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Editorial on the Research Topic

Advanced application technology for plant protection: Sensing, model-
ling, spraying system and equipment

As editors of this Research Topic, we summarized the contributions of 20 articles
accepted in this topic. The research contents mainly focused on the following sections: drift
characteristics of unmanned equipment and development of autonomous navigation spray
system, identification and classification of pests and diseases based on deep learning, and
airflow velocity loss characteristics of air-assisted spray in orchard.

Drift characteristics of unmanned equipment
and development of autonomous navigation
Spray system

In recent ten years, agricultural unmanned aerial vehicles (UAV), also known as
Unmanned Aerial Spraying Systems (UASS), as a new method for the application of plant
protection products, has developed rapidly in the world. Compared with ground equipment,
UAV spray is more likely to cause spray drift and environmental pollution to non-target
areas. Therefore, it is important to study the spray drift characteristics of UASS.

Chen et al. reviewed the drift characteristics of UAV spray system and the factors
affecting UAV system drift, and put forward suggestions on the optimization of spray system
and structure layout, modeling of drift test, and standardization of measurement methods.
Jiang et al. compared the performance of UAV, unmanned ground vehicle (UGV) and spray
gun pesticide application technology of spray target coverage, oft-target coverage, time
efficiency and gasoline consumption in the pear orchard. The results showed that compared
with UGV, UAV has the advantages of high working efficiency, less environmental pollution
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and consumption of natural resources. Although the traditional spray
gun technology showed good spraying performance, it is not
conducive to the protection of environment and resources. The
achievement was helpful to the research and development of
intelligent pesticide application technology. Shan et al. carried out
research on corn fertilization method based on UAV. The difference
of the effectiveness between the water sprayed on the sampling rod
and leaves was studied. They found that sampling methods have a
significant effect on deposition results and determined the optimum
spraying concentration. Qi et al. compared the effects of multi-
functional unmanned aerial vehicle (mUAV) planter, mechanical
rice seeder and mechanical rice transplanter on rice cultivation. The
results showed that there was no significant difference in rice yield
among the three regions. In terms of labor cost and seeding efficiency,
UAYV was more effective than mechanical planter and transplanter. Li
et al. studied the influence of UAV flight velocity on deposition
distribution and droplet size, especially the usage of compound
pesticides as spray solution. The results demonstrated that
increasing flight velocity is helpful for pesticide droplets to spread
and penetrate the canopy. However, it also led to uneven deposition of
pesticides, reduced deposition volume, and reduced effective coverage
and effective density ratio.

Jiang et al. developed a greenhouse autonomous navigation
system based on Simultaneous Localization and Mapping (SLAM)
algorithm. In this paper, three-dimensional Lidar data was filtered
and fused into two-dimensional Lidar data containing the
environment information in the range of robot motion height. They
used Dijkstra algorithm for global planning and DWA algorithm for
local navigation path planning of robot. This method not only
ensured the accuracy of greenhouse environment map but also
reduced the accuracy of greenhouse environment map and the
performance requirements of industrial computers. According to
the three perception decision control modules of unmanned system,
Wang et al. constructed the environment perception and map
building strategy based on 3D Lidar under the complex
environment background of orchard. They pointed out two
difficulties in developing automatic orchard sprayer: one is to
realize efficient penetration of pesticides in low-density canopy and
reduce losses, and the other is to make the machine automatically pass
through orchard without manual control. They also provided a basis
for the development of technology for independent and precise
spraying of pesticides in the orchard environment based on
automatic navigation.

Identification and classification of pests
and diseases based on deep learning

At present, researches have carried out extensive research in the
fields of pest image recognition, segmentation and feature extraction
based on deep learning. The purpose of most researches was to
improve the running speed and recognition accuracy of the system by
optimizing or building the models.

Zhao et al. proposed an improved deep convolution neural
network to identify crop pests. They also developed a new attention
module, which includes parallel attention mechanism module and
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residual blocks. This module was integrated into ResNet-50 CNN,
which is used to classify 10 different types of crop pests. This network
had significant advantages in terms of accuracy and real-time
performance compared with other models. Yao et al. studied the
segmentation and recognition of peach disease based on Mask R-
CNN and Mask Scoring R-CNN to provide evidence for disease
control and treatment. This work was valuable in engineering
applications, such as the classification of plant diseases and the
location and segmentation of lesion areas. Li et al. proposed an
imaging model for detecting corpuscle insects such as whitefly and
thrips in greenhouse. The author used an automatic detection method
to reduce pest detection. This method could satisfy the needs of
continuous monitoring of pests in greenhouse, and estimate the total
population density. Lin et al. proposed a few-shot learning method for
plant disease recognition based on multi-scale feature fusion and
attention. The results showed that plant disease identification
technology based on a few-shot learning method is feasible in the
future application.

Airflow velocity loss characteristics of
air-assisted spray in orchard

Air-assisted spray technology has been widely used in the high-
efficiency application of pesticides in orchards. In this section, the
authors mainly studied the influence characteristics of canopy airflow
velocity loss on air-assisted spray performance.

Zhang et al. established a theoretical model of airflow velocity
attenuation in a pear canopy by selecting the velocity attenuation
factor k and incoming velocity as model inputs. It was demonstrated
that high-speed airflow will disturb the outer branches and leaves and
thus affecting the accuracy of the model. The research results could
provide theoretical basis for the adjustment of air flow parameters of air-
assisted spray in the pear orchard. Wu et al. discussed the feasibility of
using the resistance characteristics of crop canopy to evaluate its droplet
deposition effect through theoretical analysis and wind tunnel test. The
results could provide theoretical basis for rapid and low-cost research and
development of crop protection technology and equipment. Yang et al.
proposed a new three-dimensional airflow velocity and direction
synchronous measurement method, and established a new sensor
system and calculation model. This method could be used as a
solution to measure and evaluate the airflow velocity field
characteristics of sprayers. Gu et al. studied the airflow velocity loss
model for a canopy. They built a three-dimensional airflow velocity
measurement platform for fruit tree canopy, and obtained the point
cloud data by Lidar scanning. Classical regression, partial least squares
regression (PLSR) and back propagation (BP) neural network algorithms
were adopted. This study could provide a basis for airflow velocity control
of precise variable spray and promote the development of airflow velocity
control technologies.

In addition to these three main sections, the authors also conducted
the following researches. Zhang et al. proposed a method to evaluate the
adjuvant efficacy of herbicides under different temperature conditions by
using chlorophyll fluorescence of herbaceous plants. The experiment was
carried out under the control of greenhouse environment by using two-
factor block experiment scheme. The results distinguished the differences
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among treatments and determined the optimum solution to improve the
efficacy of topramzone against weeds at different temperatures.
Electrochemical fingerprinting technology can collect the
electrochemical behavior of electrochemically active molecules in plant
tissues, which is considered as a new plant analysis technology. Hu et al.
found that electrochemical fingerprint signals are positively correlated
with the number and type of electrochemical active molecules in plant
tissues, and can also be used to reflect the genetic differences among
different species. Liu et al. established the numerical model of plant-soil-
machine system, and introduced the details on the construction and
calibration method of plant mechanics model based on the discrete
element method (DEM). The discrete element model of taro plant
established in this paper was reliable. In order to solve the issues of
low weeding rate and severe seedling damage of rice weeding machinery,
Zhang et al. optimized the key components of rice weeding. Through the
analysis of the motion trajectory and DEM simulation analysis of the
weeding wheel, the structural parameters of the weeding wheel were
determined. This study provided a technical reference for the
improvement of paddy-field weeding equipment. Xie et al. proposed a
new method to predict the waterlogging tolerance of poplar. They used
different feature selection algorithms to analyze the waterlogging
tolerance of different parameters such as photosynthesis and
chlorophyll fluorescence. Machine learning algorithm was used to
study and analyze different parameters of poplar waterlogging
resistance. This research provided new information for the selection of
poplar seedlings with waterlogging tolerance.
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Floods, as one of the most common disasters in the natural environment, have
caused huge losses to human life and property. Predicting the flood resistance
of poplar can effectively help researchers select seedlings scientifically and resist
floods precisely. Using machine learning algorithms, models of poplar’s waterlogging
tolerance were established and evaluated. First of all, the evaluation indexes of poplar’s
waterlogging tolerance were analyzed and determined. Then, significance testing,
correlation analysis, and three feature selection algorithms (Hierarchical clustering,
Lasso, and Stepwise regression) were used to screen photosynthesis, chlorophyll
fluorescence, and environmental parameters. Based on this, four machine learning
methods, BP neural network regression (BPR), extreme learning machine regression
(ELMR), support vector regression (SVR), and random forest regression (RFR) were used
to predict the flood resistance of poplar. The results show that random forest regression
(RFR) and support vector regression (SVR) have high precision. On the test set, the
coefficient of determination (RZ) is 0.8351 and 0.6864, the root mean square error
(RMSE) is 0.2016 and 0.2780, and the mean absolute error (MAE) is 0.1782 and 0.2031,
respectively. Therefore, random forest regression (RFR) and support vector regression
(SVR) can be given priority to predict poplar flood resistance.

Keywords: flood disaster, prediction of waterlogging tolerance, machine learning, feature selection, model
establishment and evaluation

INTRODUCTION

Natural disasters are inherently a phenomenon that has adverse consequences for society (Paprotny
et al., 2018). It damages the living environment and life of human beings. Flood disasters, as
one of the most common and expensive natural disasters, have caused huge losses to human
lives and property (Hu et al., 2018; Ao et al., 2020). With the development of social industry
and economy, the warming of the atmosphere caused by greenhouse gas emissions may increase
the risk of river flooding (Hallegatte et al., 2013; Hirabayashi et al., 2013; Willner et al., 2018;
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Bloeschl et al., 2019). Therefore, many studies want to build a
system for predicting flood risk (Alfieri et al., 2017; Shafizadeh-
Moghadam et al., 2018; Choubin et al., 2019; Khosravi et al,,
2019), and a variety of machine learning methods are used
in these studies. Choubin et al. (2019) used multivariate
discriminant analysis (MDA), classification and regression trees
(CART), and support vector machine (SVM) algorithms to
predict flood risk in Iran’s Khiyav Chai drainage basin. The results
show that the residential areas at the outlet of the drainage basin
are very susceptible to floods. Khosravi et al. (2019) adopted three
Multi-Criteria Decision-Making techniques (VIKOR, TOPSIS,
and SAW) and two Machine Learning methods (NBT and NB)
to test the flood sensitivity modeling of the Ningdu River Basin
in China. Finally, their research shows that the NBT model is a
powerful tool for evaluating flood-prone areas, and can properly
plan and manage flood disasters. Nevertheless, predicting flood
risk cannot substantially reduce the life and economic losses of
human society. Afforestation can strengthen the stability of water,
soil, and carbon sinks in the forest ecosystem, thereby effectively
coordinating the relationship between humans and the natural
environment. A considerable number of studies have shown
that afforestation can weaken the impact of global warming and
effectively reduce the risk of river flooding (Hong et al., 2018,
2020; Liu X. et al.,, 2018; Forster et al., 2021). Thus, afforestation
is widely used to resist flood disasters.

Plants have evolved numerous resistance mechanisms to
resist flood disasters, including plant morphological Screening
of Candidate Genesristics, metabolic responses, and molecular
transcriptional regulation (Loreti et al., 2016; Du et al,, 2017;
Yin et al., 2017; Zeng et al., 2019; Lukic et al., 2020; Lee
et al,, 2021). Among the diverse plant populations, poplar has
become the main flood-resistant tree varieties in flood-prone
areas due to its rapid growth and flood resistance features.
Many studies have shown that the root system is the key organ
of poplar responding to Flooding stress (Coleman et al., 20005
Major and Constabel, 2007; Berhongaray et al., 2013; Ye et al,,
2018; Gerjets et al., 2021). Flooding stress affects the diffusion
of oxygen in plant root tissues. At the same time, it limits
the mitochondrial respiration of root cells and accumulates
toxic substances, which seriously affects its normal physiological
activities (Arbona et al., 2008; Voesenek and Bailey-Serres, 2013;
Tian et al, 2019). In addition, flooding stress will destroy the
photosynthesis performance of plants, which will inhibit plant
growth and biomass accumulation (Du et al., 2012; Zhu et al.,
2016; Zheng et al,, 2017; Xiong et al., 2019; Zhou et al., 2020).
Flooding stress not only reduces the chlorophyll content of
plants, but also reduces the carotenoid content (Zhou et al., 2017).
Kreuzwieser et al. (2009) found that the metabolite changes
occurred in leaves and roots of submerged poplar. Du et al. (2012)
compared the physiological and morphological adaptability of
two poplar clones (hypoxia-resistant and hypoxia-sensitive) to
flooding, and Peng et al. (2018) monitored the different response
mechanisms of these two clones of poplar to flooding stress.
These studies have greatly promoted people’s understanding of
the waterlogging resistance mechanism, and to a considerable
extent, strengthened people’s resistance to flood risks. Thus
far, there are still few studies on the influence of poplar on

the waterlogging resistance factors. These factors include the
intrinsic features of poplar trees (photosynthesis and chlorophyll
fluorescence, etc.) and external environmental features (ambient
temperature, humidity, etc.). As a popular research direction,
machine learning has recently been gradually introduced into the
field of plant science. For the research on the resistance of poplar
to waterlogging, Xie and Shen (2021) used poplar photosynthesis
features and external environmental factors to predict the
waterlogging tolerance of poplar. By using the SVR method
in machine learning, they confirmed the feasibility of applying
photosynthesis and other characteristic parameters to predict
poplar flood resistance. However, previous prediction studies
did not consider important parameters such as chlorophyll
fluorescence. Additionally, the related forecasting research is
not systematic enough, and the corresponding investigation and
research are still lacking.

Based on the above considerations, the main purpose of this
article is to consider more comprehensive feature parameters and
use a variety of machine learning methods to predict the flood
resistance of poplar. At the same time, it aims to supplement
and improve the key content and procedures of poplar flood
resistance prediction. First of all, the evaluation indicators
of waterlogging tolerance were well defined and explained.
Then, 26 internal characteristics and external environmental
factors of poplars were screened by using feature selection
algorithms such as significance test and stepwise regression.
Finally, four machine learning methods were used to establish
the flood resistance models of poplar, and the results were
comprehensively evaluated in detail. Compared with previous
studies, this study supplements the evaluation index and
prediction system of poplar waterlogging tolerance. The main
contribution is that the definition and analysis of evaluation
indicators for waterlogging tolerance have been improved,
and more comprehensive characteristic parameters have been
considered. Moreover, the feature selection, prediction methods,
and evaluation indicators were adjusted, and more machine
learning methods and results have been considered and analyzed.
This research has enriched the prediction of poplars flood
resistance, which is of great significance to poplar’s accurate flood
resistance, intelligent selection of seedlings, and cultivation of
high-quality saplings. Furthermore, to a considerable extent, it
promotes the research of flood resistance mechanisms, which
have great theoretical and practical value.

MATERIALS AND METHODS

Experimental Area and Materials
Research area: Huazhong Agricultural University, Wuhan, China
(114°35'E, 30°49'E), subtropical humid monsoon climate. This
area has four distinct seasons, with plenty of sunshine and
plenty of rainfall. The annual average temperature is 15.8-17.5°C,
rainfall is 1,269 mm, and total sunshine hours are between
1,810 h to 2,100 h.

Experimental objects: There were 20 poplar varieties in total.
The scientific names corresponding to the 20 poplar varieties are
shown in Table 1.
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TABLE 1 | Scientific names of 20 poplar varieties.

Varieties Scientific names

LS68 Populus deltoides “Lux” x P, simonii (LS68)
LS81 P, deltoides “Lux” x P. simonii (LS81)

NL895 P x euramericana “Nanlin 895”

I-63 P, deltoides “Harvard”

I-69 P, deltoides “Lux”

[-72 P, euramaricana “an Martino”

[-214 P x euramericana “-214”

|-45-51 P x euramaricana “1-45/51”

Flevo P, euramericana “Flevo”

Juba P, deltoides “565/56” x R, deltoides “2KEN8”
LH04-13 P, deltoides “Lux” x P, deltoides “Harvard” (LH04-13)
LHO4-17 P, deltoides “Lux” x P, deltoides “Harvard” (LH04-17)
Triplo P, euramericana “Triplo”

DD102-4 P, deltoides “DD102-4"

Raspalje P, deltoides “Raspalje”

Danhong P, deltoides “Danhong”

Canadensis P, canadensis Moench.

212025 P, deltoides “Lux” x R, deltoides “Shanhaiguan”
Ningshanica P, ningshanica

Lushan P x liaoningensis

Experimental Process and Parameter

Measurement

The 1-year-old branches of 20 poplar clones were cut into
about 15 cm cuttings with 3-4 buds. There were 4 experimental
groups and 4 control groups for each variety, with a total of
160 experimental materials. After being soaked in water for
24 h, the cuttings were planted in mixed soil. The container
was seedling pots (150 mm x 100 mm x 130 mm), and the
soil was 1:1 substrate soil and peat soil (The soil consisted of
2-5% N, P,05 and K,;O, pH = 6.2, total organic matter of
nutrient soil was > 28%, and the total nutrient was > 2%). The
morphological changes of the plants were observed every day,
including the chlorosis and shedding of leaves. We measured
the height, biomass, photosynthesis, and chlorophyll fluorescence
parameters of poplar seedlings on the Oth and 60th days.
The characteristic parameters were measured by the LI-6400
photosynthesis analyzer (LI-COR, Lincoln, NE, United States),
and the time was concentrated between 9:00 am and 11:30
am. In the experiment, a standard LI-COR leaf chamber and
red and blue light sources (6400-02 LED light sources) were
used. The light intensity was 1,000 umol-m~2-s7!, and the air
velocity was 500 pumol-s 1. 26 characteristic parameters of poplar
samples were measured, including photosynthesis, chlorophyll
fluorescence features, and environmental variables. The specific
information of these features is shown in Appendix Table A1,
and the treatment process of the experimental group and the
control group is as follows.

e Control group: Watered normally (CK). There were
drainage holes at the bottom of the flower pots in the
Control group. Watered the plants according to the
needs of normal plant growth, and the soil moisture was

maintained at about 75% of the maximum water holding
capacity in the field.

e Experimental group: Shallow flooded (FL). The
waterlogging test was started 5-6 weeks after cuttings,
and the water surface was 10 cm higher than the soil
surface. The experiment lasted for 60 days, of which, the
flooding time was 45 days, and the drainage recovery
time was 15 days.

Programming Environment

In this article, R 4.0.5 was used to perform data Processing and
Feature selection process, and MATLAB R2018a was used to
implement the Model building and evaluation.

METHODOLOGY

The methodology is divided into data processing, feature
selection, model establishment and evaluation. The main
procedures are shown in Figure 1, and the specific
implementation steps will be introduced one by one below.

Data Processing

Evaluation Index of Waterlogging Tolerance
The changes in biomass and seedling height can reflect the
waterlogging tolerance of plants. In previous studies, Xie and
Shen (2021) proposed the waterlogging tolerance evaluation
index Zscore. This article supplemented the definition of the
other two waterlogging tolerance evaluation indicators, and
used the three waterlogging tolerance evaluation indicators for
outlier analysis. Finally, the most suitable evaluation index for
waterlogging tolerance was selected. The definitions of the three
evaluation indicators are given below.

The first evaluation index for waterlogging tolerance is Zbio,
which is obtained based on changes in biomass. This indicator is
based on the change in biomass of the test group within 60 days
to judge the flood resistance of poplar, and it is dimensionless.
The stronger the waterlogging resistance performance, the larger
the corresponding Zbio. The calculation method is shown in
Formula (1):

bio(x;) — E(bio)

Zbio = — 1 bio) o

The second waterlogging tolerance evaluation index is Zsap,
which is similar to the definition of Zbio. This index only
considers the change of poplar seedling height, and its calculation
method is shown in Formula (2):

sap(x;) — E(sap)

Std(sap) @

Zsap =
The third evaluation index of waterlogging tolerance is Zscore.
This indicator takes into account the changes in biomass, as well
as changes in seedling height. Compared with Zbio and Zsap, this
index can more comprehensively reflect the flood resistance of
poplar, and its calculation formula is shown in Formula (3):

Zscore(x;) = Wpip X Zbio + wsap X Zsap 3)
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FIGURE 1 | Flow chart of Methodology.
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where wp;, and wggp are the weight coefficients, which satisfy the
condition wp;owsep = 1. The calculation method of the weight
is shown in equation (4). Zbio and Zsap are the two evaluation
indicators mentioned in above.

A B

Wpip = ALB Wsap = A+B (4)

__ FL(Sum(bio(x;)) _ FL(Sum(sap(x;))
where A = CK (Sum(bio(x;)) ’ B= CK (Sum(sap(x;))

Treatment of Outliers

Extremely different from other observations, the outliers often
cause anomalies (Aggarwal and Yu, 2005). Outliers may affect
the accuracy of the final model (Domingues et al., 2018; Zhao
et al., 2020). Consequently, before feature selection and models
establishment, outliers in the data should be eliminated. The
outlier Ozscore is defined in formula (5):

Ozscore > Q3 + 1.5 x Ry or Ozscore < Q; — 1.5 x Ry  (5)

where Q3 and Q) are the upper and lower quartiles, and the
quartile range R; = Q3 — Q.

Feature Selection

Feature selection is to effectively remove irrelevant and
redundant features (Arora and Anand, 2019; Sayed et al., 2019).
It can improve the performance of the model and reduce the
cost of calculation (Li et al., 2018; Angulo and Shin, 2019). The
26 characteristic parameters considered in this study meet the
conditions of multi-dimensional data. Therefore, these features
need to be selected.

Hierarchical Clustering

Hierarchical clustering is a clustering method used to describe
the hierarchical structure of samples in a group (Wu et al,
2009). The result of hierarchical clustering is usually represented
by a dendrogram. The tree diagram shows the organization
and relationship of the sample in the form of a tree, which is
convenient for people to divide intuitively (Granato et al., 2018).
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For related clustering research work, refer to Xu and Wunsch
(2005) and Murtagh and Contreras (2012). A hierarchical
clustering method was adopted to cluster the poplar varieties
and the five features selected by correlation analysis, and the
measurement method was Euclidean distance.

Lasso and Stepwise Regression

The Lasso method is proposed by Tibshirani (1996) by combining
the advantages of both ridge regression and subset selection meth.
It not only has the interpretability of subset selection, but also
has the stability of ridge regression. To achieve the purpose
of feature selection, this method compresses the coefficients
of insignificant variables to 0 (Zou and Hastie, 2005; Cui
and Gong, 2018). Stepwise regression uses collinearity and
variance contribution tests to gradually find all the significant
features, thereby obtaining the optimal model. The basic idea
of stepwise regression is to add new variables one by one, each
time a new variable is added, consider whether to eliminate
the selected variable until no more variables are introduced.
Stepwise regression is mainly used to solve the problem of
multicollinearity. For related research, refer to Guidolin and
Pedio (2021), Ou et al. (2016), and Yang et al. (2019).

Establishment and Evaluation of

Regression Model

Machine Learning Methods

BP Neural Network

BP neural network is a multi-layer network structure composed
of an input layer, an output layer, and one or more hidden layers
(Yang et al., 2018), which can effectively deal with linear and non-
linear relationships between data (Moghadassi et al., 2010). BP is
called the error back propagation algorithm. In essence, the BP
algorithm takes the error square as the objective function, and
uses the gradient descent method to calculate the minimum value
of the objective function. BP neural network can systematically
solve the hidden layer connection weight learning problem of
multilayer neural network, and it is one of the most widely used
neural networks at present.

Extreme Learning Machine

The extreme learning machine is a new single hidden layer
feedforward neural network (Ding et al., 2015). This algorithm
can produce good generalization performance in most cases, and
its learning speed is thousands of times faster than the traditional
feedforward neural network algorithm. Therefore, many studies
apply extreme learning machines for regression and prediction
(Miche et al., 2010; Huang et al., 2011; Yao and Ge, 2018; Yaseen
etal., 2018).

Support Vector Regression

Support vector machine (SVM) is a supervised machine learning
method proposed by Cortes and Vapnik (1995) in the mid-1990s,
which is used to deal with binary classification problems. The
core idea of SVM is to find a hyperplane or hypersurface to
segment the sample points to maximize the interval between
the segmentation points. Support vector regression (SVR)
is an application model of support vector machine (SVM)

on regression problems (Demir and Bruzzone, 2014). As a
classic regression algorithm in machine learning, support vector
regression has been widely used in many fields, such as plant
science, data mining, and biomedicine (Khosravi et al.,, 2018;
Moazenzadeh et al., 2018; Zhuo et al., 2018; Han et al., 2019;
Mishra and Padhy, 2019).

Random Forest Regression

Random forests produce reliable classifications by using
predictions from a set of decision trees (Breiman, 2001). It is
composed of multiple decision trees, and there is no correlation
between each decision tree. The final output of the model is
jointly determined by each decision tree in the forest. When
dealing with regression problems, random forest uses the mean
value of each decision tree as the final result. Due to the excellent
regression results and the relatively fast processing speed, the use
of random forest regression has also received extensive attention
(Du et al,, 2015; Chen et al., 2018; Dou et al., 2019).

The relationship between variables is often non-linear. Thus,
compared with traditional linear regression, machine learning
algorithms may have higher accuracy. There may be a non-
linear relationship between poplar resistance to flooding and
features. Consequently, the four machine learning methods
mentioned above will be used to predict the waterlogging
resistance of poplar.

Model Parameters
Manual tuning is the traditional method of adjusting the
hyperparameters of machine learning models (Yang and Shami,
2020). With the improvement of automatic optimization
methods, grid search (GS), particle swarm optimization (PSO),
genetic algorithm (GA), and other optimization methods were
proposed to find the optimal hyperparameters. to find the optimal
hyperparameters. However, there are still problems such as
complex optimization processes and slow convergence speed.
Based on experience, we have selected the parameters of the
four machine learning methods. The parameter sensitivity and
parameter selection of each method will be analyzed below.
There are many kinds of training functions for the BPR
algorithm, and most of the data sets are very sensitive to
the training function. In the experiment, a variety of training
functions were selected. Compared with other training functions
such as trainlm function (based on Levenberg-Marquardt
algorithm), the trainbr function based on Bayes rule has better
network generalization ability and higher accuracy. Hence, the
trainbr function was finally used in the BPR method. In addition,
previous studies have shown that the number of hidden layer
nodes is a key factor affecting the accuracy of BPR and ELMR
models (Liu Z. T. et al., 2018; Zhang et al., 2018). For the number
of hidden layer nodes, 3, 5, 7, 9, and 11 hidden layer nodes
were used to train the BPR model, 2, 3, 4, 5, and 6 hidden
layer nodes were used to train the ELMR model. The root mean
square error (RMSE) of the training is shown in Table 2. When
the hidden layer nodes of the BPR and ELMR methods were 9
and 5, respectively, the RMSE was considered to be the smallest.
Therefore, the number of hidden layer nodes of BPR was set to 9,
and the number of hidden layer nodes of ELMR was set to 5.
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TABLE 2 | RMSE of models with different Nodes or Mtry.

BPR ELMR RFR
Nodes RMSE Nodes RMSE Mtry RMSE
3 0.5654 2 0.3836 1 0.1940
5 0.4221 3 0.3785 2 0.2654
7 0.3703 4 0.3591 3 0.3210
9 0.3680 5 0.3426 4 0.3558
11 0.3939 6 0.3438 5 0.3982

TABLE 3 | Machine learning model parameters.

Methods Model parameter

BPR Training function: trainbr

Number of input layers: 3

Number of hidden layers: 9

Number of output layers: 1

Transfer function: logsig, purelin (Input-Hidden, Hidden-Output)
net.trainparam.goal: 0.0001

net.trainparam.lr: 0.01

net.trainparam.epochs: 1000

ELMR Training function: elmtrain
Number of input layers: 3
Number of hidden layers: 5
Number of output layers: 1
Activation function: sigmoid
SVR Training function: svmtrain
Model: e-SVR

Kernel function: RBF
Regularization parameter C: 65
Gamma: 0.001

p: 0.01

RFR Training function: TreeBagger
Number of decision trees: 200
Minimum number of leaves: 1

Fraction of in-bag observations (FBoot): 1

For the SVR method, two SVR models (nu-SVR and
epsilon-SVR) and four kernel functions (linear, polynomial,
sigmoid, and radial basis functions) of the LibSVM toolbox
were selected. Due to the higher precision of the model on
the training set, the epsilon-SVR model (e-SVR, a model
that minimizes the RMSE) based on the RBF kernel function
was finally selected. The regularization parameter C and
the penalty coefficient gamma were determined by fivefold
cross validation. The minimum number of leaves (Mtry) is
the sensitive parameter of the RFR model, and the value
of Mtry is generally set to 2 (Probst et al, 2018). In the
experiment, we set the value of Mtry to 1, 2, 3, 4, and 5. The
RMSE of the training function is shown in Table 2. When
the value of Mtry was 1, RMSE was considered to be the
smallest. Therefore, the value of Mtry was set to 1. Other
parameters of the machine learning method were set as common
parameters. The specific values of the parameters are shown in
Table 3.

Evaluation of Model Performance

The three evaluation indexes of coeflicient of determination
(R?), root mean square error (RMSE) and mean absolute error
(MAE) were used to evaluate the performance of the model. The
corresponding calculation formulas are shown in (6)-(8):

Z?:l (i — )71)2

R=1-%£ L (6)
Zi:l (i —)’1)2
n L2
RMSE =,/ 72":1({1’ ) 7)
1< N
MAE:;Z]yi—yi‘ (8)

i=1

where 7 is the number of varieties, y; is the actual value, 7; is the
predicted value, and y; is the mean of the true y;.

RESULTS

Treatment of Outliers and Selection of

Evaluation Index

Three evaluation indicators are used to deal with outliers in the
data. The calculated descriptive statistics are shown in Table 4,
where Max and Min are the maximum and minimum values, and
Med is the median. The results of deleting outliers are shown in
Figure 2.

As shown in Figure 2, the points outside the red dotted
line in the figure are outliers. It can be observed that for all
samples, the defined Zscore roughly ranges from [—2, 2], while
the ranges of Zbio and Zsap are larger than Zscore, and only
Zscore has outliers. In addition, from the definition of the
waterlogging tolerance evaluation index, we know that Zscore not
only considers the biomass but also the change of seedling height,
which can more comprehensively reflect the flood resistance
of poplar. Thus, based on the above viewpoints, Zscore was
finally selected as the waterlogging tolerance evaluation index
in this article.

Screening of Features

Significance Test and Correlation Analysis

According to the significance level of the correlation between
the features and the poplar waterlogging tolerance score Zscores,
6 features were selected from 26 features, and these 6 features
were all established under the condition that the significance level
p = 0.05. We calculated the Pearson correlation coefficient, and

TABLE 4 | Descriptive statistics of the three evaluation indicators.

Methods Min Q4 Med Q3 Max

Zbio —2.409917  —0.748933 —0.095463 0.615642 2.614667
Zsap —1.984857  —0.799594  —0.083385 0.722554  2.419308
Zscore —-2.076712  —0.554362 —0.089611  0.466923 2.257776
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FIGURE 2 | Distribution of three evaluation indexes.

the results are shown in Figure 3. Figure 3A is the heat map of
26 features, the blank part is the case of p = 0.05, that is, it is not
significant. Figure 3B is a heat map of the correlation coefficient
that satisfies the condition of p = 0.05, and Figure 3C is the exact
value of Pearson’s correlation coefficient between 6 significant
features. The specific meanings corresponding to the 6 significant
features are shown in Appendix Table A1.

From Figure 3C, it can be found that the correlation
between qQN_Fo and H,OS is particularly strong. The correlation
coefficient between them exceeds 0.8. Thus, the feature with
the largest coefficient is selected from these related features,
and the highly related features are excluded. After this
operation, the retained features are Fv, qN_Fo, Fm, H,OS/H,OR,
and RH_S/RH_R.

Before establishing the regression model, univariate regression
prediction was carried out on the features of significance test and
correlation screening, and the result is shown in Figure 4. It can
be observed that the five variables all meet the significance level
of p = 0.05, and there is a considerable proportional relationship
between them. Nevertheless, the results of univariate regression
were general, and the highest coefficient of determination (R?)
is 0.57. For this reason, other methods should be chosen
for regression analysis, such as multiple linear regression and
machine learning regression methods.

It is undeniable that the 5 features of significance testing
and correlation screening may still have multicollinearity. To
implement machine learning modeling more reasonably and
accurately, three methods of hierarchical clustering, Lasso,
and Stepwise regression were adopted for further feature
selection. Before predicting the waterlogging tolerance of
different poplar varieties and further feature screening, the
characteristic parameters and Zscore of each sample were
averaged according to the variety.

Clustering Results

The results of hierarchical clustering are shown in Figure 5.
Figure 5A is the total clustering heat map, Figure 5B is the poplar
varieties clustering, and Figure 5C is the poplar characteristic
clustering.According to the clustering results in Figure 5, we
can divide poplar varieties and features into 3 groups. The
classification of poplar varieties is marked as A, B, and C,
and the classification of characteristic parameters is marked
as F1, F2, and F3.

Results of Lasso and Stepwise Regression

Lasso regression and backward stepwise regression are used
to screen the 5 features (Fv, qN_Fo, Fm, H,OS/H,OR, and
RH_S/RH_R) obtained by significance and correlation. The

Frontiers in Plant Science | www.frontiersin.org

February 2022 | Volume 13 | Article 821365


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Xie et al.

Waterlogging Resistance and Machine Learning

A
o X o
- 55 3% g
38,8 -8 9% .5 o w e
?P28083 80, 282985285888 L2
£22E285255:808588%86002%58E5
PARabs @ DD (ICIEI) !
AHs/Cs @ @
Photo Q0D (LTINS O] DD 0.8
PhiCO2 0 D LOOGOOOPOD DD
H=Odiff D DO® (0) @
Vel | DD@ @ & 06
CTleaf DO Q@
HeO_i DO ) i
SVTleaf DO o) o4
Fm O D
Fv W QDDD L 02
csfe D GG DOOD G
cos D G&® DO®D 6
Cond e® DDDDO® ro
CndCO 2 QQ® DDDDO®
CndTotal aQ DDDDO
Trans o DDD® o2
H20S/Hz0R ) DODO® @
RHSRHR | QOO DDDO® Clt-os
GilCa
Ci_Pa
Zscore oG -06
Fo @ o DD
H08 & DD DDD GG DD
N_Fo & DD DDD G©CE D - o8
rRis OO ©© oD
CO:S/CO:R oG DO

S 9
Zscore ‘ D
H:08 D.
gN_Fo O“
H:08/H:OR D
RH_S/RH_R D

0GP e@

C %N nIcl
% 8 § é %'
4 £ % £ e £ 2
Zscore | 1 0.56 0.61 -0.46-0.46-0.55-0.76
H0S 0.56 1 0.88 -0.57
gN_Fo |0.61 0.88 1 -0.68
H20S/H-0R -0.46 1 1 0.56
RH_S/RH_R -0.46 11 0.56
Fm -0.55 1 /0.84

Fv -0.76-0.57-0.68 0.56  0.56 |0.84

1

15 5
R?=0.57, p=0.00011
1.0 1.0
0.5 0.5
2 2
§. 0.0 @ 00
N N
-05 -05
-10 -1.0:
300 400 500 600
Fv
15 15
R?=021,p=0042
1.0 10
05 05
g 8
5
& 00 2 00
N N
-05 -05
-1.0 A -10
0.96 1.00 1.04 1.08
H:0S/H:0R

R?=0.38, p=0.0039

R?=0.21,p=0.04

0.96 1.00 1.04
RH_S/IRH_R

R?=03,p=0.012

0.5:

Zscore

0.0

400 500 600 700

Fm

FIGURE 4 | Regression prediction of single feature. (A) Fv. (B) gN_Fo. (C) Fm. (D) HoOS/H,>OR. (E) RH_S/RH_R.

Frontiers in Plant Science | www.frontiersin.org

15

February 2022 | Volume 13 | Article 821365



https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Xie et al. Waterlogging Resistance and Machine Learning

A B
BN MMENENMN 0 Foustr [N Foluster
F1
DD102-4 1 F2
F3
Triplo o Vtype
A
Flevo -1 B
C
— Ningshanica -2
Canadensis
1-45-51
LH04-17
[ .: e
1-63
Danhong
Juba
(o3
212025 F1
LH04-13
ES)
] Raspalje 4 IZ
GOS 87
#q
1-69
F2
=72
&
Lushan 6\@8‘/
&
Ls81 < %
LS68
NL895
s S' g o € &
> 5 I «
& 2
Tz
FIGURE 5 | Results of poplar features and varieties clustering. (A) Total. (B) Varieties. (C) Features.

results of the Lasso method are Fv, qN_Fo, and RH_S/RH_R. of Fv is 0.57. A single feature used for regression may lack
However, the screening result of stepwise regression only has interpretability and may affect the accuracy of the final model.
the variable Fv. From the univariate regression analysis results In addition, according to the results of hierarchical clustering in
in Figure 4, we know that the coefficient of determination (R?) ~ Figure 5, a feature with the largest correlation coefficient was

Frontiers in Plant Science | www.frontiersin.org 16 February 2022 | Volume 13 | Article 821365


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Xie et al.

Waterlogging Resistance and Machine Learning

selected from each of the three groups (F1, F2, and F3), and the
results obtained are consistent with the Lasso method. Therefore,
combining the results of hierarchical clustering and univariate
analysis, in the final machine learning modeling, we used the
three characteristic parameters of Fv, gN_Fo and RH_S/RH_R.

Regression Results of Machine Learning
Models

The Division of Test Set and Training Set

Before establishing the machine learning regression model, the
poplar varieties were divided into training set and test set
according to the ratio of 4:1 (the training set had 16 varieties, and
the test set was 4 varieties). The four poplar varieties in the test
set were selected from the three groups of A, B, C by stratified
sampling based on the poplar hierarchical clustering results. The
poplar varieties used and their corresponding Zscore and Vtype
are shown in Table 5.

Training Set

Four machine learning regression methods were used to perform
regression prediction on the three screened features (Fv, QN_Fo
and RH_S/RH_R). The results obtained on the training set, and
the corresponding R?, RMSE, and MAE are shown in Figure 6
and Table 6.Figure 6D is a histogram of model evaluation indexes
(R2, RMSE, and MAE) of four machine learning methods on the
training set. The colored columns correspond to the four machine
learning methods of BPR, ELMR, SVR, and RFR, respectively.
From the first subplot of Figure 6D, it can be noticed that on
the training set, the highest R? of the four machine learning
methods is random forest regression (RFR). Specifically, from
Figure 6B and Table 6, we can observe that the coefficient of
determination (R2) of RER is 0.8847. Then, the second one is
support vector regression (SVR), the R? is 0.7027. In contrast, the
performance of BP neural network regression (BPR) and Extreme
learning machine regression (ELMR) methods are relatively poor,
and their R? are 0.5847 and 0.6401, respectively. In addition,
from Figure 6D, we can get similar results from the performance
of RMSE and MAE. Similarly, from Table 6, we can find that
the RMSE of the RFR method is the smallest with a value of
0.1940, and at the same time, the MAE of RFR is also the smallest,
with a value of 0.1591. Therefore, for the four machine learning
methods, the RFR method has the best regression effect. Then,
the second is the SVR method. Correspondingly, the prediction
effects of ELMR and BPR on the training set are relatively trivial.

Test Set

Similarly, the results of the four machine learning regression
methods on the test set, and the corresponding R?, RMSE and
MAE are shown in Figure 7 and Table 7.

Figure 7D is a histogram of model evaluation indexes (R?,
RMSE, and MAE) of four machine learning methods on the
test set. The colored columns correspond to the four machine
learning methods of BPR, ELMR, SVR, and REFR, respectively.
As shown in Figure 7D, random forest regression (RFR) has the
highest R? for the four machine learning methods on the test set.
In addition, from Figure 7B and Table 7, we can observe that the
R? of RFR is 0.8351. Then, the second one is SVR, the R? is 0.6864.

TABLE 5 | Main information of poplar varieties.

Samples Z score V type
Canadensis —0.31136376 A
DD102-4 —0.659417544 A
Flevo —0.149084082 A
1-214 —1.018704692 A
1-63 0.244020869 A
LHO4-17 0.348729466 A
Ningshanica —0.843303666 A
Danhong 0.714574083 B
Juba 0.528127585 B
LHO04-13 0.845992953 B
1-69 0.356889463 C
I-72 —0.12622992 C
LS68 —0.662543236 C
LS81 0.717527146 C
Lushan 0.282405203 C
NL895 —0.227444975 C
1-45-51 —0.702652584 A
Triplo —0.561219766 A
212025 0.570264018 B
Raspalje —0.103562886 C

The third and fourth are ELMR and BPR, their performance is
relatively poor, and the corresponding R? are 0.6207 and 0.5703,
respectively. Besides, from Figure 7D and Table 7, on the test
set, the smallest root mean square error (RMSE) is RFR, followed
by SVR and other methods. Similar results appear on the mean
absolute error (MAE). Consequently, our results show that not all
machine learning algorithms can show high accuracy. The best
performance on the test set is RFR, followed by SVR. Then, the
third and fourth are ELMR and BPR. This result is consistent with
the training set.

In summary, according to the results of the training set
and the test set, for the flood resistance of poplar, the best
prediction effect of the four machine learning methods is random
forest regression (RFR), and the second one is support vector
regression (SVR). By contrast, the performance effects of BP
neural network regression (BPR) and Extreme learning machine
regression (ELMR) methods are poor. The prediction accuracy
from high to low is RFR > SVR > ELMR > BPR. Hence,
when predicting the flood resistance of poplar, random forest
regression (RFR) and support vector regression (SVR) can be
used first, and RFR can be given more consideration.

DISCUSSION

Machine learning is a field of artificial intelligence (AI).
Compared with traditional statistical models, machine learning
has higher performance, and at the same time, its complexity is
relatively lower (Mekanik et al., 2013). In fact, before establishing
the regression model of machine learning, we performed multiple
linear regression (MLR) on the five variables (Fv, QN_Fo, Fm,
H,OS/H,0R, and RH_S/RH_R) selected by the significance
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TABLE 6 | The R?, RMSE and MAE of the training set.

Methods BPR ELMR SVR RFR

R? 0.56847 0.6401 0.7027 0.8847
RMSE 0.3680 0.3426 0.3113 0.1940
MAE 0.3019 0.2741 0.1920 0.1591

testing and correlation analysis. However, the results show that
the coefficients of determination (R?) of MLR on the training set

and test set are 0.5616 and 0.5172, respectively. The regression
results are shown in Appendix Figure Al. Many studies have
compared machine learning models with traditional statistical
models (Aertsen et al., 2010; Rezaeianzadeh et al., 2014; Idowu
et al,, 2016; Johnson et al., 2016; Wang and Srinivasan, 2017). In
most cases, machine learning models are better than traditional
statistical models, such as linear regression. The model and the
variables are not linearly related in most situations, and the
variables involved are also multivariate. Therefore, more and
more fields have begun to use machine learning algorithms. Even
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so, while machine learning has many advantages, it also has
limitations. For example, many machine learning models lack
interpretability and are prone to overfitting. For this reason, these
problems still need to be considered in practical applications.
The risk of resisting flood disasters can be mainly divided into
two aspects. One is to directly predict flood disasters in the risk
areas, and take preventive measures before the disaster occurs,

such as transferring personnel and valuable finances. Generally
speaking, the key variables that need to be considered in flood
forecasting include 25 factors such as water level, river flood,
soil moisture, and rainfall (Maier et al,, 2010). Among these
key variables affecting flood forecasting, rainfall and the spatial
examination of the hydrologic cycle have the most significant
effects (Nourani and Komasi, 2013). Although many studies
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TABLE 7 | The R?, RMSE and MAE of the test set.

Methods BPR ELMR SVR RFR

R? 0.5703 0.6207 0.6864 0.8351
RMSE 0.3254 0.3057 0.2780 0.2016
MAE 0.2806 0.2456 0.2032 0.1782

have predicted the risk of flooded areas (Sampson et al., 2015;
Tehrany et al., 2015; Wang et al., 2015; Darabi et al., 2019),
this method still cannot essentially eliminate the impact of flood
disasters. At the same time, it is relatively difficult to predict
flood disasters. Thus, people have to consider another method to
resist flood disasters. Another way to resist the impact of flood
disasters is mainly through building dams and afforestation. The
key to afforestation is to understand the waterlogging resistance
mechanism of plants. The research on the waterlogging resistance
mechanism of plants mainly focuses on exploring the ways for
plants to resist flood stress (Wang et al,, 2013, 2021; Najeeb
et al., 2015; Duy et al., 2016). These studies have analyzed the
waterlogging resistance mechanism from the molecular level
of proteins and metal ions. However, there are few studies on
waterlogging resistance prediction, and a complete system is
still lacking. Xie and Shen (2021) used the SVR method in
machine learning to predict the waterlogging resistance of poplar.
However, there are still some limitations in their studies, such as
chlorophyll fluorescence features that have not been considered.
Compared with the previous research, we considered more
accurate feature parameters and more kinds of machine learning
methods. Additionally, we improved the prediction system of
poplar resistance to waterlogging and added two quantitative
definitions of waterlogging resistance evaluation indexes, which
has made considerable improvements.

This study used machine learning methods to predict the flood
resistance of poplar. First, three indicators of flood resistance
were defined and evaluated. Then, the data was processed, and
feature selection and modeling evaluation were implemented.
The whole process is intuitive and specific, which has perfected
the research system of waterlogging tolerance prediction to a
considerable extent, and at the same time, it has also promoted
the research on the mechanism of waterlogging tolerance. This
study helps researchers to screen out poplar varieties with
strong waterlogging tolerance during the poplar sapling period.
It can further cultivate high-quality poplar saplings to achieve
the purpose of precise flood resistance. The results of the
experiment show that the machine learning algorithm shows
high accuracy in predicting the flood resistance of poplar,
especially the random forest regression (RFR) and support vector
regression (SVR) methods. The final result has certain practical
value. In practical applications, these two algorithms can be
used first. However, it must be mentioned that although 160
poplar samples were used throughout the experiment, only 20
poplar varieties were actually used for regression analysis. In
addition, in the regression analysis, 80 poplar samples from
the experimental group were used and averaged according to
varieties. Since the waterlogging tolerance of different individuals
may be quite different, the final result may deviate from the

actual situation. But within the allowable range of error, our
research mainly provides a way of predicting waterlogging
tolerance and improving the system for predicting waterlogging
tolerance. Future research can consider more poplar varieties
to improve the universality and stability of the method. In
addition, the quantitative relationship of poplar varieties’ impact
on flood disasters can be considered. In a word, this research
has great theoretical value and practical significance, and the
proposed method can meet the actual engineering needs in a
considerable range.

CONCLUSION

To predict the flood resistance of poplar, the author first analyzed
the differences between the three evaluation indexes of flood
resistance. Then, the final evaluation index of waterlogging
tolerance was determined, and outliers were eliminated. For the
selection of feature parameters, the first screening was carried
out according to the significance test and correlation analysis,
and then the three methods of hierarchical clustering, Lasso,
and stepwise regression were adopted to screen the features
for the second time. The selected features are interpretable and
promote the understanding of poplar’s waterlogging resistance
mechanism. Finally, four machine learning methods were used
to predict and evaluate the flood resistance of poplar. The
results show that the random forest regression and support
vector regression methods are more precise. Nevertheless, it
must be pointed out that there are only four groups of
experiments and controls for each variety. Due to sample
differences and randomness, the final result may deviate
from the actual situation. Future research can consider more
poplar species and sample sizes to improve the versatility and
stability of the method.

This research has perfected the prediction system of plant
resistance to waterlogging, and has important value for accurate
flood resistance and scientific seedling selection. Meanwhile, it
has also made a great contribution to a better understanding of
the mechanism of waterlogging tolerance. The analysis process of
this paper is clear and repeatable. When considering the features
related to the flood resistance of poplar, the photosynthesis
features, chlorophyll fluorescence features, and environmental
features are comprehensively considered. After data processing,
feature selection, and other operations, the machine learning
models were used to predict the flood resistance of poplar. Finally,
the regression results show that the random forest regression
(RFR) and support vector regression (SVR) methods have high
accuracy. On the test set, the coefficients of determination (R?)
of the two methods are 0.8351 and 0.6864, respectively, the
root mean square errors (RMSE) are 0.2016 and 0.2780, and
the mean absolute errors (MAE) are 0.1782 and 0.2031. Based
on the above conclusions, our research shows that combining
photosynthesis, chlorophyll fluorescence, and environmental
variables before flooding experiments, modeling and prediction
of machine learning methods against waterlogging can achieve
high accuracy, which is suitable for actual engineering problems.
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TABLE A1 | The specific meanings and correlation coefficients of 26 features.

Features Specific meaning Unit

AHs/Cs Ball-Berry parameter Dimensionless
Cond Conductance to HoO mol HoO m=2 s~
CndCO» Total conductance to CO» mol CO, m=2 5!
CO,S COs concentration on Sample cell pmol CO, mol~!
CO,S/COsR COs concentration on Sample cell/CO, concentration on Reference cell Dimensionless
Cosfc CO» concentration on Leaf Surface pmol CO, mol~!
Ci_Pa Intercellular CO» partial pressure Pa

Ci/Ca Intercellular CO2/Ambient CO» Dimensionless
CndTotal Total conductance to water vapor mol H20 m=2 s~
CTleaf Computed leaf temperature °C

Fo Minimal fluorescence (dark) bit

Fm Maximal fluorescence (dark) bit

Fv Variable fluorescence bit

H,0S H,O concentration on Sample cell mmol HyO mol =’
H,OS/H,OR HoO concentration on Sample cell/H,O concentration on Reference cell Dimensionless
HoO_i Intercellular HoO concentration mmol HyO mol~"
H, Odiff Difference between Intercellular HoO and Sample cell HoO mmol HyO mol =
Photo Photosynthetic rate wmol COp, m=2 s~ 1
PARabs Absorbed Photosynthetically active radiation pmolm=—2 s~
PhiCO2 Quantum yield corresponding to CO, assimilation rate Dimensionless
gN_Fo Non-photochemical quenching (Calculated by Fo) Dimensionless
RH_S Relative humidity in the sample cell %

RH_S/RH_R Relative humidity on Sample cell/Relative humidity on Reference cell Dimensionless
SVTleaf Saturated vapor pressure calculated by leaf temperature Pa

Trans Transpiration rate mol HoO m=2 s~ '
VpdL Vapor pressure deficit based on Leaf temperature kPa
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Crop pests are a major agricultural problem worldwide because the severity and extent
of their occurrence threaten crop vyield. However, traditional pest image segmentation
methods are limited, ineffective and time-consuming, which causes difficulty in their
promotion and application. Deep learning methods have become the main methods to
address the technical challenges related to pest recognition. We propose an improved
deep convolution neural network to better recognize crop pests in a real agricultural
environment. The proposed network includes parallel attention mechanism module and
residual blocks, and it has significant advantages in terms of accuracy and real-time
performance compared with other models. Extensive comparative experiment results
show that the proposed model achieves up to 98.17% accuracy for crop pest images.
Moreover, the proposed method also achieves a better performance on the other public
dataset. This study has the potential to be applied in real-world applications and further
motivate research on pest recognition.

Keywords: crop, pest recognition, deep learning, convolution neural network, attention mechanism

INTRODUCTION

Agriculture is an important basic industry worldwide, and pests can cause huge losses to crop
production in every country (Santangelo, 2018). According to research, nearly half of global crop
production will be impacted to varying degrees due to pests every year, which seriously affects the
regional economy and people’s daily lives (King, 2017). Pest detection has become an important task
for the development of agricultural precision because pests have a wide distribution, cause great
damage, and reproduce quickly (Wang et al., 2020). Traditional pest detection methods mainly
include manual inspection and light trapping, but these methods need manual intervention and
experience problems related to insufficient automation and intelligence, such as a large workload,
low efficiency, and poor real-time performance (Lim et al., 2018). Due to the diversity of pests,
manual identification relies on a large amount of expert knowledge, and it is difficult to obtain
accurate and timely information on the number and species of pests in orchards, so it is difficult
to widely implement (Li Y. et al., 2020). The automatic recognition of pests can provide a better
growth environment for crops and increase the level of agricultural production.
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With the rapid development of computer vision and pattern
recognition technology, machine learning and deep learning
have become the main research directions of agricultural pest
detection (Albanese et al., 2021; Liu and Wang, 2021). For
example, Fina et al. (2013) proposed a pest identification
method using k-means clustering segmentation, but it takes
a long time to label features manually in the case of a large
dataset. Zhong et al. (2018) used a Prewitt operator and
Canny edge detection algorithms to extract the morphological
features of pests. Then, a support vector machine (SVM) was
used to automatically recognize whiteflies and thrips, and the
experimental results showed that the recognition rate was
nearly 90%. Liu T. et al. (2016) proposed a method for the
detection of wheat aphids based on genetic algorithms, which
can accurately identify and count in the complex environment
of the field. Yaakob and Jain (2012) used six invariant matrices
to extract the shape features of pests, then combined the
ARTMAP neural network algorithm and achieved an 85%
recognition accuracy in a specific background. Barbedo (2014)
developed a soybean whitefly monitoring system based on
digital image processing, which can realize the automatic
identification and counting of whiteflies and greatly improves
work efficiency compared with manual inspection. Although
the traditional machine learning recognition algorithm has
achieved better results when the number of crop pest species
is small, when there are many kinds of pests and the
input parameters are limited, the machine learning method
has difficulty effectively extracting key feature information,
resulting in poor performance of the model robustness
(Roy and Bhaduri, 2021).

Deep learning is an autonomous machine learning method
that uses multilevel neural networks, and computers can
automatically extract key features from a large number
of images (Brahimi et al., 2017). Saleh et al. (2021) has
demonstrated convolutional neural network (CNN) is a high
performance deep learning network, and the CNN has the
best performance compared to multiple models (DT, RE, SVM,
NB, LR, KNN, RNN, and LSTM). CNN abandons complex
preprocessing and feature extraction operations, and uses an
end-to-end architecture that effectively combines global and
local features and greatly simplify the recognition process.
Thus, CNNs have been widely used in crop information
recognition for real agricultural environments, and the automatic
recognition of pests combined with CNNs is conducive to
improving the accuracy of detection and reducing labor costs
(Cheng et al., 2017).

Many studies have been carried out on the use of deep
learning technology for crop key informations detection to
provide accurate information for subsequent spray management,
effectively improving the survival rate and yield of vegetables,
fruits and field crops. A model of classification of tomato leaf
diseases and pests with 89% accuracy was designed (Shijie et al.,
2017), but this method can be applied in simple background
pest classification and is impossible to integrate into practical
applications. Chen et al. (2019) improved the residual network
structure, added a high-resolution convolutional layer and the
corresponding number of channels, and the accuracy of pest

identification reached 91.5%. Wang et al. (2020) fused pest
context information into a CNN, which improved the accuracy
of pest detection and recognition in complex environments. Liu
et al. (2019) proposed an effective multiscale data enhancement
method for pest images. This method combines different
scale image enhancements into the recognition model, which
solves the problem that the traditional single image scale
algorithm cannot be applied to the detection and recognition
of small target pests. A method using CNN architecture for
fruit fly recognition was proposed and achieved an accuracy
of 95.68% (Leonardo et al., 2018). Generative Adversarial
Networks (GAN) were applied to extend the dataset, and the
extended dataset was fed into a pre-trained CNN model, which
achieved an accuracy of 92% for plant disease classification
(Gandhi et al., 2018). Dawei et al. (2019) designed a diagnostic
system based on transfer learning for pest detection, and
this approach to train and test 10 types of pests and
achieves an average accuracy of 93.84%.Chen et al. (2021)
proposed to classify tea pests by fine-tuning the VGG-16
network, and the results showed that the classification has
accuracy up to 97.75%.

In recent years, due to the characteristic of extracting
discriminative features of the area of interest, the attention
mechanism has begun to be widely used in machine translation,
generative adversarial and so on (Dong et al., 2019; Xiang et al.,
2020). Researchers used the attention mechanism to quickly scan
a global image to obtain the region of interest. However, it is
still in the exploratory stage in the field of crop pest recognition.
Liu et al. (2019) proposed a pest identification method based on
CNN technology. This method combined the channel attention
mechanism into the CNN. Through experiments on 16 types of
field pests, the average accuracy reached 75.46%, and the accuracy
was significantly improved. Guo et al. (2020) designed a self-
attention mechanism and incorporated it into the CNN structure,
which achieved the optimal Fl-scores of 93.21% for 11 types
of crop diseases and pests. Zhang and Liu (2021) proposed a
method based on DenseNet and an attention mechanism, and
the model could identify 7 types of navel orange diseases and
pests on the test set with 96.90% accuracy. The results in this
study are compared with on other studies as summarized in
Table 1.

By analyzing current work, deep learning methods have been
proven to significantly improve pest recognition performance,
providing a reference for the recognition of crop pests. However,
these studies mostly focus on the improvement and optimization
of the diseases and pests recognition model. On the application
of deep learning models, Alsamhi et al. (2021) combination of
neural networks and IoT devices plays a vital role in improving
feedback control efficiency with automatic operation and
reductions of fertilizer and pesticides consumption. Agricultural
UAVs are a modern agricultural technology with remarkable
efficiency in quickly identifying and locating areas of outbreaks
of pests and diseases through aerial imaging. And combining
UAVs with high-performance IoT sensors enables efficient
tasks such as remote crop growth monitoring, soil moisture
monitoring, and water quality monitoring (Almalki et al., 2021).
Meanwhile, UGVs have also been widely used for crop planting
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TABLE 1 | Summary of the comparison of the existing work.

Paper Object Model Types Accuracy
Shijie et al. (2017) Diseases and VGG-16 + Transfer 9 89.00%
pests learning
Chen et al. (2019) Pests ResNet + Block-cg 38 91.50%
Wang et al. (2020) Pests ResNet-50 3 72.30%
Liu et al. (2019) Pests CNN + Attention 16 75.46%
Leonardo et al. (2018) Pests SWM + VGG-16 10 95.68%
Dawei et al. (2019) Pests AlexNet + Transfer 10 93.84%
learning
Chen et al. (2021) Pests VGGNet-16 14 97.75%
Guo et al. (2020) Diseases and CNN + Self- iR 92.78%
pests attention
Zhang and Liu (2021) Diseases and DenseNet + Attention 7 96.90%
pests
Our model Pests ResNet- 10 98.17%
50 + Parallel-
attention

monitoring, and by deploying a crop information detection
model on the controller, it has been achieved soil moisture,
pH, fertility monitoring and climate conditions monitoring, crop
plant diseases and insect pests monitoring, growth and yield
monitoring, etc. (Jin et al., 2021).

In the recognition task, pest pixels only occupy a small part
of the whole image, and the attention mechanism can improve
the learning of important feature channels of pests. The proposed
model added a parallel attention module with a CNN structure
to automatically extract pest feature information from a real
agricultural environment. Feature extraction is focused on the
pest feature channel, and invalid feature channel information
is eliminated. Thus, the proposed model in this paper can
automatically accurately recognize ten types of crop pests.

The main contributions of this paper are summarized as
follows:

(1) To meet the recognition requirements of crop pests, this
paper collects 10 types of pest images in a real agricultural
environment. Thus, data enhancement improves the
robustness and accuracy of the model performance in
the detection task.

(2) This paper proposes an improved CNN model for the
recognition of crop pests. Based on the original residual
structure, spatial attention is combined with channel
attention to obtain a parallel attention mechanism module.
The parallel attention module is deeply integrated into the
ResNet-50 network model.

(3) The attention module can establish a multidimensional
dependency relationship of the extracted crop pest feature
map, is lightweight and can be easily added into
the network. Using this method, we achieved highly
accurate recognition of crop pests in complex agricultural
environments.

This paper is divided into five sections. The model
improvement methods are shown in section “The Proposed
Approach.” Section “Experiment” shows the dataset collection

and experiment setup. The performance of the deep learning
method is discussed in section “Experimental Results and
Discussion,” and conclusions and future work are described in
section “Conclusion.”

THE PROPOSED APPROACH

Spatial/Channelwise Attention

Mechanism

Spatial Attention Mechanism

Researchers have proposed a variety of attention mechanisms and
applied them to the training tasks of CNN models. At the cost
of smaller calculations and parameters, the network performance
can be greatly improved (Fukui et al, 2019). The attention
mechanism mainly includes the channel attention mechanism
and spatial attention mechanism. The spatial attention mainly
extracts important regions in the feature and judges the
importance of the corresponding feature by the dependence
between different positions in the feature. The corresponding
weight parameters are assigned to improve the feature expression
of the key area. Therefore, spatial attention enables the network
to better evaluate the effect of each feature position during the
classification feature extraction process and further enhances the
modeling ability of the network.

As shown in Figure 1, average pooling and maximum pooling
operations are performed on the input feature map F, and
information is gathered separately into two different feature maps
and used convolutional layers are applied to generate spatial
attention maps Ms. Then, feature fusion is realized through a
7 x 7 convolution operation, and the sigmoid activation function
is used to generate a weight map and superimpose it on the
original input feature map. Finally, the features of the target pixel
area are enhanced.

Channel Attention Mechanism

Channel attention mainly performs correlation modeling on
the feature maps of different channels, adaptively obtains the
importance of each feature channel through back-propagation
parameter learning, and assigns different weight coeflicients
to each channel.

SENet is one of the classic channel attention modules,
as shown in Figure 2. Hu et al. (2018) mentioned it in a
CVPR ImageNet Workshop speech. The weights of different
channels are trained through the cost function, and the weight
coeflicients of each feature channel are automatically obtained.
Then, according to the size of the weight coeflicient of each
feature channel, the effective feature channel is enhanced, and the
invalid feature channel is suppressed.

Parallel Attention Mechanism Design

Based on pest recognition, we know that features from
the spatial attention module are highlighted in pest regions
from the perspective of spatial position, while features from
the channelwise attention module are highlighted from the
perspective of channels, which carry more important information

Frontiers in Plant Science | www.frontiersin.org

February 2022 | Volume 13 | Article 839572


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Zhao et al.

CNN-Based Crop Pest Recognition

B &

Input Fcaturc
I

FIGURE 1 | The structure of the spatial attention mechanism.

Conv layer

-E——

[MaxPool, AvgPool]

Activation
Function

Spatial Attention
Ms

X

Fu(-6)

Fex(‘, W)

Fscale() 0y

Ci

(7]

FIGURE 2 | The structure of the channel attention mechanism.

C2

at the channel level. It is necessary to combine multi-
attention features together to obtain enhanced attention
features. Therefore, this paper proposed a parallel attention
mechanism, namely, PCSA, that effectively combines the spatial
attention module and the channel attention module in series
as that used for pest recognition. In Figure 3, the PCSA
consists of three parts: channel attention, spatial attention
and feature map fusion. It can be directly applied to existing
network architectures.

(1) The channel attention mainly redistributes the channel
weights in the feature map through one-dimensional
convolution, increases the weight of pest-related channels
and reduces the weight of the remaining channels. First, the
global average pooling calculation is performed on the feature
map with input size C x H x W through the squeeze operation
(Fsq) to obtain a I x 1 x C feature vector and it is input into the
two fully connected layers. The ReLU activation function is used
between the two fully connected layers, generated feature maps
are first downscaled by FC-1 and then upscaled by FC-2, and the

feature channel dimensions of the input and output are the same.
The squeeze process can be expressed as follows:

Fy (ue) =

H x W &4
i=1 j=1

Where u,(i,j) is the element in row i and column j of the input
data. Then, the input feature map F generates a I x 1 x C
global feature map. In the excitation operation (Fy), the sigmoid
activation function is used to calculate the weight of each feature
channel, which is the core of the entire channel attention module.
These weights are allocated to the input feature maps. The
excitation process can be expressed as follows:

Fer (2, W) =0 (g (2, W)) = 0 (W20 (W12))

Where o is the ReLU function, z is the result of the compression
process. The parameter Wy reduces the dimension of channels to
1/r of the original in the FC-1, restore the dimension of channels
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to the original dimension of channels with parameter W) in the
C*
FC-2, and W) and W, are inverse relationships. W;€R™ € and

erRC*$ are the downgrading and upgrading parameters of
the FC-1 and FC-2, r is the scaling parameter to balance model
performance and computational complexity. Finally, the output
feature channel weight vector is multiplied by the original input
feature map through the scale operation (F;.) to complete the
original feature calibration in the channel dimension. Therefore,
the extracted features have stronger directivity and improved
classification performance. The scale process can be expressed as
follows:
Focate (tie, 5¢) = e © ¢

Where Fyge(ue, sc) refers to the channelwise multiplication
between the scalar s. and the feature map u,eRT*W,

(2) Spatial attention performs average pooling and maximum
pooling operations on the feature map F in the channel
dimension and generates two single-channel feature maps F,,
and F,, . Then, the F,, and F, ;. feature maps are combined
to generate a weight map M, and the feature map F is weighted
by the weight map M to generate a feature map P. Finally, in
the feature map P, the areas related to the pests are given higher
weights, while the other areas have lower weights. The calculation
process of the spatial attention module can be expressed as
follows:

M, = ([Avgpool (F) ® maxpool (F)]) = o ([Fng ® Finale)

Where o is the ReLU function, s is the 2D feature maps and
is the dot product of position data corresponding to F;,, and
F;,q feature maps.

(3) The feature map Q is dot-producted with the feature
map P and the feature map G is obtained using the ReLu
activation function. The feature map G combines the weight
distribution of the channel dimension and the weight distribution
of the spatial dimension, thereby obtaining complementary key
features, which can highlight the pest feature area and suppress
various interferences, so that the model can identify pests
more accurately.

V8

Crop Pest Recognition Model of
ResNet-50 Fused to PSCA

Feature extraction is the key part of deep learning models, and the
convolutional layer of the CNN has powerful feature extraction
capabilities. Recently, AlexNet, VGGNet and GoogLeNet have
been widely used in face recognition, disease diagnosis, text
classification and other tasks and have achieved good results
(Ballester and Araujo, 2016). However, these CNNs increase the
feature extraction ability by adding to the number of network
layers, which will increase the number of model parameters and
the computational cost (Tang et al., 2020b). More seriously, it will
cause the problems of network redundancy, gradient explosion
and disappearance.

The residual network proposed by He et al. (2016) won
the championship in the 2015 ImageNet large-scale visual
recognition competition. The residual block in the model can
avoid the problem of network degradation caused by the

deepening of the number of network layers. Compared with
AlexNet, VGGNet, and GoogLeNet, ResNet has less computation
and higher performance. Compared with ResNet-101 and
ResNet-18, ResNet-50 has the advantages of higher accuracy,
fewer parameters and faster speed (Li X. et al., 2020). Thus, this
study chose ResNet-50 as the feature extraction network.

In Figure 4, identity mapping uses the jump connection
method to directly add feature X that the network originally
wants to learn from the shortcut branch and feature Fx
learned from the weighted layer through the ReLU activation
function. The bottleneck structure in the ResNet network can
effectively reduce the network parameters and computational
complexity. The bottleneck structure is composed of two I x I
convolutional layers and one 3 x 3 convolutional layer. The input
feature vector is reduced from 256 dimensions to 64 dimensions
through a 1 x 1 convolution, a 3 x 3 convolutional layer is
used to learn features, and the feature vector is restored to
256 dimensions through a I x I convolutional layer. Finally,
the identity map and output are added through the ReLU
activation function. In this paper, a PCSA is added to the original
model structure of ResNet-50 to obtain the ResNet-50-PCSA
model. The network architectures of the improved ResNet-50 are
depicted in Figure 5.

The model mainly includes four stage processes, and each
stage is composed of a residual module. The proposed model
embeds the PCSA module after the residual module and
constitutes 4 bottleneck-PCSA modules, the numbers of which
are 3, 6, 6, and 3. The size of the convolution kernels of
bottleneck-PCSA is the same. The main difference between
models is the number of convolution kernels and the output
dimensions of the fully connected layer in the PCSA module.
The crop pest images are input into the ResNet-50-PCSA
network structure, first through the convolutional layer, BN
layer, activation layer and max pool. Then, the pest feature
map was obtained through 4 bottleneck-PCSA modules. Finally,
the obtained feature map is calculated by AVG pooling,
and the number of output feature layers is changed from
multidimensional to one-dimensional through the flattened
layer and output through the fully connected layer. When
deepening the number of network layers, if the internal features
of the network have reached the optimal level in a certain
layer, the subsequent superimposed network layers will not
change the features.

The above is the complete structure and operation process of
the ResNet-50-PCSA model. The PCSA subnetwork structure is
embedded in ResNet-50. The combination of the feature channel
recalibration strategy and residual network can effectively
improve network performance and thus does not need to greatly
increase the computational cost. Through feature refinement, the
learning ability of complex pest features is enhanced.

EXPERIMENT

Dataset Acquisition
The development of deep learning in recent years has proven
that the detection and classification tasks of target objects can
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FIGURE 5 | The structure of the crop pest recognition model.

such as climate and season, and it is difficult to obtain large
images. Therefore, it is not feasible to obtain a large number of
pest images through the process of collecting and shooting. This

be effectively achieved under high-quality and large-size datasets
(Liu W. et al, 2016). For crop pests, their active time and
distribution law are related to various environmental factors,
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paper makes use of abundant internet resources to compensate
for this deficiency and enriches the content of image data by
open-source dataset and web crawler methods.

In this paper, we selected 10 common classes of crop
pests, namely, Aphid, Cabbage butterfly, Drosophila, Gryllotalpa,
Leathopper, Locust, Snail, Stinkbug, Weevil, and Whitefly, as
shown in Figure 6. Because these pests are prone to exist all over
the world, they reproduce very quickly and spread widely (Dawei
et al,, 2019). They mainly feed on the leaves, stems and fruits
of crops. If they lay eggs on crops, they are difficult to handle
and will cause huge losses in crop yields. Therefore, effective
detection and timely control of these 10 types of pests have
great significance.

Most of the images in the pest dataset in this paper are
collected from the internet, and a few are from the open-
source dataset. The web crawler keywords for each type of
pest were divided into Chinese and English. Multithreaded
collection of the images of each type of pest is completed
using three major internet search engines: Google, Bing and
Baidu. The open source dataset mainly comes from Kaggle'
and Forestry’. Although the key information is defined in the
collection process, there are still many non-pest images and
redundant data. Several agricultural technology experts judged
and classified the collected images and removed incorrect pest
types and poor-quality images. The size of all images was
unified by means of image normalization (224 x 224), and
the format was JPG. Overall, there were more than 400 images
of each type of pest, and the number of snails and locusts
exceeded 800 images.

Data Augmentation

Data augmentation is an important data processing technology
in deep learning. It can effectively increase the amount and
diversity of training data and improve the generalization ability
and robustness of the model (Shorten and Khoshgoftaar, 2019).
Data enhancement is divided into online enhancement and
offline enhancement; online enhancement is suitable for large
datasets, and after the model obtains batch data, it can be
enhanced by rotation, translation and folding (Tang et al., 2020a).
Offline enhancement directly processes images and is suitable for
small datasets. Therefore, this paper used offline augmentation
techniques and enhanced images in combination with OpenCV
under the PyTorch framework.

a) Spin: Randomly rotating the picture by 0°, 90°, 180°, and
270° will not change the relative position of the pest pixels,
simulating the randomness of the shooting angle under
natural conditions.

b) Zoom: The images are reduced according to a certain ratio,
which helps to identify pests on multiple scales. For the
scaled image, the resolution of the image is expanded to
224 x 224 pixels by filling in fixed color pixels.

c) Gaussian noise is added to the image to simulate the
interference information in the natural environment.

Uhttps://www.kaggle.com/
Zhttps://www.forestryimages.org/index.cfm

d) Color jitter: Changed the image brightness and contrast to
simulate the image difference generated by the change of
light intensity in the environment of crop growing. The
color jitter can be expressed as follows:

g(ij) =b"f (i.j) +a:a € a1, ar]

where a is the image contrast, b is the image brightness, g(i,j)
is the output image, f(3,j) is the input image, a; is the lowest
brightness factor in the field and a, is the highest brightness
factor in the field.

Samples of the data enhancement is shown in Figure 7. By
using these image offline augmentation techniques, the number
of datasets is expanded four times. The total number of original
images was 5,245; after data augmentation, the number of images
increased to 26,225. The training set and validation set are divided
into 8:2 ratios, and detailed information on the dataset are
shown in Table 2. For the model testing, we collected 150 real
images of each pest and formed a testset. In the end, the testset
contained 1,500 images.

Experiment Setup

In this study, the weight parameters of the pretrained ResNet-
50 model on ImageNet are used for transfer learning to
accelerate the convergence speed of the model. The collected
dataset contains 10 kinds of pests, so the output layer must be
changed from 1,000 (ImageNet pretrained ResNet-50) to 10. The
operating platform for this experiment is a Dell T7920 graphics
workstation, the operating environment is Windows 10, the CPU
is Intel Xeon Gold 6248R, and the GPU is NVIDIA Quadro RTX
5000. The training environment is created by Anaconda3, and
the environment configuration is Python 3.6 and PyTorch 1.8.0,
torchvision 0.7.0 artificial neural network library. The model
parameters were selected as follows: the initial learning rate set
to 0.001, a weight decay of 0.00001 and momentum factor is
0.1. Set 100 epochs, after 2 epochs, the model performance does
not improve and the learning rate will decrease after that. At
the same time, the CUDA 10.2 deep neural network acceleration
library is used. The experiment uses a stochastic gradient descent
with momentum (SGDM), updates the parameters and optimizes
the training process. The parameter update can be expressed as
follows:

Oiy1 = 0; — aALR (0;) +m (0; — 0;—1)

where i is the number of iterations, 6 is the network parameters,
ALR (8;) is the loss function gradient, m is the momentum
and o is the learning rate. Meanwhile, before the training and
validation of each epoch, the data was randomly shuffled. After
each training, the validation set is tested, and the model is saved.
Finally, the model with the highest accuracy is selected.

Model Evaluation Index
When evaluating the performance of a model, Precision (P),
Recall (R), F; Score (F;) and Detection speed (T,) are usually
selected as evaluation indices.
p__Tr
Tp + Fp
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Locust Snail Stinkbug Weevil Whitefly

FIGURE 6 | Sample images for 10 common pest classes.

Original image i Gaussian noise Colour jitter

FIGURE 7 | Samples for data augmentation. (A) Original image, (B) spin, (C) zoom, (D) Gaussian noise, and (E) color jitter.

TABLE 2 | Crop pest dataset detail information.

T
Pest Class Origin  Augmentation Trainset Validation set T, = IT]
images images
Aphid 0 415 2,075 1,660 415 Where T is the total detection time for the
Cabbage butterfly 1 430 2,150 1,720 430 validation set, and N is the total number for
Drosophila P 440 2,200 1,760 440 the validation set.
Gryllotalpa 3 485 2,425 1,940 485
Leafhopper 4 455 2,275 1,820 455
Locust 5 820 4,100 3,280 820 100
Snail 6 850 4,250 3,400 850 90
Stinkbug 7 420 2,100 1,680 420
Weevil 8 480 2,400 1,920 480 80
Whitefly 9 450 2,250 1,800 450 70
Total 5,245 26,225 20,980 5,245
> 60 4
8
5 50-
Q
T < 40
R=T+7TF 304
P+ FN —— VGG-19
20 4 —— AllexNet
_ P xR ResNet-101
Fi=2x PIR 10 - GoogleNet
ResNet-50-PCSA
11 1 11 0 T I T T T 1 1 T T
Wherle T d(.trug p Osme.E)_ 15 thel nur;ber ¢ ;’f p o§1.tlve 0 10 20 30 40 S0 60 70 80 90 100
§amp es predicted as p051.tlve samples, Fp .(ase—posmve) Epochs
is the number of negative samples considered to be
positive .samples, and FN. (false negative) is .the number | geuRe 8| The training accuracy curves.
of positive samples considered to be negative samples.
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EXPERIMENTAL RESULTS AND
DISCUSSION

Comparison of the Performance of

Various Models

To evaluate the performance, the proposed network is compared
with several famous CNN networks, such as VGG-19, AlexNet,
ResNet-101 and GoogLeNet. These models were configured
to use the same optimizer (SGDM), classifier (softmax) and
learning rate (0.0001).

TABLE 3 | The evaluation resullts.

Model Input P R F1 Ts(ms) Accuracy Size (Mb)
(%)

VGG-19 224 0.9137 0.9130 0.9133 41.81 92.62 482
AlexNet 224 0.8905 0.8891 0.8898 33.37 88.96 227
GooglLeNet 224 0.9331 0.9324 0.9327 33.64 93.35 45
ResNet-101 224 0.9537 0.9548 0.9542 39.05 94.48 167
ResNet-50- 224 0.9798 0.9816 0.9807 32.29 98.17 91
PCSA

TABLE 4 | The results of ResNet-50-PCSA compared with ResNet-50.

The comparison of various CNN model training curves is
shown in Figure 8. The training iteration epochs are plotted
on the x-axis, and the accuracy is plotted on the y-axis.
The ResNet-50-PCSA model proposed in this paper has the
highest accuracy, and except for the AlexNet model, the
accuracy of the other models exceeds 90% because AlexNet
is not deep enough compared to other models, and the
amount of feature information extracted by the network is less.
Meanwhile, the ResNet-50-PCSA model converges fastest, and
the model begins to converge after approximately 45 epochs.

TABLE 5 | The results of PCSA compared with SENet and CBAM.

Model Input P R F1 Ts(ms) Accuracy Size (Mb)
(%)

ResNet-50 224 0.9386 0.9391 0.9388 31.36 92.41 78

ResNet-50- 224 0.9798 0.9816 0.9807 32.29 98.17 91

PCSA

Model Input P R F1 T, (ms) Accuracy Size (Mb)
(%)

ResNet-50- 224 0.9495 0.9496 0.9495 30.62 94.96 72

SENet

ResNet-50- 224 0.9601 0.9603 0.9602 31.98 96.05 86

CBAM

ResNet-50- 224 0.9798 0.9816 0.9807 32.29 98.17 91

PCSA

TABLE 6 | Accuracy for crop pest recognition with 10 classes.

Cl, 0 1 2 3 4 5 6 7 8 9

Accuracy  97.08 98.37 97.15 99.34 97.563 98.52 99.15 98.43 98.01 97.10

(%)

Average 98.17

accuracy

(%)

Image with multiple pests.

FIGURE 9 | Recognition results for crop pests. (A) Image with a single pest. (B) Image with multiple pests.
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The VGG-19, AlexNet, ResNet-101, and GoogLeNet models
have larger fluctuations after convergence, and the ResNet-50-
PCSA model converges with the smallest fluctuation range,
reflecting good stability.

The detailed evaluation results of different models on crop
pests are obtained in Table 3. Under the same experimental
conditions, the ResNet-50-PCSA model proposed in this
paper has the highest precision, recall and F; score. The

proposed model also has the highest average accuracy, with
an accuracy reaching 98.17%. Compared with the VGG-19,
AlexNet, GoogLeNet and ResNet-101 models, the average
accuracy is 5.55, 9.21, 4.82, and 3.69% higher, respectively,
and the proposed model is significantly ahead of the other
CNN networks. The ResNet-50-PCSA model has the fastest
recognition speed, and the average recognition time for
a single pest image is only 32.29 ms. Compared with
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FIGURE 10 | Clustering results of the training set.
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FIGURE 11 | Sample images of the rice leaf dataset.
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the second-ranked AlexNet model, the time is reduced by
1.08 ms, which meets the needs of real-time recognition of
crop pests. Considering that the model will be deployed to
the inspection robot system, VGG-19, AlexNet and ResNet-
101 have a large model size, which cannot guarantee real-
time detection task requirements. Moreover, the size of the
ResNet-50-PCSA model is 91 Mb, which is 46 Mb larger
than GoogLeNet. However, ResNet-50-PCSA also meets the
requirements of lightweight deployment, and the accuracy is
higher than that of GoogLeNet. Synthesizing the above analysis,
the proposed model achieves the best performance in terms of
accuracy and speed.

Effectiveness of PCSA Module

To prove the effect of adding a parallel attention mechanism on
the performance of the original model, keeping the experimental
conditions and parameters consistent, a comparison experiment
of the performance of the ResNet-50-PCSA and ResNet-
50 models was carried out. The results of the comparative
experiment of the proposed model and the ResNet-50 model
without a parallel attention mechanism on crop pests are shown
in Table 4.

It can be seen from Table 4 that the results of the
model are improved after adding the parallel attention
mechanism. The accuracy of the model is increased by
5.76%, and the precision, recall and F1 score are all higher
than those of the original ResNet-50 model. The proposed
model can retain more image details due to important
feature reuse. However, the ResNet-50-PCSA  model
average detection time of a single pest image is increased
by 0.93 ms, and the model size is increased by 13 Mb.
This explains why adding the parallel attention mechanism
can slightly increase the computational complexity and
complexity of the model.

To further verify the effectiveness of the parallel attention
mechanism proposed in this paper, we selected two widely used
attention mechanisms as comparative experiments: SENet (Hu
et al,, 2018) and CBAM (Woo et al, 2018). The CBAM is
composed of a serial structure of channel attention and spatial
attention; it first learns the key features through the channel
attention module and then uses the spatial attention module to
learn the location of the key features.

The comparison results of the PCSA module with SENet
and CBAM are shown in Table 5. In the recognition accuracy
of the model, the ResNet-50-PCSA is 3.21 and 2.12% higher
than ResNet-50-SENet and ResNet-50-CBAM, respectively. In
terms of the average inspection time and model size, the
ResNet-50-PCSA is slightly insufficient. ResNet-50-SENet has
the fastest recognition speed and smallest model size. The
average detection time is only 1.67 ms faster than ResNet-
50-PCSA, but the recognition accuracy is significantly lower
than ResNet-50-PCSA. The recognition speed of ResNet-50-
PCSA still meets actual application requirements. At the
same time, the model size of ResNet-50-PCSA is 19 and
5 Mb larger than ResNet-50-SENet and ResNet-50-CBAM,
respectively, but it also confirms the requirements of lightweight
deployment in machine control panels. Synthesizing the above

analysis, the results show that the proposed parallel attention
mechanism is effective.

Crop Pest Classification Results

Table 6 shows the ResNet-50-PCSA model accuracy of each
pest on the validation set. The indices of 10 classes of pests
are represented as follows: 0. Aphid, 1. Cabbage butterfly, 2.
Drosophila, 3. Gryllotalpa, 4. Leathopper, 5. Locust, 6. Snail, 7.
Stinkbug, 8. Weevil, 9. Whitefly.

The result suggests that the model correctly recognizes 10
classes of pests with an average accuracy of 98.17%. The model
recognition accuracy for aphid, Drosophila, leafthopper, and
whitefly is low, but the accuracy also exceeds 97%. The reason
is that the color features of aphids and leafhoppers are similar to
those of crop leaves, and Drosophila and whiteflies are smaller
in size and occupy only a few pixels in the whole image.
Furthermore, the model exceeded 99% accuracy on 2 classes of
pests (Gryllotalpa, and snail), while the other 4 classes of pests
had accuracies between 98.01 and 98.52%.

Figure 9 shows the correct recognition results for randomly
selected images using the ResNet-50-PCSA model. The model
has a better recognition result of the 5 pest images in
Figure 9A, and the accuracies of cabbage butterflies and
snails are 100.00%. The accuracy of locust is the lowest,
but it is also as high as 98.39%, which meets the accuracy
requirements in real pest recognition tasks. In Figure 9B,
we stitch images of different pests into one image and
input it into the model. The model also obtained a better

TABLE 7 | The evaluation result of the rice leaf dataset.

Model Input P R Fq T, (ms) Accuracy (%)
GoogleNet 256 0.9365 0.9361 0.9363 33.07 93.68
Xception 256 0.9355 0.9353 0.9354 31.51 93.53
ResNet-50 256 0.9480 0.9478 0.9479 30.54 94.81
ResNet-50-PCSA 256  0.9933 0.9935 0.9934 31.39 99.35
1.0
Bacterial blight 0
0.8
Blast- 0 oe

-0.4

Brown spot- 0 0
-0.2
Tungro- 0 0.0083
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FIGURE 12 | Confusion matrices for rice leaf diseases.
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performance and could accurately recognize each pest in
the stitched image.

To better show the classification performance of the model
on 10 classes of pests, we choose t-SNE clustering for feature
spatial distribution representation. The experiment extracts
the features of each image from the fully connected layer
of the ResNet-50-PCSA model, uses the t-SNE algorithm to
visualize the high-dimensional features in a two-dimensional
space of 10-class pests, and performs hierarchical clustering
analysis on the features. The 2048-dimensional feature clustering
results are shown in Figure 10. Each color represents the
category of different pests, for a total of 10 categories. On the
whole, the features reflected by different pests show a better
clustering effect, which is the key to accurately distinguishing
different pests. The distribution position of the feature clusters
of the same variety deviates, mainly because in the real
agricultural environment, the color and shape features of some
pests are similar.

Based on the above results, it can be seen that the ResNet-
50-PCSA model can complete the task of crop pest recognition
well and has a high robustness and accuracy. This model can be a
useful detection tool in the field of crop diseases.

ResNet-50-PCSA Adaptability on Other
Datasets

To further validate the practical application performance
of our model, we experiment with the proposed method
on other public datasets of rice leaf diseases, and the
disease images have real agricultural backgrounds. The
dataset contains 5,932 rice leaf disease images, which
include bacterial blight, blast, brown spot and tungro. All
the patches were treated as data samples and resized to
224 x 224 pixels, and Figure 11 shows the four varieties of
rice leaf diseases.

Under the same training environments, GoogLeNet, ResNet-
50 and Xception were selected for comparative experiments
on rice leaf diseases. As shown in Table 7, the proposed
model in this paper has an average detection accuracy of
99.35% for the 4 classes of rice leaf diseases. Compared
with the GoogLeNet, Xception and ResNet-50 models, the
accuracy is 5.67, 5.82, and 4.54% higher, respectively. The
ResNet-50-PCSA model has the fastest average detection time
for a rice leaf image, and the average detection time for a
single rice disease image is only 0.85 ms slower than ResNet-
50.

The detection result is represented by the confusion matrix
in Figure 12, and the detection accuracy of 4 classes of rice leaf
diseases exceeded 99%. Compared with crop pest recognition,
the accuracy of rice leaf disease diagnosis has increased by
1.18%. The main reason is that there are only 4-classes of
rice leaf diseases, which is 6-classes less than that of pest
recognition. It is proven that the proposed method has a wide
range of applicability and has better performance relative to
deep-based methods on public datasets. Moreover, it is certified
that our method is effective for datasets captured in real
agricultural environments.

CONCLUSION

In this work, a pest recognition model based on deep learning
was proposed using a manually collected dataset to classify 10
types of crop pests. A total of 5,245 images were downloaded
from different websites and manually validated. In the data
preparation phase, data augmentation was used to expand
the dataset. We successfully designed a parallel attention
mechanism and deeply integrated the original ResNet-50 model
and recognize the great performance of the proposed network
through various experiments. The added attention module
can suppress complex backgrounds and extract multiscale pest
features more accurately without increasing the number of model
parameters. Under the condition of ensuring high accuracy,
rapid recognition is realized on images with multiple pests
and complex backgrounds. It is verified that our method
is of great significance and provides accessible help for the
recognition of crop pests.

In this feature, we will use the proposed method to
implement a crop pest image recognition system and transplant
it into agricultural inspection robots. At the same time,
we will also expand a dataset of crop pests in a real
agricultural environment to improve the model performance
of the robot. It can help farmers accurately distinguish
pests, carry out pesticide works according to the types
of pests, and successfully realize agricultural modernization
and intelligence.
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The application of mobile robots is an important link in the development of intelligent
greenhouses. In view of the complex environment of a greenhouse, achieving precise
positioning and navigation by robots has become the primary problem to be solved.
Simultaneous localization and mapping (SLAM) technology is a hot spot in solving
the positioning and navigation in an unknown indoor environment in recent years.
Among them, the SLAM based on a two-dimensional (2D) Lidar can only collect
the environmental information at the level of Lidar, while the SLAM based on a 3D
Lidar demands a high computation cost; hence, it has higher requirements for the
industrial computers. In this study, the robot navigation control system initially filtered
the information of a 3D greenhouse environment collected by a 3D Lidar and fused
the information into 2D information, and then, based on the robot odometers and
inertial measurement unit information, the system has achieved a timely positioning
and construction of the greenhouse environment by a robot using a 2D Lidar SLAM
algorithm in Cartographer. This method not only ensures the accuracy of a greenhouse
environmental map but also reduces the performance requirements on the industrial
computer. In terms of path planning, the Dijkstra algorithm was used to plan the global
navigation path of the robot while the Dynamic Window Approach (DWA) algorithm was
used to plan the local navigation path of the robot. Through the positioning test, the
average position deviation of the robot from the target positioning point is less than 8 cm
with a standard deviation (SD) of less than 3cm; the average course deviation is less
than 3° with an SD of less than 1° at the moving speed of 0.4 m/s. The robot moves at
the speed of 0.2, 0.4, and 0.6 m/s, respectively; the average lateral deviation between
the actual movement path and the target movement path is less than 10 cm, and the SD
is less than 6 cm; the average course deviation is <3°, and the SD is <1.5°. Both the
positioning accuracy and the navigation accuracy of the robot can meet the requirements
of mobile navigation and positioning in the greenhouse environment.

Keywords: greenhouse, mobile robot, navigation, Lidar, SLAM
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INTRODUCTION

With the development of mechanization and automation,
agriculture has undergone an accelerated upgrading toward
information and intelligent agriculture in the world. Also, with
the development of high technology and with the incremental
labor cost, the application of robots in agriculture has become
more and more extensive. Compared with the complex field
environment, the greenhouse environment is relatively simple;
however, in greenhouses where plants are densely distributed
under high temperature and high humidity, and, sometimes,
even toxic gases are emitted, there are some potential safety
hazards in manual operation (Henten et al., 2013). Therefore,
robots enjoy a large application market in picking, plant
protection, inspection, and other aspects of greenhouses (Uyeh
etal, 2019).

In terms of the autonomous navigation of robots, the
navigation solutions based on Global Navigation Satellite
System (GNSS) have been fully applied in the field operations
environment (Pérez Ruiz and Upadhyaya, 2012). However, as
there are many obstructions in greenhouses to cause the loss of
satellite signals, the greenhouse environment is not suitable for
mobile robots. Path planning and movement, which are safe,
fast, and effective, have become the primary difficulties in the
application of greenhouse mobile robots.

The guide rail navigation is a common navigation solution
for greenhouse mobile robots. It realizes the mobile navigation
in greenhouses by laying rails on the ground (Chiu et al., 2013;
Hayashi et al., 2014; Lee et al., 2015). Considering the high cost of
the rail laying and the occupation of the ground in greenhouses,
some robots that use greenhouse pipes as motion guide rails have
been developed, and these robots can move along the pipes or
on the ground (Zhao et al,, 2016; Arad et al., 2020). To further
improve the safety and practicability of the robots on guide rails,
Balaso et al. (2013) installed a distance sensor, a photoelectric
sensor, and an ultrasonic sensor to assist the navigation of
the designed multi-functional greenhouse robot. Although the
guide rail navigation is simple in operation, the fixed rails
greatly limit the movement path and the range of the robot.
Magnetic navigation and ribbon navigation through the magnetic
stripes and ribbons replace the rails in the guide rail navigation.
Magnetic navigation realizes path tracking by detecting the
electromagnetic signals installed on the ground (Pan et al.,, 2019),
and the color band navigation uses visual sensors to detect the
edge of the color band to achieve navigation (Min et al., 2014).
Compared with the guide rail navigation, the installation cost
of magnetic stripes and color bands is relatively low and does
not occupy the greenhouse space; moreover, their laying and
installation are simpler and more flexible. Nevertheless, they
could not get rid of the movement restrictions by fixed routes.

Machine vision navigation uses monocular vision or stereo
vision sensors to collect environmental information then extract
the navigation paths or crop lines based on the Hough Transform
(Hough, 1962), the least-Square Methods (Cui et al, 2015;
Mao et al, 2019), and the binocular stereo vision algorithms
(Zou et al., 2012). Wang et al. (2012) analyzed the distribution
characteristics of each component of the road image between the

tomato ridges in the Hue, Saturation and Intensity (HSI) color
space and then proposed a greenhouse tomato path detection
method between the ridges based on the least square method.
The experimental results showed that the proposed method
could accurately extract the edge information of the target
sensitive area; there was a 91.67% accuracy rate of extracting
the navigation path between the tomato ridges with different
coverage. In view of the problems of poor recognition of visual
navigation technology and vulnerability to illumination, Gao and
Ming (2014) selected the H component in the HIS color space
for subsequent image processing and introduced the K-means
algorithm to cluster and to segment the image for the unique
color characteristic information of greenhouse. Chen et al. (2021)
proposed a Hough transform algorithm for the prediction point
by using a new graying factor to segment cucumber plants and
soil, and this proposed algorithm is used for prediction points to
fit the navigation paths. This algorithm is 35.20 ms faster than the
traditional Hough Transform. The robot uses the machine vision
sensor, which is carried by itself to autonomously navigate, thus
saving the cost of setting up the environment in the early stage.
However, the navigation path of the robot needs to be fitted after
extracting the greenhouse vegetation or the roadside information
each time, so the path of the robot is subject to environmental
constraints, which further limits the space for robot movements.

The positioning and navigation method, based on multi-
source data fusion, is the current hotspot in the research of
the navigation of greenhouse mobile robots. In this navigation
environment, the robot can move freely within a greenhouse.
In general, the navigation by fusing multi-source data can be
divided into two types: one is to achieve precise positioning and
navigation by arranging sensors in the environment with the
assistance of an inertial measurement unit (IMU), an odometer,
and other modules that are carried by the robot itself; the
other is to achieve the positioning and navigation directly by
the sensor that is carried by the robot itself. Widodo et al.
(2012) applied the acoustic positioning system in the greenhouse
for the first time. To reduce the time consumed in manual
deployment and calibration, Widodo et al. (2013) subsequently
designed a self-calibrating acoustic positioning system. Huang
et al. (2020a) proposed a spread spectrum sound-based local
positioning system for greenhouse robots, and Tsay et al. (2020)
added a temperature compensation on this basis. In addition to
a sound-based positioning system, Preter et al. (2018) designed
a strawberry harvesting robot, which uses an ultra-wideband
indoor positioning system, wheel encoders, and a gyroscope
to achieve positioning and navigation in the greenhouse.
The development of indoor navigation technologies, such as
radio frequency identification (Choi et al., 2011; Ming, 2018),
Bluetooth low energy (Spachos et al., 2021), and positioning by
signal strength (Huang et al., 2020b), provide more options for
greenhouse mobile robot navigation. However, for all the above
navigation solutions, it is necessary to arrange base stations,
tags, and other external sensors in advance in the greenhouse.
Although the installation procedures are much simpler than the
guide rail navigation, the magnetic navigation, and the color band
navigation, the technology of positioning and navigation through
the sensors, as carried by the robot itself, eliminates these extra

Frontiers in Plant Science | www.frontiersin.org

41

March 2022 | Volume 13 | Article 815218


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Jiang et al.

Autonomous Navigation System of Robot

Sensor module

F-=—=-=-S—==-=--

Control module

Industrial computer

Driver module

Motor Driver

FIGURE 1 | Hardware structure diagram of the robot navigation system.

steps. In an unknown environment, the robot uses the sensors it
carries to achieve navigation. The first and most important thing
is that the robot knows its location. The SLAM technology can
help the robot build an environment map and estimate its posture
well. According to the types of sensors, the SLAM technology
can be divided into visual SLAM technology and Lidar SLAM
technology. In comparison, since the visual sensor is susceptible
to the influence of light intensity, the visual SLAM technology has
poor mapping performance in the poor light environment; while
the Lidar SLAM technology is not affected by light, with higher
accuracy, less calculation, and more mature technology (Chan
et al,, 2009). The SLAM technology, based on two-dimensional
(2D) Lidar, has achieved good results in the research of
greenhouse mobile robot navigation (Juan et al., 2016; Obregon
et al., 2019; Hou et al., 2020; Tiwari et al., 2020). However, the
environment detected by 2D Lidar is only on the same horizontal
plane as the installation position of the Lidar on the robot.
More stringent requirements are needed for the installation
of Lidar and the greenhouse environment. At the same time,
the Lidar cannot detect the environmental information above
and below itself. Therefore, it leaves a huge potential safety
hazard in robot navigation. The SLAM technology, based on
three-dimensional (3D) Lidar, can detect all the environmental
information of the greenhouse, which enhances the safety of the
robot when it moves, but it also increases the computational
burden of the robot and puts forward higher requirements on the
computational performance of the robot.

Based on the Robot Operating System (ROS), this study
proposed a new positioning and navigation solution for

greenhouse mobile robots by combining the SLAMs of both 3D
Lidar and 2D Lidar. First, the 3D point cloud data, collected
by multi-line Lidar, were filtered and were fused into 2D data.
The 2D information after the fusion contained the location
information of key points, within the motion range of the robot,
to the maximum extent. Then, the 2D Lidar SLAM algorithm,
based on the encoder information and IMU information, was
used to build the environment map, and the optimal navigation
path was further planned to achieve the positioning and
navigation of the greenhouse mobile robot, which not only
ensured the safety of the robot mapping navigation but also
reduced the energy consumption in data calculation by the robot.

MATERIALS AND METHODS

Hardware System Design

The designed hardware system of the greenhouse mobile robot
is mainly composed of the sensor module, the control module,
the driver module, and the power module. The hardware system
structure is shown in Figure 1.

Sensor Module

The sensor module of the robot was mainly composed of an
encoder, an IMU, and a Lidar. The encoder is composed of a
1,024-line photoelectric incremental code disc, which collected
the real-time speed information of the robot and sent feedback
to the bottom controller of the robot. The inertial measurement
unit has the 9-axis IMU (HFI-A9, HandsFree, Shenzhen, China),
which includes a 3-axis gyroscope, a 3-axis accelerometer, and
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a 3-axis magnetometer. The internal integrated posture solver,
with the assistance of the dynamic Kalman filter algorithm, can
accurately output the real-time posture of the robot in a dynamic
environment, thus providing accurate calculation data for the
determination of the position of the robot in the greenhouse,
such as Euler angles, quaternions, and the most commonly used
roll/pitch/yaw direction data. The Lidar contains 16 pairs of Lidar
transmitting and receiving modules (C16, Leishen Intelligent,
Shenzhen, China). By adopting the time of fight measurement
method, with a vertical resolution of 1.33°, the internal motor can
be driven at a speed of 5Hz (or 10 or 20 Hz) for 360° scanning.
The 100M Ethernet UDP/IP communication protocol is used for
data output and configuration.

Control Module

The STM32F103 embedded system board was adopted in the
bottom controller of the robot. The core of the system board
is a 32-bit high-performance ARM Cortex-M3 processor with a
maximum operating frequency of 72 MHz. It has built-in high-
speed memory, abundant enhanced I/O ports, and peripherals
connected to two advanced peripheral buses (APBs). The power
supply voltage is 2- to 3.6V, and a series of power-saving
modes can ensure the needs of the low-powered applications.
The bottom controller is connected to the motor driver, the
encoder, and the upper computer. According to the real-time
speed information provided by the encoder, the STM32 can use
the classic proportional-integral-derivative (PID) algorithm to
control the motor rotation through the motor driver, to realize
the precise movement of the robot. In addition, to enhance the
safety of the robot during the movement, the bottom controller
will limit the output of the driver and pull up the robot slowly
when the temperature of the motor driver is higher than the
protection temperature.

The top control of the robot was equipped with an industrial
computer as the upper computer (EPC-P3086, Dongtintech,
Shenzhen, China), and the Ubuntul8.04 operating System and
ROS were installed respectively. The bottom control and the top
control of the robot were connected through the control area
network (CAN) bus protocol. The communication baud rate is
500K and the message format is MOTOROLA. Through the CAN
bus interface, the PC can realize the control of the linear velocity
and angular velocity of the mobile robot. Meanwhile, the PC will
also receive real-time feedback of the motion state information of
the robot.

Driver Module

A total of four 200-W DC brushless servo motors (SDGA-
02C11AB24, Tode, Jiaxing, China) were installed at the front
and rear of the robot, and a gearbox of 1:30 was equipped
to provide sufficient power for the robot (60TDF-147050-L2-
H, Tode, Jiaxing, China). The no-load maximum speed is 1.5
m/s. The driving form of the robot was four-wheel independent
driving, using a four-wheel differential steering, which could
realize a spot turn. In addition to the above functions, the
power module of the robot also adopted the composite design
of inflatable rubber wheels and independent suspension, which
equipped the robot with strong ground clearance and ground

adaptability. The robot climbing angle is up to 30°, and the
minimum clearance from the ground is 135 mm, which can meet
the flexible movement of the robot on different types of ground
in the greenhouse.

Power Module

The power module of the robot adopted a 24-V ternary lithium
battery (LS-DL24-30, Lishen Energy, Shenzhen, China). The
battery voltage is about 29.2 V when it is fully charged with the
capacity of 30 Ah. It has a built-in voltage regulator module and
a power display module. Under normal circumstances, it can
supply power continuously for 3-5h. When the battery voltage
is less than 22.5 V, the robot chassis will automatically alarm with
a buzzer, and it will take about 3 h to fully recharge.

Software System Design

The overall software system of the greenhouse mobile robot
was designed based on Ubuntu 18.04, as shown in Figure 2.
It included an application layer, a control layer, and a driver
layer. The most important part was the control layer, which was
developed based on ROS. It was responsible for the collection,
fusion, and processing of information from robot sensors and
then for completing the map construction, path planning, and
autonomous positioning and navigation according to control
instructions. The ROS has a distributed architecture that allows
each functional module in the framework to be individually
designed, compiled, and loosely coupled together at run time.

Implementation Principles of Navigation

Function

The framework of robot navigation function realization in the
greenhouse is shown in Figure 3. First, the 3D point cloud data
collected by 3D Lidar were filtered and fused into 2D Lidar, and
then, the 2D Lidar SLAM algorithm was used to construct the
greenhouse environment map based on the data. The positioning
of the robot in an unknown environment was mainly realized
by the Adaptive Monte Carlo Localization (AMCL) algorithm.
Robot target point path planning was the focus of navigation
function realization. It was divided into two parts: global path
planning and local path planning, which were based on the global
cost map and the local cost map, respectively. Finally, the robot
integrated the above information in the ROS visualization (RVIZ)
tool provided by ROS and used the multi-target navigation
settings to realize the robot’s mobile navigation in the greenhouse.

Multi-Line Lidar Point Cloud Filtering and Fusion

The data transmission between different nodes in ROS is mainly
achieved through the communications of Topic, Service, and
Parameter Server. The ROS specifies different standard data
message types for different sensors, among which the Lidar
data is divided into two types: LaserScan.msg (2D Lidar) and
PointCloud2.msg (3D Lidar). In this article, both the acceptance
and the transmission of Lidar data involved in the robot used
the Topic communication based on TCP. Compared with single-
line Lidar, multi-line Lidar contains 3D coordinates and intensity
of each point cloud data for each frame. By setting the point
cloud conversion node, on the one hand, Lidar’s topic can be
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subscribed through the Topic communication and can constantly
accept the 3D point cloud data. The 3D point cloud data beyond
the height range of the robot’s movement height is filtered,
while the 3D point cloud data within the height range is fused
layer by layer, and the points with the shortest distance within
the same height range are selected as the last output data.
On the other hand, the point cloud conversion node releases
the Laser topic to the 2D Lidar SLAM node and outputs the
filtered and fused Lidar data, thus, greatly retaining the key
point environment information within the range of the robot
movement in the map.

The specific process of the multi-line Lidar point cloud
filtering and fusion algorithm used by the robot is shown in
Figure 4. Each frame of Lidar point cloud data is composed of
its corresponding three-dimensional coordinates. The position
information of the point cloud is clear after knowing its
coordinate information. Firstly, the 16 pairs of point cloud data,
whose height and range fall beyond the threshold range, were
sequentially filtered by setting the height threshold and the
range threshold, and the point cloud data within the threshold
are retained. Then, the point cloud data of the same height
were compared at certain size angles. Finally, the data with the
smallest range were saved as the final collected data. Through this
algorithm, the robot could quickly and effectively compress the
greenhouse 3D environment into 2D, which provided accurate
and stable environmental information for subsequent mapping
and navigation.

The higher the frequency and the greater the resolution of
Lidar, the more environmental information can be obtained at

the same time, but the huge amount of data also increases the
burden of data processing for the robot. Considering the amount
of Lidar data and the data processing capability of the computer,
the Lidar frequency was set to 10 Hz, its horizontal resolution
was 0.18°, and the number of points per second was 320,000.
To reduce the loss in the process of Lidar data transmission,
the angle increment of Lasersacn output by the point cloud
conversion node took the same value as the horizontal resolution
of Lidar; the scanning angle range was from and —3.14 to 3.14,
and the scan topic publishing frequency and Lidar point cloud
topic publishing frequency were the same to set to 5Hz. The
height of the robot was 0.3m, and the Lidar was installed at
0.25m above the robot. Since the converted Lidar data were a
LaserScan on the same plane as the Lidar, the height threshold
was set from —0.47 to 0.1 m. The measurement range of the
Lidar was from 0.15 to 150m. Considering the actual size
of the greenhouse, the range threshold was finally from 0.15
to 50 m.

Environment Map Construction

The environment map construction is an important part of
the robot navigation and the control system. The quality of
map construction directly affects the accuracy of the robot in
the navigation and positioning process. The current popular
2D Lidar SLAM algorithms include Hector SLAM, G mapping,
Karto SLAM, etc. By comparing the algorithms in the simulation
environment, actual environment, and CPU consumption
(Santos et al., 2013; Hess et al., 2016), this study finally chose
to refer to the Cartographer SLAM algorithm developed by
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FIGURE 3 | The framework of navigation functions.

Google. The algorithm adopts the idea of constructing a global
map based on sub-maps; each frame of the laser scan data
obtained is inserted into the submap at the best-estimated
position using a scan match, and the generated submap performs
a local loop closure and a global loop by a branch-and-bound

approach and several precomputed grids. Cartographer is more
advantageous in terms of mapping effects, data processing,
and sensor requirements. After the algorithm processing, the
robot can finally generate a 2D grid map with a precision
of 5 cm.
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FIGURE 4 | Flowchart of point cloud filtering and fusion.

The Cartographer algorithm is mainly composed of two parts:  of posture of the robot &, & = (&x,§),&y), and this value is used
Local SLAM and Global SLAM. In the part of Local SLAM, as the initial value to scan and to match the Lidar data, and the
odometry and IMU data are used to calculate the estimation value ~ scanned data is recorded as H = {hk} el o Pk € R?. After
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the motion filtering, each frame of Lidar data is superimposed to
form a submap. The position of {/;} in submap is expressed as
T, and its transformation formula is as follows:

&
)P - (@)
—

3

Tep— cosg, —Ssing,
P= sing, cosg,

Re

where p represents the coordinates of the robot before the
transform, R: represents the rotation matrix, and the f
represents the translation matrix.

The part of Global SLAM is responsible for the loopback
detection and back-end optimization, so that small submaps
form a whole Global map. The optimization problem of

loopback is a nonlinear least squares problem, which can be
described as

. 1 2(M &S,
argmingnp: 5} p(EE]", &3 Ti) 2)

where E™ {&"}i=1,...m is the submap posture, E°
{Sjs}jzl,...,,, is the scan posture, p is the loss function, E is
the residual function, and these postures are all in the world
coordinate system.

To obtain a more accurate map, the robot used the IMU
coordinate system as the ROS coordinate system tracked by
the SLAM algorithm and the odometer to publish the pose
coordinates. The robot controlled the node through a keyboard
to walk in the greenhouse at a speed of 0.4 m/s to build a map.
After the map was completed, the global environment map was

Algorithm 1 Dijkstra Algorithm

22:  End While

1:  Input: map, the starting point S, the goal point G

2:  Output: the shortest path SP

3. Init openlist[], closedlist[]

4. While (openlist[] is not empty)

5: Centre = the point with the shortest distance in openlist| ]
6: put Centre from openlist[] to closedlist[]

7: If (Centre is not G) Then

8: extract path, break

9: Else iterate over eight adjacent points

10: If (point is in closedlist[] or encounter an obstacle) Then
11: skip this point

12: Else cumulative the path

13: If (point is in openlist[]) Then

14: If (the cumulative distance < the original recorded distance) Then
15: replace the data

16: Else add the point to openlist]]

17: End If

18: End If

19: End If

20: arrange the points in openlist[]| from small to large
21: End If

FIGURE 5 | The pseudo-code of the Dijkstra algorithm.
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saved in pgm format through the map server node. In the picture,
the probability of the existence of obstacles was represented by
different grayscale values and for subsequent navigation.

Path Planning
The path planning of the robot in the greenhouse is completed
based on the built map; however, the original map is static and
the obstacle information on the map cannot be updated in real
time. Therefore, a costmap is introduced in the robot’s path
planning. Costmap is mainly composed of Static Map Layer,
Obstacle Map Layer, and Inflation Layer. The Static Map Layer
usually includes the loaded original map data. The Obstacle Map
Layer includes the real-time obstacle information detected by
sensors. The Inflation Layer expands the obstacle according to the
expansion radius parameter to make the robot move more safely.
The path planning of the robot in the greenhouse was divided
into two parts: global path planning and local path planning.
The robot first used the global path planner to plan a rough
path in combination with the global costmap, then the local path
planner divided the planned path into many small paths on this

basis, and finally, the local path planner performed the local path
planning by referring to the local costmap. In this way, not only
the obstacles saved in the map could be avoided in the global
path planning, but also the new obstacles and dynamic obstacles
could be avoided in the local path planning. The robot navigation
target points setting was realized through the Publish Point
function in the RVIZ visualization interface. When the mouse
was clicked on the RVIZ map interface using the Publish Point
function, the Topic communication would be used to publish
the location information of the point in the map to the outside
world. By setting the node to subscribe to the topic and store the
set target points in sequence, the target point information was
further published to the navigation node in sequence, and the
path planning and multi-target point navigation were completed
one by one.

The global path planning of the robot adopts the Dijkstra
algorithm, and the algorithm is shown in Figure 5. First, the
starting point and the goal point of the robot navigation is
set; then, two arrays to store the points of the path to be
determined and the points of the determined path are set up,

Algorithm 2 DWA Algorithm

1:  Input: robotPose, robotGoal, robotModel

2:  Output: the best v and w

3:  While (not arrived the goal)

4: For v in arrange(v,[],Vreso ) DO

5: For w in arrange(v,,[],Wpeso ) DO

6: Traj = Calculate_Traj(x, [v, w])

7: goal score = Goal Cost(goal,traj)

8: vel score = Velocity Cost(traj)

- obs_score = Obstacle Cost(traj,Obstacle)
10: score = goal score + vel score + obs_score
11: If (min_score >= score) Then

12: min_score = score

13: u = array([v, w])

14: best traj = traj

15: End If

16: End For

17: return u,best_traj

18: End For

19: End While

FIGURE 6 | The pseudo-code of the DWA algorithm.
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respectively; and next, the distance between the center point and
the adjacent 8 points is calculated using the starting point as
the center point. Later, we stored the point with the smallest
distance, considered the point with the smallest distance as the
center point, and calculated the distance between the starting
point and the adjacent points from the center point again. For
the points that have been calculated, we selected the solution
with the smallest distance. In this way, the adjacent points are
continuously calculated until the target point is encountered,
and the shortest path planning route is output. In general,
the algorithm calculates and compares the weights of nodes
in the graph from the global perspective to obtain the global
shortest path.

The Dynamic Window Approach (DWA) algorithm is
adopted for the robot’s local path planning, and the algorithm
is shown in Figure 6. The main process includes four parts:
initialization, sampling speed samples, sample scoring, and
release plan. First, we load the instance of the subclass in
BaseLocalPlanner through the class loading module and call its
initialization function to obtain the initial state information of

the robot and further obtain the trajectory motion model of
the robot. Based on the trajectory motion model, the robot can
calculate its motion trajectory according to its motion speed.
In order to obtain a sample of the robot motion speed, it is
necessary to collect the linear speed and the angular speed of
each dimension of the robot through sensors within a certain
time interval and store them in the corresponding container in
the form of a structure. After obtaining the robot speed sample,
the corresponding motion trajectory is deduced according to
the robot sampling speed simulation, and each trajectory is
evaluated through the trajectory evaluation function, as shown
in formula (3).

G (v,w) = max(phead (v,) + Bdist(v,w) + Svelo(v,w)) (3)
where head(v, w) and velo(v, w) are given by the formula

head (vw) = 1— 0| /7 (4)

velo (v,w) = v/7 (5)

FIGURE 7 | Test environment and robot.
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where head (v, ) represents the proximity between the velocity ~ The dist(v, ) represents the distance from the motion estimation
trajectory and the target point, and 6 represents the included  to the nearest obstacle at this sampling speed. If there is no
angle between the motion direction and the destination point.  obstacle, the value is a constant. The velo(v,®) represents the

Coordinate paper \

A

| Course deviai

B,

/\ Coordinates of the target reference point
O Coordinates of actual reference points

FIGURE 8 | Schematic diagram of the positioning accuracy test.
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forward efficiency of the robot under this speed group. The three
constant term factors, ¢, B, and §, represent the proportion
of the three sub-items in the evaluation function, respectively.
Adjusting the three constant factors will affect the actions of the
robot in local obstacle avoidance. Finally, all speed groups are
evaluated by the above formula, and the speed with the highest
score is selected as the current speed command for the movement
of the robot.

EXPERIMENTAL RESULTS AND
DISCUSSION

The test site is in the Institute of Agricultural Facilities and
Equipment, Jiangsu Academy of Agricultural Sciences, Jiangsu
province, China, as shown in Figure?7. The experimental
greenhouse is a glass greenhouse, in which tomatoes are grown in

the cultivation tanks, and the row spacing between the cultivation
tanks is 1 m.

Robot Positioning Accuracy Test

The robot positioning accuracy test is an effective way to verify
the precision and the reliability of the robot navigation system.
To accurately measure the position and the posture of the robot
at the target points, four target points in the robot greenhouse
navigation path were randomly selected, and the positioning
coordinate tags were pasted on these four target points. The
schematic diagram of the robot positioning accuracy test is
shown in Figure 8. The four points, such as the front, rear,
left, and right, of the robot were randomly selected as the
relative reference positions, and a cross laser (Qy-620, Huimei,
Dongguan, China) on each of the four points was installed. After
the robot reaches the target point and stops, the coordinate
position of the laser shot by the laser was recorded accurately on

| H
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— |H

FIGURE 9 | Positioning deviation of the robot at each target point. (A) Target 1, (B) target 2, (C) target 3, (D) target 4.
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the coordinate tags. The robot completed 10 complete navigation
and positioning tests in sequence at a speed of 0.4 m/s. After each
test, the robot needed to be repositioned to its initial position to
avoid the accumulation of errors during the test and to ensure the
independence of the test.

Quantitative analysis is made on the navigation accuracy of
the robot. The position deviation and absolute heading deviation
of the four relative reference positions on the robot at the four
target points are shown in Figures 9, 10.

It can be seen from Figures 9, 10 that at a speed of 0.4 m/s,
the average absolute position deviation of the robot is less than
8 cm, and the SD is less than 3 cm. The average heading deviation
of the robot is less than 3°, and the SD is less than 1°. The
precision can meet the requirements of the robot positioning
in a greenhouse environment. Although the average positioning
accuracy of the robot at the four points is not very different,
it is still found that target point 2 and point 3 have abnormal
points in the test after comparison. By analyzing the position
of the target points, the target point 1 and point 4 are close
to the two ends of the cultivation tanks, the target point 2 and
point 3 are close to the middle of the cultivation tanks, and the
structured feature information of target point 1 and point 4 are
more than the target point 2 and point 3, such as greenhouse

walls and air conditioners, and the environmental information
around target point 2 and point 3 are mostly from cultivation
tanks and plant leaf walls, with high similarity. So, we think
that adding some different objects with structural features in
different positions in the greenhouse can improve the positioning
accuracy of the robot. The localization system of the robot was
implemented based on AMCL, which used particle filters to track
the robot’s pose against a known map. In general, the more
particles there are, the more accurate the positioning is, but
the higher the CPU consumption is as well. To achieve a more
accurate positioning of the robot under the existing computing
power of the robot, we set the maximum number of particles
allowed by the positioning algorithm to 4,000 and the minimum
number of particles to 1,000. Through continuous testing, the
robot had a good performance under this parameter.

Robot Navigation Accuracy Test

The robot navigation accuracy test is the most direct and effective
method to test the robot navigation system. The two most
important parameters are the lateral deviation and the heading
deviation between the robot and the planned path during the
movement process. To obtain the lateral deviation and the
heading deviation of the robot, initially, obstacles on the road
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FIGURE 10 | Absolute heading deviation of the robot at each target point.
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FIGURE 11 | The navigation accuracy test scenario.

Pose sampling point

between the greenhouse rows were moved away, and then, the
robot navigation target points are set. According to the principle
of global path and local path planning algorithms, the optimal
navigation path of the robot is the straight line between two target
points. Hence, as shown in Figure 11, a posture sampling point
was set every 2m on the planned paths. To accurately collect
the position information of the robot, two cross lasers (Qy-620,
Huimei, Dongguan, China) were installed in the front and the
rear of the longitudinal center line of the robot. When the robot
reached each posture sampling point, it stayed there for 5s in
that position for each sampling point, and the positions of the
laser on the coordinate tags were recorded accurately. The robot
completed the navigation task at the speed of 0.2, 0.4, and 0.6
m/s, respectively. The experiment was repeated three times at
each speed.

As shown in Figure 12, the cartesian coordinate system is
established on the coordinate paper with the sampling point
(x0,y0) as the origin, and the target heading of the robot is set
to the positive direction of the Y-axis, while the right direction
perpendicular to the target heading is the positive direction of
the X axis; thus, the coordinate of the sampling point is (0, 0).
Suppose the front laser coordinate is (xi,y;), the rear laser

coordinate is (x3,y2), the robot center coordinate is (x, y), then
the robot center coordinate is (%, y‘%), the lateral deviation
is |x|, and the heading deviation is arccos( %).

The robot global path planning step size was set to 0.05m as
the grid length in the grid map, and the global path planning
frequency was 1Hz. After numerous tests, when the robot
reached the target point, the distance error from the target point
in the x-y plane was set to 0.15m, and the yaw angle error
was set to.l radians, the robot has the best navigation. When
these two errors are set smaller, the robot will always hover
near the target point. The simulation time of the robot’s local
path planning was set to 3s. If the simulation time is too large,
it will easily cause the robot to deviate from the global path,
especially when the turning radius is large at startup. On the
contrary, when the simulation time is too small, it is easy to
cause frequent path planning and consume resources, and even
oscillation occurs. The step size of the robot’s local path planning
was set to 0.025 m. After many tests, the three influencing factors
in the speed evaluation function were finally set as: ¢ 64,
B = 24, and § = 0.5, respectively.

It can be seen from Table 1, with the increase in the moving
speed of the robot, both the mean value and SD of the lateral
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FIGURE 12 | Schematic diagram of the navigation accuracy test.
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deviation of the robot and the mean value and SD of the heading
deviation of the robot gradually increase, and the change rate of
each deviation when the speed is greater than 0.4 m/s is greater
than the transformation rate when the speed is less than 0.4 m/s.
At a speed of 0.6m, the average lateral deviation of the robot

is 4.4 cm higher than the average at 0.4 m/s, and the maximum
lateral deviation even reaches 16.8 cm. We guess this is related
to the part that we set and the parameters related to local path
planning. We have not yet found the specific reason for the
increase of the deviation, which will be one of the problems that
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TABLE 1 | Robot navigation deviation.

Speed/(m/s) Lateral deviation/cm Course deviation/ (°)
Minimum Maximum Average Standard deviation Minimum Maximum Average Standard deviation
0.2 0.8 74 2.8 1.7 0 3.5 1.5 1.2
0.4 0.6 9.5 4.8 3.0 0.3 3.8 1.7 1.1
0.6 0.8 16.8 9.2 5.8 0.7 4.9 2.8 1.1

we need to focus on in the next stages. In general, the average
lateral deviation of the robot is less than 9.2 cm, and the SD is
less than 5.8 cm. The mean course deviation shall not exceed
2.8°, and the SD shall not exceed 1.2°. As is shown, the precision
can meet the requirements of navigation precision of robot in a
greenhouse environment.

At present, the greenhouse is moving from informatization
to intelligence. To meet the good application of intelligent
equipment in greenhouses, most of the greenhouse floors have
undergone a ground leveling treatment. Therefore, the robot
positioning and navigation test experiment designed was selected
to be carried out in a greenhouse with flat ground. After the
positioning accuracy test and the navigation accuracy test, the
mobile robot navigation control system designed had a good
performance, which had an inseparable relationship with the
greenhouse standard planting mode and flat ground. Since the
Lidar was fixed on the robot, the Lidar was always level with the
ground. At the same time, we used the 3D Lidar information to
convert the 2D information and integrate the IMU information,
so the slope of the greenhouse floor had no effect on the robot’s
navigation. To expand the application of the robot in different
types of greenhouses, the next step is to test the robot on an
uneven ground. When the robot was mapping in the greenhouse,
we found that there were often some water pipes and other
equipment on the ground, but these obstacles did not affect the
movement of the robot. To ignore the influence of these obstacles
on the mapping, we chose to filter the point cloud. During the
fusion process, filtering was selected for the point cloud below
8 cm from the ground. In addition, for the odometry information
required for robot mapping, we took the average value of the four
encoders of the robot as the odometer data of the robot, which
could effectively reduce the data error caused by the slippage of
individual wheels of the robot.

The path planning of the robot was realized based on the
costmap after the inflation of the obstacle. To ensure that the
robot did not collide with the obstacle, the inflation radius
should be larger than the radius of the robot’s circumcircle.
The robot we designed was 0.8 m long and 0.6 m wide. When
the expansion radius of the costmap is larger than the robots
circumscribed circle, the robot will not be able to realize the
inter-row path planning. To solve this problem, we set the
inflation radius of the costmap to 0.4m, so that we could
ensure that when the robot navigated between rows in the
greenhouse, the path planning trajectory was within 0.1 m to
the left and right of the center of the row. Even if the robot
moved along the inflated obstacles between rows, it would not
collide with the cultivation tank. However, this setting method

was very dangerous when the robot turns between rows. At
the same time, due to the limitation of the row spacing in the
greenhouse, the yaw angle of the robot in the row cannot be
greater than 53°. To ensure the safety of the robot when turning,
we inserted a safety target point at the turning point of the
robot’s navigation route, divided the robot’s navigation plan into
multiple parts, and performed a global path planning and a local
path planning for each segment to ensure that the robot would
not interact when cultivation tanks collide. When the robot got
into a local dilemma between the rows, we chose to let the
robot terminate the navigation. Although this processing strategy
avoided robot collision, it was not intelligent enough. In the
future, we will further develop a more intelligent and effective
local path processing strategy.

CONCLUSION

The proposed autonomous navigation system for the greenhouse
mobile robot was designed based on 3D Lidar and 2D Lidar
SLAM. The hardware part was mainly composed of 3D Lidar, an
IMU, an odometer, and an encoder. The software core control
layer was developed based on ROS, and information interaction
was realized through a distributed node communication. In
order to enhance the safety of the robot during the movement
and to reduce the computational power consumption of the
computer, 3D environmental information collected by multi-
line Lidar was filtered and fused into 2D laser information, and
then, localization and map construction were completed using
the Cartographer algorithm. After the greenhouse navigation
test, the average deviation does not exceed 10cm, and the
average heading deviation does not exceed 3°, which meets the
movement requirements of the greenhouse mobile robot. In
the process of the robot positioning and navigation, we found
that appropriately adding some objects with structured features
in the greenhouse environment could effectively improve the
positioning accuracy of the robot, and the navigation speed of the
robot was closely related to the navigation accuracy. For different
navigation speeds, the robot navigation parameters should be
reset. At present, this research only solves the simple positioning
and navigation of robots in the greenhouse. In the future, we can
apply this system to different types of greenhouse mobile robots,
and combine the different operating conditions of the robots to
develop appropriate navigation strategies based on the existing
navigation path planning algorithms. In addition, we can also use
5G, the Cloud Computing Platform, and other modules to further
realize the remote control and monitoring of robots.
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Peach diseases seriously affect peach vyield and people’s health. The precise
identification of peach diseases and the segmentation of the diseased areas can provide
the basis for disease control and treatment. However, the complex background and
imbalanced samples bring certain challenges to the segmentation and recognition of
lesion area, and the hard samples and imbalance samples can lead to a decline
in classification of foreground class and background class. In this paper we applied
deep network models (Mask R-CNN and Mask Scoring R-CNN) for segmentation and
recognition of peach diseases. Mask R-CNN and Mask Scoring R-CNN are classic
instance segmentation models. Using instance segmentation model can obtain the
disease names, disease location and disease segmentation, and the foreground area
is the basic feature for next segmentation. Focal Loss can solve the problems caused
by difficult samples and imbalance samples, and was used for this dataset to improve
segmentation accuracy. Experimental results show that Mask Scoring R-CNN with Focal
Loss function can improve recognition rate and segmentation accuracy comparing to
Mask Scoring R-CNN with CE loss or comparing to Mask R-CNN. When ResNet50 is
used as the backbone network based on Mask R-CNN, the segmentation accuracy
of segm_mAP_50 increased from 0.236 to 0.254. When ResNetx101 is used as the
backbone network, the segmentation accuracy of segm_mAP_50 increased from 0.452
to 0.463. In summary, this paper used Focal Loss on Mask R-CNN and Mask Scoring
R-CNN to generate better mAP of segmentation and output more detailed information
about peach diseases.

Keywords: segmentation, location, peach diseases, focal loss, Mask R-CNN

INTRODUCTION

Peach is an important and popular fruit, and its production is severely affected by peach diseases.
The common peach diseases are brown rot, anthracnose, scab, bacterial shot hole, gummosis,
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powdery mildew, and leaf curl. The diseases reduce the yield of
peach and cause harm to human health. Thus, it is important to
find rapid and accurate methods to identify peach diseases and
further locate and segment the areas of the lesion in earlier stages.

Currently, a few studies have been conducted on plant
disease classification and on locating and segmenting areas of
the lesion. There are three approaches. The first approach uses
traditional image processing methods or deep learning methods
to segment disease or pest areas initially. This preliminary
segmentation is the intermediate step for feature extraction,
which is the basic step for classification or location in the
next step. Yang et al. (2018) used the Prewitt operator and
the Canny operator for edge segmentation of single-headed
pests based on the high contrast between the pest target
and the background in the binary image, and then classified
two types of pests by SVM, with the average recognition
accuracy rate of 93.5%. Jin and Qian (2020) used fine-tune
FCN to separate the diseased areas of green vegetables from the
farmland images and then recognized the area by identifying
the markers placed at a fixed distance on the ground, which
can realize the location of the diseased area. The second
approach focuses on classifying and identifying the diseases
and further locating the lesion areas. Lu et al. (2017) used
VGG-FCN-VD16 and VGG-FCN-S to classify the diseases and
locate lesion areas, achieving the mean recognition accuracies
of 97.95 and 95.12%, respectively. The third approach uses
deep learning methods directly to segment the lesion site. Lin
et al. (2019) used U-Net Ronneberger et al. (2015) network to
segment cucumber leaves with powdery mildew and improved
the segmentation effect by improving the loss function, thus
achieving an average pixel accuracy of 96.08%, intersection
over union of 72.11%, and dice accuracy of 83.45% on 20 test
samples. Dai (2020) proposed a multi-scale fusion U-Net network
to segment rice diseases. The first approach of segmentation
is usually used for extracting preliminary features, such as
the approximate location of the target. The second approach
can provide disease classification and location based on the
object detection task. The third approach can segment the
lesion areas based on the semantic segmentation task. This
study used deep learning methods to achieve classification,
localization, and segmentation of peach diseases by instance
segmentation task.

In deep learning methods, segmentation is initially carried out
using FCN Long et al. (2015) network, and then other improved
networks, such as DeconvNet Noh et al. (2016) and SegNet,
are applied Badrinarayanan et al. (2017) Other networks for
segmentation, such as DeepLab Chen et al. (2014) and PSPNet
Zhao et al. (2017), are also available. The above-mentioned
methods are based on semantic segmentation tasks. The FAST
R-CNN (Girshick, 2015) approach can classify, identify, and
locate targets, while Mask R-CNN (He et al,, 2017) can not
only classify and locate targets, but can also perform instance
segmentation based on this information. At present, Mask
R-CNN has been used for blade segmentation (Zhong et al,
2020), robot item recognition (Shi et al., 2019), pig inventory
(Hu et al., 2020), and other applications. Some of the improved
methods based on Mask R-CNN are Cascade R-CNN (Cai and

Vasconcelos, 2019) and Deformable Convolutional Networks
(Dai et al., 2017; Zhu et al., 2019). HRNet (Sun et al., 2019a,b)
was also proposed for segmentation tasks. Mask Scoring R-CNN
(Huang et al., 2019) adds a branch network on the basis of Mask
R-CNN to train and regress mask scores.

This study focuses on identifying and locating major peach
diseases and segmenting lesion areas using deep learning
methods. The peach disease image dataset was collected from
peach orchards by Prof. Luo’s team, College of Plant Science
and Technology, HZAU, which included seven categories of
peach disease images. The seven categories are as follows: (1)
brown rot fungi infecting fruits and leaves, (2) anthracnose
fungi infecting fruits and leaves, (3) scab fungus infecting fruits,
branches, and leaves, (4) shot hole bacterium infecting fruits,
branches, and leaves, (5) gummosis fungi infecting branches,
(6) powdery mildew fungus infecting fruits and leaves, and
(7) leaf curl fungus infecting leaves. These diseases cause
damage to different parts of the peach plant. For example,
the brown rot disease mainly infects the fruits, causing the
fruit to rot, and also affects the leaves leading to the dryness
of leaves. Gummosis mainly affects the branches, leading to
tree weakness, decreased fruit quality, and ultimately causing
the death of branches and trees. As the seven diseases were
extensively studied in the laboratory, laboratory personnel were
familiar with the characteristics of the diseases. For example,
a certain disease mainly infects fruits, while some infect leaves
and branches in particular. Therefore, the disease images
were mainly obtained from the infected fruits. Each disease
is further divided into early, middle, and end stages based
on the severity of the disease. Finally, the total number of
disease categories totals 21. The project comprises a team
of experts on fruit disease prevention and control posts
in the National Peach Industry Technology System, which
can further ensure the accuracy of its classification. For
similar diseases and diseases that are easy to be confused,
accurate conclusions can be drawn through tissue isolation of
pathogenic bacteria or direct monospore isolation, pathogen
morphology observation, and molecular biological identification.
The samples were collected by two methods. The first
approach included collecting pictures of existing resources
in the laboratory or obtaining some pictures from other
experts through cooperation in the Peach System, and the
second method included taking a large number of pictures
indoors or in orchards.

For identifying disease, locating and segmenting lesion
areas, two deep neural networks (Mask R-CNN and Mask
Scoring R-CNN) are used to classify 21 diseases of peach
trees and segment the lesions to obtain more detailed
information about the lesions. To overcome the problem due
to imbalance of samples and hard samples, by improving
the loss function with focal loss (Lin et al., 2017) of Mask
R-CNN and Mask Scoring R-CNN, the segmentation effect
can be improved.

The remaining manuscript is organized as follows. Section
2 introduces “Materials and Methods.” Section 3 presents the
“Results and related Discussion.” Finally, Section 4 presents our
“Conclusion.”
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(Yao et al., 2021).

FIGURE 1 | Major plant diseases of peach. (A) Brown rot of fruit, (B) brown rot of fruit, (C) brown rot of leaf, (D) anthracnose of fruit, (E) anthracnose of leaf, (F) scab
of fruit, (G) scab of leaf, (H) bacterial shot hole of fruit, (I) powdery mildew of fruit, (J) powdery mildew of leaf, (K) leaf curl of a leaf, and (L) gummosis of a branch

TABLE 1 | Classification of peach disease image dataset.

Class Part Sample Class Part Sample
Brown rot Fruits 88 Bacterial shot hole Fruits 198
Leaves 6 Leaves 229
Anthracnose Fruits 129 Branches 5
Leaves 28 Gummosis Branches 91
Scab Fruits 614 Powdery mildew Fruits 32
Leaves 35 Leaves 18
Branches 5 Leaf curl Leaves 87

MATERIALS AND METHODS

Peach Disease Image Dataset and Image

Annotation

The original images of peach diseases (see Figure 1, Yao et al.,
2021 for detail) were collected to form the Peach Disease Image
Dataset (PDID). The numbers of images acquired for brown
rot disease, anthracnose disease, scab disease, bacterial shot hole
disease, gummosis disease, powdery mildew disease, and leaf curl
disease were 94, 157, 654, 427, 91, 50, and 87, respectively (see

Table 1 for detail). As can be seen, the distribution of the number
of images in PDID is imbalanced.

Figure 1 Seven categories of disease images.

In order to distinguish the severity of each disease in more
detail, we divided each disease into three levels: early disease,
middle disease, and end disease. After division, the number of
classes changed from 7 to 21, which are as follows: early brown
rot, middle brown rot, end brown rot, early anthracnose, middle
anthracnose, end anthracnose, early scab, middle scab, end scab,
early gummosis, middle gummosis, end gummosis, early leaf
curl, middle leaf curl, end leaf curl, early bacterial shot hole,
middle bacterial shot hole, and end bacterial shot hole. However,
the number of images per class is still small. To increase the
number of images, we performed data augmentation (flipping,
rotation, adding noise, and changing saturation) on the images.
Finally, the number of samples included in the study was 5,627.
These samples were divided into 4,051 training samples, 1,013
validation samples, and 563 testing samples.

Labelme software was used to mark the lesion area in the
images of different peach diseases. Figure 2 shows the marking
process of early gummosis and end brown rot. After a picture is
marked, it is saved as a json file, and the key points and disease
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FIGURE 2 | Marking process: (A) early gummosis and (B) end brown rot.
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FIGURE 4 | Network architecture of Mask Scoring R-CNN (Huang et al., 2019).
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TABLE 2 | Training parameter and test results based on Mask R-CNN with different loss functions.

Network Bbox_mAP_50 Segm_mAP_50 Loss Backbone Epoch y o
Mask R-CNN 0.396 0.236 CE R50 12

Mask R-CNN 0.416 0.224 FL R50 12 5 0.95
Mask R-CNN 0.428 0.197 FL R50 12 2 0.25
Mask R-CNN 0.463 0.219 FL R50 12 2 0.55
Mask R-CNN 0.515 0.236 FL R50 12 2 0.75
Mask R-CNN 0.540 0.246 FL R50 12 2 0.85
Mask R-CNN 0.534 0.254 FL R50 12 2 0.95
Mask R-CNN 0.518 0.219 FL R50 12 1 0.95
Mask R-CNN 0.465 0.222 FL R50 12 3 0.95
Mask R-CNN 0.443 0.215 FL R50 12 4 0.95
TABLE 3 | Training parameter and test results based on Mask Scoring R-CNN with different loss functions.

Network Bbox_mAP_50 Segm_mAP_50 Loss Backbone Epoch y o
Mask Scoring R-CNN 0.367 0.246 CE R50 12

Mask Scoring R-CNN 0.367 0.224 FL R50 12 5 0.95
Mask Scoring R-CNN 0.425 0.243 FL R50 12 5 0.75
Mask Scoring R-CNN 0.451 0.251 FL R50 12 5 0.55
Mask Scoring R-CNN 0.425 0.240 FL R50 12 5 0.25
Mask Scoring R-CNN 0.472 0.274 FL R50 12 4 0.45
Mask Scoring R-CNN 0.408 0.238 FL R50 12 3 0.35
Mask Scoring R-CNN 0.346 0.196 FL R50 12 1 0.05
Mask Scoring R-CNN 0.450 0.259 FL R50 12 2 0.25

names are included in the json file. Mask R-CNN and Mask
Scoring R-CNN use the same dataset format, and convert the
saved json file to COCO dataset format.

Mask R-CNN

Mask R-CNN and Mask Scoring R-CNN are representatives
of typical instance segmentation tasks, and Mask Scoring
R-CNN is the improved version of Mask R-CNN. In order
to obtain more effective information about the peach disease,
two instance segmentation networks (Mask R-CNN and Mask
Scoring R-CNN) with focal loss are used to segment peach
diseases. As Mask Scoring R-CNN is based on Mask R-CNN,
this paper used focal loss in Mask R-CNN and Mask Scoring
R-CNN separately.

The Mask R-CNN framework for instance segmentation task
is shown in Figure 3 (He et al., 2017). Mask R-CNN adopts a two-
stage procedure. The first stage is RPN. In the second stage, in
parallel to predicting the class and box offset, Mask R-CNN also
outputs a binary mask for each Rol. Mask R-CNN follows the
spirit of Fast R-CNN that applies bounding box classification and
regression in parallel. Formally, during training, Mask R-CNN
defines a multi-task loss on each sampled Rol as L = L +
Lyox + Liask- The classification loss Lsand bounding box loss
Lyoxare the same as those defined by a previous study (Girshick,
2015). The mask branch has a Km?-dimensional output for each
Rol, which encodes K binary masks of resolutionm x m, one
for each of the K classes. It applies a per-pixel sigmoid and
defines L, zas the average binary cross-entropy loss. For an Rol
associated with ground-truth class k, L, is only defined on the

TABLE 4 | Training parameter and test results based on Mask R-CNN with
different loss functions.

Network Bbox_ Segm_ Loss Backbone Epoch 7y o
mAP_50 mAP_50

Mask R-CNN 0.396 0.236 CE R50 12

Mask R-CNN 0.534 0.254 FL R50 12 2 095

k-th mask. The definition of L, allows the network to generate
masks for every class without competition among the classes. The
dedicated classification branch is relied upon to predict the class
label used to select the output mask, which decouples mask and
class prediction.

Mask Scoring R-CNN

In Mask R-CNN framework, the score of instance segmentation
hypothesis is determined by the largest element in its
classification scores, which can be obtained in R-CNN. But
classification score and ground truth mask are not well correlated
in Mask R-CNN. So, Mask Scoring R-CNN was proposed.
Figure 4 (Huang et al., 2019) shows the network architecture
of Mask Scoring R-CNN, which is a Mask R-CNN with an
additional MaskIoU head module that learns the MaskloU
aligned mask score. The input image is fed into a backbone
network to generate Rols via RPN and Rol features via RoIAlign.
The R-CNN head and Mask head are standard components
of Mask R-CNN. For predicting MasklIoU, the predicted mask
and Rol feature are used as input. The MasklIoU head has four
convolution layers (all have kernel = 3 and the final one uses
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stride = 2 for downsampling) and three fully connected layers
(the final one outputs C classes MaskIoU.). During inference, the
predicted MaskIoU is multiplied by the classification score to
get the new calibrated mask score as the final mask confidence.
Mask Scoring R-CNN definesS,, ;5 as the score of the predicted
mask. The ideal S,,sis equal to the pixel-level IoU between
the predicted mask and its matched ground truth mask, which
also should have only a positive value for the ground truth
category and zero for other classes, since a mask belongs to one
class only. This requires the mask score to work well on two
tasks: classifying the mask to the right category and regressing
the proposed MaskloU for the foreground object category. So,
Smask = Scis ® Siouis denoted for all object categories. S.focuses
on classifying the proposal to the corresponding class, and
Sioufocuses on regressing the MaskIoU. A classification score can
be obtained in the classification task in the R-CNN stage. The
MaskIoU head aims to regress the IoU between the predicted
mask and its ground truth mask. The predicted MasklIoU scores
are multiplied with classification score to get the new calibrated
mask score as the final mask confidence. The concatenation of
features from the RolAlign layer and the predicted mask is the
input of MaskloU head. When concatenating, it uses a max
pooling layer with kernel size of 2 and stride of 2 to enable the
predicted mask to have the same spatial size as the Rol feature.
MaskIoU head consists of four convolution layers and three fully
connected layers. For the four convolution layers, it follows Mask
head and sets the kernel size and filter number to 3 and 256,
respectively, for all the convolution layers. For the three fully
connected (FC) layers, it follows the R-CNN head and set the
outputs of the first two FC layers to 1,024 and the output of the
final FC to the number of classes.

Image Pre-processing

The samples in the dataset are RGB images. Generally, images
were processed as follows: First, Z-Score normalization was
performed. Precisely, mean value myand standard deviations,
were calculated. Then, for each pixel valuexas input, input x is
changed tox = x — My/Sx, so that the normalized data was a
standard normal distribution with zero mean and unit variance.
After that, several augmentations, including random flipping,
resize, and Pad (size = 32), were used for training and validating
the dataset. The augmentation was helpful for enhancing the
generalization ability of the model and preventing overfitting.

Improved Method
As the number of samples in the peach disease image dataset is
relatively small and the samples in this dataset were imbalanced,
standard machine learning techniques have low accuracy.
To improve the segmentation accuracy, focal Loss was used
for this dataset.

The focal loss is defined as follows:

FL(pt) = —a;(1 — ps)Y log(py) (1)

p ify=1 |« ify=1

1 — p otherwise %= [ 1 — a otherwise ’
binary classification, ye{ & 1} specifies the ground truth class, and
pel0, 1] is the model’s estimated probability for the class with

where p; = [
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FIGURE 5 | Mask R-CNN with different loss validation parameters and loss
functions. (A) Comparison of mAP_50 of bbox (loU = 0.5) on different loss,
(B) Comparison of mAP_50 of segmentation (loU = 0.5) on different loss, and
(C) Comparison of total loss.
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FIGURE 7 | Mask Scoring R-CNN with different loss validation parameters
and loss functions. (A) Comparison of MAP_50 of bbox (loU = 0.5) on
different loss, (B) Comparison of mAP_50 of segmentation (loU = 0.5) on
different loss, and (C) Comparison of total loss.

label y = 1. Weighting factor o €[0, 1] for class 1 and 1-a for class-
1. While abalances the importance of positive/negative examples,
it does not differentiate between easy/hard examples. This focal
loss function gives smaller weights to easy examples. This helps
the training method to focus on hard negatives. A modulating

TABLE 5 | Training parameter and test results based on Mask R-CNN with
different loss functions.

Network Bbox_ Segm_ Loss Backbone Epoch 7y o
mAP_50 mAP_50

Mask R-CNN 0.749 0.452 CE Rx101 1000

Mask R-CNN 0.771 0.463 FL Rx101 1000 2 0.95

TABLE 6 | Training parameter and test results based on Mask Scoring R-CNN
with different loss functions.

Network Bbox_ Segm_ Loss Backbone Epoch y «o
mAP_50 mAP_50

Mask Scoring 0.387 0.252 CE R50 12

R-CNN

Mask Scoring 0.472 0.274 FL R50 12 4 045

R-CNN

TABLE 7 | Training parameter and test results based on Mask Scoring R-CNN
with different loss functions.

Network Bbox_ Segm_ Loss Backbone Epoch vy o
mAP_50 mAP_50

Mask Scoring 0.479 0.311 CE Rx101 12

R-CNN

Mask Scoring 0.544 0.336 FL Rx101 12 4 0.45

R-CNN

TABLE 8 | Results of the method proposed in this study compared
to other methods.

Network Bbox_ Segm_ Loss Backbone Epoch y «o
mAP_50 mAP_50

Mask R-CNN 0.534 0.254 FL R50 12 2 095

Mask Scoring 0.472 0.274 FL R50 12 4 045

R-CNN

Cascade 0.450 0.243 CE R50 12

R-CNN

Cascade-DCN 0.447 0.250 CE R50 12

Mask-DCN 0.397 0.222 CE R50 12

Mask-DCNV2 0.232 0.127 CE R50 12

HRNet 0.303 0.183 CE HRNet 12

factor (1 — p;)Y is added to the cross-entropy loss, with tunable
focusing parameter y > 0.

When an example is misclassified and psis small, the
modulating factor is near 1, and the loss is unaffected. When
pr¢ is near 1, the factor (1 — p;)Y is close to 0, and the loss
for well-classified examples is downweighted. The focusing
parameter ysmoothly adjusts the rate at which easy examples are
downweighted. When y = 0, FL is equivalent to CE, and as vy is
increased, the effect of the modulating factor is likewise increased.
Intuitively, the modulating factor reduces the loss contribution
from easy examples and extends the range in which an example
receives low loss.

Implementation
The experiment of classification was performed on a CentOS
workstation equipped with two Intel(R) Xeon(R) E5-2683 v4
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FIGURE 8 | Mask Scoring R-CNN with different loss validation parameters
and loss functions. (A) Comparison of MAP_50 of bbox (loU = 0.5) on
different loss, (B) Comparison of mAP_50 of segmentation (loU = 0.5) on
different loss, and (C) Comparison of total loss.

CPU (55G RAM) and accelerated by two Tesla P100-PCIE GPU
(16 GB memory). The model implementation in this paper was
powered by the deep learning framework of Pytorch.

RESULTS AND DISCUSSION

In this study, mAP (mean average precision) is used as
an evaluation indicator, which is usually used in instance
segmentation tasks. The experiments based on MMDetection and
bbox_mAP_50 represent mAP of BBox when IoU is 0.5. Also,
segm_mAP_50 represents mAP of segmentation when IoU is 0.5,
while R50 represents ResNet50.

Using focal loss, the empirical values given in the current
study (Dai et al., 2017) are y = 2 anda = 0.25, but different data
distributions require different parameters, so different gamma (y)
and alpha (a) values were tested, and the results are presented
in Table 2. When y = 2 and a = 0.95, the result is improved
using Mask R-CNN. But when Mask Scoring R-CNN was used,
y =4 and a = 0.45 provides better results, as given in Table 3. FL
represents the focal loss in Tables 2, 3, and the learning rate is
0.00025 in all the experiments.

In all the experiments of this study, the following parameters
are similar: neck using FPN, loss_BBox of Rpn-head using L1
Loss, loss-cls of BBox-head using CE, and loss-BBox of BBox-
head using L1 loss in roi_head and loss-mask of mask-head
using CE. The focal loss was used in RPN. When focal loss
and CE loss were used in RPN, the obtained BBox_mAP_ 50
and segm_mAP_50 metrics are presented in Table 4. The test
results shows BBox_mAP_50 increased from 0.396 to 0.534
and segm_mAP_50 increased from 0.236 to 0.254 (Table 4).
Mask R-CNN with a different loss function used the same
training parameters (epoch, learning rate, and batch size).
Figure 5A shows the validation mAP of BBox (IoU = 0.5)
from 1 to 12 epochs when training the dataset with different
loss functions, displaying that the validation mAP of BBox is
higher with focal loss than with CE loss. Figure 5B shows
the validation mAP of segmentation (IoU = 0.5) from 1
to 12 epochs when training the dataset with different loss
functions, displaying that the validation mAP of segmentation
is higher with focal loss than with CE loss. However, the
increment in the map of segmentation is lower than BBox.
Figure 5C shows the total loss value of the y-axis changes
with the changed iter value of the x-axis when training the
dataset with different loss functions. The results presented
in Figure 5 and Table 4 show that the application of
Mask R-CNN with focal loss achieves better performance
compared with CE loss.

In general, deeper networks and larger epochs can provide
better results. When epoch (1,000) and backbone (ResNetx101)
are changed, the results obtained are displayed in Figure 6
and Table 5. Figure 6A shows the validation mAP of BBox
(IoU = 0.5) from 1 to 1,000 epochs when training the dataset
with different loss functions, displaying validation mAP of
BBox is higher with focal loss than with CE loss. Figure 6B
shows validation mAP of segmentation (IoU = 0.5) from
1 to 1,000 epochs when training the dataset with different
loss functions, displaying validation mAP of segmentation
is higher with focal loss than with CE loss. Figure 6C
shows the total loss value of the y-axis changes with the
changed iter value of the x-axis when training the dataset
with different loss functions. The results presented in Figure 6
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ground truth

Mask-DCN

FIGURE 9 | Test results of different methods. (A) Ground truth, (B) CE Loss on Mask Scoring R-CNN, (C) Focal Loss on Mask Scoring R-CNN, (D) Unet,
(E) Cascade R-CNN, (F) Cascade-DCN, (G) Mask-DCN, (H) Mask-DCNV2, and (l) HRNet.

CE Loss(Mask Scoring R-CNN)

Mask-DCNV2

Focal Loss (Mask Scoring R-CNN)

HRNet

and Table 5 also show that the application of Mask R-CNN
with focal loss achieves better performance compared to
CE loss. Rx101 represents ResNetx101 in Table 5. The
test results in Table 5 show that BBox mAP_50 increased
from 0.749 to 0.771 and segm_mAP_50 increased from
0.452 to 0.463. It can be seen that with the increase
of epochs and the deepening of network depth, a better
effect is achieved. Despite changing epoch and backbone,
the results presented in Figure 6 and Table 5 show that
Mask R-CNN with focal loss achieves better performance
compared to CE loss.

Figure 7 and Table 6 show the results of Mask Scoring
R-CNN. When focal loss and CE loss are used in RPN,
the obtained BBox_mAP_50 and segm_mAP_50 metrics are
presented in Table 6. The test results show BBox_mAP_50
increased from 0.387 to 0.472 and segm_mAP_50 increased

from 0.252 to 0.274 (Table 6). Figure 7A shows the validation
mAP of BBox (IoU = 0.5) from 1 to 12 epochs when training
the dataset with different loss functions, displaying that the
validation mAP of BBox is higher with focal loss than with
CE loss. Figure 7B shows validation mAP of segmentation
(IoU = 0.5) from 1 to 12 epochs when training the dataset
with different loss functions, displaying that validation mAP
of segmentation is higher with focal loss than with CE loss.
Figure 7C shows the total loss value of the y-axis changes
with the changed iter value of the x-axis when training the
dataset with different loss functions. The results presented in
Figure 7 and Table 6 show that the application of Mask
Scoring R-CNN with focal loss achieves better performance
compared to CE loss. Comparing the data presented in
Tables 4, 6, it can be found that the mAP of segmentation
based on Mask Scoring R-CNN is higher than that based
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Mask-DCN

FIGURE 10 | Test results of different methods. (A) Ground truth, (B) CE Loss on Mask Scoring R-CNN, (C) Focal Loss on Mask Scoring R-CNN, (D) Unet,
(E) Cascade R-CNN, (F) Cascade-DCN, (G) Mask-DCN, (H) Mask-DCNV2, and (I) HRNet.
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Cascade-DCN
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on Mask R-CNN and also that the focal loss produces
effective results.

When we only changed the backbone from ResNet50 to
ResNetx101, the results of training and testing are shown in
Figure 8 and Table 7. The test results in Table 7 show that
BBox_mAP_50 increased from 0.479 to 0.544 and segm_mAP_50
increased from 0.311 to 0.336. It can be seen that an increase in
network depth can improve object detection and segmentation
effect. Although the backbone was changed, the results presented
in Figure 8 and Table 7 show that Mask Scoring R-CNN with
focal loss achieves better performance compared to CE loss.

Table 8 shows the results of Mask R-CNN/Mask Scoring
R-CNN with focal loss compared to other methods. Cascade-
DCN represents Cascade R-CNN with deformable convolutional
networks. Mask-DCN represents Mask R-CNN with deformable
convolutional networks. Mask-DCNV2 represents Mask
R-CNN with deformable convolutional networks V2. Other
hyperparameters of these six methods are similar. The last

HRNet used the same learning rate and epoch, but the backbone
was different. Using focal loss with Mask R-CNN and Mask
Scoring R-CNN provides better segmentation results compared
to other methods.

The test results are shown in Figures 9-11. All peach diseases
were tested. Mask Scoring R-CNN with focal loss consistently
produced better segmentation results: (1) Mask Scoring R-CNN
with CE loss provides a segmentation that cannot cover some
ground truth regions. Mask Scoring R-CNN with focal loss
provides more correct segmentation results for the diseases
brown rot, gummosis, leaf curl, and anthracnose. The test results
for the brown rot disease are shown in Figures 9, 11. (2) Mask
Scoring R-CNN with CE loss produces a segmentation that covers
regions not in the ground truth. Mask Scoring R-CNN with
focal loss gives fewer false segmentations for the diseases like
bacterial shot hole and brown rot. The test result for the disease
brown rot is shown in Figure 10. (3) Mask Scoring ~R-CNN
with CE loss presents no detection and segmentation, while
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Mask-DCN

Mask-DCNV2

FIGURE 11 | Test results of different methods. (A) Ground truth, (B) CE Loss on Mask Scoring R-CNN, (C) Focal Loss on Mask Scoring R-CNN, (D) Unet,
(E) Cascade R-CNN, (F) Cascade-DCN, (G) Mask-DCN, (H) Mask-DCNV2, and (I) HRNet.

Focal Loss(Mask Scoring R-CNN)

F '

Cascade-DCN

' o

HRNet

TABLE 9 | Training parameters and test results on original dataset.

Network

Bbox_ Segm_ Loss Backbone Epoch y «o
mAP_50 mAP_50

Mask R-CNN 0.280 0.260 CE R50 12

Mask R-CNN 0.294 0.267 FL R50 12 5 0.95
Mask Scoring 0.293 0.264 CE R50 12

R-CNN

Mask Scoring 0.301 0.279 FL R50 12 5 075
R-CNN

Mask Scoring 0.333 0.313 CE Rx101 24

R-CNN

Mask Scoring 0.371 0.333 FL Rx101 24 5 075
R-CNN

Mask Scoring R-CNN with focal loss provides detection and
segmentation. The data presented in Figures 9D-11D are tested
by the U-Net model, which illustrates that the results are poor.
Since the three test images have complex backgrounds, the lesion

areas were not segmented well from the background. However,
when the lesion areas and background are relatively simple, the
segmentation is better.

The results obtained by conducting the same experiments on
the original dataset are summarized in Table 9. The original
dataset (PDID) includes seven peach diseases, with 1,560 images.
The ratio of training samples, validation samples, and test
samples is 7:2:1. Table 9 shows that focal loss can improve the
mAP of BBox and segmentation on both Mask R-CNN and Mask
Scoring R-CNN tasks. But, the parameters of yandoneed to get
the optimal value through experiments. The parameters will be
different when the dataset is different.

CONCLUSION

In this study, the output of this method provides information
regarding the names of peach disease, disease severity levels,
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and masked lesion areas. Hence, detailed information about the
diseases, not limited to disease names, can be obtained. Usually,
disease names can be obtained by classification tasks. Data
pertaining to disease names, disease severity level, and masked
lesion areas are usually achieved by instance segmentation
tasks. This study used the focal loss to improve the effect
of instance segmentation. Due to the difficulty in obtaining
the pictures of peach disease, the peach disease dataset often
has unbalanced or hard samples. We used focal loss in
the first stage, and segmentation results were found to be
improved. Focal loss was used in Mask R-CNN and Mask
Scoring R-CNN for classification, location, and segmentation
of peach diseases, while getting better segmentation results.
When using Mask R-CNN with ResNet50 as a backbone
network, the focal loss parameters gamma (y) was 2.0 and
alpha (o) was 0.95. When Mask Scoring R-CNN was used
with ResNet50 and ResNetx101 as the backbone network, the
focal loss parameters gamma was 4.0 and alpha was 0.45.
We also observed that the deeper the backbone network, the
better the effect of focal loss. When dataset is changed, the
parameters of yandaare different. Additionally, the U-Net model
was used to segment the lesion areas of peach disease images,
but the results showed that this model has a poor accuracy
in complex background images. So, the method adopted in
this study can improve the segmentation results and can also
provide the disease names and severity (early, middle, and end),
by displaying the lesion areas by mask. Thus, this technique
can provide more detailed information for effective disease
treatment and analysis.

REFERENCES

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). “SegNet: a deep
convolutional encoder-decoder architecture for image segmentation,” in IEEE
Transactions on Pattern Analysis & Machine Intelligence, Piscataway, NJ: IEEE.
doi: 10.1109/TPAMI.2016.2644615

Cai, Z., and Vasconcelos, N. (2019). Cascade R-CNN: high quality object detection
and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1483
1498. doi: 10.1109/TPAMI.2019.2956516

Chen, L. C,, Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2014).
Semantic image segmentation with deep convolutional nets and fully connected
CREFs. arXiv [Preprint]. doi: 10.48550/arXiv.1412.7062

Dai, J., Qi, H, Xiong, Y., Li, Y., Zhang, G., Hu, H., et al. (2017). “Deformable
convolutional networks,” in Proceeding of the IEEE International Conference on
Computer Vision, Venice.

Dai, Z. (2020). Rice Disease Detection Technology Based on Semantic Segmentation.
Chengdu: Xihua University.

Girshick, R. (2015). “Fast
IEEE  International — Conference  on
1440-1448.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). “Mask r-cnn,” in
Proceedings of the 2017 IEEE International Conference on Computer Vision,
Venice, 2961-2969.

Hu, Y., Cang, Y., and Qiao, Y. (2020). Design of intelligent pig counting system
based on improved instance segmentation algorithm. Trans. Chin. Soc. Agric.
Eng. 36, 177-183.

Huang, Z., Huang, L., Gong, Y., Huang, C., and Wang, X. (2019). “Mask scoring
R-CNN;” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA: IEEE.

r-cnn,”  in Proceedings

Computer

of the 2015
Vision,  Santiago,

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

FN devised the study in collaboration with W-KS, GL, and HW.
MW carried out experimental work partly. All authors read and
approved the manuscript.

FUNDING

This work was supported by the Key Special Project National
Key R&D Program of China (grant number: 2018YFC1604000),
partly by the earmarked fund for Modern Agro-Industry
Technology. Research System (no. CARS-30), Natural Science
Foundation of Hubei Province (grant number: 2019CFC855),
partly by Supported by “the Fundamental Research Funds for the
Central Universities”, Huazhong Agricultural University (grant
number: 2662017PY119).

ACKNOWLEDGMENTS

We thank all the colleagues from Prof. Luo chaoxi’s team, College
of Plant Science and Technology, HZAU for helping collecting
and labeling the peaches’ images.

Jin, L., and Qian, L. (2020). Image semantic segmentation and localization of
brassica chinensis disease area based on deep learning. J. Anhui Agric. Sci. 48,
235-238.

Lin, K, Gong, L., Huang, Y., Liu, C, and Pan, J. (2019). Deep learning-
based segmentation and quantification of cucumber powdery mildew using
convolutional neural network. Front. Plant Sci. 10:155. doi: 10.3389/fpls.2019.
00155

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollar, P. (2017). “Focal loss for
dense object detection,” in IEEE Transactions on Pattern Analysis & Machine
Intelligence, 2999-3007, Piscataway, NJ: IEEE.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 39, 640-651.

Lu, J., Hu, J., Zhao, G., Mei, F., and Zhang, C. (2017). An in-field automatic
wheat disease diagnosis system. Comput. Electron. Agric. 142, 369-379. doi:
10.1016/j.compag.2017.09.012

Noh, H., Hong, S., and Han, B. (2016). “Learning deconvolution network for
semantic segmentation,” in 2015 IEEE International Conference on Computer
Vision (ICCV), Santiago: IEEE.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks
for Biomedical Image Segmentation. Cham: Springer.

Shi, J., Zhou, Y., and Zhang, Q. (2019). Service robot item recognition system based
on improved Mask RCNN and Kinect. Chin. J. Sci. Instrum. 40, 216-228.

Sun, K., Xiao, B., Liu, D.,, and Wang, J. (2019a). “Deep high-resolution
representation learning for human pose estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, 5693-5703.

Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., et al. (2019b). High-
resolution representations for labeling pixels and regions. arXiv. [preprint],
Avaliable at: https://arxiv.org/abs/1904.04514 (accessed April 19, 2022).

Frontiers in Plant Science | www.frontiersin.org

May 2022 | Volume 13 | Article 876357


https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2019.2956516
https://doi.org/10.48550/arXiv.1412.7062
https://doi.org/10.3389/fpls.2019.00155
https://doi.org/10.3389/fpls.2019.00155
https://doi.org/10.1016/j.compag.2017.09.012
https://doi.org/10.1016/j.compag.2017.09.012
https://arxiv.org/abs/1904.04514
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Yao et al.

Segmentation of Peach Diseases

Yang, X, Liu, M, Xu, J, and Zhao, L. (2018). Image segmentation
and recognition algorithm of greenhouse whitefly and thrip adults
for automatic monitoring device. Trans. Chin. Soc. Agric. Eng 34,
164-170.

Yao, N., Ni, F.,, Wang, Z., Luo, J., Sung, W. K,, and Luo, C, et al. (2021).
L2MXception: an improved Xception network for classification of peach
diseases. Plant Methods 17:36. doi: 10.1186/s13007-021-00736-3

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). “Pyramid scene parsing
network,” in Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, 2881-2890.

Zhong, W., Liu, X., Yang, K., and Li, F. (2020). Research on multi-target leaf
segmentation and recognition algorithm under complex background based on
Mask-R CNN. Acta Agric. Z. 32, 2059-2066.

Zhu, X., Hu, H,, Lin, S., and Dai, J. (2019). “Deformable ConvNets V2: more
deformable, better results,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA: IEEE.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yao, Ni, Wu, Wang, Li and Sung. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 71

May 2022 | Volume 13 | Article 876357


https://doi.org/10.1186/s13007-021-00736-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

& frontiers | Frontiers in

ORIGINAL RESEARCH
published: 28 June 2022
doi: 10.3389/fpls.2022.915543

OPEN ACCESS

Edited by:
Lei Shu,
Nanjing Agricultural University, China

Reviewed by:

Muhammad Musa Khan,

South China Agricultural University,
China

Tonghai Liu,

Tianjin Agricultural University, China

*Correspondence:
Chuanheng Sun
sunch@nercita.org.cn

Specialty section:

This article was submitted to
Sustainable and Intelligent
Phytoprotection,

a section of the journal
Frontiers in Plant Science

Received: 08 April 2022
Accepted: 24 May 2022
Published: 28 June 2022

Citation:

LiW, Yang Z Lv J, Zheng T, Li M
and Sun C (2022) Detection

of Small-Sized Insects in Sticky
Trapping Images Using Spectral
Residual Model and Machine
Learning.

Front. Plant Sci. 13:915543.
doi: 10.3389/fpls.2022.915543

Check for
updates

Detection of Small-Sized Insects in
Sticky Trapping Images Using
Spectral Residual Model and
Machine Learning

Wenyong Li', Zhankui Yang'?, Jiawei Lv'?, Tengfei Zheng'#, Ming Li' and
Chuanheng Sun

! National Engineering Research Center for Information Technology in Agriculture, Beijing, China, ¢ College of Computer
Science and Technology, Beijjing University of Technology, Beijing, China, ° College of Information Science and Technology,
Zhongkai University of Agriculture and Engineering, Guangzhou, China, * College of Information, Shanghai Ocean University,
Shanghai, China

One fundamental component of Integrated pest management (IPM) is field monitoring
and growers use information gathered from scouting to make an appropriate control
tactics. Whitefly (Bemisia tabaci) and thrips (Frankliniella occidentalis) are two most
prominent pests in greenhouses of northern China. Traditionally, growers estimate the
population of these pests by counting insects caught on sticky traps, which is not
only a challenging task but also an extremely time-consuming one. To alleviate this
situation, this study proposed an automated detection approach to meet the need
for continuous monitoring of pests in greenhouse conditions. Candidate targets were
firstly located using a spectral residual model and then different color features were
extracted. Ultimately, Whitefly and thrips were identified using a support vector machine
classifier with an accuracy of 93.9 and 89.9%, a true positive rate of 93.1 and 80.1%,
and a false positive rate of 9.9 and 12.3%, respectively. Identification performance was
further tested via comparison between manual and automatic counting with a coefficient
of determination, R2, of 0.9785 and 0.9582. The results show that the proposed
method can provide a comparable performance with previous handcrafted feature-
based methods, furthermore, it does not require the support of high-performance
hardware compare with deep learning-based method. This study demonstrates the
potential of developing a vision-based identification system to facilitate rapid gathering
of information pertaining to numbers of small-sized pests in greenhouse agriculture and
make a reliable estimation of overall population density.

Keywords: pest detection, sticky trap, small objects detection, image processing, machine learning

INTRODUCTION

Integrated pest management (IPM) has been widely applied to the agricultural practices in the field
to minimize yield loss and reduce the use of chemical insecticides (Boissard et al., 2008; Espinoza
et al., 2016; Rustia et al., 2020). This approach utilizes underlying presence of natural enemies, or
likelihood of presence in the field (Wen and Guyer, 2012; Yang et al., 2021). Therefore, the accurate
detection of pest species is essential for maximizing the successful IPM.
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In greenhouses, one of the most common approaches used
for pest detection is using sticky traps to capture insects and
subsequently count the presence (and number) of target pest
species on these traps. Based on the density and severity of
pests in the greenhouse, growers apply appropriate control
tactics (Ebrahimi et al., 2017). However, traditional manual
identification and counting of insects on a trap is a time-
consuming and labor-intensive task. Given these underlying
challenges associated with the identification and counting of
insect pests in the greenhouse, an automatic pest detection
approach is vital to the modern agricultural production.

With advancements in imaging technology and computer
software, image-based approaches have been developed in recent
years for the detection of small-sized pests in greenhouse
agriculture, including traditional machine learning and deep
learning methods. In the term of traditional machine learning,
Solis-Sanchez et al. utilized shape features (e.g., eccentricity
and area) and adaptive threshold discriminant method to
detect whiteflies (Solis-Sanchez et al., 2010). To improve feature
robustness, they extracted invariant features to discriminate and
identify different insect species and an improved precision was
achieved compared to previous work (Solis-Sanchez et al., 2011).
Besides, Xia et al. (2012) introduced a multifractal analysis
approach for detecting whiteflies on a sticky trap in situ using
a mobile robot to collect insects. Furthermore, to improve pest
counting efficiency, Xia et al. (2015) proposed an automatic pest
identification method suitable for long term monitoring in situ
with less computational cost by applying YCbCr color space
for segmentation and Mahalanobis distance for identification
of pest species (Xia et al.,, 2015). Espinoza et al. proposed an
image processing system that involved object segmentation, as
well as morphological and color property estimations, to detect
whitefly and thrips (Espinoza et al, 2016). However, these
color-based object segmentation methods were not robust to
various conditions in the field, such as variable illumination and
sticky glue degeneration. Rather than directly counting the pests
captured on the traps, Sun et al. presented a counting algorithm
to treat trapped pests as “noise” in a two-dimensional (2D) image
with two-dimensional Fourier transform (2DFT) serving as a
specific noise collector (Sun et al., 2017), but it could not separate
pests from real environmental noises and thus did not resolve
the species identification problem. In contrast to conventional
machine learning methods, deep learning methods automatically
ascertain the comprehensive features from the training dataset,
avoiding complex image processing procedures during object
segmentation and labor-intensive feature engineering to meet
various outdoor conditions. Rustia et al. developed a cascaded
approach that detects and filters out non-insect objects from the
detected objects using a convolutional neural network (CNN)
detector in the first stage and then further classifies the obtained
insect objects into different species using a multi-class CNN
classifier (Rustia et al., 2020). Li et al. (2021) proposed a deep
learning model on the basis of the Faster R-CNN architecture to
optimize the detection accuracy of tiny pests in sticky trap images
from agricultural greenhouses.

Although the above-mentioned studies have achieved good
performance and solved some special problems, there is still space

for improvement in this area of research. For instance, these
methods based on traditional machine learning are not flexible
due to the object segmentation bases on threshold strategies. In
deep learning area, the typical classification models using the
CNN structure rely on large datasets to train the models, but
actually, it is hard to obtain a large labeled dataset in many
cases (Li and Yang, 2020). Furthermore, greenhouse pests such as
whitefly (Bemisia tabaci) and western flower thrips (Frankliniella
occidentalis) are small in size, which will cause information loss
during the multi-layer convolution in deep learning architecture.
Although many object detectors based on deep learning perform
well on medium and large objects, they perform poorly on
the task of detecting small objects (Tong et al., 2020). This
is because small objects lack appearance information needed
to distinguish them from background or similar categories.
However, comparing to image background, these tiny pests could
be regarded as many “novelty” objects in the sticky trapping
images. Since the spectral residual model is independent of
features, categories, or other forms of prior knowledge of the
objects, it has been widely in small object detection (Zhou and
Zhang, 2007; Cui et al., 2012; Deng and Duan, 2013). Therefore,
we investigate whether it can be also applied to detect very small
pests under natural greenhouse conditions.

In this study, we propose a spectral residual model-
based method in combination with a support vector machine
(SVM) classifier to identify the most important pests in
greenhouse of northern China, namely whitefly (Bemisia tabaci)
and thrips (Frankliniella occidentalis). This work provides
a major step toward population estimation in greenhouses
and providing accurate, rapid and reliable results to aid in
decision making processes for pesticide application and pest
management approaches.

MATERIALS AND METHODS

Data Collection

Red-green-blue (RGB) color images were captured automatically
by a pest monitoring device (Figure 1) in a greenhouse
located in Fangshan district, Beijing, China (39°38'19.29"N,
116°01'29.98"E). The device consisted of a solar panel, sticky
trap, image acquisition module and storage battery. The device
was deployed in the center of the greenhouse, and the height
of the sticky trap (25 x 30 cm, Pheorbio®) was above the
crop at 1.5 m from ground level. The sticky trap is a typical
attractant trap used widely for collection of pests of interest
whereby insects became adhered to the sticky surface. The
experiment was carried out on green pepper plants cultivated
under greenhouse conditions.

Two species, adult-stage whitefly (B. tabaci) and thrips
(F. occidentalis) were selected as the detection target in this study.
Solid-color traps were used to avoid “noise” in the digital images
caused by grids, as previously reported elsewhere (Xia et al,
2015; Espinoza et al., 2016). Images of the sticky trap (25 x
20 cm) were collected and transmitted to a remote server at
2,560 x 1,920 pixels every 2 h daily (8:00 a.m. to 18:00 p.m.).
Generally, the sticky paper is replaced every 6 days to maintain
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FIGURE 1 | Image acquisition equipment and sticky trap for detection of
insect pests in greenhouse conditions (Li et al., 2021).

good trapping effectiveness. Therefore, in this study, eighteen
original images were selected to extract training samples from
six consecutive days, that is, three original images were selected
each day in the period (one image in the morning, midday, and
afternoon, respectively). Likewise, eighteen original images were
selected to create test samples from another six consecutive days.
Thereafter, sample images of three classes, two target species
and background, were extracted with a square box of 32 x 32
pixels manually from the original images. Ultimately, 500 sample
images for each class, totally 1,500 sample images, were randomly
selected from the first eighteen original images to construct the
training dataset. And all target species (whitefly and thrips) on
the second eighteen original images were used as test dataset.

Detection Method

The proposed detection method consisted of three stages:
candidate object location, feature extraction and multi-class
recognition. The candidate object location is a pipeline to detect
the location of objects (section “Candidate Object Location”),
feature extraction devotes to extract feature of the detected
objects (section “Feature Extraction”) and these obtained objects
were then further classified into whitefly, thrips and background
in the stage of multi-class recognition (section “Multi-Class
Recognition Model”). These procedures are outlined in the
following subsections.

Candidate Object Location

Before performing feature extraction and pattern recognition, the
locations of candidate targets within the image are determined.
The locationpipeline in the sticky trapping images involved
several subroutines, as shown in Figure 2. First, a color-based
segmentation approach is design to extract the sticky paper
region from the original image. Then, the sticky trapping image

is divided into sub-block images and objects in each sub-block
image are locally detected using a saliency region detection
model. Subsequently, a threshold is determined and used to
obtain the location of the objects.

Extraction of Sticky Paper Region

The sticky paper region, denoted as the region of interest
(Rol) in this study, is extracted from the original image. First,
the original image (Figure 3A) is transformed into YCbCr
color space from the RGB color space and the Rol could be
distinguished from background based on the Cb component of
YCbCr color space (Figure 3B). Subsequently, the Cb component
is processed into a binary image (Figure 3C) using the Ostu
method (Otsu, 1979) and a morphological fill operation. Finally,
the Rol image (Figure 3D) is obtained by performing a logical
conjunction between the original image (Figure 3A) and the
binary image (Figure 3C).

Image Blocking

The small-sized insect pests in this study can be distinguished
more accurately at a small scale as opposed to a global (i.e., whole
Rol) image. Thus, the Rol image is divided into multiple sub-
blocks using a sliding window and each block size was 64 x 64
pixels, as shown in Figure 4.

Saliency Region Detection

In the sub-block image, small-size insects in local window were
regarded as “novelty” objects or saliency regions. These insects
can be identified and localized using the saliency region detection
method. In this study, a spectral residual model (Zhou and
Zhang, 2007) is used to locate the small-size insects in each sub-
block image. To construct the saliency map, the spectral residual
is extracted by analyzing the log-spectrum of the input sub-block
image. Given a sub-block image I(x), the saliency map image S(x)
can be obtained using the following equations:

A(f) = | FlI(] | (1)

P(f) = @(FlI(x)]) 2)

L(f) = log(A(f)) 3)

R(f) = L(f) = ha(N*L() (4)
S(x) = gx)"F'[exp(R(f) + iP())]? (5)

where F and F~! denote the Fourier Transform (FT) and Inverse
Fourier Transform (IFT), respectively. A(f) and P(f) denote the
amplitude and phase spectrum of the image, respectively. L(f)
and R(f) denote the log spectrum and spectral residual. h,(f)
and g(x) denote local average and Gaussian filter, respectively.
The pipeline of saliency region detection is illustrated in
Figure 5. First, the log-spectrum using two-dimensional fast
Fourier transform (2DFFT) and a logarithm to the input sub-
block image (Figure 5A) are calculated. As shown in Figure 5B,
most of the log-spectrum distribute in the low frequency portion
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FIGURE 2 | Flow chart of the candidate object location pipeline from source image to detection results.
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| e

FIGURE 3 | lllustration of the sticky trap region extraction using image processing technology: (A) original image, (B) Cb component in YCbCr color space, (C)
binary image, and (D) extraction result of the specific region of interest.
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FIGURE 4 | Image blocking diagram. (A) This sticky trapping image is divided into a specific region of interest with a specific scale and (B) an illustration of an

enlarged sub-block image.
D E

FIGURE 5 | lllustration of saliency region detection for insect pests collected on sticky traps and identified with image acquisition software: (A) a sub-block image
from the sticky trap, (B) log-spectrum distribution of the sub-block, (C) the spectral residual image, (D) a saliency map of the insect pests and (E) binary image of
the saliency map.

Frontiers in Plant Science | www.frontiersin.org 75 June 2022 | Volume 13 | Article 915543


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Lietal

Detecting Small-Sized Insects

(white regions of the center), which represents the input image
includes slowly changing background and a few salient objects.
The spectral residual is obtained by the log-spectrum minus
the average spectrum which can be approximated using a
local average filter (e.g., step size = 3). However, it can be
found from Figure 5C that the spectral residual contains high
frequency information, which is sharply different from the
log-spectrum. After using a two-dimensional inverse Fourier
transform (2DIFFT), the saliency map in spatial domain is
constructed and the novelty objects (candidate insects in this
study) of the image can be seen more clearly in the saliency
map (Figure 5D).

Image Binarization

The saliency map is an explicit representation of candidate insects
in the image. Furthermore, there may be multiple objects within a
saliency region. In this section, a threshold segmentation method
combined with watershed theory (Meyer, 1994; Dorj et al., 2017)
is designed to detect insects within this saliency region. First,
the saliency map image is transformed into a binary image
using an adaptive threshold value and then watershed algorithm
(Tarabalka et al., 2010; Zhang et al., 2014) is selected to segment
multiple objects. Since the intensity of the histogram of the
saliency map only had a peak and the peak is close to the darkest
side, as shown in Figure 6, the threshold value is adaptively
determined by using a triangle theory. The steps are as followed:

S1: Constructing a line from the peak to the first darkest point
on the intensity histogram.

S2:  Calculating the distance from

histogram to the line.

each point of

S3: The location Ta which has the largest distance d is the
threshold value.

A binary image could be obtained by using the proposed
threshold method. Furthermore, the size of target pests is
approximately from 5 pixels to 25 pixels in a sub-block image.
Therefore, non-target objects whose sizes are less than 5 pixels
or more than 25 pixels are removed from the binary image.
Ultimately, the remaining isolated individuals represent the
location results (Figure 5E).

Feature Extraction

To identify insect species on the Rol image, all isolated insects
are segmented and their features are extracted from sub-
block images. As shown in Figure 7, the sample pest i on
a sub-block image (Figure 7A) could be segmented into an
isolated pest (Figure 7C) by performing a logical conjunction
operation between the sub-block image and the detected region
(Figure 7B). As shown in Figure 7C, the shape of segmented
object is different from its original appearance because of
inaccurate segmentation for some pixels of the insects, especially
in the boundary of insect region. Therefore, the insect contours
are not smooth and the insects can’t be accurately identified
based solely on shape feature. However, for the two species
(whitefly and thrips), different color variation occurs as shown
in Figure 4B. Therefore, the color feature is a critical factor

to identify the insect species. To determine the optimal color
feature, four color models widely used in computer vision-based
applications (Kurtulmus et al, 2011; Hu et al, 2012; Reyes
et al,, 2017; Tan et al., 2018) are evaluated: RGB (red, green and
blue), HSV (hue, saturation and value), YCbCr (luminance, blue-
difference and red-difference) and L*a*b* (lightness, green-red,
and blue-yellow).

The features of each segmented sample are represented by
average values of R, G, and B components in RGB space, H, §,
and V component in HSV space, Y, Cb, and Cr components in
YCbCr space, L*, a*, and b* in L*a*b* color space, respectively.
The transformations are shown in Egs (6)-(9).

nj nj
R 2B g 2nG g 2ab g
j j j

n;i nj nj
H = ZiélHi’ 5 = Z,-Ll Si, vV — Z,']=1 Vi )
nj nj 1

nj nj nj
_ JY — L Ch — .~ Crj
Y = Zz_l 1’ Ch = Zz_l 1’ Cr = Zz_l 1 (8)
hj nj nj
nj * n; * nj *
= Zi]=1Li, T = il “i’ T = 2l b )
hj n; hj

average value of corresponding color component over all pixels.
nj denotes the number of image pixel of the jth segmented
insect sample. The three average components of a sample in each
color space constructed a three-dimensional vector fj1, fi, fi3
, as shown in Figure 7D, which is used as the input of the
classifier (discussed in Section “Multi-Class Recognition Model”)
for species classification.

Multi-Class Recognition Model

After features extraction, a following step is to develop an
efficient model to identify different insect species. In this study,
the supervised learning model, support vector machine (SVM)
(Chen et al,, 2010; Li et al., 2010; Saruta et al., 2013), is used
as a classifier to discriminate objects between whitefly, thrips or
background. For the SVM model, all samples are viewed as points
in p-dimensional space and these points in separate categories are
divided through a clear gap that is as wide as possible (Rumpf
et al., 2010). New examples are then mapped into the same space
and predicted to a certain category based on which side of the
gap they fall (Larese et al., 2014). In this study, each sample in
the training set is marked as belonging to a whitefly, a thrips
or background object and all samples are formed into pairs
of features-label examples such {x;, y;}, where x; is the three-
dimensional feature vector and y; is a class label. Our ultimate
goal is to find the “maximum-margin hyperplane” that can divide
the groups of samples. One of many possible hyperplanes can be
expressed by the following equation:

fx)=wixi+b=0 (10)
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FIGURE 7 | Images documenting feature extraction of individual insects. (A) Sub-block image, (B) a detected region, (C) an isolated insect, (D) feature vector in

color space.

where w e R? and b € R. A support vector classifier selects
the hyperplane that maximizes the margin. This optimization
problem can be posed as follows:

,yiwTxi+b)—1>0

min Hw (11)
w,b

In this study, the LIBSVM package (Chang and Lin, 2015),
which supports support vector classification (C-SVC, mu-SVC)
and regression (epsilon SVR, nu-SVR), is used to conduct the
identification model development.

Performance Evaluation

The detection results are evaluated using metrics, such as
the true positive rate (TPR), false positive rate (FPR) and
detection accuracy. These metrics have been widely used in object
classification and detection areas (Xia et al., 2012; Nasirahmadi
et al.,, 2017; Shrestha et al., 2018). TPR refers to the effectiveness
of a classifier to identify positive samples, whitefly and thrips in
this study. A high TPR value means that most of the positive

samples are detected successfully. While FPR indicates that how
effectively a classifier could identify negative samples. A low FPR
value indicates the identification results contain a low percentage
of false alarms and a high percentage of true positives. These
parameters are calculated as follows:

TP
TPR = ———— (12)
TP + FN
FP
FPR = ————— (13)
TN + FP
TP+ TN
Accuracy = + (14)

TP + TN + FP +FN

where TP, TN, FP, and FN denote true positive (correctly
identified), true negative (correctly rejected), false positive
(incorrectly identified) and false negative (incorrectly
rejected), respectively.
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RESULTS

Sample Distribution in Different Color
Space

After saliency region detector scanning across all images, the
locations of most potential objects are detected. To identify those
objects into different species, the feature distribution of whitefly,
thrips and background are analyzed in four color spaces. The
component of R, G, a*, b*, Cb, Cr, H, S in RGB, L*a*b*, YCbCr
and HSV color space are illustrated in Figure 8. The distributions
of different features showed that there is considerable overlap
between targets (whitefly and thrips) and background in the RGB
color feature space. Therefore, it is difficult to classify whitefly and
thrips from the background category (Figure 8A). As shown in
Figure 8B, whitefly can be separated from background category
in L*a*b* color space but thrips still can’t be separated from
background category. Furthermore, the distribution of YCbCr
features was similar to L*a*b* color space and thrips can’t be
separated from category. In addition, there is some confusion
between whitefly and thrips (Figure 8C). Figure 8D documents
the distribution of the three categories in HSV color space, which

shows that it is relatively easy to classify the three categories.
Therefore, the components of H, S and V are used to detect
different insect species in current study.

Detection Results

The images captured from the field are complicated due to
variable conditions such as unstable illumination, light reflection
and various objects. Figure 9 shows some examples of insect
detection of different species in three sub-blocked images with
different image quality.

As shown in Figure 9A, it is a good-quality image with
smooth background. However, most of background in Figure 9B
is whitened because of the sticky glue degenerated over time,
and light reflection causes low-quality image in Figure 9C, which
brings difficulties to the insect detection. The location results
using the saliency region detection method are numbered as
shown in Figures 9D-F, respectively. Every identified object is
located using a bounding box, red for thrips, blue for whitefly
and green for background category (non-target) in Figures 9G-1I,
respectively. The results showed that all whiteflies and thrips
in Figure 9A are detected successfully. However, there were
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FIGURE 9 | Original images, location results and detection results of three image samples with different quality. (A,D,G) Are for sample 1, (B,E,H) are for sample 2,
(C,F)l) are for sample 3.

some missing detections marked with black ellipse in Figure 9B.
Furthermore, some spots (marked with black rectangle) caused
by sticky glue are falsely classified as whiteflies in Figure 9C.

The insect detection performance is evaluated using TPR,
FPR and accuracy which are described in section “Performance
Evaluation.” Initially, the two pest species in the testing dataset
are separately marked manually and subsequently the evaluation
metrics are calculated according to the detection results using
Eqs (11)-(13). The overall detection performance on the three
categories is shown in Table 1. The TPRs for whitefly and
background categories were over 90% and the lowest TPR rate
of 80.1% is obtained by the thrips category. The reason may

be that some insects are attached to the sticky traps for a long
time, and they became obscure due to weathering and dryness
causing lack of detection. Additionally, the size of thrips is
particularly small, ranging from 5 pixels to 20 pixels, such that
it merged with the background thereby becoming indistinct. The
feature distribution between the background and thrips in section
“Sample Distribution in Different Color Space” may further verify
the result. However, these recently trapped insects are easier to
locate and identify.

The detection method for all categories produced false
positives. The lowest FPR of 9.9% is for whitefly but is higher
for thrips (12.3%) and background detection (11.6%). These are
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TABLE 1 | Detection performance for small-size pests (whitefly and thrips) by the
SVM classifier using field sticky trap images (n = 18, mean + SD).

Objects Performance metrics

TPR FPR Accuracy
Whitefly 0.931 £+ 0.031 0.099 + 0.019 0.939 + 0.015
Thrips 0.801 4 0.037 0.123 + 0.039 0.898 + 0.022
Background 0.930 + 0.021 0.116 +£ 0.037 0.933 +0.014

typically caused by degeneration of glue on the sticky trap and
these produced “noise” in the form of point, stripe and bulk spot.
The latter two noises could be easily filtered by this proposed
location method. However, spot noises are easier misclassified
into pest targets, especially whiteflies due to their size and color
being similar to the targets.

The accuracy metric for whitefly is the highest at 93.9%
followed by 93.3% for background category and 89.8% for thrips.
The identification accuracy is further evaluated by correlation
analysis between the proposed method and manual counting,
as shown in Figure 10. The coefficient of determination, R2,
reached values of 0.9785 and 0.9572 for whitefly and thrips in
the test dataset, respectively. Compared with manual counting,
the proposed detection algorithm tended to overestimate the
abundance of whitefly and underestimate thrips. Additionally,
there are higher FPR for whitefly and increased TPR for thrips
in the test dataset.

DISCUSSION

Principle and Feasibility Analysis

This study clearly demonstrates the utility of using a remote
imaging approach combining image processing and pattern
recognition technology to locate and identify whitefly and thrips
on sticky trap in greenhouse conditions. The detection of
whitefly and thrips on the sticky trap is primarily composed
of two procedures: candidate target location and subsequent
identification. Compared with detection in a large image, the
small-sized whiteflies and thrips are more accurately recorded
on small visual areas. The image blocking procedure is included
in the study to split original image into small sub-blocking

images to increase area occupancy rate. From the perspective of
information theory, an image consists of two parts: the novelty
part (saliency regions) and redundant information (Zhou and
Zhang, 2007). The background in a sub-blocking image is the
statistical redundant component and whitefly and thrips in the
image could be regarded as the novelty component. There are
different spectral responses for the novelty and redundant parts of
the frequency domain. After removing the frequency response of
the redundant part from the whole spectrum, the novelty part can
be obtained. The most important advantage is that the saliency
region detection model is independent of species, features, or
other forms of prior knowledge of the objects.

The second step after object location is multi-class
identification. The segmented objects in the first step not
only contain whitefly and thrips, but also include the non-target
category. However, the identification of whiteflies and thrips
from non-targets is challenging and feature extraction is a
key step in the classification process. Similar studies on the
insect detection extracted shape features such as size, body
eccentricity and solidity to classify species (Solis-Sanchez et al.,
2011; Wang et al.,, 2012; Espinoza et al., 2016). However, due
to the small size characteristics of whiteflies and thrips, the
contours of the pests are not smooth after they are extracted
from background and could not be accurately identified based
on shape features. Despite the challenges, color feature analysis
revealed different feature distribution in HSV color space and
three color components (H, S, and V) are used as feature input of
SVM classifier to identify whiteflies and thrips in this study.

Robustness Analysis

The image-based pest identification method has previously
demonstrated high performance on collected images in the
laboratory conditions (Cho et al., 2007; Boissard et al., 2008).
However, field condition are very different from the laboratory
environment since the sticky trap images captured in greenhouse
can be influenced by various factors including sticky glue
degeneration, light reflection and unstable variable illumination
conditions (Xia et al., 2012). For example, Cho et al. (Cho et al.,
2007) utilized the RGB and YUV color model to separate three
different species. In addition, insect segmentation by YCbCr color
model has revealed better results than other methods among
different color models (Xia et al., 2015), but these segmentation

A
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FIGURE 10 | Comparison of results between the proposed detection method and manual counting for (A) whitefly and (B) thrips using the testing dataset.
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(C) segmentation result of the proposed method.

FIGURE 11 | Pest segmentation results of a sub-blocking image with noise by different methods. (A) Original image, (B) segmentation result of YCbCr color model,

TABLE 2 | Comparison between the proposed and previous methods for detection of whitefly and thrips using sticky trap images.

Method Imaging Segmentation Features Classification Pest species Average
scene method accuracy (%)

Qiao et al. (2008) Field-based Thresholding Color and size Comparative method Whitefly 76.9

Xia et al. (2015) Lab-based Thresholding Color and size Mahalanobis distance ~ Whitefly, aphids, 91.0
thrips

Espinoza et al. (2016) Lab-based Thresholding Morphology and color ANN Whitefly and 94.0
thrips

Li et al. (2021) Field-based No Deep learning automatically Softmax Whitefly and 94.4
thrips

The proposed method Field-based Spectral residual model Color SVM Whitefly and 91.9
thrips

methods based on the color model have some shortcomings when
applied into field images. As shown in Figure 11A, there is some
noise in upper part of the image caused by degeneration of sticky
glue and light reflection. The segmentation result (Figure 11B)
using the YCbCr color model shows these objects (marked with
black ellipse in Figure 11A) are entirely missed. However, these
objects in the noise region still can be segmented by the proposed
method (Figure 11C). Although the multifractal analysis method
was designed against noise when used under field conditions and
showed high performance regarding accuracy, only one species
of pest, whiteflies, had been detected and the image collected
device and procedure was relatively complex (Xia et al., 2012).
Rather than directly counting the pests captured on the traps, Sun
et al. (2017) treated trapped pests as noise with 2DFT serving
as a noise collector. This method obtained a high correlation
with human counting when there was no other noise, but the
Fourier transform in a case when there are noise and pests at low
population density is similar to another case when pests at high
population density and no noise. In addition, it could not address
the problem associated with multi-class identification.

In current study, the pests are regarded as novelty objects
and located by the saliency region detection method which is
independent of color features and other forms of prior knowledge
of the objects. Therefore, good robustness of pest segmentation in
field images could be obtained by the proposed method.

Conversely, since some pests are attached to the trap for a
long time, there is limited resolution in the imaging and the
pest region in the saliency map is unclear, which will cause
missing detection after binary image processing. Contrasting
with the Otsu algorithm (Otsu, 1979), the threshold selected by
the triangle method (section “Candidate Object Location”) can
improve the detection rate since it utilized the single-peaked
feature of a histogram, but there are still some pests with low
novelty that are not reliably detected. In actual application, the
optimal option is replacement of the sticky trap on schedule
to avoid loss of resolution and missing data due to sticky
trap degeneration.

Comparisons With Previous Methods

Regarding to insect pest detection using sticky traps, several
image-based methods had been reported, including handcrafted
feature-based and deep learning-based methods. However, it is
difficult to compare the performances of these previous studies
with the proposed one quantitatively because of the use of
different dataset which is not publicly available. Therefore, a
qualitative analysis had been made in this study. Comparisons
of the proposed approach with some methods for detecting
greenhouse pests, such as whitefly and thrips, using sticky
trap images are summarized in Table 2. Two previous method
proposed by Xia et al. (2015) and Espinoza et al. (2016) used
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images scanned in the laboratory as research materials, but the
comparison showed that the prediction results of the proposed
method outperformed the method of Xia et al. (2015). While
the detection results reported by Espinoza et al. (2016) presented
the higher accuracy, the study used thresholding method to
segment targets, which causes the results were likely influenced
by the segmentation threshold. Qiao et al. (2008) reported a fact
that a small threshold loses relevant information, while a large
threshold produces more noise, so its accuracy is much lower
than that of the proposed method. It must be acknowledged
that the performance of the proposed model is lower than that
of deep-learning-based method reported by Li et al. (2021),
however, the method based on deep learning technology has high
complexity and depends on high-performance hardware, such
as GPUs'.

Pest Identification and Management

During our experiments in a greenhouse planted with pepper,
whitely and thrips are the two main pests. Although only whitefly
and thrips are identified in this study, the proposed method can
have additional applications into the detection of multiple pests
in greenhouse agriculture. The methodology for the detection of
more than three species is similar to that proposed in section
“Detection Method” except that more categories will be required
to extract information to allow for the construction of a new
baseline dataset.

In ecological studies, IPM usually relies on pest population
density assessment in a given area and is often estimated based on
trap counts (Petrovskii et al., 2012; Pinto-Zevallos and Vanninen,
2013). Therefore, precision identification and counting of pests
in a sticky trap image is of critical importance for the estimation
of population density. However, the relationship between trap
counts of whitefly and thrips and the actual population
density in the greenhouse is not clear. Such validation studies
would form a critical future basis for pest management using
image processing of pest populations in greenhouses (or open
field situations).

CONCLUSION

This study proposed a novel approach for the detection of adult-
stage whiteflies and thrips on sticky traps in greenhouses. The
approach consisted of three modules: object location, feature

! https://www.nvidia.cn/
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Shuo Wu, Jizhan Liu*, Junquan Zhen, Xiaojie Lei and
Yao Chen
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Jiangsu University, Zhenjiang, China

Air-assisted spray technology is widely applied in high-efficiency pesticide
applications. The resistance characteristics of the crop canopy reflect its
energy dissipation effect on the assisted airflow, connecting the structure
of the crop canopy, assisted airflow velocity, and droplet deposition
effect. Using a common broad-leaf crop canopy as the research object,
the resistance characteristics of the crop canopy in the air-assisted
field were investigated in this study by performing theoretical analysis
and wind tunnel tests. Further, the feasibility of using the resistance
characteristics of the crop canopy was assessed to evaluate its droplet
deposition effect. The results showed that under the conditions of
different number of leaf layers and initial leaf azimuth angles, the canopy
pressure drop experiences a non-linear increasing trend with increasing
assisted airflow velocity and that its regression function conforms to the
Darcy—Forchheimer function. Moreover, when the initial azimuth angles
of single- and multi-layer leaves were 90°-270°, the change rate of
the canopy pressure drop with airflow velocity was 7-9m/s, and there
was a critical wind speed. However, with an increasing number of leaf
layers in the crop canopy and changes in the initial leaf azimuth angle,
the corresponding changes between the maximum canopy pressure drop
and resistance coefficient were non-linear. Thus, it is proposed that the
resistance characteristics of multi-layer leaves cannot be quantified as
the results of the linear superposition of the resistance characteristics
of several single-layer leaves—that is, it should be regarded as a whole
research object. Combined with the analysis of the influence of the crop
canopy resistance on droplet deposition, it is considered that when the
crop canopy has multiple leaf layers in the airflow direction, the existing
air-assisted spray technology cannot guarantee droplet deposition and
canopy penetration simultaneously.

KEYWORDS

air-assisted spray, crop canopy, resistance characteristics, droplet deposition,
pesticide spraying

frontiersin.org
84


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.924749﻿&domain=pdf&date_stamp=2022-07-15
https://www.frontiersin.org/articles/10.3389/fpls.2022.924749/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.924749/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.924749/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.924749/full
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.924749
mailto:1000002048@ujs.edu.cn
https://doi.org/10.3389/fpls.2022.924749
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Wu et al.

Introduction

Crop protection is an important agronomic practice that helps
ensure crop yield and quality, with pesticide usage being one of the
more effective and widely employed crop-protection methods
(Davydov et al., 2018). However, droplet drift, poor canopy
penetration, and poor target deposition in pesticide spraying can
lead to problems such as pesticide and water wastage,
environmental and food
(Carvalho, 2006).

Air-assisted spray technology can reduce droplet drift and

pollution, safety concerns

improve canopy penetration and droplet deposition uniformity by
transporting pesticide droplets to the target surface and driving
canopy leaves by means of airflow. This method is simple, reliable,
and easy to control, making it one of the most widely used spray
techniques (Hong et al., 2018). Its integration with pesticide
adjuvants, electrostatic spraying, targeted spraying, variable-rate
spraying, and other technologies has also become a development
trend in crop protection research (Krogh et al., 2003; Stajnko et al.,
2012; Patel, 2016; Abbas et al., 2020).

However, Foqué et al. compared the droplet deposition results
of vertical sprays with and without air assistance and found that,
in some cases, vertical spray deposition was significantly better
without air assistance than with it (Foqué et al., 2012). Similarly,
our team has been engaged in the research and development of
strawberry pesticide spraying technology and equipment for some
time. We found that a continuous increase in airflow velocity does
not always improve droplet deposition (Wang et al., 2020),
because, although the ability of the airflow to change the physical
characteristics of the pesticide—such as the droplet size and
motion—effectively to improve the canopy penetration and
deposition, the motion of crop leaves affected by the assisted
airflow force has an equally important effect on droplet deposition.
Not all of the crop leaf motion affected by the assisted airflow force
in air-assisted spray technology is positive (Derksen et al., 2008).

Therefore, the authors conducted related research on the
motion characteristics of strawberry leaves in an air-assisted spray
field and their effects on droplet deposition (Wu et al., 2021).
Efficient droplet deposition of the crop canopy required that when
a leaf moved due to the assisted airflow, contact was ensured
between the front and back of the leaves and the droplets, and a
reasonable state of motion was achieved to ensure effective
deposition. Moreover, the initial position and attitude of crop
leaves relative to the assisted airflow affected their state of motion.
When the initial azimuth angle of the strawberry leaves was
90°-270°, the airflow more than the critical wind speed drove the
leaves to produce a high-frequency, high-amplitude state of
vibration that produced a good deposition effect for droplets of
small diameters.

Although the initial position and attitude of crop leaves
relative to the assisted airflow and speed of the assisted airflow
affect droplet deposition, it can be difficult to obtain the initial
position and attitude of all leaves in the crop canopy in real time.
Moreover, the group effect of crop leaves makes the movement of
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the group significantly different from that of a single leaf.
Consequently, it can be difficult to evaluate the droplet deposition
effect of the crop canopy directly through the initial position and
attitude of the leaf group relative to the assisted airflow and
assisted airflow velocity.

Based on droplet deposition methods—such as the use of
water-sensitive paper—to evaluate the crop canopy droplet
deposition effect under different air-assisted spray conditions, an
efficient deposition mechanism can be achieved by combining
high-speed photography with droplet tracing technology, a widely
used research method in the field of crop protection (Sanchez-
Hermosilla and Medina, 2004; Wang et al., 2008). However, this
traditional method can be hampered by expensive equipment,
cumbersome processes, and repetition. How to realize the rapid
and low-cost evaluation of the effect of droplet deposition on the
crop canopy remains a difficult technical problem.

The resistance characteristics of the crop canopy reflect its
effects on the airflow energy dissipation at the macro level, which
are closely related to the characteristics of the crop canopy—that
is, the number of leaves, their initial positions, and the attitude of
the leaves relative to the assisted airflow—and assisted airflow
velocity (Lhomme, 1991; Fang et al., 2020). In air-assisted spray
operations, the airflow and droplets interact with each other, so
the resistance characteristics of the crop canopy are closely related
to the droplet deposition effect (Liu et al., 2021a). Clearly, the
resistance characteristics of the crop canopy can easily form the
basis for establishing the relationship among the crop canopy
structure, assisted air velocity, and droplet deposition effect. In
addition, it is easy to perform rapid measurement at low cost.

Consequently, a broad-leaved crop canopy was considered the
research object in this study. Based on the relevant theories and
wind tunnel tests, the resistance characteristics of single and
multi-layer leaves in the assisted airflow field were studied. The
effects of the number of leaf layers, initial position and attitude of
the leaves relative to the assisted airflow, and effect of the assisted
airflow velocity on the resistance characteristics were analyzed.
The feasibility of evaluating the deposition effect of crop canopy
droplets based on the resistance characteristics of the crop canopy
was assessed. This research provides a theoretical basis for and
insight that will facilitate rapid, low-cost research and development
of crop protection technology and equipment.

Theory

Motion of broad-leaf crop leaves in
air-assisted spray field

As leaves are the basic elements of the crop canopy, their
motion in the air-assisted spray field constitutes the mathematical
basis of relevant theoretical and experimental studies. In a
previous study, we proposed a visual descriptive method for leaf
motion in an air-assisted spray field, as detailed below (Wu
etal.,, 2021).
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As shown in Figure 1, the base coordinate system, eyeyez,
is used to represent zero rigid bodies such as the plant roots or
ground. The €y -axis in the base coordinate system, eyeyez, is
parallel and opposite to the horizontal component of the airflow,
V. Concurrently, the dynamic relative reference system, OXYZ,
for leaf motion can be established in the base coordinate
system, eyeyez.

The dynamic relative reference system, OXYZ, has the
following features: Point O is the mass center of the leaf; the
OX-axis is parallel to the horizontal component of the airflow,
J, and has the opposite direction; the OY-axis is vertically
orientated; the elliptic ABCD simplifies the representation of
the leaf; and line segments CD and AB represent the long and
wide axes of the leaf, respectively. Line segment CE represents
the slender stem, and point C represents the thin and short
petiole connecting the stem and the leaf. The angle between the
normal vector, 77, on the front surface of the leaf, ABCD, and
the OZ-axis is the inclination angle, 0, of the leaf. The angle
between the normal vector, 7, on the front surface of the leaf,
ABCD, on the OXY horizontal plane and the OX-axis is the
azimuth angle, @, of the leaf, counterclockwise being the
positive direction. The characteristic normal vector, 7, of the
position and posture of the leaf relative to the dynamic relative
reference system, OXYZ, is (sinOcos@, —sinBsing, cosd), and
the position vector, 7, of the dynamic relative reference system,
OXYZ, relative to the base coordinate system, eyeyez, is (x,,
Yo» Z,). Therefore, the position and posture of the leaf relative to
the base coordinate system, eyeyez, can be expressed by (x,,
Yoo 2o SinBcosg, sinBsing, cosB), characterized by the
vector Npgsic.

The motion of the leaf in the base coordinate system in the
air-assisted spray field can be expressed as follows:

FIGURE 1
Visual description of leaf movement of broad-leaved crops in
air-assisted spray field.
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ﬁbasic,ﬁrst X Atrans = ﬁbasic,ﬁnal (1)

where 7ipagsic first is @ vector of the initial position and posture
of the leaf relative to the base coordinate system, eyxeyez, atthe
beginning; fipasic first i a vector of the initial position and posture
of the leaf relative to the base coordinate system, eyeyez; and
Aprans is the position and posture change matrix of the leaf as
influenced by the airflow relative to the base coordinate
system, eyeyez.

Mechanism of capturing droplets in crop
leaves

The process of droplet capture in crop leaves can
be complicated, with the droplets, airflow, and leaves interacting
during contact. However, the contact between leaves and droplets
is the premise of effective deposition. To simplify the analysis, only
the influence of the airflow on leaf movement was considered in
this study, ignoring the influence of the airflow on the droplets and
that of the droplets and leaves on the airflow during the contact
process between the leaves and droplets.

In a previous study, as shown in Figure 2—combined with the
relevant research conclusions of Dorr et al.—the contact process
between droplets and plant leaves was thought to occur in three
stages: that is, the pre-contact, spreading, and rebound,
sputtering, or deposition stages (Dorr et al., 2016; Wu et al,
2021). Droplets are accelerated by the nozzle injection pressure
and sprayer airflow in the pre-contact stage, having initial kinetic,
potential, and surface energies, with the total energy being E,.
After a droplet collides with a leaf surface, the initial kinetic
energy and potential energy of the droplet are converted into
surface energy because of the enlargement of the droplet surface
area, with the energy dissipation during the collision being E ;-
- When the diffusion radius reaches its maximum, the droplet
begins to shrink under the action of surface tension, during
which the energy dissipation is Egq, -

When the droplet reaches its maximum contraction stage, the
total energy, E,, can be expressed as follows:

Ey = Ey — Ediss,0-1 — Ediss,1-2 (2)

When E, is not sufficiently large to overcome the constraints
of the droplet potential energy, adhesion to the leaf, surface
tension, and other factors, the droplet does not separate from
the leaf, but rather is effectively deposited on its surface. The
motion of the leaf influences the initial total energy, E,, of the
droplet as well as the state change of the droplet energy
dissipation during its contact with the leaf, thus influencing the
effective deposition of droplets on the leaf surface. Efficient
droplet capture by the crop canopy requires movement of the
leaves, induced by the sprayer airflow, ensuring that both the
front and back surfaces of the leaves make contact with the
droplets—that is, reasonable motion of the leaves ensures the
effective deposition of spray droplets.
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FIGURE 3

Schematic diagram of quantitative analysis of the droplet capture process in the crop canopy.

As shown in Figure 3, in order to obtain sunlight throughout crop canopy was stratified along the direction of the assisted
the day fully, the crop leaves generally grow around. According airflow and droplets. The assisted airflow and droplets will
to the definition of the azimuth angle of the leaf in Section attenuate after passing through each leaf layer. In an actual crop
“Motion of broadleaf crop leaves in air-assisted spray field,” the canopy, the leaves will overlap, and simultaneously, multiple
initial azimuth angles of the leaves in the crop canopy relative leaves in a local area range will jointly affect the droplet capture
to the assisted airflow are generally 0°-360°. In this study, the process of the next leaf layer. To analyze the droplet capture
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process of crop canopy quantitatively, it was assumed for
simplicity that the leaves in each layer of the crop canopy would
not overlap and each leaf in each layer would only affect the
motion and droplet capture process of the corresponding leaves
after the direction of their respective airflow and droplets. In a
previous study, combining a droplet capture test of crop leaf
motion in the air-assisted spray field and the above theoretical
analysis, we found that when the initial azimuth angle of the leaf
relative to the assisted airflow was 90°-270°, with the
appropriate inclination of the applicator fan being the high-
frequency and high-amplitude vibration state of the leaf driven
by the assisted airflow greater than the critical wind speed, there
were good positive and negative uniform deposition effects on
droplets of small diameters (Wu et al., 2021). Therefore, on the
premise that the initial azimuth angle of the leaf is known, the
droplet capture effect can be analyzed. The attenuation analysis
of assisted airflow is based on the airflow resistance
characteristics of canopy. In this study, the leaf sample layout
scheme of the canopy airflow resistance characteristics test and
the correlation analysis between the canopy airflow resistance
characteristics and droplet capture were based on the
above assumptions.

Description method and theory of crop
canopy resistance characteristics

After the assisted airflow passes through the crop canopy,
some of its energy is dissipated by it. The resistance characteristics
of the crop canopy macroscopically reflect the energy dissipation
effect of the crop canopy on assisted airflow, which is closely
related to the number of leaves, the initial position and attitude of
leaves relative to the assisted airflow, and the velocity of the
assisted airflow.

In this study, the Darcy-Forchheimer function in Equation
(3) can be used to characterize the resistance characteristics of the
crop canopy (Molina-Aiz et al., 2006; Nield and Bejan, 2006;
Dullien, 2012):

Z—iz—(D~u~v+0.5'C~p~v2)

3)
To facilitate the wind tunnel test, Equation (3) can
be integrated to obtain Equation (4):

Ap=D-p-L-v+0.5-C-p-L-v*+ 4 4)

where p is the pressure loss of the assisted airflow after
passing through the crop canopy ( Pa ), L is the length of the
crop canopy along the direction of the assisted airflow (), D

2.572 ), u is the aerodynamic

is the viscosity coefficient (m™
viscosity at the experimental temperature and has a value of

1.79x10°Pa-s , p is the air density at the experimental
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temperature and has a value of 1.189kg- m™, v is the assisted
airflow velocity ( m~571 ), C is the resistance coefficient, and
Ap is the dynamic pressure loss of the assisted airflow
through the crop canopy, collectively referred to as the canopy
pressure drop.

In this study, the canopy pressure drop and resistance
coeflicient were used to assess the resistance characteristics of the
crop canopy comprehensively.

Materials and methods

Leaf sample selection and basic
properties

As shown in Figure 4, simulated broad-leaf crop leaves
composed of resin were selected for the experiment, to overcome
a series of problems including the individual differences among
real crop leaves and the potential effects of repeated tests on their
physical properties (Liu et al., 2021a). The sample sizes and
physical parameters are listed in Table 1.

Establishment of crop canopy resistance
characteristic measurement system

As shown in Figure 5, we designed and built a linear wind
tunnel measurement system to measure the resistance
characteristics of the crop canopy, including the tunnel body,
power module, and measurement module (Molina-Aiz
et al., 2006).

The tunnel body includes the air inlet, power section,
stability section, rectification section, contraction section, test
section, expansion section, and air outlet; the power module
includes a three-phase DC motor (Shengxiang Machinery
Factory, Wuxi, China), frequency converter (Jintian Technology
Co., Ltd., Guangdong, China), leaf, and fairing; the
measurement module includes a leaf sample-fixing device,

FIGURE 4
Sample leaf of simulated broad-leaved group.
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TABLE 1 Sample size and physical parameters.

Parameter Value
Leaflength L (mm) 73.46
Leaf width W (mm) 62.24
Leaf area (mm?) 3,078
Density (kg:m™) 900
Petiole length (mm) 15.74
Petiole modulus of elasticity (MPa) 225
Elastic modulus of leaf (MPa) 2.36
Ra (pm) 0.16

hot-wire anemometer (KIMO, Bordeaux, France), and digital
micromanometer (DP1000, Hangzhou, China). The sampling
frequency of the hot-wire anemometer was 10Hz, and the
accuracy was 0.01 m/s. The range of the digital micromanometer
was 0-200Pa, with an accuracy of 0.1Pa. The technical
parameters of the tunnel body and power module are

summarized in Table 2.

Airflow resistance characteristic test of
multi-position attitude of single leaf

As depicted in Figures 6, a leaf sample fixing and rotating device
was constructed, including a thin metal rod, a clamp, and suction
cups. The thin metal rod was fixed in the wind tunnel test section
by utilizing suction cups, a clamp was fastened to the rod to affix the
leaf sample, and the rod could rotate around the suction cups.

The single-factor control variable method was adopted in this
study, as illustrated in Figure 7. The initial azimuth, ¢, of the leaf
sample relative to the assisted airflow was controlled by the rotation
of the leaf sample fixing device, and the airflow velocity in the test
section was controlled by a frequency converter with a varied range
of 0-12m/s. This airflow velocity range is commonly used in the
air-assisted spray. The airflow velocity at the front of the leaf sample
was measured using an airflow velocity sensor in front of the sample.
The pressures at the front and rear air outlets of the leaf sample were
measured using a pressure sensor and micromanometer. The
distance between the airflow velocity sensor and the sample was
280 mm. The distance between the pressure sensor and the sample
was 280 mm. This information will not be repeated below.

The specific test arrangements are listed in Table 3. To reduce
the number of tests, we set eight eigenvalues for the initial azimuth
angle of the leaf sample relative to the assisted airflow. Each group
of tests was repeated three times, and the average value
was calculated.

Airflow resistance characteristic test of
multi-position attitude of multi-layer leaf

We divided the crop canopy into multiple leaf sample layers
in the direction of the assisted airflow, as shown in Figure 8.
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According to the simplification and assumption mentioned in
Section “Mechanism of capturing droplets in crop leaves,” the
leaves in the different layers of the crop canopy will not overlap,
and each leaf in each layer will only affect the motion and
droplet capture process of the corresponding leaves after the
direction of their respective airflow and droplets. The influence
of each leaf layer on the rear leaf layer can be regarded as the
linear superposition of the effects of multiple leaves on the
corresponding leaves at the rear. Therefore, we set one leaf
sample in each leaf layer. In fact, the number of leaves in each
layer of a crop canopy is very large. If the control variable
method is used to study the influence of the azimuth difference
of the leaves in each layer on the overall resistance characteristics
of the crop canopy, the task will become impossible. Therefore,
based on the simplified assumption that the resistance
characteristics of multiple leaves in each sample layer have
linear relationships with those of the individual leaves, we set
one leaf sample in each leaf sample layer. The initial azimuth
angle, @, of the leaf sample relative to the assisted airflow was
controlled by rotating the leaf sample fixing device, and the
airflow velocity in the test section was controlled to 0-12 m/s by
a frequency converter. The airflow velocity at the front of the
leaf sample was measured using an airflow velocity sensor in
front of the sample. The pressures at the front and rear air
outlets of the leaf sample were measured using a pressure sensor
and micromanometer. To reduce the number of tests, we used
two or three leaf sample layers, and the number of leaf samples
in each leaf layer was set to two with significantly different
initial azimuth angles of 0° and 180°, the specific arrangements
of which are listed in Table 4.

Each group of experiments was repeated three times, and the
average value was calculated. For convenience, each group of
multi-layer leaf tests is described in the form N(¢, ¢, @), where
N is the number of leaf sample layers, ¢, ¢,, and ¢; are the initial
azimuths of the leaf samples in the first, second, and third layers,
respectively.

Results and discussion

Airflow resistance characteristics of a
single leaf at different initial azimuth
angles

In the motion analysis of crop leaves in an airflow field, when
the state of motion of the leaves changes suddenly, the airflow
velocity corresponding to the change of motion is called the
critical wind speed (Shao and Chen, 2011; Tadrist et al., 2015). In
this study, the change in canopy pressure drop of leaf samples was
an important basis for evaluating whether the state of
motion changed.

Through comparison, as shown in Figure 9, we found that
under different initial azimuth conditions, the canopy pressure
drop of a single leaf exhibited a non-linear increase with a
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FIGURE 5
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Schematic diagram of crop canopy resistance measurement system
B

Site layout of test equipment

1. Rectifier air inlet; 2. Contraction section: 3. Airflow velocity sensor and pressure sensor; 4. Leaf sample; 5. Leaf sample-fixing
device: 6. Test section; 7. Pressure sensor; 8. Diffusion section; 9. Power section; 10. Axial flow motor; 11. Frequency converter: 12.
Data collector; 13. Computer

Measurement system of crop canopy resistance characteristics. (A) Schematic diagram of crop canopy resistance measurement system. (B) Site
layout of test equipment. 1. Rectifier air inlet; 2. Contraction section; 3. Airflow velocity sensor and pressure sensor; 4. Leaf sample; 5. Leaf sample-
fixing device; 6. Test section; 7. Pressure sensor; 8. Diffusion section; 9. Power section; 10. Axial flow motor; 11. Frequency converter; 12. Data

continuous increase in the assisted airflow velocity. When the
initial azimuth angle was 90°, 135°, 180°, 225°, and 270°, the
critical wind speed was 7-9 m/s. When the assisted air velocity
was less than the critical wind speed, an increase in the assisted
air velocity did not significantly improve the leaf canopy
pressure drop. However, when the air velocity was greater than
the critical wind speed, the leaf canopy pressure drop increased
rapidly with increasing assisted air velocity. Moreover, when the
initial azimuth was 0°, 45°, and 315°, there was no critical wind
speed, marking a sudden change in the canopy pressure drop
with increasing assisted airflow velocity. As shown in Figure 10,
this finding was obtained because when the initial azimuth of
the leaf was 0°, 45°, and 315°, the assisted airflow and front face
of the leaf formed an effective airflow load surface, with the
airflow load driving the leaf inclination with increasing airflow
velocity and the windward area also gradually increasing,
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resulting in a gradually increasing canopy pressure drop. When
the initial azimuth of the leaf was 90°, 135°, 180°, 225°, and
270° and the air velocity was less than the critical wind speed,
and the increase in assisted air velocity did not significantly
improve the windward area of the leaf. However, when the
assisted air velocity was greater than the critical wind speed, the
leaf presented an unstable high-frequency and high-amplitude
vibration state, greatly dissipating the assisted air energy,
resulting in a rapid increase in the canopy pressure drop.
Simultaneously, we performed quadratic polynomial
regression fitting on the test data. The obtained curve
corresponding to Equation (5) conforms to the configuration of
Equation (4), where the determination coefficient R* is 0.83-0.98:

Ap=Kyv+Kn?+4 )
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TABLE 2 The technical parameters of the tunnel body and power
module.

10.3389/fpls.2022.924749

TABLE 3 Test scheme of airflow resistance characteristics of single
leaf at multiple positions.

Parameter Value Test Number Initial azimuth angle ¢ (°)
Overall size (length x width x height) 4,000 %900 x 1,350 mm 1 0
Motor power (w) 650 2 45
Fan impeller diameter (mm) 800 3 90
Test section size (length x width x height) 400 x 400 x 600 mm 4 135
Wind speed in test section (m-s™) 0.5-20.0 5 180
Relative standard deviation of velocity uniformity in <2.0% 6 225
test section 7 270
Relative deviation of velocity stability in test section <2% 8 315
Airflow deflection angle <2°
7 i
]
Thin metal . | |
Airflow i i Airflow
—_— —_— »
| |
| |
Fixture | |
I I
Layer 1 Layer2 Layer3
Leaf Front view
FIGURE 8
FIGURE 6 Schematic diagram of leaf sample layer division.
Leaf sample fixation and rotation device.

270°
Airflow 0° 180° Airflow
90°
Top view
FIGURE 7

Azimuth adjustment diagram of leaf sample.

Referring to Equation (4), we calculated the maximum
canopy pressure drop and resistance coefficient C of the leaf
under different initial azimuth conditions using the
coefficients K, and K, of the regression fitting curve of
Equation (5), as shown in Figures 11, 12 (Sanz, 2003; Song and
Fu, 2020). When the initial azimuth of the leaf was 180°, the
maximum canopy pressure drop and airflow resistance
coefficient were greater than those at other initial azimuth
angles, with values of 7.37 + 0.77Pa and 0.35 = 0.02,
respectively. When the leaf azimuth was 90°, 225°, and 270°,
the maximum canopy pressure drop and airflow resistance
coefficient were less than those at other azimuth positions,
with values of 3.75 + 0.56 Pa and 0.19 + 0.01, 3.10 £ 0.53 Pa
and 0.12 * 0.01, and 3.09 * 0.65Pa and 0.11 *= 0.02,
respectively. When the initial azimuth of the leaf was at other
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TABLE 4 Test scheme of airflow resistance characteristics for multi-
position attitude of multi-layer leaves.

Initial azimuth of
each leaf layer (¢,
@2 @3)

(0°,0°)
(0°,180°)

(180°, 180°)
(180°,0°)
(0°,0°,0°)
(0°,0°, 180°)

(0°, 180°, 0°)

(0°, 180°, 180°)
(180°, 180°, 0°)
(180°, 180°, 180°)
(180°, 0°, 0°)
(180°, 0°, 180°)

Number of leaf
sample layers N

Test number

O 0 N N U R W N

—
(=]

—
—
WW W W W W W W NN NN

—
8]

positions, the difference between the maximum canopy
pressure drop and airflow resistance coefficient was
not obvious.

The reason for this finding is that the maximum canopy
pressure drop and resistance coeflicient of the leaf reflected the
dissipation capacity of the leaf to the airflow energy. This energy
dissipation capacity includes two parts—that is, when the assisted
airflow passes through the leaf canopy, part of the energy is
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FIGURE 9
Variation of canopy pressure drop with airflow velocity under different azimuth conditions. (A) Azimuth 0°. (B) Azimuth 45°. (C) Azimuth 90°.
(D) Azimuth 135°. (E) Azimuth 180°. (F) Azimuth 225°. (G) Azimuth 270°. (H) Azimuth 315°.

dissipated due to friction, leaf upwind blocking, and other factors weight of energy dissipation of factors such as friction, leaf upwind
and the other part is transformed into the kinetic energy of the resistance, and leaf kinetic energy conversion is an ever-
leaf. However, when the leaf azimuth changes constantly, the changing process.
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Airflow resistance characteristics of
multi-leaf and multi-position attitude

Through the comparison in Figure 13, we found that with an
increasing number of leaf layers, the canopy pressure drop still
increases in a linear nonlinear proportion with continual increases
in the assisted airflow velocity, with a critical wind speed in the
7-9m/s range. When the air velocity is less than the critical wind
speed, an increase in the assisted air velocity does not significantly
improve the canopy pressure drop. However, when the air velocity
is greater than the critical wind speed, the pressure drop
increases rapidly.

We performed quadratic polynomial regression fitting on
the experimental data to obtain the curve of Equation (5) and
used the coefficients K, and K, of the fitting curve of Equation
(5) to calculate the maximum canopy pressure drop and
resistance coefficient of the leaves under different leaf layers
and initial azimuth angles. The comparisons in Figures 14, 15
indicate that when the number of leaf layers is two, the
maximum canopy pressure drop and resistance coefficient of
the leaf are not more than those of a single leaf and that they
have numerical ranges of 2.53-6.10 + 0.55Pa and 0.08-
0.29 + 0.55, respectively. When the number of leaf layers is
three, the maximum canopy pressure drop and resistance
coefficient of the leaf are clearly more than those of the single-
layer leaf, and their numerical ranges are 3.83-12.09 + 0.77 Pa
and 0.04-0.38 + 0.02, respectively. Moreover, the ratio of the
number of leaf layers with an initial azimuth of 180° to the
number of leaf layers with an initial azimuth of 0° directly
affects the maximum pressure drop and resistance coefficient
of the crop canopy. When the number of leaf layers with an
initial azimuth of 180° is large, the maximum pressure drop of
the crop canopy is relatively small. As the number of leaf layers
in the crop canopy and the differences in the initial azimuths
of the leaves in the layer increase, the corresponding change
between the maximum canopy pressure drop and the
resistance coefficient is non-linear and difficult to quantify, as
the result of the linear superposition of the resistance

10.3389/fpls.2022.924749

characteristics of multiple single-layer leaves. Thus, it is
recommended that when there are multiple leaf layers in a
canopy, it should be regarded as a single research object.

Relationships between resistance
characteristics of crop canopy and
droplet deposition effect

In the process of air-assisted spraying, there should be a
positive correlation between the energy dissipation effect of the
canopy on the assisted airflow and its ability to capture droplets
(Cox et al,, 2000; Endalew et al., 2010a). Based on this premise,
we analyzed the relationship between the resistance characteristics
of the crop canopy and the fog droplet deposition effect.

When the crop canopy had only a single leaf in the
direction of the assisted airflow, the canopy pressure drop
increased non-linearly with increasing assisted airflow velocity,
meaning that the droplet-catching ability of the leaf also
increased. When the initial azimuth angle of the leaf was
0°-90° or 270°-360°, an increase in the windward load area
increased the canopy pressure drop, but the droplet deposition
on the back of the leaf could not be guaranteed. When the
initial azimuth angle of the leaf was 90°-270°, if the wind speed
of the assisted airflow was greater than the critical wind speed,
the unsteady high-frequency and high-amplitude vibration
state of the leaf increased the canopy pressure drop, with the
leaf exhibiting a good droplet deposition effect on both sides,
which is consistent with the conclusions of previous studies.
Consequently, for single-layer leaves, we could evaluate the
corresponding initial azimuth and droplet deposition effect by
considering when the canopy pressure drop value changed with
the airflow velocity and whether there was a critical wind
speed, combining the maximum canopy pressure drop value
and resistance coeflicient.

When the crop canopy had multiple leaves in the direction
of the assisted airflow, the leaves in the first layer inevitably
captured most of the droplets when the velocity of the assisted

Azimuth 0°

FIGURE 10

Azimuth 180°

Motion of leaves at different airflow velocities, V, and azimuth angles, ¢. (A) Azimuth 0°. (B) Azimuth 180°.
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airflow was greater than the critical wind speed, resulting in
poor canopy penetration. When the assisted airflow velocity
was kept below the critical wind speed and the initial azimuth
angle of each layer of leaves was 90°-270°, although canopy
penetration could be guaranteed, the droplet deposition effect
of the corresponding leaf layer was worse. Moreover, as the
number of leaf layers in the crop canopy increased and the
initial azimuth angles of the leaves within the canopy changed,
the corresponding changes in the maximum pressure drop and
resistance coefficient were non-linear and difficult to quantify.
It was difficult to judge the number of leaf layers and the
the
characteristics of the crop canopy with the characteristics of

specific canopy structure based on resistance
multiple leaves. Consequently, it was considered that existing
air-assisted spray technology could not guarantee the droplet
deposition effect and canopy penetration at the front layer
when the canopy had multiple leaves in the assisted

airflow direction.
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Application potential of resistance
characteristics in the evaluation of
air-assisted spraying effect

Combining CFD technology with field testing is a common
method of studying the distribution and attenuation law of the
coupled field of airflow and droplets in the inner space of a crop
canopy (Endalew et al., 2010b,c). The distribution and attenuation
law of the coupling field between the assisted airflow and droplets
in the inner space of a complex crop canopy is always a research
problem. The existing CFD technology can only simplify the crop
canopy into a porous medium model for calculation and analysis.
The distribution and attenuation law of the coupled field of the
assisted airflow and droplets in the internal space of the crop
canopy completely ignores the characteristics of the crop leaves
and canopy under airflow stress, and accuracy cannot
be guaranteed. Based on the field test of the distribution and
attenuation law of the coupling field between the assisted airflow
and droplets in the inner space of the crop canopy, the canopy was
layered along the assisted airflow direction, and the relationships
between the distribution and attenuation and the canopy leaf area
index, porosity, resistance coeflicient, and other structural
characteristic parameters were established (Sun et al., 2015; Sun
and Liu, 2019). However, the influence of the motion
characteristics of the crop canopy under assisted airflow force on
the changes in the canopy leaf area index, porosity, resistance
coefficient, and other structural characteristic parameters was still
ignored. Liu et al. considered the potential influence of the airflow
stress movement characteristics of a crop canopy on droplet
deposition (Liu et al, 2021b). However, only under certain
working conditions, the canopy deformation characteristics of
cotton crop are small, so it is difficult to apply his approach to
other crops, and it is impossible to establish a universal and
efficient theoretical model. Section “Introduction” mentioned that
the evaluation of the droplet deposition effect of the crop canopy
under different air-assisted spraying conditions based on water-
sensitive paper and other droplet deposition measurement
methods has the problems of expensive equipment, a complicated
process, and repetition. In this study, the effects of airflow-forced
movement characteristics of crop canopy on air-assisted spraying
were considered, and the effects of number of the leaf layer, initial
position, and attitude of leaves relative to the assisted airflow as
well as assisted airflow speed on the resistance characteristics of
the crop canopy were analyzed. Finally, the application potential
of crop canopy resistance characteristics in air-assisted spraying
effect evaluation was verified.

Conclusion

In general, our experimental data showed that the number of
leaf layers and the initial azimuth of leaves in the crop canopy
significantly affected the resistance characteristics of the canopy
and that these resistance characteristics were also being closely
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FIGURE 14
Variation of maximum canopy pressure drop with the number of
leaf layers and initial azimuth.

related to the effects of droplet deposition. Using a broad-leaved
crop canopy as an example, the following conclusions can
be drawn.

Under the conditions of different leaf layers and initial leaf
azimuth angles in different leaf layers, the canopy pressure drop
increases non-linearly with increasing assisted airflow velocity.
The curve equation obtained by regression fitting conformed to
the Darcy-Forchheimer equation. When the initial azimuth of the
single-layer leaf was 90°-270°, there was a critical wind speed in
the 7-9 m/s range, and when the assisted air velocity was less than
this critical wind speed, an increase in the assisted air velocity did
not significantly improve the canopy pressure drop. However,
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when the air velocity was greater than the critical wind speed, the
canopy pressure drop of the leaf increased rapidly with increasing
assisted air velocity.

For a single leaf, when the initial azimuth angle of the leaf
was 180°, the maximum canopy pressure drop and airflow
resistance coeflicient were greater than those of the other initial
azimuth positions, at 7.37 Pa and 0.35, respectively. When the
leaf azimuth angle was 90°, 225°, and 270°, the maximum
canopy pressure drop and airflow resistance coefficient were
smaller than those of other azimuth positions, with values of
3.75 and 0.19, 3.10 and 0.12, and 3.09 and 0.11, respectively.
When the initial azimuth was in other positions, the differences
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between the maximum canopy pressure drops and airflow
resistance coefficients were not obvious.

When the number of leaf layers was two, the maximum
canopy pressure drop and resistance coeflicient were not more
than those of a single leaf, with values of 2.53-6.10 Pa and 0.08-
0.29, respectively. When there were three leaf layers, the maximum
canopy pressure drop and resistance coeflicient were clearly larger
than those of a single leaf, with values of 3.83-12.09 Pa and 0.04-
0.38, respectively. Moreover, the ratio of the number of leaf layers
with an initial azimuth angle of 180° to the number of leaf layers
with an initial azimuth angle of 0° directly affected the maximum
pressure drop and resistance coefficient of the crop canopy. The
maximum pressure drop of the crop canopy was relatively small
when the initial azimuth angle was 180°.

We analyzed the relationships between the resistance
characteristics of the crop canopy and droplet deposition effect.
For single-layer leaves, we evaluated the corresponding initial
azimuth and droplet deposition effect based on whether the
canopy pressure drop changed with air velocity and whether there
was a critical wind speed and combined the maximum canopy
pressure drop and resistance coefficient. When the crop canopy
had multiple leaves in the assisted airflow direction, the existing
air-assisted spray technology could not guarantee the droplet
deposition effect and canopy penetration simultaneously.

Our experiment had several limitations. Although we focused
on the resistance characteristics of single and multi-layer leaves in
an assisted airflow field, the number of leaf layers in the crop
canopy and initial azimuth angle of the leaves in the layer
significantly affect their resistance characteristics. However, in the
real world, the leaves are different and the leaf population structure
of the crop canopy is much more complex than that set in this
study. When the assisted airflow passes through the crop canopy,
its change law becomes more complex, and the movement law of
the leaf population is significantly different from that examined in
this study. Moreover, due to connections between stems, many
leaves move in concert, which needs to be investigated further. This
study indicates that when the number of layers of the crop canopy
exceeds 1 in the direction of assisted airflow, air-assisted spraying
technology cannot guarantee that every layer of leaves in the crop
canopy has a good droplet deposition effect in theory. Solving this
problem is of great significance for the research and development
of crop protection technologies and equipment.
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Proper selection of adjuvant applications is an important strategy to
enhance herbicide efficacy and reduce active ingredient input especially
under adverse environmental conditions. In this study, a two-factor split-
plot-design experiment was conducted to evaluate the effects of two
adjuvants on the efficacy of topramezone on the grassy weed species
giant foxtail (Setaria faberi Herrm.) and the broadleaved weed species
velvetleaf (Abutilon theophrasti Medik.) under three different temperature
conditions. The two tested adjuvants were methylated seed oil (MSO) and
organosilicone. Three temperature levels, 35/30°C, 25/20°C, and 15/10°C
(day/night), were used in the laboratory and greenhouse experiment. Plant
chlorophyll fluorescence measurements shortly after herbicide application
and classic whole-plant biocassay methods were used to evaluate the
herbicide efficacy among the different treatments. Results indicated that
the maximum quantum efficiency (Fv/Fm) of the top leaf of the weeds
treated with topramezone mixed with MSO was significantly lower than
that of the weeds treated with topramezone mixed with organosilicone
and without an adjuvant at 2-3days after treatment under all three
temperature levels. The herbicide response of the plants treated with
topramezone mixed with organosilicone and topramezone alone was not
significantly different. These results corresponded well with the results of
the classic whole-plant test. MSO has been shown to be good at enhancing
the efficacy of topramezone on these weed species under all three
temperature conditions. The measurement of chlorophyll fluorescence is a
promising technique for evaluating the effects of adjuvants on the efficacy
of herbicides shortly after herbicide treatment.

KEYWORDS

topramezone, adjuvant, methylated seed oil, chlorophyll fluorescence test, early
efficacy evaluation
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Introduction

To enhance their efficacy, many postemergence herbicides
have to be applied together with adjuvants (Hart et al., 1992;
Bunting et al., 2004; Bautista et al., 2020). An adjuvant is any
substance in an herbicide formulation or added to a spray tank to
improve herbicidal activity or application characteristics (Foy,
1989). There are various types of adjuvants with varying degrees
of effectiveness at improving herbicide efficacy. Selecting the
proper adjuvant for herbicides is difficult but very important
because the efficacy of herbicides on weeds is usually dependent
on the herbicide type, weed species, the selected adjuvant,
environmental conditions and so on (Penner, 2000). This can
reduce the herbicide active ingredient input and environmental
risk. Methylated seed oil (MSO) is a fatty acid from seed oil
esterified with methanol. Reports have shown that MSO enhances
the efficacy of several herbicides on certain weed species, as MSO
contributes to increasing the penetration of herbicides into plants
(Thompson et al., 1996; Young and Hart, 1998; Sharma and Singh,
2000; Pester et al., 2001; Bukun et al., 2010; Zhang et al., 2013a).
Organosilicone surfactants were introduced to work as adjuvants
for pesticides in the 1980s, and since then, their chemical
structure and synergistic mechanism have been extensively
researched (Stevens, 1993; Knoche, 1994). Because of the
numerous advantages of these two adjuvants, MSO and
organosilicone are typically the most commonly used adjuvants
for pesticide application in China.
hydroxyphenylpyruvate dioxygenase inhibitor, was commercially
introduced in 2006 (Grossmann and Ehrhardt, 2007) and
registered in China in 2010. When applied as a postemergence

Topramezone, a

herbicide, it controls a wide spectrum of annual grass and
broadleaved weeds (Zhang et al., 2013a) and is safe for maize
(Soltani et al., 2007; Gitsopoulos et al., 2010). In China, MSO is
the only recommended adjuvant for this herbicide, as is the case
in other countries. Thus, trying to find a new adjuvant for
topramezone application will provide additional options for weed
control in maize.

Environmental factors, such as temperature, relative
humidity, soil moisture, rain, and wind, contribute to the amount
and rate of herbicide uptake and the final efficacy (Zabkiewicz,
2000). In particular, the environmental temperature is variable
at different latitudes or under certain small-scale regional
conditions even in the same crop growing season. Temperature
can influence the absorption, translocation, and metabolism of
herbicide active ingredients in plants. Similarly, the effect of an
adjuvant on herbicide efficacy varies under different
environmental temperature conditions. One of the main
functions of a right and good adjuvant is to overcome or
minimize adverse factors. There has been long history on the
effect of environmental conditions on the efficacy of herbicides
(Hammerton, 1967; Peregoy et al., 1990; Hinz and Owen, 1994;
Levene and Owen, 1995). However, as an increasingly extensive-
used herbicide in maize field in China, from the Northeast to the
Southwest region, there has been very few research on the
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impact and interaction effects of adjuvant type and
environmental temperature conditions on the efficacy of
this herbicide.

It is valuable and useful to evaluate the effect of an adjuvant
on the efficacy of herbicides under different environmental
conditions, especially under adverse conditions. A fast and
nondestructive herbicide efficacy evaluation approach shortly
after herbicide treatment could be an efficient method for
agronomists to screen the right adjuvant for a certain herbicide.
With the rapid development of plant phenotypic analysis, methods
such as RGB imaging, multispectral imaging, hyperspectral
imaging, thermal imaging, chlorophyll fluorescence, 3D sensing,
and others have been introduced to test the response of plants
under environmental (biotic and abiotic) stress efficiently (Lee
etal,, 2010; Belin et al., 2013; Huang et al., 2015; Lowe et al., 2017).
Utilizing the improvement of these technologies, scientists in
weed science also want to evaluate the efficacy of herbicides on
weeds and their safety on crops (Streibig et al., 2014; Travlos et al.,
2021). Chlorophyll fluorescence test has been used as a sensitive
indicator of the physiological status of plants. It can monitor
spatial and temporal variations by providing images of
photosynthesis activity (Schreiber, 2004; Abbaspoor and Streibig,
2007; Belin et al., 2013). By utilizing this technology, Woodyard
etal. (2009) evaluate the joint activity of mesotrione and atrazine
in a tank-mix application on sensitive and resistant broadleaved
weeds, Kaiser et al. (2013) and Wang et al. (2016, 2018) measured
the herbicide resistance of Alopecurus myosuroides in the
greenhouse and field conditions, and Li et al. (2018) identified
herbicide stress in soybean shortly after treatment.

Understanding the effect of the two common used adjuvants
in China in different environmental conditions, especially
detecting it in a much efficient way, is beneficial to enhance
herbicide efficacy and reduce active ingredient input. The
objectives of this research were (a) to detect the effects of two
adjuvant types (MSO and organosilicone) on the efficacy of
topramezone under different environmental temperature
conditions and (b) to determine whether the plant chlorophyll
fluorescence test can be used as a nondestructive method to
evaluate the effect of adjuvants on the efficacy of herbicides shortly
after herbicide treatment.

Materials and methods
Chemicals and plant materials

In this study, the applied solution was prepared using a
commercial herbicide and adjuvant products, including Baowei™
(336g a.i. L' topramezone, SC, BASF Co., Ltd.), GY-HMax™
(methylated soybean oil, an MSO adjuvant, Central Research
Institute of China Chemical Science and Technology), and
BREAK-THRU® (5240, an organosilicone adjuvant, Omya. Agro.
AG, Switzerland). The spray herbicide solutions were prepared
according to the data in Table 1.
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TABLE 1 Herbicide solution preparation for the experiment.

Treatment Herbicide dose ~ Adjuvant dose (%)
(gai.ha™)

Topramezone alone 6.3 0

Topramezone with MSO* 6.3 0.300 (v/v)

Topramezone with 6.3 0.025 (v/v)

organosilicone

Control 0 0

*MSO means methylated seed oil.

The dicotyledonous weed velvetleaf (Abutilon theophrasti
Medic.) and monocotyledonous weed giant foxtail (Setaria
faberi Herrm.) were selected as sample plants in this study,
because they were two of the most common infested weed
species in maize field in China. The weed seeds (provided by
Herbiseed Co., UK) were pregerminated in plastic pots
(I11x11x6cm) filled with vermiculite (2-3cm) in a
greenhouse (25/20£1°C  day/night, 122pumolm™= s
supplemental light for 12h, and 55+10% RH). After
germination, the velvetleaf seedlings were transplanted into
11x11x 12 cm plastic pots (3 plants per pot), and the giant
foxtail seedlings were transplanted into 7x7x8cm
compostable pots (4 plants per pot). All the pots were filled
with a mixture of vermiculite: peat: clay (1:1:1 by volume). The
plants were irrigated daily with tap water. The homogeneous
plants were selected as plant samples for the experiment when
they had developed 3-4 true leaves.

Experimental design and tests

The sample plants were moved into a growth chamber 2 days
before herbicide application and were watered according to their
demand. After 2days of cultivation in the chamber, herbicides
were applied using a track sprayer (Aro, Langenthal, Switzerland)
with a spray volume of 2001ha™ (nozzle: 8002 EVS, Teejet®
Spraying Systems Co., Wheaton, IL, United States) at 3.2kPa. The
sample plants were cultivated in the growth chamber for 2 more
days and then moved back to the greenhouse. The plants were
watered daily with tap water. The aboveground biomass of the
plants was harvested 3 weeks after herbicide application and dried
at 80°C for 48 h before weight measurement. The experiment was
established as a two-factor split-plot design, with environmental
temperature treatment in the main plots and adjuvant treatments
in the subplots. Three replicates were used for each treatment, and
the whole experiment was repeated once.

The temperature of the artificial growth chamber (KBF720,
Binder GmbH, Tuttlingen, Germany) was set to produce a high
temperature (35/30°C, day/night), moderate temperature
(25/20°C, day/night) and low temperature (15/10°C, day/night).
The photoperiod was adjusted to 12/12h (day/night), and the
relative humidity was adjusted to 75% for both the day and
night time.
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To evaluate herbicide efficacy, the PSII maximum quantum
efficiency (Fv/Fm) of the fourth leaf (the top leaf of the plant),
defined as Fv/Fm, was measured and recorded using a
chlorophyll fluorometer (Imaging-PAM, M-Series MAXI
Version, Heinz Walz GmbH, Effeltrich, Germany) at 2, 3, 4
and 5days after treatment (DAT). The F,/F,, was calculated
according to equation (1):

F, | Fy=(F,—Fo)| Fy, (1)

where Fm is the maximal fluorescence yield and FO is the dark
fluorescence yield. For the determination of F, the plants were
dark adapted for 30min prior to the measurement. All
measurements were conducted in a dark room under green
illumination to avoid other photosynthetically active radiation
except that emitted by the Imaging-PAM light source. After dark
adaptation, the plants were illuminated with a light-saturated
pulse of 2,634pmm™ s~ photosynthetic photon flux density
(PPED) and a wavelength of 450 nm for F,/Fy determination.
Usually, all PSII reaction centers are open after dark adaptation,
and nonphotochemical energy dissipation is minimal. During the
saturation pulse, the fluorescence yield is maximal. The
Imaging-PAM fluorometer also measures other parameters related
to chlorophyll fluorescence, including effective quantum yield.
The maximum quantum efliciency of PSIL, however, was selected
for this study because it remains unchanged until the next FO and
Fm determination.

While measuring the F,/F,, value, chlorophyll fluorescence
images were taken using a charge coupled device(CCD)camera
mounted above the plant pots. The spatial resolution of the
camera was 640 by 480 pixels, and the field of view was 10 by
13 cm. Only the plants were measured; the background was
removed from the images. Fluorescence intensities are
displayed as false colors. Light-emitting diodes (LEDs) were
placed around the lens of the camera. Blue (450 nm) LED light
provides pulse-modulated excitation light and simultaneously
serves as actinic illumination and saturation pulses. The red
long-pass filter in front of the CCD chip confined the
detection window to wavelengths longer than 620 nm. In total,
nine individual velvetleaf and twelve giant foxtail plants were
measured for each treatment.

Statistical analysis

To estimate the significance of the herbicide effect, the variable
relative index (RI) of F,/F,, and plant dry weight (DW) were
calculated according to the following equations:

(FV /Fm )treatment (2)

RI -
B =R T Fy

control
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(D w )treatment

(D W)contml

Ripw =

The data were subjected to univariate analysis via the GLM
process using SPSS 22.0 (version 22.0) software. The assumptions
of variance analysis were tested by ensuring that the residuals were
random and homogenous, with a normal distribution, using
residual plots and the Shapiro-Wilk normality test. The data from
two repeated experiments were combined for analysis because
there were no interaction effects between the two experiments.
When there was a significant interaction between the treatments
of temperature and adjuvant (P<0.05), the means were separated
by Fisher’s protected LSD test at the 5% level of probability.

Results

Effects of adjuvants as revealed by plant
chlorophyll fluorescence measurements

The relative maximum quantum efficiency (F,/F,,) index
(RIFE /F, ) of the giant foxtail treated with topramezone plus MSO
under the high and moderate temperature conditions was
significantly lower (p <0.05) than that of the topramezone alone
treatment group from 2 DAT to 5 DAT. Under low temperature
conditions, similar differences between the two groups appeared
after 4 DAT. In the case of topramezone applied mixed with
organosilicone, there was no significant difference in the RIf /,
value compared with that of the treatment of herbicide applied
alone in any of the three temperature conditions. Additionally, the
RIf /F, value of the giant foxtail ranked as moderate < high <
low for each adjuvant treatment from 3 DAT to 5 DAT (Table 2).

The chlorophyll fluorescence images taken at 5 DAT showed
that the weed treated with herbicide mixed with MSO was injured
more severely than the weeds treated with herbicide alone and
mixed with organosilicone under all 3 temperature conditions (the
false color of the normal plant leaves was blue, while the false color
of the leaves changing from green to yellow and even to black
demonstrated that the plants were injured more severely). In
addition, the plants treated under high and moderate temperature
conditions were injured more severely than those treated under
low temperature conditions for each herbicide treatment
(Figure 1).

Similar to the case of giant foxtail, the Rlp,r value of
velvetleaf treated with topramezone together with a tank-mix of
MSO under the high and moderate temperature conditions was
significantly lower (p <0.05) than that of the topramezone alone
treatment group from 2 DAT to 5 DAT, while there were no
differences under the low temperature conditions. With respect to
the treatment of topramezone together with a tank-mix of
organosilicone, there was no significant difference compared with
the treatment of topramezone alone under any of the three
temperature conditions. With respect to all three herbicide
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treatments, the R/p,r value of the treated velvetleaf under
moderate and high temperature conditions was significantly lower
(p<0.05) than that under low temperature conditions (horizontal
comparison). The chlorophyll fluorescence images taken at 5 DAT
also showed that velvetleaf plants treated with herbicide together
with a tank-mix of MSO were more injured than those treated
with herbicide alone and together with organosilicone under
moderate and high temperature conditions, while the difference
was not apparent under low temperature conditions (Figure 2).

The abovementioned results indicated that the MSO adjuvant
significantly enhanced the efficacy of topramezone under all
temperature conditions for giant foxtail and under high and
moderate temperature conditions for velvetleaf, while the effect of
organosilicone on enhancing the efficacy was not significant for
either weed species. Additionally, the efficacy of topramezone was
better under relatively high temperatures than under relatively low
temperature conditions for giant foxtail and velvetleaf after it was
tank-mixed with MSO (Table 3).

Effects of adjuvants according to
whole-plant biomass measurements

The relative dry weight index (RIny) of both weed species
treated with topramezone together with MSO was significantly
lower (p <0.05) than that treated with topramezone applied alone
and together with organosilicone under all three temperature
conditions, while the difference between the last two treatments
was not significant under any of the three temperature conditions
at 3weeks after treatment (WAT). Additionally, the RIy value
the
high < moderate < low for both weed species for each adjuvant
treatment (Table 4).

The images taken at 3 WAT also apparently showed that both
weed species treated with topramezone together with MSO were

under different temperature conditions ranked as

injured more than those treated with the other adjuvant and
applied alone under all temperature conditions (Figures 3, 4). The
results demonstrated that the MSO adjuvant significantly but not
the organosilicone adjuvant enhanced the efficacy of topramezone
under all temperature conditions for both weed species and that
the efficacy of topramezone was better under relatively high
conditions  than  under low

temperature relatively

temperature conditions.

Discussion

Effects of two adjuvants on enhancing
the efficacy of topramezone under
different environmental temperatures

In our study, both the leaf chlorophyll fluorescence

measurements and whole-plant bioassay results demonstrated
that the MSO adjuvant significantly enhanced the efficacy of
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TABLE 2 Effects of two adjuvants on the maximum quantum efficiency (F,/F,,) of giant foxtail (Setaria faberi Herrm.) at 2—5days after treatment

(DAT).

Days After Treatment  Adjuvant RIF IF

(DAT) von

High temperature Moderate temperature Low temperature

2 Alone 0.97 £ 0.07aA 0.98 £ 0.04aA 0.99 % 0.02aA
Org 0.89 % 0.13abA 0.95 + 0.06abA 1.00 + 0.02aA
MSO 0.89 + 0.20bB 0.86 + 0.08bB 0.99 + 0.02aA

3 Alone 0.79 + 0.25aB 0.57 + 0.19abC 0.96 + 0.03aA
Org 0.78 +0.20aB 0.60 +0.19aC 0.98 + 0.04aA
MSO 0.73 +0.19aB 0.55 % 0.16bC 0.96 = 0.05aA

4 Alone 0.56 + 0.26aB 0.32£0.09aC 0.68 £ 0.17aA
Org 0.42 +0.21abB 0.36 +0.12aC 0.75 £ 0.20aA
MSO 0.37 £ 0.22bA 0.26 + 0.07bC 0.54 = 0.09bA

5 Alone 0.45 £ 0.23aB 0.28 £ 0.08aC 0.49 £ 0.16aA
Org 0.36 +0.17aB 0.23 £0.09aC 0.57 £ 0.27aA
MSO 0.27 + 0.08bB 0.13 £ 0.04bC 0.39 + 0.15bA

The topramezone dose was 6.3g a.i. ha™'; control means treated with tap water; Alone means that topramezone was applied alone; Org means that topramezone was applied with a tank-mix
of organosilicone; MSO means topramezone was applied with a tank-mix of MSO. The means in the same column followed by a common letter are not significantly different at p=0.05
(vertical comparison). The means in the same row followed by a capital common letter are not significantly different at p =0.05 (horizontal comparison).

Control Alone

ybIH

9JeJopo

MO

FIGURE 1

topramezone was applied with a tank-mix of MSO.

Chlorophyll fluorescence images of giant foxtail at 5 days after treatment. The topramezone dose was 6.3 g a.i. ha™; control means treated with
tap water; Alone means topramezone was applied alone; Org means topramezone was applied with a tank-mix of organosilicone; MSO means

Org MSO

topramezone under all temperature conditions for both weed
species, especially for those under relatively high temperatures.

summarized that the MSO adjuvant had the
unique advantage of enhancing herbicide efficacy when
applied at reduced rates under adverse environmental

Frontiers in
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conditions (e.g., hot weather, low relative humidity, and high
temperature). In our case, when the plants were cultivated in
the 35/30°C (day/night) conditions (the high temperature
conditions), the dose of herbicide we applied (6.3 g a.i. ha™")
was only 1/4 of the recommended dose (the recommended
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FIGURE 2

means topramezone was applied together with a tank-mix of MSO

Chlorophyll fluorescence images of velvetleaf at 3 days after treatment. The topramezone dose was 6.3 g a.i. ha™'; control means treated with tap
water; Alone means topramezone was applied alone; Org means topramezone was applied together with a tank-mix of organosilicone; MSO

TABLE 3 Effects of two adjuvants on the maximum quantum efficiency (F,/F,,) of velvetleaf (Abutilon theophrasti Medik.) at 2—5days after treatment

(DAT).

Days After Treatment  Adjuvant RIF IF

(DAT) von

High temperature Moderate temperature Low temperature

2 Alone 0.92 % 0.07aB 0.92 £ 0.07aB 0.99 £ 0.03aA
Org 0.88 % 0.10abA 0.88 = 0.08abA 1.00 + 0.03aA
MSO 0.86 % 0.09bB 0.84 + 0.08bB 0.99 + 0.03aA

3 Alone 0.72 £ 0.15aB 0.69 + 0.14aB 0.87 + 0.20aA
Org 0.72 £ 0.16aB 0.63 + 0.17abB 0.90 + 0.15aA
MSO 0.59 + 0.09bB 0.54 + 0.12bB 0.86 + 0.23aA

4 Alone 0.58 +0.19aB 0.52 +0.20aB 0.79 £ 0.17aA
Org 0.45 % 0.13abB 0.47 £ 0.24abB 0.83 £ 0.152A
MSO 0.39 % 0.10bB 0.38 £ 0.16bB 0.78 £ 0.19aA

5 Alone 0.46 £ 0.11aB 0.48 £ 0.18aB 0.70 £ 0.12aA
Org 0.34 % 0.12abB 0.39 £ 0.31abB 0.67 £ 0.19aA
MSO 0.25 % 0.09bB 0.32+0.21bB 0.69 £ 0.08aA

The topramezone dose was 6.3g a.i. ha™'; control means treated with tap water; Alone means that topramezone was applied alone; Org means that topramezone was applied together with a
tank mix of organosilicone; MSO means topramezone was applied together with a tank mix of MSO. The means in the same column followed by a common letter are not significantly different
at P=0.05 (vertical comparison). The means in the same row followed by a capital common letter are not significantly different at p=0.05 (horizontal comparison).

dose of topramezone registered in China is 22.5-27.0g a.i.
ha™"). Therefore, our result is mostly consistent with the
results in the report of Zollinger. Our previous research
( ) showed that MSO enhanced the efficacy
of topramezone on giant foxtail and velvetleaf by decreasing

Frontiers in
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the solution surface tension and leaf-droplet contact angle and
by increasing both the spread area and wetting time on weed
leaf surfaces. This resulted in a decreased crystal amount of
the active ingredient and an increased foliar uptake and final
translocation of the active ingredient in the plants.
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TABLE 4 Effects of two adjuvants on the dry weight of giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medik.) at 3weeks
after application.

Weed Adjuvant RI,y
High temperature Moderate temperature Low temperature
Giant foxtail Alone 0.36 + 0.08aB 0.38 + 0.09aAB 0.51 +0.19aA
Organosilicone 0.29 + 0.14abB 0.41 + 0.20aAB 0.46 + 0.18abA
MSO 0.21 + 0.08bB 0.32 % 0.06bAB 0.40 £ 0.08bA
Velvetleaf Alone 0.41 +0.22aB 0.46 + 0.30aB 0.66 £ 0.37aA
Organosilicone 0.38 +0.23aB 0.38 +0.30aB 0.59 + 0.38abA
MSO 0.23 £ 0.04bB 0.25 £ 0.07bB 0.48 + 0.20bA

The topramezone dose was 6.3 g a.i. ha™'; control means treated with tap water; Alone means that topramezone was applied alone; Org means that topramezone was applied together with a
tank mix of organosilicone; MSO means topramezone was applied together with a tank mix of MSO. The means in the same column followed by a common letter are not significantly different
at P=0.05 (vertical comparison). The means in the same row followed by a capital common letter are not significantly different at p=0.05 (horizontal comparison).

FIGURE 3

Images of giant foxtail taken at 3 weeks after herbicide application. The topramezone dose was 6.3 g a.i. ha™!; control means treated with tap
water; Alone means topramezone was applied alone; Org means topramezone was applied together with organosilicone; MSO means
topramezone was applied together with MSO.

Additionally, studies have shown that the absorption and Chlorophyll fluorescence measurement
translocation of herbicide active ingredients in plants as a method to evaluate the effect of
decreased under high temperature stress, which ultimately adjuvants on herbicide

decreased herbicide efficacy (Hawxby et al., 1972; Devine

etal., 1983; Coetzer et al,, 2001). Thus, the application of MSO Measuring changes in the chlorophyll fluorescence induction
adjuvants could contribute to the enhancement of herbicide curve (Kautsky curve) has been used in plant photosynthesis
efficacy, especially under adverse environmental conditions. research (Christensen et al., 2003; Korres et al., 2003). This method

Adjuvant organosilicone had no effect on the efficacy of is effective at providing a snapshot of the physiological status of a
topramezone under any of the three temperature conditions. plant exposed to various stress factors and contains important
Organosilicone adjuvants usually enhance the efficacy of certain information about the photosynthetic apparatus. Because of its
herbicides by reducing the surface tension of the spray solution, nondestructive, highly sensitive, rapid speed and easy-to-operate
promoting infiltration of the active ingredient into stomata, and characteristics, this method has been used to measure the effects of
increasing droplet spreading over the leaf surface (Field et al, herbicides that inhibit photosystem II and those with other modes
1992). Though a large number of studies have demonstrated good of action (Habash et al., 1985; Percival et al., 1992; Klem et al., 2002).
effects of organosilicone on enhancing the efficacy of herbicides With the development of this technology and new instruments,
with many different modes of action, there are still some reports Wang et al. (2018) demonstrated that chlorophyll fluorescence can

indicating antagonistic action between L-77 (a type of be used to identify the effects of ALS (acetolactate synthase) and
organosilicone adjuvant) and glyphosate (Sharma and Singh, ACCase (acetyl CoA carboxylase) inhibitor herbicides on the PSII of

2000). This is similar to the findings in our study; hence, the reason weed species and crops under different growing conditions. Similar
(perhaps from the perspective of deposition, retention, uptake, to other 4-hydroxyphenylpyruvate dioxygenase (4-HPPD)
translocation and so on) needs to be further studied in future. inhibitors, topramezone blocks the formation of homogentisate by
Frontiers in Plant Science frontiersin.org
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applied together with MSO.

MSO

Images of velvetleaf taken at 3 weeks after application. The topramezone dose was 6.3 g a.i. ha™; control means treated with tap water; Alone
means topramezone was applied alone; Org means topramezone was applied together with organosilicone; MSO means topramezone was

inhibiting 4-HPPD (Grossmann and Ehrhardt, 2007). As
homogentisic acid is a precursor of the most common plastoquinone
(PQ-9), the electron transport efficiency between PSI and PSII
decreases after the inhibition of HPPD (Xu et al., 2019), and the
photosynthesis of herbicide-treated plants becomes interrupted.
Thus, less energy can be used by the plants via photosynthesis and is
therefore reemitted as chlorophyll fluorescence in a shorter
wavelength compared with that which occurs in unstressed status.
Therefore, chlorophyll fluorescence imaging technology should
theoretically be capable of evaluating the efficacy of such mode
of herbicides.

In our case, we employed chlorophyll fluorescence imaging
technology to evaluate the effects of adjuvants on herbicide
efficacy under different environmental temperature conditions.
The classic whole-plant bioassay and plant chlorophyll
fluorescence measurement results at 2-5 DAT under high and
moderate environmental temperatures corresponded well with
each other for both the grassy weed giant foxtail and the
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broadleaved weed velvetleaf. This is quite similar to the result of
Vranjes et al. (2019) when they did their research on the response
of chenopodium album and abutilon theophrasti to the treatment
of mesotrione. The RIf/r, value of the treatment involving the
herbicide applied together with MSO in a tank mixture was
significantly decreased compared with that of the treatment
involving the herbicide applied alone. In the case of low
temperature, the chlorophyll fluorescence measurement at 2-5
DAT was not consistent for velvetleaf, and the R/ /r value did
not significantly vary among the different adjuvant treatments.
Hence, chlorophyll fluorescence measurements are capable of
evaluating the effects of adjuvants on the efficacy of herbicides
under relatively high environmental temperature conditions for
some grassy weed species, but attention should be paid under
relatively low temperature conditions and for some broadleaved
weed species. As stated above, this technology has already been
applied for herbicide efficacy evaluation in the field accompanying
the improvement of technology and new instruments (Wang

frontiersin.org
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et al, 2016, 2018; Li et al., 2018). Hence this method will
accelerate the progress of screening the right adjuvant for
herbicides and improve the digital component of classic herbicide
bioassays practically.

Conclusion

Selecting an appropriate spray adjuvant for herbicides under
different environmental conditions is an important strategy to
enhance the efficacy of herbicides, reduce the application dose,
and enhance environmental safety. Both the weed leaf chlorophyll
fluorescence test and the whole-plant bioassay results
demonstrated that the MSO adjuvant significantly enhanced the
efficacy of topramezone under all temperature conditions for
both weeds, the grassy weed species giant foxtail (Setaria faberi
Herrm.) and the broadleaved weed species velvetleaf (Abutilon
theophrasti Medik.), especially under relatively high temperature
conditions. However, the organosilicone adjuvant had no effect
on the efficacy of the herbicide on either weed species under any
of the temperature conditions. The underlying reason (perhaps
from the aspect of deposition, retention, uptake, translocation
and so on) needs to be further studied. There was a relatively
good correlation between chlorophyll fluorescence measurements
and whole-plant bioassay results for both weed species under
high and moderate temperature conditions. Hence, chlorophyll
fluorescence measurements should be capable of evaluating the
effects of adjuvants on herbicide efficacy under certain
environmental conditions. However, attention should still be paid
under relatively low temperature conditions for broadleaved
weed species.
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The agronomic processes are complex in rice production. The mechanization
efficiency is low in seeding, fertilization, and pesticide application, which
is labor-intensive and time-consuming. Currently, many kinds of research
focus on the single operation of UAVs on rice, but there is a paucity of
comprehensive applications for the whole process of seeding, fertilization,
and pesticide application. Based on the previous research synthetically,
a multifunctional unmanned aerial vehicle (mMUAV) was designed for rice
planting management based on the intelligent operation platform, which
realized three functions of seeding, fertilizer spreading, and pesticide
application on the same flight platform. Computational fluid dynamics (CFD)
simulations were used for machine design. Field trials were used to measure
operating parameters. Finally, a comparative experimental analysis of the
whole process was conducted by comparing the cultivation patterns of mUAV
seeding (T1) with mechanical rice direct seeder (T2), and mechanical rice
transplanter (T3). The comprehensive benefit of different rice management
processes was evaluated. The results showed that the downwash wind field
of the mUAV fluctuated widely from 0 to 1.5 m, with the spreading height of
2.5 m, and the pesticide application height of 3 m, which meet the operational
requirements. There was no significant difference in yield between T1, T2,
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and T3 test areas, while the differences in operational efficiency and input
labor costs were large. In the sowing stage, T1 had obvious advantages since
the working efficiency was 2.2 times higher than T2, and the labor cost was
reduced by 68.5%. The advantages were more obvious compared to T3, the
working efficiency was 4 times higher than in T3, and the labor cost was
reduced by 82.5%. During the pesticide application, T1 still had an advantage,
but it was not a significant increase in advantage relative to the seeding stage,
in which operating efficiency increased by 1.3 times and labor costs were
reduced by 25%. However, the fertilization of T1 was not advantageous due
to load and other limitations. Compared to T2 and T3, operational efficiency
was reduced by 80% and labor costs increased by 14.3%. It is hoped that this
research will provide new equipment for rice cultivation patterns in different
environments, while improving rice mechanization, reducing labor inputs, and
lowering costs.

multifunctional UAV, seeding, fertilizing, plant protection, mechanization, CFD

simulation, rice

Introduction

Rice is one of the most important crops throughout the
world. As a staple food for more than half of the world’s
population, rice is cultivated in more than 100 countries, and
90% is produced in Asia (Bhandari, 2019; Fukagawa and Ziska,
2019). The rice cultivation area in China is about 30 million hm?,
accounting for 30% of the crop cultivation area in China and
20% of the rice cultivation area around the world. The total rice
production is nearly 20 million tons in China, accounting for
40 of total grain production in China and 35% of the total rice
production all over the world (Zhu et al., 2007; He et al., 2008).
With 60% of the Chinese population relying on rice as a staple
food, rice has the largest area of cultivation, and the highest
yield, which occupies an extremely important position in food
security. (Feng et al., 2020).

However, there are many segments and complex agronomic
technical measures in rice cultivation, which lead to the low-
efficiency mechanization of the whole production process. There
are great differences in the mechanization levels of rice seedling,
transplanting, fertilization and pesticides management, machine
harvest, postharvest transportation, and grain drying (Chen
et al, 2017b). The rice cultivation process is divided into
four main parts: tillage, seeding, management, and harvest.
The tillage and harvest are mechanized, but the seeding and
management still cannot meet the requirements of modern
agriculture (Li et al, 2012; Song et al, 2018b). Especially in
the hilly areas, the arable land is small and scattered, where
the terrain is rugged. There are also problems with the use
of mechanical operations on the plains. For example, the soil
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is compacted resulting in uneven seed emergence, and there
is an inconvenience in the use of small farm machinery (Lan
etal, 2017). They are time-consuming, inconvenient, and labor-
intensive, which seriously affect the progress of mechanization
(Bao and Li, 2004; Zhang and Zhou, 2019).

With the development of modern manufacturing, many
forms of agricultural equipment are used in rice production.
Unmanned aerial vehicle (UAVs), with the advantages of fewer
site requirements, low energy consumption, high safety, and
no space restrictions, has been widely used in rice agricultural
production (Wang et al., 2019). The continuous improvement
of agronomic technology, intelligent supporting technology,
and equipment for the whole process of rice production
have been introduced, which promoted many scholars to use
UAV applications for rice management (Zhang and Gong,
2014; Zhou et al,, 2017, 2019). Firstly, for the effect of plant
protection UAV operating parameters on droplets and control
effectiveness, some previous explorations have been conducted.
Wang et al. (2017) studied the effect of spray parameters of
small, unmanned helicopters on the deposition of droplets.
The experimental results showed that the droplet distribution
decreased from the upper to the lower layer of the rice canopy
and decreased with the increase of flight speed. Chen et al.
(2016) studied the effect of HY-B-10L unmanned helicopter
spray parameters on the droplet deposition distribution in the
hybrid rice canopy. The results showed that the vertical wind
field above the plant canopy weakened with increasing height,
and the amount of droplet deposition gradually decreased; the
lower the operating speed, the more droplets were deposited
below the aircraft. Xue et al. (2013) applied N-3 UAV to
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investigate the effect of different flight heights on the control
of rice Planthopper and Cnaphalocrocis medinalis. The results
showed that low flight altitude was effective in controlling rice
Planthopper and C. medinalis, and the application volume was
directly proportional to the control effect at the same flight
altitude. Secondly, for agricultural UAV seeding, our researchers
have conducted a lot of research. In 2014, Li et al. (2016)
conducted UAV spreading experiments. The results showed
that a 0.09 hm? rice field only required 305 s to complete
rice seed spreading. Cheng and Li (2020) studied the effects
of direct seeding on rice growth characteristics and yield.
The results showed that UAV direct seeding had significant
advantages over hole-direct seeding and manual sowing in
seedling quality indexes. The yield of UAV direct seeding was
454.9 kg/667 m?, which was higher than that of manual sowing
at 417.9 kg/667 m?, but lower than that of hole direct seeding
at 509.3 kg/667 m?. Thirdly, UAVs had also been studied
for agricultural fertilization. Ren et al. (2021) designed a rice
fertilizer spreading system. The test results showed that fertilizer
spreading uniformity was significantly influenced by flow rate,
UAV flight speed, centrifugal disc speed, and drop-in position
angle, all of which interacted with each other. The best fertilizer
spreading performance was achieved when the drop-in position
angle was forty, the centrifugal disc speed was 1,100 r/min, the
fertilizer flow rate was 3,460 particles/s, and the flight speed
was 5 m/s. The coefficient of variation was 8.86% currently. The
fertilizer application efficiency of the UAV was about 12.5 times
that of manual fertilizer application.

10.3389/fpls.2022.953753

In 2012, there were less than 10 Chinese agricultural UAV
manufacturers and only a few hundred agricultural UAVs. With
the promulgation of the Centra Document No. 1 in 2014, the
number of UAV enterprises have increased by nearly hundreds,
and the sales amount has reached 60 thousand units by 2020.
Correspondingly, agricultural UAV ownership has reached 110
thousand units (Yubin and Guobin, 2018; Yongwang et al,
2020). The rapid development of the UAV industry and the
rise in labor costs have accelerated the use of UAVs in the
rice cultivation process. Especially in areas where large ground
machinery cannot operate rice cultivation, the application of
UAVs has broad prospects.

Currently, UAVs are widely used in different aspects of
agriculture, but mostly single function. UAVs have developed
rapidly in agricultural fields, such as disease and insect pest
control, pollination, and agricultural information acquisition
by remote sensing, but the development of UAV air sowing
is relatively backward (Wan et al, 2021). Considering the
characteristics of different application of UAVs in seeding,
fertilization, and pesticide application in rice cultivation, the
idea to design an multifunctional unmanned aerial vehicle
(mUAYV) is proposed (Figure 1), which can combine all these
functions. The focus of this article mainly included the following
aspects: (1) The mUAV were structured as a modularity of
different functions. A sophisticated flight platform was designed
and improved, which was based on modular design theory
connected to different functional devices, and these different
modules corresponded to different functions. This structure

Module One: C Platf Module Two:
Spreading seeds and fertilizers ommon Fiatiorm Pesticide Application

FIGURE 1
mUAV total design solution.

Frontiers in Plant Science

110

frontiersin.org


https://doi.org/10.3389/fpls.2022.953753
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

Qietal.

could increase the utilization rate of machinery and reduce the
idle rate of agricultural machinery. It could also reduce the
acquisition cost of agricultural machinery and protect farmers’
income. (2) The appropriate range of operational parameters
was selected for the different functional modular devices. Two
approaches were used to evaluate the operational patterns
separately. Numerical simulation analysis was prioritized,
which focused on the downwash airflow motion regulation.
Afterwards, field tests were combined for verification, which
clarified the particle distribution at the target under the action of
downwash airflow. It was hoped that the content of these studies
would provide some guidance for practical use by farmers.
(3) Comparative field trials were conducted in the mUAYV,
mechanical seeding, and mechanical transplanting the latter
two, of which were the mainstream mechanized operations in
society. Each of the three types of equipment was applied to
the whole process of rice cultivation to summarize and analyze
the impact of labor cost, as well as rice yield in the whole
process of rice cultivation. It was hoped that the comparison
test would provide a reference basis for farmers to recognize and
understand the advantages and weaknesses of the mUAV when
they chose the mUAV for their operations.

Materials and methods

Multi-rotor unmanned aerial vehicle
platform and multifunctional
component design

In this research, based on the current UAV models, an eight-
rotor UAV with 20 kg loading capacity was designed based
on “Yuren” automatic flight control system. Multifunctional

10.3389/fpls.2022.953753

TABLE 1 Basic parameters of the multifunctional UAV.

Parameters Values
Dimensions/mm? 3,740 x 3,740 x 800
Fight velocity/ms~! 0-7
Fight altitude/m 0.5-5
Number of nozzles 8
Number of rotors 8
Spaying width/m 8-10
Spreading fertilizer width/m 9-12
Seeding width/m 5.7
Maximum load/kg 20
Battery capacity/mA-h 5,500

component system was designed based on this UAV platform. Its
core working components were mainly divided into three parts:
flight control platform, spreading system, and spraying system.
The spreading system and the spraying system were connected
with the rotary arm through the quick release buckle to realize
the agricultural various agricultural operation requirements of
sowing, spreading fertilizer, and spraying. A three-dimensional
model of the whole structure was constructed using Unigraphics
NX (Siemens PLM Software), as shown in Figure 2. The basic
parameters were listed in Table 1.

Operational parameters optimization

Multifunctional unmanned aerial vehicle wind
field computational fluid dynamics simulation
by using ANSYS

The wind field below the UAV rotor was mainly composed
of the UAV rotor wind field and the external environment wind

FIGURE 2

3D overall design of mUAV. 1 represents the public flight control platform, 2 represents the device for spreading seed or fertilizer, and 3

represents the entire system used for pesticide application.
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field, which was the main factor affecting the particle trajectory.
During the stable flight of the UAV, a strong rotor wind
field would be generated, which had a certain coercive effect
on the particle movement. Therefore, the computational fluid
dynamics (CFD) method was used to explore the influence of
the mUAV rotor wind field on the particle movement. Through
the research on the distribution characteristics and development
regularity of the mUAV rotor wind field, the influence of the
mUAV rotor wind field on the particle movement can be more
accurately explored and understood.

An accurate 3D model of mUAV played a key factor in
CFD simulation, but the complex structure led to difficulties
in modeling and boundary conditions. As shown in Figure 2,

10.3389/fpls.2022.953753

the mUAV is a full-size structure, which was not necessary
because the shape of the mUAV was a complex-curved surface.
Therefore, simplifying the structure was very necessary for CFD
simulation. The simplified result was shown in Figure 3.

In the 3D coordinates, the forward motion in X direction
was the front of the MUVA flight, the forward motion in Y
direction was the right offset, and the forward motion in Z
direction was the descent direction.

The mUAV was located at the center of the coordinate
system (X =0, Y =0, Z = 0) and the distances between the mUAV
and the ground were 1-6 m. The entire computational domain
was a cylinder with a radius of 8 m, as shown in Figure 4A. The
rotation direction of the mUAV blades was shown in Figure 4B.

FIGURE 3

The simplified structure for numerical simulation processes. (A) Represents the simplified rotor and other structures, while (B) represents the

specific structure of each propeller after simplification.

FIGURE 4

Computational domain settings in numerical simulation. (A) Stands for the name of the boundary condition, where 1 represents the top surface
of the computational domain, 2 represents the location of the mUAV, 3 represents the space wall, and 4 represents the ground. (B) Stands the
top view of the rotor in the computational domain, where R1-R8 represents each rotor, respectively, and the corresponding black portion of
arrows represent the direction of rotation of that rotor in the computational domain.
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The eight rotors of the mUAV were the rotational domain and
the cylindrical air was the stationary domain. The interface
meshes were established for accurate calculation between rotors
domain and air domain.

The SpaceClaim software (Release 2021 R1, Ansys, Inc.,
PA, United States) was used to develop the CFD models of
simplified mUAV model, Mesh in Workbench was used for
meshing and as the solver. The unstructured tetrahedral mesh
was applied, and the size of the grids was defined. The mesh
size of the rotational domain was defined as 10 mm, the mesh
of the stationary domain was defined as 400 mm, and the mesh
quality was improved by defining the dimensions of faces and
lines separately. Also, it had turn on features, such as Capture
Curvature and Proximity to improve mesh quality. Transient
SST k-¢ model was employed (Wang et al., 2001; Omar et al,
2016), the computation lasted 1,000 steps with a time step of
0.005 s. The workstation was used to calculate the results of the
rotational speed of the rotating domain at 2,500 r/min.

Experimental parameters

Seeds and fertilizers were evenly distributed in the soil,
which was beneficial to seed emergence and balanced fertilizer
nutrition. Therefore, refer to the test regulations of the technical
specifications in EN13739-1 (2011) Agricultural machinery -
Solid fertilizer broadcasters and full width distributors -
Environmental protection and NY/T1003 (2006) Technical
specifications of quality evaluation for fertilizing machinery,
the distribution of particles in the field was an important
test parameter. To reduce the particle bouncing and other
factors affecting the collection efficiency, particle size uniformity
detector (AAMS-SALVARANI BVBA, Germany) was used as a
dedicated tester to collect particles. During the test, Pocketwind
IV Anemometer (Lechler GmbH-Agricultural Nozzles and
Accessories, Germany) was used as a device for recording wind
speed and temperature of the environment. If the wind speed

10.3389/fpls.2022.953753

exceeded 4 m/s and the temperature exceeded 30°C, it would
be regarded as invalid data. In the experiment, about 667 m?
of open space was selected as the UAV operation area, and the
center of the area was used as the collection location of the
detector. When the UAV was operating, the detector area would
be fully covered to ensure accurate data. The speed of the UAV
was set between 2 and 2.5 m/s and keep the flight height at
1.5, 2, and 2.5 m, respectively. After the UAV landed safely, the
particles in each detector were recorded.

For the sowing test (Figure 5A), to simulate the real working
environment, the fields, which were soaked in water, were
selected. The detectors were fixed in the test field with an
interval of 2 m and perpendicular to the UAV course. The
detector was divided into 6 x 6 partitions, with an outer size
of 500 mm x 500 mm, which can easily count the number of
seeds in each small partitions. There was some variation in the
location of fertilizer test site (Figure 5B), which was selected on
a dryland. In addition to using a collector, 200 mm x 500 mm
size circular collectors were used to collect fertilizer particles in
a3 x 6array at 1,500 mm X 1,200 mm intervals.

The plant protection application experiment was conducted
at the jointing-booting stage of paddy. The fixed rods were
inserted into the paddy field, which were arranged in a 3 x 9
matrix with a cortege spacing of 3,000 mm x 1,000 mm
(Figure 6A). One end of the double-head clamp was fixed
on the fixed rod, and the other end clamped the droplet
collector (Polyethylene Card, PVC), as shown in Figure 6B.
The two droplet collectors were located at the top and middle
ends of the same fixed rod. It was placed horizontally, which
accounted for 100 and 50% of the length of the rice, respectively.
The Allura red solution with a concentration of 10 g/L was
prepared as a droplet deposition tracer, which was put into
the UAV tank before flight. The UAV was operated with
the parameters shown in Table 2. The Wind Master model
(Gill Instruments Ltd., United Kingdom) was used on site to

i

FIGURE 5

Test site for rice seeding and fertilization. (A) Represents the rice seeding test site, where detector is to collect the rice seeds that fall on the
ground; Label is to identify the location. (B) Represents the fertilizer spreading test site, where detector is used to collect ground fertilizer
particles, and collector is used as another way to collect ground fertilizer particles.
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FIGURE 6

Rice pesticide application test site. (A) Represents the field sampling site of rice field, where the sampling points are arranged on the fixed rod.
(B) Represents a partial schematic of each fixed rod, where the double-head clamp connects the fixed rod to the droplet collector.

TABLE 2 Spray test and environmental parameters.

Test number Flight height (m) Flight speed (m-s™!) Wind speed (m-s~!) Temperature (°C)
1 1.0 6.0 2.7 346
2 2.0 6.0 25 325
3 3.0 6.0 22 312
4 3.0 40 26 304
5 3.0 5.0 2.7 32.7
6 40 6.0 1.7 305

monitor the environmental parameters. After the UV landed,
the sampling bottle collected 50 ml of liquid in the tank.
After the droplet collectors were naturally dried, each droplet
collector was individually packaged in a plastic sealing bag and
stored in darkness.

Refer to 15022866 (2005) and 1SO24253-1 (2015) standards.
Deionized water (50 ml) was added to the plastic sealing bag of
polyethylene film, then the plastic sealing bag was placed in a
shaker at 500 r/min for 10 min. The eluate was measured with
a 722 spectrophotometer. The droplet deposition refers to the
mass of the droplet per unit area, which was calculated using the
following Eq. 1 (Qin et al., 2014; Wang et al., 2020):

(Psmpl — Pbik) X Fear X Vi
Pspray X Acol

ﬁdep = 1)
Baep: Droplet deposition [c%]; Psmpi: Sample Collection Values;
ppix: Blank Control Values; F,;: Calibration Factor (per
fluorimeter scale unit) [”Tg 15 Vit Volume of dilution liquid used
to solute tracer from collector [L]; pspray: Tracer concentration in
spray liquid [%]; A, : the area of the collector for catching the
spray deposition[cm?].

The uniformity of the particles or spray deposition on the
sampling places are reported as the coeflicient of variation
(CV) of the measured deposition values, and a lower CV
value indicates a better uniformity of deposition distribution.
Equation 2 describes the calculation of the CV (%) using the ISO
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standard 24253-1.

x 100% (2)

X; : Samples from each collection point; X: Corresponding
to the average value of the collected samples; n: Number of
samples collected.

All statistical analyses were performed using IBM SPSS
Statistics for Windows (IBM Corp., Armonk, NY, United States).
Two-way analysis of variance (ANOVA) was adopted to explore
the effects of broadcast and spray on distribution uniformity on
the field. In all trials, the mean values of distribution uniformity
at different parameters, together with those of percentage,
were compared using one-way ANOVA via the Duncan test
(o = 0.05).

Application experiment of rice cycle
cultivation management

To better understand the performance of mUAV operated
in an outdoor environment, comprehensive comparison
experiments were conducted at different growth stages of rice
using different agricultural machinery.
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There were three main modes of local rice cultivation:
The first one was rice direct seeder cultivation, which was
an important way to fully mechanize rice cultivation. The
second one was mechanized rice transplanter, which is also an
important mode and guarantees and supports mechanization
planting. The third was artificial transplanting, which is a
traditional rice transfer method that had been gradually replaced
by mechanical transplanting. Therefore, the comprehensive
comparative experiment was set up with three cultivation
patterns: the first experimental field was the multifunctional
UAV directly sowing, fertilizing, and applying pesticide. The
second experimental field was sown with a rice direct seeder,
and fertilizer and pesticide were applied using other ground
machinery. The third experimental field was sown with a rice
transplanter, while other ground machinery was used to apply
fertilizer and pesticides. The area of each experiment area was
2.2 hm?, which were marked as T1, T2, and T3 respectively.

Full mechanization referred to the mechanization of efficient
production technologies in rice production, such as tillage,
planting, plant protection, fertilization, harvesting, drying, and
straw treatment. According to the agricultural characteristics
and experimental requirements of rice cultivation, there were
five main segments: tillage, seeding, planting, fertilization, and
harvesting. This experiment was conducted to compare the
feasibility of UAV application in the whole process of rice and
a comprehensive comparison with two mechanical planting
methods. The test site was in Zhuangqgiao Village, Wanfu
Town, Huaiyuan County, Bengbu City, Anhui Province in
2020, and the trial included evaluation of labor costs, rice yield
and profit, cost analysis of transplanting, etc. To match the
actual production conditions, the agricultural materials and
equipment used during the experiments process were provided
by local cooperatives.

Agronomic process of different cultivation
modes of rice
Ploughing stage

All experimental fields were cultivated with a 1804D model
tractor (YTO GROUP CORPORATION, China) and a 1GS-
3300 model rotary tiller (YTO GROUP CORPORATION,

10.3389/fpls.2022.953753

China) with a width of 3,000 mm for the purpose of breaking
the soil stubble. At the same time, 40 kg/667 m? base fertilizer
was applied, and the soil and fertilizer were mixed using
rotary tillage. In the field, a ditch with a depth and width of
300 mm x 300 mm was dug at an interval of 4,000 mm for
water retention and to prevent waterlogging. The herbicide
was sprayed by a 3WPZ-1500B self-propelled boom sprayer
(Qingzhou Aike Machinery Technology Co., Ltd., Qingzhou,
China). The difference was that T1 and T3 irrigations were kept
for 7 days, and the water was drained, while T2 did not require
further treatment. As shown in Figure 7.

Sowing stage

In the T1 experimental area, the seeds were soaked 24 h in
advance and germinated to a length of 1.5-2 mm (Tao et al,
2011), and the seeds were sown into soil at 5 kg/667 m? using
a UAV broadcast. In the T2 experimental area, the seeds were
only soaked about 12 h until just about to germinate, and the
seeds sown into soil at 6 kg/667 m? using a rice direct seeder
(Huaiyuan County Sanliu Agricultural Machinery Co., Ltd.,
Huaiyuan, China). In the T3 experimental area, the seeds were
cultivated 20 days in advance, which was the seedling raising
period, and then the seedlings were collected and transported,
then 4-7 seedlings per hole were inserted into the experimental
field with a row spacing of 140 mm X 300 mm using a
NSD8 model mechanical rice transplanter (Kubota Agricultural
Machinery (Suzhou) Co., Ltd., Suzhou, China). According to the
agronomic characteristics, T1 and T2 were selected as suitable
for direct seeding with the same seed variety, and T3 was selected
as another variety suitable for transplanting.

Top dressing stage

Topdressing was mainly in the tillering and booting period,
and the amount of fertilization was 15 kg/667 m? each time,
for a total of two times. The main difference between the three
experimental areas were the use of different equipment. In the
T1 area, the feeding port suitable for the caliber was installed
to the UAV broadcast, and then the top-dressing operation was
carried out. In the T2 and T3 experimental areas, to reduce the
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Agricultural process of rice cultivation in different experimental areas. @ Compared to T1 and T3, the workload in the T2 region is reduced by
about half, ® compared to T1 and T3, the T2 area is only about 60% irrigated, keeping the soil from drying out, but not having standing water, €
the seeds germinated to 2 mm, which took about 20 h, ¢ the seeds were just ready to germinate, but did not grow, taking about 8 h. T1
represents mUAV experiment area, T2 represents mechanical rice direct seeder area, T3 represents mechanical rice transplanter area. P1
represents soil preparation stage, P2 represents seeding stage, P3 represents fertilization stage, P4 represents pesticide application, and P5

represents harvester stage.
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cost of agricultural equipment, the sports chassis of the SWPZ-
1500B self-propelled machine, and the separately purchased
fertilizer spreader were used to work together.

Pesticide application stage

In the actual management of diseases and pests, pest
prevention is the main method of pest and disease control.
Therefore, according to the needs of agricultural control and
the occurrence of pests and diseases, pesticides were generally
sprayed before the occurrence of pests and diseases. The
pesticides were mainly insecticides and fungicides, which were
sprayed 3-4 times during the rice cultivation process. The
main differences between the three experimental fields were the
agricultural equipment and the amount of pesticide applied. In
the T1 experimental area, the application system was installed
on the UAV platform, and the pesticides were mixed and
diluted with an application rate of 1.5—2 L/667 m>. The 3WPZ-
1500B self-propelled boom sprayer was used in the T2 and
T3 experimental areas to spray with the application rate of
15—20 L/667 m?.

Harvest stage

The rice yield was evaluated, reference to the National Grain
High Yield Creation Yield Measurement, Acceptance Method,
and the DB32/T 1093-2015 Standard. Five units were selected
in the diagonal direction of each experimental area, each unit
of 20 x 667 m? was used as a production measurement unit.
Five sampling points were randomly selected in each production
measurement unit. For the experimental field with obvious row
spacing and plant spacing, representative rice panicles within a
certain range were selected from each sampling point, and the
number of panicles per 667 m? was calculated. Representative
mature rice ears with ten holes per unit were selected to measure
the plant height and root length of rice. After natural air-drying,
the number of grains per ear, seed setting rate, and thousand-
grain weight were determined, and the theoretical yield per
667 m? was calculated. For the experimental field where the
row spacing and plant spacing cannot be clearly distinguished,
a square frame of 1,000 mm x 1,000 mm was made with
hard iron wire, and the number of ears and yield per 667 m?
were calculated. Finally, the 4LZ-200 rice combine harvester
(Luoyang Zhongshou Machinery Equipment Co., Ltd., Luoyang,
China) was used to harvest rice.

Results

Characteristics of downwash airflow at
different heights

As shown in Figure 8, the velocity of the downwash flow
field was varied along the Z-axis in the range of 1-6 m from the
ground for the UAV.
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Higher wind speeds were generated at the wingtips of the
rotor blades, and two distinct areas of acceleration appeared
below each rotor blade. An upward (Z-axis negative direction)
airflow appeared in the center of the mUAV broadcast. The
vertically downward scrubbing airflow created a negative
pressure that caused the surrounding air to converge on the
downward scrubbing airflow. The vertically downward airflow
touched the ground, causing the airflow to flow sideways, and
this airflow met the airflow that was brought to the center,
forming a vortex.

At the same time, various combinations of altitudes can be
seen. As the flight height of the mUAV increased, the velocity
change tended to level off at the position near the ground, the
airflow gradually increased along the radius direction, and the
vortex gradually moved away from the center.

In all the interfaces shown in Figure 8, a straight line was set
at 0.5 m intervals along the Z-axis direction. This straight line
indicated that the velocity changed at different distances in the
Y-axis (Figure 9).

Four small peaks and one trough were observed at 0.5 m
(Figure 9A) and 1 m (Figure 9B) below the UAV at all test
heights. The wind speed at this point was unstable and there
was an effect of wind speed in the opposite direction (Z-axis
negative direction). Since the mUAV was so low to the ground,
the strong airflow hit the ground and bounced off the ground,
which referred as the ground effect.

An upward (Z-axis negative direction) velocity was observed
in the range of 0.5-1.5 below the mUAV at flight heights of
1 and 2 m. Until the flight altitude of 3 m (Figure 9C), the
velocity direction was still downward (positive Z-axis direction)
despite the sharp change in the center of the mUAV. Moreover,
above 1.5 m from the bottom of the mUAY, the velocity change
tended to smooth out.

In addition, the flow field below the mUAV became more
stable with the increasing flight altitude, and the same trend was
observed at flight altitudes of 4-6 m (Figures 9D-F).

According to the above simulation results, it was suggested
that the mUAV should operate at a height of 2 m or more.

Variation of spread distribution with
height

When the mUAV was used for seeding tests, the flight
altitude had an (positive or negative) effect on the uniformity of
spreading, which was 24.36, 22.83, and 13.05% in the horizontal
direction for the three altitudes tested. As shown in Figure 10A,
the fluctuations were relatively large at the position of test point
(1,4) and less in the middle (2,3).

When the mUAV performed fertilizer spreading was tested,
there was the same trend at different heights, and the weight
of particles collected by the detector that showed more in the
middle and less on both sides. The variability was greater on
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FIGURE 8

the ground, respectively.

Flow field velocity vector illustration of the mUAV flying at different altitudes. (A—F) Indicate that the mUAV is flying at 1, 2, 3, 4, 5, and 6 m above

the right side than on the left side, as shown in Figure 10B. In
the circular detector (Figure 10C), the left collector had a large
particle dispersion and good uniformity of dispersal to the oft-
right of the mUAV route. The CV in the horizontal direction
fluctuated from 11.98 to 23.68% over the range of test heights.
According to the simulation results (Figure 9), the mUAV
tended to have a smoother downwash airflow with an increasing
height, which was more conducive to the uniform distribution
of particles. However, the actual motion of the particles in the
air varied greatly under the influence of the ambient wind field
forces. The higher the flight height, the longer the fall time in
the air and the more uncontrolled the trajectory of the particles,
which led to greater uncertainty in the particle fall point. As
shown above, 2.5 m would not be the most suitable height,
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but it could meet the requirements of agronomic spreading and
minimize the influence of ambient wind field forces.

Variation of spray distribution with
height and velocity

As shown in Figure 11A, the deposition of droplets in
the upper and middle of rice was affected by the flight height
of the mUAV. The low flight (H = 1 m) can significantly
increase the deposition of the upper and middle, and the
deposition in the upper and middle layers was 0.0849 and
0.0446 pL cm~ 2. From H = 2 m to H = 3 m, there was
no significant difference in the deposition between the upper
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downward wash and negative values indicate a vertical upward wash.

Variation curve of velocity at different altitudes during simulation. (A—F) Indicate that the mUAV is flying at 1, 2, 3, 4, 5, and 6 m above the
ground, respectively. The "Z" in each figure indicates the distance from below the mUAV, “for FFF meters” indicates the altitude at which the
mUAV is flying. The curves in each graph indicate the wind speed of the mUAV at distance "Z,” where positive values indicate a vertical
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and middle of rice, but the deposition at H = 3 m was
higher than that at H = 2 m and H = 4 m. In the range
of UAV flight speed of 4-6 m s~! (Figure 11B), low flight
speed could significantly increase the deposition of droplets
in the upper layer, but it had no significant effect on the
deposition of the middle.
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When the mUAV was flying at an altitude of 1-6 m above the
ground, Figure 12 showed the wind speed profiles for different
flight heights of 0.5 m above the ground. The intensity of the
downwash airflow was highest and unstable when the mUAV
was flying at 1-m height, which resulted in a high air mass
flow rate and an increase in the number of particles per unit
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Distribution characteristics of droplet deposition in the rice canopy. (A) Represents deposition distribution affected by flight heights,
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time of droplet movement, which eventually manifested itself
as an increase in deposition. One possibility inferred from this
was that the downwash airflow velocity of the mUAV above
the canopy should be less than 5 m/s to evenly distribute the
deposition above and below the canopy.

Under the same speed conditions, the droplet deposition in
the upper and middle layers tended to decrease with the increase
of flight height, which may be affected because of droplet drift
caused by the increase of height. Under the condition of the
same flight height, the deposition of the upper and middle also
decreased with the increase of the speed. This was caused by the
low flight speed, which led to the increase of the spraying flow
droplet deposition. According to the CV values of the droplet’s
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deposition and distribution in the rice canopy, the 3-m flying
height with a speed of 5 ms™! were selected/recommended
during the spraying operation.

Yield of different cultivation patterns

After analysis of the yield components, it was found that
the panicles distribution density, spikelet per panicle, as well
as thousand grain weight, were all significantly affected by the
methods of cultivation (Table 3). Meanwhile, the performance
of T1 with T2 in the number of panicles per square was similar,
while T3 had the lowest value (P < 0.05) among these methods.
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Velocity variation curve at 0.5 m from the ground at different flight heights. Where “Z=05mfor1m,”"Z=15mfor2m,”"Z=25mfor3m,”
"Z=35mfordm,”"Z=45mfor5m,”"Z=55mfor 6 m, the size of the downwash airflow at 0.5 m from the ground when the UAV is flying

atl, 2, 3,4, 5 and 6 m, respectively.

T1 and T2 were 19.7 and 9.5% higher than T3, respectively.
The cultivation methods did not have an obvious difference
of the number of spikelets per panicle. T2 increased the value
(P < 0.05) by 24.6% compared with T3. The thousand grain
weight were similar between T1 and T2, approximately 14.6%
less in T1 compared with T3 area. However, there were no
significant differences in seed-setting rate and predicted yield
among the three experimental areas.

Comparison of benefits of different
cultivation methods

The experimental site in this study was professionally
managed by a cooperative production, and the statistics
were based on workers employed and agricultural equipment
purchased by the company.

As shown in the Table 4, the T1 area (mUAV broadcast)
had significant advantages in the seeding session. Its operational
efficiency was 2.2 times and 4 times higher than T2 and T3,
respectively. The effect of pesticide spraying in T1 area was also
higher than T2 and T3 area by 33%. However, the fertilizer
application efficiency in T1 was five times lower than T2 and T3.
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According to the management company salary standard,
the driver should be paid RMB 200 per day, and the support
staff should be paid RMB 150 per day. All agronomic segments
required one driver and several support staff. The number
of employees used for planting was the regular operation
configuration. The seeding segment in T1 area had one less
support staff than T2 and T3 areas, and the fertilizer stage had
two less support staff than T2 and T3 areas.

As shown in Figure 7 in the process of P1 to P5, rice
harvesting cost (P5) was the same and the difference in labor
cost was mainly in P1 to P4. The labor cost was calculated based
on the number of employees, the number of operations, and the
work efficiency (Table 5).

In soil preparation stage, it was mainly because T2 did not
require 100% irrigation, but only about 60% of the irrigation. As
aresult, T2 area has a 32.6% reduction in labor costs compared
to T1 and T3 areas. T2 and T3 had high loads of ground
equipment, which consequently led to 16.5% higher labor cost
for fertilizer application in T1 than T2 and T3. Pesticide spraying
by mUAV (T1) had the advantage of reducing labor costs by 25%
in T1 area compared to the other two areas. The UAV had an
advantage over the rice direct seeder, but the advantage was not
significant with higher only 8.7%. Compared to transplanting,
the mUAYV significantly reduced labor costs by 34.1%.
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TABLE 3 Effect of different cultivation methods on grain yield and its components of rice.

Test area No. of panicle per No. of spikelet Seed-setting Thousand grain Yield
square (No/m?) per panicle rate (%) weight (g) (kg/667 m?
T1 374.83a 121.93ab 94.52a 22.57b 577.41a
T2 342.83ab 140.37a 94.80a 23.50b 600.99a
T3 313.17b 112.67b 95.57a 26.42a 554.43a
a, b indicates a significant difference at P < 0.05.
TABLE 4 Efficiency and number of employees of sowing, fertilizing, and application operations in different experimental areas.
Test area Agronomic Work efficiency Labor cost Number of Number of
sessions (667 m?/day) (RMB/day) employees/day operations*
T1 Sowing 200 350 2 1
Fertilization 160 350 2 2
Spraying 400 350 2 3
T2 Sowing 90 500 3 1
Fertilization 800 1,500 4 2
Spraying 300 350 2 3
T3 Sowing 50 500 3 1
Fertilization 800 1,500 4
Spraying 300 350 2 3
* Number of operations throughout the growth cycle of rice.
TABLE 5 Labor cost of soil preparation, sowing, fertilizing, and spraying in different experimental areas*.
Test area Soil preparation Sowing Fertilization Spraying cost/ Total cost/
cost**/ RMB cost/RMB cost/ RMB RMB RMB
T1 766.67 175.00 437.50 262.50 1641.67
T2 516.67 555.56 375.00 350.00 1797.22
T3 766.67 1000.00 375.00 350.00 2491.67

*Based on 66.7 thousand m?. **Including all labor costs for irrigation during the rice cultivation process.

Discussion

With the increasing application of UAVs in precision
agriculture, the CFD was applied to the improve the downwash
airflow of agricultural UAVs, from which the particle motion
in the airflow was analyzed. For example, Yang et al. (2017,
2018a) simulated the velocity distribution of the downwash
airflow field and the spatial distribution of droplets during the
hovering condition of multi-rotor aircraft based on the Fluent
k-e turbulence model, which was verified by combining with
indoor hovering experiments. From the wind field simulation
results, it reflected the overall wind field spatial distribution
pattern, and the simulated value of the average wind speed at
the marker point was within 9% error with the experimental
measurement results.

In this study, we simulated the wind field of the designed
mUAV to provide a theoretical basis for the parameter setting
of the field test. The different flow velocity of the downwash
airflow from the center outward caused the effect of the flow
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field spreading outward from top to bottom. This resulted in an
increase in spray width, and the spray width was proportional to
the flight height (Yang et al., 2018b). The airflow along the outer
rotor caused two peaks in a certain range. The effect became
relatively poor (Zhang et al., 2016) when the multi-rotor UAV
was operated at an altitude below 1 m. In addition, when the
wind speed was smaller horizontally and larger (Chen et al,
2017a) vertically downward, the rotor’s downwash airflow had
better deposition uniformity. Particles in the air were mainly
affected by wind field forces and gravity, etc. When out of
the downwash airflow region, they were mainly affected by
the environmental wind speed, which was non-constant, and
this affected the final position of the particles. These factors
led to uneven distribution of rice seeds, fertilizer particles, and
pesticide droplets. There was a risk of drift loss of pesticide
droplets (Zhang et al, 2015; Wen et al, 2018). Therefore,
based on the premise of satisfactory distribution uniformity
and mUAV flight safety, the following operational parameters
were selected in this work for experiments with a width of
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4 m and a flight height 2—6 m at regular flight speed and
lower flight height.

The simulation parameters were given as a guide, the
specific operating parameters needed to be derived from actual
tests. Song et al. (2018a) designed an air-powered UAV rice
spreading device that used airflow to blow seeds out in different
directions. The results showed that the UAV’s operating height
in the range of 1-2.8 m had no significant effect on the
spreading width and spreading uniformity. Considering the
factors of spreading width and uniformity CV, as well as the
field operating environment, the flight height of 2 m was
considered to be the appropriate operation height of this UAV
platform. Liu et al. (2020) studied the effect of quadrotor UAV
spreading parameters on the seed distribution of Astragalus
membranaceus. The results showed that the flight height was
the most important factor affecting the uniformity of seed
distribution. Meanwhile, the height of 1.5 m was recommended
as the optimal operation height. Wang et al. (2016a,b) analyzed
the distribution characteristics of droplets in different parts
of space by comparing different UAVs, different flight modes,
flight speeds, flight heights, and crosswinds using a spatial
mass balance test. The results showed that the wind speed
was fast and strong when the UAV flew at 2 m height.
As the height increased, the airflow in the vertical direction
weakened significantly. Although the increased flight altitude
reduced the dispersion of droplet deposition rate and improved
the uniformity of droplet distribution, there was a significant
upward trend in the percentage of downwind drift. The above
results showed that it was a double-edged sword that the method
of adjustment of distribution uniformity by flight height. The
airflow motion gradually decreased with increase of height, and
there was a gradual diffusion change from vertical downward
motion to horizontal motion (Shi, 2015). Simply increasing the
flight height had an effect on the uniformity of distribution.
However, as the flight height increased, the particles were
weakened by the force of the downwash airflow, and it was
susceptible to interference from ambient wind speed. Therefore,
the operating parameters chosen in this study were flight height
of about 2.5 m for broadcast application, and height of 3 m for
pesticide application.

The application of UAVs in the whole process of rice
cultivation or in individual segments can be seen to satisfy
the requirements of modern paddy cultivation. Li et al. (2016)
used a small multi-rotor UAV for rice broadcasting, the
results showed that CV was far smaller than that of artificial
broadcasting. The average yield of field broadcasted by UAV
was 7,705.5 kg/hm?, implying that rice air broadcasting by
UAV was feasible. Zhu et al. (2021) conducted a comparative
trial of five cultivation methods: mechanical transplanting,
unmanned machine seeding, mechanical precision hole sowing,
mechanical seedling throwing, and manual seeding. The results
showed that the number of seedlings in descending order
was manual seeding, UAV seeding, mechanical precision hole
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sowing, mechanical transplanting, and mechanical seedling
throwing. The total effective number of spikes was higher in the
treatments of unmanned seeding and mechanical transplanting.
The theoretical yield of each treatment was in the order
of mechanical precision hole sowing, mechanical seedling
throwing, UAV seeding, mechanical transplanting, and manual
seeding. The analysis of the labor cost in the seedling planting
process showed that the mechanical precision hole sowing or
UAV seeding method was worthy of promotion. Zheng et al.
(2021) conducted a comparison test on four different seeding
methods: mechanical powder seeding, precision hole direct
seeding, UAV seeding, and manual seeding. The results showed
that the highest number of seedlings and the highest effective
spikes were achieved in the UAV seeding treatment, with the
effective spikes reaching 3,811,500 spikes/hm?. The actual yield
of UAV seeding was 6,549 kg/hmz, which was 1.2% lower than
that of mechanical precision hole seeding. Moreover, the lowest
labor cost was 40.5 Yuan/hm? for the UAV broadcast. The
results of our work showed similar trends, with the number of
seedlings per square in descending order of mUAV direct seeder,
mechanical rice direct seeder, and mechanical rice transplanter.
The theoretical yields were in the downhill order of mechanical
direct seeder, mUAV direct seeder, and mechanical transplanter.

With the strict emission limits for environmental protection
regulations and limits for exhaust pollutions from diesel engines
of non-road mobile machinery (GB20891, 2014), the UAV used
electrical energy as power, compared to traditional agricultural
machinery burning diesel to obtain power, which reduced
pollutant emissions. The results of Xu et al. (2012) showed
that the average fuel consumption for the whole process of
rice production in the southern double-season rice area was
95.08 L/hm?2, of which 36.65 and 37.88 L/hm? was for tillage
and harvesting, respectively, 12.15 L/hm? for transplanting,
and 8.4 L/hm? for mechanized plant protection. Data from
the National Bureau of Statistics of China (NBS, 2021) showed
that it was 4,734 hectares in the sown area of early-season
rice in 2021. It was only 42.26% of mechanical rice cultivation
rate of China in 2015. In this study, it provided a viable
solution for rice cultivation in the application of mUAV in
seeding, fertilizing, and applying pesticides, which contributed
tremendously to the reduction of labor commitment and
mechanization enhancement.

In addition, the cost of farm machinery was different in
the three segments of seeding, fertilization, and spraying. The
total input cost of farm machinery used in the mUAV seeding,
mechanical seeding, and mechanical transplanting was about
110 thousand RMB, 215 thousand RMB, and 235 thousand
RMB. However, the tractor used in the mechanical direct seeder
and transplanter test area can also be used in the tillage stage.
Therefore, it reduced the cost of farm machinery inputs in
mUAV pilot area with certain extent, and it was increased rate
of farm machinery utilization, but it would also increase the rate
of depreciation.
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At present, China’s agricultural UAVs are mostly used in
plant protection, UAV broadcast applications are still in the
preliminary research and trial application stage. There are still
many problems with UAV applications.

In the fertilization process, the mUAV had no advantage
over ground fertilization machinery. Although the number of
workers was reduced, the operating efficiency and labor costs
were lower than those of ground machinery. This was mainly
due to the weight limitation of mUAYV, as traditional ground
machinery can be loaded up to 800-1,000 kg. UAVs had great
advantages over manual fertilization. The results of the study by
Ren et al. (2021) showed that the efficiency of UAV fertilization
was about 12.5 times higher than manual fertilization, and
the cost of UAV fertilization was reduced to 18.45 RMB/hm?.
Liu et al. (2019) designed a spreading device for granular
herbicides, and the results showed that the control effect was
not significantly different from manual application, and the
operational productivity reached 80-120 667 m?/h, which was
15-25 times higher. Diao et al. (2020) compared it to mechanical
precision hole seeding and UAV direct seeding trials. The results
showed that the yield of both was comparable. Although the
UAV was slightly lower than the mechanical precision hole
seeding, the operational cost was reduced by about 50% and
the operational efficiency was increased by more than 5 times.
There are limitations in the UAV fertilizer application process,
the same problems existed with ground machinery in the middle
and late stages of rice growth and in complex hilly areas
(Xie et al., 2013), such as poor adaptability, high operational
intensity, and severe crushing of rice (Chen et al., 2012; Qi et al,,
20165 Shi et al.,, 2018; Song et al., 2018b). Therefore, there is still
a great market demand for mUAYV fertilizer application.

In the soil preparation process, there were two main ways
of mechanized rice direct seeding, water direct seeding, and dry
direct seeding. Water direct seeding was primarily applied in
the south, rice seeds was germinated working in a leveled soil
without waterlogging. Dry direct seeding was mostly applied in
the north, which can be directly in the sowing of seeds without
germination, but it has higher requirements for the plot (Luo
et al,, 2019). At this stage, the mUAV pilot area had advantages
over the water broadcast pilot area, with lower labor costs.
However, mUAV had no advantage compared to dry broadcast.

After the rice emerged in the experiment, it was observed
that the seedlings emerged unevenly at both ends of the field,
which might be due to uneven sowing caused by the change
in speed when the mUAV was changing rows and turning.
As the same time, the shape of the centrifugal spreading was
circular, which easily led to overseeding between adjacent widths
and result in poor uniformity (Qin and Liu, 2006). Zhou et al.
(2018) studied the effect of UAV spreading methods on the
characteristics of rice plants in terms of lodging resistance.
The results showed significant differences in the main physical
characteristics of the stalks between the different spreading
methods, which showed that the stalks were thin at the 2nd
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and 3rd internodes. Also, the plants were taller, with less
folding resistance and a higher lodging index. Apart from
that, conventional spreaders buried the seeds into the soil, but
the seeds from the UAVs were exposed on the surface of the
field which were vulnerable to the sun or being fed by birds,
which affected the seeds” rooting and germination. On the other
hand, rice seeds must be germinated before spreading. If the
turntable was rotated too fast, it hit the wall which caused
damage to the seed buds. Maximum range was also limited,
the continuous flight capacity of the battery was generally 10-
20 min, which led to the efficiency of the UAV work that could
not be fully developed. The field operation required to carry
several batteries, which were high-cost. It is also a problem that
the UAV industry currently confronts.

of 2016 (Luo 2019), China’s
comprehensive rice mechanization level was 79.2%, with

However, as et al,
tillage, sowing, and harvesting levels of 99.3, 44.5, and 87.1%,
respectively. This is only the achievement of moving from the
primary stage to the intermediate stage, indicating that we still
need to continue our efforts to completely solve the problem of
mechanization of rice cultivation in China. China should learn
from the advanced equipment and technology of developed
countries to develop a proper route for itself, agricultural
mechanization development of China cannot directly copy the
way of other country, and agricultural mechanization of China

can only be realized step by step (Yang et al., 2003).

Conclusion and outlook

Conclusions: In this study, a mUAV with three functions
of seeding, spreading fertilizer, and applying pesticide was
developed. CFD numerical simulation was used to initially
obtain downwash airflow characteristics, and feasible operating
parameters were obtained through practical operation test
methods in the field. Through the whole rice cultivation
comparison test with mechanical direct seeder and mechanical
transplanter, the mUAV was summarized and analyzed in
terms of operational efficiency, labor input, and yield in the
management process.

The main conclusions were drawn as follows. (1) The
modular design of the mUAYV, its products could be used in
the three segments of rice seeding, pesticide application and
fertilization, and its ability could meet the requirements of
rice production. Compared with other mechanical cultivation
methods, this mUAV operation method could reduce the input
of machinery types. (2) The range of operations allowed for
the mUAV was verified in numerical simulations and from the
perspective of real measurements. There was a strong initial
value of airflow directly below the rotor, and a height of
more than 1.5 m is recommended. It was recommended to
fly at a height of 2.5 m for seeding and 3 m for pesticide
application. (3) A comprehensive comparison was conducted
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in the whole rice cultivation and the results showed that the
efficiency of sowing seeds by mUAV was 2.2 times and 4 times
higher than that of mechanical direct seeding and transplanting,
respectively. The labor cost was reduced by 68.5 and 82.5%,
respectively. The efficiency of mUAV application was 1.3 times
higher than mechanical direct seeding and rice transplanting.
The cost of labor was reduced by 25%. However, the mUAV
fertilization was not as efficient as mechanical direct seeder and
transplanter, with 80% lower operational efficiency and 14.3%
higher labor costs.

Outlook: Although the development of UAV research
and applications in China started slowly and initially relied
heavily on state funding, several research institutions and
universities have conducted research on agricultural UAV.
Especially in recent years, China has been paying more and
more attention to the development and research of agricultural
UAV. By the end of 2015, more than 3,000 agricultural
UAV had been put into agricultural production in China,
the number of flight controllers had exceeded 2,500, and
there were more than 400 manufacturing companies in related
industries. As of 2020, China’s agricultural UAV holdings were
about 100,000 units, with an additional demand of 50,000
units in 2020 alone, which showed that agricultural UAV
were in a phase of rapid development. With the massive
transfer of agricultural population, rural labor capacity was
insufficient, which made the utilization of agricultural resources
inefficient, and it even seriously affected the production
efficiency of agriculture. In some areas, there were also problems
such as desertion, which was not conducive to the rational
optimization of the rural industrial structure. Especially in
remote hilly mountainous areas, ordinary ground machinery
could not work in the fields, and there was a great lack of
machinery in the rice production process. The mUAV could
be controlled remotely and could also automatically route its
operations. This not only solved the difficult problem that
some ground machinery hardly worked in the paddy field,
but also did not cause damage to the rice. The emergence
of the mUAV has become an important breakthrough in
solving this problem.
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Driven by the demand for efficient plant protection in orchards, the
autonomous navigation system for orchards is hereby designed and
developed in this study. According to the three modules of unmanned
system “perception-decision-control,” the environment perception and map
construction strategy based on 3D lidar is constructed for the complex
environment in orchards. At the same time, millimeter-wave radar is further
selected for multi-source information fusion for the perception of obstacles.
The extraction of orchard navigation lines is achieved by formulating a four-
step extraction strategy according to the obtained lidar data. Finally, aiming
at the control problem of plant protection machine, the ADRC control
strategy is adopted to enhance the noise immunity of the system. Different
working conditions are designed in the experimental section for testing the
obstacle avoidance performance and navigation accuracy of the autonomous
navigation sprayer. The experimental results show that the unmanned vehicle
can identify the obstacle quickly and make an emergency stop and find
a rather narrow feasible area when a moving person or a different thin
column is used as an obstacle. Many experiments have shown a safe distance
for obstacle avoidance about 0.5 m, which meets the obstacle avoidance
requirements. In the navigation accuracy experiment, the average navigation
error in both experiments is within 15 cm, satisfying the requirements for
orchard spray operation. A set of spray test experiments are designed in the
final experimental part to further verify the feasibility of the system developed
by the institute, and the coverage rate of the leaves of the canopy is about
50%.

orchard plant protection, crawler sprayer, autonomous navigation, laser lidar,
obstacle avoidance
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Introduction

Among orchard management operations, plant protection
management is provided with the highest labor intensity (Liu
et al,, 2020). Exploring an automatic sprayer with a high degree
of automation and a high pesticide utilization is a hot spot for
agricultural machinists. There are mainly two thorny problems
in the development of automated orchard sprayers: one is to
achieve efficient penetration of pesticides in a low dense canopy
and reduce the loss of chemical solution (Meng et al., 2022;
Wang C. et al,, 2022), while the other is to let the machine
traverse the orchard autonomously without manual control in
the orchard with a closed canopy and blocked vision (Bergerman
et al,, 2015; Ye et al., 2018; Zhang et al., 2020). Considerable
research has been conducted on the above two issues.

The leaves can rotate under the blowing of the centrifugal
fan, and those of the fruit tree can be fully sprayed because of
the air assistance of the air-driven sprayer (Boatwright et al,
20205 Boatwright and Schnabel, 2020). In general, the effect is
better than that of hydraulic atomization, making the way of
wind assistance more frequently adopted in the orchard. In the
field of air-driven orchard sprayers, the development process
proposed by the developed countries in Europe is relatively
richer, where the development has always been committed to
solving environmental problems such as low utilization of spray
pesticides and pesticide pollution of soil and atmosphere (Fox
etal., 2008; Boatwright and Schnabel, 2020). The porous air bag
orchard spray, the multi-airway orchard spray and the small
orchard air-driven sprayer have been developed consecutively
(Fox et al., 2008). At this stage, the planting mode of orchards
has been standardized and transformed accordingly, which
has promoted the development and application of air-assisted
sprayers in small and medium-sized orchards, making it a main
force of orchard spray plant protection management machinery
under the dwarf dense planting mode (Owen-Smith et al., 2019;
An et al., 2020).

Another thorny problem of orchard spray is to realize
automatic driving. In the complex and closed environment
of the orchard, many sensors and positioning devices may
be subject to a low accuracy or even failure (Fei and
Vougioukas, 2022). Exploring a reliable autonomous driving
scheme in orchard has been extensively studied. After decades
of exploration, a complete unmanned system scheme with
“perception-decision-making-control” progression has been
formed (Bergerman et al, 2015; Jones et al,, 2019). At the
level of “perception,” sensors are mainly used to obtain orchard
environmental data, including fruit tree information, road
information, etc., which will be then applied to make the next-
stage decision; at the level of “decision making,” the obtained
environmental information is further processed, and then the
travel track is extracted for judging whether there are obstacles;
and at the level of “control,” the controller is designed to
drive the system to follow the trajectory. The result of this
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research shows that in the entire autonomous driving process,
it is the most difficult task to effectively perceive the orchard
environment, perform real-time positioning, and effectively
avoid obstacles. Visual sensors or radar sensors are generally
used as the perception part, the representative literature, and the
advantages and disadvantages are listed in Table 1.

In general, GNSS-based orchard navigation and positioning
is based on satellite map or known structured orchard map,
which fails to realize obstacle avoidance and navigation in
unknown environment. Millimeter wave radar can only sense
obstacles, but it cannot build a global map. Therefore, the
above two methods are generally combined with other sensors
to guide the unmanned system through the fusion strategy.
Therefore, the development of autonomous obstacle avoidance
and navigation orchard vehicles based on binocular vision, lidar,
or multi-sensor fusion has been extensively studied. A previous
study (Chen et al,, 2021) adopted a binocular vision method
to build a simultaneous localization and mapping (SLAM),
which realized the perception of orchard environment through
vision and generated a detailed global map supporting long-
term, flexible, and large-scale orchard picking. On the basis
of binocular vision, the study discussed in Liu et al. (2022)
proposed a trinocular vision system for orchard vehicle based on
a wide-angle camera and binocular stereo vision system, which
finally realized orchard row detection and obstacle detection
simultaneously. Besides, based on the vision technology, the
study discussed in Li Y. et al. (2020) proposed a visual perception
method based on convolutional neural network, and realized
obstacle detection and colligation avoidance in robot harvesters.
Ravankar et al. (2021) used lidar sensors to navigate unmanned
vehicles in the vineyard, and developed a point cloud processing
algorithm to avoid dynamic obstacles in the vineyard while
smoothing the robot’s trajectories. A previous study (Ji et al,
2021) built a tracker platform based on 3D/2D lidar and
GNSS/AHRS to acquire fusion point cloud data, and finally
realized obstacle perception and target tracking. The study
explained in Kragh and Underwood (2020) adopted the fusion
of lidar and visual sensors and proposed a multimodal fusion
algorithm from the scene analysis domain for obstacle detection
in agriculture with moving ground vehicles. One of the previous
studies (Emmi et al, 2021) proposed the field autonomous
navigation system based on 2D lidar and RGB cameras, and
realized the robot positioning in a hybrid topological map
through data fusion. Previous research (Rovira-Mis et al., 2020)
proposed an autonomous navigation strategy based on the
integration of three sensing devices, namely, 3D vision, lidar,
and ultrasonics. It is pointed out that this augmented perception
overcomes the problem of GNSS frame loss and achieves high
navigation accuracy in grapes.

Based on the above research, an automatic spray working
in orchard is developed in this study using laser radar and
millimeter wave radar sensing technology. At the same time,
the air spray method is used for pesticides spraying. The crawler
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TABLE 1 Classification of driverless perception and decision system working in orchard.

Advantage

Shortcoming

GNSS (Guevara et al., 2020; Mao

et al., 2022) unaffected by the weather

Binocular vision (Stefas et al.,
2016; Lin et al., 2021; Ma et al.,
2021; Vrochidou et al., 2022)

RGB map)

Lidar (Bergerman et al., 2015;
Blok et al., 2019; Jones et al., 2019;
Guevara et al,, 2020; Zhang et al,,
2020)

such as rain and snow

Millimeter wave radar (Li X. et al.,
2020; Wang et al., 2021)

It can work in the orchard all day and is completely

Low cost and abundant information (depth map and

The cost is high, and is greatly affected by bad weather

It has a strong penetrability and is not affected by light,
and can meet all kinds of weather in the orchard

In the orchard, the loss of signal caused by canopy
occlusion, multipath effect, radio frequency
interference, etc., results in great errors to GNSS
navigation and even led to invalid navigation

The accuracy is poor, and is seriously reduced in dim
light and at night, failing to meet the needs of
overnight operation in orchards

The cost is high, and is greatly affected by bad weather
such as rain and snow

The atmospheric attenuation is large and the detection
distance is short, so it cannot be perceived in a large
range

chassis and laser radar navigation scheme are adopted according
to the standard hedgerow orchard planting mode (as shown
in Figure 1). Finally, the full autonomous spray operation is
realized in the orchard environment. The main contributions of
this work are summarized as follows: (1) An orchard navigation
strategy based on laser radar is proposed, and at the same
time, combined with ultrasonic radar, the accurate perception
of obstacles and high-precision planning of navigation route are
realized. (2) An air spray device is developed to realize the twice
atomization of liquid medicine and improve the penetration
rate of droplets.

-

Bird net height: 3.5 m

» Mhlﬁmmopyspadng:hl.s

Y BN

FIGURE 1
Overview of orchard environment.

The rest of this article is organized as follows: section
“Design of hardware system” introduces the hardware part
of the system, including the chassis, sensor module, spray
system, and other core modules; section “Design of software
system” proposes the environment perception and navigation
based on lidar, as well as the control strategy; section
“Experiments and discussions” discusses the experiments of
obstacle avoidance and navigation accuracy under unfair
conditions, also the preliminary spray experiment; and section
“Conclusion” summarizes the full study.

Design of hardware system

As shown in Figure 2, the electric air-driven crawler sprayer
is composed of power unit, traveling system, transmission
device, control device, pneumatic system, spray device, etc.
The main components of the electric air-driven crawler sprayer

FIGURE 2
Hardware module of orchard autonomous navigation spray
system.
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FIGURE 3
The main hardware distribution of the orchard autonomous navigation spray system.

shown in Figure 3 are remote control track chassis, frame, 200-
L medicine tank, 48-V Servo electrode, centrifugal fan, water
ring, 170-F gasoline engine and centrifugal pulley. The chassis
and spray device are powered by different units, respectively.
The track chassis is electric, and the 170-F gasoline engine is
used as the power unit for the spray device to transmit the
power to the centrifugal fan at the rear to ensure sufficient
power. Actions such as forward, turning, and moving backward
of the machine are realized by the electric part driving the left
and right gear motors. The pump pressure of the Model 25A
plunger pump can be adjusted by the pressure valve preset,
which adopts centrifugal belt installation installed on the output
shaft of 170-F gasoline engine, and applies belt transmission
between the fan pulley and the plunger pump pulley to form
a three-axis linkage. When the output speed of the gasoline
engine exceeds 600 rpm/min, the pulley of the walking device
begins to work. The fan rotation and the power of the plunger
pump are provided by the transmission of the gasoline engine,
and the installation height of the plunger pump can be adjusted
according to the demand during the actual working process to
fully provide tension to the power transmission belt.

Chassis drive

Considering that the platform is mainly used for spray
operation in hedgerow orchards, the mechanical part of
the navigation robot hardware platform is correspondingly
improved. Therefore, the chassis needs to be equipped with a
medicine box and spray system weighing about 250 kg. Given
that the liquid medicine will shake with the movement of the
platform during the operation and the situation of the muddy
road, as shown in the Figure 4, the medicine box is embedded
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into the chassis for obtaining a low-center of gravity-tracked
chassis structure. The chassis design parameters are shown in
Table 2.

Sensors and information processing
modules
The sensor module, processor framework, and
communication transmission process are shown in Figure 5,
where it can be observed that the core of the sensor module is
the lidar sensor and the sprayer is equipped with RS-LiDAR-
16, i.e., RoboSense! 16-wire laser radar. The RS-LiDAR-16
emits and receives high-frequency laser beams through 16
groups of built-in laser components, and carries out real-
time 3D imaging through 360° rotation. The measurement
distance can reach 150 m, the accuracy is within £2 cm,

and 300,000 points clouds can be formed per second on

1 https://www.robosense.cn/en

FIGURE 4
Structure diagram of crawler chassis diagram.
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TABLE 2 Chassis hardware structure parameters.

10.3389/fpls.2022.960686

Index Load (kg) Width (m) Length (m)
Parameter 250 1.2 1.2

Index Ground clearance (mm) Turning radius (m) Top speed km/h
Parameter 150 <7 >4
average. The vertical angle measurement is 15-15° for S pray system m odule

ensuring the real-time perception of the environment in
the orchard. Also, N100 IMU of Wheeltec Company? is
applied to the inertial measurement unit (IMU) with a three-
axis accelerometer, a three-axis gyroscope, and a three-axis
magnetometer, among which, the accelerometer resolution
is less than 0.5 mg, and the range is £16 g; the gyroscope
resolution is less than 0.02°/s; and the range is +2,000°/s;
the magnetometer resolution is 1.5 mg, and the range
is £4,900. The N100 IMU can meet the effective output
of inertia parameters such as attitude angle and velocity in
orchard environments. The model used by the ultrasonic
obstacle avoidance sensor is DYP-A19-V1.0 (Best Sensor)3,
whose measuring range is 28-450 cm, with an accuracy
of £(1 + 0.3% of the current ranging). The CPU of the control
host is 17 4700M, equipped with 8-G memory and 128-G
storage for realizing the solution of sensor data, information
storage, and output.

2 http://wheeltec.net/product/html/?144.html
3 http://www.dypsensor.com/en/proData.aspx?cid=142&pid=122

Operating Layer

N

Mobile terminal

Ethernet/WIFI
Navigation and control

~ ‘(ﬂ
t
IMU Lidar Computing Center U] i
sensor
RS23/CAN
Driver layer

(motion command issuing and status uploading)

MotorCBattery
FIGURE 5

Sensor and information processing module information
transmission process.

Orchard electric air-driven crawler sprayer can satisfy
the requirements for modern orchard plant protection spray
operation, and the spray unit is powered by a diaphragm pump.
The sprayer follows two atomization processes. First, the liquid
medicine is extracted from the medicine box and atomized once
through the spray system, when the diaphragm pump is the
power source. Then, the liquid medicine passes through the
infusion tube and is transported to each nozzle at the ring baftle,
and the high-pressure air flow is generated by the centrifugal fan
to produce a second atomization of the droplets.

As shown in Figure 6, the spray device of the orchard electric
air-driven crawler sprayer is mainly composed of a centrifugal
fan, an arc-shaped aqueduct on both sides of the tail and nozzles.
Ten spray nozzles are arranged in a circle along both sides at
the end of the machine, and five nozzles are evenly arranged on
each pipe ring. Each nozzle is equipped with a switch that can be
adjusted independently, and the nozzle angle can be adjusted as
well; from bottom to top on the left are nozzles No. 1, 2, 3, 4, and
5, respectively, and the nozzles are symmetrically distributed
both on the right and the left. The detailed parameters are shown
in Table 3. The application of a segmented water ring can ensure

FIGURE 6
Sprinkler distribution map.
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FIGURE 7
Software block diagram of unmanned spray truck based on
"perception decision control”. (A) Relationship between three
layers. (B) Obstacle avoidance fusion output based on
decision-level fusion.

that the pressure of each sprinkler is basically the same, and the
direction and angle of the nozzle can be adjusted according to
the actual growth of the fruit trees in the pear orchard during
the spray operation.

Design of software system

The navigation system is provided with the function of
switching between manual control and autonomous driving, so
that the user can remotely control the chassis to the orchard
before operation and switch to the autonomous navigation
mode after the navigation task is planned during operation,
thereby realizing full autonomous operation. After operation,
the user can remotely control the chassis out of the orchard,
and handle emergencies by remote control at the same time.
As shown in Figure 7A, the overall system is divided into
three parts, i.e., perception, decision, and control. First, the local
map is constructed based on lidar; then, the operation path is
planned in accordance with the constructed map and finally,
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Construction of local map based on RS-LiDAR-16. (A) Local map
acquisition. (B) Schematic diagram of navigation line.

the planned path is transmitted to the trajectory controller
for the unmanned vehicle traveling according to the preset
trajectory. At the same time, it can realize automatic obstacle
avoidance, including obstacle detection, type recognition, and
selective bypassing of static and dynamic obstacles, which are
also involved in the perception layer and decision-making layer.
As shown in Figure 7B, two sensors based on ultrasonic radar
and laser radar are used for obstacle perception. Given that the
longitudinal sensing range of laser radar is only 30, it is difficult
to perceive ground obstacles. The ultrasonic radar located under
the vehicle is used for obstacle fusion sensing. The two sensing
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Navigation line extraction rules among fruit trees.

strategies are fused based on the decision-making layer, and the
weighted decision-making method is adopted. Each laser radar
and ultrasonic radar have 50% weight. When the proportion
of perceived obstacles is greater than or equal to 50%, the
path needs to be replanned, that is, when any sensor senses
an obstacle, the path needs replanning. The overall software is
secondary developed based on Autopilot Kit.*

Environment perception and
navigation based on laser radar

As shown in Figure 8A, the automatic tracking navigation
can be realized by constructing a local map through laser radar.
The navigation system detects the fruit trees and takes the two
lines of center lines as the traveling track to carry out the
traveling operation when the spray truck travels in the orchard,
and can automatically complete the turning and move to the
next row of operation when reaching the ground, as shown in
Figure 8B. The navigation rules are as follows: The centerline
is taken as the travel track when traveling in two rows; the
trajectory is determined by a distance of one-half row when
there are fruit trees on only one side; when the spray truck
reaches the end-member of field, a = b = 1/2 line spacing
(determined at the center), and C is not less than the safe

4 https://www.agilex.ai/solution/5?lang=zh-cn
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Step 2

distance. The next center position is determined as the spray
truck moves on to the next row and turns to move on to the
next row of work.

As shown in Figure 9, the navigation line extraction rules
of the spray truck between fruit trees are divided into four
steps: Step 1: Data collecting of the 3D original point cloud
data between the rows of the target orchard; Step 2: Data
preprocessing (clipped and dimensionality reduction) of the 3D
original point cloud data; Step 3: European clustering; and Step
4: Tree row fitting and the navigation line generation. Because
the extreme weather, such as rain, fog, and high temperature,
is not suitable for spray operation, this study does not consider
extreme weather navigation line extraction.

The original point cloud data of the 3D space obtained
between the rows of the target orchard are collected, as shown in
Figure 9 (Step 1), where the block is a mobile robot model; other
white point clouds are the relative positions of the objects in
the 3D scene; the coordinate origin, such as the point clouds on
the left and right sides of the mobile robot are fruit trees; those
in front are ground reflections; and those in the back are the
mobile robot operators. Point clouds have a 360° horizontal full
coverage and a vertical coverage from the ground to above the
fruit trees. The RS-LiDAR-16 laser radar adopted in this study
is a 16-wire laser radar with a horizontal field of view of 360°, a
vertical field of view of 30° (415°), and a maximum detection
distance of 200 m.

In Step 2, the preprocessing of the 3D original point
cloud data is mainly completed via clipping and dimensionality

frontiersin.org


https://doi.org/10.3389/fpls.2022.960686
https://www.agilex.ai/solution/5?lang=zh-cn
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/

Wang et al.

reduction. The 3D clipping mainly involves data clipping based
on the x-, y-, and z- axes, and the specific clipping process is
as follows: The clipping threshold of xyz is set according to the
plant spacing, row spacing, and the average net trunk length
of fruit trees; that of x-axis is at least three times of single row
spacing; that of y-axis is at least 1.5 times of single row spacing;
and that of z-axis does not exceed the average net trunk length.
The clipping purpose is to select a certain visual range, reduce
the amount of data, and improve the processing speed.

The dimensionality reduction of the cropped data mainly
aims to project the cropped 3D data into a given 3D space
plane (x = 0, y = 0, z = 1), thereby realizing the dimensionality
data reduction from 3D to 2D, and simplifying the geometric
problem, as shown in Figure 9 (Step 2). The left and right points
in the figure are the projection of the trunk in the plane (x = 0,
y =0, z = 0), while the middle point denotes the projection of
the operator in the plane (x=0,y =0,z =1).

Euclidean clustering method is used in Step 3 for clustering
the effective points after search. The midpoint of each category
of the data is calculated to replace the corresponding category,
and equivalent points of two left tree row, the obstacle, and the
right tree row are all marked as shown in Figure 9 (Step 3).

Finally, the left tree row straight line and the right tree row
straight line are made to fit using the least square method in Step
4. The left tree row equation and the right tree row equation
are obtained as shown in Figure 9 (Step 4), and the fitted
left and right tree row lines are marked, respectively. Finally,
the center line of the left and right tree rows is adopted for
calculating the navigation line, and the fitted navigation line is
also marked in the map.

Control strategy

The hereby designed tracked vehicle controls the speed and
direction of the driving wheels on both sides for an accurate
tracking of the desired trajectory as shown in Figure 10, where
oxy is the geodetic coordinate system; cy,y, is the tracked
vehicle coordinate system; is the coincidence point between the
geometric center and the centroid of the tracked vehicle; and 51,
is the center distance of the tracked vehicle.

The status quantity of tracked vehicle is 4= T, where

x,y,e)
(xy) represents the position of tracked vehicle, and the

kinematic model of tracked vehicle is calculated as:

X cosf 0

v
y | =] sinf® 0 |:i|
i)

o
0 1

(1)

where , is the vehicle speed; , is the angular velocity of vehicle
centroid; ,, is the right track speed; and ,, is the left track speed.

It can be seen that jr is the control quantity of crawler,

u=[v,m
when the track vehicle control problem turns into tracking the

track vehicle reference trajectory by finding a suitable control
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FIGURE 10

Definition of crawler coordinate system.

quantity under the condition of given initial state information
and speed information. Deriving the kinematic model further, it
can be obtained as follows:

NN

The control of speed and steering angle is particularly

)

important during the operation of tracked plant protection
vehicle. Assuming the nozzle sprays liquid medicine at a
constant flow rate, the unmanned vehicle is required to travel
at a constant speed. Whether the unmanned vehicle needs
human participation in the control at the boundary turn of
the plot is determined by whether the steering angle can be
accurately controlled. In addition, during the operation of
the plant protection unmanned vehicle, the total mass of the
vehicle will be reduced with the spraying of liquid medicine,
and the shaking of liquid medicine in the medicine box, air
resistance, non-linear friction, and the unmodeled part of the
system will cause multi-source and unknown interference to the
agricultural unmanned vehicle. For solving these problems, the
active disturbance rejection control (ADRC) control strategy is
adopted for the controller of the plant protection unmanned
vehicle. The control system is designed based on the discussions
in Wang S. et al. (2022), as shown in Figure 11, with the
following two ADRC controllers involved: One receives the
desired speed and outputs the speed control quantity while the
other receives the desired angular speed and outputs the angular
speed control quantity. At the same time, the tracked vehicle
transmits the actual speed and angular speed to the controller.

Experiments and discussions

In this section, we discuss on several groups of obstacle

avoidance experiments, such as navigation accuracy

experiments and fog drop coverage tests that are designed;
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FIGURE 11

System control block diagram based on ADRC (ESO, extended state observer; TD, tracking differentiator; NLSEF, non-linear state error

feedback).

also discussed are the obstacle avoidance experiments that
include static obstacle experiments and dynamic obstacle
experiments. The specific experimental process is shown in
Figure 12.

Obstacle avoidance performance test

Static obstacle test
Fixed human obstacles

In this experiment, the size of the selected work area was
about 10 m x 15 m. First, the closed-loop track was formed
by manually manipulating the UGV as shown in Figure 13,
where the orange arrow indicates the direction of travel. During
manual operation, the lidar combined with the IMU data would
map the working area, and then switch to the automatic mode,
when the UGV would return to the starting point of the manual
operation, and follow the manual operation track automatically
for trajectory tracking control. At this time, two fixed persons
were set as obstacles in the track as shown in the figure. The
upper part of the figure depicts the key five-frame pictures of
the UGV avoiding obstacle 1, where it can be observed that
the UGV could identify and avoid obstacles well: the UGV
in the test started braking at a distance of about 0.5 m from
the obstacle, bypassed the person from the right, and quickly
returned to the set track to continue driving. The lower part
of the figure describes the key five-frame pictures of the UGV
avoiding obstacle 2. Similar to facing obstacle 1, the UGV started
braking at a distance of about 0.5 m from the person, turned left
to avoid the person, and finally returned to the preset track. In
the fixed-person obstacle experiment, the height of the person
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was about 1.8 m and the width was about 0.5 m. The UGV could
avoid obstacles well and return to the preset track as expected.

Fixed pole obstacles

To further test the UGV’s capability of recognizing the size
of obstacles, resin tubes and wooden strips were selected for
obstacle avoidance experiments. The height of the resin tube
was about 1.5 m and the diameter was about 0.05 m; the height
of the wood strip was about 1.5 m and the diameter was about
0.04 m. The same terrain (10 m x 15 m) was selected for two
groups of experiments whose preset trajectories were different.
The placement position of obstacles varied as well.

As shown in Figure 14, the upper part of the figure
displays the key five-frame pictures of the UGV avoiding
obstacle 1 when the wooden strip was used as an obstacle.
It can be seen from the image of Frame 1 in the figure that
the unmanned vehicle recognized the obstacle and braked
sharply when it was about 0.5 m away from the wooden
strip. Frames 1, 2, 3, and 4 show that the UGV started
to bypass the obstacle at this time, while Frame 5 presents
that the UGV had completed the detour process and was
returning to the preset track. The lower part of the figure
shows the five key frames of the UGV bypassing obstacle 2
of the resin tube. Similar to the wooden strip experiment,
the UGV stopped about 0.5 m away from the obstacle,
continued to bypass the obstacle, and returned to the preset
track as expected.

The second set of experiment was also carried out, and
the preset track was redesigned in the experiment, as shown
in Figure 15. The upper and lower parts of the figure still
show the five key frames of the UGV avoiding obstacles
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when the wood strips and resin pipes were used as obstacles,
respectively. Similar to the previous set of experimental results,
the unmanned vehicle stopped quickly at a distance of 0.5 m
from the obstacle, avoided the obstacle by detouring, and finally
returned to the preset track. Replacing the curve preset track
with the straight-line preset track can better display the process
of UGV bypassing obstacles and returning to the preset track.
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Besides, the UGV deviated from the preset track by about
0.3-0.5 m while bypassing the obstacles.

Moving obstacle test
Moving human obstacles

To further test the obstacle avoidance performance of the
UGV, dynamic obstacles were set in this section. As shown
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FIGURE 14
Experiment of fixed pole obstacle (Group 1).
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FIGURE 15
Experiment of fixed pole obstacle (Group 2).

in Figure 16, the travel track of the UGV, and two groups of side when passing the moving person obstacle 1, and followed
moving person obstacles were all set in advance during the travel the red arrow to start and stop on the track when passing the
process. The UGV followed the red arrow to travel to the other moving person obstacle 2. The upper part of Figure 16 depicts
Frontiers in Plant Science frontiersin.org
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the six key frames of the UGV avoiding obstacle 1 with a moving
person as the obstacle. It can be seen from the image of Frame
1 that the UGV was traveling according to the preset track at
this time, and in Frame 2, the person had started to set off, and
the tracks of human and UGV would coincide. In Frames 3 and
4, the UGV completely coincided with the person’s movement
track, when the UGV started to stop suddenly and tried to
detour. The person continued to move. It can be seen in Frame
5 that the UGV had an obvious detour, and the heading angle
was deflected, but the moving person had left the preset track
at this time. In Frame 6, the person had completely left the
preset track, the UGV returned to the preset track and continued
to move forward.

The lower part of Figure 16 depicts the seven key frames
of the UGV avoiding obstacle 2 with a moving person acting
as the obstacle. It can be seen from Frame 1 that the UGV
was traveling according to the preset track at this time, and in
Frame 2, the person had started to set off, and the tracks of
human and the UGV would coincide. In Frame 3, the person had
stopped on the UGV preset track, and the UGV started to stop
suddenly. Frames 4, 5, and 6 show that the UGV bypassed the
stopped person and started to approach the preset track. Frame
7 shows that the UGV had completed the obstacle avoidance
of the moving person, completely returned to the preset track,
and continued to travel. The experiments of two different
modes of moving people as obstacles show that the UGV also
had good detection and obstacle avoidance performance for
unknown moving obstacles. Especially for the sudden obstacles,
it could quickly brake and make evasive actions, and return to
the preset track.

Moving pole obstacles

To further test the obstacle avoidance ability of UGV for
small-sized and moving obstacles, the experiment of hand-held
moving resin rods as obstacles was carried out. As shown in
Figure 17, two groups of moving resin rods were set as obstacles
during the UGV’s traveling process, the hand-held moving rod
was placed in front of the UGV for 5 s and then withdrawn when
the UGV passed the moving resin rod 1, and when the UGV
passed the moving resin rod 2, the hand-held moving rod had
been placed in front of the UGV for 30 s.

The upper part of Figure 17 describes the key six-frame
picture of the UGV bypassing obstacle 1 with the moving rod
acting as the obstacle. It can be seen from Frame 1 in Figure 16
that the UGV traveled according to the preset trajectory. In
Frames 1 and 2, the resin rod was picked up and placed in
front of the UGV, when the UGV started to brake and make
an emergency stop to avoid obstacles. The emergency stop was
maintained until Frames 4 and 5. In Frame 6, the moving resin
rods were evacuated and the UGV started to move on.

The lower part of Figure 17 shows the 10 key frames of the
UGV bypassing obstacle 2 with the moving rod acting as the
obstacle. It can be seen from Frames 1, 2, and 3 that the UGV
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traveled according to the preset trajectory, when the resin rod
was picked up and placed in front of the UGV, and the UGV
started to brake and make an emergency stop to avoid obstacles.
Compared with the previous groups of experiments, the moving
rod was placed in front of the UGV for a longer time, about 30 s.
It can be seen from Frame 5 that the UGV started to deflect
the heading angle to the left, trying to avoid obstacles, but if it
moved forward to the left, human would appear as obstacles.
In Frames 5 and 6, the UGV turned around the yaw angle and
deflected to the right, and began to prepare for detour, and then
in Frames 7 and 8, the UGV bypassed the obstacle from the side.
In Frame 9, the obstacle was successfully avoided and the preset
track was approached. In Frame 10, it completely returned to the
preset trajectory and continued to move forward to complete the
obstacle avoidance process.

In the moving rod experiment, the diameter of the moving
rod was only 0.05 m. When the moving rod suddenly
appeared in front of the UGV, the UGV detected it, and
when the obstacle stayed for a long time, the UGV made a
detour. The above groups of experiments verify the real-time
detection performance of the designed UGV for small-sized and
moving obstacles.

Navigation accuracy experiment

To verify the navigation accuracy of the UGV automatic
navigation system, the evaluation was performed by designing
and measuring the difference between the manual navigation
route and the automatic navigation route. As shown in
Figure 18, the paint would flow out from the paint bag and
form a paint line on the ground for recording the travel track in
real time by hanging the paint bag at the tail of UGV under the
real environment. The manual control was the white paint line;
the automatic navigation was the yellow paint line; the length of
the selected track line was about 8 m; and a point was selected
every one meter as the measurement point (x; x,,xs,xsxs5,x6,%7,%5 )5
and the automatic navigation performance was evaluated by
measuring the distance between the yellow paint line and the
white paint line. As shown in the formula provided in Eq. (3),
the average value was taken as the navigation accuracy of the
planned route.

X1+ X2 +x3 + X4 + X5 + X6 + X7 + X3
8

Navigation accuracy =

©)

Navigation accuracy experiment (Group 1)

The size of the operation area was about 10 m x 15 m
in the first set of navigation accuracy experiment. First, the
UGV was manually controlled to form the trajectory shown in
Figure 19, when the paint bag hanging at the tail of the UGV
was filled with white paint, forming a white paint trajectory line
on the ground. Then, the UGV was switched to the automatic
mode and returned to the starting point of manual control,
and automatically followed the manually operated track for the
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Navigation accuracy test scheme.

track tracking control. At this time, the paint bag hanging at the
tail of the UGV was yellow paint, forming a yellow paint track
line on the ground. The eight selected points were shown in
Figure 19, and the measurement results were shown in Table 4.
It can be concluded from Table 4 that the error of each point
was within 15 cm in the eight selected points, and the average

10.3389/fpls.2022.960686

navigation accuracy was 13.625 cm, meeting the navigation
accuracy requirements of the UGV working in the orchard.

Navigation accuracy experiment (Group 2)

The size of the operation area was about 10 m x 10 m in the
second group of navigation accuracy experiment. The UGV was
still manually controlled to form a white paint track line on the
ground at first, and was then switched to the automatic mode
for the tracking control, forming a yellow paint track line on
the ground. Similarly, eight points were selected as the sampling
points, as shown in Figure 20. The measurement results of each
point were shown in Table 5, where it can be observed that
the error of each point was still within 15 cm, and the average
accuracy was 10.3125 cm, which, compared with the first group
of accuracy experiments, was much improved. Given that the
test site of the second group was flatter than the first group, there
was less shaking of the UGV.

In the above two groups of accuracy experiments, the error
of all sampling points was within 15 cm, and the navigation
accuracy was about 10 cm in the relatively flat area, meeting the
navigation requirements of the orchard spray system.

Spray experiment

The standard orchard demonstration area in Xiying Village
was selected for the spray test. The specific parameters of the
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FIGURE 19
Navigation accuracy experiment (Group 1).
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TABLE 3 List of nozzle parameters from No. 1 to 5.

10.3389/fpls.2022.960686

Nozzle serial number 1 2 3 4 5
Spray pitch (cm) 8 8 8 8 8
Sprinkler angle (°) 0 18 36 54 72
Sprinkler height (cm) 30 46 60 75 88
‘Wind velocity (m/s) 20 20 20 20 20
Spray volume (L/min) 1.7 1.7 1.7 1.7 1.7
1,2, 3, 4, and 5 represent the nozzle numbers of the nozzles of the orchard electric air-driven crawler sprayer.

TABLE 4 Navigation accuracy test value of each sampling point (Group 1).

Collection point Point 1 Point 2 Point 3 Point 4 Point 5
Measured value 12 cm 14 cm 14 cm 15cm 14 cm
Collection point Point 6 Point 7 Point 8 Average

Measured value 13 cm 14 cm 13 cm 13.625 cm

Manual

Manual control
e

Preset track —\

Forward direction

Sl :
Automatic navigation

FIGURE 20
Navigation accuracy experiment (Group 2).

control route

Automatic
navigation route

planting mode were as follows: The orchard area was more than
300 acres; the spacing of each row of fruit trees was about 3 m;
the spacing between the trees was 1.5 m; the growth height of
the fruit trees was 3 m; and the height of the trunk was about
0.5 m. The canopy of fruit trees was of small crown and sparse
layer type, with a crown diameter length of 1.5 m, which could
be divided into three layers in the vertical direction. The whole
tree retained one main branch, while the side branches were
less reserved and the branches were simple. The angle with the
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central trunk was between 60° and 80°, and the pruning method
resembled the spindle shape.

Three trees set the five positions of east, south, west, north
and middle in the canopy were selected. The first layer was 1
m away from the ground, and every 50 cm from the bottom
to the top of the canopy was used as a layer, and then, the
second layer and the third layer in the same way. Besides, the
water-sensitive paper was fixed on the leaves of the east, south,
west, north, and middle with an alligator clip, and three trees
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TABLE 5 Navigation accuracy test value of each sampling point (Group 2).
Collection point Point 1 Point 2 Point 3 Point 4 Point 5
Measured value 14 cm 12 cm 11cm 10 cm 10.5cm
Collection point Point 6 Point 7 Point 8 Average
Measured value 10 cm 3cm 12 cm 10.3125 cm
Canopy sample layout
A 4
2.0m
3 fe——.
1.5m
- A
2
1.0m
. A A
FIGURE 21
Spray diagram and collection point layout.
TABLE 6 Coverage of each sampling area under different layers.
Sampling point 1 2 3 4 5
Upper layer/100% 75.2 69.5 46.5 59.4 60.3
Middle layer/100% 50.7 339 43.3 58.5 45.2
Lower level/100% 79.2 43.5 27.5 56.5 51.4

were continuously arranged from west to east along the traveling
direction of machines and tools. The arrangement of canopy
droplet samples was shown in Figure 21. The scanner was used
for obtaining the spray landing area of droplets on each piece
of water-sensitive paper, and finally obtaining the coverage per
unit area as shown in Table 6.

The coverage rate of the leaves of the canopy was almost
no more than 80%, most of them gathering at 50%, when
the spray effect was consistent with the growth conditions
of the pear trees.

Conclusion

At this stage, automation technology has been widely
transferred to orchard equipment, which has promoted the
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intelligent development of agricultural equipment. Aiming at
the problem of automatic spray in complex and closed orchard
environment, a 3D laser lidar orchard map construction strategy
is adopted in this study, and at the same time, the air spray
is selected to realize two atomization of the liquid medicine
and improve the penetration rate of the droplets. The 3D laser
lidar can facilitate all-weather orchard operations compared to
the characteristics of visual navigation greatly affected by light,
which is necessarily important for the large-scale occurrence of
diseases and pests, also the urgent need for fast operation time.
Millimeter wave radar is selected for obtaining multi-source
information of obstacle avoidance, which improves the accuracy
of obstacle avoidance. However, the autonomous navigation
spray system developed in this study fails to take much account
of the spray system, such as variable spray and profiling
spray technology. To this end, the precision spray technology
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will be further explored to achieve independent and accurate
pesticide spraying in the orchard environment on the basis of
automatic navigation.
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Although drift is not a new issue, it deserves further attention for Unmanned
Aerial Spraying Systems (UASS). The use of UASS as a spraying tool for
Plant Protection Products is currently explored and applied worldwide. They
boast different benefits such as reduced applicator exposure, high operating
efficiency and are unconcerned by field-related constraints (ground slope,
ground resistance). This review summarizes UASS characteristics, spray drift
and the factors affecting UASS drift, and further research that still needs to be
developed. The distinctive features of UASS comprise the existence of one or
more rotors, relatively higher spraying altitude, faster-flying speed, and limited
payload. This study highlights that due to most of these features, the drift of
UASS may be inevitable. However, this drift could be effectively reduced by
optimizing the structural layout of the rotor and spraying system, adjusting the
operating parameters, and establishing a drift buffer zone. Further efforts are
still necessary to better assess the drift characteristics of UASS, establish drift
models from typical models, crops, and climate environments, and discuss
standard methods for measuring UASS drift.

unmanned aerial spraying systems, spray drift, downwash airflow, drift measurement,
relative movement

Introduction

Unmanned Aerial Spraying Systems (UASS) consist drones that carry a spraying
device. They are operated by a control system and comprise sensors to spray plant
protection products. UASS have been developed rapidly during recent years as a spray
tool for the application of plant protection products (He et al., 2018; Wang L. et al,
2022). According to existing reports, the use of UASS to carry out chemical spraying
covers most parts of the world. In East Asia, where field conditions are limiting and
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where the original plant protection equipment is still in use,
there is an urgent demand for UASS on the market (Lan and
Chen, 2018). The number of UASS has exploded in this region.
In 2014 China owned less than 1,000 plant protection drones,
with an annual operating area lesser than 0.28 million ha.
By the end of 2020, the number of drones in China reached
106,000, with a total yearly working area of 64 million ha (Zhang
et al, 2021). In Europe, due to restrictions in application of
plant protection products with aerial technology (128/CE/2009),
UASS have not yet been used at a large scale yet (Reger
et al.,, 2018). However, in mountainous grape-growing areas,
producers and researchers have shown strong interest for UASS
(Sarri et al., 2019; Bloise et al., 2020). The UASS can spray
in the hilly and steep slope areas
by field obstacles (Delpuech et al,
practical significance for separating

without being restricted
2022). This has positive
the applicator from the
tanks and replacing the backpack sprayer (Wang et al., 2020).
In addition, although agricultural aviation is active on the
American continent, with mainly manned fixed-wing aircraft,
which are widely used in the United States, Canada, and Brazil,
experimental research on UASS is also being carried out (Teske
et al., 2018; Richardson et al., 2019; Li et al., 2021a,b).

UASS boast advantages in pesticide spraying. On the one
hand, compared to any other ground spraying technique, the
drone isolates the tank from the applicator, thus favoring
operator safety (Qin et al, 2016; Morales-Rodriguez et al,
2022). As with other aerial techniques, physical damage to crops
can be avoided. It can easily spray above high standing crops
(bananas, corn, and rubber) and operate over complex terrain
(steep slopes, terraces) where backpack sprayers are confronted
to critical operator issues regarding tediousness and safety (Lan
and Chen, 2018; Cavalaris et al., 2022). Moreover, exploitation
costs are reduced by shortening the time of spray application
and by lowering the amount of plant protection products
applied (Morales-Rodriguez et al., 2022). Carbon-based fuel can
also be replaced by electricity derived from renewable energies.
It thus lowers the carbon impact and save costs since carbon-
based fuel can be replaced by energy that, technically, could
be easy to generate in a farmyard (Hussain and Nishat, 2022).
Currently, UASS has been widely used over flat fields or terraces
with low-lying crops, including grain crops such as wheat, corn,
rice, and cash crops such as cotton, citrus, and grapes (Pan et al.,
2016; Sarri et al., 2019; Wang L. et al., 2019; Chen et al., 2020a;
Meng et al,, 2020; Chen H. et al,, 2021). Spraying with UASS
has proven to be feasible in the prevention and control of crop
diseases and pests by spraying insecticides or fungicides (Meng
etal., 2018; Yan et al., 2022). In the case of trees grown on steep
slopes, the quality of the application is partially limited by the
flight altitude of the sensor and terrain following technology
with the help of lidar for example (Meng et al., 2022b; Wang
C. et al,, 2022). Moreover, a denser crop canopy also presents
limitations in terms of droplet penetration (Chen et al., 2020b;
Yu et al., 2022). For these latter reasons, the application with
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UASS on 3D crops in mountainous and hilly areas is still
being investigated.

Although the market is open to UASS, the risk of
environmental drift caused by drone spray is also noteworthy
(Wangetal., 2020a, 2021). The risk of spray drift could be closely
related to operational efficiency and operating parameters. On
one hand, the operating efficiency of a single UASS has increased
from 2 to 3 hectares per hour to the current 15-20 hectares
per hour within the past 5 years (Chen H. et al,, 2021). The
result of single-machine efficiency implies that more chemicals
can be sprayed in a short time (Wang Z. et al., 2022), however
more pesticide droplets may also be scattered in the air (Liu
et al,, 2021). The overall environmental risks due to efficiency
improvements need to be assessed. On another hand, drift can
be minimized when low flying altitude is applied (1-3 m). Due
to the varying growth heights of crops, the actual flying altitude
is rather generally comprised between 3 and 10 m (Wang
et al, 2019b, 2021). The flight speed generally ranges between
1 and 6 m/s (Chen H. et al,, 2021). Flying altitude and speed
may cause the droplets to move in the air for a longer time.
Nevertheless, they are also susceptible to the natural lateral wind
and environmental climate, forcing which result in drift (Chen
H. et al., 2021).

Studies on drone drift include theoretical (CFD simulations)
and experimental studies. Current research on theoretical
analysis focuses on the changes in the wind field of the UASS
rotor and the movement of droplets affected by the wind
field using calculations and simulations (Zhu et al., 2019; Tang
et al., 2020, 2021; Zhang et al., 2022). Experimental research is
mainly carried out in wind tunnels or in the field combined,
with present-day climate environment and crop types. Current
experimental studies on drift include the characteristics of UASS
drift, drift distance, and the influence of operating parameters or
spraying systems on the drift (Wang et al., 2020, 2020a, 2021).
However, current research on UASS drift is still scarce. Data on
the spray drift of drones and their impact on the environment
are scarce, and the factors affecting drift are still being studied.
Existing technical standards do not address the drift of UASS,
including how to test drift in the field and wind tunnels (Wang
etal., 2020). In addition to the European ban on aerial sprayers,
no relevant country or region implements a specific legislation
on drone drift (Reger et al., 2018).

Although drift is not a new concern, it requires further
attention toward new equipment that is being widely used.
This literature review focuses on the emerging issue of
drift caused by UASS. Articles from scientific journals were
searched and analyzed from 2014 by setting keywords, such
as UAV/UASS plus spraying or drift, etc., including a part of
Chinese literature indexed by the engineering index. Section
“Characteristics of unmanned aerial spraying systems and spray
drift” describes UASS platforms, the spraying systems and
the characteristics of spray drift generated by drones. Drift
evaluation protocols test methods developed for drones, and
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the possible environmental risks are also included. Section
“Factors influencing unmanned aerial spraying systems drift”
rather focuses on more fundamental processes where spraying
is combined with the displacement of the UASS. This chapter
reviews the factors that affect the drift of the UASS including
atomization, downwash airflow, and the relative movement.
The atomization factor caused by the structural design of the
spraying system includes the selection of nozzles, the layout of
nozzles and rotors, and the properties of the liquid (Chen P.
et al, 2021). For the downwash airflow, the number and size
of rotors and payload were investigated. The relative movement
refers to changes in the UASS flight process that may either come
from itself or from the surrounding environment, including
the UASS flight parameters and natural lateral wind (Wang
et al., 2020). The issue of evaporation during spraying is not
considered in this article. Finally, since current research on the
drift of UASS sprayers is still limited, the lack of research studies
and the future research that needs to be developed are discussed
in Section “Discussion and further recommendations.”

Characteristics of unmanned aerial
spraying systems and spray drift

Characteristics of unmanned aerial
spraying systems

Unmanned aerial spraying systems platform
Fuel-powered agricultural helicopters first appeared in Japan
in the 1980s (Chen H. et al., 2021). With the recent technical
developments, electrical single-rotor or multi-rotor models
have gradually replaced fuel-powered helicopters (He et al,
2017; Chen H. et al,, 2021). Table 1 summarizes the technical
parameters of a few typical UASS. The structure of electrical
rotary-wing plant protection UASS mainly comprises the rotor,
tank, spraying system, control system, environmental sensor,
energy system, etc. The rotor provides lift for the UASS and
at the same time generates a unique downwash wind field
(Zhan et al.,, 2022). Drone rotors available on the market are
built with single rotors, two rotors, four rotors, six rotors, and
eight rotors. The tank is the major element of UASS, and its
volume is related to the maximum payload weight. According
to Table 1, the tank volume in new models has been increasing
in recent years. The initial payload range is 8-15 L, and some
current models can reach up to 20-40 L. The control system
and environmental sensing sensors are the fastest elements of
the drone update iteration, evolving from the initial manual
control mode, semi-automatic (ex. Trajectory from Point A
to Point B mode) control mode to fully autonomous mode.
Positioning sensors have evolved from the Global Navigation
Satellite System (GNSS) with meter-level errors to Real Time
Kinematic (RTK) with centimeter-level errors. In addition, air
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pressure sensors, ultrasonic sensors, radar, binocular vision,
and other sensors used for altitude determination, distance
measurement, and obstacle avoidance are constantly updated
(Wang L. et al., 2019; Chen H. et al., 2021).

Spraying system

The nozzle represents an essential part of the UASS
spraying system. As illustrated in Figures 1, 2, commonly used
nozzles for UASS include hydraulic and centrifugal nozzles
(He et al,, 2018). Hydraulic nozzles are derived from ground
spray equipment and are currently the most common type of
nozzle for UASS. The chemical solution is atomized through
the nozzle cavity under a given pressure and forms a liquid
film. The liquid film is continuously stretched and formed
into a filamentary shape under the pressure difference. When
the liquid film collides with relatively static air, it splits into
fine droplets (ASAE ANSI/ASABE, 2020; He et al., 2018). The
hydraulic nozzle atomization can be modified by adjusting
the pressure, changing the surface tension of the solution or
equipping the nozzle with air inclusion or Venturi nozzles
(Al Heidary et al., 2014).

The centrifugal spraying system adopted by UASS mainly
consists of a rotary disc centrifugal nozzle. The rotary disc-
type centrifugal nozzle comprises multiple radial grooves on
the inner wall of the rotary disc (Qingqing et al., 2017). The
groove ends are generally equilateral pins. The existence of
radial grooves can reduce the slippage of the solution and allow
the solution and rotary disc to share similar circumferential
speeds (He et al.,, 2018). The solution in the nozzle enters the
high-speed rotating turntable through the draft tube, and the
droplets fly out in a spiral tangential direction along the edge
of the turntable under the action of centrifugal force, forming
droplets of uniform size (Gao, 2013; Qingqing et al., 2017).
With a centrifugal nozzle, the spray mix relies on gravity to
enter the turntable and is ejected from the radial direction
under centrifugal force on radial pins (Qingqing et al., 2017).
The required spray pressure is therefore, slight, resulting in a
narrow droplet spectrum but also a weak droplet penetration.
However, as the droplets flowing out of the nozzle do not
interfere with one another, the distribution of droplet deposition
is more uniform and controllable (Hayashi and Takeda, 1986).
The spectrum of the atomized droplets can be adjusted by
controlling the rotational speed of the spray disc in order to
meet different droplet size requirements. Under the different
voltages, the rotation speed of the nozzle can vary from 0
to 17,000 revolutions per minute (RPM) (Wang et al., 2020).
The spray disc is not easy to clog and is particularly suitable
for spraying wettable powders and suspension agents with low
solubility (Qingqing et al., 2017; Wang et al., 2020). It is adapted
to a high concentration of UASS chemical liquid. However,
centrifugal nozzles produce fine droplets, and as their direction
of movement is horizontal, the risk of drift is high (Wang et al.,
2020).
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TABLE 1 The technical parameters of some typical UASS.

10.3389/fpls.2022.870956

Model Dimensions Rotors Payload Fully loaded Geolocation

(Manufacturer, (Frame arms (Number*diameter (Kg) weight (Kg) technology

release time) unfolded, mm) *pitch, mm)

T30 (DJI, 2021) 2,858 x 2,685 x 790 6+38%508 30 66.5 RTK,Horizontal + 10 cm,
vertical = 10 cm

T16 (DJI, 2019) 2,520 x 2,212 x 720 633 x 177.8 16 40.7

MG-1P (DJI, 2018) 1,460 x 1,460 x 578 4%21%177.8 10 225 GNSS/RTK

V40 (XAG, 2021) 2,795 x 828 x 731 2%47%457.2 16 44 RTK,Horizontal + 10 cm,
vertical + 10 cm

P40 (XAG,2021) 2,110 x 2,127 x 555 4740%352.1 20 45

P20 (XAG, 2019) 1,830 x 1,822 x 452 4¥33%292.1 10 28

Cc

FIGURE 1

120-01, Lechler).

a6
oaed
1@

Examples of Hydraulic nozzles. (A) Hollow cone nozzle (TR80-02c, Lechler), (B) flat fan nozzle (HYPRO, 110-015), (C) air induction nozzle (IDK

In the early stages of UASS development, the flow rate
could be modified by changing the nozzle type or adjusting the
flight speed (Chen et al., 2020a). However, changing the nozzle
implies a change in the size of the droplets. The influence of
the flight speed on the droplet distribution and drift can thus
be ignored. At present, the flow rate can be essentially modified
by increasing the number of water pumps and nozzles and
by adjusting the pump flowrate. The number of pumps and
nozzles carried by drones has also been increasing as operational
efficiency is being developed (Chen H. et al,, 2021).

According to Table 2, the difference between both spraying
systems is the range of values of the nozzle Volume Median
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Diameter (VMD). For the hydraulic spraying system, the droplet
size is affected by the nozzle type, operating pressure, and the
nature of the solution. For centrifugal nozzles, the significant
factor is the speed of the spray plate. The droplet size is strongly
related to drift (Al Heidary et al., 2014). Choosing a nozzle with
a larger VMD can reduce the risk of drifting in the spraying
system, such as air induction nozzles that are widely used in
boom sprayers. However, choosing anti-drift nozzles on UASS
may not always be suitable for crop protection. Due to load
limitation, the improvement of the spraying quality of UASS
implies a reduction in the atomized particle size in order to
ensure a higher droplet density and coverage. However, by
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FIGURE 2
Centrifugal nozzle (2018, XAG Co., Ltd).

reducing the size of the droplets, the risk of drift is increased.
For UASS, improving the spray quality and reducing the risk of
drift have contradictory effects.

Characteristics of unmanned aerial
spraying systems spray drift

Downwash and outside airflow

The most significant feature of rotary-wing UASS is to
carry one or more rotors (Li J. et al., 2018). However, rotor
movement can also cause vortex or turbulence (Fengbo et al,
2017; Wang et al,, 2020). When the wing generates a positive
lift due to the pressure difference between the upper and
lower wing surfaces, the high-pressure airflow below follows
the wingtips, then rolls upwards and flows toward the lower
pressure upper side of the wing, forming a spiral-shaped vortex
(Wen et al,, 2018). Wingtip vortices are not unique to drones,
and they can also occur in helicopters and fixed-wing aircraft
(Mickle, 1996). However, the high-speed rotor of the drone
will cause the movement of the droplets under the rotor to be
more complex. With a stronger rotor downwash, the vortex
in flight is stronger (Zhan et al., 2022). Under the entrapment
of the vortex, a greater number of droplets spread to both
sides of the route, further worsening the downwind drift (Wang
et al,, 2020a). This vortex generated by the joint action of
the rotor downwash airflow and the outside air is a major
factor affecting the drift of UASS spray (Tang et al, 2021).
Two types of outside airflow exist: the relative air movement
caused by the drone’s forward speed and the natural wind.
Wen et al. (2018) showed that a spiral wake occurs behind
the aircraft when the flight speed exceeds 3 m/s. The higher
the speed, the longer the spiral vortex prevails in the air.
Moreover, when the drone hovers, instead of drifting, the
droplets fall directly to the ground with the downwash of the
main rotor (Wen et al,, 2018). Results concerning hovering
situations are derived from software simulations, therefore, the
same observations might not be made in the case of field trials.
On one hand, even when no environmental wind blows, fine

Frontiers in Plant Science

149

10.3389/fpls.2022.870956

droplets sprayed by UASS with centrifugal nozzles can drift
beyond 4 m downwind due to the effect of the rotor wind and
the Brownian motion (Wang et al., 2020). On the other hand,
since the UASS operate above the canopy droplets in the air
can easily drift outside the crop with a crosswind (Li L. et al,,
2018). Consequently, UASS drift cannot be totally avoided under
the combined effects of the rotor wind field, natural wind, and
sprayer movement.

Unmanned aerial spraying systems drift
measurement method

Drone drifting still lacks a standard testing method, and
existing research mainly refers to the ISO22866 standard
(Iso, 2005). The drift phenomenon can be evaluated through
sedimentation and/or airborne drift according to the spatial
position of collectors (Grella et al, 2017). Sedimentation
drift involves the collection of ground deposition at different
distances downwind that is typically used to assess water course
exposure (Wang J. et al., 2018). Airborne drift consists of the
collection of droplets during their transport in the atmosphere
typically at several meters from the field edge and at different
heights reaching several meters above the ground (Wang et al,,
2021). This airborne drift can be used to evaluate the transport of
droplets and further consequences in terms of resident exposure
(Al Heidary et al., 2014).

In the existing literature, UASS drift tests are mainly carried
out in the field (Wang et al, 2019a, 2020, 2021). Table 3
summarizes the test methods from certain field tests found in
the literature. The drift collection is made in the downwind
direction and perpendicular to the UASS flight direction (Wang
et al,, 2020). For the different spatial positions of the collectors,
spray drift is detected by extracting a dye tracer from the
polyethylene wire, active sampler or rotary impactors for
catching airborne drift. Petri dishes, Mylar cards or filter papers
are used as collectors to sample sedimentation drift (Wang et al.,
2019a, 2021; Ahmad et al, 2022). According to the statistics
in Table 3 provided by the literature, the sampling points of
sediment drift are usually arranged in non-target areas ranging
from 1 to 50 m, while airborne drift includes one or more
sampling points within 50 m.

The He research team proposed a 3D mass balance test
method consisting of a 5 m x 5 m x 2 m tunnel frame
with #2 mm drift collection lines on four sides (left-right-
ground-top) to collect the droplets sprayed inside the tunnel
by a UASS () (Wang et al, 2016). Quantitative information
can thus be obtained along the four directions, although
information is lacking at different distances on the ground.
Wang et al. (2021) used a near-ground drift test platform with
Petri dishes to collect sedimented droplets at different distances
downwind from the UASS route. Wang et al. (2019a) and
Wang et al. (2020) arranged the collection poles at a height of
1 m within a 2-50 m range in the downwind direction and
fixed Mylar plates (5 x 8 cm) to each collection pole. The
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TABLE 2 Characteristics and comparison of different UASS spraying systems.

10.3389/fpls.2022.870956

Spraying system Nozzles VMD (pm) Droplet size
adjustment
method
Hydraulic spraying system Flat fan 110-200 Adjust pressure,
solution properties,
nozzle type
Hollow cone 90-150
Air induction 220-400
Centrifugal spraying system Centrifugal 90-300 Change the speed of
the spray plate
TABLE 3 Field test methods for UASS spray drift evaluation in the literature.
UASS sprayer Fluorescence Testing method Material References
tracer (Sampling location)
Z-3 Rhodamine-B Sediment (2-100 m) and polyester card Xinyu et al., 2014
Airborne (2, 50 m) (¢ =90 mm) and polyester fiber (¢ = 1 mm)
Yamaha R-MAX I1 / Sediment (7.5-48 m) and Deposition sheet (40 * 25 cm) and SKC Brown and Giles,
Airborne AirCheck HV30 sample pump 2018
3WQF120-12 Brillant sulfoflavin Sediment (1-20 m) and Airborne Petri dishes and rotary impactors Wang X. et al., 2018
dye (BSF) (5,10,20 m)
3WQF80-10 BSF Airborne drift A cuboid aluminum sampling frame (5 m x 5 Wang X. et al., 2018
m X 2 m)
X-4 Tartrazine Sediment and Airborne (5,10 m) filter paper and water sensitive paper Li]J. etal,, 2018
solution
3QF120-12 Rhodamine-B Sediment (1-50 m) and Airborne mylar card (10 x 8 cm), monofilament line Wang X. et al., 2018
(10,25,50 m) (@ =0.45 mm)
MG-1S Allure red Sediment drift (0.5-12.5 m) Mylar cards Chen et al., 2020a,b;
Chen S. et al., 2020
P20 (XAG) Rhodamine-B Sediment (2-50 m) and Airborne mylar plate (5 x 8 cm?) and monofilament Wang et al., 2020
(2,12 m) line (¢ = 0.6 mm)
3WQF120-12, Pyranine Sediment (2 m) and Airborne Petri dishes, rectangle collection frames with Wang et al., 2021
3WMG6E-10, (2-20 m) polyethylene tubes (5.5 x 2.0 m), rotary
3WMB8A-20 samplers

airborne drift near the ground was estimated after recovering
the Mylar plates. Assessing sedimentation drift is the most
common method in spray drift research, and it reflects the real
value of ground drift at different distances from the downwind
direction. However, data on the vertical spatial distribution
of drift is still lacking. In order to efficiently understand
the spatial distribution of droplets on the downwind side of
a UASS flight path, both sediment and airborne drift need
to be considered.

Since field tests can be easily affected by weather conditions,
wind tunnels are a solution to provide stable and controllable
wind conditions, allowing for repeatable operations (Iso
International Standard, 2009). Wang et al. (2020b) placed the
single rotor and nozzle of the drone in a wind tunnel. The rotor
refers to one single spray unit of a quadrotor UASS “3WQFTX-
10” (Anyang Quanfeng Aviation Plant Protection Technology
Co., Ltd., China), with a size of 76.2 cm. Ling et al. (2018)
placed a UASS carrying a spraying system inside a 2 m x 2 m
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wind tunnel for spray testing. The UASS model used here was a
miniature version. Although these studies attempted to test the
UASS in a wind tunnel, the use of a single rotor or the reduction
in the size of the UASS may differ from reality. A research
team from South China Agricultural University and Nanjing
Research Institute for Agricultural Mechanization, China, built
a set of UASS test platforms (as illustrated in Figure 3). The
test platform can hold up to 4, 6, and 8 rotors (adjusted as
needed). The rotor speed can be adjusted within the range
of 600-2,500 RPM. The spraying system is located under the
rotor, and can be installed with a hydraulic spraying system
or a centrifugal spraying system, where the position of the
nozzle relative to the rotor can be adjusted freely. In addition,
the test platform can adjust the pitch angle from -30° to 30°.
Liu et al. (2021) combined the UASS platform with the wind
tunnel and placed the platform at the extremity of the wind
tunnel in order to build an indoor drift test device. Although
the sampling area is not located inside the wind tunnel, this
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FIGURE 3

The UASS spraying test bench in South China Agricultural
University.

method is a good attempt to reduce disturbances from natural
environmental conditions.

Potential environmental risks

The UASS uses low application volume rates for spraying
because of the limited payload (Zhan et al., 2022). Compared
with ground sprayers, the amount of spray per unit area of
drones is less even though the rate of active substance can be
equivalent (Qin et al,, 2016; Wang G. et al.,, 2019). The drift
rate (as normalized by the application volume, ISO 22866)
is therefore not significantly reduced. The conclusions of the
study by Wang G. et al. (2019) are that pesticide droplets from
multi-rotor drones drift further away than with a traditional
backpack sprayer. In addition, the amount of drift in the air is
greater (Wang G. et al,, 2019). Indeed, according to a study by
Li L. et al. (2018) the multiple rows of vertical crop canopies
can effectively prevent droplets from moving during ground
equipment spraying, thus resulting in a lower extent of drift
outside the crop than with UASS. The Wang field experiment
study also demonstrated that the UASS drift of almost all
treatments at 50 m was lower than the detection limits, and that
the drift distance of the UASS model was much shorter than
that of an aerial manned aircraft sprayer (Wang et al., 2020).
However, the above conclusions are particular cases that depend
on the spraying system, crop type and operation scenario.

Xu et al. (2020) performed preliminary research on
applicator exposure in a rice paddy by multi-rotor UASS.
They clearly highlighted that the risk of exposure using UASS
applicators was almost zero due to the separation between
the applicator and application machine. In contrast, backpack
sprayer application resulted in entire body exposure of the
applicator to the pesticide. Yan et al. (2021) compared the
amount of insecticide droplet drift with the mortality of bees
for multi-rotor plant protection UASS and for electric backpack
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sprayers. After pesticide application by the multi-rotor drone
and electric backpack sprayer, the droplet deposition at a
distance of 5 m downwind was 0.107 9 pg cm~2 and 0.002
2 pg cm™2 respectively. The number of bee deaths caused by
the plant protection drone application drift was 62.9 fold that
of the electric backpack sprayer (Yan et al, 2021). Current
UASS drift research focuses on sediment and airborne drift,
while the impact on non-target organisms is still limited.
Further tests are still necessary to evaluate the environmental
risks of drone drift.

Factors influencing unmanned
aerial spraying systems drift

Atomization and sprays

Nozzles

The nozzle is at the core of the spraying system as it plays
a key role in spray atomization. Spray atomization refers to the
process of spraying a liquid into a gas medium at high speed
through a nozzle, dispersing and fragmenting it, and finally
forming fine particle droplets (He et al., 2018). Both the size
of the droplets generated by atomization and the proportion
of fine droplets have an impact on the drift (Al Heidary et al,
2014). In the spraying process of ground spray equipment, air
induction fan nozzles are used in specific anti-drift scenarios.
Table 4 summarizes drift test results from UASS equipped with
different nozzles in the field. Regardless of the different UASS
models and test areas, IDK 120-015 presents a better anti-drift
effect than TR 80-0067. Hollow cone nozzles produce finer
droplets and are often used for pest control in orchards; IDK
nozzles produce larger droplet sizes than flat fan nozzles. The
average VMD (DV50) values of IDK 120-015 and TR 80-0067
in this test were 114.9 and 312.6 pm, respectively, and the
proportions of droplets with a particle size smaller than 75
pm were 16.1 and 1.8%, respectively. The air induction nozzle
can produce coarser droplets, thus reducing the risk of droplet
drifting (Wang et al., 2020a).

A correct selection of nozzles has significant effects in
reducing drift (Herbst et al., 2020; Wang et al., 2020). According
to Table 4 the result of 90% of total sedimentary drift locations
correlates strongly with droplet size (Dv50). The influence of
the nozzle on drift depends on the droplet size (Dv50) produced
by atomization. The larger the droplet size, the better anti-drift
performance (Wang et al., 2020). Larger droplets, which hardly
moved upwards with the vortex, traveled much shorter distances
and floated at lower altitudes. When the size of the droplets
increased, their maximum drifting distance gradually decreased
and was less affected by crosswind speed and direction (Wang J.
et al,, 2018, Wang et al.,, 2020, 2021). This conclusion has been
verified in several of the studies presented in Table 4. When the
crosswind blew from the right-hand side, large droplets (200
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TABLE 4 Comparison of the 90% drift distance with different nozzles and UASS in the literature.

Nozzles UASS Dv50/pm Wind speed Distance 90% of total References
(m/s) sedimentary drift (m)
Centrifugal nozzle P20 (4-Rotor) 100 1.16 £ 0.06 13.2 Wang et al., 2020
(XAG company)
150 1.30 £ 0.05 12.0
200 0.61 £0.03 5.7
Hollow cone nozzle, 3WQF120-12 1149 £ 0.7 3314+0.17 9.99 Wang et al., 2021
TR 80-0067 (Helicopter)
3WMBG6E-10 3.79 £ 0.58 11.53
(6-Rotor)
3WMB8A-20 347 +£0.37 11.70
(6-Rotor)
Air-injector nozzle, 3WQF120-12 3126 + 1.8 3.11 4+ 0.40 9.13
IDK 120-015 (Helicopter)
3WMBG6E-10 3.45 + 0.46 7.90
(6-Rotor)
3WMB8A-20 3.37 £ 0.56 13.62
(6-Rotor)
Flat fan nozzle, LU 3WQF120-12 268.6 2.82+0.76 10.05 Wang J. et al,, 2018

120-02

and 400 pm) tended to deposit faster and closer to the swath,
while fine droplets (50 and 100 wm) were displaced by the
crosswind with a strong non-uniform spatial distribution and a
tendency to float toward the far left-hand side (Tang et al., 2021).
The drift distance of droplets gradually decreases as the droplet
size increases. Research by Wang et al. (2020) shows that large
droplets are more affected by gravity and mainly deposit on the
lower half of the 2 m, while fine droplets remain suspended in
the air and are less affected by gravity, thus leading to a higher
slope of airborne drift at 12 m.

Layout of nozzles

The location of the nozzle under the rotor affects the
movement of the droplets (Chen H. et al., 2021). As illustrated
in the Figure 4, four standard layouts of rotors and nozzles
are possible. (i) The nozzle can be located directly below the
rotor, (ii) the nozzle can be located directly below the rotor
(extended), (iii) the nozzle can be located inside the rotor, or
(iv) the nozzle can be separated from the rotor (spray boom).
However, studies on the impact of the spatial layout of rotors
and nozzles on spray drift are still scarce. The typical nozzle
arrangements are spray boom and vertical suspension under
the rotor. The sensitivity to spray drift depends on the position
of the nozzle. Indeed, the nozzles at the two extremities of
the boom are sensitive to the rotor vortex. The closer the
nozzle to the wingtip of the rotor, the greater the amount of
droplets drawn by the wingtip vortex (Wang J. et al.,, 2017).
To reduce spray drift, the length of the boom (similar to
Figure 4D) should not be greater than the diameter of the
rotor (Chen H. et al,, 2021) as has been advised for larger aerial
spraying systems. A reduction in the distance between nozzles
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can also decrease the droplet drift caused by wingtip vortices
(Wen et al., 2018).

Adjuvant and formulation

Adjuvant can significantly reduce the surface tension of
the solution (Meng et al,, 2021, 2022a). In a field trial study,
Silwett DRS-60, ASFA + B, T1602, Break-thru Vibrant, QF-
LY and Tmax could reduce spray drift by 65, 62, 59, 46,
42, and 19%, respectively, in comparison with water. The
adequate concentration of adjuvants can reduce the percentage
of fine droplets and thus significantly decrease the risk of
drift in agricultural spraying (Wang X. et al, 2018). Wind
tunnel experiments in different meteorological condition also
demonstrated that the addition of spray adjuvants to the
spray solution can affect the level of spray drift level (Wang
et al, 2020a). The effect of adjuvant has also been found to
lessen drift by modifying the surface tension of the solution,
thus contributing to a reduction of the proportion of fine
droplets. It therefore plays a significant role in reducing the
drift risk of UASS.

Ultra-low volume spraying by UASS entails exigent
demands in pesticide formulations. The drift of herbicides
generally produces a higher impact on the environment
than for fungicides and insecticides. In the early stage of
UASS application, the blind use of herbicides to affect non-
target organisms is a common strat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>