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Editorial on the Research Topic

Hallmark of cancer: avoiding immune suppression
Immunosuppression remains a dominating force in the refractory nature of most

malignancies. Unlocking immunotherapeutic efficacy requires a more detailed

understanding of the cancer ecosystem, including neovascularization, hypoxia patterns,

tumor metabolomics, stromal architecture and immunobiology. This understanding is

critical to making more informed decisions regarding evolutionary biology, cancer cell

senescence, and the tumor immune microenvironment and may be used to predict

treatment strategies. In this Research Topic, papers are collated that focus on cancer-

mediated immunosuppression as a hallmark. The review by Santiago-Sanchez et al.

highlights the myriad of mechanisms and pathways implicated in cancer-mediated

immunosuppression. The scope of work in the collection ranges from imaging and

radiogenomics in ovarian cancer, to long-noncoding RNA prediction in hepatocellular

carcinoma, and glucose metabolism and response to anti-PD-1 therapy in papillary thyroid

cancer. Additional articles for this hallmark pertain to hypoxia and machine learning in

lung adenocarcinoma, alternative splicing in bladder cancer while others focus on specific

molecules of interest including SIGLEC15 in thyroid cancer, TIGIT expression in solid

tumors, pyroptosis gene TP63 in osteosarcoma and HSP90 expression in lymphoma to

inform immunotherapeutic application. As newer immunotherapy approaches continue to

be developed, so must our understanding of the immune landscape across malignancies to

inform rationale predictions and treatment modalities. The papers herein reflect a breadth

of tools that could be used to make informed decisions in distinct cancer subsets. With the

boom of artificial intelligence and public repositories harboring genomic and

transcriptome data sets, it is conceivable that more accurate predictions regarding

individual cancer biology will be made to inform treatment. The degree, scope and cell

types involved in immunosuppression must be better delineated for cancer

immunotherapy to meet its promise. The work herein helps add to the growing chorus

of tools that will allow for more informed decisions regarding individual cancer
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immunobiology and provide renewed hope that immunotherapy

may be leveraged as an adaptable tool for patients based on their

biology for more personalized intervention.
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Computed Tomography
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Analysis Reveals Hypoxia
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2 Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China, 3 Department of
Gynaecology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China

Purpose: The hypoxic microenvironment is involved in the tumorigenesis of ovarian
cancer (OC). Therefore, we aim to develop a non-invasive radiogenomics approach to
identify a hypoxia pattern with potential application in patient prognostication.

Methods: Specific hypoxia-related genes (sHRGs) were identified based on RNA-seq of
OC cell lines cultured with different oxygen conditions. Meanwhile, multiple hypoxia-
related subtypes were identified by unsupervised consensus analysis and LASSO–Cox
regression analysis. Subsequently, diversified bioinformatics algorithms were used to
explore the immune microenvironment, prognosis, biological pathway alteration, and drug
sensitivity among different subtypes. Finally, optimal radiogenomics biomarkers for
predicting the risk status of patients were developed by machine learning algorithms.

Results: One hundred forty sHRGs and three types of hypoxia-related subtypes were
identified. Among them, hypoxia-cluster-B, gene-cluster-B, and high-risk subtypes had
poor survival outcomes. The subtypes were closely related to each other, and hypoxia-
cluster-B and gene-cluster-B had higher hypoxia risk scores. Notably, the low-risk
subtype had an active immune microenvironment and may benefit from
immunotherapy. Finally, a four-feature radiogenomics model was constructed to reveal
hypoxia risk status, and the model achieved area under the curve (AUC) values of 0.900
and 0.703 for the training and testing cohorts, respectively.

Conclusion: As a non-invasive approach, computed tomography-based radiogenomics
biomarkers may enable the pretreatment prediction of the hypoxia pattern, prognosis,
therapeutic effect, and immune microenvironment in patients with OC.

Keywords: radiogenomics, computed tomography, ovarian cancer, prognosis, molecular subtypes
org March 2022 | Volume 13 | Article 86806717
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INTRODUCTION

Ovarian cancer (OC) has the highest mortality rate among
gynecologic cancers. Surgery and platinum-based chemotherapy
are the mainstays of care for individuals with OC (1). Meanwhile,
immunotherapy is a promising treatment option for various
cancers, and it has improved the quality of life of certain OC
patients (2). However, immunotherapy in OC still faces
challenges, such as drug resistance and the lack of preoperative
non-invasive predictive tools (3).

Hypoxia impacts the tumor microenvironment (TME) (4),
angiogenesis, immunosuppression, and immune evasion (5).
The hypoxic microenvironment regulates carcinogenesis,
radiotherapy, and chemotherapy resistance (6). Based on the
above evidence, a positive response to immunotherapy may
depend on immune regulation within the TME. In recent
years, this theory has been proven by a series of fundamental
research. For example, intratumor tissue-resident memory T
cells (TRM) were found to express PD-1 and LAG-3, and the
triggering of inhibitory receptors may lead to dysfunction that
may limit the effectiveness of TRM in inhibiting tumor growth
(7). The attenuation of NRF1 degradation in hypoxic
circumstances may impede tumor-associated macrophage
polarization (8). Therefore, a comprehensive analysis of
immunological characteristics due to hypoxia is a priority to
improve treatment with immune checkpoint inhibitors (ICIs).

At present, a large number of studies have revealed the genesis of
cancer through omics analysis. In lung cancer, key genes for disease
progression were identified by various bioinformatics methods (9).
Interestingly, cancer cell lines can also be identified by the
incremental feature selection method (10). For OC, the ceRNA
network was constructed, and novel insights of the regulatory
mechanisms among mRNAs, lncRNAs, and miRNAs were
provided (11). However, in most omics analyses, these studies did
not focus on the combination of imaging data and sequencing data.
Computed tomography (CT) is part of the standard of treatment
and is used as a “road map” to guide debulking surgery and assess
chemotherapy response in patients with OC (12). CT imaging-
based radiomics allows for the translation of images into thousands
of features followed by subsequent model building to improve
prognostic prediction (13). Radiogenomics is a new cross-
disciplinary research combining radiomics with genomics (14). In
kidney cancer, it was shown that VHL mutations are significantly
associated with well-defined tumor margins and nodular tumor
enhancement (15). T2-derived texture metrics from the whole-
tumor are used to assess response in therapy (16). Interestingly,
radiogenomics can identify the landscape of m6A methylation
modification in bladder cancer (17). Because of the intratumor
heterogeneity in advanced ovarian cancer with peritoneal
carcinomatosis, methods for assessing tumor heterogeneity using
Abbreviations: OC, ovarian cancer; sHRGs, specific hypoxia-related genes; AUC,
area under the curve; TME, tumor microenvironment; ICIs, immune checkpoint
inhibitors; CT, computed tomography; CLOVAR, Classification of Ovarian
Cancer; DEGs, differentially expressed genes; MsigDB, Molecular Signatures
Database; TCGA, The Cancer Genome Atlas; PCA, principal component
analysis; TIDE, tumor immune dysfunction and exclusion; TCIA, The Cancer
Imaging Archive; ROI, region of interest.
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radiogenomics are needed to analyze whole-tumor heterogeneity
rather than single biopsy sampling (18).

Hence, there have been many studies focusing on radiogenomics
in ovarian cancer in recent years, but they mainly focused on the
prediction of Classification of Ovarian Cancer (CLOVAR) (19) and
BRCA mutations (20). Thus, we aimed to develop a radiogenomics
approach to reveal the hypoxia pattern and immunological
characteristics of patients with OC.

In this research, we collected the genomic data of 630 OC
patients and then constructed three types of subtypes using
hypoxia-related genes or hypoxia pattern regulator expression.
We assessed the predictive value of the hypoxia subtypes and
correlated it with TME. In addition, we developed a nine-gene
next-generation sequencing panel for clinical application, and it
may represent different hypoxic statuses. As for radiomics, a CT
imaging signature based on the nine-gene panel classification
was obtained using the radiomics algorithm. In a word, our
findings revealed the critical role of hypoxia in TME and
immunotherapy for OC patients. Most importantly, the CT
imaging-based radiogenomics signature can make non-invasive
predictions prior to treatment.
METHODS

Datasets and Data Preprocessing
The workflow of the study is depicted in Figure 1. We downloaded
six samples from the GSE66894 dataset (21), namely, normoxia-
cultured SKOV3 cell line samples (GSM1633848, GSM1633849,
and GSM1633850) and hypoxia-cultured cell line samples
(GSM1633857, GSM1633858, and GSM1633859). For hypoxia
treatment, SKOV3 cells were exposed to 0.5% oxygen for 16 h.
Subsequently, we used the limma package (22) for the analysis of
differentially expressed genes (DEGs), and |log fold change| >1 and
adj. p-value <0.05 were set as the thresholds (23). Meanwhile, 1,694
genes identified in previous literature were used as HRGs from the
Molecular Signatures Database (MsigDB) (24). Specific hypoxia-
related genes in OC were screened by the overlap of the HRGs and
the DEGs. In addition, RNA sequencing profiles and clinical data of
patients with OC are available from The Cancer Genome Atlas
(TCGA) (25) and Gene Expression Omnibus (GEO) databases (26),
and mutational data of patients with OC were obtained only from
the TCGA database. We excluded samples with no survival
information and those sequenced repeatedly for the same patient.
Finally, 374 patients in the TCGA-OV cohort and 260 patients in
GSE32062 were retained for subsequent analysis. It is worth noting
that FPKM data were converted to transcripts per kilobase million
(TPM) data. Batch effects between these cohorts were removed
using the sva package. In addition, The mRNA stemness score
(RNAss) of OC cases in TCGA was acquired from previous
studies (27).

Unsupervised Clustering Analysis
ConsensusClusterPlus package (28) was used to perform
unsupervised clustering analysis for the classification of
patients with OC. As for the clustering of hypoxia-related
subtypes and gene-related subtypes, the parameters were set to
March 2022 | Volume 13 | Article 868067
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reps = 1,000 and pitem = 0.8 based on related gene expression
(29). Principal component analysis (PCA) (30) and Kaplan–
Meier analysis (log-rank test) were performed to identify
whether different subtypes were relatively independent in
prognosis and heterogeneity.

Immune Cell Infiltration Analysis
We simultaneously used diversified algorithms (TIMER (31),
CIBERSORT (32), quanTIseq (33), MCP-counter (34), xCell
(35), EPIC (36), and ssGSEA (37)] to estimate the abundances
of immune cells or score of immune function in each OC sample.
The ESTIMATE algorithm (38) was utilized to assess the overall
state of the TME (immune score, stromal score, and tumor
purity). Immune checkpoint-related gene and human leukocyte
antigen (HLA) gene expressions were compared in different risk
groups. In addition, the tumor immune dysfunction and
exclusion (TIDE) algorithm (39) was used to assess the
immunotherapy response of different patients.

Construction and Validation of the
Nine-Gene Panel
Firstly, prognostic genes (p-value < 0.05) were screened using
univariate Cox regression analysis in all hypoxia pattern-related
regulators. Next, least absolute shrinkage and selection operator
(LASSO) regression analysis and multivariate Cox regression
analysis (stepwise method) were used to identify genes involved
in a panel. We used the appropriate l and Akaike information
criterion (AIC) to control robustness in the model. All the above
modeling processes were carried out in the TCGA-OV cohort.
The hypoxia risk score was calculated as follows:

o
n

i=1
coefficienti*expressioni

where coefficient is the regression coefficient in multivariate Cox
regression analysis, and expression is the RNA expression of each
selected gene. Considering that we used the TCGA-OV cohort as
the training cohort, we calculated hypoxia risk scores in the
Frontiers in Immunology | www.frontiersin.org 39
validation cohort (GSE32062) with the same formula.
Subsequently, we divided all patients into high- and low-risk
groups with the median score in the TCGA cohort. Finally, PCA,
ROC, Kaplan–Meier, and Cox regression analyses were used to
validate the prognostic value of the nine-gene panel in each cohort.

Comparison Between the Nine-Gene Panel
and Other Signatures
Zhang et al. identified a glycolysis-related gene signature for OC
patients (40). Zhou et al. identified a DNA methylation-driven
gene signature (41). Moreover, Zheng et al. developed a risk
stratification system based on glycolysis-related lncRNAs (42).
Each signature’s risk score was determined using normalized
expression values and coefficients from references. On the basis
of the TCGA-OV cohort in our study (374 patients), the C-
indexes of the models were estimated and compared.

Functional Enrichment Analysis
Specific hypoxia-related genes were enriched in ClueGO of the
Cytoscape software (43). The thresholds were set by default in the
software. Meanwhile, we used gene set (c2.cp.kegg.v6.2.symbols)
for running GSVA analysis in different hypoxia-related clusters
(33). An adjusted p-value <0.05 was regarded as statistically
significant. As for the hypoxia pattern regulators, Gene
Ontology (GO) (44) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (45) functional enrichment analyses were
conducted. The thresholds were p-value <0.05 and q-value <0.05.

Drug Sensitivity Analysis
The pRRophetic package worked by utilizing gene expression
and drug sensitivity data in cancer cell lines, and then the models
were applied to the gene expression data from primary tumor
biopsies (46). We used the above method to calculate the IC50
values of different samples.

Mutation Analysis
We used the MutSigCV package (47) to select oncogenes with
higher mutation frequencies than the background and
FIGURE 1 | The workflow of the study.
March 2022 | Volume 13 | Article 868067
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subsequently used the maftools package (48) to display the
mutation waterfall figure in different groups. In addition, we
used this formula (total mutation frequency/38) to estimate the
tumor mutational burden (TMB) score of each sample.

Radiomics Analysis in Computed
Tomography Imaging
A total of 97 contrast-enhanced CT images of the abdomen and
pelvis were selected from the Cancer Imaging Archive (TCIA)
(49), which were matched with the TCGA-OV samples. The
study eventually included 59 samples (inadequate image quality
was excluded).

Considering the characteristics of the pelvic masses, we used
arterial phase data from enhanced CT for the study. Manual
segmentation was performed using ITK-SNAP in the cross-
sectional layer of the largest tumor region. All patients were
selected for repeat region of interest (ROI) segmentation 30 days
after the initial segmentation, which was performed by different
radiologists. The diversity in voxel sizes leads to variations in feature
values, so for reconstruction with different voxel sizes, we used a
voxel size resampling strategy to select reproducible image features:
spline interpolation resamples all images to the same 1 × 1mmpixel
size. In addition, the voxel intensities within the ROI are discretized
into a limited intensity range of 64 bins. Ultimately, we extracted
806 radiomics features from the ROI of each OC patient using
PyRadiomics (V 2.0.0) (50). Original texture features were extracted
from the texture features, shape-based features, gray-level co-
occurrence matrix features, gray-level run-length matrix features,
gray-level size zone matrix features, and gray-level difference matrix
features. The repeatability of the retrieved characteristics from the
two radiologists was validated using the intraclass correlation
coefficient (ICC). In the succeeding studies, only characteristics
with an interreader ICC >0.75 were included. Using nine-gene panel
as a classifier, we established radiogenomics prediction models
based on radiomics features from the ROI. We randomly selected
40 cases as the training dataset, and the remaining 19 cases were
used as the testing dataset. The best AUC value in the testing dataset
was utilized as the selection criterion to identify the best technique
to develop the final model after we employed different
dimensionality reductions and machine learning approaches for
imaging genomics model construction. The above modeling
processes were implemented using FeAture Explorer Pro (V
0.4.4) (51).

Statistical Analysis
All statistical analyses were performed using the R software
(v.4.0.1) and Python (v.3.7.6). Detailed statistical methods for
transcriptome data processing are covered in the above section.
p <0.05 was considered statistically significant.
RESULTS

Specific Hypoxia-Related Genes in OC
Five hundred and ten DEGs were identified in the normoxia-
and hypoxia-cultured OC cell lines (Figures 2A, B and
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Supplementary File 1). Subsequently, we overlapped the
hallmark gene sets and the DEGs, and a Venn diagram showed
140 shared genes as sHRGs (Figure 2C). We performed ClueGO
analysis in Cytoscape software to verify whether 140 sHRGs were
associated with hypoxia-related metabolic processes. Not
surprisingly, the results showed that sHRGs were mainly
enriched in the proteasome and classical HIF-1 signaling
pathways (Figures 2D, E).

Our data showed that 140 sHRGs were identified in cell lines
and associated with hypoxia-related metabolic processes.

Characteristics of sHRG-Mediated
Hypoxia Patterns
Based on the expression of 140 sHRGs, patients with OC were
classified into two hypoxia patterns using unsupervised clustering
analysis, namely, hypoxia-cluster-A (352 patients) and hypoxia-
cluster-B (282 patients) (Figure 3A). PCA analysis revealed that
the above two patterns were relatively independent (Figure 3B).
Survival analysis showed that hypoxia-cluster-B had the worst
prognosis (Figure 3C). Moreover, we also plotted heat maps to
show the distribution of clinicopathological characteristics and
hypoxia patterns (Figure 3D). Subsequently, GSVA and ssGSEA
algorithms focused on biological processes and immune
microenvironment between the different hypoxia patterns. The
results showed that hypoxia-cluster-B was significantly
upregulated in most pathways and showed immune activation
characteristics, including the MAPK signaling pathway, Wnt
signaling pathway, ECM–receptor interaction, MDSC, and NK
cells (Figures 4A, B). Therefore, it is reasonable to assume
that hypoxia-cluster-B showed an immune-inflamed tumor
phenotype, and they may be the most responsive to
immunotherapy. If immunotherapy is applied routinely, it will
prolong the survival time in hypoxia-cluster-B. Although the
hypoxia patterns could differentiate clinical outcomes in patients,
the underlying regulators in these patterns are unknown. Hence,
we identified DEGs in different hypoxia patterns (Supplementary
File 2). The enrichment analysis of 770 regulators in different
hypoxia patterns was carried out in GO and KEGG analyses
(Figures 4C, D). Interestingly, the PI3K–Akt signaling pathway
was significantly activated, which may suggest that it may play a
key role in hypoxia-related metabolic processes in OC.

Our data showed that two hypoxia patterns were identified in
the meta cohort, and hypoxia patterns suggested different
immune phenotypes.

Identification of Hypoxia Pattern-Related
Regulator Subtypes
In the above section, we screened out 770 differential expression
genes in different hypoxia patterns to focus on their potential OC
mechanisms. Based on the expression of 770 regulators, patients
were classified into three subtypes using unsupervised clustering
analysis, namely, gene-cluster-A (248 patients), gene-cluster-B
(152 patients), and gene-cluster-C (234 patients) (Figure 5A).
PCA analysis revealed that the above three subtypes were
relatively independent (Figure 5B). Survival analysis showed
that gene-cluster-B had the worst prognosis (Figure 5C).
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Interestingly, the heat map showed that most regulators were
significantly upregulated in gene-cluster-B than in the other
subtypes (Figure 5D). In addition, we also compared the
differential expression of 140 sHRGs in the three subtypes, and
excitingly, all sHRGs were significantly different (Figure 5E).

Our data showed that hypoxia pattern-related regulator
subtypes suggested another perspective on their critical
regulating role on the hypoxic microenvironment.

Identification of the Hypoxia Risk Score
for Each Patient With OC
Although the hypoxia patterns or regulator subtypes can predict
differences in survival and immune characteristics, molecular
Frontiers in Immunology | www.frontiersin.org 511
subtypes were studied based on patient populations. The above
method cannot accurately predict the hypoxia risk status of each
patient, so we evaluated individual patients based on the RNA
expression of the above regulators for clinical application with the
risk score. Firstly, regulators with p <0.05 from the univariate Cox
regression analysis (TCGA-OV cohort) were included in the LASSO
regression analysis (Supplementary File 3). Subsequently,
redundant regulators were removed by LASSO regression
(Figures 6A, B), and correlation coefficients were determined by
multivariate Cox regression analysis (stepwisemethod) (Figure 6C).
Finally, we developed a nine-gene panel calculating risk scores,
namely, TGFBI, GAS1, HRASLS2, ENHO, AHNAK2, MMP1,
C2orf88, FOXA2, and CXCL9. The formula for calculating the
A B

D

E

C

FIGURE 2 | Identification of sHRGs in ovarian cancer (OC). Heat map (A) and volcano plot (B) of differentially expressed genes (DEGs) in SKOV3 cell lines. (C) Venn
diagram of hallmark gene sets from the MSigDB and DEGs. (D) Pie chart of ClueGO analysis. (E) Network diagram of ClueGO analysis.
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hypoxia risk score is as follows: hypoxia risk score = (0.132009353 ×
expression level of TGFBI) + (0.131635755 × expression level of
GAS1) + (−0.106191762 × expression level of HRASLS2) +
(−0.163100133 × expression level of ENHO) + (0.145369988 ×
expression level of AHNAK2) + (−0.053663201 × expression level
of MMP1) + (−0.089183891 × expression level of C2orf88) +
(−0.055649255 × expression level of FOXA2) + (−0.194630892 ×
expression level of CXCL9).
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Considering that we used the TCGA-OV cohort as the training
cohort, we also calculated patients’ risk scores in the validation
cohort (GSE32062) with the same formula. Subsequently, we
divided all patients with OC into high- and low-risk groups with
the median score in the training cohort. To explore the relationship
between the three subtypes, namely, hypoxia patterns, pattern-
related regulator subtypes, and hypoxia risk group, we visualized
the relationship using the Sankey diagram (Figure 6D). The results
A B D

C

FIGURE 3 | The different hypoxia patterns in patients with OC. (A) Heat map of unsupervised clustering analysis. (B) Principal component analysis (PCA) analysis of
different hypoxia patterns. (C) Kaplan–Meier analysis of overall survival time in different hypoxia patterns. (D) Heat map of the distribution of clinicopathological
characteristics and two hypoxia patterns.
A B

DC

FIGURE 4 | The immunological and biological characteristics in different hypoxia patterns. (A) GSVA analysis in different hypoxia patterns using kegg.v7.4 gene sets.
(B) Box plot of immune cells in different hypoxia patterns. (C) Bubble plot of KEGG enrichment analysis. (D) Bubble plot of GO enrichment analysis. *p < 0.05, **p <
0.01, ***p < 0.001.
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FIGURE 6 | Identification of the nine-gene next-generation sequencing panel. (A, B) Determination of the number of regulators using LASSO analysis. (C) Forest
plot of multivariate Cox regression analysis. (D) Sankey diagram of the three types of subtypes. (E) Analysis of differences in hypoxia risk score of different hypoxia
patterns. (F) Analysis of differences in hypoxia risk score of different hypoxia pattern-related regulator subtypes.
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FIGURE 5 | Hypoxia pattern-related regulator subtypes. (A) Heat map of unsupervised clustering analysis. (B) PCA analysis of different gene subtypes. (C) Kaplan–
Meier analysis of overall survival time in different gene subtypes. (D) Heat map of distribution of clinicopathological characteristics and three gene subtypes. (E) Box
plot of 140 sHRGs in three subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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showed that most patients with poor prognosis in molecular
subtypes were closely related to patients in the high-risk group. In
addition, the box plot confirmed our results that hypoxia-cluster-B
and gene-cluster-B had higher hypoxia risk scores (Figures 6E, F).

Our data showed that the nine-gene next-generation
sequencing panel may represent different hypoxic statuses and
be more convenient for clinical application.

Prognostic Value of Hypoxia Risk Score
Although a small portion of the sample was mixed, PCA analysis
demonstrated that hypoxic risk scores had a potential
classification ability for the TCGA cohort (Figure 7A) and the
GEO cohort (Figure 7D). Kaplan–Meier analysis showed that
survival time was significantly shorter in the high-risk group than
in the low-risk group (Figures 7B, E), which indicated that
hypoxia risk score has an excellent predictive value. Meanwhile,
the AUC values of the TCGA cohort (Figure 7C) and the GEO
cohort (Figure 7F) at 1, 3, and 5 years reached 0.672, 0.694, and
0.733 and 0.643, 0.693, and 0.717, respectively. To highlight the
predictive value of the hypoxia score, we compared another risk
score from references, such as glycolysis genes, DNAmethylation-
driven genes, and glycolysis-related lncRNAs. In 374 patients from
the TCGA cohort, the C-index value showed that hypoxia risk
score had the most robust predictive performance (Figure 7G). In
addition, we performed univariate and multivariate Cox
regression analyses of the hypoxia risk score and clinical
characteristics in different cohorts. The results showed that
hypoxia risk score is an independent prognostic factor in the
TCGA cohort (Supplementary Figures 1A, B) and the GEO
cohort (Supplementary Figures 1C, D). Finally, we plotted a
nomogram based on risk group and another significant factor in
multivariate Cox regression analysis (Supplementary Figure 1E).
The calibration curve showed that the prediction curves are close
to the standard curve in the TCGA cohort (Supplementary
Figure 1F) and the GEO cohort (Supplementary Figure 1G).
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Our data showed that hypoxia risk score had an excellent
survival prediction ability.

Immunological Characteristics of Hypoxia
Risk Score
To comprehensively explore the relationship between different risk
groups and immune cell infiltration, we explored immune cell
infiltration based on the six algorithms. The heat map showed
immune cells with differential distribution in different algorithms
(Supplementary Figure 2). Interestingly, the low-risk group had
more abundant levels of antitumor immune cell infiltration, such as
NK cells, CD4+ T cells, CD8+ T cells, macrophages, and mast cells.
Not all patients in the TCGA-OV cohort received immunotherapy;
hence, we evaluated the ability of hypoxia risk score to predict
immunotherapy response and survival in the cohort treated with
anti-PD-L1 [IMvigor (52)]. As with the TCGA-OV cohort, patients
with high hypoxia risk score had worse OS in the IMvigor cohort
(Supplementary Figure 3A). Excitingly, in the complete remission
(CR) or partial response (PR) subgroup, patients typically had a
lower hypoxia risk score (Supplementary Figure 3B). We used the
ssGSEA algorithm to explore changes in immune function and the
ESTIMATE algorithm to explore changes in the immune
microenvironment (Figure 8A). We found immune function in a
more active state, higher immune score, and lower stromal score in
the low-risk group (Figures 8B, C). In addition, we also explored
immune checkpoint and HLA mRNA expression in different risk
groups. Most of the HLA and immune checkpoints were
upregulated in the low-risk group, such as PDCD1, CTLA4,
CD274, HLA-A, and HLA-F (Figures 8D, E).

Given that TMB and immunotherapy are strongly associated in a
study (53), we explored somatic mutation characteristics and TMB
status in different risk groups. Among the different risk groups, TP53,
TTN, and MUC16 were shared mutated genes (Figures 9A, B). In
the low-risk group, the samples had a higher rate ofmutation (94.85%
vs. 90.51%). Notably, the box plot showed that the low-risk group had
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FIGURE 7 | Survival analysis and model comparison of the hypoxia risk score. (A) PCA analysis in the TCGA cohort. (B) Kaplan–Meier analysis of different risk
groups in the TCGA cohort. (C) ROC curve of the 1-, 3-, and 5-year survival prediction in the TCGA cohort. (D) PCA analysis in the GEO cohort. (E) Kaplan–Meier
analysis of different risk groups in the GEO cohort. (F) ROC curve of the 1-, 3-, and 5-year survival prediction in the GEO cohort. (G) C-index of different risk scores.
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A B
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FIGURE 8 | Characteristics of the immune microenvironment in different risk groups. (A) Heat map of the result of ssGSEA and ESTIMATE algorithm. (B) Analysis
of differences in the immune function of different risk groups. (C) Analysis of differences in TME score of different risk groups. (D) Analysis of differences in immune
checkpoint mRNA expression of different risk groups. (E) Analysis of differences in HLA mRNA expression of different risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9 | Mutation, TIDE, and stemness characteristics in different risk groups. (A) Frequency of somatic mutations in the high-risk group. (B) Frequency of
somatic mutations in the low-risk group. (C) Analysis of differences in TMB score of different risk groups. (D) Correlation analysis of hypoxia risk score with stemness
score. (E) Analysis of differences in TIDE score of different risk groups. (F) The distribution of immunological subtypes in different risk groups. **p < 0.001.
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a higher TMB score (Figure 9C). The cancer stemness theory posits
that stemness scores are a response factor in immunotherapy (54).
We found that as the hypoxia risk score increased, the stemness score
decreased (Figure 9D). Moreover, the TIDE algorithm was used to
evaluate the response to immunotherapy. The results showed that the
low-risk group had a lower TIDE score, as we predicted in the
IMvigor cohort, representing the possibility that the low-risk group
had a better response to immunotherapy (Figure 9E). Thorsson et al.
developed six immune subtypes across more than 10,000 tumor
samples comprising 33 diverse cancer types (55). Of these, three
immune subtypes can be annotated in the TCGA-OV cohort (231
patients), namely, Immune C1, Immune C2, and Immune C4. There
is no doubt that our risk groupings were distributed differently among
the different immunophenotypes (Figure 9F).

Our data showed new insights into the mechanisms
underlying tumor hypoxia risk score and immunotherapy.
The Role of Hypoxia Risk Score
in Chemotherapy
The IC50 values of six common chemotherapeutic medicines were
quantified in OC patients, namely, bleomycin (Supplementary
Figure 4A), cisplatin (Supplementary Figure 4B), paclitaxel
(Supplementary Figure 4C), docetaxel (Supplementary
Figure 4D), etoposide (Supplementary Figure 4E), and
gemcitabine (Supplementary Figure 4F). In detail, the IC50 levels
of bleomycin and docetaxel were significantly higher in the low-risk
group. In contrast, the IC50 levels of paclitaxel were significantly
higher in the high-risk group.
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Our data indicated that the low-risk group was more sensitive
to paclitaxel, while the high-risk group was more sensitive to
bleomycin and docetaxel.

Construction of Optimal
Radiomics Signatures
Based on the above results, the hypoxia risk score based on the nine-
gene next-generation sequencing panel had a possibility for clinical
application, but the method is still invasive. Hence, we used the
radiomics approach tomatch with different risk groups.We selected
40 cases as the training set and another 19 cases as the independent
testing set. Using the constructed different risk groups (high-risk
and low-risk) as a classifier, we extracted the radiomics features
from these CT images for the established radiogenomics signature.
A total of 1,008 models were constructed by combining different
methods (Supplementary File 4). We found that the combination
of the following methods had better AUC values: the Z-score
method for normalization (Figure 10A), the PCC method for
feature preprocessing (Figure 10B), the RFE method for
dimensionality reduction (Figure 10C), and the logistic regression
method for calculating coefficient (Figure 10D). Finally, we
obtained the following four features and coefficients for
constructing the optimal radiomics signatures (Figure 10E):
rad iomics score = (−1 .845017354 × CT_wave le t -
HHH_firstorder_Median) + (−1.58189802 × CT_wavelet-
HHL_glszm_SmallAreaLowGrayLevelEmphasis) + (1.130793547
× CT_wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis) +
( 0 . 6 6 3 4 5 1 6 5 6 × C T _ w a v e l e t - L L L _ g l r l m _
LongRunLowGrayLevelEmphasis). Using the above radiomics
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FIGURE 10 | The AUC values of different methods. (A) The AUC values of methods for normalization. (B) The AUC values of methods for feature preprocessing.
(C) The AUC values of methods for dimensionality reduction. (D) The AUC values of methods for generating the final signature. (E) LR regression coefficients and
features. (F) The AUC values of the testing set and the training set based on the optimal radiomics signature.
March 2022 | Volume 13 | Article 868067

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Feng et al. Radiogenomics Analysis in Ovarian Cancer
signature, the AUC values of the training set and the test set were
0.900 and 703, respectively (Figure 10F).

Our data showed that a novel non-invasive approach based
on CT biomarkers may enable the pretreatment prediction of
hypoxia risk in patients with OC.
DISCUSSION

There is growing evidence that the hypoxia microenvironment
plays a key role in immune response and tumorigenesis on the basis
of dysregulated expression of hypoxia-related genes. Most previous
studies focused on single regulators about hypoxia in OC.
For example, hypoxia-inducible factor-1a (HIF-1a) has been
proven to play an important role in promoting OC
chemoresistance, tumor metastasis, and immunosuppression (56).
The high expression of maspin induced by hypoxia might be
associated with a poor prognosis of ovarian clear cell carcinoma
(57). More importantly, although some researchers have identified
hypoxia-related genetic signatures to improve the prognosis of
patients with ovarian cancer (58, 59), they neglected that specific
hypoxia-related genes in OC should be analyzed to construct a risk
signature. Hence, we performed the identification of specific hypoxia
regulators in OC based on cell lines treated with different oxygen
conditions. Subsequently, we established different hypoxia patterns
(hypoxia-cluster-A and hypoxia-cluster-B) and identified regulators
that may influence different hypoxia patterns. Moreover, we also
established different gene subtypes (gene-cluster-A and gene-cluster-
B) based on the expression of regulators. In immune analysis, we
revealed that hypoxia-cluster-B and gene-cluster-B correspond to the
immune-inflamed phenotype, which contains many antigen-
presenting cells that activate an adaptive immune response.
However, hypoxia-cluster-A and gene-cluster-A correspond to the
immune-excluded phenotype (60). To date, immunotherapy
outcomes in OC have been disappointing, likely due to the highly
immunosuppressive TME, low TMB, and low checkpoint expression
in patients with OC (61). Therefore, our study provides a novel
understanding of the OC microenvironment based on hypoxia. If
immunotherapy is applied routinely, it will prolong the survival time
in hypoxia-cluster-B and gene-cluster-B. Hence, these findings will
improve the future applicationofprecisepersonalized therapy forOC.

Although hypoxia patterns could differentiate clinical outcomes
and immune perturbations in OC patients, the underlying regulators
in different patterns are unknown. We found significantly altered
pathways in the enrichment analysis, including the MAPK signaling
pathway, Wnt signaling pathway, ECM–receptor interaction, and
PI3K–Akt signaling pathway. As a classic cancer pathway, these
pathways have been widely reported in ovarian cancer (62, 63).
However, our findings gave researchers a new direction in the future:
how does hypoxia interfere with TME in OC through the classic
cancer pathways?

Although the hypoxia patterns can predict differences in survival
and immune characteristics, molecular subtypes were studied based
on populations. The above method cannot accurately predict the
hypoxia risk status of each patient, so we used the RNA expression
of nine hypoxia pattern-associated regulators for clinical application
with hypoxia risk score. Most patients with poor prognosis in
Frontiers in Immunology | www.frontiersin.org 1117
molecular subtypes were closely related to patients in the high-risk
group, and hypoxia-cluster-B and gene-cluster-B had higher
hypoxia risk score. Of the nine genes, some of them were shown
to be involved in the regulation of biological functions in ovarian
cancer, such as TGFBI which is involved in polyploid cell formation
and in response to paclitaxel (64); extracellular vesicles carrying the
MMP1 mRNA promoted peritoneal metastasis of ovarian cancer
(65). The FOXA2 protein was mainly positively expressed in the
nucleoplasm of OC cells and was associated with FIGO staging and
lymph node metastasis (66). Further analysis revealed that hypoxia
risk score could be used not only to predict the prognosis of patients
with OC but also to accurately distinguish different immunological
characteristics. In addition, HLA mRNA expression, immune
checkpoint mRNA expression, TMB, and stemness score were
significantly correlated with hypoxia risk score, indicating the
ability of the risk score to assess the effectiveness of
immunotherapy. We found that the low-risk group was more
sensitive to paclitaxel, while the high-risk group was more
sensitive to bleomycin and docetaxel. It follows that the
quantitative model can define the hypoxia status of each sample.
Thus, these results validate that the hypoxia-related model can be
conveniently used for clinical assessment.

>However, genomic models are invasive; therefore, we
developed a convenient method to predict hypoxic subtypes based
on CT imaging in our study. Although the sample size of OC in the
TCIA database is limited, we found the following combinations of
methods with better AUC values: the Z-score method for
normalization, the PCC method for feature preprocessing, the
RFE method for dimensionality reduction, and the logistic
regression method for calculating coefficient. Using the above
radiomics signature, the AUC values of the training set and the
test set were 0.900 and 703, respectively. There is extensive
heterogeneity at the genomic level in primary OC and peritoneal
implants, and single-site biopsy sequencing clearly does not meet
our requirements (67), at which point a radiogenomics approach
can provide a comprehensive assessment (68).

In brief, the current studies of radiogenomics in OC are minimal
and mainly plagued by time-consuming manual segmentation.
However, based on current artificial intelligence (AI) research on
other tumors (69), we speculate that radiogenomics in OC could be
used as novel biomarkers for drug selection and assessment of
immunological characterization in the future.
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Supplementary Figure 1 | Identification of independent prognostic value and
Nomogram. (A) Forest plot of univariate Cox regression analysis in the TCGA
cohort. (B) Forest plot of multivariate Cox regression analysis in the TCGA cohort.
(C) Forest plot of univariate Cox regression analysis in the GEO cohort. (D) Forest
plot of multivariate Cox regression analysis in the GEO cohort. (E) Nomogram. (F)
Calibration curve of nomogram for OS prediction at 1 year, 3 years, and 5-years in
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the TCGA cohort. (G) Calibration curve of nomogram for OS prediction at 1 year, 3
years, and 5-years in the GEO cohort.

Supplementary Figure 2 | Heat map of different types of immune cells based on
6 algorithms.

Supplementary Figure 3 | Predictive value of hypoxia risk score in the
immunotherapy cohort. (A) Kaplan-Meier analysis of IMvigor cohort. (B) Analysis of
differences in hypoxia risk score of different response.

Supplementary Figure 4 | Drug sensitivity analysis in different risk groups. (A)
IC50 levels of Bleomycin. (B) IC50 levels of Cisplatin. (C) IC50 levels of Paclitaxel.
(D) IC50 levels of Docetaxel. (E) IC50 levels of Etoposide. (F) IC50 levels of
Gemcitabine.

Supplementary File 1 | DEGs in normoxia and hypoxia cultured cell lines.

Supplementary File 2 | DEGs in different hypoxia patterns.

Supplementary File 3 | The results of univariate Cox regression analysis in 770
reguators.

Supplementary File 4 | The results of 1008 radiomics signatures in training and
testing sets.
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HSP90 family of molecular chaperones has been shown to be implicated in various stages
of tumor growth and development. Recent studies have highlighted the role of
extracellular HSP90 in tumor immunology, however, the role that HSP90 plays in the
regulation of immune responses and the impact of cancer immunotherapy, including
immune checkpoint blockade, on HSP90 is still unclear. Here we assessed the surface
and intracellular expression of constitutive cytosolic HSP90b isoform, mitochondrial
HSP90 homolog TRAP1 and co-chaperone STIP1/HOP in T, NK, B and NKT cells
derived from peripheral blood and bone marrow samples of patients with Hodgkin and B-
cell Non-Hodgkin lymphomas. HSP90b and STIP1 were overexpressed in B
lymphocytes, while TRAP1 expression was decreased in T, B, NK and NKT cells of
lymphoma patients. HSP90 overexpression in B cells was not associated with malignant B
cell clones, since no clonotypic B cells were detected by immunoglobulin heavy chain (IgH)
gene rearrangements. PD-1 blockade was found to differently affect the intracellular and
surface HSP90 in T, B, NK and NKT cells in patients with relapsed or refractory classical
Hodgkin lymphoma. Modulating HSP90 was found to affect the NK cell degranulation
response and IFNg production in lymphoma patients. These findings provide the rationale
to further explore HSP90 homologs for improving pat ient response to
cancer immunotherapy.

Keywords: HSP90, lymphocytes, cancer immunotherapy, extracellular HSP90, PD-1 blockade, Hodgkin lymphoma,
Non-Hodgkin lymphoma
INTRODUCTION

HSP90 family of molecular chaperones plays crucial in protein folding, degradation and maturation
of client proteins (1, 2). HSP90 family is composed of four homologs, such as stress-inducible
HSP90a, constitutive HSP90b, tumor necrosis factor receptor-associated protein 1 (TRAP1) and
glucose-regulated protein 94 (GRP94) (1, 3, 4). HSP90a and HSP90b isoforms primarily reside in
cytosol, TRAP1 in mitochondria and GRP94 in endoplasmic reticulum (ER), where HSP90 isoforms
org April 2022 | Volume 13 | Article 893137121
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act in a variety of cellular processes, including unfolded protein
response, mitochondrial metabolism, lipid metabolism,
autophagy and apoptosis (4). Cytosolic HSP90s work in
collaboration with co-chaperones, including HSP70-HSP90
organizing protein (HOP/STIP1), protein phosphatase 5,
cyclophilin 40, FK506-binding protein, activator of HSP90
ATPase homolog 1 (Aha1), p23 and cell division cycle 37
(Cdc37) (5–7). Under various stress conditions, HSP90
homologs may translocate from their primary location and can
be released into the extracellular milieu (8–10). In the context of
cancer, HSP90 homologs have been shown to be implicated in
the regulation of epithelial-mesenchymal transition, metastasis,
cancer cell stemness, invasion, apoptosis resistance and tumor
immunity [reviewed in (4)].

Lymphoma is a heterogeneous group of tumors divided into
two main types, such as Hodgkin lymphoma (HL) and Non-
Hodgkin Lymphoma (NHL) (11, 12). Classical HL (cHL) is the
most common subtype of HL, which is characterized by the
presence of malignant Hodgkin and Reed-Sternberg (HRS) cells
(13, 14). Even though HRS cells are germinal cell –derived B
cells, they rarely express classical B cell markers (11). NHL
lymphoma primarily consists of B-cell lymphomas (BCL) while
other NHL subtypes include T- and NK- cell lymphomas (15).
HL patients are usually treated with chemotherapy and
radiotherapy whi le NHL patients are treated with
chemotherapy combined with anti-CD20 (11, 12, 16). Even
though the response rate is high, relapses occur in substantial
number of lymphoma patients. Relapsed or refractory (r/r) cHL
patients are treated with high-dose chemotherapy followed by an
autologous hematopoetic stem cell transplantation (ASCT) (11).
r/r cHL can also be treated with Nivolumab, an inhibitor of
immune checkpoint programmed death-1 (PD-1) (11, 17). Even
though cancer immunotherapy showed encouraging results in
r/r patients, still some patients do not benefit from it, suggesting
that it is critical to identify patients who will likely respond to
the therapy.

In our previous study, we have used machine learning to show
that HSP90b and TRAP1 are aberrantly expressed in the urine of
cancer patients and that the HSP90b, TRAP1 and co-chaperones
can be used to identify cancer patients (18). Since lymphoma
originates from lymphocytes we sought to analyze the expression
of HSP90b, TRAP1 and STIP1 co-chaperone in peripheral blood
and bone marrow lymphocytes of patients with Hodgkin and
Non-Hodgkin lymphomas. We show that B lymphocytes have
the highest expression of HSP90b and STIP1 in lymphoma
patients. We also show that PD-1 blockade differentially affects
intracellular and surface HSP90s content in lymphocytes of r/r
cHL patients. Since HSP90s may modulate immune responses,
altering HSP90 expression and localization may further affect
functional activity of immune cells. In this regard, we found that
HSP90 downregulation impairs NK cell degranulation response
and IFNg production. To the best of our knowledge, this is the
first study to assess the expression of HSP90b, TRAP1 and STIP1
in peripheral blood and bone marrow lymphocytes and the role
of anti-PD-1 immunotherapy on HSP90 expression in
cancer patients.
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MATERIALS AND METHODS

Patient Samples
Peripheral blood (PB) and bone marrow (BM) samples were
collected from B-NHL (n=5) and cHL (n=3) patients and healthy
individuals (n=4). B-NHL group consisted of patients with
diffuse large B-cell lymphoma (DLBCL, n=3) and primary
mediastinal large B-cell lymphoma (PMBCL, n=2) while cHL
group consisted of patients with nodular sclerosis HL (NSHL,
n=3). HL and B-NHL patients included in the study were newly
diagnosed patients with no previous history of treatment, unless
otherwise specified. Samples were also obtained from relapsed or
refractory cHL patients (n=3) receiving Nivolumab (Opdivo,
Bristol-Myers Squibb) prior to the therapy and after 24 hours
post-Nivolumab treatment. All patients were Epstein-Barr virus
(EBV)- negative to exclude EBV-associated lymphomas. The
median age of patients was 42 years old. Peripheral blood
mononuclear cells (PBMCs) and bone marrow mononuclear
cells (BM MNCs) were isolated using Ficoll-Paque density
gradient centrifugation. The study was approved by the
Research Ethics Committee of the Federal State Budgetary
Institution ‘National Medical Research Center for Hematology’
of the Ministry of Health of the Russian Federation. All subjects
had provided written informed consent in accordance with the
Declaration of Helsinki.

Antibodies and Flow Cytometry
Cells were stained with fluorescently conjugated anti-human
antibodies: APC/Cy7 anti-CD3 (HIT3a), APC anti-CD19
(HIB19), Pacific Blue anti-CD3 (HIT3a), FITC anti-human
IFNg (4S.B3) (all Sony Biotechnology), PE-Vio 770 anti-CD56
(REA196), FITC anti-Granzyme B (REA226), APC/Cy7 anti-
CD107a (LAMP-1) (H4A3) (all Miltenyi Biotec).

HSP90b, TRAP1 and STIP1 Surface and
Intracellular Staining
Cells were stained with anti-human TRAP1-RPE (3H4-2H6,
Sigma-Aldrich) , primary antibody against HSP90b
(EPR16621), STIP1 (EPR6605) and the secondary antibody
goat anti-rabbit IgG H&L PE preadsorbed (all Abcam). Mouse
IgG1-PE (Invitrogen) and PE-rabbit IgG (Abcam) were used as
isotype controls. FcR blocking reagent (Miltenyi Biotec) was used
to block non-specific binding. For intracellular staining, cells
were fixed and permeabilized with Cytofix/Cytoperm (BD
Biosciences) and stained with antibodies for intracellular
proteins. For surface and intracellular staining, dead cells were
excluded from gating with the use of Sytox Blue dead stain and
Fixable Viability Dye eFluor 506 (Invitrogen), respectively.

IgH Gene Rearrangement Detection
B-cell clonality (IgH gene rearrangements) was assessed using
fragment analysis for V-D-J rearrangements of IgH (FR1, FR2,
FR3), as previously described (19). The reaction mixture
included 100–200 ng of DNA. PCR conditions: initial
denaturation at 95°C (5 min), 35 cycles of PCR at 92°C (35s),
60°C (35s) and 72°C (35s) and final elongation at 72°C (10 min).
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PCR was performed on an automatic thermal cycler DNA
Engine (BioRad, Hercules, USA). The ABI PRISM 3130
Genetic Analyzer (Applied Biosystems, USA) was used for
fragment analysis of PCR products. Results were visualized
using the GeneMapper v. 4.0 (Applied Biosystems, USA).

NK Cell Stimulation, HSP90 Inhibition,
CD107a/Granzyme B and IFNg Analysis
NK cells were stimulated as previously described (20). Briefly,
PBMCs and BM MNCs were incubated in RPMI 1640 with L-
glutamine (Capricorn Scientific), supplemented with 10% Fetal
Bovine Serum (FBS, Capricorn Scientific) and penicillin/
streptomycin (Capricorn Scientific) with HSP90 inhibitor -
geldanamycin (GA, 0.1µM) (Abcam) or DMSO in the presence
or absence of the recombinant human (rh) IL-2 (100 IU/ml)
(Miltenyi Biotec) and rhIL-15 (10 ng/ml) (Miltenyi Biotec)
overnight at 37°C 5% CO2 prior to the addition of APC-Cy7
anti-CD107a (Miltenyi Biotec). Cells then were stimulated with
anti-NKp46/anti-CD2 (human NK cell activation/expansion kit,
Miltenyi Biotec) for 5 hours at 37°C, according to the manufacturer
instruction. The incubation was done in complete RPMI medium,
supplemented with Brefeldin A (Sony Biotechnology) at a final
dilution of 1/1000. Cells were then stained for surface markers and
intracellular Granzyme B (Miltenyi Biotec) or IFNg (Sony
Biotechnology) and analyzed by flow cytometry.

Statistics
All statistical analyses were performed using GraphPad Prism 9.
Results are expressed as mean ± standard error of the mean
(SEM). In accordance with the data distribution, parametric tests
including two-sample t-test and ANOVA and non-parametric
Frontiers in Immunology | www.frontiersin.org 323
methods including Mann Whitney test were employed for
the data analysis. P values < 0.05 were considered to be
statistically significant.
RESULTS

Immune Subpopulations in PBMCs and
BM MNCs in HL and NHL Patients
Patients with newly diagnosed HL and B-NHL lymphoma had
abnormal frequency of lymphocytes in peripheral blood
compared to healthy controls (Figure 1A). HL and NHL
patients differed by the frequency of immune population in
PBMCs and BM MNCs (Figure 1). HL patients had higher
frequency of T cells (CD3+CD56-) and NKT (CD3+CD56+) cells
in peripheral blood and bone marrow compared to NHL
patients. NHL patients had higher frequency of peripheral
blood NK cells compared to HL patients, however, the
difference was not statistically significant (p>0.05) (Figure 1A).
Increased frequency of B cells (CD19+CD3-) and decreased
frequency of NK cells (CD56+CD3-) were observed in bone
marrow compared to peripheral blood in HL and NHL
lymphoma (Figure 1).

Intracellular and Surface HSP90b,
TRAP1 and STIP1 Expression in
PB- and BM-Derived Lymphocytes in
Lymphoma Patients
The intracellular expression of HSP90b (iHSP90b), iTRAP1 and
iSTIP1 varied in peripheral blood lymphocytes of NHL and HL
A

BB

FIGURE 1 | Frequency of lymphocytes in peripheral blood and bone marrow samples derived from patients with HL and NHL patients. The percentage of T cells
(CD3+ CD56-), B cells (CD3-CD19+), NK cells (CD3-, CD56+) and NKT cells (CD3+CD56+) in peripheral blood (A) derived from HL, NHL patients and healthy controls
and bone marrow samples (B) derived from HL and NHL patients. Graphs show mean ± SEM. ns, not significant. PB, peripheral blood; BM, bone marrow.
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FIGURE 2 | Intracellular and surface HSP90b, TRAP1 and STIP1 expression in PB- and BM- derived lymphocytes of lymphoma patients. The mean level of
intracellular expression of HSP90b (iHSP90b) (A), iTRAP1 (B) and iSTIP1 (C) (as mean fluorescence intensity; MFI) in lymphocytes derived from PB of HL (n=3), NHL
(n=3) patients and healthy controls (n=2). The expression of iHSP90b (D), iTRAP1 (E) and iSTIP1 (F) in lymphocytes derived from BM of HL (n=2) and iHSP90b (G),
iTRAP1 (H) and iSTIP1 (I) in NHL (n= 3) patients. (J–L) Surface HSP90b and STIP1 expression in B lymphocytes derived from PB and BM samples of lymphoma
patients. (J) The expression of sHSP90b and sSTIP1 in B cells derived from PB of HL (n=3), NHL patients (n=3) and healthy controls (n=2). (K) The expression of
sHSP90b and sSTIP1 in B cells derived from PB and BM of HL (n=2). (L) The expression of sHSP90b and sSTIP1 in B cells derived from PB and BM of NHL (n=3)
patients. Graphs show mean ± SEM. ns, not significant, *p<0.05, **p< 0.01.
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patients. B cells showed significantly higher iHSP90b expression
compared to other peripheral blood lymphocytes (T, NK and
NKT cells) in lymphoma patients (Figure 2A). iHSP90b and
iSTIP1 were significantly overexpressed in peripheral B cells of
HL patients compared to healthy controls (Figures 2A, C). Bone
marrow B lymphocytes showed significantly lower iHSP90b and
iSTIP1 expression compared to peripheral B cells in HL patients
(Figures 2D, F). By contrast, iHSP90b and iTRAP1 expression
was comparable in BM- and PB- derived B cells of NHL patients
(Figures 2G, H). Similar to HL patients, PB-derived B cells
showed increased expression of iSTIP1 in NHL patients
(Figure 2I). iTRAP1 was significantly decreased in peripheral
blood lymphocytes in lymphoma patients compared to healthy
controls (Figure 2B). Notably, HL patients showed higher
iTRAP1 expression in bone marrow NK cells compared to
peripheral blood NK cells (Figure 2E). sSTIP1 was
significantly increased on the surface of B cells in peripheral
blood of patients with HL lymphoma compared to healthy
controls and NHL patients (Figure 2J). sHSP90b was
significantly increased in bone marrow-derived B cells
compared to the peripheral blood B cells of HL patients while
sSTIP1 was significantly increased in peripheral blood B cells
compared to bone marrow B cells in HL patients (Figure 2K). By
contrast, sHSP90b and sSTIP1 were decreased in BM-derived B
cells compared to peripheral blood B cells in NHL patients,
however the difference was not statistically significant (p>0.05)
(Figure 2L). These data suggest that surface and intracellular
expression of HSP90b vary between peripheral blood and bone –
marrow B cells and that the HL and NHL lymphomas differ by
the expression of intracellular and surface HSP90b and STIP1 in
B lymphocytes.

B-Cell Clonality Analysis in HL and
NHL Patients
To determine whether high HSP90 expression in B cells is
associated with malignant B cell clones, we performed B-cell
clonality analysis (IgH gene rearrangements) using PB and BM
samples from HL and NHL patients (Figure 3 and
Supplementary Figure 3). No malignant B cell clones were
detected in PB and BM of HL and NHL patients (Figures 3A–
D and Supplementary Figure 3), suggesting that high HSP90
expression in B cells may not be associated with malignant B
cell phenotype.

Anti-PD-1 Treatment Affects
HSP90s Expression in Lymphocytes
of r/r cHL Patients
Patients with refractory or relapsed cHL undergoing Nivolumab
treatment were presented with conglomerate lymph node masses
at diagnosis (Figure 4). We assessed the effect of anti-PD-1
therapy on the frequency of immune cells and the expression of
HSP90b, TRAP1 and STIP1 in T, B, NK and NKT cells prior to
and 24 hours after the treatment of patients with r/r cHL.
Blocking PD-1 affected the frequency of immune cell
population in the peripheral blood at 24 hours of the
treatment (Figure 5A). The median percentage of T cells was
Frontiers in Immunology | www.frontiersin.org 525
decreased after 24 hours of anti-PD-1 treatment (Figure 5A).
One patient showed increased frequency of peripheral blood NK
cells (Figure 5B). Increased frequency of NK cells after anti-PD-
1 therapy has been also shown previously in cancer patients (21).

iHSP90b decreased in T, B, NK and NKT cells. Two patients
showed increased HSP90b expression on the surface of
peripheral blood B cells (Figures 5C, D). PD-1 blockade did
not affect iTRAP1 expression, but increased sTRAP1
(Figures 5E, F). PD-1 blockade did not affect iSTIP1 in
lymphocytes, although 1 patient showed increased iSTIP1 in
NK cells (Figures 5G, H). sSTIP1 was decreased in lymphocytes
following anti-PD-1 treatment (Figures 5G,H). Since PD-1
blockade altered HSP90 expression in peripheral blood, we
sought to determine whether similar changes occur in bone
marrow lymphocytes. Consequently, we examined intracellular
and extracellular HSP90b, TRAP1 and STIP1 in bone marrow
lymphocytes from Patient 1 before and after the anti-PD-1
treatment and compared it to the HSP90 expression in
peripheral blood of this patient (Figure 6). PD-1 blockade
upregulated intracellular and downregulated surface HSP90b
in BM-derived B cells (Figures 6A, B). By contrast, anti-PD-1
blockade downregulated intracellular and upregulated STIP1
expression in bone marrow B cells (Figures 6E, F). PD-1
blockade also downregulated intracellular and surface HSP90b
and STIP1 expression in BM-derived NKT cells (Figures 6A, B,
E, F). sHSP90b was decreased in peripheral blood and bone
marrow B cells following anti-PD-1 therapy (Figure 6B).
Interestingly, anti-PD-1 therapy resulted in decreased
expression of iTRAP1 in BM-derived NK cells (Figure 6C). It
is also interesting to note that PB- and BM- derived B cells
differentially expressed iHSP90b after 24 hours of treatment with
anti-PD-1 (Figure 6A). These findings suggest that anti-PD-1
treatment affects the frequency of lymphocytes and their
intracellular and surface HSP90 expression in r/r cHL
lymphoma patients, however, further studies are required to
assess the effect of anti-PD-1 treatment on HSP90 expression and
localization in bone marrow and peripheral blood lymphocytes.

HSP90 Downregulation Affects NK Cell
Degranulation Response and IFNg
Production in Healthy Donors and
Lymphoma Patients
Since anti-PD-1 treatment may alter HSP90 expression, we
sought to determine whether modulating HSP90 level would
affect the functional activity of NK cells. IL-2/IL-15-
preactivated NK cells from healthy controls were more
responsive to anti-NKp46/anti-CD2 stimulation, resulting in
higher frequency of CD107a+ Granzyme B+ NK cells, as
compared to NK cells from BCL patients (Figure 7A). By
contrast, IL-2/IL-15/anti-NKp46/anti-CD2 stimulation
resulted in increased frequency of CD107a+IFNg+ NK cells in
BCL patients, as compared to healthy controls (Figure 7D).
HSP90 inhibition decreased the frequency of CD107a
+/Granzyme B+ in healthy controls, bone marrow and
peripheral blood NK cells of BCL patients (Figures 7A, B).
HSP90 inhibition downregulated the expression of CD107a on
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FIGURE 3 | B-cell clonality analysis (IgH gene rearrangements) in PB and BM of HL and NHL patients. Representative graphs showing a Gaussian distribution of
multiple peaks in (A) peripheral blood and (B) bone marrow in NHL patient and (C) peripheral blood and (D) bone marrow in HL patient.
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the surface of bone marrow and peripheral blood NK cells,
leading to double positive CD107a+ Granzyme B+ NK cells lose
their CD107a+ expression and become single positive
Granzyme B+ NK cells upon stimulation (Figure 7C). HSP90
inhibition also decreased the percentage of CD107+IFNg+ NK
cells in response to IL-2/IL-15 and anti-NKp46/anti-CD2
st imulat ion (Figure 7D ) . These data suggest that
downregulating HSP90 may impair NK cell degranulation
response and IFNg production in lymphoma patients.
DISCUSSION

We have assessed the expression of constitutive and
mitochondrial HSP90 and HSP90 co-chaperone STIP1/HOP in
two major types of lymphoma- Hodgkin lymphoma and Non-
Hodgkin lymphoma. We showed that two lymphomas differ by
the expression of intracellular and surface content of HSP90b
and STIP1 in peripheral blood and bone marrow lymphocytes.
Intriguingly, peripheral blood B cells showed to be the major type
of lymphocytes with abnormal expression of HSP90s inside and
on their surface in lymphoma patients. HSP90b and STIP1 were
also aberrantly expressed on the surface of bone marrow B cells
in lymphoma patients. Since HSP90 overexpression may
potentially be associated with circulating malignant B cell
clones, we have performed B-cell clonality analysis. No
malignant B cell clones were found in the blood and bone
marrow of HL and NHL patients, suggesting that high HSP90
expression in B cells may not be associated with malignant
phenotype. Several studies reported that extracellular HSPs
associate with B regulatory phenotype (22, 23). In a recent
study, Wang and colleagues reported that regulatory B cells
Frontiers in Immunology | www.frontiersin.org 727
have high expression of HSP70 (24). Along this line, Tang
et al. demonstrated that extracellular BiP/GRP78 induces
regulatory B cell phenotype (22). Extracellular HSP60
stimulates B cells to produce IL-10 and IL-6 while HSP60-
stimulated B cells induce the proliferation and IFNg and IL-10
production in T cells (23). These data suggest that altered
expression of HSP90 in B cells may affect B cell responses in
bone marrow and peripheral blood of lymphoma patients.

Recently, Zavareh and colleagues demonstrated that HSP90
inhibitors downregulate surface PD-L1 expression in mouse
models via the regulation of HSP90 clients (c-Myc and STAT3)
(25). HSP90 inhibition also showed to potentiate anti-tumor activity
of PD-1 and CTLA-4 blockade in vivo (26, 27). Here, we showed
that treatment with anti-PD-1 altered the expression and
localization of HSP90b, TRAP1 and STIP1 in peripheral blood
lymphocytes in refractory HL patients. PD-1 blockade also affected
HSP90 content and localization in bone marrow lymphocytes.
Notably, PD-1 blockade resulted in increased surface HSP90
expression in lymphocytes. Previous studies demonstrated that
HSPs can be upregulated on the surface of immune cells
following ER stress (28, 29). These studies suggest that there is
interplay between immune checkpoints and HSP90s and that
lymphocytes may upregulate surface HSP90 expression in
response to anti-PD-1 immunotherapy, however, further studies
are required to understand the role of cancer immunotherapy on
the HSP90 expression.

Several studies reported high expression of PD-1 on NK cells
in cancer patients (30, 31). Furthermore, Vari and colleagues
highlighted an important role of PD-1/PD-L1 axis in the
functional activity of NK cells in lymphoma patients (30).
Taking into account that anti-PD-1 immunotherapy may affect
HSP90 expression in NK cells, we assessed the effect of HSP90
FIGURE 4 | PET/CT of r/r cHL patients prior to the initiation of anti-PD-1 treatment. Patient 1 presented with conglomerate lymph node masses at the
anterosuperior mediastinum with the size of 37x21 mm, SUV 6.4 and the paragastric conglomerate with the size of 45x42 mm, SUV 7.4. Patient 2 presented
with cervical lymph nodes with the size of 6.6mm, SUV 4.7 and with conglomerate lymph node mass at the anterosuperior mediastinum with the size of 74x42
mm, SUV 7.7. Patient 3 presented with conglomerate lymph node mass at the anterosuperior mediastinum with the size of 43x32 mm, SUV 8.2. SUV,
standardized uptake value.
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downregulation on the degranulation response, granzyme B and
IFNg production in NK cells of lymphoma patients. We found
that HSP90 inhibition downregulates CD107a expression and
IFNg production in NK cells upon stimulation. These results are
consistent with previous findings showing that HSP90 inhibitors
Frontiers in Immunology | www.frontiersin.org 828
downregulate IFNg secretion by NK cells (32). It is important to
note that geldanamycin blocks HSP90 ATPase activity and thus,
inhibits all four HSP90 isoforms, including HSP90a, HSP90b,
TRAP1 and GRP94 in NK cells, suggesting that it is critical to
identify specific HSP90 homolog responsible for the regulation of
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FIGURE 5 | The effect of anti-PD-1 treatment on HSP90 expression in peripheral blood lymphocytes in r/r cHL patients. (A) Frequencies of T, B, NK and NKT cells
following 24hr treatment with Nivolumab in r/r cHL patients (n=3). (B) Representative histogram showing increase in NK cell frequency after 24hr treatment with
Nivolumab. iHSP90b expression (C) and sHSP90b (D), iTRAP1 (E) and sTRAP1 (F), iSTIP1 (G) and sSTIP1 (H) in peripheral blood lymphocytes of r/r cHL patients
at 24 hrs treatment with Nivolumab (n=3). ns, not significant, *p<0.05, **p< 0.01.
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CD107a+ expression and IFNg production in NK cells. Recent
studies have demonstrated that cell metabolism plays a critical
role in NK cell functional activity (33). Wang and colleagues
reported that inhibition of glycolysis downregulates NK cell IFNg
production and CD107a expression (34). Authors also showed
that glycolysis inhibition abrogated Granzyme B production
while inhibition of oxidative phosphorylation (OXPHOS) did
not affect Granzyme B production by NK cells (34). In our study
we showed that geldanamycin inhibited CD107a expression and
IFNg production while Granzyme B production was not affected,
suggesting that HSP90 inhibitor may affect both, i.e. glycolysis
and OXPHOS. In this regard, mitochondrial HSP90 homolog
TRAP1 showed to be a critical regulator of OXPHOS and
glycolysis, suggesting that TRAP1 may be a potential isoform
responsible for the downregulation of CD107a expression and
IFNg production in NK cells, however, this warrants further
investigation (35, 36).

In summary, we showed that lymphoma patients have
abnormal expression of HSP90s in bone marrow and
Frontiers in Immunology | www.frontiersin.org 929
peripheral blood B cells. PD-1 blockade altered the
intracellular and surface HSP90 expression in immune
population in r/r HL patients. Altering the level of HSP90 may
inhibit cytotoxic activity of peripheral blood and bone marrow
NK cells. Further understanding the effect of cancer
immunotherapy on intracellular and extracellular HSP90 may
help in identification of patients who will likely benefit from
the treatment.
CONCLUSION

HSP90 molecular chaperones play critical role in proteome
homeostasis and showed to be implicated in various hallmarks
of cancer. We show that constitutive, mitochondrial HSP90s and
HSP90 co-chaperone STIP1/HOP are aberrantly expressed in B
cells of lymphoma patients. Since approved and emerging cancer
immunotherapeutics include immune checkpoint inhibitors, we
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FIGURE 6 | The effect of anti-PD-1 on the HSP90 expression in PB and BM lymphocytes in r/r cHL patient. Intracellular (A, C, E) and surface (B, D, F) expression
of HSP90b (A, B), TRAP1 (C, D) and STIP1 (E, F) in PB and BM lymphocytes in r/r cHL patient (n=1). Graphs show mean ± SD. ns, not significant, *p<0.05. PB,
peripheral blood; BM, bone marrow.
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FIGURE 7 | The effect of HSP90 inhibition on the NK cell degranulation response, granzyme B and IFNg production in lymphoma patients. NK cell degranulation, as
measured by CD107a surface expression, and granzyme B/IFNg production in PB (n=4) of lymphoma patients and healthy controls (n=5) and BM (n=3) of lymphoma
patients. PBMC (A) and BM MNC (B) were pre-treated with geldanamycin (0.1µM) or DMSO in the presence of IL-2 (100IU/ml) and IL-15 (10 ng/ml) and stimulated with
anti-NKp46/anti-CD2. (C) Representative flow cytometry plots of CD107a+/Granzyme B+ double positive NK cells on the left and the frequency of CD107a single positive
(SP) and Granzyme B SP NK cells in response to IL-2/IL-15 and anti-NKp46/anti-CD2 stimulation. (D) Representative flow cytometry plots of CD107a+ IFNg+ NK cells on
the left and the frequency of CD107a+IFNg+ NK cells in response to IL-2/IL-15 and anti-NKp46/anti-CD2 stimulation. Graphs show mean ± SEM. ns, not significant,
*p<0.05, **p< 0.01. GA, Geldanamycin; BCL, B-cell lymphoma.
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have assessed the effect of anti-PD-1 treatment on HSP90
expression in refractory/relapsed lymphoma patients. We
showed that anti-PD-1 affects HSP90 level and localization in
immune cells of lymphoma patients. Additionally, we found that
modulating HSP90 level may impair functional activity of NK
cells. Further understanding of the effect of immunotherapies on
HSP90 may improve treatment response in lymphoma patients.
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Hepatocellular carcinoma (HCC) is a common malignancy with higher mortality, and
means are urgently needed to improve the prognosis. T cell exclusion (TCE) plays a pivotal
role in immune evasion, and lncRNAs represent a large group of tumor development and
progression modulators. Using the TCGA HCC dataset (n=374), we identified 2752
differentially expressed and 702 TCE-associated lncRNAs, of which 336 were in both
groups. As identified using the univariate Cox regression analysis, those associated with
overall survival (OS) were subjected to the LASSO-COX regression analysis to develop a
prognosis signature. The model, which consisted of 11 lncRNAs and was named
11LNCPS for 11-lncRNA prognosis signature, was validated and performed better than
two previous models. In addition to OS and TCE, higher 11LNCPS scores had a
significant correlation with reduced infiltrations of CD8+ T cells and dendritic cells (DCs)
and decreased infiltrations of Th1, Th2, and pro B cells. As expected, these infiltration
alterations were significantly associated with worse OS in HCC. Analysis of published data
indicates that HCCs with higher 11LNCPS scores were transcriptomically similar to those
that responded better to PDL1 inhibitor. Of the 11LNCPS lncRNAs, LINC01134 and
AC116025.2 seem more crucial, as their upregulations affected more immune cell types’
infiltrations and were significantly associated with TCE, worse OS, and compromised
immune responses in HCC. LncRNAs in the 11LNCPS impacted many cancer-associated
biological processes and signaling pathways, particularly those involved in immune
function and metabolism. The 11LNCPS should be useful for predicting prognosis and
immune responses in HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
human malignancies and the third leading cause of cancer-
associated deaths worldwide (1, 2). Several therapies such as
surgical resection, liver transplantation, radiotherapy, and
chemotherapy are available for HCC treatment. However, the
survival of patients with advanced or metastatic HCC is quite
limited, and the lack of timely diagnosis, prognosis evaluation,
and effective treatments are some of the reasons (3, 4). It is thus
imperative to develop prognostic models that can help decision
making in HCC treatment.

Accumulating evidence indicates that immunotherapy is a
promising strategy for cancer treatment, which largely relies on
the successful application of immune-checkpoint inhibitors
(ICIs) at present (1, 5–7). The combination of ICIs and
conventional therapies are also under development as
additional therapeutic strategies for HCC treatment (8). For
instance, combined administration of the PDL1 inhibitor
atezolizumab and the VEGF inhibitor bevacizumab has
become a first-line therapeutic strategy for advanced HCC (9).
Although immunotherapy has shown remarkable outcomes,
only one-third of patients benefit from it (10). One of the
main factors affecting the effectiveness of immunotherapy is
tumor immune evasion (11, 12). Cancer cells evade the
immune system to avoid antitumor immunity and enhance
tumor malignancy (1, 13, 14), and T cell exclusion (TCE) is
one of the primary mechanisms for tumor immune escape (15).
Some immunosuppressive factors exclude T cells, especially
cytotoxic CD8+ T cells, from infiltration tumors, making a
tumor “cold”. Hence, it is crucial to construct accurate
prognostic models for TCE in HCC, which could help predict
patient response to immunotherapy.

Long noncoding RNAs (lncRNAs) are a common type of
noncoding RNAs with more than 200 nucleotides in length and
play essential roles in cancer development and progression (1, 16–
18).For example, lncRNAs regulate cancerprogressionbychanging
the transcriptome and proteome of cancer cells and influencing the
infiltration of immune cells to alter the immunemicroenvironment
(19–21). LncRNAs could thus act as immune regulators in tumor
immune evasion. Therefore, gaining more insights into T cell
exclusion-related lncRNAs could potentially improve
understanding the roles of TCE and lncRNAs in immunotherapy.

Currently, there are hardly any studies examining TCE-
related lncRNAs in HCC, yet such lncRNAs could be potential
therapeutic targets and prognostic markers. In this study, we
identified differentially expressed and TCE-associated lncRNAs
and used them to develop a prognosis signature to predict
immune responses to HCC. The model consisted of 11
lncRNAs and was named 11LNCPS for 11-lncRNA prognosis
signature. In addition to OS and TCE, higher 11LNCPS scores
had a significant correlation with reduced infiltrations of CD8+ T
cells and dendritic cells (DCs) and decreased infiltrations of Th1,
Th2, and pro B cells. These infiltration alterations were
significantly associated with worse OS in HCC. HCC patients
with higher 11LNCPS scores were transcriptomically similar to
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those who responded better to PDL1 inhibitor. Two of the
11LNCPS lncRNAs, LINC01134 and AC116025.2, were more
crucial because their upregulations affected more immune cell
types’ infiltrations and were significantly associated with worse
OS, TCE, and compromised immune function in HCC.
LncRNAs in the 11LNCPS impacted many cancer-associated
biological processes and signaling pathways, particularly those
involved in immune function and metabolism.
MATERIALS AND METHODS

Data Sources and Processing
Gene expression data and clinicopathological characteristics of
HCCs used in this study were generated by the Cancer Genome
Atlas (TCGA) and are available at https://www.cancer.gov/
about-nci/organization/ccg/research/structural-genomics/tcga.
Downloaded data included FPKM (fragments per kilobase of
transcript per million) reads-based gene expression data and the
raw read count values. The R package “TCGAbiolinks” was used
for downloading (22). After screening for data quality, 374 HCC
samples were retained in this study. Of the 374 cases, one lacked
prognostic information, so 373 were used for model construction
and survival analyses (Figure 1). In addition, the tumor immune
dysfunction and exclusion (TIDE) algorithm, as described in a
previous study (15), was used to determine both the T cell
exclusion (TCE) level and the T cell dysfunction level using the
FPKM expression matrix.

To explore what chemokines/cytokines and immune
checkpoint ligands mediate the communications between HCC
cells and CD8+ T cells, we analyzed a single-cell RNA-
sequencing (scRNS-seq) data of HCC (GSE146115) available in
the Gene Expression Omnibus (GEO) (23). After performing
imputation on the dropouts by the “scImpute” algorithm (24),
the R package “Seurat” (25) was used for dimensional reduction,
clustering analysis, and cell type annotation. Finally, the CellChat
Explorer (26) program was used to infer the biologically
significant interactions between chemokines, cytokines, and
immune checkpoint (ICP) ligands and their receptors in the
interactions between HCC cells and CD8+ T cells.

Identification of HCC- and
TCE-Associated lncRNAs
To identify lncRNAs that are differentially expressed betweenHCC
and adjacent morphologically normal liver tissues, we used the R
packages “edgeR” (27, 28) and “limma” (29) to analyze the 374
HCC tissues and 50 adjacent normal liver tissues. The thresholds of
P ≤ 0.05 and |log2FC| (FC: Fold change) > 0.5 were used.
The GENCODE database (30) was used to identify lncRNAs.

After HCC tissues were divided into TCE-higher (n = 187) and
TCE-lower (n = 187) groups by themedian TCE level following the
TIDEanalysis, the edgeR-limmaprocedurewas alsoused to identify
differentially expressed lncRNAs between the two TCE groups.

LncRNAs differential expression between HCC and normal
tissues and between TCE-higher and TCE-lower groups were
identified as HCC- and TCE-associated lncRNAs.
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Construction and Validation of a
TCE-Associated lncRNA Prognostic
Model: 11LNCPS
The 373 HCCs with prognostic information were randomly assigned
to the training cohort (n=187) andvalidationcohort (n=186) at a 1:1
ratio using the R package “caret”. Univariate Cox regression analysis
wasperformed toassess the associationof eachdifferentially expressed
and TCE-associated lncRNA with the overall survival (OS) in the
training cohort. LncRNAs significantly correlatedwithOS (P≤ 0.001)
were subjected to the LASSO-COXregression analysis (31) to develop
theprognosticmodel (i.e., 11LNCPS).Basedon themodel, a risk score
(RS) for OS was built based on a linear combination of the regression
coefficient derived from the multivariate Cox regression model and
the expression level of the optimized lncRNAs.

The 11LNCPS score (risk score) was computed as follows:
Risk score =oN

i=1(Ci � Factori), where N represents the number
of prognostic factors, Factori represents the expression of
lncRNAs, and Ci represents the regression coefficient of the
multivariate Cox regression model (1, 32, 33).

HCCs in the training cohort were then divided into two
groups using the median, one with higher 11LNCPS scores and
the other with lower scores, for model evaluation. Kaplan-Meier
analysis was used for overall survival, with the log-rank test to
evaluate statistical significance.
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The time-dependent receiver‐operating characteristic (ROC)
analysis was performed to evaluate the accuracy of the 11LNCPS
classifier in survival prediction at 1, 2, and 3 years in the training
cohort. The calibration curves, Harrell’s concordance index (C-
index) curves, and ROC Areas under the curves (AUCs) were
calculated for model evaluation. Calibration curves were
calculated by calibrating the function implemented in the
“rms” package to assess the predictive ability. The 11LNCPS
was also validated in the validation and entire cohorts. In
addition, the 11LNCPS model was compared with two
previously reported effective HCC prognostic models for ROC,
C-index, and prediction error curves in the validation cohort
using the packages of “MASS”, “timeROC”, “survival”, and
“survminer”. One was the 8-gene model containing H2AFX,
SQSTM1, ITM2A, PFKP, TPD52L1, ACSL4, STRN3, and CPEB3
(34); and the other was the 4-gene model containing CENPA,
SPP1, MAGEB6, and HOXD9 (35).

Analysis of the Association of 11LNCPS
Scores With Immune Responses in HCC
Considering that TCE is primarily related to the immune escape
(15), we applied the xCell computational method (36–38) to
estimate the enrichment scores (xCell scores) of different immune
cell types in HCCs with higher and lower 11LNCPS scores.
FIGURE 1 | The workflow of the study. Expression data of hepatocellular carcinoma (HCC) and adjacent normal liver tissues were compared to identify differentially
expressed lncRNAs in HCC. All HCC with expression data were divided into higher and lower T cell exclusion (TCE) levels using the TIDE analysis. Higher- and
lower-TCE groups were compared to identify TCE-associated lncRNAs. Differentially expressed and TCE-associated lncRNAs were then merged to identify differently
expressed and TCE-associated lncRNAs, which were then subjected to LASSO and multivariate Cox analyses to construct the 11LNCPS predictive of patient
survival. LINC01134 and AC116025.2 were then identified as the critical members of the signature.
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A total of 374 HCC samples with normalized gene expression
FPKM data and standard annotation were used to analyze the
distribution of 34 types of immune cells using the xCell pipeline.
The 34 types of immune cells included CD4+ naive T-cells, CD4+
T-cells, CD4+ memory T-cells, CD4+ Tcm (central memory T
cell), CD4+ Tem (effective memory T cell), CD8+ naive T-cells,
CD8+ T-cells, CD8+ Tcm, CD8+ Tcm, Treg cells, gamma delta T
cells (Tgd cells), Th1 cells, Th2 cells, natural killer T cell (NKT),
natural killer cell (NK), pro B-cells (B cell progenitors), naive B-
cells, B-cells, memory B-cells, class-switched memory B-cells,
plasma cells, monocytes, macrophages, macrophages M1,
macrophages M2, dendritic cell (DC), activated dendritic cell
(aDC), conventional dendritic cell (cDC), plasmacytoid dendritic
cell (pDC), immature dendritic cell (iDC), neutrophils,
eosinophils, mast cells, and basophils.

The Kaplan-Meier (K-M) analysis was performed to assess
whether the infiltrating status of different immune cell types
affects patient survival in HCC. Survival outcomes were
calculated and visualized using the R packages “survival” and
“survminer”. The correlation between an xCell score and an
immune cell type was analyzed with P ≤ 0.05 and |log2 (FC)| >
0.25 following the procedure described previously (36), and the
outcome was visualized using the R packages “pheatmap”,
“EnhancedVolcano” and “ggpubr”.

TIDE algorithm was then applied to evaluate the association
of 11LNCPS scores with TCE and T cell dysfunction. HCCs were
divided into higher and lower 11LNCPS scores using the median,
and the TIDE algorithm (15) was then applied to each group.
The outcome was visualized using “ggpubr”.

To determine whether the 11LNCPS score is associated with
therapeutic responses to ICIs, the 373 HCCs were divided into two
groups, one with higher and one with lower 11LNCPS scores,
using the median. The Subclass Mapping (SubMap) algorithm
(39) was then applied to measure the correspondence between the
two 11LNCPS groups and groups of malignancies with and
without responses to anti‐CTAL‐4, anti‐PD‐1, and anti‐PD‐L1
therapies from previous studies (40, 41). The outcome was
visualized using the R packages of “pheatmap” and “ggpubr”.
Gene Ontology (GO) Enrichment, Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Analysis, and Gene Set
Enrichment Analysis (GSEA)
To determine the critical biological pathways and characteristics
of HCC determined by 11LNCPS score, the GO, KEGG pathway
analysis, and GSEA (42, 43) were applied to HCCs with higher
and lower 11LNCPS scores using the R packages “GSEABase”,
“clusterProfiler” (44), “enrichplot”, and “org.Hs.eg.db”. Briefly,
the edgeR-limma procedure was used to find differentially
expressed genes (DEGs) between HCCs with higher-RS and
those with lower RS in TCGA. DEGs with thresholds of P ≤
0.05 and |log2FC| (FC: Fold change) > 0.5, were subjected to GO
and KEGG analysis. Go analysis included BP (biological
process), CC (cellular component), and MF (molecular
function). For GSEA, all DEGs were subjected to the “GSVA”
Frontiers in Immunology | www.frontiersin.org 436
package (45) after ranking from high to low based on their FC
values. A P value smaller than 0.05 was considered significant in
the GSEA. The hallmark gene set “h.all.v7.1.symbols.gmt” was
downloaded from https://www.gsea-msigdb.org/and subjected to
“GSVA” in a similar fashion.

Identification of Critical Members of the
11LNCPS lncRNAs
For each of the 11 lncRNAs in the 11LNCPS, a series of analyses
were performed to identify the core one. The Kaplan-Meier
survival analysis was performed to assess whether a lncRNA’s
expression level is associated with the overall survival (OS) in the
373 HCC patients.

Correlation of each lncRNA’s expression level with T cell
exclusion (TCE) was ranked based on the Spearman correlation
coefficient value, with those greater than 0.2 with P ≤ 0.05
considered significant. Infiltration levels of prognosis-
associated immune cells were also compared between HCCs
with higher and lower 11LNCPS scores and HCCs with higher
and lower expression levels of the 11LNCPS lncRNAs. Those
with a lower level. LncRNAs whose higher expression levels
significantly correlated with worse patient OS, whose Spearman
correlation coefficient values were greater than 0.2 (P ≤ 0.05), and
that affected infiltrations of more immune cell types were
considered crucial members of the 11LNCPS, including
LINC01134 and AC116025.2. The outcome was visualized by
the R packages “pheatmap”, “ggpubr”, “corrplot” and “ggplot2”.

Test of Whether LINC01134
and AC116025.2 Affect TCE
and T Cell Dysfunction
The relationship between LINC01134 and AC116025.2
expression and TCE or T cell dysfunction was tested using the
TIDE algorithm, and the outcome was visualized using the
“ggpubr” R package.

Enrichment Analysis for Biological
Functions Affected by the Critical
11LNCPS lncRNAs
To explore the biological functions of LINC01134 and AC116025.2
in HCC, we performed GO, KEGG, and GSEA analysis in HCCs
as described in the previous enrichment analysis.

Cell Lines and Cell Culture
Normal liver cells QSG-7701 and LO2 were kindly provided by
Dr. Liang Yang of the Southern University of Science and
Technology. HCC cell lines HepG2 and Huh-7 were purchased
from the BeNa Culture Collection (Beijing, China). The Jurkat
cell line was kindly provided by Dr. Lili Ren of Shenzhen People’s
Hospital. The DMEMmedium (Gibco, USA) supplemented with
antibiotics (Biological Industries, Israel) and 10% FBS (Gibco)
was used for liver cell culture. The RPMI 1640 medium (Gibco)
supplemented with antibiotics and 10% FBS were used for Jurkat
cells. All cells were cultured at 37 °C in a humidified atmosphere
containing 5% CO2.
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Cell Transfection and Conditioned Medium
(CM) Preparation
Both the negative control siRNAs (si-NC) and the LINC01134
siRNAs were provided by GenePharma (Shanghai, China).
Sequences of s iRNAs against LINC01134 were 5 ′-
GACAGGTTTGAGCTAGAAAC-3′ (si-LINC01134-1) and 5′-
GCAAAUGCACAGCGAGGAAAG-3′ (si-LINC01134-5). At
confluency of 30–50%, HepG2 or Huh-7 cells were transfected
with siRNAs using the Lipofectamine RNAiMAX reagent
(Invitrogen, USA). After 48 hours, transfected cells were split
into two portions. One was used for RNA isolation and gene
expression analysis, and the other was grown in a 6-well plate for
48 hours to collect the conditioned medium (CM). Each
experiment was repeated twice unless otherwise stated.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
Total RNAwas extracted fromcultured cells using the Eastep Super
Total RNA Extraction Kit (Promega, USA) and reverse transcribed
into cDNA using the HiScript III All-in-one RT SuperMix Perfect
for qPCR Kit (Vazyme, China). PCR was performed with the KT
SYBR qPCR Mix (Ktsm-life, China) using the qTOWER 3.0 PCR
system (Jena Industries,Germany). Primers and their sequences are
as follow: LINC01134, 5′-ATGAACAGCAAATGCACAGCG-3′
(forward) and 5′- ATAGGTCTTGGCTGGTTCTCG-3′ (reverse);
AC116025.2, 5′-TGGAGCAGAAAGAGCTGTCTCAAG-3′
(forward) and 5′-TGTCAGGAAACTGTGTGGACG-3′ (reverse);
CXCL1, 5′-CTGGCTTAGAACAAAGGGGCT-3′ (forward) and
5′-TAAAGGTAGCCCTTGTTTCCCC-3′ (reverse); CXCL2, 5′-
CCCATGGTTAAGAAAATCATCG-3′ (forward) and 5′-CTTC
AGGAACAGCCACCAAT-3′ (reverse); CXCL3, 5′-CGCCCAAA
CCGAAGTCATAG-3′ (forward) and 5′-ACCTTGCCTTC
TTTGTCTTTGTTGGA-3′ (reverse); and b-actin, 5′-TCCCTG
GAGAAGAGCTACGA-3′ (forward) and 5′-GCTCCCCTT
GTTCAGTATCTTTT-3′ (reverse). In the PCR, b-actin served as
the endogenous control. The relative expression of genes was
calculated using the −2DDCt method.

T Cell Migration Analysis
T cell migration was analyzed using the transwell assay as
previously described (46–48). Briefly, Jurkat cells (106 cells/ml)
were washed with PBS and serum-starved for 3 hours, 105 cells in
0.1 ml were then seeded onto an 8.0-mm pore size insert
(Corning, USA), and 400 ml complete medium or CM were
then added to the lower chambers of a 24-well plate (Corning).
After incubation at 37°C for 16 hours in an incubator, migrated
cells in the lower chambers were collected and counted using an
automated cell counter (Invitrogen). The numbers of migrated
cells in different groups were normalized by the number of cells
from the complete medium group.

Statistical Analysis
The R software (version 4.1.1) was used for all statistical analyses
and plot drawings except as specifically stated. Patients were
randomly grouped using the “caret” R package. The univariate
and multivariate Cox proportional hazards regression analyses
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were performed using the “survival” package. Kaplan-Meier
analysis was used for overall survival, with the log-rank test to
evaluate statistical significance. Statistical differences between the
two groups were assessed using the Wilcoxon test. The grouping
basis (the cutoff point) was the median value of each
corresponding index.One-way ANOVA with Bonferroni’s
multiple-comparisons test was performed for qPCR and T cell
migration analysis using the GraphPad Prism (GraphPad Prism
8). P < 0.05 was considered statistically significant unless
otherwise stated.
RESULTS

Identification of Differentially Expressed
and TCE-Associated lncRNAs in HCC
The workflow of the entire study is summarized in Figure 1. In
total, the TCGA database contained 374 HCC cases with gene
expression data. All the 374 cases were used for the identification of
differentially expressed and TCE-associated lncRNAs. One of the
374 cases lacked prognostic information and thus was excluded for
model construction and survival analysis. Using the 374 HCCs and
50 cases of noncancerous liver tissues with expression profiling and
other information, two groups of differentially expressed genes
(DEGs) were identified from a total of 56493 human genes,
including lncRNA, other noncoding RNA, and protein coding
genes. One group contained 8191 genes that were differentially
expressed between HCCs and normal liver tissues, with 6438
upregulated and 1753 downregulated in HCC (Figure 1 and
Figure S1A). Among these 8191 DEGs, 2752 were lncRNAs
(Figure 1). The other group contained 4127 TCE-associated
genes that were differentially expressed between HCCs with
higher TCE scores and those with lower TCE scores, including
2914 upregulated and 1213 downregulated in the TCE-higher group
(Figure 1 and Figure S1B). Of the 4127 TCE-associated genes, 702
were lncRNAs (Figure 1). In total, 336 lncRNAs were both
differentially expressed and TCE-associated in HCC (Figure 2A
and Table S1).

Construction of the TCE-Associated
11 lncRNA Prognostic Signature
(11LNCPS) in HCC
Of the 374 HCC cases, one lacked prognostic information and thus
was excluded for model construction and survival analysis. The 373
HCCs with survival data were divided into the training (n = 187)
and validation (n = 186) cohorts. Each differentially expressed TCE-
associated lncRNA in the training cohort was subjected to the
univariate Cox regression analysis to evaluate its association with
patients’ overall survival (OS). Fifty-four lncRNAs were significantly
associated with prognosis (P < 0.001) (Table S1). The LASSO-Cox
regression analysis was then performed, in which tenfold cross-
validation was applied to overcome overfitting with an optimal l
value of 0.028393 selected (Figure 2B). A combination of 11
lncRNAs had non-zero LASSO coefficients and thus was the most
robust prognostic value (Figure 2C). This combination of 11
lncRNAs was named 11 lncRNA prognostic signature
(11LNCPS). The 11 lncRNAs included LINC01134, C2orf27A,
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LINC00501, AC104066.3, AC034229.4, CASC8, FAM225B,
AL451069.3, AL161669.3, AC116025.2 and LINC00632.

To determine the 11LNCPS score, the Cox multivariate
regression analysis was used to evaluate each of the 11 lncRNA’s
Frontiers in Immunology | www.frontiersin.org 638
contribution to the 11LNCPS (Table 1), which resulted in the
following formular for calculating the risk score (i.e., 11LNCPS
score) in an HCC: 11LNCPS score = 0.214579 × expression of
LINC01134 + 0.019508 × expression of C2orf27A + 1.045738 ×
A B

D

E

F

C

FIGURE 2 | Construction, validation, and evaluation of an 11-lncRNA signature predictive of prognosis (11LNCPS) in HCC patients. (A) Venn diagram showing the
overlapping lncRNAs (n = 336) between lncRNAs differentially expressed in HCC (n = 2752, red) and those associated with T cell exclusion (TCE, n = 702, blue). (B) Partial
likelihood deviance of varying numbers of prognostic lncRNAs revealed by the LASSO regression model. The grey lines represent the partial likelihood deviance ± standard
error (SE). The two vertical lines represent optimal values based on the minimum criteria and 1-SE criteria. The proper log (Lambda) value was chosen via the minimum criteria.
(C) Identification of 11 lncRNAs by the LASSO logistic regression model with non-zero coefficients. (D) The Kaplan–Meier analysis of overall survival (OS) in the training cohort
(left), validation cohort (center), and entire cohort (right) cohort of TCGA HCC patients with higher and lower 11LNCPS scores based on the median. The cutoff value of group
dividing was the median RS score. (E) Receiver operating characteristic (ROC) curves of the 11LNCPS model for evaluating the predictability of OS in 1, 2, and 3 years in the
training cohort (left), validation cohort (center), and entire cohort (right) cohort. (F) Comparison of ROC curves between the 11LNCPS model (red) and the previously
established 8-gene model (blue) and 4-gene model (green) for 1, 2, and 3 years OS in the validation cohort.
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expression of LINC00501 + 1.244493 × expression of AC104066.3 +
0.140677 × expression of AC034229.4 + 0.302498 × expression of
CASC8 + 7.231505 × expression of FAM225B + 0.089521 ×
expression of AL451069.3 + 0.226717 × expression of
AL161669.3 + 0.224378 × expression of AC116025.2 + 0.371662 ×
expression of LINC00632.

Construction of the TCE-Associated 11
lncRNA Prognostic Signature
(11LNCPS) in HCC
To test the validity and effectiveness of the 11LNCPS in HCC, we
calculated the 11LNCPS risk score for each case in the training,
validation, and entire cohorts; dividedHCCs in each cohort into the
higher- and lower-risk groups using the median 11LNCPS score;
and performed a series of analyses (Figures 2D–F and Figures
S2A–D). TheKaplan-Meier analysis demonstrated that theOS rate
was better in patients with lower 11LNCPS scores than those with
higher scores in each cohort (P ≤ 0.05, Figure 2D).

The area under ROC curve (AUC) for 1, 2, and 3 years
reached 0.67, 0.7, and 0.74, respectively, in the training cohort;
0.71, 0.69, and 0.64, respectively, in the validation cohort; and
0.68, 0.7, and 0.69, respectively, in the entire cohort (Figure 2E).
These AUC curves indicate a reasonable discrimination power of
the 11LNCPS in HCC. Additionally, the 11LNCPS’s C-index was
greater than 0.60 for 1, 2, and 3 years in each cohort, showing an
excellent predictive accuracy of the 11LNCPS (Figure S2A).
Furthermore, the calibration curve demonstrated good
consistency for 1, 2, and 3 years in each cohort (Figure S2B).

We also compared our 11LNCPS model with two reported
models, i.e., the 8-genemodel (34) and the 4-genemodel (35) in the
validation cohort. For each of the 3 time points (1, 2, and 3 years),
11LNCPS showed a higher AUC value (Figure 2F) and a higher C-
index (Figure S2C). Each model’s predicted error line overlapped
well with the reference line (Figure S2D), demonstrating a lower
predicted error rate for each of the 3 models.

The 11LNCPS Scores Nicely Correlate
With Immune Responses to HCC
We applied the xCell algorithm to the RNA-seq datasets of the
374 HCCs to determine the infiltration levels of 34 types of
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immune cells (Figure S3). The correlation between an immune
cell infiltration and patient OS was evaluated using the Kaplan-
Meier analysis (Figure 3A and Figure S4). Altered infiltrations
of 7 types of immune cells were significantly associated with OS
(Figure 3). Increased infiltrations of CD8+ naive, CD8+ Tcm,
CD8+ T, and pDC cells were associated with better OS, while
increased infiltrations of Th1, Th2, and pro B cells were
associated with a worse OS in HCC (Figure 3A).

Toevaluate the relationshipbetween the 11LNCPS and immune
responses to HCC, we divided all HCCs into higher and lower
11LNCPS scoresusing themedianandcompared thedistributionof
different immune cell types between the two groups (Figure 3B and
Figure S5). HCCs with higher 11LNCPS scores had decreased
infiltrations of CD8+ Tcm, macrophages, macrophages M2, aDCs,
and cDCs immune cells and increased infiltrations of Th1, Th2, pro
B, B, and basophils cells (Figure 3B). In the Kaplan-Meier analysis,
alterations in 4 of the 10 immune cell types were significantly
associatged with OS (Figure 3A). The 4 alterations included
decreased filtration of CD8+ Tcm cells and increased filtrations of
Th1, Th2, and pro B cells (Figures 3A, B).

TIDE is a computer program thatmodels the induction of T cell
dysfunction in tumors with higher infiltration of cytotoxic T cells
and the prevention of T cell infiltration in tumors with lower levels
of such cells (15). To further explore the impact of 11LNCPS
lncRNAs on immune responses in HCC, we compared HCCs
with higher and lower 11LNCPS scores for TCE and T cell
dysfunction levels which were analyzed using the TIDE program.
HCCs with higher 11LNCPS scores had significantly higher TCE
scores and lower T cell dysfunction levels than those with lower
11LNCPS scores (P ≤ 0.05) (Figures 3C, D).

Using the SubMap analysis, we comparedHCCs with higher and
lower11LNCPSscores tomalignancieswithandwithout responses to
immunotherapies from previous studies (41, 49). HCCs with higher
11LNCPS scores were significantly associatedwithmalignancies that
respond to a PDL1 inhibitor (Figure 3E, P < 0.05).

Functional Impact of the 11LNCPS on
HCC Cells
Differentially expressed genes were identified in HCCs with
higher and lower 11LNCPS scores (Figure S6). Such genes
TABLE 1 | Univariate and multivariate Cox regression analysis for overall survival in the training cohort of HCCs from TCGA (n = 187).

Variables Univariate analysis Multivariate analysis

HR P value HR.95L HR.95H HR P value HR.95L HR.95H

LINC01134 2.957099 0.001928 1.490262 5.867717 1.23934 0.667749 1.49026198 5.8677175
C2orf27A 1.713252 0.000121 1.301973 2.254449 1.0197 0.932463 1.30197261 2.25444941
LINC00501 5.639399 3.96E-05 2.47158 12.8674 2.845499 0.124401 2.47158045 12.8674025
AC104066.3 7.467815 0.003104 1.969993 28.30886 3.471175 0.139087 1.96999337 28.3088586
AC034229.4 1.903967 0.003121 1.242232 2.918208 1.151052 0.67269 1.24223153 2.91820769
CASC8 1.554184 0.00019 1.232892 1.959205 1.353236 0.043159 1.23289183 1.95920478
FAM225B 7935.61 0.008989 9.418916 6685897 1382.301 0.108321 9.41891643 6685896.61
AL451069.3 1.115362 0.009697 1.026798 1.211566 1.093651 0.101831 1.02679797 1.21156582
AL161669.3 1.250841 0.000155 1.113895 1.404623 1.254475 0.001296 1.1138952 1.40462346
AC116025.2 2.414076 0.000745 1.446456 4.028994 1.251545 0.526933 1.44645621 4.02899437
LINC00632 1.833973 0.005234 1.198149 2.807209 1.450143 0.153236 1.19814937 2.80720913
April 20
22 | Volume 13 | A
HR, hazard ratio; HR.95L, low 95% confidence interval of HR; HR.95H, high 95% confidence interval of HR. Significant P values (≤ 0.05) are in bold.
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were analyzed to evaluate the effect of 11LNCPS lncRNAs on
different biological processes and signaling pathways using the
GO, KEGG pathway, and GSEA analyses (Figure 4).

Many biological processes identified in the GO analysis are
involved in the cell cycle and DNA replication. These processes
included organelle fission, nuclear division, DNA-dependent DNA
replication, cell cycle checkpoint, chromosomal region, DNA
replication preinitiation complex, single-stranded DNA helicase
activity, ATPase activity, and DNA replication origin binding.
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In the KEGG pathway analysis, the top-ranked pathways were
involved in cell cycle and ligand-receptor interactions, including
cytokine and cytokine receptor-related signaling and the viral
proteins’ interactions with cytokines and cytokine receptors
(Figure 4B). They also included metabolism-associated
pathways such as retinol, drug, and xenobiotics (Figure 4B).

The GSEA analysis resulted in similar findings (Figure 4C).
Specifically, signaling pathways related to cell cycle and DNA
replication were significantly enriched in HCCs with higher
A

B

D EC

FIGURE 3 | The 11LNCPS scores predict immune responses in HCC. (A) Increased infiltrations of Th1, Th2, and pro B cells are associated with worse OS, while
that of CD8+ Tcm, CD8+ T, and pDC cells with better OS in HCC, as determined by the Kaplan-Meier analysis. (B) The infiltration level is different (P < 0.05)
between HCCs with higher 11LNCPS scores (red) and lower scores (blue) for 10 types of immune cells. (C, D) HCCs with higher 11LNCPS scores have higher TCE
scores (C) and lower T cell dysfunction scores (D). (E) Higher 11LNCPS scores are associated with better therapeutic responses to immune checkpoint inhibitors
(ICIs) in HCC patients. Nominal and Bonferroni corrected P values are shown for the correlation between 11LNCPS scores and ICI responses (CTAL4, PD1, and PD-
L1). noR, non-responder; R, responder. Grid colors indicate the correlation P values.
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11LNCPS scores, including G2M checkpoint, E2F targets, cell cycle,
and UV response containing DNA replication genes. Signaling
pathways related to metabolism, immune function, and cell death
were significantly suppressed inHCCs with higher 11LNCPS scores,
including fatty acid metabolism, bile acid metabolism, IL6-JAK-
STAT3 signaling, IFNa response, and apoptosis.

Therefore, the 11LNCPS appears to affect cell cycle signaling
pathways, DNA replication, immune function, and cell death.

LINC01134 and AC116025.2
Are Most Crucial Than Other
lncRNAs in the 11LNCPS
To rank the 11LNCPS’s 11 lncRNAs for their contributions to the
signature, we analyzed them for the association of expression change
withOSand immuneresponses inHCC. In theKaplan-Meier analysis,
the increased expression in 5 of the 11 lncRNAs was significantly
associated with worse OS, including LINC01134, AC104066.3,
AC034229.4,AC116025.2, andLINC00632 (Figure5A andFigureS7).

Based on the TCE scores revealed by the Spearman analysis,
increased expression in 8 of the 11 lncRNAs was significantly
associated with TCE (P < 0.05). These 8 lncRNAs and their
Spearman coefficient values were C2orf27A, 0.41; LINC01134, 0.33;
AC104066.3, 0.33; LINC00632, 0.31; AC034229.4, 0.29; AC116025.2,
0.26;FAM225B, 0.24; andLINC00501, 0.13, respectively (Figure 5B).

We further evaluate their effects on immune cell infiltration
for the 5 lncRNAs whose expression increase was significantly
associated with a worse OS.
Frontiers in Immunology | www.frontiersin.org 941
While expression change in LINC01134 or AC116025.2
significantly affected the infiltrations of 5 immune cell types,
expression change in other 11LNCPS lncRNAs altered 3 or 4
types (Figure 5C and Figure S8). Specifically, LINC01134 and
AC116025.2 upregulation was significantly associated with
increased infiltrations of Th1, Th2, and pro B immune cells
but decreased infiltrations of CD8+ naive T and CD8+ Tcm cells
(Figure 5C and Figures S8A, D). For the other 3 11LNCPS
lncRNAs associated with OS, AC034229.4 upregulation was
associated with increased infiltrations of Th1, Th2, and pro B
cells (Figure S8C); and higher levels of AC104066.3 and
LINC00632 were associated with increased infiltrations of Th2
and pro B cells and decreasing infiltration of CD8+ naive T cells
(Figures S8B, E).

Additionally, HCCs with higher LINC01134 or AC116025.2
expression had higher TCE scores and reduced T cell
dysfunction levels (Figures 5D, E).

Upregulation of LINC01134 and
AC116025.2 Could Impact Immune
Responses and Other Biological
Processes in HCC
Similar to the analyses of 11LNCPS for its potential impact on
biological processes and signaling pathways, we divided HCCs
with higher and lower expression levels of LINC01134 or
AC116025.2, identified differentially expressed genes, and
performed GO, KEGG pathway, and GSEA analyses (Figure S9).
A B

C

FIGURE 4 | Higher 11LNCPS scores are associated with several cancer hallmarks and immunological characteristics of HCC. (A, B)GO enrichment (A) and KEGG pathway (B)
analysis of differentially expressed genes (DEGs) between HCCs with higher and lower 11LNCPS scores. The heights of bars and sizes of dots represent the count of genes, while
the colors represent the adjusted P-value. (C) Significantly enriched cancer hallmarks in HCCs with higher 11LNCPS scores, as analyzed by the GSEA. Red and blue dots
indicate a pathway’s activation and suppression, respectively. The x-axis shows normalized enrichment scores (NES). All pathways with P values smaller than 0.05 are shown.
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The most enriched processes for LINC01134 in the GO
enrichment analysis included cell chemotaxis and chemokine
response related biological processes, chromosome related
molecular function, receptor-ligand activity, and chemokine
binding cellular component (Figure 6A, left).

In the KEGG pathway analysis, LINC01134 upregulation was
significantly associated with diverse immune-related signaling
pathways, including chemokines/cytokines and their receptors
and T and B cell receptors. Some cancer-associated pathways
Frontiers in Immunology | www.frontiersin.org 1042
were identified, including PI3K-Akt, Rap1, cell cycle, glioma, and
p53 (Figure 6B, left).

In the GSEA analysis, LINC01134 upregulation was
associated with the active cell cycle (e.g., E2F targets and G2M
checkpoint). It was also associated with cancer pathways (e.g.,
MYC targets) (Figure 6C, left). On the other hand, LINC01134
upregulation was inversely related to pathways of immune (IFNg
response, IFNa response, IL6-JAK-STAT3, IL2-STAT5),
metabolism (bile acid metabolism, fatty acid metabolism),
A

B

D E

C

FIGURE 5 | LINC01134 and AC116025.2 are the most crucial lncRNAs of the 11LNSPS. (A) An association of higher expression level with worse OS in HCC
patients was detected for 5 of the 11LNCPS lncRNAs, including LINC01134, AC104066.3, AC034229.4, AC116025.2, and LINC00632, as determined by the
Kaplan-Meier survival analysis. (B) Coefficient values for each lncRNA in the 11LNCPS, as indicated in colored grids and determined by the Spearman analysis.
Colored grids indicate those whole expression alterations were statistically significant. (C) Statistical evaluation of the correlation between the infiltration (indicated by
an xCell score) of a prognosis-associated immune cell type and expression levels of prognosis-associated lncRNAs in HCC. HCCs were divided into higher and
lower groups using its median expression level for each lncRNA, and xCell scores for each immune cell type were compared between the two groups by the
Wilcoxon test. The 11LNCPS was used as a control. -P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. (D, E) Higher LINC01134 (D) and AC116025.2 (E) levels are
associated with higher TCE scores and reduced T cell dysfunction levels in HCC, as analyzed by the TIDE algorithm.
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A

B

C

FIGURE 6 | Higher expression levels of LINC01134 and AC116025.2 are associated with several cancer hallmarks and immunological characteristics of HCC. (A, B) GO
enrichment (A) and KEGG pathway (B) analyses between HCCs with higher- and lower-levels of LINC01134 (left in each panel) and AC116025.2 (right in each panel). The
heights of bars and sizes of dots represent the count of genes, while the colors represent the adjusted P-value. (C) Significantly enriched cancer hallmarks in HCCs with higher
expression levels of LINC01134 (left) and AC116025.2 (right), as analyzed by the GSEA. The red and blue colors of dots indicate a pathway’s activation and suppression,
respectively. The x-axis shows normalized enrichment scores (NES). All pathways with P values smaller than 0.05 are shown.
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apoptosis, epithelial-mesenchymal transition, UV response,
TGFb, hypoxia, and p53 (Figure 6C, left).

These results support the role of LINC01134 in the cell cycle,
cell death, immunity, chemokine expression, and chemotaxis
in HCC.

In the GO analysis, AC116025.2-associated genes were
primarily enriched in cell division, catabolic metabolism,
chromosome and transporter complex, receptor and channel
activities, and oxidoreductase activity (Figure 6A, right).

In the KEGG analysis, AC116025.2-associated genes were
enriched for pathways in the cell cycle, DNA replication,
metabolism, and apoptosis (Figure 6B, right). Multiple metabolic
pathways were enriched, including carbon metabolism, retinol
metabolism, fatty acid metabolism, tryptophan metabolism, and
propanoate metabolism (Figure 6B, right).

In the GSEA, AC116025.2 upregulation was associated with
cell cycle activities and cancer-related pathways such as E2F
targets, G2M checkpoint, MYC targets, MTORC1 signaling,
and mitotic spindle (Figure 6C, right). On the other hand,
AC116025.2 upregulation was associated with reduced activities
of signaling pathways related to immune, metabolism, and cell
death, including IFNg response, IFNa response, inflammatory
response, bile acid metabolism, fatty acid metabolism,
apoptosis, UV response, epithelial-mesenchymal transition,
KRAS signaling, TGFb signaling, and estrogen response
(Figure 6C, right).
LINC01134 and AC116025.2 Upregulation
Correlates With the Expression of Some
Chemokines, Cytokines, and ICP Ligands
Immune responses often involve cytokines, chemokines, and
their receptors. Therefore, we investigated whether expression
changes in LINC01134 and AC116025.2 are associated with
chemokines, cytokines, and ICP ligands in HCC. In the
scRNA-seq data, CD8+ cells could be annotated (Figure
S10A). We thus identified the chemokines, cytokines, and ICP
ligands synthesized by HCC cells and could mediate CD8+ T
cells’ recruitment using the CellChat algorithm (26).

In total, 22 cytokines and chemokines were identified,
including CXCL12, CCL5, CXCL16, CCL16, CXCL10, CCL20,
IL7, CCL15, CXCL2, IL15, CCL3, CCL4, CXCL8, CXCL9,
CXCL11, CXCL1, CCL28, CCL2, CXCL13, CXCL3, CXCL6, and
CCL22 (Figure 7A, left). We also identified 26 ICP ligands that
could bind to their ICPs, including HLA-A, HLA-B, HLA-C,
HLA-E, CD70, PVR, HLA-F, LGALS9, CEACAM1, HLA-DRA,
ICOSLG, HLA-DMA, HLA-DPB1, HLA-DOA, HLA-DRB1,
CD86 , TNFSF15 , HLA-DQB1 , HLA-DPA1 , HLA-DMB ,
TNFSF4, HLA-DQA1, CD48, HLA-DOB, RAET1E, and
RAET1G (Figure 7A, right). Using the Spearman correlation
analysis, we found that LINC01134 upregulation in HCC was
negatively correlated with the following genes (RS > 0, P ≤ 0.05):
CXCL1, CXCL2, CXCL3, HLA-C, and HLA-E and was positively
correlated with LGALS9 (RS < 0, P ≤ 0.05) (Figure 7B). For
AC116025.2, its upregulation was positively associated with
CXCL1 , CXCL8 , CXCL20 , and TNFSF4 (RS > 0, P ≤
0.05) (Figure 7C).
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Upregulation of LINC01134 and
AC116025.2 in HCC Cell Lines and the
Impact of LINC01134 on CXCL2 and
CXCL3 Expression and T Cell Migration
To test the impact of LINC01134 and AC116025.2 on HCC, we
measured their expression in two HCC cell lines using qRT-PCR
and found that both LINC01134 and AC116025.2 were
significantly upregulated in HepG2 and Huh-7 HCC cell lines
compared to normal liver cell lines QSG-7701 and LO2
(Figure 8A). We also knocked down LINC01134 expression in
the two HCC cell lines and measured the expression of three
cytokines whose expression correlated with LINC01134 in HCC
samples. LINC01134 knockdown significantly increased the
expression of CXCL2 and CXCL3 (Figure 8B). Consistent with
the upregulation of CXCL2 and CXCL3 by LINC01134
knockdown, conditioned medium from HCC cells with
LINC01134 knockdown significantly increased the migration of
Jurkat T cells (Figure 8C). These findings support the role of
LINC01134 in HCC.
DISCUSSION

It is increasingly apparent that lncRNAs play crucial roles in the
development and progression of cancers, including HCC, and
TCE is a common mechanism for cancer cells to evade immune
surveillance. In this study, we applied the recently developed
TIDE program to available sequencing datasets of HCC to
identify TCE-associated lncRNAs in HCC. Combing such
lncRNAs with those differentially expressed in HCCs and
subjecting them to additional statistical analyses, we developed
an expression-based gene signature that predicts patient
prognosis in HCC (Figures 1, 2; Table 1). This signature
consisted of 11 lncRNAs and was thus named 11 lncRNA
prognostic signature (11LNCPS).

The 11LNCPS model appears to be robust. For example, the
11LNCPS score predicted patient OS in the training cohort of
HCC and the validation and entire cohorts (Figure 2D). In
addition, the discrimination power of the 11LNCPS was evident
as the values of the area under ROC curves (AUC) for 1, 2, and 3
years were quite good in the training, validation, and entire
cohorts of HCC (Figure 2E). Furthermore, the model’s C-index,
which reflects predictive accuracy, was excellent, as indicated by
values greater than 0.60 for 1, 2, and 3 years in each cohort
(Figure S1C). The calibration curve demonstrated a good
consistency for 1, 2, and 3 years in each cohort (Figure S1D).

The 11LNCPS model also appears to be more robust than two
previously developed mRNAmodels, including the 8-gene model
(34) and the 4-gene model (35). The 11LNCPS’s AUC values
were equal or higher than those for the other two models in the
validation cohort (Figure 2F), and so were the C-index values
(Figure S1E).

Significantly, the 11LNCPS scores appear to predict the status
of immune responses to HCC cells. Specifically, higher 11LNCPS
scores were significantly associated with increased infiltrations of
Th1, Th2, pro B, B, and basophils immune cells and decreased
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FIGURE 7 | Expression of LINC01134 and AC116025.2 is associated with the expression of some cytokines, chemokines, and immune checkpoint (ICP) ligands in
HCC. (A) The chord diagram shows heterotypic signal transduction between HCC cells (purple) and CD8+ T cells (green), with purple arrows pointing from cytokines
and chemokines (left) or ICP ligands (right) in HCC cells to their respective receptors in CD8+ T cells. (B, C) Expression of LINC01134 (B) and AC116025.2 (C) is
associated with the expression of some cytokines and chemokines (left) or ICP ligands (right), as determined by the Spearman analysis. Grid colors and gradient
color bars indicate Spearman coefficient values, with white color indicating a lack of statistical significance. Cytokines, chemokines, and ICP ligands with a positive
association with LINC01134 or AC116025.2 expression are marked by red, while those with a negative correlation are marked by blue.
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infiltrations of CD8+ Tcm, macrophages, M2 macrophage,
aDCs, and cDCs immune cells in HCC (Figure 3B and Figure
S4). Of them, decreased infiltration of CD8+ Tcm and increased
infiltrations of Th1, Th2, and pro B cells were significantly
correlated with worse patient OS in the same cohort of HCCs
(Figure 3A). Additionally, higher 11LNCPS scores were
associated with increased TCE (Figure 3C) and reduced T cell
dysfunction (Figure 3D). Furthermore, HCCs with higher
11LNCPS scores significantly corresponded to malignancies
that respond to PDL1 inhibition in immunotherapeutic
studies, as analyzed by the SubMap program (Figure 3E). It is
thus likely that HCCs with higher 11LNCPS scores respond
better to immunotherapies than those with lower scores.

The 11LNCPS model was developed from differentially
expressed and TCE-associated lncRNAs in HCC, so the impact
of 11LNCPS scores on immune response and patient survival
could be due to TCE to a greater extent. Many publications have
reported the association of TCE with patient prognosis, tumor
immune microenvironment, and treatment resistance (1, 11–15).

Immune cell infiltration to the tumor microenvironment
determines the sensitivity of cancer cells to immunotherapy
(50–53). In this regard, the 11LNCPS could predict the
infiltration of cancer-related immune cells, as 11LNCPS scores
Frontiers in Immunology | www.frontiersin.org 1446
were significantly associated with infiltration levels of 10 types of
immune cells, and infiltration alterations in 7 of the 10 were
associated with patient survival in HCC (Figures 3A, B). One
major type is CD8+ T cells, whose infiltration was reduced in
HCCs with higher 11LNCPS scores (Figure 3B). Reduced
infiltration of CD8+ cells also occurred more frequently in
HCCs with the upregulation of LINC01134 or AC116025.2
(Figure 5C). More importantly, reduced infiltration of CD8+ T
cells, including naïve T and Tcm cells, negatively impacted
patient survival in HCC (Figure 3A). Such an inverse
correlation between the 11LNCPS score and the infiltration of
CD8+ T cells further indicates the relevance of the 11LNCPS in
HCC because CD8+ T cells play important roles in the killing of
cancer cells. For example, CD8+ cytotoxic T lymphocytes (CTLs)
kill cancer cells (54, 55); and CD8+ T cells, in total or in the form
of naïve or memory cells, also play critically important roles in
host defenses against tumor cells (38, 56). An inverse correlation
between reduced CD8+ T cells and worse patient survival has
been reported, although naïve T and Tcm cells were not
distinguished in these studies (51, 54, 57–62).

Similar to CD8+ T cells, decreased infiltration of plasmacytoid
dendritic cells (pDCs) was significantly associated with worse
patient survival in HCC (Figure 3A), and a decrease in the
A
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FIGURE 8 | Expression and functional tests of key member lncRNAs of the 11LNCPS in HCC cell lines. (A) Expression of LINC01134 and AC116025.2 in normal
liver cell lines QSG-7701 and LO2 and HCC cell lines HepG2 and Huh-7, as detected by qRT-PCR. Data were normalized by b-actin mRNA levels and standardized
by the control group levels. (B) Knockdown of LINC01134 in HepG2 (left) and Huh-7 (right) HCC cells increased the expression of CXCL2 and CXCL3, as detected
by qRT-PCR. (C) Knockdown of LINC01134 in HepG2 (left) and Huh-7 (right) HCC cells increased the migration of Jurkat T cells, as detected by the transwell assay.
ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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infiltration of conventional DCs (cDCs) and activated DCs (aDCs)
was more frequent in HCCs with higher 11LNCPS scores
(Figure 3B). DCs play important roles in immune responses
and tumor development. As antigen-presenting cells, pDCs
function in adaptive immune responses to different antigens,
including tumor antigens, and thus impact tumor development
(63–65). Upon TRAIL-dependent mechanism and stimulation
from other immune cells, activated pDCs indeed exert an anti-
tumor function (57, 58, 66–68).

Opposing to the infiltrations of CD8+ cells and DCs,
increased infiltration of CD4+ T helper cells, including Th1
and Th2 cells, and B cell progenitors (pro B) were significantly
associated with worse patient survival and higher 11LNCPS
scores in HCC (Figures 3A, B). Th1 and Th2 cells play
important immunoregulatory roles in adaptive immunity,
including the activation of B cells and cytotoxic T cells (69,
70). but their role in HCC development is not well understood
(71). It is reported that a global Th1/Th2-like cytokine shift, i.e.,
an increase in Th2 cytokines but a decrease in Th1 cytokines, is
associated with HCC metastasis (72), implicating Th1 and Th2
cells in HCC progression. We noticed that the association of Th1
cells with HCC prognosis is inconsistent between different
studies (73). The role of pro B cells in HCC is not well
understood either.

Immune cells’ infiltration into a tumor involves heterotypic
signaling between tumor cells and immune cells. Such signaling
is often mediated by chemokines, cytokines, and ICP ligands.
Several such molecules could play roles in the 11LNCPS-
associated modulation of the immune microenvironment in
HCC. Taking advantage of the recently developed CellChat
algorithm (26) and the availability of single-cell RNA
sequencing (scRNA-seq) data of HCC (23), we were able to
annotate CD8+ T cells. Subsequently, we identified the
chemokines, cytokines, and ICP ligands that could mediate the
recruitment of CD8+ T cells (Figures S8A, B). They included 22
chemokines and cytokines (Figure 7A, left) and 26 ICP ligands
(Figure 7A, right). The expression of LINC01134 was negatively
correlated with that of CXCL1, CXCL2, CXCL3, HLA-C, and
HLA-E but positively correlated with that of LGALS9
(Figure 7B). Meanwhile, AC116025.2 expression was positively
correlated with CXCL1, CXCL8, CXCL20, and TNFSF4
(Figure 7C). We could not annotate other types of 11LNCPS
associated immune cells (e.g., Th1, Th2, etc.).

The 11 lncRNAs could impact multiple biological processes and
signaling pathways in HCC. When HCCs with higher 11LNCPS
scores were compared to those with lower scores, many processes
and pathways were significantly enriched, particularly those of
DNA replication, cell cycle, metabolism, signaling between
cytokines and their receptors, and other ligand-receptor signaling
pathways (Figure 4). Signaling pathways related to immune
function and apoptosis were also significantly suppressed in
HCCs with higher 11LNCPS scores, including the IL6-JAK-
STAT3 signaling and IFNa response (Figure 4C).

Of the 11 lncRNAs in the 11LNCPS, LINC01134 and
AC116025.2 appear more crucial than the others. For example,
LINC01134 and AC116025.2 were among the 5 11LNCPS
Frontiers in Immunology | www.frontiersin.org 1547
lncRNAs whose upregulation was significantly associated with
worse patient OS in HCC (Figure 5A). In addition, the
association of an upregulation with infiltration alteration was
detected in more types of immune cells for LINC01134 or
AC116025.2 than other lncRNAs (Figures 5B, C) .
Furthermore, HCCs with higher LINC01134 or AC116025.2
levels had significantly higher levels of TCE and lower scores
of T cell dysfunction (Figures 5D, E). Increased TCE levels and
reduced T cell dysfunction scores are associated with patient
prognosis (37). LncRNA LINC01134 has been well implicated in
HCC, as it undergoes upregulation, promotes cell proliferation
and invasion, suppresses apoptosis, and induces oxaliplatin
resistance in HCC (74–77). Therefore, whereas LINC01134 is
more crucial in the 11LNCPS, there are hardly any published
studies on AC116025.2 in any types of cancers. The upregulation
of both LINC01134 and AC116025.2 also occurs in HCC cell
lines, as detected by qRT-PCR in HepG2 and Huh-7 HCC
cells (Figure 7D).

LINC01134 upregulation in HCC modulates multiple
biological processes and signaling pathways (Figure 6). Of
particular interest is that many of which are involved in
immune functions, as LINC01134 upregulation altered receptor-
ligand activities, chemokine binding cellular component,
chemokine signaling, cytokine and cytokine receptor, T and B
cell receptor signaling, etc. (Figure 6). LINC01134 upregulation
also affects other cancer-related processes and pathways,
including chromosome related molecular function, cell cycle
and related pathways (E2F targets, G2M checkpoint, etc.),
cancer-related pathways (PI3K-Akt, Rap1, MYC, etc.), cell
death and related pathways (IFNg response, IFNa response,
etc.), IL6-JAK-STAT3 signaling, IL2- STAT5 signaling,
epithelial-mesenchymal transition, UV response, TGFb
signaling, hypoxia, and P53 pathway (Figure 6). These findings
further indicate that LINC01134 impacts HCC via complicated
signaling pathways, particularly those involved in immune
functions. Consistent with these findings, LINC01134
knockdown in HCC cell lines significantly increased the
expression of chemokines CXCL2 and CXCL3 (Figure 8B), and
conditioned medium from HCC cells with LINC01134
knockdown increased the migration of T cells (Figure 8C).

Many AC116025-associated processes and pathways overlap
with those of LINC01134, including receptor activity, cell cycle,
metabolism, and cell death and related signaling pathways, E2F
targets, G2M checkpoint, MYC, UV response, epithelial-
mesenchymal transition, IFNg response, IFNa response, UV
response, epithelial-mesenchymal transition, bile acid metabolism,
fatty acid metabolism, TGF-b signaling, etc. AC116025.2
upregulation is less potent than LINC01134 upregulation in its
effects on immune-related processes and pathways. It did not
significantly affect chemokine binding cellular component,
chemokine signaling, cytokine and cytokine receptor, T and B cell
receptor signaling, etc. (Figure 6).

Of note is that AC116025.2 upregulation affects more
metabolism-related pathways than LNC001134 upregulation. In
the KEGG pathway analysis, while 7 of the top 18 pathways
affected by AC116025.2 upregulation were metabolism-related,
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none of the top 14 affected by LNC001134 were (Figures 6B, D),
even though they both affected bile acid metabolism and fatty
acid metabolism in the GSEA enrichment assay (Figures 6C, F).
Tumor cell metabolism reprograms immune cell infiltration (78,
79), so the association of AC116025.2 with alterations in multiple
metabolic pathways could suggest how AC116025.2 might
modulate T cell exclusion.

In summary, after identifying differentially expressed and
TCE-associated lncRNAs in HCC, we developed and validated
a robust lncRNA-based gene signature named 11LNCPS for 11-
lncRNA prognosis signature. The 11LNCPS predicts not only
prognosis but also immune cells’ responses to tumor cells,
including decreased infiltrations of CD8+ T cells, macrophages,
and DCs, as well as increased infiltrations of Th1, Th2, pro B
cells. Of the 11 lncRNAs in the 11LNCPS, LINC01134 and
AC116025.2 appear more crucial than the others. Expression
alterations in the 11LNCPS lncRNAs, particularly the
upregulation of LINC01134 and AC116025.2, modulate
multiple signaling pathways, including immune responses and
cell metabolism. The 11LNCPS could help predict immune
responses in HCC and provide candidate therapeutic targets
for the treatment of HCC.
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Background: Patients with lung adenocarcinoma (LUAD) exhibit significant heterogeneity
in therapeutic responses and overall survival (OS). In recent years, accumulating research
has uncovered the critical roles of hypoxia in a variety of solid tumors, but its role in LUAD
is not currently fully elucidated. This study aims to discover novel insights into the
mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers by
exploring the potential association between hypoxia and LUAD.

Methods: Four machine learning approaches were implemented to screen out potential
hypoxia-related genes for the prognosis of LUAD based on gene expression profile of
LUAD samples obtained from The Cancer Genome Atlas (TCGA), then validated by six
cohorts of validation datasets. The risk score derived from the hypoxia-related genes was
proven to be an independent factor by using the univariate and multivariate Cox
regression analyses and Kaplan–Meier survival analyses. Hypoxia-related mechanisms
based on tumor mutational burden (TMB), the immune activity, and therapeutic value were
also performed to adequately dig deeper into the clinical value of hypoxia-related genes.
Finally, the expression level of hypoxia genes was validated at protein level and clinical
samples from LUAD patients at transcript levels.

Results: All patients in TCGA and GEO-LUAD group were distinctly stratified into low-
and high-risk groups based on the risk score. Survival analyses demonstrated that our risk
org June 2022 | Volume 13 | Article 906889151
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score could serve as a powerful and independent risk factor for OS, and the nomogram
also exhibited high accuracy. LUAD patients in high-risk group presented worse OS, lower
TMB, and lower immune activity. We found that the model is highly sensitive to immune
features. Moreover, we revealed that the hypoxia-related genes had potential therapeutic
value for LUAD patients based on the drug sensitivity and chemotherapeutic response
prediction. The protein and gene expression levels of 10 selected hypoxia gene also
showed significant difference between LUAD tumors tissues and normal tissues. The
validation experiment showed that the gene transcript levels of most of their genes were
consistent with the levels of their translated proteins.

Conclusions: Our study might contribute to the optimization of risk stratification for
survival and personalized management of LUAD patients by using the hypoxia genes,
which will provide a valuable resource that will guide both mechanistic and therapeutic
implications of the hypoxia genes in LUAD cancers.
Keywords: lung adenocarcinoma, hypoxia gene, immune landscape, overall survival, prognosis, therapeutic implications
INTRODUCTION

Lung cancer histology is determined according to the WHO
classification based primarily on the light microscopic
appearance of the malignant cells (adenocarcinoma, squamous
carcinoma, large cell carcinomas, and small cell carcinoma) (1).
Among lung cancers, lung adenocarcinoma (LUAD) is the most
commonly diagnosed subtype, accounts for 40% of all diagnosed
lung cancers, and has an average 5-year survival rate of only 15%
(2, 3). The incidence of LUAD has increased significantly over
the past two decades, especially among women (4). As a highly
aggressive disease with significant heterogeneous prognosis
across individuals, the molecular mechanisms underlying
LUAD progression remain elusive (5). The International
Union Against Cancer (UICC) tumor–node–metastasis (TNM)
staging system was widely used for LUAD prognosis assessment
(6). However, TNM-based clinical assessment method has so far
proved inadequate in predicting clinical outcomes and treatment
decision. Therefore, it has become one of the hot spots in clinical
research to find more valuable prognosis indexes of LUAD.

Hypoxia, or lack of oxygen, is a feature of most solid tumors
(7). Studies have shown that hypoxia-inducible factors (HIFs) are
highly expressed in osteosarcoma stem cells (OSCs), and a
significant decrease in stem cell proliferation and migratory
activity was found after selective inhibition of HIF-1a or HIF-
2a (8). During tumor progression, hypoxia develops when tumor
growth exceeds the ability of available vasculature to supply
tumor cells with oxygen and nutrients (9). Tumor hypoxia is one
of the worst prognosis factors for survival (10). Multiple studies
have demonstrated that hypoxia condition is an important cause
of promot ing the pro l i f e ra t ion and angiogenes i s ,
chemoradiotherapy resistance of cancer cells, migration,
invasion, and metastatic growth at distant sites, which are
significant obstacles to treatment and cause significant adverse
prognostic ramifications (11–13). In LUAD, the upregulation of
multiple hypoxic-related genes has been reported to have a
significant prognostic value, such as HIF-1a (14), NLUCAT1
org 252
(15), TRB3 (16), GBE1 (17), and CCL28 (18), highlighting the
potential therapeutic value of targeting hypoxic-related genes,
and the prognostic assessment and treatment decision. In view of
the crucial role of hypoxic in the LUAD, hypoxic-related genes
may be an effective way to predict the prognosis and therapeutic
benefit for LUAD patients, individually.

In the present study, a range of machine learning and
bioinformatic approaches were combined and used to excavate
and screen robust candidate genes to explore in depth the
potential correlation between hypoxia and LUAD, followed by
the establishment and verification of an individualized hypoxia-
derived signatures (Figure 1). Our findings provide further
insight into the role of hypoxic-related genes in LUAD and
provide a comprehensive demonstration that they are promising
prognostic markers and therapeutic targets for LUAD.
METHODS

Patient Samples
In March 2022, three LUAD tissues and their paired non-
tumorous lung tissues were collected for quantitative real-time
PCR (qRT-PCR) detection from the Ren Ji Hospital. All
specimens were evaluated for histological features by
pathologists according to criteria. The investigators obtained
approval from the Ethics Committee of the Ren Ji Hospital,
affiliated Shanghai Jiao Tong University School of Medicine to
conduct the study (Ethics Approval Number KY2021-220-B). All
procedures were carried out in accordance with the Declaration
of Helsinki and relevant Chinese policies.

RNA Isolation and Quantitative
Real-Time PCR
Trizol reagent (Spark Jade, Qingdao China) was used to extract
the nucleic acids from three pairs of LUAD tissues and their
paired normal tissues according to the manufacturer’s
June 2022 | Volume 13 | Article 906889
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instructions. Then, qRT-PCR reactions were performed with
2xHQ SYBR qPCR mix (ZOMANBIO, Beijing, China) by using
the 7500 fast real-time PCR system ((Applied Biosystems, USA).
The primers of 10 selected hypoxia genes in this study are
outlined in Table 1.

Date of Acquisition
Gene expression profiles (fragments per kilobase million, FPKM
normalized) and the corresponding clinical parameters of 572
primary LUAD patients and healthy people were downloaded
from The Cancer Genome Atlas–Lung Adenocarcinoma
(TCGA-LUAD) (https://portal.gdc.cancer.gov/) and were used
as the training set. Datasets GSE13213 from the microarray
datasets generated by Agilent-014850 Whole Human Genome
Microarray 4x44K G4112F (Probe Name version) were
downloaded from Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc) and was used as
external independent validation set, including 117 LUAD
patients. In addition, five datasets, namely, GSE72094,
GSE30219, GSE31210, GSE37745, and GSE81089 from the
Frontiers in Immunology | www.frontiersin.org 353
same chip platform (Affymetrix Human Genome U133 Plus
2.0 Array) were integrated into a new cohort and were used as
the other validation set, namely, GEO-II LUAD group, which
contained a total of 904 I–IV LUAD patients (I, 557; II, 178; III,
99; IV, 70) meeting the criterion. Batch effects from the five
independent datasets above were corrected by using the ComBat
function (sva R package).

Construction of Gene Signature by
Integrating Four Machine
Learning Algorithms
A total of 572 transcriptome data from TCGA were divided into
513 LUAD tumors group and 59 normal tissues group. The R
package DESeq2 was applied to perform the differential
expression analysis of hypoxia-related gene between tumors
group and normal tissues group, followed by plotting the
volcano plots for differentially expressed hypoxia-related gene
using R package ggplot2. The hypoxia-related differentially
expressed genes (DEGs) were defined as |log2 fold change| >
0.05, p < 0.05. Then, dimensionality reduction was further
FIGURE 1 | Flowchart for developing an individualized hypoxia-associated gene-based prognostic signature for LUAD.
June 2022 | Volume 13 | Article 906889
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performed on differentially expressed hypoxia-related gene in
LUAD tumors based on survival data by using the weighted
random forest and sliding windows sequential forward feature
selection (SWSFS) method, which was realized by R package
ranger, a weighted version of random forest. The SWSFS method
was used to identify the top important hypoxia-related DEGs by
increasing DEGs one by one to the random forest model by the
order of variable importance score (VIS). In the RF model, the
ordinate (left) represents the out of bagging (OOB)’ error rate,
which measured the performance of different gene combinations
consisting of a specific number of hypoxia-related DEGs. In the
RF model having the lowest error rate, the current hypoxia-
related DEGs combination was screened out for further analysis.

To enhance the accuracy and reliability of the established
HAGS, we make further screening of hypoxia-related DEGs by
training the XGBoost model using the xgboost package in R
language. The XGBoost model was used to analyze the
contribution of each hypoxia-related DEGs to survival state in
513 LUAD tumors group; the top-ranked hypoxia-related DEGs
with the VIS value of 0.01above were screened out for further
analysis. After screening by two methods mentioned above, we
used the intersection of RF model and the XGBoost model to
identify candidate genes, followed by employing the support
vector machine–recursive feature elimination (SVM–RFE)
algorithms (19). SVM–RFE has been widely used to rank
features and select the most significant features subset for
classification. In this study, the hypoxia-related DEGs subset
with the best accuracy for classifying survival status was chosen
to be the HAGS by the mean of fivefold cross-validation in the
SVM predictive model.

Finally, the HAGS subset screened by three models above was
determined by Gaussian mixture model (GMM), which is a very
feasible approach and has a good hierarchical agglomerative
clustering performance (20). Logistic regression analysis was
used to construct combined models of different gene sets
combinations to predict survival status in LUAD patients. The
area under the curves (AUCs) were calculated by constructing
the receiver operating characteristic (ROC) curves to assess the
predictive value of all logistic regression models. Then, the GMM
was used to cluster gene sets according to the AUC values of all
different gene sets combinations. The gene sets combinations
with the highest AUC will be selected and determined as the final
HAGS subset to establish HAGS. Ultimately, the risk score of
Frontiers in Immunology | www.frontiersin.org 454
HAGS was determined through the optimal parameter of logistic

regression analysis and was calculated by the formula: risk score

=
Z n

i
CiGi, where Ci represents the coefficient of gene i, and Gi is

the normalized expression value of gene i.
Validation of the HAGS
The risk score formula above was used to calculate risk scores for
each LUAD patient. Then, the median score of the LUAD
individuals in the training and external validation groups was
used as a risk cutoff value to classify all LUAD individuals into
the high- and low-risk groups. The survival status, hypoxia-
associated gene expression, and overall survival (OS) time was
compared between the two subgroups via Kaplan–Meier
analysis, respectively. The gene expression levels were
normalized by log transformation for each gene. Principal
component analysis (PCA) was performed to observe the
clustering conditions of LUAD individuals in different risk
levels, visualized by the “scatterplot3d” R package.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses
Next, the co-expression genes of differential hypoxia-associated
gene between high- and low-risk LUAD patients were chosen to
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses, which was conducted by using
the clusterProfiler package. Enrichment significance thresholds
were set at p < 0.05 and false discovery rate (FDR) <0.05. GO
analysis was used to map all DEGs to GO terms in the GO
database (http://www.geneontology.org/) to analyze the main
functions of the DEGs. The KEGG pathway database (www.
genome.jp/kegg/) is a synthetic database, which was used to
analyze the biochemical pathways of the DEGs of interest.

Independent Prognostic Factors Analysis
of Risk Score and Construction of a
Nomogram Prediction Model
After the extraction of clinical information (age, grade, and
stage) of LUAD patients in the TCGA and GSE 13213 cohort,
univariate and multivariate prognostic analyses were used to
TABLE 1 | The primers of 10 selected hypoxia genes.

Gene name Primer sequences

Forward Primer Reverse Primer

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
PGK1 TGGACGTTAAAGGGAAGCGG GCTCATAAGGACTACCGACTTGG
SLC2A5 GAGGCTGACGCTTGTGCTT CCACGTTGTACCCATACTGGA
TPI1 CTCATCGGCACTCTGAACG GCGAAGTCGATATAGGCAGTAGG
B4GALNT2 CACTGAACACCCTTGCTGATG CAGCTTCCGGTCACTGGTAG
TPST2 AGTCCTCGGTCTACCTGTCG GGCGTACATCACCTCGATGG
FBP1 CGCGCACCTCTATGGCATT TTCTTCTGACACGAGAACACAC
KLF7 AGACATGCCTTGAATTGGAACG GGGGTCTAAGCGACGGAAG
SDC4 GGACCTCCTAGAAGGCCGATA AGGGCCGATCATGGAGTCTT
PKP1 TTTGCCGTCGGACCAAAAGAT GAACCTCGATTGGAGTGGCTC
June
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demonstrate whether the risk score could be an independent
prognostic factor. Based on the multivariate Cox regression
analysis for risk score and other clinicopathological factors by
the rms R package, a clinically adaptable nomogram prediction
model was established to predict the survival probability of 513
LUAD individuals in 1, 3, 5, and 8 years from the TCGA group.
Then, the calibration analysis and time-dependent ROC (tROC)
curve were used to evaluate the prognostic value of nomogram
for LUAD patients.

Correlation Analyses Between HAGS and
the Immune Activity
The single-sample gene set enrichment analysis (ssGSEA), an
application and extension of Gene Set Enrichment Analysis
(GSEA) algorithm, calculates separate enrichment scores for
each pairing of a sample and gene set. To explore the
relationship between the HAGS and the immune activity, we
uploaded the gene expression matrix data of LUAD patients
from TCGA. For 513 LUAD patients, the infiltration levels of 16
types of immune cells and the activity of 13 immune-related
pathways were quantified using enrichment scores calculated by
ssGSEA algorithm in R package gsva. Then, the Spearman
correlation analyses were performed to evaluate the correlation
between the levels of risk score and the infiltration levels of
immune cells and immune-related pathways by R packages,
“ggcor.” Similarly, the Spearman correlation of infiltration
levels for different immune cells and immune-related pathways
were also performed to analysis possible relationships
between them.

In addition, based on expression profiling data retrieved from
the TCGA database, the ssGSEA was used to quantify the 29
infiltrating immune cells types and immune-related pathways of
513 LUAD in the training set, which was divided into 256 high-
risk score groups and 257 low-risk score groups based on the risk
score. Then, statistical difference between the two groups was
compared by the Wilcoxon test. The mutation status of TP53,
KRAS, and epidermal growth factor receptor (EGFR), which was
calculated by package “maftools,” was also displayed to gain
insights into the tumor mutation burden between low- and high-
risk groups stratified by the risk score. The clinical features
(gender and survival) and TNM stage of patients between the
two groups were also illustrated as an annotation.

Analysis of the Tumor Mutation Status
in the Low and High HAGS Risk
Score Groups
The tumor mutational burden (TMB) is defined as the total
number of somatic/acquired mutations per coding area of a
tumor genome (Mut/Mb) (21) and calculated as the number of
non-synonymous protein coding variants divided by the total
sequenced genome length. To inquire about the association
between the TMB and HAGS risk, we next compared the
tumor mutation status between the low and high HAGS risk
score groups. First, the RNA-seq data of 513 LUAD samples in
the TCGA group was annotated by the annotation files
(gencode.v22.annotation.gene.probeMap). Then, the mutational
Frontiers in Immunology | www.frontiersin.org 555
data of TCGA samples was identified and matched against the
somatic point mutation database (Genomic Data Commons
Data Portal, https://portal.gdc.cancer.gov/), which was used to
check for the presence of mutation in large populations of
control individuals. Significantly mutated genes (p < 0.05)
between the low and high HAGS risk groups and the
interaction effect of gene mutations were analyzed by maftools;
only genes mutating more than 50 times in at least one group will
be considered. The statistical significance test for the proportion
of mutation was evaluated by one-sided z-test and two-sided
Chi-square, and p < 0.05 was considered as significant.

Correlation Analysis Between Hypoxia-
Associated Gene Expression and
Drug Sensitivity
The drug sensitivity data used in our study were downloaded from
the CellMiner database (https://discover.nci.nih.gov/cellminer/
home.do). The CellMiner database includes rapid access to and
comparison of gene expression levels of 360 microRNAs, 22,379
genes, and 20,503 compounds incorporating 102 Food and Drug
Administration (FDA)-approved drugs (22, 23). First, the gene
expression and drug sensitivity data from the same sample were
downloaded. Then, the drug sensitivity data were filtered after
clinical trials verification and FDA standard certification.
Eventually, we combined the 10 hypoxia-associated gene
expressions with the retained drug sensitivity data to perform
the Spearman correlation analysis. Higher Spearman Cor value
indicates a stronger correlation.

Chemotherapeutic Response Prediction
Based on the largest publicly available pharmacogenomics
database [the Genomics of Drug Sensitivity in Cancer (GDSC),
https://www.cancerrxgene.org/], we further predicted the
chemotherapeutic response for each patient with high and low
risk in the TCGA group to evaluate the value of hypoxia-derived
signatures for LUAD treatment in the clinic. The half-maximal
inhibitory concentration (IC50) of 28 antitumor drugs
recommended by The American Joint Committee on Cancer
(AJCC) guidelines for cancer treatment were calculated using the
R package “pRRophetic,” which could simultaneously construct
prediction models using transcriptome and drug sensitivity data
derived from GDSC and apply it to the transcriptome information
of 513 LUAD samples to generate predicted drug IC50s for each
sample. Finally, the difference in the IC50s of 30 common
antitumor drugs between the high- and low-risk groups was
compared using the Wilcoxon signed-rank test. The prediction
process was implemented by R package “pRRophetic” where the
samples’ half-maximal inhibitory concentration (IC50) was
estimated by ridge regression, and the prediction accuracy was
evaluated by 10-fold cross-validation based on the GDSC training
set (24).

External Validation of Proteins and
Transcription Levels of the HAGS
Human Protein Atlas antibody-based protein expression data are
freely available online from the Human Protein Atlas (HPA)
June 2022 | Volume 13 | Article 906889
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(www.proteinatlas.org) (25), a comprehensive database that
provides the information on the tissue and cell distribution of
26,000 human proteins. The protein expressions of 10 hypoxia-
associated genes (TPST2, SDC4, KLF7, SLC2A5, TPI1, FBP1,
B4GALNT2, PGK1, PKP1, and GAPDH) in normal and LUAD
tumor tissues were investigated based on the results of specific
antibodies obtained from HPA. The human model diagrams
illustrating the organ biodistribution of 10 genes in the human
body were generated using gganatogram, an R package for
modular visualization of anatograms and tissues based
on ggplot2.
RESULTS

Construction and Validation of HAGS
by Integrating Four Machine
Learning Algorithms
To improve the reliability, validity, and accuracy of HAGS, we
integrated four different machine learning algorithms to select
the most reliable hypoxia-associated genes set. First, the hypoxia-
related DEGs between tumors group and normal tissues group
were illustrated with a volcano plot (Figure 2A), which was
derived from “DESeq”-based differential gene expression
analysis. Second, supervised random forest (RF) models were
used to identify the top important hypoxia-related DEGs from
the selected hypoxia-related DEGs (Figure 2B). Using RF–OOB
algorithm, the subset of DEGs with the minimal value of OOB
Frontiers in Immunology | www.frontiersin.org 656
error was selected to be the optimal feature. Meanwhile, the top-
ranked hypoxia-related DEGs were also generated by using the
XGBoost algorithm based on the contribution (gain) of each
hypoxia-related DEG to survival state (Figure 2C). Third, the
intersection of the random forest model and the XGBoost model
were analyzed by SVM–RFE algorithms to further screen gene
set with the best accuracy for classifying survival status of LUAD
patients (Figures 2D, E). Finally, from all different gene sets
combinations selected through models above, the GMM was
used to determine the final hypoxia-associated genes signature
subset (Figure 2F), including TPST2, SDC4, KLF7, SLC2A5,
TPI1, FBP1, B4GALNT2, PGK1, PKP1, and GAPDH. Based on
the expression of these candidate genes, the risk score of HAGS
for each patient in TCGA and GEO groups was calculated by the

formula: Risk score =
Z n

i
CiGi, where Ci represents the

coefficient of gene i, and Gi is the normalized expression value
of gene i.

After each patient received a risk score according to the
personalized formula of HAGS above, we divided patients in
the TCGA training group into low‐risk (n = 257) and high-risk
groups (n = 256) by using the median risk score as the threshold
value. As show in Figure 3A, according to the median, all
patients in the TCGA-LUAD group were distinctly stratified
into low- and high-risk groups with the increasing risk score. By
displaying the risk scores, survival status, and the expression of
10 hypoxia-associated genes in a dot plot or heat map, we found
that patients with high-risk scores had higher expression of
PKP1, B4GALNT2, KLF7, GAPDH, TPI1, and PKP1. Kaplan–
A B

D E F

C

FIGURE 2 | Four machine learning algorithms were integrated to establish the HAGS. (A) The DEGs between the tumors group and normal tissues group were
illustrated with a volcano plot. (B) Supervised random forest models were used to identify the top important hypoxia-related DEGs. (C) Top 39 features selected
using XGBoost and the corresponding variable importance score. x-Axis indicates the importance score, which is the relative number of a variable that is used to
distribute the data; y-axis indicates the top 39 weighted variables. (D) The intersection of the random forest model and the XGBoost model. (E) The SVM–RFE
algorithms were used to further screen gene set. (F) The GMM was used to determine the final HAGS.
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Meier survival curves presented a significantly higher number of
deaths in the high-risk group than in the low-risk group (p <
0.0001, Figure 3B), suggesting that the newly developed HAGS
was able to effectively predict survival. Moreover, PCA analysis
revealed that the individuals in different risk levels could be
distinctly distributed into two sections based on the risk score
(Figure 3C). Similarly, patients in GEO were also divided into
low‐risk (n = 59) and high-risk groups (n = 58), and the results of
Kaplan–Meier analysis and PCA were consistent with the results
of the TCGA-LUAD group mentioned above (Figures 3D–F).

Enrichment Analyses of GO and
KEGG Pathways
To evaluate the functional and biological implications of
differentially expressed genes (DEGs) and further recognize
important functional phenotypes of these genes between high-
and low-risk LUAD patients, GO and KEGG pathways
enrichment analyses of DEGs were performed, respectively.
GO described DEGs in terms of their related biological
processes, cellular components, and molecular function. Result
from GO enrichment analyses illustrated that the DEGs were
enriched in 30 GO terms, including 10 terms in biological
processes, 10 terms in cellular component, and 10 terms in
molecular function (Figure 4A). Additionally, 10 significant
KEGG pathways were identified (Figure 4B), including one
most significant types of pathways, namely, arginine and
Frontiers in Immunology | www.frontiersin.org 757
proline metabolism, proved to be an important metabolism
pathway for lung cancer (26).

Evaluation of Risk Score as an
Independent Prognostic Factor for LUAD
and Construction of a Nomogram for OS
Prediction in LUAD Patients
After the extraction of clinical information (age, grade, and
stage) of LUAD patients in the TCGA and GEO cohort,
univariate and multivariate Cox regression analyses were
performed to demonstrate whether the risk score derived from
the HAGS model could serve as an independent prognostic
factor for OS in LUAD patients. In the univariate Cox, the risk
score was significantly associated with OS in both the training
cohort from TCGA group and external validation dataset from
GEO (p < 0.001, Figures 5A, B). The multivariate Cox regression
analyses also indicated that the risk score was also proven to be
an independent factor predicting OS in both TCGA and GEO
cohorts (p < 0.001, Figures 5C, D).

Next, in order to acquire a more accurate quantitative method
for disease progression and survival probability of LUAD patient,
we constructed a nomogram to estimate the 1-, 3-, 5-, and 8-year
survival probabilities of 513 patients with LUAD by integrating
the risk score and different clinicopathological factors, including
sex, age, risk score, tumor stage, T stage (tumor size), and N stage
(lymph node metastasis) (Figure 5E). The calibration plots of the
A B

D E F

C

FIGURE 3 | The risk score plots, OS status plots, and heatmaps of these 10 hypoxia-associated genes in the TCGA and GEO groups. (A) Risk score distribution,
OS status, and the expression of 10 hypoxia-associated genes of LUAD patients in TCGA group. Red means high risk, blue means low risk. (B) Kaplan–Meier plot
found that the HAGS divided patients into high- and low-risk groups with significant difference in OS. (C) Based on PCA analysis, the 513 LUAD patients in TCGA
were distributed into two sections according to the risk score. (D–F) Similar results were also found in the GEO group. OS, overall survival; PCA, principal
component analysis.
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nomogram for 1-, 3-, 5-, and 8-year survival (Figure 5F)
indicated that the OS estimated by the nomogram was
extremely closely to the actual OS. Time-dependent ROC
(tROC) curves of 5-year OS showed that the nomogram
exhibited the most stable and powerful ability for predicting
survival, with an average AUC above 0.7, much better than other
clinicopathological factors (Figure 5G). These results further
support the powerful discriminative ability of the HAGS in
conjunction with clinicopathological factors for predicting
survival in LUAD.
Frontiers in Immunology | www.frontiersin.org 858
Association Between HAGS Risk Score
and the Clinical Characteristics of LUAD
Given the diversity and complexity of different LUAD cases in
clinical samples, we further investigated the distribution of the
HAGS risk score in LUAD patients with different gender, age,
survival status, and TNM stage. We found that there is no
difference in LUAD patients with different TNM stage and
gender in TCGA group (Figures 6A–E), only a significant
difference was detected between patients with different survival
status (p < 0.05, Figure 6F). In the GEO-II LUAD group, the
A

B

FIGURE 4 | GO and KEGG pathway enrichment analyses of DEGs between high- and low-risk LUAD patients. p-value: purple, high (bottom); yellow, low (top).
The size of the dots represents the number of DEGs. (A) GO analysis results. (B) KEGG pathway enrichment analyses results. p.adjust, adjusted p-value.
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elderly (>60), male, and dead populations all had significantly
higher risk score than those in the younger (≤60), female, and
alive populations, respectively (p < 0.05, Figures 6G–I).

Then, in order to explore whether the 10-gene signature could
be widely and accurately used to determine the survival
conditions in different clinical characteristics, the Kaplan–
Frontiers in Immunology | www.frontiersin.org 959
Meier curves analysis was conducted in different subgroups
with different age (≤60 and >60), gender (male and female),
and stage (I–IV) from the GEO-II LUAD group. The results
indicated that individuals in the low HAGS risk group had
significantly better OS than individuals in the high HAGS risk
group for all subgroups (p < 0.001, Figures 7A–H). These results
A B

D

E F

G

C

FIGURE 5 | Evaluation of risk score as an independent prognostic factor and construction of nomogram for predicting overall survival in LUAD patients. (A–D) Results of
the univariate and multivariate Cox regression analyses regarding OS in the TCGA and GEO. (E) Construction of the nomogram was based on sex, age, risk score, tumor
stage, T stage, and N stage in the TCGA cohort. (F) Calibration plot analysis indicated that the nomogram showed a high accuracy of survival prediction. (G) tROC
analysis demonstrated that the nomogram had the most powerful capacity for survival prediction by comparing with other clinicopathological factors.
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also demonstrated that the hypoxia-associated signatures had
reliable ability for predicting the OS of different subgroups,
regardless of the difference in age, gender, and stage.

Correlation of TMB With Hypoxia-
Associated Signatures in LUAD
We also checked for the somatic mutation in the Genomic Data
Commons (GDC) data portal of the National Cancer Institute
(https://portal.gdc.cancer.gov/) to investigate HAGS risk-related
mechanisms based on TMB in LUAD. A comparison of
cumulative mutant frequency between samples of the low- and
the high-HAGS risk groups showed that less somatic mutations
were observed in the high-HAGS risk group, including non-
synonymous and synonymous mutations (Figures 8A–C).
Concurrently, maftools analysis results showed that 22 mutated
more frequently in LUAD patients in the low HAGS-risk group,
including RYR2, KEAP1, PCDH11X, CSMD3, ADAMTS12, SI,
CACNA1E, ASTN1, LRP1B, RYR3, APOB, XIRP2, TNR, ZFHX4,
Frontiers in Immunology | www.frontiersin.org 1060
PCLO, TP53, SPTA1, FAT3, CDH10, DNAH9, TTN, and FLG
(Figure 8D). Moreover, significant co-occurrences were observed
among these mutated genes (Figure 8E).

Relationship Between HAGS and the
Immune Activity
Correlation analyses between HAGS and the immune activity
revealed that the risk scores in 513 LUAD patients were positively
correlated with the levels of the APC co-inhibition, APC co-
stimulation, B cells, CCR, CD8+ T cells, checkpoint, cytolytic
activity, DCs, HLA, inflammation promotion, macrophages, major
histocompatibility complex (MHC) class I, neutrophils,
parainflammation, pDCs, T-cell co-inhibition, T-cell co-stimulation,
T-helper cells, Tfh,Th1 cells, tumor-infiltrated lymphocyte (TIL), and
Treg (p < 0.01, Figure 9). The Spearman correlation of different
immune cells revealed that the expression levels of checkpoint was
positively correlated with the levels of infiltrating CCR, T-cell co-
inhibition, andTIL, respectively; theexpression levelsof inflammation
A B

D E F

G IH

C

FIGURE 6 | Difference analysis of the distribution of HAGS risk score in different TNM stage (A–D), age (G), gender (E, H), and survival status (F, I). Statistical
difference of three or more groups was compared by the Kruskal–Wallis test and that of two groups was compared by the Wilcoxon test.
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promotion was positively correlated with the levels of CD8+ T cells;
TILwas positively correlatedwith theT-cell co-stimulation (r≥ 0.90).
Those genes with strong correlations may also be functionally
correlated, and future studies about hypoxia could incorporate them
into existing knowledge.

Based on the ssGSEA,we further compared the enrichment scores
of 16 types of immune cells and the activity of 13 immune-related
pathwaysbetweenthe low-andhigh-riskgroups intheTCGAcohorts.
Frontiers in Immunology | www.frontiersin.org 1161
The comparison of the immune activity level between high- and low-
risk groups in the TCGAdataset revealed that the high-risk subgroup
generally showed lower activity of immune-related pathways and had
lower levels of infiltration of immune cells, such as type I interferon
(IFN) response, Th2 cells, cytolytic activity, MHC class I, T-cell co-
stimulation, Th1 cells, CD8 T cells, parainflammation, Treg,
checkpoint, inflammation promotion, and APC co-inhibition, than
thoseinthelow-riskgroup(Figure10,p<0.05),whereasonlythelevels
A B

D E

C

FIGURE 8 | Hypoxia-associated signatures were related to TMB. (A–C) Association between all mutation counts, synonymous mutation counts, non-synonymous
mutation counts, and HAGS risk score and their distribution in the low and the high HAGS risk groups. (D) Forest plot of genes mutating differentially between the
low and the high HAGS risk groups. (E) Interaction effect of genes mutating differentially between the low and the high HAGS risk groups. *p < 0.05; **p < 0.01; ***p
< 0.001; ****p < 0.0001.
A B D

E F G IH

C

FIGURE 7 | Kaplan–Meier survival analyses of the HAGS risk score in different subgroups. (A–I) LUAD patients in the low-risk group showed a more promising OS
than the high-risk group in all subgroups (p < 0.001).
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of type II IFN response, B cells, macrophages, and mast cells in the
high-risk group were significantly higher than those in the low-risk
group, suggesting that the HAGS presented an excellent consistency
with the immune activity.

Drug Sensitivity Analysis of Hypoxia-
Associated Gene
Based on the analysis of the correlation between 10 hypoxia-
associated genes and drug sensitivity, significant correlation was
found between the expression levels of the 10 genes and drug
sensitivity (p < 0.001, Figure 11). The higher the expression of
FBP1, the stronger the drug sensitivity of fulvestrant, raloxifene,
and LEE-011 (p < 0.001). The higher the expression of SDC4, the
weaker the drug sensitivity of oxaliplatin, ifosfamide, carmustine,
estramustine, etoposide, epirubicin, and nilotinib (p < 0.001).
SLC2A5 expression had a significant positive relationship with
the drug sensitivity of megestrol acetate and nandrolone
phenpropio (p < 0.001). The higher the expression of PKP1
and TPST2, the stronger the drug sensitivity of calusterone and
abiraterone, respectively (p < 0.001). The expression of KLF7 had
Frontiers in Immunology | www.frontiersin.org 1262
a significant positive relationship with the sensitivity of
bleomycin and lenvatinib (p < 0.001).

Comparison of the Sensitivity to
Anticancer Drugs Between LUAD
Patients With Different Hypoxia-
Associated Risk Scores
To further explore the value of hypoxia-associated gene sets for
therapy in LUAD patient, we estimate the IC50s of the 28
common anticancer drugs for each sample through the
expression matrix of hypoxia-associated gene in each LUAD
sample from TCGA group. A comparison between the high- and
low-risk groups found that the IC50s of docetaxel and
camptothecin (Campt), two FDA-approved chemotherapeutics
for cancer treatment, were higher in patients with lower HAGS
risk score, which suggests that increased HAGS risk was
accompanied by increased sensitivity to docetaxel and Campt
(Figure 12). In other words, these two drugs may have the
therapeutic potential to treat LUAD patient with HAGS
high risk.
FIGURE 9 | Correlation between HAGS and immune cells infiltration. The correlation between risk score and specific immune cells is shown with solid lines; the line
color is related to the p-value. The square colors represent Pearson correlation coefficients between different immune cells; only the Pearson r ≥0.85 is displayed.
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Validation of the Expression of the HAGS
To evaluate differences in hypoxia-associated gene expression
at the protein level, images of immunohistochemistry (IHC)
staining of protein expression in normal tissues and LUAD
tumors tissues were downloaded from the HPA and analyzed.
As showcased in Figure 13, the protein expression level of five
of these genes (GAPDH , PGK1 , SLC2A5 , TPI1 , and
B4GALNT2) was prominently higher in LUAD cancers when
compared to the normal tissue (*p < 0.05, Figure 13).
Otherwise, four of these genes (TPST2, FBP1, KLF7, and
SDC4) were expressed at a low level, and no difference in
expression levels of PKP1were noted between normal tissues
and LUAD tumors tissues.

Validation Experiment of Clinical Samples
From LUAD Patients at the Gene
Transcript Levels
Eventually, the expression level of 10 hypoxia-associated genes
was verified at transcript levels. It is heartening to note that the
expression level of all 10 hypoxia genes showed significant
differences at least two paired samples of three LUAD tissues
and the paired non-tumorous lung tissues (Figure 14).
Frontiers in Immunology | www.frontiersin.org 1363
DISCUSSION

As the most commonly diagnosed histological type of lung
cancer, LUAD severely affects human health and possesses
both extremely high morbidity and mortality in clinic (27).
LUAD is the leading cause of cancer death worldwide, and its
incidence is increasing worldwide (28). Notably, even at an early
stage, LUAD patients also hold a high metastasis rate and present
different prognosis (29). Studies investigating LUAD-associated
genes may improve the prognosis, diagnosis, treatment, and
prognosis assessment of LUAD patients. In the last few
decades, a multitude of genes related to hypoxia have been
identified and studied in various cancers (30–32). However,
although numerous studies have explored the relationship
between hypoxia and tumor formation, the deep-seated
relationship between hypoxia-associated genes set and
prognosis of LUAD patients remains quite limited.

In the present study, we developed a new HAGS (HAGS) by
integrating four machine learning algorithms to predict clinical
outcomes and therapeutic responses in LUAD patients, followed
by performing internal and external validation for its
performance in TCGA and GEO groups, respectively. Our
results demonstrate that HAGS, as an independent prognostic
A

B C

FIGURE 10 | Landscape of immune cell infiltrations in the low and high TME risk groups. (A) The heatmap shows the normalized scores of immune cell infiltrations.
Blue represents cells with lower infiltration, and red represents cells with higher infiltration. (B, C) The statistical difference between the two groups was compared by
the Wilcoxon test. *p < 0.05; **p < 0.01; ns, not significant. In the lower panel, mutation status of TP53, KRAS, and EGFR; gender, survival;
TNM stage; and stage were annotated.
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factor, had a considerable effect on predicting the OS of LUAD
patients. LUAD patients in the high HAGS risk group presented
worse OS, lower TMB, and lower immune activity. Moreover, we
revealed that the hypoxia-associated gene had a strong statistical
association with the drug sensitivity of multiple FDA-approved
drugs and had potential therapeutic value for LUAD patients
based on the chemotherapeutic response prediction. Finally,
validation studies on the expression levels of 10 hypoxia-
associated genes were further analyzed to comprehensively
confirm the reliability of selected gene set.

Unlike most previous studies that only use one single machine
learning approach, our study established HAGS by integrating four
different machine learning approaches to maximally improve the
accuracy of our model. Finally, 10 hypoxia-associated genes (TPST2,
SDC4, KLF7, SLC2A5, TPI1, FBP1, B4GALNT2, PGK1, PKP1, and
Frontiers in Immunology | www.frontiersin.org 1464
GAPDH) were identified and combined as HAGS. Among these 10
hypoxia-associated genes, only PGK1 and GAPDH are well-known
hypoxia-regulated genes; the hypoxia-based function of PGK1 and
GAPDH have been adequately validated in lots of studies (33–36).
Tyrosylprotein sulfotransferase 1 and 2 (TPST-1 and TPST-2) are
both responsible for the catalysis of tyrosine sulfation of chemokine
receptors, such as CXCR4 (Refs 93, 95, 96, 97, 98, 99) (37), it has
previously been demonstrated that the TPST 1 expression was
significantly associated with lymph node metastasis and the TNM
stage in patients with lung cancer and may be a negative prognostic
biomarker of lung cancer (38, 39). However, the studies depicting the
function of TPST2 in cancer are extremely rare, so that the screen of
this gene in our study indicates that its in-depth investigation in
LUAD or other cancers should be performed to elucidate its
underlying mechanisms. Sulfate proteoglycan syndecan-4 (SDC4)
FIGURE 11 | Correlation between HAGS and drug sensitivity analysis.
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is an important member of Syndecans (SDCs) family, which is a
family of transmembrane heparan sulfate proteoglycans (HSPGs)
ubiquitously expressed on cell surfaces in mammals and plays a
critical role in cell adhesion, migration, proliferation, differentiation,
and angiogenesis through independent and growth factor mediated
signaling (40). It has already been demonstrated that the SDC4
exhibited multiple functions in tumor pathogenesis and progression
(41), but the in-depth knowledge about SDC4 is still very limited. For
example, recently, Yang et al. for the first time identified SDC4 as a
direct anti-hepatocellular carcinoma (HCC) cellular target of bufalin
in inhibiting cell proliferation, invasion, and angiogenesis (42). These
indicated that the functional importance of SDC4 in tumors,
especially its roles in hypoxia, still needs more studies. Krüppel-
like factor 7 (KLF7) is a member of the KLF family of zinc finger
transcription factors and has antioncogenic functions in multiple
cancer, such as human oral squamous cell carcinoma (OSCC) (43),
glioma (44), gastric cancer (45), endometrial cancer (46), ovarian
cancer (47), and non−small cell lung cancer (48). There is evidence
that KLF7 and hypoxia work together to influence cell apoptosis, but
it is not yet fully understood how they will act together to affect
tumor development and progression (49). SLC2A5, which promotes
lung adenocarcinoma cell growth and metastasis by enhancing
fructose utilization, was proven to be overexpressed in LUAD, and
the expression was associated with prognosis (50). The result of IHC
staining from the HPA also demonstrated that the protein
expression of SLC2A5 was significantly overexpressed in LUAD
tumors tissues compared to the normal tissues (Figure 13C).
However, the regulation of SLC2A5 in lung cancer has not been
fully elucidated, especially when hypoxia is involved (50). TPI1
Frontiers in Immunology | www.frontiersin.org 1565
(triosephosphate isomerase 1) was overexpressed in various types
of cancers and might be induced by hypoxia in pan-cancer (51).
FBP1 (fructose-1,6-bisphosphatase) is known as a rate-limiting
enzyme in gluconeogenesis, which is an important process in cell
energy metabolism. The association between FBP1 expression status
and hypoxia had just been found in recent years, and relevant
research is very limited (52). Tumor-hypoxia-related studies that are
directly relevant to B4GALNT2 and PKP1 in hypoxia are few and
far between.

Previous studies did not investigate these 10 hypoxia-related
genes as a signature to predict the clinical outcomes of LUAD
patients. A majority of these 10 hypoxia-related genes are involved
in the complex regulation of progression in LUAD or other cancers.
Considering the complexity of the genetic network, tumor
progression is more likely to depend on the systematical
interaction network based on a group of critical hypoxia-related
genes rather than a single one. Therefore, the HAGS, that is, a
comprehensive gene set combining 10 hypoxia-related genes,
exhibited a powerful predictive prognostic capacity for LUAD
patients. Univariate and multivariate Cox regression analyses both
indicated that the HAGS was an independent prognostic factor in
LUAD patients, more importantly, independently of age, gender,
and stage (Figure 7). In addition, the independent and robust
prognostic performance of HAGSwas also confirmed by integrating
the risk score and clinicopathological factors to construct a
nomogram, which could be used to monitor the clinical outcomes
of LUAD patients (Figure 5).

Recently, TMB is an emerging biomarker and has proved to be a
potential and effective biomarker for independently predicting
A B

FIGURE 12 | Estimated drug sensitivity in LUAD patients with high and low HAGS risk. (A) The 28 common anticancer drugs may have therapeutic potential for
LUAD patient. (B) The difference in the IC50s of 30 common antitumor drugs between the high- and low-risk groups was compared by using the Wilcoxon signed-
rank test. **p < 0.01; ns, not significant.
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response to immunotherapy (53), but the effect and the prognostic
role of the TMB on outcomes varied dramatically across cancer
types (54, 55). Emerging pieces of evidence showed that higher
TMB tends to form more new antigens, making tumors more
immunogenic, improving clinical response to immunotherapy and
prolonging the overall survival (56–58). This is in perfect agreement
with our result that patients in the low-HAGS risk group showed
more somatic mutations (Figures 8A–C), strong immune activity
(Figure 10), and better OS (Figures 3B, E). However, there were
also studies showing the opposite, finding that high TMB was
associated with worse prognosis (55, 59).
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Recently, it was found that the drug responses and effect
were influenced by hypoxia (60). Consistently, we found that
the expression of certain hypoxia-associated genes had a
significant positive relationship with the sensitivity of
multiple drugs (Figure 11). In addition, we found a
significant difference in IC50s of two anticancer drugs
(docetaxel and camptothecin) between the high- and low-
risk groups (Figure 12) by taking an integrative approach to
analyzing the expression matrix of hypoxia-associated gene
and the IC50s of the 28 common anticancer drugs in each
LUAD sample. These signs suggested that hypoxia may exert a
A B D E
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C

FIGURE 13 | Comparison of hypoxia-associated gene expression at the protein level. From top to bottom, panels (A–J) represent biodistribution, IHC staining of
protein expression in normal tissues and LUAD tumors tissues, and comparison of expression levels between normal tissues and LUAD tumors tissues for each
gene, respectively. (A) GAPDH. (B) PGK1. (C) SLC2A5. (D) TPI1. (E) B4GALNT2. (F) TPST2. (G) FBP1, (H) KLF7, (I) SDC4. (J) PKP1. ***p < 0.001; ns, not
significant, p > 0.05.
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significant influence on drug sensitivity through the
modulation of hypoxia-related pathways or genes, and more
attention is require to study the effects of hypoxia on
drug therapies.
CONCLUSION

In summary, we developed a new hypoxia-associated gene
signature (HAGS) by integrating four machine learning
algorithms to predict clinical outcomes and therapeutic
responses in LUAD patients, followed by performing
internal and external validation for its performance in the
TCGA and GEO groups , respect ive ly . Our resul ts
demonstrate that HAGS, as an independent prognostic
factor, had a considerable effect on predicting the OS of
LUAD patients. LUAD patients in the high HAGS risk group
presented worse OS, lower TMB, and lower immune activity.
Moreover, we revealed that the hypoxia-associated gene had
a strong statistical association with the drug sensitivity of
multiple FDA-approved drugs and had potential therapeutic
value for LUAD patients based on the chemotherapeutic
response prediction. Finally, to comprehensively confirm
the reliability of selected genes, validation studies on the
expression levels of 10 hypoxia-associated genes were further
analyzed at protein level and transcript levels.
Frontiers in Immunology | www.frontiersin.org 1767
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FIGURE 14 | The expression level of 10 hypoxia-associated genes were verified at transcript levels by using three paired samples of LUAD tissues and the paired
non-tumorous lung tissues. Sample1, Sample2, and Sample3 were collected from three different LUAD patients; each sample was used to detect 10 hypoxia-
associated genes simultaneously. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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Several studies have found that pathological imbalance of alterative splicing (AS) events is
associated with cancer susceptibility. carcinogenicity. Nevertheless, the relationship
between heritable variation in AS events and carcinogenicity has not been extensively
explored. Here, we downloaded AS event signatures, transcriptome profiles, and
matched clinical information from The Cancer Genome Atlas (TCGA) database,
identified the prognostic AS-related events via conducting the univariate Cox regression
algorism. Subsequently, the prognostic AS-related events were further reduced by the
least absolute shrinkage and selection operator (LASSO) logistic regression model, and
employed for constructing the risk model. Single-sample (ssGSEA), ESTIMATE, and the
CIBERSORT algorithms were conducted to evaluate tumor microenvironment status.
CCK8, cell culture scratch, transwell invasion assays and flow cytometry were conducted
to confirm the reliability of the model. We found 2751 prognostic-related AS events, and
constructed a risk model with seven prognostic-related AS events. Compared with high-
risk score patients, the overall survival rate of the patients with low-risk score was
remarkably longer. Besides, we further found that risk score was also closely related to
alterations in immune cell infiltration and immunotherapeutic molecules, indicating its
potential as an observation of immune infiltration and clinical response to immunotherapy.
In addition, the downstream target gene (DYM) could be a promising prognostic factor for
bladder cancer. Our investigation provided an indispensable reference for ulteriorly
exploring the role of AS events in the tumor microenvironment and immunotherapy
efficiency, and rendered personalized prognosis monitoring for bladder cancer.

Keywords: tumor microenvironment, immunotherapy targets, prognostic, bladder cancer; alternative splicing
INTRODUCTION

Bladder carcinoma is a common type of genitourinary system tumor worldwide, and carries a
significant burden, responsible for an estimated 570000 new cases and 210 000 deaths annually (1).
As a heterogeneous tumor, bladder carcinoma mainly progresses along two “trajectories”, and each
“trajectory” has distinct effects on its for prognosis. The one “trajectories” was non-muscle invasive
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bladder cancer which was recurrent noninvasive tumors
managed chronically, while muscle-invasive bladder cancers
are progressive-stage or aggressive diseases that require multi-
strategy treatment (2). Although remarkable breakthroughs in
investigating the underlying biological mechanisms of bladder
cancer have basically improved the diagnosis and treatment of
this disease, the histology of bladder cancer is highly variable,
potentially representing different molecular subtypes, which adds
to the complexity of management (2, 3). Increasing number of
articles have elaborated that genetic subtype may associated with
distinct clinical responses to biotherapies, chemotherapies, and
survival outcomes, confirming their clinical relevance (4–6).
However, owing to high levels of inter-observer variability,
judging these subtypes may be subjective, leading the human-bias
for diagnosis, therapeutic benefits, and prognosis. Thus, there is
imperative to understand the underlying mechanisms of genetic
subtypes from multi-aspects and identify predictable biomarkers.

The tumor immunemicroenvironment (TIME) includes an array
of immunocytes, including macrophages, T cells, neutrophiles, DC
cells and NK cells. Increasing research demonstrated that the
immunocytes in the tumor microenvironment interact with
therapeutic drug, thereby affecting the clinical response of patients
to treatment. These immunocytes could therefore act as targets to
promote the overall survival of patients with bladder cancer (7–9).
Recently, immunotherapy has yielded encouraging results in
numerous malignancies and has received extensive attention (10).
Bladder cancer has also been successfully treated by several
immunotherapeutic strategies, such as Bacillus Calmette–Guerin
(BCG) intravesical instillation or PD‐L1antibody treatment.
Nevertheless, the mechanisms of BCG‐induced tumor-specific
immunity remain obscure, and only 25% of progressive bladder
cancers have remarkable clinical respond to immunotherapy
treatment (11, 12). Therefore, the most effective strategy for
accurately predicting the response of bladder cancer to
immunotherapy or cancer progression may be based on the
strategy of molecular risk distribution, which can help identify
bladder cancer patients online through specific molecular
characteristics, improve the prognosis accuracy, and optimize the
benefit of immunotherapy.

Exact gene is incised via Alternative splicing (AS) to yield a
quantity of special messenger RNA (mRNA) (13). It is known
that AS includes seven types: mutually exclusive exons (ME),
exon skip (ES), alternate terminator (AT), alternate promoter
(AP), retained intron (RI), alternate donor site (AD), and
alternate acceptor site (AA) (14). During tumor development,
AS process changes abnormally, and alterations in critical tumor
genes can play a pivotal role in oncogenesis, tumor progression,
metastasis, and therapeutic response (15–18). Besides, some
splicing factors have been confirmed to play a crucial role in
the regulation of AS events (19). Notably, anomalous alternation
of pivotal splicing factors can lead to the formation of
carcinogenic splicing isoforms (20–22). heretofore, several
studies have focused on exploring the function of AS-related
mutation in bladder cancer (23–25).Recently, some articles have
focused on the AS-based prognostic model of bladder cancer (26,
27). However, the correlation between prognostic-related AS
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events and immunotherapy/TIME is still unclear. Therefore,
we conduct in-depth investigation of aberrant AS events to
demonstrate the profiles of tumor microenvironment and the
potential biological mechanisms of oncogenesis, further
optimizing diagnosis, prognosis, and clinical strategies.

In our research, we outlined the AS-pattern and ascertain that
AS events were closely related to the TIME and clinical outcome
via comprehensive bioinformatic analysis based the TCGA-
BLCA cohort. Next, we revealed downstream target genes
(DYM) for prognostic-related AS events. The latent role of
DYM in bladder cancer has also been explored. At the same
time, we confirmed that DYM is associated with alteration of
TIME, and silencing DYM can inhibit the cell proliferation,
migration, invasion ability, and promote cell apoptosis.
MATERIAL AND METHODS

Acquisition of Multi-Omics Data Related to
Bladder Cancer
In the and identify Cancer Genome Atlas (TCGA) SpliceSeq
database, the alternative splicing events, including ME, ES, AT,
AP, RI, AD, AA, were analyzed and summarized using the R
package “Upset.” The characteristics of AS events were
interpreted using the percent spliced in (PSI), which is an
index that can qualify variable splicing. AS event annotation:
gene symbol, splicing type and splicing ID number. The
transcriptome FPKM information and adjusted clinical data
were acquired from the TCGA database. Patients’ selection
criteria: pathological result was transitional cell papilloma and
carcinoma. Exclusion criteria: 1. Patients with less than 10 days
of survival. 2. Patients without corresponding alternative splicing
data. A total of 409 patients diagnosed with transitional cell
papilloma and carcinoma, 13 patients were excluded by
exclusion criteria, 396 patients were left. Deleting patients with
missing clinical features when performing correlation analysis
among risk score and clinicopathological profiles. The clinical
data on patient’s immunotherapy were collected from TCIA
(https://www.tcia.at/home).

Construction and Validation of AS Events-
Related Prognostic Signatures
The clinical information and corresponding AS events of the
samples were matched according to the splicing ID number.
Then, the prognostic-related AS events were identified via
conducting univariate Cox regression algorism, which are
displayed as a volcano map and Upset diagram. In addition,
the top 20 AS events are presented in the quadrangle plot.

To construct a valuable prognostic model, LASSO regression
analysis was employed to lessen the dimension of prognostic-
related AS events and to select candidate features with prominent
prognostic value. On this basis, multivariate Cox model was
conducted to determine the final prognostic-related AS events,
which were utilized to propose the prognostic model in this
study. The formula was calculated as follows:
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Risk score = coefficient 1 � PSI AS event 1 + coefficient 2 

�  PSI AS event 2  + ⋯  + coefficient n 

� PSI AS event n :

The patients were divided into high- and low-risk subgroups
by determining the median risk score. Then the K-M survival
curve was portrayed to estimate the difference of clinical
outcome between two subgroups. Besides, the receiver
operating characteristic (ROC) model depicts the clinical
predictive performance of two subgroups. The forest was
plotted to determine whether the risk score can independently
predict the clinical outcome of patients.

To comprehensively assess the prognosis of each patient with
bladder cancer, nomogram model which included the risk score,
tumor stage, age, gender, and WHO grade was constructed.
Subsequently, the calibration curve was calculated to evaluate the
1-, 3-, 5- year overall survival probabilities.

Characteristic of the Immune
Microenvironment
To investigate the infiltration situation of immunocytes in the
tumor microenvironment, three classical analyses were
performed in this study. (1) The single sample gene-set
enrichment analysis (ssGSEA) was conducted to explore the
proportion of 29 immunocyte types in two distinct risk
subgroups according to the previous publication (the gene-set
was show in Table S1) (28). (2) The R package “ESTIMATE”was
executed to evaluate the immune/stromal cell infiltration, which
could indict the difference of TME between two distinct risky
subgroups. (3) R package “CIBERSORT” was conducted to
examine the proportion of 22 immunocyte types for each
sample (the gene-set was show in Table S2) (29).

Effect of AS Events on ICB Treatment
Recent studies have indicated that the transcriptome of ICB-
related genes may be closely related to clinical response of
patients to immunotherapy. In this study, 47 ICB-related genes
were extracted, such as programmed death 1 (PD‐1, also named
PDCD1), programmed death ligand 1 (PD‐L1/CD274), the more
information ICB-related genes were seen in Table S3 (30). The
Spearman correlation algorism was conducted to calculated the
association between ICB-related genes and risk score to speculate
the effect of immunotherapy.

Cell Culture and Infection
T24 and J82 bladder cancer cells were gained from the Type
Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). The cells were maintained in DMEM
medium with 10% fetal bovine serum at 37°C in cell incubator
with 5% CO2. 3 × 105 bladder cancer cells line were seeded into
6-well dishes, cultured for 24h, then transfected by using
Lipofectamine 3000. biological experiments were carried out
according to the appropriate transfection time. DYM
transfection was identified using quantitative real-time PCR
(qRT-PCR). The si-RNA sequences were listed as following:
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si-DYM-1: 5′-GGGUCCUGGAAAUCAUUAATT-3′, si-DYM-
2: 5′-GGAGGAAGCAACCAUUUCATT -3′, si-con: 5′-
UUCUGGCAACGUATCAGCUTT-3′.

Macrophage Polarization
THP-1 cells were donated by Dr. Cai from Shanghai Jiaotong
University. THP-1 cells were induced to differentiate into M0
macrophages by 100 ng/ml PMA. In order to simulate the
formation of tumor-associated macrophages(TAMs), the
Falcon® Cell Culture Inserts (Corning, Corning, NY) was
employed to construct the co-culture environment, the bladder
cancer cells (T24/J82) were inoculated in the upper chamber, and
M0 macrophages were inoculated in the lower chamber to
achieve the effect of co-culture. After 48 hours, co-cultured
macrophages were collected to obtain TAMs. CD206 and
CD163 were used as markers of M2-type macrophages, and
CD86 as markers of M1-type macrophages

ELISA
ELISA kit (R & D Systems) was used to detect the levels of IL6,
IL-10, CCL2 and CCL3 in supernatant. The average values of the
three independent experiments were shown by the histogram.

RNA Isolation and qRT-PCR
In order to verify knockdown efficiency, we extracted the purity
RNA from cell lines via TRIzol Reagent (Invitrogen), and then
SuperScript II Reverse Transcriptase (Invitrogen) was employed
to transcribed mRNA into. The qRT-PCR reaction was
conducted using an AB7300 thermocycler (Applied
Biosystems). The relative expression of cDNA was normalized
to that of GAPDH, and each reaction contained at least three
separate biological replicates. The primers used are listed in
Table S4.

Cell Proliferation Assay
For the cell counting kit-8 (CCK-8) assay, each experimental
group was inoculated with a density of 2000/well in 96-well
plates. After 1, 2, and 3 d, 110 μL mixed solution (CCK-8 +
DMEM) was added to each 96-well plates and the cells were
cultured for another 2 h. OD450 was measured to assess cell
proliferation status.

Cell Migration and Invasive Ability
Cell migration and invasive ability were evaluated by cell scratch
assay and transwell invasion assay, respectively. For the cell
culture scratch assay, 2 × 105 BCa cells were seeded into six-
well plates. After covering the whole plates, the cells were
scratched with 1 mL pipette tips. The gap area was recorded at
0, 24, and 48 h, and assessed using Image J software. For the
transwell invasive assay, 150 μL DMEM medium with 10% FBS
was added into the lower chamber and 2 × 104 cells were seeded
into the upper chambers. After 24 h, removed the cells which
located on the upper surface of the chamber, and stained the
invading cells on the lower chamber via crystal violet. The
invaded cells were photographed and calculated in three
random fields.
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Flow-Cytometric Analysis
T24 and J82 cells were seeded into six-well plates, The cells were
transfected with Si-con and Si-DYM for 24 hours in each well, then
digested with trypsin and processed with cold PBS (4° C). We
collected the suspension cells in the flow tube according to the
manufacturer’ s protocol. Finally, apoptosis was measured by using
BD FACS caliber. All experiments were conducted in triplicate.

Statistical analysis
All data analyses were conducted via using the R software (version
4.0.2). The Wilcoxon test was carried out for comparative analysis of
the two group characteristics, and the Kruskal-Wallis test was
conducted for comparative analysis more than two group
characteristics. Correlations between risk score, clinical
characteristics, and other variables were calculated using the Pearson
correlation test. The experiments were repeated at least three times.
RESULTS

Identification of Prognostic-Related
AS Events
A summary of AS events is shown in Figure 1. 409 patients with
bladder cancer were collected from the TCGAdataset, and thirteen
patients with inadequate clinical information were excluded from
this research. The clinical profiles of these patientswere displayed in
Table 1. TheUpSetdiagram comprehensively displays theAS event
characteristics (Figure S1A). The results demonstrated that exon
skip was the prevailing splicing type in bladder cancer, while the
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mutually exclusive exons had the lowest frequency. Then, a total of
2751 AS events were collected as potential prognostic biomarkers
via performing univariate Cox regression analysis (p < 0.05). A
comprehensive description of the 2751AS events is shown inTable
S5. The prognosis-related AS events were delineated using the
UpSet diagram (Figure S1B). The volcano diagram was plotted to
describe the AS events, and the quadrangle map summarizes the
first 20 remarkable prognostic-related AS events (Figure 2).
According to the l value, the thirteen candidates AS events were
selected by performing LASSO regression analysis, including
C19orf57|47943|ES, ANK3|11845|AP, ANK3|11842|AP,
MARCH6|71561|AP, ACTG1|44120|RI, AK9|77203|AT, DYM|
45472|ES, PCSK5|86634|AT, MTFR1L|1212|AA, APBB3|73673|
RI, TARBP2|22073|AA, MARS|22600|RI, MICALL2|78572|AA.
(Figure S3). These independent prognostic-related AS events
were chosen to construct AS-based risk models by performing
multivariate Cox regression algorism, the riskmodel is calculated as
follows:

Risk score = 0:93 �  PSI ANK3 11845j jAP  − 1:51 

�  PSI C19orf57 47943j jES  − 1:07 

�  ACTG1 44120j jRI + 1:83 

�  AK9 77203j jAT  –  0:5 �  DYM 45472j jES 
+  0:90 �  PCSK5 86634j jAT  +  3:09

�MICALL2 78572j jAA :
FIGURE 1 | A summary of alterative splicing events.
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Confirmation of Prognostic Model
Patients were classified into high- and low-risk subgroups for
further analysis according to the cut-off value of the median risk
score. The level of AS event PSI values in different subgroups is
displayed in Figure 3A, and the dot plot displays the distribution
of patient clinical outcomes (Figures 3B, C ). In addition, the K-
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M analysis indicated that patients with high-risk scores exhibited
poor clinical outcomes (Figure 3D). The ROC curve was then
calculated to evaluate the prognostic value of risk models in
bladder cancer patients. The area under curve (AUC) of our risk
model at 1, 3- and 5-years was 0.713, 0.751, and 0.781,
respectively (Figure 3E). The clinical variables and AS-related
TABLE 1 | Baseline data of all bladder cancer patients.

Characteristics Type n proportion (%)

Age <=65 161 39.4
>65 248 60.6

Gender Female 106 25.9
Male 303 74.1

Grade High Grade 385 94.1
Low Grade 21 5.1
unkown 3 0.8

Stage Stage I 2 0.5
Stage II 130 31.8
Stage Ill 139 34
Stage IV 136 33.2
unkown 2 0.5

T Stage TO Stage 1 0.2
T1Stage 3 0.8
T2 Stage 120 29.4
T3 Stage 194 47.4
T4 stage 59 14.4
unkown 32 7.8

M Stage MO Stage 194 47.4
M1Stage 11 2.7
unkown 204 49.9

N Stage NO Stage 237 57.9
N1Stage 47 11.5
N2 Stage 76 18.6
N3 Stage 8 2
unkown 41 10
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FIGURE 2 | Identification of the prognostic related AS events. (A)Volcano plots of prognostic related AS events. (B-H) The most significant prognostic related APs,
MEs, RIs, AAs, ADs, ATs and ESs in TCGA-BLCA cohort.
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risk score were consolidated as nomogram model to perform the
AUC analysis, we observed that this model gained the highest
AUC value (Figure 3F), which indicated that the constructed
nomogram model had higher sensitivity and specificity for
predicting clinical outcomes. In addition, the results of
univariate and multivariate Cox regression analyses
demonstrated that the risk score can serve as an independent
index for bladder cancer (Figures 3G, H). In addition, we
observed remarkable differences in the risk scores between
different clinical variables. The risk score increased with the
advancement in clinical pathological stage (p < 0.001, Figure 4B)
and high-grade tumor subtypes (p < 0.001, Figure 4A), which
revealed that the risk score was positively related to
tumor progression.

To comprehensively assess the prognosis of each patient with
bladder cancer, the nomogram model which included the risk
score, tumor stage, age, gender, andWHO grade was constructed
to evaluate the 1-, 3-, and 5-year overall survival probabilities
(Figure 4C). DCA analysis also demonstrated that the
nomogram model showed the best prediction performance for
1-year OS in bladder cancer (Figure 4D). The calibration curve
was close to 45°, indicating that the predicted values are close to
the predicted values (Figure 4E).

Regulation of AS Events in TIME Alteration
To further validate whether AS events act as a factor that
participates in the formation of the immune microenvironment,
“ESTIMATE” R package was employed to calculate the immune
score of samples, which displayed those patients with high risk
score exhibited higher immune score, stromal score, and
ESTIMATE score than those with low risk score (Figure 4F).
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Likewise, the ssGSEA results showed the distinction of the
immune-related profiles between the two risk models. The
results in Figures 5A, B presented the corresponding immune
scores of immune-related profiles in high- and low-risk groups.
The results showed that the infiltration of immunocytes such as
Th1 immunocytes, NK cells, macrophages, aDCs, CD8+ T cells,
and neutrophils was remarkably increased in the high-risk group.
Immune signatures such as APC co-stimulation, HLA,MHC-class
I, and T cell co-stimulation were also increased in the high-risk
group. In addition, the CIBERSORT algorithm results revealed
that the proportion of T cell regulators, plasma cells, CD8+ T cells,
and B cells was negatively correlated with the risk score, and the
abundance of resting dendritic cells, macrophages M0, and
macrophages M2 were positively associated with the risk score
(Figures 5C–H). The above results revealed that AS events may
play an indispensable role in altering the TIME, and also
demonstrated that the constructed risk model may act as a
novel biomarker to elaborate the characteristics of immune
regulation in bladder cancer.

Correlation of AS Events With ICB
Key Molecules
The emergence of immunotherapy has altered the therapeutic
landscape of bladder cancer, and the development of immune
checkpoint inhibitors broaden the options for clinical decision-
making in cancer treatment. First, six ICB key molecules were
collected from published articles, including PD‐L1, PD‐1, PD‐L2,
TIM‐3, IDO1, and CTLA‐4. Then, correlations between the
constructed risk score and ICB key molecules were determined
to identify the potential prediction performance of AS events
in the immunotherapy of bladder cancer (Figure 6A).
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FIGURE 3 | Confirmation of prognostic model. (A) Heatmap of the AS events PSI values in bladder cancer. The color from red to green shows a trend from high to low
expression. (B) The risk score curve exhibits the distribution of prognostic signature risk score. (C) The scatter plot exhibits survival times and survival status of bladder
cancer patients. (D) K–M curve for high- and low-risk groups. (E) ROC curves of risk models for overall survival prediction at 1, 3 and 5 years. (F) ROC curves for predicting
survival with different clinical variables. (G) The results of univariate Cox regression analyses. (H) The results of multivariate Cox regression analyses.
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FIGURE 4 | Construction of prognostic nomogram and correlation of immune microenvironment features with different risk scores. (A) Risk scores of high and low
tumor grades. (B) Risk scores of different tumor stages. (C) Nomogram established by risk score, age, gender, tumor grade, tumor stage and TNM clinical stage for
predicting overall survival probability of bladder cancer patients. (D) DCA analysis displayed the prediction performance of selected model. (E) Calibration curve of 1‐,
2-, 3-year nomogram, the predicted performances of the model are represented by the 45° gray lines. The green/blue/red line represents 1/3/5 years prediction
ability. (F) ImmuneScore, StromalScore and ESTIMATE scores of high- and low-risk groups.
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FIGURE 5 | Correlation between AS events and tumor immune microenvironment features. (A) Distinction of the immune related profiles between high- and low-risk
score groups. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (B) Heatmap of immune scores and several immune
characteristics of two risk score groups. Red indicates high expression and blue indicates low expression. (C–H) Correlation analyses of risk score with different
immune cells. (I–J) The landscape of TMB of bladder cancer with high (I) and low risk score.
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Figures 6C–H shows that the risk score was remarkably
positively related to CD274 (R=0.32, P =1.1e-10), PDCD1
(R=0.24, P =1e-06), CTLA4 (R=0.24, P =1.7e-06), HAVCR2
(R=0.38, P =7.8e-15), PDCD1LG2 (R=0.47, P <2.2e-16), and
IDO1 (R=0.29, P =7, 2e-09). In addition, we further analysis the
association among ICB-related genes and risk score. The results
showed that these genes were significantly associated with risk
score; LGALS9, TNFRSF25, TNFRSF14, TMIGD2, ICOSLG, and
TNFRSF15 were remarkably reduced in patients with high risk
scores, while the other genes were significantly up-regulated
(Figure 6B), suggesting that AS events might serve as a
considerable factor in immunotherapy. In addition, we
examined the tumor mutation burden between the high
(Figure 5I) and low risk groups (Figure 5J) and found no
difference between the two groups. The Figures 6I-L displayed
the exhibited the effect of immunotherapy between two groups
that the effect of immunotherapy in patients with low risk group
is more obvious.

Identification of AS Event-Related Genes
There was a total of seven target genes in the constructed risk
model. We found that only DYM and MICALL2 genes affected
the clinical outcome of bladder cancer. Therefore, the roles of
DYM and MICALL2 in bladder cancer were investigated in
further analyses. As we found that MICALL2 could not
effectively distinguish different clinical pathologies and had
little effect on TIME alterations (the results of the MICALL2-
related analysis are presented in Figure S2), we mainly focused
on the DYM gene. By investigating the expression level of DYM
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in bladder cancer tissues with different clinical stages and grades,
we observed that DYM was upregulated in bladder cancer tissues
with high grade as well as stage III and IV (Figures 7A, B). K-M
analysis also demonstrated that upregulated DYM was related to
poor clinical outcomes in bladder cancer in TCGA database(P
value <0.001, Figure 7C), which was confirmed in GSE31684 (P
value =0.021, Figure 7D). In addition, 32 of the 47 ICB-related
gene expression levels were remarkable different between the
high and low DYM expression subgroups, and the ICB key
molecules (CD274, PDCD1, CTLA4, HAVCR2, PDCD1LG2,
IDO1) were upregulated in patients with high DYM
expression, suggesting that high expression of DYM might play
an important role in mediating immune evasion (Figure 7F).

To further demonstrate the relationship between DYM and
the immune environment characteristics in bladder cancer, a
systematic analysis was conducted as described above. By
separating the median DYM expression level, the samples were
divided into two subgroups. Outcomes of the “ESTIMATE”
analysis revealed that patients with higher DYM expression
had a remarkably higher stromal score, immune score, and
ESTIMATE score relative to patients with lower DYM
expression (Figures 7G–I). ssGSEA results showed that the
content of infiltration of immunocytes, including Th1 cells,
Th2 cells, macrophages, aDCs, CD8+ T cells, NK cells, and
neutrophils, and immune signatures such as APC co-
stimulation, HLA, MHC-class I, and T cell co-stimulation were
remarkably increased in patients with high DYM expression
(Figure 7E). The above results indicate that the DYM gene might
be involved in the alteration of the TIME.
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FIGURE 6 | Relationships between AS-based signatures and immune checkpoint blockage key molecules. (A) Correlation analyses among six immune checkpoint
inhibitors and risk score. (B) Difference in expression levels of immune checkpoint blockade-related genes between high- and low-risk groups (*P < 0.05; **P < 0.01;
***P < 0.001). (C–H) The positive correlations of CTLA‐4, IDO1, PD‐L1(CD274), TIM‐3(HAVCR2), PD‐L2(PDCD1LG2) and PD‐1(PDCD1) with risk score. (I–L)
Efficacy score of immunotherapy.
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In order to verify the relationship between DYM gene and
tumor immune microenvironment, the THP-1 cells were
induced to differentiate into M0 macrophages by 100 ng/ml
PMA, the Figure 8B displayed the THP-1 cell photograph and
the Figure 8C displayed the M0 macrophages photograph. we
co-cultured Si-con or Si-DYM bladder cancer cell lines with M0
macrophages to detect tumor markers of CD206, CD163 and
CD86 macrophages (Figure 8A). Secondly, we investigated
whether DYM gene affected the production of pro-
inflammatory factors, immunosuppressive cytokines and
chemokines, detected IL-1B, IL-6, IL-10, TNF, IL-8, CCL2,
CCL3, CCL20, CXCL1, CXCL2 respectively, and the secretion
level was detected with ELISA assay. The results displayed that
the levels of CD206 and CD163 were reduced in both two
bladder cancer cell lines, while the level of CD86 had no
significant difference in T24, and increased in J82 cell line
(Figures 8D, E). The levels of IL-6, IL-10, CCL2 were
significantly decreased in both two bladder cancer cell lines,
and Other transcription factors are uncertain in cell lines
(Figures 8F–I). The ELISA assay exhibited that IL-6, CCL2
were significantly reduced in the supernatant (Figures 8J, K).

Knockdown of DYM Suppressed BCa Cell
Proliferation, Invasion, Migration and
Promoted Apoptosis in vitro
We further examined the biological function of DYM gene in the
progression of bladder cancer. We designed siRNA targeting
DYM, and the knockdown effect of DYM expression level is
Frontiers in Immunology | www.frontiersin.org 978
shown in the Figure 9A. The CCK8 assays confirmed that
knockdown of DYM remarkably inhibited the proliferation
ability of T24 and J82 cells (Figures 9C, D). In addition, the
flow cytometry analysis displayed the effect of knockdown of
DYM genes on cell apoptosis (Figure 9B). As shown in
Figures 9E–H, both early apoptosis and late apoptosis of T24
and J82 cells were increased when transfected with Si-DYM
compared with Si-con. Finally, Knockdown of DYM in T24 and
J82 cells caused a remarkable reduction in cell invasion and
migration ability (Figures 10A–G). In summary, our results
demonstrated that the DYM gene not only plays an immune-
related role in bladder cancer, but also promotes the
proliferation, migration, metastasis and suppresses cell
apoptosis of bladder cancer cells.
DISCUSSION

Owing to sophisticated molecular mechanisms such as genomic
complexity, protein modification diversity, and epigenetics,
bladder cancer is highly heterogeneous from a clinical
perspective, making it difficult to predict its clinical outcomes
accurately (6, 31, 32). Thus, stratifying patients and adopting
treatment strategies only via pathological anatomy and TNM
staging is relatively limited for clinical applications. It is
regrettable that the majority of patients with bladder cancer
cannot benefit from immunotherapy because of the occurrence
of immune escape, mediated by multiple factors (33, 34).
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FIGURE 7 | The prognostic significance of DYM in bladder cancer and correlation of DYM with immune checkpoint blockage key genes and tumor immune
microenvironment features. (A)Significant difference in DYM expression between distinct tumor stages. (B) Significant difference in DYM expression between high-
and low-grade. (C, D) Higher expression level of DYM predicts lower survival probability in TCGA cohort (C) and GSE31684 (D). (E) Distinction of the immune-
related profiles between high- and low-DYM groups (*P < 0.05; **P < 0.01; ***P < 0.001). (F) Difference in expression levels of ICB-related genes between high- and
low-DYM groups (*P < 0.05; **P < 0.01; ***P < 0.001). (G-I) Comparison of ESTIMATE analysis results between high- and low-DYM groups.
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Moreover, there are distinct inconsistencies among the responses
of patients to both BCG and PD-1/PD-L1 immunotherapy (35,
36). Therefore, the design and development of more reliable
prognostic tools for clinical outcome prediction are urgently
necessitated, especially for immunotherapeutic prognosis,
toward individualized and precise treatment of bladder cancer.
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Increasing evidence has elucidated the significance of AS
events in physiological or pathological processes, making AS
events a novel perspective for understanding intricate
pathological processes such as cancer (37, 38). Compared with
transcriptome analysis, the investigation based on the alternative
splicing level is conducive to the in-depth analysis of the causes,
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FIGURE 8 | Effects of DYM on tumor immune microenvironment. (A) Cell co-culture mechanism diagram. (B–C) THP-1 cell (B), M0 macrophage (C) photos under
microscope. (D–I) The expression of macrophage markers (D, E), cytokines (F–G) and chemokines (H, I) of T24/J82 were detected by QRT-PCR. (J, K) ELISA was
used to detect the expression of cytokines and chemokine of T24/J82. *P < 0.05, **P < 0.01, ***P < 0.001. ns P > 0.05.
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FIGURE 9 | Effects of DYM knockdown on bladder cancer cells proliferation and apoptosis in vitro. (A) qRT-PCR was used to detect the expression of DYM after
T24/J82 cells transfected with DYM siRNA plasmids. (B, E–H) Cell apoptosis was detected by flow cytometry after transfection of Si-con or Si-DYM in T24/J82 cells.
(C, D) The proliferation of T24 (C) and J82 cells (D) was examined by CCK-8 assay, which exhibited that DYM knockdown group had lower OD value. The
representative images are presented. Black lines indicate the wound edge. *P < 0.05, **P < 0.01, ***P < 0.001.
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progression and clinical results of diseases. If the up-regulation
or down-regulation of genes is caused by alternative splicing
alteration, what is the upstream regulatory mechanism and what
substances lead to its alteration. Furthermore, the relationship
between the alternative splicing modification characteristics of
this gene and histone, DNA methylation can be explored.
Encouragingly, with the progress in high-throughput
sequencing technology, enormous achievements have been
made in the study of the latent association between AS
patterns and tumors. More importantly, the prognostic ability
of AS events has also been widely tested in multiple cancers (14,
39, 40). In bladder cancer, specific AS events have been
associated with worse prognosis (41, 42). However, current
studies have mainly focused on specific AS events, and
systematic analyses of the prognostic value of AS events are
minor (43). Fan Z et al. depicted the prognostic signatures of
bladder cancer based on AS events via comprehensive analysis at
the genome-wide level, which revealed that prognostic-related
AS events tended to affect the clinical outcome of bladder cancer
patients and sensitivity to chemotherapy drugs (44).
Nevertheless, a correlation analysis between AS events with
TIME and immunotherapeutic outcomes in bladder cancer is
still lacking.

In our study, we investigated the AS events in bladder cancer by
multiple perspective analysis, selected the most correlative
prognostic profiles, constructed a high-preciseness model, and
predicted the individual overall survival rates of patients with
bladder cancer accurately. Interestingly, the results showed that
prognostic predictive signatures established according to the all AS
Frontiers in Immunology | www.frontiersin.org 1180
patterns (AD, AA, AP, AT, ES, RI, ME) displayed an appreciable
performance for predicting the clinical outcome of bladder cancer
patients. Notably, grouped according to clinicopathological factors,
these signatureswere shown tohave excellent prognostic capability.
To create an effective and practical tool for clinical practice in
bladder cancer, nomogram model contains prognostic
characteristics and clinicopathological stages was established, and
the predicted results were consistent with the actual results.

With continuous advancement of research into this area,
increasing attention has been focused on the crucial role of AS
events in TIME (45, 46). Indeed, identifying AS events in TIME
might contribute significantly to the bladder cancer treatment.
Taking advantage of the ESTIMATE, CIBERSORT, and ssGSEA
enrichment analyses, we unveiled the role of AS events in the
context of TIME in bladder cancer. The ESTIMATE and ssGSEA
results indicated that the group with high-risk scores presented a
greater activation of immune and stromal cells. The composition
of stromal cells limits the entry of immune cells into the TME to
play an anti-tumor role, which explains the poor clinical
outcome in the high-risk group with active immune
infiltration. The CIBERSORT results agreed with our
hypothesis, and found that the risk score was positively
correlated with M0 macrophages and M2 macrophages, which
favors tumor progression in bladder cancer. Of note, six pivotal
ICB targets and 33 ICB-related gene expression levels exhibited a
distinct correlation with risk score. In addition, we found the
patients with low risk score had superior immunotherapy
outcomes, which suggests that risk score might be conducive
to developing individual immunotherapeutic strategies and
B
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A

FIGURE 10 | Effects of DYM knockdown on bladder cancer cells invasion and migration in vitro. (A–D) The wound healing assay was performed to assess the effect
of DYM knockdown on the migration of T24 and J82 cells. (E–G) Transwell assay was applied to detect the invasion ability of T24 and J82 cells. The representative
images are presented. Black lines indicate the wound edge. *P < 0.05, **P < 0.01, ***P < 0.001.
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predicting the outcomes (36). Patients with a low risk score may
be better candidates for immunotherapy, while patients with a
high risk score may prefer chemotherapy or targeted
therapy strategies.

DYM encodes a protein that regulates Golgi-associated
secretory pathways, which play an indispensable role in the
early brain development and endochondral bone formation
(47). To date, little is known about the effects of DYM in
tumors, especially bladder cancer. This study showed that the
high expression of DYM was significantly related to advanced
clinicopathology and poor prognosis of bladder cancer. DYM
expression was also correlated with TIME alteration and key
genes of ICB immunotherapy (e.g., CD274, CTLA4, HAVCR2
and PDCD1). We found that after the knockdown of DYM gene,
IL-6, CCL2 cytokines in the supernatant were down-regulated in
the co-culture system of bladder cancer cells and macrophages,
thereby reducing the recruitment of macrophages(CCL2
effection) and the transformation of macrophages into M2
macrophages(IL-6 effection). There may be a DYM-IL-6
signaling pathway axis. Subsequently, we confirmed that
knockdown of DYM genes inhibited the cell proliferation,
migration, invasion and promote apoptosis ability of bladder
cancer cells.

Overall, subjects with higher DYM expression levels or higher
risk scores presented more immune cells in the tumor
microenvironment, indicating an enhanced immunophenotype
but shorter OS. Consistent with our speculate hypothesize,
previous researches have also displayed a correlation between
low tumor purity, poor prognosis, and an activated immune
phenotype (48, 49). Since the risk scores are related to the
expression of ICB-related genes, it can be speculated that the
effects of immune cells on tumors may be influenced by ICB
pathways. Pan et al. found that bladder cancer with high immune
infiltration exhibited a low response rate to ICB therapy, which
might support our conjecture (50). These findings suggest that
the evaluation of AS events in bladder cancer is conducive to
immunotherapeutic choice and prognosis prediction, which has
great clinical significance. Presumably, valuable insights into
potential therapeutic targets may be revealed by elucidating the
mechanisms underlying these events.

Owing to the lack of an ICB treatment dataset related to
alternative splicing in the bladder cancer cohort, it was difficult to
further explore the association between ICB therapeutic response
and risk score. In addition, this study is based on public data sets
for bioinformatics analysis, which need be confirmed by our
dataset. In the future, we will attempt to collect clinical
specimens from bladder cancer patients in Huashan Hospital,
obtain alternative splicing event, transcriptome data and clinical
information, and conduct prospective validation of this risk
model, so as to make this topic more valuable for research. If
the effect of DYM gene on tumor immune microenvironment
can be verified in immunocompetent mouse model, the topic
research in this paper will be further verified. Unfortunately, our
laboratory lacks the corresponding experimental technology at
present, which is expected to be further improved and optimized
in the future.
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CONCLUSION

Ourstudyprovidedan indispensable reference for further investigation
of the role of AS events in the tumor microenvironment and
immunotherapy efficiency, and rendered personalized prognosis
monitoring and potential biological treatment targets for
bladder cancer.
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Based on different immune
responses under the glucose
metabolizing type of papillary
thyroid cancer and the response
to anti-PD-1 therapy

Wenjun Xie1,2,3†, Yu Zeng3†, Linfei Hu3†, Jiaru Hao4†,
Yuzheng Chen2,5, Xinwei Yun3*, Qiang Lin1,2* and Huashui Li1,2*

1Department of General Surgery, Shengli Clinical Medical College, Fujian Provincial Hospital,
Fuzhou, China, 2Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China,
3Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital,
National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,
Tianjin’s Clinical Research Center for Cancer, Tianjin, China, 4Department of Gastrointestinal
Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research
Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,
5Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian
Medical University, Fuzhou, China
Glucose metabolism-related genes play an important role in the development

and immunotherapy of many tumours, but their role in thyroid cancer is

ambiguous. To investigate the role of glucose metabolism-related genes in

the development of papillary thyroid cancer (PTC) and their correlation with the

clinical outcome of PTC, we collected transcriptomic data from 501 PTC

patients in the Cancer Genome Atlas (TCGA). We performed nonnegative

matrix decomposition clustering of 2752 glucose metabolism-related genes

from transcriptome data and classified PTC patients into three subgroups (C1

for high activation of glucose metabolism, C2 for low activation of glucose

metabolism and C3 for moderate activation of glucose metabolism) based on

the activation of different glucose metabolism-related genes in 10 glucose

metabolism-related pathways. We found a positive correlation between the

activation level of glucose metabolism and the tumour mutation burden (TMB),

neoantigen number, mRNA stemness index (mRNAsi), age, and tumour stage in

PTC patients. Next, we constructed a prognostic prediction model for PTC

using six glucose metabolism-related genes (PGBD5, TPO, IGFBPL1, TMEM171,

SOD3, TDRD9) and constructed a nomogram based on the risk score and

clinical parameters of PTC patients. Both the prognostic risk prediction model

and nomogram had high stability and accuracy for predicting the progression-

free interval (PFI) in PTC patients. Patients were then divided into high-risk and

low-risk groups by risk score. The high-risk group was sensitive to paclitaxel

and anti-PD-1 treatment, and the low-risk group was sensitive to sorafenib

treatment. We found that the high-risk group was enriched in inflammatory

response pathways and associated with high level of immune cell infiltration.

To verify the accuracy of the prognostic prediction model, we knocked down

PGBD5 in PTC cells and found that the proliferation ability of PTC cells was
frontiersin.org01
84

https://www.frontiersin.org/articles/10.3389/fimmu.2022.991656/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.991656/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.991656/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.991656/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.991656/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.991656&domain=pdf&date_stamp=2022-09-08
mailto:yunspider@126.com
mailto:linqiang1962@163.com
mailto:wuxingli83@163.com
https://doi.org/10.3389/fimmu.2022.991656
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.991656
https://www.frontiersin.org/journals/immunology


Xie et al. 10.3389/fimmu.2022.991656

Frontiers in Immunology
significantly reduced. This suggests that PGBD5 may be a relatively important

oncogene in PTC. Our study constructed a prognostic prediction model and

classification of PTC by glucose metabolism-related genes, which provides a

new perspective on the role of glucose metabolism in the development and

immune microenvironment of PTC and in guiding chemotherapy, targeted

therapy and immune checkpoint blockade therapy of PTC.
KEYWORDS

metabolic genes, papillary thyroid cancer classification, immune signatures,
prognosis, PD-1, PGBD5
Introduction

The incidence of thyroid cancer (TC) has been increasing

worldwide in recent decades. The most common histologic

subtype of TC is papillary thyroid carcinoma (PTC), which is

the only histologic subtype of TC that is systematically

increasing in all countries (1). The incidence of PTC is almost

always higher in women than in men (2). PTC is less malignant

than other subtypes of TC, but many patients are still at risk of

recurrence and metastasis, at which point the survival rate

decreases significantly (3). The construction of prognostic

prediction models by abnormally expressed genes as well as

nomograms to assess the prognosis of tumour patients and the

classification of tumour patients into high-risk and low-risk

groups to guide treatment have been developed and applied in

several tumourtypes (4, 5). However, reasonable and accurate

prognostic prediction models are still lacking in PTC. The

current study found that glucose metabolism plays an

important role in the development and treatment of PTC (6,

7), and it is unknown whether a reasonable prognostic

prediction model can be constructed to predict PTC prognosis

and guide PTC treatment by glucose metabolism-related genes

in PTC.

Various metabolic pathways have been suggested to play an

important role in the development of cancer, such as aerobic

glycolysis, glutamine catabolism, and fatty acid metabolism, which

produce various nutrients that promote cell growth and

proliferation (8–10). Compared to normal tissue, in vitro cancer

tissue can use large amounts of glucose to produce lactate even in

the presence of oxygen, a phenomenon known as aerobic

glycolysis or the Warburg effect. Lactate dehydrogenase

(LDHA), which is involved in glycolysis, is a transcriptional

target of the oncogene MYC and is required for increased

glycolysis and tumorigenesis in tumour cells, which provides the

molecular basis for the Warburg effect (8). BRAF mutations,

which are closely associated with the development of PTC, have

also been found to be closely associated with overexpression of

several competence metabolism-related genes (11, 12), and
02
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inhibition of metabolism-related gene expression has a

significant inhibitory effect on PTC progression (13).

The importance of immunotherapy in tumour treatment is

constantly being studied, and it forms the basis of cancer

treatment together with surgical treatment, radiotherapy and

targeted therapy (14). Current studies have found that the

metabolism of energy in a variety of tumour cells can affect

immune cell function and immunotherapeutic efficacy either by

acting directly or influencing the tumour microenvironment

(TME). Tumour depletion of glucose metabolically limits T-cell

function, leading to their diminished antitumor capacity and thus

tumour progression (15). Tumour cells produce large amounts of

lactate through aerobic glycolysis and release excess lactate into

the TME via monocarboxylate transporter protein 4 (16). Lactate

in the TME inhibits the therapeutic efficacy of ipilimumab in

melanoma (17). Increasing the pH in tumour tissue improves

cytotoxic T lymphocyte infiltration and enhances anti-CTLA-4,

anti-PD-1 and chimeric antigen receptor (CAR) T-cell therapy

(18). However, the effect of glucose metabolism on immune cell

infiltration and immunotherapy in PTC has rarely been reported.

Therefore, predicting the sensitivity to immunotherapy before

administering it to patients with advanced PTC is challenging, but

necessary, for individualizing patient treatment and optimizing

health care costs.

In this study, we hypothesized that glucose metabolism plays

an important role in the development of PTC and modifies the

immune microenvironment. Therefore, we clustered information

from clinical samples of 501 patients in the TCGA-THCA cohort

and 10 glucose metabolism-related pathways. Three subgroups of

PTC were identified by unsupervised transcriptome analysis,

namely, C1, C2, and C3. Next, we analysed the proportion of

PTC subgroups by different clinical stage, mutation type, and

frequency of each mutation type. We also compared the tumour

mutation burden (TMB), neoantigen number, and mRNA

stemness index (mRNAsi) occurring in each of the three

subgroups. Then, we further generated the prognostic genes that

contributed most to the progression-free interval (PFI) of PTC by

Lasso Cox analysis, constructed a prognostic prediction model for
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PTC based on six prognostic genes (PGBD5, TPO, IGFBPL1,

TMEM171, SOD3, TDRD9), constructed a nomogram based on

risk score and clinical parameters, divided patients into high risk

(HRisk) and low risk (LRisk) groups based on risk score, and then

analysed the prognostic differences, immune infiltration, clinical

characteristics and sensitivity to drug treatment between the

HRisk and LRisk groups. Finally, we evaluated the reliability of

the scoring model by observing PGBD5 knock down in PTC.

These studies will help to discover the mechanisms of PTC

development and guide chemotherapy, targeted therapy and

immunotherapy for PTC.
Materials and methods

Papillary thyroid cancer patient cohorts

We obtained TCGA-THCA cohort data from the TCGA

data portal (https://www.cancer.gov/tcga/), which contains the

gene expression profiles of 512 PTC patients. After eliminating

the samples with no follow-up time, the gene expression

information of 501 patients was finally retained for subsequent

analysis. Gene mutation information was also downloaded

through the TCGA data portal, and after matching clinical

data, gene mutation information was collected for 401

patients. We divided the data of 501 patients into a training

set (n=334) and a test set (n=167) based on a 2:1 ratio.
Gene set variation analysis

We downloaded 10 gene sets related to glucose metabolism

from the GO terms and KEGG and REACTOME gene

annotation collections from MSigDB (http://www.gsea-msigdb.

org/gsea/msigdb/collections.jsp). Then, we used the gene set

variation analysis (GSVA) package to calculate the enrichment

scores of 10 glucose metabolism-related pathways, used the

pheatmap package for clustering analysis, used the limma

package in R software for differential analysis of 113 metabolic

scores, and defined a signature with an absolute log2-fold change

(FC) > 0.2 (adjusted P<0.05) as the differential expression

signature. Finally, three subgroups of high, low and medium

glucose metabolism activation (C1, C2 and C3) were obtained.

Next, we evaluated the different genetic types between the

different subgroups, including TMB, neoantigen number,

mRNAsi, as well as the mutation types and mutation

frequencies in the different subgroups.
Characterization of PTC subgroups

We identified differentially expressed genes (DEGs) among

PTC subgroups using the limma package in R and defined genes
Frontiers in Immunology 03
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with absolute log2FC>1 (adjusted P < 0.01) as DEGs.

c2.cp.kegg.v7.2. symbols and h.all.v7.2. symbols downloaded

from the Molecular Signature Database (https://www.gsea-

msigdb.org/gsea/msigdb) were then used. The symbols gene set

files, functional and pathway enrichment analysis was performed

using the Cluster Analyser R package, setting the significance

threshold to an adjusted P<0.05.
Screening of prognostic genes and
construction of prognostic signatures

The genes associated with PFI of PTC were obtained from

TCGA (unicox P < 0.05) and analysed with the DEGs by Venn

analysis. Finally, 18 genes associated with the PFI of PTC were

obtained. Then, the prognostic genes that contributed most to

the PFI of PTC were further generated by Lasso Cox analysis to

obtain six glucose metabolism-related genes associated

with the prognosis of PTC, and the prognostic profile of

glucose metabolism-related genes was constructed using

the following formula: risk score = (0.540425503*PGBD5)

+ ( - 0 . 0 7 8 7 4 0 2 3 8 * TDRD9 ) + ( - 0 . 2 8 1 3 0 7 0 5 1

*TMEM171)+(-0.008488446 *IGFBPL1)+(-0.171726033

*TPO)+(-0.001972683*SOD3). Then, the PTC group was

divided into the HRisk and LRisk groups according to the

expression of six prognostic genes. The prognostic differences,

immune infiltration, clinical characteristics and differences in

sensitivity to drug treatment were compared between the two

groups. And functional and pathway enrichment analysis were

performed for both groups by gene set enrichment analysis

(GSEA) (19), and GSVA analysis (20).
Prognostic statistical analysis

The Kaplan-Meier(K-M) analysis was used to calculate the

difference in PFI between the HRisk and LRisk groups in the

different data sets.The time-dependent receiver operating

characteristic (ROC) analysis was used to predict the area

under the curve of risk scores for PFI at 1, 3, and 5 years for

different data sets. The risk score and clinicopathological

features (age, gender, disease stage, and signature) were

evaluated by multivariate Cox regression analysis to screen

independent risk factors for PFI.
Construction and evaluation of
the nomogram

Using clinical data from all patients, we used the bootstrap

self-sampling method to validate the predictive effect of the

model using the model itself and then constructed nomogram by

the regplot package. We divided the patients into high- and
frontiersin.org
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low-scoring groups according to their total points to predict the

prognostic differences. The ROC curves, calibration curves,

clinical impact curve (CIC) and decision curve (DCA) were

applied to evaluate the nomogram’s prediction accuracy

and stability.
Estimation of immune infiltration

The method used to estimate immune infiltration in this

study was single-sample GSEA (ssGSEA) and quantified by the

R package GSVA using the ssGSEA method. Using a predefined

set of genes (usually from functional annotations or results of

previous experiments), genes were sorted according to the

degree of differential expression in the two types of samples,

and then it was tested whether the predefined set of genes was

enriched at the top or bottom of this sorting table.
Prediction of the benefit of each
subgroup from chemotherapy, targeted
therapy and immune checkpoint
blockade therapy

The MD Anderson melanoma cohort that received anti-

CTLA-4 or anti-PD-1 therapy was considered for the prediction

of immunotherapy response (21). In addition, we performed

SubMap (21) analysis of data obtained from the Genomics of

Drug Sensitivity in Cancer (GDSC) database (https://www.

cancerrxgene.org) to investigate the difference in sensitivity

between the HRisk and LRisk groups after treatment with

sorafenib or paclitaxel.
Cell culture and cell transfection

The TPC-1 and KTC-1cell lines were purchased from

American Type Culture. All cell lines were identified by short

tandem repeat analysis. TPC-1 and KTC-1 cells were cultured in

RPMI-1640 medium (Gibco, USA) supplemented with 10%

foetal bovine serum (FBS, Biological Industries, Israel), 2 mM

L-glutamine (Gibco, USA), penicillin and streptomycin (Gibco,

USA). Cells were maintained in a humidified incubator at 37°C

and 5% CO2. To study the function of PGBD5, we synthesized a

siRNA against PGBD5 (GenePharma, China). The sequence of

the synthesized siRNA is shown in Supplementary Table 1. TPC-

1 and KTC-1 cells were transfected using Lipofectamine 2000

(Invitrogen, USA) according to the manufacturer’s protocol

(serum-free medium was used for transfection) and replaced

with complete medium containing 10% FBS after 6 h. Cells were

harvested for subsequent experiments after continued

incubation for 24 h.
Frontiers in Immunology 04
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RNA extraction and RT‒qPCR

Total RNA was extracted from cells using TRIzol reagent

(Spark Jade, AC0101-B) according to the manufacturer’s

instructions. For RT‒qPCR, RNA was reverse transcribed to

cDNA by using a Reverse Transcription Kit (Takara, Dalian,

China). For RT‒qPCR, PCRs were set up with 2xHQ SYBR

qPCR Mix (ZOMANBIO, ZF501) on a 7500 Fast Real-Time

PCR System (Applied Biological Systems), and PCRs were

performed according to the manufacturer’s description. All

samples were normalized to b-actin. The primers used in RT‒

qPCR are listed in Supplementary Table 2.
Cell growth and proliferation assays

For cell proliferation assays, an EdU Kit (US EVERBRIGHT,

C6015 M) was used according to the manufacturer ’s

instructions. For the EdU assay, 5×104 cells were plated into

24-well plates and cultured in complete culture medium. After

24 hours, the cells were stained and photographed according to

the instructions of the EdU kit.
Statistical analysis

For normally distributed continuous data, comparisons were

made using the t-test, while non-normally distributed data were

tested by the Wilcoxon rank sum test. Comparisons between

more than two groups of factors were performed using the

Kruskal-Wallis test. Differences in survival rates between

groups were analyzed by K-M plots and log-rank tests. P

values less than 0.05 were considered statistically significant

differences. All analyses were performed using R version 4.0.2

(http://www.r-project.org). Statistical analysis of mRNA

expression levels and EdU staining levels in PTC cells were

performed using the software SPSS 22.0 (SPSS Inc., Armonk,

NY, USA). All values are presented as the mean ± standard

deviation (SD) of 3 independent replicates. Student’s t test was

performed to compare differences. Significant differences were

indicated by P<0.05, P<0.01, P<0.001, and P<0.0001.
Results

Correlation of PTC subgroups with
classical metabolic pathways and
clinical features

We first quantified 10 glucose metabolism-related processes

using the GSVA R package and then performed differential

analysis to find subgroup-specific metabolic profiles. The results
frontiersin.org
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of analysis showed that PTC patients could be divided into three

subgroups (C1 for high activation,C2 for low activation, andC3 for

moderate activation) based on the activation of glucose

metabolism-related genes in different metabolic pathways. In

addition, the correlation between the different subgroups and the

clinicopathological information (age, gender, and clinical stage) of

the patients were analysed. In the C1 subgroup and C3 subgroup,

the proportion of patients aged >40 was higher, while those aged <

40 were mostly found in the C2 subgroup (Figure 1A). This

suggested that in patients with PTC, there may be a significant

positive correlation between the patient’s age and the level of

glucose metabolism in the organism. As shown in Figure 1B, the

proportions of Stage II, Stage III, andStage IVwere higher in theC1

subgroup than in the C2 and C3 subgroups, suggesting that the

higher the level of glucosemetabolismactivation in their bodies, the

higher the patient’s clinicopathological stage.Wealsoobserved that

NRAS and HRAS mutations were mainly present in the C1

subgroup, while the more classical BRAF mutations occurred

mostly in the C2 and C3 subgroups (Figure 1C). This illustrated

the different responses of these two genomic subtypeswhenglucose

metabolic stresses are different in PTC patients. NRAS and HRAS

mutations may be more stimulated in patients when induced with

higher glucose metabolic stress, while BRAF mutations are

upregulated in the low glucose metabolic activation group.

Next, we also analysed whether there were differences in

TMB (Figure 1D), tumour neoantigen number (Figure 1E), and

mRNAsi (Figure 1F) in different subgroups. The results showed

that TMB, neoantigen number, and mRNAsi were higher in C1

subgroup than in C2 and C3 subgroups, and the differences were

statistically significant (all P < 0.05). This suggested that the high

glucose metabolic level in PTC patients may be able to promote

the production of TMB, neoantigen, and the expression of

tumour stemness.

Finally, we performed differential analysis of metabolism-

related genes in the C1 and C2 subgroups, setting log2-fold

change (FC) >0.5 and P<0.05, and finally screened 152 DEGs

(Figure 1G). Subsequently, we selected the 20 most significantly

upregulated genes (ALDH2, MT3, ALDH4A1. ACAT1, MDH2,

ENPP1, CHCHD10, NDUFB2, PPIF, COX8A, CYC1, SLC4A4,

ENO3, PFKFB2, HKDC1, PPARGC1A, GPD1, OGDHl, NUPR1

and ALDOA) from 152 DEGs for enrichment analysis and

found that these 20 differentially expressed genes were mainly

enriched in the generation of ATP from ADP, ATP metabolic

processes, glycolytic processes, and the production of precursor

metabolites and energy (Figure 1H).
Screening of glucose metabolism-related
genes associated with the PFI of PTC

Next, we obtained the genes associated with PFI of PTC

(unicox P < 0.05), and performed Venn analysis with 152

previously obtained glucose metabolism DEGs, and finally
Frontiers in Immunology 05
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obtained 18 genes associated with PFI in glucose metabolism

DEGs (ALDOA,NDUFB2,PGBD5,RRAGD,ST3GAL4,

CLCNKA, TDRD9,TMEM171,IGFBPL1,SELENOV,MT1F,

MT1H,TPO,SOD3,TFCP2L1,CDH16,CARTPT,TFF3)

(Figure 2A). The prognostic genes that contributed most to the

PFI of PTC were then further generated by Lasso Cox analysis,

and the formula was constructed as follows: Risk score =

(0. 540425503*PGBD5) + (-0.078740238*TDRD9) +

(-0.281307051*TMEM171) + (-0.008488446* IGFBPL1) +

(-0.171726033*TPO) + (-0.001972683*SOD3) (Figure 2B, C).

To confirm the strong predictive potential of the prognostic

features constructed from the above analysis in different

datasets, we used the caret package to divide the TCGA-

THCA cohort into training and test sets uniformly and

randomly. Next, in the training set, test set and entire set as a

whole, we divided the patients into the high risk (HRisk) and low

risk (LRisk) groups according to the expression of six glucose

metabolism-related genes. We also ranked the patients in each

dataset according to the risk score from low to high, and

displayed the PFI according to the ranking and the event

occurrence of the patients. The PFI of the HRisk group was

significantly shorter than that of the LRisk group. Among the six

glucose metabolism-related genes screened for prognostic

relevance, the expression of five genes (TPO, IGFBPL1,

TMEM171, SOD3, TDRD9) was higher in the LRisk group

than in the HRisk group, except for PGBD5, which was

significantly more highly expressed in the HRisk group than in

the LRisk group (Figure 2D, E, F).
Analysis of prognostic differences
between different risk groups and the
accuracy of ROC curve prediction

Since we evenly randomized the PTC cohort into training

and test sets by the caret software package, we next divided the

patients between the training cohort, test cohort, and entire

cohort groups into the HRisk and LRisk groups based on the

median risk score of each group and compared the prognosis of

PFI between the two groups. The results showed that the

prognosis of patients in the HRisk group was worse than that

in the LRisk group in all three datasets (all P < 0.05)

(Figures 3A–C), and to further elucidate the accuracy of

prognostic features in predicting patients’ PFI, we also

performed ROC curve prediction over time. In the training

set, the area under the curve (AUC) of the prognostic features

reached 0.824, 0.704, and 0.709 at 1, 3, and 5 years, respectively.

Similarly, in the test set, the AUC results were 0.613, 0.603, and

0.716 at 1, 3, and 5 years, respectively, and in the entire set, the

AUC results were 0.738, 0.668 and 0.700. Overall, our results

suggested that the prognostic characteristics of genes related to

glucose metabolism can predict the development of PTC with

relatively high accuracy (Figures 3D–F). Finally, a multifactorial
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FIGURE 1

Clinical characteristics of PTC subgroups in TCGA. (A) Correlation of the subgroups of PTC patients (C1, C2 and C3) in the TCGA cohort with
the 10 glucose metabolism-related pathways and the clinical characteristics of the patients. (B) Proportional distribution of the different
pathological stages (stage I, II, III and IV) of PTC patients in the three subgroups. (C) Oncoprint of the mutational status of the three PTC
subgroups. The frequency of NRAS and HRAS mutations were significantly higher in C1 subgroup than in C2 and C3 subgroups. The frequency
of classical BRAF mutations was significantly higher in C2 and C3 subgroups than in C1 subgroup. *P < 0.05, ***P < 0.001. Differences in tumour
mutation burden (TMB) (D), number of neoantigens (E) and mRNA stemness index (mRNAsi) (F) among the three PTC subgroups. TMB,
neoantigens and mRNAsi were all higher in C1 subgroup than in C2 and C3 subgroups. Statistical differences were compared by the Wilcoxon
rank sum test. (G) Volcano plot of differentially expressed genes (DEGs) between the C1 and C2 subgroups. A total of 152 DEGs were screened
(log2-fold change > 0.5, P < 0.05). (H) Enrichment analysis of the 20 most significantly upregulated DEGs.
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Cox regression analysis confirmed the signature of the high risk

score as an independent prognostic factor (Figures 3G–I). The

above analysis showed that the risk score constructed by six

glucose metabolism-related genes (PGBD5, TPO, IGFBPL1,

TMEM171, SOD3, TDRD9) could well predict PFI in

PTC patients.
Construction of the nomogram and
evaluation of prediction accuracy

We constructed a nomogram based on the regplot package

of clinicopathological information of all patients (Figure 4A) and

classified patients into high- and low-scoring groups according
Frontiers in Immunology 07
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to their total points to compare the prognostic differences and

found that patients in the high-scoring group had a worse

prognosis than those in the low-scoring group (Figure 4B). To

further assess the accuracy of the total score in predicting the

prognosis of PFI, we also plotted the ROC prediction curves over

time. The AUC of the nomogram was 0.915, 0.868 and 0.941 at

1, 3 and 5 years, respectively (Figure 4C). Compared with the

prognostic prediction model, the AUC of the nomogram was

higher at 1, 3 and 5 years, indicating that the nomogram we

constructed is highly reliable. The Hosmer-Lemeshow test also

demonstrated that the predicted values of nomogram are highly

consistent with the true values (p=0.96) (Figure 4D). This

reflected that the predicted probability of the nomgram is

close to the actual probability and the nomogram has an
B C

D E

F

A

FIGURE 2

Screening for glucose metabolism-related genes highly associated with PFI and construction of a prognostic prediction model for PTC. (A) The
genes associated with the PFI of PTC were obtained from the TCGA cohort (unicox P < 0.05) and overlapped with glucose metabolism DEGs,
resulting in 18 genes associated with the PFI of PTC. (B) LASSO coefficient profiles of the prognostic value. (C) Partial likelihood distribution with
the corresponding l-logarithm value. (D–F) The distribution of risk scores for the three data cohorts (training cohort, test cohort and entire
cohort), the recurrence and nonrecurrence PFIs of the three data cohorts and the heatmap of the expression of six prognostically relevant
genes related to glucose metabolism in the High- risk and Low-risk groups.
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acceptable calibration. In addition, the clinical impact curve

(CIC) confirmed that the nomogram accurately predicted the

event at risk thresholds from 0-0.3 (Figure 4E), and the decision

curve analysis (DCA) confirmed that nomogram’s predictive

ability was better than clinical indicators (Figure 4F).
Pathway enrichment analysis of HRisk
and LRisk and drug sensitivity prediction

By analysing the differences in enrichment pathways

between the overall HRisk and LRisk groups, we found that in

the HRisk group, there was activation of different cellular

pathways, such as positive regulation of cell‒cell adhesion,
Frontiers in Immunology 08
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adaptive mediated immunity, granulocyte neutrophil

chemotaxis migration, and extracellular encapsulating

structure organization. In the LRisk group, there was also

transport across the homeostasis barrier; in addition,

endothelial signalling factor pathway, thyroid hormone

biosynthetic generation, and skeletal muscle cell development

were also activated in the LRisk group (Figure 5A). Then, we

further evaluated the activation difference of the HALLMARK

pathway between the HRisk and LRisk groups in the training

and test set and found that IL6-JAK-STAT3, interferon-alpha

response, apical junction and G2M checkpoint were activated in

the HRisk group, while myogenesis and hypoxia were activated

in the LRisk group (Figure 5B). The above enrichment analysis

revealed that the level of inflammatory infiltration was higher in
B C

D E F

G H I

A

FIGURE 3

The association of different risk groups with the PFI of PTC. (A–C) The Kaplan-Meier survival curve of PFI for the three datasets (training set, test
set, and entire set) in the TCGA cohort. Statistical significance of differences was developed by the log-rank test (P < 0.05 for all). (D–F)
Time-dependent ROC analysis of the three datasets (training set, test set, and entire set) predicted the area under the curve of the risk score for
the PFI at 1, 3, and 5 years, respectively. (G–I) Multivariate (age, gender, stage, signature) Cox regression analysis of three datasets (training set,
test set, entire set).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.991656
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2022.991656
the HRisk group. This suggested that PTC patients in the HRisk

group may develop metabolic inflammation, and the long-term

presence of this inflammation can cause morphological and

functional damage to the relevant organs and adversely affect

the prognosis of tumour patients.

Paclitaxel is currently used as a first-line chemotherapeutic

agent for PTC, while sorafenib is also being used in clinical trials

for PTC. Here, we evaluated the response of different risk groups

to these two drugs after their use. The results showed that the

half maximal inhibitory concentration (IC50) of paclitaxel in the

HRisk group was significantly lower than that of the LRisk

group, both in the training cohort and the test cohort, while the

IC50 of sorafenib in the HRisk group was significantly higher

than that of the LRisk group, suggesting that patients in the
Frontiers in Immunology 09
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HRisk group are more suitable for paclitaxel treatment, while

patients in the LRisk group may be more suitable for sorafenib

treatment (Figure 5C).
Analysis of immune checkpoint
differences between HRisk and LRisk

By analysing the overall immune checkpoint expression

differences between the HRisk and LRisk groups, we found

that the expression levels of PD-L1, PD-L2, CTLA4, CD163,

IFNG, TIGIT, GZMA, and GZMB were all higher in the HRisk

group than in the LRisk group, and only VEGFA was higher in

the LRisk group (Figure 6A). Patients in the HRisk group had
B

C

D E F

A

FIGURE 4

Construction of the nomogram and evaluation of prediction accuracy. (A) Construction of the nomogram based on the regplot package for the
clinical data of all PTC patients. (B) The Kaplan-Meier survival curve of PFI of the high- and low-points groups in PTC. Statistical significance of
differences was developed by the log-rank test (P < 0.05). (C) Time-dependent ROC analysis predicted the area under the curve of the
nomogram for the PFI at 1, 3, and 5 years, respectively. (D) The calibration curves of the nomogram. (E) The clinical impact curves of the
nomogram. (F) The decision curve analysis of the nomogram.
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tumour cells that expressed a large number of immune

checkpoints on their surface. When inhibitory receptors such

as PD-L1 and CTLA-4 on the surface of tumour cells are

expressed in large numbers, they can deprive T cells of their

tumour cell-killing activity, thus enabling immune escape of

tumour cells. Enrichment analysis of 28 immune-related gene

sets by ssGSEA in the training cohort and test cohort revealed a

higher infiltration of immune cells in the HRisk group

(Figure 6B). The immune checkpoint blockade therapy with
Frontiers in Immunology 10
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anti-PD-1 in the HRisk group of PTC patients may have a better

therapeutic effect (P < 0.01) (Figure 6C).
PGBD5 regulates proliferation of
papillary thyroid cancer cells

To verify the accuracy of the above study, we selected PGBD5,

which is highly expressed in tumour tissues, for experimental
B

C

A

FIGURE 5

Pathway enrichment and drug sensitivity prediction of different risk groups. (A) Differences in the activation of different pathways of the HRisk
and LRisk groups in the entire cohort. (B) Activation of different HALLMARK pathways in the HRisk and LRisk groups in the training cohort and
test cohort. (C) Assessment of IC50 values for different drugs (paclitaxel or sorafenib) in the HRisk and LRisk groups in the training cohort and
test cohort.
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validation. To explore the role of PGBD5 in PTC, we sought to

characterize the altered cellular phenotype in PTC cells in the

presence of PGBD5 deletion. In both TPC-1 and KTC-1 cell lines,

PGBD5was effectively knocked downby two siRNAs (si-PGBD5-1

and si-PGBD5-2) (Figure 7A). The proliferation of PTC cells was

significantly reduced after PGBD5 was kncked down, as shown by

EdU staining (Figure 7B). This demonstrated that PGBD5was able

to promote the proliferation of PTC cells, and when PGBD5 was
Frontiers in Immunology 11
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knocked down, the proliferation ability of the cells was

significantly diminished.
Discussion

PTC is a common malignant tumour. Since PTC is an inert

tumour, its prognosis is often better (22). However, most
B

C

A

FIGURE 6

Immune characteristics of different groups in the metadataset. (A) Expression level (normalized count) of 9 immune checkpoint genes in the
HRisk and LRisk groups. The significant difference was compared through the Kruskal–Wallis test, and the P values are labelled above each
boxplot with asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (B) Heatmap describing the
abundance of immune and stromal cell populations in the HRisk and LRisk groups. (C) Prediction results of the response to anti-CTLA-4 and
anti-PD-1 therapy in the HRisk and LRisk groups by subclass mapping analysis.
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medical treatments are less effective in some patients when

distant metastasis occur in PTC (23–25), so accurate prediction

of the clinicopathological characteristics and responsiveness to

treatments in each PTC patient is the focus of PTC research.

Current studies have found that glucose metabolism-related

genes play an important role in tumour development and

various therapeutic modalities, including immunotherapy

(26). To date, no comprehensive analysis has been performed

using glucose metabolism-related genes as a prognostic model

for PTC. In this study, we first verified that abnormal
Frontiers in Immunology 12
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expression of glucose metabolism-related genes was closely

associated with the clinicopathological features of PTC. We

then constructed a prognostic prediction model of PTC using

glucose metabolism-related genes. Patients were divided into

the HRisk and LRisk groups by risk score, and immune cell

infiltration and sensitivity to chemotherapy, targeted

therapy and immune checkpoint blockade therapy were

evaluated in different groups. Meanwhile, we accurately

predicted the PFI of PTC patients by prognostic prediction

model and nomogram.
B

A

FIGURE 7

PGBD5 promotes PTC cell proliferation. (A) Confirmation of PGBD5 knockdown in TPC-1 and KTC-1 cells by RT-qPCR. (B) EdU analysis of TPC-
1 and KTC-1cells after the inhibition of PGBD5. *P < 0.05, **P < 0.01, ***P < 0.001.
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Different metabolic pathways are closely associated with the

development and prognosis of a variety of tumours (8–10). To

determine the clinicopathological characteristics of PTC

subgroups that are closely related to glucose metabolic

processes, in this study we identified three subgroups of PTC

(C1, C2 and C3) by nonnegative matrix decomposition clustering

using RNA sequencing data of 2752 genes associated with glucose

metabolism. We found that glucose metabolism levels were

positively associated with an older age and higher tumour stage

in PTC, and both factors predicted a worse prognosis for the C1

subgroup with high glucose metabolism levels. We found that C1

subgroup were associated with higher TMB and higher

neoantigens. TMB has a very important prognostic value in

immunotherapy as a biomarker of immune checkpoint blockade

response (27). Numerous studies have found that high TMB is

positively correlated with better treatment outcomes after

immunotherapy (28, 29). Neoantigens are abnormal peptides

present on the surface of malignant tumour cells that are

specifically expressed. Most neoantigens are the products of

accumulated mutations in normal cells. Neoantigens have the

potential to be recognized by T cells in the context of major

histocompatibility complex class (30) and thus exert anticancer

effects. Neoantigens have been used in cancer immunotherapy for

CAR-T-cell therapy and the design and production of customized

vaccines against tumour cells (31). C1 subgroup with higher TMB

and more neoantigens may respond better to CAR-T-cell therapy

and immune checkpoint inhibitors. C1 subgroup has a higher

mRNAsi, which predicts that high glucose metabolism levels are

associated with higher levels of PTC stemness, and tumour

stemness is closely associated with survival, recurrence,

metastasis, and drug resistance in many tumours (32–34). PTC

development can be significantly inhibited by suppressing PTC

stemness (35), therefore, for the C1 subgroup with high glucose

metabolism levels, targeted stemness therapy may achieve good

therapeutic results.

Because of the favourable prognosis of PTC, it is difficult to

establish a good prognostic prediction model for PTC (36). In this

study, we developed a prognostic model containing six glucose

metabolism genes (PGBD5, TPO, IGFBPL1, TMEM171, SOD3,

TDRD9) to predict the prognosis of PTC. This model has good

predictive performance not only in the training cohort but also in

the test cohort, indicating the high stability of this prognostic

model. This model is an independent prognostic factor for PTC.

Thismodel andnomogramperformedwell inpredicting the1-year,

3-year and 5-year PFIs in PTC patients. Based on the results of the

ROC curve analysis, we found that the nomogram outperformed

the prognostic prediction model in predicting the PFI of PTC. We

verified the reliability of these results by intervening in the

transcript levels of glucose metabolism-related genes in PTC in

the model.

Among the six glucose metabolism-related genes we

screened (PGBD5, TPO, IGFBPL1, TMEM171, SOD3,
Frontiers in Immunology 13
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TDRD9), only PGBD5 had significantly higher expression in

the HRisk group. This finding suggests that PGBD5

overexpression may play an important role in the development

of PTC. PGBD5 is an active DNA transposase expressed in most

paediatric solid tumours and is an important oncogene (37, 38).

It has been reported that in rhabdomyosarcoma cells PGBD5 is

physically linked to genome-specific signal sequences that

promote the induction of DNA rearrangements (39). In

addition, a multiomics analysis showed that PGBD5

amplification was associated with poorer overall survival in

lobular ductal types of invasive breast cancer (40). We

observed a significant inhibition of PTC cell proliferation by

siRNA inhibition of PGBD5 expression. This is consistent with

the findings of PGBD5 in other tumours. Our present study is

the first time to demonstrate that PGBD5 promotes the

development of PTC. PGBD5 may be an important target to

inhibit the development of PTC in the HRisk group.

The current TNM staging and pathological staging of PTC

cannot guide chemotherapy, targeted therapy and

immunotherapy for PTC. In this study, PTC was divided into

the HRisk and LRisk groups, and we found that the HRisk group

was sensitive to paclitaxel and anti-PD-1 therapy. Paclitaxel

causes polymerization and stabilization of microtubules mainly

by binding microtubule proteins and subsequently inhibits their

dynamic properties at the mitotic spindle, which leads to tumour

cell block in the G2/M cycle and induces apoptosis (41). We

found that genes in the HRisk group are enriched in the G2M

checkpoint signalling pathway, which may be the key factor for

cell proliferation in the HRisk group. Therefore, paclitaxel may

significantly inhibit tumour proliferation by affecting the G2/M

phase process in the HRisk group. In the analysis of immune

checkpoint gene expression in the HRisk and LRisk groups, we

found that PDL-1 was highly expressed in the HRisk group, and

that highly expressed PDL-1 could inhibit the migration and

proliferation of T cells by binding to PD-1 of T cells, thus

inducing tumour tolerance and T-cell failure. Anti-PD-1 could

significantly reverse this process to restore the anticancer

function of T cells (42); therefore, the HRisk group was more

sensitive to anti-PD-1 treatment. The above results suggest that

treatment with paclitaxel combined with anti-PD-1 in the HRisk

group may lead to better therapeutic outcomes. We found that

higher VEGFA expression in the LRisk group and high VEGFA

expression were associated with higher lymph node metastasis

and more advanced pathological stage in PTC and may promote

the transformation of PTC to undifferentiated cancer (43, 44).

The VEGF/VEGFR signalling pathway is an important target for

the action of sorafenib (45), which could explain the more

favourable treatment effect of sorafenib in the LRisk group.

Dividing progressive PTC into the HRisk and LRisk groups

according to the prognostic prediction model may be

advantageous for the selection of appropriate therapeutic

agents and more effective individualized treatment.
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We must acknowledge the flaws and limitations of our

experimental design, which may affect the overall relevance and

credibility of our findings. First, as this workwasmainly investigated

bybioinformaticmethods, theremaybedifferences betweendifferent

algorithms, and more basic and clinical experimental validation is

needed to confirm this. Our study suggests that glucosemetabolism-

related genes are associated with RAS and BRAF mutations, but the

mechanisms remain unclear and need to be further explored. In

addition,we foundthat theHRiskgroupcouldbenefit frompaclitaxel

and anti-PD-1 treatment, and the LRisk group could benefit from

sorafenib treatment,which requires further confirmationof accuracy

inclinical trials. Finally, basedonourfindings,wepropose for thefirst

time that PGBD5 could be a therapeutic target to inhibit the

progression of PTC, which requires additional studies to further

explore its accuracy.

Conclusion

Our study constructs a PTC prognostic prediction model and

proposes a new approach for PTC classification through

comprehensive analysis of glucose metabolism-related genes in

PTC, providing a new perspective on the role of glucose

metabolism in the development and immune microenvironment

of PTC and new ideas for guiding chemotherapy, targeted therapy

and immune checkpoint blockade therapy in PTC. In addition, we

propose for the first time that PGBD5 can be used as a therapeutic

target to inhibit PTC progression.
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Tipping the scales:
Immunotherapeutic strategies
that disrupt immunosuppression
and promote immune activation

Ginette S. Santiago-Sánchez, James W. Hodge*

and Kellsye P. Fabian

Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National
Institutes of Health, Bethesda, MD, United States
Immunotherapy has emerged as an effective therapeutic approach for several

cancer types. However, only a subset of patients exhibits a durable response

due in part to immunosuppressive mechanisms that allow tumor cells to evade

destruction by immune cells. One of the hallmarks of immune suppression is

the paucity of tumor-infiltrating lymphocytes (TILs), characterized by low

numbers of effector CD4+ and CD8+ T cells in the tumor microenvironment

(TME). Additionally, the proper activation and function of lymphocytes that

successfully infiltrate the tumor are hampered by the lack of co-stimulatory

molecules and the increase in inhibitory factors. These contribute to the

imbalance of effector functions by natural killer (NK) and T cells and

the immunosuppressive functions by myeloid-derived suppressor cells

(MDSCs) and regulatory T cells (Tregs) in the TME, resulting in a dysfunctional

anti-tumor immune response. Therefore, therapeutic regimens that elicit

immune responses and reverse immune dysfunction are required to counter

immune suppression in the TME and allow for the re-establishment of proper

immune surveillance. Immuno-oncology (IO) agents, such as immune

checkpoint blockade and TGF-b trapping molecules, have been developed

to decrease or block suppressive factors to enable the activity of effector cells

in the TME. Therapeutic agents that target immunosuppressive cells, either by

direct lysis or altering their functions, have also been demonstrated to decrease

the barrier to effective immune response. Other therapies, such as tumor

antigen-specific vaccines and immunocytokines, have been shown to activate

and improve the recruitment of CD4+ and CD8+ T cells to the tumor, resulting

in improved T effector to Treg ratio. The preclinical data on these diverse IO

agents have led to the development of ongoing phase I and II clinical trials. This

review aims to provide an overview of select therapeutic strategies that tip the

balance from immunosuppression to immune activity in the TME.

KEYWORDS

immunosuppression, checkpoint blockade, immunocytokine, bintrafusp alfa, NC410,
costimulatory receptors, vaccines
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Introduction

Cancer immunoediting, which is defined by its three phases,

namely, elimination, equilibrium, and escape, can determine the

fate of a tumor cell (1, 2). Through the elimination phase tumor

cells are destroyed by the innate and adaptive immune system (1,

2). During the equilibrium phase an immune-mediated tumor

dormancy can occur through several poorly understood molecular

mechanisms. Lastly, tumor cells that evade the equilibrium phase

enter the escape phase, by losing their immunogenicity through

the effect of several immunosuppressive cell types and

dysregulated signaling molecules (2). Specifically, immune-

edited tumor cells going through the escape phase may comprise

modulation in PD-L1 expression, loss of antigen presentation or

decrease in several proinflammatory cytokines (2).

Hence, the main goal of cancer immunotherapy is to harness

the immune system to restore immune surveillance and achieve

an antitumor response. The development of immune checkpoint

blockade (ICB) therapies has revolutionized the oncology field in

the past two decades by providing durable clinical response in

several malignant tumors (3–5). To date, the U.S. Food and Drug

Administration (FDA) has approved six immune checkpoint

inhibitors (ICIs): ipilimumab, which targets cytotoxic T

lymphocyte antigen-4 (CTLA-4); pembrolizumab, nivolumab,

and cemiplimab, which target programmed cell death-1 (PD-1);

and atezolizumab, durvalumab, and avelumab, which target

programmed cell death-ligand 1 (PD-L1) (4, 6, 7).

Although the percentage of patients eligible for ICI therapy

has increased from 1.54% in 2011 to 43.63% in 2018 (4), the

portion of patients that benefits from these therapies remains

limited (8–11). For example, in metastatic colorectal cancer

(mCRC) in which the 5-year survival is 15%, only 3.5%-6.5%

of mCRC patients respond to ICB (9–11). In advanced cancers,

such as head and neck squamous cell carcinoma (HNSCC) and

advanced melanoma, only 15%-20% and 33%-44% of the

patients, respectively, benefit with pembrolizumab or

nivolumab (anti-PD-1) treatment (4, 8, 12–15). Patients who

do not benefit from immunotherapy are known to present

primary resistance, while some of the responders will relapse

after a period, presenting acquired resistance (16, 17).

Several mechanisms associated with primary resistance are:

1) lack of tumor-associated proteins (i.e., low mutational

burden), 2) absence of antigen presentation (i.e., deletion in

beta-2-microglobulin (b2M), silenced HLA), 3) genetic T cell

alterations (i.e., high oncogenic PD-L1 expression), 4) T cell

desensitization (i.e., mutations in the interferon-gamma (IFN-g)
pathway signaling), 5) lack of T cells (i.e., lack of antigen-specific

T cell receptors (TCRs)), 6) inhibitory immune checkpoints (i.e.,

VISTA, LAG-3, TIGIT, TIM-3), and 7) overpopulation of

immunosuppressive cells (i.e., tumor-associated macrophages

(TAMs)), and regulatory T cells (Tregs) (16). On other hand,

mechanisms associated with acquired resistance include the 1)
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loss of T cell function (i.e., mutations in IFN-g pathway

signaling), 2) lack of T cell recognition (i.e., defects on antigen

presentation), 3) escape of mutation variants (i.e., loss of tumor

immunogenicity), and 4) inhibitory immune checkpoints (i.e.,

VISTA, LAG-3, TIM-3) (16, 18). Melanoma and Hodgkin’s

lymphoma are among the cancers with an overall high

response rate to anti-CTL4, and anti-PD-L1 ICIs, but with a

high percentage rate of acquired resistance (18, 19).

These immunosuppressive mechanisms affect tumor-

infiltrating lymphocytes (TILs), including helper CD4+ T cells,

cytotoxic CD8+ T cells, B cells and natural killer (NK) cells (20–

22), and ultimately the effectiveness of immunomodulatory

strategies. Tumors with low or absent TILs, as in the case of

‘cold’ tumors, fail to respond to ICIs and are associated with

poor prognosis (9, 10). Therefore, new approaches are emerging

to overcome immune suppression in the TME, including ICIs in

combination with costimulatory agents, metabolic modulators,

and cancer vaccines, among others (16). This review discusses

some of the most recent immune-oncology (IO) agents used in

preclinical and clinical studies to overcome immune suppression

(see Figure 1).
Non-specific targeting of the TME

Immunotherapies targeting CTLA-4 and
the PD-1/PD-L1 axis

CTLA-4 and PD-1 are both checkpoint molecules expressed

on T cells that upon ligand recognition hamper the cytotoxic

function of effector T cells (Teff). Tumors exploit these

inhibitory pathways by upregulating cognate ligands to avoid

immune surveillance, thus allowing cancer cells to spread during

the immunoediting escape phase (2, 23). Hence, the development

of monoclonal antibodies (mAbs) targeting the so-called

immune checkpoints has changed the landscape for patients

who do not respond to conventional cancer treatments. Indeed,

to date several ICIs represent the standard-of-care (SOC) for

patients with advance melanoma, Merkel cell carcinoma, non-

small cell lung carcinoma (NSCLC), HNSCC, MSI-CRC, and

refractory Hodgkin’s lymphoma (24–27).

Ipilimumab, which targets CTLA-4, is the first-in-class

FDA-approved ICI for the treatment of melanoma that does

not respond to chemotherapy (6, 28). Induction of CTLA-4

signaling inhibits Teff cell activation, proliferation, and cytokine

secretion. Ipilimumab and other anti-CTLA-4 mAbs block the

binding of CTLA-4 on activated T cells to its ligand, B7-1

(CD80) or B7-2 (CD86), on antigen presenting cells (9),

thereby impeding this inhibitory pathway (29, 30). Moreover,

there is evidence that anti-CTLA-4 therapy in combination with

vaccine can block immunosuppression by shifting the Teff/Treg

ratio. In a poorly immunogenic melanoma mouse tumor model,
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combinatorial treatment with granulocyte-macrophage colony

stimulating factor (GM-CSF)–transduced tumor cell vaccine and

anti-CTLA-4 resulted in tumor rejection that was directly

correlated with increased Teff/Treg ratio (31). In a follow-up

study, it was elucidated that the activity of anti-CTLA-4 is

mediated via selective Treg depletion within the tumor site

(32). Although anti-CTLA-4 therapy has brought benefits in

clinical trials of melanoma, refractory mCRC, hepatocellular

carcinoma, and malignant mesothelioma, no improvement was

observed in terms of overall survival (OS) in patients with

metastatic castration-resistant prostate cancer (30). The

mechanisms underlying the resistance to current anti-CTLA-4

therapy are poorly understood. One possible mechanism is the

constitutive expression of CTLA-4 on Tregs, which can

sequester the mAb from the Teff cells (24, 33). Therefore,

combination therapies of anti-CTLA-4 with anti-PDL-1 and

other treatment modalities represent current alternatives to

circumvent immunosuppressive mechanisms present in many

cancer malignancies.

Another ICI that has changed the landscape of

immunotherapy in several advanced cancers are mAbs blocking

the PD-1/PD-L1 axis. PD-1 (CD279), a transmembrane receptor

expressed on T cells, B cells, NKs, and myeloid-derived

suppressor cells (MDSCs) (34), exerts its inhibitory signaling
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upon binding to its cognate ligands PD-L1 (B7-H1) or PD-L2

(B7-H2), leading to a cascade of immunosuppressive mechanisms

halting the cytotoxic Teff function (35–37). PD-L1 also has an

essential role in converting CD4+ T cells into Tregs, enhancing

and sustaining the expression of the transcription factor FoxP3,

and maintaining the suppressive function of Tregs. Therefore,

suppressing the activation of the PD-1/PD-L1 axis can partially

abrogate some of these immunosuppressive mechanisms.

Nivolumab and pembrolizumab, both FDA-approved anti-PD-

1 mAbs, are indicated for unresectable/metastatic melanoma, and

NSCLC, among other cancers well-described by Vaddepally et al.

(34). Avelumab, a fully human anti-PD-L1 mAb, is approved to

treat metastatic Merkel cell carcinoma, locally advanced/

metastatic urothelial carcinoma and advanced renal cell

carcinoma if combined with axitinib, a tyrosine kinase

inhibitor (34).

In contrast to nivolumab or pembrolizumab, which are IgG4

isotype antibodies, avelumab is an IgG1 isotype mAb that can

mediate antibody-dependent cell-mediated cytotoxicity (ADCC)

(38). Preclinical work from Boyerinas and colleagues showed the

ability of avelumab to induce ADCC on several human cancer

cells including lung, breast, and bladder cancer cell lines, in the

presence of peripheral blood mononuclear cells (PBMCs) or NK

cells (38). Notably, the lung cancer cell line, H460, which
FIGURE 1

Targeting approaches to overcome immune suppression in the tumor microenvironment (TME). Effects of targeting the TME in a non-specific
(blue) and specific manner (red), and by shifting Teff/Treg ratio to overcome immunosuppression (green).
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expresses low-level MHC class and is resistant to cytotoxic T

lymphocytes (CTL) lysis, was effectively lysed by purified NK

cells in combination with avelumab (38). Additional work in

chordoma, a rare bone cancer in the spine or skull, showed that

avelumab significantly improved NK cell lysis of chordoma cells

via ADCC in vitro (39). Hence, these findings demonstrate that,

in addition to inhibiting the PD-1/PD-L1 axis, ADCC-mediated

lysis may be another mechanism through which avelumab exerts

its anti-tumor effect.

A substantial portion of patients derive limited benefit from

ICI-based monotherapies. Therefore, ICIs are currently being

evaluated in combination with chemotherapeutic agents,

radiation, vaccines, or costimulatory molecules for those

patients presenting primary or acquire resistance to ICIs (16,

23). Thus, identifying other molecules and pathways that can be

targetable alone or in combination with current FDA-approved

ICIs seems a feasible alternative to treat some advanced cancers.
Landscape of immune checkpoint
blockade beyond targeting CTLA-4 and
the PD-1/PD-L1 axis

Additional potential targets identified for immunotherapy

are the costimulatory receptors 4-1BB (also known as TNFRSF9

or CD137), OX40 (TNFRSF4, ACT35, or CD134), and

glucocorticoid-induced TNFR-related protein (GITR)

(TNFRS18, AITR or CD357). These molecules belong to the

tumor necrosis factor receptor superfamily (TNFRSF) and have

been shown to boost antitumor immune response by regulating

survival, proliferation, differentiation, and effector functions of

immune cells (23, 40, 41). 4-1BB receptor is expressed in

activated T and B cells, monocytes, macrophages, dendritic

cells (DCs), Tregs, NK, neutrophils, eosinophils, and mast cells

(42). The interaction of 4-1BB with its known ligands, TNFR-

associated factor (TRAF) 1 and TRAF2, on APCs triggers signals

that can stimulate cell division by downregulating proapoptotic

molecules, such as Bim (43). Additionally, 4-1BB receptor/ligand

interaction induces the proliferation of cytotoxic T cells, the

expansion of effector and memory T cells (Tm), and triggers

proinflammatory T helper (Th)1 cytokine production such as

interleukin (IL)-6, IL-8, IL-12, tumor necrosis factor (TNF), and

INF-g, while suppressing Th2 cytokines (IL-4, IL-5, IL-13)

(44, 45).

Similarly, costimulatory receptor OX40 is expressed in

activated CD4+ and CD8+ T cells, Tregs, Th cells, NK, and

neutrophils (23). Immunomodulatory functions associated with

OX40 interaction with its ligand, OX40L, express on APCs; these

include enhancing cytokine secretion, accumulation of antigen-

reactive T cells and Tm cells during the peak of the primary

immune response, as well as promoting T cell proliferation by T

cell receptor (TCR) antigen stimuli (46, 47). Furthermore, OX40

signaling regulates the number of CD4+ T cells generated during
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a primary clonal expansion and controls the size of the Tm pool

(47, 48). Thus, OX40 is of utmost importance since quality and

number of T cells are crucial to determine immunotherapy

response (47). Lastly, OX40 interaction with OX40L in DCs

has been shown to exert a role in DC activation, maturation (47)

and promoting antitumor immunity (49).

The stimulatory checkpoint GITR is expressed in Tregs,

activated NK cells, activated macrophages and DCs (50). Upon

recognition of its ligand GITRL (TNFSF18), predominantly

expressed by activated APCs, or with agonist antibodies, GITR

signaling enhances T cell activation (50). Mechanisms associated

with T cell activation by GITR include upregulation of CD25 and

secretion of IL-12 and INF-g (50). Moreover, GITR can enhance

cancer vaccine activity by providing costimulatory signaling for

T cell activation (51–54). Specifically, data suggest that GITR

signaling shortens the threshold for CD28 signaling on CD8+ T

cells and induces 4-1BB expression on CD8+ Tm (50). GITR

high expression on Tregs represents a more complex

mechanism, because while GITR modulation triggers Tregs

expansion (50, 55), it also inhibits Tregs immune suppressive

mechanisms (50, 56, 57). Indeed, growing evidence suggests that

the use of anti-GITR as an agonist increases Teff/Treg ratio by

increasing CD8+ T cell population and depleting Tregs (50, 58–

60). As an example, a study using a melanoma mouse model

demonstrated that costimulation of GITR with an agonist mAb

achieved a loss on FoxP3 expression within the intratumoral

Treg compartment (50, 60).

The therapeutic benefit of agonistic 4-1BB, OX40, and GITR

costimulation has been demonstrated in several preclinical

murine models of breast, colon, lymphoma, and melanoma

cancers. In melanoma, 4-1BB signaling was shown to rescue

chronic activated/exhausted CD8+ T cells (61). Importantly,

when 4-1BB and OX40 agonists are used in combination with

ICIs, vaccines or cytokines, a synergistic immune boost protects

against poorly immunogenic cancer types. For example, a

combination of costimulatory agonists anti-OX40 and anti-4-

1BB mAbs with vaccine, in a breast Her-2/neu transgenic mouse

model, enhanced both CD4+ and CD8+ T cell activity and

proliferation associated with the retardation of tumor growth

(62, 63). Combination therapy of anti-OX40, anti-4-1BB, anti-

PD-L1, docetaxel, and adenovirus-based tumor antigen vaccine

was shown to induce CD4+/CD8+ T cell proliferation and

activity, overcome CD4+ and CD8+ T cell exhaustion, and

delay tumor growth in both T cell–inflamed and non-T cell–

inflamed murine tumor models (64). In terms of GITR

costimulation in preclinical models, there is seminal work

using agonist antibodies DTA-1 or GITRL-Fc demonstrating

CD8+ T cell expansion and cytokine production (50). For

example, a study showed tumor regression after costimulation

with DTA-1 in a CT26 murine model (65). Additionally, another

study showed tumor control associated with the increase in TILs

and granzyme B in a Colon26 murine model [for an in-depth

review, see (50)].
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The clinical efficacy of several agonists for 4-1BB and OX40

in combination with ICIs is currently under investigation.

Recently published results from a clinical trial (NCT02315066)

of OX40 agonist, alone or in combination with a 4-1BB agonist,

have shown disease control in 56% of patients associated with an

increase in CD4+ memory T cell proliferation and activation

without dose-limiting toxicities (66). In a phase I study

(NCT02554812), 26.1% of the patients who received

combination treatment with the 4-1BB agonist utomilumab

and pembrolizumab had complete or partial responses.

Furthermore, the responders had high levels of activated

memory/effector peripheral blood CD8+ T cells (67). In an

ongoing clinical trial (INTRUST), the 4-1BB agonist urelumab

is being studied in advanced solid tumors including NSCLC

alone or in combination with nivolumab (NCT03792724); at the

time of this review, however, no results have been posted.

Recently, results were published for the first-in-human

phase I clinical trial (NCT01239134) using the anti-GITR

antibody, TRX518, a fully humanized Fc-dysfunctional

aglycosylated IgG1K (68). During the trial, 43 patients with

refractory solid tumors were treated with TRX518 monotherapy

and a reduction in circulating and intratumoral Tregs was

observed (68). Despite the increase in Teff/Treg ratio, however,

no substantial clinical responses were observed (68). Because

TRX518 monotherapy was not sufficient to activate cytolytic

CD8+ T cells due to persistent exhaustion, the group is now

evaluating TRX518 in combination with PD-1 blockade in a new

clinical trial (NCT02628574) (68). A separate clinical trial

(NCT02132754) is evaluating the GITR agonist MK-4166,

alone or in combination with pembrolizumab in patients with

advanced solid tumors (69). The combination was well-tolerated

and the highest overall objective responses (ORR, 69%) were

observed in ICI-naïve melanoma patients (69).

In addition to checkpoint inhibitors, tumors also produce

immunosuppressive cytokines such as TGF-b and IL-8 (2). TGF-

b is a pleiotropic cytokine that under physiological conditions

maintains immune homeostasis and even suppresses tumor

initiation (70). However, TGF-b signaling can also drive tumor

progression by suppressing CD8+ T cells tumor infiltration (71),

supporting angiogenesis (72), upregulating PD-L1 expression

(73), and promoting epithelial-to-mesenchymal transition

(EMT) (74). Several therapeutic agents targeting this cytokine

are currently under development for the treatment of cancer.

Bintrafusp alfa, previously known as M7824, is a first-in-

class bifunctional fusion protein that consists of an anti-PD-L1

antibody covalently linked to the extracellular domain of two

TGF-bRII molecules that is designed to block the PD-1/PD-L1

axis while also sequestering TGF-b molecules (75, 76). Several

preclinical studies have confirmed the antitumor efficacy of

bintrafusp alfa and its ability to increase the immune response

in triple negative breast, bladder, and HPV+ cervical cancer

models (77, 78). In the EMT6 syngeneic breast cancer model,

bintrafusp alfa resulted in an antitumor response that was
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associated with increased CD8+ T cell and NK cell activation

(77). Likewise, in HTB-1 bladder, HPV+ SiHa cervical, and

MDA-MB-231 triple negative breast cancer models in PBMC-

humanized NSGmice, bintrafusp alfa achieved significant tumor

growth control linked with increased tumor infiltration IFN-g
producing CD4+ and CD8+ T cells (78).

TGF-b is considered a master regulator of the EMT, and in

vitro and in vivo studies have shown that bintrafusp alfa can

suppress TGF-b–induced EMT in NSCLC (73). NSCLC cells

treated with bintrafusp alfa showed decreased expression of the

mesenchymal markers, vimentin and fibronectin, while

maintaining expression of the epithelial marker E-cadherin.

Likewise, a xenograft NSCLC model showed a significant

reduction in vimentin expression in bintrafusp alfa-treated

mice compared to untreated and anti-PD-L1-treated mice (73).

In addition to blocking PD-1/PD-L1 interaction, bintrafusp

alfa can also target PD-L1 through other mechanisms. Like

avelumab, the anti-PD-L1 moiety of bintrafusp alfa allows for

ADCC-mediated lysis of tumor cells (39, 73). Lung, urothelial,

cervical, breast and prostate cancer cells pre-treated with

bintrafusp alfa showed an enhanced susceptibility to ADCC-

mediated lysis by donor-derived NK cells as compared to

avelumab-treated cells (73, 79, 80). Furthermore, TGF-b
contributes to the upregulation of PD-L1 expression on tumor

cells and TGF-b sequestration by bintrafusp alfa could

subsequently result in reduced PD-L1 expression (73).

Bintrafusp alfa monotherapy, or in combination with other IO

agents, is the subject of investigation in ongoing clinical trials in

metastatic prostate cancer (NCT03493945), urothelial cancer

(NCT04501094), colorectal cancer (NCT03436563), and HPV-

associated malignancies (NCT03427411), among other cancers. A

previous phase I study (NCT02517398) in advanced solid tumors

showed a complete response (CR) in a patient with cervical cancer

and partial responses (PR) in some patients with pancreatic and

anal cancer (81). Treatment-related adverse events were observed

in 4 out of 19 patients and the maximum tolerated dose (MTD)

was not determined. Previous clinical trial findings using

bintrafusp alfa have been well-described in other publications

(75, 76).

In addition to being a physical barrier that impedes the

immune cell infiltration, the tumor extracellular matrix (ECM)

also regulates the activation of effectors cells (82). Collagen,

which is a component of the ECM released by cancer-associated

fibroblasts (CAFs), tumor cells and macrophages, has been

demonstrated to impair the immune response by acting as an

immune checkpoint when interacting with leukocyte-associated

immunoglobulin-like receptor-1 (LAIR-1, CD305) on immune

cells (83). LAIR-1 activation and signaling inhibit the function of

T cells, NK cells, monocytes, and DCs (83–85). Meta-analysis of

human datasets showed an association between high collagen

and LAIR-1 expression with low overall survival in glioblastoma

multiforme and mesothelioma and other advanced cancer

types (86).
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Recently, a novel fusion protein consisting of two LAIR-2

molecules—a soluble receptor that competes with LAIR-1 for

binding of collagen-like domains (87)—fused to the functional

IgG1 Fc tail was developed to block LAIR-1 signaling (83, 86).

This molecule, called NC410, reduced human HT-29 colorectal

tumor growth and promoted T cell anti-tumor activity in

humanized NSG mice (86). NC410 bound to collagen-rich

areas where LAIR-1+ immune cells were localized in the tumor

(86). In the murine EMT6 breast and MC38 colon cancer

models, NC410 in combination with bintrafusp alfa remodeled

the tumor collagen matrix, enhanced T cell tumor infiltration

and antitumor activity, and repolarized the suppressive M2

macrophages population (83). An ongoing clinical trial is

evaluating the safety of NC410 in patients with advanced and

metastatic solid tumors, such as ovarian, gastric, and colorectal

cancer (NCT04408599). At the time of this review, no results

have been posted.
Specific targeting of immune
suppressive population of the TME

Targeting MDSCs population

Immune suppressive cells, such as MDSCs and Tregs, play a

key role in promoting tumor growth by inhibiting the

proliferation and cytotoxic activity of NK and T cells (2, 88).

MDSCs are a heterogeneous group of immature and

dysfunctional myeloid cells classified in two major subsets

based on their phenotypic and morphological features:

monocytic-MDSCs (M-MDSCs) and granulocytic-MDSCs (G-

MDSCs) (89). MDSCs are recruited to the tumor site through

signaling molecules secreted by tumor cells and tumor stroma

(88, 89). Factors such as stem cell factor (SCF), GM-CSF,

granulocyte colony stimulating factor (G-CSF), vascular

endothelial growth factor (VEGF), and macrophage colony-

stimulating factor (M-CSF) are released by tumor cells to

promote the expansion of MDSC populations in the TME

(89). Furthermore, the tumor induces immune suppressive

functions of MDSCs by secreting inflammatory cytokines and

chemokines, such as IFN-g, IL-4, IL-6, IL-1b, and C-X-C motif

chemokine ligand 1 (CXCL1) (88, 89). The main mechanisms

associated with MDSC immune suppression include depriving T

cells of essential amino acids and adhesion molecules (90, 91),

inducing oxidative stress (90), and increasing Tregs and M2

macrophage population (90). Specifically, G-MDSCs can

suppress T cell response in an antigen-specific manner, while

M-MDSCs can do it using both antigen-specific and non-specific

mechanisms (89, 92).

In cancer patients, tumor progression and resistance to

immunotherapy are correlated with MDSC-mediated immune

suppression (88, 89, 93). Indeed, MDSCs in peripheral blood of
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breast cancer patients are associated with advance cancer stage

and metastasis (89). For example, in CRC patients, both

circulating and tumor infiltrating percentages of MDSCs have

shown to increase proportionally to tumor stage (89). Therefore,

during the past years, preclinical and clinical studies have been

focused on suppressing the MDSC population. Therapeutic

agents designed to deplete the MDSC population (i.e.,

gemcitabine and peptibodies), block their recruitment to the

tumor site (i.e., anti-CCL2 and anti-CCR5), promote their

differentiation (i.e., ATRA and vitamin D3) or inhibit MDSC-

mediated immunosuppression (i.e., anti-CCL2 and anti-CCR5)

have been extensively reviewed in the literature (88, 89, 93).

Furthermore, conventional therapies have also been reported to

affect MDSC populations. For instance, clinical data have also

shown a decrease of G-MDSCs population in peripheral blood of

pancreatic cancer patients receiving therapy with the

chemotherapeutic agent gemcitabine (94), which is the

standard first-line treatment for patients with unresectable

locally advanced or metastatic pancreatic cancer (95).

Although several agents to deplete MDSCs are under

investigation, to date no agent has been FDA approved.

Recently, a study showed that the engineered PD-L1

targeting high-affinity NK (PD-L1 t-haNK) cells may be a

novel treatment that can target MDSCs (96). PD-L1 t-haNK

cells were designed to express high-affinity CD16/FcgRIIIa
(158V) allele, promote ADCC-mediated lysis, possess an ER-

retained IL-2; circumvent the need for exogenous IL-2 in culture,

and express a chimeric antigen receptor (CAR) against PD-L1 to

target PD-L1 expressing cells (80, 96, 97). PD-L1 t-haNK cells

were developed to target PD-L1-expressing tumor cells and were

also shown to directly lyse MDSCs (96). Among the immune

cells, MDSCs express high surface levels of PD-L1; however, they

are not significantly targeted by NK cells in the presence of

avelumab (98). In vitro, coincubation of PD-L1 t-haNK cells

with human PBMCs from healthy donors and patients with

prostate and HNSCC cancer showed a 60% reduction in

peripheral MDSCs while other immune populations remained

unaffected (96). In vivo, PD-L1 t-haNK cells trafficked in PD-L1+

tumors and delayed tumor growth in breast and lung cancer

models in PBMC-humanized NSG mice (96).
Targeting Tregs population

In addition to MDSCs, Tregs cells also represent a target

because tumor infiltrating FoxP3+ CD25+ CD4+ Tregs cells are

highly proliferative and suppressive (99). Tumor infiltrating

Tregs express higher levels of surface molecules associated

with T cell activation, such as 4-1BB, OX40, GITR, LAG-3,

TIGIT, CD25, and CTLA-4 (100). Some of these molecules

possess a dual role supporting Treg immune suppressive

machinery. For example, Tregs use CD25 high affinity receptor

to acquire endogenous IL-2 for survival while also limiting IL-2
frontiersin.org

https://doi.org/10.3389/fimmu.2022.993624
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Santiago-Sánchez et al. 10.3389/fimmu.2022.993624
in the TME necessary for Teff cell activation and proliferation

(100, 101). CTLA-4 on Tregs interacts with CD80/86 ligands

downregulating its expression in APC, resulting in inhibition of

T cell activation (33, 100). Additionally, Treg cells secrete

suppressive cytokine IL-10, which inhibits NK and T cells

functions (102) and secrete the inhibitory molecule adenosine

that suppresses Teff cell activity while maintaining a positive

feedback loop for Tregs proliferation (103).

Based on the suppressive role of Tregs, many studies have

been focused on the depletion or functional modulation of Tregs

in the tumor milieu. Since Tregs and Teff cells share receptors,

one of the main challenges of immunotherapy is depleting Tregs

without depleting Teff cells. Treg-specific depleting antibody is

one of the approaches used to abrogate Treg-mediated

immunosuppression (100). For this purpose, surface molecules

expressed at much higher levels on Tregs than T cells are used as

targets, such as CD25, CTLA-4, GITR, 4-1BB, OX-40, LAG3,

TIGIT, CCR4, and CCR8; tumor burden control has also been

observed (58, 100, 104, 105). For instance, in a murine

pancreatic tumor model, when an anti-CD25 antibody to

deplete Tregs was combined with vaccine, mice showed

smaller tumors, longer survival, and a tumor-specific immune

response (106). In addition to the commonly used systemic

administration of Treg-specific antibodies, local delivery to the

tumor site can be performed. A recent study conjugated anti-

CD25 mAb with photoactivatable dye to selectively damage the

cell membrane of Tregs upon near-infrared (NIR) light

exposure, resulting in the tumor regression of the Lewis lung

carcinoma model (100, 107). The efficacy of CD25-depleting

antibodies to promote antitumor immunity is still unclear.

While anti-CD25 depleting antibodies can decrease Treg

populations, they can also target activated Teff cells that also

express CD25 (108).

Further studies have interrogated Treg depletion in cancer

immunotherapy using the agonistic anti-GITR or small

molecule drugs in low doses, such as the alkylating agent

cyclophosphamide (99). Tyrosine kinase inhibitors (TKIs) are

also used to achieve Treg depletion and augment antitumor

immunity (109). For example, a study using the TKI, imatinib, to

treat chronic myelogenous leukemia (CML) patients, observed a

depletion of Tregs and a significant increase in effector/memory

CD8+ T cells in CML patients in complete molecular remission

(CMR) compared to non-CMR patients (109).

CCR4, a chemokine receptor predominantly expressed on

Tregs (110), has been investigated as a target for Treg depletion

and several clinical trials using a humanized anti-CCR4 IgG1

mAb with a defucosylated Fc region, known as mogamulizumab

(KW-0761), are underway. In a phase Ia study, KW-0761 was

shown to efficiently deplete FoxP3+ Tregs cells with no toxicity

in lung and esophageal cancer patients (111). However, the

treatment also showed a limited reduction in Th1 CD4 T cells

and CD8 T cells and a significant reduction in Th2 and Th17

CD4 T cell populations (111). Currently, KW-0761 in
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combination with chemotherapy agents or with ICIs continue

under evaluation for several advanced solid tumors.
Overwhelming immune suppression

Shifting Teff/Treg ratio through
chemotherapy

As mentioned earlier, Tregs in the TME can decrease the

number of cytotoxic Teff cells, block Teff cell activation, and

maintain a positive feedback loop for Treg accumulation. In fact,

a high Teff to Treg (Teff/Treg) ratio in murine models is

associated with response to ICIs, while a low Teff/Treg ratio is

associated with ICI treatment resistance (16). In the clinic, a low

Teff/Treg ratio also correlated with poor prognosis in patients

with melanoma (112), breast (113), ovarian (114), and gastric

cancers (115). Conversely, a high CD8+ TILs/Treg ratio in

patients with epithelial ovarian cancer was associated with

better prognosis (114). Therefore, efforts in improving

immunotherapy outcomes have been focused on increasing the

Teff/Treg ratio in the TME.

Clinical and preclinical data using taxanes, antimetabolites,

and DNA-alkylating drugs as monotherapies or in combination

with IO agents have shown to increase Teff cells and decrease

Tregs in several cancer models (21, 116–118). For example, a

study using cisplatin, a platinum-based chemotherapy, in

combination with vinorelbine, a tubulin inhibitor-based

chemotherapy, showed a sustained depletion in the number of

Tregs with an increase in CD4+ Teff cells in a murine lung

adenocarcinoma model (117). Here, a 1.5 and 2-fold increase in

CD4+ Teff/Treg ratio, 4 and 7 days after a cisplatin/vinorelbine

chemotherapy regimen, respectively, was observed (117).

In another study, clinical data have shown that patients

sensitive to cisplatin-based neoadjuvant chemotherapy (119)

exhibit a 5-year survival rate of 80-90%, while patients resistant to

the therapy exhibit a 5-year survival rate of 30-40% (118). To

interrogate the difference between responders and non-responders

to NAC therapy, a study analyzed tumor biopsies from a cohort of

muscle invasive bladder cancer patients and found that,

individually, neither CD8+ T cell nor Treg density was associated

with NAC response but NAC response was strongly associated with

CD8+ T cell/Treg ratio (118). However, these findings are not

representative of all cancers, as indicated in another study that

showed no correlation between the CD8+ T cells/FoxP3+Treg ratio

and response to therapy in HNSCC patients treated with a

chemotherapy regimen (116). These contradicting observations

raise the question whether Teff/Treg ratio is a good indicator of

the immune response to chemotherapy.

A body of data has set the rationale for the development of

clinical trials testing ICIs in combination with chemotherapy agents

in cancers such as NSCLC (21, 120). For example, although

nivolumab outperformed platinum-based chemotherapy for the
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treatment of NSCLC patients, chemotherapy may synergize with

nivolumab through immunogenic modulation and abrogation of

immunosuppressive cell populations (120, 121). An ongoing phase

1/2 clinical trial is evaluating the safety and efficacy of nivolumab

and ipilimumab in combination with immunogenic chemotherapy

for patients with advanced NSCLC (NCT04043195). Additionally, a

phase 3 clinical trial (IMpower130) showed a significant

improvement in OS and progression-free survival in stage IV

NSCLC patients who received atezolizumab (anti-PD-L1 mAb),

in combination with chemotherapy (carboplatin plus Nab-

paclitaxel) compared to patients receiving standard-of-care

chemotherapy alone (21).
Shifting Teff/Treg ratio through vaccines
and immunocytokines

Cancer vaccines engage the antitumor immune response to

generate tumor-specific effector cells (122). A cancer vaccine has

four key components, the transgene of a tumor-specific antigen

(TSA) or a tumor-associated antigen (TAA), the formulation, an

immune adjuvant, and the delivery vehicle (123). After vaccine

administration, the professional APC (i.e., DCs) processes the

antigen, presents it on its surface via MHC molecules, and

induces a polyclonal CD4+ and CD8+ T cell response (124–

126). In preclinical studies, cancer vaccines have been shown to

inhibit tumor growth and promote TILs while decreasing

FoxP3+ Tregs, thereby improving the Teff/Treg ratio (119,

126–128). In the clinic, cancer vaccines have been proven safe;

however, they lack clinical efficacy as monotherapy (122). This

treatment modality, nevertheless, represents a feasible backbone

for combination therapy, wherein other immune-oncology

agents can capitalize on the tumor antigen-specific immune

cells elicited by the vaccine.

Studies to test the efficacy of vaccines in combination with

immunocytokines, which are antibody-cytokine fusion proteins

(129), to treat tumors and to circumvent immunosuppressive

mechanisms are underway. For instance, a preclinical study

us ing the adenovirus-based vacc ine target ing the

carcinoembryonic antigen Ad-CEA, which is an oncofetal

tumor antigen, in combination with N-803, an IL-15

superagonist complex consisting of an IL-15 mutant (IL-

15N72D) bound to an IL-15 receptor a/IgG1 Fc fusion

protein (130–132), showed improved immune response and

antitumor activity in a CEA-expressing MC38 murine colon

carcinoma model (51). Ad-CEA + N-803 combination therapy

resulted in increased CEA-specific CD8+ T cells in the periphery

compared to treatment with Ad-CEA or N-803 alone. This

suggests that the expansion of CEA-specific T cells may be due

to the inflammatory stimulus of N-803 (51, 131), in concordance

with an earlier study showing the positive effect of N803 on NK

and CD8+ T cell populations (133). Similarly, the Ad-CEA + N-

803 combination also resulted in decreased CD4+CD25+FoxP3+
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Treg population, effectively increasing the Teff/Treg ratio when

compared to Ad-CEA or N-803 monotherapies (51). Currently,

there are several clinical trials evaluating the safety and efficacy

of Ad-CEA + N803 in combination with standard of care and

other immune-oncology agents (NCT04247282, NCT03387085,

NCT03387111, and NCT03563157); results have yet to

be posted.

Another immunocytokine that is currently being studied in

combination with cancer vaccines is NHS-IL12, an engineered

immunocytokine composed of two molecules of IL-12 fused to a

tumor necrosis-targeting human IgG (NHS76) (134). The

combination of MUC1-targeting vaccine and NHS-IL12

delayed the growth of MUC1-expressing tumors and

promoted a robust peptide-specific CD4+ T cell proliferation

(135). NHS-IL12 has also been shown to cause a shift from an

immunosuppressive to inflammatory TME by promoting the

activation of CD4+ and CD8+ T cells, increasing the CD4+/CD8+

T cells to MDSC ratio, and reducing intratumoral TGF-b (136).

In another preclinical study, a human papillomavirus (HPV)

therapeutic vaccine in combination with NHS-IL12 controlled

the tumor growth of an HPV+ murine tumor, which was

associated with the expansion of activated CD8+ T cell

population in the TME (137). Treatment efficacy was further

enhanced when HPV vaccine + NHS-IL12 was combined with

bintrafusp alfa. A phase I/II trial evaluating the safety, overall

response rate, and survival with the HPV vaccine + NHS-IL12 +

bintrafusp alfa combination in patients with advanced HPV-

associated malignancies is currently underway (NCT04287868).

The outbreak of COVID-19 in 2020 not only boosted the

messenger RNA (mRNA) technologies for the development of

SARS-CoV-2 vaccine but also renewed interest in mRNA

vaccines as an alternative treatment strategy for cancer (124).

In fact, over twenty mRNA-based immunotherapies have

entered clinical trials for the treatment of solid tumors,

including NSCLC, advanced melanoma, CRC, pancreatic and

bladder cancers, and metastatic CEA-expressing solid tumors

(126). Currently, several RNA types are under investigation for

cancer vaccines, including virus-derived self-amplifying (49)

RNA, non-replicating unmodified mRNA and modified

mRNA (126). SAM-RNA vaccines, which encode for tumor

antigen(s) as well as genes for viral RNA replication machinery,

have been shown to induce higher antigen expression and elicit a

stronger immune response compared to other mRNA type

vaccines (138, 139). SAM-RNA vaccines can be delivered in

the form of plasmid DNA, in vitro transcribed (IVT) RNA, and

virus-like RNA particles (138).

An alphavirus SAM-RNA vaccine, known as virus-like

replicon particle (VRP)-CEA (6D) vaccine or AVX701, has

been investigated in two clinical trials for the treatment of

stage III CRC and advanced or metastatic CEA-expressing

tumors (NCT00529984, NCT01890213) (126, 140). The

components of this platform have been designed to improve

vaccine efficacy – the VRP promotes tropism towards DCs while
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CEA (6D), which has an Asn to Asp substitution in position 6,

enhances recognition by cognate CD8+ T cell receptor (140).

Crosby et al. reported that among the stage IV cancer patients

treated with VRP-CEA (6D) vaccine, the median follow-up was

10.9 years and the 5-year relapse-free survival (RFS) was 17%

(140). Among the stage III cancer patients, the survival at a

median follow-up of 5.8 years was 100% and the 5-year RFS was

75%. Patients in the stage III cancer cohort were shown to have

increased CEA-specific CD8+ Teff cells and decreased FoxP3+

Tregs (140). The shift in the Teff/Treg ratio after VRP-CEA (6D)

vaccination suggests an effective immune modulation and

provides a rationale for the combination of this virus-like

SAM-RNA vaccine with ICB (140). Other mRNA vaccines

using different formulations as delivery systems and for the

treatment of other malignancies are currently under study; they

are well described by others (125, 126, 141, 142) and beyond the

scope of this review.
Shifting Teff/Treg ratio through inhibition
of immunosuppressive pathways

Another approach to promote immune response is to inhibit

the immunosuppressive molecule indoleamine 2,3-dioxygenase

(143) (51, 64, 144). IDO secretion promotes apoptosis of Teff

and the activation of Tregs mainly by reducing the availability of

the amino acid tryptophan and increasing its metabolite,

kynurenine, in the TME (23, 145). The immunosuppressive

effect fostered by IDO is also magnified in the TME, since

IDO is induced by several pro-inflammatory signals (IFN-g,
TNF-a, TGF-b), resulting in its expression by tumor, immune,

and stromal cells (23, 145). A preclinical study investigating the

effect of the IDO inhibitor (IDOi) epacadostat in combination

with Ad-CEA, N-803, OX40 agonist, and GITR agonist

demonstrated antitumor efficacy in a MC38-CEA murine

tumor model that was associated with an expansion of splenic

and tumor infiltrating CD8+ T cells (51). Furthermore, not only

did the combination promote the expansion of Teff cells over

Tregs, but it also dampened the suppressive activity of Tregs

(51). Additionally, analysis of serum from mice treated with the

combination therapy showed significant reduction in

kynurenine levels compared to control.

IDO inhibitors are currently being evaluated in combination

with checkpoint inhibitors (22). Several clinical trials are

evaluating how blocking the enzymatic activity of IDO inhibits

the suppressive mechanisms fostered by IDO in the TME (146).

However, a recently concluded phase 3 clinical trial, ECHO-301,

evaluating epacadostat in combination with pembrolizumab,

failed to show any clinical benefit in unresectable or metastatic

melanoma patients (143). Despite these findings, rather than

discard the idea that blocking IDO pathway will improve the

immune response, researchers should rethink which IO agents

should be combined with IDOi as well as optimal dosages. As
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described by Fabian et al., the combination of a specific antigen

vaccine and costimulating agents with the IDOi epacadostat

showed a robust antitumor activity and an immune response

(51). Other clinical trials are also evaluating costimulation

through anti-GITR agonist alone in solid tumors (NCT

01239134), or in combination with an IDOi and checkpoint

inhibitors in patients with glioblastoma (NCT03707457).
Future perspectives

Immunosuppression is a hurdle to overcome for the success

of immunotherapeutic strategies in cancer treatment (147).

However, not only should immunosuppressive mechanisms be

addressed, but immunomodulatory mechanisms promoting T

cell priming and activation should also be met. This often

requires a treatment strategy that combines different agents to

target different facets of the tumor-immunity interactions.

Combination therapies, however, also come with their own

challenges. For such strategies, it is crucial to interrogate not

only their antitumor efficacy, but also the safest doses that

maintain effectiveness, as well as the schedules for the agent’s

administration. Moreover, a deeper understanding of the known

immunosuppressive pathways, as well as identifying new ones,

could enable the development of immunotherapies relevant to

many cancers.
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Unveiling the molecular
features, relevant immune and
clinical characteristics of
SIGLEC15 in thyroid cancer

Xiaofeng Hou1,2,3, Chao Chen2,3, Xiabin Lan2,3*

and Xiaodong He1*

1The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 2Department of Head &
Neck Oncology Surgery, the Cancer Hospital of the University of Chinese Academy of Sciences
(Zhejiang Cancer Hospital), Hangzhou, China, 3Key Laboratory of Head & Neck Cancer
Translational Research of Zhejiang Province, Hangzhou, China
The groundbreaking research work about SIGLEC15 has raised it as a potential

promising target in cancer immunotherapy. Unfortunately, the role of

SIGLEC15 in thyroid carcinoma (THCA) remains obscure. Public and home

multi-omics data were collected to investigate the role of SIGLEC15 in THCA in

our study. SIGLEC15 was upregulated in THCA tumor tissue compared to

nontumor tissue in bothmRNA and protein levels; gene set enrichment analysis

(GSEA) results showed that high SIGLEC15 mRNA expression was positively

correlated to many immune pathways. Results of the examination of

immunological landscape characteristics displayed high SIGLEC15 mRNA

expression that mainly positively correlated with a large number of cancer

immunity immunomodulators and pathways. In addition, upregulation of

SIGLEC15 was positively correlated with an enhanced immune score, stromal

score, and estimate score. However, higher SIGLEC15 mRNA also met high

immune exhausted status. The majority of CpG methylation sites negatively

correlated with SIGLEC15 mRNA expression. Analysis of clinical characteristics

supported increased SIGLEC15 expression that was positively correlated with

more extrathyroid extension and lymph nodemetastasis. We observed different

single nucleotide variant (SNV) and copy number variation (CNV) patterns in

high and low SIGLEC15 mRNA expression subgroups; some vital DNA damage

repair deficiency scores addressed a negative correlation with SIGLEC15mRNA

expression. We also found that some commonly used chemotherapy drugs

might be suitable for different SIGLEC15 mRNA expression subgroups. This

study highlighted the vital role of SIGLEC15 in THCA. Targeting SIGLEC15 may

offer a potential novel therapeutic opportunity for THCA patients. However, the

detailed exact cellular mechanisms of SIGLEC15 in THCA still needed to be

elucidated by further studies.
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Introduction

Thyroid cancer is a common endocrine system tumor, and

its incidence rate has been increasing steadily in recent years

(1–3). What was worse is that it was reported that thyroid

cancer is the fifth most common cancer in women (4).

Although the increase in incidence rate could be largely

attributed to the improvement in the detection and diagnosis

technology of papillary thyroid cancer (PTC) (diameter

<2 cm), the ratio of more invasive PTC (diameter 2.1–4.0 cm

and >4 cm) increased by 1.5–5 times in the past 30 years (5),

even if the majority of them had excellent long-term prognoses.

However, some kind of thyroid cancer may also exhibit very

aggressive behavior, and the mortality rate remains stubbornly

high (6). There are still a small number of patients with

advanced differentiated, poorly di fferentiated, and

undifferentiated thyroid cancer with high mortality. To date,

the most efficacious approach is targeted therapy with or

without surgical resection, but the curative effect is still poor.

Therefore, there is an urgent need for newer therapies.

More and more studies believed that the tumor

microenvironment (TME) was an essential factor that affected

tumor formation, development, and prognosis (7–10). Therefore, a

lot of effort has been stimulated to identify immune factors that

contribute to the prognosis of cancer patients. Checkpoint

inhibitors, chemotherapy drugs, radiotherapy, and antiangiogenic

drugs all enhanced T-cell infi ltration in the tumor

microenvironment (11). Immunotherapy has become the fourth

primary treatment of tumors following surgery, radiotherapy, and

chemotherapy. Immune checkpoint inhibitors, especially, have

accomplished unprecedented success in the clinical treatment of

multiple cancer types. There was also a growing body of cancer
Abbreviations: Abbreviations: ACC, Adrenocortical carcinoma; BLCA,

Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC,

Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL,

Cholangiocarcinoma; COAD, Colon adenocarcinoma; COADREAD, Colon

adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma; ESCA,

Esophageal carcinoma; GBM, Glioblastoma multiforme; GBMLGG,

Glioma; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney

Chromophobe; KIPAN, Pan-kidney cohort (KICH+KIRC+KIRP); KIRC,

Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell

carcinoma; LAML, Acute Myeloid Leukemia; LGG, Brain Lower Grade

Glioma; LIHC, Liver hepatocel lular carcinoma; LUAD, Lung

adenocarcinoma; LUSC, Lung squamous cell carcinoma; OV, Ovarian

serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG,

Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma;

READ, Rectum adenocarcinoma; STAD, Stomach adenocarcinoma; SKCM,

Skin Cutaneous Melanoma; STES, Stomach and Esophageal carcinoma;

TGCT, Testicular Germ Cell Tumors; THCA, Thyroid carcinoma; UCEC,

Uterine Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma;

ALL, Acute Lymphoblastic Leukemia; WT, High-Risk Wilms Tumor.
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clinical trials that were approved by the US Food and Drug

Administration (FDA) in which a single-agent checkpoint

inhibitor or a kind of combination of checkpoint blockades was

a treatment (12–14), demonstrating the breadth of interest from

scientists and pharmaceutical factories in immuno-oncology and

the great potential for additional immunotherapeutics.

Immune checkpoint-blocking therapy such as cytotoxic T

lymphocyte-associated antigen 4 (CTLA4) (15, 16), programmed

cell death protein 1 ligand 1 (PD-L1), and programmed cell death

1 (PD-1) have been widely used in many types of solid tumors (17,

18). Although anti-PD-1/PD-L1 therapy was the most famous and

clinically effective immunotherapy, its effectiveness in human

solid tumors remains only 20%–30% (19). In recent years,

immunotherapy has been successfully applied to the treatment

of advanced differentiated thyroid cancer and anaplastic thyroid

cancer and changed the treatment paradigm (20, 21).

SIGLEC15, an alias of CD33L3 and HsT1361, belonged to

the sialic acid-binding immunoglobulin-like lectin family.

Angata et al. (22) first identified SIGLEC15 in 2007 and

inferred that it probably played a conserved regulatory role

in the immune system of vertebrates. The following studies

demonstrated that SIGLEC15 played an important role in the

development and differentiation of osteoclastogenesis, and it

could also act as a potential therapeutic target with its versatile

role of suppressed bone resorption but also facilitated bone

remodeling (23–25). Jaeger et al. (26) identified SIGLEC15 as a

susceptibility factor in recurrent vulvovaginal candidiasis.

Wang et al. (27) first supported that SIGLEC15 could be an

immune suppressor and potential target for normalization

cancer immunotherapy by using a genome-scale T-cell

activity array in 2019, and they also revealed upregulation of

SIGLEC15 on various cancer types. Moreover, SIGLEC15 had

unique molecular features when compared with the majority of

known checkpoint inhibitory ligands and a mutually exclusive

expression with PDL1, proposing that it could be a critical

immune evasion mechanism in PD-L1-negative patients (27).

SIGLEC15 was proven to be an immune suppressor in the

premetastatic lymph node of colorectal cancer (28). Several

studies displayed the complicated function of SIGLEC15 and

val idated that SIGLEC15 could act as a potent ia l

immuno the rapeu t i c t a r g e t f o r panc r ea t i c duc t a l

adenocarcinoma (29, 30). SIGLEC15 shaped a non-inflamed

TME and predicted the molecular subtypes in bladder cancer

(31). Furthermore, SIGLEC15 acted as a mediator of

LINC00973t to suppress immune in clear-cell renal cell

carcinoma (32). Most importantly, in a phase I clinical trial

of SIGLEC15-positive patients who were diagnosed with

advanced/metastatic solid tumors refractory or resistant to

currently available therapies with a tumor proportion score

Tumor Proportion Score (TPS) PDL1 score <50% could benefit

from NC318 (anti-SIGLEC15 antibody) (33).

In the present study, we aimed to decipher the comprehensive

picture of the role of SIGLEC15 in thyroid carcinoma (THCA) by
frontiersin.org
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datamining the well-known multi-omics databases, such as The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO), and validated it in our own dataset by experiments.
Materials and methods

Data acquisition

We obtained TCGA and Genotype-Tissue Expression

(GTEX) RNA sequencing data (FPKM), clinical data, and

DNA methylation data from xenabrowser (https: //

xenabrowser.net/datapages/) (34, 35), and FPKM values were

transformed to log2(TPM + 1) values. SIGLEC15 mRNA

differential expression from the Pan-Cancer Analysis of

Whole Genomes (PCAWG) was completed by R package

UCSCXenaShiny (36). GEO datasets (GSE3467, GSE3678,

GSE29265, GSE33630, GSE60542, GSE65144, GSE97001)

were downloaded from GEO database (https://www.ncbi.nlm.

nih.gov/geo/) (37). R package limma was used to get the mean

value of repeated probes in GEO datasets (38). Wilcoxon rank-

sum test was used to compare the differential expression of

SIGLEC15 between tumor and normal samples in both The

Cancer Genome Atlas, and GEO is Gene Expression Omnibus

and GEO datasets; R package ggpubr and ggplot2 were used to

visualize the difference (38). R package survival was used to

explore the relationship between SIGLEC15 expression and

overall survival. Somatic mutation MAF (Varscan2 version) file

was downloaded from the GDC data portal (https://portal.gdc.

cancer.gov/) and presented gene mutation between high and

low SIGLEC15 (cut by median value of SIGLEC15) (39). Copy

number information was harvested from Masked Copy

Number Segment by R package TCGAbiolinks (40), then

separated into two files by high and low SIGLEC15 (cut by

median value of SIGLEC15); these two files were used as input

for the online tools GenePattern module GISTIC_2.0 (version

6.15.28) (https://www.genepattern.org/#) to visualize the copy

number variation (CNV) difference (41). We downloaded the

genomic and molecular landscape of DNA damage repair

deficiency scores file (42) and explored the correlation with

SIGLEC15 mRNA expression. Online database Tumor

Immune Single-cell Hub (TISCH) was conducted to explore

the expression cell type of SIGLEC15 (43).
SIGLEC15 mRNA expression correlation
with DNA methylation and N6-
Methyladenosine regulator
mRNA expression

We extracted DNA methylation site beta values 2 kb

upstream to 0.5 kb downstream of the transcription start site

(TSS) of gene SIGLEC15, then conducted a Spearman
Frontiers in Immunology 03
114
correlation analysis between SIGLEC15 DNA methylation and

mRNA expression (including gene level and site level; gene level

is the mean value of all site values). We also explored the

correlation between SIGLEC15 mRNA expression and N6-

methyladenosine (m6A) genes (including 13 readers, eight

writers, and two erasers) (44).
Functional enrichment analysis

We used Wilcoxon rank-sum test to find the differentially

expressed genes between high and low SIGLEC15 (cut by median

value of SIGLEC15) groups and visualized by R package

pheatmap. Gene set enrichment analysis (GSEA) software

(GSEA v4.2.3) (45, 46), h.all.v7.5.1.symbols.gmt, and

c5.go.v7.5.1.symbols.gmt were harvested from msigdb (http://

www.gsea-msigdb.org/gsea/downloads.jsp) and then for GSEA

with the high and low SIGLEC15 mRNA expression groups.

Significant signaling pathways were selected by criteria false

discovery rate (FDA) <0.25 and p-value <0.05.
Protein–protein interaction (PPI) network
and hub genes

Significant differentially expressed genes between high and

low SIGLEC15 (cut by median value of SIGLEC15) groups were

based on the criteria of false discovery rate <0.05 and absolute

value log2 fold change >1, then the selected genes were input

into SRTING (v11.5, http://string-db.org/) for the retrieval of

protein–protein interaction network information (47). A cutoff

of 0.4 for minimum interaction score was set to get the biological

functions with disconnected nodes hidden from the network,

and the interaction file acted as input for Cytoscape3.9.1 to

visualize the interaction network of these proteins (48); plug-in

CytoHubba was applied to get hub genes with default

parameters (49).
Evaluation of the immunological
landscape characteristics with SIGLEC15
of the thyroid carcinoma

To decipher the immunological landscape characteristics of the

TME in THCA, we firstly gained 122 immunomodulator genes

[major histocompatibility complex (MHC), receptors, chemokines,

and immune stimulators] (50), 47 immune checkpoint (ICP)

genes, and 25 immunogenic cell death (ICD) genes (51). We

displayed the different expressions between high and low

SIGLEC15 (cut by median value of SIGLEC15) groups or

correlation with gene SIGLEC15. The activity of the cancer

immunity cycle data was obtained from online website TIP

(http://biocc.hrbmu.edu.cn/TIP/index.jsp) (52) and immune
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features from the online website iAtlas Explorer (https://isb-cgc.

shinyapps.io/iatlas/) were downloaded (53) and then were

visualized by R package ggpurb between high and low SIGLEC15

(cut bymedian value of SIGLEC15) groups. R package estimate was

used to output the estimated levels of infiltrating stromal and

immune cells and calculated stromal score, immune score, and

estimate score (54). The TIMER website (https://cistrome.

shinyapps.io/timer/) was utilized to validate the influence of

SIGLEC15 expression on immune cell infiltration in THCA (55).

We also used single-sample gene set enrichment analysis (ssGSEA)

to compare the immune infiltration scores between high and low

SIGLEC15 (cut by median value of SIGLEC15) groups (56). The

Tumor Immune Dysfunction and Exclusion (TIDE) score and

exclusion score were evaluated using an online database (http://

tide.dfci.harvard.edu/) (57).
Tissue microarray analysis

This study was approved by the institutional review board of

Zhejiang Cancer Hospital. The informed consents were signed

from all subjects in the study. The tissue microarray (TMA) chips

were obtained fromWuhan Xavier Biotechnology Co., Ltd. A total

of 110 thyroid cancer tissue specimens and 54 adjacent tissue

specimens were obtained; each formalin-fixed paraffin-embedded

block was cut into 4-µm-thick sections for arraying. SIGLEC15

antibody (GTX32061, GeneTex, CA, USA) was used for

immunohistochemistry (IHC); representative cancer tissue areas

were marked on hematoxylin–eosin-stained slides, and TMA

construction sampling was performed using tissue chip scanner

(3DHistech®, Pannoramic MIDI, Hungary). The Densito Quant

software in Quant Center was used to automatically identify and

set all dark brown on the tissue section as strong positive, brown

yellow as medium positive, light yellow as weak positive, and blue

nucleus as negative. Then, each tissue point was identified; the

strong positive, medium positive, weak positive, and negative

areas (unit: pixel) were analyzed; and the positivity percentage

and histochemistry score (H-score) were calculated.
Evaluation of potential chemotherapy
drugs to SIGLEC15 mRNA expression

Cellminer™ database [Version: 2022.1 (database: 2.8.1)] was

used for the research of pharmacological data of the NCI-60

cancerous cell lines (58).
Statistical analysis

Statistical analysis was finished with R software (v4.1.1,

https://www.r-project.org/) and its corresponding packages.
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Comparison between two groups was conducted utilizing

Wilcoxon rank-sum test, and Kruskal–Wallis test was

carried out for normal multiple groups. Spearman

correlation test was adopted to determine the correlation

between variables. Fisher exact test was performed to

ana l y z e th e co r r e l a t i on be tween S IGLEC15 and

clinicopathologic characteristics. p-value <0.05 was set as the

threshold; if not specially noted, ns, *, **, ***, and **** stand

for p-value >0.05, p-value <=0.05, pvalue <=0.01, pvalue

<=0.001 and pvalue <=0.0001, respectively.
Results

Analysis of expression of SIGLEC15 in
thyroid carcinoma samples

Figure 1 showed the workflow of this study, which was

presented for SIGLEC15 differential expression, immune

genes, cells, pathways, immune infiltration scores, clinical

features, mutations, CNV, DNA methylation, and m6A

genes with SIGLEC15. After a comprehensive analysis of the

expression data from The Cancer Genome Atlas, and GEO is

Gene Expression Omnibus, Genotype-Tissue Expression, and

PCAWG database, we found that SIGLEC15 was highly

expressed in THCA compared with normal tissues in all

databases (Figure 2A; Supplementary Figure S1A). In
FIGURE 1

The flow diagram of the study.
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addition, SIGLEC15 mRNA expression from database The

Cancer Genome Atlas, and GEO is Gene Expression

Omnibus of THCA in tumor and normal samples was

shown in Figure 2B. Paired tumor and normal samples in

Supplementary Figure S1B, SIGLEC15 was also found to be

highly expressed in tumor samples in gene expression profiles

(GSE3467, GSE3678, GSE29265, GSE33630, GSE60542,

GSE65144, GSE97001) from the GEO database in Figure 2B.

The expression level and the positive rates of SIGLEC15 were

compared between thyroid cancer tissue and adjacent normal

tissue samples by immunohistochemistry on microarray.

Figures 2C, D were a representative area of TMA, a classic

pair of samples. Adjacent tissue had lower positive staining

(Figure 2E) than thyroid cancer tissue (Figure 2F); the

concrete H-score was in Table 1.
Frontiers in Immunology 05
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Differential genes, signaling pathways,
and hub genes associated with SIGLEC15
mRNA expression groups

We obtained significant differentially expressed genes

between high and low SIGLEC15 groups. The 20 most highly

and lowly expressed genes were presented, and we noted that the

SIGLEC family genes SIGLEC15 and SIGLEC6 were in the 20

most highly expressed genes in tumor samples (Figure 3A). We

further analyzed the signaling pathways involving SIGLEC15 via

GSEA; high SIGLEC15 mRNA expression was positively

correlated with pathways such as the regulation of adaptive

immune response, positive regulation of cytokine production, T

cell-mediated immunity (Figure 3B), inflammatory response,

interferon alpha response, and interferon gamma response

(Figure 3C). Thereafter, we used the methods mentioned

above to identify hub genes; 10 hub genes were harvested, as

Figure 3D presented; several CXC family genes were in the hub

gene list, such as genes CXCL1, CXCL2, and CXCL8 (Figure 3D).
Immunological and biological
significance of SIGLEC15 in
thyroid carcinoma

The majority of 122 highly expressed immunomodulators

were found in the high SIGLEC15mRNA expression group, such
A
B

D

E F

C

FIGURE 2

Analysis of the expression of SIGLEC15. (A) Pan-cancer mRNA expression of SIGLEC15 between tumor and normal tissues from The Cancer
Genome Atlas, and GEO is Gene Expression Omnibus and Genotype-Tissue Expression database. (B) mRNA expression of SIGLEC15 between
tumor and normal tissues from GEO and The Cancer Genome Atlas, and GEO is Gene Expression Omnibus database. (C) A classic pair of
samples. (D–F) Left sample was adjacent normal tissue. Right sample was thyroid carcinoma tissue. Thyroid carcinoma tissue has higher
SIGLEC15-positive staining than the adjacent normal tissue. ns, *, **, ***, and **** stand for p-value >0.05, p-value <=0.05, p-value <=0.01,
pvalue <=0.001 and pvalue <=0.0001, respectively.
TABLE 1 SIGLEC15 expression levels in different pathological tissues.

N H-Score (�X ± S) t-value p-value

Tumor tissue 110 95.18 ± 29.10 6.124 0.001

Paratumor tissue 54 64.92 ± 31.0
H-Score, histochemistry score.
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as MHC family member genes, CXC family member genes, CXC

chemokine receptors that played important roles in cancer

immunity (Figure 4A), and ICPs and ICD genes, which played

critical roles in modulating the host antitumor immunity.

SIGLEC15 had a positive correlation with most of the ICPs,

and some had a significant positive correlation (e.g., CD200,

CD276, CD40) but had no significant correlation with PDCD1

(PD-1) (Figure 4B). SIGLEC15 also had a significant positive

correlation with some ICDs (e.g., ANXA1, MET) and significant

negative correlation with CALR (Figure 4C). We also found a

significant positive correlation between SIGLEC15 and CD44

(Supplementary Figure S1C; Supplementary Table S1).

Systematically tracking the activity of anticancer immunity

and the extent of tumor-infiltrating immune cells were

important for cancer immunotherapy. The majority of the

steps of the cancer immunity cycle were found to be

significantly upregulated, including step 3 (priming and

activation), step 5 (infiltration of immune cells into tumors),

and most parts of step 4 (trafficking of immune cells to tumors)

(Figure 5A). Furthermore, we also assessed the correlation

between SIGLEC15 mRNA expression and 56 previously

defined immune-related molecular features; the expressions of

11 molecular features were significantly higher in the high
Frontiers in Immunology 06
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SIGLEC15 group, including Dendritic Activated, IFN gamma

Response, and Leukocyte Fraction (Supplementary Figures

S2A–K). We further evaluated the correlation between

SIGLEC15 expression and immunocyte infiltration and

observed that SIGLEC15 significantly positively correlated with

the infiltration of B cells, CD4 T cells, macrophages, neutrophils,

and dendritic cells (Figure 5B). Moreover, the high SIGLEC15

group employed a higher stromal score, immune score, and

estimate score (Figure 5C). We also used the ssGSEA algorithm

to calculate immunocyte infiltration; it was easy to see that all of

the 16 immune cells and 13 immune-related pathway scores

were significantly upregulated in the high SIGLEC15 group

(Figures 5E, F). Although the high SIGLEC15 group had a

higher proportion of immunocytes and an elevated level of

immune checkpoints, we also observed that the high

SIGLEC15 group linked with an increased score of TIDE,

immune exclusion by TIDE database (Figure 5D). Moreover,

by integrating some known gene sets correlated with exhausted

immunity, we found that although patients with high SIGLEC15

had a high proportion of immunocytes, they also had higher

scores of immune checkpoint blockade (ICB) resistance,

exhausted CD8, T-cell exhaustion, immune checkpoint, and T-

cell regulatory, which would lead to immune exhaustion. So,
A B

D

C

FIGURE 3

Functional enrichment analysis of SIGLEC15. (A) Top 20 differentially expressed genes between high and low SIGLEC15 groups. (B, C) GSEA for
the signaling pathways activated in the high SIGLEC15 mRNA expression group with (B) GO pathways and (C) HALLMARK pathways. (D) Hub
genes related to SIGLEC15.
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high SIGLEC15 subgroup patients met immune exhaustion,

which indicated that patients with a low SIGLEC15 expression

could benefit more from Immune checkpoint inhibitor (ICI)

therapy than patients with a high SIGLEC15 expression

(Supplementary Figure S2L). We also figured out that mainly

immune cells express SIGLEC15, especially on Monocytes and

Macrophages (Supplementary Figure S3A).
SIGLEC15 mRNA expression correlates
with methylation

m6A RNA methylation was a kind of epigenetic

modification measured by methyltransferases, demethylases,

and binding proteins, which were also called “writers,”
Frontiers in Immunology 07
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“erasers,” and “readers.” We conducted the relationship

analysis of these regulated genes with SIGLEC15 mRNA

expression levels; it could be easily seen that the majority of

reader genes had a significant positive correlation with

SIGLEC15 (Figure 6A), and all of the writer genes except

RBM15 had a significant positive correlation with SIGLEC15

(Figure 6B). However, eraser genes had no significant correlation

with SIGLEC15 (Figure 6C). We also analyzed the extent to

which SIGLEC15 mRNA expression correlated with CpG

methylation and the whole CpG methylation site levels of

SIGLEC15, which varied from a broad scope (Figure 6D).

Interestingly, the averaged SIGLEC15 promoter and body

hypermethylation were associated with decreased SIGLEC15

mRNA expression, indicated by a strong negative correlation

coefficient (Figure 6E). Moreover, we measured each CpG
A B

C

FIGURE 4

Immunological gene patterns related to SIGLEC15. (A) Differential expression of 122 immunomodulators (chemokines, receptors, MHC, and
immunostimulators) between the high and low SIGLEC15 groups. (B) ICP modulator relationship with SIGLEC15. (C) ICD modulator relationship
with SIGLEC15. ns, *, **, and *** stand for p-value ≤0.05, p-value ≤0.01, pvalue ≤0.001.
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methylation site level with SIGLEC15 mRNA expression levels;

we found that six out of nine sites had a negative correlation with

SIGLEC15, and CpG methylation site cg05752393 had a positive

correlation with SIGLEC15 (Figures 6F–L). However, the CpG

methylation site cg13741394 and cg00425636 had no significant

correlation with SIGLEC15 (Figures 6M, N).
Clinical significance of SIGLEC15

We quantified vital clinical feature associations with

SIGLEC15 mRNA expression in THCA, and stage, lymph

node metastasis (N stage), extrathyroid extension, and BRAF

V600E status were found to be positively correlated with

SIGLEC15 mRNA expression levels; other clinical factors (e.g.,

age, gender, residual tumor) indicated no significant relationship

with SIGLEC15mRNA expression (Figures 7A–I). Furthermore,

we analyzed the clinical feature associations with SIGLEC15 IHC

level, and we revealed that N stage and extrathyroid extension

were positively related to SIGLEC15 in Table 2. However, there

was no significant relationship between SIGLEC15 expression

and overall survival (Supplementary Figure S4A).
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Mutational analyses of SIGLEC15 in
thyroid carcinoma

No mutations were found in the MAF file of the gene

SIGLEC15 of THCA patients produced by varscan2 software

obtained from The Cancer Genome Atlas, and GEO is Gene

Expression Omnibus. We also investigated mutational profiles

of low and high SIGLEC15 groups; it could be clearly seen that

more patient samples in the high SIGLEC15 group had gene

BRAF mutations. Moreover, the majority of mutations in

patient samples of the high SIGLEC15 group were located in

gene BRAF (Figure 8A); patient samples in the low SIGLEC15

group had mutations in genes BRAF, NRAS, and HRAS

(Figure 8B), not focused as that in the high SIGLEC15 group.

The GISTIC2.0 results indicated that amplification displayed a

lower frequency in the high SIGLEC15 mRNA expression

group compared to the low SIGLEC15 expression group

(Figures 8C, D) and similar frequency of deletion in the two

groups (Figures 8C, D). Furthermore, we calculated the G-

score, which also showed more amplification events in the low

SIGLEC15 expression group (Supplementary Figures

S5A, S5B).
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FIGURE 5

Immunological cell patterns related to SIGLEC15. (A) Differences in the seven steps of the cancer immunity cycle between the high and low
SIGLEC15 groups. (B) SIGLEC15 was associated with immune cell infiltration in THCA obtained from the TIMER database. (C) TME scores were
compared between the high and low SIGLEC15 groups. (D) Scores were compared between the low and high SIGLEC15 groups in TIDE score
and Exclusion score. (E) Enrichment scores for 16 immunocytes were compared between the low and high SIGLEC15 groups. (F) Enrichment
scores for 13 immune-related pathways were compared between the low and high SIGLEC15 groups. ns, *, **, ***, and **** stand for p-value
>0.05, p-value <=0.05, p-value <=0.01, pvalue <=0.001 and pvalue <=0.0001, respectively.
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FIGURE 6

SIGLEC15 mRNA expression correlation with DNA methylation and m6A regulator mRNA expression. (A–C) SIGLEC15 mRNA expression correlation
with (A) m6A readers, (B) writers, and (C) erasers. (D) Each CpG methylation site level of SIGLEC15. (E) SIGLEC15 mRNA expression correlation with
averaged CpG methylation site. (F–N) SIGLEC15 mRNA expression correlation with DNA methylation of each CpG methylation site.
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DDR deficiency association
with SIGLEC15

DDR genes played vital roles inmaintaining genomic stability, so

the relationship between DDR deficiency scores and SIGLEC15 was

evaluated. We observed that many scores had a negative correlation

with SIGLEC15, aneuploidy score prime (correlation coefficient =

-0.23) (Figure 9A), aneuploidy score (correlation coefficient = -0.18)
Frontiers in Immunology 10
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(Figure 9B), CNA frac altered (correlation coefficient = -0.19)

(Figure 9C), LOH frac altered (correlation coefficient = -0.15)

(Figure 9D), expression CDF trAnsform of Rank Distribution

(eCARD) (correlation coefficient = -0.22) (Figure 9E), and repair

proficiency scoring (RPS) (correlation coefficient = -0.24)

(Figure 9F); nevertheless, PARPi7 (7-gene DNA repair deficiency

expression signature) had a positive correlation with SIGLEC15

mRNA expression (correlation coefficient = 0.34) (Figure 9G).
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FIGURE 7

Clinical significance of SIGLEC15. (A) Heatmap of clinical feature correlation with SIGLEC15. (B–I) High and low SIGLEC15 mRNA expression group
difference in (B) Age, (C) Gender, (D) Stage, (E) T stage, (F) N stage, (G) Tumor residual size, (H) Extrathyroid extension, and (I) BRAF V600E status.
ns, *, **, ***, and **** stand for p-value >0.05, p-value <=0.05, p-value <=0.01, pvalue <=0.001 and pvalue <=0.0001, respectively.
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TABLE 2 Relationship between clinicopathological characteristics and expression of SIGLEC15.

Parameter N H-Score (�X ± S) t-value p-value

Gender

Men 29 92.63 ± 30.19 0.525 0.601

Women 81 95.95 ± 29.02

Age, years

≤55 84 95.62 ± 27.23 0.355 0.723

>55 26 93.28 ± 35.49

Extrathyroid extension

No 67 88.13 ± 31.59 3.184 0.002

yes 43 105.72 ± 21.94

Tumor focality

Unifocal 76 94.30 ± 30.0 0.134 0.894

Multifocal 34 93.45 ± 31.98

Lesion side

Ipsilateral 77 92.81 ± 27.27 1.24 0.21

Bilateral 33 100.34 ± 33.21

Lymph node metastasis

N0 44 87.91 ± 28.68 2.31 0.035

N1a+N1b 66 99.84 ± 28.82
Frontiers in Immunology
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H-Score, histochemistry score; N0, no lymph node metastasis; N1a, central lymph node metastasis; N1b, lateral cervical lymph node metastasis.
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FIGURE 8

Differential mutational landscape in the high and low SIGLEC15 mRNA expression groups. (A) Genes were ranked according to the mutational
frequency. SNV and Indel mutations in the high SIGLEC15 mRNA expression group. (B) Genes were ranked according to the mutational
frequency. SNV and Indel mutations in the low SIGLEC15 mRNA expression group. (C, D) CNV landscape of (C) amplification and (D) deletion in
the high and low SIGLEC15 mRNA expression groups; the chromosome was oriented vertically from top to bottom and GenePattern GISTIC2.0
q-value at each locus was placed from left to right. The green line displayed the cutoff value of q-value = 0.25.
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Potential chemotherapy drugs for
SIGLEC15 determined thyroid
carcinoma progress

Combining chemotherapy drugs with a single-agent

immune checkpoint therapeutic approach may enhance

antitumor immune response and overcome primary

resistance. We revealed that SIGLEC15 mRNA expression

was negatively associated with the IC50 of tyrothricin,

estramustine, pipamperone, fulvestrant, and salinomycin and

implied that these selected chemotherapeutic drugs may be

suitable for the treatment of those with a high expression level

of SIGLEC15, while selected chemotherapeutic drugs like

pelitrexol, triciribine phosphate, staurosporine, dasatinib,

amonafide, and midostaurin might exert an opposite effect

for the treatment of those with a high expression level of

SIGLEC15 (Figures 10A–K).
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Discussion

Thyroid cancer was one of the most prevalent endocrine

cancers with an elevated incidence rate over the past decades, and

it was the fifth leading incidence of cancer in women (4).

Although the low mortality and moderate prognosis were

frequently mentioned, the recurrence and the complications

were still obscure. In these years, immunotherapy was applied

to the treatment of advanced differentiated thyroid cancer and

anaplastic thyroid cancer, with some success (20). Despite the

immense success of multiple antibody-based immune therapies

targeting PD-1/PD-L1 in common clinical regimens, there were

still many non-responding patients (59). Since PD-1/PD-L1

represented only one of many inhibitory immune checkpoints,

exploration of other potential new immune modulators that could

be blocked to expand the success of cancer immunotherapy and

promote the anticancer immune response is urgently needed.
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FIGURE 9

DDR deficiency score correlation with SIGLEC15 mRNA expression. (A–G) SIGLEC15 mRNA expression with score of (A) aneuploidy score prime,
(B) aneuploidy score, (C) CNA frac altered, (D) LOH frac altered, (E) eCARD, (F) RPS, and (G) PARPi7.
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In this study, the features of SIGLEC15 in multi-omics data

in THCA cases were comprehensively characterized for the

first time. We revealed that SIGLEC15 was overexpressed in

THCA. Consistent with our result, previous studies through

integrative data mining of SIGLEC15 mRNA expression in

human tumors showed that higher SIGLEC15 levels were

observed in colon adenocarcinoma and thyroid carcinoma

(60), colon adenocarcinoma, esophageal carcinoma and

thyroid carcinoma (61). Chen et al. found that SIGLEC15-

knockout mice exhibited retarded tumor growth and

prolonged survival compared to wild-type mice. Hao et al.

(62) showed that SIGLEC15 mRNA expression was not

associated with the prognosis of early non-small cell lung

cancer. Liang et al. (63) proved that high SIGLEC15 mRNA

expression was not related to either overall survival or disease-

free survival in patients with non-small cell lung cancer.

Quirino et al. (64) found that SIGLEC15 was also not
Frontiers in Immunology 13
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correlated with either overall survival or relapse-free survival

in gastric adenocarcinoma. In contrast, SIGLEC15 positivity

had better disease-specific survival and progression-free

survival compared to SIGLEC15 negativity in pancreatic

ductal adenocarcinoma (30). Nevertheless, Li et al. (65)

demonstrated that patients with a high SIGLEC15 mRNA

expression had worse overall survival and disease-free

survival than patients with low SIGLEC15 in the PACA-AU

database, but no association was observed between SIGLEC15

and prognosis in their own microarray cohort. Thus, it

remained to be determined which biomarkers (SIGLEC15

IHC or mRNA) could better guide patient selection for

treatment response to SIGLEC15-associated therapy, and

there has exited a companion diagnostic assay of SIGLEC5

by immunohistochemical was conducted by Shafi et al. (66). In

addition, the pan-cancer analysis and our result showed that

the expression of SIGLEC15 may play distinctive roles in
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FIGURE 10

Potential effective chemotherapy drugs with SIGLEC15. (A–K) Correlation of SIGLEC15 mRNA expression level and IC50 of different drugs based
on the CellMiner database.
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d i ff e r en t human canc e r s , s u ch a s a c t i n g a s an

immunosuppressor in “hot tumor” non-small cell lung

cancer, so anti-SIGLEC15 therapy was suitable for such

tumor. Meanwhile, in our study, we proved that increased

SIGLEC15 expression positively correlated with more

extrathyroid extension and lymph node metastasis, indicating

the vital role of SIGLEC15 in the malignant progression of

THCA; thus, THCA patients may benefit from the block

antibodies for SIGLEC15.

Hu et al. (31) indicated that anti-SIGLEC15 therapy could be

feasible for bladder cancer treatment as SIGLEC15 related to a

non-inflamed TME in bladder cancer. Chen et al. (30) revealed

that SIGLEC15 was related to a low density of Regulatory T cells

(Tregs) and CD45RO T cells, and Wang et al. (27) also showed

that SIGLEC15 suppressed antigen-specific T-cell responses. Liu

et al. (67) demonstrated that SIGLEC15 promoted the migration

of hepatoma cells through regulating the CD44 protein stability

in liver cancer. Li et al. showed that SIGLEC15 performed

immunosuppressive functions by direct ly inducing

immunosuppressive tumor-associated macrophages (TAMs)

via binding to a-2,3 sialic acid. Liu et al. (32) clarified the

importance of LINC00973-miR-7109- SIGLEC15 regulation axis

in immune evasion of clear-cell renal cell carcinoma. Our results

showed that immunomodulators such as HLA class I and II and

chemokines were upregulated in the higher SIGLEC15 group,

which were vital molecules that induced adaptive immune

responses (68); our results also showed a significant positive

correlation between SIGLEC15 and CD44. In the cancer

immunity cycle process, there existed seemingly contradictory

results, step 1 (release of cancer cell antigens), step 6 (recognition

of cancer cells by T cells), and step 4 (Th17 cell recruiting) were

downregulated in the higher SIGLEC15 group; nevertheless, the

higher SIGLEC15 group also met immune exhaustion and thus

may induce an immune escape environment for patients and

finally responded less to ICB therapy. In addition, patients who

were in the higher SIGLEC15 group had more BRAF V600E

mutation, which was a poor prognosis factor in THCA. Previous

studies evidenced that treatment with inhibitors that target the

BRAF kinase combined with anti-PD-1 therapy improved

antitumor immunity in BRAF-mutant melanoma (69, 70).

Clinical trial NCT02130466 showed that combined dabrafenib

(a BRAF inhibitor) plus trametinib (aMEK1 andMEK2 (MEK1/

2) inhibitor) plus pembrolizumab (an anti-PD-1 antibody) had

more antitumor activity than dabrafenib plus trametinib plus

placebo (71, 72). Our result also found some potent

chemotherapy drugs for the high and low SIGLEC15 groups,

so this may provide a rationale for using immuno-oncology

agent combinations for THCA patients. The mentioned above

result also signified the complex TME in THCA.

DNA methylation and m6A methylation were two epigenetic

mechanisms for the regulation of gene expression in eukaryotes

and acted as vital regulators in cancer (73–75). We firstly fully
Frontiers in Immunology 14
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described the negative correlation of DNA methylation and

expression of SIGLEC15 and prognosis in THCA in detail.

Another pan-cancer also revealed the negative correlation in

bladder cancer, uterine corpus endometrial carcinoma, breast

invasive carcinoma, pancreatic ductal adenocarcinoma, etc. (61).

We also firstly revealed the m6A methylation regulator

relationship with SIGLEC15; regulating the expression of

SIGLEC15 via methylation in cancer may be another road.

In addition to its function in immune regulation, Chen

et al. (30) demonstrated that SIGLEC15 mRNA expression had

a positive correlation with high BRCA1 status by IHC, and

combining SIGLEC15 with different DDR molecular statuses

may be a potential prognosis predictor. Read et al. (76) revealed

that elevated pituitary tumor transform gene (PTTG) and

pituitary tumor transforming gene binding factor (PBF)

modulate DNA damage response genes in thyroid cancer.

We found that SIGLEC15 was negatively related to BRCA1 in

the mRNA level but no correlation with BRCA2. We also found

that high SIGLEC15 had a negative correlation with DDR

deficiency scores, such as aneuploidy score, CNA frac altered,

and LOH frac altered, and these results implied that SIGLEC15

may affect thyroid cancer progression through interacting with

DDR genes.

There were some limitations in the current work. Firstly,

more experiments need to be done to figure out the cellular

mechanism of SIGLEC15 in THCA. Secondly, there was no

animal model experiment, so mouse models and either

humanized or spontaneous but containing genomic features

relevant to THCA animal models were needed to prove the

results. Therefore, animal models, clinical verification data from

multiple centers, and prospective studies were required to

confirm our findings.
Conclusion

In conclusion, we found that SIGLEC15mRNA expression was

upregulated in tumor tissue and validated that by TMA. Clinical

feature integration supported that increased SIGLEC15 mRNA

expression promoted extrathyroid extension and lymph node

metastasis, and elevated SIGLEC15 group patients met immune

exhaustion. Specifying the role of SIGLEC15 in THCA could

represent a potential next-generation cancer immunotherapy

option for patients.
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SUPPLEMENTARY FIGURE 1

Analysis of expression of SIGLEC15. (A) pan-cancer mRNA expression of

SIGLEC15 between tumor and normal tissues from PCAWG database.
(B) mRNA expression of SIGLEC15 between paired tumor and normal

tissues from THCA (Thyroid carcinoma). (C) Correlation between mRNA
expression of SIGLEC15 and CD44.

SUPPLEMENTARY FIGURE 2

(A-K) Differential enrichment scores of immune signatures between high and

low SIGLEC15 groups. (L) Enrichment scores of immune exhausted scores in
low and high SIGLEC15 groups.

SUPPLEMENTARY FIGURE 3

Single-cell analysis exploration of the expression cell type of SIGLEC15.

SUPPLEMENTARY FIGURE 4

Kaplan-Meier survival curves between SIGLEC15 expression and survival.

SUPPLEMENTARY FIGURE 5

(A, B) Comparison of amplification and deletion of CNV in high and low

SIGLEC15 mRNA expression groups.

SUPPLEMENTARY TABLE 1

Correlation details in expression of SIGLEC15 and CD44.
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Visualizing and interpreting cancer genomics data Via the xena platform. Nat
Biotechnol (2020) 38(6):675–8. doi: 10.1038/s41587-020-0546-8

35. Izzi V, Davis MN, Naba A. A. Pan-Cancer Analysis of the Genomic
Alterations and Mutations of the Matrisome. Cancers (Basel) 12(8):2046. doi:
10.3390/cancers12082046

36. Wang S, Xiong Y, Zhao L, Gu K, Li Y, Zhao F, et al. Ucscxenashiny: An R/
Cran package for interactive analysis of ucsc xena data. Bioinformatics (2021) 2):2.
doi: 10.1093/bioinformatics/btab561
Frontiers in Immunology 16
127
37. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: Ncbi gene
expression and hybridization array data repository. Nucleic Acids Res (2002) 30
(1):207–10. doi: 10.1093/nar/30.1.207

38. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for rna-sequencing and microarray studies. Nucleic
Acids Res (2015) 43(7):e47–e. doi: 10.1093/nar/gkv007

39. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA,
et al. Toward a shared vision for cancer genomic data. N Engl J Med (2016) 375
(12):1109–12. doi: 10.1056/NEJMp1607591

40. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
Tcgabiolinks: An R/Bioconductor package for integrative analysis of tcga data.
Nucleic Acids Res (2015) 44(8):e71. doi: 10.1093/nar/gkv1507

41. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. Genepattern
2.0. Nat Genet (2006) 38(5):500–1. doi: 10.1038/ng0506-500

42. Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack
AD, et al. Genomic and molecular landscape of DNA damage repair deficiency across the
cancer genome atlas. Cell Rep (2018) 23(1):239–54.e6. doi: 10.1016/j.celrep.2018.03.076

43. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. Tisch: A
comprehensive web resource enabling interactive single-cell transcriptome
visualization of tumor microenvironment. Nucleic Acids Res (2020) 49(D1):
D1420–D30. doi: 10.1093/nar/gkaa1020

44. Zhang C, Fu J, Zhou Y. A review in research progress concerning M6a
methylation and immunoregulation. Front Immunol (2019) 10:922. doi: 10.3389/
fimmu.2019.00922

45. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, et al. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci USA (2005)
102(43):15545–50. doi: 10.1073/pnas.0506580102

46. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J,
et al. PGC-1a-Responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nat Genet (2003) 34(3):267–73.
doi: 10.1038/ng1180

47. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
String V11: Protein–protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic
Acids Res (2018) 47(D1):D607–13. doi: 10.1093/nar/gky1131

48. Shannon P. Cytoscape: A software environment for integrated models of
biomolecular interaction networks. Genome Res (2003) 13(11):2498–504. doi:
10.1101/gr.1239303

49. Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. Cytohubba:
Identifying hub objects and Sub-networks from complex interactome. BMC Syst
Biol (2014) 8(4):S11. doi: 10.1186/1752-0509-8-S4-S11

50. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D,
et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep (2017) 18
(1):248–62. doi: 10.1016/j.celrep.2016.12.019

51. Huang X, Zhang G, Tang T, Liang T. Identification of tumor antigens and
immune subtypes of pancreatic adenocarcinoma for mrna vaccine development.
Mol Cancer (2021) 20(1):44. doi: 10.1186/s12943-021-01310-0

52. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. Tip: A web server for
resolving tumor immunophenotype profiling. Cancer Res (2018) 78(23):6575–80.
doi: 10.1158/0008-5472.Can-18-0689

53. Eddy JA, Thorsson V, Lamb AE, Gibbs DL, Heimann C, Yu JX, et al. Cri
iatlas: An interactive portal for immuno-oncology research. F1000Res (2020)
9:1028. doi: 10.12688/f1000research.25141.1

54. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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review, meta-analysis and
pancancer analysis

Sicong Li1†, Lanxing Li2†, Tianyan Pan2, Xiaoqun Li3,
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Beijing, China, 4Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union
Medical College, Beijing, China, 5Department of Medical Oncology, Sichuan Cancer Hospital and
Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology
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Background: T-cell immunoreceptor with Ig and ITIM domains (TIGIT)

participates in tumor immune escape by delivering inhibitory signals to T

cells. The purpose of this article was to assess the prognostic value of TIGIT

and its immunological function in solid cancers.

Methods: Three databases were searched for relevant articles. The main

endpoints were overall survival (OS), progression-free survival (PFS),

recurrence-free survival (RFS), and disease-free survival (DFS). Hazard ratios

(HR) were pooled by using fixed-effects or random-effects models. Pancancer

analysis of TIGIT was performed based on public online databases, mainly The

Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and UCSC

Xena. The possible relationships between TIGIT expression and the tumor

microenvironment (TME), infiltration of immune cells, immune-related genes,

tumor mutation burden (TMB), and microsatellite instability (MSI) were revealed

in this article.

Results: Sixteen studies met the inclusion criteria. High expression of TIGIT was

associated with worse OS [HR= 1.73, 95% confidence interval (CI) 1.50, 1.99],

PFS (HR = 1.53, 95% CI [1.25, 1.88]), RFS (HR = 2.40, 95% CI [1.97, 2.93]), and DFS

(HR= 6.57, 95% CI [0.73, 59.16]) in East Asian patients with solid cancers. TIGIT

expression was positively correlated with immune infiltration scores and

infiltration of CD8 T lymphocytes in all of the cancers included. TIGIT was

found to be coexpressed with the genes encoding immunostimulators,

immunoinhibitors, chemokines, chemokine receptors, and major

histocompatibility complex (MHC), especially in gastroesophageal cancer.

TMB and MSI were also associated with TIGIT upregulation in diverse kinds

of cancers.
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Conclusion: High expression of TIGIT is associated with poorer prognosis in

East Asian patients with solid cancers. TIGIT is a novel prognostic biomarker

and immunotherapeutic target for various solid cancers because of its activity

in cancer immunity and tumorigenesis.
KEYWORDS

TIGIT, solid cancer, prognosis, meta-analysis, systematic review
1 Introduction

In the tumor microenvironment (TME), T cells are the

second most abundant cell type after tumor-associated

macrophages (TAMs) (1–3). Several immune inhibitor

receptors (IRs), such as TIGIT, are upregulated in solid

cancers and take part in tumor immune escape (4–6). As an

important T-cell receptor in the TME, TIGIT competes with the

costimulatory receptor cluster of differentiation 226 (CD226) for

its interaction with the cluster of differentiation 155 (CD155) (7,

8) and participates in inhibiting adaptive and innate immunity.

Highly expressed on active Regulatory T cells(Tregs), memory

cluster of differentiation8(CD8) and memory cluster of

differentiation (CD4) T-cell (9, 10), TIGIT can inhibit the

cytotoxicity mediated by natural killer (NK) cells (1), the

maturation and proinflammatory response of dendritic cells

(DCs) (11), the effector functions of T helper cell 17(Th17)

and T helper cell 1(Th1) cells (12), and enhance the

immunosuppressive functions of Tregs by promoting the

production of interleukin-10(IL-10) and fibrinogen-like

protein 2 (Fgl2) (13).

The prognostic value of TIGIT has become a research

hotspot in recent years, but the results remain controversial.

Therefore, we conducted a meta- and bioinformatic analysis in

this article for the following purposes: ①to evaluate the

prognostic value of TIGIT in OS, DFS, PFS, and RFS and ② to

determine the relationship between TIGIT expression and the

tumor microenvironment and immune microenvironment.
2 Methods

2.1 Meta-analysis

2.1.1 Data sources and search strategy
This systematic review and meta-analysis were performed

according to the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis (PRISMA) guidelines (14). Embase

(https://www.embase.com/), PubMed (https://pubmed.ncbi.
02
130
nlm.nih.gov/), and the Cochrane Library (https://www.

cochranelibrary.com/) were searched for articles. The retrieval

time was from inception to May 28, 2022. This review was

registered on the PROSPERO platform (CRD42022324498). The

search strategy is described in Supplementary Materials

Tables 1–3.
2.1.2 Inclusion and exclusion criteria
Inclusion criteria included ① East Asian patients diagnosed

with solid cancer before enrollment, ② randomized controlled

trials (RCTs) or observational studies, ③ sufficient data about

TIGIT expression and clinical outcome for meta-analysis,

and ④ TIGIT expression was determined by using

immunohistochemistry.

The exclusion criteria included ① case reports, single-cell

sequencing data, animal experiments, meta-analyses, network

meta-analyses, conference presentations, or study protocols.
2.1.3 Outcomes
Outcomes included ①overall survival (OS), ② progression-

free survival (PFS), ③ recurrence-free survival (RFS), and ④

disease-free survival (DFS).
2.1.4 Study selection and data extraction
Two review authors (Sicong Li and Lanxing Li)

independently reviewed the titles and abstracts of trials with

potential eligibility. After that, we downloaded the full texts of

trials eligible for inclusion. Two authors (Xiaoqun Li and

Tianyan Pan) independently extracted the following data: ①

basic information, including first author, publication year,

sample size, country, and study design; ② characteristics of

patients, including sex, age, type, and stage of cancer; ③ details

about TIGIT, including expression location and cutoff value to

judge high expression; ④ details about clinical outcomes; ⑤

information of cancer treatment; ⑥ information of quality

assessment. Any disagreement was resolved by group

discussion and consensus. We excluded results reported in
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only one study. In the studies that did not report HR values, we

obtained the required data related to survival analysis from the

survival curve by using GetData Graph Digitizer software.
2.1.5 Strategy for meta-analysis
This meta-analysis was performed by using R (version 4.0.3).

The chi-square test and c2 value were used to measure statistical

heterogeneity. I2<50% and P value>0.05 indicated no substantial

heterogeneity, and a fixed-effects model was used to pool the

value of HR and 95% confidence interval. Otherwise, the

random-effects model was used because of significant

heterogeneity. Subgroup analysis was conducted to analyze

sources of heterogeneity, while sensitivity analysis was

conducted by excluding one study each time. Begg’s and

Egger’s tests were used to assess publication bias. Statistical

significance was set as a=0.05 in this study.
2.1.6 Quality assessment
Two reviewers (Yongdong Jin, Yujia Tong) assessed the

quality of eligible studies independently by using the

Newcastle–Ottawa Quality Assessment Scale (NOS) (15). The

NOS assessed the quality of studies from the aspects of selection,

comparability, and exposure, with a total score ranging from 0 to

9 points. More than 6 points was defined as high-quality.
2.2 Pan-cancer analysis

2.2.1 Data extraction and preprocessing
We downloaded the standardized pancancer data set from the

UCSC (https://xenabrowser.net/) database: TCGA TARGET

GTEx (PANCAN, N=19131, G=60499). Then, we extracted the

expression data of the ENSG00000181847 (TIGIT) gene and 150

immune-related genes, including chemokines (n = 41), receptors

(n = 18), major histocompatibility complexes (n = 21),

immunoinhibitors (n = 24) and immunostimulators (n = 46), in

normal solid tissues, primary solid tumors, normal tissues,

primary blood-derived cancer-bone marrow, and peripheral

blood. After excluding the cancer species with less than 3

samples in a single cancer species, the expression data of cancer

species mentioned in the meta-analysis were finally obtained,

including bladder urothelial carcinoma (BLCA), colon

adenocarcinoma (COAD), colon adenocarcinoma/Rectum

adenocarcinoma esophageal carcinoma (COADREAD),

esophageal carcinoma (ESCA), liver hepatocellular carcinoma

(LIHC), lung adenocarcinoma(LUAD), lung squamous cell

carcinoma (LUSC), rectum adenocarcinoma (READ), stomach

adenocarcinoma (STAD), skin cutaneous melanoma (SKCM),

stomach and esophageal carcinoma(STES), thyroid carcinoma

(THCA). We also extracted the gene expression profile of each

tumor and converted the Tag names into gene symbols.
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2.2.2 Differential expression of TIGIT among
tumor and normal samples

We used the unpaired Wilcoxon-rank sum and signed-rank

tests to compare the difference in TIGIT expression between

normal samples and tumor samples in each tumor. A violin plot

was used to visualize the results.

2.2.3 Differential expression of TIGIT among
simple nucleotide variation (SNV) and copy
number variation (CNV) data

From the GDC (https://portal.gdc.cancer.gov/) database, we

downloaded the simple nucleoside variation (SNV) data set (level

4) and the copy number variation (CNV) data set (level 4) of all

TCGA samples processed by MuTect2 (16) and GISTIC software

(17), respectively. After removing samples of synonymous

mutations, we obtained the expression data of 9 and 6 cancer

species for CNV and SNV, respectively. Moreover, the domain

information of TIGIT was obtained from the maftools package

(version 2.2.10) of R software. A lollipop plot was used to depict

the protein mutational distribution and domains.

2.2.4 Relevance between TIGIT expression and
the tumor microenvironment

We used the ESTIMATE package (version 1.0.13, https://

bioinformatics.mdanderson.org/public software/estimate/) (18)

to calculate the stromal, immune, and estimate scores for the

cancers included in this article. The increased stromal and

immune scores indicated an increased proportion of immune

cells or stromal cells in the TME. Furthermore, the corr.test

function of the psych package in R software (version 2.1.6) was

used to conduct Pearson’s correlation test.
2.2.5 Correlation between TIGIT expression
and immune cell infiltration

We used the deconvo_CIBERSOR (19) and TIMER methods

(20) in IOBR (version 0.99.9) (21) of R software to calculate the

infiltration score of the 22 tumor-infiltrating immune cells,

including naive B cells, memory B cells, plasma cells, CD8 T cells,

naive CD4 T cells, resting and activated memory T cells, follicular

helper T cells (Tfhs), regulatory T cells (Tregs), gamma delta T cells,

resting and activated NK cells, monocytes, resting M0, M1 and M2

macrophages, resting and activated dendritic cells (DCs), resting

and activated mast cells, eosinophils, and neutrophils. The results

are displayed in the form of heatmap plots.
2.2.6 Associations of TIGIT expression with
immune-related genes, tumor mutation
burden (TMB) level and microsatellite instability
(MSI) status

First, we calculated the Spearman correlation between

TIGIT and the 150 immunomodulators. The results were
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visualized in heatmap plots. Then, we used the TMB function

of the maftools package (version 2.8.05) in R software to

calculate the TMB score for each tumor and obtained the MSI

score of each tumor from a previous study reported by Russell

Bonneville (22). We integrated the MSI and gene expression

data of the samples and further performed log2 (x+0.001)

transformation on each expression value. The correlation

between TIGIT expression and TMB or MSI was analyzed

by means of the Spearman correlation coefficient, and the

results are displayed in the form of lollipop plots (23).
2.2.7 Protein−protein interaction
network construction

GeneMANIA (http://www.genemania.org) was used to build

a protein−protein interaction (PPI) network. Physical

interaction, coexpression, and gene enrichment analyses were

performed by using the network integration algorithm. The

results were visualized by using the bioinformatic website

(http://www.bioinformatics.com.cn/).
2.2.8 Construction of competing endogenous
RNA (ceRNA) networks

First, we used miRwalk (http://mirwalk.umm.uni-heidelberg.de/

accessed on 30 May 2022) to predict target miRNAs of TIGIT that

can bind to the TIGIT 3′-UTR. Next, miRNA–lncRNA interactions

were obtained fromRNAInter v4.0 (http://www.rnainter.org/search/)

with the species set as Homo sapiens. Finally, the ceRNA network

was visualized by using Cytoscape 3.8.2 (24) software.
2.2.9 Statistical analysis
Statistical data analysis was conducted by using R software

(version 4.0.3) (https://www.r-project.org/). The unpaired
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Wilcoxon-rank sum and signed-rank tests were used to

analyze the significance of the difference between two groups,

and the Kruskal test was used to test the difference among

multiple groups of samples. The correlation between TIGIT

expression and the other variable was assessed utilizing the

Spearman correlation coefficient. P values of less than 0.05,

0.01 and 0.001 are presented as “*”, “**”, and “***”, respectively.
3 Results

3.1 Results of the meta-analysis

3.1.1 Search results
In total, 16 studies involving 2488 patients with solid cancers

were found to meet the inclusion criteria. All of them were

retrospective cohort studies. Although Pooja Ghatalia (25) and

Pankaj Ahluwalia (26) reported the prognostic value of TIGIT in

cancer patients, they did not report the hazard ratio or odds ratio

value of TIGIT. Therefore, the patients included were from the

East Asian population. The flow chart of the study selection

process is presented in Figure 1.
3.1.2 Study characteristics
The basic characteristics of the included studies are shown

in Table 1. Studies were published between 2018 and 2022.

Zhao JJ (27), Peipei Wang (28) and Zhao K (29) reported

survival outcomes of esophageal squamous cell carcinoma

(ESCC) or primary small cell carcinoma of esophagus

(PSCCE), Tang W (30) and Liu HF (31) reported gastric

cancer (GC), Xu Y (32) reported small cell lung cancer

(SCLC), Sun Y (33) and Jiang C (34) reported non-small cell
FIGURE 1

Study selection flowchart.
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lung cancer (NSCLC), Zhou X (35), Liang R (36) and Daisuke

Murakami (37) reported colorectal cancer (CRC), Lee WJ (38)

reported melanoma, Yu LH (39) reported hepatitis B virus

hepatocellular carcinoma (HBV-HCC), and Liu ZP et al.

reported the ZSHS cohort and the FUSCC cohort that

reported survival outcomes of patients with muscle-invasive
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bladder cancer (MIBC) (40). Luo Y reported (41) 3 cohorts of

patients with advanced thyroid carcinoma (ATC), including

anaplastic thyroid carcinoma (ATC), poorly differentiated

thyroid carcinoma (PDTC), and locally advanced papillary

thyroid carcinoma (PTC). HR values in the studies reported

by Xu Y (2019), Liang R (2021), Lee WJ (2020), Sun Y (2020),
TABLE 1 Basic characteristics.

Author Sample
size

Country Age male/
female

Cancer Treatment
other than
surgery

TIGIT+
expression

Expression
location

Cutoff
value
of

TIGIT

Outcome Method
to esti-
mate HR

Zhao JJ
(2018)

154 China 55 (37–48) (124/30) ESCC Not available 76 (49.4%) TIL Median
level

OS Multivariate

Tang W
(2019)

441 China (<62:159,
≥62:282)

(245/196) GC Adjuvant
chemotherapy

343 (77.8%) Tumor cell ≥5%
positivity
cell

OS Multivariate

Xu Y
(2019)

60 China (≤60:34,
>60:26)

(43/17) SCLC Adjuvant
chemotherapy

21 (35%) Tumor cell Median
level

OS Univariate

Lee WJ
(2020)

124 Korea 61.8(25-
89)

(68/56) Melanoma Not available 52 (41.9%) Tumor cell ≥20%
positivity
cell

OS/PFS Univariate

Sun Y
(2020)

334 China 56(28-81) (182/152) NSCLC Not available 204 (61.1%) TIL ≥5%
positivity
cell

OS/PFS Multivariate

Zhao K
(2020)

114 China ≤60 76,
>60 38

(84/30) PSCCE Adjuvant
chemotherapy/
chemoradiotherapy.

74 (64.9%) Tumor cell ≥5%
positivity
cell

OS/PFS Multivariate

Zhou X
(2020)

60 China ≤60 34,
>60 26

(35/25) CRC Not available 21 (35%) Tumor cell CPS≥1 OS/DFS Multivariate

Liang R
(2021)

139 China ≤45:25,
>45 114

(82/57) CRC Not available 40 (28.8%) Tumor cell Median
level

OS/RFS Univariate

Liu HF
(2022)

194 China 56 ± 12.66 (135/59) GC Adjuvant
chemotherapy

97(50%) TIL Median
level

OS Multivariate

Peipei
Wang
(2021)

95 China 58 ± 10 (81/14) ESCC Not available 68(72%) Tumor cell Median
level

OS Multivariate

Daisuke
Murakami
(2022)

100 Japan > 70 53
(53%); <
70 years
47 (47%)

(55/45) CRC Not available 79(79%) TIL ≥10%
positivity
cell

OS Multivariate

Jiang C
(2022)

81 China 63(29–81) (68/13) NSCLC Not available 33 (40.7%) TIL CPS≥1 OS Multivariate

Yu LH
(2021)

133 China 58.3 ±
11.4

(103/30) HBV-
HCC

Adjuvant
immunotherapy ±
adjuvant
chemotherapy

65(48.87%) TIL Median
level

PFS Multivariate

Shi X
(2021)

200 China 49 (12–80) (105/95) MTC Not available 6 (3.0%) Tumor cell CPS≥1 OS/RFS Univariate

Liu ZP
(2020)

141 China ZSHC
cohort 62
(56-71);
FUSCC
cohort 62
(56-68)

ZSHC
cohort

(117/24);
FUSCC
cohort
(102/16)

MIBC Adjuvant
chemotherapy

ZSHC
cohort46
(32.62%);
FUSCC
cohort 68
(57.63%)

TIL Median
level

OS/RFS Multivariate

Luo Y
(2022)

234 China 55.50
(41.25,
66.50)

112
(47.86%)

TC Not available 37(15.81%) Tumor cell
and TIL

CPS≥1 OS/DFS Multivariate
fro
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FIGURE 2

Forest plot for all outcomes. (A. Overall survival B. Progression free survival C. Recurrence free survival D. Disease free survival).
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and Zhao K (2020) were obtained by calculating the data

extracted from the survival curve.

The HR values in the studies reported by Xu Y (2019), Liang

R (2021), Lee WJ (2020), and Shi X (2021) were estimated by

only univariate analysis, while the others were estimated by both

multivariate analyses. Regarding the quality of the included

studies, NOS scores ranged from 6 to 8.
Frontiers in Immunology 07
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3.1.3 Results of OS, PFS, RFS, and DFS
The I (2) value was less than 50%, and the p value was above

0.05, so the fixed-effect model was used in the comparison of OS,

PFS, RFS, and DFS. The pooled results of the meta-analysis

showed that high expression of TIGIT was associated with

shorter OS (HR = 1.73, 95% CI [1.50, 1.99]), PFS (HR =1.53,

95% CI[1.25,1.88]), RFS (HR = 2.40, 95% CI [1.97, 2.93] and
B C DA

E F

FIGURE 3

Subgroup analysis for the relationship between TIGIT and overall survival (A) Grouped by different cancers (B) Grouped by different cutoff values
of TIGIT expression (C) Grouped by location of TIGIT expression (D) Grouped by sample size (E) Grouped by different methods to estimate HR
(F) Grouped by different postoperative treatments).
B

C D

A

FIGURE 4

Subgroup analysis for the relationship between TIGIT and progression-free survival (A) Grouped by different cancers (B) Grouped by location of
TIGIT expression (C) Grouped by different cutoff values of TIGIT expression (D) Grouped by different postoperative treatments).
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DFS (HR = 4.37, 95% CI [1.65, 11.55]) in patients with solid

cancers than low expression of TIGIT (see Figure 2).

In the 2 studies about DFS, TIGIT was expressed on

tumor cells, and CPS≥1 was set as the cutoff value of TIGIT

expression. Moreover, multivariate analysis was used to

estimate the HR value in the comparison of DFS and PFS,

so we did not conduct subgroup analysis in these aspects. No

significant prognostic value of TIGIT was found in the OS of

cancers, including SCLC, CRC, MTC, ATC, PDTC and PTC.

Studies with sample sizes <100 did not support the prognostic

value of TIGIT and OS (HR = 1.55, 95% CI [0.76, 3.19]).

PSCCE and TIGIT expressed on tumor cells did not support

the prognostic value of TIGIT in PFS, while medullary

thyroid carcinoma and papillary thyroid carcinoma did not

support the prognostic value of TIGIT in RFS and DFS,

respectively. Postoperative treatments were not found to be

a source of heterogeneity in OS and RFS, probably because

nearly half of the studies did not describe them. In terms of
Frontiers in Immunology 08
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PFS, adjuvant chemotherapy/chemoradiotherapy did not

support the prognostic value of TIGIT, and this result

should be discussed with care because of limited study

numbers and sample sizes (see Figures 3–6).

The p values of Begg’s test and Egger’s test for OS and RFS

were above 0.05, which indicated no significant publication bias.

In the sensitivity analysis, the DFS results would change if Zhou

XB (2020) was omitted. (Liang R, 2021), (Yu LH,2021), (Liu ZP,

2020), and (Luo YC,2022) contributed the most to the overall

heterogeneity in OS, PFS, RFS, and DFS, respectively.
3.2 Pancancer analysis

The design flow and implementation approaches of this

study are illustrated in Figure 7. This study integrally revealed

the role of TIGIT in the tumor immune microenvironment.
B

C D

E

A

FIGURE 5

Subgroup analysis for the relationship between TIGIT and recurrence-free survival (A) Grouped by different cancers (B) Grouped by location of
TIGIT expression (C) Grouped by different cutoff values of TIGIT expression (D) Grouped method to estimate HR (E) Grouped by different
postoperative treatments).
BA

FIGURE 6

Subgroup analysis for the relationship between TIGIT and disease-free survival (A) Grouped by different cancers (B) Grouped by different sample sizes).
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3.2.1 Differential expression of TIGIT among
cancer and normal samples

The expression of TIGIT was significantly upregulated in the

9 cancers involved in this study, including LUAD (tumor:1.44 ±

1.33, normal:0.49 ± 0.99, P=2.6e-32<0.05), ESCA (tumor: 0.29

± 1.59, normal:-2.58 ± 1.72,P=2.5e-57<0.05), STES (tumor: 0.71 ±

1.57, normal: -2.35 ± 1.73, P=1.3e-151<0.05), COAD (tumor:0.01 ±

1.62,normal:-1.81 ± 2.07, P=1.4e-26<0.05), COADREAD (tumor:-

0.03 ± 1.60,normal:-1.75 ± 2.08,P=1.9e-27<0.05), STAD

(tumor:0.89 ± 1.53,normal:-1.66± 1.58,P=7.8e-54<0.05),LUSC

(tumor:1.25 ± 1.36,normal:0.49 ± 0.99,P=1.8e-22<0.05),

LIHC (tumor:-1.18 ± 1.86,normal:-1.71 ± 1.23,P=3.4e-3<0.05),
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SKCM (tumor:-0.10 ± 2.07,normal:-2.40 ± 1.31,P=1.6e-26<0.05),

THCA (tumor:-0.51 ± 2.01,normal:-0.89 ± 1.92,P=1.6e-4<0.05).

However, no significant difference was observed between cancer

and normal samples in BLCA (P=0.09>0.05) and READ

(P=0.11>0.05) (Figure 8). The TIGIT expression values in

different cancers are shown in Supplementary Table 5.
3.2.2 Impact of CNV and SNV on TIGIT
expression

TIGIT expression was higher in CNV neutrals than in CNV

gains in STAD and LUSC. Moreover, TIGIT expression was
FIGURE 7

Flow chart of pancancer analysis.
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higher in CNV neutral samples than in samples with CNV losses

in LIHC and SKCM. This result indicated that CNV influenced

TIGIT expression. No significant difference was found in TIGIT

expression among patients with wild type and TIGIT mutation

in terms of SNV.

Missense mutation was the most common type of mutation

in the cancers included. Missense mutations in V-seIg were

found in STES, COAD, COADREAD, LUAD, STAD, SKCM

and READ. Among them, LUAD was found to have the most

missense mutations. In-frame deletion occurred in COAD and

COADREAD. A splice site was found in STAD and STES (see

Figure 9). READ presented a relatively high mutation frequency

(2.2%). TIGIT expression values in patients with wild-type, SNV

or CNV are presented in Supplementary Tables 6, 7.
3.2.3 Correlation between TIGIT expression
and the tumor microenvironment

Stromal and immune cells are two main types of nontumor

components in the TME. The ESTIMATE algorithm can help to

predict the tumor purity in tumor samples. We calculated the

Spearman correlation coefficient between TIGIT expression and

immune infiltration scores by using corr.test psych (version 2.1.6)

in R software. Finally, a significant positive correlation was observed

betweenTIGIT expression and immune infiltration scores (Stromals

score, Immunes score and ESTIMATE score) in 12 kinds of cancers

involved in these studies (see Supplementary Figures 5–7).
3.2.4 Correlation between TIGIT expression
and the infiltration score of immune cells
(CIBERSORT AND TIMER)

Tumor-infiltrating immunocytes could affect the survival

prognosis of patients. TIGIT expression showed a positive

correlation with the infiltration scores of CD8 T cells
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(especially in SKCM), M1 macrophages in 12 kinds of cancers,

naive B cells in 10 kinds of cancers, activated memory CD4 T

cells, Tregs in LUAD, LUSC, LIHC, SKCM, THCA,

COADREAD and activated NK cells in LUAD, LUSC, SKCM,

STES, BLCA. TIGIT expression was also negatively correlated

with activated dendritic cells and mast cells in most of the

cancers included. The correlation coefficient between TIGIT

expression and immune cell infiltration (CIBERSORT) is

presented in Supplementary Table 8. Moreover, TIGIT

expression was found to be positively related to B cell, CD4,

CD8 T cell, neutrophil, macrophage and DC infiltration in most

cancers based upon the TIMER algorithm (Figure 10).
3.2.5 Correlation between TIGIT expression
and 150 immune-related genes

The results showed that TIGIT exhibited a significant coexpression

relationship withmost chemokines, receptors, major histocompatibility

complex (MHC), immunoinhibitors and immunostimulators. Notably,

TIGIT expression was positively correlated with the expression of

programmed cell death 1 (PDCD1), programmed cell death 1 ligand 2

(PDCD1LG2), cytotoxic T-lymphocyte associated protein 4 (CTLA4),

lymphocyte activating 3 (LAG3), indoleamine 2,3-dioxygenase 1

(IDO1), interleukin 10 (IL-10), and transforming growth factor beta

1 (TGFB1), especially in gastroesophageal tumors and

melanoma (Figure 11).

The correlation coefficients are presented in detail in

Supplementary Table 9.
3.2.6 Associations of TIGIT expression with
tumor mutational burden (TMB) and
microsatellite instability (MSI)

Because of the essential roles of TMB and MSI in the

prediction of the response to immune therapy, Spearman
FIGURE 8

Differential TIGIT mRNA expression in 12 kinds of cancers and normal tissues by using the combination of box diagram and violin diagram. P
values were presented by using scientific notation. LUAD, lung adenocarcinoma; ESCA, esophageal carcinoma; STES, Stomach and Esophageal
carcinoma; COAD, colon adenocarcinoma; COADREAD, colon adenocarcinoma/Rectum adenocarcinoma esophageal carcinoma; STAD
stomach adenocarcinoma; LUSC, Lung squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; SKCM, skin cutaneous melanoma;
THCA, hyroid carcinoma; READ, rectum adenocarcinoma.
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correlation analysis was conducted to assess the relationship

between TIGIT expression, TMB and MSI. The results showed

that TIGIT expression was positively related to TMB in BLCA,

COADREAD, COAD, and SKCM but negatively related to TMB

in THCA. Moreover, TIGIT expression was positively correlated

with MSI in COAD, COADREAD, and LUAD, while it was
Frontiers in Immunology 11
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negatively correlated with MSI in ESCA and STES (see

Figure 12). The correlation coefficients and P values are

presented in Supplementary Tables 10, 11.

The results strongly indicated that TIGIT was well associated

with tumor immunity. Therefore, TIGIT might be considered a

promising biomarker for predicting the immunotherapy response.
B

C

A

FIGURE 9

In A and B correlation between TIGIT expression and CNV and SNV were presented in boxplot. P values were presented by using scientific
notation. In C, different color patches represent different domains of TIGIT. The sites marked with lollipops are mutation sites. Circular size
represents mutation frequency.
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3.2.7 Construction of the protein protein
interaction (PPI) network, gene ontology (GO)
and Kyoto encyclopedia of gene and genomes
(KEGG) enrichment analysis

As presented in Figure 13A, we utilized the GeneMANIA

online program to create a PPI network for 21 genes that

interacted with TIGIT. TIGIT was found to interact with

PDCD1, which indicated that patients with resistance to PD-

1 inhibitors might benefit from the combination of TIGIT

inhibitors. The biological processes (BP) enriched in this gene

set were primarily those related to cell adhesion, heterophilic

cell−cell adhesion via plasma membrane cell adhesion

molecules and homophilic cell adhesion via plasma

membrane adhes ion molecu les , whi le the ce l lu lar

components (CC) enriched were plasma membrane AND

integral component of membrane. The enriched molecular

functions (MF) were linked to identical protein binding and

receptor binding. The KEGG results showed that they were

mainly enriched in the cell adhesion molecules, adherens

junc t ion and T-ce l l r ecep tor s igna l ing pa thways

(Figures 13B, C).
3.2.8 Construction of the ceRNA regulatory
network

As shown in Figure 14, a ceRNA coexpression network

consisting of 70 lncRNAs, 34 miRNAs, and 1 mRNA was

visualized by Cytoscape after merging these predicted results.
Frontiers in Immunology 12
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By using the CytoHubba plug-in in Cytoscape, we screened

out the top 10 node degrees to represent the central genes of

the PPI network, including TIGIT, hsa-miR-4516, hsa-miR-

1255a, hsa-miR-1255b-5p, hsa-miR-1306-5p, hsa-miR-514a-

3p, hsa-miR-6849-3p, hsa-miR-514b-3p, SNHG16, and hsa-

miR-4534.
4 Discussion

The results of the meta-analysis showed that high expression

of TIGIT was associated with poorer OS, PFS, RFS and DFS in

East Asian patients with solid cancers. In contrast to the study

reported by Kunmin Xiao et al (42), we also discussed the

relationship between TIGIT and DFS and RFS. DFS and RFS

are important clinical outcomes for cancers with relatively good

clinical prognosis. Most importantly, we discussed the

heterogeneity caused by postoperative treatments, which might

have a very important impact on the prognosis of cancer

patients. It was found in our study that the cancer type,

sample sizes, and different cutoff values might be the source of

heterogeneity. The high expression of TIGIT was not

significantly correlated with poor PFS of PSCCE, RFS of MTC,

DFS of PTC or OS of SCLC, CRC, MTC, ATC, PDTC and PTC.

Studies with sample sizes <100 did not support the relationship

between high expression of TIGIT and OS or DFS, while studies

taking CPS≥1 as the cutoff value did not support the relationship
BA

FIGURE 10

Pancancer analysis of the Spearman correlation between TIGIT expression and immune cell infiltration. CIBERSORT in (A), TIMER in (B). Red
represents a positive correlation, and blue represents a negative correlation. The darker the color is, the greater the correlation coefficient.
∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001 and ∗∗∗∗p< 0.0001.
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FIGURE 11 (Continued)

Pancancer analysis of the Spearman correlation betweenTIGIT expression and 150 immune-related genes, including 41 chemokines, 24
immunoinhibitors, 46 immunostulators, 21 MHCs and 18 receptors. Red represents a positive correlation, and blue represents a negative
correlation. The darker the color is, the greater the correlation coefficient. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. CCL5, C-C Motif Chemokine
Ligand 5; CXCL9, C-X-C Motif Chemokine Ligand 9; CCL4, C-C Motif Chemokine Ligand 4;XCL2, X-C Motif Chemokine Ligand 2; CXCL13, C-X-C
Motif Chemokine Ligand 13; CXCL10, C-X-C Motif Chemokine Ligand 10; CXCL11, C-X-C Motif Chemokine Ligand 11; XCL1, X-C Motif Chemokine
Ligand 1; CCL19, C-C Motif Chemokine Ligand 19; CCL22, C-C Motif Chemokine Ligand 22; CCL18, C-C Motif Chemokine Ligand 18; CCL21, C-C
Motif Chemokine Ligand 21; CCL23, C-C Motif Chemokine Ligand 23; CCL3, C-C Motif Chemokine Ligand 3; CCL8, CC Motif Chemokine Ligand
8; CCL13, C-C Motif Chemokine Ligand 13; CCL20, C-C Motif Chemokine Ligand 20; CCL24, C-C Motif Chemokine Ligand 24; CXCL16, C-X-C
Motif Chemokine Ligand 16; CCL2, C-C Motif Chemokine Ligand 2; CXCL12, C-X-C Motif Chemokine Ligand 12; CCL17, C-C Motif Chemokine
Ligand 17; CCL1, C-C Motif Chemokine Ligand 1; CCL7, C-C Motif Chemokine Ligand 7; CCL11, C-C Motif Chemokine Ligand 11; CCL27, C-C
Motif Chemokine Ligand 27; CXCL17, C-X-C Motif Chemokine Ligand 17; CCL25, C-C Motif Chemokine Ligand 25; CX3CL1, C-X3-C Motif
Chemokine Ligand 1; CCL14, C-C Motif Chemokine Ligand 14; CCL16, C-C Motif Chemokine Ligand 16; CXCL5, C-X-C Motif Chemokine Ligand 5;
CXCL2, C-X-C Motif Chemokine Ligand 2; CXCL3, C-X-C Motif Chemokine Ligand 3; CCL26, C-C Motif Chemokine Ligand 26; CXCL8, C-X-C
Motif Chemokine Ligand 8; CXCL1, C-X-C Motif Chemokine Ligand 1; CXCL6, C-X-C Motif Chemokine Ligand 6; CCL15, C-C Motif Chemokine
Ligand 15; CCL28, C-C Motif Chemokine Ligand 28; CXCL14, C-X-C Motif Chemokine Ligand 14; XCR1, X-C Motif Chemokine Receptor 1; CCR1,
C-C Motif Chemokine Receptor 1; CCR2, C-C Motif Chemokine Receptor 2; CCR8, C-C Motif Chemokine Receptor 8; CCR4, C-C Motif
Chemokine Receptor 4; CCR7, C-C Motif Chemokine Receptor 7; CXCR3, C-X-C Motif Chemokine Receptor 3; CCR5, C-C Motif Chemokine
Receptor 5; CXCR6, C-X-C Motif Chemokine Receptor 6; CCR6, C-C Motif Chemokine Receptor 6; CXCR4, C-X-C Motif Chemokine Receptor 4;
CXCR1, C-X-C Motif Chemokine Receptor 1; CXCR2, C-X-C Motif Chemokine Receptor 2; CCR10, C-C Motif Chemokine Receptor 10; CXCR5, C-
X-C Motif Chemokine Receptor 5; CCR9, C-C Motif Chemokine Receptor 9; CCR3, C-C Motif Chemokine Receptor 3; CX3CR1, C-X3-C Motif
Chemokine Receptor 1; HLA-E, Major Histocompatibility Complex, Class I, E; TAP1, Transporter 1, ATP Binding Cassette Subfamily B Member; HLA-
B, Major Histocompatibility Complex, Class I, B; B2M, Beta-2-Microglobulin; HLA-F, Major Histocompatibility Complex, Class I, F; HLA-DMB, Major
Histocompatibility Complex, Class II, DM Beta; HLA-DOB, Major Histocompatibility Complex, Class II, DO Beta; HLA-DMA, Major Histocompatibility
Complex, Class II, DM Alpha; HLA-DRB1, Major Histocompatibility Complex, Class II, DR Beta 1; HLA-DQA1, Major Histocompatibility Complex,
Class II, DQ Alpha 1; HLA-DOA, Major Histocompatibility Complex, Class II, DO Alpha; HLA-DPA1, Major Histocompatibility Complex, Class II, DP
Alpha 1; HLA-DPB1, Major Histocompatibility Complex, Class II, DP Beta 1; HLA-DRA, Major Histocompatibility Complex, Class II, DR Alpha; HLA-G,
Major Histocompatibility Complex, Class I, G; HLA-DQA2, Major Histocompatibility Complex, Class II, DQ Alpha 2; HLA-DQB1, Major
Histocompatibility Complex, Class II, DQ Beta 1; TAP2, Transporter 2, ATP Binding Cassette Subfamily B Member; TAPBP, TAP Binding Protein;
HLA-A, Major Histocompatibility Complex, Class I, A; HLA-C, Major Histocompatibility Complex, Class I, C; TIGIT, T-Cell Immunoreceptor With Ig
And ITIM Domains; CD96, CD96 Molecule; PDCD1, Programmed Cell Death 1; CTLA4, Cytotoxic T-Lymphocyte Associated Protein 4; BTLA, B And
T Lymphocyte Associated; CD244, CD244 Molecule; PDCD1LG2, Programmed Cell Death 1 Ligand 2; HAVCR2, Hepatitis A Virus Cellular Receptor
2; LAG3, Lymphocyte Activating 3; ADORA2A, Adenosine A2a Receptor; CSF1R, Colony Stimulating Factor 1 Receptor; IL10, Interleukin 10; CD274,
CD274 Molecule; IDO1, Indoleamine 2,3-Dioxygenase 1; LGALS9, Galectin 9; CD160, CD160 Molecule; KIR2DL1, Killer Cell Immunoglobulin Like
Receptor, Two Ig Domains And Long Cytoplasmic Tail 1; KIR2DL3, Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And Long
Cytoplasmic Tail 3; NECTIN2, Nectin Cell Adhesion Molecule 2; VTCN1, V-Set Domain Containing T-Cell Activation Inhibitor 1; IL10RB, Interleukin
10 Receptor Subunit Beta; KDR, Kinase Insert Domain Receptor; TGFBR1, Transforming Growth Factor Beta 1 Transforming Growth Factor Beta
Receptor 1; PVR, PVR Cell Adhesion Molecule; ULBP1, UL16 Binding Protein 1; CD276, CD276 Molecule; RAET1E, Retinoic Acid Early Transcript 1E;
TNFRSF14, TNF Receptor Superfamily Member 14; TNFSF13, TNF Superfamily Member 13; TNFRSF25, TNF Receptor Superfamily Member 25;
BTNL2, Butyrophilin Like 2; HHLA2, HERV-H LTR-Associating 2; IL6R, Interleukin 6 Receptor; NT5E, 5’- Nucleotidase Ecto; TNFSF9, TNF
Superfamily Member 9; ICOSLG, Inducible T-Cell Costimulator Ligand; TNFSF15, TNF Superfamily Member 15; KLRK1, Killer Cell Lectin Like
Receptor K1; LTA, Lymphotoxin Alpha; CD27, CD27 Molecule; CD48, CD48 Molecule; ICOS, Inducible T-Cell Costimulator; STING1, Stimulator Of
Interferon Response CGAMP Interactor 1; CXCL12, C-X-C Motif Chemokine Ligand 12; MICB, MHC Class I Polypeptide-Related Sequence B;
TNFSF4, TNF Superfamily Member 4; TNFRSF13C, TNF Receptor Superfamily Member 13C; IL6, Interleukin 6; TNFSF18, TNF Superfamily Member
18; ENTPD1, Ectonucleoside Triphosphate Diphosphohydrolase 1; CD40, CD40 Molecule; TNFRSF4, TNF Receptor Superfamily Member 4; CXCR4,
C-X-C Motif Chemokine Receptor 4; TMIGD2, Transmembrane And Immunoglobulin Domain Containing 2; TNFRSF18, TNF Receptor Superfamily
Member 18; CD70, CD70 Molecule; VSIR, V-Set Immunoregulatory Receptor; TNFRSF8, TNF Receptor Superfamily Member 8; CD28, CD28
Molecule; KLRC1, Killer Cell Lectin Like Receptor C1; CD40LG, CD40 Ligand; TNFRSF13B, TNF Receptor Superfamily Member 13B; TNFRSF17, TNF
Receptor Superfamily Member 17; TNFSF14, TNF Superfamily Member 14; TNFSF13B, TNF Superfamily Member 13b; TNFRSF9, TNF Receptor
Superfamily Member 9; CD80, CD80 Molecule; CD86, CD86 Molecule; IL2RA, Interleukin 2 Receptor Subunit Alpha.CCL5, C-C Motif Chemokine
Ligand 5; CXCL9, C-X-C Motif Chemokine Ligand 9; CCL4, C-C Motif Chemokine Ligand 4;XCL2, X-C Motif Chemokine Ligand 2; CXCL13, C-X-C
Motif Chemokine Ligand 13; CXCL10, C-X-C Motif Chemokine Ligand 10; CXCL11, C-X-C Motif Chemokine Ligand 11; XCL1, X-C Motif Chemokine
Ligand 1; CCL19, C-C Motif Chemokine Ligand 19; CCL22, C-C Motif Chemokine Ligand 22; CCL18, C-C Motif Chemokine Ligand 18; CCL21, C-C
Motif Chemokine Ligand 21; CCL23, C-C Motif Chemokine Ligand 23; CCL3, C-C Motif Chemokine Ligand 3; CCL8, CC Motif Chemokine Ligand
8; CCL13, C-C Motif Chemokine Ligand 13; CCL20, C-C Motif Chemokine Ligand 20; CCL24, C-C Motif Chemokine Ligand 24; CXCL16, C-X-C
Motif Chemokine Ligand 16; CCL2, C-C Motif Chemokine Ligand 2; CXCL12, C-X-C Motif Chemokine Ligand 12; CCL17, C-C Motif Chemokine
Ligand 17; CCL1, C-C Motif Chemokine Ligand 1; CCL7, C-C Motif Chemokine Ligand 7; CCL11, C-C Motif Chemokine Ligand 11; CCL27, C-C
Motif Chemokine Ligand 27; CXCL17, C-X-C Motif Chemokine Ligand 17; CCL25, C-C Motif Chemokine Ligand 25; CX3CL1, C-X3-C Motif
Chemokine Ligand 1; CCL14, C-C Motif Chemokine Ligand 14; CCL16, C-C Motif Chemokine Ligand 16; CXCL5, C-X-C Motif Chemokine Ligand 5;
CXCL2, C-X-C Motif Chemokine Ligand 2; CXCL3, C-X-C Motif Chemokine Ligand 3; CCL26, C-C Motif Chemokine Ligand 26; CXCL8, C-X-C
Motif Chemokine Ligand 8; CXCL1, C-X-C Motif Chemokine Ligand 1; CXCL6, C-X-C Motif Chemokine Ligand 6; CCL15, C-C Motif Chemokine
Ligand 15; CCL28, C-C Motif Chemokine Ligand 28; CXCL14, C-X-C Motif Chemokine Ligand 14; XCR1, X-C Motif Chemokine Receptor 1; CCR1,
C-C Motif Chemokine Receptor 1; CCR2, C-C Motif Chemokine Receptor 2; CCR8, C-C Motif Chemokine Receptor 8; CCR4, C-C Motif
Chemokine Receptor 4; CCR7, C-C Motif Chemokine Receptor 7; CXCR3, C-X-C Motif Chemokine Receptor 3; CCR5, C-C Motif Chemokine
Receptor 5; CXCR6, C-X-C Motif Chemokine Receptor 6; CCR6, C-C Motif Chemokine Receptor 6; CXCR4, C-X-C Motif Chemokine Receptor 4;
CXCR1, C-X-C Motif Chemokine Receptor 1; CXCR2, C-X-C Motif Chemokine Receptor 2; CCR10, C-C Motif Chemokine Receptor 10; CXCR5, C-
X-C Motif Chemokine Receptor 5; CCR9, C-C Motif Chemokine Receptor 9; CCR3, C-C Motif Chemokine Receptor 3; CX3CR1, C-X3-C Motif
Chemokine Receptor 1; HLA-E, Major Histocompatibility Complex, Class I, E; TAP1, Transporter 1, ATP Binding Cassette Subfamily B Member; HLA-
B, Major Histocompatibility Complex, Class I, B; B2M, Beta-2-Microglobulin; HLA-F, Major Histocompatibility Complex, Class I, F; HLA-DMB, Major
Histocompatibility Complex, Class II, DM Beta; HLA-DOB, Major Histocompatibility Complex, Class II, DO Beta; HLA-DMA, Major Histocompatibility

Li et al. 10.3389/fimmu.2022.977016

Frontiers in Immunology frontiersin.org14
142

https://doi.org/10.3389/fimmu.2022.977016
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Complex, Class II, DM Alpha; HLA-DRB1, Major Histocompatibility Complex, Class II, DR Beta 1; HLA-DQA1, Major Histocompatibility Complex,
Class II, DQ Alpha 1; HLA-DOA, Major Histocompatibility Complex, Class II, DO Alpha; HLA-DPA1, Major Histocompatibility Complex, Class II, DP
Alpha 1; HLA-DPB1, Major Histocompatibility Complex, Class II, DP Beta 1; HLA-DRA, Major Histocompatibility Complex, Class II, DR Alpha; HLA-G,
Major Histocompatibility Complex, Class I, G; HLA-DQA2, Major Histocompatibility Complex, Class II, DQ Alpha 2; HLA-DQB1, Major
Histocompatibility Complex, Class II, DQ Beta 1; TAP2, Transporter 2, ATP Binding Cassette Subfamily B Member; TAPBP, TAP Binding Protein;
HLA-A, Major Histocompatibility Complex, Class I, A; HLA-C, Major Histocompatibility Complex, Class I, C; TIGIT, T-Cell Immunoreceptor With Ig
And ITIM Domains; CD96, CD96 Molecule; PDCD1, Programmed Cell Death 1; CTLA4, Cytotoxic T-Lymphocyte Associated Protein 4; BTLA, B And
T Lymphocyte Associated; CD244, CD244 Molecule; PDCD1LG2, Programmed Cell Death 1 Ligand 2; HAVCR2, Hepatitis A Virus Cellular Receptor
2; LAG3, Lymphocyte Activating 3; ADORA2A, Adenosine A2a Receptor; CSF1R, Colony Stimulating Factor 1 Receptor; IL10, Interleukin 10; CD274,
CD274 Molecule; IDO1, Indoleamine 2,3-Dioxygenase 1; LGALS9, Galectin 9; CD160, CD160 Molecule; KIR2DL1, Killer Cell Immunoglobulin Like
Receptor, Two Ig Domains And Long Cytoplasmic Tail 1; KIR2DL3, Killer Cell Immunoglobulin Like Receptor, Two Ig Domains And Long
Cytoplasmic Tail 3; NECTIN2, Nectin Cell Adhesion Molecule 2; VTCN1, V-Set Domain Containing T-Cell Activation Inhibitor 1; IL10RB, Interleukin
10 Receptor Subunit Beta; KDR, Kinase Insert Domain Receptor; TGFBR1, Transforming Growth Factor Beta 1 Transforming Growth Factor Beta
Receptor 1; PVR, PVR Cell Adhesion Molecule; ULBP1, UL16 Binding Protein 1; CD276, CD276 Molecule; RAET1E, Retinoic Acid Early Transcript 1E;
TNFRSF14, TNF Receptor Superfamily Member 14; TNFSF13, TNF Superfamily Member 13; TNFRSF25, TNF Receptor Superfamily Member 25;
BTNL2, Butyrophilin Like 2; HHLA2, HERV-H LTR-Associating 2; IL6R, Interleukin 6 Receptor; NT5E, 5’- Nucleotidase Ecto; TNFSF9, TNF
Superfamily Member 9; ICOSLG, Inducible T-Cell Costimulator Ligand; TNFSF15, TNF Superfamily Member 15; KLRK1, Killer Cell Lectin Like
Receptor K1; LTA, Lymphotoxin Alpha; CD27, CD27 Molecule; CD48, CD48 Molecule; ICOS, Inducible T-Cell Costimulator; STING1, Stimulator Of
Interferon Response CGAMP Interactor 1; CXCL12, C-X-C Motif Chemokine Ligand 12; MICB, MHC Class I Polypeptide-Related Sequence B;
TNFSF4, TNF Superfamily Member 4; TNFRSF13C, TNF Receptor Superfamily Member 13C; IL6, Interleukin 6; TNFSF18, TNF Superfamily Member
18; ENTPD1, Ectonucleoside Triphosphate Diphosphohydrolase 1; CD40, CD40 Molecule; TNFRSF4, TNF Receptor Superfamily Member 4; CXCR4,
C-X-C Motif Chemokine Receptor 4; TMIGD2, Transmembrane And Immunoglobulin Domain Containing 2; TNFRSF18, TNF Receptor Superfamily
Member 18; CD70, CD70 Molecule; VSIR, V-Set Immunoregulatory Receptor; TNFRSF8, TNF Receptor Superfamily Member 8; CD28, CD28
Molecule; KLRC1, Killer Cell Lectin Like Receptor C1; CD40LG, CD40 Ligand; TNFRSF13B, TNF Receptor Superfamily Member 13B; TNFRSF17, TNF
Receptor Superfamily Member 17; TNFSF14, TNF Superfamily Member 14; TNFSF13B, TNF Superfamily Member 13b; TNFRSF9, TNF Receptor
Superfamily Member 9; CD80, CD80 Molecule; CD86, CD86 Molecule; IL2RA, Interleukin 2 Receptor Subunit Alpha.
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between high expression of TIGIT and OS or RFS. Whether

postoperative treatments result in heterogeneity still needs

further study.

SCLC is a classical neuroendocrine tumor with low

immunogenicity and low MHC I expression levels, which

makes it difficult to recognize by CD8 T-cell receptors. Its

immune regulation is more complex than that of other solid

tumors due to the existence of autocrine or paracrine molecules.

In ATC, TIGIT expression is not found to have prognostic value

(38). The reason may be that ATC patients suffer from extremely
Frontiers in Immunology 15
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short survival, and the sample size may be too small to

distinguish the prognosis.

In our meta-analysis, a relationship between high

expression of TIGIT and poorer OS was not found in the

studies taking CPS≥1 as the cutoff value. The tumor proportion

score (TPS) and the combined positive score (CPS) have been

widely used in clinical research. TPS calculates the ratio of

TIGIT-stained tumor cells to the total number of viable tumor

cells, while CPS calculates the ratio of potential TIGIT

expression, including tumor cells and immune cells, to the
BA

FIGURE 12

Spearman correlation between TMB, MSI and TIGIT gene expression were presented in (A, B) respectively. The correlation coefficient is
presented by using the length of the lollipop. The redder the color, the more statistically significant it is.
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total number of viable tumor cells. However, it remains unclear

which is more suitable for assessing TIGIT expression as a

prognostic biomarker (43).

Vascular endothel ia l ce l l s , nonmal ignant ce l l s ,

immunocytes, tumor-associated macrophages (TAMs), cancer-

associated fibroblasts (CAFs), myeloid-derived suppressor cells

(MDSCs), natural killer (NK) cells, dendritic cells (DCs) and

tumor-associated neutrophils (TANs) make up the tumor

microenvironment (TME) (44, 45). TIGIT was highly

positively correlated with the ESTIMATE score in all of the

cancers included, which indicated an advanced cancer stage with

a poor prognosis.

Tumor-infiltrating immunocytes can promote or antagonize

tumorigenesis and progression (46). TIGIT expressed on TILs

responded to the TME. TIGIT marks the most dysfunctional

subset of CD8+ T cells and Tregs with a highly suppressive

function (47). In this study, high TIGIT expression promoted

the infiltration levels of CD8 T cells, M1 macrophages, naive B
Frontiers in Immunology 16
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cells, activated memory CD4 T cells, Tregs and activated NK

cells while inhibiting the infiltration levels of activated dendritic

cells and mast cells in most of the cancers included. Among

them, M1 macrophages, activated memory CD4 T cells,

activated dendritic cells, mast cells and activated NK cells play

antitumor roles in the TME and are related to better outcomes,

while Tregs play immune suppression roles and are related to

worse survival prognosis (48). A positive correlation was

discovered between the expression of TIGIT and most of the

other immune checkpoints, especially in ESCA, STAD, STES

and SKCM (12, 47, 49, 50). This result suggested that TIGIT

might be involved in different immune responses and

immunocyte infiltration. The combined blockade of TIGIT

and other new immune checkpoints may be a possible option

for immunotherapy, especially in patients with gastroesophageal

tumors and melanoma.

MSI and TMB are two valuable indexes suggesting the

sensitivity of immune checkpoint inhibitors. TMB can induce
B

C

A

FIGURE 13

Visualization and enrichment analysis for genes that interacted with TIGIT (A) PPI network (B) Chord diagram for KEGG analysis (C) Bar graph for
GO analysis).
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new antigens to facilitate immune recognition. MSI caused by

hypermutability (gain or loss) of nucleotides from DNA

elements is associated with increased expression of

neoantigens, higher PD-L1 expression and TMB-H (51). In

this study, TIGIT expression was positively related to TMB

and MSI in COAD and COADREAD, which indicated that

patients with COAD or COADREAD might benefit from

TIGIT inhibitors.

Regarding the possible regulatory mechanisms, the results of

the GO and KEGG enrichment analyses indicated that TIGIT

was closely related to the functions of cell adhesion, adherens

junction and the T-cell receptor signaling pathway, which

supported the oncogenic role and immunological function of

TIGIT in the tumor immune microenvironment.

Currently, it is urgent to find new immune checkpoints to

compensate for drug resistance and severe adverse reactions

caused by PD-1/PD-L1 and CTLA4 inhibitors. Studies on TIGIT

expression provided more encouraging results than those on

LAG-3 and TIM-3 (52). TIGIT inhibitors, such as tibolumab,

vibostolimab, ocperlimab, M-6223, ASP-8374, COM-902 and

IBI-939, have been under clinical trials in patients with non-

small cell lung cancer (NSCLC), esophageal squamous cell

carcinoma (ESCC) and gastric adenocarcinoma (GAC). TIGIT

expression paralleled that of PD-1 (2). Most TIGIT inhibitors are
Frontiers in Immunology 17
145
used in combination with PD-L1/PD-1 inhibitors, such as

zimberelimab and atezolizumab (53, 54). We will continue to

follow up the results of relevant clinical reports.

There were some limitations in our meta-analysis. Over half

of the studies did not report postoperative therapy, which led to

some bias in our analysis. Second, all of the subjects were Asian,

and whether the conclusion could be applied to other

populations remained uncertain. Third, the scale of the

included studies was limited. Some parts of the subgroup

analysis only included one kind of cancer. Large sample size

studies are still needed to determine the relationship between

TIGIT expression and survival prognosis, especially PFS, RFS

and DFS.
5 Conclusion

TIGIT is valuable in predicting the survival prognosis of

patients with solid cancers. TIGIT is correlated with the TME,

infiltration of immune cells, immune-related genes,MSI andTMB.

The results indicate the role of TIGIT in tumoriFabbrevgenesis and

progression. TIGIT inhibitors may be promising choices for solid

cancers in the future.
FIGURE 14

TIGIT-miRNA−lncRNA network.
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Bladder Urothelial Carcinoma BLCA

Colon adenocarcinoma COAD

Colon adenocarcinoma/Rectum adenocarcinoma Esophageal
carcinoma

COADREAD

Esophageal carcinoma ESCA

Liver hepatocellular carcinoma LIHC

Lung squamous cell carcinoma LUSC

Rectum adenocarcinoma READ

Skin Cutaneous Melanoma SKCM

Stomach adenocarcinoma STAD

Stomach and Esophageal carcinoma STES

activated dendritic cells DCs

advanced thyroid carcinoma ATC

anaplastic thyroid carcinoma ATC

bladder urothelial carcinoma BLCA

cancer-associated fibroblasts CAFs

cancer-associated fibroblasts CAFs

China national knowledge infrastructure CNKI

colon adenocarcinoma COAD

colon adenocarcinoma/Rectum adenocarcinoma esophageal
carcinoma

COADREAD

colorectal cancer CRC

combined positive score CPS

cytotoxic T-lymphocyte associated protein 4 CTLA4

defective DNA mismatch repair dMMR

dendritic cells DCs

disease free survival DFS

disease-free survival DFS

esophageal carcinoma ESCA

esophageal squamous cell carcinoma ESCC

follicular helper T cells Tfh

gastric adenocarcinoma GAC

gastric cancer GC

Hepatitis B virus hepatocellular carcinoma HBV-HCC

indoleamine 2 3-dioxygenase 1 IDO1

Interleukin 10 IL-10

liver hepatocellular carcinoma LIHC

locally advanced papillary thyroid carcinoma PTC

lung adenocarcinoma LUAD

lung squamous cell carcinoma LUSC

lymphocyte activating 3 LAG3

Microsatellite instability MSI

muscle-invasive bladder cancer MIBC

muscle-invasive bladder cancer MIBC

myeloid-derived suppressor cells MDSCs

myeloid-derived suppressor cells MDSCs
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natural killer NK

Newcastle−Ottawa Quality Assessment Scale NOS

non-small cell lung cancer NSCLC

overall survival OS

poorly differentiated thyroid carcinoma PDTC

Preferred Reporting Items for Systematic Reviews and Meta-
Analyses

PRISMA

primary small cell carcinoma of esophagus PSCCE

programmed cell death 1 ligand 2 PDCD1LG2

programmed cell death 1 PDCD1

progression-free survival PFS

Randomized controlled Trial RCT

Rectum adenocarcinoma READ

recurrence free survival RFS

regulatory T cells Tregs

skin cutaneous melanoma SKCM

small cell lung cancer SCLC

stomach adenocarcinoma STAD

stomach and esophageal carcinoma STES

structural recurrence free survival SRFS

Thyroid carcinoma THCA

transforming Growth Factor Beta 1 TGFB1

tumor infiltrating lymphocytes TILs

tumor microenvironment TME

tumor proportion score TPS

tumor-associated macrophages TAMs

tumor-associated neutrophils TANs

tumor-associated neutrophils TANs

V-set and immunoglobulin domain-containing protein 9 VSIG9

V-set and transmembrane do-main-containing protein 3 VSTM3

Washington University cell adhesion molecule WUCAM

C-C Motif Chemokine Ligand 5 CCL5

C-X-C Motif Chemokine Ligand 9 CXCL9

C-C Motif Chemokine Ligand 4 CCL4

X-C Motif Chemokine Ligand 2 XCL2

C-X-C Motif Chemokine Ligand 13 CXCL13

C-X-C Motif Chemokine Ligand 10 CXCL10

C-X-C Motif Chemokine Ligand 11 CXCL11

X-C Motif Chemokine Ligand 1 XCL1

C-C Motif Chemokine Ligand 19 CCL19

CC Motif Chemokine Ligand 22 CCL22

C-C Motif Chemokine Ligand 18 CCL18

C-C Motif Chemokine Ligand 21 CCL21

C-C Motif Chemokine Ligand 23 CCL23

C-C Motif Chemokine Ligand 3 CCL3

C-C Motif Chemokine Ligand 8 CCL8

C-C Motif Chemokine Ligand 13 CCL13

CC Motif Chemokine Ligand 20 CCL20

C-C Motif Chemokine Ligand 24 CCL24
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C-X-C Motif Chemokine Ligand 16 CXCL16

C-C Motif Chemokine Ligand 2 CCL2

C-X-C Motif Chemokine Ligand 12 CXCL12

C-C Motif Chemokine Ligand 17 CCL17

C-C Motif Chemokine Ligand 1 CCL1

C-C Motif Chemokine Ligand 7 CCL7

C-C Motif Chemokine Ligand 11 CCL11

C-C Motif Chemokine Ligand 27 CCL27

C-X-C Motif Chemokine Ligand 17 CXCL17

C-C Motif Chemokine Ligand 25 CCL25

C-X3-C Motif Chemokine Ligand 1 CX3CL1

C-C Motif Chemokine Ligand 14 CCL14

C-C Motif Chemokine Ligand 16 CCL16

C-X-C Motif Chemokine Ligand 5 CXCL5

C-X-C Motif Chemokine Ligand 2 CXCL2

C-X-C Motif Chemokine Ligand 3 CXCL3

C-C Motif Chemokine Ligand 26 CCL26

C-X-C Motif Chemokine Ligand 8 CXCL8

C-X-C Motif Chemokine Ligand1 CXCL1

C-X-C Motif Chemokine Ligand 6 CXCL6

C-C Motif Chemokine Ligand 15 CCL15

C-C Motif Chemokine Ligand 28 CCL28

C-X-C Motif Chemokine Ligand 14 CXCL14

X-C Motif Chemokine Receptor 1 XCR1

C-C Motif Chemokine Receptor 1 CCR1

C-C Motif Chemokine Receptor 2 CCR2

C-C Motif Chemokine Receptor 8 CCR8

CCMotif Chemokine Receptor 4 CCR4

C-C Motif Chemokine Receptor 7 CCR7

C-X-C Motif Chemokine Receptor 3 CXCR3

C-C Motif Chemokine Receptor 5 CCR5

C-X-C Motif Chemokine Receptor 6 CXCR6

C-C Motif Chemokine Receptor 6 CCR6

C-X-C MotifChemokine Receptor 4 CXCR4

C-X-C Motif Chemokine Receptor 1 CXCR1

C-X-C Motif Chemokine Receptor 2 CXCR2

C-C Motif Chemokine Receptor 10 CCR10

C-X-C Motif Chemokine Receptor 5 CXCR5

C-C Motif Chemokine Receptor 9 CCR9

C-C Motif Chemokine Receptor 3 CCR3

C-X3-C Motif Chemokine Receptor 1 CX3CR1

Major Histocompatibility Complex Class I E HLA-E

Transporter 1 ATP Binding Cassette Subfamily B Member TAP1

Major Histocompatibility Complex Class I B HLA-B

Beta-2-Microglobulin B2 M

Major Histocompatibility Complex Class I F HLA-F

Major Histocompatibility Complex Class II DM Beta HLA-DMB

Major Histocompatibility Complex Class II DO Beta HLA-DOB

Major Histocompatibility Complex Class II DM Alpha HLA-DMA
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Major Histocompatibility Complex Class II DR Beta 1 HLA-DRB1

Major Histocompatibility Complex Class II DQ Alpha 1 HLA-DQA1

Major Histocompatibility Complex Class II DO Alpha HLA-DOA

Major Histocompatibility Complex Class II DP Alpha 1 HLA-DPA1

Major Histocompatibility Complex Class II DP Beta 1 HLA-DPB1

Major Histocompatibility Complex Class II DR Alpha HLA-DRA

Major Histocompatibility Complex Class I G HLA-G

Major Histocompatibility Complex Class II DQ Alpha 2 HLA-DQA2

Major Histocompatibility Complex Class II DQ Beta 1 HLA-DQB1

Transporter 2 ATP Binding Cassette Subfamily B Member TAP2

TAP Binding Protein TAPBP

Major Histocompatibility Complex Class I A HLA-A

Major Histocompatibility Complex Class I C HLA-C

T-Cell Immunoreceptor With Ig And ITIM Domains TIGIT

CD96 Molecule CD96

Programmed Cell Death 1 PDCD1

Cytotoxic T-Lymphocyte Associated Protein 4 CTLA4

B And T Lymphocyte Associated BTLA

CD244 Molecule CD244

Programmed Cell Death 1 Ligand 2 PDCD1LG2

Hepatitis A Virus Cellular Receptor 2 HAVCR2

Lymphocyte Activating 3 LAG3

Adenosine A2a Receptor ADORA2A

Colony Stimulating Factor 1 Receptor CSF1R

Interleukin 10 IL10

CD274 Molecule CD274

Indoleamine 2, 3-Dioxygenase 1 IDO1

Galectin 9 LGALS9

CD160 Molecule CD160

Killer Cell Immunoglobulin
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The analysis of the pyroptosis-
related genes and hub
gene TP63 ceRNA axis
in osteosarcoma

Jun Han1,2†, Yunxiang Hu1,2†, Shengqiang Ding3†,
Sanmao Liu1,2 and Hong Wang2*

1School of Graduates, Dalian Medical University, Dalian, China, 2Department of Orthopedics, Dalian
Municipal Central Hospital, Dalian City, China, 3Department of Spine Surgery, The People’s Hospital
of Liuyang City, Changsha, China
Pyroptosis is a type of programmed cell death that is associated with tumor

development, prognosis, and therapeutic response. The significance of

pyroptosis-related genes (PRGs) in the tumor microenvironment (TME)

remains unclear. We examined the expression patterns of PRGs in 141 OS

samples from two different datasets and characterized the genetic and

transcriptional changes in PRGs. Based on these PRGs, all OS samples could

be classified into two clusters. We discovered that multilayer PRG changes

were linked to clinicopathological traits, prognosis, and TME characteristics in

two separate genetic subtypes. The PRG score was then developed for

predicting overall survival, and its predictive efficacy in OS patients was

tested. As a result, we developed a very precise nomogram to improve the

PRG-predictive model in clinical application. Furthermore, a competing

endogenous RNA (ceRNA) network was built to find a LAMTOR5-AS1/hsa-

miR-23a-3p/TP63 regulatory axis. Through experimental verification, it was

found that the pyroptosis gene TP63 plays an important role in the regulation of

osteosarcoma pyroptosis. The possible functions of PRGs in the TME,

clinicopathological characteristics, and prognosis were established in our

investigation of PRGs in OS. These findings may aid in our understanding of

PRGs in OS as well as provide a novel way for prognostic evaluation and the

creation of more effective immunotherapy treatments.
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Introduction

Osteosarcoma (OS) is the most common primary malignant

bone tumor in children and young adults, usually occurring in the

metaphysis of long bones (1). Patients with localized tumor present

a 5-year survival rate of 60%, while those with metastatic tumor

have a 5-year survival rate of only 20% (2). Despite the current

standard treatment for primary bone osteosarcoma, which consists

of neoadjuvant chemotherapy and surgery, the survival rate has

significantly improved, and its treatment outcomes are unfavorable

owing to tumor invasion and metastasis (3). Therefore, defining a

novel prognostic gene markers model of OS is imperative for

improving the overall survival of OS patients.

Pyroptosis is a type of programmed cell death caused by

inflammation, which is unusual compared to other kinds

of programmed cell death (4). The cleavage of the gasdermin

family characterizes pyroptotic cells through classical pathways,

non-classical pathways, the caspase-3/8-mediated pathway,

and the granzyme-mediated pathway, followed by the cell

membrane ruptures and the release of the cell contents (5).

Many studies indicated that pyroptosis plays a pivotal role in

the pathogenesis and progression of multiple cancers. However,

pyroptosis is complicated in cancers and exhibit cancer-inhibiting

or cancer-promoting activities in different cancers (6, 7). Previous

studies also indicate that there are associations between pyroptosis

and the tumor microenvironment (TME) (8, 9). Especially, a wide

variety of immune cell types are involved in the TME, primarily

lymphocytes, dendritic cells, macrophages, mast cells, neutrophils,

and myeloid-derived suppressor cells (10, 11). These cells can

inhibit tumor progression by recognizing and killing tumor cells.

Thus, immunotherapy has emerged as an effective therapeutic

approach to killing tumor cells by activating immune responses

(12, 13). However, as compared to other cancers, there have been

fewer investigations into immunotherapy for OS. Hence, a

comprehensive analysis of the TME mediated by pyroptosis-

related genes (PRGs) may be more helpful to understand the

underlying mechanism of OS tumorigenesis and guide

clinical therapy.

We used the RNA sequencing data of OS patients and

normal muscle-skeletal tissues downloaded from the

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) and Genotype-Tissue Expression

(GTEx) databases to construct a tumor vs. normal datasets for

identifying differentially expressed PRGs (DEPRGs). We

identified two pyroptosis-related subtypes of OS according to

DEPRGs. In addition, two advanced computational algorithms

gave us a comprehensive view of the immune cell infiltration

landscape of OS: the Cell-type Identification By Estimating

Relative Subsets Of RNA Transcripts (CIBERSORT) and

Estimation of Stromal and Immune cells in Malignant Tumor

tissues using Expression data (ESTIMATE). Furthermore, we

constructed a five-gene signature (PRG_score) by using the

LASSO–Cox method to predict prognosis, immune infiltration,
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and chemotherapy drugs. Lastly, we constructed a PRG

competing endogenous RNA (ceRNA) network and found one

hub gene in the pyroptosis regulation of OS cells.
Materials and methods

OS data source and preprocessing

The RNA sequencing data, clinical information, and copy

number variation (CNV) data of osteosarcoma patients were

downloaded from the TARGET-OS database (https://

xenabrowser.net/datapages/), and the RNA sequencing data of

396 normal human muscle-skeletal tissue samples were

downloaded from the GTEx database (https://xenabrowser.net/

datapages/). Two datasets are fragments per kilobase million

(FPKM) value, and the expression data were normalized to log2

(FPKM + 1) before merging the two datasets. The microarray

datasets of GSE21257 (53 OS patients) were downloaded from

the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/). Because the expression profile data of

the TARGET dataset (FPKM value) were significantly different

from the microarray data (transcripts per kilobase million,

TPM), we transformed the TARGET data into TPMs by the

“limma” R package. Then, we merged TARGET and GEO into a

dataset including 141 OS patients. The “combat” algorithm of

the “sva” package was applied to address the batch effects caused

by non-biological technical biases. Further analysis was not

conducted on patients without survival information.
Identification of DEPRGs and consensus
clustering analysis

A total of 52 PRGs were retrieved from the MSigDB Team

(REACTOME_PYROPTOSIS) (http://www.broad.mit.edu/gsea/

msigdb/) and prior reviews, which are shown in Table S1 (6, 14–

17). The “limma” package was used to determined DEPRGs by

setting the cutoff criteria as p-value <0.05. After merging the

RNA expression of the TARGET cohort and GEO cohort into a

dataset with 141 OS patients, consensus clustering analysis was

performed to identify distinct pyroptosis patterns based on the

expression of PRGs and cluster the 141 OS patients for further

analysis. The number of PRGclusters and their stability were

determined by increasing the “k” index from 2 to 9 using the R

package “ConsensuClusterPlus.”
Functional enrichment analyses

To study the differences in PRGcluster in biological processes,

the “GSVA,” “limma,” and “pheatmap” R packages were used to

perform enrichment analysis in a heatmap with the hallmark gene
frontiersin.org
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set (c2.cp.kegg.v7.2) downloaded from the MSigDB database

(https://www.gsea-msigdb.org). The single-sample gene set

enrichment analysis (ssGSEA) has been conducted using the R

package “GSVA” to calculate the scores of infiltrating immune cells.

We identified DEGs between PRGclusters using the “limma”

package. The Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses were performed by applying

the “clusterProfiler” package based on the DEGs between

PRGclusters, with p-value <0.05.
Immune infiltration analysis

CIBERSORT was applied to estimate the relative abundance

of 22 tumor-infiltrating immune cell subtypes in each sample of

the TARGET and GEO cohorts using the R package. The

ESTIMATE algorithm was exploited to determine the fractions

of stromal and immune cells in tumor samples of the TARGET

and GEO cohorts using the “estimate” R package.
The establishment of the pyroptosis
score model and prognostic analysis

The pyroptosis score system was established to quantify the

pyroptosis patterns of the OS patients. The method of

constructing the pyroptosis score system is as follows: the

DEGs of different PRGclusters were subjected to univariate

Cox regression analysis where p-value <0.05 was considered

statistically significant. The TARGET and GEO cohorts were

randomly divided into training set and testing set with a

proportion of 1:1 by using the “caret” package. After that, by

using Least Absolute Shrinkage and Selection Operator (LASSO)

regression, we were able to further compress the screened genes

and eventually identified a novel gene signature. Using the

LASSO regression results, we developed a prognostic risk score

formula, which was calculated as follows: Risk score = patient × i

Coefficient (mRNAi) × Expression (mRNAi). The training set,

testing set, and all sets were classified into low and high PRG-

score groups. The efficiency of the model was determined by the

Kaplan–Meier method and time-dependent receiver operating

characteristic (ROC) curve constructed with the “SurvivalROC”

package. The clinical characteristics (gender, age, and

metastasis) of patients were extracted from the TARGET

cohort and the GEO cohort to construct a nomogram to

predict the overall survival of OS patients after 1, 3, and 5 years.
PRG competing endogenous RNA
network construction

Different-expression pyroptosis-related mRNAs (DEPRMs),

different-expression miRNAs (DEMis), and different-expression
Frontiers in Immunology 03
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lncRNAs (DELs) between the TARGET samples and matching

GTEx normal samples were identified using the limma package.

The adjusted p-value of DEMs, DEMis, and DELs was defined as

<0.05, and the log2 fold changes (|log2FC|) of DEMs and DELs

were defined as >1 and 2, respectively. The weighted gene co-

expression network analysis (WGCNA) package in R software

was used to create gene co-expression networks based on DEMs,

DEMis, and DELs. First, outliers in samples with low expression

data were identified and eliminated. Following that, the mean

connectivity and scale-free fit index for numbers 1–30 [as soft-

threshold power (b)] were determined individually, with the best

result determining the adjacency matrix’s co-expression

similarity. The estimated correlation matrix (based on

Pearson’s correlation) was then transformed to an adjacency

matrix, and a topological overlap matrix (TOM) was

constructed, which takes into account indirect gene

interactions. The negative interactions of miRNA–mRNA and

miRNA–lncRNA were used to make the lncRNA–miRNA–

mRNA network, which was constructed by using Cytoscape

3.5.1 (www.cytoscape.org/) based on co-expression WGCNA

data. The Cytoscape “plugin molecular complex detection”

(MCODE) was used to find the most relevant subnetworks,

using the following cutoff value: node score cutoff = 0.2, degree

cutoff = 2, max depth = 100, and k-core = 2. To construct a PRG

ceRNA network, the starBase database (starBase, v2.0, http://

starbase.sysu.edu.cn/) was further applied to identify the

potential relationship of lncRNA–miRNA–mRNA.
Cell culture and transfection

The ScienCell Research Laboratories (USA) provided two

OS cell lines (143B and U2OS). Cell lines were cultured at 37°C

in Dulbecco’s modified Eagle’s medium (Gibco, USA)

supplemented with 10% (v/v) fetal bovine serum (Invitrogen,

USA) in a 5% CO2 atmosphere. The four types of pGPU6/GFP/

Neo vector shRNA targeting TP63 and the three types of

Lamtor-AS1 siRNA (GenePharma, Shanghai, China) were

transfected by Lipo3000 (Invitrogen, USA) according to the

manufacturer’s protocol. Sequences of siRNA and shRNA are

shown in Table S2. The experiments were implemented in three

groups as follows: the knockdown group (cells transfected with

siRNA or shRNA), the NC group (cells transfected with NC),

and the control group (untransfected cells).
Quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) was used to

determine the relatively higher knockdown efficiency of

shRNA and siRNA for further experiments. Total RNA was

extracted from OS cells using TRIpure Reagent (Bioteke, Beijing,

China). The BeyoRT II M-MLV Reverse Transcriptase
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(Beyotime Biotechnology, Shanghai, China) and RNase inhibitor

(Bioteke, Beijing, China) were used for reverse transcription. The

2×Taq PCR MasterMix and SYBR Green (Solarbio, Beijing,

China) were employed to carry out the qRT-PCR assay. In

order to normalize lncRNA and mRNA expression, b-actin was

used as an endogenous control. 2−DDCt was used to calculate the

relative expression level of the target RNA. Table S3 lists the

primers used for target RNA amplification.
Western blotting

The cells were harvested in RIPA Lysis Buffer and lysed using

ultrasound (Wanleibio, Shenyang, China). BCA Reagent was used

to determine total protein content (Wanleibio, Shenyang, China).

SDS-PAGE (Wanleibio, Shenyang, China) was used to separate

equivalent quantities of protein extract, which was then deposited

onto PVDF membranes (Millipore, USA). Cleaved-Caspase-1

(Wanleibio, Shenyang, China), cleaved-Caspase-3 (Wanleibio,

Shenyang, China), cleaved-Caspase-4 (Affinity Biosciences,

Suzhou, China), cleaved-Caspase-8 (Affinity Biosciences,

Suzhou, China), GSDMD (Affinity Biosciences, Suzhou, China),

GSDME (ABclonal, Wuhan, China), and GSDMD-N (Affinity

Biosciences, Suzhou, China) were the primary antibodies

employed in this test. After blocking with 5% skim milk for an

hour, the membranes were incubated overnight with primary

antibodies at 4°C. The membranes were then incubated with

HRP-conjugated secondary antibodies (Wanleibio, Shenyang,

China) and detected using an enhanced chemiluminescence

substrate kit (Wanleibio, Shenyang, China) after washing.
Statistical analysis

Statistical comparisons between groups were made using the

Student’s t-test. Data were provided as mean and standard

deviation. Statistical significance was defined as a p value of

less than 0.05. SPSS V. 26.0 (IBM, NY, USA) was used to

conduct all statistical tests.
Results

Genetic variation and expression of
PRGs in OS

We compared the 52 PRG expression levels between humanOS

samples (TARGET) and normal muscle-skeletal tissues (GTEx) and

found that 46 PRGs expressed differently (p-value < 0.05)

(Figure 1A). To evaluate the levels of CNV among OS patients,

we analyzed the CNV data from TARGET. Figure 1B shows that

CHMP4A, GSDMD, GZMB, and GSDMC represented the highest

frequency of CNV gain and TP53, CHMP2B, CASP3, and IRF2
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represented the highest frequency of CNV loss. Also, we located the

12 PRGs with CNVs on their respective chromosomes (Figure 1C).

In the correlation analysis between PRG CNV and PRG RNA

sequence expression, CHMP7, CHMP2B, TIRAP, and CHMP3 had

the strongest correlation with their CNV (Figure 1D). After

integrating the data of survival time and gene expression of the

TARGET cohort and GEO cohort, the expressions of 28 PRGs were

obtained from 141 patients (Table S4). We performed Kaplan–

Meier (K–M) survival curve analysis on the PRGs, and the results

indicated that the most abnormal expression of PRGs was

significantly related to the prognosis of OS patients. The high

expression of CASP5, CHMP4A, CHMP4C, and HMGB1

correlated with patients’ poor prognosis. The high expression of

AIM2, BAK1, CASP1, CASP6, CHMP2A, CHMP4B, CHMP6,

CHMP7, GPX4, GZMA, GZMB, and IL1B correlated with

patients’ better prognosis (Figure 1E). The comprehensive

landscape of PRG correlation and prognostic value in patients

with OS was demonstrated in a prognosis network by a univariate

Cox regression analysis and co-expression analysis (Figure 1F). The

results were consistent with the K–M survival analysis showing that

CASP4, CASP5, CHMP4A, CHMP4C, HMGB1, and IRF2 were

risk factors for OS patients.
Identification of pyroptosis clusters
mediated by 28 pyroptosis-related
regulators

We obtained 28 PRG expression levels of the cohort consisting

of two OS datasets (TARGET, GEO). Based on the 28 PRG

expression levels, two different OS patterns were determined by

using the unsupervised clustering method (k = 2), including 76

cases in PRGcluster A and 65 cases in PRGcluster B (Figure 2A).

The two-dimensional principal component analysis (PCA) biplots

showed significant differences between the pyroptosis transcription

profiles of the two subtypes (Figure 2B). The K–M curve revealed

that the overall survival rate of PRGcluster A is better than that of

PRGcluster B (p-value < 0.05) (Figure 2C). There is no significant

difference in the clinicopathological features of these two different

clusters (Figure 2D). The ssGSEA algorithm was employed to

estimate the relative infiltration of 24 intratumoral immune cell

types for 141 OS samples. We found that PRGcluster A was

remarkably richer in the infiltration of most immune cells than

PRGcluster B. The infiltration levels of B cell, CD8 T cell, dendritic

cell, MDSC, macrophage, mast cell, killer T cell, natural killer cell,

plasmacytoid dendritic cell, regulatory T cell, T follicular helper cell,

and type 1 T helper cell were higher in PRGcluster A than those in

PRGcluster B, while that of CD56dim natural killer cell in

PRGcluster A was lower than in PRGcluster B (Figure 2E). We

performed GSVA enrichment analysis to reveal the regulation

pathways in which PRGcluster A was significantly enriched in

immune response-related pathways, including NOD-like receptor

signaling pathway, B-cell receptor signaling pathway, T-cell
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receptor signaling pathway, natural killer cell-mediated cytotoxicity,

chemokine signaling pathway, primary immunodeficiency, and

cytokine receptor interaction (Figure 2F). On the basis of the

above analysis , PRGcluster A was classified as an

immunoinflammatory phenotype, characterized by adaptive

immune cell infiltration and immune activation, whereas

PRGcluster B was classified as immune-excluded phenotype.
Generation of gene subtypes based on
PRG clusters

To further define the potential biological function of different

pyroptosis clusters, 453 PRGcluster-related DEGs were identified

between PRGcluster A and PRGcluster B (Table S5). The functional
Frontiers in Immunology 05
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enrichment analysis were performed to indicate that these DEGs

were enriched in biological processes of GO and cytokine receptor

interaction, cell adhesion molecules, and chemokine signaling

pathway of KEGG, which were correlated with immune response

regulation (Figures 3A, B). After that, to identify the prognostic

value of 453 DEGs, a univariate Cox regression analysis was

conducted, and 189 prognostic genes were screened out (Table

S6). Based on 189 prognostic genes, 141 patients with OS were

classified into three genomic subtypes using a consensus clustering

algorithm to understand the intrinsic regulation mechanism:

geneClusters A, B, and C (Figure S1). The expressions of PRGs in

the three gene clusters were significantly different (Figure 3C). The

differences were significant in survival time among the three gene

clusters (p < 0.001), and the results of the K–M survival curves

showed that geneCluster A had the best survival, and geneCluster B
B

C D

E F

A

FIGURE 1

Genetic and transcriptional characteristics of PRGs in OS. (A) The differential expression of 46 PRGs between normal and OS tissues. (***:p value <0.001,
**:p value <0.01, *:p value <0.05) (B) CNV frequency of PRGs in the TARGET cohort. (C) Locations of CNV alterations of PRGs on 23 chromosomes by
the TARGET cohort. (D) The correlation analysis between CNV of PRGs and RNA sequence expression of PRGs in the TARGET cohort. (E) The K-M
curves of AIM2 gene in OS. (F) Prognosis value and correlations between PRGs in OS. The line linking the PRGs is their correlation. PRGs, pyroptosis-
related genes; OS, osteosarcoma; CNV, copy number variations.
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was significantly related to poor prognosis (Figure 3D). The

heatmap shows the correlation of clinical characteristics,

pyroptosis clusters, and gene clusters. The different gene

expression profiles were observed between geneCluster A,

geneCluster B, and geneCluster C (Figure 3E).
Construction and validation of the
prognostic PRG_score

The alluvial diagram illustrates the changes in the attributes of

patients in the two pyroptosis clusters, three gene clusters, and two

PRG_score groups (Figure 4A). We established a pyroptosis-related
Frontiers in Immunology 06
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signature score to quantify each patient based on the 189 prognostic

genes, which was named as PRG_score. The patients

were randomly divided into training (n = 69) and testing (n =

69) groups using the “caret” package. Next, a signature with seven of

the 189 prognosis genes was obtained by application of LASSO–

Cox regression with a minimum of lambda value (Figure 4B). A

stepwise multivariate Cox regression was then performed to

analyze seven prognosis genes, finally obtaining five genes

(CORT, CPB1, ARMC4, CATSPER1, CD79A; Table S7).

The outcomes of the multivariate Cox regression analysis showed

that PRG_score was constructed as follows: Risk score =

(0.601670827227929*expression of CORT) + (-1.39124104164683

*expression of CPB1) + (0.470462955630426*expression of
B

C D

E F

A

FIGURE 2

Subtypes of OS divided by pyroptosis-related regulators. (A) Consensus matrix heatmap defining two clusters (k = 2) in the TARGET and
GSE21257 cohorts. (B) PCA of the expression of PRGs indicating a significant difference between the two clusters. (C) Kaplan–Meier analysis
showing the survival of the two clusters. (D) Differences in characteristics of clinicopathology and PRG expression levels among two clusters. (E)
In the two subtypes, the tumor infiltration of 24 immune cell types. (***:p value <0.001, **:p value <0.01, *:p value <0.05) (F) The heatmap was
used to depict the active biological pathways in different pyroptosis-related clusters, which were examined by GSVA. OS, osteosarcoma; PRGs,
pyroptosis-related genes.
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ARMC4) + (-0.762527227347988*expression of CATSPER1) +

(-1.10584366215719 *expression of CD79A). PRGcluster A had a

lower PRG_score than PRGcluster B, which indicated that a lower

PRG_score might be associated with immune inducing function

(Figure 4C). In addition, a significant difference was represented in

PRG_scores among geneClusters. PRG_score was the lowest in

geneCluster A (Figure 4D). Through the “survminer” program to

find the median risk score based on the training group, the patients

with PRG_score higher than the median risk score were classified

into the low-risk group, whereas those with PRG_score lower than

the median risk score were identified into the high-risk group. The

survival status plot of the training group revealed that survival times

decreased with an increase in PRG_scores (Figures 4E, F). The

Kaplan–Meier plots show that the overall survival of the high-risk

group is significantly shorter than the low-risk group (p = 0.019)

(Figure 4G). The ROC curves of PRG_score showed that the 1-, 3-,
Frontiers in Immunology 07
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and 5-year survival rates were represented by AUC values of 0.730,

0.878, and 0.867, respectively (Figure 4H). For the purpose of

validating PRG_score’s stability, the testing group and the all-

patient group were used as validation groups. Based on the

median risk score in the training cohort, the patients in the

testing group and all-patient group were also classified into low-

and high-risk groups, respectively. It was shown that the low-risk

subgroup represents lower death rates and longer survival times

than those in the high-risk subgroup. Kaplan–Meier curve analysis

also revealed a significantly better survival in the low-risk group

compared to that in the high-risk group. ROC curve analysis

showed that PRG_score had relatively high AUC values and

predicted the survival of OS patients excellently (Figure S2). We

also evaluated the correlation between PRGs and our risk model.

Fourteen pyroptosis genes were differentially expressed in the high-

risk and low-risk groups (Figure 4I).
B

C D E

A

FIGURE 3

Identification of gene subtypes based on DEGs between two RRG clusters. (A, B) The functional enrichment analysis of DEGs among two
PRGclusters. (C) The differential expressions of 18 PRGs among the three gene subtypes. (***:p value <0.001, **:p value <0.01, *:p value <0.05)
(D) Kaplan–Meier analysis for overall survival of the three gene subtypes. (E) Relationships between clinicopathologic features and the two gene
subtypes. DEGs, differentially expressed genes; PRGs, pyroptosis-related genes.
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The clinical prediction and immune
infiltration of PRG_score

Considering that PRG_score was important in predicting the

prognosis of OS patients, a nomogram incorporating the

clinicopathological features and PRG_score was constructed to

predict the survival rates of OS patients at 1, 3, and 5 years

(Figure 5A). The predictive nomogram included PRG_score,

age, gender, and metastasis. The calibration curves suggested

that the predictors had a good predictive value (Figure 5B). Next,

we investigated whether PRG_score has an instructive

significance for immunotherapy. We used the CIBERSORT
Frontiers in Immunology 08
157
algorithm to assess the correlation of PRG_score and immune

cell infiltration. The scatter diagrams showed that PRG_score

was negatively correlated with CD8 + T cells, activated memory

CD4 + T cells, monocytes, neutrophils, M2 macrophages, and

memory B cells and positively correlated with M0 macrophages

and naive B cells (Figure S3). We also examined the correlation

between the five genes in the proposed model and the proportion

of immune cells. We discovered that CD8 + T cells, monocytes,

M2 macrophages, memory B cells, M0 macrophages, and naive

B cells were mainly correlated with the five genes (Figure 5C).

The ImmuneScore, StromalScore, and ESTIMATEScore of each

of the OS samples were determined using the ESTIMATE
B C

D E F

G H I

A

FIGURE 4

In the training set, generation of PRG_score to predict patient survival. (A) Alluvial diagram of pyroptosis-related clusters in groups with different
geneClusters, PRG_score, and overall survival. (B) The minimal standard was used in the LASSO–Cox model to obtain the value of the super
parameter via 10-fold cross-validation. (C) The differences in PRG_score between PRGclusters. (D) The differences in PRG_score between
geneClusters. (E) Ranked dot and scatter plots showing PRG score distribution and survival status. (F) The expression heatmap of the five-gene
signature in the training group. (G) Kaplan–Meier analysis of the survival between the high- and low-risk groups. (H) The prognostic accuracy of
the risk scores in the training group was verified by the ROC curve. (I) Expression of PRGs in the high- and low-risk groups. (***:p value <0.001,
**:p value <0.01,*:p value <0.05) PRG, pyroptosis-related gene; ROC, receiver operating characteristic.
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algorithm. Figure 5D represents that PRG_scores were

negatively correlated with the ImmuneScore, StromalScore,

and ESTIMATEScore, which indicated that the survival of

OS patients is influenced by immune cells and stromal cells.

Lastly, we looked at the sensitivity of patients in the low- and

high-risk groups to a variety of chemotherapeutic agents

presently used to treat OS. Patients with low PRG scores had

lower IC50 values for chemotherapeutics such as roscovitine,

RDEA119, rapamycin, and shikonin, while patients with high

PRG scores had considerably lower IC50 values for axitinib,

elesclomol, GW.441756, and thapsigargin (Figures 5E, S4).

These findings demonstrated that PRGs were linked to

pharmaceutical sensitivity.
Frontiers in Immunology 09
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PRG competing endogenous RNA
network construction

Between 88 OS samples and 396 normal samples, the

expression patterns of 52 pyroptosis-related mRNAs, miRNAs,

and lncRNAs were determined. A total of 18 pyroptosis-related

mRNAs, 53 lncRNAs, and 234 miRNAs were found to be

differentially expressed (Tables S8–S10). Overexpressed genes

included nine pyroptosis-related mRNAs, six lncRNAs, and 100

miRNAs. Nine pyroptosis-related mRNAs, 47 lncRNAs, and 134

miRNAs were all found to be underexpressed. Figure 6A depicts the

heatmap of clustering analysis of the analyzed RNA. A ceRNA

network of the DEls, DEMis, and DEPRMs was constructed using
B C

D E

A

FIGURE 5

The clinical application value of PRG_score and evaluation of the TME of different subgroups. (A) In the training group, nomogram for predicting
the 1-, 3-, and 5-year survival of OS patients. (B) In the training group, calibration curves of the nomogram for predicting of 1-, 3-, and 5-year
overall survival. (C) Correlation analysis among the tumor infiltrations of immune cells and five genes in the risk model. (D) Correlations between
PRG_score and TME scores. (***:p value <0.001). (E) PRG score and chemotherapeutic sensitivity relationships. PRG, pyroptosis-related gene;
TME, tumor microenvironment; OS, osteosarcoma.
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the WGCNA package (Figure 6B). We found 31 lncRNA nodes, 53

miRNA nodes, sevenmRNAnodes, and 6,153 edges as differentially

expressed profiles in the ceRNA network. Using the Cytoscape

plug-in MCODE, a cluster with TP63 as the hub gene was extracted

from the ceRNA network (Figure 6C). Finally, we used the starBase

dataset to identify the LAMTOR5-AS1/hsa-miR-23a-3p/TP63

ceRNA regulatory axis.
Frontiers in Immunology 10
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Ablation of TP63 and LAMTOR5-AS1
promotes the pyroptosis of OS cells

We used shRNA and siRNA separately to silence TP63 and

LAMTOR5-AS1 expression, and effective knockdown of TP63

and LAMTOR5-AS1 in both 143B and U2OS cell lines was

verified by qRT-PCR (Table S2). We observed that abnormal
B C

A

FIGURE 6

(A) Heatmap analysis for differential expressions of mRNAs, lncRNAs, and miRNAs in OS. (B) The ceRNA network of seven hub PRGs in OS.
(C) The network of lncRNA–miRNA–mRNA. OS, osteosarcoma; ceRNA, competing endogenous RNA.
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expressions of pyroptosis-related proteins were induced by TP63

knockdown (Figure 7A). Cleaved-Caspase-1, which mediates the

canonical pathway, and cleaved-Caspase-4, which mediates the

non-canonical pathway, both had their expression levels

reduced. Caspase-3 and Caspase-8 were previously considered

to be marker proteins related to apoptosis, and they can also

activate gasdermin proteins under specific induction conditions

to regulate the occurrence of pyroptosis (18, 19). When TP63

was knocked down, cleaved-Caspase-3 and cleaved-Caspase-8

also showed decreased expressions. The expressions of GSDMD-

N and GSDME, as gasdermin family proteins, were decreased

when TP63 was silenced. However, GSDMD was shown to have

a negative relationship with TP63. Like the results of TP63

knockdown, the expressions of cleaved-Caspase-1, cleaved-

Caspase-3, cleaved-Caspase-4, cleaved-Caspase-8, GSDMD,

GSDME, and GSDMD-N showed a significant decrease after
Frontiers in Immunology 11
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LAMTOR5-AS1 knockdown (Figure 7B). To summarize, TP63

should be modulated by the LAMTOR5-AS1/hsa-miR-23a-3p

ceRNA regulatory network to induce the pyroptosis process of

OS cells.
Discussion

OS is a malignant bone tumor most commonly found in

children and adolescents who have a high mortality rate and

high morbidity rate. Although chemotherapy and surgery

treatments have improved the survival of OS patients, patients

with metastases or those who are resistant to chemotherapy

necessitate the development of new customized treatment

strategies to enhance their prognosis (20). Pyroptosis as an

embodiment of programmed cell death is implicated in the
B

A

FIGURE 7

(A) After knockdown of TP63, significant decreases were observed on cleaved-Caspase-1, cleaved-Caspase-3, cleaved-Caspase-4, cleaved-
Caspase-8, GSDMD, GSDME, and GSDMD-N. A2, B2, C2: 143B cell; D2, E2, F2: U2OS cell. (B) After knockdown of LAMTOR5-AS1, significant
decreases were observed on cleaved-Caspase-1, cleaved-Caspase-3, cleaved-Caspase-4, cleaved-Caspase-8, GSDMD, GSDME, and GSDMD-N.
A2, B2, C2: 143B cell; D2, E2, F2: U2OS cell.
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potential molecular mechanism of tumors. Numerous studies

have indicated that pyroptosis plays a crucial role in various

tumors’ growth and metastasis by modulating the TME (21, 22).

Therefore, studying the therapeutic benefit and possible

molecular mechanism of pyroptosis genes in osteosarcoma is

critical. Despite that recent advances had demonstrated the

regulatory effect of PRGs on a genetic and transcriptional level

for OS, the global alterations in PRGs have not been

characterized at CNV and ceRNA in OS.

In this study, using public databases, we determined the

expression of 52 pyroptosis-related mRNAs in OS and normal

tissues and discovered that most of these mRNAs were expressed

differently. Although PRGs had a modest mutation frequency,

the bulk of them were disordered in OS patients and were linked

to prognosis. The expressions of pyroptosis-related genes were

then used to classify individuals with OS. Two distinct

pyroptosis patterns of OS patients were identified by the

expression of pyroptosis-related genes, which showed that

PRGcluster A patients had more advanced survival than

PRGcluster B patients. The immune cell infiltration also

differed significantly between the two clusters. PRGcluster A

was characterized as an immunoinflammatory phenotype, as B

cells, CD8+ T cells, immature B cells, macrophages, mast cells,

MDSCs, natural killer T cells, and natural killer cells were

notably rich in innate immune cell infiltration in PRGcluster

A. Moreover, the T-cell receptor signaling pathway, B-cell

receptor signaling pathway, NOD-like receptor signaling

pathway, and chemokine signaling pathway were all found to

be significantly related to immune activation in cluster A. Using

the DEGs between the two subtypes of pyroptosis, three gene

clusters were identified and proved to be significant in PRGs. As

a result, PRGs might be used to predict the clinical prognosis and

chemical therapeutic response of OS patients. We developed

PRG_score, a reliable and useful prognostic tool, and proved its

predictive power. The CNV, TME, prognosis, and drug

susceptibility of patients with high-risk and low-risk

PRG_scores were significantly different. Then, we created a

quantitative nomogram by combining the PRG_score and

gender, which improved PRG_score to be better utilized

clinically. The predictive model could be used to stratify the

OS patients’ prognosis as well as help researchers better

understand the disease’s underlying process and provide novel

treatment options.

According to various studies, the immune cells and stromal

cells in the TME play critical regulatory roles in the OS patients’

prognosis (23, 24). The findings of our study was consistent with

the results abovementioned. The stromal score, immune score,

and estimate score in the lower PRG_score group were all higher

than in the higher PRG_score group, which indicated the TME

as an independent risk factor influencing the prognosis of OS.

Moreover, the immune microenvironment in the TME could

play an important role for OS. For the present study, the relative

numbers of immune cells infiltrating tumors varied considerably
Frontiers in Immunology 12
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in two different pyroptosis clusters and two different PRG_score

groups. Consequently, this finding suggested that PRGs play an

important role in OS immunity regulation. PRGcluster B, which

exhibited immune inhibition, had a higher PRG_score, while

PRGcluster A, which exhibited immune activation, had a lower

PRG_score. geneCluster A was mainly from PRGcluster A,

geneCluster B from PRGcluster B, and geneCluster C from

PRGcluster A and PRGcluster B, and their PRG_scores were

in the following arrangement: geneCluster B > geneCluster C >

geneCluster A. This suggested that immunomodulation plays an

important role in OS patients’ prognosis.

According to growing evidence, macrophages and CD8+ T

lymphocytes play a critical role in OS immune response (25, 26).

A lower CD4+/CD8+ ratio in the peripheral blood of OS patients

was associated with a greater risk of mortality (27). Anne et al.

suggested that CD8+ T lymphocytes were related to a lower risk

of OS metastases at the time of diagnosis (25). With a better

prognosis, PRGcluster A and low PRG score exhibited increased

infiltration of CD8 + T cells, suggesting that they play an

antitumor immunology role in OS progression. Increasing data

suggest that the immunological context of the osteosarcoma

microenvironment is mostly made up of tumor-associated

macrophages, with a high ratio of M0 and M2 macrophages

(28–30). Unlike macrophages’ tumor-supportive role in many

other tumor types, macrophage infiltration was associated with

improved survival in OS (31, 32). In high-grade osteosarcoma

patients, Buddin et al. showed that CD14-expressed

macrophages were related to metastasis suppression and

enhanced overall survival (33). However, several studies have

shown conflicting results when it comes to the correlation

between macrophage phenotypes and clinical prognosis in OS

(34, 35). The results of this study indicated that the M1 and M2

macrophage infiltrations in the low PRG score group were

significantly higher than those in the high PRG score group.

Moreover, the patients with higher M0 and M2 macrophage

infiltration had a favorable survival rate. Lastly, we investigated

the sensitivity of patients in the low- and high-risk groups to a

variety of chemotherapeutic agents presently used to treat OS. It

was shown that patients with low PRG scores had lower IC50

values for chemotherapeutics such as roscovitine, RDEA119,

rapamycin, and shikonin, while patients with high PRG scores

had considerably lower IC50 values for axitinib, elesclomol,

GW.441756, and thapsigargin. Using these findings, we would

be able to provide our patients with a more accurate

targeted therapy.

To find the hub PRG for OS regulation, a ceRNA network

was constructed and a potential LAMTOR5-AS1/hsa-miR-23a-

3p/TP63 regulatory axis was proposed. The TP63 gene belongs

to the tumor-suppressor gene TP53 family, located on

chromosome 3q28; it has a high degree of homology with

TP53 in sequence and structure, so some of its biological

functions are similar to TP53 (36). Sayles et al. demonstrated

that TP53 alterations including structural variation (SV) and
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somatic nucleotide variants (SNVs) are detected in 74% of

human osteosarcoma (37). Ito et al. found that 35% of

osteosarcoma cases have over three-fold MDM2 amplification

(38). Another major inhibitor of TP53 is MDM4. Although it is a

homolog of MDM2, MDM4 does not have ubiquitin ligase

activity like MDM2. However, MDM4 still binds with TP53

and inhibits TP53 activity (PMID: 30689920, PMCID:

PMC6478121, DOI: 10.1093/jmcb/mjz007). Unfortunately, to

our understanding, there were no studies discussing about the

correlations between TP53 and MDM2 together with MDM4;

therefore, the mechanisms and axis between them need to be

further investigated. As a pyroptosis hub gene, TP63 may be

involved in various aspects in the modulation of pyroptosis in

tumors. Celardo et al. (39) overexpressed TP63 in the OS Saos-2

cell line, and the results showed that Caspase-1 expression

increased with time in a time-dependent way. Further

verification showed that TP63, as a transcription factor, can

bind to the promoter of the Caspase-1 gene and promote the

transcription of the Caspase-1 gene. Caspase-1 is an important

node in the activation of the classical pathway of pyroptosis, and

TP63 may promote osteosarcoma pyroptosis by increasing the

expression of Caspase-1 (40). In breast cancer, TP63 induced the

expression of GSDME via binding a specific site in GSDME (41).

The findings of this study are consistent with the above

conclusions. After silencing of the gene TP63 by siRNA

transfection in OS cells, the protein levels of cleaved-Caspase-1

and GSDME were downregulated when measured by WB, and

other pyroptosis marker proteins including cleaved-Caspase-3,

cleaved-Caspase-4, cleaved-Caspase-8, and GSDMD-N were

also downregulated. This indicated that TP63 could activate

cell pyroptosis in OS through multiple pathways including

canonical (Caspase-1 mediated) and non-canonical (Caspase-4

mediated) pathways. Moreover, we used the starBase v2.0

database to predict that LAMTOR5-AS1 regulates the

expression of TP63 in OS through the ceRNA mechanism in

combination with hsa-miR-23a-3p. Pu et al. (42) demonstrated

that LAMTOR5-AS1 reduces OS cell growth and multidrug

resistance in a considerable way. In this study, LAMTOR5-AS1

knockdown decreased the expression of cleaved-Caspase-1,

cleaved-Caspase-3, cleaved-Caspase-4, cleaved-Caspase-8,

GSDME, and GSDMD-N in OS cells, which demonstrated that

the type and expression trend of pyroptosis marker proteins

regulated by LAMTOR5-AS1 was consistent with those

regulated by TP63. This could prove that TP63 as hub

pyroptosis gene could be modulated by the LAMTOR5-AS1/

hsa-miR-23a-3p ceRNA regulatory network.

There were various flaws in this research. To begin, all

studies were based exclusively on data from public sources,

and clinical samples were not collected. As a consequence,

there may have been an inherent bias in selection of cases that

affected the study findings. To corroborate our results, large-

scale prospective investigations as well as more in vivo and in

vitro experimental research are required. Furthermore, the
Frontiers in Immunology 13
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LAMTOR5-AS1/hsa-miR-23a-3p/TP63 ceRNA network lacked

validation by using the luciferase reporter system to confirm that

hsa-miR-23a-3p was the miRNA sponged by LAMTOR5-AS1.
Conclusions

Based on our thorough investigation of PRGs, we found a

complex regulatory system through which they influence the

tumor-immune-stroma environment, clinicopathological

characteristics, and prognosis. Meanwhile, a ceRNA network

was built to find a LAMTOR5-AS1/hsa-miR-23a-3p/TP63

regulatory axis. We also further looked at PRGs’ therapeutic

potential in targeted therapy and immunotherapy. These results

emphasized PRGs’ critical clinical significance and provide fresh

ideas for directing individualized chemotherapy and

immunotherapy for OS patients.
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SUPPLEMENTARY FIGURE 1

Consensus matrix heatmap defining two clusters (k = 3) in TARGET and

GSE21257 cohort based on DEGs expression.
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SUPPLEMENTARY FIGURE 2

(A) PRG score distribution and survival status in ranked dot and scatter
plots in the testing group. (B) The expression heatmap of 5 gene signature

in the testing group. (C) Kaplan–Meier analysis of the survival between the
high- and low-risk groups in the testing group. (D) The prognostic

accuracy of the risk scores in the testing group was verified by ROC
curve. (E) PRG score distribution and survival status in ranked dot and

scatter plots in the all group. (F) The expression heatmap of 5 gene
signature in the all group. (G) Kaplan–Meier analysis of the survival

between the high- and low-risk groups in the all group. (H) The

prognostic accuracy of the risk scores in the all group was verified by
ROC curve.

SUPPLEMENTARY FIGURE 3

(A–H) Correlations between PRG_score and immune cell types.

SUPPLEMENTARY FIGURE 4

Relationships between PRG_score and chemotherapeutic sensitivity.
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