patients are often diagnosed with gastric cancer at the
advanced stage, making chemotherapy the main treatment
regimen after diagnosis. Cisplatin, 5-FU, and other
chemotherapeutic drugs are common first-line treatments for
gastric cancer (69). However, the emergence of multi-drug
resistance (MDR) reduces the sensitivity of chemotherapy and
makes the survival benefit of patients with advanced gastric
cancer worse (70).

Many studies have suggested that IncPVT1 can be used as a
biomarker for the diagnosis and prognosis of gastric cancer (71).
In addition, IncPVT1 can promote the growth and invasion of
gastric cancer and induce angiogenesis (11, 72). The MDR-
associated proteins include MDR1, mTOR, HIF-1c, and MRP. A
decrease in IncPVT1 expression was found to increase the
apoptosis rate of cisplatin-treated gastric cancer cell lines.
Reverse transcription-quantitative polymerase chain reaction
(RT-qPCR) and Western blotting (WB) showed that MDRI,
mTOR, HIF-10, and multi-drug resistance-associated protein 1
(MRP1) expression were all increased when IncPVT1 expression
increased. The expression of these MDR-related genes promotes
the expression of P-glycoprotein (P-gp). P-gp transports
chemotherapeutic drugs out of the cell and helps the cell
develop resistance to these drugs (73). Hence, IncPVT1 could
be an effective target for reversing MDR in gastric cancer (30).
Kanglaite (KLT) is a Chinese herbal formulation with antitumor
effects (74), which is often combined with chemotherapy drugs
to reduce the side effects of chemotherapy and increase
chemosensitivity (75). Researchers found that KLT inhibited
the expression of IncPVTI, reducing the expression of MDRI
and MRP1 in cisplatin-resistant gastric cancer cell lines (31).

Recently, the mechanism by which IncPVT1 regulates
chemoresistance in gastric cancer has been further elaborated.
Wu et al. found that IncPVT1 competes with miR-3619-5p to
regulate the downstream target transducin beta-like 1 X-linked
receptor 1 (TBL1XR1), regulating the sensitivity of gastric cancer
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cells to cisplatin (32). Moreover, 5-FU is also one of the main
chemotherapeutic drugs for gastric cancer (76), so
chemoresistance to 5-FU in gastric cancer deserves more
attention. Du et al. found that IncPVTT1 silencing could inhibit
the expression of the anti-apoptotic protein Bcl-2, promoting
apoptosis and inducing 5-FU resistance in gastric cancer cells
(33). Therefore, IncPVT1 might play an important role in
regulating cisplatin resistance in gastric cancer cells.

Ovarian cancer

Ovarian cancer is the deadliest gynecological cancer and is a
serious threat to women’s health worldwide. Approximately 70%
of patients with this disease are already at an advanced stage
upon diagnosis. Platinum-based chemotherapy and
cytoreductive operations are standard treatments for ovarian
cancer (77). Similarly, the clinical emergence of chemoresistance
also poses great challenges for the survival of patients with this
disease. Therefore, determining the target of chemoresistance in
ovarian cancer is urgently needed.

LncPVT1 plays an oncogene role in ovarian cancer and
promotes the proliferation and invasion of ovarian cancer cell
(78, 79). Researchers found that IncPVT1 expression levels were
significantly elevated in cisplatin-resistant ovarian cancer tissues
(80). Liu et al. silenced IncPVT1 expression in cisplatin-resistant
ovarian cancer cell lines and measured their cell viability and
apoptosis rate after treatment with cisplatin. The results showed
that the cell viability was significantly decreased and the
apoptosis rate of tumor cells was significantly higher in
downregulation of the IncPVT1 group than that of the control
group after treatment with cisplatin. They also overexpressed
IncPVT1 in cisplatin-sensitive ovarian cancer cell lines, which
were then treated with cisplatin. Compared to the control group,
cell viability in these IncPVTI-overexpressing cell lines was
significantly increased, and the apoptosis rate was significantly
reduced. RT-qPCR and WB results showed that the mRNA
levels and protein expression of apoptosis-related genes TGF-B1,
p-Smad4, and caspase-3 were significantly increased with a
decrease in IncPVT1 expression level. Hence, IncPVT1
overexpression induces cisplatin resistance in ovarian cancer
cells by inhibiting the apoptotic pathway (34).

Researchers further investigated how IncPVTI1 regulates
cisplatin resistance in ovarian cancer. Forkhead box M1
(FOXM1) has been reported to be involved in a variety of
malignant behaviors of ovarian cancer cells, including growth,
proliferation, invasion, and metastasis (72, 81). Yi et al. found
that IncPVT1 acts as a molecular sponge for miR370 to inhibit
miR370 and promote FOXM1 expression. Furthermore,
IncPVT1 directly binds to FOXMI and increases its protein
expression level. Moreover, IncPVT1 promoted cisplatin
resistance in ovarian cancer by increasing FOXM1 expression
(35). Chen et al. found that IncPVT1I silencing can inhibit the
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growth and proliferation and promote apoptosis in cisplatin-
resistant ovarian cancer cells by downregulating the JAK2/
STAT3/PD-1 signaling pathway (36). The combination of
IncPVT1-targeted therapy and PD-L1 immunotherapy is
expected to improve the efficacy in patients with cisplatin-
resistant ovarian cancer (82).

Colorectal cancer

Colorectal cancer (CRC) is the third most common cancer
worldwide. Cisplatin and 5-FU are the first-line chemotherapy
agents for colorectal cancer (83). However, MDR is the main
cause of treatment failure in patients with this disease.
Researchers have found that IncPVTI1 acts as a molecular
sponge targeting miR-16-5p, thereby promoting proliferation,
invasion, and migration of CRC cells by regulating VEGFA/
VEGFRI/AKT signaling pathway (84). Moreover, IncPVT1/
VEGFA axis promotes colon cancer metastasis and stemness
by downregulation of miR-152-3p (10). LncPVT1 has also been
found to promote proliferation, invasion, and migration of CRC
cells by regulating the miR-106b-5p/FJX1 axis (85).
Furthermore, IncPVT1 knockdown increased the apoptosis
rate of cisplatin-resistant colorectal cancer cells, whereas the
overexpression of IncPVT1 significantly enhanced the resistance
of colorectal cancer cells to cisplatin. Moreover, silencing
IncPVTI1 increased the expression levels of pro-apoptotic
proteins Bax and cleaved caspase-3 in cisplatin-resistant
colorectal cancer cells while at the same time decreasing the
expression levels of MDR1, MRP1, and the anti-apoptotic
protein Bcl-2. We concluded that IncPVT1 regulates the
sensitivity of colorectal cancer cells to cisplatin through the
apoptotic pathway (37).

In addition, increased IncPVT1 expression promoted
colorectal cancer cell tolerance to 5-FU. RT-qPCR and WB
showed that IncPVT1 upregulated the expression levels of
MRP1, mTOR, P-gp, and Bcl-2 (38). Therefore, IncPVT1 is an
effective target for treating chemoresistance in colorectal cancer.

Bladder cancer

Bladder cancer is a fatal malignancy of the urinary system
that mainly affects men over 65 years of age. Surgical treatment,
radiotherapy, chemotherapy, immunotherapy, and bladder
perfusion therapy are used for patients with different stages of
bladder cancer (86). As an oncogene of bladder cancer cells,
IncPVT1 acts as a ceRNA targeting miR-194-5p to regulate the
expression level of BCLAFI, thereby promoting the
proliferation, migration, and anti-apoptosis of bladder cancer
cells (87). A previous study showed that IncPVT1 promotes
growth, migration, and invasion of bladder cancer by miR-31/
CDK1 (88).
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Researchers found a significant increase in IncPVTI
expression in bladder cancer cells resistant to doxorubicin
(DOX) and cisplatin (DDP). Moreover, IncPVT1 silencing not
only attenuated the growth, proliferation, and other malignant
behaviors of drug-resistant bladder cancer cell lines but also
increased their cell apoptosis rate and sensitivity to DOX and
DDP. WB results showed that the expression levels of the drug-
resistant related proteins MDR1 and MRP1 decreased with a
decrease in IncPVT1 expression. Further studies on the
regulatory mechanism of IncPVT1 revealed that IncPVTI
regulates the expression levels of drug-resistant related
proteins MDR1 and MRP1 through positive regulation of the
Wnt/f-catenin pathway, thus affecting the sensitivity of bladder
cancer cells to DOX and DDP (39). In another study, Jiang et al.
found that increased IncPVTI1 expression promoted mouse
double minute 2 (MDM2) and MDM2-mediated aurora kinase
B (AURKB) expression. Subsequently, p53 ubiquitination is
enhanced, increasing resistance to doxorubicin (ADM) in
bladder cancer cells (40).

Lung cancer

Lung cancer is the leading cause of cancer-related deaths
worldwide, and smoking remains a major risk factor for this
disease. Platinum-based chemotherapy is one of the main
treatments for inoperable lung cancer (89); however,
chemoresistance limits the application of platinum-based
drugs in patients with lung cancer patients, increasing their
mortality (90). Therefore, there is a need to study the mechanism
of cisplatin tolerance in lung cancer and identify an effective
target to solve this clinical problem.

LncPVTT1 is highly expressed in non-small cell lung cancer
(NSCLC) and is associated with poor prognosis (91). Wang et al.
found that IncPVT1 facilitates the proliferation, migration, and
invasion of NSCLC cells by indirectly mediating FGFR1 via
targeting miR-551b (92). In another study, IncPVT1 activates
the Wnt/B-catenin signaling pathway by miR-361-3p/SOX9
axis, thereby promoting the proliferation, migration, invasion,
and anti-apoptosis of NSCLC cells (93). A previous study
showed that IncPVT1 promotes angiogenesis by regulating the
miR-29¢/VEGF signaling axis in NSCLC (94). Beclin-1 is a
biomarker for autophagy that has been reported to be involved
in the malignant biological behavior of lung cancer cells (95).
Chen et al. found that IncPVTI sponges miR216b to inhibit
Beclin-1 expression and induce cisplatin tolerance in NSCLC
cells by regulating apoptosis and autophagy (41). Further studies
have found that HIF-1o and other related pathways are activated
to induce IncPVT1 expression under hypoxic conditions. The
induction of IncPVT1 expression increases the expression level
of ATG5 through competitive binding with miR140-3p and
reduces the sensitivity of lung cancer cells to cisplatin by
influencing the autophagy pathway (42). These studies indicate
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that IncPVTT1 is expected to become a new target to solve the
problem of chemoresistance in lung cancer and improve the
efficacy of treatment for this disease.

Breast Cancer

Breast cancer has replaced lung cancer as the most common
malignant tumor worldwide. Triple-negative breast cancer
(TNBC) is a subtype of breast cancer with negative estrogen
receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER-2) expression. It is
characterized by its invasiveness, aggressive metastasis, and
recurrence (96). Chemotherapy is the standard treatment for
TNBC; unfortunately, chemoresistance is a major obstacle in
treating patients with breast cancer.

LncPVT1 promotes breast cancer cell proliferation,
migration, invasion, and anti-apoptosis via regulating miR-
543/TRPS1 axis (97). In TNBC cells cultured with mature
adipogenic medium (MAM), IncPVTI facilitates EMT, cell
proliferation, and cell migration by regulating p21 expression
(98). A recent study showed that IncPVTI promotes cell
migration and invasion by regulating miR-148a-3p/ROCK1
axis in breast cancer (99). The Keapl/Nrf2/ARE pathway is an
important antioxidant stress signaling pathway in the body,
which has been observed to regulate drug resistance in tumor
cells (100, 101). Using bioinformatics analysis, Luo et al.
concluded that IncPVT1 could interact with Keapl. They then
conducted experiments to verify that IncPVT1 blocked the
Keapl-mediated degradation of Nrf2 through competitive
binding with Keapl. In turn, this binding increased the
expression of Nrf2 and increased the expression of
downstream drug-resistance-related molecules. Moreover,
IncPVT1 increased adriamycin resistance in TNBC through
this mechanism (43).

Osteosarcoma

Osteosarcoma (OS) is a malignant tumor that usually occurs
in children and adolescents. Patients with this disease often
develop lung metastases. Surgical treatment, chemotherapy, and
radiotherapy are the main therapeutic methods for OS (102,
103). In recent years, there have been breakthroughs in the
application of immunotherapy in patients with OS (104).
Chemotherapy treatments for OS often involve multi-drug
combination therapy, usually including adriamycin, cisplatin,
bleomycin, cyclophosphamide, and gemcitabine, among other
drugs. Chemoresistance often leads to recurrence and metastasis
in patients with osteosarcoma.

LncPVT1 plays a carcinogenic role in OS, promoting OS cell
glucose metabolism, growth, proliferation, and invasion through
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regulating miR-497/HK2 axis (105). In a previous study,
exosomes secreted by bone marrow mesenchymal stem cells
(BMSCs) transfer IncPVT1 into osteosarcoma cells; the
upregulation of IncPVT1 can promote ERG expression by
inhibiting ERG ubiquitination and sponging miR-183-5p.
LncPVTI1 promotes the growth and metastasis of OS by
regulating ERG expression (106). Moreover, IncPVT1 plays a
potential role in regulating CSCs in OS (107). LncPVT1 is a
ceRNA of miR-152. It activates the c-MET/PI3K/AKT pathway
to enhance the resistance of OS cells to gemcitabine (44).
Moreover, ¢-MET is a hepatocyte growth factor (HGF)
receptor that has been reported to promote the progression of
various cancers (108). The inhibition of c-MET has been shown
to enhance the sensitivity of OS cells to cisplatin by inhibiting
the PI3K/AKT pathway (109).

Glioma

Glioma is the most common primary malignant brain
tumor in adults. The treatment for this disease includes a
combination of surgery, radiotherapy, and chemotherapy. Due
to the blood-brain barrier and tumor heterogeneity, gliomas
have strong drug resistance, leading to a high degree of
malignancy and poor prognosis (110); hence, understanding
the mechanisms of drug resistance in glioma is expected to
improve patient prognosis.

LncPVT1 is highly expressed in gliomas, indicating poor
prognosis. In addition, IncPVT1 can promote angiogenesis by
regulating miR-1207-3p/hepatocyte nuclear factor 1 (HNF1B)/
EMT axis in glioma (111). In another study, IncPVT1 influence
bone morphogenetic protein (BMP) signaling pathway by
regulating miR-128-3p/GREMI1 axis, thereby promoting
glioma cell proliferation, invasion, migration, and anti-
apoptosis (112). A recent study showed that tumor suppressor
gene p53 inhibits glioma cell proliferation, migration, and
invasion while inducing apoptosis by blocking IncPVT1/TGEF-
B/Smad signaling pathway (113). Researchers knocked down
IncPVT1 expression levels in SHG-44 glioma cells, added
different concentrations of paclitaxel, and then measured their
apoptosis rate. The results showed that the apoptosis rate of
glioma cells was significantly higher in the IncPVT1-silenced
group compared to the control group. These results suggest that
decreased IncPVT1 expression increases the sensitivity of glioma
cells to paclitaxel (45). Further research found that IncPVT1 acts
as ceRNA to target miR-365 and positively regulate the
expression level of E74-like ETS transcription factor 4 (ELF4).
ELF4 has been reported to be highly expressed in glioma and can
upregulate SOX2 expression to promote stemness (114). In
conclusion, IncPVT1 facilitates stemness and TMZ resistance
through regulating miR-365/ELF4/SOX2 signal axis in
glioma (46).
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Cervical Cancer

Cervical cancer is the fourth most common cancer in women
worldwide. Human papillomavirus (HPV) infection has been
confirmed to be closely related to the occurrence and
development of cervical cancer. HPV 16, 18, 31, and 45 are the
main causes of cervical cancer (115). Chemotherapy is the main
treatment for advanced and recurrent cervical cancer, and
platinum-based chemotherapy, such as cisplatin combined
with paclitaxel, is often used. However, the emergence of
chemoresistance significantly reduces the efficacy of this
regimen in patients with cervical cancer.

It was observed that serum IncPVT1 levels in cervical cancer
patients is generally elevated and correlated with cervical cancer
tumor size, lymph node metastasis, and clinical stage. This
suggests that IncPVT1 may be a novel serum biomarker for
early diagnosis of cervical cancer (116). LncPVTI acts as a
ceRNA or sponge of miR-424 to promote the proliferation,
migration, and invasion of cervical cancer cells (117). In
addition, IncPVT1 has been found to regulate the sensitivity of
cervical cancer cells to paclitaxel. Specifically, IncPVT1 directly
and competitively binds to miR-195 and recruits EZH2 to
induce histone H3 lysine 27 trimethylation (H3K27me3) in
the miR-195 promoter region, thereby inhibiting the
expression of miR-195. Downregulation of miR-195 promotes
EMT in cervical cancer cells, thereby enhancing their
chemoresistance to paclitaxel (47).

PVT1 and Radioresistance
Nasopharyngeal Cancer

Nasopharyngeal carcinoma (NPC) is a malignant tumor
originating from the epithelial cells of the nasopharynx. This
disease often occurs in southern China, with a significant
regional concentration and ethnic susceptibility (118).
Although the incidence of NPC is not high, NPC cells easily
invade other tissues and metastasize, showing a strong degree of
malignancy. NPC is closely related to Epstein-Barr virus
infections (119). Radiotherapy has been established as the
cornerstone of NPC treatment since 1965. However, in recent
years, the development of intensity-modulated radiotherapy
(IMRT) and proton radiotherapy (PRT) has brought
significant survival benefits to patients with NPC (120).
However, 10%-20% of NPC patients develop recurrence after
radiotherapy due to radioresistance (121). Therefore, it is
important to explore the molecular mechanism underlying
radioresistance in NPC and search for new clues for
radiotherapy sensitization in this disease (122).

In NPC, IncPVT1 has been found to promote cell
proliferation and induce stemness by targeting miR-1207
(123). It was previously reported that the expression level of
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IncPVT1 was significantly upregulated in a radiation-induced
mouse model, wherein RT-qPCR analysis showed that the
expression level of IncPVT1 was significantly increased in the
irradiated mice (124). Yi He et al. found that IncPVT1 silencing
led to a decrease in phosphorylation of ATM/Chk2/p53
signaling pathway in NPC cells, which further led to the
inhibition of the ATM-mediated homologous recombination
(HR) repair pathway. Hence, more cells became apoptotic due
to DNA damage that cannot be repaired in time (125).
Meanwhile, decreased IncPVT1 expression levels after
radiotherapy activated caspase, which is a core pro-apoptotic
caspase, resulting in a cascade reaction that successively activates
caspase-9, caspase-7, and PARP. PARP is believed to be the
receptor for DNA damage and the cleavage substrate of caspase-
7. Apoptosis is induced when activated caspase-7 binds to PARP
(126). Moreover, the presence of IncPVT1 and MYC on the same
chromosome band forms a positive feedback loop to promote
tumor progression synergistically (3). In conclusion, IncPVT1
can promote DNA repair by phosphorylation of ATM/Chk2/
p53 signaling pathway in NPC cells. LncPVTI can also
significantly inhibit apoptosis by blocking caspase-9/caspase-7/
PARP axis, thereby leading to radioresistance (50).

Hypoxia induces radioresistance in tumor cells. HIF-1a. is a
major regulator of the hypoxia response and can be stably
expressed under hypoxic conditions (127). Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis showed that IncPVT1
was associated with the hypoxic phenotype. Because tumor
hypoxia is common in NPC and it is associated with disease
progression and resistance to therapy, Hong et al. suggested that
targeting tumor hypoxia could be an effective approach for NPC
treatment (128). Further studies revealed that IncPVT1 acts as a
molecular scaffold for KAT2A and WDR5, coordinating their
localization, and enabling KAT2A to acetylate H3K9 effectively.
Acetylated H3K9 then recruits TIF1f to bind to chromatin,
forming an H3K9ac/TIF1P complex that induces the
transcription of NF90 and stabilizes HIF-1o. expression (51).
LncPVTI1 induces radioresistance in NPC by activating the
above-mentioned pathways and generating a hypoxic
tumor microenvironment.

In addition, Han et al. found that IncPVT1 silencing
inhibited cell proliferation, promoted cell apoptosis, and
increased radiosensitivity in NPC cells. Moreover, IncPVT1
binds to miR-515-5p and negatively regulates its expression.
An increase in IncPVT1 expression can reverse the inhibitory
effect of miR-515-5p overexpression on the growth and
proliferation of cancer cells and the promotive effect of miR-
515-5p on the apoptosis and radiosensitivity of cancer cells.
Meanwhile, miR-515-5p overexpression also reversed the
inhibition of cyclin D1 expression and the elevation of Bax
and cleaved caspase-3 levels. Further studies have shown that
PIK3CA promotes growth and proliferation, inhibits apoptosis,
and increases the radioresistance of NPC cells, whereas the
overexpression of miR-515-5p reversed these effects. Moreover,
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miR-515-5p inhibition reversed the inhibitory effect of IncPVT1
silencing on the expression levels of PIK3CA and p-AKT. It has
previously been reported that the p-AKT pathway is involved in
regulating radioresistance in various cancers, and that PIK3CA
can activate this pathway (129, 130). In conclusion, increased
IncPVT1 expression activates the P-AKT pathway through the
miR-515-5p/PIK3CA axis, thereby promoting cell proliferation,
inhibiting apoptosis, and inducing radioresistance (52).

Lung cancer

Patients with lung cancer typically receive a combination of
treatments, but radiotherapy is the only treatment used for all
types and stages of lung cancer. According to evidence-based
models, 77% of patients with lung cancer are eligible for
radiotherapy (131). With advancements in technology,
radiotherapy has effectively improved treatment efficacy in
patients with lung cancer while reducing the incidence of
adverse reactions (132). However, radioresistance in lung
cancer usually leads to recurrence and metastasis, which
significantly reduces patient survival. Therefore, there is an
urgent need to identify new targets for lung cancer
radiotherapy sensitization to improve patient prognosis (133).

It has been reported that reduced IncPVT1 expression
significantly inhibits the growth and proliferation of NSCLC
cells. The apoptosis rate of NSCLC cells treated with a certain
radiation dose was determined. The results showed that the
apoptosis rate of the IncPVT1-silenced group was significantly
higher than that of the control group, indicating that IncPVT1
silencing enhances the radiosensitivity of NSCLC cells.
Luciferase reporter assays showed that IncPVT1 could directly
interact with miR-195 and negatively regulate its expression.
miR-195 inhibitors reversed the inhibitory effect of IncPVT1
silencing on cell proliferation and promoted apoptosis in vitro.
In addition, miR-195 inhibitors also reversed the
radiosensitization effect of IncPVT1 silencing in NSCLC cells.
In conclusion, IncPVT1 acts as a molecular sponge of miR-195
in NSCLC, and the decreased expression level of IncPVTI1
inhibits cell proliferation and promotes cell apoptosis, thus
increasing the radiosensitivity of NSCLC cells (53).

Other related studies have shown that coactivator-associated
arginine methyltransferase 1 (CARMI1) can co-activate
transcriptional regulation with PRMT1 and is overexpressed in
NSCLC (134). CARMI has been reported to be involved in
regulating radiosensitivity in cervical cancer cells and colorectal
cancer cells (135, 136). Wang et al. found that IncPVTI, as a
ceRNA of miR-424-5p, promoted the expression of CARMI.
The decrease in IncPVT1 levels or the increase in miR-424-5p
levels inhibited the growth, proliferation, invasion, metastasis,
and other malignant behaviors of NSCLC cells, promoted the
apoptosis of NSCLC cells, and upregulated their radiosensitivity.
RT-qPCR and WB showed that IncPVT1 silencing or miR-424-
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5p overexpression regulated the expression levels of MMP-2,
MMP-9, Bcl-2, and Bax, which are related to tumor progression
and apoptosis. Therefore, IncPVTI, as a ceRNA of miR-424-5p,
regulates the radiosensitivity of NSCLC by regulating
CARM1 (54).

LncPVT1 and Resistance to
other drugs

Head and neck squamous cell carcinoma (HNSCC) is the
most common type of head and neck cancer and originates from
the mucosal surface of the head and neck. Alcohol, tobacco, and
HPV infection are risk factors for the induction of squamous cell
carcinoma of the head and neck (137). EGFR is also usually
highly expressed in HNSCC and is involved in regulating tumor
occurrence and progression. Therefore, EGFR-targeted therapies
are becoming increasingly popular for this disease. Cetuximab, a
monoclonal antibody targeting EGFR, is often used in
combination with radiotherapy to treat locally advanced
HNSCC and has achieved good efficacy (138). LncPVT1
promotes laryngeal squamous cell carcinoma cell proliferation,
migration, and anti-apoptosis by acting as a molecular sponge to
regulate miR-519d-3p (139). In addition, IncPVT1 competitively
combined with miR-150-5p to regulate GLUTI, thereby
promoting the proliferation, migration, invasion, and anti-
apoptosis of oral squamous cell carcinoma (140). LncPVT1
overexpression promoted HNSCC growth, significantly
reduced the apoptosis rate of HNSCC cells treated with
cetuximab, and reduced the drug sensitivity of HNSCC cells.
As a tumor suppressor, miR-124-3p can reverse HNSCC
tolerance to cetuximab. Furthermore, IncPVT1 can promote
the resistance of HNSCC to cetuximab by inducing the
methylation of the miR-124-3p promoter and downregulating
miR-124-3p expression (48).

Prostate cancer is one of the most common malignant
tumors in men worldwide, seriously affecting their health.
Since androgens regulate the occurrence and progression of
tumors, androgen-stripping therapy, specifically castration
therapy, has become an important part of the prostate cancer
treatment regimen. The clinical use of androgen inhibitors has
significantly benefited patients with metastatic prostate cancer;
however, the use of these drugs in metastatic castration-resistant
prostate cancer (mCRPC), which occurs in some patients,
remains a challenge (141). LncPVT1 could be used as a
prognostic factor in patients with prostate cancer, representing
poor survival (142). In prostate cancer, IncPVT1 has been found
to promote EMT by regulating miR-186/Twistl (143). LncPVT1
competitively binds to miR-15b-5p, miR-143-3p, miR-27a-3p,
and miR-627-5p, then promotes prostate cancer invasion and
metastasis by upregulating NOP2 (144). In another study,
IncPVT1 promoted the viability of prostate cancer cells and
inhibited their apoptosis by targeting miR-146a (145).
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Abiraterone is a second-generation androgen inhibitor used
clinically for prostate cancer treatment. Abiraterone was used
to treat IncPVT1-overexpressing prostate cancer cell lines and
untreated pancreatic cancer cell lines in vitro. It was shown that
IncPVT1 overexpression retained higher cell viability than the
control group, suggesting that IncPVT1 induces castration
resistance in prostate cancer cells (49).

Conclusion

Cancer treatment should be diversified to improve the
survival of patients with various malignancies. As two
powerful tools of cancer treatment, chemotherapy and
radiotherapy have been shown to improve the survival of
patients with cancer, which is of great significance (20, 146).
However, the consequent chemoresistance and radioresistance
have become the main obstacles to maintain the efficacies of
these treatments. Hence, there is an urgent need to find new
targets to overcome this barrier. The physiological mechanisms
involved in the regulatory activities of IncPVT1 have many
similarities with those involved in chemoresistance and
radioresistance, including DNA damage repair, apoptosis,
autophagy, EMT, stem cells, and hypoxia (Figure 3). This has
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led to extensive research on the relationship between IncPVT1,
chemoresistance, and radioresistance (147, 148).

In recent years, several preclinical studies have explored the
mechanisms underlying IncPVT1-induced chemoresistance and
radioresistance in malignant tumor models (Figures 4, 5). Among
them, IncPVT1 can act as a molecular sponge of ceRNAs to inhibit
miRNA expression, as a skeleton to bind proteins to specific
targeted sequences, or bind proteins to form specific modules. In
addition, IncPVT1 can encode miR-1204, miR-1205, miR-1206,
miR-1207-5p, miR-1207-3p, and miR-1208 (149). Subsequently,
downstream apoptosis and DNA damage repair pathways can be
regulated to induce chemoresistance and radioresistance in cancer.
Previous reviews have shown that IncPVTI regulated various
signaling pathways through miRNAs to influence cancer
progression and chemoresistance (150). However, the types of
miRNAs involved in the current study were limited. The
interaction between IncPVT1 and other miRNAs needs to be
revealed in a more comprehensive study of mechanisms related
to chemoresistance and radioresistance. Many studies have only
identified phenotypes in which IncPVT1 regulates chemoresistance
or radioresistance in certain cancer cells, but a detailed analysis of
the underlying regulatory mechanisms still needs to be performed.
Hence, further research is required to address these gaps. Most
therapeutic agents involved in the studies regarding IncPVT1 and
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FIGURE 3

LncPVT1 regulates chemoresistance and radioresistance through autophagy, apoptosis, EMT, CSC, DNA damage repair, hypoxia, and other mechanisms.
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Molecular mechanisms underlying the IncPVT1-induced regulation of cancer chemoresistance.

chemoresistance are first-line treatments. Second- or third-line
therapies are also commonly used in clinical oncology; therefore,
it is necessary to investigate the effect of IncPVT1 expression on the
efficacy of these therapeutic agents (151). So far, compared with
chemoresistance, there have been few studies associating IncPVT1
and radioresistance, and the types of tumors involved are relatively
few. Therefore, further research is needed on IncPVTI1 and
radiotherapy resistance.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
as a new human coronavirus, has caused the coronavirus disease

Nasopharyngeal Carcinoma

FIGURE 5

2019 (COVID-19) pandemic, bringing significant harm and
challenges to all parts of the world (152). In recent years, research
on the link between COVID-19 and cancer has also increased.
Patients with cancer, especially hematological malignancies, are at
higher risk for breakthrough infections and severe consequences. The
COVID-19 mRNA vaccine significantly reduces the risk of
breakthrough infection in cancer patients (153). In addition,
IncPVT1 has been reported to be involved in regulating SARS-
CoV-2 infection (154). Therefore, the potential roles of IncPVT1 in
cancer patients with COVID-19 is expected to be further investigated.
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In conclusion, targeting IncPVT1 has broad therapeutic
prospects in oncology. LncPVT1 inhibitors are expected to be
developed in the future, which can be used in combination with
radiotherapy and chemotherapy to reduce the incidence of
chemoresistance and radioresistance and further improve the
efficacy of these treatments in patients with malignancies. The
detailed molecular mechanisms underlying the IncPVTI1-
induced regulation of chemoresistance and radioresistance
require further study.
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Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell
lining the mucosal surfaces of the head and neck region, including the oral cavity,
nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity,
anatomical, and functional characteristics of the patient make the HNSCC a
complex and difficult-to-treat disease, leading to a poor survival rate and a
decreased quality of life due to the loss of important physiologic functions and
aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing
INcRNAs has recently been recently in HNSCC to obtain possible biomarkers for
diagnostic, prognostic, and therapeutic approaches. This review provides current
knowledge about the implication of IncCRNAs in drug resistance mechanisms in
HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in
which IncRNAs are implicated. Lately, it has been shown that IncRNAs involved
in autophagy induced by chemotherapy and epithelial-mesenchymal transition
(EMT) can act as mechanisms of resistance to anticancer drugs. Conversely,
IncRNAs involved in mesenchymal-epithelial transition (MET) are related to
chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this
regard, long non-coding RNAs (IncRNAs) play a pivotal role in both processes
and are important for cancer detection, progression, diagnosis, therapy response,
and prognostic values. As the involvement of more IncRNAs is elucidated in
chemoresistance mechanisms, an improvement in diagnostic and prognostic
tools could promote an advance in targeted and specific therapies in
precision oncology.
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Introduction

Cancer is a group of multifactorial diseases with an estimated
9.9 million deaths globally in 2020 (1). HNSCC is the sixth most
common cancer in the world, accounting for more than 850,000
cases and 400,000 deaths every year (1). HNSCC originates in the
squamous cell lining the mucosal surfaces of the head and neck
region, involving the oral cavity, nasopharynx, tonsils,
oropharynx, larynx, and hypopharynx (2, 3). The main risk
factors related to them are smoking, alcohol consumption, betel
nuts, smokeless tobacco, and viral infections, including Epstein-
Barr and human papillomavirus (4). Nowadays, the treatment for
advanced HNSCC includes chemotherapeutic agents,
radiotherapy, and surgical resection, leading to mutilation of
essential tissues that affect functions such as breathing, feeding,
and speaking, thus decreasing the quality of life of patients (5).
The heterogeneous nature of HNSCC leads to a poor 5-year
overall survival rate due to its local invasion, chemoresistance,
metastasis, and late diagnosis (2, 6).

Chemotherapy has been widely used in recent decades for
cancer treatment. The combination of platinum-based 5-
fluorouracil (5-FU) and DNA synthesis inhibitor cisplatin
(CDDP) is still the main regimen for HNSCC (5). However,
combinations like paclitaxel (PTX), carboplatin (CDBCA), and
cetuximab have been proposed, with unpredictable results (7, 8).
Recently, immune checkpoint blockade (ICB) treatment is gaining
importance as an immunologic approach for cancer control.
HNSCC has a high tumor mutational burden and a relatively
high expression of programmed cell death-1-ligand 1 (PD-L1),
making it eligible for ICB (9, 10). Nevertheless, drug resistance (DR)
is still a key factor for HNSCC progression and poor prognosis (11).
The detailed mechanisms of DR are not fully understood, but recent
studies suggest that autophagy (12-14), epithelial-mesenchymal
transition (EMT) (13, 15, 16), and cancer cell stemness (17-19) play
a pivotal role in this major problem. Other mechanisms implied in
DR are inactivation of the drug, multi-drug resistance, apoptosis
suppression, alterations in the drug metabolism, epigenetic changes,
changes in the drug targets, enhanced DNA-repair, and target gene
amplification (20). Besides, there are also biological determinants of
drug resistance such as tumor heterogeneity, physical barriers,
immune system and tumor microenvironment, undruggable
cancer drivers, and selective therapeutic pressure that induces

Frontiers in Oncology

122

changes in the tumor and its ecosystem, modifying the response
of the cells to different drugs (21).

Recent studies indicate that non-coding RNAs (ncRNAs)
comprise 98% of the total transcribed RNAs in the human
genome, and although at first they were classified as “junk”
transcriptional products, nowadays they play crucial roles in
many biological processes modulating gene expression (22, 23).
ncRNAs dysregulation contributes to an increasing number of
human diseases, including cancer (2). Long non-coding RNAs
(IncRNAs) are a class of functional RNA composed of at least 200
nucleotides (24). LncRNAs have a high transcriptional rate as they
are involved in gene regulation at the transcriptional level in the
nucleus and posttranscriptional level in the cytoplasm (25, 26).
Moreover, IncRNAs are implicated in various cancer progression
mechanisms, including proliferation, differentiation, autophagy,
EMT, invasion, and metastasis (27-29). Increasing evidence
suggests that IncRNAs are implicated in DR in different types of
cancer, including HNSCC (30-33). In this regard, this review
provides current knowledge about IncRNAs and their implication
in DR through known processes in HNSCC, emphasizing in
autophagy, EMT, and cancer cell stemness mechanisms. A
systematic search was performed in PubMed, Web of Science,
Google Scholar, Cochrane Library, and Embase from 2017 to
May 2022 for articles matching the following criteria: (long non-
coding RNA (IncRNA) and (head and neck squamous cell
carcinoma (HNSCC), or oral cancer, or oral squamous cell
carcinoma (OSCC), or buccal cancer, or lip cancer or tongue
cancer (TSCC) or pharyngeal carcinoma, or nasopharyngeal
carcinoma (NPC) or laryngeal squamous cell carcinoma (LSCC)),
and (chemoresistance or drug resistance or cisplatin resistance or
CDDP resistance), and (autophagy or epithelial-mesenchymal
transition or EMT or stemness or cancer stem cells (CSCs)). The
titles and abstracts were screened and acquired relevant full-text
manuscripts were for further analysis.

Long non-coding RNAS

Biogenesis, classification,
and function

Approximately 93% of the human genome can be transcribed
into RNAs, but only 2% of these transcripts are translated into
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proteins; the remaining 98% are ncRNAs (24). LncRNAs, also
referred to as competing endogenous RNAs (ceRNAs) (34),
include different kinds of RNA polymerase II (Pol II)-
transcribed molecules, mostly 5’-capped, polyadenylated, and
spliced (35), and studies suggest there could be more than
10,000 IncRNA transcripts in humans (36, 37). LncRNAs are
engaged in multiple functions, including the modulation of crucial
functions of other ncRNAs such as micro-RNAs (miRNAs), small
nucleolar RNAs (snoRNAs), etc. (38).

Advances in RNA sequencing and other techniques have
allowed the discovery of an increasing number of IncRNA classes
based on diverse parameters such as transcript length, mRNA
resemblance, biogenesis, and unique regulatory mechanisms,
among others (39, 40). According to Schmitz et al., one of the
most used categorizations is related to the position of the
IncRNAs in the genome relative to protein-coding genes
(Figure 1) (35). The IncRNA can be divergent (pancRNA)
when the IncRNA and neighboring protein-coding gene are
transcribed in opposite strands (41), convergent when the
IncRNA and protein-coding gene neighbor are transcribed to
the same point (42), intergenic when a IncRNA sequence

2 MOQVQDLISTRIDVOK oiergn e
b MODDITRIDVUON convrsert

10.3389/fonc.2022.965628

belongs to two genes as a distinct unit (43), overlapping when
a protein-coding gene is included in the intron of the same
IncRNA in sense or antisense orientation (44), enhancer RNAs
expressed as uni- or bidirectional transcripts (45), intronic when
the sequence of the IncRNA belongs to the intron of a protein-
coding gene (46). Some IncRNAs are generated by back splicing
from introns of mRNAs or other IncRNAs and are thus circular
(circRNAs) (47).

An increasing number of IncRNAs have been associated with
both important biological functions and pathological conditions
such as diabetes, neurodegenerative diseases, rheumatoid
arthritis, cardiovascular diseases, and cancer (48-50). Dahariya
et al. suggest that activation and inhibition of gene expression are
promoted by IncRNAs through diverse molecular mechanisms
comprising of four basic mechanisms: signal, decoy, guide, and
scaffold. In this regard, recent evidence suggests that signaling
mediators like kinases, receptors, and transcription factors are
strongly associated with IncRNAs via numerous signaling
pathways, such as PI3K/AKT/mechanistic target of rapamycin
(mTOR), Wnt, and the MAPK signaling pathways (51-53). On
the other hand, decoy IncRNAs can diminish the availability of

sl NON-coding gene
ﬁ protein-coding gene
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FIGURE 1

LncRNAs classification based on their structural origin. According to Schmitz et al. (35), IncRNAs can be classified in (A) divergently transcribed

IncRNA originating from the same promoter region as the adjacent protein-

coding gene, but from the opposite strand; (B) genes encoded on

opposite strands, facing each other and convergently transcribed; (C) intergenic IncRNA (lincRNA) located distant from other genes; (D) IncCRNAs
overlapping with other genes on the same or opposite strand; (E) enhancer RNAs expressed as uni- or bidirectional transcripts; (F) IncRNA

transcribed from an intron of another gene; (G) INcRNA hosting miRNA.
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regulatory factors by presenting binding sites (54). For instance,
Zhang et al. (55) demonstrated that LINC00160 functions as a
decoy of miRNA-132 targeting PIK3R3 to mediate DR in
hepatocellular carcinoma, whereas IncRNA GAS5 can also act
as a molecular sponge that blocks their downstream functions by
targeting RNA or proteins (56). Besides, IncRNAs can interact
with ribonucleoproteins (RNPs) in the genome to guide their
precise localization, such as HOTAIR, which directs PRC2 to the
HOXD locus, leading to silencing genes involved in metastasis
suppression (54, 57). Also, CASC9 acts as a guide for EZH2 and
CREB-binding protein (CBP) to the promoter regions of target
genes (58). In the case of scaffold IncRNAs, they can act as the
central platform for assembling complexes, for example, by
binding to RNP K and EZH2 to induce the formation of a
complex to repress SOX2 (51, 54, 59). Overall, the diverse
functions of IncRNAs depend on their subcellular location
(60). Genome sequencing has shown that a large proportion of
IncRNAs are localized in the nucleus or associated with
chromatin, whereas the remaining fraction is localized in the
cytoplasm (61).
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Many studies have demonstrated the crosstalk of IncRNAs
with many epigenetic factors to regulate gene expression and
modulate nuclear structure by facilitating the architecture of
nuclear speckles, paraspeckles, and interchromatin granules (36,
62). Some IncRNAs play a role as regulators to initiate, elongate
or terminate actions of transcription factors (38). Other types of
IncRNAs act as decoys by binding to transcription factors or
proteins and deviating from protein factors in their action on
target DNA (37). They also act as sponges or molecular sinks for
miRNAs, mediating changes in gene expression by acting on
transcription factors, cell receptors, growth factors, and splicing
regulators (63). The main functions of IncRNAs are depicted
in Figure 2.

Role of IncRNAs in cancer

Recently, an increasing number of studies of high RNA-
sequencing have provided resources for the identification of
many IncRNAs that are dysregulated in solid tumors (65-67).

Nucleus

HOTAIR

ﬁ;% -

Heterochromatin

@ Subcellular structures

\ NEAT1
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NFAT

/ NRON

o

Spliceosome

NFAT
Transport and localization

LncRNAs can be classified based on their functions. (A) IncRNA can guide chromatin complexes controlling between transcriptionally active
euchromatin and silent heterochromatin; (B) the recruitment of polymerase Il and transcription factors can be inhibited or facilitated by
IncRNAs; (C) IncRNAs contribute to transcriptome complexity by regulating alternative splicing of pre-mRNAs; (D) IncRNAs affect the stability
and translation of mMRNA by base pairing with mRNA molecules; (E) they influence in the expression of miRNAs by binding to them and
preventing their function; (F) IncRNAs can act as siRNAs and target other RNAs, which subsequently could result in target degradation;

(G) IncRNAs can join multiple protein factors as flexible scaffolds to interact or cooperate on protein-protein interactions; (H), (1) the scaffold
function is also important for protein activity and localization as well as subcellular structures. Adapted from Meng et al. (64).
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LncRNAs are often found as regulators in tumorigenesis,
progression, and metastasis of cancer by modulating signaling
cascades at the epigenetic, transcriptional, posttranscriptional,
translational, or posttranslational levels (65). Cancer-controlling
IncRNAs are categorized as proto-oncogenic or tumor
suppressors based on their function, being the tumorigenic
IncRNAs expressed in tumors as cancer drivers that activate
the cell cycle, promote proliferation, and/or exert anti-apoptosis
effects (65, 68). Moreover, cancer-progressing IncRNAs have
been related to EMT, cell migration, and cell invasion (65, 68).
Approximately 100 IncRNAs have been identified recently as
regulators of the development and progression of multiple
cancer types, including prostate (69-72), breast (73-75), lung
(76-79), colorectal (80-82), liver (83-85), and leukemia (86-88),
among others.

On the other hand, many IncRNAs have been documented
as tumor suppressors and they are generally downregulated in
tumor biopsies compared with their normal counterparts (65).
When these tumor-suppressing IncRNAs are downregulated or
suppressed, they can lead to increased proliferation and tumor
growth (65). Although many tumor-suppressing IncRNAs are
under investigation, the most documented are the growth arrest-
specific transcript 5 (GAS5) (89), the maternally expressed gene
3 (MEG3) (90), and the NF-kB interacting IncRNA
(NKILA) (91).

LncRNAs in HNSCC

HNSCC comprises a group of cancers that originate in the
squamous-cell layer of the mucosa lining in the head and neck
region. The heterogeneity, anatomical, and functional features
make the HNSCC a complex and difficult-to-treat disease,
leading patients to a poor survival rate and a decreased life
quality due to the loss of important physiologic functions and
aggressive surgical mutilation (2, 24, 25). Alteration of driver-
oncogenic and tumor-suppressing IncRNAs has been recently
studied in HNSCC to obtain possible biomarkers for diagnostic,
prognostic, and therapeutic approaches (2, 24, 25). Table 1
summarizes oncogenic and tumor suppressor IncRNAs
commonly found in HNSCC.

Several IncRNAs have been assessed for their involvement at
different stages in HNSCC. The metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) is localized in the
nuclear speckle periphery and it is widely studied in cancer
development and progression (136). This IncRNA has been
strongly associated with squamous cell carcinomas (SCC),
including oral SCC (100) and laryngeal SCC (132),
demonstrating poorer 5-year survival when highly expressed in
tumor tissues.

A novel identified homeobox All antisense IncRNA
(HOXA11-AS) has also been categorized as a facilitator in the
process of malignant tumor proliferation and metastasis (137).
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Wang et al. demonstrated the proliferation of OSCC cells when
HOXAI11-AS was upregulated, whereas its downregulation
increased apoptosis and caspase 3 activity in CDDP-resistant
OSCC cells (98). Moreover, HOXA11-AS knockdown inhibited
viability, migration, and invasion in LSCC and enhanced
cisplatin sensitivity, thus promoting cell apoptosis in NPC
tumor tissues (116, 117, 134).

In a tongue SCC study, the upregulation of the IncRNA
KCNQI opposite strand/antisense transcript 1 (KCNQ1OT1)
demonstrated a strong correlation with the survival rate,
proliferation, migration, invasion, and EMT of tongue cancer
cells (28). Another study by Zhang et al. found that KCNQ1OT1
facilitated tumor growth and chemoresistance by acting as a
modulating ceRNA of miR-211-5p (103). Also, in NPC cell lines,
the knockdown of KCNQ1OT1 promoted chemosensitivity and
decreased cell proliferation, migration, and invasion by
interfering with the miR-454/USP47 axis (118).

Some IncRNAs act as tumor suppressors when upregulated.
In this regard, MEG3 downregulation is associated with poor
survival of most cancer patients (138) since its upregulation
enables the expression of tumor suppressor genes p53 and Rb,
induces inhibition of angiogenesis-related factors, and can
sponge miRNAs (138, 139). In HNSCC, Lin et al.
demonstrated that MEG3 expression was downregulated in
NPC cells, inhibiting autophagy and apoptosis ability by acting
as a ceRNA to miR-21 (113). Another previously identified
tumor-suppressing IncRNA related to HNSCC is the nuclear
paraspeckle assembly transcript 1 (NEAT1), strongly associated
with suppressing cisplatin resistance by modulating several
signaling pathways like the Ras-MAPK and the miR-129/Bcl-2
axis in NPC cells (122, 126). Other IncRNAs identified as tumor
suppressors in HNSCC are LINC00460 (33), GAS5 (130),
MRVI1-AS1 (128), and MPRL (107). Further identification of
these transcripts remains to be elucidated.

Several efforts have been made to identify valuable prognostic
IncRNA signatures in different head and neck cancers. Jian et al.
associated eight different IncRNAs with OSCC/OPSCC
(oropharyngeal squamous cell carcinoma) prognosis, indicating a
significantly lower overall survival in the high-risk group (13).
Moreover, 493 HNSCC patients were screened for 363
prognostic-related IncRNAs, finding 17 IncRNAs related to the
progression and prognosis of HNSCC. These differentially
expressed genes (DEGs) between high- and low-risk groups are
mainly enriched in immune-related pathways and regulated by a
prognostic-IncRNA-directed ceRNA network (12). In a study by Li
et al., 501 HNSCC cases were obtained from the National Cancer
Institute GDC Data Portal and analyzed by gene set enrichment
analysis (GSEA) and gene ontology (GO) functional annotation,
proving that the autophagy-related IncRNA signature (LINC00958,
PSMA3-AS1 UBAC2-AS1, AC008115.3, AL139 9158.2,
AC136475.2, AL160006.1, AL3 57033.4, AC007991.2,
AC104083.1, A L139287.1, and AL450992.2) could be considered
to predict the prognosis of patients with HNSCC (140).
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TABLE 1 Overview of proto-oncogene and tumor-suppressor IncRNAs involved in head and neck cancers.

LNCRNA

0scC
CASC9
GALAT1
LINC01207
HOTAIR
LINC00958
PTCSC3
UCA1

HOXA11-AS
XIST
MALAT1
ANRIL
OIP5-AS1
KCNQ10T1

SNHG26
CYTOR
LHFLP3-AS1
CEBPA-DT
MPRL

PVT1

HEIH

CILA1

APCDDIL-
AS1

TUGI1
LINC00953
NPC
MEG3
CASC19

ZFAS1
HOXA11-AS1

KCNQ10TI1
TINCR
AFAPI-ASI
MIAT
NEAT1
LINC00346
MAGI2-AS3
n375709
NEAT1
CCAT1
MRVI1-AS1
DLEU1
LSCC

GAS5

TARGET
AKT/mTOR pathway
miRNA-149
miR-1301-3p

MAPIL3B, Beclinl, ATG3, and ATG7

miR-4306
ND
miR-184

miR214-3p/PIM1 axis
miR-27b-3p
PI3K/AKT/m-TOR pathway
ND

miR-27b-3p

miR-124-3p

miR-211-5p

AKT/m-TOR pathway
miR-1252-5p and miR-3148
miR-194-5p

ND

Pre-miR-483

miR-194-5p

miR-3619-5p

ND

miR-1224-5p/NSD2 axis

miR-133-b and CXCR4
ABCB5

miR-21

AMPK/m-TOR pathway and PARP1

pathway
miR-100-3p
miR-98/PBX3 axis
miR-454-3p
miR-454/USP47 axis

INCR-ACLY-PADI1-MAPK-MMP2/9 axis

miR-320a
HMBI1
Let-7p-5p
miR-342-5p

miR-218-5p/GDPD5/SEC61A1 axis

ND

miR-129/Bcl-2 axis
miR-181a/CPEB2 axis
Hippo-TAZ pathway
miR-381-3p

miR-26a-5p
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FUNCTION

Enhances cell proliferation and suppresses autophagy-mediated cell apoptosis.
It Promotes proliferation and migration, and inhibits apoptosis and autophagy.
It Promotes cell proliferation, migration, and inhibits apoptosis and autophagy.

Its silencing promoted proliferation, migration, and invasion.

Its silencing suppressed cell proliferation, induced cell death, and reduced autophagy.

Its overexpression caused a significant decrease in invasion.

Accelerates proliferation, increases cisplatin (CDDP) chemoresistance, and restrains
apoptosis.

Promotes proliferation and inhibits cisplatin-induced cytotoxicity.
Promotes proliferation, CDDP resistance, and inhibits apoptosis.
Induces EMT and CDDP resistance.

Increases anti-apoptotic protein Bcl-2 expression.

Its knockdown enhanced CDDP sensitivity.

Its knockdown inhibited survival rate, proliferation, migration, invasion, and EMT.
Facilitates tumor growth and chemoresistance.

Promotes proliferation, EMT, migration, invasion, and CDDP resistance.
Promotes EMT and chemoresistance

Its knockdown suppresses proliferation, migration, and invasion.

Its downregulation enhances cisplatin sensitivity.

High expression is associated with chemosensitivity and a better prognosis.
Correlated with worse overall survival and CDDP resistance.

Promotes CDDP resistance.

Promotes EMT, invasiveness, and chemoresistance.

Confers resistance to 5-FU.

Its downregulation impeded cisplatin resistance.

Its downregulation inhibited CSC hallmarks.

Promotes autophagy and apoptosis.

Contributes to radioresistance and promotes apoptosis.

Promotes cell proliferation, migration, and tumor growth.

Enhances CDDP resistance.
Promotes cell apoptosis and CDDP sensitivity.

Enhances CDDP resistance.

Acts as a driver of progression and chemoresistance.
Its silencing promoted chemoresistance.

It correlates with poor clinical outcome.

Its inhibition represses CDDP resistance.

Its over-expression promotes CDDP resistance.
Promotes cell proliferation, migration, and EMT.
Its inhibition increased paclitaxel sensitivity.

Its depletion enhances SAHA-induced apoptosis.
Enhances paclitaxel resistance.

Increases paclitaxel chemosensitivity.

Promotes CDDP resistance.

Activates autophagy and induces apoptosis.
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TABLE 1 Continued
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LNCRNA TARGET FUNCTION REFERENCE
H19 miR-107 Inhibits autophagy and drug resistance. (131)
MALAT1 ND Enhances chemoresistance and poorer 5-year survival. (132)
FOXD2-AS1  STAT3 and PRMT5 Predicts poor prognosis, maintains cancer stemness and promotes chemotherapeutic (18)
resistance.
FGD5-AS1 miR-497-5p/SEPT2 axis Its overexpression increases CDDP resistance. (133)
HOXA11-AS1 miR-518a/SPATS2L axis Enhances CDDP resistance. (134)
LINC-PINT miR-425-5p Its downregulation increases cancer stemness and chemoresistance to cisplatin. (19)
BANCR ND Its downregulation reverses CDDP resistance. (30)
HNSCC
LINC00460 miR-206 Facilitates apoptosis and autophagy. (33)
PVT1 miR-124-3p Decreases sensitivity to cetuximab. (135)
LINC00461 miR-195 Promotes EMT and chemoresistance. (16)
Lnc-POP-1 VNIR5 Its upregulation promotes DNA repair. (32)
LINC00958 ND Facilitates cancer development and resistance to chemo- and radiotherapy. (31)
LncRNAs in d rug resistance IncRNAs (Figure 3). Chemotherapy remains a very common
: treatment option for cancer patients, although it has been
mechanisms : : . :
established that DR is responsible for around 90% of deaths in
Three of the most important mechanisms of DR in HNSCC, cancer patients receiving chemotherapeutics or targeted drugs
autophagy, EMT, and stemness, are regulated by multiple (141). After the drug is administered, the therapeutic agents pass

FIGURE 3

:

LINC-PINT

LINC01207 LINC00958

miR-4306

miR-425-5p LINC00963

miR-1301-3p

Stenlness

FOXD2-AS1

CASC19

Wnt/Beta-catenin pathway

I STAT2 ll
@ PRMT5

B

°

miR-320a

AFAP1-AS1

miR-384

IncRNA

microRNA

effector mMRNA

miR-218-5p miR-195

pathway
promote or
activate

MAGI2-AS3 T decrease orinhibit

LINC00461

Overview of the molecular mechanisms of INcRNA in HSCC drug resistance. Three of the most important cellular processes involved with drug
resistance are autophagy, EMT and stemness. All of them are ruled by regulatory axes that comprise the interaction between IncRNAs,
microRNAs and expression of genes.
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The epigenetic processes involved in cancer chemoresistance includes DNA methylation, histone acetylation, and INncRNA interaction. These
processes regulate drug transporters and metabolic enzymes, promoting drug resistance. Adapted from Zhou et al. (148).

through a phase of active intracellular metabolism along with the
degradation by the liver and other metabolic organs and tissues
(142). Furthermore, the dysregulation of enzymes and other
proteins responsible for cellular metabolism offers additional
challenges that reduce the effectiveness of anti-tumor
drugs (143).

Three main phases of drug metabolism and disposition have
been observed: phases I and II concerning drug metabolism and
phase III concerning drug disposition (144). In phase I, enzymes
are mostly cytochrome P450 (CYPs) and are involved in the
oxidation, reduction, and/or hydrolysis processes that activate or
inactivate the agent (145). During phase II, metabolic reactions
are carried out by transferases whose primary mission is to
deactivate pharmacologically active drugs, facilitating their
elimination by making them more soluble in water (146).
Finally, phase III consists of drug transporters active in the
absorption, distribution, and elimination of drugs (147).
Increased expression, transcription activation of involved
genes, and activity of efflux drug transporters represent a
major mechanism for developing chemoresistance, mostly
under the control of epigenetic processes like DNA
methylation, histone acetylation, and ncRNA interaction
(Figure 4) (142, 144, 148, 149). The involvement of IncRNAs
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in drug metabolism and efflux phases has been investigated to
elucidate the DR mechanisms of cancer (141).

Some studies have demonstrated the involvement of
IncRNAs in the metabolism and disposition of anti-cancer
drugs, influencing directly the development of DR (142, 148).
In HNSCC, DR has become an increasingly concerning
challenge for the scientific community and clinicians (16, 31,
135). Along with many others, the long intergenic non-coding
RNA 00958 (LINC00958) has been studied as apoptosis- and
autophagy-related IncRNA in HNSCC as part of prognostic
signature, establishing a worse overall survival rate of patients
when the signature is present (140, 150). Moreover, Jian et al.
concluded that LINC00958 downregulates miR-4306 levels to
activate the pyroptosis pathway mediated by AIM2 and
promotes cancer cell survival in OSCC (96). Another study
suggests that LINC00958 interplay with c-Myc as a feedback
loop facilitating HNSCC development and resistance to chemo-
and radiotherapy, and its upregulation is associated with poor
tumor differentiation, advanced tumor stage, and shorter overall
survival of patients (31) Another IncRNA related to DR is the
plasmacytoma variant translocation 1 (PVT1), identified as
upregulated in cisplatin-resistant cancer cell lines and tissue
samples (108) and as a promoter of decreased sensitivity to
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TABLE 2 LncRNAs and their influence on HNSCC drug resistance.

LNCRNA

0scC
UCA1

HOXAI11-
AS

XIST
MALAT1
ANRIL

OIP5-AS1

KCNQ10T1

SNHG26

CYTOR

LHFLP3-
AS1

CEBPA-DT
MPRL

PVT1

HEIH
CILA1

APCDDIL-
AS1

TUGI1
LINC00963

NPC

HOXA11-
AS1

KCNQI1OT1
MIAT
NEAT1

n375709
MAGI2-AS3
LINC00346
TINCR
CCAT1
MRVI1-AS1
DLEU1
LSCC

H19
MALAT1

FOXD2-
AS1

INFLUENCE

Accelerates proliferation, increases CDDP chemoresistance, and restrains apoptosis.

Promotes proliferation in CDDP-sensitive cells and inhibits CDDP-induced cytotoxicity through the HOXA11-AS/miR214-3p/PIM1
axis.

Upregulation of XIST promotes cell proliferation, enhances CDDP resistance, and inhibits apoptosis.

Induces EMT and CDDP resistance via activation of PI3K/AKT/m-TOR signaling pathway and the upregulation of P-gp.

CAF-secreted midkine enhances tumor cell resistance to cisplatin by inducing ANRIL expression and increasing anti-apoptotic protein
Bcl-2 expression.

Its knockdown enhances DDP sensitivity in vivo. Improves DDP resistance through the upregulation of TRIM14 mediated by miR-
27b-3p.

Promotes DDP resistance of tongue cancer by sponging miR-124-30 to regulate TRIM14 expression.

Facilitates tumor growth and chemo-resistance by acting as a competing endogenous RNA (ceRNA) to modulate the expression of
miR-211-5p.

Its expression is positively correlated with proliferation, EMT, migration, invasion, and cisplatin resistance by binding directly to PGK1
protein, inhibiting its ubiquitination and activating the Akt/mTOR signaling pathway.

Acts as a ceRNA to inhibit miR-1252-5p and miR-3148 upregulating LPP expression. CYTOR/LPP axis is essential for FOXD1-
induced EMT and chemoresistance.

It is upregulated in cisplatin-resistant tumors promoting proliferation, migration, and invasion.

Regulates cisplatin chemosensitivity through CEBPA-BCLI12-mediated cell apoptosis.

High expression of MPRL and pre-miR-483 and low expression of miR-143-5p are associated with neoadjuvant chemosensitivity and
better prognosis.

Its upregulation in cisplatin-resistant tissues and cell lines is strongly correlated with worse overall survival acting as a ceRNA on miR-
194-5p.

Exosomal HEIH acts as a ceRNA for miR-3619-5p to upregulate HDGF, promoting DDP resistance.

High CILA1 expression levels and low levels of phosphorylated beta-catenin are associated with cisplatin resistance and advanced
disease stage.

Its expression is related to worse prognosis and confers resistance to 5-FU via miR-1224-5p/NSD2 axis.

Its upregulation promotes cisplatin resistance by mediating miR-133b and CXCR4.

Its suppression reduces the activity of ALDHI, percentage of self-renewal, chemoresistance and expression of multidrug-resistance
transporter ABCB5.

Enhances DDP resistance via the miR-98/PBX3 axis.
Its silencing inhibits the c-Met/AKT/mTOR pathway by specifically upregulating miR-454.3p, promoting cell apoptosis and enhancing
the sensitivity of cisplatin-resistant cells.

Enhances DDP resistance, proliferation, migration, and invasion via the miR-454/USP47 axis.
Upregulates HMBI expression, contributing to cisplatin resistance and poor clinical outcome via the MIAT/HMGB1/IL6 axis.

NEAT1/let-7a-5p axis regulates the cisplatin resistance by targeting Rsf-1 and modulating the Ras-MAPK signaling pathway.
NEATT1 increases in tissues and manages to facilitate SAHA tolerance by modulating the miR-129/Bcl-2 axis.

Its inhibition increases the paclitaxel sensitivity.

MAG2-AS1/mR-218-5p/GDPD5/SEC61A1 axis drives cell proliferation, migration, and EMT, and conferred cisplatin resistance.
LINC00346 regulates the cisplatin resistance by inhibiting miR-342-5p.

Acts as a crucial driver of progression and chemoresistance, and highlights the INCR-ACLY-PADI1-MAPK-MMP2/9 axis.

Its upregulation enhances paclitaxel resistance via miR-181a/CPEB2 axis.

MRVI1-AS1/ATF3 signaling pathway increases paclitaxel chemosensitivity by modulating the Hippo-TAZ.

Acts as an oncogene to promote DDP resistance and BIRC6 expression through interacting with miR-381-3p.

Exerts inhibiting effect on autophagy and drug resistance by downregulating HMGBI through targeting miR-107.
Its over-expression enhances chemoresistance and demonstrates poorer 5-year overall survival.

FOXD2-ASI acts as a scaffold for STAT3 and PRMTS5, promoting STAT3 transcriptional activity, essential to maintain cancer
stemness and promote chemotherapeutic resistance.
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TABLE 2 Continued
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LNCRNA INFLUENCE REFERENCE

FGD5-AS1  Its overexpression increases cisplatin-resistance by modulating miR-497-5p/SEPT2 axis. (133)

HOXA11- Enhances CDDP resistance of LSCC via miR-518a/SPATS2L axis. Its knockdown inhibits viability, migration, and invasion, but (134)

AS1 promoted apoptosis.

LINC-PINT Targets miR-425-5p which also targeted PTCH], affecting the Hedgehog pathway, thus increasing cancer stemness and (19)
chemoresistance to cisplatin.

AFAP1-AS1 Increases RBPJ expression by negatively regulating miR-320a and RBP]J overexpression rescues stemness and chemoresistance inhibited (120)
by AFAP1-AS1 silencing.

BANCR Its downregulation reverses cisplatin resistance. (30)

HNSCC

PVT1 Decreases the sensitivity of HNSCC cells to cetuximab by enhancing methylation-mediated inhibition of miR-124-3p. (135)

LINC00461  Downregulates expression of miR-195 to subsequently upregulate expression of HOXA10, promoting EMT and enhancing (16)
chemoresistance.

Lnc-POP1-1 Inc-POPI1-1 promotes DNA repair through interaction with MCM5 and deceleration of its degradation. VN1R5 promotes cisplatin (32)
resistance in a Inc-POP1-1-dependent manner.

LINC00958 LINC00958 interplays with c-Myc as a feedback loop facilitating development and resistance to chemo- and radiotherapy. (31)

cetuximab (135). Table 2 summarizes the most important
dysregulated IncRNAs that influence DR on HNSCC.

The homeobox All antisense IncRNA (HOXA11-AS) has
also been related to chemoresistance. In this regard, OSCC
tumor tissues and cell lines were analyzed, concluding that the
upregulation of HOXA11-AS promoted proliferation in CDDP-
sensitive cells and inhibited CDDP-induced cytotoxicity by
intervention in the miR214-3p/PIM1 axis (98). Other studies
demonstrated that the knockdown of HOXA11-AS enhances
CDDP resistance via the miR-98/PBX3 axis (116) and can
inhibit the c-Met/AKT/mTOR pathway by specifically
upregulating miR-454-3p, thus promoting cell apoptosis and
enhancing the sensitivity of cisplatin-resistant NPC cells to
cisplatin (117). Conversely, Shen et al. analyzed LSCC tissues
and cell lines, showing that HOXA11-AS1 knockdown inhibits
the viability, migration, and invasion but promotes the apoptosis
of cells (134).

Another IncRNA actively involved in DR in HNSCC is the
KCNQI1 overlapping transcript 1 (KCNQ1OT1). It has been
established that its upregulation facilitates tumor growth and
chemoresistance in tongue SCC by sponging miR-124-3p (28)
and by acting as a ceRNA to modulate the expression of miR-
211-5p (103). Moreover, Yuan et al. showed that KCNQ1OT1
knockdown promotes chemosensitivity in DDP-resistant NPC
cells by significantly decreasing cell proliferation, migration, and
invasion via the miR-454/USP47 axis (118). NEAT1 (nuclear
paraspeckle assembly transcript 1) has also been associated with
HNSCC chemoresistance, especially in NPC where its depletion
repressed the cisplatin resistance of NPC cells and phenocopied
the effect of miR-129 overexpression, which also enhanced
apoptosis by the histone deacetylase inhibitor SAHA (122, 126).

The metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) has been identified as a prognostic factor in patients
with lung cancer (151), and its overexpression is related to poor

Frontiers in Oncology

130

clinical outcome, chemoresistance, and progression in many
cancer types, including kidney (152, 153), pancreatic (154),
prostate (155, 156), esophageal (157, 158), breast (159, 160),
gastric (161), ovarian (162), and colorectal (163, 164). In both
oral and laryngeal SCC, the over-expression of MALATI
contributes to the enhanced chemoresistance and metastatic
power of several cell lines (100, 132).

In the case of H19, it has been demonstrated that it is
upregulated in LSCC, exerting an inhibiting effect at the
autophagy level and DR by downregulating HMGBI1 by
targeting miR-107 (131). A similar effect has been observed in
many other cancer types, with anti-apoptotic, pro-proliferative,
and pro-migratory functions, along with the induction of EMT,
activation of oncogenic signaling pathways, and changes in the
tumor microenvironment, contributing to anti-cancer DR (165).
Another well-studied IncRNA that promotes the proliferation,
migration, and chemoresistance of several cancer types is the
myocardial infarction-associated transcript (MIAT) (166-169).
According to Zhu et al, an elevated MIAT level upregulates
HMBI expression, contributing to cisplatin resistance and poor
clinical outcomes (121).

An increasing number of other IncRNAs have been proposed
as promoters of DR in HNSCC. For instance, the urothelial
cancer-associated IncRNA 1 (UCA1) plays an important role in
the tumorigenesis, progression, and diagnosis of many cancers,
mainly bladder cancer (170, 171). In oral cancer tissues and cell
lines, UCA1 accelerates proliferation, increases CDDP
chemoresistance and restrains apoptosis partly by modulating
SF1 by sponging miR-184 (97). In another study, the results
showed that CAF-secreted midkine enhanced OSCC resistance to
cisplatin by inducing ANRIL expression and increasing the anti-
apoptotic protein Bcl-2 expression (101). Chen et al. studied 146
paraffin-embedded OSCC specimens along with OSCC cell lines
CAL-27 and SCC4 and found that the cytoskeleton regulator RNA
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(CYTOR) acts as a ceRNA to inhibit miR-1252-5p and miR-3148,
upregulating the lipoma-preferred partner (LPP) protein and
therefore proving essential for FOXD1-induced EMT and
chemoresistance (15). Another forkhead box (FOX) reported as
important for laryngeal SCC DR is FOXD2-AS1, which acts as a
scaffold for STAT3 and PRMT5, promoting STAT3
transcriptional activity, maintaining cancer stemness, and
promoting chemotherapeutic resistance (18).

LncRNAs in autophagy

The intracellular degradation systems encompass two major
protein pathways that are directly involved in the maintenance of
metabolic homeostasis; one of them is the ubiquitin-proteasome
pathway, responsible for degrading short-lived and damaged
proteins; and the other is the lysosome-autophagy system,
whose target is long-lived macromolecular complexes and
organelles (172). Autophagy is a highly conserved and successive
cellular process in which damaged organelles, intracellular
microbes, and pathogenic long-lived proteins are degraded,
recycling amino acids, nucleotides, and fatty acids to maintain
cellular homeostasis (173-175). Thus, autophagy is closely related
to the occurrence of a wide variety of human diseases (176).

Autophagy-related genes (ATGs) are responsible for
autophagy occurring under micro-environmental stress such
as hypoxia, heat, nutrient deficiency, and accumulation of
reactive oxygen species (175, 176). The main successive
autophagy stages are the initiation of phagophore assembly,
autophagosomal formation, and lysosomal fusion (177, 178).
Two highly conserved serine-threonine kinases, the mammalian
target of rapamycin (mTOR) and the mammalian homologs of
yeast ATG1-Unc-51-like kinases 1 (ULK1), regulate cell growth
and survival and are the central modulators of autophagy,
responding to intra- and extra-cellular changes by forming
autophagosomes (179, 180). mTOR is activated under
favorable conditions, inhibiting autophagy and protein
degradation, whereas it is inactivated in hostile environments
related to poor nutritional conditions (172).

Recent studies have demonstrated an important role for
autophagy in tumorigenesis and the progression of cancer (181).
A dual function has been proposed since autophagy can stabilize
the genome and prevent the formation of tumor cells, while once
the tumor cells have been formed, autophagy plays a pivotal role
in tumor initiation, progression, and resistance to chemotherapy
(172, 177). LncRNAs are involved in autophagy, modulating the
expression of ATG genes by acting as ceRNAs for miRNAs (36,
180). Recently, several autophagy-related IncRNAs have been
proposed as biomarkers and signatures for diagnostic and
prognostic purposes for many cancer types, including breast
(182, 183), bladder (184, 185), pancreatic (186), colorectal (187,
188), and lung (189, 190). In most cases, the overall survival of
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patients in high-risk groups is significantly lower based on the
presence of each proposed signature.

Many studies have established prognostic signatures in
HNSCC. For instance, in a recent study, 910 autophagy-
related (AR) IncRNAs from mRNA sequences and clinical
data of HNSCC patients and controls from The Cancer
Genome Atlas (TCGA) were analyzed. The principal
component analysis distinguished two categories based on the
nine IncRNA prognostic signatures, resulting in a significantly
worse overall survival rate in the high-risk group (150). Another
study consulted the TCGA database to obtain 155 HNSCC
samples (mainly laryngeal, nasopharyngeal, tonsil, and lip
cancer) and the RNA profile indicated that ATG12, BECNI,
and MAPILC3B have prognostic value, and their related
pathways may be involved in regulating HNSCC prognosis
(191). Guo et al. included 17 prognostic-related autophagy-
and ferroptosis-related IncRNAs as the main components of a
ceRNA network that regulates differentially expressed genes
mainly enriched in immune-related pathways (12). Similarly,
gene set enrichment analysis (GSEA) and gene ontology (GO)
functional annotation proved that autophagy-related pathways
are mainly enriched when 13 autophagy-related IncRNAs are
present in HNSCC patients (140). Regarding oral and
oropharyngeal SCC, the signature-based on nine autophagy-
related IncRNAs acted as an independent prognostic indicator,
showing a significantly lower overall survival in high-risk groups
(13). The autophagy-related (AR) signatures of IncRNAs
proposed as biomarkers in HNSCC are summarized in Table 3.

Quantitative reverse transcription PCR (RT-qPCR) was
performed to analyze the cancer susceptibility candidate 9
(CASC9) expression in OSCC tissues and cell lines,
demonstrating that CASC9 promotes progression by
enhancing cell proliferation and suppressing autophagy-
mediated cell apoptosis via the AKT/mTOR pathway (92).
Another study by Chen et al. showed that when the gastric
cancer-associated transcript 1 (GACAT1) was inhibited in
OSCC samples, it promoted apoptosis and autophagy, mainly
related to the targeting of miRNA-149 (93). Long intergenic
non-coding RNA 01207 (LINC01207) and LINC00958 were also
upregulated in OSCC tissues and cells. LINC01207 upregulates
LDHA expression to promote cell proliferation and migration
and inhibits apoptosis and autophagy by acting as a ceRNA that
sponges miR-1301-3p (94), whereas LINC00958 downregulates
miR-4306 levels to activate a pyroptosis pathway mediated by
AIM2 and promotes cancer cell survival (96).

A broadly studied oncogenic trans-acting IncRNA is the
HOX transcript antisense RNA (HOTAIR), which is found
overexpressed in a wide variety of cancers and is mainly
associated with metastasis and poor prognosis (192). In OSCC
cells, HOTAIR silencing inhibited autophagy with the
downregulated expression of MAPILC3B, Beclinl, ATG3, and
ATG7; proliferation, migration, and invasion of OSCC cells were
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TABLE 3 Autophagy-related (AR) signatures of IncRNAs proposed as biomarkers in HNSCC.

AR LNCRNAS

PTCSC2, AC099850.3, LINC01963, RTCA-AS1, AP002884.1, UBAC2-AS1,
AL512274.1, MIR600HG, AL354733.3

ATGI12, BACN1, MAP1LC3B

MIR4435-2HG, PCED1B-AS1, AL512274-1, MYOSLID, LINC01871,
LINC02541, AC012236-1, C50rf66-AS1, AC004687-1, AL354836.1, LINC02454,
AC024075.2, LINC00460, AATBC, ITGB2-AS1, MIR9-3HG, AF131215.5

AC008115.3, AL139158.2, AC136475.2, AL160006.1, AL357033.4, AC007991.2,
AC104083.1, AL139287.1, AL450992.2, LINC00958, AC103702.2, PSMA3-AS1,
UBAC2-AS1

suppressed, along with an enhanced apoptosis rate and an
improvement in sensitivity to cisplatin (95).

As previously addressed, MEG3 is considered a tumor-
suppressor IncRNA. Lin et al. concluded that MEG3 promotes
autophagy and apoptosis of NPC cells by enhancing PTEN
expression by binding to miR-21 (113). Another important
tumor-suppressor IncRNA involved in autophagy activation is
the growth arrest-specific 5 RNA (GAS5). In LSCC, GAS5
inhibited the viability of AMC-HN-8 cells and induced
apoptosis, acting as a tumor suppressor by regulating the miR-
26a-50/ULK2 axis (130). Conversely, CASC19 suppressed
cellular autophagy by inhibiting the AMPK/mTOR pathway,
contributing to the radioresistance of NPC by regulating
autophagy (114).

LncRNAs in EMT

Epithelial-to-mesenchymal transition (EMT) is described as
a process where epithelial cells are transformed into
mesenchymal stem cells and plays an important role in both
development and tumorigenesis (177, 193). Moreover, EMT has
been broadly related to tumor proliferation, metastasis, and DR
(194, 195). However, this transition is reversible since tumor
cells will go through the opposite process of mesenchymal-to-
epithelial transition (MET) once they have reached a suitable
place where they can metastasize, re-expressing epithelial
characteristics (196). A wide variety of signaling pathways can
be involved in EMT, including the transforming growth factor-
beta (TGF-beta) pathway (196, 197), the Wnt/beta-catenin
pathway (198, 199), the Notch signaling pathway (200), the
Hedgehog pathway (201), and the signal transducer and
activator of transcription 3 (STAT3) pathway (202), among
others. These signaling molecules can subsequently activate

Frontiers in Oncology

The overall survival of the high-risk group was significantly lower

INFLUENCE REFERENCE

(13)

than that of the low-risk group.

The signature-based on autophagy/related IncRNAs potentially
acts as an independent prognostic indicator for patients with
OSCC/OPSCC.

All three autophagy-related IncRNAs have prognostic value with

(191)

respect to HNSCC, and their related pathways may be involved

in regulating HNSCC prognosis.

Differentially expressed genes (DEGs) between high- and low-risk

(12)

groups were mainly enriched in immune-related pathways and
regulated by a PAF-IncRNA-directed ceRNA network.

Overall survival in the high-risk group was shorter than the low-

(140)

risk group.
Gene set enrichment analysis (GSEA) and gene ontology (GO)
functional annotation proved that autophagy-related pathways

are mainly enriched in the high-risk group.

132

different EMT transcription factors like Snail, basic helix-loop-
helix (TWIST), and zing-finger E-box-binding homeobox (ZEB)
to repress epithelial markers and activate the EMT program (6,
177, 196).

Recently, several IncRNAs have been linked to EMT since
they play fundamental roles in the above-mentioned signaling
cascades, epigenetics, and transcription factors (203-205). The
IncRNA MALAT1 induces EMT and CDDP resistance in OSCC
cells via the activation of the PI3K/AKT/mTOR signaling
pathway in cell lines CAL-27 and SCC-9 (100). LncRNA
KCNQI1OT1 has also been related to EMT in tongue cancer
tissues and cells, promoting survival rate proliferation,
migration, and invasion (28). Similarly, quantitative PCR
performed in pituitary adenoma samples found the same
IncRNA to be upregulated, and its knockdown inhibited cell
stemness, angiogenesis, and EMT (206).

A novel IncRNA named chemotherapy-induced IncRNA 1
(CILA1) was upregulated in cisplatin-resistant tongue SCC cells,
displaying EMT features, promoting invasiveness and chemo-
resistance, mainly activating the Wnt/beta-catenin pathway (110).
Another IncRNA related to EMT is the recently discovered small
nucleolar RNA host gene 26 (SNHG26), first described by Tong
et al. as part of a prognosis signature along with the other 13
IncRNAs in bladder cancer (207). Similarly, a four-IncRNA
signature that included SNHG26 was associated with immune
infiltration and prognosis in colon cancer; the signature-divided
colon cancer patients of TCGA into high- and low-risk groups
with significantly different outcomes (208). In TSCC, SNHG26
expression was positively correlated with proliferation, EMT,
migration, invasion, and cisplatin resistance by activating the
AKT/mTOR signaling pathway (104).

Another IncRNA recently linked to EMT in cancer is the
long intergenic non-protein coding RNA 461 (LINC00461),
highly expressed in non-small cell lung cancer and directly
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involved in cell proliferation, migration, and EMT by targeting
the miR-4478/E2F1 axis (209). Similarly, Wu et al. showed that
the upregulation of LINC00461, LINC00402, and SFTA1P had
suppressive effects on the homologous pleckstrin-homology
(PH)-domain leucine-rich-repeat protein phosphatases
(PHLPP2), reported previously as a tumor suppressor in colon
cancer (210). In HNSCC, LINC00461 was highly expressed in 52
tissues analyzed, and it was found that LINC00461
downregulates the expression of miR-195 to subsequently
upregulates the expression of HOXA10, promoting EMT and
enhancing chemoresistance in HSNCC (16).

The membrane-associated guanylate kinase 2 antisense RNA 3
(MAGI2-AS3) was recently identified in NPC, driving cell
proliferation, migration, and EMT through the miR-218-5p/
GDPD5/SEC61A1 axis, conferring cisplatin resistance in cell lines
(124). The same IncRNA expression was detected by quantitative
real-time PCR in pancreatic cancer cells, and its upregulation
promoted EMT through the regulation of miR-490-5p (211).
Moreover, MAGI2-AS1 was identified to be EMT-related and
highly co-expressed with ZEB1/2 in both gastric tissues and
normal stomach tissue (212). Conversely, MAGI2.AS3
overexpression inhibited bladder cancer progression by regulating
MAGI2/PTEN/EMT in 80 bladder cancer tissues (213).

Although several studies have encompassed the involvement
of IncRNAs as regulators of EMT and, consequently, DR in
HNSCC, more studies must complement the information
available at present time.

LncRNAs in stemness

The stemness of cancer cells is an important cellular feature
that grants tumor heterogeneity, enhanced growth capacity, DR,
and augmented metastatic ability through the CSC properties of
self-renewal, quiescent state, high cell turnover, increased
expression of drug transporters, and other resistance genes
(177, 214, 215). Evidence suggests that CSCs retain properties
that make them highly resistant to currently available
chemotherapy drugs since CSCs remain in an inactive state of
the cell cycle and most of these treatments attack cells with a
high proliferative rate (216, 217). Additional properties like
rapid DNA repair (218), tumor microenvironment (219, 220),
and extracellular matrix contribute to maintaining cancer
stemness and chemoresistance (221, 222).

As previously addressed, even though IncRNAs have no
protein-coding capacity, they are emerging as master regulators
of gene transcription and act as proto-oncogenes or tumor
suppressors (223, 224). LncRNAs like LINC00617 (225),
IncSOX20T (226), and HOTAIR (227, 228) play an important
role in CSC regulation of various types of cancer through several
mechanisms and signaling pathways. Furthermore, in colorectal
cancer, the IncTCF7 interacts with subunits of the SWI/SNF
chromatin remodeling complex, regulating the transcription of
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the TCF7 gene and activating the Wnt cascade, involved in stem
cell self-renewal (229). H19 is another IncRNA overexpressed in
many cancers and confer stem-like properties in correlation with
stem cell markers like SOX2, OCT4, NOTCHI1, c-Myc, and
ABCG2 (230-232).

Little research has been done concerning the role of
IncRNAs in DR associated with cancer cell stemness. Lee et al.
studied OSCC tumor tissues and cell lines and concluded that
the downregulation of the long intergenic non-coding RNA 963
(LINCO00963) inhibited CSC hallmarks, such as migration,
invasion, and colony formation capacity. Moreover, the
suppression of LINC00963 reduced the activity of ALDHI, the
percentage of self-renewal, chemoresistance, and the expression
of multidrug-resistance transporter ABCB5 (17). Another long
intergenic non-coding RNA recently involved in
chemoresistance driven by cancer cell stemness is the p53-
induced non-coding transcript (LINC-PINT). Interestingly, the
tumor suppressor PTCSC3 was studied along with LINC-PINT
in gastric cancer tissues, inhibiting tumor growth and stemness
when both were over-expressed (233). The same IncRNA was
observed in 24 LSCC samples and cells, targeting miR-425-5p
and subsequently targeting PTCHI, affecting the Hedgehog
pathway and its downregulation was associated with increased
cancer stemness and chemoresistance to cisplatin (19).

LncRNA FOXD2-AS1 has been related to different forms of
malignancy and CSCs, mainly involving gliomas (234). In
laryngeal SCC chemotherapy-resistant patients, FOXD2-AS1
showed increased expression and acted as a scaffold for STAT2
and PRMT5, both essential to maintain cancer stemness and
promote chemotherapy resistance (18). Oncogenic actin filament-
associated protein 1-antisense RNA 1 (AFAP1-AS]) is a recently
discovered IncRNA related to cancer stemness (235). The first
documented association between AFAP1-AS1 high expression,
stemness, and DR was found in LSCC specimens, increasing RBPJ
expression by negatively regulating miR-320a; subsequently, RBP]J
overexpression rescued stemness and chemoresistance inhibited
by AFAP1-AS1 silencing (120). Another study suggested that
AFAP1-AS1 functions as an endogenous RNA by competitively
binding to miR-384 to regulate ACVRI, thus conferring
inhibitory effects on pancreatic cell stemness and
tumorigenicity (236).

Clinical relevance of IncRNAs in
drug resistance mechanisms
in HNSCC

The clinical importance of establishing a correlation between
the increasing number of newly discovered IncRNAs and the
various mechanisms of DR lies in the implications that they have
on the prognosis, molecular staging, and treatment possibilities
of many tumors. In this regard, CASC9 was strongly associated
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with tumor size, clinical stage, regional lymph node metastasis,
and overall survival time in OSCC patients (92). Similarly, the
upregulation of PVT1 was strongly correlated with the worse
overall survival of 83 OSCC patients (108). Lin et al. proposed
CILA1 as a biomarker in TSCC, correlating its expression levels
with cisplatin resistance and advanced disease stage (110).
Moreover, SNHG26 expression was also associated with the
occurrence, progression, and poor prognosis of TSCC (104).

It is important to remember that DR can be categorized as
intrinsic and acquired resistance, the first being defined as the
lack of tumor regression following treatment (which is the result
of mechanisms that existed before therapy). Meanwhile,
acquired resistance denotes the elimination of an observed
response after an initial clinical benefit following treatment
(237). Because stemness of cancer cells is an intrinsic
mechanism of DR, its clinical relevance stands out given that
IncRNAs such as LINC00963, LINC-PINT, FOXD2-AS1, and
AFAP1-AS1 have been found overexpressed, conferring the
stemness state to cells. Nevertheless, to date, there is no
evidence of a relationship between these specific IncRNAs and
a particular drug.

As prognostic signatures, several studies have linked
IncRNAs with the prognosis of HNSCC, particularly
autophagy- and ferroptosis-related IncRNAs (12, 13, 140, 150,
191). In all cases, the signatures proposed exhibited prognostic
value concerning HNSCC (Table 3), and their related pathways
may be involved in regulating HNSCC prognosis.

Future directions for
IncRNA research

The role of IncRNAs in many diseases has become a widely
investigated field, especially in cancer research. Given the
increasing evidence of the involvement of IncRNAs in several
drug resistance mechanisms, research should be directed toward
new horizons to elucidate the molecular pathways by which
IncRNAs interact to drive the resistance of certain cell lines (51).
This understanding would help in the improvement of the
diagnosis and treatment strategies of HNSCC (3, 238). A
potential line of research could involve the upstream
regulatory mechanisms of IncRNAs since previous evidence
suggests regulation by histone status, DNA methylation
patterns (107), transcription factors (239), and post-
transcriptional regulation (240, 241).

With the development of high-throughput sequencing
technology, the library of IncRNAs has notably increased.
However, most of the mechanisms of influence on DR
through phenomena such as EMT (15), autophagy (131), and
stemness (18) have not been fully understood, and some even
remain unexplored. A better comprehension of the regulatory
networks between IncRNAs, genetic, and epigenetic alterations
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could give rise to therapeutic strategies that promote
improvements in dealing with DR mechanisms (107). Also,
the elucidation of all regulatory networks could lead to the
formulation of clinical trials targeting specific IncRNAs.

To achieve the clinical application of IncRNAs, molecular
techniques such as microarrays, RNA-seq, and qRT-PCR (242)
have been used to quantify their expression, but still numerous
limitations that need to be overcome. For instance, technical
procedures such as ensuring stability, sample preparation,
IncRNA extraction, and detection must be standardized.
Besides, the sensitivity and specificity of IncRNAs must be
ensured. Thus, until all the technical difficulties have been
overcome, the detection of circulating IncRNAs would be
applied in regular clinical practice (243).

Conclusion

In recent years, the pivotal role of IncRNAs in DR has begun
to gain importance in the mechanisms that harbor and promote
chemoresistance in HNSCC. As the involvement of more
IncRNAs is elucidated, an improvement in diagnostic and
prognostic tools could promote an advance in targeted and
specific therapies in precision oncology.

Author contributions

JP-F, MB, and RR-P conceived and designed the content of
this review. JP-F, MB, CV-M, US-B, DM-C, AA-R, BP-A, AL-P,
CL-C, JL-G, JG-P, ME-M, JC-Q, and AB-G wrote the paper. All
authors contributed to the final version of the paper and
approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fonc.2022.965628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Pefa-Flores et al.

References

1. Sung, H, Ferlay, ], Siegel, RL, Laversanne, M, Soerjomataram, I, Jemal, A,
et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2021) 71
(3):209-49. doi: 10.3322/caac.21660

2. Akbari Dilmaghani, N, Khoshsirat, S, Shanaki-Bavarsad, M, Pourbagheri-
Sigaroodi, A, and Bashash, D. The contributory role of long non-coding RNAs
(IncRNAs) in head and neck cancers: Possible biomarkers and therapeutic targets?
Eur ] Pharmacol (2021) 900:174053. doi: 10.1016/j.ejphar.2021.174053

3. Sharma, A, Kansara, S, Mahajan, M, Yadav, B, Garg, M, and Pandey, AK.
Long non-coding RNAs orchestrate various molecular and cellular processes by
modulating epithelial-mesenchymal transition in head and neck squamous cell
carcinoma. Biochim Biophys Acta Mol Basis Dis (2021) 1867(11):166240. doi:
10.1016/j.bbadis.2021.166240

4. Leemans, CR, Snijders, PJF, and Brakenhoff, RH. The molecular landscape of
head and neck cancer. Nat Rev Cancer (2018) 18(5):269-82. doi: 10.1038/
nrc.2018.11

5. Kitamura, N, Sento, S, Yoshizawa, Y, Sasabe, E, Kudo, Y, and Yamamoto, T.
Current trends and future prospects of molecular targeted therapy in head and
neck squamous cell carcinoma. Int J Mol Sci (2020) 22(1):240. doi: 10.3390/
{jms22010240

6. Meng, X, Lou, QY, Yang, WY, Wang, YR, Chen, R, Wang, L, et al. The role of
non-coding RNAs in drug resistance of oral squamous cell carcinoma and
therapeutic potential. Cancer Commun (Lond). (2021) 41(10):981-1006. doi:
10.1002/cac2.12194

7. Enokida, T, Ogawa, T, Homma, A, Okami, K, Minami, S, Nakanome, A, et al.
A multicenter phase II trial of paclitaxel, carboplatin, and cetuximab followed by
chemoradiotherapy in patients with unresectable locally advanced squamous cell
carcinoma of the head and neck. Cancer Med (2020) 9(5):1671-82. doi: 10.1002/
cam4.2852

8. Weiss, J, Gilbert, J, Deal, AM, Weissler, M, Hilliard, C, Chera, B, et al.
Induction chemotherapy with carboplatin, nab-paclitaxel and cetuximab for at least
N2b nodal status or surgically unresectable squamous cell carcinoma of the head and
neck. Oral Oncol (2018) 84:46-51. doi: 10.1016/j.oraloncology.2018.06.028

9. Oliva, M, Spreafico, A, Taberna, M, Alemany, L, Coburn, B, Mesia, R, et al.
Immune biomarkers of response to immune-checkpoint inhibitors in head and
neck squamous cell carcinoma. Ann Oncol (2019) 30(1):57-67. doi: 10.1093/
annonc/mdy507

10. Qiao, XW, Jiang, J, Pang, X, Huang, MC, Tang, YJ, Liang, XH, et al. The
evolving landscape of PD-1/PD-L1 pathway in head and neck cancer. Front
Immunol (2020) 11:1721. doi: 10.3389/fimmu.2020.01721

11. Garcia-Mayea, Y, Mir, C, Masson, F, Paciucci, R, and ME, LL. Insights into
new mechanisms and models of cancer stem cell multidrug resistance. Semin
Cancer Biol (2020) 60:166-80. doi: 10.1016/j.semcancer.2019.07.022

12. Guo, Q, Zhang, X, Shen, T, and Wang, X. Identification of autophagy- and
ferroptosis-related Incrnas functioned through immune-related pathways in head
and neck squamous carcinoma. Life (Basel). (2021) 11(8):835. doi: 10.3390/
life11080835

13. Jiang, Q, Xue, D, Shi, F, and Qiu, J. Prognostic significance of an autophagy-
related long non-coding RNA signature in patients with oral and oropharyngeal
squamous cell carcinoma. Oncol Lett (2021) 21(1):29. doi: 10.3892/01.2020.12290

14. Yang, C, Shen, S, Zheng, X, Ye, K, Ge, H, Sun, Y, et al. Long non-coding
RNA LINC00337 induces autophagy and chemoresistance to cisplatin in
esophageal squamous cell carcinoma cells via upregulation of TPX2 by
recruiting E2F4. FASEB ] (2020) 34(5):6055-69. doi: 10.1096/f1.201900731RR

15. Chen, S, Yang, M, Wang, C, Ouyang, Y, Chen, X, Bai, ], et al. Forkhead box
D1 promotes EMT and chemoresistance by upregulating IncRNA CYTOR in oral
squamous cell carcinoma. Cancer Lett (2021) 503:43-53. doi: 10.1016/
j.canlet.2020.11.046

16. Guan, Y, Guan, A, Chen, L, and Gong, A. LINC00461 facilitates HNSCC
development and reduces chemosensitivity by impairing miR-195-mediated
inhibition of HOXA10. Mol Ther Oncolytics. (2021) 21:74-86. doi: 10.1016/
j.omt0.2021.01.008

17. Lee, SP, Hsieh, PL, Fang, CY, Chu, PM, Liao, YW, Yu, CH, et al. LINC00963
promotes cancer stemness, metastasis, and drug resistance in head and neck
carcinomas via abcb5 regulation. Cancers (Basel) (2020) 12(5):1073. doi:
10.3390/cancers12051073

18. Li, R, Chen, S, Zhan, J, Li, X, Liu, W, Sheng, X, et al. Long noncoding RNA
FOXD2-AS1 enhances chemotherapeutic resistance of laryngeal squamous cell
carcinoma via STAT3 activation. Cell Death Dis (2020) 11(1):41. doi: 10.1038/
s41419-020-2232-7

Frontiers in Oncology

10.3389/fonc.2022.965628

19. Yuan, Z, Xiu, C, Liu, D, Zhou, G, Yang, H, Pei, R, et al. Long noncoding
RNA LINC-PINT regulates laryngeal carcinoma cell stemness and
chemoresistance through miR-425-5p/PTCH1/SHH axis. | Cell Physiol (2019)
234(12):23111-22. doi: 10.1002/jcp.28874

20. Mansoori, B, Mohammadi, A, Davudian, S, Shirjang, S, and Baradaran, B.
The different mechanisms of cancer drug resistance: A brief review. Adv Pharm
Bull (2017) 7(3):339-48. doi: 10.15171/apb.2017.041

21. Vasan, N, Baselga, J, and Hyman, DM. A view on drug resistance in cancer.
Nature. (2019) 575(7782):299-309. doi: 10.1038/s41586-019-1730-1

22. Anastasiadou, E, Jacob, LS, and Slack, FJ. Non-coding RNA networks in
cancer. Nat Rev Cancer (2018) 18(1):5-18. doi: 10.1038/nrc.2017.99

23. Saw, PE, Xu, X, Chen, ], and Song, EW. Non-coding RNAs: the new central
dogma of cancer biology. Sci China Life Sci (2021) 64(1):22-50. doi: 10.1007/
s11427-020-1700-9

24. Guglas, K, Bogaczynska, M, Kolenda, T, Rys, M, Teresiak, A, Blizniak, R,
et al. IncRNA in HNSCC: challenges and potential. Contemp Oncol (Pozn). (2017)
21(4):259-66. doi: 10.5114/w0.2017.72382

25. Ghafouri-Fard, S, Mohammad-Rahimi, H, Jazaeri, M, and Taheri, M.
Expression and function of long non-coding RNAs in head and neck squamous
cell carcinoma. Exp Mol Pathol (2020) 112:104353. doi: 10.1016/
j.yexmp.2019.104353

26. Yan, K, Arfat, Y, Li, D, Zhao, F, Chen, Z, Yin, C, et al. Structure prediction:
New insights into decrypting long noncoding RNAs. Int ] Mol Sci (2016) 17(1):132.
doi: 10.3390/ijms17010132

27. Fu, X, Cui, G, Liu, S, and Zhao, S. Linc01014 regulates gefitinib resistance in
oesophagus cancer via EGFR-PI3K-AKT-mTOR signalling pathway. J Cell Mol
Med (2020) 24(2):1670-5. doi: 10.1111/jcmm.14860

28. Qiao, CY, Qiao, TY, Jin, H, Liu, LL, Zheng, MD, and Wang, ZL. LncRNA
KCNQIOT1 contributes to the cisplatin resistance of tongue cancer through the
KCNQIOT1/miR-124-3p/TRIM14 axis. Eur Rev Med Pharmacol Sci (2020) 24
(1):200-12. doi: 10.26355/eurrev_202001_19912

29. Zhang, H, Wang, J, Xun, W, Wang, J, Song, W, and Wang, X. Long non-
coding RNA PTCSC3 inhibits human oral cancer cell proliferation by inducing
apoptosis and autophagy. Arch Med Sci (2021) 17(2):492-9. doi: 10.5114/
aoms.2020.96409

30. Han, W, Niu, L, Wang, L, Liu, J, and Li, H. Downregulation of long non-
coding RNA b-raf proto-oncogene-activated non-coding RNA reverses cisplatin
resistance in laryngeal squamous cell carcinoma. Arch Med Sci (2021) 17(5):1164—
74. doi: 10.5114/a0ms.2019.91352

31. Huang, S, Zhan, Z, Li, L, Guo, H, Yao, Y, Feng, M, et al. LINC00958-MYC
positive feedback loop modulates resistance of head and neck squamous cell
carcinoma cells to chemo- and radiotherapy in vitro. Onco Targets Ther (2019)
12:5989-6000. doi: 10.2147/OTT.S208318

32. Jiang, Y, Guo, H, Tong, T, Xie, F, Qin, X, Wang, X, et al. IncRNA Inc-POP1-
1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous
cell carcinoma through interaction with MCMS5. Mol Ther (2022) 30(1):448-67.
doi: 10.1016/j.ymthe.2021.06.006

33. Xue, K, Li, ], Nan, S, Zhao, X, and Xu, C. Downregulation of LINC00460
decreases STC2 and promotes autophagy of head and neck squamous cell
carcinoma by up-regulating microRNA-206. Life Sci (2019) 231:116459. doi:
10.1016/1.1fs.2019.05.015

34. Wang, Y, Gao, L, Zhu, B, Zhu, H, Luo, Y, Wang, Q, et al. Integrative analysis
of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato
fruit. Gene. (2018) 667:25-33. doi: 10.1016/j.gene.2018.05.030

35. Schmitz, SU, Grote, P, and Herrmann, BG. Mechanisms of long noncoding
RNA function in development and disease. Cell Mol Life Sci (2016) 73(13):2491—
509. doi: 10.1007/s00018-016-2174-5

36. Bermudez, M, Aguilar-Medina, M, Lizarraga-Verdugo, E, Avendafo-Felix,
M, Silva-Benitez, E, Lopez-Camarillo, C, et al. LncRNAs as regulators of autophagy
and drug resistance in colorectal cancer. Front Oncol (2019) 9:1008. doi: 10.3389/
fonc.2019.01008

37. Dahariya, S, Paddibhatla, I, Kumar, S, Raghuwanshi, S, Pallepati, A, and
Gutti, RK. Long non-coding RNA: Classification, biogenesis and functions in blood
cells. Mol Immunol (2019) 112:82-92. doi: 10.1016/j.molimm.2019.04.011

38. Long, Y, Wang, X, Youmans, DT, and Cech, TR. How do IncRNAs regulate
transcription? Sci Adv (2017) 3(9):eaa02110. doi: 10.1126/sciadv.aa02110

39. Statello, L, Guo, CJ, Chen, LL, and Huarte, M. Gene regulation by long non-
coding RNAs and its biological functions. Nat Rev Mol Cell Biol (2021) 22(2):96—
118. doi: 10.1038/s41580-020-00315-9

frontiersin.org


https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.ejphar.2021.174053
https://doi.org/10.1016/j.bbadis.2021.166240
https://doi.org/10.1038/nrc.2018.11
https://doi.org/10.1038/nrc.2018.11
https://doi.org/10.3390/ijms22010240
https://doi.org/10.3390/ijms22010240
https://doi.org/10.1002/cac2.12194
https://doi.org/10.1002/cam4.2852
https://doi.org/10.1002/cam4.2852
https://doi.org/10.1016/j.oraloncology.2018.06.028
https://doi.org/10.1093/annonc/mdy507
https://doi.org/10.1093/annonc/mdy507
https://doi.org/10.3389/fimmu.2020.01721
https://doi.org/10.1016/j.semcancer.2019.07.022
https://doi.org/10.3390/life11080835
https://doi.org/10.3390/life11080835
https://doi.org/10.3892/ol.2020.12290
https://doi.org/10.1096/fj.201900731RR
https://doi.org/10.1016/j.canlet.2020.11.046
https://doi.org/10.1016/j.canlet.2020.11.046
https://doi.org/10.1016/j.omto.2021.01.008
https://doi.org/10.1016/j.omto.2021.01.008
https://doi.org/10.3390/cancers12051073
https://doi.org/10.1038/s41419-020-2232-7
https://doi.org/10.1038/s41419-020-2232-7
https://doi.org/10.1002/jcp.28874
https://doi.org/10.15171/apb.2017.041
https://doi.org/10.1038/s41586-019-1730-1
https://doi.org/10.1038/nrc.2017.99
https://doi.org/10.1007/s11427-020-1700-9
https://doi.org/10.1007/s11427-020-1700-9
https://doi.org/10.5114/wo.2017.72382
https://doi.org/10.1016/j.yexmp.2019.104353
https://doi.org/10.1016/j.yexmp.2019.104353
https://doi.org/10.3390/ijms17010132
https://doi.org/10.1111/jcmm.14860
https://doi.org/10.26355/eurrev_202001_19912
https://doi.org/10.5114/aoms.2020.96409
https://doi.org/10.5114/aoms.2020.96409
https://doi.org/10.5114/aoms.2019.91352
https://doi.org/10.2147/OTT.S208318
https://doi.org/10.1016/j.ymthe.2021.06.006
https://doi.org/10.1016/j.lfs.2019.05.015
https://doi.org/10.1016/j.gene.2018.05.030
https://doi.org/10.1007/s00018-016-2174-5
https://doi.org/10.3389/fonc.2019.01008
https://doi.org/10.3389/fonc.2019.01008
https://doi.org/10.1016/j.molimm.2019.04.011
https://doi.org/10.1126/sciadv.aao2110
https://doi.org/10.1038/s41580-020-00315-9
https://doi.org/10.3389/fonc.2022.965628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Pefia-Flores et al.

40. Zampetaki, A, Albrecht, A, and Steinhofel, K. Long non-coding RNA
structure and function: Is there a link? Front Physiol (2018) 9:1201. doi: 10.3389/
fphys.2018.01201

41. Kazimierczyk, M, Kasprowicz, MK, Kasprzyk, ME, and Wrzesinski, J.
Human long noncoding RNA interactome: Detection, characterization and
function. Int J Mol Sci (2020) 21(3):1027. doi: 10.3390/ijms21031027

42. Li, J, and Liu, C. Coding or noncoding, the converging concepts of RNAs.
Front Genet (2019) 10:496. doi: 10.3389/fgene.2019.00496

43. Ransohoff, JD, Wei, Y, and Khavari, PA. The functions and unique features
of long intergenic non-coding RNA. Nat Rev Mol Cell Biol (2018) 19(3):143-57.
doi: 10.1038/nrm.2017.104

44. Derrien, T, Johnson, R, Bussotti, G, Tanzer, A, Djebali, S, Tilgner, H, et al.
The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene
structure, evolution, and expression. Genome Res (2012) 22(9):1775-89. doi:
10.1101/gr.132159.111

45. Kopp, F, and Mendell, JT. Functional classification and experimental
dissection of long noncoding RNAs. Cell (2018) 172(3):393-407. doi: 10.1016/
j.cell.2018.01.011

46. Wang, W, Min, L, Qiu, X, Wu, X, Liu, C, Ma, ], et al. Biological function of
long non-coding RNA (LncRNA) xist. Front Cell Dev Biol (2021) 9:645647. doi:
10.3389/fcell.2021.645647

47. Panda, AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol (2018)
1087:67-79. doi: 10.1007/978-981-13-1426-1_6

48. Chi, Y, Wang, D, Wang, ], Yu, W, and Yang, J. Long non-coding RNA in the
pathogenesis of cancers. Cells (2019) 8(9):1015. doi: 10.3390/cells8091015

49. Hennessy, EJ. LncRNAs and cardiovascular disease. Adv Exp Med Biol
(2022) 1363:71-95. doi: 10.1007/978-3-030-92034-0_5

50. Xu, X, Cui, L, Zhong, W, and Cai, Y. Autophagy-associated IncRNAs:
Promising targets for neurological disease diagnosis and therapy. Neural Plast
(2020) 2020:8881687. doi: 10.1155/2020/8881687

51. Lin, C, and Yang, L. Long noncoding RNA in cancer: Wiring signaling
circuitry. Trends Cell Biol (2018) 28(4):287-301. doi: 10.1016/j.tcb.2017.11.008

52. Peng, WX, Koirala, P, and Mo, YY. LncRNA-mediated regulation of cell
signaling in cancer. Oncogene. (2017) 36(41):5661-7. doi: 10.1038/0nc.2017.184

53. He, ], Zhu, S, Liang, X, Zhang, Q, Luo, X, Liu, C, et al. LncRNA as a
multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep (2021) 48
(8):1-15. doi: 10.1007/s11033-021-06603-7

54. Jin, KT, Yao, JY, Fang, XL, Di, H, and Ma, YY. Roles of IncRNAs in cancer:
Focusing on angiogenesis. Life Sci (2020) 252:117647. doi: 10.1016/
j.1fs.2020.117647

55. Zhang, W, Liu, Y, Fu, Y, Han, W, Xu, H, Wen, L, et al. Long non-coding
RNA LINC00160 functions as a decoy of microRNA-132 to mediate autophagy and
drug resistance in hepatocellular carcinoma via inhibition of PIK3R3. Cancer Lett
(2020) 478:22-33. doi: 10.1016/j.canlet.2020.02.014

56. Zhou, Y, and Chen, B. GAS5-mediated regulation of cell signaling (Review).
Mol Med Rep (2020) 22(4):3049-56. doi: 10.3892/mmr.2020.11435

57. Wei, JW, Huang, K, Yang, C, and Kang, CS. Non-coding RNAs as regulators
in epigenetics (Review). Oncol Rep (2017) 37(1):3-9. doi: 10.3892/0r.2016.5236

58. Luan, S, Yang, Y, Zhou, Y, Zeng, X, Xiao, X, Liu, B, et al. The emerging role
of long noncoding RNAs in esophageal carcinoma: from underlying mechanisms
to clinical implications. Cell Mol Life Sci (2021) 78(7):3403-22. doi: 10.1007/
s00018-020-03751-0

59. Chen, X, Xie, R, Gu, P, Huang, M, Han, J, Dong, W, et al. Long noncoding
RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells
through epigenetic silencing of sox2. Clin Cancer Res (2019) 25(4):1389-403. doi:
10.1158/1078-0432.CCR-18-1656

60. Chen, LL. Linking long noncoding rna localization and function. Trends
Biochem Sci (2016) 41(9):761-72. doi: 10.1016/j.tibs.2016.07.003

61. Bridges, MC, Daulagala, AC, and Kourtidis, A. LNCcation: IncRNA
localization and function. J Cell Biol (2021) 220(2):e202009045. doi: 10.1083/
jcb.202009045

62. Hanly, DJ, Esteller, M, and Berdasco, M. Interplay between long non-coding
RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc
Lond B Biol Sci (2018) 373(1748):20170074. doi: 10.1098/rstb.2017.0074

63. Paraskevopoulou, MD, and Hatzigeorgiou, AG. Analyzing MiRNA-
LncRNA interactions. Methods Mol Biol (2016) 1402:271-86. doi: 10.1007/978-1-
4939-3378-5_21

64. Meng, X, Wang, ZF, Lou, QY, Rankine, AN, Zheng, WX, Zhang, ZH, et al.
Long non-coding RNAs in head and neck squamous cell carcinoma: Diagnostic
biomarkers, targeted therapies, and prognostic roles. Eur J Pharmacol (2021)
902:174114. doi: 10.1016/j.ejphar.2021.174114

Frontiers in Oncology

136

10.3389/fonc.2022.965628

65. Park, EG, Pyo, SJ, Cui, Y, Yoon, SH, and Nam, JW. Tumor immune
microenvironment IncRNAs. Brief Bioinform (2022) 23(1):bbab504. doi: 10.1093/
bib/bbab504

66. Li, Y, Jiang, T, Zhou, W, Li, J, Li, X, Wang, Q, et al. Pan-cancer
characterization of immune-related IncRNAs identifies potential oncogenic
biomarkers. Nat Commun (2020) 11(1):1000. doi: 10.1038/s41467-020-14802-2

67. Zhang, Y, Xu, Y, Feng, L, Li, F, Sun, Z, Wu, T, et al. Comprehensive
characterization of IncRNA-mRNA related ceRNA network across 12 major
cancers. Oncotarget. (2016) 7(39):64148-67. doi: 10.18632/oncotarget.11637

68. Lin, W, Zhou, Q, Wang, CQ, Zhu, L, Bi, C, Zhang, S, et al. LncRNAs regulate
metabolism in cancer. Int J Biol Sci (2020) 16(7):1194-206. doi: 10.7150/ijbs.40769

69. Gunelli, R, Fragala, E, and Fiori, M. PCA3 in prostate cancer. Methods Mol
Biol (2021) 2292:105-13. doi: 10.1007/978-1-0716-1354-2_9

70. Kretschmer, A, and Tilki, D. Biomarkers in prostate cancer - current clinical
utility and future perspectives. Crit Rev Oncol Hematol (2017) 120:180-93. doi:
10.1016/j.critrevonc.2017.11.007

71. Liu, H, He, X, Li, T, Qu, Y, Xu, L, Hou, Y, et al. PCGEM1 promotes
proliferation, migration and invasion in prostate cancer by sponging miR-506 to
upregulate TRIAP1. BMC Urol (2022) 22(1):14. doi: 10.1186/512894-022-00969-x

72. Shang, Z, Yu, ], Sun, L, Tian, J, Zhu, S, Zhang, B, et al. LncRNA PCAT1
activates AKT and NF-kB signaling in castration-resistant prostate cancer by
regulating the PHLPP/FKBP51/IKKo complex. Nucleic Acids Res (2019) 47
(8):4211-25. doi: 10.1093/nar/gkz108

73. Alkhathami, AG, Hadi, A, Alfaifi, M, Alshahrani, MY, Verma, AK, and Beg,
MMA. Serum-based IncRNA ANRIL, TUG1, UCA1, and HIT expressions in breast
cancer patients. Dis Markers (2022) 2022:9997212. doi: 10.1155/2022/9997212

74. Rivandi, M, Khorrami, MS, Fiuji, H, Shahidsales, S, Hasanzadeh, M, Jazayeri,
MH, et al. The 9p21 locus: A potential therapeutic target and prognostic marker in
breast cancer. ] Cell Physiol (2018) 233(7):5170-9. doi: 10.1002/jcp.26332

75. Zhao, W, Geng, D, Li, S, Chen, Z, and Sun, M. LncRNA HOTAIR influences
cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in
breast cancer. Cancer Med (2018) 7(3):842-55. doi: 10.1002/cam4.1353

76. Esfandi, F, Fallah, H, Arsang-Jang, S, Taheri, M, and Ghafouri-Fard, S. The
expression of CCAT2, UCA1, PANDA and GHET1 long non-coding RNAs in lung
cancer. Rep Biochem Mol Biol (2019) 8(1):36-41.

77. Feng, C, Zhao, Y, Li, Y, Zhang, T, Ma, Y, and Liu, Y. LncRNA MALAT1
promotes lung cancer proliferation and gefitinib resistance by acting as a miR-200a
sponge. Arch Bronconeumol (Engl Ed). (2019) 55(12):627-33. doi: 10.1016/
j.arbres.2019.03.026

78. Wang, X, Chen, Y, Wang, X, Tian, H, Wang, Y, Jin, J, et al. Stem cell factor
SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11.
Cancer Res (2021) 81(20):5217-29. doi: 10.1158/0008-5472.CAN-21-0567

79. Wei, S, Wang, K, Huang, X, Zhao, Z, and Zhao, Z. LncRNA MALAT1
contributes to non-small cell lung cancer progression via modulating miR-200a-
3p/programmed death-ligand 1 axis. Int ] Immunopathol Pharmacol (2019)
33:2058738419859699. doi: 10.1177/2058738419859699

80. Duan, Q, Cai, L, Zheng, K, Cui, C, Huang, R, Zheng, Z, et al. IncRNA
KCNQIOT1 knockdown inhibits colorectal cancer cell proliferation, migration
and invasiveness via the PI3K/AKT pathway. Oncol Lett (2020) 20(1):601-10. doi:
10.3892/01.2020.11619

81. Ren, J, Ding, L, Zhang, D, Shi, G, Xu, Q, Shen, S, et al. Carcinoma-associated
fibroblasts promote the stemness and chemoresistance of colorectal cancer by
transferring exosomal IncRNA H19. Theranostics. (2018) 8(14):3932-48. doi:
10.7150/thno.25541

82. Wu, H, Qin, W, Lu, S, Wang, X, Zhang, ], Sun, T, et al. Long noncoding
RNA ZFAS1 promoting small nucleolar RNA-mediated 2'-o-methylation via
NOP58 recruitment in colorectal cancer. Mol Cancer. (2020) 19(1):95. doi:
10.1186/s12943-020-01201-w

83. Ghafouri-Fard, S, Esmaeili, M, Taheri, M, and Samsami, M. Highly
upregulated in liver cancer (HULC): An update on its role in carcinogenesis. J
Cell Physiol (2020) 235(12):9071-9. doi: 10.1002/jcp.29765

84. Malakar, P, Stein, I, Saragovi, A, Winkler, R, Stern-Ginossar, N, Berger, M,
et al. Long noncoding RNA MALAT]I regulates cancer glucose metabolism by
enhancing mTOR-mediated translation of TCF7L2. Cancer Res (2019) 79
(10):2480-93. doi: 10.1158/0008-5472.CAN-18-1432

85. Zhang, C, Yang, X, Qi, Q, Gao, Y, Wei, Q, and Han, S. IncRNA-HEIH in
serum and exosomes as a potential biomarker in the HCV-related hepatocellular
carcinoma. Cancer biomark (2018) 21(3):651-9. doi: 10.3233/CBM-170727

86. El-Khazragy, N, Abdel Aziz, MA, Hesham, M, Matbouly, S, Mostafa, SA,
Bakkar, A, et al. Upregulation of leukemia-induced non-coding activator RNA
(LUNARLI) predicts poor outcome in pediatric T-acute lymphoblastic leukemia.
Immunobiology (2021) 226(6):152149. doi: 10.1016/j.imbi0.2021.152149

frontiersin.org


https://doi.org/10.3389/fphys.2018.01201
https://doi.org/10.3389/fphys.2018.01201
https://doi.org/10.3390/ijms21031027
https://doi.org/10.3389/fgene.2019.00496
https://doi.org/10.1038/nrm.2017.104
https://doi.org/10.1101/gr.132159.111
https://doi.org/10.1016/j.cell.2018.01.011
https://doi.org/10.1016/j.cell.2018.01.011
https://doi.org/10.3389/fcell.2021.645647
https://doi.org/10.1007/978-981-13-1426-1_6
https://doi.org/10.3390/cells8091015
https://doi.org/10.1007/978-3-030-92034-0_5
https://doi.org/10.1155/2020/8881687
https://doi.org/10.1016/j.tcb.2017.11.008
https://doi.org/10.1038/onc.2017.184
https://doi.org/10.1007/s11033-021-06603-7
https://doi.org/10.1016/j.lfs.2020.117647
https://doi.org/10.1016/j.lfs.2020.117647
https://doi.org/10.1016/j.canlet.2020.02.014
https://doi.org/10.3892/mmr.2020.11435
https://doi.org/10.3892/or.2016.5236
https://doi.org/10.1007/s00018-020-03751-0
https://doi.org/10.1007/s00018-020-03751-0
https://doi.org/10.1158/1078-0432.CCR-18-1656
https://doi.org/10.1016/j.tibs.2016.07.003
https://doi.org/10.1083/jcb.202009045
https://doi.org/10.1083/jcb.202009045
https://doi.org/10.1098/rstb.2017.0074
https://doi.org/10.1007/978-1-4939-3378-5_21
https://doi.org/10.1007/978-1-4939-3378-5_21
https://doi.org/10.1016/j.ejphar.2021.174114
https://doi.org/10.1093/bib/bbab504
https://doi.org/10.1093/bib/bbab504
https://doi.org/10.1038/s41467-020-14802-2
https://doi.org/10.18632/oncotarget.11637
https://doi.org/10.7150/ijbs.40769
https://doi.org/10.1007/978-1-0716-1354-2_9
https://doi.org/10.1016/j.critrevonc.2017.11.007
https://doi.org/10.1186/s12894-022-00969-x
https://doi.org/10.1093/nar/gkz108
https://doi.org/10.1155/2022/9997212
https://doi.org/10.1002/jcp.26332
https://doi.org/10.1002/cam4.1353
https://doi.org/10.1016/j.arbres.2019.03.026
https://doi.org/10.1016/j.arbres.2019.03.026
https://doi.org/10.1158/0008-5472.CAN-21-0567
https://doi.org/10.1177/2058738419859699
https://doi.org/10.3892/ol.2020.11619
https://doi.org/10.7150/thno.25541
https://doi.org/10.1186/s12943-020-01201-w
https://doi.org/10.1002/jcp.29765
https://doi.org/10.1158/0008-5472.CAN-18-1432
https://doi.org/10.3233/CBM-170727
https://doi.org/10.1016/j.imbio.2021.152149
https://doi.org/10.3389/fonc.2022.965628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Pefa-Flores et al.

87. Wang, C, Li, L, Li, M, Wang, W, Liu, Y, and Wang, S. Silencing long non-
coding RNA XIST suppresses drug resistance in acute myeloid leukemia through
down-regulation of MYC by elevating microRNA-29a expression. Mol Med (2020)
26(1):114. doi: 10.1186/s10020-020-00229-4

88. Wu, DM, Wen, X, Han, XR, Wang, S, Wang, YJ, Shen, M, et al. Role of
circular RNA DLEU2 in human acute myeloid leukemia. Mol Cell Biol (2018) 38
(20):e00259-18. doi: 10.1128/MCB.00259-18

89. Yang, X, Xie, Z, Lei, X, and Gan, R. Long non-coding RNA GAS5 in human
cancer. Oncol Lett (2020) 20(3):2587-94. doi: 10.3892/01.2020.11809

90. Wei, GH, and Wang, X. IncRNA MEG3 inhibit proliferation and metastasis
of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci (2017) 21
(17):3850-6.

91. Tao, F, Xu, Y, Yang, D, Tian, B, Jia, Y, Hou, J, et al. LncRNA NKILA
correlates with the malignant status and serves as a tumor-suppressive role in rectal
cancer. J Cell Biochem (2018) 119(12):9809-16. doi: 10.1002/jcb.27300

92. Yang, Y, Chen, D, Liu, H, and Yang, K. Increased expression of IncRNA
CASC9 promotes tumor progression by suppressing autophagy-mediated cell
apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell
Death Dis (2019) 10(2):41. doi: 10.1038/s41419-018-1280-8

93. Chen, J, Chen, X, Fu, L, Chen, J, Chen, Y, and Liu, F. LncRNA GACAT1
targeting miRNA-149 regulates the molecular mechanism of proliferation,
apoptosis and autophagy of oral squamous cell carcinoma cells. Aging (Albany
NY) (2021) 13(16):20359-71. doi: 10.18632/aging.203416

94. Lu, X, Chen, L, Li, Y, Huang, R, Meng, X, and Sun, F. Long non-coding RNA
LINCO01207 promotes cell proliferation and migration but suppresses apoptosis
and autophagy in oral squamous cell carcinoma by the microRNA-1301-3p/lactate
dehydrogenase isoform a axis. Bioengineered (2021) 12(1):7780-93. doi: 10.1080/
21655979.2021.1972784

95. Wang, X, Liu, W, Wang, P, and Li, S. RNA Interference of long noncoding
RNA HOTAIR suppresses autophagy and promotes apoptosis and sensitivity to
cisplatin in oral squamous cell carcinoma. J Oral Pathol Med (2018) 47(10):930-7.
doi: 10.1111/jop.12769

96. Jiang, L, Ge, W, Cui, Y, and Wang, X. The regulation of long non-coding
RNA 00958 (LINC00958) for oral squamous cell carcinoma (OSCC) cells death
through absent in melanoma 2 (AIM2) depending on microRNA-4306 and
Sirtuinl (SIRT1) in vitro. Bioengineered (2021) 12(1):5085-98. doi: 10.1080/
21655979.2021.1955561

97. Fang, Z, Zhao, ], Xie, W, Sun, Q, Wang, H, and Qiao, B. LncRNA UCA1
promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by
sunppressing miR-184 expression. Cancer Med (2017) 6(12):2897-908. doi:
10.1002/cam4.1253

98. Wang, X, Li, H, and Shi, J. LncRNA HOXA11-AS promotes proliferation and
cisplatin resistance of oral squamous cell carcinoma by suppression of miR-214-3p
expression. BioMed Res Int (2019) 2019:8645153. doi: 10.1155/2019/8645153

99. Ma, SQ, Wang, YC, Li, Y, Li, XY, Yang, ], and Sheng, YM. LncRNA XIST
promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by
downregulating miR-27b-3p. J Biol Regul Homeost Agents (2020) 34(6):1993-2001.
doi: 10.23812/20-222-A

100. Wang, R, Lu, X, and Yu, R. IncRNA MALAT1 promotes emt process and
cisplatin resistance of oral squamous cell carcinoma via PI3K/AKT/m-TOR signal
pathway. Onco Targets Ther (2020) 13:4049-61. doi: 10.2147/OTT.S251518

101. Zhang, D, Ding, L, Li, Y, Ren, J, Shi, G, Wang, Y, et al. Midkine derived
from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation
of the expression of IncRNA ANRIL in tumour cells. Sci Rep (2017) 7(1):16231. doi:
10.1038/541598-017-13431-y

102. Xiao, Z, Li, J, Jin, Q, and Liu, D. Long non-coding RNA OIP5-AS1
contributes to cisplatin resistance of oral squamous cell carcinoma through the
miR-27b-3p/TRIM14 axis. Exp Ther Med (2021) 21(4):408. doi: 10.3892/
etm.2021.9839

103. Zhang, S, Ma, H, Zhang, D, Xie, S, Wang, W, Li, Q, et al. LncRNA
KCNQIOT1 regulates proliferation and cisplatin resistance in tongue cancer via
miR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis (2018) 9(7):742. doi:
10.1038/541419-018-0793-5

104. Jiang, Q, Wang, Z, Qi, Q, Li, ], Xin, Y, and Qiu, J. IncRNA SNHG26
promoted the growth, metastasis, and cisplatin resistance of tongue squamous cell
carcinoma through PGK1/Akt/mTOR signal pathway. Mol Ther Oncolytics. (2022)
24:355-70. doi: 10.1016/j.0mt0.2021.12.021

105. Li, J, Xu, X, Zhang, D, Lv, H, and Lei, X. LncRNA LHFPL3-AS1 promotes
oral squamous cell carcinoma growth and cisplatin resistance through targeting
miR-362-5p/CHSY1 pathway. Onco Targets Ther (2021) 14:2293-300. doi:
10.2147/OTT.S5298679

106. Qiao, X, Liu, J, Zhu, L, Song, R, Zhong, M, and Guo, Y. Long noncoding
RNA CEBPA-DT promotes cisplatin chemo-resistance through CEBPA/BCL2
mediated apoptosis in oral squamous cellular cancer. Int ] Med Sci (2021) 18
(16):3728-37. doi: 10.7150/ijms.64253

Frontiers in Oncology

137

10.3389/fonc.2022.965628

107. Tian, T, Lv, X, Pan, G, Lu, Y, Chen, W, He, W, et al. Long noncoding rna
mprl promotes mitochondrial fission and cisplatin chemosensitivity via disruption
of pre-miRNA processing. Clin Cancer Res (2019) 25(12):3673-88. doi: 10.1158/
1078-0432.CCR-18-2739

108. Wang, F, Ji, X, Wang, J, Ma, X, Yang, Y, Zuo, J, et al. LncRNA PVT1
enhances proliferation and cisplatin resistance via regulating mir-194-5p/hifla axis
in oral squamous cell carcinoma. Onco Targets Ther (2020) 13:243-52. doi:
10.2147/0OTT.S232405

109. Wang, X, Yu, H, Yu, Z, and Wang, D. Exosomal IncRNA HEIH promotes
cisplatin resistance in tongue squamous cell carcinoma via targeting miR-3619-5p/
HDGF axis. Acta Histochem (2020) 122(8):151647. doi: 10.1016/
j.acthis.2020.151647

110. Lin, Z, Sun, L, Xie, S, Zhang, S, Fan, S, Li, Q, et al. Chemotherapy-induced
long non-coding RNA 1 promotes metastasis and chemo-resistance of TSCC via
the wnt/B-catenin signaling pathway. Mol Ther (2018) 26(6):1494-508. doi:
10.1016/j.ymthe.2018.04.002

111. Li S, Shi, Z, Fu, S, Li, Q, Li, B, Sang, L, et al. Exosomal-mediated transfer of
APCDDI1L-ASI induces 5-fluorouracil resistance in oral squamous cell carcinoma
via miR-1224-5p/nuclear receptor binding SET domain protein 2 (NSD2) axis.
Bioengineered. (2021) 12(1):7188-204. doi: 10.1080/21655979.2021.1979442

112. Zhang, K, Zhou, H, Yan, B, and Cao, X. TUG1/miR-133b/CXCR4 axis
regulates cisplatin resistance in human tongue squamous cell carcinoma. Cancer
Cell Int (2020) 20:148. doi: 10.1186/s12935-020-01224-9

113. Lin, L, Liu, X, and Lv, B. Long non-coding RNA MEG3 promotes
autophagy and apoptosis of nasopharyngeal carcinoma cells via PTEN up-
regulation by binding to microRNA-21. J Cell Mol Med (2021) 25(1):61-72. doi:
10.1111/jcmm. 15759

114. Liu, H, Zheng, W, Chen, Q, Zhou, Y, Pan, Y, Zhang, ], et al. IncRNA
CASCI19 contributes to radioresistance of nasopharyngeal carcinoma by promoting
autophagy via AMPK-mTOR pathway. Int J Mol Sci (2021) 22(3):1407. doi:
10.3390/ijms22031407

115. Peng, ], Zheng, H, Liu, F, Wu, Q, and Liu, S. The m6A methyltransferase
METTL3 affects autophagy and progression of nasopharyngeal carcinoma by
regulating the stability of IncRNA ZFAS1. Infect Agent Cancer (2022) 17(1):1.
doi: 10.1186/s13027-021-00411-1

116. Li, H, Huang, ], Yu, S, Li, H, Zhou, Y, and Wu, Q. HOXA11-AS induces
cisplatin resistance by modulating the microRNA-98/PBX3 axis in nasopharyngeal
carcinoma. Oncol Lett (2021) 21(6):493. doi: 10.3892/01.2021.12754

117. Lin, FJ, Lin, XD, Xu, LY, and Zhu, SQ. Long noncoding RNA HOXA11-AS
modulates the resistance of nasopharyngeal carcinoma cells to cisplatin via miR-
454-3p/c-Met. Mol Cells (2020) 43(10):856-69. doi: 10.14348/molcells.2020.0133

118. Yuan, F, Lou, Z, Zhou, Z, and Yan, X. Long non-coding RNA KCNQ10T1
promotes nasopharyngeal carcinoma cell cisplatin resistance via the miR-454/
USP47 axis. Int ] Mol Med (2021) 47(4):54. doi: 10.3892/ijmm.2021.4887

119. Zheng, ZQ, Li, ZX, Guan, JL, Liu, X, Li, JY, Chen, Y, et al. Long noncoding
RNA TINCR-mediated regulation of acetyl-coa metabolism promotes
nasopharyngeal carcinoma progression and chemoresistance. Cancer Res (2020)
80(23):5174-88. doi: 10.1158/0008-5472.CAN-19-3626

120. Yuan, Z, Xiu, C, Song, K, Pei, R, Miao, S, Mao, X, et al. Long non-coding
RNA AFAP1-AS1/miR-320a/RBP] axis regulates laryngeal carcinoma cell stemness
and chemoresistance. J Cell Mol Med (2018) 22(9):4253-62. doi: 10.1111/
jemm.13707

121. Zhu, X, Liu, L, Wang, Y, Cong, J, Lin, Z, Wang, Y, et al. IncRNA MIAT/
HMGBI axis is involved in cisplatin resistance via regulating IL6-mediated
activation of the JAK2/STAT3 pathway in nasopharyngeal carcinoma. Front
Oncol (2021) 11:651693. doi: 10.3389/fonc.2021.651693

122. Liu, F, Tai, Y, and Ma, J. LncRNA NEAT1/let-7a-5p axis regulates the
cisplatin resistance in nasopharyngeal carcinoma by targeting rsf-1 and modulating
the ras-MAPK pathway. Cancer Biol Ther (2018) 19(6):534-42. doi: 10.1080/
15384047.2018.1450119

123. Cui, Z, Pu, T, Zhang, Y, Wang, J, and Zhao, Y. Long non-coding RNA
LINC00346 contributes to cisplatin resistance in nasopharyngeal carcinoma by
repressing miR-342-5p. Open Biol (2020) 10(5):190286. doi: 10.1098/rs0b.190286

124. Cao, C, Zhou, S, and Hu, J. Long noncoding RNA MAGI2-AS3/miR-218-
5p/GDPD5/SEC61A1 axis drives cellular proliferation and migration and confers
cisplatin resistance in nasopharyngeal carcinoma. Int Forum Allergy Rhinol (2020)
10(8):1012-23. doi: 10.1002/alr.22562

125. Ren, S, Li, G, Liu, C, Cai, T, Su, Z, Wei, M, et al. Next generation deep
sequencing identified a novel IncRNA n375709 associated with paclitaxel resistance

in nasopharyngeal carcinoma. Oncol Rep (2016) 36(4):1861-7. doi: 10.3892/
0r.2016.4981

126. Xue, F, Cheng, Y, Xu, L, Tian, C, Jiao, H, Wang, R, et al. LncRNA NEAT1/
miR-129/Bcl-2 signaling axis contributes to HDAC inhibitor tolerance in
nasopharyngeal cancer. Aging (Albany NY) (2020) 12(14):14174-88. doi:
10.18632/aging 103427

frontiersin.org


https://doi.org/10.1186/s10020-020-00229-4
https://doi.org/10.1128/MCB.00259-18
https://doi.org/10.3892/ol.2020.11809
https://doi.org/10.1002/jcb.27300
https://doi.org/10.1038/s41419-018-1280-8
https://doi.org/10.18632/aging.203416
https://doi.org/10.1080/21655979.2021.1972784
https://doi.org/10.1080/21655979.2021.1972784
https://doi.org/10.1111/jop.12769
https://doi.org/10.1080/21655979.2021.1955561
https://doi.org/10.1080/21655979.2021.1955561
https://doi.org/10.1002/cam4.1253
https://doi.org/10.1155/2019/8645153
https://doi.org/10.23812/20-222-A
https://doi.org/10.2147/OTT.S251518
https://doi.org/10.1038/s41598-017-13431-y
https://doi.org/10.3892/etm.2021.9839
https://doi.org/10.3892/etm.2021.9839
https://doi.org/10.1038/s41419-018-0793-5
https://doi.org/10.1016/j.omto.2021.12.021
https://doi.org/10.2147/OTT.S298679
https://doi.org/10.7150/ijms.64253
https://doi.org/10.1158/1078-0432.CCR-18-2739
https://doi.org/10.1158/1078-0432.CCR-18-2739
https://doi.org/10.2147/OTT.S232405
https://doi.org/10.1016/j.acthis.2020.151647
https://doi.org/10.1016/j.acthis.2020.151647
https://doi.org/10.1016/j.ymthe.2018.04.002
https://doi.org/10.1080/21655979.2021.1979442
https://doi.org/10.1186/s12935-020-01224-9
https://doi.org/10.1111/jcmm.15759
https://doi.org/10.3390/ijms22031407
https://doi.org/10.1186/s13027-021-00411-1
https://doi.org/10.3892/ol.2021.12754
https://doi.org/10.14348/molcells.2020.0133
https://doi.org/10.3892/ijmm.2021.4887
https://doi.org/10.1158/0008-5472.CAN-19-3626
https://doi.org/10.1111/jcmm.13707
https://doi.org/10.1111/jcmm.13707
https://doi.org/10.3389/fonc.2021.651693
https://doi.org/10.1080/15384047.2018.1450119
https://doi.org/10.1080/15384047.2018.1450119
https://doi.org/10.1098/rsob.190286
https://doi.org/10.1002/alr.22562
https://doi.org/10.3892/or.2016.4981
https://doi.org/10.3892/or.2016.4981
https://doi.org/10.18632/aging.103427
https://doi.org/10.3389/fonc.2022.965628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Pefia-Flores et al.

127. Wang, Q, Zhang, W, and Hao, S. LncRNA CCATI modulates the
sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis.
Cell Cycle (2017) 16(8):795-801. doi: 10.1080/15384101.2017.1301334

128. Zhu, Y, He, D, Bo, H, Liu, Z, Xiao, M, Xiang, L, et al. The MRVI1-AS1/
ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by
regulating the hippo-TAZ pathway. Oncogene. (2019) 38(32):6065-81. doi:
10.1038/541388-019-0858-7

129. Li, H, Huang, J, Yu, S, and Lou, Z. Long non-coding RNA DLEUI up-
regulates BIRC6 expression by competitively sponging miR-381-3p to promote
cisplatin resistance in nasopharyngeal carcinoma. Onco Targets Ther (2020)
13:2037-45. doi: 10.2147/OTT.S237456

130. Wang, ], Zhu, Y, Nj, S, and Liu, S. LncRNA GAS5 suppressed proliferation
and promoted apoptosis in laryngeal squamous cell carcinoma by targeting MiR-
26a-5p and modifying ULK2. Cancer Manag Res (2021) 13:871-87. doi: 10.2147/
CMAR.S250778

131. Chen, L, Xu, Z, Zhao, J, Zhai, X, Li, J, Zhang, Y, et al. H19/miR-107/
HMGBI1 axis sensitizes laryngeal squamous cell carcinoma to cisplatin by
suppressing autophagy in vitro and in vivo. Cell Biol Int (2021) 45(3):674-85.
doi: 10.1002/cbin.11520

132. Jiang, Q, Liu, S, Hou, L, Guan, Y, Yang, S, and Luo, Z. The implication of
LncRNA MALATI in promoting chemo-resistance of laryngeal squamous cell
carcinoma cells. J Clin Lab Anal (2020) 34(4):€23116. doi: 10.1002/jcla.23116

133. Song, K, Yu, P, Zhang, C, Yuan, Z, and Zhang, H. The LncRNA FGD5-
AS1/miR-497-5p axis regulates septin 2 (SEPT2) to accelerate cancer progression
and increase cisplatin-resistance in laryngeal squamous cell carcinoma. Mol
Carcinog (2021) 60(7):469-80. doi: 10.1002/mc.23305

134. Shen, N, Duan, X, Feng, Y, Zhang, ], Qiao, X, and Ding, W. Long non-
coding RNA HOXAI11 antisense RNA upregulates spermatogenesis-associated
serine-rich 2-like to enhance cisplatin resistance in laryngeal squamous cell
carcinoma by suppressing microRNA-518a. Bioengineered. (2022) 13(1):974-84.
doi: 10.1080/21655979.2021.2016038

135. Yang, S, Yuan, ZJ, Zhu, YH, Chen, X, and Wang, W. IncRNA PVT1
promotes cetuximab resistance of head and neck squamous cell carcinoma cells by
inhibiting miR-124-3p. Head Neck (2021) 43(9):2712-23. doi: 10.1002/hed.26742

136. Goyal, B, Yadav, SRM, Awasthee, N, Gupta, S, Kunnumakkara, AB, and
Gupta, SC. Diagnostic, prognostic, and therapeutic significance of long non-coding
RNA MALATI in cancer. Biochim Biophys Acta Rev Cancer. (2021) 1875
(2):188502. doi: 10.1016/j.bbcan.2021.188502

137. Xue, JY, Huang, C, Wang, W, Li, HB, Sun, M, and Xie, M. HOXA11-AS: a
novel regulator in human cancer proliferation and metastasis. Onco Targets Ther
(2018) 11:4387-93. doi: 10.2147/OTT.S166961

138. Sanchez Calle, A, Kawamura, Y, Yamamoto, Y, Takeshita, F, and Ochiya,
T. Emerging roles of long non-coding RNA in cancer. Cancer Sci (2018) 109
(7):2093-100. doi: 10.1111/cas.13642

139. Ghafouri-Fard, S, and Taheri, M. Maternally expressed gene 3 (MEG3): A
tumor suppressor long non coding RNA. BioMed Pharmacother (2019)
118:109129. doi: 10.1016/j.biopha.2019.109129

140. Li, Q, Wang, J, Meng, X, Chen, W, Feng, ], and Mao, J. Identification of
autophagy-related gene and IncRNA signatures in the prognosis of HNSCC. Oral
Dis (2021). doi: 10.1111/0di.13889

141. Bukowski, K, Kciuk, M, and Kontek, R. Mechanisms of multidrug
resistance in cancer chemotherapy. Int ] Mol Sci (2020) 21(9):3233. doi: 10.3390/
ijms21093233

142. Wang, Y, Fang, Z, Hong, M, Yang, D, and Xie, W. Long-noncoding RNAs

(IncRNAs) in drug metabolism and disposition, implications in cancer chemo-
resistance. Acta Pharm Sin B (2020) 10(1):105-12. doi: 10.1016/j.apsb.2019.09.011

143. Asano, T. Drug resistance in cancer therapy and the role of epigenetics. |
Nippon Med Sch (2020) 87(5):244-51. doi: 10.1272/jnms.JNMS.2020_87-508

144. Almazroo, OA, Miah, MK, and Venkataramanan, R. Drug metabolism in
the liver. Clin Liver Dis (2017) 21(1):1-20. doi: 10.1016/j.c1d.2016.08.001

145. Zhao, M, Ma, ], Li, M, Zhang, Y, Jiang, B, Zhao, X, et al. Cytochrome P450
enzymes and drug metabolism in humans. Int J Mol Sci (2021) 22(23):12808. doi:
10.3390/ijms222312808

146. Kaur, G, Gupta, SK, Singh, P, Ali, V, Kumar, V, and Verma, M. Drug-
metabolizing enzymes: role in drug resistance in cancer. Clin Transl Oncol (2020)
22(10):1667-80. doi: 10.1007/s12094-020-02325-7

147. Liu, X. Transporter-mediated drug-drug interactions and their significance.
Adv Exp Med Biol (2019) 1141:241-91. doi: 10.1007/978-981-13-7647-4_5

148. Zhou, Y, Sun, W, Qin, Z, Guo, S, Kang, Y, Zeng, S, et al. LncRNA
regulation: New frontiers in epigenetic solutions to drug chemoresistance. Biochem
Pharmacol (2021) 189:114228. doi: 10.1016/j.bcp.2020.114228

149. Roden, DM, McLeod, HL, Relling, MV, Williams, MS, Mensah, GA,
Peterson, JF, et al. Pharmacogenomics. Lancet (2019) 394(10197):521-32. doi:
10.1016/S0140-6736(19)31276-0

Frontiers in Oncology

138

10.3389/fonc.2022.965628

150. Shen, L, Li, N, Zhou, Q, Li, Z, and Shen, L. Development and validation of
an autophagy-related LncRNA prognostic signature in head and neck squamous
cell carcinoma. Front Oncol (2021) 11:743611. doi: 10.3389/fonc.2021.743611

151. Sun, Y, and Ma, L. New insights into long non-coding RNA MALAT1 in
cancer and metastasis. Cancers (Basel) (2019) 11(2):216. doi: 10.3390/
cancers11020216

152. Xiao, H, Tang, K, Liu, P, Chen, K, Hu, ], Zeng, J, et al. LncRNA MALAT1
functions as a competing endogenous RNA to regulate ZEB2 expression by
sponging miR-200s in clear cell kidney carcinoma. Oncotarget (2015) 6
(35):38005-15. doi: 10.18632/oncotarget.5357

153. Ye, Y, Zhang, F, Chen, Q, Huang, Z, and Li, M. LncRNA MALAT1 modified
progression of clear cell kidney carcinoma (KIRC) by regulation of miR-194-5p/
ACVR2B signaling. Mol Carcinog (2019) 58(2):279-92. doi: 10.1002/mc.22926

154. Pang, EJ, Yang, R, Fu, XB, and Liu, YF. Overexpression of long non-coding
RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in
pancreatic cancer. Tumour Biol (2015) 36(4):2403-7. doi: 10.1007/s13277-014-2850-8

155. Zhang, D, Fang, C, Li, H, Lu, C, Huang, J, Pan, J, et al. Long ncRNA
MALAT1 promotes cell proliferation, migration, and invasion in prostate cancer
via sponging miR-145. Transl Androl Urol (2021) 10(6):2307-19. doi: 10.21037/
tau-20-1526

156. Hao, T, Wang, Z, Yang, J, Zhang, Y, Shang, Y, and Sun, J. MALAT1
knockdown inhibits prostate cancer progression by regulating miR-140/BIRC6
axis. BioMed Pharmacother (2020) 123:109666. doi: 10.1016/j.biopha.2019.109666

157. Li, Z, Zhou, Y, Tu, B, Bu, Y, Liu, A, and Kong, J. Long noncoding RNA
MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell
carcinoma by regulating Cksl expression. J Oral Pathol Med (2017) 46(8):583—
90. doi: 10.1111/jop.12538

158. Zhao, X, Chen, Q, Cai, Y, Chen, D, Bei, M, Dong, H, et al. TRA2A binds
with LncRNA MALAT1 to promote esophageal cancer progression by regulating
EZH2/B-catenin pathway. ] Cancer (2021) 12(16):4883-90. doi: 10.7150/jca.55661

159. Wu, Y, Sarkissyan, M, Ogah, O, Kim, ], and Vadgama, JV. Expression of
MALATI promotes trastuzumab resistance in HER2 overexpressing breast
cancers. Cancers (Basel) (2020) 12(7):1918. doi: 10.3390/cancers12071918

160. Yue, X, Wu, WY, Dong, M, and Guo, M. LncRNA MALAT1 promotes
breast cancer progression and doxorubicin resistance via regulating miR-570-3p.
BioMed ] (2021) 44(6s2):5296-s304. doi: 10.1016/j.bj.2020.11.002

161. Zhang, Y, Chen, Z, Li, MJ, Guo, HY, and Jing, NC. Long non-coding RNA
metastasis-associated lung adenocarcinoma transcript 1 regulates the expression of
Gli2 by miR-202 to strengthen gastric cancer progression. BioMed Pharmacother
(2017) 85:264-71. doi: 10.1016/j.biopha.2016.11.014

162. Mao, TL, Fan, MH, Dlamini, N, and Liu, CL. LncRNA MALAT]1 facilitates
ovarian cancer progression through promoting chemoresistance and invasiveness
in the tumor microenvironment. Int ] Mol Sci (2021) 22(19):10201. doi: 10.3390/
ijms221910201

163. Sun, Z, Ou, C, Liu, J, Chen, C, Zhou, Q, Yang, S, et al. YAP1-induced
MALATI1 promotes epithelial-mesenchymal transition and angiogenesis by
sponging miR-126-5p in colorectal cancer. Oncogene (2019) 38(14):2627-44. doi:
10.1038/541388-018-0628-y

164. Xu, Y, Zhang, X, Hu, X, Zhou, W, Zhang, P, Zhang, J, et al. The effects of
IncRNA MALATI on proliferation, invasion and migration in colorectal cancer
through regulating SOX9. Mol Med (2018) 24(1):52. doi: 10.1186/s10020-018-0050-5

165. Ghafouri-Fard, S, Shoorei, H, Bahroudi, Z, Abak, A, and Taheri, M. The
role of H19 IncRNA in conferring chemoresistance in cancer cells. BioMed
Pharmacother (2021) 138:111447. doi: 10.1016/j.biopha.2021.111447

166. Guo, K, Qian, K, Shi, Y, Sun, T, and Wang, Z. LncRNA-MIAT promotes
thyroid cancer progression and function as ceRNA to target EZH2 by sponging
miR-150-5p. Cell Death Dis (2021) 12(12):1097. doi: 10.1038/s41419-021-04386-0

167. Lin, D, Xu, HP, Lin, JH, Hu, HH, Wang, Q, and Zhang, J. Long non-coding
RNA MIAT promotes non-small cell lung cancer progression by sponging miR-
1246. Eur Rev Med Pharmacol Sci (2020) 24(17):8626. doi: 10.26355/
eurrev_202009_22762

168. Ye, T, Feng, J, Cui, M, Yang, J, Wan, X, Xie, D, et al. LncRNA MIAT
services as a noninvasive biomarker for diagnosis and correlated with immune
infiltrates in breast cancer. Int ] Womens Health (2021) 13:991-1004. doi: 10.2147/
IJWH.S312714

169. Zhang, L, Ge, S, and Cao, B. Long non-coding RNA MIAT promotes
cervical cancer proliferation and migration. J Biochem (2020) 168(2):183-90. doi:
10.1093/jb/mvaa037

170. Ding, Z, Ying, W, He, Y, Chen, X, Jiao, Y, Wang, ], et al. IncRNA-UCALI in
the diagnosis of bladder cancer: A meta-analysis. Med (Baltimore) (2021) 100(11):
€24805. doi: 10.1097/MD.0000000000024805

171. Wang, Y, Li, X, Chen, W, and Wu, W. The common region of IncRNAs
UCALI and UCALlo contributes to the bladder cancer tumorigenesis. Eur ] Cancer
Prev (2021) 30(5):389-92. doi: 10.1097/CEJ.0000000000000642

frontiersin.org


https://doi.org/10.1080/15384101.2017.1301334
https://doi.org/10.1038/s41388-019-0858-7
https://doi.org/10.2147/OTT.S237456
https://doi.org/10.2147/CMAR.S250778
https://doi.org/10.2147/CMAR.S250778
https://doi.org/10.1002/cbin.11520
https://doi.org/10.1002/jcla.23116
https://doi.org/10.1002/mc.23305
https://doi.org/10.1080/21655979.2021.2016038
https://doi.org/10.1002/hed.26742
https://doi.org/10.1016/j.bbcan.2021.188502
https://doi.org/10.2147/OTT.S166961
https://doi.org/10.1111/cas.13642
https://doi.org/10.1016/j.biopha.2019.109129
https://doi.org/10.1111/odi.13889
https://doi.org/10.3390/ijms21093233
https://doi.org/10.3390/ijms21093233
https://doi.org/10.1016/j.apsb.2019.09.011
https://doi.org/10.1272/jnms.JNMS.2020_87-508
https://doi.org/10.1016/j.cld.2016.08.001
https://doi.org/10.3390/ijms222312808
https://doi.org/10.1007/s12094-020-02325-7
https://doi.org/10.1007/978-981-13-7647-4_5
https://doi.org/10.1016/j.bcp.2020.114228
https://doi.org/10.1016/S0140-6736(19)31276-0
https://doi.org/10.3389/fonc.2021.743611
https://doi.org/10.3390/cancers11020216
https://doi.org/10.3390/cancers11020216
https://doi.org/10.18632/oncotarget.5357
https://doi.org/10.1002/mc.22926
https://doi.org/10.1007/s13277-014-2850-8
https://doi.org/10.21037/tau-20-1526
https://doi.org/10.21037/tau-20-1526
https://doi.org/10.1016/j.biopha.2019.109666
https://doi.org/10.1111/jop.12538
https://doi.org/10.7150/jca.55661
https://doi.org/10.3390/cancers12071918
https://doi.org/10.1016/j.bj.2020.11.002
https://doi.org/10.1016/j.biopha.2016.11.014
https://doi.org/10.3390/ijms221910201
https://doi.org/10.3390/ijms221910201
https://doi.org/10.1038/s41388-018-0628-y
https://doi.org/10.1186/s10020-018-0050-5
https://doi.org/10.1016/j.biopha.2021.111447
https://doi.org/10.1038/s41419-021-04386-0
https://doi.org/10.26355/eurrev_202009_22762
https://doi.org/10.26355/eurrev_202009_22762
https://doi.org/10.2147/IJWH.S312714
https://doi.org/10.2147/IJWH.S312714
https://doi.org/10.1093/jb/mvaa037
https://doi.org/10.1097/MD.0000000000024805
https://doi.org/10.1097/CEJ.0000000000000642
https://doi.org/10.3389/fonc.2022.965628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Pefia-Flores et al.

172. 1i, YJ, Lei, YH, Yao, N, Wang, CR, Hu, N, Ye, WC, et al. Autophagy and
multidrug resistance in cancer. Chin ] Cancer (2017) 36(1):52. doi: 10.1186/s40880-
017-0219-2

173. Ferro, F, Servais, S, Besson, P, Roger, S, Dumas, JF, and Brisson, L.
Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol
(2020) 98:129-38. doi: 10.1016/j.semcdb.2019.05.029

174. Li, X, He, S, and Ma, B. Autophagy and autophagy-related proteins in
cancer. Mol Cancer (2020) 19(1):12. doi: 10.1186/s12943-020-1138-4

175. Levine, B, and Kroemer, G. Biological functions of autophagy genes: A
disease perspective. Cell (2019) 176(1-2):11-42. doi: 10.1016/.cell.2018.09.048

176. Wang, Y, and Zhang, H. Regulation of autophagy by mtOR signaling
pathway. Adv Exp Med Biol (2019) 1206:67-83. doi: 10.1007/978-981-15-0602-4_3

177. Babaei, G, Aziz, SG, and Jaghi, NZZ. EMT. Cancer stem cells and
autophagy; the three main axes of metastasis. BioMed Pharmacother (2021)
133:110909. doi: 10.1016/j.biopha.2020.110909

178. Saha, S, Panigrahi, DP, Patil, S, and Bhutia, SK. Autophagy in health and
disease: A comprehensive review. BioMed Pharmacother (2018) 104:485-95. doi:
10.1016/j.biopha.2018.05.007

179. Al-Bari, MAA, and Xu, P. Molecular regulation of autophagy machinery by
mTOR-dependent and -independent pathways. Ann N Y Acad Sci (2020) 1467
(1):3-20. doi: 10.1111/nyas.14305

180. Zhang, H, and Lu, B. The roles of ceRNAs-mediated autophagy in cancer
chemoresistance and metastasis. Cancers (Basel) (2020) 12(10):2926. doi: 10.3390/
cancers12102926

181. Liu, W, Meng, Y, Zong, C, Zhang, S, and Wei, L. Autophagy and
tumorigenesis. Adv Exp Med Biol (2020) 1207:275-99. doi: 10.1007/978-981-15-
4272-5_20

182. Li, X, Jin, F, and Li, Y. A novel autophagy-related IncRNA prognostic risk
model for breast cancer. J Cell Mol Med (2021) 25(1):4-14. doi: 10.1111/
jemm.15980

183. Zhang, R, Zhu, Q, Yin, D, Yang, Z, Guo, ], Zhang, , et al. Identification and
validation of an autophagy-related IncRNA signature for patients with breast
cancer. Front Oncol (2020) 10:597569. doi: 10.3389/fonc.2020.597569

184. Gao, X, Zhang, S, Chen, Y, Wen, X, Chen, M, Wang, S, et al. Development
of a novel six-long noncoding RNA signature predicting survival of patients with
bladder urothelial carcinoma. J Cell Biochem (2019) 120(12):19796-809. doi:
10.1002/jcb.29285

185. Sun, Z, Jing, C, Xiao, C, and Li, T. An autophagy-related long non-coding
RNA prognostic signature accurately predicts survival outcomes in bladder
urothelial carcinoma patients. Aging (Albany NY) (2020) 12(15):15624-37. doi:
10.18632/aging.103718

186. Deng, Z, Li, X, Shi, Y, Lu, Y, Yao, W, and Wang, J. A novel autophagy-
related IncRNAs signature for prognostic prediction and clinical value in patients
with pancreatic cancer. Front Cell Dev Biol (2020) 8:606817. doi: 10.3389/
fcell.2020.606817

187. Wei, ], Ge, X, Tang, Y, Qian, Y, Lu, W, Jiang, K, et al. An autophagy-related
long noncoding rna signature contributes to poor prognosis in colorectal cancer. ]
Oncol (2020) 2020:4728947. doi: 10.1155/2020/4728947

188. Zhao, D, Sun, X, Long, S, and Yao, S. An autophagy-related long non-
coding RNA signature for patients with colorectal cancer. Physiol Int (2021) 108
(2):202-20. doi: 10.1556/2060.2021.00125

189. Wu, L, Wen, Z, Song, Y, and Wang, L. A novel autophagy-related IncRNA
survival model for lung adenocarcinoma. J Cell Mol Med (2021) 25(12):5681-90.
doi: 10.1111/jcmm. 16582

190. Zhang, X, Cao, Y, and Chen, L. Construction of a prognostic signature of
autophagy-related IncRNAs in non-small-cell lung cancer. BMC Cancer (2021) 21
(1):921. doi: 10.1186/512885-021-08654-2

191. Guo, Y, Yang, PT, Wang, ZW, Xu, K, Kou, WH, and Luo, H. Identification
of three autophagy-related long non-coding RNAs as a novel head and neck
squamous cell carcinoma prognostic signature. Front Oncol (2020) 10:603864. doi:
10.3389/fonc.2020.603864

192. Qu, X, Alsager, S, Zhuo, Y, and Shan, B. HOX transcript antisense RNA
(HOTAIR) in cancer. Cancer Lett (2019) 454:90-7. doi: 10.1016/
j.canlet.2019.04.016

193. Zhang, Y, and Weinberg, RA. Epithelial-to-mesenchymal transition in
cancer: complexity and opportunities. Front Med (2018) 12(4):361-73. doi:
10.1007/s11684-018-0656-6

194. Chen, T, You, Y, Jiang, H, and Wang, ZZ. Epithelial-mesenchymal
transition (EMT): A biological process in the development, stem cell
differentiation, and tumorigenesis. J Cell Physiol (2017) 232(12):3261-72. doi:
10.1002/jcp.25797

195. Pastushenko, I, and Blanpain, C. EMT transition states during tumor
progression and metastasis. Trends Cell Biol (2019) 29(3):212-26. doi: 10.1016/
j.tcb.2018.12.001

Frontiers in Oncology

139

10.3389/fonc.2022.965628

196. Lin, YT, and Wu, KJ. Epigenetic regulation of epithelial-mesenchymal
transition: focusing on hypoxia and TGF-P signaling. ] BioMed Sci (2020) 27(1):39.
doi: 10.1186/s12929-020-00632-3

197. Hao, Y, Baker, D, and Ten Dijke, P. TGF-B-mediated epithelial-
mesenchymal transition and cancer metastasis. Int ] Mol Sci (2019) 20(11):2767.
doi: 10.3390/ijms20112767

198. Tang, Q, Chen, J, Di, Z, Yuan, W, Zhou, Z, Liu, Z, et al. TM4SF1 promotes
EMT and cancer stemness via the wnt/B-catenin/SOX2 pathway in colorectal
cancer. ] Exp Clin Cancer Res (2020) 39(1):232. doi: 10.1186/s13046-020-01690-z

199. Tian, H, Zhou, T, Chen, H, Li, C, Jiang, Z, Lao, L, et al. Bone
morphogenetic protein-2 promotes osteosarcoma growth by promoting
epithelial-mesenchymal transition (EMT) through the wnt/B-catenin signaling
pathway. J Orthop Res (2019) 37(7):1638-48. doi: 10.1002/jor.24244

200. Wang, Y, Zhong, Y, Hou, T, Liao, ], Zhang, C, Sun, C, et al. PM2.5 induces
EMT and promotes CSC properties by activating notch pathway in vivo and vitro.
Ecotoxicol Environ Saf (2019) 178:159-67. doi: 10.1016/j.ecoenv.2019.03.086

201. Xu, H, Dun, S, Gao, Y, Ming, J, Hui, L, and Qiu, X. TMEM107 inhibits
EMT and invasion of NSCLC through regulating the hedgehog pathway. Thorac
Cancer (2021) 12(1):79-89. doi: 10.1111/1759-7714.13715

202. Gao, S, Hu, J, Wu, X, and Liang, Z. PMA treated THP-1-derived-IL-6
promotes EMT of SW48 through STAT3/ERK-dependent activation of wnt/B-
catenin signaling pathway. BioMed Pharmacother (2018) 108:618-24. doi: 10.1016/
j-biopha.2018.09.067

203. Grelet, S, Link, LA, Howley, B, Obellianne, C, Palanisamy, V, Gangaraju,
VK, et al. A regulated PNUTS mRNA to IncRNA splice switch mediates EMT and
tumour progression. Nat Cell Biol (2017) 19(9):1105-15. doi: 10.1038/ncb3595

204. Wang, X, Lai, Q, He, J, Li, Q, Ding, J, Lan, Z, et al. LncRNA SNHG6
promotes proliferation, invasion and migration in colorectal cancer cells by
activating TGF-B/Smad signaling pathway via targeting UPF1 and inducing EMT
via regulation of ZEBI. Int ] Med Sci (2019) 16(1):51-9. doi: 10.7150/ijms.27359

205. Zhang, H, Wang, ], Yin, Y, Meng, Q, and Lyu, Y. The role of EMT-related
IncRNA in the process of triple-negative breast cancer metastasis. Biosci Rep (2021)
41(2):BSR20203121. doi: 10.1042/BSR20203121

206. Li, Z, Ren, R, Wang, L, Wang, Z, Zong, X, Sun, P, et al. IncRNA
KCNQIOT1 promotes emt, angiogenesis, and stemness of pituitary adenoma by
upregulation of RAB11A. ] Oncol (2022) 2022:4474476. doi: 10.1155/2022/4474476

207. Tong, H, Li, T, Gao, S, Yin, H, Cao, H, and He, W. An epithelial-
mesenchymal transition-related long noncoding RNA signature correlates with
the prognosis and progression in patients with bladder cancer. Biosci Rep (2021) 41
(1):BSR20203944. doi: 10.1042/BSR20203944

208. Wang, Y, Liu, ], Ren, F, Chu, Y, and Cui, B. Identification and validation of a
four-long non-coding rna signature associated with immune infiltration and prognosis
in colon cancer. Front Genet (2021) 12:671128. doi: 10.3389/fgene.2021.671128

209. Meng, Q, Liu, M, and Cheng, R. LINC00461/miR-4478/E2F1 feedback
loop promotes non-small cell lung cancer cell proliferation and migration. Biosci
Rep (2020) 40(2):BSR20191345. doi: 10.1042/BSR20191345

210. Wu, HK, Liu, C, Li, XX, Ji, W, Xin, CD, Hu, ZQ, et al. PHLPP2 is regulated
by competing endogenous RNA network in pathogenesis of colon cancer. Aging
(Albany NY) (2020) 12(13):12812-40. doi: 10.18632/aging.103246

211. Xu, Z, Chen, Z, Peng, M, Zhang, Z, Luo, W, Shi, R, et al. MicroRNA MiR-
490-5p suppresses pancreatic cancer through regulating epithelial-mesenchymal
transition via targeting MAGI2 antisense RNA 3. Bioengineered. (2022) 13
(2):2673-85. doi: 10.1080/21655979.2021.2024653

212. Li, D, Wang, ], Zhang, M, Hu, X, She, ], Qiu, X, et al. LncRNA MAGI2-AS3
is regulated by brd4 and promotes gastric cancer progression via maintaining zeb1l
overexpression by sponging miR-141/200a. Mol Ther Nucleic Acids (2020) 19:109-
23. doi: 10.1016/j.0mtn.2019.11.003

213. Shen, D, Xu, ], Cao, X, Cao, X, Tan, H, and Deng, H. Long noncoding RNA
MAGI2-AS3 inhibits bladder cancer progression through MAGI2/PTEN/
epithelial-mesenchymal transition (EMT) axis. Cancer biomark (2021) 30
(2):155-65. doi: 10.3233/CBM-201421

214. Pan, G, Liu, Y, Shang, L, Zhou, F, and Yang, S. EMT-associated
microRNAs and their roles in cancer stemness and drug resistance. Cancer
Commun (Lond). (2021) 41(3):199-217. doi: 10.1002/cac2.12138

215. Smith, AG, and Macleod, KF. Autophagy, cancer stem cells and drug
resistance. J Pathol (2019) 247(5):708-18. doi: 10.1002/path.5222

216. Huang, T, Song, X, Xu, D, Tiek, D, Goenka, A, Wu, B, et al. Stem cell
programs in cancer initiation, progression, and therapy resistance. Theranostics
(2020) 10(19):8721-43. doi: 10.7150/thno.41648

217. Safa, AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J
Transl Sci (2020) 6(3):341. doi: 10.15761/JTS.1000341

218. Liu, YP, Zheng, CC, Huang, YN, He, ML, Xu, WW, and Li, B. Molecular
mechanisms of chemo- and radiotherapy resistance and the potential implications
for cancer treatment. MedComm (2020) (2021) 2(3):315-40. doi: 10.1002/mco02.55

frontiersin.org


https://doi.org/10.1186/s40880-017-0219-2
https://doi.org/10.1186/s40880-017-0219-2
https://doi.org/10.1016/j.semcdb.2019.05.029
https://doi.org/10.1186/s12943-020-1138-4
https://doi.org/10.1016/j.cell.2018.09.048
https://doi.org/10.1007/978-981-15-0602-4_3
https://doi.org/10.1016/j.biopha.2020.110909
https://doi.org/10.1016/j.biopha.2018.05.007
https://doi.org/10.1111/nyas.14305
https://doi.org/10.3390/cancers12102926
https://doi.org/10.3390/cancers12102926
https://doi.org/10.1007/978-981-15-4272-5_20
https://doi.org/10.1007/978-981-15-4272-5_20
https://doi.org/10.1111/jcmm.15980
https://doi.org/10.1111/jcmm.15980
https://doi.org/10.3389/fonc.2020.597569
https://doi.org/10.1002/jcb.29285
https://doi.org/10.18632/aging.103718
https://doi.org/10.3389/fcell.2020.606817
https://doi.org/10.3389/fcell.2020.606817
https://doi.org/10.1155/2020/4728947
https://doi.org/10.1556/2060.2021.00125
https://doi.org/10.1111/jcmm.16582
https://doi.org/10.1186/s12885-021-08654-2
https://doi.org/10.3389/fonc.2020.603864
https://doi.org/10.1016/j.canlet.2019.04.016
https://doi.org/10.1016/j.canlet.2019.04.016
https://doi.org/10.1007/s11684-018-0656-6
https://doi.org/10.1002/jcp.25797
https://doi.org/10.1016/j.tcb.2018.12.001
https://doi.org/10.1016/j.tcb.2018.12.001
https://doi.org/10.1186/s12929-020-00632-3
https://doi.org/10.3390/ijms20112767
https://doi.org/10.1186/s13046-020-01690-z
https://doi.org/10.1002/jor.24244
https://doi.org/10.1016/j.ecoenv.2019.03.086
https://doi.org/10.1111/1759-7714.13715
https://doi.org/10.1016/j.biopha.2018.09.067
https://doi.org/10.1016/j.biopha.2018.09.067
https://doi.org/10.1038/ncb3595
https://doi.org/10.7150/ijms.27359
https://doi.org/10.1042/BSR20203121
https://doi.org/10.1155/2022/4474476
https://doi.org/10.1042/BSR20203944
https://doi.org/10.3389/fgene.2021.671128
https://doi.org/10.1042/BSR20191345
https://doi.org/10.18632/aging.103246
https://doi.org/10.1080/21655979.2021.2024653
https://doi.org/10.1016/j.omtn.2019.11.003
https://doi.org/10.3233/CBM-201421
https://doi.org/10.1002/cac2.12138
https://doi.org/10.1002/path.5222
https://doi.org/10.7150/thno.41648
https://doi.org/10.15761/JTS.1000341
https://doi.org/10.1002/mco2.55
https://doi.org/10.3389/fonc.2022.965628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Pefa-Flores et al.

219. Erin, N, Grahovac, J, Brozovic, A, and Efferth, T. Tumor
microenvironment and epithelial mesenchymal transition as targets to overcome
tumor multidrug resistance. Drug Resist Updat. (2020) 53:100715. doi: 10.1016/
j.drup.2020.100715

220. Xia, S, Pan, Y, Liang, Y, Xu, J, and Cai, X. The microenvironmental and
metabolic aspects of sorafenib resistance in hepatocellular carcinoma.
EBioMedicine. (2020) 51:102610. doi: 10.1016/j.ebiom.2019.102610

221. Prieto-Vila, M, Takahashi, RU, Usuba, W, Kohama, I, and Ochiya, T. Drug
resistance driven by cancer stem cells and their niche. Int ] Mol Sci (2017) 18
(12):2574. doi: 10.3390/ijms18122574

222. Yang, L, Shi, P, Zhao, G, Xu, ], Peng, W, Zhang, J, et al. Targeting cancer
stem cell pathways for cancer therapy. Signal Transduct Target Ther (2020) 5(1):8.
doi: 10.1038/s41392-020-0110-5

223. Castro-Oropeza, R, Melendez-Zajgla, J, Maldonado, V, and Vazquez-
Santillan, K. The emerging role of IncRNAs in the regulation of cancer stem
cells. Cell Oncol (Dordr) (2018) 41(6):585-603. doi: 10.1007/s13402-018-0406-4

224. Yue, J, Wu, Y, Qiu, L, Zhao, R, Jiang, M, and Zhang, H. LncRNAs link
cancer stemness to therapy resistance. Am J Cancer Res (2021) 11(4):1051-68.

225. Li, H, Zhu, L, Xu, L, Qin, K, Liu, C, Yu, Y, et al. Long noncoding RNA
1inc00617 exhibits oncogenic activity in breast cancer. Mol Carcinog (2017) 56
(1):3-17. doi: 10.1002/mc.22338

226. Li, Z, Jiang, P, Li, J, Peng, M, Zhao, X, Zhang, X, et al. Tumor-derived
exosomal Inc-Sox2ot promotes EMT and stemness by acting as a ceRNA in
pancreatic ductal adenocarcinoma. Oncogene. (2018) 37(28):3822-38. doi:
10.1038/541388-018-0237-9

227. Huang, Y, Wang, L, and Liu, D. HOTAIR regulates colorectal cancer stem
cell properties and promotes tumorigenicity by sponging miR-211-5p and
modulating FLT-1. Cell Cycle (2021) 20(19):1999-2009. doi: 10.1080/
15384101.2021.1962636

228. Deng, ], Yang, M, Jiang, R, An, N, Wang, X, and Liu, B. Long non-coding
RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation
and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast
cancer cells. PLoS One (2017) 12(1):e0170860. doi: 10.1371/journal.pone.0170860

229. Li, T, Zhu, ], Wang, X, Chen, G, Sun, L, Zuo, §, et al. Long non-coding RNA
IncTCF7 activates the wnt/B-catenin pathway to promote metastasis and invasion in
colorectal cancer. Oncol Lett (2017) 14(6):7384-90. doi: 10.3892/01.2017.7154

230. Lecerf, C, Peperstraete, E, Le Bourhis, X, and Adriaenssens, E. Propagation
and maintenance of cancer stem cells: a major influence of the long non-coding
RNA H19. Cells (2020) 9(12):2613. doi: 10.3390/cells9122613

231. Shima, H, Kida, K, Adachi, S, Yamada, A, Sugae, S, Narui, K, et al. Lnc
RNA H19 is associated with poor prognosis in breast cancer patients and promotes
cancer stemness. Breast Cancer Res Treat (2018) 170(3):507-16. doi: 10.1007/
$10549-018-4793-z

232. Sasaki, N, Toyoda, M, Yoshimura, H, Matsuda, Y, Arai, T, Takubo, K, et al.
H19 long non-coding RNA contributes to sphere formation and invasion through
regulation of CD24 and integrin expression in pancreatic cancer cells. Oncotarget
(2018) 9(78):34719-34. doi: 10.18632/oncotarget.26176

Frontiers in Oncology

140

10.3389/fonc.2022.965628

233. Hong, L, Wang, H, Wang, ], Wei, S, Zhang, F, Han, J, et al. LncRNA PTCSC3
inhibits tumor growth and cancer cell stemness in gastric cancer by interacting with
IncRNA linc-pint. Cancer Manag Res (2019) 11:10393-9. doi: 10.2147/CMAR.S231369

234. Momtazmanesh, S, and Rezaei, N. Long non-coding RNAs in diagnosis,
treatment, prognosis, and progression of glioma: a state-of-the-art review. Front
Oncol (2021) 11:712786. doi: 10.3389/fonc.2021.712786

235. Xiong, F, Zhu, K, Deng, S, Huang, H, Yang, L, Gong, Z, et al. AFAP1-AS1: a
rising star among oncogenic long non-coding RNAs. Sci China Life Sci (2021) 64
(10):1602-11. doi: 10.1007/s11427-020-1874-6

236. Wu, XB, Feng, X, Chang, QM, Zhang, CW, Wang, ZF, Liu, ], et al. Cross-
talk among AFAP1-AS1, ACVRI and microRNA-384 regulates the stemness of
pancreatic cancer cells and tumorigenicity in nude mice. ] Exp Clin Cancer Res
(2019) 38(1):107. doi: 10.1186/s13046-019-1051-0

237. Picon, H, and Guddati, AK. Mechanisms of resistance in head and neck
cancer. Am ] Cancer Res (2020) 10(9):2742-51.

238. Zhou, JC, Zhang, JJ, Ma, W, Zhang, W, Ke, ZY, and Ma, LG. Anti-tumor
effect of HOTAIR-miR-613-SNAI2 axis through suppressing EMT and drug
resistance in laryngeal squamous cell carcinoma. RSC Adv (2018) 8(52):29879—
89. doi: 10.1039/C8RA04514C

239. Liu, Y, Liu, X, Lin, C, Jia, X, Zhu, H, Song, J, et al. Noncoding RNAs
regulate alternative splicing in cancer. ] Exp Clin Cancer Res (2021) 40(1):11. doi:
10.1186/513046-020-01798-2

240. Gao, N, Li, Y, Li, ], Gao, Z, Yang, Z, Li, Y, et al. Long non-coding RNAs: the
regulatory mechanisms, research strategies, and future directions in cancers. Front
Oncol (2020) 10:598817. doi: 10.3389/fonc.2020.598817

241. Corra, F, Agnoletto, C, Minotti, L, Baldassari, F, and Volinia, S. The
network of non-coding rnas in cancer drug resistance. Front Oncol (2018) 8:327.
doi: 10.3389/fonc.2018.00327

242. Shi, T, Gao, G, and Cao, Y. Long noncoding RNAs as novel biomarkers
have a promising future in cancer diagnostics. Dis Markers (2016) 2016:9085195.
doi: 10.1155/2016/9085195

243. Ye, P, Feng, L, Shi, S, and Dong, C. The mechanisms of Incrna-mediated
multidrug resistance and the clinical application prospects of IncRNAs in breast
cancer. Cancers (Basel) (2022) 14(9):2101. doi: 10.3390/cancers14092101

COPYRIGHT

© 2022 Pefa-Flores, Bermudez, Ramos-Payan, Villegas-Mercado, Soto-
Barreras, Muela-Campos, Alvarez-Ramirez, Pérez-Aguirre, Larrinua-
Pacheco, Lopez-Camarillo, Ldpez-Guti€rrez, Garnica-Palazuelos, Estrada-
Macias, Cota-Quintero and Barraza-Gdmez. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

frontiersin.org


https://doi.org/10.1016/j.drup.2020.100715
https://doi.org/10.1016/j.drup.2020.100715
https://doi.org/10.1016/j.ebiom.2019.102610
https://doi.org/10.3390/ijms18122574
https://doi.org/10.1038/s41392-020-0110-5
https://doi.org/10.1007/s13402-018-0406-4
https://doi.org/10.1002/mc.22338
https://doi.org/10.1038/s41388-018-0237-9
https://doi.org/10.1080/15384101.2021.1962636
https://doi.org/10.1080/15384101.2021.1962636
https://doi.org/10.1371/journal.pone.0170860
https://doi.org/10.3892/ol.2017.7154
https://doi.org/10.3390/cells9122613
https://doi.org/10.1007/s10549-018-4793-z
https://doi.org/10.1007/s10549-018-4793-z
https://doi.org/10.18632/oncotarget.26176
https://doi.org/10.2147/CMAR.S231369
https://doi.org/10.3389/fonc.2021.712786
https://doi.org/10.1007/s11427-020-1874-6
https://doi.org/10.1186/s13046-019-1051-0
https://doi.org/10.1039/C8RA04514C
https://doi.org/10.1186/s13046-020-01798-2
https://doi.org/10.3389/fonc.2020.598817
https://doi.org/10.3389/fonc.2018.00327
https://doi.org/10.1155/2016/9085195
https://doi.org/10.3390/cancers14092101
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fonc.2022.965628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

& frontiers | Frontiers in Oncology

‘ @ Check for updates

OPEN ACCESS

EDITED BY

Aamir Ahmad,

University of Alabama at Birmingham,
United States

REVIEWED BY

Alex C. Kornke,

University of York, United Kingdom
Lixia Wang,

Soochow University, China

*CORRESPONDENCE
Lu Ding
dl_xjmu@126.com

These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal

Frontiers in Oncology

RECEIVED 12 June 2022
ACCEPTED 04 July 2022
PUBLISHED 03 August 2022

CITATION

Li R, Chen Z, Zhou Y, Maimaitirexiati G,
Yan Q, Li Y, Maimaitiyimin A, Zhou C,
Ren J, Liu C, Mainike A, Zhou P and
Ding L (2022) LncRNA SCAMP1
disrupts the balance between
miR-26a-5p and ZEB2 to

promote osteosarcoma cell

viability and invasion.

Front. Oncol. 12:967000.

doi: 10.3389/fonc.2022.967000

COPYRIGHT

© 2022 Li, Chen, Zhou, Maimaitirexiati,
Yan, Li, Maimaitiyimin, Zhou, Ren, Liu,
Mainike, Zhou and Ding. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply
with these terms.

Frontiers in Oncology

TvPE Original Research
PUBLISHED 03 August 2022
p0110.3389/fonc.2022.967000

LncRNA SCAMP1 disrupts the
balance between miR-26a-5p
and ZEB2 to promote
osteosarcoma cell viability
and invasion

Rong Li", Zhen Chen™, Yubo Zhou?®, Gulikezi Maimaitirexiati?,
Qi Yan?, Yuting Li*, Adilijiang Maimaitiyimin®, Changhui Zhou,
Jinggin Ren*, Chengqing Liu*, Abasi Mainike*,

Peng Zhou* and Lu Ding®*!

*College of Public Health, Xinjiang Medical University, Urumqi, China, 2Department of Orthopedics,
Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumgi, China, 3CAS
Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,
“Department of Orthopedics, Xinjiang Medical University Affiliated Fifth Hospital, Urumqi, China,
STraditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Postdoctoral

Research Center on Public Health and Preventive Medicine, Xinjiang Medical University,
Xinjiang, China

Osteosarcoma often occurs in children and adolescents and affects their
health. The survival rate of osteosarcoma patients is unsatisfactory due to the
lack of early detection and metastasis development and drug resistance.
Hence, dissection of molecular insight into osteosarcoma initiation and
progression is pivotal to provide the new therapeutic strategy. In recent
years, long noncoding RNAs (IncRNAs) have burst into stage in osteosarcoma
development and malignant behaviors. LncRNA SCAMP1 has been discovered
to play an essential role in carcinogenesis and progression. However, the
mechanisms of IncRNA SCAMP1-involved tumorigenesis have not been
reported in human osteosarcoma. In this study, we utilized multiple cellular
biological approaches to determine the function of IncRNA SCAMP1 in
osteosarcoma cells. Moreover, we performed several molecular biological
approaches to define the mechanism by which IncRNA SCAMP1 regulated
cell viability and invasion in osteosarcoma. We dissected that IncRNA SCAMP1
promoted progression of osteosarcoma via modulation of miR-26a-5p/ZEB2
axis. In conclusion, targeting IncRNA SCAMP1 and its downstream targets, miR-
26a-5p and ZEB2, might be a useful approach for osteosarcoma therapy.
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Introduction

Osteosarcoma often occurs in children and adolescents,
which affects their health due to that osteosarcoma is one of
bone malignant tumors (1). Osteosarcoma patients often have a
worse prognosis due to the distant metastasis, such as
pulmonary metastasis (2). The conventional therapy for
osteosarcoma includes surgery, neoadjuvant, radiotherapy and
chemotherapy (3, 4). The five-year survival rate is unsatisfactory
in osteosarcoma patients because of the lack of early detection
and development of metastasis as well as radio-resistance and
drug resistance (5-7). Moreover, the molecular mechanisms of
osteosarcoma development and progression are not fully
determined. Hence, exploration of molecular insight into
osteosarcoma initiation and progression is pivotal to discover
the new therapeutic strategy.

In recent years, noncoding RNAs have burst into stage in
cancer development and malignant behaviors (8-12). Evidence has
suggested that noncoding RNAs are involved in regulation of some
cellular biological functions, such as proliferation, cell cycle,
autophagy, motility, metastasis, epithelial-to-mesenchymal
transition, cancer stem cell, drug resistance and immunotherapy
in a variety of cancers (13-17). Noncoding RNAs conduct protein
modification, epigenetic modulation, RNA degradation, chromatin
remodeling, etc. (18). Based on their size, noncoding RNAs are
classified into small noncoding RNAs (< 200 nucleotides), long
noncoding RNAs (IncRNA, >200 nucleotides). Accumulated
studies have suggested that IncRNAs are important factors to
drive osteosarcoma development (19).

SCAMPI (secretory carrier membrane protein 1) has been
implied to associate with tumorigenesis. In pancreatic cancer
tissues, SCAMP1 was remarkable upregulated in tissues with
lymph node metastasis compared with tissues without
metastasis (20). Silencing of SCAMPI1 by siRNA transfection
led to a marked suppression in invasion and migration in
pancreatic cancer cells and gallbladder cancer cells (20).
Knockdown of SCAMPI1 reduced the activity of vascular
endothelial growth factor (VEGF) in gallbladder cancer and
pancreatic cancer (20). SCAMP1 expression was correlated with
the patient clinicopathological features in pancreatic cancer,
including TNM stage, neural invasion, poor prognosis (21). In
breast cancer cells, SCAMP1 prevented cell invasion via
cooperation of MTSS1 (metastasis suppressor protein 1) in
breast cancer (22). Loss of SCAMP1 and MTSSI in breast
cancer tissues associated with poor disease-specific survival in
HER2+ breast cancer patients (22). SCAMP1-transcript variants
(SCAMP1-TV2) knockdown repressed invasion, migration and
viability, and induced apoptosis in breast cancer cells (23).
Depletion of SCAMP1-TV2 reduced its interaction with
PUM2 and enhanced the PUM2 and INSM1 interactions,
leading to INSM1 mRNA degradation in breast cancer (23).
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LncRNA SCAMPI has been discovered to play a necessary
role in carcinogenesis and progression. For example, IncRNA
SCAMP1 was remarkable elevated in ovarian cancer cells and
tissues, and overexpression of IncRNA SCAMPI induced
angiogenesis and invasion (24). Moreover, IncRNA SCAMP1
can bind with miR-137 and upregulate the expression of
CXCL12 (C-X-C motif chemokine ligand 12) in ovarian
cancer cells (24). The mechanisms of IncRNA SCAMPI-
mediated tumorigenesis have not been determined in human
osteosarcoma. In this study, we utilized multiple cellular
biological approaches to determine the function of IncRNA
SCAMP1 in osteosarcoma cells. Moreover, we performed
several molecular biological approaches to define the
underlying mechanism by which IncRNA SCAMP1 regulated
cell viability and invasion in osteosarcoma. We dissected that
IncRNA SCAMPI1 promoted progression of osteosarcoma via
modulation of miR-26a-5p/ZEB2 axis.

Materials and methods
Cell culture

The human osteosarcoma cell lines MG63 and U20S cells
were bought from American Type Culture Collection (ATCC)
Company. The MG63 and U20S cells were maintained in
DMEM medium with 1% penicillin/streptomycin and 5% fetal
bovine serum at 37°C incubator under 5% CO, atmosphere.

Transfection

The human osteosarcoma MG63 and U20S cells were
seeded in 6-well plates for overnight. Then, osteosarcoma cells
were transfected with negative control or miR-26a mimics, miR-
26a inhibitors, ZEB2 cDNA, shR-ZEB2, shR-SCAMP1, or
SCAMP1 ¢DNA by Lipofectamine 2000 according to the
instruction’s approach as described previously (25). After
different time transfection, further analysis was performed in
transfected osteosarcoma cells for their viability, migration
and invasion.

Quantitative real-time reverse
transcription-PCR

Total RNA was extracted from the transfected osteosarcoma
cells using 1ml TRLzol Reagent. Then, Imicrogram RNA was
used for reverse transcription to generate first-strand cDNA.
PCR was conducted using SYBR Green Kit following the
manufacturer’s instructions as described before (26).
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Cell viability assay

The transfected osteosarcoma cells were seeded in 96-well
plates for overnight. After 24, 48 and 72 hours, CCK8 cell
viability assay was used to measure the viability of
osteosarcoma cells. Briefly, after different time treatments, 10
UL CCKB8 reagent was put into each well and maintained for 3
hours at 37 °C in a humidified incubator. The OD values were
measured by the microplate reader at 450 nm wavelength.

Colony formation assay

The human osteosarcoma MG63 and U20S cells were
seeded in 6-well plates and cultured with full DMEM medium
for 10-14 days at 37°C incubator under 5% CO, atmosphere.
Then, the cells were washed by PBS three times after discarding
the medium. 4% paraformaldehyde was used to fix the
osteosarcoma cells for 30-40 minutes. The colonies were
stained by 0.1% crystal violet for 15 minutes. The images were
taken by microscope and the colony numbers were calculated.

Transwell invasion assay

The transfected osteosarcoma cells were seeded in top
Transwell plates with serum-free DMEM on 24-well plates.
The bottom Transwell plates were filled with full DMEM
medium, which make the cells transfer from the top plates to
the bottom plates via the transwell membranes with Matrigel.
After 20 hours, the culture medium in the top plates were
removed and the plates were washed three times by PBS.
Then, the plates were fixed by 4% paraformaldehyde for half
hour and stained by 0.1% crystal violet. The invasive cells were
imaged by an inverted microscope.

Wound healing assay

The transfected osteosarcoma cells were seeded on 6-well
plates. Until the cell fluence reached high than 90%, the pipette
tip was used to scratch a wound. The cells were washed three
times to remove the floatage cells. After 20 hours, the wound
location was taken photographs as described before (27).

Luciferase report assay

To confirm the interaction between IncRNA SCAMPI1 and
miR-26a-5p, we performed luciferase report assay. The mutant
binding sequences of miR-26a-5p in IncRNA SCAMP1 were
cloned into pmirGLO dual-luciferase vector. The osteosarcoma
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cells were transfected with various plasmids. The IncRNA
SCAMP1 mutant had the mutant binding sequences of miR-
26a-5p. The luciferase activity was measured following
manufacturer’s instructions.

Statistical analysis

In this study, all data were analyzed by GraphPad Prism 5.0.
Student t test was performed to measure significance between
two groups. ANOVE was used to compare three or more groups.
The results were descripted as means + SD. P < 0.05 was
considered as statistically significant.

Results

LncRNA SCAMP1 overexpression
stimulates viability and colony formation
of osteosarcoma cells

To check the function of IncRNA SCAMP1 in osteosarcoma
cells, we transfected the SCAMP1 ¢cDNA into MG63 and U20S
cells using Lipofectamine 2000. Our RT-PCR data indicated that
IncRNA SCAMP1 was highly elevated in MG63 and U20S cells
after SCAMP1 cDNA transfection (Figure 1A). Moreover, shR-
SCAMP1 was transfected into MG63 and U20S cells by
Lipofectamine 2000. We found that IncRNA SCAMPI1
expression was remarkable reduced in MG63 and U20S cells
after shR-SCAMP1 transfection (Figure 1A). To examine
whether the cell viability was governed by IncRNA SCAMPI,
CCKS8 assay was utilized in MG63 and U20S cells after IncRNA
SCAMPI1 modulation. As expected, shR-SCAMP1 transfected
MG63 cells exhibited the less viability at 48 hours and 72 hours
(Figure 1B). Consistently, SCAMP1 ¢DNA transfection led to
high viability at 48 hours and 72 hours in U20S cells
(Figure 1C). To validate this role of IncRNA SCAMPI in
osteosarcoma cells, colony formation assay was conducted in
MG63 and U20S cells after IncRNA SCAMP1 knockdown and
overexpression, respectively. The data showed that knockdown
of IncRNA SCAMP1 reduced the number of colony formation in
MG63 cells (Figure 2A). In line with this result, IncRNA
SCAMP1 overexpression increased the number of colony
formation in U20S cells (Figure 2B). Therefore, IncRNA
SCAMPI could govern the viability of osteosarcoma cells.

LncRNA SCAMP1 overexpression
increased invasion and migration of
osteosarcoma cells

It is known that Transwell invasion assay is a good approach
for detection of cell invasive ability in cancer. We used Transwell
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invasion assay to test the function of IncRNA SCAMPI1 in
osteosarcoma cells. As shown in Figures 3A, B, SCAMPI
cDNA transfection resulted in promotion of invaded cell
numbers in both MG63 and U20S cells. The invasiveness

ability in shR-SCAMP1 transfected osteosarcoma cells was also
examined using Transwell invasion assay. Expectedly, shR-
SCAMP1 transfected cells had a reduction in invaded cell
numbers in U20S and MG63 cells (Figures 3A, B). Wound
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migratory ability of U20S cells. **p<0.01; ***p<0.001 vs. control group.

healing assay is often used for measuring the migrative ability in
cancer cells. Therefore, we used the wound healing assay in our
study to check the role of IncRNA SCAMPI1 in regulation of
migration in osteosarcoma cells. The wound healing assay data
showed that shR-SCAMP1 transfected cells had a slower rate to
close the wound area in U20S and MG63 cells (Figures 3C, D).
On the contrary, both osteosarcoma cell lines with SCAMP1
cDNA transfection had a faster rate to close the wound area
(Figures 3C, D). Hence, IncRNA SCAMPI1 could govern the
invasive and migrative abilities in osteosarcoma cells.

LncRNA SCAMP1 interacts with and
regulates miR-26a-5p in
osteosarcoma cells

It has been known that IncRNAs often sponge with miRNAs to
suppress their expressions. Therefore, we aimed to explore the
IncRNAs that could bind to IncRNA SCAMP1 in osteosarcoma
cells. Based on the TargetScan database from website, we saw the
binding sites between IncRNA SCAMP1 and miR-26a-5p
(Figure 4A). The luciferase reporter gene assay is a regular
approach to confirm the interaction between IncRNAs and
miRNAs. The data from the dual luciferase assay showed that
miR-26a-5p mimic transfection led to a reduction in the luciferase
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activity in the IncRNA SCAMP1 wild-type group (Figure 4B). On
the contrary, this phenotype was not observed in the IncRNA
SCAMP1 mutant group (Figure 4B). Moreover, miR-26a-5p
inhibitor increased the luciferase activity in IncRNA SCAMP1
wild-type group, but not in IncRNA SCAMP1 mutant group
(Figure 4B). We also measured the expression of miR-26a-5p in
U20S and MG63 cells after miR-26a-5p mimics transfection and
miR-26a-5p inhibitor treatment, respectively. Our data showed that
miR-26a inhibitors decreased the expression of miR-26a-5p in
MG63 cells, while miR-26a mimic transfection increased the
miR-26a-5p expression levels in U20S cells (Figure 4C). Notably,
upregulation of wild-type IncRNA SCAMPI1 suppressed the
expression of miR-26a-5p in MG63 cells, but this phenotype did
not exhibit in mutant IncRNA SCAMPI1 group (Figure 4D).
Strikingly, shR-SCAMP1 group showed the high expression of
miR-26a-5p compared with shR-NC group in U20S cells
(Figure 4D). Hence, IncRNA SCAMPI can interact with and
regulate miR-26a-5p inU20S and MG63 cells.

LncRNA SCAMP1 overexpression
promotes cell viability via miR-26a-5p

To check whether miR-26a-5p participates in IncRNA
SCAMPI1-mediated promotion of cell viability in osteosarcoma
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FIGURE 4

LncRNA SCAMP1 interacts with and regulates miR-26a-5p in osteosarcoma cells. (A): Potential binding sites between miR-26a-5p and IncRNA
SCAMPL1. (B): Dual luciferase reporter assays showed that miR-26a interacted with IncRNA SAMP1. miR-26a-5p modulation regulated luciferase
activity in SCAMP1 wild-type group. (C): RT-PCR data showed that miR-26a inhibitors decreased the expression of miR-26a-5p in MG63 cells,
while miR-26a mimic transfection increased the miR-26a-5p expression levels in U20S cells. (D): RT-PCR data showed that upregulation of
SCAMP1 suppressed the expression of miR-26a-5p in MG63 cells, while sh-SCAMP1 increased miR-26a-5p expression in U20S cells. SCAMP1-
WT: SCAMP1 wild type; SCAMP1-MUT: SCAMP1 mutant. **P < 0.01; ***P < 0.001 vs control group; ns, no significance.

cells, the MG63 cells were treated with miR-26a-5p mimics in
combination with IncRNA SCAMP1 ¢DNA transfection. Our
CCK8 results indicated that miR-26a-5p mimic transfection
suppressed viability of MG63 cells at 48 hours and 72 hours
(Figure 5A). Overexpression of IncRNA SCAMP1 abolished
miR-26a-5p mimics-mediated inhibition of cell viability in
MG63 cells (Figure 5A). Moreover, inhibition of miR-26a-5p
enhanced viability of U20S cells, which was abrogated by shR-
SCAMPI transfection (Figure 5B). In line with these results,
colony formation data revealed that miR-26a-5p mimics reduced
the colony numbers in MG63 cells, while miR-26a-5p inhibitors
increased the colony numbers in U20S cells (Figure 5C and
65D). In SCAMP1-overexpressing MG63 cells, miR-26a-5p
mimics-mediated suppression of colony formation was
abolished in MG63 cells (Figure 5C). In U20S cells with shR-
SCAMP1 transfection, miR-26a-5p-inhibitor-induced colony
formation was blocked in U20S cells (Figure 5D). Taken
together, IncRNA SCAMPI1 overexpression promotes cell
viability via miR-26a-5p in osteosarcoma cells.

ZEB2 is a downstream target of miR-
26a-5p in osteosarcoma cells

It is known that miRNAs performed their functions in
tumorigenesis via inhibiting the expression of their
downstream genes. According to the TargetScan database
from website, we observed the binding sites between miR-
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26a-5p and ZEB2, indicating that miR-26a-5p could interact
with ZEB2 and suppress its expression (Figure 6A). In MG63
cells, we found that miR-26a-5p mimics attenuated the mRNA
levels of ZEB2 (Figure 7B). Similarly, in U20S cells, we found
that miR-26a-5p inhibitors elevated the mRNA levels of ZEB2
(Figure 6B). Moreover, we tested whether IncRNA SCAMP1
regulated the expression of ZEB2 in osteosarcoma cells. We
found that SCAMP1-overexpressing cells had the high
expression of ZEB2 in MG63 cells (Figure 6B). In shR-
SCAMP1 transfected U20S cells, ZEB2 mRNA levels were
remarkable downregulated (Figure 6B). Altogether, miR-26a-
5p could target ZEB2 in osteosarcoma cells.

LncRNA SCAMP1 increases cell viability
and colony formation via miR-26a/
ZEB2 axis

To determine whether IncRNA SCAMP1 increased viability of
osteosarcoma cells via targeting miR-26a/ZEB2 axis, MG63 cells
were co-transfected with miR-26a-5p mimics and ZEB2 cDNA, or
SCAMPI and sh-ZEB2. Our CCK8 assay data demonstrated that
PZEB2 cDNA transfection increased cell viability in MG63 cells
(Figure 7A). Upregulation of ZEB2 abrogated miR-26a-5p-induced
inhibition of cell viability in MG63 cells (Figure 7A). Moreover,
SCAMPI overexpression elevated cell viability, which was blocked
by downregulation of ZEB2 in MG63 cells (Figure 7A). Similarly,
ZEB2 cDNA transfection increased colony formation of MG63
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cells, which was abrogated by miR-26a mimics transfection
(Figure 7B). LncRNA SCAMPI1 upregulation elevated colony
formation of MG63 cells, which was blocked by sh-ZEB2
transfection (Figure 7B).

LncRNA SCAMP1 increases cell invasion
and migration via miR-26a/ZEB2 axis

To examine whether IncRNA SCAMP1 promoted invasion and
migration of osteosarcoma cells via targeting miR-26a/ZEB2 axis,
MG63 cells were co-transfected with miR-26a-5p mimics plus
ZEB2 cDNA, or SCAMPI plus shZEB2. Our Transwell invasion
assay data dissected that pZEB2 ¢DNA transfection increased cell
invasion ability in MG63 cells (Figure 7C). Upregulation of ZEB2
abrogated miR-26a-5p-induced suppression of cell invasion in
MG63 cells (Figure 7C). Moreover, SCAMP1 overexpression
elevated cell invasion, which was reduced by downregulation of
ZEB2 in MG63 cells (Figure 7C). Similarly, ZEB2 ¢cDNA
transfection increased migrative ability of MG63 cells, which was
abrogated by miR-26a mimics transfection (Figure 7D). LncRNA
SCAMP1 upregulation elevated migrative ability of MG63 cells,
which was blocked by sh-ZEB2 transfection (Figure 7D). In a word,
IncRNA SCAMPI regulated cell invasiveness and migrative ability
through targeting miR-26a and ZEB2 pathways in osteosarcoma.
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Discussion

LncRNAs are involved in osteosarcoma development,
progression, metastasis, prognosis and drug resistance (28, 29).
LncRNAs utilized their functions in oncogenesis via targeting
various cellular signaling pathways (30). For instance, IncRNA
CBR3-AS1 targeted the network of miR-140-5p-DDX54-
NUCKS1-mTOR signaling pathway and contributed to
osteosarcoma progression (31). One study found that IncRNA
DARS-AS1 regulated miR-532-3p/CCR7 axis and facilitated
progression of osteosarcoma (32). Another study revealed that
IncRNA SNHGI1 stimulated osteosarcoma development via
sponging miR-493-5p and elevating the expression of S100A6
(33). Moreover, IncRNA ODRUL acted as a sponge of miR-
6874-3p to elevate the expression of IL-6, leading to
osteosarcoma progression (34). Furthermore, IncRNA MELTF-
AS1 regulated the expression of MMP14 and enhanced
osteosarcoma metastasis (35). In addition, IncRNA MALAT1
sponged miR-150-5p and increased the expression of VEGFA
and enhanced tumor angiogenesis in osteosarcoma (36).
LncRNA PURPL affected tumor-associated macrophages
through modulating miR-363 and PDZD2 in osteosarcoma
cells (37). These studies indicated that IncRNAs critically
participate in osteosarcoma progression.
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LncRNA SCAMP1 was reported to be significantly
upregulated in pancreatic cancer tissues compared with normal
tissues (38). Pancreatic cancer patients with unfavorable survival
often had higher expression of IncRNA SCAMP1. The mRNA-
miRNA-IncRNA regulatory network predicted that IncRNA
SCAMPI could bind to miR-132-3p and MMP9 in pancreatic
cancer cells (38). LncRNA SCAMPI1 has been reported to
regulate ZEB1/JUN axis in renal cell carcinoma (39). In renal
cell carcinoma specimens, the expression of IncRNA SCAMP1
was highly elevated. Knockdown of IncRNA SCAMP1 induced
apoptosis and reduced cell viability in renal cell carcinoma cells
after H,O, treatment (39). Moreover, miR-429 was found to
interact with IncRNA SCAMPI in renal cell carcinoma cells.
Consistently, miR-429 expression was remarkable decreased in
human renal cancer samples. Moreover, miR-429 targets both
ZEB1 and JUN in renal cell carcinoma cells. Furthermore,
IncRNA SCAMPI1 also affected autophagy and miR-429-
mediated tumorigenesis in renal cell carcinoma (39). Therefore,
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IncRNA SCAMP1 enhanced progression of renal cell carcinoma
via regulation of autophagy and miR-429/ZEB1/JUN axis under
oxidative stress. In our study, we reported that IncRNA SCAMP1
modulated the expression of ZEB2 via sponging miR-26a-5p in
osteosarcoma, which led to promotion of cell viability and colony
formation. It is required to investigate whether IncRNA SCAMP1
targets ZEBI in osteosarcoma cells. Since ZEB2 is the critical
driver in EMT progression, it is needed to address whether
IncRNA SCAMP1 can regulate the EMT in osteosarcoma via
targeting ZEB2.

Zong et al. reported that silencing of IncRNA SCAMP1
restrained viability, invasive and migratory abilities and induced
apoptosis via sponging miR-499a-5p in glioma (40). LMX1A was
found to be a downstream target of miR-499a-5p and participated
in IncRNA SCAMPI-induced oncogenesis in glioma. LMX1A can
regulate the expression of NLRC5 (NLR family, CARD domain
containing 5) and activate Wnt/B-catenin signaling pathway in
glioma (40). In the current study, we observed that IncRNA
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FIGURE 7

LncRNA SCAMP1 increases cell malignant progression via miR-26a/ZEB2 axis. (A): CCK8 assays data showed that upregulation of ZEB2
abrogated miR-26a-5p-induced inhibition of cell viability in MG63 cells. SCAMP1 overexpression elevated cell viability, which was blocked by
downregulation of ZEB2 in MG63 cells. (B): Colony formation data showed that ZEB2 cDNA transfection increased colony formation of MG63
cells, which was abrogated by miR-26a mimics transfection. SCAMP1 upregulation elevated colony formation of MG63 cells, which was blocked
by sh-ZEB2 transfection. (C): Transwell invasion assay data showed that upregulation of ZEB2 abrogated miR-26a-5p-induced suppression of
cell invasion in MG63 cells. SCAMP1 overexpression elevated cell invasion, which was reduced by downregulation of ZEB2 in MG63 cells. Right
panel: quantitative data is shown for invasion assay of left panel. (D): Wound healing assays showed that ZEB2 cDNA transfection increased
migrative ability of MG63 cells, which was abrogated by miR-26a mimics transfection. LncRNA SCAMP1 upregulation elevated migrative ability
of MG63 cells, which was blocked by sh-ZEB2 transfection. **p<0.01 vs. control group; Sp<0.01 vs. pZEB2 group; #p<0.01 vs. control group;

¥p<0.01 vs. SCAMP1 group. ; *p < 0.05 vs control group.

SCAMP1 promoted cell invasion and migration in osteosarcoma
cells. Moreover, IncRNA SCAMP1 performed their functions on
cell motility via targeting miR-26a-5p/ZEB2 axis in osteosarcoma.

Conclusions

In summary, IncRNA SCAMPI modulated the expression of
ZEB2 via sponging miR-26a-5p in osteosarcoma, which resulted
in promotion of viability and colony formation of osteosarcoma
cells. We also reported that IncRNA SCAMP1 promoted cell
invasiveness and migrative capacity in osteosarcoma cells via
regulating miR-26a-5p/ZEB2 axis. This study has several
limitations. For instance, the current study used cell culture
system to define the role of IncRNA SCAMPI in osteosarcoma.
This study did not use the mouse model and clinical tissues from
osteosarcoma patients to dissect the function of SCAMPI.
Therefore, it is necessary to describe that in vivo experiments
and clinical sample study are required to determine the role of
IncRNA SCAMP1I in osteosarcoma.
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Long non-coding RNA LINC00152 (cytoskeleton regulator, or LINC00152) is an
828-bp INcRNA located on chromosome 2p11.2. LINCO0152 was originally
discovered during research on hepatocarcinogenesis and has since been
regarded as a crucial oncogene that regulates gene expression in many
cancer types. LINC00152 is aberrantly expressed in various cancers, including
gastric, breast, ovarian, colorectal, hepatocellular, and lung cancer, and glioma.
Several studies have indicated that LINC0O0152 is correlated with cell
proliferation, apoptosis, migration, invasion, cell cycle, epithelial-
mesenchymal transition (EMT), chemotherapy and radiotherapy resistance,
and tumor growth and metastasis. High LINC00152 expression in most
tumors is significantly associated with poor patient prognosis. Mechanistic
analysis has demonstrated that LINCO0152 can serve as a competing
endogenous RNA (ceRNA) by sponging miRNA, regulating the abundance of
the protein encoded by a particular gene, or modulating gene expression at the
epigenetic level. LINC0O0152 can serve as a diagnostic or prognostic biomarker,
as well as a therapeutic target for most cancer types. In the present review, we
discuss the roles and mechanisms of LINC00152 in human cancer, focusing on
its functions in chemotherapy and radiotherapy resistance.

KEYWORDS

long non-coding RNA, LINC00152, cancer, chemotherapy resistance,
radiotherapy resistance
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Introduction

Long non-coding RNAs (IncRNAs) are transcripts of more
than 200 nucleotides that generally do not encode proteins and
include cyclic RNAs (circRNAs) and pseudogenes (1). These
IncRNAs play a vital role in regulating cell homeostasis and
disease progression by serving as competitive endogenous
RNAs (ceRNAs) or binding directly to regulate tumor
occurrence and growth. The IncRNA cytoskeletal regulatory
RNA (CYTOR), also known as LINC00152, is located in the
chromosomal region 2pl11.2, and is overexpressed in many
cancers (Figure 1). LINC00152 was initially detected with
variable hypomethylation levels during the development of
hepatocellular cancer (2).

The function of IncRNAs is highly correlated with their
subcellular distribution. LncRNAs act as endogenous miRNA
sponges to modulate miRNA targets in the cytoplasm.
Cytoskeletal regulators, such as long intergenic non-coding
RNA 00152 (LINCO00152), can regulate gene expression
through various mechanisms. LINC00152 acts as a ceRNA in
the cytoplasm and binds to multi-comb inhibition complex 2
(PRC2) in the nucleus to regulate epigenetic gene regulation.
LINCO00152 is primarily found in the cytoplasm, where
cytoplasmic IncRNAs operate as microRNA sponges, thus
inhibiting the action of target microRNA (3). Mechanistic
investigations have revealed that LINC00152 can act as a
ceRNA by sponging miRNA, thus influencing the amount of
protein encoded by a gene and altering gene expression at the
epigenetic level.

LINCO00152, which was later called STAiR18, was identified
in 2013 by analyzing the expression profile of signal transducer
and activator of transcription 3 (STAT3)-dependent genes in
gastric cancer (4). The capacity of LINC00152 to sponge various
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miRNAs influences cell cycle arrest, apoptosis, EMT, migration,
and invasion. Sponging miRNAs eliminates their inhibitory
effect on target genes, thereby altering their expression level
(4). Subsequent studies have demonstrated that LINC00152 is
overexpressed in many human malignancies, including lung,
liver, pancreatic, and breast cancers. In addition, LINC00152 has
been implicated in regulating cancer cell proliferation, the cell
cycle, epithelial-mesenchymal transition (EMT), and
chemotherapy and radiotherapy resistance. Ongoing
investigations into the role of LINCO00152 are therefore
required. LINC00152 is a pivotal oncogenic long non-coding
RNA in human cancers (5). The expression of LINC00152 could
contribute to tumor diagnosis, targeted therapy and curative
effect evaluation (6).

The present review highlights the current research on the
function, regulatory mechanisms, and chemotherapy and
radiotherapy resistance of LINC00152 in human cancers.

The role of LINC00152 in
various cancers

The role of LINC00152 in human cancer has been explored
in numerous clinical, translational, and basic studies (5).
Accumulating evidence has demonstrated that the expression
of LINC00152 is abnormally dysregulated in most tumor types.
High expression of LINC00152 has been observed in multiple
types of tumors, including breast cancer, ovarian cancer,
hepatocellular cancer, lung cancer, leukemia, bladder cancer,
nasopharyngeal cancer, gallbladder cancer, osteosarcoma,
laryngeal cancer, thyroid cancer, retinoblastoma, head and
neck squamous cell cancer, and pancreatic cancer (Figure 2).
In contrast, LINC00152 is expressed at low levels in colon cancer
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tissue and cells (7). A specific explanation for the
downregulation of LINCO00152 expression in colon cancer
remains unknown.

LINC00152 has essential roles in almost all aspects of tumor
occurrence and progression, including tumorigenesis, cancer cell
proliferation, apoptosis, invasion, metastasis, autophagy, and the
response to anti-tumor treatment. The functions and underlying
molecular mechanisms of LINC00152 in various cancers are
summarized in Table 1. Potential biomarkers for the diagnosis
and prognosis of LINC00152 in cancer are presented in Table 2.
Table 3 summarizes the role of LINC00152 in chemotherapy and
radiation resistance and will be explained in detail in
later sections.

Function and mechanisms of
LINC00152 in human cancer

Oral squamous cell cancer

Oral squamous cell cancer (OSCC) is an aggressive form of
head and neck squamous cell cancer (HNSCC) (78). OSCC
accounts for 4% of all newly diagnosed cancers and ranks
eighth among all estimated new cases among men worldwide
(79).The five-year survival rate of patients with OSCC can
reach 68%. Chen et al. found that the LINC00152/lipoma
preferred partner (LPP) axis is the key to Forkhead boxD1
(FOXD1)-induced EMT and chemotherapy resistance in
OSCC. FOXD1 may bind directly to the LINC00152
promoter and activate LINC00152 transcription. LINC00152
then specifically inhibits miR-1252-5p and miR-3148, thus
upregulating the expression of LPP and promoting EMT and
chemoresistance in OSCC (48).
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Tongue squamous cell cancer

Squamous cell carcinoma of the tongue (TSCC) is the most
common oral malignancy and has a poor prognosis. The five-
year survival rate of patients with TSCC can reach 68.8%. Li et al.
demonstrated that LINC00152 expression is significantly
upregulated in TSCC tissue compared to that in normal tissue.
Li et al. also revealed that increased LINC00152 expression could
promote TSCC cell growth and cell cycle progression, migration
and invasion, as well as inhibit apoptosis. Mechanistic analyses
have indicated that LINC00152 acts as a sponge for miR-193b-
3p to promote the phosphorylation and activation of the
phosphoinositide 3-kinase (PI3K) signaling pathway and
downstream protein kinase B (AKT), which contributes to the
development of TSCC (58). LINC00152, therefore, promotes the
oncogenic potential of TSCC and may be a potential
therapeutic target.

Esophageal cancer

Esophageal cancer (EC) is one of the most common cancers
of the digestive system (Figure 3), ranking seventh among the
causes of cancer-related death (79). EC has a unique
geographical distribution and is widespread in Eastern Asia
and Southern Africa but rare in Central America (80). The
five-year survival rate of patients with EC only reaches 20.6%
(https://seer.cancer.gov/). EC is frequently identified at advanced
cancer stages owing to the lack of early clinical signs and
symptoms (81).

Yang et al. (64). studied LINC00152 overexpression in
esophageal squamous cell carcinoma (ESCC) tissue.
LINCO00152 is closely related to TNM staging and lymphatic
metastasis in ESCC. High expression of LINC00152 is related

frontiersin.org
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Table 1 The molecular mechanisms of LINC00152 in various cancers.

Cancer

Leukemia Stem Cells
Acute lymphoblastic leukemia
Bladder Cancer
Nasopharyngeal carcinoma
Gallbladder cancer
Gallbladder cancer
Lung cancer

Lung cancer

Lung cancer

Lung cancer

Lung cancer

Lung cancer

Lung cancer
Hepatocellular cancer
Hepatocellular cancer
Hepatocellular cancer
Hepatocellular cancer
Hepatocellular cancer
Hepatocellular cancer
Hepatocellular cancer
Hepatocellular cancer
Hepatocellular cancer
Osteosarcoma
Osteosarcoma

Human multiple myeloma
Laryngeal cancer
Papillary thyroid cancer
Papillary thyroid cancer
Glioma

Glioma

Glioma

Glioma

Glioma

Glioma

Colorectal cancer
Colorectal cancer
Colorectal cancer

Colorectal cancer

Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer

Colorectal cancer

Oral squamous cell cancer
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Role

oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene
oncogene

oncogene

oncogene
oncogene
oncogene
oncogene

suppressor
oncogene

oncogene
oncogene
oncogene
oncogene
oncogene

oncogene

oncogene

Expression

overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression
overexpression

overexpression

overexpr ession
overexpression
overexpr ession
overexpression

downregulation

overregulation
overexpression
overexpression
overexpression
overexpression

overexpression

overexpression

Regulated molecules

PARP1

Not reported
Wnt/B-Catenin
miR-613/ANXA2
SP1/PI3K/AKT
miR-138/HIF-1a
EGFR/PI3K/AKT
LINCO00152

LINC00152
miR-206/PTMA

Not reported

miR-195

EZH2/1L24

Not reported
EpCAM/mTOR
miR-125b/SEMA4C
miR-193a/b-3p/CCND1
Not reported

HBx
miR-125b-5p/KIAA1522
LINC00152/miR-215/CDK13
Not reported
miR-1182/CDK14/TCF3-
miR-193b-3p
STAT3/miR-21Mcl-1
miR-613
miR-497/BDNF
TRIM29/miR-873-5p/FN-1
3" end of LINC00152
PI3K/AKT

Not reported

Epigenetic
miR-103a-3p/FEZF1/
CDC25A

UPF1
miR-193a-3p/ERBB4/AKT
Wnt/b-Catenin
GACAT3/miR-103
miRNA-105/PTEN/akt

miR-376¢-3p
LINC00152

NCL, Samé68
miR-3679-5p/MACC1
hypomethylation

YAP1/miR-632-miR-185-3p/
FSCN

FOXD1/LPP
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Related pathway

LINCO00152/PARP1

Not reported
LINC00152/Wnt/B-Catenin
LINC00152/miR-613/ANXA2
SP1/LINC00152/PI3K/AKT
LINC00152/miR-138/HIF-1a/Slug
LINCO00152/EGFR/PI3K/AKT/Fibronectin/Vimentin
LINC00152/miR-16-5p/BCL2L2

Not reported
LINC00152/miR-206/PTMA

Not reported

Linc00152/miR-195
LINC00152/EZH2/LSD1/1L24

Not reported
LINC00152/EpCAM/mTOR
LINCO00152/miR-125b/SEMA4C
LINC00152/miR-193a/b-3p/CCND1
Not reported

LINCO00152/HBx
LINCO00152/miR-125b-5p/KIAA1522
LINCO00152/LINC00152/miR-215/CDK13
Not reported
TCF3/LINC00152/miR-1182/CDK14
LINC00152/miR-193b-3p
IL-6/STAT3/LINC00152/miR-21/Mcl-1
LINC00152/miR-613
LINCO00152/miR-497/BDNF
TRIM29/LINC00152/miR-873-5p/FN-1
Not reported
LINCO00152/miR-613/CD164/PI3K/AKT
Not reported

Not reported

LINC00152/miR-103a-3p/FEZF1/CDC25A/PI3K/
AKT

UPF1/LINC00152
LINC00152/miR-193a-3p/ERBB4/AKT
Wnt/b-Catenin Signaling
GACAT3/LINC00152/miR-103
LINC00152/miRNA-105/PTEN

LINC00152/miR-376¢-3p/Ki-67, Bcl-2, Fas
Not reported

LINC00152, NCL and Sam68/NF-kB/EMT
LINC00152/miR-3679-5p/MACC1

PI3K/Akt, Ras, WNT, TP53, Notch and ErbB.
YAP1/LINC00152/miR-632-miR-185-3p/FSCN

FOXD1/LINC00152 transcription/miR-3148/miR-
1252-5p/LPP

reference

(Continued)
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Continued
Cancer Role Expression Regulated molecules Related pathway reference
Pan-Cancer oncogene overexpression EZH2 LINC00152/EZH2 (49)
Breast Cancer oncogene overexpression  YY1/PTEN YY1/LINC00152/PTEN (50)
Breast Cancer oncogene overexpression DNMTs/BRCA1/PTEN LINC00152/DNMTs/BRCA1/PTEN (51)
Breast Cancer oncogene overexpression miR-125a-5p LINC00152/miR-125a-5p/SRF/MAPK/ERK pathway/ (52)
TAZ
Breast Cancer oncogene overexpression mTOR LINC00152/mTOR (53)
Breast Cancer oncogene overexpression  KLF5 LINC00152/KLF5/PTEN and b-Catenin (54)
Ovarian cancer oncogene overexpression BCL6 LINC00152/BCL6 (55)
Ovarian cancer oncogene overexpression miR-125b/MCL-1 LINC00152/miR-125b/MCL-1 (56)
Ovarian cancer oncogene overexpression TNF/CDKN1C LINCOO152/TNF/CDKN1C (57)
Tongue squamous oncogene overexpression miRNA-193b-3p LINCO00152/miRNA-193b-3p/PI3K/AKT (58)
cell cancer
Renal cell cancer oncogene overexpression  P16/miR-205 LINC00152/P16/miR-205 (59)
Renal cell cancer oncogene overexpression  Not reported Not reported (60)
Retinoblastoma cells oncogene overexpression  Spl/miR-30d/SOX9/ZEB2/ Sp1/miR-30d/SOX9/ZEB2/EMT (61)
EMT
Retinoblastoma oncogene overexpression miR-613/YAP1 LINC00152/miR-613/YAP1 (62)
Esophageal Squamous Cell oncogene overexpression EGFR LINC00152/EGFR/PI3K/AKT/P21 (63)
Cancer
Esophageal Squamous Cell oncogene overexpression  Not reported Not reported (64)
Cancer
Esophageal Squamous Cell oncogene overexpression  LINC00152/miR-107/Rab10  LINC00152/miR-107/Rab10 (65)
Cancer
Esophageal Squamous Cell oncogene overexpression ~miR-153-3p/FYN LINC00152/miR-153-3p/FYN (66)
Cancer
Head and neck squamous cell ~ oncogene overexpression miR-608/EGFR LINC00052/miR-608/EGFR (67)
cancer
Head and neck squamous cell ~ oncogene overexpression  Not reported Not reported (68)
cancer
Gastric cancer oncogene overexpression EZH2/CXCL9, 10/CXCR3 LINC00152/EZH2/CXCL9,10/CXCR3 (69)
Gastric cancer oncogene overexpression ERK/MAPK LINC00152/ERK/MAPK (70)
Gastric cancer oncogene overexpression ~ Bcl-2 LINC00052/Bcl-2 (71)
Gastric cancer oncogene overexpression  Not reported Not reported (72)
Gastric cancer oncogene overexpression ~ microRNA-193a-3p/MCL1 LINC00152/microRNA-193a-3p/MCL1 (73)
Gastric cancer oncogene overexpression EGFR/PI3K/AKT EGFR/PI3K/AKT (74)
Pancreatic cancer oncogene overexpression  miR-205-5p/CDK6 LINC00152/miR-205-5p/CDK6 (75)
Pancreatic cancer oncogene overexpression  miR-150 LINC00152/miR-150 (76)

to poor prognosis in ESCC patients. Functionally, the
overexpression of LINC00152 promotes the proliferation,
invasion, and migration of ESCC cells in vitro and also
regulates the interaction between mitotic arrest-deficient 2-
like 1 (MAD2L1) and cyclin-dependent kinase 6 (CDK6) in
vesicle transport pathway proteins, and syntaxin 3 (STX3) and
STX12 soluble N-ethylmaleimide-sensitive factor-attachment
protein (SNAP) receptor (SNARE) family members (64). Ding
et al. (63) found that LINC00152 knockdown might inhibit
proliferation and induce apoptosis of Eca-109 and KYSE-150
cells by inhibiting the anti-tumor epidermal growth factor
receptor EGFR/PI3K/AKT pathway and enhancing P21
expression in EC (63). In addition, Zhou et al. (38) found
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that LINC00152 regulates Rabl0 by sponging miR-107 to
promote cell proliferation, migration, and invasion in ESCC
(65). Liu et al. (66) found that LINC00152 promotes ESCC
proliferation and inhibits apoptosis by downregulating miR-
153-3p and promoting FYN expression (66). Therefore,
LINCO00152 is an optimal candidate as a therapeutic target
for the treatment of EC.

Gastric cancer

Gastric cancer (GC) is the fifth most common cancer and
the third most common cause of cancer-related deaths
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TABLE 2 Biomarkers of LINC00152 in various cancers.

Cancer

Leukemia

Leukemia

Bladder cancer
Nasopharyngeal cancer
Gallbladder cancer
Gallbladder cancer
Lung cancer

Lung cancer

Lung cancer

Lung cancer
Lung cancer

Lung cancer

Lung cancer
Hepatocellular Cancer
Hepatocellular Cancer
Hepatocellular Cancer
Hepatocellular carcinoma
Hepatocellular Carcinoma
Hepatocellular Carcinoma
Hepatocellular carcinoma
Hepatocellular Carcinoma
Hepatocellular Carcinoma
Osteosarcoma
Osteosarcoma

Human multiple myeloma

Laryngeal cancer

Papillary thyroid carcinoma
Papillary thyroid carcinoma
Glioma

Glioma

Glioma

Glioma

Glioma

Glioma

Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer
Colorectal cancer

Oral squamous cell carcinoma

Frontiers in Oncology

biomarker type

prognostic marker

early relapse and mortality
diagnosis and prevention
therapeutic targets
prognostic markers
prognostic

not reported

prognosis

progression, prognosis

diagnosis, prognosis and attenuation
diagnosing and monitoring

prognosis

diagnostic markers
not reported
diagnosis

not reported

not reported
prognostic marker
not reported
prognosis

not reported

not reported

not reported

not reported

not reported

diagnostic biomarker

not reported
not reported
not reported

prognostic
biomarker

not reported

not reported

prognosis

not reported

prognostic

not reported

diagnostic biomarker
diagnosis and therapeutic
therapeutic target

diagnosis and treatment.

not reported

prognostic biomarker, therapies
prognosis, diagnostic marker
not reported

prognostic marker

10.3389/fonc.2022.960193

functional role

chemoresistance

metastasis, relapse and chemoresistance

proliferation, metastasis, invasion, clonogenicity, apoptosis
invasion and metastasis

proliferation, metastasis, apoptosis

metastasis and progression

proliferation, invasion and migration

proliferation, invasion, migration, growth

proliferation, migration, growth

invasion
proliferation, migration and invasion
not reported

proliferation, migration, invasion and
radiosensitivity

proliferation, cell apoptosis

not reported

proliferation, growth

proliferation, tumor growth, apoptosis
proliferation

tumor autophagy

proliferation and invasion

autophagy

proliferation, cell cycle and apoptosis

colony formation, apoptosis, migration and invasion
proliferation, migration, invasion

GO/G1 cell cycle, proliferation, apoptosis
cell cycle, apoptosis, migration and invasion,

apoptosis, cell proliferation, cell
migration and invasion

growth and proliferation, colony formation, migration, invasion
migratory and invasive
proliferation, apoptosis, migration and invasion

proliferation, growth, chemotherapy
migration, and invasion

migration, invasion, proliferation, EMT, epigenetic
proliferation, migration, invasion, apoptosis
invasion, EMT

proliferation, invasion, growth

apoptosis, chemoresistance, cell viability

EMT and metastasis

growth, proliferation

proliferation and metastasis

invasion and metastasis

apoptosis, viability

proliferation, invasion, and metastasis
progression, metastasis, invasion, EMT
tumorigenesis

proliferation, invasion, cell cycle, EMT, apoptosis, migration

chemotherapy resistance, EMT
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Reference

(31)
(32)
(34)
(35)

(Continued)
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TABLE 2 Continued

Cancer

Pan-cancer

Ovarian cancer

Ovarian cancer

Ovarian cancer

Ovarian cancer

Breast cancer

Breast cancer

Breast cancer

Breast cancer

Breast cancer

Tongue squamous cell carcinoma
Renal cell carcinoma

Renal cell carcinoma

Esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma
Head and neck squamous cell carcinoma

Head and neck squamous cell

biomarker type

diagnosed

prognosis

not reported
prognostic biomarker
not reported

not reported
treatment marker

not reported
prognosis

prognosis and treatment
therapeutic
prognostic marker
prognostic marker
therapeutic

not reported

not reported
prognostic biomarkers
not reported

prognostic biomarkers

carcinoma

Gastric cancer not reported
Gastric cancer therapy
Gastric cancer therapy

Gastric cancer not reported

Gastric cancer prognosis
Gastric cancer therapy
Pancreatic cancer cell therapy
Pancreatic cancer cell therapy
Retinoblastoma prognosis
Retinoblastoma therapy

worldwide (82). Stomach cancer has a unique geographic
distribution and is common in Eastern Asian countries such
as Japan and Mongolia but uncommon in Southern Africa
(80). Men are twice more likely than women to have GC. As a
result, novel molecular targets for GC treatment are
urgently required.

LINCO00152 is highly expressed in GC tissue and cells. Huang
etal. (73) showed that LINC 00152 overexpression promotes GC
cell proliferation through the LINC00152/miR-193a-3p/myeloid
leukemia 1 (MCL1) pathway (73). In vivo experiments have
confirmed that knockdown of LINC00152 inhibits the growth of
GC xenografts by upregulating mir-193b-3p and
downregulating ETS1 (72). Further research revealed that
LINCO00152 might directly bind to Bcl-2 to activate cell cycle
signaling, promote migration and invasion, and suppress
apoptosis (71). LINC00152 activates PI3K/AKT signaling by
directly binding to EGFR to increase GC cell proliferation (74).
An enhanced extracellular signal-regulated kinase/mitogen-
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functional role Reference
proliferation, migration and invasion (49)
tumor growth and metastasis (55)
apoptosis (77)
cell proliferation, apoptosis (56)
proliferation and cell cycle (57)
progression (50)
invasion, migration, colony, growth, apoptosis (51)
tamoxifen resistance (52)
growth, proliferation and tumorigenicity (54)
proliferation, migration (53)
proliferation, migration, invasion and apoptosis (58)
proliferation (59)
proliferation, invasion, cell cycle, apoptosis (60)
proliferation, migration, invasion, cell viability (65)
apoptosis, cell cycle, proliferation (63)
proliferation, apoptosis, cell cycle, migration and invasion (64)
proliferation, apoptosis (66)
proliferation, migration, differentiation (67)
metastasis, apoptosis, proliferation (68)
tumor growth (69)
migration, apoptosis, invasion (70)
migration, invasive, apoptosis (71)
cell cycle, apoptosis, EMT, cell migration and invasion (72)
proliferation, migration, growth, invasion (73)
proliferation and tumor growth (74)
proliferation and migration (75)
proliferation, migration and invasion (76)
invasion and metastasis (61)
proliferation, apoptosis, invasion, autophagy and chemoresistance (62)

activated protein kinase (ERK/MAPK) signaling pathway
significantly reverses the biological effects of GC caused by
LINC00152 (70). LINC00152 can also promote the growth of
tumor cells, both in vivo and in vitro, by binding enhancer of
zeste homolog 2 (EZH2) and regulating the CXC motif
chemokine ligand 9 (CXCL9) and CXCL10/CXCR3 axes in
CDS8T cells (69). LINC00152 may, therefore, be a potential
prognostic biomarker and therapeutic target for GC in
the future.

Colorectal cancer

Colorectal cancer (CRC) is the fourth most common cancer
globally. Li et al. (45) monitored the overexpression of
LINC00152 in colon cancer and found that it was significantly
associated with poor prognosis. LINC00152 is positively linked
to invasion depth, TNM stage, lymph node metastasis, and
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TABLE 3 The role of LINC00152 in chemotherapy and radiation resistance.

Cancer

Lung Cancer

Lung Cancer

Colorectal
Cancer

Colorectal
Cancer

Leukemia
Glioma

Oral Squamous
Cell
Carcinomas

Pan-Cancer

Ovarian
Cancer

Breast Cancer

Retinoblastoma

Drug
Not reported

Not reported

Not reported

Oxaliplatin

Adriamycin
Temozolomide

Cisplatin
Anthracycline
Cisplatin
Tamoxifen

Adriamycin,
Carboplatin

Chemotherapy resistance
Not reported

Not reported

the invasion and metastasis of residual CRC cells increased
following radiotherapy and chemotherapy

AKT activation mediated by ERBB4 contributes to Linc00152-
conferred L-OHP resistance

LINCO00152 Regulates LSC Chemoresistance Via PARP1
Knockdown of LINC00152 increases sensitivity to chemotherapy

overexpression of FOXD1 promotes chemoresistance in vivo

Linc00152 induces chemoresistance in pan-cancer

LINCO00152 knockdown enhances the sensitivity of ovarian cancer
cells to cisplatin.

LINCO00152 regulates tamoxifen sensitivity via SRF in breast cancer

cells

LINCO00152 enhanced the aggressiveness of retinoblastoma and
boosted carboplatin and Adriamycin resistance by regulating YAP1
by sponging miR-613 in human retinoblastoma.

10.3389/fonc.2022.960193

Radiation therapy resistance References
silencing LINC00152 promoted miR-206 to (17)
enhance the radiosensitivity of NSCLC cells
overexpression of LINC00152 decreased miR-195 (18)
expression in H1299 and H1581 and suppressed
the radiosensitivity of NSCLC cells
invasion and metastasis of residual CRC cells (43)
increased following radiotherapy and
chemotherapy
not reported (39)
not reported (8)
not reported (35)
not reported (48)
not reported (49)
not reported (77)
not reported (52)
not reported (62)

carbohydrate antigen 19-9 (CA19-9) levels according to
clinicopathological examinations (41). LINC00152 was
reported to regulate the biological characteristics of residual
CRC cells after radiotherapy and chemotherapy, and promote
the migration and increased invasion of residual cells (43). The
heterotrimeric complex of LINC00152, NCL, and SAM68
activates the nuclear factor-kappa B (NF-xB) pathway and
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Mechanism of LINC00152 in regulating digestive system cancer.
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EMT and thus promotes CRC progression (44). High SAM68
expression was inversely related to the overall survival rate. Our
current research suggests that SAM68 can specifically recognize
the binding site in exonl of LINC00152, and the formation of
the NCL-LINC00152-SAM68 complex can activate the NF-xB
signaling pathway, thus promoting the EMT and metastasis of
CRC (44). In addition, LINC00152 can promote tumor

)‘S“I LINC00152

liferatic
LEIEEED |y | \EGFR/PIK/AKT
g miR-107 Y pathway |
m|R|53-3p -
@ sab. \/
rmgrauon and invasion v

Esophagus

—7 3
A miR-150 —— S LN
LINC00152 > /¥ miR-205-5p —|

ol

O
¢ |
ERKIMAPK pathway

e

migration and invasion

N
e 7 Bol-2 famiy
EGFR | £ q
o v

Pancreas

LINC00152

Stomach

T -

v CDB+Toell numbers " C:C'ej‘g"a""g
PIBK/AKT pathway y ,‘*- N4 J
N EZH2 N " migration

CXXL9,CXCL10/CXCR3
proliferation «—

frontiersin.org


https://doi.org/10.3389/fonc.2022.960193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al.

progression and proliferation through the LINC00152/miR-
3679-5p/MACC1 axi (45). LINC00152 was used as a
competitive endogenous RNA to make oxaliplatin-resistant
colon cancer-sponging miR-193a-3p via the LINC00152/miR-
193a-3p/erbb4/Akt signaling axis (39). LINC00152 is negatively
regulated by miR-376¢-3p and may suppress the viability of
colon cancer cells and contribute to apoptosis by regulating the
expression of Ki-67, Bcl-2, and Fas (7). Hypomethylation of the
LINCO00152 promoter is closely related to its increased
expression (46). In addition, Yue et al. (40) found a positive
feedforward loop between LINC00152 and Wnt/B-catenin
signaling that promotes colon cancer metastasis and EMT
(40). Ou et al. (2019) identified that YAP1 target LINC00152,
which promoted the biological characteristics of CRC cells by
sponging miR-185-3p and miR-632 for upregulating its target
FSCNI1, as an “YAP1/LINC00152/FSCN1” axis to promote the
malignant proliferation, migration and metastasis in CRC (47).

However, Zhang et al. (42) reported that LINC00152 inhibits
proliferation and metastasis of colon cancer cells through
regulating miRNA-105/PTEN axis (42). This is oppositive with
other studies in colon cancer. More experiments need to identify
the function of LINC00152 in colon cancers.

Hepatocellular cancer

Hepatocellular carcinoma (HCC) is the most prevalent
primary liver cancer and is the sixth most common neoplasm
(80). LINCO00152 expression was elevated in HCC tissue
compared to that in normal and precancerous tissue. Hu et
al. (25) reported that interfering with LINC00152 can inhibit
proliferation, arrest the cell cycle, and promote apoptosis of
hepatocellular cancer cells by regulating the miR-125b-5p/
KIAA1522 axis (25). Wang et al. (26) demonstrated that
silencing LINC00152 inhibited HCC development by
modulating miR-215 to upregulate CDK13 (26). Deng et al.
(24) found that HBx enhances the expression of LINC00152
and promotes the proliferation and invasion of HCC cells
(24). LINCO00152 acts as a ceRNA by sponging miR-193a/b-3p
to regulate CCND1 expression to inhibit cell cycle progression
(22). Deng et al. (23) found that autophagy-associated genes
(ARG) are associated with the prognosis of HCC patients (23).
LINCO00152 promotes the proliferation and tumor growth of
HCC cells by sponging miR-125b and upregulating the
expression of semaphorin-4C (SEMA4C) (2). Similarly, Ji et
(21) showed that LINC00152 could activate the
mammalian target of rapamycin (mTOR) signaling pathway

al.

through a combination of EpCAM promoters in a cis-
regulated manner, which promotes HCC cell proliferation in
vitro and tumor growth in vivo (21). In hepatocellular cancer,
a signature of immunoautophagy-related IncRNA (IAR-
IncRNA) predicts survival (27). LINC00152 can be used as a
biomarker for the differential diagnosis of liver cancer (20).
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Our growing understanding of LINC00152 suggests that
targeting it may be a unique therapeutic strategy for
hepatocellular carcinoma.

Gallbladder cancer

Gallbladder cancer (GBC) is the most common and
aggressive malignancy of the biliary system (83). Some
gallbladder cancers can be cured by radical cholecystectomy,
whereas metastases to other organs require chemotherapy, and
some patients also require postoperative adjuvant chemotherapy
(84). LINCO00152 is significantly upregulated in gallbladder
cancer, and the upregulation of LINC00152 by SP1 promotes
gallbladder cancer cell growth and tumor metastasis by targeting
the PI3K/AKT signaling pathway (12). LINC00152 can inhibit
the expression of HIF-1a by functioning as a miRNA sponge to
abrogate the endogenous effect of miR-138, which promotes
GBC metastasis and EMT (13). This suggests that LINC00152
could be used as a therapeutic target for GBC treatment.

Pancreatic cancer

Pancreatic cancer (PC) remains a life-threatening disease,
with a five-year survival rate of only 10% and an overall poor
prognosis. PC lacks tools for early diagnosis, and treatment
choices are limited. LINC00152 is remarkably upregulated in
PC tissue and cell lines. Yuan et al. (76) found that LINC00152
promotes the proliferation, migration, and invasion of
pancreatic cancer cells by inhibiting the expression of miR-
150 (76). Inhibition of CDK6 expression by LINC00152
sponges miR-205-5p and promotes the proliferation and
migration of tumor cells (75). These results indicate that
LINCO00152 may be an effective diagnostic biomarker and
therapeutic target for PC.

Nasopharyngeal cancer

The expression of LINC00152 in nasopharyngeal cancer
tissue and cells is increased compared to in normal tissue and
cells. LINC00152 competitively binds to miR-613 to induce
ANXA?2 upregulation, thus promoting the invasion and
metastasis of nasopharyngeal cancer cells (11)

Laryngeal cancer

LINCO00152 is significantly upregulated in laryngeal
squamous cell carcinoma (LSCC) tissue and is correlated with
poor prognosis (85). LINC00152 sponges miR-613, thus
promoting the proliferation, migration, and invasion of
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laryngeal cancer cells, and inducing apoptosis (30). Our results
highlight the role of LINC00152 as a therapeutic target for
laryngeal cancer.

Lung cancer

Lung cancer is the second most common type of cancer
worldwide. LINC00152 promotes the growth, invasion, and
migration of lung adenocarcinoma cells and is associated with
a poor prognosis (16). Chen et al. (19) found that the interaction
of LINCOOI152 with EZH2 inhibits interleukin-24 (IL24)
transcription to promote lung adenocarcinoma proliferation,
and ectopic expression of IL24 partially reversed the LAD cell
growth promotion induced by LINC00152 overexpression (19)
(Figure 4). LINC00152 enhances non-small cell lung cancer
(NSCLC) cell proliferation, migration, and invasion, and
decreases radiosensitivity in NSCLC cells in vitro by sponging
miR-195 (18). LINC00152 knockdown inhibits the proliferation,
invasion, and migration of lung cancer cells through the EGFR/
PI3K/AKT pathway, and improves apoptosis and the G1 phase
ratio (14).Silencing LINC00152 enhanced the radiosensitivity of
NSCLC cells by upregulating miR-206 and inhibiting
prothymosin alpha (PTMA). Gaining an understanding of the
role of LINC00152 in the radiosensitivity of NSCLC identified
new potential targets for the clinical treatment of NSCLC (17).
Hu et al. (15) found that LINCO00152 silencing restrained
tumorigenesis in NSCLC by regulating the miR-16-5p/BCL2L2
5). LINC00152 may be a valuable biomarker for
diagnosing and monitoring NSCLC (15).

axis (1

10.3389/fonc.2022.960193

Ovarian cancer

The expression of LINC00152 in epithelial ovarian cancer
tissue was significantly upregulated compared to in normal
tissue (57). An in vitro study found that LINC00152 regulates
cell proliferation and cell cycle in SKOV3 cells (57). LINC00152
may competitively inhibit miR125b upregulation of MCLI
expression, which modulates the mitochondrial apoptosis
pathway during ovarian cancer progression (56). LINC00152
knockdown boosted epithelial ovarian cancer cell
chemosensitivity to cisplatin by enhancing apoptosis and
reducing the expression levels of MDR1, MRP1, and GST (77).
Wang et al. (55) found that LINC00152 binds to Ser333/Ser343
of B-cell lymphoma 6 (BCL6) and stabilizes it against
ubiquitination to promote ovarian tumor proliferation and
invasion (55).

Breast cancer

Breast cancer (BC) is the most common malignancy
worldwide, accounting for 15% of deaths among women
(79).
increased in triple-negative breast cancer tissue and cells.
YY1 binds to the LINCO00152 promoter to inhibit the
transcription of LINC00152, which weakens the stability of
PTEN and promotes the progression of triple-negative breast
0). LINCO00152 regulates genes involved in the
rapamycin pathway of EGFR/mTOR and is required for cell

The expression of LINC00152 was significantly

cancer (5

proliferation, migration, and cytoskeleton organization (53).
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Positive feedback loops of LINC00152 and KLF5 promote
breast cancer growth and proliferation (54). LINC00152
binding to miR-125a-5p promotes tamoxifen resistance by
inhibiting serum response factor (SRF), thereby activating the
MAPK/ERK and Hippo pathways. LINC00152 also promotes
tamoxifen resistance in breast cancer cells by sponging miR-
125a-5p (52). Wu et al. (51) found that LINCO00152
knockdown inhibits breast cancer cell invasion, migration,
tumor growth, and colony growth, and triggers apoptosis
through a mechanism that activates breast cancer type 1
(BRCA1)/phosphatase and tensin homolog (PTEN) via
DNA methyltransferase (DNMT) inactivation (51).

Bladder cancer

Tang et al. (2019) found that LINC00152 promotes bladder
cancer cell viability, migration, invasion, and EMT by activating
the Wnt/f3-Catenin signaling pathway (10). This is rare research
about the role of LINC00152 in bladder cancer. This is an area
for urgent attention, and more intensive research is warranted
going forward.

Renal cell cancer

LINCO00152 is involved in the progression of clear cell
renal cell cancer (ccRCC) and is a potential prognostic
biomarker and therapeutic target for ccRCC (60). By
epigenetically suppressing P16 expression and interacting
with miR-205, LINC00152 may contribute to renal cell
cancer progression (59). Despite the potential role of
LINCO00152 in ccRCC, there has not been sufficient focus on
this field in recent years. Additional research is required to
determine if LINCO00152 is a suitable diagnostic or prognostic
biomarker for renal cell carcinoma.

Leukemia

Leukemia is the most common childhood cancer,
accounting for 28% of cases. High LINC00152 expression is
associated with poor survival in acute myeloid leukemia
(AML) patients. LINC00152 promotes poly [ADP-ribose]
polymerase 1 (PARP1) expression to induce chemoresistance
and regulate the self-renewal of leukemic stem cell (LSC) self-
renewal. The inhibition of LINCO00152 increased the
sensitivity of leukemic cells to doxorubicin. These results
suggest that LINC00152 may serve as a potential prognostic
marker in AML patients (8). Transcriptome analysis has
identified LINC00152 as a biomarker for early relapse and
mortality in acute lymphoblastic leukemia (9)
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Thyroid cancer

Thyroid cancer (PTC) is the most common endocrine
cancer. TRIM29 reduces miR-873-5p expression by
upregulating LINC00152 to upregulate FN1, thereby
promoting PTC migration and invasion (32). LINC00152 acts
as a ceRNA miR-497 sponge, downregulating its downstream
target brain-derived neurotrophic factor (BDNF) to promote cell
proliferation, colony formation, migration, and invasion (31).

Glioma

LINCO00152 is upregulated in glioma tissue and cells and
negatively correlates with UPF1 levels. LINC00152 promotes the
proliferation and invasion of glioma cells by inducing BMI1
expression by sponging miR-16 (86). Peng et al. (87) found that
LINCO00152 promotes tumor proliferation and invasion through
the LINCO00152/miR-107/RAB10 axis (87). LINC00152
functions as an oncogene in glioblastoma cells, promoting cell
proliferation and invasion, in part by targeting miR-107
expression (88). Zou et al. (38) found that UPFI
downregulates LINC00152 to suppress the growth and
invasion of glioma cells (38). Functionally, LINC00152
promotes the proliferation, migration, invasion, and induction
of apoptosis of glioma cells, and reduces their sensitivity to in
vitro chemotherapy (35). Mechanistically, LINC00152 binds to
miR-103a-3p to suppress FEZ family zinc finger 1 (FEZFI1),
thereby promoting cell division cycle 25 A (CDC25A)
expression to promote the PI3K/AKT pathway to exert these
functions in malignant glioma (37). Through the PI3K/AKT
pathway, the LINC00152/miR-613/CD164 axis affects cell
proliferation, apoptosis, migration, and invasion in glioma
(34). LINC00152 promotes invasion through a 3’-hairpin
structure and is related to glioblastoma prognosis (33).
Blocking LINC00152 reduces glioblastoma malignancy by
affecting the mesenchymal phenotype via the miR-612/AKT2/
NF-B pathway (89). Consequently, blocking LINC00152
decreases glioblastoma malignancy (33). However, LINC00152
has opposing effects in different types of glioblastoma cells (36).
LINC00152 knockdown stimulates migration and invasion of
A172 GBM cells, whereas knockdown of LINCO00152 in other
glioblastoma cell lines (U87-MG and LN299) leads to tumor
suppression, as it serves as an oncogene (36). In summary,
LINCO00152 may serve as a prognostic marker and new
therapeutic target for glioma.

Head and neck squamous cell cancer

LINCO00152 is involved in multi-step pathological processes
in head and neck squamous cell cancer (HNSCC), such as
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ribosomal biogenesis and maintenance of genomic stability (68).
LINCO000152 is positively correlated with lymph node metastasis
and negatively correlated with overall survival (OS) and disease-
free survival (DFS) in HNSCC patients (68). Upregulated
LINCO00052 expression in head and neck cancers is associated
with poor prognosis. LINC00052 acts as a ceRNA for miR-608 to
regulate the expression of epidermal growth factor receptor
(EGFR), thus promoting the proliferation, migration, and
invasion of HNSCC (67).

Osteosarcoma

LINCO00152 acts as a ceRNA binding miR-193b-3p, leading
to increased cell proliferation, GO/G1 cell cycle arrest, and
reduced apoptosis, thus promoting osteosarcoma development
(29). Zheng et al. (28) found that transcription factor 3 (TCF3)
activates LINC00152 to act as a ceRNA to sponge miR-1182 and
upregulate the expression of CDKI14, thus promoting the
proliferation, migration, and invasion of osteosarcoma cells (28).

Multiple myeloma

IL-6 mediates STAT3 activation, and positive feedback
induces LINC00152 expression, which is a critical factor for
the survival of INA-6 multiple myeloma cells (4). LINC00152 is
overexpressed in osteosarcoma cells (4). At present, there are
rare studies on the role and mechanism of LINC00152 in
multiple myeloma, and further studies are needed.

oral squamous cell carcinoma
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Retinoblastoma

LINCO00152 is upregulated in retinoblastoma tumor tissue.
61 found that LINC00152, which is activated by Sp1, can sponge
miR-30d, thus significantly increasing the expression of SOX9
and zinc finger E-box-binding homeobox 2 (ZEB2), inducing
EMT, and promoting the invasion and metastasis of
retinoblastoma cells (61). LINC00152 regulates the expression
of YAPI in retinoblastoma cells by sponging miR-613, thus
promoting proliferation, invasion, apoptosis, autophagy, and
chemical resistance of retinoblastoma cells (62).

We summarized the role and mechanisms of LINC00152 in
various cancer types. It indicated the potential cancer diagnosis
and prognosis value of LINC00152. More importantly,
LINC00152 also play an important role in radiotherapy and
chemotherapy resistance.

The role and mechanism of
LINCO00152 in radiotherapy and
chemotherapy resistance

LINCO00152 plays a vital role in the resistance to
radiotherapy and chemotherapy. We summarized the
mechanisms by which LINC00152 confers resistance to
chemotherapy in Figure 5. LINC00152 is highly expressed in
NSCLC, and silencing of LINC00152 enhances the
radiosensitivity of NSCLC cells by upregulating miR-206 and
inhibiting prothymosin o(PTMA). LINC00152 knockdown and
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control cells were administered subcutaneously into mice as part
(17). The tumor weight and size in the knockdown group were
significantly reduced after radiation, demonstrating that
LINCO00152 knockdown improved the radiosensitivity of
xenograft tumors in mice in an animal study (17). Silencing
LINC00152 may therefore represent a strategy for the treatment
of NSCLC. However, this study was conducted in the context of
radiation therapy in NSCLC and did not explore the role of
LINCO00152 in other cancer cells, which should be explored
further in the future.

LINCO00152 enhances NSCLC proliferation, migration, and
invasion, and alleviates radiosensitivity in vitro by sponging
miR-195 (18). Further research showed LINCO00152 inhibited
radiosensitivity of NSCLC cells in vitro and in vivo. The
increased radiosensitivity achieved by knocking down
LINCO00152 sponging of miR-195 can improve the prognosis
of patients with NSCLC. LINC00152 may serve as a prognostic
marker and promising therapeutic target for patients with
NSCLC. However, the role of LINC00152 in chemotherapy or
molecular-targeted therapy has not been reported for lung
cancer. Therefore, the regulatory role of LINC00152 in drug
resistance in lung cancer remains unknown.

Chen et al. (43) found that LINC00152 is involved in
regulating the invasion and metastasis of residual CRC cells
after chemoradiotherapy. Author established residual CRC cells
models, which was intended to mimic the clinical treatment
model as far as possible. Transwell experiments prove that the
migration and invasion of the residual CRC cells were significant
increased compared with the original cells. LINC00152 is a
potential biomarker of altered biological characteristics caused
by chemoradiotherapy in CRC cells (43). There is a solid
theoretical basis for further research to improve the CRC
therapy and improve the prognosis of patients with CRC.

Cui et al. (8) demonstrated that LINC00152 promotes
PARP1 expression, which induces chemoresistance in acute
myeloid leukemia and regulates the self-renewal of LSCs (8).
In addition, knockdown of LINCO00152 can inhibit PARP1
expression to improve the sensitivity of leukemia cells to
chemotherapy, thus improving the prognosis of leukemia
patients. These findings indicate that the LINC00152/PARP1
pathway could be used as a new therapeutic target for AML.

LINC00152 may serve as a potential prognostic biomarker
for high-grade glioma (HGG) patients and is, therefore, a
potential therapeutic target for gliomas. Further studies are
needed to identify the mechanisms by which LINC00152
regulates glioma and verify its clinical application in patients
with glioma. In addition, further research suggests that patients
with low expression of LINC00152 had longer OS than that of
the other groups. Moreover, assay showed knockdown of
LINCO00152 increased the sensitivity of chemotherapy in TMZ-
resistant LN229 and SNB19 cells. Wang et al. (44) reported that
knockdown of LINCO00152 suppresses the proliferation,
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invasion, and migration of glioma cells in vitro and increases
their sensitivity to chemotherapy (35).

Yue et al. found that colon cancer cells display different
response to oxaliplatin treatment and LINC00152 antagonize
oxaliplatin-induced apoptosis LINC00152 regulates oxaliplatin
resistance by sponging miR-193a-3p and then regulates ERBB4
in vitro. Besides, LINC00152 mediates oxaliplatin resistance
through sponging miR-193a-3p in xenograft model. Further
research found that AKT activation mediated by ERBB4
contributes to LINC00152-conferred oxaliplatin resistance.
Collectively, LINC00152 promotes oxaliplatin resistance by
sponging miR-193A-3P to participate in the LINC00152/miR-
193A-3P/ERBB4/AKT signal axis as a competitive endogenous
RNA (39).

Chen et al. (11) found that FOXD1 upregulates LINC00152
as a ceRNA to inhibit miR-1252-5p and miR-3148, thereby
upregulating LPP expression to promote EMT and
chemotherapy resistance in OSCC (90). In this previous study,
Further studies reduced the role of EMT in OSCC by silencing
FOXDI, thus increasing chemosensitivity and promoting
apoptosis. This finding indicates that overexpression of
FOXD1 promotes cisplatin resistance in vitro and in vivo by
regulating the EMT of OSCC cells. Whereas silencing FOXD1
inhibits cisplatin resistance, suggesting that FOXD1 may be a
potential prognostic marker and anti-drug resistance therapeutic
target. New evidence is expected for the role of FOXDI and the
chemical resistance of OSCC involved by FOXD1. However, the
detailed mechanisms of FOXD1 upregulation in OSCC remain
unexplored and will be the focus of our future research.

Xu et al. found that LINC00152 induces chemoresistance in
pan-cancer, resulting in a poor prognosis for pan-cancer patients
(49). The mechanisms underlying LINC00152’s upregulation in
pancreatic cancer is unknown. This research broadened the
carcinogenic role of IncRNA in pancreatic cancer and revealed
that LINC00152 might be a potential therapeutic target and
contribute to the comprehensive management of
pancreatic cancer.

The expression level of LINC00152 in epithelial ovarian
cancer cells is upregulated. The knock-down of LINC00152
increases the chemosensitivity of epithelial ovarian cancer cells
to cisplatin by increasing apoptosis and decreasing the
expression levels of MDR1, MRPI, and GSTr (77). This study
only investigated the effect of LINC00152 silencing on cisplatin
resistance in COCI and COC1/DDP cells but did not explore the
effect of LINC00152 overexpression on drug resistance. This
needs to be further verified on other ovarian cancer cell lines and
animal models.

Liu et al. (66) found that LINC00152 improves serum
response factor (SRF) expression by sponging miR-125a-5p to
activate the MAPK/ERK and Hippo pathways to promote
tamoxifen resistance in breast cancer cells. In addition, the
prognosis of patients with breast cancer can be improved by
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promoting tamoxifen sensitivity in breast cancer cells by
knocking down LINC00152 to inhibit SRF (52).

LINCO00152 regulates the expression of YAPI in
retinoblastoma cells by sponging miR-613, and knockdown of
YAPI1 eliminates the miR-613-mediated effects on
retinoblastoma cell proliferation, invasion, apoptosis,
autophagy, and chemical resistance (62). In addition, Wang et
al. (55) also found that knockdown of LINC00152 increased the
chemosensitivity of retinoblastoma to carboplatin and
doxorubicin by regulating miR-613.

In total, LINC00152 plays an important role in
chemotherapy and radiotherapy resistance through regulating
microRNA, protein, or classical signaling pathway. LINC00152
may be a potential sensitizer for radiotherapy and chemotherapy
in the future.

The role and mechanism of
LINCO00152 in cancer recurrence

LINCO00152 as a tumor marker to predict tumor recurrence
has been reported in various cancers. A meta-analysis showed
that LINC00152 overexpression is significantly related to poor
overall survival and poor disease-free survival (91). Meanwhile,
LINCO00152 is a biomarker of early relapse and mortality in acute
lymphoblastic leukemia according to transcriptome analysis (9).
In retinoblastoma, LINC00152 is activated by SP1 to inhibit
miR-30d and thus regulate the expression of SOX9 and ZEB2 to
promote tumor recurrence (61). The Kaplan-Meier analysis
suggested that high LINCO00152 expression leads to
significantly lower DFS rates in lung adenocarcinoma. CCK8
assay and the colony-forming assay showed LINCO00152
stimulated tumor cell proliferation in lung adenocarcinoma
(92). Immunochemistry staining found that LINC00152 was
related to nuclear accumulation of f-catenin in colon cancer
tissues and have a prognostic value (40). Li et al. (14) found that
LINCO00152 binds to KLF5 to induce breast cancer cell
proliferation and predicts poor prognosis. Yu et al. (5) found
that LINC00152 expression was significantly upregulated in
tongue squamous cell carcinoma and high LINC00152
expression was closely associated with progression and poor
prognosis (93).More studies about the role and mechanism of
linc00152 in cancer recurrence are needed.

The role and mechanism of
LINC00152 in immunotherapy
response

LINC00152 is also reported to involved in immunotherapy
response. Ou et al. (69) found that LINC00152 mediates CD8" T
cell infiltration in gastric cancer by binding to EZH2 and
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regulating CXCL9,10/CXCL9 axis. The inhibition of
LINC00152 may inhibit the progression of gastric cancer in
vivo by promoting CD8" T cell infiltration immune response
(69). TCGA database indicated that LINC00152 and HMGAL1
regulate each other. Chen et al. (92) found that LINC00152 acts
as a competitive endogenous RNA to regulate the expression of
HMGALI. LINC00152 and HMGA1 play an important role in the
cell cycle and proliferation of GC cells, through reducing the
infiltration of immune cells and the 28 types of tumor-
infiltrating lymphocytes (TILs) found in human cancers (94).
More studies about the role and mechanism of LINC00152 in
immunotherapy response are needed.

Discussion

Dysregulation of IncRNAs is associated with various
malignant behaviors of cancer cells, such as cancer progression
and metastasis. LINC00152 is significantly upregulated in most
cancer tissue and cell lines, and is associated with poor
prognosis. Clinicopathological analysis has shown that
LINCO00152 is positively associated with tumor infiltration
depth, TNM stage, lymph node metastasis, and CA19-9 levels
(41). LINC00152 research has recently flourished, confirming
their role in regulating diverse functions such as proliferation,
apoptosis, EMT, migration, invasion, cell cycle, and
chemotherapy and radiotherapy resistance in various
human cancers.

LINCO00152 is overexpressed and plays an oncogenic role
in many types of tumors, including lung, hepatocellular,
ovarian, and esophageal cancer. LINC00152 can contribute
to tumor progression in certain cancer types. Chen et al. (19)
found that the interaction between LINCOO152 and EZH2
inhibits IL24 transcription to promote lung adenocarcinoma
proliferation. However, downregulation of LINC00152 in
serum-derived exosomes has been observed in CRC
patients (95).

The mechanisms by which LINC00152 promotes tumor
development are highly complex, including serving as a
ceRNA sponge for miRNA, interacting with proteins,
activating signaling pathways, and regulating epigenetic
regulation. LINC00152 is involved in various signaling
pathways leading to cancer progression, including the ERK/
MAPK, B-catenin, mTOR, and PI3K signaling pathways. Several
experiments have confirmed the role of IncRNAs in epigenetics,
transcription, and gene expression, and IncRNAs, circRNAs, and
miRNAs can act as ceRNAs to interact with mRNA and regulate
cell function (96) (Figure 6). LINC00152 can act as a ceRNA to
regulate HMGAL expression in GC cells (94). The molecular
mechanism by which LINCO00152 participates in multiple
cancers has been preliminarily explored. However, further in-
depth analysis is warranted, particularly in cancers that are
poorly understood or have limited treatment options.
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LINC00152 and miRNA-related regulatory mechanisms.

LINC00152 play an important role in radiotherapy and
chemotherapy. LINC00152 was reported to induce
chemoresistance in pan-cancer, resulting in poor patient
prognosis (49). Wang et al. (44) reported that knockdown of
LINCO00152 increases the sensitivity to chemotherapy in glioma
(35). In addition, knockdown of LINCO00152 increased the
chemosensitivity of carboplatin and doxorubicin in
retinoblastoma (62). We summarized the role and mechanism
of LINC00152 in chemotherapy in Figure 5. There are rare
studies about the role and mechanism of LINC00152 in
radiotherapy. Only 2 papers reported that LINC00152 reduced
the radiosensitivity by sponging miR-195 or miR-206 in NSCLC
(17, 18). It remains unknow about the role of LINC00152 in
radiotherapy in other cancers. LINC00152 could be used as a
potential chemotherapy and radiotherapy sensitization targets
and may contribute to the prognosis of cancer patients.

This review provides a comprehensive description of the role
and mechanisms of LINC00152 in various cancer types, with an
emphasis on chemotherapy and radiotherapy resistance. More
studies are needed on LINC00152 to elucidate the mechanisms
of chemoradiotherapy resistance and improve the prognosis of
patients with cancer.

LINC00152 could be a potential biomarker for cancer
diagnosis and prognosis, and may be a promising therapeutic
target due to its important role in cancer. The source of
LINC00152, the mechanism of LINCO00152, and its clinical
application require further investigation. Only once these
mechanisms are fully understood can LINCO00152 be used in
the clinical setting for treating cancer.
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Cutaneous T-Cell Lymphoma (CTCL) is a rare non-Hodgkin lymphoma marked
by migration of T-lymphocytes to the skin. It has many subtypes some of which
are aggressive with documented metastasis. We investigated a possible role of
INncRNA MALATL in CTCL cells because of its documented involvement in
cancer metastasis. A screening of MALAT1 in CTCL patients revealed its
elevated levels in the patients, compared to healthy individuals. For our
investigation, we employed HH and H9 CTCL cells and silenced MALAT1 to
understand the MALAT1 mediated functions. Such silencing of MALAT1 resulted
in reversal of EMT and inhibition of cancer stem cell phenotype, along with
reduced cell growth and proliferation. EMT reversal was established through
increased E-cadherin and reduced N-cadherin while inhibition of cancer stem
cell phenotype was evident through reduced Sox2 and Nanog. CTCL patients
had higher circulating levels of IL-6, IL-8, IL-10, TGFB, PGE2 and MMP7 which
are factors released by tumor-associated macrophages in tumor
microenvironment. MALAT1 sponged miR-124 as this tumor suppressive
mMiRNA was de-repressed upon MALATI silencing. Moreover, downregulation
of miR-124 attenuated MALATI silencing effects. Our study provides a rationale
for further studies focused on an evaluation of MALAT1-miR-124 in
CTCL progression.
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Introduction

Cutaneous T-Cell Lymphoma (CTCL) is rather a rare cancer
that starts in T-lymphocytes and affects skin. It represents the
most common lymphoma of skin (1) with indications of some
connections with the industrialization of communities (1). Some
of the most common subtypes of CTCL are Mycosis Fungoides
(MF), Sézary Syndrome (SS) and the primary cutaneous
anaplastic large cell lymphoma (cALCL) which together
contribute to almost four-fifths of all diagnosed CTCL cases
(2). The incidence of CTCL is a little over 6 cases per a
population size of one million persons in the United States (3).
There is indication for geographical variation in incidence rate
with some Asian populations reporting relatively higher
incidence of particularly rare CTCL subtypes (4).

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), also known by its alternate name, nuclear
enriched abundant transcript 2 (NEAT?2), is an oncogenic long
non-coding RNA (IncRNA) that has gained lot of interest in
recent years (5-7). As suggested by its name, it induces
metastasis of cancer cells and is therefore connected with
overall increased metastatic potential of different cancers (8)
although some research has even suggested its metastasis-
suppressing function (9). Thus, according to many researchers,
the role of MALAT] is controversial and may need to be better
elucidated through more comprehensive studies (10).
Incidentally, the role of MALAT1 in CTCL is almost unknown
with little evidence in the literature. This prompted us to
undertake this study wherein we planned to study first the
relative abundance of this IncRNA in patient samples followed
by the study of its mechanism in CTCL cell lines. In its
evaluation in CTCL patients, MALAT1 has previously been
shown to be elevated (11). To the best of our knowledge this is
only report on MALAT1 in CTCL. In view of the controversy
surrounding the oncogenic vs. tumor suppressor role of
MALAT]I in human cancers, we started with the quantitation
of CTCL in serum of CTCL patients in our cohort and we further
employed CTCL cell lines HH and H9 to further characterize the
role of MALATI in CTCL.

Materials and methods
Cell culture

HH cells (CRL-2105) and H9 cells (HTB-176) were obtained
from ATCC (USA). According to ATCC, HH is a mature T cell
line derived in 1986 from peripheral blood of a patient with
aggressive cutaneous T cell leukemia/lymphoma while H9 cell line
is a clonal derivative of the Hut 78 cell line and the H9 clone was
selected for permissiveness for HIV-1 replication. Both the cell
lines were cultured in RPMI-1640 medium modified to contain 2
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mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4500
mg/L glucose, and 1500 mg/L sodium bicarbonate (ATCC, USA).
Cells were cultured in incubators with 5% CO..

Patients and healthy controls

A total of 10 CTCL patients and 8 healthy controls were
recruited to the study. Both, CTCL patients and healthy
volunteers were enrolled at the the first Hospital of Jilin
University. The study involving volunteer and patient
recruitment and procedures was approved by the Ethics
Committee at the First Hospital of Jilin University (Approval
Number 2021-680). Further, the study complied with the
standards set by the Declaration of Helsinki, as enforced by
the Ethics Committee at the Jilin University. All the patients and
volunteers provided a written consent to be part of the study.

Serum RNA extraction

RNA was extracted from serum of CTCL patients as well as
healthy controls, as described in published report (12). First, we
extracted the total RNA by mixing 500 UL of serum with 1.5 mL
of Trizol reagent (Thermo Fisher Scientific, China). After
incubation at room temperature for 5 min, we added 40 uL of
chloroform and mixed it well before further incubation for 15
minutes, followed by centrifugation at 4°C for 25 min at 12,000g.
At the end of centrifugation, aqueous phase was collected and
transferred to a clean and fresh new tube. Then, 1 mL of
isopropanol was added and the tubes kept at room
temperature for 10 min. Finally, the tubes were further
centrifuged at 4°C for 15 min at 21,100 g to pellet the RNA,
and the obtained pellet once washed with ethanol.

MALAT1 expression

We evaluated the expression of MALAT1 by using TaqMan
Gene Expression Assay (Thermo Fisher Scientific, China; cat#
Hs00273907_s1), following the protocol provided by the
company and as earlier described (12). RT-qPCR was
performed using the BioRad RT-qPCR machine. GAPDH
(cat# Hs02786624_gl) was used as the experimentally
verifiable control gene. The calculations were done

using the 274" method.

Cell proliferation
For cell proliferation/cell growth, we used cell counting Kit-8

(CCK-8) (Sigma, China), which uses WST-8 (2-(2-methoxy-4-
nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

frontiersin.org


https://doi.org/10.3389/fonc.2022.977266
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Guo et al.

tetrazolium, monosodium salt), to produce a water-soluble
formazan dye upon bioreduction in the presence of an electron
carrier, 1-Methoxy PMS. The CCK-8 solution was directly added
on top of the media in the plates with CTCL cells. The number of
CTCL cells in individual wells of the 96-well plates ranged from
3000 to 5000, depending upon the cell line, length of incubation
and the individual experiment. The principle of this assay is that
WST-8 is bioreduced by cellular dehydrogenases to form an
orange formazan product which is soluble in normal cell culture
medium. The amount of formazan produced is directly
proportional to the number of living cells. The WST-8 was
added to cells for 4 hours and the color development was
stopped by adding 10 ul of 0.1 mol/l hydrochloric acid. O.D.
was read to 450 nm using a Shimadzu spectrophotometer.

qRT-PCR for miRNA and
MRNA detection

RNA extractions were carried out using Trizol (Thermo
Fisher Scientific, China) and re-suspended in nuclease-treated
H,0. cDNA synthesis was prepared by the miR-specific, U6
snRNA-specific or oligo-dT primers method using the
Superscript II Reverse Transcription kit (Thermo Fisher
Scientific, China). Quantitative PCR was performed using
BioRad machine. miRNA or mRNA levels were determined,
relative to U6 or GAPDH expression using the SYBR Green PCR
kit (Thermo Fisher Scientific, China), respectively. Fold change
in expression was determined using the formula of 244",

MALAT1 and miR-124 silencing

MiR-124 inhibitor, its scramble control and small interference
RNAs targeting MALAT1 along with scramble control were
obtained from Gene Pharma Co., Ltd. (Shanghai, China). siRNA
against MALAT1 as well as miR-124 inhibitors were transfected
into CTCL cells using Lipofectamine 2000 (Thermo Fisher
Scientific, China) according to the manufacturer’s instructions.

ELISA

All kits for the ELISA assays were purchased from Enzo Life
Sciences (USA). The kits provide all the reagents needed for
quantitative assessment of various factors in human serum. The
individual kits contain specific antibodies immobilized on
microtiter plates. For the assay, serum samples (100 pl) were
applied to the individual wells in the provided 96-well plates, and
the plates were incubated at room temperature for 1 hour with
gentle shaking. At the end of incubation, the contents were emptied
out and replaced with 400 pl of wash buffer for washing.
The washings were done a total of 3 times and the wash buffer
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were aspirated out. Then, biotinylated antibody specific to the
factor being assayed by specific kits was added to wells and plates
further incubated at room temperature for 1 hour with gentle
shaking. This was followed by 3x washings and the aspiration of
wash buffer every time. Finally, streptavidin conjugated to
horseradish peroxidase was added to each wells and the color
allowed to develop by shaking the plates gently for 30 minutes at
room temperature. 100 ul of stop solution was then added to
each well and the O.D. was read at 450 nm using a
Shimadzu spectrophotometer.

Statistical analysis

All results are expressed as mean * standard deviation. We
used Student’s t-test or ANONA (One-way) to compare groups.
P < 0.05 was considered significantly different.

Results
MALAT1 in elevated in CTCL patients

The status of IncRNA MALATI in CTCL patients is not
clear and moreover there is quite some controversy regarding
the oncogenic vs tumor suppressive role of MALAT1 in different
cancers. Therefore, we started with an evaluation of MALAT1
levels in the serum of CTCL patients (n=10), as compared to the
levels of MALAT]I in the serum of healthy control volunteers
(n=8). In our cohort, we found (Figure 1) significantly increased

6— p<0.01
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FIGURE 1
MALATI levels in CTCL patients (n=10) vs. healthy controls (n=8).
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MALATI in patients’ serum with a p value of p<0.01. Thus,
MALATI is clearly overexpressed in CTCL patients, atleast in
our cohort.

MALAT1 silencing affects EMT and cell
growth parameters

MALAT]I influences cancer metastasis through induction
of epithelial-mesenchymal transition (EMT) (13, 14). This
made us next evaluate the effect of MALAT1 on EMT in
CTCL cells. For this, we started with CTCL cell line, HH,
and silenced MALATI in this cell line by using specific
MALAT]1-tergeting siRNA. We first tested three different
siRNAs, si-1, si-2 and si-3 (Figure 2A) to find the most
effective siRNA. Our observations proved that siRNA # 2 was
the best in terms of effective silencing of MALAT1 because this
particular siRNA reduced the expression of MALAT1 by more
than half in HH cells with a p value of p<0.01. In contrast,
while one siRNA (siRNA#1) did not significantly reduce
MALATI1, another (siRNA#3) was comparatively less
effective (p<0.05). Subsequently, we used siRNA#2 for all of
the remaining experiments. A screening of siRNA#2 in the
other tested CTCL cell line H9 revealed a potent silencing effect
of siRNA#2 in these cells as well with significantly reduced
MALAT]1 levels (p<0.01) (Figure 2B).

We further used the siRNA to reduce MALAT1 levels in two
different CTCL cells, HH and H9 and first studied the cell
growth pattern before studying the levels of EMT markers. Cell
growth was measured by CCK-8 method which allows
quantification of viable cells and is therefore a reliable test for
proliferation and cell growth. Post-silencing of MALAT1, CTCL
cells were subjected to CCK-8 assay for 24 hours with reading
taken at 1, 12 and 24 hours. We observed that whereas the cells
grew normally under control conditions (cells transfected with
control siRNA), the ones with silenced MALAT1 were
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significantly slower in their growth. Same results were seen for
both HH and H9 cells (Figures 2C, D) with a p- value of p<0.01
for both CTCL cell lines and at 12 and 24 hours post silencing
of MALATI.

After checking the effect of MALATI silencing on cell
growth, we next checked for the effect of MALATI silencing
on EMT. We chose one marker of epithelial phenotype and
another marker for mesenchymal phenotype. E-cadherin was
our chosen epithelial marker and N-cadherin was our chosen
mesenchymal marker. We observed that silencing of
MALATI increased E-cadherin while reducing N-cadherin
in HH cells (Figure 3A). These results had a p-value of p<0.01.
Similar observations were made in H9 cells as well
(Figure 3B). We also checked the cancer stem cell markers,
Sox2 and Nanog in both of these CTCL cells and observed
that both the markers, that we evaluated, were significantly
reduced upon silencing of MALAT1 in HH (Figure 3C) as
well as in H9 (Figure 3D) cells.

Levels of macrophages M2-related
factors in CTCL patients

Tumor microenvironment plays a very important role in
cancer metastasis and tumor-associated macrophages
(TAMs), particularly the M2 type play an important role in
cancer metastasis. M2 macrophages secrete many factors,
such as, IL-6, IL-8, IL-10, TGF-B, PGE2 and MMP7, and
these macrophages promote immunosuppression (15) and
tumor growth. Therefore, we checked for the levels of these
factors in serum of CTCL patients. We observed that all of
these factors were significantly elevated in CTCL patients,
compared to the healthy control volunteers (Figure 4). While
IL-6 and IL-8 had p-values of 0.05, IL-10, TGFf, PGE2 and
MMP7 were even more significantly elevated in patients with
p-values of p<0.01. Based on these results, it is apparent that

D
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= si-MALAT1 M = si-MALAT1 p ,<£| 01
150 PR:D1 o 150 p<0.01
m m
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MALATL silencing in CTCL cells and its effects on cell growth. (A) Different siRNAs were checked for their efficacy to inhibit MALAT1 in HH cells
(B) siRNA#2 was further evaluated in H9 cells. Cell growth was assessed by CCK-8 method in HH (C) and H9 (D) cells. NS is 'not significant’
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in HH (C) and H9 (D) cells upon MALAT1 silencing

the factors related to M2 TAMs are upregulated in the
CTCL patients.

MALAT1 sponges multiple miRNAs in
CTCL cells

It is well established in the literature that IncRNAs function
via sponging of miRNAs (16). miRNAs that have previously
been shown to be sponged by MALAT1 and also connected to
EMT, namely, miR-101, miR-124 and miR-200c were screened
for their possible sponging by MALAT1 in CTCL cells HH. We
checked the levels of these three miRNAs in the HH cells with
MALATT1 silenced, and observed that all of these miRNAs were
upregulated in the cells when MALATI1 was silenced
(Figure 5A). All the miRNAs had a p-value of p<0.01.
However, it was also observed that among the three tested
miRNAs, miR-124 was the most upregulated miRNA in HH
cells (Figure 5A) leading us to further evaluate this miRNA in
H9 cells. Similar to our findings in HH cells, we found miR-124
to be significantly elevated in H9 cells (Figure 5B). Therefore,
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we further chose this miRNA for more studies, as
discussed below.

Anti-miR-124 reverses MALAT1
silencing effects

Further mechanism was studied because of the observation
that miRNA-124 was upregulated in MALAT1 silenced cells. To
find a role of miR-124 in MALAT1 functions, we countered the
increased miR-124 in MALAT]1 silenced cells by silencing miR-
124 in these cells. First, we checked the cell growth using CCK-8
method as described above. We observed that when miR-124
was silenced in MALAT1 silenced HH CTCL cells, the reduced
proliferation associated with MALATI silencing was reversed
(Figure 6A). Since our results above also found an inhibitory
effect of MALAT1 silencing on markers of EMT and cancer stem
cells, we also checked for the effect of miR-124 silencing on these
markers. We observed that the epithelial marker E-cadherin was
downregulated by miR-124 silencing whereas mesenchymal
marker N-cadherin was upregulated by miR-124 (Figure 6B).
When we studied cancer stem cell markers Sox2 and Nanog, we
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Sponging of mMiRNAs by MALAT1 in CTCL cells. (A) miR-101, miR-124 and miR-200c were quantitated in HH cells followed by evaluation of miR-

124 in H9 cells (B)

observed that silencing of miR-124 upregulated both the stem
cell markers significantly (Figure 6C) with a p-value of p<0.01.
We also wanted to check the effect of anti-miR-124 on M2
macrophages-released factors. As a proof-of-principle, we
checked the levels of IL-6 and IL-10 in control and MALAT1
silenced cells. We observed that MALAT1 silencing significantly
reduced both of these factors in HH cells (Figure 7).
Furthermore, when we silenced miR-124 in MALAT]1 silenced
cells, the levels of these factors were almost restored (Figure 7).
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Discussion

Both IncRNAs and miRNAs belong to the class of non-
coding RNAs which were, not very long ago, considered to be
unk’ (17). However, now these non-coding RNAs are
considered to be very important regulators that determine
disease progression, particularly cancer. MALAT1 is one such
IncRNA that has now been extensively studied in various
different cancers (6, 7, 13, 18) with hundreds of available
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reports on this IncRNA in the scientific literature. However,
there is not much information on this IncRNA in CTCL and that
was the primary reason behind our planned study. In the one
published report, MALAT’s role in CTCL was suggested a few
years back (11). It was shown that in CTCL MyLA cells, C-C
motif chemokine ligand 21 (CCL21) activates mTOR leading to
MALAT]1 upregulation with observed surge in cell migration
(11). Therefore, this early publication on MALAT1 in CTCL
supported our current findings by validating an oncogenic role
of MALAT1 in CTCL cells. The published report had MyLA cells
as the experimental model while our study examined HH and
H9 CTCL cells. Combined, it seems like MALAT1 is oncogenic
in CTCL cells across multiple cell lines and thus could be an
important therapeutic target.

As one of the mechanisms by which MALAT1 can influence
CTCL progression, we observed induction of EMT by MALATT1.
For establishing this action of MALAT1, we studied two different
biomarkers for EMT - E-cadherin and N-cadherin. These
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markers are representative of two entirely different facets of
EMT. While E-cadherin is marker of epithelial phenotype, N-
cadherin is a marker for mesenchymal phenotype. During the
induction of EMT, cancer cells loose epithelial characteristics
and move towards a mesenchymal phenotype. This is marked by
loss/downregulation of E-cadherin and gain/upregulation of N-
cadherin. In our experiments, we observed gain of E-cadherin
and loss of N-cadherin upon MALAT1 silencing. This means
that when MALATI1 is downregulated, a reversal of EMT
happens. This provides an evidence for a positive correlation
between MALATI1 and EMT induction in CTCL cells because
upregulation of epithelial marker with simultaneous
downregulation of mesenchymal marker is reliable indication
of reversal of EMT. The EMT induced by IncRNAs plays an
important role in cancer metastasis (19) and accordingly
MALAT1-induced EMT has been reported to regulate cancer
metastasis (13, 20, 21). Thus, MALAT1 upregulation in CTCL
can be related to a more aggressive disease.

In our study, we also checked for the cancer stem cell
markers because in our results we observed induction of EMT
by MALAT1 and it is known in literature that EMT promotes
cancer stem cell phenotype (22). Moreover, MALAT]I has itself
been shown to promote cancer stem cell characteristics (23, 24)
with silencing of MALAT1 linked to reduced EMT and cancer
stem cells phenotype (25), which is in complete agreement with
the results that we have presented in our study. In our
experiments, we observed reduced levels of stem cells markers,
both Sox2 and Nanog in CTCL cells, upon silencing of
MALAT], which is a clear indication that MALAT1 promotes
cancer stem cell phenotype as silencing of MALAT]1 reduces
stem cell markers.

Tumor microenvironment provides a sanctuary for the
growth of cancer cells and this is facilitated by mutual
interactions between several cellular components of the
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microenvironment. There is a functional crosstalk between the
many different cell types within this microenvironment (26).
TAMs represent a major component of tumor
microenvironment and they play a very important role in
tumor progression through their contribution to evasion of
host immune responses (15). TAMs also release many factors
such as IL-6, IL-8, IL-10 and TGFp (27, 28). It was therefore
important to find out if these factors are detectable in CTCL
patients. Our observations that these factors can be detected in
circulation in CTCL patients is a clear indication for the activity
of M2-type macrophages in CTCL patients. Further,
immunosuppressive activity of TAMs is supported through
dysregulated miRNAs (15) and therefore, it was important for
us to find miRNA that was central to the MALAT1 activity.

For the identification of miRNAs sponged by MALAT1 in
CTCL cells, we focused on three specific miRNAs that have been
shown to regulate EMT and also sponged by MALAT]. This was
based on the observation that MALATI1 regulates EMT and
CSC. All the three tested miRNAs, miR-101, miR-124 and miR-
200c regulate EMT (29-31) and there are also reports on their
sponging by MALAT1 (32-34). Our observations further add to
this knowledge by establishing sponging of these miRNAs by
MALAT1 in CTCL cells as well. In our results, we observed miR-
124 to be the most dysregulated miRNA when MALATI1 was
silenced. This guided us to perform experiments wherein we
rescued cancer cell characteristics in MALAT1-silenced cells
through targeted dysregulation of miR-124. Since, MALAT1 is
oncogenic in our model, we expected the miRNAs sponged by it
to be tumor suppressive and that was the case as all sponged
miRNAs, including the most affected miRNA, miR-124, are all
tumor suppressive miRNAs. miR-124 was upregulated when
MALAT1 was silenced and downregulation of miR-124 restored
the cancer cell characteristics that would otherwise be seen in
MALATI1 expressing cells. Thus, our study established a
MALATI1-miR-124 axis in CTCL cells.

Finally, we report in this study that we checked the levels of
IL6 and IL10 in CTCL HH cells. For this particular experiment,
we had several experimental conditions which included
MALATT1 silencing followed by miR-124 downregulation. The
rationale for this experiment came from an earlier observation in
this study where we saw elevated IL-6 and IL-10 in serum from
CTCL patient’s serum. Since manipulation of MALAT1 and
miR-124 was not possible in humans, we performed the
experiments using CTCL cells as a proof of principle. We were
able to show that MALATI silencing reduces the levels of these
factors and furthermore, downregulation of miR-124 can reverse
MALATI-silencing effects.

Our study thus provides a novel involvement of MALAT1 in
CTCL cells. MALAT1 induces EMT and cancer stem cell
phenotype and this is facilitated by sponging of miR-124 by
MALAT]I. Further pre-clinical studies should provide additional
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verification of this phenomenon with identification of key steps
that can targeted for therapeutic benefit.
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Non-functioning pituitary adenoma (NFPA) is a benign tumor arising from the
adenohypophyseal cells. They can be associated with symptoms arising from
mass effect. Although these tumors are regarded to be benign tumors, they are
associated with increased comorbidity and mortality. Several studies have
indicated abnormal expression of genes in these tumors. In the current
study, we have used existing methods to identify differentially expressed
genes (DEGs) including DE long non-coding RNAs (DEIncRNAs) and DE
microRNAs (DEmiRNAs) in NFPAs compared with normal samples. Then, we
have assessed the relation between these genes and important signaling
pathways. Our analyses led to identification of 3131 DEGs, including 189
downregulated DEGs (such as RPS4Y1 and DDX3Y) and 2898 upregulated
DEGs (such as ASB3 and DRD4), and 44 DEIncRNAs, including 8 downregulated
DEIncRNAs (such as NUTM2B-AS1 and MALAT1) and 36 upregulated
DEIncRNAs (such as BCAR4 and SRD5A3-AS1). GnRH signaling pathway,
Tight junction, Gap junction, Melanogenesis, DNA replication, Nucleotide
excision repair, Mismatch repair and N-Glycan biosynthesis have been
among dysregulated pathways in NFPAs. Taken together, our study has
revealed differential expression of several genes and signaling pathways in
this type of tumors.
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Introduction

Non-functioning pituitary adenoma (NFPA) is a benign tumor
arising from the adenohypophyseal cells. This type of tumor is
described by the lack of clinical signs of hypersecretion of hormones.
Statistics show a prevalence of 7-41.3/100,000 for NFPA (1-3). The
incidence of this type of tumors seems to be increased during recent
years, possibly due to enhanced numbers of incidentally identified
adenomas in brain imaging conducted for other purposes (4).

Eight subtypes identified for NFPA are as follow: silent
gonadotroph, corticotroph, somatotroph, thyrotroph, lactotroph,
plurihormonal Pit-1, null-cell, and double/triple NFPAs (5). NFPA
has variable clinical manifestations ranging from asymptomatic to
symptoms resulting from effects of mass on neighboring regions
leading to headache, visual defect, and/or hypopituitarism (2, 6).

Although these tumors are regarded to be benign tumors
from a histological point of view, they are associated with
increased comorbidity and mortality (3, 7).

Recent studies have indicated abnormal expression pattern
of several coding and non-coding genes in NFPA (8, 9). For
instance, transcriptome analysis has shown distinct profiles in
pituitary adenomas compared to the non-tumoral tissues,
irrespective of the identified immunophenotype. Notably,
calcium metabolism and immune-related genes are among the
mostly altered genes in adenomas (9).

In the current study, we have used existing methods to identify
differentially expressed genes (DEGs) including DE long non-
coding RNAs (DEIncRNAs) and DE microRNAs (DEmiRNAs)
in NFPAs compared with normal samples. Then, we have assessed
the relation between these genes and important signaling pathways.

Methods
Microarray data collection

We used the Gene Expression Omnibus (GEO; http://www.
ncbi.nlm.nih.gov/geo/) to obtain the human expression profiles of
GSE62960 (Agilent-014850 Whole Human Genome Microarray
4x44K G4112F) and GSE63357 (Affymetrix Human Genome
U133 Plus 2.0 Array), which contained 28 and 25 samples,
respectively. We selected 10 non-functioning pituitary adenoma
samples from GSE62960 and 5 normal pituitary samples from
GSE63357 for further analysis. The expression data contained
both IncRNAs and mRNAs expression signatures.

Microarray data processing, integrative
meta-analysis and assessment of
data quality

Processing and integration of all microarray data were
performed using the R statistical programming language, the
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mentioned datasets have different and trendy platforms (Agilent
and Affymetrix), a sensitive step in the integration of
heterogeneous data is normalization (10). Batch effects (non-
biological differences) were removed by applying the ComBat
function from the R Package Surrogate Variable Analysis (SVA)
(11). Batch effect removal was checked by PCA and boxplot. The
meta-analysis outcome is a unit expression matrix (the
combination of four datasets of this study). Then, we used
quantile normalization method to normalize data
expression matrix.

To accomplish quantile normalization, we used the
preprocessCore R package. Also, we utilized ComBat function
based on its description in sva package (ComBat permits
adjustment of batch effects in datasets where the batch
covariate is known (12)) and bioconductor (The sva package
can be utilized to eliminate artifacts by three methods: (1)
recognizing and appraising surrogate variables for unknown
sources of variation in high-throughput experiments (13), (2)
directly eliminating identified batch effects using ComBat (12)
and (3) removing batch effects with known control probes. We
used this function after merging two datasets. This method has
been used in recent publications as well (14).

Analysis of differentially expressed
IncRNAs and mRNAs

The Limma package in R language (15) was used to obtain
DEGs and DEIncRNAs between NFPA and normal samples.
Furthermore, we used Bonferroni in the multtest package to
adjust the P value into the FDR. We used the FDR < 0.05 and |
log, FC|>1 as the cutoff criteria for DEGs and DEIncRNAs.
Then we identified DEIncRNAs using HUGO gene
nomenclature committee.

Two-way clustering of DEGs
and DElncRNAs

The gene expression parameters of substantial differentially
expressed genes and IncRNAs were obtained. Then, the
pheatmap package in R language (version 1.0.12) (16) was
used to conduct the two-way clustering based on the
Euclidean distance.

Gene ontology (GO) enrichment analyses

In order to find the function of the obtained considerably
downregulated and upregulated DEGs, we performed Gene
Ontology (GO) enrichment analysis using the clusterProfiler R
package (17). We set p-value <0.05 as the thresholds of the
functional categories.
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Kyoto encyclopedia of genes and
genomes (KEGG) pathway analysis

KEGG pathway analysis of considerably downregulated and
upregulated DEGs was performed to find the potential function
of these genes contributing to the pathways based on the KEGG
database (18).

Constructing the ceRNA network

We built a ceRNA network through the following steps: 1)
Searching the miR2Disease database (http://watson.compbio.
iupui.edu:8080/miR2Disease/index.jsp) (19) for the pituitary
adenoma (PA)-related miRNAs using the keyword “Pituitary
Adenoma”. 2) Using miRcode (http://www.mircode.org/) for
assessment of interaction between IncRNAs and miRNAs
based on the PA-related miRNAs; 2) Application of miRDB
(http://www.mirdb.org/) (20), TargetScan (http://www.
targetscan.org/) (21) and miRWalk (http://129.206.7.150/)
(22) for prediction of miRNAs-targeted mRNAs; 3) Finding
the intersections of the differentially expressed IncRNAs and
mRNAs, and establishment of IncRNA/mRNA/miRNA ceRNA
network using Cytoscape v3.0 (23); and 4) we used cytohubba
(24) to detect 15 hub genes with best degree in ceRNA network.

Survival analysis

GEPIA (25) was used to depict survival curves according to
prognostic value of top 10 genes with best degree in ceRNA
network. The clinical data for patients with low grade glioma was

10.3389/fonc.2022.978016

obtained from TCGA. The TCGA-LGG data (https://portal.gdc.
cancer.gov/) included 515 primary solid tumor samples. This
analysis was done on June 9, 2022.

Kaplan-Meier curves were depicted for evaluation of
univariate survival. P-values less than 0.05 were considered
statistically significant.

Results
Dataset quality assessment

Figure 1 demonstrates the boxplot of raw data before and
after batch effect removal. These boxplots indicates that the
quality of the expression data was reliable.

Figure 2 displays the Euclidean distances between the
samples after batch effect removal. Tumor and healthy samples
were divided into two groups and put into two clusters.

The 15 samples are displayed in the 2D plane covered by
their first two principal components in the PCA plot (PC1 and
PC2) (Figure 3). This plot shows the good relative variance
between the NFPA and normal samples.

DEGs analysis

According to analyses of the microarray data between NFPA
and normal samples by limma, we obtained 3131 DEGs, including
189 downregulated DEGs (such as RPS4Y1 and DDX3Y) and
2898 upregulated DEGs (such as ASB3 and DRD4), and 44
DEIncRNAs, including 8 downregulated DEIncRNAs (such as
NUTM2B-AS1 and MALAT1) and 36 upregulated DEIncRNAs

15

Values
10

Values

T T T T
NFPA  NFPA NFPA NFPA NFPA Normal Normal Normal

Samples

FIGURE 1

NFPA  NFPA NFPA NFPA NFPA Normal Normal Normal

Samples

Boxplots for the data before (A) and after (B) batch effect removal. Red boxes indicate NFPA samples and green boxes show healthy samples.
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FIGURE 2

the distance values between samples are shown.

(such as BCAR4 and SRD5A3-AS1). Table 1 lists the top 10
markedly downregulated and upregulated DEGs.

Table 2 lists the markedly downregulated and
upregulated IncRNAs.

Volcano plots were depicted to visualize and assess variation
(or reproducibility) of IncRNA and mRNA expressions between

RN A A

The Euclidean distances between the samples. Based on the Euclidean distance, hierarchical clustering between the samples has been established;

trirt

NFPA and normal samples (Figure 4). Some of the differentially
expressed genes included in the tables were displayed in this plot.

Besides, the two-way clustering showed that IncRNAs and
mRNAs expression pattern between PA and healthy controls
was distinctive (Figure 5). Also, a heatmap depicts the expression
of these DEIncRNAs (Figure 6).
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PCA plot. The Batch implies that the data includes two platforms. Also, healthy and tumor samples were divided into two groups.
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TABLE 1 The top 10 up- and downregulated DEGs between NFPA and normal samples.

Down-regulated
DEG

RPS4Y1
DDX3Y
POMC
SFPQ
KDM5D
CRYAB
TSHB
PAX6
SCUBE3
CGA

Log FC

-6.247364
-5.227572
-4.809255
-4.447223
-4.205645
-4.043984
-3.925312
-3.889940
-3.822918
-3.685164

Adjusted P value

0.033317521
0.026558724
0.020522011
0.016269745
0.044775414
0.006188775
0.003632825
0.002707552
0.003706830
0.013048913

GO enrichment analysis of DEGs

The noticeably DEGs were enriched in 3171 GO terms. We
used Clusterprofiler package to perform analysis. in GO
functional enrichment analysis, 25 GO entries satisfy Adjusted

TABLE 2 The significantly up- and downregulated DEIncRNAs between NFPA and normal samples.

Down-regulated
DEG

NUTM2B-AS1
MALAT1
LINC00641
RNF157-AS1
LINC00899
MIR31HG
LINC00844
SPANXA2-0OT1

Frontiers in Oncology

Log FC

-2.536098
-2.070053
-1.981903
-1.707092
-1.649536
-1.624021
-1.348868
-1.287386

Adjusted P value

0.01392066
0.04329433
0.04098596
0.04113265
0.0258828
0.006210766
0.04505837
0.04430635

183

Up-regulated
DEG

ASB3

DRD4
LOC646626
LOC100130331
HIST1IH2BO
RRN3P3
SNORA78
EGLN2
HIST1H3C
TACR2

Log FC

9.711828
9.339609
8.928223
8.411643
8.230407
8.210715
8.092251
7.175348
7.109154
7.056791

10.3389/fonc.2022.978016

Adjusted P value

0.002707552
0.003678029
0.002707552
0.002707552
0.002765520
0.002707552
0.002859834
0.002707552
0.002795396
0.003065875

P value less than 0.05, most of which are biological processes,

followed by cellular component and molecular function. The

first 25 entries are integral component of endoplasmic reticulum

membrane, intrinsic component of endoplasmic reticulum

membrane, extracellular exosome, extracellular organelle,

Up-regulated
DEG

LINC00174
ARIH20S
SRD5A3-AS1
PXN-AS1
LIFR-AS1
URB1-AS1
BCAR4
LINC00886
NEBL-AS1
ATP6VOE2-AS1
LINC01003
SCAMP1-AS1
LOH12CR2
RAP2C-AS1
APTR
LINC00667
EPB41L4A-AS1
TP53TG1
ST7-AS1
FGD5-AS1
LINC00842
TRAM2-AS1
RBM26-AS1
WWC2-AS2
UMODLI1-AS1
HEIH
IDHI1-AS1
GSN-AS1
ADORA2A-AS1
GAS5

DUBR
C2o0rf27A
MAPKAPK5-AS1
HOXA-AS3
ARHGAP5-AS1
TRAF3IP2-AS1

Log FC

7.536962
4.488056
4.34513
4.322818
4.262626
3.614134
3.22296
3.089068
2.937485
2.856039
2.855841
2.807056
2.751739
2.732042
2.724516
2.673574
2.672387
2.642199
2.60673
2.541793
2.468281
2.380206
2.318657
2.278828
2.172951
2.148043
1.98541
1.926714
1.917936
1.72566
1.513353
1.48974
1.360005
1.262868
1.240983
1.204049

Adjusted P value

0.003117761
0.004377148
0.002795396
0.008798058
0.007013894
0.01095202
0.002795396
0.02782602
0.04471735
0.01387096
0.004992219
0.01915909
0.02594852
0.02622078
0.01066791
0.0145873
0.00749758
0.009631829
0.04587292
0.02155033
0.01051766
0.04869672
0.03268624
0.02880773
0.04606644
0.04100989
0.01740445
0.02052201
0.03131871
0.01252509
0.01594373
0.04095487
0.01369419
0.02831569
0.04245685
0.03087259
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The volcano plot of differentially expressed genes (DEGs); horizontal axis, log,(FC); vertical axis, -log10 (adjusted P value).

extracellular vesicle, mitochondrial inner membrane,
mitochondrial envelope, mitochondrial membrane,
carbohydrate binding, antigen binding, hormone activity, G
protein-coupled receptor activity, diencephalon development,
endocrine system development, cell fate specification, small
molecule metabolic process, immune response, sensory organ
development, immune effector process, cell fate commitment,
adaptive immune response, forebrain development, pancreas
development, cell differentiation in spinal cord and response
to interferon-gamma. Figures S1 and S2 show the barplots of
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FIGURE 5

The two-way clustering of top 20 DEGs between NFPA samples and normal tissue samples; horizontal axis, the

between Normal tissues samples and NFPA samples.
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function enrichment analyses and GO enrichment analysis of
DEGs, respectively.

Pathway analysis

Using Pathview (26) and gage (27) packages in R, KEGG
pathways analysis of 189 downregulated and 2898 upregulated
DEGs were conducted to detect the potential functional genes
(Table 3 and Figure 7).
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Heatmap of differentially expressed INcCRNAs. The horizontal axis shows the names of 15 samples. The vertical axis presents the INncCRNAs names.

ceRNA network construction in NFPA

According to the miR2Disease database, we identified 26
PA-related miRNAs. Then, miRcode was used to assess
interaction between IncRNAs and miRNAs. This step showed
that 14 of 26 PA-specific miRNAs may target to the 11 of 44
IncRNAs (Table 4). Subsequently, miRDB, TargetScan and
miRWalk were used for prediction of these 12 miRNA-
targeted mRNAs to find the relationship between miRNAs and
mRNAs. Only 5 PA-specific miRNAs were found that might
target 51 of the 3131 NFPA-specific mRNAs (Table 5). miRNA-
targeted mRNAs were excluded in the case that they were not
detected in DERNAs. Accordingly, Cytoscape 3.9 was used for
construction of IncRNA-miRNA-mRNA ceRNA network. A
total of 11 IncRNAs, 51 mRNAs, and 14 miRNAs were

TABLE 3 Up-regulated and down-regulated pathways.

Down-regulated

Pathway P value
GnRH signaling pathway 0.01958461
Tight junction 0.02421712
Gap junction 0.04006672
Melanogenesis 0.04636715
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included in the ceRNA network (Figure 8). Finally, we
computed nodes degrees and displayed 10 hub genes in the
network using cytohubba app (24) (Figure 9). We found has-
miR-15a, has-miR-132, has-miR-26a, has-miR-26b, has-miR-
223, has-miR-16-1, MALAT1, GAS5, EPB41L4A-AS1 and
FGD5-ASI as 10 hub genes in ceRNA network.

Survival analysis

In this section, we retrieved RNA-seq data of brain low grade
glioma. Survival analysis was performed based on Kaplan-Meier
curve analyses using Survival package in R. We performed the
survival analysis based on the hub genes in ceRNA network. The
difference was regarded significant with log-rank P <0.05. This

Up-regulated

DEG P value
DNA replication 0.01894638
Nucleotide excision repair 0.03886668
Mismatch repair 0.04046353
N-Glycan biosynthesis 0.04360584
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FIGURE 7

Visualization of pathways. Green boxes are downregulated genes and red boxes are upregulated genes.

analysis showed that EPB41L4A-AS1 and GAS5 were correlated
with low survival time in patients with brain low grade
glioma (Figure 10).

Discussion

The current study aimed to identify DEGs between NFPAs
and normal samples and find the importance of these genes in
the pathoetiology of this disorder. Our analyses led to
identification of 3131 DEGs, including 189 downregulated
DEGs (such as RPS4Y1 and DDX3Y) and 2898 upregulated

DEGs (such as ASB3 and DRD4). RPS4Y1 and DDX3Y have
been among downregulated genes in 12 cancers in a recent
whole transcriptome analysis (28). The dopamine receptor
DRD4 is also among important gens in the carcinogenic
processes (29).

Moreover, we found 44 DEIncRNAs, including 8
downregulated DEIncRNAs (such as NUTM2B-ASI and
MALAT1) and 36 upregulated DEIncRNAs (such as BCAR4
and SRD5A3-AS1). Notably, MALATI is commonly regarded as
an oncogene in the carcinogenic processes. However, some
reports have suggested a tumor-suppressing effect for
MALATI1 (30, 31). It seems that MALATI exerts an anti-

TABLE 4 The MiRcode database revealed interactions between 12 DEIncRNAs and 14 DEmiRNAs.

IncRNA

MIR31HG, LINC00174, EPB4114A-AS1

MALAT1, EPB41L4A-AS1, C20rf27A, TRAF3IP2-AS1, FGD5-AS1
MALAT1, EPB4114A-AS1, C20rf27A, TRAF3IP2-AS1, FGD5-AS1
MALATI, LIFR-AS1, ST7-AS1

MALAT1, LINC00174, GAS5

MALAT1I, LINC00174, GAS5

MALAT1, LINC00174, LIFR-AS1, GAS5, C20rf27A, TRAF3IP2-AS, FGD5-AS1
MALAT1, LINC00174, LIFR-AS1, GAS5, ST7-AS1
SPANXA2-OT1, EPB41L4A-AS1, TRAF3IP2-AS1

LINC00174, C20rf27A

LINCO00174, TRAF31P2-AS1

LINC00174, TRAF31P2-AS1

EPB41L4A-AS1, GAS5, FGD5-AS1

GAS5

Frontiers in Oncology

miRNA

hsa-miR-7-1
hsa-miR-16-1
hsa-miR-15a
hsa-miR-192-3
hsa-miR-26a
hsa-miR-26b
hsa-miR-24-1
hsa-miR-138-2
hsa-miR-9-3
hsa-let-7a-1
hsa-miR-103
hsa-miR-103-2
hsa-miR-223
hsa-miR-132
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TABLE 5 miRWalk, miRDB and TargetScan databases revealed interactions between 5 DEmiRNAs and 51 DEmRNAs.
miRNA mRNA
hsa-miR-  SPTLC1, CFAP45, POLR3F, GDI2, CDC27, PSMD7, CCDC28A, SLC39A10, DCAF10, IP6K1, EGLN1, RRAGA, TBP, VTI1B, BCL2L2, PDIA6, SESN1,
15a Cl6orf72, DYNCI1I1, PCDHA1, CCNYLI1, CDK6, CCNE1, KLF7, EYA4
hsa-miR- ADAM17, LARP4B, ZDHHC20, NXPE3, CIPC
26a
hsa-miR- ZDHHC20, NXPE3, CIPC
26b
hsa-miR- GTPBPS8, SLC23A2, DENND5B,
223
hsa-miR- CFL2, PIK3IP1, DYRK2, PAIP2, SMAD2, PRICKLE2, CBLL1, CDC40, GRM3, MAPK1, SLC31A1, MED9, SLC23A2, KDM5A, KLF7
132
FIGURE 8

CeRNA network in NFPA. Red nodes show a high level of expression, while green nodes show a low level of expression. Ellipses represent
protein-coding genes; round rectangles represent miRNAs; diamonds show IncRNAs; gray edges indicate INcCRNA-miRNA-mRNA interactions.

cancer effect in NFPAs. In addition, NUTM2B-AS1 has been
among up-regulated IncRNAs in hepatocellular carcinoma
(HCC) whose expressions have been associated with poor
prognosis of affected persons. This IncRNA has also been
found to participate in the construction of ceRNA network in
this type of cancer (32). Thus, the aforementioned results
indicate distinct role of some IncRNAs in the pathogenesis of
different types of cancers. BCAR4 has been shown to exert an
oncogenic role in breast cancer inducing endocrine resistance in
these cells (33). SRD5A3-AS1 is transcribed from the antisense
region of SRD5A3, a gene that induces tumor growth and is
associated with poor survival of HCC (34).

Hsa-miR-15a, hsa-miR-26a, hsa-miR-26b, hsa-miR-223 and
hsa-miR-132 are related miRNAs with these IncRNAs. miR-26a
and miR-26b are two tumor suppressor miRNAs in colorectal

Frontiers in Oncology

187

cancer that can suppress aggressive behavior of cancer cells
through regulating FUT4 (35). In addition, miR-15a has been
shown to target several oncogenes, such as BCL2, MCLI,
CCND1, and WNT3A. This miRNA has been reported to be
down-regulated in chronic lymphocytic lymphoma, pituitary
adenomas, and prostate carcinoma (36). miR-132 and miR-
223 have been shown to regulate positive feedback circuit
through regulation of FOXO3a (37).

GnRH signaling pathway, Tight junction, Gap junction,
Melanogenesis, DNA replication, Nucleotide excision repair,
Mismatch repair and N-Glycan biosynthesis have been among
dysregulated pathways in NFPAs. Thus, DNA repair systems are
implicated in the pathogenesis of NFPAs.

Then, we constructed a ceRNA network which included
11 IncRNAs, 51 mRNAs, and 14 miRNAs. This ceRNA network
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Kaplan—Meier survival curves of DEINcCRNAs associated with overall survival of patients with low grade glioma.

not only represents complicated pathoetiology of NFPAs, but
also provides candidates for targeted therapy of this kind
of tumor.

Two DEIncRNAs, including EPB41L4A-AS1 and GAS5 have
been associated with survival time of patients with brain tumors.
Although the association between expression pattern of these
IncRNAs and mortality or morbidity of patients with NFPAs has
not been investigated yet, this finding suggests the importance of
these IncRNAs in this regard. GAS5 IncRNA is mainly regarded
as a tumor suppressor in human cancers. This IncRNA is down-
regulated in several kinds of cancer, regulating cellular processes
such as cell proliferation, apoptosis and invasion. Down-
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regulation of GAS5 expression is associated with higher ability
of proliferation and poor prognosis in some malignancies (38).
Association between expression of EPB41L4A-AS1 and survival
of patients has been less studied. A single study in colorectal
cancer has revealed an oncogenic role for this IncRNA and
indicated it as a regulator of Rho/ROCK pathway (39).

Taken together, our study has revealed differential
expression of several genes and signaling pathways in this type
of tumors. Some of the identified DE genes in NFPAs are
predicted to exert a specific role in this type of tumor. Others
have common effects in the regulation of cell proliferation in
several types of cancers.
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Pancreatic cancer is the fourth leading cause of cancer death in the United States.
The main methods of treating pancreatic cancer are surgery and chemotherapy, but
the treatment efficacy is low with a poor prognosis. Immunotherapy represented by
PD-1/PD-L1 has brought a milestone progress in the treatment of pancreatic cancer.
However, the unique tumor microenvironment of pancreatic cancer presents
challenges for immunotherapy. In addition, m6A is a common RNA modification
and a potential molecular target in tumor therapy. The expression pattern of m6A in
pancreatic cancer is still unclear. LhcRNAs also play an essential role in pancreatic
cancer development and treatment. In this study, we found that some m6A
regulators were significantly elevated in pancreatic cancer and associated with the
expression of PD-1/PD-L1. Moreover, we observed that METTL3 can increase the
expression of PD-L1. Notably, METTL3 positively regulates the expression of IncCRNA
MALAT1 in pancreatic cancer cells. Strikingly, IncRNA MALAT1 increased the
expression of PD-L1 in pancreatic cancer cells. This finding indicated that METTL3
regulated the expression of PD-L1 possibly via targeting IncRNA MALAT1 in
pancreatic cancer cells. Lastly, MALAT1 governed the viability of pancreatic cancer
cells. Taken together, INcRNA MALAT1 is involved in METTL3-mediated promotion
of PD-L1 expression in pancreatic cancer.

KEYWORDS

IncRNA, MALAT1, PD-L1, METTL3, TME, pancreatic cancer

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the common malignant tumors
of the pancreas and more than 90% of pancreatic cancer are exocrine PDAC (1).
According to an epidemiology report, the five-year survival rate of pancreatic cancer after
diagnosis is about 10%, and it is estimated that the pancreatic cancer will surpass breast
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cancer as the third leading cause of death (2). Cancer statistics
suggest that there were 32,970 new cases of pancreatic cancer in
men and 29,240 new cases of pancreatic cancer in women in the
United States (3). The number of people who died from
pancreatic cancer was 49,830 for men and 25,970 for women,
respectively (3). Surgery and chemotherapy remain the
mainstays of treatment for pancreatic adenocarcinoma (4).
However, pancreatic cancer is aggressive with no obvious
symptoms in the early stage. Most PDAC patients are late to
be treated when diagnosed, and less than 20% of the patients are
eligible for surgery (5). For unresectable patients, chemotherapy
is the main treatment, but its efficacy is not ideal, and the median
OS (Overall survival) is basically less than 1 year (6). Recently,
immunotherapy, represented by immune checkpoint inhibitors
(ICIs), has brought milestone progress to tumor treatment.
However, ICIs are almost completely wiped out in pancreatic
cancer, and most of them have failed in phase I and II clinical
trials (7).

However, studies have shown that pancreatic cancer has a
special tumor microenvironment (TME), which brings
challenges to immunotherapy and deserves further study (8,
9). Tumor immune microenvironment (TIME) refers to the
internal environment in which tumor cells are generated and
live, which includes not only tumor cells themselves but also
fibroblasts, immune and inflammatory cells, and glue cells that
are closely related to tumor cells. However, compared with other
cancers, pancreatic cancer has a unique TIME, which presents
challenges for immunotherapy, and this may be one of the
reasons why programmed death (PD-1)/PD ligand 1 (PD-L1)
therapy is not highly sensitive to pancreatic cancer. PD-1, a 288
amino acid type 1 transmembrane protein, is often expressed on
the surfaces of several immune cell types, while PD-LI, a 290
amino acid type 1 transmembrane protein, is expressed on
hematopoietic cells (10, 11). Pancreatic tumor cells promote
the activation of peripheral stromal cells and
immunosuppressive cells, including regulatory T cells (Tregs),
bone-marrow derived inhibitory cells (MDSCs), and tumor-
associated macrophages (TAMs). At the same time, they
secrete a series of cytokines and chemokines that cause these
cells to flock to the tumor site. On the other hand, activated
stromal cells generate a large amount of extracellular matrix that
forms a fibrous “barrier” around pancreatic tumor cells,
preventing effector cells (T and NK cells) from infiltrating into
the tumor which allows tumor cells to evade immune
surveillance. Activated immunosuppressive cells secrete
immunosuppressive factors and express ligands (e.g., PD-L1
and B7-1/2), forming an immunosuppressive
microenvironment. This plays an important role in the
occurrence, development, invasion, metastasis and drug
resistance of pancreatic cancer (12). The antitumor immune
response is a complex, multistep process (13). Therefore, the
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mechanism of TIME should be further studied to explore new
and potentially beneficial targets to improve the efficacy of
pancreatic cancer immunotherapy.

Meanwhile, m6A is the most common RNA modification in
eukaryotic RNA and plays an important role in cancer
progression (14). It has been demonstrated that m6A
modification is a dynamic and reversible process, which is
composed of methyltransferase complex (Writers),
demethylase (Erasers) and function managers (Readers) (15).
It is believed that the function of m6A writers is stability of
mRNA (2). A recent study show that there are 28 m6A
regulators, including METTL3, METTL14, METTL16, WTAP,
RBM15, RBM15B, ZC3H13, VIRMA, CBLL1, ZCCHC4,
LRPPRC, ELAVL1, YTHDC1, YTHDC2, YTHDF1, YTHDE?2,
YTHDEF3, HNRNPC, HNRNPA2B1, EIF3A, EIF3H, IGF2BP1,
IGF2BP2, IGF2BP3, CBLL1, PRRC2A, FTO, ALKBHS5 (16).
m6A modification plays a role in pre-mRNA splicing, 3’-end
processing, nuclear output, translation regulation, mRNA decay
and miRNA processing, and its dynamic reversible changes
control and determine cell growth and differentiation,
suggesting that abnormalities of m6A and modified proteins
may also produce pathological effects in the occurrence and
progression of tumors (17). Besides, as the most common
modification in mRNA, m6A links epigenomics with
tumorigenesis and development, and affects the processes of
tumor stem cell self-renewal and differentiation, proliferation
and apoptosis, invasion and metastasis, drug resistance, and
immunosuppression. Therefore, m6A is involved in m6A-
modified key proteins that are expected to be potential
molecular targets for cancer diagnosis and treatment and drug
development. For instance, a study examining DNA and RNA
methylation status in circulating tumor cells (CTCs) from lung
cancer patients demonstrated for the first time elevated m6A
modification levels in CTCs from lung cancer patients (18).

LncRNA, one type of noncoding RNA, participates in
tumorigenesis and progression (19-22). LncRNA MALAT1
has been reported to regulate pancreatic oncogenesis. The
expression of MALAT1 was highly elevated in PDAC
compared with the adjacent normal specimens (23). MALAT1
expression was linked to invasion, tumor stage, poor survival,
tumor size and metastasis in PDAC patients (23, 24). Moreover,
MALATI1 enhanced invasion, migration and viability of
pancreatic cancer cells via reduction of EMT and cancer stem
cells as well as induction of apoptosis and cell cycle arrest (25).
The role of MALATI in PDAC development is not fully
elucidated. The expression pattern and pathophysiological role
of m6A in pancreatic cancer remain unknown. In addition, the
association between m6A methylation modulator and PD-L1
remains unexplored. Therefore, the main purpose of this paper
aims to analyze the relationship between m6A RNA methylation
regulators, PD-L1 and MALAT1 in pancreatic cancer.
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Materials and methods

Data collection and m6A-
related regulators

The data was collected from The Cancer Genome Atlas
(TCGA) database and the basic information including age,
gender, grade, stage, T, M and N of 178 samples was obtained.
In this study, we collected 24 m6A-related regulators, including
writers, erasers and readers. The writers include RBM27,
METTL3, WTAP, RBM15, ZC3H7B, CAPRINI and
METTL14. The erasers include FTO and ALKBH5. The
readers include YTHDF1, YTHDF2, YTHDEF3, IGF2BP1/2/3,
YTHDC1/2, IGF2BPs, KIAA1429 (VIRMA), EIF3A, EIF3H,
HNRNPC, HNRNPA2B1, LRPPRC, ELAVLI and PRRC2A
(26). To determine the interaction of these 20 regulators, they
were searched in the Genes/Protein database to gain a
preliminary understanding of their biological functions (27).

Bioinformatic analysis

Consensus clustering is a method of providing
quantitative evidence for determining the number and
members of possible clusters in a data set, such as
microarray gene expression (28). This approach is widely
used in cancer genomics. In this study, we adopted this
method to explore two PDAC clusters and their association
with clinicopathological parameters. Gene set enrichment
analysis (GSEA) 3.0 was used to predict the underlying
downstream pathways of the two clusters (29). Immune
score, stromal score, and tumor purity of each sample were
calculated by using the ESTIMATE algorithm (30).

Genes with significant (p<0.01) prognosis were screened
from DEGs using univariate COX regression analysis, and
gene prognosis models were established by lasso-cox
regression. The K-M curve was drawn using the R package
survival, and the survival difference between different groups was
calculated by the log-rank test to draw the K-M curve. The ROC
of the model was calculated using the R package time ROC.
Finally, the independent prognostic ability of risk scores was
tested by univariate and multivariate Cox regression models.
Groups will be divided into two groups including high-risk
group and low-risk group by evaluating the distribution of
clinical case characteristics using the R package “heatmap”.
This study adopted Cox regression models to assess whether
the risk score combining with other clinical characteristics, could
be an independent prognostic factor.
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Cell culture and transfection

The human pancreatic cancer cell lines, BxPC-3 (with
epithelial properties) and PANC-1 (with more mesenchymal
properties), were cultured in DMEM medium supplemented
with and 10% FBS and 1% penicillin/streptomycin solution. The
cells were cultured in an incubator with 5% CO, at 37°C. Human
MALAT1 cDNAs were subcloned into pcDNA3 vector. Human
METTL3 cDNAs were subcloned into pLenti-C-mGFP vector.
Specific small hairpin RNAs (shRNAs) targeting METTL3
(shMETTL3) or MALAT1 (shMALAT1) and the control
shRNA (shNC) were obtained (GenePharma, Shanghai, China).

Quantitative real-time reverse
transcription-PCR

Total RNA was extracted from pancreatic cancer cells using
Iml TRLzol Reagent. Then, RNA was used for reverse
transcription and PCR was performed using SYBR Green Kit
Data were analyzed by the AACt approach. GAPDH was used as
the control. MALAT1: FW: GGA TCC TAG ACC AGC ATG CG;
RV: AAA GGT TAC CAT AAG TAA GTT CCA GAA AA (31).
The detailed method for PCR was described previously (32).

Western blotting analysis

The pancreatic cells were lysed by RIPA buffer and a
bicinchoninic acid (BCA) assay was used for detection of
protein qualification. After proteins were separated onto SDS-
PAGE, the proteins were transferred onto a PVDF membrane.
The membrane was incubated with 5% non-fat milk and then
incubated with METTL3 (1:1000), PD-L1 (1:1,000) or Tubulin
(1:1,000) antibody for overnight at 4°C. The membranes were
washed by TBST and then incubated with the secondary
antibody for 1 h. Then, ECL method was used to examine the
protein expression (33).

Cell viability assay

The treated pancreatic cancer cells were cultured in 96-well
plates for 48 and 72 hours. The viability of pancreatic cancer cells
was determined by CCK8 assay as described previously (34).
Briefly, 10 L CCK8 reagent was added to each well and
incubated for 2.5-3 hours in a cell culture incubator. The
OD450 values were obtained by the microplate reader.
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Statistical analysis

In this study, the Pearson correlation coefficient was
widely used to measure the degree of correlation between
two variables, and its value was between -1 and 1. To assess the
impact of M6A-related risk characteristics on the prognosis of
PDAC, we compared the prognostic differences between the
high-risk and low-risk groups. Kaplan-Meier plotter was used
to analyze the relationship between gene expression profile
and survival information in PATIENTS with PDAC. In
addition, multivariate Cox regression analysis was
performed to determine prognostic factors for PDAC
patients. Student t test was used to validate significance
ANOVE was used to validate
significance among three or more groups. P <0.05 is

between two groups.

considered statistically significant.

10.3389/fonc.2022.1004212

Results

Expression of m6A RNA Methylation
Regulators in PDAC

Initially, we analyzed the frequency of mutations in 24
expressed m6A regulators and found that 18 regulators all had
a mutation frequency of 1%~2%. Mutations occurred in 7.3%
of the 178 samples, the most common mutation being missense
mutation (Figure 1A). To further understand the expression of
m6A RNA methylation regulator in tumor and normal
samples, the heatmap was conducted and the results have
revealed that compared with normal samples, there were 24
regulators of m6A, whose expression was relatively higher in
cancer tissues (Figure 1B). Besides, the expression difference of
m6A RNA methylation regulators between tumor and normal
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FIGURE 1

(A) The mutation frequency in each regulator. (B) Heatmap of m6A RNA methylation regulator expression level in each sample. **p<0.01;
***p<0.001. (C) The expression difference of m6A RNA methylation regulator between tumor and normal samples. (D) Correlation among PD-1,

PD-L1 and m6A RNA methylation regulators.
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samples was significant since the p-value is less than
0.05 (Figure 1C).

Correlations among PD-L1, PD1, and
m6A RNA methylation regulators

The results of Pearson correlation suggested that PD-1 is
associated with 20 regulators, including RBM15, YWHAG,
MSI2, RBM27, YTHDF3, ZC3H13, METTL14, FTO,
ZCCHC4, ALKBHS5, PCIF1, YTHDFI1, KIAA1429, YTHDF2,
CAPRIN1, HNRNPC, TRA2A, ZC3H7B, WTAP, HNRNPD,
YTHDCI and METTL3. The correlation coefficient of PD-1 and
RBM15 was the strongest. Similarly, the correlation between PD-
L1 and WTAP was the strongest with a correlation coefficient of
0.69, while the relationship between PD-L1 and KIAA1429 was
the weakest with a correlation coefficient of 0.55. All regulators
of PD-1, PD-L1 and M6A were positively correlated (Figure 1D).

Analysis of consensus clustering

Consensus clustering method was adopted to aggregates data
such as transcriptome and proteome profiles. From Figure 2A, it
is believed that k = 2 has the optimal clustering stability from k =
2 to 9. Then, the consensus clustering has identified the PDAC

10.3389/fonc.2022.1004212

cohort of TCGA into two clusters and demonstrated their
relationship with clinicopathological parameters (Figure 2A).
Subsequently, the heatmap of correlation of m6A RNA
methylation regulators with characteristics of PDAC patients
and the tracking plot have been concisely displayed (Figures 2B,
C). Furthermore, the overall survival (OS) for PDAC patients
was analyzed by using Kaplan-Meier curves. It is noteworthy
that cluster2 had a significantly higher survival rate than
clusterl (Figure 2D).

Infiltrating levels of immune cell types in
clusterl/2 with PDAC

We analyzed the infiltrating levels of various immune cells in
cluster1/2 in PDAC and the results were displayed (Figure 3A).
Meanwhile, the graph of estimated proportion of 22 immune cell
types in clusterl/2 suggested that the estimated proportion of
Macrophages MO of clusterl was higher than that of
Macrophages MO of cluster2, (Figure 3B). In order to further
understand the infiltrating levels in cluster1/2 with PDAC, we
compared the StromalScore, ImmuneScore and EstimateScore.
We found the StromalScore and EstimateScore of cluster2 were
higher than that of clusterl, which indicated that cluster2 had a
higher degree of immune infiltration than clusterl
(Figures 4A-C). Moreover, cluster] and cluster2 were involved

L S p——

Delta area

1

FIGURE 2

B
nnnnnnnnn CDF tracking plot
: m |
f
: |
s
’ Il
B
b
(0 T
° - samples.
D Survival curve (p=0.002)
=]
Al — cluster1
— cluster2
b
2
]
o
TS |
2
g |
7} o
N
S
=
2 4
T T T T
0 2 4 6
Time (year)

Correlation of consensus clustering for m6A RNA methylation regulators with the characteristics and survival of PDAC patients. (A) Consensus
clustering matrix for k=2 (left panel); Consensus clustering cumulative distribution function (CDF) for k=2 to 9 (middle panel); relative change in
area under CDF curve for k=2 to 9. (B, C) Heatmap of correlation of m6A RNA methylation regulators with characteristics of PDAC patients. (D)

Kaplan-Meier curves of overall survival (OS) for patients.

Frontiers in Oncology

195

frontiersin.org


https://doi.org/10.3389/fonc.2022.1004212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Song et al.

I group
Plasma cells |

B cells naive

Macrophages M0

B cells memory

Monocytes
Macrophages M2
NK cells activated

Mast cells resting

T cells CD8

Group B3 clusterE3 cluster2

T cells follicular helper

10.3389/fonc.2022.1004212

6 group
4+ Wclustert
cluster2

2
0
-2

I -
-6

T cells regulatory (Tregs)

T cells CD4 memory resting

Dendritic cells resting

Macrophages M1

FIGURE 3

in the following five signaling pathways: cell cycle, mismatch
repair, p53 signaling pathway, RNA degradation and

MaCrphageq yrp

clusterl/2 in pancreatic cancer. *p<0.05; ns, no significance.

Teells cpg
Macrophages up

T cells
CD4 g,
mory resti
ting

ms s ons ns s ons
°
Sos
€
2
g oo
3 °
k-1 b4 °
° L]
g i BRI
£Eo02 e eo i -
I o o e 88 o ¢
HH 8 gs s e 8
: 3 A
e & eiud L, i ds i
0.0 “ﬁlu.—'.-h'- 4
2 £ § & 2 ¢ 5 % £ 2 3 2 %3 2 £ 3§ & ¢
£ 3 § 5 § 5 & &8 » 5 § 5§ § £ 5§ § g 2
£ 8 &£ ;7 £ § £ = & 8 £ § & £ & 2 & =
2 e 5 F § 5 5 FF e £ 5 : 2 §§ F
§ 5 3 & 2 = 2 £ s F 2 & o £ 7 >89 £
F S 5§ @ 3 § & £ ° 37 3 S £ 2 8
- 8 @ & g 8 N s § 8 2
s £ 5 £ F ¢ 7 E L F
& = e z s F 3 £ 8
2 g § 3 = 3 =
& ~ ‘35 8
~ 2
g
N

(A) Heatmap of infiltrating levels of various immune cells in clusterl/2 in pancreatic cancer. (B) Estimated proportion of 22 immune cell types in

respectively (Figure 5A). Overall, the hazard ratio of GNLS3,

CAPRIN1 and YWHAG was greater than 1, while the hazard
ratio of PCIF1, METTL3 and ALKBH5 was less than 1. Then

through the lasso regression algorithm, the coefficient of

prognostic genes was identified (Figures 5B, C).

Spliceosome (Figure 4D).

Construction and validation of
prognostic characteristics of m6A

regulators
Univariate analysis of 24 m6A RNA methylation regulators
was performed to identify genes, which may significantly
associate with prognosis. Indeed, the results revealed that
GNL3, CAPRIN1, PCIF1, METTL3, YWHAG and ALKBH5
were significantly associated with OS with hazard ratios of 1.807,
2.289, 0.534, 0.647, 1.759 and 0.474, respectively. The 95 percent
confidence intervals were (1.128-2.893), (1.315-3.984), (0.325-
0.897), (0.443-0.945), (1.068-2.895) and (0.306-0.735),

Frontiers in Oncology

Moreover, survival analysis showed higher survival rates in

the low-risk group than in the high-risk group (Figure 5D). The
AUC at 1 years, 3 years and 5 years is 0.615, 0.756 and 0.801

(Figure 5E). Furthermore, to determine whether prognostic
marker-based risk scores are independent prognostic
indicators for pancreatic cancer patients, univariate and
multivariate Cox regression analyses of risk scores were
performed. The results proposed that N and risk score were
independent prognostic indexes (p-value=0.014, HR=0.017; p-
value<0.001, HR=2.247) (Figures 5F, G). The clinical features of
PDAC cohort has been displayed in Figure 6A. The riskscore of
cluster2 was higher than that of clusterl, and similarly, the
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clusterl and cluster2.

riskscore of the low-risk group was higher than that of the high-
risk group. Among G1, G2, G3 and G4 groups, G3 group had the
highest riskscore, while G4 group had the lowest riskscore
(Figure 6B). It is noteworthy that PD-1 and PD-L1 were
highly expressed in pancreatic cancer cells compared with
normal cells. Compared with cluster2, PD-L1 was highly
expressed in clusterl(Figure 6C).

METTL3 regulates the expression of PD-
L1 and IncRNA MALAT1.

To confirm the association between METTL3 and PD-L1 in
pancreatic cancer cells, we transfected METTL3 ¢cDNA and
shMETTL3 plasmids to BxPC-3 and PANC-1 cells. We
observed that overexpression of METTL3 increased the
expression of PD-L1, whereas shAMETTL3 infection led to
downregulation of PD-L1 in pancreatic cancer cells
(Figure 7A). It has been known that METTL3 can regulate the
expression of IncRNA MALATI. Next, we tested whether
METTL3 modulation can govern the expression level of
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IncRNA MALATI in pancreatic cancer cells. Indeed,
upregulation of METTL3 increased the MALAT1 level, and
downregulation of METTL3 reduced the expression of
MALATI in pancreatic cancer cells (Figure 7B). Moreover,
MALATI1 overexpression increased PD-L1 expression level,
while reduction of MALAT1 reduced PD-L1 level in
pancreatic cancer cells (Figure 7C). Taken together, METTL3
regulates the expression of PD-L1 partly due to regulation of
IncRNA MALAT]I in pancreatic cancer.

LncRNA MALATI regulates viability of
pancreatic cancer cells.

To define the role of IncRNA MALAT1 in regulation of
viability of pancreatic cancer cells, we used shMALATI1 or
MALAT1 c¢DNA to modulate the expression of MALATI in
pancreatic cancer cells. We found that shtMALAT]1 transfection
suppressed the expression of IncRNA MALAT]1, while MALAT1
c¢DNA transfection elevated the expression of MALATI1 in
pancreatic cancer cells (Figures 7D, E). Moreover, increased
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(A) Univariate analysis of 24 regulators. (B, C) LASSO Cox regression algorithm. (D) The Kaplan-Meier curve of high risk and low risk group. (E)
Time-dependent ROC curves. (F, G) Univariate and multivariate Cox regression analysis of the risk scores in TCGA.

expression of MALATI1 promoted the viability of BxPC-3 and
PANC-1 (Figure 8A). Furthermore, depletion of MALATI
attenuated the cell viability at 48 h and 72 h in pancreatic
cancer cells (Figure 8B). Altogether, IncRNA MALAT1 regulates
viability of pancreatic cancer cells.

Discussion

Pancreatic cancer is one of the common malignant tumors of
the digestive tract and is known as the “king of cancer” in the
field of tumor (35). The current treatment methods are mainly
chemotherapy and surgery (36). However, the five-year survival
rate after diagnosis of pancreatic cancer is about 10%, and it is
one of the malignant tumors with poor prognosis (37).
Immunotherapy of PD-1/PD-L1 has brought the hope for the
treatment of pancreatic cancer (38). However, studies have
shown that pancreatic cancer has a special tumor immune
microenvironment, which brings challenges to immunotherapy
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and deserves further study (8). m6A methylation is the most
common form of mRNA modification and involves in
tumorigenesis (39). However, the role of m6A methylation in
pancreatic cancer and the relationship between m6A, PD-1 and
the infiltration of TIME in pancreatic cancer were unelucidated.

This study analyzed the relationship between m6A RNA
methylation regulators, PD-L1, prognosis and TIME in
pancreatic cancer. We found a total of 24 m6A genes that
were highly expressed in the tumor samples. PD-1/PD-L1 was
significantly associated with 20 m6A regulators. Subsequently,
we used consensus clustering to identify two subgroups (cluster
1 and cluster 2) and found that patients in cluster2 displayed
better prognosis than clusterl. Furthermore, clusterl and
cluster2 may be associated with cell cycle, p53 pathway,
mismatch repair, RN degradation and Spliceosome. Notably,
we identified risk signatures, including GNL3, CAPRINI,
METTL3, YWHAG, ALKBH5 and PCIFI.

A recent study found that there is a significantly increasing
of METTL3 expression in PDAC cells (40), and this is consistent
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(A) Heatmap of clinicopathological features of pancreatic cancer cohort. (B) Distribution of risk scores stratified by clusterl/2. (C) The expression
of PD-1 and PD-L1 in tumors, clusterl/2 and high/low-risk groups. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. ns, no significance.

with our study. Our findings suggested that the expression
difference of m6A RNA methylation regulator between tumor
and normal samples was significant. Moreover, other evidence
suggested that the upregulation of METTL3 can promote
proliferation and invasion of pancreatic cancer (41). The
chemical resistance in tumor cells will increase because of the
rising expression of METTL3 (42). More specifically, a study
pointed out that hypomethylation of the METTL3 promoter
leads to overexpression of METTL3, which cooperates with NF-
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KB activating protein (NKAP) to coordinate m6A modification
of the primary transcript of miR-25, making it mature miR-25-
3p. Moreover, miR-25-3p inhibits PHLPP2 and activates
oncogenic AKT-p70S6K signaling, and promotes the
occurrence and progression of pancreatic cancer (43).
METTL3 expression plays an important role in the TIME of
pancreatic cancer (44, 45).

METTL3 has been reported to regulate the expression of
PD-LI in various cancer types. One study showed that METTL3
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increased the expression of PD-L1 and intensified the malignant
phenotype in oral squamous cell carcinoma (46). Another group
identified that METTL3 can upregulate the expression of PD-L1
mRNA in breast cancer cells (47). In line with this report,
METTL3 also elevated the PD-L1 mRNA in bladder cancer
cells (48). In the present study, we found that METTL3 had a
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weak association with PD-L1 expression in pancreatic cancer
patients. Moreover, METTL3 positively regulates the expression
of PD-L1 in pancreatic cancer cells. METTL3 has been known to
upregulate the expression of MALATI in several cancer types.
METTL3 promoted the stability of MALAT1 and enhanced the
glioma progression (49). METTL3 targeted MALAT1/miR-26b/
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after MALAT1 overexpression. (B) CCK-8 assay was conducted to measure the viability of BxPC-3 and PANC-1 cells after MALAT1

downregulation. **p<0.01

HMGA? axis and caused EMT and promotion of migration and
invasion in breast cancer (50). METTL3 regulated MALAT1/
E2F1/AGR2 pathway and subsequently controlled Adriamycin
resistance in breast cancer (51). We also found that METTL3
controlled the expression of MALAT1 in pancreatic cancer cells.

LncRNA MALAT1 upregulated the expression of PD-L1 via
sponging miR-195, leading to promotion of tumorigenesis in
diffuse large B cell lymphoma (52). MALAT1 elevated the PD-
L1 expression level via inhibition of miR-200a-3p, resulting in
non-small lung cancer progression (53). Our data showed that
MALAT1 can regulate the expression of PD-LI in pancreatic
cancer cells. LncRNA MALAT1 has been found to maintain the
cancer stem cell-like properties in pancreatic cancer cells,
including self-renewing ability, chemoresistance and
angiogenesis (54). Han et al. reported that MALAT1 interacted
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with EZH2 and suppressed E-cadherin expression, leading to
EZH2-induced invasion and migration in pancreatic cancer
(55). Li et al. found that MALAT1 facilitated tumor cell
metastasis and proliferation via the promotion of autophagy in
pancreatic cancer (56). Zhang et al. revealed that miR-216a
triggered apoptosis and G2/M arrest in pancreatic cancer cells
via inhibition of MALATI1 expression (57). MALATI
downregulation retarded pancreatic cancer progression via
targeting Hippo-YAP signaling pathway (58). Moreover,
MALATI1 was involved in efficacy of gemcitabine treatment in
pancreatic cancer patients (59). Recently, MALAT1 was identified
to govern pancreatic cancer progression via modulation of miR-
129-5p (60). In the current study, we found that depletion of
MALATI1 reduced cell viability, whereas overexpression of
MALAT1 enhanced viability of pancreatic cancer cells.
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Conclusion

In summary, this study is the first time to apply a
bioinformatic approach to describe the relationship between
m6A and PD-L1 and the TIME in pancreatic cancer. There is
a limitation that this work mainly used a bioinformatic strategy
to explore the association among m6A, PD-L1 and TME in
pancreatic cancer. The role of METTL3 in pancreatic cancer
development should be validated in animal study and clinical
tissue samples. The mechanism of IncRNA MALAT1-mediated
pancreatic oncogenesis should be dissected. How METTL3
regulates PD-L1 expression via regulation of IncRNA
MALAT!1 is required to be determined in the future.
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Acquired resistance is a major clinical challenge for tamoxifen-based therapy.
In this study, we focused on IncRNA SNHG6 which plays a role in
chemoresistance of cancer cells, but has never been investigated in the
context of tamoxifen resistance. We found elevated levels of SNHG6 in
tamoxifen-resistant estrogen receptor (ER)-positive MCF-7 cells (MCF7TR),
relative to naive MCF-7 cells, as well as in tamoxifen-resistant T47D cells
(T47DTR), relative to naive T47D cells, which correlated with induced
vimentin, ZEB1/2 and decreased e-cadherin, thus implicating a role of EMT in
SNHG6-mediated tamoxifen resistance. Downregulation of SNHG6, using
specific siRNA, sensitized MCF7TR as well as T47DTR cells to tamoxifen
along with markedly reduced proliferation, invasion and anchorage-
independent clonogenicity. Further, SNHG6 was found to sponge and inhibit
miR-101 as the endogenous expression levels of SNHG6 and miR-101 inversely
correlated in paired parental and tamoxifen-resistant cells and, moreover,
silencing of SNHG6 in tamoxifen-resistant cells resulted in de-repression of
miR-101, along with reversal of EMT. SNHG6 expression also directly correlated
with increased stem cells markers Sox2, Oct4 and EZH2. miR-101 levels,
manipulated by transfections with pre/anti-miR-101 oligos, directly affected
tamoxifen sensitivity of ER-positive cells with pre-miR-101 sensitizing MCF7TR
and T47DTR cells to tamoxifen whereas anti-miR-101 inducing resistance of
parental MCF-7 and T47D cells to tamoxifen. Further, miR-101 was found to
attenuate SNHG6-mediated effects on tamoxifen resistance, EMT as well as
stem cell markers, thereby making a case for SNHG6-miR-101 axis in tamoxifen
resistance of ER-positive breast cancer cells. Thus, INcRNA SNHG6 is a novel
modulator of tamoxifen resistance through its sponging of miR-101 and the
resulting effects on EMT.

KEYWORDS

tamoxifen resistance, SNHG6, miR-101, epithelial-to-mesenchymal transition
(EMT), epigenetic
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Introduction

Breast cancer is a major cancer that mostly affects women
with 287,850 new cases of invasive breast cancer estimated for
the current year 2022 in the United States (1). Worldwide,
approximately 2.3 million breast cancer cases were diagnosed
in the year 2020 (2). There has been an increase in the newly
diagnosed cases over past several years, primarily due to
aggressive screening and vigilance (3), with the rate of increase
around 0.5% since the mid-2000s (1). With these numbers,
breast cancer ranks number one among all cancers that are
diagnosed in women in the US, accounting for almost one-third
of all cancer diagnoses in the women. Treatment of breast cancer
patients is particularly challenging because of the many
individual breast cancer subtypes. The estrogen receptor (ER)-
positive breast cancers make up to 60% of all breast cancers (4)
and are therefore a major subtype. The ER-positive breast
cancers are managed through administration of ER antagonist
tamoxifen, however, acquired resistance against tamoxifen
remains a major clinical challenge (5).

Recent years have witnessed a growing interest in the
involvement of non-coding RNAs in tamoxifen resistance of ER-
positive breast cancers (6, 7). Various non-coding RNAs, ranging
from microRNAs (miRNAs) to long non-coding RNAs (IncRNAs)
have been reported to mechanistically and functionally affect the
tamoxifen resistance. Our own earlier work demonstrated a role of
miR-10b in the tamoxifen resistance of ER-positive breast cancers
(8) and such role of miRNAs in tamoxifen resistance has been
investigated by several other researchers as well (6, 7, 9). Further,
IncRNAs are novel molecules of interest in terms of their possible
role in the modulation of response to tamoxifen in ER-positive
breast cancers (10). Among the many IncRNAs currently being
investigated for their possible role in cancer drug resistance,
IncRNA SNHG6 is a promising IncRNA that has been
associated with increased risk of poor overall survival of cancer
patients (11). High expression of SNHG6 has been demonstrated
to correlate with tumor progression and poor prognosis in
multiple human cancers (12). Even though a role of SNHG6 in
cancer radio-resistance (13) as well as chemoresistance (14),
particularly resistance against cisplatin (15) and paclitaxel (16)
has been described, there is no report on it’s possible role in
acquired tamoxifen resistance of ER-positive breast cancers,
prompting us to plan this study. Using a paired ER-positive
breast cancer cell line comprising of MCF-7 cells that are
sensitive to tamoxifen along with their derivate cells that are
resistant to tamoxifen (MCF7TR), we investigated the SNHG6-
regulated mechanism of tamoxifen resistance. We further
confirmed the findings using a parallel cell line pair comprising
of tamoxifen-sensitive ER-positive T47D cells and their tamoxifen-
resistant derivatives, the T47DTR cells.
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Materials and methods
Cell lines and reagents

MCEF-7 and T47D breast cancer cells were purchased from
ATCC (USA) and cultured in DMEM and RPMI cell culture
medium (ThermoFisher Scientific, USA), respectively, with 10%
fetal bovine serum, 100 units/ml penicillin, and 100ug/ml
streptomycin in a 5% CO, atmosphere at 37°C. The tamoxifen
resistant MCF-7 and T47D cell lines, MCFTR and T47DTR,
respectively, were generated by culturing cells in their respective
culture mediums supplemented with 5% FBS, antibiotics and
10® M 4-hydroxy tamoxifen (TAM), as described previously
(8). TAM concentration was gradually increased over the course
of six months until the final concentration was 10"°M.

IncRNA downregulation

siRNAs (ThermoFisher Scientific, USA) designed against
SNHG6 were transfected into MCF7TR cells using
Lipofectamine RNAIMAX Transfection Reagent. Knockdown
was evaluated by qRT-PCR. Our detailed preliminary validation
revealed that the siRNAs were effective at 30nM final
concentration and at 24 hours post-transfection, therefore, we
used 30nM concentration of si-SNHG6 for our experiments. The
siRNA used in our study was locked nucleic acid (LNA)
modified siRNA (ThermoFisher Scientific, USA) and was used
for increased potency and lower off-target effects.

siRNA transfections

We used Lipofectamine RNAiMAX Transfection Reagent
(ThermoFisher Scientific, USA) for the transfections of si-
SNHG6 in MCF7TR cells for effective downregulation of the
IncRNA. Cells were first seeded in 24-well plates in a total
volume of 500ul in culture medium without antibiotics. Cells
were seeded at a density so that they were 50% confluent the next
day. On the day of transfections, siRNA-Lipofectamine
complexes were prepared by diluting siRNA in 50ul of Opti-
MEM ® I Reduced Serum Medium without serum. In a separate
tube 1l of Lipofectamine RNAIMAX Transfection Reagent was
diluted in 50ul of Opti-MEM ® I Reduced Serum Medium. The
contents of two individual tubes were then mixed and incubated
for 20 minutes at room temperature. The contents were then
added on to the individual wells without removing the overnight
culture medium. The calculations were done to ensure 30nM
concentration of siRNA in the total final volume of 600ul.
Contents of the wells were mixed by gentle rocking and plates
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were transferred back to cell culture incubators. Effect of siRNA
transfections were tested after an incubation of 24 hours.

Cell growth inhibition studies by 3-(4,5-
Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay

Parental as well as tamoxifen-resistant cells were seeded
overnight at a density of 5 x 10 cells per well in 96-well culture
plates. Thereafter, culture medium was aspirated and replaced
with fresh complete culture medium containing DMSO (vehicle
control) or different concentrations of tamoxifen, as indicated.
After 48 hours, 25ul of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) solution (5mg/ml in
phosphate-buffered saline, PBS) was added to individual assay
wells and incubated further for 2 h at 37°C. Upon termination,
the supernatant was removed and the MTT formazan, formed by
metabolically viable cells, was dissolved in DMSO (100pul) by
mixing for 30 min on a gyratory shaker. The absorbance was
measured at 595 nm on Ultra Multifunctional Microplate Reader
(TECAN, USA).

Apoptosis assay (Histone/DNA ELISA)

We used Cell Death Detection ELISA Kit (Roche) to detect
apoptosis, as described earlier (8). Briefly, after the cells were
appropriately treated, as indicated for individual experiments,
the cytoplasmic histone/DNA fragments were extracted and
incubated in microtiter plate modules coated with anti-histone
antibody. Thereafter, peroxidase-conjugated anti-DNA antibody
was used to detect immobilized histone/DNA fragments,
followed by color development with ABTS substrate for
peroxidase. The spectrophotometric absorbance of the samples
was determined using Ultra Multifunctional Microplate Reader
(TECAN, USA) at 405 nm.

Cell invasion assay

Cell invasion was assessed using 24 well transwell permeable
supports with 8 pM pores (Corning, USA). After appropriate
experimental set-up, as indicated for individual experiments, cells
were trypsinized and re-suspended in serum free medium before
seeding into the transwell inserts coated with growth factor
reduced Matrigel (BD Biosciences, USA). Bottom wells were
filled with complete media. After 24 hours, cells were stained
with 4 pg/ml calcein AM (ThermoFisher Scientific, USA) in PBS
at 37°C for 1 h. Cells were detached from inserts by trypsinization
and fluorescence of the invaded cells was read using ULTRA
Multifunctional Microplate Reader (TECAN, USA).
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Anchorage-independent
clonogenicity assay

Tamoxifen-resistant cells were first transfected with
appropriate siRNAs (non-specific control siNS or siSNHG6),
allowed to grow for 24 h and then collected by trypsinization. 3 x
10* cells were then seeded in 0.5 ml of complete culture medium
containing 0.3% (w/v) top agar layered over a basal layer of 0.7%
(w/v) agar (with culture medium and the supplements) in 24-
well plates. After 21 days of culture, colonies were counted using
a phase contrast microscope (Nikon, USA).

Prediction of miRNA targets of
IncRNA SNHG6

miRNA targets of IncRNA SNHG6 were predicted using
DIANA-LncBase v3 (https://diana.e-ce.uth.gr/Incbasev3), as
described recently by others (17). DIANA-LncBase v3 is a
reference repository that lists experimentally supported
miRNA targets on non-coding transcripts. As of the date of
access of DIANA-LncBase v3, the database consisted of
approximately ~500,000 entries, corresponding to ~240,000
unique tissue and cell-type specific miRNA-IncRNA
interactions. As per the information on database webpage, the
incorporated interactions between IncRNAs and miRNAs are
defined by 15 distinct low-/high-throughput methodologies,
corresponding to 243 distinct cell types/tissues and 162
experimental conditions. We listed the miRNA targets of
IncRNA SNHG6 without any bias for cell type or other
parameters that could have affected the listing of miRNA
targets in any way.

miRNA transfections

Transfections of pre/anti-miR-101 were done using
methodology previously described (8). Briefly, cells were seeded
(2.5 x 10° cells per well) in six well plates and transfected with pre/
anti-miR-101 or non-specific pre/anti-miRNA controls
(ThermoFisher Scientific, USA) at a final concentration of 200
nM, using DharmaFECT transfection reagent (Dharmacon, USA).
After 48 hours of transfection, cells were passaged and transfected
twice again, using the same methodology, before being used in the
individual experiments.

gRT-PCR and miRNA detection

Real-Time quantitative (q)RT-PCR analyses were also done
as described previously (8). Total RNA was isolated from the
cells, after the completion of individual experiments, using the
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mirVana miRNA isolation kit (ThermoFisher Scientific, USA).
RNAse-free water was used throughout the analysis. RT* First
Strand Kit (Qiagen, USA) was used to synthesize cDNA first
strand using 1pg RNA, to which 2pl of genomic DNA
elimination mix was added, mixed and incubated 10 minutes
at 42°C, followed by immediate transfer to ice for 1 minute.
Reverse transcription mix, consisting of 5x buffer and Reverse
Transcriptase, was then prepared and added to RNA which was
then subjected to incubation for 15 minutes at 42°C. Finally, the
reaction was stopped by incubation at 95°C for 5 minutes. The
levels of miR-101 were determined using miRNA-specific
Taqman probes from the Taqgman MicroRNA Assay
(ThermoFisher Scientific, USA). The relative amounts of
miRNA were normalized to RNU6B.

Statistical analysis

All experiments were performed a minimum of three times
with triplicate repeats in individual experimental setup. To
evaluate if 2 datasets were significantly different, a p value was
calculated using Student f test or one way ANOVA assuming
equal variables and 2-tailed distribution. Prior to the statistical
tests, datasets were log-transformed to ensure normal
distribution. In all of our experiments, the p values <0.05 were
considered to be statistically significant.

Results

SNHG®6 is elevated in tamoxifen resistant
cells and positively regulates acquired
resistance against tamoxifen

We started our investigation by assessing the relative levels
of IncRNA SNHG®6 in parental MCF-7 cells and their tamoxifen
resistant counterparts, the derived MCF7TR cells. SNHGS6 levels
were more than 12-folds elevated in the MCF7TR cells,
compared to MCEF-7 cells (Figure 1A) indicating a correlation
of IncRNA SNHG6 with tamoxifen resistance. To further
increase confidence in our findings and rule out a cell line-
specific effect, we measured the levels of SNHG6 in another ER-
positive breast cancer cell line T47D. A comparison of levels in
parental T47D vs. the tamoxifen resistant derivatives T47DTR
revealed a >5-folds increase in SNHG®6 levels in the resistant cells
(Figure 1B). The increase in SNHG6 levels in both of the cell line
pairs was found to be highly significant (p<0.01). As described in
the Methods, resistant MCF7TR and T47DTR were generated by
prolonged exposure of respective native cells to tamoxifen in cell
culture set-up. To check whether such prolonged exposure of
native cells to tamoxifen had indeed resulted in generation of
tamoxifen-resistant derivatives, we checked the tamoxifen
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sensitivity of the paired cells. When exposed to increasing
concentrations of tamoxifen for 48 hours, followed by MTT
assay, we observed a remarkable increase (p<0.01) in the
resistance against tamoxifen in ‘resistant’ cells, both MCF7TR
(Figure 1C) and T47DTR (Figure 1D), against tamoxifen. The
IC-50 for MCF7TR cells was >10-folds while the IC-50 for
T47DTR cells was >8-folds, relative to the respective native cells
(Table 1). In continuation of our observation that SNHG6 levels
were elevated in resistant cells, we next silenced SNHG6 using
LNA-modified siRNAs against IncRNA SNHG6. We first tested
four different siRNA preparations (Results not shown) and
chose the siRNA that demonstrated more than 80%
downregulation of SNHG6. The testing was initially done in
MCEF7TR cells and the chosen siRNA was tested for its efficacy in
T47DTR cells as well wherein, the siRNA again demonstrated
more than 80% downregulation of SNHG6. siRNA against
SNHG6 significantly sensitized MCF7TR cells against
tamoxifen, as observed by significantly reduced (p<0.01) cell
proliferation in the presence of tamoxifen (Figure 1C). Very
similar results were observed in T47D cells, as well, with
silencing of SNHG6 resulting in significantly reduced (p<0.01)
proliferation when cells were treated with increasing
concentrations of tamoxifen (Figure 1D).

SNHG6 affects EMT, apoptosis, invasion
and clonogenicity

As a mechanism of tamoxifen resistance possibly induced by
SNHG6, we first evaluated the process of epithelial-to-
mesenchymal transition (EMT) because of the published reports
demonstrating a profound modulation of EMT by SNHG6 (18,
19) and the role of EMT in tamoxifen resistance (20, 21). We
evaluated the expression of EMT markers, E-cadherin, vimentin,
ZEB1 and ZEB2 in paired cell lines. While E-cadherin is a marker
of epithelial phenotype, the rest three are markers of mesenchymal
phenotype. We observed that E-cadherin was markedly
downregulated (p<0.01) whereas vimentin, ZEB1 and ZEB2
were markedly upregulated (p<0.01) in MCF7TR cells, relative
to the parental MCF-7 cells, indicating the induction of EMT
(Figure 2A). Similar induction of EMT was apparent in T47DTR
cells as well, relative to parental T47D cells (Figure 2B), as
evidenced by significantly downregulated (p<0.01) E-cadherin
and significantly upregulated (p<0.01) vimentin, ZEB1 and
ZEB2. We further studied the effect of silencing SNHG6 in
these resistant cells to check if the silencing of oncogenic
SNHG6 can reverse EMT. As shown in Figures 2A, B, we
observed that silencing of SNHG6 significantly (p<0.01)
attenuated the tamoxifen resistance-associated changes in EMT
markers in both of the cell lines. The reduced levels of E-cadherin
were attenuated by silencing of SNHG6 while the elevated levels of
vimentin, ZEB1 and ZEB2 in tamoxifen-resistant cells were
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SNHG6 expression and function in tamoxifen resistant ER-positive Breast cancer cells. Expression of SNHG6 was quantitated in tamoxifen-
resistant (A) MCF-7 cells (MCF7TR) and (B) T47D cells (T47DTR) by gRT-PCR. The levels of SNHG6 in parental cells (MCF-7/T47D) were assigned
a value of 1 and the relative levels in tamoxifen-resistant derivatives are plotted. Cell proliferation was measured by MTT assay in paired cell lines
(C) MCF-7/MCF7TR and (D) T47D/T47DTR after the cells were exposed to indicated concentrations of tamoxifen for 48 hours. Further,
tamoxifen resistant MCF7TR and T47DTR were subjected to SNHG6 silencing and then treated with increasing concentrations of tamoxifen for
48 hours before the proliferation was assessed using MTT assay. **p<0.01, compared to native controls and #p<0.01, compared to respective

resistant cells without SNHG6 silencing.

significantly reduced by the silencing of SNHG6. Further,
silencing of SNHG6 induced apoptosis in both of the resistant
cell lines (Figure 2C) in addition to reducing the invasion potential
(Figure 2D) and the colony forming ability (clonogenicity)
(Figure 2E) of both cell lines. These results suggest that SNHG6
silencing sensitizes tamoxifen resistant cells to tamoxifen through
reversal of EMT, induction of apoptosis and associates with
reduced aggressiveness and significantly reduced invasion
potential and colony forming ability.

TABLE 1 1C-50 values.

Identification of miR-101 as the miRNA
sponged by SNHG6

IncRNAs function through sponging of target miRNAs and,
therefore, we next evaluated the miRNAs that are sponged by
SNHG6 as evidenced through their negative regulation by
SNHGS. For the screening of putative miRNAs, we searched
the literature for published miRNAs that are sponged by
SNHG6, and, additionally, employed bioinformatics-based

Cell line 1C-50 Cell line 1C-50

MCE-7 4.6 £ 0.1 uM T47D 35+02uM
MCF7TR > 50 uM T47DTR 28.7 + 0.8 uM
MCF7TR-siSNHG6 19.1 £ 0.6 UM T47DTR-siSNHG6 10.0 + 0.3 uM

The values were calculated based on the experiments reported in Figures 1 C, D.
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SNHG6 affects EMT, apoptosis, invasion and clonogenicity. (A) MCF7TR and (B) T47DTR cells were transfected with control siRNA (siNS) or
siRNA against SNHG6 and then the levels of EMT markers, E-cadherin, vimentin, ZEB1 and ZEB2 were evaluated by gRT-PCR. The levels of these
markers in respective parental cells were assigned a value of 1 and the relative levels in siNS/siSNHG6 transfected tamoxifen-resistant cells are
plotted. (C) Apoptosis was assessed in tamoxifen-resistant cells by Histone/DNA ELISA method, as described in the Methods, by measuring the
O.D. at 405 nm. (D) Invasive potential of tamoxifen-resistant cells was evaluated by quantitating the fluorescence of cells that invaded through
the matrigel-coated membranes. Fluorescence of siNS cells assigned a value of 1 and the relative fluorescence of siSNHG6 transfected
tamoxifen-resistant cells is plotted. (E) Clonogenicity was measured by counting the colonies formed by cells in an anchorage-independent
manner, as described in the Methods. **p<0.01, compared to respective controls, #p<0.01, compared to siNS.

approach to list the putative miRNAs that can be sponged.
DIANA-LncBase v3 was used to list such miRNAs. A number of
miRNAs were shortlisted and tested but only those that were
significantly modulated in MCF7TR cells, relative to native
MCF-7 cells, are reported in Figure 3. miR-101 (also referred
to as miR-101-3p) was the most significantly (p<0.01)
downregulated miRNA among all the tested miRNAs. Several
other miRNAs were also found to be downregulated significantly
(let-7d, let-7e and miR-325 with p<0.05 and miR-26a and miR-
485 with p<0.01) whereas two miRNAs (miR-186 and miR-
1297) were found to be upregulated in MCF7TR cells, relative to
the MCEF-7 cells. Based on these results, we chose miR-101 as the
miRNA of interest for further mechanistic studies.

miR-101 effects on tamoxifen resistance
in MCF-7 cells

The effect of miR-101 on tamoxifen sensitivity was checked
by manipulating the levels of miR-101 in MCF-7 as well as
MCF7TR cells. First, we checked the levels of miR-101 in these

Frontiers in Oncology

two paired cells and found significantly reduced (p<0.01) miR-
101 levels in MCE7TR cells, compared to the parental MCF-7
cells (Figure 4A). We also checked for a regulation of miR-101
by SNHG6 in our experimental model and observed that
silencing of SNHG6 significantly (p<0.01) attenuated the
tamoxifen resistance-associated down-regulation of miR-101 in
MCEF7TR cells (Figure 4A). Since the levels of miR-101 were
relatively higher in MCF-7 cells, we downregulated miR-101
levels in these cells, through the use of specific anti-miR-101
oligomers and subjected the cells to tamoxifen treatment for 48
hours. As shown in Figure 4B, such downregulation of miR-101
significantly increased the resistance of MCF-7 cells, relative to
the MCF-7 cells with non-specific control oligomers. As an
experiment to further confirm the role of miR-101 in tamoxifen
resistance, we upregulated miR-101 in MCF7TR cells through
transfections with pre-miR-101 and observed significantly
reduced tamoxifen resistance (Figure 4B). Next, we checked
for the functional relevance of miR-101 upregulation in SNHG6-
silenced MCF7TR cells through the evaluation of tamoxifen
sensitivity and found that antagonizing such elevated levels of
miR-101 in SNHG6-silenced MCF7TR cells, through anti-miR-
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FIGURE 3

Identification of SNHG6 target miRNAs. Several miRNAs, as identified, were quantitated in MCF-7 and MCF7TR cells, using gRT-PCR. The levels
of miRNAs in parental MCF-7 cells were assigned a value of 1 and the relative levels in tamoxifen-resistant MCF7TR are plotted. *p<0.05 and

**p<0.01, compared to respective controls.

101 oligomers, significantly increased the resistance of MCF7TR
cells against tamoxifen (Figure 4C).

miR-101 effects on SNHG6-mediated
EMT and cancer stem cells

As reported above, SNHG6 had modulating effects on EMT
induction, therefore, we next checked the mechanistic
involvement, if any, of miR-101, the miRNA sponged by
SNHGS6, in the process. As shown in Figure 5A, relative to

MCF7TR cells silenced for SNHG6, the cells with added anti-
miR-101 oligomers had significantly reduced (p<0.01) epithelial
marker E-cadherin levels along with significantly elevated
(p<0.01) mesenchymal markers vimentin, ZEB1 and ZEB2.
Also, in view of the intricate connection between drug
resistance, EMT and the cancer stem cell phenotype (22, 23),
we evaluated various markers of cancer stem cell phenotype in
our experimental model system and found that all the tested
markers, Sox2, Oct4 as well as EZH2 were significantly
downregulated in SNHG6-silenced MCF7TR cells, relative to
the control MCF7TR cells (Figure 5B). Transfection of anti-miR-
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miR-101 affects tamoxifen resistance. (A) Levels of miR-101 were assessed in MCF-7, MCF7TR and MCF7TR cells silenced for SNHG6. Levels of
miR-101 in parental MCF-7 cells were assigned a value of 1 and the relative levels in other cells are plotted. (B) Cell proliferation was measured
by MTT assay in MCF-7/MCF7TR cells after transfections with pre/anti-miR-101 oligomers, as appropriate, followed by exposure to indicated
concentrations of tamoxifen for 48 hours. (C) Tamoxifen resistant MCF7TR either just silenced for SNHG6 or additionally transfected with anti-
miR-101 oligomers were treated with increasing concentrations of tamoxifen for 48 hours before the proliferation was assessed using MTT
assay. **p<0.01, compared to respective controls, #p<0.01, compared to MCF7TR
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miR-101 affects EMT and cancer stem cell markers. (A) MCF7TR cells were silenced for SNHG6 and then the levels of EMT markers, E-cadherin,
vimentin, ZEB1 and ZEB2 were evaluated by gRT-PCR in these cells as well as cells that were additionally transfected with anti-miR-101
oligomers. The levels of markers in SNHG6-silenced cells were assigned a value of 1 and the relative levels in sSiSNHG6+anti-miR-101-
transfected cells are plotted. (B) Molecular markers of cancer stem cell phenotype, Sox2, Oct4 and EZH2 were quantitated, using gRT-PCR. The
levels of miRNAs in parental MCF-7 cells were assigned a value of 1 and the relative levels in tamoxifen-resistant control MCF7TR (siNS) and
those silenced for SNHG6 with and without additional transfections with anti-miR-101, are plotted. **p<0.01, compared to siNS, #p<0.01,

compared to siSNHG6.

101 oligomers in SNHG6-silenced MCF7TR cells resulted in
significant (p<0.01) attenuation of SNHG6 silencing effects
(Figure 5B) which further established the mechanistic role of
miR-101 in SNHG6 mediated effects.

miR-101 mediates SNHG6 effects in
T47D cells as well

We identified miR-101 as the miRNA sponged by SNHG®6 in
experiments that were carried out using MCF7 and MCF7TR
cells, and further established the mechanistic role of miR-101 in
SNHGS effects in those cells. To further validate these findings,
we performed similar experiments in T47D cells as well. We
started with an evaluation of the relative levels of miR-101 in
parental and tamoxifen resistant T47D cells, and observed
significantly reduced (p<0.01) miR-101 levels in T47DTR cells
(Figure 6A) thus confirming the earlier results from paired
MCEF7 cells. miR-101 manipulations had a profound effect on
tamoxifen sensitivity as antagonizing miR-101 in parental T47D
cells resulted in significantly (p<0.01) induced tamoxifen
resistance while overexpression of miR-101, through pre-miR-
101 oligomers, resulted in significant (p<0.01) sensitization of
T47DTR cells to tamoxifen (Figure 6B). In context of the
mechanistic involvement of miR-101 in SNHG6 induced
tamoxifen resistance, anti-miR-101 oligomers significantly
(p<0.01) increased the sensitivity to tamoxifen of T47DTR
cells silenced for SNHG6 (Figure 6C) which involved
modulation of SNHG6-mediated EMT because, relative to
T47DTR cells with silenced SNHGS, the ones that additionally
were transfected with anti-miR-101, showed induction of EMT,
as evidenced by downregulated E-cadherin and upregulated
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vimentin, ZEB1 and ZEB2 (Figure 6D). Further, SNHG6
silencing reduced cancer stem cell markers Sox2, Oct4 and
EZH2 in T47DTR cells, relative to parental T47D cells, and
anti-miR-101 oligomers significantly (p<0.01) attenuated this
effect (Figure 6E).

Discussion

Acquired resistance against tamoxifen is a major clinical
challenge that severely impacts the clinical management of ER-
positive breast cancer patients. A number of IncRNAs are now
known to play a role in resistance against cancer therapies (24,
25), including resistance against tamoxifen (7, 10). In the present
study, we focused on IncRNA SNHG6 for its potential role in
acquired tamoxifen resistance in ER-positive breast cancer cells.
Our hypothesis to focus on SNHG6 for this study was based on
the published literature supporting a role of SNHG®6 in cancer
drug resistance, coupled with the fact that its role specifically in
tamoxifen resistance has never been elucidated. As per the
published literature, SNHG6 can impact cisplatin resistance in
gastric cancer (15, 26), 5-FU resistance in colorectal cancer (14),
paclitaxel resistance in prostate cancer (16) as well as radio-
resistance in cervical cancer (13). We now provide first evidence
for a role of IncRNA SNHGS6 in drug resistance of breast cancer,
in general, and tamoxifen resistance, in particular.

We report elevated levels of SNHG6 in tamoxifen-resistant
cells, which is in agreement with the published literature about
the oncogenic role of SNHG6 in human cancers (12, 27, 28).
Since SNHGS is itself elevated in tamoxifen resistant cells, the
miRNAs that it sponges are expected to be tumor-suppressive. In
agreement with this, not only the miR-101 that we shortlisted for
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FIGURE 6

miR-101 affects validated in T47D cells. (A) Levels of miR-101 were assessed in T47DTR cells, relative to levels in parental T47D cells. Levels of
miR-101 in parental cells were assigned a value of 1 and the relative levels in tamoxifen-resistant cells are plotted. (B) Cell proliferation was
measured by MTT assay in T47D/T47DTR cells after transfections with pre/anti-miR-101 oligomers, as appropriate, followed by exposure to
indicated concentrations of tamoxifen for 48 hours. (C) Tamoxifen resistant T47DTR either just silenced for SNHG6 or additionally transfected
with anti-miR-101 oligomers were treated with increasing concentrations of tamoxifen for 48 hours before the proliferation was assessed using
MTT assay. (D) T47DTR cells were silenced for SNHG6 and then the levels of EMT markers, E-cadherin, vimentin, ZEB1 and ZEB2 were evaluated
by qRT-PCR in these cells as well as cells that were additionally transfected with anti-miR-101 oligomers. The levels of markers in SNHG6-
silenced cells were assigned a value of 1 and the relative levels in siSNHG6+anti-miR-101-transfected cells are plotted. (E) Molecular markers of
cancer stem cell phenotype, Sox2, Oct4 and EZH2 were quantitated, using gRT-PCR. The levels of miRNAs in parental T47D cells were assigned

a value of 1 and the relative levels in tamoxifen-resistant control T47DTR (siNS) and those silenced for SNHG6 with and without additional
transfections with anti-miR-101, are plotted. **p<0.01, compared to respective controls, #p<0.01, compared to siSNHG6.

detailed mechanistic evaluation based on the observation, was
the most down-regulated miRNA in tamoxifen resistant cells,
but several other putative miRNAs, such as let-7d, let-7e, miR-
26a, miR-325 and miR-485 were also found to be significantly
downregulated. Incidentally, all of these miRNAs that were
down-regulated in our experimental model, are known to be
tumor suppressor miRNAs (29-33). Of note, we observed two
individual miRNAs, miR-186 and miR-1297 to be upregulated
which was a little confusing, given the earlier reports suggesting
sponging of these miRNAs by SNHG6. However, both of these
miRNAs seem to have a dual effect (34, 35), both oncogenic as
well as tumor suppressive, and our results support their reported
oncogenic function. It would also be of interest to readers to
know that we combined the information from published
literature as well as bioinformatics analysis to shortlist the
potential miRNAs that can be sponged by SNHG6. miR-26a
(14), miR-186 (16), miR-325 (15), miR-485 (13) and miR-1297
(26) represent miRNAs that were shortlisted based on published
reports while let-7d/e and miR-101 represent miRNAs that were
identified through DIANA-LncBase v3 platform.
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One of the primary mechanism through which SNHG6
mediates its oncogenic effects is the induction of EMT.
Accordingly, SNHG6 has been shown to induce EMT
leading to increased proliferation/migration/invasion of
gastric cancer cells (36), colorectal cancer cells (37, 38),
pituitary adenoma (18), glioma (19) and even breast cancer
cells (39). However, our work is the first to demonstrate
induction of EMT by SNHG6 in breast cancer cells with
functional implications in acquired resistance against
tamoxifen. We show here that SNHG6 silencing reversed
EMT leading to acquisition of a tamoxifen sensitive
phenotype. This is a clear proof supporting our hypothesis
that SNHGS6 plays a role in tamoxifen resistance. Further, we
demonstrate a negative correlation between SNHG6 and miR-
101 levels. In the SNHG6-silenced cells, miR-101 levels are
higher, which makes sense given the tumor suppressive nature
of miR-101. Furthermore, antagonizing miR-101 in SNHG6
silenced cells once again induced EMT, as evidenced by
downregulated epithelial marker E-cadherin and the
upregulated mesenchymal markers, vimentin, ZEB1 and
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ZEB2, thus supporting EMT induction as well as significantly
increased tamoxifen resistance.

While our present report is the first one to demonstrate
sponging of miR-101 by SNHGS6 in breast cancer, particularly in
tamoxifen-resistant breast cancer, there is ample evidence from
other cancer as well as non-cancer models to confirm such miR-
101 sponging by SNHG6. In one of the early report on the
subject, SNHG6 was reported to sponge miR-101 in
hepatocellular carcinoma cells (40). This work also reported an
effect of SNHG6 on mesenchymal marker ZEB1, similar to one
shown in our present study. Thereafter, SNHG6 was shown to
sponge miR-101 in gastric (36), glioma (41), colorectal (42),
non-small cell lung (43), cholangiocarcinoma (44), melanoma
(45) and esophageal (46) cancer cells. In addition, SNHG6 has
been reported to sponge miR-101 in rat degenerate nucleus
pulposus cells (47) and such sponging of miR-101 by SNHG6
has been suggested to contribute to ventricular septal defect
formation (48). Thus, specific targeting of miR-101 by SNHG6 is
functionally relevant not only in various cancers but in several
other physiological phenomena as well. Our novel information
on the modulation of tamoxifen resistance by this SNHG6-miR-
101 axis adds new knowledge, and should further generate
interest in the evaluation of miR-101 targeting by SNHG6 in
the context of cancer drug resistance.

In our present work, we also report that miR-101 itself
affected tamoxifen resistance. Just the manipulation of miR-101
levels in parental as well as tamoxifen-resistant cells, through the
use of pre- or anti-miR-101 oligomers, as appropriate, resulted
in differential sensitization of cells to tamoxifen exposure. More
importantly, we determined miR-101 to be mechanistically
involved in SNHG6 effects because miR-101 was found to
attenuate the SNHG6 effects on tamoxifen sensitization/
resistance in both MCF-7/MCF7TR and T47D/T47DTR paired
cell lines. We thus provided novel evidence to support a role of
miR-101 in tamoxifen resistance of ER-positive breast cancer.
An earlier report has documented an estrogen-independent
growth stimulation by miR-101 in MCF-7 cells (49). There,
however, has been no attempt yet to connect miR-101 with
tamoxifen resistance of breast cancers, which underlines another
important revelation from our work.

In our experiments, we found ZEBI to be the most affected
EMT biomarker. It was found to be the most differentially
regulated molecular marker, among all the markers of EMT
tested, in the tamoxifen resistant cells, when compared to the
parental cells. ZEBI, also happened to be to most affected EMT
marker when SNHG6 was silenced in tamoxifen-resistant cells
and finally, ZEB1 was again the most affected EMT marker when
anti-miR-101 oligos were added to SNHG6-silenced cells. In a
similar observation, EZH2 was found to be the most affected
cancer stem cell marker as it was found to be the most up-
regulated stem cell marker in tamoxifen-resistant cells, most
affected marker in SNHG6-silenced cells and then the best
marker rescued by miR-101 manipulation in SNHG6-silenced
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cells. Interestingly, miRDB prediction lists ZEB1 and EZH2 as the
predicted targets of miR-101 which is also supported by published
evidence of ZEB1 (40) and EZH2 (46) targeting by miR-101.
Taken together, our study provides evidence to support a role of
IncRNA SNHG6-miR101 axis in tamoxifen resistance of ER-
positive breast cancers which involves modulation of EMT and
cancer stem cells phenotype through targeting of ZEB1/EZH2.
Further clinical studies will be needed to exploit this novel
information for future benefit of breast cancer patients,
particularly those with acquired tamoxifen resistance.
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Glioblastoma multiforme (GBM) is the most frequent malignant type of primary
brain cancers and is a malignancy with poor prognosis. Thus, it is necessary to find
novel therapeutic modalities based on molecular events occur at different stages
of tumor progression. We used expression profiles of GBM tissues that contained
long non-coding RNA (IncRNA), microRNA (miRNA) and mRNA signatures to make
putative ceRNA networks. Our strategy led to identification of 1080 DEmRNAs,
including 777 downregulated DEmRNAs (such as GJB6 and SLC12A5) and 303
upregulated DEMRNAs (such as TOP2A and RRM2), 19 DEIncRNAs, including 16
downregulated DEIncRNAs (such as MIR7-3HG and MIR124-2HG) and 3
upregulated DEINcRNAs (such as CRNDE and XIST) and 49 DEmiRNAs, including
10 downregulated DEmIiRNAs (such as hsa-miR-10b-5p and hsa-miR-1290) and
39 upregulated DEmiRNAs (such as hsa-miR-219a-2-3p and hsa-miR-338-5p).
We also identified DGCR5, MIAT, hsa-miR-129-5p, XIST, hsa-miR-128-3p, PART1,
hsa-miR-10b-5p, LY86-AS1, CRNDE, and DLX6-AS1 as 10 hub genes in the ceRNA
network. The current study provides novel insight into molecular events during
GBM pathogenesis. The identified molecules can be used as therapeutic targets
for GBM.
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Introduction

Glioblastoma multiforme (GBM) is the most frequent
malignant type of primary brain cancers (1). This type of
cancer is classified into primary and secondary subtypes based
on the presence of mutations in isocitrate dehydrogenase (IDH)
genes (2). Moreover, the mutation status of IDHI and IDH2
genes is considered as an important factor in defining prognosis
of GBM (2). GBM is a highly invasive tumor with high tendency
to diffuse all over the brain parenchyma. In addition, high level
of vascularity of GBM makes it exceedingly recidivist, leading to
a short survival time even after surgical resection and
chemoradiotherapy (2). From an immunological point of view,
GBM is regarded as a cold tumor with an extremely
immunosuppressive tumor microenvironment that acts in
favor of tumor progression, recurrence and poor prognosis (2).
Therefore, it is necessary to find novel therapeutic modalities
based on molecular events occur at different stages of
tumor progression.

Recent studies have used expression data of differentially
expressed RNAs in GBM to construct competitive endogenous
RNA (ceRNA) networks with the potential to be used as
prognostic factors (3-6). In one of the recent studies, one
IncRNA with differential expression related to survival,
IL1I0RB-AS1, was discovered using a combination of
bioinformatic techniques. This may have predictive utility and
present novel therapy options for GBM, along with a number of
associated signaling pathways and ceRNA systems that were
discovered in GBM (7). This strategy can also been used to
identify subtype-specific modules with distinctive biological
functions that influence patients’ prognosis in different GBM
subtypes (8). Therefore, it is very important to look into
probable genetic causes of GBM. One of the most urgent
difficulties in cancer therapy is the creation of alternate and
acceptable biomarkers to accurately identify and treat GBM (9).

In the current study, we used expression profiles of GBM
tissues that contained long non-coding RNA (IncRNA),
microRNA (miRNA) and mRNA signatures to make putative
ceRNA networks. Then, we find the molecular pathways which
are associated with these ceRNA networks.

Abbreviations: GBM, Glioblastoma Multiforme; IncRNA, Long non-coding
RNA; miRNA, MicroRNA; mRNA, Messenger RNA; ceRNA, Competitive
Endogenous RNA; DEG, Differentially Expressed Genes; GEO, Gene
Expression Omnibus; SVA, Surrogate Variable Analysis; PCA, Principal
Component Analysis; Limma, Linear Models for Microarray Data; FDR,
False Discovery Rate; Log2FC, Log2 Fold Change; HGNC, HUGO gene
nomenclature; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; PPI, Protein-Protein Interaction; TCGA, The Cancer Genome
Atlas; BP, Biological Process; MF, Molecular Function; CC, Cellular
Component; CCLE, Cancer Cell Line Encyclopedia.
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Methods
Microarray data collection

Expression profiles of GSE50161 ([HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array), GSE36245
([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array), GSE83300 (Agilent-014850 Whole Human Genome
Microarray 4x44K G4112F (Probe Name version)) and
GSE65626 ([miRNA-4] Affymetrix Multispecies miRNA-4
Array), which included 130, 46, 50 and 6 samples, respectively,
were acquired using the Gene Expression Omnibus (GEO;
http://www.ncbinlm.nih.gov/geo/). We selected 34 GBM and
13 normal tissue samples from GSE50161, 46 GBM samples
from GSE36245, 50 GBM samples from GSE83300 and 3 GBM
and 3 normal samples from GSE65626 for further analysis
(Table 1). The expression data contained IncRNAs, miRNAs
and mRNAs expression signatures.

Microarray data processing, integrative
meta-analysis and assessment of
data quality

The described datasets contain different and trendy
platforms (Agilent and Affymetrix), and normalization is a
critical step in the integration of heterogeneous data. All
microarray data was processed and integrated using the
statistical programming language R. For pre-processing, data
from Affymetrix and Agilent was first normalized separately
using the normalizeQuantiles function in the preprocessCore
package (https://bioconductor.org/packages/release/bioc/html/
preprocessCore.html). The program R was used to combine
data from both platforms. In order to exclude batch effects (non-
biological differences), the ComBat function from the R Package
Surrogate Variable Analysis (SVA) was used (10). By using PCA
and a boxplot, batch effect removal was evaluated. The result of
the meta-analysis is a unit expression matrix (the combination of
three datasets of this study).

Analysis of differentially expressed
IncRNAs, miRNAs and mRNAs

We used the Limma package in R language (11) to screen
differentially expressed mRNAs (DEmRNAs), IncRNAs
(DEIncRNAs), and miRNAs (DEmiRNAs) between GBM and
normal samples. GSE50161, GSE36245 and GSE83300 were used
to obtain DEmRNAs and DEIncRNAs. GSE65626 was utilized to
acquire DEmiRNAs. DEmRNAs and DEIncRNAs were evaluated
with the cut-off criteria of false discovery rate (FDR; adjusted p
value) < 0.05 and |log2 fold Change (FC)| > 2 while the cut-off
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TABLE 1 Information of datasets.

Datasets Platform Use
GSE50161 GPL570 DEmRNA - DEIncRNA
GSE36245 GPL570 DEmRNA - DEIncRNA
GSE83300 GPL6480 DEmRNA - DEIncRNA
GSE65626 GPL19117 DEmiRNA

criteria of false discovery rate (FDR; adjusted p value) < 0.05 and |
log2 fold Change (FC)| > 3.5 was considered for DEmiRNAs. Then,
we identified DEIncRNAs using HGNC (HUGO gene
nomenclature) database.

Two-way clustering of DEGs

We determined gene expression levels of significant
DEmRNASs, DEIncRNAs, and DEmiRNAs. We used this data
in the pheatmap package in R language (12) to perform two-way
clustering based on the Euclidean distance.

Gene ontology enrichment analysis

We used the clusterProfiler R package (13) to perform gene
ontology (GO) enrichment analysis to investigate the functions
of the remarkably upregulated and downregulated DEGs that we
discovered. The functional category criteria were established at
an adjusted p-value of 0.05 or below.

Kyoto encyclopedia of genes and
genomes pathway analysis

KEGG pathway analysis of considerably DEGs was carried
out to discover the possible functions of these genes that
participated in the pathways based on the KEGG database (14).

PPI network construction and hub
genes identification

The STRING database (15) was utilized to create the PPI
network for DEGs. Highest level of confidence was used to
establish the interactions parameter (confidence score >0.9). The
Cytoscape software v3.9 (16) was used to visualize the
interactions between the proteins. The top 20 DEGs related to
hub genes were ultimately found using the Cytohubba plugin
(17) of Cytoscape using the betweenness approach.

Constructing the ceRNA network and
hub genes identification

We built a ceRNA network through the following steps: 1)
assessing the interactions between IncRNAs and miRNAs based
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Patient Control Tissue
34 13 Brain
46 Brain
50 - Brain
3 3 Brain

on the GBM-related miRNAs using miRcode (http://www.
mircode.org/); 2) Application of miRDB (http://www.mirdb.
org/) (18), miRTarBase (https://mirtarbase.cuhk.edu.cn/) (19),
TargetScan (http://www.targetscan.org/) (20) and miRWalk
(http://129.206.7.150/) (21) for prediction of miRNAs-targeted
mRNAs; 3) Finding the intersections of the differentially
expressed IncRNAs and mRNAs, and establishment of
IncRNA/mRNA/miRNA ceRNA network using Cytoscape v3.9
and 4) predicting hub genes using cytohubba plugin based on
degree method.

Validation of hub genes via
expression values

The expression value of hub genes was assessed using the
ualcan database (22). The hub genes in the TCGA-GBM RNA-
seq data were examined, and those were present in the PPI and
ceRNA networks as well as in the TCGA-GBM were chosen for
gene expression validation.

Expression of the hub genes in various
GBM cell lines

We selected GBM and normal brain cell lines using cancer
cell line encyclopedia (CCLE) (https://sites.broadinstitute.org/
ccle/) and DepMap portal gene expression datasets (https://
depmap.org/portal/). In order to determine how the hub genes
are expressed, we finally employed the limma package of the R
programming language to analyze this data.

Survival analysis

We used survival package (https://CRAN.R-project.org/
package=survival) in R to define survival curves, which were
grouped by the prognostic value of hub genes with highest
degree in ceRNA network. The clinical data for patients with
GBM derived from TCGA (PRAD-TCGA). Univariate survival
analysis was evaluated using Kaplan-Meier curves. Statistics
were considered significant for P-values under 0.05.
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Results

Microarray data processing, integrative
meta-analysis and assessment
of data quality

Figure 1 shows the boxplot of raw data and normalized data
after batch effect removal. These boxplots indicate that the
quality of the expression data was reliable, and the boxplot of
the preprocessed data presented the good normalization. In the
PCA plot (Figure 2), 143 samples are shown in the 2D plane
spanned by their first two principal components (PC1 and PC2).
According to this plot, the samples had a good variation after
batch effect removal.

DEGs analysis

Based on the microarray data analysis between GBM and
normal samples using Limma package, we obtained 1080
DEmRNAs, including 777 downregulated DEmRNAs (such as
GJB6 and SLC12A5) and 303 upregulated DEmRNAs (such as
TOP2A and RRM2), 19 DEIncRNAs, including 16
downregulated DEIncRNAs (such as MIR7-3HG and MIR124-
2HG) and 3 upregulated DEIncRNAs (such as CRNDE and
XIST) and 49 DEmiRNAs, including 10 downregulated
DEmiRNAs (such as hsa-miR-10b-5p and hsa-miR-1290) and
39 upregulated DEmiRNAs (such as hsa-miR-219a-2-3p and
hsa-miR-338-5p). The most significantly upregulated and

10.3389/fonc.2022.1024567

downregulated DEmRNAs, DEIncRNAs, and DEmiRNAs are
shown in Tables 2-4, respectively.

We used the volcano plot with the Enhanced Volcano
package (23) in R to compare the variation in miRNA,
IncRNA, and mRNA expression between GBM and normal
samples (Figure 3). In addition, the two-way clustering
demonstrated that 20 clearly distinct DEmRNA expression
patterns between GBM and normal samples were identifiable
(Figure 4A). The expression of DEIncRNAs and DEmiRNAs is
also shown in two heatmaps (Figure 4B).

GO enrichment analysis of DEGs

DEGs were enriched in 816 GO terms. We used
Clusterprofiler package to perform analysis. In GO functional
enrichment analysis, 816 GO entries satisfy adjusted P value less
than 0.05, most of which are biological processes (BP), followed
by cellular components (CC) and molecular functions (MF). The
first 30 entries are synaptic membrane (CC), modulation of
chemical synaptic transmission (BP), regulation of trans-
synaptic signaling (BP), glutamatergic synapse (CC), synapse
organization (BP), synaptic vesicle cycle (BP), vesicle-mediated
transport in synapse (BP), neurotransmitter transport (BP),
regulation of membrane potential (BP), neuron to neuron
synapse (CC), postsynaptic specialization (CC), postsynaptic
membrane (CC), neurotransmitter secretion (BP), signal
release from synapse (BP), ion channel complex (CC),
regulation of neurotransmitter levels (BP), postsynaptic density

FIGURE 1

Boxplots for the raw data (A) and normalized data after batch effect removal (B). GBM samples are indicated by red boxes, whereas healthy

samples are shown by green boxes.
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FIGURE 2

PCA plot. The Batch implies that the data includes three platforms. Also, healthy benign and tumor samples were divided into three groups.

(CC), asymmetric synapse (CC), transmembrane transporter
complex (CC), transporter complex (CC), cation channel
complex (CC), regulation of synaptic plasticity (BP),
presynaptic membrane (CC), synaptic vesicle membrane (CC),
exocytic vesicle membrane (CC), synaptic vesicle (CC),
regulation of ion transmembrane transport (BP), exocytic
vesicle (CC), synaptic vesicle exocytosis (BP) and gated
channel activity (MF). Figure 5 shows the barplots of top 10
enriched functions.

Figures 6 and 7 depict visualization of the dotplots of top 10
enriched functions and enriched GO induced graph, respectively.

Figure 8 indicates the gene-concept network of top 5 GO terms
(Modulation of chemical synaptic transmission, regulation of trans-
synaptic signaling, synapse organization, synaptic vesicle cycle and
vesicle-mediated transport in synapse).

In Figure 9, the UpSet plot visualizes the intersection
between top 10 GO terms. It highlights the gene overlap
between several gene sets.

TABLE 2 The top 10 up- and down-regulated DEmRNAs between GBM and normal samples.

Down-regulated

Up-regulated

DEmRNA Log FC Adjusted P value DEmRNA Log FC Adjusted P value
GJB6 -7.096688 3.082137e-24 TOP2A 5.106081 5.083076e-14
SLCI2A5 -6.726824 3.298847e-17 RRM2 4.991494 9.047466¢-15
PACSIN1 -6.712373 1.336264e-18 KIAA0101 4748463 1.192890e-17
SYNPR -6.505139 2.538197¢-14 UHRF1 4.484171 8.187032¢-22
VSNL1 -6.469234 2.949472¢-12 ASPM 4.420167 1.604840e-10
CAMK2A -5.812767 8.827178¢-20 NUSAP1 4.218903 1.390467e-14
SV2B -5.752584 1.830778e-15 PBK 4.210402 6.369782¢-10
NEFM -5.737146 5.630558¢-12 WEE1 4195263 1.993886e-22
ETNPPL -5.735033 5.781047¢-10 CDK1 4.164108 1.641432¢-16
SVOP -5.733442 6.691090e-20 CFI 4.054792 2.503017¢-08
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TABLE 3 The up- and down-regulated DEIncRNAs between GBM and normal samples.

DEIncRNA

MIR7-3HG
MIR124-2HG
DGCR5
DCTN1-AS1
RFPL1S
DPP10-AS1
SLC26A4-AS1
HARIA
LY86-AS1
LINC00622
MEG3

MIAT
PART1
LINCO01102
DLX6-AS1
TTTY15

Down-regulated

Log FC

-3.826937
-3.483949
-3.466361
-3.326676
-3.284252
-3.174864
-2.994545
-2.760872
-2.705636
-2.67454

-2.551883
-2.33424

-2.318588
-2.121837
-2.06398

-2.01289

Up-regulated

Adjusted P value DEIncRNA Log FC Adjusted P value
2.943952e-14 CRNDE 3.762562 1.547281e-08
3.114815¢-10 XIST 3.637404 001229272
2.495893e-19 KIFC1 2133776 7.987507¢-06

1.312921e-23
1.929947e-12
3.760156e-08
1.566864¢-14
5.007026e-21
9.604924e-16
1.846807e-10
1.11688e-11
8.580568e-05
1.6899¢-11
4.563676e-05
0.0008082298
0.006006504

Pathway analysis

Cytohubba plugin of Cytoscape 3.9 in order to identify the
hub genes. The 20 hub genes with the highest dgree of

Using Pathview (24) and gage (25) packages in R, KEGG connectivity were DLG4, CAMK2B, BUB1B, LIN7B, CDK2,
pathways analysis of 177 downregulated and 177 upregulated SYT1, DNMI1, STX1A, GRIA4, CCNB1, AURKA, AURKSB,
DEGs were performed to identify the potential functional genes BUBI, STXBPI1, TP53, CCNB2, SNAP25, CDK1, GRIA2 and

(Table 5; Figure 10).

CDK4. Table 6 is a list of this hub’s information. The greatest
degree to lowest degree is used to order these hubs.

PPl network construction and selection

of hub genes

CeRNA network construction in GBM

A PPI network of DEGs (Figure 11) with 411 nodes and 727 Using miRcode, the relationship between IncRNAs and
edges that was generated from STRING was put into the miRNAs was assessed. This step demonstrated that 20 of the 39

FIGURE 3

-Log10(padj)

not sig.

log2FoldChange

pvalue

pvalue & log2FoldChange

log2 Fold Change

The volcano plot of differentially expressed genes (DEGs); horizontal axis, log,(FC); vertical axis, -logjg(adjusted P value).
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TABLE 4 The top 10 up- and down-regulated DEmiRNAs between GBM and normal samples.

Down-regulated Up-regulated
DEmiRNA Log FC Adjusted P value DEmiRNA Log FC Adjusted P value
hsa-miR-10b-5p -4.7771098 0.00071 hsa-miR-219a-2-3p 8.6479768 0.011486
hsa-miR-1290 -4.4993318 0.03931 hsa-miR-338-5p 7.9211592 0.000161
hsa-miR-371b-5p -4.4205838 0.005439 hsa-miR-139-3p 6.5955712 0.000161
hsa-miR-199a-5p -4.4046581 0.006768 hsa-miR-383-5p 6.1274595 0.001604
hsa-miR-21-3p 4274357 0.000912 hsa-miR-330-3p 6.0482004 0.004003
hsa-miR-199a-3p 41722017 0.004278 hsa-miR-584-5p 5.8478087 0.007511
hsa-miR-199b-3p -4.1722017 0.004278 hsa-miR-129-5p 54260841 0.004825
hsa-miR-21-5p -3.9891862 0.001823 hsa-miR-330-5p 5.0897962 0.000547
hsa-miR-431-5p -3.7024153 0.001823 hsa-miR-138-2-3p 4.8481859 0.000161
hsa-miR-424-3p -3.5577576 0.004493 hsa-miR-1250-5p 4.6317277 0.003127
A

Downregulated

The sgtcanty o~ andsewnreguited DENCRNAS
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FIGURE 4
(A) The two-way clustering of DEmMRNAs between GBM samples and normal samples; horizontal axis, the samples; vertical axis, DEmRNAs.
(B) Two heatmaps depicting expression of DEIncCRNAs and DEmiRNAs.
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GBM -specific DEmiRNAs may be targeted by 10 of the 19 IncRNAs
(Table 7). Then, in order to investigate the connection between
miRNAs and mRNAs, we used miRWalk with miRTarBase,
TargetScan and miRDB filters to predict targeted mRNAs by these
20 miRNA. The findings suggested that 3 miRNAs may target 6 of
the 1080 mRNAs (Table 8). If miRNA-targeted mRNAs were not
found in DEmRNAs, they were eliminated. Cytoscape 3.9 was used
to build the IncRNA-miRNA-mRNA ceRNA network using the data
from Tables 7 and 8. The ceRNA network contained a total of 3
miRNAs, 10 IncRNAs, and 6 mRNAs (Figure 12). We displayed this
ceRNA network using a Sankey diagram generated by the ggalluvial
R package (Version: 0.12.3) (26) in order to better understand the
impact of IncRNAs on mRNAs in GBM that is mediated by their
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interaction with miRNAs (Figure 13). Finally, using the cytohubba
app, we calculated nodes closeness and exhibited the top 10 nodes in
the network with the highest closeness centrality (Figure 14). We
identified DGCR5, MIAT, hsa-miR-129-5p, XIST, hsa-miR-128-3p,
PART]1, hsa-miR-10b-5p, LY86-AS1, CRNDE, and DLX6-AS1 as 10
hub genes in the ceRNA network.

Validation of hub genes via
expression value

We first obtained the TCGA-GBM RNA-seq data using the
TCGAbiolinks package (27), and then we used the R packages
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limma and edgeR to analyze it. Then, by using Venny 2.0.2 (28),
we were able to obtain the genes that were present in both the
PPI and ceRNA networks” Hub genes and TCGA-GBM DEGs
(adjusted p value < 0.05 and [log2 fold Change (FC)| > 2)
(Figure 15). As a result, 18 of the 20 PPI network genes and 6 of
the 10 ceRNA network genes were also included in the TCGA-
GBM DEGs. Utilizing the ualcan, the expression value of these
hub genes was evaluated. Therefore, all hub genes in PPI
network and CRNDE, DGCR5, LY86-AS1, MEG3, MIAT,
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PARTI1 in ceRNA network revealed excellent statistical
significance (Figure 16; Table 9).

Expression of the hub genes in various
GBM cell lines

Using the cancer cell line encyclopedia (CCLE), we gathered
cell line expression data (DepMap Public 22Q2) (29) and chose
four GBM cell lines and hub genes. We selected four primary cell

frontiersin.org


https://doi.org/10.3389/fonc.2022.1024567
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ghafouri-Fard et al.

GO:1900351 G0.0006790 Co0031220

NA
miss1

GO:1902495
ansmembrane vansp.
<to-20

87322

!

600034702
o0 channl

Sto-20
71290

FIGURE 7

10.3389/fonc.2022.1024567

coonsorr
ot

.
261010
e

GO graph visualization of top GO terms enriched. (A) The top 10 GO terms in the category “Cellular Component” have generated a GO sub-
graph. (B) The top 10 GO terms in the category “Molecular Function” have generated a GO sub-graph. (C) The top 10 GO terms in the category
“Biological process” have generated a GO sub-graph. Boxes indicate the most significant terms. From dark red (most significant) to light yellow

(least significant), the color of the box indicates the relative significance.

lines for GBM, namely A172, U251, U87, and T98G. NHA cell
line was utilized as a normal brain cell line. Finally, we analyzed
this data using the limma package in the R programming
language, and we discovered how the hub genes are expressed
in diverse GBM cell lines (Table 10). As a threshold, we utilized
Log2FC > |0.5| and an adjusted P.value of 0.05.
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Survival analysis

A Kaplan-Meier curve analysis was used to perform a
survival analysis using the R survival package. We carried out
a survival analysis using hub genes in PPI and ceRNA networks.
The difference was statistically significant with a log-rank P value
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TABLE 5 Down-regulated and Up-regulated Pathways.

Down-regulated

10.3389/fonc.2022.1024567

Up-regulated

Pathway P value Pathway P value
Calcium signaling pathway 0.002285132 Cell cycle 2.009266¢-06
Long-term potentiation 0.018132471 P53 signaling pathway 2.197253e-05
Gastric acid secretion 0.025751413 ECM-receptor interaction 4.957866e-03
Pancreatic secretion 0.034688834 Focal adhesion 3.223350e-02
TABLE 6 The information of hub genes in PPl network.

Hub Gene Adjusted P.value  Log2FC  Clustering Coefficient Degree Closseness Centrality Betweenness Centrality
DLG4 2.36E-15 -2.598617544 0.071428571 28 0.224764468 0.198126639

TP53 1.87E-12 2.464542358 0.043333333 25 0.242556282 0.292493307

CDK1 1.64E-16 4.164108388 0.204761905 21 0.236376504 0.17080442

SNAP25 1.34E-07 -3.669305973 0.205263158 20 0.207840697 0.082044934

CCNB1 2.23E-06 2.248216201 0.267973856 18 0.210327456 0.031022432

STX1A 1.45E-15 -4.103297234 0.196078431 18 0.195321637 0.050648257
CAMK2B 8.26E-12 -3.073502871 0.352380952 15 0.212603437 0.034827756

GRIA4 0.001527989 -2.209019827 0.384615385 14 0.207970112 0.02887363

SYT1 1.99E-09 -4.875013677 0.318681319 14 0.19716647 0.049932638

AURKB 1.88E-05 2.02463802 0.179487179 13 0.214515093 0.060609355

BUBI 6.85E-07 2.835182173 0.358974359 13 0.203039514 0.020336039

CDK2 1.01E-20 3.199041769 0.358974359 13 0.21618123 0.028807346

DNM1 2.27E-11 -3.62934314 0.128205128 13 0.166003976 0.082152881

GRIA2 0.002650131 -2.194510124 0.294871795 13 0.206427689 0.021606876
AURKA 2.22E-07 2.456079967 0.136363636 12 0.234057463 0.122769569

BUB1B 3.32E-11 3.639344188 0.363636364 12 0.20291616 0.017593973

CCNB2 3.40E-12 3.703784989 0.424242424 12 0.203410475 0.00663464

LIN7B 2.52E-11 -2.039148743 0.484848485 12 0.187640449 0.010884111
STXBP1 6.03E-14 -2.263599416 0.484848485 12 0.192618224 0.015683204

CDK4 1.08E-11 2.368774869 0.436363636 11 0.214652956 0.010245679

less than 0.05. Therefore, in patients with GBM, DLG4, DNM1,
STX1, and CRNDE exhibited a significant correlation with a
shorter overall survival time (Figure 17).

Discussion

Using an in-silico approach, we aimed to identify ceRNA
networks in GBM. The ceRNA network between three
mentioned classes of RNAs is a recently revealed regulatory
relationship. This network has an essential role in the
modulation of biological features of cancer. Our strategy led to
identification of 1080 DEmRNAs, including 777 downregulated
DEmRNAs (such as GJB6 and SLC12A5) and 303 upregulated
DEmRNAs (such as TOP2A and RRM2), 19 DEIncRNAs,
including 16 downregulated DEIncRNAs (such as MIR7-3HG
and MIR124-2HG) and 3 upregulated DEIncRNAs (such as
CRNDE and XIST) and 49 DEmiRNAs, including 10
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downregulated DEmiRNAs (such as hsa-miR-10b-5p and hsa-
miR-1290) and 39 upregulated DEmiRNAs (such as hsa-miR-
219a-2-3p and hsa-miR-338-5p).

In line with our results, a previous study has shown that
IncRNA XIST has as oncogenic function in human glioma
through influencing expression of miR-137 (30). Moreover,
ceRNA network analyses have shown that CRNDE enhances
glioblastoma progression via sponging miR-9-5p (31).

Modulation of chemical synaptic transmission, regulation of
trans-synaptic signaling, synapse organization, synaptic vesicle
cycle and vesicle-mediated transport in synapse were identified
as the top five GO terms. Therefore, the most important
pathways are related with synaptic function.

DGCR5, MIAT, hsa-miR-129-5p, XIST, hsa-miR-128-3p,
PART]1, hsa-miR-10b-5p, LY86-AS1, CRNDE, and DLX6-AS1
were identified as 10 hub genes in the ceRNA network. These
different types of RNAs are possible therapeutic targets and
markers for GBM. Further experiments revealed association
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FIGURE 10
Visualization of the first two upregulated and downregulated pathways. Green boxes are downregulated genes and red boxes are upregulated genes.
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FIGURE 11
PPI network of DEmRNAs. (A) Total PPI network, (B) Subnetwork of hub genes.
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FIGURE 12

ceRNA network in GBM. Red nodes signify a strong expression level, while green nodes signify a low level of expression. Ellipses represent
protein-coding genes; rectangles represent miRNAs; Triangles represent INncRNAs; gray edges indicate INncRNA-miRNA-mRNA interactions.
Greater edge thickness indicates greater betweenness.

miRNA

hsa-miR-10b-5p
hsa-miR-128-3p
hsa-miR-129-5p

IncRNA miRNA mRNA

FIGURE 13
The ceRNA network in GBM is shown by a Sankey diagram. Each rectangle represents a gene, and depending on the size of the rectangle, the
degree of relationship between each gene is shown.
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TABLE 7 The MiRcode database revealed interactions between 10 DEIncRNAs and 20 DEmiRNAs.

IncRNA

miRNA

CRNDE, XIST, DGCR5, MEG3, MIAT, DLX6-AS1
CRNDE, XIST, MEG3, MIAT

CRNDE, XIST, DGCR5, MIR7-3HG, MEG3, PART1, DLX6-AS1
CRNDE, XIST, DGCR5, LY86-AS1, PART1, MIAT, DLX6-AS1, TTTY15

CRNDE, XIST, DGCR5, MEG3, MIAT, DLX6-AS1

CRNDE, XIST, DGCR5, LY86-AS1, MEG3, MIAT, DLX6-AS1
CRNDE, DGCR5, MEG3, PART1, MIAT, DLX6-AS1

XIST, DGCR5, LY86-AS1, MIR7-3HG, MEG3, PART1

XIST, DGCRS5, LY86-AS1, MIAT, DLX6-AS1, TTTY15

XIST, DGCR5, LY86-AS1, MEG3, DLX6-AS1,

XIST, LY86-AS1, MIAT, DLX6-AS1, TTTY15

XIST, DGCR5, LY86-AS1, MEG3, PART1, MIAT

XIST, DGCRS5, LY86-AS1, MIAT, DLX6-AS1, TTTY15

XIST, LY86-AS1, MEG3, PART1, MIAT, DLX6-AS1, TTTY15
XIST, DGCR5, MEG3, PART1, TTTY15

XIST, DGCR5, MEG3, PART1, TTTY15

XIST, DGCR5, LY86-AS1, MEG3, PART1, MIAT, DLX6-AS1
LY86-AS1, MIAT

LY86-AS1, MEG3, MIAT

LY86-AS1
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hsa-miR-338-5p
hsa-miR-1244
hsa-miR-128-3p
hsa-miR-129-5p
hsa-miR-338-3p
hsa-miR-23b-5p
hsa-miR-199a-5p
hsa-miR-138-2-3p
hsa-miR-29¢c-5p
hsa-miR-383-5p
hsa-miR-139-5p
hsa-miR-34c-3p
hsa-miR-29b-2-5p
hsa-miR-10b-5p
hsa-miR-21-3p
hsa-miR-21-5p
hsa-miR-424-3p
hsa-miR-139-3p
hsa-miR-184
hsa-miR-129-2-3p
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between expression of DLG4, DNM1, STX1, and CRNDE and
overall survival time of GBM patients, indicating their
importance as prognostic factors. DLG4 has been identified as
a core biomarker Biomarkers related with clinical outcome in
glioma patients through a bioinformatics approach (32).
Bioinformatics analyses have also identified DNMI1 as a
marker of invasion in this type of cancer (33). Besides,
functional studies have shown that interference with the Stx1
function can impair progression of GBM in vivo.

Additionally, a prior study has shown that blocking the
SNARE protein Stxl via three distinct methods, including
STX1A knockdown, consistently results in a marked slowing
of the growth of glioblastoma tumors in an orthotopic mouse
model (34).

According to reports, DNM1 promotes the growth of
tumors in a number of malignancies, including gastric
adenocarcinoma (35). We also found DNM1 to be a
significant biomarker in GBM.

DLG4, which was also recognized as a key gene hub in this
illness was another gene that we discovered to be a biomarker in
GBM (36).

Taken together, ceRNA network analyses in GBM have
provided new insights into molecular mechanisms in this type
of cancer, representing novel markers and therapeutic targets in

TABLE 8 miRWalk (miRTarBase, TargetScan and miRDB filters)
database revealed interactions between 3 DEmiRNAs and 6
DEmRNAs.

miRNA mRNA
hsa-miR-128-3p UNC13C

hsa-miR-129-5p NEUROD2, NR4A2, THRB, KCNJ6
hsa-miR-10b-5p CSMD1

Frontiers in Oncology

GBM. Future assessment of their expression in clinical samples
and functional studies in animal models would lead to
identification of detailed data in this regard.

TABLE 9 Statistical significance of hub genes based on sample types
in GBM.

Hub genes Statistical significance of expression value*
DLG4 4.066400E-02
TP53 1.62625468647093E-12
CDK1 1.62436730732907E-12
SNAP25 3.176000E-02
STX1A 4.005600E-02
CCNB1 <1E-12
CAMK2B 3.325700E-02
SYT1 3.254000E-02
DNM1 3.230500E-02
AURKB 1.62447832963153E-12
BUBL <1E-12

CDK2 1.62447832963153E-12
AURKA <1E-12
STXBP1 3.203700E-02
BUBIB 1.62447832963153E-12
CCNB2 1.62447832963153E-12
APBA1 2.727800E-02
DGCR5 2.698251E-02
MEG3 4.831681E-02
MIAT 3.234847E-02
LY86-AS1 1.431129E-02
PARTI 1.269176E-02
CRNDE 3.024283719995E-31

*Low number (<10) of normal samples considered.
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Box plots of gene expression of hub genes in GBM and normal samples based on TCGA. Red and blue boxes show gene expression of hub

genes in GBM and normal samples, respectively.
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shows P<0.01).

TABLE 10 Expression pattern of the hub genes in A172, U251, U87, and T98G cell lines.

Hub gene

DLG4
TP53
CDK1
SNAP25
STX1A
CCNBI1
CAMK2B
SYT1
DNM1
AURKB
BUBI1
CDK2
AURKA
STXBP1
BUBI1B
CCNB2
APBA1
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Al172 Us7
Not significant Downregulated
Not significant Downregulated
Upregulated Upregulated
Not significant Upregulated
Not significant Upregulated
Upregulated Upregulated
Upregulated Downregulated
Not significant Downregulated
Not significant Upregulated
Upregulated Upregulated
Upregulated Upregulated
Upregulated Upregulated
Not significant Upregulated
Not significant Upregulated
Upregulated Upregulated
Upregulated Upregulated
Not significant Downregulated

234

U251

Downregulated
Upregulated
Upregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Upregulated
Upregulated
Upregulated
Upregulated
Upregulated
Downregulated
Downregulated
Upregulated
Upregulated

T9I8G

Downregulated
Upregulated
Upregulated
Downregulated
Downregulated
Upregulated
Downregulated
Downregulated
Downregulated
Upregulated
Upregulated
Upregulated
Upregulated
Downregulated
Upregulated
Upregulated
Downregulated
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Diabetes mellitus often results in several complications, such as diabetic kidney
disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often
have the dysregulated glucose metabolism. Abnormal glucose metabolism can
enhance the tumor malignant progression. Recently, IncRNAs have been
reported to regulate the key proteins and signaling pathways in DKD
development and progression and in cancer patients with diabetes. In this
review article, we elaborate the evidence to support the function of IncRNAs in
development of DKD and diabetes-associated cancer. Moreover, we envisage
that IncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer
patients with diabetes. Furthermore, we delineated that targeting IncRNAs
might be an alternative approach for treating DKD and cancer with
dysregulated glucose metabolism.

KEYWORDS

IncRNAs, cancer, diabetes, DKD, miRNAs, treatment

Abbreviations: o-SMA, alpha smooth muscle actin; a:1-MG, ol-microglobulin; APEX2, ascorbate
peroxidase; B2-MG, P2-microglobulin; BSA, bovine serum albumin; CASC2, cancer susceptibility
candidate 2; ChREBP, carbohydrate response element binding protein; CTGF, connective tissue growth
factor; DRAIR, diabetes regulated anti-inflammatory IncRNA; DKD, diabetic kidney disease; HbAlc,
glycosylated hemoglobin; HDACI, histone deacetylase 1; HKDCI, hexokinase domain-containing 1;
HOTAIR, HOX antisense intergenic RNA; LncRNAs, long noncoding RNAs; MEG3, maternally expressed
gene 3; MLX, MAX dimerization protein; MXD1, MAX dimerization protein 1; NEAT, nuclear-enriched
abundant transcript; PBMC, peripheral blood mononuclear cells; PGC-10., peroxisome proliferator-
activated receptor 7y coactivator a; SOD, superoxide dismutase; TGF-B1, transforming growth factor-p1;

TME, tumor microenvironment; TUGI, taurine upregulated gene 1.
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Introduction

Noncoding RNAs have been known to play an essential role
in development of many diseases (1, 2). Noncoding RNAs
include short non-coding RNAs, such as microRNAs
(miRNAs), small interfering RNA (siRNAs), piwi-interacting
RNA (piRNAs), transfer RNA (tRNAs), small nuclear RNA
(snRNAs) and small nucleolar RNA (snoRNAs), and long
non-coding RNAs (IncRNAs), which is based on their length
(3). LncRNAs often have more than 200 nucleotides and cancer
serve as signal molecules, decoy molecules, guide molecules, and
scaffold molecules to perform their functions via regulation of
gene expression at epigenetic, transcriptional and post-
transcriptional levels (4, 5). Accumulated evidence has
dissected that IncRNAs participate in cellular biological
processes via regulation of protein degradation and governing
gene transcription as well as controlling protein coding sections
(6-8). Dysregulated IncRNAs have been reported to participate
in numerous diseases, including cancer, inflammatory bowel
disease, cardiovascular disease, neurological disorders and
diabetes (9-14).

Diabetes mellitus (DM) has become a major health problem
in the world, which often results in several complications, such
as diabetic kidney disease (DKD) (15). DKD is often known as
diabetic nephropathy. DM has three types: type 1 diabetes, type 2
diabetes and gestational diabetes (GDM). Type 1 diabetes is
insulin-dependent and often appears during childhood and
adolescence. Type 2 diabetes often appears in older adults due
to that pancreas does not make enough insulin or cells respond
poorly to insulin. GDM often happens during the pregnancy
after insulin secretion is not enough. DKD is one of causes to
develop end stage kidney disease (ESKD) and kidney failure (16).
It has been known that chronic stimuli such as high glucose in
the bloodstream can lead to pathological gene modulation and
DKD in diabetic patients (17). EMT and endothelial-
mesenchymal transition (EndMT) have been characterized to
integrate into the fibrosis and DKD (18, 19). EMT is a process in
which epithelial cells acquire mesenchymal characteristics after
various stimulations. Similarly, EndMT is a process in which
endothelial cells have the phenotype toward mesenchymal cells,
which often appears in cardiovascular diseases. Cancer patients
often have the dysregulated glucose metabolism. Abnormal
glucose metabolism can enhance the tumor malignant
progression (20).

Recently, noncoding RNAs, including IncRNAs, have been
reported to regulate the key proteins and signaling pathways in
DM and DKD development and progression as well as in cancer
with diabetes (21-24). In this review article, we elaborate the
evidence to support the function of IncRNAs in development of
DKD and cancer patients with diabetes. Moreover, we envisage
that IncRNAs could be diagnostic and prognosis biomarkers for
DKD and diabetes-related cancers. Furthermore, we delineated
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that targeting IncRNAs might be an alternative approach for
treating DKD and diabetes-associated cancer.

Role of IncRNAs in DKD

Emerging evidence has suggested that IncRNAs are useful
for precision medicine in DKD (25-28). Zhang and colleagues
used the integrate biological, computational, and statistical
strategies to analyze the pathogenesis and progression of DKD
through analysis of regulatory networks including miRNAs,
IncRNAs and mRNAs (29). This study reported that 127
IncRNAs were changes in DKD, among which 26 were
decreased and 101 were increased. In particular, this work
identified that miR-223-3p might be a biomarker for
prediction of DKD disease process (29).

LncRNA HOTAIR

Evidence showed that IncRNA HOTAIR is critically
involved in DKD development (30). One group used several
mouse models, such as podocyte-specific Hotair knockout mice,
streptozotocin-induced diabetes in mice, and the db/db mouse
model of type 2 diabetes. In these mouse models, glomerular
HOTAIR was upregulated. Depletion of Hotair in podocytes did
not affect structure, ultrastructure, function of kidneys (30). In
mouse podocytes, high glucose treatment increased the
expression of HOTAIR. Interestingly, silencing of HOTAIR
did not affect the kidney damage in diabetic mice. Moreover,
HOTAIR expression was linked to HOXCI1 expression in
human kidney tissues according to a bioinformatic assay (30).
Notably, the serum level of HOTAIR was increased in type 2 DM
patients (31). HOTAIR can be a useful biomarker in prediction
of diabetic retinopathy and DKD in patients with type 2 DM. In
addition, HOTAIR facilitated high glucose-mediated fibrosis
and proliferation of mesangial cells via affecting miR-147a/
WNT2B axis in diabetic nephropathy (32). The role of
HOTAIR in DKD needs to be ascribed to validate its function
in the pathogenesis of DKD.

LncRNA GAS5

Wang et al. reported that IncRNA GAS5 promoted renal
tubular epithelial fibrosis via sponging miR-96-5p (33). Renal
fibrosis is often observed in DKD. Higher expression of IncRNA
GAS5 was reported in renal proximal tubular cells after TGF-B1
treatment. The kidneys of high-fat diet (HFD)/streptozotocin
(STZ) mice had the upregulation of IncRNA GAS5 (33).
Silencing of IncRNA GAS5 reduced renal fibrosis via
inhibition of miR-96-5p. Consistently, DKD mice had the
lower expression of miR-96-5p, leading to upregulation of
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fibronectin. Hence, depletion of IncRNA GAS5 could have
antifibrosis via sponging miR-96-5p and regulating
fibronectin. Zhang et al. found that IncRNA GAS5 attenuated
TGF-B-mediated renal fibrosis by inhibition of collagen type 1
an fibronectin via targeting the Smad3/miR-142-5p axis (34).
LncRNA GAS5 suppressed fibrosis and cell proliferation
through attenuating miR-221 and upregulating SIRT1
expression in diabetic nephropathy (35). LncRNA GAS5
inhibited pyroptosis and oxidative stress in renal tubular cells
after high glucose stimulation (36). LncRNA GAS5 alleviated
fibrosis via inhibition of MMP9 by recruitment of EZH2 in
diabetic nephropathy (37). Altogether, modulation of IncRNA
GAS5 might be useful for preventing DKD.

LncRNA MALAT1

LncRNA MALAT1 has been identified to play key roles in
DKD pathophysiology (38). One work assessed urinary albumin
in 136 patients with type 2 DM and 25 normal people. This work
found that urinary IncRNA MALAT1 was positively associated
with urinary podocalyxin, synaptopodin, UACR (urinary
albumin), NAG (N-acetyl-D-glucosaminidase), KIM-1 (kidney
injury molecule 1), miR-21, miR-93, miR-29a (38). LncRNA
MALATI was negatively correlated with eGFR, miR-29a and
miR-93. In addition, urinary IncRNA MIAT was positively
linked to miR-29a, miR-93 and eGFR, while IncRNA MIAT
was negatively associated with miR-21, miR-124, UACR, NAG
and KIM-1 (38). In line with this report, the expression of
IncRNA MALAT1 in PBMC was increased in type 2 DM and
DKD (39). MALAT1 was associated with ACR, HbAlc, SOD,
creatinine, 0.1-MG and $2-MG in type 2 DM and DKD patients.
MALAT1 in combination with ACR, al-MG and creatinine
could be helpful for prediction of DKD in DM patients (39).
MALATI enhanced diabetic nephropathy via suppression of
miR-15b-5p and upregulation of TLR4 signaling (40).

MALATI1 activated LIN28 and Nox4/AMPK/mTOR
pathway, resulting in promotion of renal tubular injury in
diabetic nephropathy (41). Huang et al. reported that
MALAT1 aggravated renal fibrosis via modulation of miR-
2355-3p/IL6ST axis in diabetic nephropathy (42). One study
showed that podocyte injury could be due to abnormal
MALAT]I expression and subsequent dysregulated let-7f and
KLF5 in diabetic nephropathy (43). MALAT1 was also reported
to participate in high glucose-mediated HK-2 cell EMT via
activation of Wnt/B-catenin pathway and injury (44).
Consistently, MALATI was involved in high glucose-mediated
podocyte injury in diabetic nephropathy via its interaction with
B-catenin (45). MALAT1 aggravated high glucose-triggered
EndMT and fibrosis through regulation of miR-145/ZEB2 axis
(46). Additionally, MALATI1 participated in high glucose-
mediated HK-2 cell injury via interplay with Foxol to affect
SIRT expression (47).
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LncRNA MIAT

Urinary IncRNA MIAT was positively linked to miR-29a,
miR-93 and eGFR, while IncRNA MIAT was negatively
associated with miR-21, miR-124, UACR, NAG and KIM-1 in
type 2 DM (38). Depletion of IncRNA MIAT mitigated apoptosis
and inflammation in podocyte after high glycose stimulation
through modulating miR-130a-3p and TLR4 pathway (48).
Ablation of IncRNA MIAT ameliorated fibrosis and cell
proliferation via suppression of E2F3 expression in diabetic
nephropathy (49). Loss of IncRNA MIAT blocked podocyte
injury and mitotic damage in diabetic nephropathy (50).
However, one study showed that IncRNA MIAT blocked the
high glucose-mediated cell damage and activation of NF-xB via
sponging miR-182-5p and elevating the GPRC5A expression in
diabetic nephropathy, leading to suppression of diabetic
nephropathy progression (51).

LncRNA NEAT1

Evidence has suggested that IncRNA NEAT1 governed renal
tubular EMT via regulation of the ERK1/2 signaling pathway in
DKD (52). LncRNA NEAT]1 was increased in BSA-treated HK2
cells and HFD/STZ-induced DKD mice. Depletion of NEAT1
suppressed the expression of the EMT-related markers, such as
vimentin and a-SMA, and the renal fibrosis-associated markers,
including TGF-B1 and CTGF (52). LncRNA NEAT]I regulated
DKD progression via modulation of the ERK1/2 signaling
pathway. Li et al. discovered that NEAT1 interacted with miR-
129 to promote renal fibrosis via upregulation of collagen type 1
and promotion of EMT process (53). Additionally, urinary
IncRNA NEAT1 was positively correlated with miR-21, miR-
124, KIM-1, synaptopodin, and NAG in type 2 DM. Urinary
IncRNA NEAT1 had a negative association with miR-29a, miR-
93 and eGFR (38).

LncRNA NEAT1 activated Akt/mTOR pathway and
accelerated cell fibrosis and proliferation in diabetic
nephropathy (54). LncRNA NEAT1 enhanced EMT and
accumulation of extracellular matrix in diabetic nephropathy
via sponging miR-27b-3p and ZEB1 (55). Ablation of IncRNA
NEAT]1 attenuated proliferation, fibrosis and inflammation of
mouse mesangial cells in diabetic nephropathy (56). In
addition, IncRNA NEAT1 accelerated diabetic nephropathy
occurrence and progression via suppression of miR-23c (57).
LncRNA NEAT]1 affected pyroptosis via targeting the miR-34c
and NLRP3 in diabetic nephropathy (58). One group showed
that IncRNA NEATI accelerated high glucose-triggered
hypertrophy in mesangial cells through modulating miR-
222-3p and CDKNI1B (59). Yang et al. found that IncRNA
NEAT1 enhanced tubular epithelial cell damage in kidney
through regulation of mitophagy by targeting miR-150-5p and
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DRPI1 in diabetic nephropathy (60). Moreover, IncRNA
NEAT1 promoted fibrosis, inflammation, proliferation and
oxidative stress by modification of the miR-423/5p and
GLIPR2 pathway in diabetic nephropathy (61). Hence,
IncRNA NEATI might be a promising therapeutic target for
the treatment of DKD.

LncRNA TUG1

LncRNA TUGI has been identified to play a crucial role in
DKD progression (62). One study revealed that ChREBP
controlled IncRNA TUGI transcription when glucose levels
were increased in podocytes (62). Besides ChREBP, other
coregulates, such as MXD1, MLX and HDACI, were
increased at the TUGI promoter in response to high glucose
exposures. This work suggested that ChREBP coordinated
glucose homeostasis via regulation of IncRNA TUGI1 (62). In
addition, IncRNA TUG1 was discovered to regulate
mitochondrial bioenergetics via regulation of PGC-la in
podocytes in diabetic nephropathy (63, 64). Overexpression
of TUGI in podocytes ameliorated diabetes-mediated chronic
kidney disease in mice (63). Zhang et al. reported that
knockdown of IncRNA TUGI1 retarded the EMT of renal
tubular epithelial cells via targeting miR-141-3p/B-catenin
(65). Another work also demonstrated that IncRNA TUG1
reduced accumulation of extracellular matrix by sponging
miR-377 and targeting PPARY in diabetic nephropathy (66).
Moreover, IncRNA TUGI1 interacted with miR-9 and
upregulated SIRTI, resulting in protection of podocytes from
high glucose-triggered apoptosis and mitochondrial
dysfunction (67). Urinary IncRNA TUG1 was positively
associated with miR-29a, miR-93 and eGFR in type 2 DM,
while IncRNA TUGI had a negative association with miR-21,
miR-124, podocalyxin, NAG and synaptopodin (38).

LncRNA TUGI participated in regulation of podocyte
apoptosis via modulation of TRAF5 pathway in diabetic
nephropathy rats (68). LncRNA TUGI influenced podocyte
apoptosis via promotion of endoplasmic reticulum stress in
diabetic nephropathy progression (69). Additionally, IncRNA
TUGI repressed the PI3K/AKT pathway and suppressed the
fibrosis and proliferation in mesangial cells in diabetic
nephropathy (70). LncRNA TUGI inhibited the expression
of miR-21 and enhanced the TIMP3 expression, leading to
ameliorating diabetic nephropathy (71). LncRNA TUGI
repressed the PU.1/RTN1 pathway and improved diabetic
nephropathy (72). Notably, IncRNA TUGI1 affected high
glucose-stimulated renal epithelial cell injury via regulation
of endoplasmic reticulum stress by targeting miR-29¢-3p and
SIRT1 in diabetic nephropathy (73).
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LncRNA MEG3

LncRNA MEG3 has been revealed to regulate glucose
metabolisms in diabetic mice (74). STZ-mediated diabetic
mice had an increased expression of IncRNA MEG3, which
was associated with the podocyte numbers. Mice with
knockdown of MEG3 in podocyte had improved renal
physiological and histopathological features (74). These mice
also had a reduced mitochondrial translocation of Drpl and a
decreased podocyte damage (74). Overexpression of IncRNA
MEG3 in podocyte led to podocyte injury and enhanced
mitochondria damage and upregulated expression and
phosphorylation of Drpl (74). LncRNA MEG3 increased
fibrosis and inflammation through regulating miR-181a, Egr-1
and TLR4 in diabetic nephropathy (75). Moreover, IncRNA
MEG3 sponged miR-145 and impacted the development of
diabetic nephropathy (76). Strikingly, IncRNA MEG3
inactivated the Wnt/B-catenin pathway and reduced podocyte
injury in diabetic nephropathy (77). Therefore, MEG3 plays an
essential role in diabetic mice and DKD.

LncRNA KCNQ1OT1

Downregulation of KCNQIOT1 attenuated oxidative stress
and inflammation and reduced pyroptosis in renal tubular
epithelial cells after high glucose stimulations through
regulation of miR-506-3p (78). One study showed that
KCNQIOT]1 participated in governing fibrosis, apoptosis and
proliferation via regulation of miR-18b-5p and SORBS2 and NF-
KB in diabetic nephropathy (79). Another study revealed that
KCNQI1OT1 sponged miR-18b and increased the expression of
HMGA?2 and led to controlling high glucose-triggered oxidative
stress, proliferation and extracellular matrix promotion in
mesangial cells (80). In addition, KCNQ1OT1 was reported to
accelerate diabetic nephropathy development via modulating
miR-93-5p/ROCK2 axis (81). Xu et al. dissected that
KCNQI1OT1 governed cell oxidative stress, proliferation,
inflammation and extracellular matrix enhancement through
miR-147a/SOX6 pathway in diabetic nephropathy (82).
Recently, KCNQIOT]1 expression in diabetic nephropathy was
increased and associated with activation of MEK/ERK pathway
in diabetic nephropathy (83). LncRNA KCNQI1OT1 participates
in DKD development and progression.

LINC00472

Wang et al. used the data from Gene Expression Omnibus
(GEO) database to explore the differentially expressed profiles
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between DKD patients and the normal patients. This study
found that among 252 IncRNAs, 14 IncRNAs were
differentially expressed. LINC00472 was identified to be
differentially expressed in DKD patients, suggesting that
LINC00472 could act as the diagnostic biomarkers for DKD
patients (84). It is required to explore the detailed role of
LINC00472 in DKD.

LncRNA NONMMUGO023520.2 and
NONMMUG032975.2

Smad3 has been reported to enhance the development of
type 2 DM and involve in DKD pathogenesis (85-87). One
group discovered the Smad3-associated genes via analysis of
whole transcriptome profile in three types of transgenic mouse
models, including Smad3 WT-db/db, Smad3 KO-db/db,
Smad3™" db/db mice (88). Smad3 KO-db/db mice displayed
dysregulated genes involved in metabolism and RNA splicing,
Smad3*~ db/db mice exhibited dysregulated genes that were
associated with cell cycle and cell division (88). Two lincRNAs,
NONMMUG023520.2 and NONMMUG032975.2, were further
validated to be linked to the pathogenesis of diabetic
nephropathy. Moreover, Upklb, Psca and Gdfl5 were
identified to be correlated with diabetic nephropathy
development [26. Without a doubt, further investigation
is pivotal to determine the function of IncRNA
NONMMUGO023520.2 and NONMMUGO032975.2 in DKD
development and pathogenesis.

LncRNA 254693

Increased evidence has revealed that IncRNA
ENSG00000254693 participated in DKD development (89).
One research used RNA sequencing data and observed
numerous differentially expressed IncRNAs in renal specimens
of DKD. Among these dysregulated IncRNAs, IncRNA
ENSG00000254693 was drastically changed. Moreover, DKD
patients had higher expression of IncRNA ENSG00000254693
(89). Consistently, IncRNA ENSG00000254693 was upregulated
in human podocytes after high glucose exposures. Depletion of
IncRNA 254693 attenuated apoptosis, inflammation, and
podocyte injury that were induced by high glucose (89).
Furthermore, IncRNA 254693 was found to combine with
HuR, and depletion of IncRNA 254693 reduced HuR levels.
Interestingly, silencing of HuR reduced the expression and
stability of IncRNA 254693 and alleviate podocyte injury,
apoptosis and inflammation (89). Therefore, IncRNA 254693
might be a predicted factor for DKD treatment.
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Other IncRNAs in DM and DKD

LncRNA CASC2 expression in renal samples and serum was
identified to be downregulated in type 2 DM patients with
chronic renal failure (90). Low serum level of CASC2 was
associated with higher incidence of kidney failure, indicating
that serum IncRNA CASC2 could be a biomarker for prediction
of the occurrence of kidney failure in type 2 DM patients (90). By
RT-PCR analysis in 77 type 2 DM patients, 60 diabetic
nephropathy and 60 healthy people, one group found that
IncRNA PANDAR in the serum was upregulated compared
with healthy people (91). PANDAR expression was linked to
the level of proteinuria and glomerular filtration rate. PANDAR
might serve as a biomarker for judgement of DKD prognosis
(91). Yang et al. reported the differential expression profiles of
circulating IncRNAs in DM and DKD patients. Compared with
healthy persons, 245 IncRNAs were increased, while 680
IncRNAs were decreased in the serum of DM patients.
Compared with diabetes patients, 45 and 813 IncRNAs were
increased and decreased in the serum of DKD patients,
respectively (92). LncRNA ARAPI1-AS1 expression was
elevated during DM and DKD progression, while IncRNA
ARAP1-AS2 was decreased in DM and DKD progression (92).
Hence, circulating IncRNA ARAP1-AS1 and ARAP1-AS2 might
predict the progression of DM and DKD.

Another group identified that IncRNA KCNQIOT1 was
abnormally elevated in PBMCs of diabetic nephropathy, which
was correlated with the activation of MEK/ERK pathway (83).
LncRNA CASC2 modulated cell proliferation, oxidative stress
and extracellular matrix promotion in human mesangial cells
upon high glucose treatment through regulation of miR-133b
and FOXP1 expressions (93). LncRNA CASC2 mitigated
diabetic nephropathy development via sponging miR-144 and
regulating SOCS2 expression (94). LncRNA CASC2 ablated cell
inflammation, proliferation and fibrosis in glomerular mesangial
cells upon high glucose exposures via targeting miR-135a-5p/
TIMP3 pathway and JNK pathway (95).

LncRNAs regulate glucose
metabolism in cancer

Competing endogenous RNAs (ceRNA) can compete for
shared miRNAs to modulate the expression of other RNA
transcripts. A ceRNA network profile has identified the several
IncRNAs for classifying diabetic pancreatic cancer form non-
diabetic pancreatic cancer, including HOTAIR, CECR7, UCAL,
suggesting that IncRNAs are important predictors for diabetic
pancreatic cancer (96). In the following paragraphs, we will
discuss the association between IncRNAs and glucose
metabolisms in human cancer (Figure 1).
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FIGURE 1

The role of IncRNAs in regulation of glucose metabolism in human cancers. EC, endometrial cancer; OS, osteosarcoma; HCC, hepatocellular
carcinoma; CRC, colorectal cancer; GC, gastric cancer; NSCLC, non-small cell lung cancer.

LncRNAs regulate glucose metabolism
in cancer

Evidence has dissected that IncRNA-associated genetic
variants are shared between cancers and type 2 DM in human
(97). LncRNA DRAIR has been known to involve in the
development of type 2 DM (98). One study showed that the
expression of IncRNA DRAIR was remarkably elevated in triple-
negative breast cancer (TNBC) samples and plasma (99). High
expression of DRAIR in plasma was associated with
chemoresistance after therapy and tumor recurrence in TNBC
patients. In vitro experiments showed that overexpression of
DRAIR enhanced proliferation and viability of TNBC cells after
doxorubicin treatment (99).
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Accumulated evidence dissected that IncRNA HOXC-AS2
participated in the progression in high glucose-related
endometrial cancer (EC) (100). EC patients with diabetes had
the increased expression of HKDC1 compared with EC patients
with normal glucose. HKDCI governed pyroptosis, a highly
inflammatory response of regulated cell death, via regulation of
ROS and cytokine release in EC cells after high glucose
stimulation (100). Moreover, miR-876-5p can inhibit the
expression of HKDC1 in high glucose-related EC. LncRNA
HOXC-AS2 was dissected to suppress the miR-876-5p/
HKDCI axis in high glucose-associated EC (100). HKDC1
affected the formation of TME via promotion of glycolysis,
leading to accelerating EC progression. This work provided the
new therapeutic strategy for EC patients with diabetes by
targeting IncRNA HOXC-AS2 (100). LncRNA SNHG10
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enhanced glucose uptake and increased proliferation of
osteosarcoma cells via promotion of miR-218 methylation
(101). LncRNA MALATI facilitated glycolysis and tumor
metastasis via blocking miR-485-3p and upregulating c-MET
and Akt3/mTOR pathways in osteosarcoma (102). LncRNA
CERS6-AS1 regulated the MDM2/p53 axis and modulated
glucose metabolism and progression of HCC (103). LncRNA
WAC-ASI sponged miR-320d and regulated the expression of
ARPP19, which promoted glucose uptake and lactate production
in HCC (104). LncRNA NR2F1-AS1 affected hypoxia-mediated
glycolysis and migratory ability of HCC cells via targeting miR-
140 and HK2 (105). Depletion of IncRNA HOTAIR reduced
glycolysis via inhibition of miR-130a-3p and upregulation of
HIFlo in HCC cells under hypoxia (106).

LncRNA MALAT1 modulated MYBL2/mTOR pathway and
caused glucose metabolism changes in prostate cancer (107).
LncRNA MIR31HG heightened glycolysis and tumor malignant
progression via regulating miR-361-3p and YY1 transcription
factor in colorectal cancer (108). LncRNA KCNQI1OT1
accelerated colorectal oncogenesis via promoting aerobic
glycolysis by upregulation of HK2 (109). HNF1A-AS1
governed glycolysis, invasion and migration through targeting
miR-124 and MYO6 in colorectal cancer (110). Similarly,
LINC00265 enhanced glycolysis and lactate release via binding
with miR-216b-5p and elevating the expression of TRIM44 in
colorectal cancer (111). LncRNA RNCR2 promoted glycolysis
and EMT and proliferation of melanoma cells via interacting
with miR-495-3p and upregulating HK2 in melanoma (112).
LINC00242 combined miR-1-3p and elevated the expression of
G6PD, leading to enhancement of aerobic glycolysis and
oncogenesis of gastric cancer (113). LncRNA MSC-ASI
increased glycolysis and cell growth via targeting PFKFB3
expression in gastric cancer cells (114). OIP5-AS1 heightened
aerobic glycolysis and proliferation via miR-186 sponge in
gastric cancer (115).

LINCO00551 inhibited glycolysis and blocked tumor
progression via modulation of c-Myc-induced PKM2
expression in lung cancer (116). LncRNA CRYBG3
potentiated glycolysis via interaction with lactate
dehydrogenase A (LDHA) in lung cancer (117). LncRNA
DUXAPS8 accelerated glycolysis, viability and migratory
capacities via suppression of miR-409-3p and upregulation of
HK2 and LDHA in NSCLC cells (118). LncRNA BCYRNI1
accelerated glycolysis via controlling the miR-149 expression
and elevating PKM2 expression in NSCLC (119). HOTTIP
enhanced hypoxia-mediated glycolysis via modulation of miR-
615-3p and HMGB3 in NSCLC cells (120). LINC00857 was
found to regulate glycolysis and tumor progression via
governing the Hippo signaling pathway by binding to miR-
486-5p in ovarian cancer (121). Downregulation of IncRNA
UCAL attenuated glycolysis pathway and led to suppression of
growth of pituitary cancer cells (122). Overexpression of
IncRNA PCEDIB-ASI1 resulted in upregulation of glucose

Frontiers in Oncology

243

10.3389/fonc.2022.1035487

uptake, proliferation and lactate production in glioblastoma by
activation of HIF-lo. pathway (123). LncRNA HNF4A-AS1
elevated aerobic glycolysis and tumor progression via
modulating hnRNPU/CTCF axis in neuroblastoma (124).

High/low glucose regulates IncRNAs
in cancer

Some studies have demonstrated that high glucose or glucose
deprivation affected the expression of IncRNAs in cancer cells.
For example, U87 and LN18 glioma cells after glucose
deprivation had upregulation of IncRNA TP53TGI and
glucose metabolism-associated genes, including LDHA, IDH1
and GRP79 (125). Downregulation of TP53TG1 suppressed
proliferation and migration of U87 cells after glucose
deprivation, while overexpression of TP53TG1 displayed the
opposite functions (125). Low glucose condition promoted the
efficacy of TP53TG1 compared with high glucose condition.
This study suggested that glucose metabolism dysregulation can
affect the expression of TP53TG1 and tumor proliferation and
migration in glioma (125).

High glucose increased the expression of miR-483-3p in
hepatocellular carcinoma (HCC) cells. Moreover, upregulation
of miR-483-3p inhibited the expression of ER protein 29 (ERp29),
resulting in promotion of proliferation and migration of HCC
cells (126). Furthermore, IncRNA MEG3 can bind with miR-483-
3p in HCC cells. High glucose also reduced the expression of
IncRNA MEG3 in HCC cells. Consistently, silencing of IncRNA
MEGS3 suppressed the expression of ERp29 in HCC cells (126).
This study showed that high glucose could affect the expression of
IncRNA MEG3 and govern the miR-483-3p/ERp29 proteins in
HCC patients, suggesting that management of IncRNA MEG3
could be promising for the treatment of HCC patients with
diabetes (126). Low glucose elevated the expression of IncRNA
HOXC-ASS3, leading to promotion of metabolic reprogramming
of breast cancer via binding to SIRT6 and inactivating
HIF1o, (127).

Targeting IncRNAs for treating DKD
and cancer

Klotho is often known as an antiaging protein to prevent of
aging. Klotho has been identified to protect renal tubular EMT
during the DKD development (52). Overexpression of Klotho
reduced the IncRNA NEAT]1 expression in HFD/STZ-mediated
DKD mice. Moreover, overexpression of Klotho attenuated the
expression levels of NEAT1 in BSA-treated HK2 cells (52). On
the contrary, knockdown of Klotho increased the expression of
IncRNA NEATI in HK2 cells. Thereby, knockdown of Klotho
caused upregulation of NEATI and activation of EMT and
fibrosis in a ERK1/2-dependent manner (52). Another study
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showed that Klotho blocked EMT via downregulation of early
growth response factor 1 (Egr-1) by suppression of the ERK1/2
pathway in DKD mice (128). Similarly, Klotho decreased Egr-1
expression via repressing TGF-B1/Smad3 pathway in human
mesangial cells after high glucose exposures (129). Triptolide, a
diterpenoid epoxide that is obtained from the thunder god vine,
blocked renal tubular EMT via modulation of miR-188-5p-
involved PI3K/Akt pathway in DKD (130). Several studies
have showed that triptolide regulated the expression of
multiple IncRNAs, including IncRNAs WAKMAR?2, PACER,
ENST00000619282, RP11-83J16.1 (131-135). Therefore,
whether triptolide regulates the IncRNA expression in DKD
needs to be further explored. Berberine, an isoquinoline alkaloid,
has been reported to upregulate the expression of IncRNA GAS5
to reduce the mitochondrial ROS generation in HK-2 cells under
high glucose environment through regulation of miR-18a-5p
and C/EBPP expression (136). The antisense oligonucleotide
treatment by targeting specific IncRNAs could provide targeted
medicine to cure DKD and cancer in the future.

Conclusion

In summary, burgeoning data demonstrate that IncRNAs
play an essential role in the development of DKD and diabetes-
associated cancer. LncRNAs could be diagnosis and prognosis
biomarkers for DKD and diabetes-related cancer. Modulation of
IncRNAs might be a promising strategy for treating DKD and
diabetes-associated cancer. It is important to note that it is far
from being fully clarified, although some studies have explored
the role of IncRNAs in DKD and cancer patients with DM. A
small number of IncRNAs are identified in regulation of DKD
and cancer patients with abnormal glucose metabolism.
Whether other IncRNAs also participate in DKD and diabetes-
associated cancer need to be explored. Compared with other
factors such as m6A and signaling pathways, it remains
questionable whether IncRNAs are more important in
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Background: Hepatocellular carcinoma (HCC) is a high-burden cancer. The
molecular mechanism of HCC has not been fully elucidated. Notably, current
research has revealed a significant function for long non-coding RNAs
(IncRNAs) in the prognosis of patients with HCC. Here, this study aims to
construct a regulated IncRNA-mediated ceRNA network and find biological
targets for the treatment of HCC.

Methods: Based on the RNA expression patterns from the TCGA, we did an
analysis to determine which genes were expressed differently between liver
tumor tissues and noncancerous tissues. Then, using bioinformatic tools, we
built a INncRNA-mMIiRNA-mRNA ceRNA network and used GO and KEGG
functional analyses on the DEmRNAs connected to ceRNA networks. The
main INncRNAs in the subnetwork were chosen, and we next looked at the
relationships between these IncRNAs and the clinical characteristics of patients
with HCC. The prognosis-related genes and immune cells were identified using
Kaplan-Meier and Cox proportional hazard analyses, and CIBERSORT was
utilized to separate the 22 immune cell types. CCK8 assay was performed to
measure cell viability in HCC cells after IncRNA HOTTIP modulation.

Results: Differentially expressed mRNA and IncRNAs in HCC and
paracancerous tissues were identified. There are 245 IncRNAs, 126 miRNAs,
and 1980 mRNAs that are expressed differently in liver tumour tissues than in
noncancerous cells. Function analysis showed that mRNAs in ceRNA network
were significantly enriched in G1/S transition of mototiv cell cycle, positive
regulation of cell cycle process, hepatocellular carcinoma, and cancer related
pathways. CD8 T cells and T follicular helper cells had a favourable link with a
0.65 correlation coefficient. Additionally, there was a strong correlation
between Eosinophils, activated NK cells, and B memory cells. Strikingly,
depletion of IncRNA HOTTIP inhibited viability of HCC cells. In addition, miR-
205 upregulation suppressed viability of HCC cells, while miR-205
downregulation repressed viability of HCC cells. Notably, miR-205 depletion
rescued HOTTIP depletion-mediated suppression of cell viability in HCC.
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Conclusion: A ceRNA network was created by examining the IncRNA, miRNA,
and MmRNA expression profiles of liver tumours from the TCGA database.
LncRNA HOTTIP promoted cell viability via inhibition of miR-205 in HCC cells.

KEYWORDS

HCC, IncRNA, HOTTIP, MiR-205, prognosis, immune microenvironment

Introduction

Hepatocellular carcinoma (HCC) is one of the most
common tumors in the world (1). The epidemiology of HCC
shows two main patterns: one in North America and Western
Europe, and the other in non-Western countries, such as sub-
Saharan Africa, Central and South-east Asia, and the Amazon
Basin (2). Men are generally more affected than women, and
most commonly between the ages of 30 and 50, and HCC causes
662,000 deaths worldwide each year, about half of them in China
(3). By 2022, there will be 41,260 new cases and 30,520 new
deaths according to cancer statistics (4).

The treatment of HCC can be divided into surgical treatment
and non-surgical treatment (5). Surgical treatment includes
resection, cryoablation and liver transplantation. Nonsurgical
treatments include either liver-specific therapy (ie., percutaneous
ethanol injection, radiofrequency/microwave ablation, trans-arterial
embolization, external radiation therapy) or systemic therapy
(chemotherapy, molecular targeted therapy, immune checkpoint
inhibitor therapy) (6). Surgical treatment is the main treatment for
HCC, but the 5-year survival rate after surgical resection is only
about 30% (7). Currently, the molecular mechanism of HCC
occurrence has not been fully elucidated (8), so it is of great
significance to explore the molecular mechanism of HCC
occurrence and development and screen biological markers for
the early diagnosis of HCC for the treatment of this deadly disease.

Long non-coding RNA (IncRNA) is a class of non-coding
RNA with a length greater than 200bp, which has no protein-
coding function, poor conserved between species, and strong
tissue specificity and spatio-temporal specificity (9). Recently,
more and more IncRNAs have been found to act as oncogenic or
tumor suppressor factors, and many oncogenic genomic loci are

Abbreviations: ceRNA, competing endogenous RNA; circRNA, circular
RNAs; CSC, cancer stem cells; DSCR4, Down Syndrome critical region 4;
EZH2, Enhancer of Zeste 2; GO, gene ontology; HCC, hepatocellular
carcinoma; HOTTIP, HOXA distal transcript antisense RNA; HOXA13,
homeobox A13; KEGG, The Kyoto Encyclopedia of Genes and Genomes;
IncRNA, long noncoding RNA; MEG3, maternally expressed 3; miRNA,
microRNA; mRNA, messenger RNA; SLC7Al1l, solute carrier family 7
member 11; TCGA, The Cancer Genome Atlas; TDRGI, testis

development related 1; UCALI, urothelial cancer associated 1.

Frontiers in Oncology

250

mainly transcribed from those IncRNAs that play an important
role in cancer induction (10-13). With the rapid development of
cancer research, a large number of IncRNAs related to
tumorigenesis have been identified (14-16). Studies have shown
that IncRNA MEG3 can promote the proliferation of HCC cells
(17, 18). At the same time, some studies have proved that
IncRNAs HOTTIP and UCAL1 can promote the deterioration of
HCC. Epigenetic related molecules (such as SNRPC), noncoding
RNAs (such as HSA-Mir-221) and immune-related molecules
(such as DCK) can be used as potential biomarkers for diagnosis,
treatment and prognosis of HCC (19-22).

Studies have shown that IncRNAs have a wide range of
biological functions, such as participating in RNA generation
and processing, transcription regulation and chromatin
remodeling (23). However, the mechanism of action is
complex, such as participating in transcriptional regulation by
binding characteristic proteins or taking part in post-
transcriptional regulation as ceRNA (24). According to the
ceRNA hypothesis proposed in 2011, when circRNA and
mRNA share the same miRNA response element (MRE), they
will competitively bind MRE to regulate the expression level of
related genes. The most common mechanism of action between
IncRNAs and miRNAs is that IncRNAs directly complement and
pair with miRNA seed sequences, adsorb miRNAs to form
complexes, and reduce the number of miRNAs involved in
downstream gene regulation in cells (25). Studies have shown
that the abnormal expression of IncRNAs affects the expression of
mRNAs through sponge miRNAs, leading to tumorigenesis and
cancer progression (26, 27). Therefore, in order to better study
the functions of IncRNAs, there is an urgent need to better
understand the regulatory networks of IncRNAs. This article
aimed to perform a comprehensive analysis of TCGA
transcriptome data to identify differentially expressed IncRNAs,
miRNAs, and mRNAs to generate a regulated ceRNA network.

Methods:
Database

Data were downloaded from the TCGA database (https://
portal.gdc.cancer.gov/) (28). The data were used to study the
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differential expression of IncRNA, mRNA, miRNA among HCC
patients. In addition, edgeR(3.28.0) (29) of R language was
mainly used to identify differentially expressed RNA.
Screening criteria is: |logFC| > 2, and P value < 0.01 for
mRNA and miRNA, and |logFC| > 4, and P value < 0.01
for IncRNA.

Construction of ceRNA network and
prognosis model

Using the mircode database, the correlation analysis of
differentially expressed IncRNAs and mRNAs was carried out.
Then, a ceRNA network was built using the miRDB,
miRTarBase, and TargetScan databases. By adding edge and
nodal gene information to the interaction network with
Cytoscape 3.8.0, the HCC ceRNA network was displayed. The
Kyoto Encyclopedia of Genes and Genomes and Gene Ontology
(GO) (30) were then used to annotate the differentially expressed
mRNAs in the ceRNA network. The R language’s
“clusterProfiler,” (31) “org.Hs.eg.db,” “enrichplot,” and
“ggplot2” (32) packages were used to carry out the
aforementioned analysis. According to the median model risk
score, all patients were separated into high-risk and low-risk
groups, and Kaplan-Meier survival curves were created to
analyze the variations in survival between the two groups (33).
It can be regarded as statistically significant when P <0.05. Using
the area under the curve (AUC), the model’s predictive
effectiveness was assessed (visualized by the “timeROC”
package in R language). After that, the “rms” package of R was
used to build the nomogram survival prediction map, and the
calibration curve was used to assess the accuracy of the map in
predicting the survival rate of HCC patients.

Assessing immune cells

Using the “CIBERSORT” software tool in the R language, the
abundance of 22 immune cell subsets in 424 tumour specimens
were estimated (34). The threshold used was P <0.05. The
“Pheatmap” programme was used in the study to show
immune cell infiltration in HCC. To examine the immune
cells that are connected to survival, we employed univariate
Cox regression (35). Lasso regression and multivariate Cox
regression analysis were used together to create the prognosis
related model (36), and the model’s accuracy was assessed using
the AUC value. We estimated the prognostic model’s
quantification using the multi-index AUC value, and we
determined the nomogram’s predictive power using the
calibration curve. To investigate the connection between
important genes in the ceRNA network and immune cells in
the model, we employed Pearson correlation analysis (37).
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Construction of nomogram model

For the derived independent prognostic indicators, a
nomogram model was created and shown. The concordance
index (C-index) of the independent prognostic factors and the
Nomogram model, comprised of risk group fitting with the
Coxph model, were determined to validate the nomogram’s
prediction abilities. The statistical test was then run with
resampling, and the significant P < value was determined. The
degree to which the independent prognostic factors and
compound factors fitted the Coxph model was evaluated, and
the factor with the lowest P value was chosen to draw the
calibration curve. The model created by this component
performed better when the calibration curve was closer to 45°.

Transfection

The HOTTIP siRNA and negative control siRNA (NC),
miR-205 mimics and miR-205 inhibitors were obtained from
GenePharm (Shanghai, China). The HOTTIP and miR-205 were
transfected into HCC cells by lipofectamine 3000 (Invitrogen)
based on the manufacturer’s protocol.

Reverse transcription-quantitative
PCR analysis

Total RNA was isolated from HCC cell lines using TRIzol
reagent based on the manufacturer’s protocol. RT-PCR was
performed as described before. The primers are as follows:
HOTTIP: forward primer: 5-CCT AAA GCC ACG CTT CTT
TG-3’; reverse primer: 5-TGC AGG CTG GAG ATC CTA CT-
3’; GAPDH: forward primer: 5-GTC AAC GGA TTT GGT CTG
TATT-3’; reverse primer: 5-AGT CTT CTG GGT GGC AGT
GAT-3.

Cell counting assay Kit-8 assay

Huh-7 and HepG2 HCC cell lines were cultured in Dulbecco’s
minimal essential medium (DMEM) supplemented with 5% fetal
bovine serum, 100 Units/ml penicillin and 100 pg/ml streptomycin,
at 37°C under a 5% CO, atmosphere. CCK-8 assay was performed
to analyze cell proliferation based on the manufacture’s protocol in
HCC cell lines after 48 and 72 h transfection. The OD450nm was
measured by a microplate reader.

Statistical analysis

Statistical analyses for CCK-8 assay were performed by
GraphPad Prism 5.0 (Graph Pad Software, La Jolla, CA). The
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results were presented as mean * standard deviation (SD).
Multiple groups were analyzed by one-way analysis of variance
(ANOVA) test followed Turkey’s posttest. P < 0.05 was indicated
statistically significant.

Results:

Expression of DERNAs

In order to better understand the expression of RNAs in
HCC, we conducted differential analysis on mRNAs, IncRNAs
and miRNAs, and the results are shown in Figures 1A-F. The
Volcano diagram and Heatmap demonstrated that 1980
DEmRNAs had 1770 up-regulated and 210 down-regulated
mRNAs (Figures 1A, B). There were 245 DEIncRNAs,
including 242 up-regulated and 3 down-regulated IncRNAs
(Figures 1C, D). Moreover, 126 DEmiRNAs had 123 up-
regulated and 3 down-regulated miRNAs (Figures 1E, F).

Go and KEGG pathway analysis

The biofunctional analysis of the ceRNA co-modules is
undertaken to further investigate the functional role of
mRNAs/miRNAs/IncRNAs in carcinogenesis and if the ceRNA
co-modules identified in the study are connected with HCC.
Function analysis showed that mRNAs in ceRNA network were
significantly enriched in GI/S transition of mototiv cell cycle,
positive regulation of cell cycle process, hepatocellular
carcinoma, and cancer related pathways (Figures 2A, B).

Construction of a IncRNA-miRNA-mRNA
ceRNA network

Based on the several databases, including miRcode database, a
ceRNA network was constructed by differentially expressed
IncRNAs, miRNAs and mRNAs. 8 DEIncRNAs, 11 DEmiRNAs,
98 DEmRNAs are shown as nodes, and 156 interactions are shown
as edges. Visualization is achieved by Cytoscape (Figure 2C).

Prognosis model of
hepatocellular carcinoma

Our data imply that 24 mRNAs may be protective factors
(Figure 3). We screened 24 genes associated with HCC prognosis
(Figure 3). The prognosis of 31 genes was determined by
univariate Cox regression analysis. Then, the results of Lasso
regression showed that ERVMER61-1, SLC7A11, CEP55, CBX2,
EZH2, PBK, AP002478.1 and miR-137 were associated with the
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HCC prognosis (P <0.05) (Figure 4A). The median risk score was
used to categorise patients into high-risk and low-risk groups. The
high-risk samples had a lower survival duration than the low-risk
samples (Figures 4B-D). The AUC at 1 years, 3 years, 5 years were
0.764,0.61 and 0.802 (Figure 4E). The low-risk group had a worse
chance of survival than the high-risk group (Figure 4F).

The independent prognostic indicators were then used to
create the Nomogram, which forecasts survival rates for the first,
three to five years. There is a nomogram model made up of
CBX2, PBK and AP002478.1 (Figures 5A, B). The nomogram
model’s calibration curves demonstrated good agreement
between the anticipated 1/3/5-year overall survival rate and the
actual survival rate, indicating that the model was accurate in its
predictions (Figure 5C).

Immune infiltration in HCC

CD8 T cells were positively correlated with T follicular
helper cells, and the correlation coefficient was 0.65.
Additionally, there was a positive link between Eosinophils
and NK activated cells and B memory cells with a correlation
coefficient of 0.75 and 0.68, respectively (Figure 5D). The
expression of dendritic resting cells was higher in G3/4 and
lower in G1/2 (Figure 6A). Similarly, T cell expression was
higher in the G3/4 than in the G1/2 (Figure 6A). Neutrophils
was highly expressed in T3/4 (Figure 6A). Macrophage M2 was
highly expressed in T3/4 and stage III/TV (Figure 6B).

To prevent overfitting and resolve severe collinearity, we
performed lasso regression (Figures 6C, D). The AUC curve
demonstrates that the nomogram survival prediction model had
a high accuracy (Figure 6E). The AUC at 1 year, 3 years, and 5
years were 0.764, 0.61, and 0.812, respectively (Figure 6E). The
high-risk group had worse survival than the low-risk group
(Figure 6F). Figure 7A depicted that dendritic activated cells, and
eosinophil were highly expressed in tumor cells. The Pearson
correlation test was used to investigate the relationship between
major genes in the ceRNA network and prognosis-related
immune cells (Figure 7B).

LncRNA HOTTIP promotes cell viability
via targeting miR-205

Our ceRNA network showed the role of IncRNA HOTTIP
and miR-205 in HCC progression. To validate the function of
IncRNA HOTTIP on cell viability of HCC, HOTTIP was
downregulated by siRNA transfection in HCC cells
(Figure 8A). CCK-8 data showed that downregulation of
HOTTIP led to inhibition of cell viability in HepG2 and Huh7
cells (Figure 8B). Moreover, miR-205 expression level was
increased in HCC cells after miR-205 mimic transfection,
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Heatmap of differentially expressed mRNA. (C) Volcano plot of differentially expressed IncRNA. (D) Heatmap of differentially expressed IncRNA.
(E) Volcano plot of differentially expressed miRNA. (F) Heatmap of differentially expressed miRNA.

B
(8]
[T
o
S
-10 4
0 20 40 60 80 100 120
-log10 (FDR)
D
(8]
w
o
o
e
10
0 10 20 30 40
-log10 (FDR)
F
(8]
1L
{2}
S
_5 B
-10 -
0 20 40 60 80
-log10 (FDR)

while miR-205 was downregulated in HCC cells after miR-205
inhibitor treatment (Figure 8C). Furthermore, inhibition of
miR-205 increased viability of HCC cells, whereas
upregulation of miR-205 decreased viability of HCC cells

Frontiers in Oncology

253

(Figures 8D, E). Notably, inhibition of miR-205 rescued
HOTTIP siRNA-mediated suppression of cell viability in HCC
(Figure 8F). Altogether, TOTTIP enhanced cell viability via
targeting miR-205 in HCC cells.
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Discussion

HCC is one of the most common malignant tumors in the
gastrointestinal system (38). At present, the molecular
pathogenesis of HCC is still unclear (39). Therefore, it is very
important to understand the molecular mechanism and process
of HCC and identify new therapeutic targets to improve the
clinical prognosis of patients. LncRNAs have been considered as
an underappreciated novel therapeutic target (40). LncRNAs
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play important roles in gene regulation, including regulation of
gene activation and silencing, X chromosome inactivation,
alternative splicing, and post-translational regulation (41).
Besides, IncRNAs have also been shown to be associated with
tumor progression (12). Therefore, in this study, we studied the
relationship between IncRNAs and liver cancer, and constructed
a ceRNA regulatory network based on IncRNAs.

The current work used IncRNA-associated ceRNA to
identify key biomarkers related to the prognosis of HCC. The
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FIGURE 6

Immune cell infiltration in HCC. (A, B) Correlation between immune cells and clinical shape. (C, D): different characteristics of immune cells and
their corresponding coefficients; (E) ROC curve plotted under the prediction model). (F) KM curve of this prediction model
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FIGURE 7
Immune cells and CBX2, PBK, AP002478.1 in HCC. (A) Heatmap of the three immune cells in the Cox regression model. (B) correlation between

immune cells and genes.

IncRNAs LINC00491, DSCR4, AC061975.6, LINC00221,
TDRGI and HOTTIP served as hub nodes in the ceRNA
network, which targeted other miRNAs and mRNAs. The
ceRNA modulatory network of CBX2, PBK and AP002478.1
may impact HCC progression, according to KM survival and
correlation study. Consistent with our study, one recent study
suggested that LINC00491 promotes tumor growth and lung
metastasis in mouse xenografts. LINC00491 is highly expressed
in HCC patients and is associated with poor prognosis. More
deeply, LINC00491 promotes HCC progression by sponging
miR-324-5p/ROCKI1 and may be a potential therapeutic target
for HCC (42). In addition, overexpression of IncRNA TDRGI1
promotes the viability, invasion and migration of endometrial
cancer cells, inhibits cell apoptosis, and upregulates the
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expression of VEGF-A, PI3K, Bcl-2, MMP2 and surviving
(43). Similarly, TDRG1 overexpression also promoted GC
growth and metastasis in vitro and in vivo, which was
regulated by the miR-873-5p/HDGF pathway (44).
LncRNA HOTTIP has been reported to regulate HCC
development and progression (45). In our study, we found
that HOTTIP can act as a node of ceRNA and is closely
related to the development of HCC. Meanwhile, a study also
demonstrated that HOTTIP acts as a molecular sponge for miR-
148a-3p to increase WNT1 expression, thereby modulating the
CSC-like properties of breast cancer, suggesting that HOTTIP is
a new target for breast cancer treatment (46). LncRNA HOTTIP
expression was correlated with tumor recurrence in HCC
patients following liver transplantation (47). Similarly, IncRNA
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HOTTIP/HOXA13 expression was linked to tumor progression
and therapeutic outcome in HCC patients (19). Additionally,
IncRNA HOTTIP was elevated in HCC and was regulated by
miR-125b (48). Ge et al. found that miR-192 and miR-204
reduced the expression of IncRNA HOTTIP and impaired
GLS1-involved glutaminolysis in HCC (49). Tang et al.
reported that solamargine inhibited the expression of IncRNA
HOTTIP and TUGI, increased miR-4726-5p expression and
inhibited MUCI expression in HCC cells, leading to inhibition
of cell growth and promotion of sorafenib efficacy (50). Our in
vitro data further identified that HOTTIP promoted viability of
HCC cells via regulation of miR-205. Dong et al. discovered that
IncRNA HOTTIP promoted cisplatin resistance via targeting
miR-205 and modulating ZEB2 in ovarian cancer cells (51). It is
pivotal to determine whether IncRNA HOTTIP enhanced
viability of HCC cells via regulation of miR-205/ZEB2 axis.

In our study, we found that dendritic activated cells and
eosinophil are closely related to liver cancer. Dendritic cells are
the most powerful professional antigen-presenting cells, widely
distributed in peripheral lymphoid tissues, and play an important
role in the immune regulation of the body. Liver DCs play an
important role in the regulation of hepatic immune responses,
and their precursor cells can induce antigen-specific immune
tolerance in T cells that have not been stimulated by specific
antigens, while for T memory cells, they are strong immune
stimulators (52-54). In vitro studies have shown that once hepatic
DC precursor cells are induced by antigen, they can also stimulate
the proliferation of non-antigen-sensitized allogeneic T cells (55).
There are some limitations in our study. First of all, the main
disadvantage of this study is the lack of in vivo validation.
Secondly, this study only included the TCGA database, and
more databases should be included for research in the future.

Conclusion

The TCGA database’s analysis of the IncRNA, miRNA, and
mRNA expression profiles of HCC resulted in the creation of a
ceRNA network. It was discovered that IncRNAs may play a role
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