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Editorial on the Research Topic

Advanced application technology for plant protection: Sensing, model-
ling, spraying system and equipment
As editors of this Research Topic, we summarized the contributions of 20 articles

accepted in this topic. The research contents mainly focused on the following sections: drift

characteristics of unmanned equipment and development of autonomous navigation spray

system, identification and classification of pests and diseases based on deep learning, and

airflow velocity loss characteristics of air-assisted spray in orchard.
Drift characteristics of unmanned equipment
and development of autonomous navigation
spray system

In recent ten years, agricultural unmanned aerial vehicles (UAV), also known as

Unmanned Aerial Spraying Systems (UASS), as a new method for the application of plant

protection products, has developed rapidly in the world. Compared with ground equipment,

UAV spray is more likely to cause spray drift and environmental pollution to non-target

areas. Therefore, it is important to study the spray drift characteristics of UASS.

Chen et al. reviewed the drift characteristics of UAV spray system and the factors

affecting UAV system drift, and put forward suggestions on the optimization of spray system

and structure layout, modeling of drift test, and standardization of measurement methods.

Jiang et al. compared the performance of UAV, unmanned ground vehicle (UGV) and spray

gun pesticide application technology of spray target coverage, off-target coverage, time

efficiency and gasoline consumption in the pear orchard. The results showed that compared

with UGV, UAV has the advantages of high working efficiency, less environmental pollution
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and consumption of natural resources. Although the traditional spray

gun technology showed good spraying performance, it is not

conducive to the protection of environment and resources. The

achievement was helpful to the research and development of

intelligent pesticide application technology. Shan et al. carried out

research on corn fertilization method based on UAV. The difference

of the effectiveness between the water sprayed on the sampling rod

and leaves was studied. They found that sampling methods have a

significant effect on deposition results and determined the optimum

spraying concentration. Qi et al. compared the effects of multi-

functional unmanned aerial vehicle (mUAV) planter, mechanical

rice seeder and mechanical rice transplanter on rice cultivation. The

results showed that there was no significant difference in rice yield

among the three regions. In terms of labor cost and seeding efficiency,

UAV was more effective than mechanical planter and transplanter. Li

et al. studied the influence of UAV flight velocity on deposition

distribution and droplet size, especially the usage of compound

pesticides as spray solution. The results demonstrated that

increasing flight velocity is helpful for pesticide droplets to spread

and penetrate the canopy. However, it also led to uneven deposition of

pesticides, reduced deposition volume, and reduced effective coverage

and effective density ratio.

Jiang et al. developed a greenhouse autonomous navigation

system based on Simultaneous Localization and Mapping (SLAM)

algorithm. In this paper, three-dimensional Lidar data was filtered

and fused into two-dimensional Lidar data containing the

environment information in the range of robot motion height. They

used Dijkstra algorithm for global planning and DWA algorithm for

local navigation path planning of robot. This method not only

ensured the accuracy of greenhouse environment map but also

reduced the accuracy of greenhouse environment map and the

performance requirements of industrial computers. According to

the three perception decision control modules of unmanned system,

Wang et al. constructed the environment perception and map

building strategy based on 3D Lidar under the complex

environment background of orchard. They pointed out two

difficulties in developing automatic orchard sprayer: one is to

realize efficient penetration of pesticides in low-density canopy and

reduce losses, and the other is to make the machine automatically pass

through orchard without manual control. They also provided a basis

for the development of technology for independent and precise

spraying of pesticides in the orchard environment based on

automatic navigation.
Identification and classification of pests
and diseases based on deep learning

At present, researches have carried out extensive research in the

fields of pest image recognition, segmentation and feature extraction

based on deep learning. The purpose of most researches was to

improve the running speed and recognition accuracy of the system by

optimizing or building the models.

Zhao et al. proposed an improved deep convolution neural

network to identify crop pests. They also developed a new attention

module, which includes parallel attention mechanism module and
Frontiers in Plant Science 6
residual blocks. This module was integrated into ResNet-50 CNN,

which is used to classify 10 different types of crop pests. This network

had significant advantages in terms of accuracy and real-time

performance compared with other models. Yao et al. studied the

segmentation and recognition of peach disease based on Mask R-

CNN and Mask Scoring R-CNN to provide evidence for disease

control and treatment. This work was valuable in engineering

applications, such as the classification of plant diseases and the

location and segmentation of lesion areas. Li et al. proposed an

imaging model for detecting corpuscle insects such as whitefly and

thrips in greenhouse. The author used an automatic detection method

to reduce pest detection. This method could satisfy the needs of

continuous monitoring of pests in greenhouse, and estimate the total

population density. Lin et al. proposed a few-shot learning method for

plant disease recognition based on multi-scale feature fusion and

attention. The results showed that plant disease identification

technology based on a few-shot learning method is feasible in the

future application.
Airflow velocity loss characteristics of
air-assisted spray in orchard

Air-assisted spray technology has been widely used in the high-

efficiency application of pesticides in orchards. In this section, the

authors mainly studied the influence characteristics of canopy airflow

velocity loss on air-assisted spray performance.

Zhang et al. established a theoretical model of airflow velocity

attenuation in a pear canopy by selecting the velocity attenuation

factor k and incoming velocity as model inputs. It was demonstrated

that high-speed airflow will disturb the outer branches and leaves and

thus affecting the accuracy of the model. The research results could

provide theoretical basis for the adjustment of air flow parameters of air-

assisted spray in the pear orchard. Wu et al. discussed the feasibility of

using the resistance characteristics of crop canopy to evaluate its droplet

deposition effect through theoretical analysis and wind tunnel test. The

results could provide theoretical basis for rapid and low-cost research and

development of crop protection technology and equipment. Yang et al.

proposed a new three-dimensional airflow velocity and direction

synchronous measurement method, and established a new sensor

system and calculation model. This method could be used as a

solution to measure and evaluate the airflow velocity field

characteristics of sprayers. Gu et al. studied the airflow velocity loss

model for a canopy. They built a three-dimensional airflow velocity

measurement platform for fruit tree canopy, and obtained the point

cloud data by Lidar scanning. Classical regression, partial least squares

regression (PLSR) and back propagation (BP) neural network algorithms

were adopted. This study could provide a basis for airflow velocity control

of precise variable spray and promote the development of airflow velocity

control technologies.

In addition to these three main sections, the authors also conducted

the following researches. Zhang et al. proposed a method to evaluate the

adjuvant efficacy of herbicides under different temperature conditions by

using chlorophyll fluorescence of herbaceous plants. The experiment was

carried out under the control of greenhouse environment by using two-

factor block experiment scheme. The results distinguished the differences
frontiersin.org
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among treatments and determined the optimum solution to improve the

efficacy of topramzone against weeds at different temperatures.

Electrochemical fingerprinting technology can collect the

electrochemical behavior of electrochemically active molecules in plant

tissues, which is considered as a new plant analysis technology. Hu et al.

found that electrochemical fingerprint signals are positively correlated

with the number and type of electrochemical active molecules in plant

tissues, and can also be used to reflect the genetic differences among

different species. Liu et al. established the numerical model of plant-soil-

machine system, and introduced the details on the construction and

calibration method of plant mechanics model based on the discrete

element method (DEM). The discrete element model of taro plant

established in this paper was reliable. In order to solve the issues of

low weeding rate and severe seedling damage of rice weeding machinery,

Zhang et al. optimized the key components of rice weeding. Through the

analysis of the motion trajectory and DEM simulation analysis of the

weeding wheel, the structural parameters of the weeding wheel were

determined. This study provided a technical reference for the

improvement of paddy-field weeding equipment. Xie et al. proposed a

new method to predict the waterlogging tolerance of poplar. They used

different feature selection algorithms to analyze the waterlogging

tolerance of different parameters such as photosynthesis and

chlorophyll fluorescence. Machine learning algorithm was used to

study and analyze different parameters of poplar waterlogging

resistance. This research provided new information for the selection of

poplar seedlings with waterlogging tolerance.
Frontiers in Plant Science 7
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Poplar’s Waterlogging Resistance
Modeling and Evaluating: Exploring
and Perfecting the Feasibility of
Machine Learning Methods in Plant
Science
Xuelin Xie1†, Xinye Zhang2†, Jingfang Shen1* and Kebing Du3*

1 College of Sciences, Huazhong Agricultural University, Wuhan, China, 2 Hubei Academy of Forestry, Wuhan, China,
3 College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information,
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Floods, as one of the most common disasters in the natural environment, have
caused huge losses to human life and property. Predicting the flood resistance
of poplar can effectively help researchers select seedlings scientifically and resist
floods precisely. Using machine learning algorithms, models of poplar’s waterlogging
tolerance were established and evaluated. First of all, the evaluation indexes of poplar’s
waterlogging tolerance were analyzed and determined. Then, significance testing,
correlation analysis, and three feature selection algorithms (Hierarchical clustering,
Lasso, and Stepwise regression) were used to screen photosynthesis, chlorophyll
fluorescence, and environmental parameters. Based on this, four machine learning
methods, BP neural network regression (BPR), extreme learning machine regression
(ELMR), support vector regression (SVR), and random forest regression (RFR) were used
to predict the flood resistance of poplar. The results show that random forest regression
(RFR) and support vector regression (SVR) have high precision. On the test set, the
coefficient of determination (R2) is 0.8351 and 0.6864, the root mean square error
(RMSE) is 0.2016 and 0.2780, and the mean absolute error (MAE) is 0.1782 and 0.2031,
respectively. Therefore, random forest regression (RFR) and support vector regression
(SVR) can be given priority to predict poplar flood resistance.

Keywords: flood disaster, prediction of waterlogging tolerance, machine learning, feature selection, model
establishment and evaluation

INTRODUCTION

Natural disasters are inherently a phenomenon that has adverse consequences for society (Paprotny
et al., 2018). It damages the living environment and life of human beings. Flood disasters, as
one of the most common and expensive natural disasters, have caused huge losses to human
lives and property (Hu et al., 2018; Ao et al., 2020). With the development of social industry
and economy, the warming of the atmosphere caused by greenhouse gas emissions may increase
the risk of river flooding (Hallegatte et al., 2013; Hirabayashi et al., 2013; Willner et al., 2018;
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Bloeschl et al., 2019). Therefore, many studies want to build a
system for predicting flood risk (Alfieri et al., 2017; Shafizadeh-
Moghadam et al., 2018; Choubin et al., 2019; Khosravi et al.,
2019), and a variety of machine learning methods are used
in these studies. Choubin et al. (2019) used multivariate
discriminant analysis (MDA), classification and regression trees
(CART), and support vector machine (SVM) algorithms to
predict flood risk in Iran’s Khiyav Chai drainage basin. The results
show that the residential areas at the outlet of the drainage basin
are very susceptible to floods. Khosravi et al. (2019) adopted three
Multi-Criteria Decision-Making techniques (VIKOR, TOPSIS,
and SAW) and two Machine Learning methods (NBT and NB)
to test the flood sensitivity modeling of the Ningdu River Basin
in China. Finally, their research shows that the NBT model is a
powerful tool for evaluating flood-prone areas, and can properly
plan and manage flood disasters. Nevertheless, predicting flood
risk cannot substantially reduce the life and economic losses of
human society. Afforestation can strengthen the stability of water,
soil, and carbon sinks in the forest ecosystem, thereby effectively
coordinating the relationship between humans and the natural
environment. A considerable number of studies have shown
that afforestation can weaken the impact of global warming and
effectively reduce the risk of river flooding (Hong et al., 2018,
2020; Liu X. et al., 2018; Forster et al., 2021). Thus, afforestation
is widely used to resist flood disasters.

Plants have evolved numerous resistance mechanisms to
resist flood disasters, including plant morphological Screening
of Candidate Genesristics, metabolic responses, and molecular
transcriptional regulation (Loreti et al., 2016; Du et al., 2017;
Yin et al., 2017; Zeng et al., 2019; Lukic et al., 2020; Lee
et al., 2021). Among the diverse plant populations, poplar has
become the main flood-resistant tree varieties in flood-prone
areas due to its rapid growth and flood resistance features.
Many studies have shown that the root system is the key organ
of poplar responding to Flooding stress (Coleman et al., 2000;
Major and Constabel, 2007; Berhongaray et al., 2013; Ye et al.,
2018; Gerjets et al., 2021). Flooding stress affects the diffusion
of oxygen in plant root tissues. At the same time, it limits
the mitochondrial respiration of root cells and accumulates
toxic substances, which seriously affects its normal physiological
activities (Arbona et al., 2008; Voesenek and Bailey-Serres, 2013;
Tian et al., 2019). In addition, flooding stress will destroy the
photosynthesis performance of plants, which will inhibit plant
growth and biomass accumulation (Du et al., 2012; Zhu et al.,
2016; Zheng et al., 2017; Xiong et al., 2019; Zhou et al., 2020).
Flooding stress not only reduces the chlorophyll content of
plants, but also reduces the carotenoid content (Zhou et al., 2017).
Kreuzwieser et al. (2009) found that the metabolite changes
occurred in leaves and roots of submerged poplar. Du et al. (2012)
compared the physiological and morphological adaptability of
two poplar clones (hypoxia-resistant and hypoxia-sensitive) to
flooding, and Peng et al. (2018) monitored the different response
mechanisms of these two clones of poplar to flooding stress.
These studies have greatly promoted people’s understanding of
the waterlogging resistance mechanism, and to a considerable
extent, strengthened people’s resistance to flood risks. Thus
far, there are still few studies on the influence of poplar on

the waterlogging resistance factors. These factors include the
intrinsic features of poplar trees (photosynthesis and chlorophyll
fluorescence, etc.) and external environmental features (ambient
temperature, humidity, etc.). As a popular research direction,
machine learning has recently been gradually introduced into the
field of plant science. For the research on the resistance of poplar
to waterlogging, Xie and Shen (2021) used poplar photosynthesis
features and external environmental factors to predict the
waterlogging tolerance of poplar. By using the SVR method
in machine learning, they confirmed the feasibility of applying
photosynthesis and other characteristic parameters to predict
poplar flood resistance. However, previous prediction studies
did not consider important parameters such as chlorophyll
fluorescence. Additionally, the related forecasting research is
not systematic enough, and the corresponding investigation and
research are still lacking.

Based on the above considerations, the main purpose of this
article is to consider more comprehensive feature parameters and
use a variety of machine learning methods to predict the flood
resistance of poplar. At the same time, it aims to supplement
and improve the key content and procedures of poplar flood
resistance prediction. First of all, the evaluation indicators
of waterlogging tolerance were well defined and explained.
Then, 26 internal characteristics and external environmental
factors of poplars were screened by using feature selection
algorithms such as significance test and stepwise regression.
Finally, four machine learning methods were used to establish
the flood resistance models of poplar, and the results were
comprehensively evaluated in detail. Compared with previous
studies, this study supplements the evaluation index and
prediction system of poplar waterlogging tolerance. The main
contribution is that the definition and analysis of evaluation
indicators for waterlogging tolerance have been improved,
and more comprehensive characteristic parameters have been
considered. Moreover, the feature selection, prediction methods,
and evaluation indicators were adjusted, and more machine
learning methods and results have been considered and analyzed.
This research has enriched the prediction of poplar’s flood
resistance, which is of great significance to poplar’s accurate flood
resistance, intelligent selection of seedlings, and cultivation of
high-quality saplings. Furthermore, to a considerable extent, it
promotes the research of flood resistance mechanisms, which
have great theoretical and practical value.

MATERIALS AND METHODS

Experimental Area and Materials
Research area: Huazhong Agricultural University, Wuhan, China
(114◦35′E, 30◦49′E), subtropical humid monsoon climate. This
area has four distinct seasons, with plenty of sunshine and
plenty of rainfall. The annual average temperature is 15.8–17.5◦C,
rainfall is 1,269 mm, and total sunshine hours are between
1,810 h to 2,100 h.

Experimental objects: There were 20 poplar varieties in total.
The scientific names corresponding to the 20 poplar varieties are
shown in Table 1.
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TABLE 1 | Scientific names of 20 poplar varieties.

Varieties Scientific names

LS68 Populus deltoides “Lux” × P. simonii (LS68)

LS81 P. deltoides “Lux” × P. simonii (LS81)

NL895 P. × euramericana “Nanlin 895”

I-63 P. deltoides “Harvard”

I-69 P. deltoides “Lux”

I-72 P. euramaricana “an Martino”

I-214 P. × euramericana “I-214”

I-45-51 P. × euramaricana “I-45/51”

Flevo P. euramericana “Flevo”

Juba P. deltoides “55/56” × P. deltoides “2KEN8”

LH04-13 P. deltoides “Lux” × P. deltoides “Harvard” (LH04-13)

LH04-17 P. deltoides “Lux” × P. deltoides “Harvard” (LH04-17)

Triplo P. euramericana “Triplo”

DD102-4 P. deltoides “DD102-4”

Raspalje P. deltoides “Raspalje”

Danhong P. deltoides “Danhong”

Canadensis P. canadensis Moench.

2L2025 P. deltoides “Lux” × P. deltoides “Shanhaiguan”

Ningshanica P. ningshanica

Lushan P. × liaoningensis

Experimental Process and Parameter
Measurement
The 1-year-old branches of 20 poplar clones were cut into
about 15 cm cuttings with 3–4 buds. There were 4 experimental
groups and 4 control groups for each variety, with a total of
160 experimental materials. After being soaked in water for
24 h, the cuttings were planted in mixed soil. The container
was seedling pots (150 mm × 100 mm × 130 mm), and the
soil was 1:1 substrate soil and peat soil (The soil consisted of
2–5% N, P2O5 and K2O, pH = 6.2, total organic matter of
nutrient soil was ≥ 28%, and the total nutrient was ≥ 2%). The
morphological changes of the plants were observed every day,
including the chlorosis and shedding of leaves. We measured
the height, biomass, photosynthesis, and chlorophyll fluorescence
parameters of poplar seedlings on the 0th and 60th days.
The characteristic parameters were measured by the LI-6400
photosynthesis analyzer (LI-COR, Lincoln, NE, United States),
and the time was concentrated between 9:00 am and 11:30
am. In the experiment, a standard LI-COR leaf chamber and
red and blue light sources (6400-02 LED light sources) were
used. The light intensity was 1,000 µmol·m−2

·s−1, and the air
velocity was 500 µmol·s−1. 26 characteristic parameters of poplar
samples were measured, including photosynthesis, chlorophyll
fluorescence features, and environmental variables. The specific
information of these features is shown in Appendix Table A1,
and the treatment process of the experimental group and the
control group is as follows.

• Control group: Watered normally (CK). There were
drainage holes at the bottom of the flower pots in the
Control group. Watered the plants according to the
needs of normal plant growth, and the soil moisture was

maintained at about 75% of the maximum water holding
capacity in the field.
• Experimental group: Shallow flooded (FL). The

waterlogging test was started 5–6 weeks after cuttings,
and the water surface was 10 cm higher than the soil
surface. The experiment lasted for 60 days, of which, the
flooding time was 45 days, and the drainage recovery
time was 15 days.

Programming Environment
In this article, R 4.0.5 was used to perform data Processing and
Feature selection process, and MATLAB R2018a was used to
implement the Model building and evaluation.

METHODOLOGY

The methodology is divided into data processing, feature
selection, model establishment and evaluation. The main
procedures are shown in Figure 1, and the specific
implementation steps will be introduced one by one below.

Data Processing
Evaluation Index of Waterlogging Tolerance
The changes in biomass and seedling height can reflect the
waterlogging tolerance of plants. In previous studies, Xie and
Shen (2021) proposed the waterlogging tolerance evaluation
index Zscore. This article supplemented the definition of the
other two waterlogging tolerance evaluation indicators, and
used the three waterlogging tolerance evaluation indicators for
outlier analysis. Finally, the most suitable evaluation index for
waterlogging tolerance was selected. The definitions of the three
evaluation indicators are given below.

The first evaluation index for waterlogging tolerance is Zbio,
which is obtained based on changes in biomass. This indicator is
based on the change in biomass of the test group within 60 days
to judge the flood resistance of poplar, and it is dimensionless.
The stronger the waterlogging resistance performance, the larger
the corresponding Zbio. The calculation method is shown in
Formula (1):

Zbio =
bio(xi)− E(bio)

Std(bio)
(1)

The second waterlogging tolerance evaluation index is Zsap,
which is similar to the definition of Zbio. This index only
considers the change of poplar seedling height, and its calculation
method is shown in Formula (2):

Zsap =
sap(xi)− E(sap)

Std(sap)
(2)

The third evaluation index of waterlogging tolerance is Zscore.
This indicator takes into account the changes in biomass, as well
as changes in seedling height. Compared with Zbio and Zsap, this
index can more comprehensively reflect the flood resistance of
poplar, and its calculation formula is shown in Formula (3):

Zscore(xi) = ωbio × Zbio+ ωsap × Zsap (3)
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FIGURE 1 | Flow chart of Methodology.

where ωbio and ωsap are the weight coefficients, which satisfy the
condition ωbioωsap = 1. The calculation method of the weight
is shown in equation (4). Zbio and Zsap are the two evaluation
indicators mentioned in above.

ωbio =
A

A+ B
, ωsap =

B
A+ B

(4)

where A = FL(Sum(bio(xi))
CK(Sum(bio(xi))

, B = FL(Sum(sap(xi))
CK(Sum(sap(xi)) .

Treatment of Outliers
Extremely different from other observations, the outliers often
cause anomalies (Aggarwal and Yu, 2005). Outliers may affect
the accuracy of the final model (Domingues et al., 2018; Zhao
et al., 2020). Consequently, before feature selection and models
establishment, outliers in the data should be eliminated. The
outlier Ozscore is defined in formula (5):

Ozscore > Q3 + 1.5× R1 or Ozscore < Q1 − 1.5× R1 (5)

where Q3 and Q1 are the upper and lower quartiles, and the
quartile range R1 = Q3 − Q1.

Feature Selection
Feature selection is to effectively remove irrelevant and
redundant features (Arora and Anand, 2019; Sayed et al., 2019).
It can improve the performance of the model and reduce the
cost of calculation (Li et al., 2018; Angulo and Shin, 2019). The
26 characteristic parameters considered in this study meet the
conditions of multi-dimensional data. Therefore, these features
need to be selected.

Hierarchical Clustering
Hierarchical clustering is a clustering method used to describe
the hierarchical structure of samples in a group (Wu et al.,
2009). The result of hierarchical clustering is usually represented
by a dendrogram. The tree diagram shows the organization
and relationship of the sample in the form of a tree, which is
convenient for people to divide intuitively (Granato et al., 2018).
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For related clustering research work, refer to Xu and Wunsch
(2005) and Murtagh and Contreras (2012). A hierarchical
clustering method was adopted to cluster the poplar varieties
and the five features selected by correlation analysis, and the
measurement method was Euclidean distance.

Lasso and Stepwise Regression
The Lasso method is proposed by Tibshirani (1996) by combining
the advantages of both ridge regression and subset selection meth.
It not only has the interpretability of subset selection, but also
has the stability of ridge regression. To achieve the purpose
of feature selection, this method compresses the coefficients
of insignificant variables to 0 (Zou and Hastie, 2005; Cui
and Gong, 2018). Stepwise regression uses collinearity and
variance contribution tests to gradually find all the significant
features, thereby obtaining the optimal model. The basic idea
of stepwise regression is to add new variables one by one, each
time a new variable is added, consider whether to eliminate
the selected variable until no more variables are introduced.
Stepwise regression is mainly used to solve the problem of
multicollinearity. For related research, refer to Guidolin and
Pedio (2021), Ou et al. (2016), and Yang et al. (2019).

Establishment and Evaluation of
Regression Model
Machine Learning Methods
BP Neural Network
BP neural network is a multi-layer network structure composed
of an input layer, an output layer, and one or more hidden layers
(Yang et al., 2018), which can effectively deal with linear and non-
linear relationships between data (Moghadassi et al., 2010). BP is
called the error back propagation algorithm. In essence, the BP
algorithm takes the error square as the objective function, and
uses the gradient descent method to calculate the minimum value
of the objective function. BP neural network can systematically
solve the hidden layer connection weight learning problem of
multilayer neural network, and it is one of the most widely used
neural networks at present.

Extreme Learning Machine
The extreme learning machine is a new single hidden layer
feedforward neural network (Ding et al., 2015). This algorithm
can produce good generalization performance in most cases, and
its learning speed is thousands of times faster than the traditional
feedforward neural network algorithm. Therefore, many studies
apply extreme learning machines for regression and prediction
(Miche et al., 2010; Huang et al., 2011; Yao and Ge, 2018; Yaseen
et al., 2018).

Support Vector Regression
Support vector machine (SVM) is a supervised machine learning
method proposed by Cortes and Vapnik (1995) in the mid-1990s,
which is used to deal with binary classification problems. The
core idea of SVM is to find a hyperplane or hypersurface to
segment the sample points to maximize the interval between
the segmentation points. Support vector regression (SVR)
is an application model of support vector machine (SVM)

on regression problems (Demir and Bruzzone, 2014). As a
classic regression algorithm in machine learning, support vector
regression has been widely used in many fields, such as plant
science, data mining, and biomedicine (Khosravi et al., 2018;
Moazenzadeh et al., 2018; Zhuo et al., 2018; Han et al., 2019;
Mishra and Padhy, 2019).

Random Forest Regression
Random forests produce reliable classifications by using
predictions from a set of decision trees (Breiman, 2001). It is
composed of multiple decision trees, and there is no correlation
between each decision tree. The final output of the model is
jointly determined by each decision tree in the forest. When
dealing with regression problems, random forest uses the mean
value of each decision tree as the final result. Due to the excellent
regression results and the relatively fast processing speed, the use
of random forest regression has also received extensive attention
(Du et al., 2015; Chen et al., 2018; Dou et al., 2019).

The relationship between variables is often non-linear. Thus,
compared with traditional linear regression, machine learning
algorithms may have higher accuracy. There may be a non-
linear relationship between poplar resistance to flooding and
features. Consequently, the four machine learning methods
mentioned above will be used to predict the waterlogging
resistance of poplar.

Model Parameters
Manual tuning is the traditional method of adjusting the
hyperparameters of machine learning models (Yang and Shami,
2020). With the improvement of automatic optimization
methods, grid search (GS), particle swarm optimization (PSO),
genetic algorithm (GA), and other optimization methods were
proposed to find the optimal hyperparameters. to find the optimal
hyperparameters. However, there are still problems such as
complex optimization processes and slow convergence speed.
Based on experience, we have selected the parameters of the
four machine learning methods. The parameter sensitivity and
parameter selection of each method will be analyzed below.

There are many kinds of training functions for the BPR
algorithm, and most of the data sets are very sensitive to
the training function. In the experiment, a variety of training
functions were selected. Compared with other training functions
such as trainlm function (based on Levenberg-Marquardt
algorithm), the trainbr function based on Bayes rule has better
network generalization ability and higher accuracy. Hence, the
trainbr function was finally used in the BPR method. In addition,
previous studies have shown that the number of hidden layer
nodes is a key factor affecting the accuracy of BPR and ELMR
models (Liu Z. T. et al., 2018; Zhang et al., 2018). For the number
of hidden layer nodes, 3, 5, 7, 9, and 11 hidden layer nodes
were used to train the BPR model, 2, 3, 4, 5, and 6 hidden
layer nodes were used to train the ELMR model. The root mean
square error (RMSE) of the training is shown in Table 2. When
the hidden layer nodes of the BPR and ELMR methods were 9
and 5, respectively, the RMSE was considered to be the smallest.
Therefore, the number of hidden layer nodes of BPR was set to 9,
and the number of hidden layer nodes of ELMR was set to 5.
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TABLE 2 | RMSE of models with different Nodes or Mtry.

BPR ELMR RFR

Nodes RMSE Nodes RMSE Mtry RMSE

3 0.5654 2 0.3836 1 0.1940

5 0.4221 3 0.3785 2 0.2654

7 0.3703 4 0.3591 3 0.3210

9 0.3680 5 0.3426 4 0.3558

11 0.3939 6 0.3438 5 0.3982

TABLE 3 | Machine learning model parameters.

Methods Model parameter

BPR Training function: trainbr

Number of input layers: 3

Number of hidden layers: 9

Number of output layers: 1

Transfer function: logsig, purelin (Input-Hidden, Hidden-Output)

net.trainparam.goal: 0.0001

net.trainparam.lr: 0.01

net.trainparam.epochs: 1000

ELMR Training function: elmtrain

Number of input layers: 3

Number of hidden layers: 5

Number of output layers: 1

Activation function: sigmoid

SVR Training function: svmtrain

Model: ε-SVR

Kernel function: RBF

Regularization parameter C: 65

Gamma: 0.001

p: 0.01

RFR Training function: TreeBagger

Number of decision trees: 200

Minimum number of leaves: 1

Fraction of in-bag observations (FBoot): 1

For the SVR method, two SVR models (nu-SVR and
epsilon-SVR) and four kernel functions (linear, polynomial,
sigmoid, and radial basis functions) of the LibSVM toolbox
were selected. Due to the higher precision of the model on
the training set, the epsilon-SVR model (ε-SVR, a model
that minimizes the RMSE) based on the RBF kernel function
was finally selected. The regularization parameter C and
the penalty coefficient gamma were determined by fivefold
cross validation. The minimum number of leaves (Mtry) is
the sensitive parameter of the RFR model, and the value
of Mtry is generally set to 2 (Probst et al., 2018). In the
experiment, we set the value of Mtry to 1, 2, 3, 4, and 5. The
RMSE of the training function is shown in Table 2. When
the value of Mtry was 1, RMSE was considered to be the
smallest. Therefore, the value of Mtry was set to 1. Other
parameters of the machine learning method were set as common
parameters. The specific values of the parameters are shown in
Table 3.

Evaluation of Model Performance
The three evaluation indexes of coefficient of determination
(R2), root mean square error (RMSE) and mean absolute error
(MAE) were used to evaluate the performance of the model. The
corresponding calculation formulas are shown in (6)-(8):

R2
= 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − yi)

2 (6)

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(7)

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (8)

where n is the number of varieties, yi is the actual value, ŷi is the
predicted value, and yi is the mean of the true yi.

RESULTS

Treatment of Outliers and Selection of
Evaluation Index
Three evaluation indicators are used to deal with outliers in the
data. The calculated descriptive statistics are shown in Table 4,
where Max and Min are the maximum and minimum values, and
Med is the median. The results of deleting outliers are shown in
Figure 2.

As shown in Figure 2, the points outside the red dotted
line in the figure are outliers. It can be observed that for all
samples, the defined Zscore roughly ranges from [−2, 2], while
the ranges of Zbio and Zsap are larger than Zscore, and only
Zscore has outliers. In addition, from the definition of the
waterlogging tolerance evaluation index, we know that Zscore not
only considers the biomass but also the change of seedling height,
which can more comprehensively reflect the flood resistance
of poplar. Thus, based on the above viewpoints, Zscore was
finally selected as the waterlogging tolerance evaluation index
in this article.

Screening of Features
Significance Test and Correlation Analysis
According to the significance level of the correlation between
the features and the poplar waterlogging tolerance score Zscores,
6 features were selected from 26 features, and these 6 features
were all established under the condition that the significance level
p = 0.05. We calculated the Pearson correlation coefficient, and

TABLE 4 | Descriptive statistics of the three evaluation indicators.

Methods Min Q1 Med Q3 Max

Zbio −2.409917 −0.748933 −0.095463 0.615642 2.614667

Zsap −1.984857 −0.799594 −0.033385 0.722554 2.419308

Zscore −2.076712 −0.554362 −0.039611 0.466923 2.257776
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FIGURE 2 | Distribution of three evaluation indexes.

the results are shown in Figure 3. Figure 3A is the heat map of
26 features, the blank part is the case of p = 0.05, that is, it is not
significant. Figure 3B is a heat map of the correlation coefficient
that satisfies the condition of p = 0.05, and Figure 3C is the exact
value of Pearson’s correlation coefficient between 6 significant
features. The specific meanings corresponding to the 6 significant
features are shown in Appendix Table A1.

From Figure 3C, it can be found that the correlation
between qN_Fo and H2OS is particularly strong. The correlation
coefficient between them exceeds 0.8. Thus, the feature with
the largest coefficient is selected from these related features,
and the highly related features are excluded. After this
operation, the retained features are Fv, qN_Fo, Fm, H2OS/H2OR,
and RH_S/RH_R.

Before establishing the regression model, univariate regression
prediction was carried out on the features of significance test and
correlation screening, and the result is shown in Figure 4. It can
be observed that the five variables all meet the significance level
of p = 0.05, and there is a considerable proportional relationship
between them. Nevertheless, the results of univariate regression
were general, and the highest coefficient of determination (R2)
is 0.57. For this reason, other methods should be chosen
for regression analysis, such as multiple linear regression and
machine learning regression methods.

It is undeniable that the 5 features of significance testing
and correlation screening may still have multicollinearity. To
implement machine learning modeling more reasonably and
accurately, three methods of hierarchical clustering, Lasso,
and Stepwise regression were adopted for further feature
selection. Before predicting the waterlogging tolerance of
different poplar varieties and further feature screening, the
characteristic parameters and Zscore of each sample were
averaged according to the variety.

Clustering Results
The results of hierarchical clustering are shown in Figure 5.
Figure 5A is the total clustering heat map, Figure 5B is the poplar
varieties clustering, and Figure 5C is the poplar characteristic
clustering.According to the clustering results in Figure 5, we
can divide poplar varieties and features into 3 groups. The
classification of poplar varieties is marked as A, B, and C,
and the classification of characteristic parameters is marked
as F1, F2, and F3.

Results of Lasso and Stepwise Regression
Lasso regression and backward stepwise regression are used
to screen the 5 features (Fv, qN_Fo, Fm, H2OS/H2OR, and
RH_S/RH_R) obtained by significance and correlation. The
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results of the Lasso method are Fv, qN_Fo, and RH_S/RH_R.
However, the screening result of stepwise regression only has
the variable Fv. From the univariate regression analysis results
in Figure 4, we know that the coefficient of determination (R2)

of Fv is 0.57. A single feature used for regression may lack
interpretability and may affect the accuracy of the final model.
In addition, according to the results of hierarchical clustering in
Figure 5, a feature with the largest correlation coefficient was
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selected from each of the three groups (F1, F2, and F3), and the
results obtained are consistent with the Lasso method. Therefore,
combining the results of hierarchical clustering and univariate
analysis, in the final machine learning modeling, we used the
three characteristic parameters of Fv, qN_Fo and RH_S/RH_R.

Regression Results of Machine Learning
Models
The Division of Test Set and Training Set
Before establishing the machine learning regression model, the
poplar varieties were divided into training set and test set
according to the ratio of 4:1 (the training set had 16 varieties, and
the test set was 4 varieties). The four poplar varieties in the test
set were selected from the three groups of A, B, C by stratified
sampling based on the poplar hierarchical clustering results. The
poplar varieties used and their corresponding Zscore and Vtype
are shown in Table 5.

Training Set
Four machine learning regression methods were used to perform
regression prediction on the three screened features (Fv, qN_Fo
and RH_S/RH_R). The results obtained on the training set, and
the corresponding R2, RMSE, and MAE are shown in Figure 6
and Table 6.Figure 6D is a histogram of model evaluation indexes
(R2, RMSE, and MAE) of four machine learning methods on the
training set. The colored columns correspond to the four machine
learning methods of BPR, ELMR, SVR, and RFR, respectively.
From the first subplot of Figure 6D, it can be noticed that on
the training set, the highest R2 of the four machine learning
methods is random forest regression (RFR). Specifically, from
Figure 6B and Table 6, we can observe that the coefficient of
determination (R2) of RFR is 0.8847. Then, the second one is
support vector regression (SVR), the R2 is 0.7027. In contrast, the
performance of BP neural network regression (BPR) and Extreme
learning machine regression (ELMR) methods are relatively poor,
and their R2 are 0.5847 and 0.6401, respectively. In addition,
from Figure 6D, we can get similar results from the performance
of RMSE and MAE. Similarly, from Table 6, we can find that
the RMSE of the RFR method is the smallest with a value of
0.1940, and at the same time, the MAE of RFR is also the smallest,
with a value of 0.1591. Therefore, for the four machine learning
methods, the RFR method has the best regression effect. Then,
the second is the SVR method. Correspondingly, the prediction
effects of ELMR and BPR on the training set are relatively trivial.

Test Set
Similarly, the results of the four machine learning regression
methods on the test set, and the corresponding R2, RMSE and
MAE are shown in Figure 7 and Table 7.

Figure 7D is a histogram of model evaluation indexes (R2,
RMSE, and MAE) of four machine learning methods on the
test set. The colored columns correspond to the four machine
learning methods of BPR, ELMR, SVR, and RFR, respectively.
As shown in Figure 7D, random forest regression (RFR) has the
highest R2 for the four machine learning methods on the test set.
In addition, from Figure 7B and Table 7, we can observe that the
R2 of RFR is 0.8351. Then, the second one is SVR, the R2 is 0.6864.

TABLE 5 | Main information of poplar varieties.

Samples Z score V type

Canadensis −0.31136376 A

DD102-4 −0.659417544 A

Flevo −0.149084082 A

I-214 −1.018704692 A

I-63 0.244020869 A

LH04-17 0.348729466 A

Ningshanica −0.843303666 A

Danhong 0.714574083 B

Juba 0.528127585 B

LH04-13 0.845992953 B

I-69 0.356889463 C

I-72 −0.12622992 C

LS68 −0.662543236 C

LS81 0.717527146 C

Lushan 0.282405203 C

NL895 −0.227444975 C

I-45-51 −0.702652584 A

Triplo −0.561219766 A

2L2025 0.570264018 B

Raspalje −0.103562886 C

The third and fourth are ELMR and BPR, their performance is
relatively poor, and the corresponding R2 are 0.6207 and 0.5703,
respectively. Besides, from Figure 7D and Table 7, on the test
set, the smallest root mean square error (RMSE) is RFR, followed
by SVR and other methods. Similar results appear on the mean
absolute error (MAE). Consequently, our results show that not all
machine learning algorithms can show high accuracy. The best
performance on the test set is RFR, followed by SVR. Then, the
third and fourth are ELMR and BPR. This result is consistent with
the training set.

In summary, according to the results of the training set
and the test set, for the flood resistance of poplar, the best
prediction effect of the four machine learning methods is random
forest regression (RFR), and the second one is support vector
regression (SVR). By contrast, the performance effects of BP
neural network regression (BPR) and Extreme learning machine
regression (ELMR) methods are poor. The prediction accuracy
from high to low is RFR > SVR > ELMR > BPR. Hence,
when predicting the flood resistance of poplar, random forest
regression (RFR) and support vector regression (SVR) can be
used first, and RFR can be given more consideration.

DISCUSSION

Machine learning is a field of artificial intelligence (AI).
Compared with traditional statistical models, machine learning
has higher performance, and at the same time, its complexity is
relatively lower (Mekanik et al., 2013). In fact, before establishing
the regression model of machine learning, we performed multiple
linear regression (MLR) on the five variables (Fv, qN_Fo, Fm,
H2OS/H2OR, and RH_S/RH_R) selected by the significance
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TABLE 6 | The R2, RMSE and MAE of the training set.

Methods BPR ELMR SVR RFR

R2 0.5847 0.6401 0.7027 0.8847

RMSE 0.3680 0.3426 0.3113 0.1940

MAE 0.3019 0.2741 0.1920 0.1591

testing and correlation analysis. However, the results show that
the coefficients of determination (R2) of MLR on the training set

and test set are 0.5616 and 0.5172, respectively. The regression
results are shown in Appendix Figure A1. Many studies have
compared machine learning models with traditional statistical
models (Aertsen et al., 2010; Rezaeianzadeh et al., 2014; Idowu
et al., 2016; Johnson et al., 2016; Wang and Srinivasan, 2017). In
most cases, machine learning models are better than traditional
statistical models, such as linear regression. The model and the
variables are not linearly related in most situations, and the
variables involved are also multivariate. Therefore, more and
more fields have begun to use machine learning algorithms. Even
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so, while machine learning has many advantages, it also has
limitations. For example, many machine learning models lack
interpretability and are prone to overfitting. For this reason, these
problems still need to be considered in practical applications.

The risk of resisting flood disasters can be mainly divided into
two aspects. One is to directly predict flood disasters in the risk
areas, and take preventive measures before the disaster occurs,

such as transferring personnel and valuable finances. Generally
speaking, the key variables that need to be considered in flood
forecasting include 25 factors such as water level, river flood,
soil moisture, and rainfall (Maier et al., 2010). Among these
key variables affecting flood forecasting, rainfall and the spatial
examination of the hydrologic cycle have the most significant
effects (Nourani and Komasi, 2013). Although many studies
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TABLE 7 | The R2, RMSE and MAE of the test set.

Methods BPR ELMR SVR RFR

R2 0.5703 0.6207 0.6864 0.8351

RMSE 0.3254 0.3057 0.2780 0.2016

MAE 0.2806 0.2456 0.2032 0.1782

have predicted the risk of flooded areas (Sampson et al., 2015;
Tehrany et al., 2015; Wang et al., 2015; Darabi et al., 2019),
this method still cannot essentially eliminate the impact of flood
disasters. At the same time, it is relatively difficult to predict
flood disasters. Thus, people have to consider another method to
resist flood disasters. Another way to resist the impact of flood
disasters is mainly through building dams and afforestation. The
key to afforestation is to understand the waterlogging resistance
mechanism of plants. The research on the waterlogging resistance
mechanism of plants mainly focuses on exploring the ways for
plants to resist flood stress (Wang et al., 2013, 2021; Najeeb
et al., 2015; Duy et al., 2016). These studies have analyzed the
waterlogging resistance mechanism from the molecular level
of proteins and metal ions. However, there are few studies on
waterlogging resistance prediction, and a complete system is
still lacking. Xie and Shen (2021) used the SVR method in
machine learning to predict the waterlogging resistance of poplar.
However, there are still some limitations in their studies, such as
chlorophyll fluorescence features that have not been considered.
Compared with the previous research, we considered more
accurate feature parameters and more kinds of machine learning
methods. Additionally, we improved the prediction system of
poplar resistance to waterlogging and added two quantitative
definitions of waterlogging resistance evaluation indexes, which
has made considerable improvements.

This study used machine learning methods to predict the flood
resistance of poplar. First, three indicators of flood resistance
were defined and evaluated. Then, the data was processed, and
feature selection and modeling evaluation were implemented.
The whole process is intuitive and specific, which has perfected
the research system of waterlogging tolerance prediction to a
considerable extent, and at the same time, it has also promoted
the research on the mechanism of waterlogging tolerance. This
study helps researchers to screen out poplar varieties with
strong waterlogging tolerance during the poplar sapling period.
It can further cultivate high-quality poplar saplings to achieve
the purpose of precise flood resistance. The results of the
experiment show that the machine learning algorithm shows
high accuracy in predicting the flood resistance of poplar,
especially the random forest regression (RFR) and support vector
regression (SVR) methods. The final result has certain practical
value. In practical applications, these two algorithms can be
used first. However, it must be mentioned that although 160
poplar samples were used throughout the experiment, only 20
poplar varieties were actually used for regression analysis. In
addition, in the regression analysis, 80 poplar samples from
the experimental group were used and averaged according to
varieties. Since the waterlogging tolerance of different individuals
may be quite different, the final result may deviate from the

actual situation. But within the allowable range of error, our
research mainly provides a way of predicting waterlogging
tolerance and improving the system for predicting waterlogging
tolerance. Future research can consider more poplar varieties
to improve the universality and stability of the method. In
addition, the quantitative relationship of poplar varieties’ impact
on flood disasters can be considered. In a word, this research
has great theoretical value and practical significance, and the
proposed method can meet the actual engineering needs in a
considerable range.

CONCLUSION

To predict the flood resistance of poplar, the author first analyzed
the differences between the three evaluation indexes of flood
resistance. Then, the final evaluation index of waterlogging
tolerance was determined, and outliers were eliminated. For the
selection of feature parameters, the first screening was carried
out according to the significance test and correlation analysis,
and then the three methods of hierarchical clustering, Lasso,
and stepwise regression were adopted to screen the features
for the second time. The selected features are interpretable and
promote the understanding of poplar’s waterlogging resistance
mechanism. Finally, four machine learning methods were used
to predict and evaluate the flood resistance of poplar. The
results show that the random forest regression and support
vector regression methods are more precise. Nevertheless, it
must be pointed out that there are only four groups of
experiments and controls for each variety. Due to sample
differences and randomness, the final result may deviate
from the actual situation. Future research can consider more
poplar species and sample sizes to improve the versatility and
stability of the method.

This research has perfected the prediction system of plant
resistance to waterlogging, and has important value for accurate
flood resistance and scientific seedling selection. Meanwhile, it
has also made a great contribution to a better understanding of
the mechanism of waterlogging tolerance. The analysis process of
this paper is clear and repeatable. When considering the features
related to the flood resistance of poplar, the photosynthesis
features, chlorophyll fluorescence features, and environmental
features are comprehensively considered. After data processing,
feature selection, and other operations, the machine learning
models were used to predict the flood resistance of poplar. Finally,
the regression results show that the random forest regression
(RFR) and support vector regression (SVR) methods have high
accuracy. On the test set, the coefficients of determination (R2)
of the two methods are 0.8351 and 0.6864, respectively, the
root mean square errors (RMSE) are 0.2016 and 0.2780, and
the mean absolute errors (MAE) are 0.1782 and 0.2031. Based
on the above conclusions, our research shows that combining
photosynthesis, chlorophyll fluorescence, and environmental
variables before flooding experiments, modeling and prediction
of machine learning methods against waterlogging can achieve
high accuracy, which is suitable for actual engineering problems.
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APPENDIX A
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FIGURE A1 | Results of multiple linear regression.
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TABLE A1 | The specific meanings and correlation coefficients of 26 features.

Features Specific meaning Unit

AHs/Cs Ball-Berry parameter Dimensionless

Cond Conductance to H2O mol H2O m−2 s−1

CndCO2 Total conductance to CO2 mol CO2 m−2 s−1

CO2S CO2 concentration on Sample cell µmol CO2 mol−1

CO2S/CO2R CO2 concentration on Sample cell/CO2 concentration on Reference cell Dimensionless

C2sfc CO2 concentration on Leaf Surface µmol CO2 mol−1

Ci_Pa Intercellular CO2 partial pressure Pa

Ci/Ca Intercellular CO2/Ambient CO2 Dimensionless

CndTotal Total conductance to water vapor mol H2O m−2 s−1

CTleaf Computed leaf temperature ◦C

Fo Minimal fluorescence (dark) bit

Fm Maximal fluorescence (dark) bit

Fv Variable fluorescence bit

H2OS H2O concentration on Sample cell mmol H2O mol−1

H2OS/H2OR H2O concentration on Sample cell/H2O concentration on Reference cell Dimensionless

H2O_i Intercellular H2O concentration mmol H2O mol−1

H2Odiff Difference between Intercellular H2O and Sample cell H2O mmol H2O mol−1

Photo Photosynthetic rate µmol CO2 m−2 s−1

PARabs Absorbed Photosynthetically active radiation µmol m−2 s−1

PhiCO2 Quantum yield corresponding to CO2 assimilation rate Dimensionless

qN_Fo Non-photochemical quenching (Calculated by Fo) Dimensionless

RH_S Relative humidity in the sample cell %

RH_S/RH_R Relative humidity on Sample cell/Relative humidity on Reference cell Dimensionless

SVTleaf Saturated vapor pressure calculated by leaf temperature Pa

Trans Transpiration rate mol H2O m−2 s−1

VpdL Vapor pressure deficit based on Leaf temperature kPa
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Crop pests are a major agricultural problem worldwide because the severity and extent
of their occurrence threaten crop yield. However, traditional pest image segmentation
methods are limited, ineffective and time-consuming, which causes difficulty in their
promotion and application. Deep learning methods have become the main methods to
address the technical challenges related to pest recognition. We propose an improved
deep convolution neural network to better recognize crop pests in a real agricultural
environment. The proposed network includes parallel attention mechanism module and
residual blocks, and it has significant advantages in terms of accuracy and real-time
performance compared with other models. Extensive comparative experiment results
show that the proposed model achieves up to 98.17% accuracy for crop pest images.
Moreover, the proposed method also achieves a better performance on the other public
dataset. This study has the potential to be applied in real-world applications and further
motivate research on pest recognition.

Keywords: crop, pest recognition, deep learning, convolution neural network, attention mechanism

INTRODUCTION

Agriculture is an important basic industry worldwide, and pests can cause huge losses to crop
production in every country (Santangelo, 2018). According to research, nearly half of global crop
production will be impacted to varying degrees due to pests every year, which seriously affects the
regional economy and people’s daily lives (King, 2017). Pest detection has become an important task
for the development of agricultural precision because pests have a wide distribution, cause great
damage, and reproduce quickly (Wang et al., 2020). Traditional pest detection methods mainly
include manual inspection and light trapping, but these methods need manual intervention and
experience problems related to insufficient automation and intelligence, such as a large workload,
low efficiency, and poor real-time performance (Lim et al., 2018). Due to the diversity of pests,
manual identification relies on a large amount of expert knowledge, and it is difficult to obtain
accurate and timely information on the number and species of pests in orchards, so it is difficult
to widely implement (Li Y. et al., 2020). The automatic recognition of pests can provide a better
growth environment for crops and increase the level of agricultural production.
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With the rapid development of computer vision and pattern
recognition technology, machine learning and deep learning
have become the main research directions of agricultural pest
detection (Albanese et al., 2021; Liu and Wang, 2021). For
example, Fina et al. (2013) proposed a pest identification
method using k-means clustering segmentation, but it takes
a long time to label features manually in the case of a large
dataset. Zhong et al. (2018) used a Prewitt operator and
Canny edge detection algorithms to extract the morphological
features of pests. Then, a support vector machine (SVM) was
used to automatically recognize whiteflies and thrips, and the
experimental results showed that the recognition rate was
nearly 90%. Liu T. et al. (2016) proposed a method for the
detection of wheat aphids based on genetic algorithms, which
can accurately identify and count in the complex environment
of the field. Yaakob and Jain (2012) used six invariant matrices
to extract the shape features of pests, then combined the
ARTMAP neural network algorithm and achieved an 85%
recognition accuracy in a specific background. Barbedo (2014)
developed a soybean whitefly monitoring system based on
digital image processing, which can realize the automatic
identification and counting of whiteflies and greatly improves
work efficiency compared with manual inspection. Although
the traditional machine learning recognition algorithm has
achieved better results when the number of crop pest species
is small, when there are many kinds of pests and the
input parameters are limited, the machine learning method
has difficulty effectively extracting key feature information,
resulting in poor performance of the model robustness
(Roy and Bhaduri, 2021).

Deep learning is an autonomous machine learning method
that uses multilevel neural networks, and computers can
automatically extract key features from a large number
of images (Brahimi et al., 2017). Saleh et al. (2021) has
demonstrated convolutional neural network (CNN) is a high
performance deep learning network, and the CNN has the
best performance compared to multiple models (DT, RF, SVM,
NB, LR, KNN, RNN, and LSTM). CNN abandons complex
preprocessing and feature extraction operations, and uses an
end-to-end architecture that effectively combines global and
local features and greatly simplify the recognition process.
Thus, CNNs have been widely used in crop information
recognition for real agricultural environments, and the automatic
recognition of pests combined with CNNs is conducive to
improving the accuracy of detection and reducing labor costs
(Cheng et al., 2017).

Many studies have been carried out on the use of deep
learning technology for crop key informations detection to
provide accurate information for subsequent spray management,
effectively improving the survival rate and yield of vegetables,
fruits and field crops. A model of classification of tomato leaf
diseases and pests with 89% accuracy was designed (Shijie et al.,
2017), but this method can be applied in simple background
pest classification and is impossible to integrate into practical
applications. Chen et al. (2019) improved the residual network
structure, added a high-resolution convolutional layer and the
corresponding number of channels, and the accuracy of pest

identification reached 91.5%. Wang et al. (2020) fused pest
context information into a CNN, which improved the accuracy
of pest detection and recognition in complex environments. Liu
et al. (2019) proposed an effective multiscale data enhancement
method for pest images. This method combines different
scale image enhancements into the recognition model, which
solves the problem that the traditional single image scale
algorithm cannot be applied to the detection and recognition
of small target pests. A method using CNN architecture for
fruit fly recognition was proposed and achieved an accuracy
of 95.68% (Leonardo et al., 2018). Generative Adversarial
Networks (GAN) were applied to extend the dataset, and the
extended dataset was fed into a pre-trained CNN model, which
achieved an accuracy of 92% for plant disease classification
(Gandhi et al., 2018). Dawei et al. (2019) designed a diagnostic
system based on transfer learning for pest detection, and
this approach to train and test 10 types of pests and
achieves an average accuracy of 93.84%.Chen et al. (2021)
proposed to classify tea pests by fine-tuning the VGG-16
network, and the results showed that the classification has
accuracy up to 97.75%.

In recent years, due to the characteristic of extracting
discriminative features of the area of interest, the attention
mechanism has begun to be widely used in machine translation,
generative adversarial and so on (Dong et al., 2019; Xiang et al.,
2020). Researchers used the attention mechanism to quickly scan
a global image to obtain the region of interest. However, it is
still in the exploratory stage in the field of crop pest recognition.
Liu et al. (2019) proposed a pest identification method based on
CNN technology. This method combined the channel attention
mechanism into the CNN. Through experiments on 16 types of
field pests, the average accuracy reached 75.46%, and the accuracy
was significantly improved. Guo et al. (2020) designed a self-
attention mechanism and incorporated it into the CNN structure,
which achieved the optimal F1-scores of 93.21% for 11 types
of crop diseases and pests. Zhang and Liu (2021) proposed a
method based on DenseNet and an attention mechanism, and
the model could identify 7 types of navel orange diseases and
pests on the test set with 96.90% accuracy. The results in this
study are compared with on other studies as summarized in
Table 1.

By analyzing current work, deep learning methods have been
proven to significantly improve pest recognition performance,
providing a reference for the recognition of crop pests. However,
these studies mostly focus on the improvement and optimization
of the diseases and pests recognition model. On the application
of deep learning models, Alsamhi et al. (2021) combination of
neural networks and IoT devices plays a vital role in improving
feedback control efficiency with automatic operation and
reductions of fertilizer and pesticides consumption. Agricultural
UAVs are a modern agricultural technology with remarkable
efficiency in quickly identifying and locating areas of outbreaks
of pests and diseases through aerial imaging. And combining
UAVs with high-performance IoT sensors enables efficient
tasks such as remote crop growth monitoring, soil moisture
monitoring, and water quality monitoring (Almalki et al., 2021).
Meanwhile, UGVs have also been widely used for crop planting
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TABLE 1 | Summary of the comparison of the existing work.

Paper Object Model Types Accuracy

Shijie et al. (2017) Diseases and
pests

VGG-16 + Transfer
learning

9 89.00%

Chen et al. (2019) Pests ResNet + Block-cg 38 91.50%

Wang et al. (2020) Pests ResNet-50 3 72.30%

Liu et al. (2019) Pests CNN + Attention 16 75.46%

Leonardo et al. (2018) Pests SVM + VGG-16 10 95.68%

Dawei et al. (2019) Pests AlexNet + Transfer
learning

10 93.84%

Chen et al. (2021) Pests VGGNet-16 14 97.75%

Guo et al. (2020) Diseases and
pests

CNN + Self-
attention

11 92.78%

Zhang and Liu (2021) Diseases and
pests

DenseNet + Attention 7 96.90%

Our model Pests ResNet-
50 + Parallel-
attention

10 98.17%

monitoring, and by deploying a crop information detection
model on the controller, it has been achieved soil moisture,
pH, fertility monitoring and climate conditions monitoring, crop
plant diseases and insect pests monitoring, growth and yield
monitoring, etc. (Jin et al., 2021).

In the recognition task, pest pixels only occupy a small part
of the whole image, and the attention mechanism can improve
the learning of important feature channels of pests. The proposed
model added a parallel attention module with a CNN structure
to automatically extract pest feature information from a real
agricultural environment. Feature extraction is focused on the
pest feature channel, and invalid feature channel information
is eliminated. Thus, the proposed model in this paper can
automatically accurately recognize ten types of crop pests.

The main contributions of this paper are summarized as
follows:

(1) To meet the recognition requirements of crop pests, this
paper collects 10 types of pest images in a real agricultural
environment. Thus, data enhancement improves the
robustness and accuracy of the model performance in
the detection task.

(2) This paper proposes an improved CNN model for the
recognition of crop pests. Based on the original residual
structure, spatial attention is combined with channel
attention to obtain a parallel attention mechanism module.
The parallel attention module is deeply integrated into the
ResNet-50 network model.

(3) The attention module can establish a multidimensional
dependency relationship of the extracted crop pest feature
map, is lightweight and can be easily added into
the network. Using this method, we achieved highly
accurate recognition of crop pests in complex agricultural
environments.

This paper is divided into five sections. The model
improvement methods are shown in section “The Proposed
Approach.” Section “Experiment” shows the dataset collection

and experiment setup. The performance of the deep learning
method is discussed in section “Experimental Results and
Discussion,” and conclusions and future work are described in
section “Conclusion.”

THE PROPOSED APPROACH

Spatial/Channelwise Attention
Mechanism
Spatial Attention Mechanism
Researchers have proposed a variety of attention mechanisms and
applied them to the training tasks of CNN models. At the cost
of smaller calculations and parameters, the network performance
can be greatly improved (Fukui et al., 2019). The attention
mechanism mainly includes the channel attention mechanism
and spatial attention mechanism. The spatial attention mainly
extracts important regions in the feature and judges the
importance of the corresponding feature by the dependence
between different positions in the feature. The corresponding
weight parameters are assigned to improve the feature expression
of the key area. Therefore, spatial attention enables the network
to better evaluate the effect of each feature position during the
classification feature extraction process and further enhances the
modeling ability of the network.

As shown in Figure 1, average pooling and maximum pooling
operations are performed on the input feature map F, and
information is gathered separately into two different feature maps
and used convolutional layers are applied to generate spatial
attention maps Ms. Then, feature fusion is realized through a
7× 7 convolution operation, and the sigmoid activation function
is used to generate a weight map and superimpose it on the
original input feature map. Finally, the features of the target pixel
area are enhanced.

Channel Attention Mechanism
Channel attention mainly performs correlation modeling on
the feature maps of different channels, adaptively obtains the
importance of each feature channel through back-propagation
parameter learning, and assigns different weight coefficients
to each channel.

SENet is one of the classic channel attention modules,
as shown in Figure 2. Hu et al. (2018) mentioned it in a
CVPR ImageNet Workshop speech. The weights of different
channels are trained through the cost function, and the weight
coefficients of each feature channel are automatically obtained.
Then, according to the size of the weight coefficient of each
feature channel, the effective feature channel is enhanced, and the
invalid feature channel is suppressed.

Parallel Attention Mechanism Design
Based on pest recognition, we know that features from
the spatial attention module are highlighted in pest regions
from the perspective of spatial position, while features from
the channelwise attention module are highlighted from the
perspective of channels, which carry more important information
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FIGURE 1 | The structure of the spatial attention mechanism.

FIGURE 2 | The structure of the channel attention mechanism.

at the channel level. It is necessary to combine multi-
attention features together to obtain enhanced attention
features. Therefore, this paper proposed a parallel attention
mechanism, namely, PCSA, that effectively combines the spatial
attention module and the channel attention module in series
as that used for pest recognition. In Figure 3, the PCSA
consists of three parts: channel attention, spatial attention
and feature map fusion. It can be directly applied to existing
network architectures.

(1) The channel attention mainly redistributes the channel
weights in the feature map through one-dimensional
convolution, increases the weight of pest-related channels
and reduces the weight of the remaining channels. First, the
global average pooling calculation is performed on the feature
map with input size C × H ×W through the squeeze operation
(Fsq) to obtain a 1 × 1 × C feature vector and it is input into the
two fully connected layers. The ReLU activation function is used
between the two fully connected layers, generated feature maps
are first downscaled by FC-1 and then upscaled by FC-2, and the

feature channel dimensions of the input and output are the same.
The squeeze process can be expressed as follows:

Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j)

Where uc(i,j) is the element in row i and column j of the input
data. Then, the input feature map F generates a 1 × 1 × C
global feature map. In the excitation operation (Fex), the sigmoid
activation function is used to calculate the weight of each feature
channel, which is the core of the entire channel attention module.
These weights are allocated to the input feature maps. The
excitation process can be expressed as follows:

Fex (z,W) = σ
(
g (z,W)

)
= σ (W2σ (W1z))

Where σ is the ReLU function, z is the result of the compression
process. The parameter W1 reduces the dimension of channels to
1/r of the original in the FC-1, restore the dimension of channels

FIGURE 3 | The structure of the parallel attention mechanism.

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 13 | Article 83957229

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-839572 February 15, 2022 Time: 15:41 # 5

Zhao et al. CNN-Based Crop Pest Recognition

to the original dimension of channels with parameter W2 in the
FC-2, and W1 and W2 are inverse relationships. W1∈R

C
r
∗C and

W2∈RC∗ C
r are the downgrading and upgrading parameters of

the FC-1 and FC-2, r is the scaling parameter to balance model
performance and computational complexity. Finally, the output
feature channel weight vector is multiplied by the original input
feature map through the scale operation (Fscale) to complete the
original feature calibration in the channel dimension. Therefore,
the extracted features have stronger directivity and improved
classification performance. The scale process can be expressed as
follows:

Fscale (uc, sc) = uc � sc

Where Fscale(uc, sc) refers to the channelwise multiplication
between the scalar sc and the feature map uc∈RH×W .

(2) Spatial attention performs average pooling and maximum
pooling operations on the feature map F in the channel
dimension and generates two single-channel feature maps Fs

avg
and Fs

max. Then, the Fs
avg and Fs

max feature maps are combined
to generate a weight map M, and the feature map F is weighted
by the weight map M to generate a feature map P. Finally, in
the feature map P, the areas related to the pests are given higher
weights, while the other areas have lower weights. The calculation
process of the spatial attention module can be expressed as
follows:

Ms =
([

Avgpool (F)⊗ maxpool (F)
])
= σ

([
Fs

avg ⊗ Fs
max

])
Where σ is the ReLU function, s is the 2D feature maps and
is the dot product of position data corresponding to Fs

avg and
Fs

max feature maps.
(3) The feature map Q is dot-producted with the feature

map P and the feature map G is obtained using the ReLu
activation function. The feature map G combines the weight
distribution of the channel dimension and the weight distribution
of the spatial dimension, thereby obtaining complementary key
features, which can highlight the pest feature area and suppress
various interferences, so that the model can identify pests
more accurately.

Crop Pest Recognition Model of
ResNet-50 Fused to PSCA
Feature extraction is the key part of deep learning models, and the
convolutional layer of the CNN has powerful feature extraction
capabilities. Recently, AlexNet, VGGNet and GoogLeNet have
been widely used in face recognition, disease diagnosis, text
classification and other tasks and have achieved good results
(Ballester and Araujo, 2016). However, these CNNs increase the
feature extraction ability by adding to the number of network
layers, which will increase the number of model parameters and
the computational cost (Tang et al., 2020b). More seriously, it will
cause the problems of network redundancy, gradient explosion
and disappearance.

The residual network proposed by He et al. (2016) won
the championship in the 2015 ImageNet large-scale visual
recognition competition. The residual block in the model can
avoid the problem of network degradation caused by the

deepening of the number of network layers. Compared with
AlexNet, VGGNet, and GoogLeNet, ResNet has less computation
and higher performance. Compared with ResNet-101 and
ResNet-18, ResNet-50 has the advantages of higher accuracy,
fewer parameters and faster speed (Li X. et al., 2020). Thus, this
study chose ResNet-50 as the feature extraction network.

In Figure 4, identity mapping uses the jump connection
method to directly add feature X that the network originally
wants to learn from the shortcut branch and feature F(X)
learned from the weighted layer through the ReLU activation
function. The bottleneck structure in the ResNet network can
effectively reduce the network parameters and computational
complexity. The bottleneck structure is composed of two 1 × 1
convolutional layers and one 3× 3 convolutional layer. The input
feature vector is reduced from 256 dimensions to 64 dimensions
through a 1 × 1 convolution, a 3 × 3 convolutional layer is
used to learn features, and the feature vector is restored to
256 dimensions through a 1 × 1 convolutional layer. Finally,
the identity map and output are added through the ReLU
activation function. In this paper, a PCSA is added to the original
model structure of ResNet-50 to obtain the ResNet-50-PCSA
model. The network architectures of the improved ResNet-50 are
depicted in Figure 5.

The model mainly includes four stage processes, and each
stage is composed of a residual module. The proposed model
embeds the PCSA module after the residual module and
constitutes 4 bottleneck-PCSA modules, the numbers of which
are 3, 6, 6, and 3. The size of the convolution kernels of
bottleneck-PCSA is the same. The main difference between
models is the number of convolution kernels and the output
dimensions of the fully connected layer in the PCSA module.
The crop pest images are input into the ResNet-50-PCSA
network structure, first through the convolutional layer, BN
layer, activation layer and max pool. Then, the pest feature
map was obtained through 4 bottleneck-PCSA modules. Finally,
the obtained feature map is calculated by AVG pooling,
and the number of output feature layers is changed from
multidimensional to one-dimensional through the flattened
layer and output through the fully connected layer. When
deepening the number of network layers, if the internal features
of the network have reached the optimal level in a certain
layer, the subsequent superimposed network layers will not
change the features.

The above is the complete structure and operation process of
the ResNet-50-PCSA model. The PCSA subnetwork structure is
embedded in ResNet-50. The combination of the feature channel
recalibration strategy and residual network can effectively
improve network performance and thus does not need to greatly
increase the computational cost. Through feature refinement, the
learning ability of complex pest features is enhanced.

EXPERIMENT

Dataset Acquisition
The development of deep learning in recent years has proven
that the detection and classification tasks of target objects can
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FIGURE 4 | The residual block (left) and the bottleneck structure (right).

FIGURE 5 | The structure of the crop pest recognition model.

be effectively achieved under high-quality and large-size datasets
(Liu W. et al., 2016). For crop pests, their active time and
distribution law are related to various environmental factors,

such as climate and season, and it is difficult to obtain large
images. Therefore, it is not feasible to obtain a large number of
pest images through the process of collecting and shooting. This
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paper makes use of abundant internet resources to compensate
for this deficiency and enriches the content of image data by
open-source dataset and web crawler methods.

In this paper, we selected 10 common classes of crop
pests, namely, Aphid, Cabbage butterfly, Drosophila, Gryllotalpa,
Leafhopper, Locust, Snail, Stinkbug, Weevil, and Whitefly, as
shown in Figure 6. Because these pests are prone to exist all over
the world, they reproduce very quickly and spread widely (Dawei
et al., 2019). They mainly feed on the leaves, stems and fruits
of crops. If they lay eggs on crops, they are difficult to handle
and will cause huge losses in crop yields. Therefore, effective
detection and timely control of these 10 types of pests have
great significance.

Most of the images in the pest dataset in this paper are
collected from the internet, and a few are from the open-
source dataset. The web crawler keywords for each type of
pest were divided into Chinese and English. Multithreaded
collection of the images of each type of pest is completed
using three major internet search engines: Google, Bing and
Baidu. The open source dataset mainly comes from Kaggle1

and Forestry2. Although the key information is defined in the
collection process, there are still many non-pest images and
redundant data. Several agricultural technology experts judged
and classified the collected images and removed incorrect pest
types and poor-quality images. The size of all images was
unified by means of image normalization (224 × 224), and
the format was JPG. Overall, there were more than 400 images
of each type of pest, and the number of snails and locusts
exceeded 800 images.

Data Augmentation
Data augmentation is an important data processing technology
in deep learning. It can effectively increase the amount and
diversity of training data and improve the generalization ability
and robustness of the model (Shorten and Khoshgoftaar, 2019).
Data enhancement is divided into online enhancement and
offline enhancement; online enhancement is suitable for large
datasets, and after the model obtains batch data, it can be
enhanced by rotation, translation and folding (Tang et al., 2020a).
Offline enhancement directly processes images and is suitable for
small datasets. Therefore, this paper used offline augmentation
techniques and enhanced images in combination with OpenCV
under the PyTorch framework.

a) Spin: Randomly rotating the picture by 0◦, 90◦, 180◦, and
270◦ will not change the relative position of the pest pixels,
simulating the randomness of the shooting angle under
natural conditions.

b) Zoom: The images are reduced according to a certain ratio,
which helps to identify pests on multiple scales. For the
scaled image, the resolution of the image is expanded to
224× 224 pixels by filling in fixed color pixels.

c) Gaussian noise is added to the image to simulate the
interference information in the natural environment.

1https://www.kaggle.com/
2https://www.forestryimages.org/index.cfm

d) Color jitter: Changed the image brightness and contrast to
simulate the image difference generated by the change of
light intensity in the environment of crop growing. The
color jitter can be expressed as follows:

g
(
i, j
)
= b∗ f

(
i, j
)
+ a; a ∈ [a1, a2]

where a is the image contrast, b is the image brightness, g(i,j)
is the output image, f(i,j) is the input image, a1 is the lowest
brightness factor in the field and a2 is the highest brightness
factor in the field.

Samples of the data enhancement is shown in Figure 7. By
using these image offline augmentation techniques, the number
of datasets is expanded four times. The total number of original
images was 5,245; after data augmentation, the number of images
increased to 26,225. The training set and validation set are divided
into 8:2 ratios, and detailed information on the dataset are
shown in Table 2. For the model testing, we collected 150 real
images of each pest and formed a testset. In the end, the testset
contained 1,500 images.

Experiment Setup
In this study, the weight parameters of the pretrained ResNet-
50 model on ImageNet are used for transfer learning to
accelerate the convergence speed of the model. The collected
dataset contains 10 kinds of pests, so the output layer must be
changed from 1,000 (ImageNet pretrained ResNet-50) to 10. The
operating platform for this experiment is a Dell T7920 graphics
workstation, the operating environment is Windows 10, the CPU
is Intel Xeon Gold 6248R, and the GPU is NVIDIA Quadro RTX
5000. The training environment is created by Anaconda3, and
the environment configuration is Python 3.6 and PyTorch 1.8.0,
torchvision 0.7.0 artificial neural network library. The model
parameters were selected as follows: the initial learning rate set
to 0.001, a weight decay of 0.00001 and momentum factor is
0.1. Set 100 epochs, after 2 epochs, the model performance does
not improve and the learning rate will decrease after that. At
the same time, the CUDA 10.2 deep neural network acceleration
library is used. The experiment uses a stochastic gradient descent
with momentum (SGDM), updates the parameters and optimizes
the training process. The parameter update can be expressed as
follows:

θi+1 = θi − α1LR (θi)+m (θi − θi−1)

where i is the number of iterations, θ is the network parameters,
1LR (θi) is the loss function gradient, m is the momentum
and α is the learning rate. Meanwhile, before the training and
validation of each epoch, the data was randomly shuffled. After
each training, the validation set is tested, and the model is saved.
Finally, the model with the highest accuracy is selected.

Model Evaluation Index
When evaluating the performance of a model, Precision (P),
Recall (R), F1 Score (F1) and Detection speed (Ta) are usually
selected as evaluation indices.

P =
TP

TP + FP
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FIGURE 6 | Sample images for 10 common pest classes.

FIGURE 7 | Samples for data augmentation. (A) Original image, (B) spin, (C) zoom, (D) Gaussian noise, and (E) color jitter.

TABLE 2 | Crop pest dataset detail information.

Pest Class Origin
images

Augmentation
images

Trainset Validation set

Aphid 0 415 2,075 1,660 415

Cabbage butterfly 1 430 2,150 1,720 430

Drosophila 2 440 2,200 1,760 440

Gryllotalpa 3 485 2,425 1,940 485

Leafhopper 4 455 2,275 1,820 455

Locust 5 820 4,100 3,280 820

Snail 6 850 4,250 3,400 850

Stinkbug 7 420 2,100 1,680 420

Weevil 8 480 2,400 1,920 480

Whitefly 9 450 2,250 1,800 450

Total 5,245 26,225 20,980 5,245

R =
TP

TP + FN

F1 = 2×
P × R
P + R

Where TP (true positive) is the number of positive
samples predicted as positive samples, FP (false-positive)
is the number of negative samples considered to be
positive samples, and FN (false negative) is the number
of positive samples considered to be negative samples.

Ta =
T
N

Where T is the total detection time for the
validation set, and N is the total number for
the validation set.

FIGURE 8 | The training accuracy curves.
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EXPERIMENTAL RESULTS AND
DISCUSSION

Comparison of the Performance of
Various Models
To evaluate the performance, the proposed network is compared
with several famous CNN networks, such as VGG-19, AlexNet,
ResNet-101 and GoogLeNet. These models were configured
to use the same optimizer (SGDM), classifier (softmax) and
learning rate (0.0001).

TABLE 3 | The evaluation results.

Model Input P R F1 Ta (ms) Accuracy
(%)

Size (Mb)

VGG-19 224 0.9137 0.9130 0.9133 41.81 92.62 482

AlexNet 224 0.8905 0.8891 0.8898 33.37 88.96 227

GoogLeNet 224 0.9331 0.9324 0.9327 33.64 93.35 45

ResNet-101 224 0.9537 0.9548 0.9542 39.05 94.48 167

ResNet-50-
PCSA

224 0.9798 0.9816 0.9807 32.29 98.17 91

TABLE 4 | The results of ResNet-50-PCSA compared with ResNet-50.

Model Input P R F1 Ta (ms) Accuracy
(%)

Size (Mb)

ResNet-50 224 0.9386 0.9391 0.9388 31.36 92.41 78

ResNet-50-
PCSA

224 0.9798 0.9816 0.9807 32.29 98.17 91

The comparison of various CNN model training curves is
shown in Figure 8. The training iteration epochs are plotted
on the x-axis, and the accuracy is plotted on the y-axis.
The ResNet-50-PCSA model proposed in this paper has the
highest accuracy, and except for the AlexNet model, the
accuracy of the other models exceeds 90% because AlexNet
is not deep enough compared to other models, and the
amount of feature information extracted by the network is less.
Meanwhile, the ResNet-50-PCSA model converges fastest, and
the model begins to converge after approximately 45 epochs.

TABLE 5 | The results of PCSA compared with SENet and CBAM.

Model Input P R F1 Ta (ms) Accuracy
(%)

Size (Mb)

ResNet-50-
SENet

224 0.9495 0.9496 0.9495 30.62 94.96 72

ResNet-50-
CBAM

224 0.9601 0.9603 0.9602 31.98 96.05 86

ResNet-50-
PCSA

224 0.9798 0.9816 0.9807 32.29 98.17 91

TABLE 6 | Accuracy for crop pest recognition with 10 classes.

Classes 0 1 2 3 4 5 6 7 8 9

Accuracy
(%)

97.08 98.37 97.15 99.34 97.53 98.52 99.15 98.43 98.01 97.10

Average
accuracy
(%)

98.17

FIGURE 9 | Recognition results for crop pests. (A) Image with a single pest. (B) Image with multiple pests.
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The VGG-19, AlexNet, ResNet-101, and GoogLeNet models
have larger fluctuations after convergence, and the ResNet-50-
PCSA model converges with the smallest fluctuation range,
reflecting good stability.

The detailed evaluation results of different models on crop
pests are obtained in Table 3. Under the same experimental
conditions, the ResNet-50-PCSA model proposed in this
paper has the highest precision, recall and F1 score. The

proposed model also has the highest average accuracy, with
an accuracy reaching 98.17%. Compared with the VGG-19,
AlexNet, GoogLeNet and ResNet-101 models, the average
accuracy is 5.55, 9.21, 4.82, and 3.69% higher, respectively,
and the proposed model is significantly ahead of the other
CNN networks. The ResNet-50-PCSA model has the fastest
recognition speed, and the average recognition time for
a single pest image is only 32.29 ms. Compared with

FIGURE 10 | Clustering results of the training set.

FIGURE 11 | Sample images of the rice leaf dataset.
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the second-ranked AlexNet model, the time is reduced by
1.08 ms, which meets the needs of real-time recognition of
crop pests. Considering that the model will be deployed to
the inspection robot system, VGG-19, AlexNet and ResNet-
101 have a large model size, which cannot guarantee real-
time detection task requirements. Moreover, the size of the
ResNet-50-PCSA model is 91 Mb, which is 46 Mb larger
than GoogLeNet. However, ResNet-50-PCSA also meets the
requirements of lightweight deployment, and the accuracy is
higher than that of GoogLeNet. Synthesizing the above analysis,
the proposed model achieves the best performance in terms of
accuracy and speed.

Effectiveness of PCSA Module
To prove the effect of adding a parallel attention mechanism on
the performance of the original model, keeping the experimental
conditions and parameters consistent, a comparison experiment
of the performance of the ResNet-50-PCSA and ResNet-
50 models was carried out. The results of the comparative
experiment of the proposed model and the ResNet-50 model
without a parallel attention mechanism on crop pests are shown
in Table 4.

It can be seen from Table 4 that the results of the
model are improved after adding the parallel attention
mechanism. The accuracy of the model is increased by
5.76%, and the precision, recall and F1 score are all higher
than those of the original ResNet-50 model. The proposed
model can retain more image details due to important
feature reuse. However, the ResNet-50-PCSA model
average detection time of a single pest image is increased
by 0.93 ms, and the model size is increased by 13 Mb.
This explains why adding the parallel attention mechanism
can slightly increase the computational complexity and
complexity of the model.

To further verify the effectiveness of the parallel attention
mechanism proposed in this paper, we selected two widely used
attention mechanisms as comparative experiments: SENet (Hu
et al., 2018) and CBAM (Woo et al., 2018). The CBAM is
composed of a serial structure of channel attention and spatial
attention; it first learns the key features through the channel
attention module and then uses the spatial attention module to
learn the location of the key features.

The comparison results of the PCSA module with SENet
and CBAM are shown in Table 5. In the recognition accuracy
of the model, the ResNet-50-PCSA is 3.21 and 2.12% higher
than ResNet-50-SENet and ResNet-50-CBAM, respectively. In
terms of the average inspection time and model size, the
ResNet-50-PCSA is slightly insufficient. ResNet-50-SENet has
the fastest recognition speed and smallest model size. The
average detection time is only 1.67 ms faster than ResNet-
50-PCSA, but the recognition accuracy is significantly lower
than ResNet-50-PCSA. The recognition speed of ResNet-50-
PCSA still meets actual application requirements. At the
same time, the model size of ResNet-50-PCSA is 19 and
5 Mb larger than ResNet-50-SENet and ResNet-50-CBAM,
respectively, but it also confirms the requirements of lightweight
deployment in machine control panels. Synthesizing the above

analysis, the results show that the proposed parallel attention
mechanism is effective.

Crop Pest Classification Results
Table 6 shows the ResNet-50-PCSA model accuracy of each
pest on the validation set. The indices of 10 classes of pests
are represented as follows: 0. Aphid, 1. Cabbage butterfly, 2.
Drosophila, 3. Gryllotalpa, 4. Leafhopper, 5. Locust, 6. Snail, 7.
Stinkbug, 8. Weevil, 9. Whitefly.

The result suggests that the model correctly recognizes 10
classes of pests with an average accuracy of 98.17%. The model
recognition accuracy for aphid, Drosophila, leafhopper, and
whitefly is low, but the accuracy also exceeds 97%. The reason
is that the color features of aphids and leafhoppers are similar to
those of crop leaves, and Drosophila and whiteflies are smaller
in size and occupy only a few pixels in the whole image.
Furthermore, the model exceeded 99% accuracy on 2 classes of
pests (Gryllotalpa, and snail), while the other 4 classes of pests
had accuracies between 98.01 and 98.52%.

Figure 9 shows the correct recognition results for randomly
selected images using the ResNet-50-PCSA model. The model
has a better recognition result of the 5 pest images in
Figure 9A, and the accuracies of cabbage butterflies and
snails are 100.00%. The accuracy of locust is the lowest,
but it is also as high as 98.39%, which meets the accuracy
requirements in real pest recognition tasks. In Figure 9B,
we stitch images of different pests into one image and
input it into the model. The model also obtained a better

TABLE 7 | The evaluation result of the rice leaf dataset.

Model Input P R F1 Ta (ms) Accuracy (%)

GoogLeNet 256 0.9365 0.9361 0.9363 33.07 93.68

Xception 256 0.9355 0.9353 0.9354 31.51 93.53

ResNet-50 256 0.9480 0.9478 0.9479 30.54 94.81

ResNet-50-PCSA 256 0.9933 0.9935 0.9934 31.39 99.35

FIGURE 12 | Confusion matrices for rice leaf diseases.
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performance and could accurately recognize each pest in
the stitched image.

To better show the classification performance of the model
on 10 classes of pests, we choose t-SNE clustering for feature
spatial distribution representation. The experiment extracts
the features of each image from the fully connected layer
of the ResNet-50-PCSA model, uses the t-SNE algorithm to
visualize the high-dimensional features in a two-dimensional
space of 10-class pests, and performs hierarchical clustering
analysis on the features. The 2048-dimensional feature clustering
results are shown in Figure 10. Each color represents the
category of different pests, for a total of 10 categories. On the
whole, the features reflected by different pests show a better
clustering effect, which is the key to accurately distinguishing
different pests. The distribution position of the feature clusters
of the same variety deviates, mainly because in the real
agricultural environment, the color and shape features of some
pests are similar.

Based on the above results, it can be seen that the ResNet-
50-PCSA model can complete the task of crop pest recognition
well and has a high robustness and accuracy. This model can be a
useful detection tool in the field of crop diseases.

ResNet-50-PCSA Adaptability on Other
Datasets
To further validate the practical application performance
of our model, we experiment with the proposed method
on other public datasets of rice leaf diseases, and the
disease images have real agricultural backgrounds. The
dataset contains 5,932 rice leaf disease images, which
include bacterial blight, blast, brown spot and tungro. All
the patches were treated as data samples and resized to
224 × 224 pixels, and Figure 11 shows the four varieties of
rice leaf diseases.

Under the same training environments, GoogLeNet, ResNet-
50 and Xception were selected for comparative experiments
on rice leaf diseases. As shown in Table 7, the proposed
model in this paper has an average detection accuracy of
99.35% for the 4 classes of rice leaf diseases. Compared
with the GoogLeNet, Xception and ResNet-50 models, the
accuracy is 5.67, 5.82, and 4.54% higher, respectively. The
ResNet-50-PCSA model has the fastest average detection time
for a rice leaf image, and the average detection time for a
single rice disease image is only 0.85 ms slower than ResNet-
50.

The detection result is represented by the confusion matrix
in Figure 12, and the detection accuracy of 4 classes of rice leaf
diseases exceeded 99%. Compared with crop pest recognition,
the accuracy of rice leaf disease diagnosis has increased by
1.18%. The main reason is that there are only 4-classes of
rice leaf diseases, which is 6-classes less than that of pest
recognition. It is proven that the proposed method has a wide
range of applicability and has better performance relative to
deep-based methods on public datasets. Moreover, it is certified
that our method is effective for datasets captured in real
agricultural environments.

CONCLUSION

In this work, a pest recognition model based on deep learning
was proposed using a manually collected dataset to classify 10
types of crop pests. A total of 5,245 images were downloaded
from different websites and manually validated. In the data
preparation phase, data augmentation was used to expand
the dataset. We successfully designed a parallel attention
mechanism and deeply integrated the original ResNet-50 model
and recognize the great performance of the proposed network
through various experiments. The added attention module
can suppress complex backgrounds and extract multiscale pest
features more accurately without increasing the number of model
parameters. Under the condition of ensuring high accuracy,
rapid recognition is realized on images with multiple pests
and complex backgrounds. It is verified that our method
is of great significance and provides accessible help for the
recognition of crop pests.

In this feature, we will use the proposed method to
implement a crop pest image recognition system and transplant
it into agricultural inspection robots. At the same time,
we will also expand a dataset of crop pests in a real
agricultural environment to improve the model performance
of the robot. It can help farmers accurately distinguish
pests, carry out pesticide works according to the types
of pests, and successfully realize agricultural modernization
and intelligence.
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The application of mobile robots is an important link in the development of intelligent

greenhouses. In view of the complex environment of a greenhouse, achieving precise

positioning and navigation by robots has become the primary problem to be solved.

Simultaneous localization and mapping (SLAM) technology is a hot spot in solving

the positioning and navigation in an unknown indoor environment in recent years.

Among them, the SLAM based on a two-dimensional (2D) Lidar can only collect

the environmental information at the level of Lidar, while the SLAM based on a 3D

Lidar demands a high computation cost; hence, it has higher requirements for the

industrial computers. In this study, the robot navigation control system initially filtered

the information of a 3D greenhouse environment collected by a 3D Lidar and fused

the information into 2D information, and then, based on the robot odometers and

inertial measurement unit information, the system has achieved a timely positioning

and construction of the greenhouse environment by a robot using a 2D Lidar SLAM

algorithm in Cartographer. This method not only ensures the accuracy of a greenhouse

environmental map but also reduces the performance requirements on the industrial

computer. In terms of path planning, the Dijkstra algorithm was used to plan the global

navigation path of the robot while the Dynamic Window Approach (DWA) algorithm was

used to plan the local navigation path of the robot. Through the positioning test, the

average position deviation of the robot from the target positioning point is less than 8 cm

with a standard deviation (SD) of less than 3 cm; the average course deviation is less

than 3◦ with an SD of less than 1◦ at the moving speed of 0.4 m/s. The robot moves at

the speed of 0.2, 0.4, and 0.6 m/s, respectively; the average lateral deviation between

the actual movement path and the target movement path is less than 10 cm, and the SD

is less than 6 cm; the average course deviation is <3◦, and the SD is <1.5◦. Both the

positioning accuracy and the navigation accuracy of the robot can meet the requirements

of mobile navigation and positioning in the greenhouse environment.

Keywords: greenhouse, mobile robot, navigation, Lidar, SLAM
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INTRODUCTION

With the development of mechanization and automation,
agriculture has undergone an accelerated upgrading toward
information and intelligent agriculture in the world. Also, with
the development of high technology and with the incremental
labor cost, the application of robots in agriculture has become
more and more extensive. Compared with the complex field
environment, the greenhouse environment is relatively simple;
however, in greenhouses where plants are densely distributed
under high temperature and high humidity, and, sometimes,
even toxic gases are emitted, there are some potential safety
hazards in manual operation (Henten et al., 2013). Therefore,
robots enjoy a large application market in picking, plant
protection, inspection, and other aspects of greenhouses (Uyeh
et al., 2019).

In terms of the autonomous navigation of robots, the
navigation solutions based on Global Navigation Satellite
System (GNSS) have been fully applied in the field operations
environment (Pérez Ruiz and Upadhyaya, 2012). However, as
there are many obstructions in greenhouses to cause the loss of
satellite signals, the greenhouse environment is not suitable for
mobile robots. Path planning and movement, which are safe,
fast, and effective, have become the primary difficulties in the
application of greenhouse mobile robots.

The guide rail navigation is a common navigation solution
for greenhouse mobile robots. It realizes the mobile navigation
in greenhouses by laying rails on the ground (Chiu et al., 2013;
Hayashi et al., 2014; Lee et al., 2015). Considering the high cost of
the rail laying and the occupation of the ground in greenhouses,
some robots that use greenhouse pipes as motion guide rails have
been developed, and these robots can move along the pipes or
on the ground (Zhao et al., 2016; Arad et al., 2020). To further
improve the safety and practicability of the robots on guide rails,
Balaso et al. (2013) installed a distance sensor, a photoelectric
sensor, and an ultrasonic sensor to assist the navigation of
the designed multi-functional greenhouse robot. Although the
guide rail navigation is simple in operation, the fixed rails
greatly limit the movement path and the range of the robot.
Magnetic navigation and ribbon navigation through themagnetic
stripes and ribbons replace the rails in the guide rail navigation.
Magnetic navigation realizes path tracking by detecting the
electromagnetic signals installed on the ground (Pan et al., 2019),
and the color band navigation uses visual sensors to detect the
edge of the color band to achieve navigation (Min et al., 2014).
Compared with the guide rail navigation, the installation cost
of magnetic stripes and color bands is relatively low and does
not occupy the greenhouse space; moreover, their laying and
installation are simpler and more flexible. Nevertheless, they
could not get rid of the movement restrictions by fixed routes.

Machine vision navigation uses monocular vision or stereo
vision sensors to collect environmental information then extract
the navigation paths or crop lines based on the Hough Transform
(Hough, 1962), the least-Square Methods (Cui et al., 2015;
Mao et al., 2019), and the binocular stereo vision algorithms
(Zou et al., 2012). Wang et al. (2012) analyzed the distribution
characteristics of each component of the road image between the

tomato ridges in the Hue, Saturation and Intensity (HSI) color
space and then proposed a greenhouse tomato path detection
method between the ridges based on the least square method.
The experimental results showed that the proposed method
could accurately extract the edge information of the target
sensitive area; there was a 91.67% accuracy rate of extracting
the navigation path between the tomato ridges with different
coverage. In view of the problems of poor recognition of visual
navigation technology and vulnerability to illumination, Gao and
Ming (2014) selected the H component in the HIS color space
for subsequent image processing and introduced the K-means
algorithm to cluster and to segment the image for the unique
color characteristic information of greenhouse. Chen et al. (2021)
proposed a Hough transform algorithm for the prediction point
by using a new graying factor to segment cucumber plants and
soil, and this proposed algorithm is used for prediction points to
fit the navigation paths. This algorithm is 35.20ms faster than the
traditional Hough Transform. The robot uses the machine vision
sensor, which is carried by itself to autonomously navigate, thus
saving the cost of setting up the environment in the early stage.
However, the navigation path of the robot needs to be fitted after
extracting the greenhouse vegetation or the roadside information
each time, so the path of the robot is subject to environmental
constraints, which further limits the space for robot movements.

The positioning and navigation method, based on multi-
source data fusion, is the current hotspot in the research of
the navigation of greenhouse mobile robots. In this navigation
environment, the robot can move freely within a greenhouse.
In general, the navigation by fusing multi-source data can be
divided into two types: one is to achieve precise positioning and
navigation by arranging sensors in the environment with the
assistance of an inertial measurement unit (IMU), an odometer,
and other modules that are carried by the robot itself; the
other is to achieve the positioning and navigation directly by
the sensor that is carried by the robot itself. Widodo et al.
(2012) applied the acoustic positioning system in the greenhouse
for the first time. To reduce the time consumed in manual
deployment and calibration, Widodo et al. (2013) subsequently
designed a self-calibrating acoustic positioning system. Huang
et al. (2020a) proposed a spread spectrum sound-based local
positioning system for greenhouse robots, and Tsay et al. (2020)
added a temperature compensation on this basis. In addition to
a sound-based positioning system, Preter et al. (2018) designed
a strawberry harvesting robot, which uses an ultra-wideband
indoor positioning system, wheel encoders, and a gyroscope
to achieve positioning and navigation in the greenhouse.
The development of indoor navigation technologies, such as
radio frequency identification (Choi et al., 2011; Ming, 2018),
Bluetooth low energy (Spachos et al., 2021), and positioning by
signal strength (Huang et al., 2020b), provide more options for
greenhouse mobile robot navigation. However, for all the above
navigation solutions, it is necessary to arrange base stations,
tags, and other external sensors in advance in the greenhouse.
Although the installation procedures are much simpler than the
guide rail navigation, themagnetic navigation, and the color band
navigation, the technology of positioning and navigation through
the sensors, as carried by the robot itself, eliminates these extra
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FIGURE 1 | Hardware structure diagram of the robot navigation system.

steps. In an unknown environment, the robot uses the sensors it
carries to achieve navigation. The first and most important thing
is that the robot knows its location. The SLAM technology can
help the robot build an environmentmap and estimate its posture
well. According to the types of sensors, the SLAM technology
can be divided into visual SLAM technology and Lidar SLAM
technology. In comparison, since the visual sensor is susceptible
to the influence of light intensity, the visual SLAM technology has
poor mapping performance in the poor light environment; while
the Lidar SLAM technology is not affected by light, with higher
accuracy, less calculation, and more mature technology (Chan
et al., 2009). The SLAM technology, based on two-dimensional
(2D) Lidar, has achieved good results in the research of
greenhouse mobile robot navigation (Juan et al., 2016; Obregón
et al., 2019; Hou et al., 2020; Tiwari et al., 2020). However, the
environment detected by 2D Lidar is only on the same horizontal
plane as the installation position of the Lidar on the robot.
More stringent requirements are needed for the installation
of Lidar and the greenhouse environment. At the same time,
the Lidar cannot detect the environmental information above
and below itself. Therefore, it leaves a huge potential safety
hazard in robot navigation. The SLAM technology, based on
three-dimensional (3D) Lidar, can detect all the environmental
information of the greenhouse, which enhances the safety of the
robot when it moves, but it also increases the computational
burden of the robot and puts forward higher requirements on the
computational performance of the robot.

Based on the Robot Operating System (ROS), this study
proposed a new positioning and navigation solution for

greenhouse mobile robots by combining the SLAMs of both 3D
Lidar and 2D Lidar. First, the 3D point cloud data, collected
by multi-line Lidar, were filtered and were fused into 2D data.
The 2D information after the fusion contained the location
information of key points, within the motion range of the robot,
to the maximum extent. Then, the 2D Lidar SLAM algorithm,
based on the encoder information and IMU information, was
used to build the environment map, and the optimal navigation
path was further planned to achieve the positioning and
navigation of the greenhouse mobile robot, which not only
ensured the safety of the robot mapping navigation but also
reduced the energy consumption in data calculation by the robot.

MATERIALS AND METHODS

Hardware System Design
The designed hardware system of the greenhouse mobile robot
is mainly composed of the sensor module, the control module,
the driver module, and the power module. The hardware system
structure is shown in Figure 1.

Sensor Module
The sensor module of the robot was mainly composed of an
encoder, an IMU, and a Lidar. The encoder is composed of a
1,024-line photoelectric incremental code disc, which collected
the real-time speed information of the robot and sent feedback
to the bottom controller of the robot. The inertial measurement
unit has the 9-axis IMU (HFI-A9, HandsFree, Shenzhen, China),
which includes a 3-axis gyroscope, a 3-axis accelerometer, and
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a 3-axis magnetometer. The internal integrated posture solver,
with the assistance of the dynamic Kalman filter algorithm, can
accurately output the real-time posture of the robot in a dynamic
environment, thus providing accurate calculation data for the
determination of the position of the robot in the greenhouse,
such as Euler angles, quaternions, and the most commonly used
roll/pitch/yaw direction data. The Lidar contains 16 pairs of Lidar
transmitting and receiving modules (C16, Leishen Intelligent,
Shenzhen, China). By adopting the time of fight measurement
method, with a vertical resolution of 1.33◦, the internal motor can
be driven at a speed of 5Hz (or 10 or 20Hz) for 360◦ scanning.
The 100M Ethernet UDP/IP communication protocol is used for
data output and configuration.

Control Module
The STM32F103 embedded system board was adopted in the
bottom controller of the robot. The core of the system board
is a 32-bit high-performance ARM Cortex-M3 processor with a
maximum operating frequency of 72 MHz. It has built-in high-
speed memory, abundant enhanced I/O ports, and peripherals
connected to two advanced peripheral buses (APBs). The power
supply voltage is 2– to 3.6V, and a series of power-saving
modes can ensure the needs of the low-powered applications.
The bottom controller is connected to the motor driver, the
encoder, and the upper computer. According to the real-time
speed information provided by the encoder, the STM32 can use
the classic proportional-integral-derivative (PID) algorithm to
control the motor rotation through the motor driver, to realize
the precise movement of the robot. In addition, to enhance the
safety of the robot during the movement, the bottom controller
will limit the output of the driver and pull up the robot slowly
when the temperature of the motor driver is higher than the
protection temperature.

The top control of the robot was equipped with an industrial
computer as the upper computer (EPC-P3086, Dongtintech,
Shenzhen, China), and the Ubuntu18.04 operating System and
ROS were installed respectively. The bottom control and the top
control of the robot were connected through the control area
network (CAN) bus protocol. The communication baud rate is
500K and themessage format isMOTOROLA. Through the CAN
bus interface, the PC can realize the control of the linear velocity
and angular velocity of the mobile robot. Meanwhile, the PC will
also receive real-time feedback of the motion state information of
the robot.

Driver Module
A total of four 200-W DC brushless servo motors (SDGA-
02C11AB24, Tode, Jiaxing, China) were installed at the front
and rear of the robot, and a gearbox of 1:30 was equipped
to provide sufficient power for the robot (60TDF-147050-L2-
H, Tode, Jiaxing, China). The no-load maximum speed is 1.5
m/s. The driving form of the robot was four-wheel independent
driving, using a four-wheel differential steering, which could
realize a spot turn. In addition to the above functions, the
power module of the robot also adopted the composite design
of inflatable rubber wheels and independent suspension, which
equipped the robot with strong ground clearance and ground

adaptability. The robot climbing angle is up to 30◦, and the
minimum clearance from the ground is 135mm, which can meet
the flexible movement of the robot on different types of ground
in the greenhouse.

Power Module
The power module of the robot adopted a 24-V ternary lithium
battery (LS-DL24-30, Lishen Energy, Shenzhen, China). The
battery voltage is about 29.2V when it is fully charged with the
capacity of 30 Ah. It has a built-in voltage regulator module and
a power display module. Under normal circumstances, it can
supply power continuously for 3–5 h. When the battery voltage
is less than 22.5V, the robot chassis will automatically alarm with
a buzzer, and it will take about 3 h to fully recharge.

Software System Design
The overall software system of the greenhouse mobile robot
was designed based on Ubuntu 18.04, as shown in Figure 2.
It included an application layer, a control layer, and a driver
layer. The most important part was the control layer, which was
developed based on ROS. It was responsible for the collection,
fusion, and processing of information from robot sensors and
then for completing the map construction, path planning, and
autonomous positioning and navigation according to control
instructions. The ROS has a distributed architecture that allows
each functional module in the framework to be individually
designed, compiled, and loosely coupled together at run time.

Implementation Principles of Navigation
Function
The framework of robot navigation function realization in the
greenhouse is shown in Figure 3. First, the 3D point cloud data
collected by 3D Lidar were filtered and fused into 2D Lidar, and
then, the 2D Lidar SLAM algorithm was used to construct the
greenhouse environment map based on the data. The positioning
of the robot in an unknown environment was mainly realized
by the Adaptive Monte Carlo Localization (AMCL) algorithm.
Robot target point path planning was the focus of navigation
function realization. It was divided into two parts: global path
planning and local path planning, which were based on the global
cost map and the local cost map, respectively. Finally, the robot
integrated the above information in the ROS visualization (RVIZ)
tool provided by ROS and used the multi-target navigation
settings to realize the robot’s mobile navigation in the greenhouse.

Multi-Line Lidar Point Cloud Filtering and Fusion
The data transmission between different nodes in ROS is mainly
achieved through the communications of Topic, Service, and
Parameter Server. The ROS specifies different standard data
message types for different sensors, among which the Lidar
data is divided into two types: LaserScan.msg (2D Lidar) and
PointCloud2.msg (3D Lidar). In this article, both the acceptance
and the transmission of Lidar data involved in the robot used
the Topic communication based on TCP. Compared with single-
line Lidar, multi-line Lidar contains 3D coordinates and intensity
of each point cloud data for each frame. By setting the point
cloud conversion node, on the one hand, Lidar’s topic can be
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FIGURE 2 | Software structure diagram of the robot.

subscribed through the Topic communication and can constantly
accept the 3D point cloud data. The 3D point cloud data beyond
the height range of the robot’s movement height is filtered,
while the 3D point cloud data within the height range is fused
layer by layer, and the points with the shortest distance within
the same height range are selected as the last output data.
On the other hand, the point cloud conversion node releases
the Laser topic to the 2D Lidar SLAM node and outputs the
filtered and fused Lidar data, thus, greatly retaining the key
point environment information within the range of the robot
movement in the map.

The specific process of the multi-line Lidar point cloud
filtering and fusion algorithm used by the robot is shown in
Figure 4. Each frame of Lidar point cloud data is composed of
its corresponding three-dimensional coordinates. The position
information of the point cloud is clear after knowing its
coordinate information. Firstly, the 16 pairs of point cloud data,
whose height and range fall beyond the threshold range, were
sequentially filtered by setting the height threshold and the
range threshold, and the point cloud data within the threshold
are retained. Then, the point cloud data of the same height
were compared at certain size angles. Finally, the data with the
smallest range were saved as the final collected data. Through this
algorithm, the robot could quickly and effectively compress the
greenhouse 3D environment into 2D, which provided accurate
and stable environmental information for subsequent mapping
and navigation.

The higher the frequency and the greater the resolution of
Lidar, the more environmental information can be obtained at

the same time, but the huge amount of data also increases the
burden of data processing for the robot. Considering the amount
of Lidar data and the data processing capability of the computer,
the Lidar frequency was set to 10Hz, its horizontal resolution
was 0.18◦, and the number of points per second was 320,000.
To reduce the loss in the process of Lidar data transmission,
the angle increment of Lasersacn output by the point cloud
conversion node took the same value as the horizontal resolution
of Lidar; the scanning angle range was from and −3.14 to 3.14,
and the scan topic publishing frequency and Lidar point cloud
topic publishing frequency were the same to set to 5Hz. The
height of the robot was 0.3m, and the Lidar was installed at
0.25m above the robot. Since the converted Lidar data were a
LaserScan on the same plane as the Lidar, the height threshold
was set from −0.47 to 0.1m. The measurement range of the
Lidar was from 0.15 to 150m. Considering the actual size
of the greenhouse, the range threshold was finally from 0.15
to 50 m.

Environment Map Construction
The environment map construction is an important part of
the robot navigation and the control system. The quality of
map construction directly affects the accuracy of the robot in
the navigation and positioning process. The current popular
2D Lidar SLAM algorithms include Hector SLAM, G mapping,
Karto SLAM, etc. By comparing the algorithms in the simulation
environment, actual environment, and CPU consumption
(Santos et al., 2013; Hess et al., 2016), this study finally chose
to refer to the Cartographer SLAM algorithm developed by
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FIGURE 3 | The framework of navigation functions.

Google. The algorithm adopts the idea of constructing a global
map based on sub-maps; each frame of the laser scan data
obtained is inserted into the submap at the best-estimated
position using a scan match, and the generated submap performs
a local loop closure and a global loop by a branch-and-bound

approach and several precomputed grids. Cartographer is more
advantageous in terms of mapping effects, data processing,
and sensor requirements. After the algorithm processing, the
robot can finally generate a 2D grid map with a precision
of 5 cm.
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FIGURE 4 | Flowchart of point cloud filtering and fusion.

The Cartographer algorithm is mainly composed of two parts:
Local SLAM and Global SLAM. In the part of Local SLAM,
odometry and IMUdata are used to calculate the estimation value

of posture of the robot ξ , ξ = (ξx, ξy, ξϑ ), and this value is used
as the initial value to scan and to match the Lidar data, and the
scanned data is recorded as H =

{

hk
}

k=1,··· ,k
, hk ∈ R2. After
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the motion filtering, each frame of Lidar data is superimposed to
form a submap. The position of

{

hk
}

in submap is expressed as
Tξ , and its transformation formula is as follows:

Tξp=

(

cosξθ
−sinξθ

sinξθ
cosξθ

)

︸ ︷︷ ︸

Rξ

p+

(

ξx
ξy

)

︸ ︷︷ ︸

tξ

(1)

where p represents the coordinates of the robot before the
transform, Rξ represents the rotation matrix, and the tξ
represents the translation matrix.

The part of Global SLAM is responsible for the loopback
detection and back-end optimization, so that small submaps
form a whole Global map. The optimization problem of

loopback is a nonlinear least squares problem, which can be
described as

argminEm ,Es
1

2

∑

ij
ρ(E2(ξmi , ξ sj ;6ij,ξij)) (2)

where Em = {ξmi }i=1,··· ,m is the submap posture, Es =

{ξ sj }j=1,··· ,n is the scan posture, ρ is the loss function, E is

the residual function, and these postures are all in the world
coordinate system.

To obtain a more accurate map, the robot used the IMU
coordinate system as the ROS coordinate system tracked by
the SLAM algorithm and the odometer to publish the pose
coordinates. The robot controlled the node through a keyboard
to walk in the greenhouse at a speed of 0.4 m/s to build a map.
After the map was completed, the global environment map was

FIGURE 5 | The pseudo-code of the Dijkstra algorithm.
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saved in pgm format through the map server node. In the picture,
the probability of the existence of obstacles was represented by
different grayscale values and for subsequent navigation.

Path Planning
The path planning of the robot in the greenhouse is completed
based on the built map; however, the original map is static and
the obstacle information on the map cannot be updated in real
time. Therefore, a costmap is introduced in the robot’s path
planning. Costmap is mainly composed of Static Map Layer,
Obstacle Map Layer, and Inflation Layer. The Static Map Layer
usually includes the loaded original map data. The Obstacle Map
Layer includes the real-time obstacle information detected by
sensors. The Inflation Layer expands the obstacle according to the
expansion radius parameter to make the robot move more safely.

The path planning of the robot in the greenhouse was divided
into two parts: global path planning and local path planning.
The robot first used the global path planner to plan a rough
path in combination with the global costmap, then the local path
planner divided the planned path into many small paths on this

basis, and finally, the local path planner performed the local path
planning by referring to the local costmap. In this way, not only
the obstacles saved in the map could be avoided in the global
path planning, but also the new obstacles and dynamic obstacles
could be avoided in the local path planning. The robot navigation
target points setting was realized through the Publish Point
function in the RVIZ visualization interface. When the mouse
was clicked on the RVIZ map interface using the Publish Point
function, the Topic communication would be used to publish
the location information of the point in the map to the outside
world. By setting the node to subscribe to the topic and store the
set target points in sequence, the target point information was
further published to the navigation node in sequence, and the
path planning and multi-target point navigation were completed
one by one.

The global path planning of the robot adopts the Dijkstra
algorithm, and the algorithm is shown in Figure 5. First, the
starting point and the goal point of the robot navigation is
set; then, two arrays to store the points of the path to be
determined and the points of the determined path are set up,

FIGURE 6 | The pseudo-code of the DWA algorithm.
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respectively; and next, the distance between the center point and
the adjacent 8 points is calculated using the starting point as
the center point. Later, we stored the point with the smallest
distance, considered the point with the smallest distance as the
center point, and calculated the distance between the starting
point and the adjacent points from the center point again. For
the points that have been calculated, we selected the solution
with the smallest distance. In this way, the adjacent points are
continuously calculated until the target point is encountered,
and the shortest path planning route is output. In general,
the algorithm calculates and compares the weights of nodes
in the graph from the global perspective to obtain the global
shortest path.

The Dynamic Window Approach (DWA) algorithm is
adopted for the robot’s local path planning, and the algorithm
is shown in Figure 6. The main process includes four parts:
initialization, sampling speed samples, sample scoring, and
release plan. First, we load the instance of the subclass in
BaseLocalPlanner through the class loading module and call its
initialization function to obtain the initial state information of

the robot and further obtain the trajectory motion model of
the robot. Based on the trajectory motion model, the robot can
calculate its motion trajectory according to its motion speed.
In order to obtain a sample of the robot motion speed, it is
necessary to collect the linear speed and the angular speed of
each dimension of the robot through sensors within a certain
time interval and store them in the corresponding container in
the form of a structure. After obtaining the robot speed sample,
the corresponding motion trajectory is deduced according to
the robot sampling speed simulation, and each trajectory is
evaluated through the trajectory evaluation function, as shown
in formula (3).

G (v,ω) =max(ϕhead (v,ω) + βdist(v,ω)+ δvelo(v,ω)) (3)

where head(v,ω) and velo(v,ω) are given by the formula

head (v,ω) = 1− |θ | /π (4)

velo (v,ω) = v/π (5)

FIGURE 7 | Test environment and robot.
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where head (v,ω) represents the proximity between the velocity
trajectory and the target point, and θ represents the included
angle between the motion direction and the destination point.

The dist(v,ω) represents the distance from themotion estimation
to the nearest obstacle at this sampling speed. If there is no
obstacle, the value is a constant. The velo(v,ω) represents the

FIGURE 8 | Schematic diagram of the positioning accuracy test.
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forward efficiency of the robot under this speed group. The three
constant term factors, ϕ, β , and δ, represent the proportion
of the three sub-items in the evaluation function, respectively.
Adjusting the three constant factors will affect the actions of the
robot in local obstacle avoidance. Finally, all speed groups are
evaluated by the above formula, and the speed with the highest
score is selected as the current speed command for themovement
of the robot.

EXPERIMENTAL RESULTS AND
DISCUSSION

The test site is in the Institute of Agricultural Facilities and
Equipment, Jiangsu Academy of Agricultural Sciences, Jiangsu
province, China, as shown in Figure 7. The experimental
greenhouse is a glass greenhouse, in which tomatoes are grown in

the cultivation tanks, and the row spacing between the cultivation
tanks is 1 m.

Robot Positioning Accuracy Test
The robot positioning accuracy test is an effective way to verify
the precision and the reliability of the robot navigation system.
To accurately measure the position and the posture of the robot
at the target points, four target points in the robot greenhouse
navigation path were randomly selected, and the positioning
coordinate tags were pasted on these four target points. The
schematic diagram of the robot positioning accuracy test is
shown in Figure 8. The four points, such as the front, rear,
left, and right, of the robot were randomly selected as the
relative reference positions, and a cross laser (Qy-620, Huimei,
Dongguan, China) on each of the four points was installed. After
the robot reaches the target point and stops, the coordinate
position of the laser shot by the laser was recorded accurately on

FIGURE 9 | Positioning deviation of the robot at each target point. (A) Target 1, (B) target 2, (C) target 3, (D) target 4.
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the coordinate tags. The robot completed 10 complete navigation
and positioning tests in sequence at a speed of 0.4 m/s. After each
test, the robot needed to be repositioned to its initial position to
avoid the accumulation of errors during the test and to ensure the
independence of the test.

Quantitative analysis is made on the navigation accuracy of
the robot. The position deviation and absolute heading deviation
of the four relative reference positions on the robot at the four
target points are shown in Figures 9, 10.

It can be seen from Figures 9, 10 that at a speed of 0.4 m/s,
the average absolute position deviation of the robot is less than
8 cm, and the SD is less than 3 cm. The average heading deviation
of the robot is less than 3◦, and the SD is less than 1◦. The
precision can meet the requirements of the robot positioning
in a greenhouse environment. Although the average positioning
accuracy of the robot at the four points is not very different,
it is still found that target point 2 and point 3 have abnormal
points in the test after comparison. By analyzing the position
of the target points, the target point 1 and point 4 are close
to the two ends of the cultivation tanks, the target point 2 and
point 3 are close to the middle of the cultivation tanks, and the
structured feature information of target point 1 and point 4 are
more than the target point 2 and point 3, such as greenhouse

walls and air conditioners, and the environmental information
around target point 2 and point 3 are mostly from cultivation
tanks and plant leaf walls, with high similarity. So, we think
that adding some different objects with structural features in
different positions in the greenhouse can improve the positioning
accuracy of the robot. The localization system of the robot was
implemented based on AMCL, which used particle filters to track
the robot’s pose against a known map. In general, the more
particles there are, the more accurate the positioning is, but
the higher the CPU consumption is as well. To achieve a more
accurate positioning of the robot under the existing computing
power of the robot, we set the maximum number of particles
allowed by the positioning algorithm to 4,000 and the minimum
number of particles to 1,000. Through continuous testing, the
robot had a good performance under this parameter.

Robot Navigation Accuracy Test
The robot navigation accuracy test is the most direct and effective
method to test the robot navigation system. The two most
important parameters are the lateral deviation and the heading
deviation between the robot and the planned path during the
movement process. To obtain the lateral deviation and the
heading deviation of the robot, initially, obstacles on the road

FIGURE 10 | Absolute heading deviation of the robot at each target point.
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FIGURE 11 | The navigation accuracy test scenario.

between the greenhouse rows were moved away, and then, the
robot navigation target points are set. According to the principle
of global path and local path planning algorithms, the optimal
navigation path of the robot is the straight line between two target
points. Hence, as shown in Figure 11, a posture sampling point
was set every 2m on the planned paths. To accurately collect
the position information of the robot, two cross lasers (Qy-620,
Huimei, Dongguan, China) were installed in the front and the
rear of the longitudinal center line of the robot. When the robot
reached each posture sampling point, it stayed there for 5 s in
that position for each sampling point, and the positions of the
laser on the coordinate tags were recorded accurately. The robot
completed the navigation task at the speed of 0.2, 0.4, and 0.6
m/s, respectively. The experiment was repeated three times at
each speed.

As shown in Figure 12, the cartesian coordinate system is
established on the coordinate paper with the sampling point
(x0, y0) as the origin, and the target heading of the robot is set
to the positive direction of the Y-axis, while the right direction
perpendicular to the target heading is the positive direction of
the X axis; thus, the coordinate of the sampling point is (0, 0).
Suppose the front laser coordinate is (x1, y1), the rear laser

coordinate is (x2, y2), the robot center coordinate is (x, y), then
the robot center coordinate is ( x1+x2

2 ,
y1+y2

2 ), the lateral deviation

is |x|, and the heading deviation is arccos(
y1−y2
x1− x2

).
The robot global path planning step size was set to 0.05m as

the grid length in the grid map, and the global path planning
frequency was 1Hz. After numerous tests, when the robot
reached the target point, the distance error from the target point
in the x-y plane was set to 0.15m, and the yaw angle error
was set to.1 radians, the robot has the best navigation. When
these two errors are set smaller, the robot will always hover
near the target point. The simulation time of the robot’s local
path planning was set to 3 s. If the simulation time is too large,
it will easily cause the robot to deviate from the global path,
especially when the turning radius is large at startup. On the
contrary, when the simulation time is too small, it is easy to
cause frequent path planning and consume resources, and even
oscillation occurs. The step size of the robot’s local path planning
was set to 0.025m. After many tests, the three influencing factors
in the speed evaluation function were finally set as: ϕ = 64,
β = 24, and δ = 0.5, respectively.

It can be seen from Table 1, with the increase in the moving
speed of the robot, both the mean value and SD of the lateral
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FIGURE 12 | Schematic diagram of the navigation accuracy test.

deviation of the robot and the mean value and SD of the heading
deviation of the robot gradually increase, and the change rate of
each deviation when the speed is greater than 0.4 m/s is greater
than the transformation rate when the speed is less than 0.4 m/s.
At a speed of 0.6m, the average lateral deviation of the robot

is 4.4 cm higher than the average at 0.4 m/s, and the maximum
lateral deviation even reaches 16.8 cm. We guess this is related
to the part that we set and the parameters related to local path
planning. We have not yet found the specific reason for the
increase of the deviation, which will be one of the problems that
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TABLE 1 | Robot navigation deviation.

Speed/(m/s) Lateral deviation/cm Course deviation/ (◦)

Minimum Maximum Average Standard deviation Minimum Maximum Average Standard deviation

0.2 0.8 7.1 2.8 1.7 0 3.5 1.5 1.2

0.4 0.6 9.5 4.8 3.0 0.3 3.8 1.7 1.1

0.6 0.8 16.8 9.2 5.8 0.7 4.9 2.8 1.1

we need to focus on in the next stages. In general, the average
lateral deviation of the robot is less than 9.2 cm, and the SD is
less than 5.8 cm. The mean course deviation shall not exceed
2.8◦, and the SD shall not exceed 1.2◦. As is shown, the precision
can meet the requirements of navigation precision of robot in a
greenhouse environment.

At present, the greenhouse is moving from informatization
to intelligence. To meet the good application of intelligent
equipment in greenhouses, most of the greenhouse floors have
undergone a ground leveling treatment. Therefore, the robot
positioning and navigation test experiment designed was selected
to be carried out in a greenhouse with flat ground. After the
positioning accuracy test and the navigation accuracy test, the
mobile robot navigation control system designed had a good
performance, which had an inseparable relationship with the
greenhouse standard planting mode and flat ground. Since the
Lidar was fixed on the robot, the Lidar was always level with the
ground. At the same time, we used the 3D Lidar information to
convert the 2D information and integrate the IMU information,
so the slope of the greenhouse floor had no effect on the robot’s
navigation. To expand the application of the robot in different
types of greenhouses, the next step is to test the robot on an
uneven ground. When the robot was mapping in the greenhouse,
we found that there were often some water pipes and other
equipment on the ground, but these obstacles did not affect the
movement of the robot. To ignore the influence of these obstacles
on the mapping, we chose to filter the point cloud. During the
fusion process, filtering was selected for the point cloud below
8 cm from the ground. In addition, for the odometry information
required for robot mapping, we took the average value of the four
encoders of the robot as the odometer data of the robot, which
could effectively reduce the data error caused by the slippage of
individual wheels of the robot.

The path planning of the robot was realized based on the
costmap after the inflation of the obstacle. To ensure that the
robot did not collide with the obstacle, the inflation radius
should be larger than the radius of the robot’s circumcircle.
The robot we designed was 0.8m long and 0.6m wide. When
the expansion radius of the costmap is larger than the robot’s
circumscribed circle, the robot will not be able to realize the
inter-row path planning. To solve this problem, we set the
inflation radius of the costmap to 0.4m, so that we could
ensure that when the robot navigated between rows in the
greenhouse, the path planning trajectory was within 0.1m to
the left and right of the center of the row. Even if the robot
moved along the inflated obstacles between rows, it would not
collide with the cultivation tank. However, this setting method

was very dangerous when the robot turns between rows. At
the same time, due to the limitation of the row spacing in the
greenhouse, the yaw angle of the robot in the row cannot be
greater than 53◦. To ensure the safety of the robot when turning,
we inserted a safety target point at the turning point of the
robot’s navigation route, divided the robot’s navigation plan into
multiple parts, and performed a global path planning and a local
path planning for each segment to ensure that the robot would
not interact when cultivation tanks collide. When the robot got
into a local dilemma between the rows, we chose to let the
robot terminate the navigation. Although this processing strategy
avoided robot collision, it was not intelligent enough. In the
future, we will further develop a more intelligent and effective
local path processing strategy.

CONCLUSION

The proposed autonomous navigation system for the greenhouse
mobile robot was designed based on 3D Lidar and 2D Lidar
SLAM. The hardware part was mainly composed of 3D Lidar, an
IMU, an odometer, and an encoder. The software core control
layer was developed based on ROS, and information interaction
was realized through a distributed node communication. In
order to enhance the safety of the robot during the movement
and to reduce the computational power consumption of the
computer, 3D environmental information collected by multi-
line Lidar was filtered and fused into 2D laser information, and
then, localization and map construction were completed using
the Cartographer algorithm. After the greenhouse navigation
test, the average deviation does not exceed 10 cm, and the
average heading deviation does not exceed 3◦, which meets the
movement requirements of the greenhouse mobile robot. In
the process of the robot positioning and navigation, we found
that appropriately adding some objects with structured features
in the greenhouse environment could effectively improve the
positioning accuracy of the robot, and the navigation speed of the
robot was closely related to the navigation accuracy. For different
navigation speeds, the robot navigation parameters should be
reset. At present, this research only solves the simple positioning
and navigation of robots in the greenhouse. In the future, we can
apply this system to different types of greenhouse mobile robots,
and combine the different operating conditions of the robots to
develop appropriate navigation strategies based on the existing
navigation path planning algorithms. In addition, we can also use
5G, the CloudComputing Platform, and othermodules to further
realize the remote control and monitoring of robots.
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Peach diseases seriously affect peach yield and people’s health. The precise
identification of peach diseases and the segmentation of the diseased areas can provide
the basis for disease control and treatment. However, the complex background and
imbalanced samples bring certain challenges to the segmentation and recognition of
lesion area, and the hard samples and imbalance samples can lead to a decline
in classification of foreground class and background class. In this paper we applied
deep network models (Mask R-CNN and Mask Scoring R-CNN) for segmentation and
recognition of peach diseases. Mask R-CNN and Mask Scoring R-CNN are classic
instance segmentation models. Using instance segmentation model can obtain the
disease names, disease location and disease segmentation, and the foreground area
is the basic feature for next segmentation. Focal Loss can solve the problems caused
by difficult samples and imbalance samples, and was used for this dataset to improve
segmentation accuracy. Experimental results show that Mask Scoring R-CNN with Focal
Loss function can improve recognition rate and segmentation accuracy comparing to
Mask Scoring R-CNN with CE loss or comparing to Mask R-CNN. When ResNet50 is
used as the backbone network based on Mask R-CNN, the segmentation accuracy
of segm_mAP_50 increased from 0.236 to 0.254. When ResNetx101 is used as the
backbone network, the segmentation accuracy of segm_mAP_50 increased from 0.452
to 0.463. In summary, this paper used Focal Loss on Mask R-CNN and Mask Scoring
R-CNN to generate better mAP of segmentation and output more detailed information
about peach diseases.

Keywords: segmentation, location, peach diseases, focal loss, Mask R-CNN

INTRODUCTION

Peach is an important and popular fruit, and its production is severely affected by peach diseases.
The common peach diseases are brown rot, anthracnose, scab, bacterial shot hole, gummosis,
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powdery mildew, and leaf curl. The diseases reduce the yield of
peach and cause harm to human health. Thus, it is important to
find rapid and accurate methods to identify peach diseases and
further locate and segment the areas of the lesion in earlier stages.

Currently, a few studies have been conducted on plant
disease classification and on locating and segmenting areas of
the lesion. There are three approaches. The first approach uses
traditional image processing methods or deep learning methods
to segment disease or pest areas initially. This preliminary
segmentation is the intermediate step for feature extraction,
which is the basic step for classification or location in the
next step. Yang et al. (2018) used the Prewitt operator and
the Canny operator for edge segmentation of single-headed
pests based on the high contrast between the pest target
and the background in the binary image, and then classified
two types of pests by SVM, with the average recognition
accuracy rate of 93.5%. Jin and Qian (2020) used fine-tune
FCN to separate the diseased areas of green vegetables from the
farmland images and then recognized the area by identifying
the markers placed at a fixed distance on the ground, which
can realize the location of the diseased area. The second
approach focuses on classifying and identifying the diseases
and further locating the lesion areas. Lu et al. (2017) used
VGG-FCN-VD16 and VGG-FCN-S to classify the diseases and
locate lesion areas, achieving the mean recognition accuracies
of 97.95 and 95.12%, respectively. The third approach uses
deep learning methods directly to segment the lesion site. Lin
et al. (2019) used U-Net Ronneberger et al. (2015) network to
segment cucumber leaves with powdery mildew and improved
the segmentation effect by improving the loss function, thus
achieving an average pixel accuracy of 96.08%, intersection
over union of 72.11%, and dice accuracy of 83.45% on 20 test
samples. Dai (2020) proposed a multi-scale fusion U-Net network
to segment rice diseases. The first approach of segmentation
is usually used for extracting preliminary features, such as
the approximate location of the target. The second approach
can provide disease classification and location based on the
object detection task. The third approach can segment the
lesion areas based on the semantic segmentation task. This
study used deep learning methods to achieve classification,
localization, and segmentation of peach diseases by instance
segmentation task.

In deep learning methods, segmentation is initially carried out
using FCN Long et al. (2015) network, and then other improved
networks, such as DeconvNet Noh et al. (2016) and SegNet,
are applied Badrinarayanan et al. (2017) Other networks for
segmentation, such as DeepLab Chen et al. (2014) and PSPNet
Zhao et al. (2017), are also available. The above-mentioned
methods are based on semantic segmentation tasks. The FAST
R-CNN (Girshick, 2015) approach can classify, identify, and
locate targets, while Mask R-CNN (He et al., 2017) can not
only classify and locate targets, but can also perform instance
segmentation based on this information. At present, Mask
R-CNN has been used for blade segmentation (Zhong et al.,
2020), robot item recognition (Shi et al., 2019), pig inventory
(Hu et al., 2020), and other applications. Some of the improved
methods based on Mask R-CNN are Cascade R-CNN (Cai and

Vasconcelos, 2019) and Deformable Convolutional Networks
(Dai et al., 2017; Zhu et al., 2019). HRNet (Sun et al., 2019a,b)
was also proposed for segmentation tasks. Mask Scoring R-CNN
(Huang et al., 2019) adds a branch network on the basis of Mask
R-CNN to train and regress mask scores.

This study focuses on identifying and locating major peach
diseases and segmenting lesion areas using deep learning
methods. The peach disease image dataset was collected from
peach orchards by Prof. Luo’s team, College of Plant Science
and Technology, HZAU, which included seven categories of
peach disease images. The seven categories are as follows: (1)
brown rot fungi infecting fruits and leaves, (2) anthracnose
fungi infecting fruits and leaves, (3) scab fungus infecting fruits,
branches, and leaves, (4) shot hole bacterium infecting fruits,
branches, and leaves, (5) gummosis fungi infecting branches,
(6) powdery mildew fungus infecting fruits and leaves, and
(7) leaf curl fungus infecting leaves. These diseases cause
damage to different parts of the peach plant. For example,
the brown rot disease mainly infects the fruits, causing the
fruit to rot, and also affects the leaves leading to the dryness
of leaves. Gummosis mainly affects the branches, leading to
tree weakness, decreased fruit quality, and ultimately causing
the death of branches and trees. As the seven diseases were
extensively studied in the laboratory, laboratory personnel were
familiar with the characteristics of the diseases. For example,
a certain disease mainly infects fruits, while some infect leaves
and branches in particular. Therefore, the disease images
were mainly obtained from the infected fruits. Each disease
is further divided into early, middle, and end stages based
on the severity of the disease. Finally, the total number of
disease categories totals 21. The project comprises a team
of experts on fruit disease prevention and control posts
in the National Peach Industry Technology System, which
can further ensure the accuracy of its classification. For
similar diseases and diseases that are easy to be confused,
accurate conclusions can be drawn through tissue isolation of
pathogenic bacteria or direct monospore isolation, pathogen
morphology observation, and molecular biological identification.
The samples were collected by two methods. The first
approach included collecting pictures of existing resources
in the laboratory or obtaining some pictures from other
experts through cooperation in the Peach System, and the
second method included taking a large number of pictures
indoors or in orchards.

For identifying disease, locating and segmenting lesion
areas, two deep neural networks (Mask R-CNN and Mask
Scoring R-CNN) are used to classify 21 diseases of peach
trees and segment the lesions to obtain more detailed
information about the lesions. To overcome the problem due
to imbalance of samples and hard samples, by improving
the loss function with focal loss (Lin et al., 2017) of Mask
R-CNN and Mask Scoring R-CNN, the segmentation effect
can be improved.

The remaining manuscript is organized as follows. Section
2 introduces “Materials and Methods.” Section 3 presents the
“Results and related Discussion.” Finally, Section 4 presents our
“Conclusion.”
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FIGURE 1 | Major plant diseases of peach. (A) Brown rot of fruit, (B) brown rot of fruit, (C) brown rot of leaf, (D) anthracnose of fruit, (E) anthracnose of leaf, (F) scab
of fruit, (G) scab of leaf, (H) bacterial shot hole of fruit, (I) powdery mildew of fruit, (J) powdery mildew of leaf, (K) leaf curl of a leaf, and (L) gummosis of a branch
(Yao et al., 2021).

TABLE 1 | Classification of peach disease image dataset.

Class Part Sample Class Part Sample

Brown rot Fruits 88 Bacterial shot hole Fruits 193

Leaves 6 Leaves 229

Anthracnose Fruits 129 Branches 5

Leaves 28 Gummosis Branches 91

Scab Fruits 614 Powdery mildew Fruits 32

Leaves 35 Leaves 18

Branches 5 Leaf curl Leaves 87

MATERIALS AND METHODS

Peach Disease Image Dataset and Image
Annotation
The original images of peach diseases (see Figure 1, Yao et al.,
2021 for detail) were collected to form the Peach Disease Image
Dataset (PDID). The numbers of images acquired for brown
rot disease, anthracnose disease, scab disease, bacterial shot hole
disease, gummosis disease, powdery mildew disease, and leaf curl
disease were 94, 157, 654, 427, 91, 50, and 87, respectively (see

Table 1 for detail). As can be seen, the distribution of the number
of images in PDID is imbalanced.

Figure 1 Seven categories of disease images.
In order to distinguish the severity of each disease in more

detail, we divided each disease into three levels: early disease,
middle disease, and end disease. After division, the number of
classes changed from 7 to 21, which are as follows: early brown
rot, middle brown rot, end brown rot, early anthracnose, middle
anthracnose, end anthracnose, early scab, middle scab, end scab,
early gummosis, middle gummosis, end gummosis, early leaf
curl, middle leaf curl, end leaf curl, early bacterial shot hole,
middle bacterial shot hole, and end bacterial shot hole. However,
the number of images per class is still small. To increase the
number of images, we performed data augmentation (flipping,
rotation, adding noise, and changing saturation) on the images.
Finally, the number of samples included in the study was 5,627.
These samples were divided into 4,051 training samples, 1,013
validation samples, and 563 testing samples.

Labelme software was used to mark the lesion area in the
images of different peach diseases. Figure 2 shows the marking
process of early gummosis and end brown rot. After a picture is
marked, it is saved as a json file, and the key points and disease
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FIGURE 2 | Marking process: (A) early gummosis and (B) end brown rot.

FIGURE 3 | The Mask R-CNN framework for instance segmentation (He et al., 2017).

FIGURE 4 | Network architecture of Mask Scoring R-CNN (Huang et al., 2019).
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TABLE 2 | Training parameter and test results based on Mask R-CNN with different loss functions.

Network Bbox_mAP_50 Segm_mAP_50 Loss Backbone Epoch γ α

Mask R-CNN 0.396 0.236 CE R50 12

Mask R-CNN 0.416 0.224 FL R50 12 5 0.95

Mask R-CNN 0.428 0.197 FL R50 12 2 0.25

Mask R-CNN 0.463 0.219 FL R50 12 2 0.55

Mask R-CNN 0.515 0.236 FL R50 12 2 0.75

Mask R-CNN 0.540 0.246 FL R50 12 2 0.85

Mask R-CNN 0.534 0.254 FL R50 12 2 0.95

Mask R-CNN 0.518 0.219 FL R50 12 1 0.95

Mask R-CNN 0.465 0.222 FL R50 12 3 0.95

Mask R-CNN 0.443 0.215 FL R50 12 4 0.95

TABLE 3 | Training parameter and test results based on Mask Scoring R-CNN with different loss functions.

Network Bbox_mAP_50 Segm_mAP_50 Loss Backbone Epoch γ α

Mask Scoring R-CNN 0.367 0.246 CE R50 12

Mask Scoring R-CNN 0.367 0.224 FL R50 12 5 0.95

Mask Scoring R-CNN 0.425 0.243 FL R50 12 5 0.75

Mask Scoring R-CNN 0.451 0.251 FL R50 12 5 0.55

Mask Scoring R-CNN 0.425 0.240 FL R50 12 5 0.25

Mask Scoring R-CNN 0.472 0.274 FL R50 12 4 0.45

Mask Scoring R-CNN 0.408 0.238 FL R50 12 3 0.35

Mask Scoring R-CNN 0.346 0.196 FL R50 12 1 0.05

Mask Scoring R-CNN 0.450 0.259 FL R50 12 2 0.25

names are included in the json file. Mask R-CNN and Mask
Scoring R-CNN use the same dataset format, and convert the
saved json file to COCO dataset format.

Mask R-CNN
Mask R-CNN and Mask Scoring R-CNN are representatives
of typical instance segmentation tasks, and Mask Scoring
R-CNN is the improved version of Mask R-CNN. In order
to obtain more effective information about the peach disease,
two instance segmentation networks (Mask R-CNN and Mask
Scoring R-CNN) with focal loss are used to segment peach
diseases. As Mask Scoring R-CNN is based on Mask R-CNN,
this paper used focal loss in Mask R-CNN and Mask Scoring
R-CNN separately.

The Mask R-CNN framework for instance segmentation task
is shown in Figure 3 (He et al., 2017). Mask R-CNN adopts a two-
stage procedure. The first stage is RPN. In the second stage, in
parallel to predicting the class and box offset, Mask R-CNN also
outputs a binary mask for each RoI. Mask R-CNN follows the
spirit of Fast R-CNN that applies bounding box classification and
regression in parallel. Formally, during training, Mask R-CNN
defines a multi-task loss on each sampled RoI as L = Lcls +
Lbox + Lmask. The classification loss Lclsand bounding box loss
Lboxare the same as those defined by a previous study (Girshick,
2015). The mask branch has a Km2-dimensional output for each
RoI, which encodes K binary masks of resolutionm×m, one
for each of the K classes. It applies a per-pixel sigmoid and
defines Lmaskas the average binary cross-entropy loss. For an RoI
associated with ground-truth class k, Lmask is only defined on the

TABLE 4 | Training parameter and test results based on Mask R-CNN with
different loss functions.

Network Bbox_
mAP_50

Segm_
mAP_50

Loss Backbone Epoch γ α

Mask R-CNN 0.396 0.236 CE R50 12

Mask R-CNN 0.534 0.254 FL R50 12 2 0.95

k-th mask. The definition of Lmask allows the network to generate
masks for every class without competition among the classes. The
dedicated classification branch is relied upon to predict the class
label used to select the output mask, which decouples mask and
class prediction.

Mask Scoring R-CNN
In Mask R-CNN framework, the score of instance segmentation
hypothesis is determined by the largest element in its
classification scores, which can be obtained in R-CNN. But
classification score and ground truth mask are not well correlated
in Mask R-CNN. So, Mask Scoring R-CNN was proposed.
Figure 4 (Huang et al., 2019) shows the network architecture
of Mask Scoring R-CNN, which is a Mask R-CNN with an
additional MaskIoU head module that learns the MaskIoU
aligned mask score. The input image is fed into a backbone
network to generate RoIs via RPN and RoI features via RoIAlign.
The R-CNN head and Mask head are standard components
of Mask R-CNN. For predicting MaskIoU, the predicted mask
and RoI feature are used as input. The MaskIoU head has four
convolution layers (all have kernel = 3 and the final one uses
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stride = 2 for downsampling) and three fully connected layers
(the final one outputs C classes MaskIoU.). During inference, the
predicted MaskIoU is multiplied by the classification score to
get the new calibrated mask score as the final mask confidence.
Mask Scoring R-CNN definesSmask as the score of the predicted
mask. The ideal Smaskis equal to the pixel-level IoU between
the predicted mask and its matched ground truth mask, which
also should have only a positive value for the ground truth
category and zero for other classes, since a mask belongs to one
class only. This requires the mask score to work well on two
tasks: classifying the mask to the right category and regressing
the proposed MaskIoU for the foreground object category. So,
Smask = Scls • Siouis denoted for all object categories. Sclsfocuses
on classifying the proposal to the corresponding class, and
Sioufocuses on regressing the MaskIoU. A classification score can
be obtained in the classification task in the R-CNN stage. The
MaskIoU head aims to regress the IoU between the predicted
mask and its ground truth mask. The predicted MaskIoU scores
are multiplied with classification score to get the new calibrated
mask score as the final mask confidence. The concatenation of
features from the RoIAlign layer and the predicted mask is the
input of MaskIoU head. When concatenating, it uses a max
pooling layer with kernel size of 2 and stride of 2 to enable the
predicted mask to have the same spatial size as the RoI feature.
MaskIoU head consists of four convolution layers and three fully
connected layers. For the four convolution layers, it follows Mask
head and sets the kernel size and filter number to 3 and 256,
respectively, for all the convolution layers. For the three fully
connected (FC) layers, it follows the R-CNN head and set the
outputs of the first two FC layers to 1,024 and the output of the
final FC to the number of classes.

Image Pre-processing
The samples in the dataset are RGB images. Generally, images
were processed as follows: First, Z-Score normalization was
performed. Precisely, mean value mxand standard deviationsx
were calculated. Then, for each pixel valuexas input, input x is
changed tox

′

= x−mx/sx, so that the normalized data was a
standard normal distribution with zero mean and unit variance.
After that, several augmentations, including random flipping,
resize, and Pad (size = 32), were used for training and validating
the dataset. The augmentation was helpful for enhancing the
generalization ability of the model and preventing overfitting.

Improved Method
As the number of samples in the peach disease image dataset is
relatively small and the samples in this dataset were imbalanced,
standard machine learning techniques have low accuracy.
To improve the segmentation accuracy, focal Loss was used
for this dataset.

The focal loss is defined as follows:

FL(pt) = −αt(1− pt)γ log(pt) (1)

where pt =
{
p if y = 1
1− p otherwise

and αt =

{
α if y = 1
1− α otherwise

, for

binary classification, y∈{± 1} specifies the ground truth class, and
p∈[0, 1] is the model’s estimated probability for the class with

FIGURE 5 | Mask R-CNN with different loss validation parameters and loss
functions. (A) Comparison of mAP_50 of bbox (IoU = 0.5) on different loss,
(B) Comparison of mAP_50 of segmentation (IoU = 0.5) on different loss, and
(C) Comparison of total loss.
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FIGURE 6 | Mask R-CNN with different loss validation parameters and loss functions. (A) Comparison of mAP_50 of bbox (IoU = 0.5) on different loss,
(B) Comparison of mAP_50 of segmentation (IoU = 0.5) on different loss, and (C) Comparison of total loss.
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FIGURE 7 | Mask Scoring R-CNN with different loss validation parameters
and loss functions. (A) Comparison of mAP_50 of bbox (IoU = 0.5) on
different loss, (B) Comparison of mAP_50 of segmentation (IoU = 0.5) on
different loss, and (C) Comparison of total loss.

label y = 1. Weighting factor α ∈[0, 1] for class 1 and 1-α for class-
1. While αbalances the importance of positive/negative examples,
it does not differentiate between easy/hard examples. This focal
loss function gives smaller weights to easy examples. This helps
the training method to focus on hard negatives. A modulating

TABLE 5 | Training parameter and test results based on Mask R-CNN with
different loss functions.

Network Bbox_
mAP_50

Segm_
mAP_50

Loss Backbone Epoch γ α

Mask R-CNN 0.749 0.452 CE Rx101 1000

Mask R-CNN 0.771 0.463 FL Rx101 1000 2 0.95

TABLE 6 | Training parameter and test results based on Mask Scoring R-CNN
with different loss functions.

Network Bbox_
mAP_50

Segm_
mAP_50

Loss Backbone Epoch γ α

Mask Scoring
R-CNN

0.387 0.252 CE R50 12

Mask Scoring
R-CNN

0.472 0.274 FL R50 12 4 0.45

TABLE 7 | Training parameter and test results based on Mask Scoring R-CNN
with different loss functions.

Network Bbox_
mAP_50

Segm_
mAP_50

Loss Backbone Epoch γ α

Mask Scoring
R-CNN

0.479 0.311 CE Rx101 12

Mask Scoring
R-CNN

0.544 0.336 FL Rx101 12 4 0.45

TABLE 8 | Results of the method proposed in this study compared
to other methods.

Network Bbox_
mAP_50

Segm_
mAP_50

Loss Backbone Epoch γ α

Mask R-CNN 0.534 0.254 FL R50 12 2 0.95

Mask Scoring
R-CNN

0.472 0.274 FL R50 12 4 0.45

Cascade
R-CNN

0.450 0.243 CE R50 12

Cascade-DCN 0.447 0.250 CE R50 12

Mask-DCN 0.397 0.222 CE R50 12

Mask-DCNV2 0.232 0.127 CE R50 12

HRNet 0.303 0.183 CE HRNet 12

factor (1− pt)γ is added to the cross-entropy loss, with tunable
focusing parameter γ ≥ 0.

When an example is misclassified and ptis small, the
modulating factor is near 1, and the loss is unaffected. When
pt is near 1, the factor (1− pt)γ is close to 0, and the loss
for well-classified examples is downweighted. The focusing
parameter γsmoothly adjusts the rate at which easy examples are
downweighted. When γ = 0, FL is equivalent to CE, and as γ is
increased, the effect of the modulating factor is likewise increased.
Intuitively, the modulating factor reduces the loss contribution
from easy examples and extends the range in which an example
receives low loss.

Implementation
The experiment of classification was performed on a CentOS
workstation equipped with two Intel(R) Xeon(R) E5-2683 v4
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FIGURE 8 | Mask Scoring R-CNN with different loss validation parameters
and loss functions. (A) Comparison of mAP_50 of bbox (IoU = 0.5) on
different loss, (B) Comparison of mAP_50 of segmentation (IoU = 0.5) on
different loss, and (C) Comparison of total loss.

CPU (55G RAM) and accelerated by two Tesla P100-PCIE GPU
(16 GB memory). The model implementation in this paper was
powered by the deep learning framework of Pytorch.

RESULTS AND DISCUSSION

In this study, mAP (mean average precision) is used as
an evaluation indicator, which is usually used in instance
segmentation tasks. The experiments based on MMDetection and
bbox_mAP_50 represent mAP of BBox when IoU is 0.5. Also,
segm_mAP_50 represents mAP of segmentation when IoU is 0.5,
while R50 represents ResNet50.

Using focal loss, the empirical values given in the current
study (Dai et al., 2017) are γ = 2 andα = 0.25, but different data
distributions require different parameters, so different gamma (γ)
and alpha (α) values were tested, and the results are presented
in Table 2. When γ = 2 and α = 0.95, the result is improved
using Mask R-CNN. But when Mask Scoring R-CNN was used,
γ = 4 and α = 0.45 provides better results, as given in Table 3. FL
represents the focal loss in Tables 2, 3, and the learning rate is
0.00025 in all the experiments.

In all the experiments of this study, the following parameters
are similar: neck using FPN, loss_BBox of Rpn-head using L1
Loss, loss-cls of BBox-head using CE, and loss-BBox of BBox-
head using L1 loss in roi_head and loss-mask of mask-head
using CE. The focal loss was used in RPN. When focal loss
and CE loss were used in RPN, the obtained BBox_mAP_50
and segm_mAP_50 metrics are presented in Table 4. The test
results shows BBox_mAP_50 increased from 0.396 to 0.534
and segm_mAP_50 increased from 0.236 to 0.254 (Table 4).
Mask R-CNN with a different loss function used the same
training parameters (epoch, learning rate, and batch size).
Figure 5A shows the validation mAP of BBox (IoU = 0.5)
from 1 to 12 epochs when training the dataset with different
loss functions, displaying that the validation mAP of BBox is
higher with focal loss than with CE loss. Figure 5B shows
the validation mAP of segmentation (IoU = 0.5) from 1
to 12 epochs when training the dataset with different loss
functions, displaying that the validation mAP of segmentation
is higher with focal loss than with CE loss. However, the
increment in the map of segmentation is lower than BBox.
Figure 5C shows the total loss value of the y-axis changes
with the changed iter value of the x-axis when training the
dataset with different loss functions. The results presented
in Figure 5 and Table 4 show that the application of
Mask R-CNN with focal loss achieves better performance
compared with CE loss.

In general, deeper networks and larger epochs can provide
better results. When epoch (1,000) and backbone (ResNetx101)
are changed, the results obtained are displayed in Figure 6
and Table 5. Figure 6A shows the validation mAP of BBox
(IoU = 0.5) from 1 to 1,000 epochs when training the dataset
with different loss functions, displaying validation mAP of
BBox is higher with focal loss than with CE loss. Figure 6B
shows validation mAP of segmentation (IoU = 0.5) from
1 to 1,000 epochs when training the dataset with different
loss functions, displaying validation mAP of segmentation
is higher with focal loss than with CE loss. Figure 6C
shows the total loss value of the y-axis changes with the
changed iter value of the x-axis when training the dataset
with different loss functions. The results presented in Figure 6
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FIGURE 9 | Test results of different methods. (A) Ground truth, (B) CE Loss on Mask Scoring R-CNN, (C) Focal Loss on Mask Scoring R-CNN, (D) Unet,
(E) Cascade R-CNN, (F) Cascade-DCN, (G) Mask-DCN, (H) Mask-DCNV2, and (I) HRNet.

and Table 5 also show that the application of Mask R-CNN
with focal loss achieves better performance compared to
CE loss. Rx101 represents ResNetx101 in Table 5. The
test results in Table 5 show that BBox_mAP_50 increased
from 0.749 to 0.771 and segm_mAP_50 increased from
0.452 to 0.463. It can be seen that with the increase
of epochs and the deepening of network depth, a better
effect is achieved. Despite changing epoch and backbone,
the results presented in Figure 6 and Table 5 show that
Mask R-CNN with focal loss achieves better performance
compared to CE loss.

Figure 7 and Table 6 show the results of Mask Scoring
R-CNN. When focal loss and CE loss are used in RPN,
the obtained BBox_mAP_50 and segm_mAP_50 metrics are
presented in Table 6. The test results show BBox_mAP_50
increased from 0.387 to 0.472 and segm_mAP_50 increased

from 0.252 to 0.274 (Table 6). Figure 7A shows the validation
mAP of BBox (IoU = 0.5) from 1 to 12 epochs when training
the dataset with different loss functions, displaying that the
validation mAP of BBox is higher with focal loss than with
CE loss. Figure 7B shows validation mAP of segmentation
(IoU = 0.5) from 1 to 12 epochs when training the dataset
with different loss functions, displaying that validation mAP
of segmentation is higher with focal loss than with CE loss.
Figure 7C shows the total loss value of the y-axis changes
with the changed iter value of the x-axis when training the
dataset with different loss functions. The results presented in
Figure 7 and Table 6 show that the application of Mask
Scoring R-CNN with focal loss achieves better performance
compared to CE loss. Comparing the data presented in
Tables 4, 6, it can be found that the mAP of segmentation
based on Mask Scoring R-CNN is higher than that based
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FIGURE 10 | Test results of different methods. (A) Ground truth, (B) CE Loss on Mask Scoring R-CNN, (C) Focal Loss on Mask Scoring R-CNN, (D) Unet,
(E) Cascade R-CNN, (F) Cascade-DCN, (G) Mask-DCN, (H) Mask-DCNV2, and (I) HRNet.

on Mask R-CNN and also that the focal loss produces
effective results.

When we only changed the backbone from ResNet50 to
ResNetx101, the results of training and testing are shown in
Figure 8 and Table 7. The test results in Table 7 show that
BBox_mAP_50 increased from 0.479 to 0.544 and segm_mAP_50
increased from 0.311 to 0.336. It can be seen that an increase in
network depth can improve object detection and segmentation
effect. Although the backbone was changed, the results presented
in Figure 8 and Table 7 show that Mask Scoring R-CNN with
focal loss achieves better performance compared to CE loss.

Table 8 shows the results of Mask R-CNN/Mask Scoring
R-CNN with focal loss compared to other methods. Cascade-
DCN represents Cascade R-CNN with deformable convolutional
networks. Mask-DCN represents Mask R-CNN with deformable
convolutional networks. Mask-DCNV2 represents Mask
R-CNN with deformable convolutional networks V2. Other
hyperparameters of these six methods are similar. The last

HRNet used the same learning rate and epoch, but the backbone
was different. Using focal loss with Mask R-CNN and Mask
Scoring R-CNN provides better segmentation results compared
to other methods.

The test results are shown in Figures 9–11. All peach diseases
were tested. Mask Scoring R-CNN with focal loss consistently
produced better segmentation results: (1) Mask Scoring R-CNN
with CE loss provides a segmentation that cannot cover some
ground truth regions. Mask Scoring R-CNN with focal loss
provides more correct segmentation results for the diseases
brown rot, gummosis, leaf curl, and anthracnose. The test results
for the brown rot disease are shown in Figures 9, 11. (2) Mask
Scoring R-CNN with CE loss produces a segmentation that covers
regions not in the ground truth. Mask Scoring R-CNN with
focal loss gives fewer false segmentations for the diseases like
bacterial shot hole and brown rot. The test result for the disease
brown rot is shown in Figure 10. (3) Mask Scoring R-CNN
with CE loss presents no detection and segmentation, while
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FIGURE 11 | Test results of different methods. (A) Ground truth, (B) CE Loss on Mask Scoring R-CNN, (C) Focal Loss on Mask Scoring R-CNN, (D) Unet,
(E) Cascade R-CNN, (F) Cascade-DCN, (G) Mask-DCN, (H) Mask-DCNV2, and (I) HRNet.

TABLE 9 | Training parameters and test results on original dataset.

Network Bbox_
mAP_50

Segm_
mAP_50

Loss Backbone Epoch γ α

Mask R-CNN 0.280 0.260 CE R50 12

Mask R-CNN 0.294 0.267 FL R50 12 5 0.95

Mask Scoring
R-CNN

0.293 0.264 CE R50 12

Mask Scoring
R-CNN

0.301 0.279 FL R50 12 5 0.75

Mask Scoring
R-CNN

0.333 0.313 CE Rx101 24

Mask Scoring
R-CNN

0.371 0.333 FL Rx101 24 5 0.75

Mask Scoring R-CNN with focal loss provides detection and
segmentation. The data presented in Figures 9D–11D are tested
by the U-Net model, which illustrates that the results are poor.
Since the three test images have complex backgrounds, the lesion

areas were not segmented well from the background. However,
when the lesion areas and background are relatively simple, the
segmentation is better.

The results obtained by conducting the same experiments on
the original dataset are summarized in Table 9. The original
dataset (PDID) includes seven peach diseases, with 1,560 images.
The ratio of training samples, validation samples, and test
samples is 7:2:1. Table 9 shows that focal loss can improve the
mAP of BBox and segmentation on both Mask R-CNN and Mask
Scoring R-CNN tasks. But, the parameters of γandαneed to get
the optimal value through experiments. The parameters will be
different when the dataset is different.

CONCLUSION

In this study, the output of this method provides information
regarding the names of peach disease, disease severity levels,
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and masked lesion areas. Hence, detailed information about the
diseases, not limited to disease names, can be obtained. Usually,
disease names can be obtained by classification tasks. Data
pertaining to disease names, disease severity level, and masked
lesion areas are usually achieved by instance segmentation
tasks. This study used the focal loss to improve the effect
of instance segmentation. Due to the difficulty in obtaining
the pictures of peach disease, the peach disease dataset often
has unbalanced or hard samples. We used focal loss in
the first stage, and segmentation results were found to be
improved. Focal loss was used in Mask R-CNN and Mask
Scoring R-CNN for classification, location, and segmentation
of peach diseases, while getting better segmentation results.
When using Mask R-CNN with ResNet50 as a backbone
network, the focal loss parameters gamma (γ) was 2.0 and
alpha (α) was 0.95. When Mask Scoring R-CNN was used
with ResNet50 and ResNetx101 as the backbone network, the
focal loss parameters gamma was 4.0 and alpha was 0.45.
We also observed that the deeper the backbone network, the
better the effect of focal loss. When dataset is changed, the
parameters of γandαare different. Additionally, the U-Net model
was used to segment the lesion areas of peach disease images,
but the results showed that this model has a poor accuracy
in complex background images. So, the method adopted in
this study can improve the segmentation results and can also
provide the disease names and severity (early, middle, and end),
by displaying the lesion areas by mask. Thus, this technique
can provide more detailed information for effective disease
treatment and analysis.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

FN devised the study in collaboration with W-KS, GL, and HW.
MW carried out experimental work partly. All authors read and
approved the manuscript.

FUNDING

This work was supported by the Key Special Project National
Key R&D Program of China (grant number: 2018YFC1604000),
partly by the earmarked fund for Modern Agro-Industry
Technology. Research System (no. CARS-30), Natural Science
Foundation of Hubei Province (grant number: 2019CFC855),
partly by Supported by “the Fundamental Research Funds for the
Central Universities”, Huazhong Agricultural University (grant
number: 2662017PY119).

ACKNOWLEDGMENTS

We thank all the colleagues from Prof. Luo chaoxi’s team, College
of Plant Science and Technology, HZAU for helping collecting
and labeling the peaches’ images.

REFERENCES
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). “SegNet: a deep

convolutional encoder-decoder architecture for image segmentation,” in IEEE
Transactions on Pattern Analysis & Machine Intelligence, Piscataway, NJ: IEEE.
doi: 10.1109/TPAMI.2016.2644615

Cai, Z., and Vasconcelos, N. (2019). Cascade R-CNN: high quality object detection
and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1483–
1498. doi: 10.1109/TPAMI.2019.2956516

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2014).
Semantic image segmentation with deep convolutional nets and fully connected
CRFs. arXiv [Preprint]. doi: 10.48550/arXiv.1412.7062

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., et al. (2017). “Deformable
convolutional networks,” in Proceeding of the IEEE International Conference on
Computer Vision, Venice.

Dai, Z. (2020). Rice Disease Detection Technology Based on Semantic Segmentation.
Chengdu: Xihua University.

Girshick, R. (2015). “Fast r-cnn,” in Proceedings of the 2015
IEEE International Conference on Computer Vision, Santiago,
1440–1448.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask r-cnn,” in
Proceedings of the 2017 IEEE International Conference on Computer Vision,
Venice, 2961–2969.

Hu, Y., Cang, Y., and Qiao, Y. (2020). Design of intelligent pig counting system
based on improved instance segmentation algorithm. Trans. Chin. Soc. Agric.
Eng. 36, 177–183.

Huang, Z., Huang, L., Gong, Y., Huang, C., and Wang, X. (2019). “Mask scoring
R-CNN,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA: IEEE.

Jin, L., and Qian, L. (2020). Image semantic segmentation and localization of
brassica chinensis disease area based on deep learning. J. Anhui Agric. Sci. 48,
235–238.

Lin, K., Gong, L., Huang, Y., Liu, C., and Pan, J. (2019). Deep learning-
based segmentation and quantification of cucumber powdery mildew using
convolutional neural network. Front. Plant Sci. 10:155. doi: 10.3389/fpls.2019.
00155

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). “Focal loss for
dense object detection,” in IEEE Transactions on Pattern Analysis & Machine
Intelligence, 2999-3007, Piscataway, NJ: IEEE.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 39, 640–651.

Lu, J., Hu, J., Zhao, G., Mei, F., and Zhang, C. (2017). An in-field automatic
wheat disease diagnosis system. Comput. Electron. Agric. 142, 369–379. doi:
10.1016/j.compag.2017.09.012

Noh, H., Hong, S., and Han, B. (2016). “Learning deconvolution network for
semantic segmentation,” in 2015 IEEE International Conference on Computer
Vision (ICCV), Santiago: IEEE.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks
for Biomedical Image Segmentation. Cham: Springer.

Shi, J., Zhou, Y., and Zhang, Q. (2019). Service robot item recognition system based
on improved Mask RCNN and Kinect. Chin. J. Sci. Instrum. 40, 216–228.

Sun, K., Xiao, B., Liu, D., and Wang, J. (2019a). “Deep high-resolution
representation learning for human pose estimation,” in Proceedings of the
IEEE/CVFConference on Computer Vision and Pattern Recognition, Long Beach,
CA, 5693–5703.

Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., et al. (2019b). High-
resolution representations for labeling pixels and regions. arXiv. [preprint],
Avaliable at: https://arxiv.org/abs/1904.04514 (accessed April 19, 2022).

Frontiers in Plant Science | www.frontiersin.org 13 May 2022 | Volume 13 | Article 87635770

https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2019.2956516
https://doi.org/10.48550/arXiv.1412.7062
https://doi.org/10.3389/fpls.2019.00155
https://doi.org/10.3389/fpls.2019.00155
https://doi.org/10.1016/j.compag.2017.09.012
https://doi.org/10.1016/j.compag.2017.09.012
https://arxiv.org/abs/1904.04514
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-876357 May 19, 2022 Time: 13:59 # 14

Yao et al. Segmentation of Peach Diseases

Yang, X., Liu, M., Xu, J., and Zhao, L. (2018). Image segmentation
and recognition algorithm of greenhouse whitefly and thrip adults
for automatic monitoring device. Trans. Chin. Soc. Agric. Eng. 34,
164–170.

Yao, N., Ni, F., Wang, Z., Luo, J., Sung, W. K., and Luo, C., et al. (2021).
L2MXception: an improved Xception network for classification of peach
diseases. Plant Methods 17:36. doi: 10.1186/s13007-021-00736-3

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). “Pyramid scene parsing
network,” in Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, 2881–2890.

Zhong, W., Liu, X., Yang, K., and Li, F. (2020). Research on multi-target leaf
segmentation and recognition algorithm under complex background based on
Mask-R CNN. Acta Agric. Z. 32, 2059–2066.

Zhu, X., Hu, H., Lin, S., and Dai, J. (2019). “Deformable ConvNets V2: more
deformable, better results,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA: IEEE.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yao, Ni, Wu, Wang, Li and Sung. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 14 May 2022 | Volume 13 | Article 87635771

https://doi.org/10.1186/s13007-021-00736-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-915543 June 22, 2022 Time: 14:26 # 1

ORIGINAL RESEARCH
published: 28 June 2022

doi: 10.3389/fpls.2022.915543

Edited by:
Lei Shu,

Nanjing Agricultural University, China

Reviewed by:
Muhammad Musa Khan,

South China Agricultural University,
China

Tonghai Liu,
Tianjin Agricultural University, China

*Correspondence:
Chuanheng Sun

sunch@nercita.org.cn

Specialty section:
This article was submitted to

Sustainable and Intelligent
Phytoprotection,

a section of the journal
Frontiers in Plant Science

Received: 08 April 2022
Accepted: 24 May 2022

Published: 28 June 2022

Citation:
Li W, Yang Z, Lv J, Zheng T, Li M

and Sun C (2022) Detection
of Small-Sized Insects in Sticky

Trapping Images Using Spectral
Residual Model and Machine

Learning.
Front. Plant Sci. 13:915543.

doi: 10.3389/fpls.2022.915543

Detection of Small-Sized Insects in
Sticky Trapping Images Using
Spectral Residual Model and
Machine Learning
Wenyong Li1, Zhankui Yang1,2, Jiawei Lv1,3, Tengfei Zheng1,4, Ming Li1 and
Chuanheng Sun1*

1 National Engineering Research Center for Information Technology in Agriculture, Beijing, China, 2 College of Computer
Science and Technology, Beijing University of Technology, Beijing, China, 3 College of Information Science and Technology,
Zhongkai University of Agriculture and Engineering, Guangzhou, China, 4 College of Information, Shanghai Ocean University,
Shanghai, China

One fundamental component of Integrated pest management (IPM) is field monitoring
and growers use information gathered from scouting to make an appropriate control
tactics. Whitefly (Bemisia tabaci) and thrips (Frankliniella occidentalis) are two most
prominent pests in greenhouses of northern China. Traditionally, growers estimate the
population of these pests by counting insects caught on sticky traps, which is not
only a challenging task but also an extremely time-consuming one. To alleviate this
situation, this study proposed an automated detection approach to meet the need
for continuous monitoring of pests in greenhouse conditions. Candidate targets were
firstly located using a spectral residual model and then different color features were
extracted. Ultimately, Whitefly and thrips were identified using a support vector machine
classifier with an accuracy of 93.9 and 89.9%, a true positive rate of 93.1 and 80.1%,
and a false positive rate of 9.9 and 12.3%, respectively. Identification performance was
further tested via comparison between manual and automatic counting with a coefficient
of determination, R2, of 0.9785 and 0.9582. The results show that the proposed
method can provide a comparable performance with previous handcrafted feature-
based methods, furthermore, it does not require the support of high-performance
hardware compare with deep learning-based method. This study demonstrates the
potential of developing a vision-based identification system to facilitate rapid gathering
of information pertaining to numbers of small-sized pests in greenhouse agriculture and
make a reliable estimation of overall population density.

Keywords: pest detection, sticky trap, small objects detection, image processing, machine learning

INTRODUCTION

Integrated pest management (IPM) has been widely applied to the agricultural practices in the field
to minimize yield loss and reduce the use of chemical insecticides (Boissard et al., 2008; Espinoza
et al., 2016; Rustia et al., 2020). This approach utilizes underlying presence of natural enemies, or
likelihood of presence in the field (Wen and Guyer, 2012; Yang et al., 2021). Therefore, the accurate
detection of pest species is essential for maximizing the successful IPM.
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In greenhouses, one of the most common approaches used
for pest detection is using sticky traps to capture insects and
subsequently count the presence (and number) of target pest
species on these traps. Based on the density and severity of
pests in the greenhouse, growers apply appropriate control
tactics (Ebrahimi et al., 2017). However, traditional manual
identification and counting of insects on a trap is a time-
consuming and labor-intensive task. Given these underlying
challenges associated with the identification and counting of
insect pests in the greenhouse, an automatic pest detection
approach is vital to the modern agricultural production.

With advancements in imaging technology and computer
software, image-based approaches have been developed in recent
years for the detection of small-sized pests in greenhouse
agriculture, including traditional machine learning and deep
learning methods. In the term of traditional machine learning,
Solis-Sánchez et al. utilized shape features (e.g., eccentricity
and area) and adaptive threshold discriminant method to
detect whiteflies (Solis-Sánchez et al., 2010). To improve feature
robustness, they extracted invariant features to discriminate and
identify different insect species and an improved precision was
achieved compared to previous work (Solis-Sánchez et al., 2011).
Besides, Xia et al. (2012) introduced a multifractal analysis
approach for detecting whiteflies on a sticky trap in situ using
a mobile robot to collect insects. Furthermore, to improve pest
counting efficiency, Xia et al. (2015) proposed an automatic pest
identification method suitable for long term monitoring in situ
with less computational cost by applying YCbCr color space
for segmentation and Mahalanobis distance for identification
of pest species (Xia et al., 2015). Espinoza et al. proposed an
image processing system that involved object segmentation, as
well as morphological and color property estimations, to detect
whitefly and thrips (Espinoza et al., 2016). However, these
color-based object segmentation methods were not robust to
various conditions in the field, such as variable illumination and
sticky glue degeneration. Rather than directly counting the pests
captured on the traps, Sun et al. presented a counting algorithm
to treat trapped pests as “noise” in a two-dimensional (2D) image
with two-dimensional Fourier transform (2DFT) serving as a
specific noise collector (Sun et al., 2017), but it could not separate
pests from real environmental noises and thus did not resolve
the species identification problem. In contrast to conventional
machine learning methods, deep learning methods automatically
ascertain the comprehensive features from the training dataset,
avoiding complex image processing procedures during object
segmentation and labor-intensive feature engineering to meet
various outdoor conditions. Rustia et al. developed a cascaded
approach that detects and filters out non-insect objects from the
detected objects using a convolutional neural network (CNN)
detector in the first stage and then further classifies the obtained
insect objects into different species using a multi-class CNN
classifier (Rustia et al., 2020). Li et al. (2021) proposed a deep
learning model on the basis of the Faster R-CNN architecture to
optimize the detection accuracy of tiny pests in sticky trap images
from agricultural greenhouses.

Although the above-mentioned studies have achieved good
performance and solved some special problems, there is still space

for improvement in this area of research. For instance, these
methods based on traditional machine learning are not flexible
due to the object segmentation bases on threshold strategies. In
deep learning area, the typical classification models using the
CNN structure rely on large datasets to train the models, but
actually, it is hard to obtain a large labeled dataset in many
cases (Li and Yang, 2020). Furthermore, greenhouse pests such as
whitefly (Bemisia tabaci) and western flower thrips (Frankliniella
occidentalis) are small in size, which will cause information loss
during the multi-layer convolution in deep learning architecture.
Although many object detectors based on deep learning perform
well on medium and large objects, they perform poorly on
the task of detecting small objects (Tong et al., 2020). This
is because small objects lack appearance information needed
to distinguish them from background or similar categories.
However, comparing to image background, these tiny pests could
be regarded as many “novelty” objects in the sticky trapping
images. Since the spectral residual model is independent of
features, categories, or other forms of prior knowledge of the
objects, it has been widely in small object detection (Zhou and
Zhang, 2007; Cui et al., 2012; Deng and Duan, 2013). Therefore,
we investigate whether it can be also applied to detect very small
pests under natural greenhouse conditions.

In this study, we propose a spectral residual model-
based method in combination with a support vector machine
(SVM) classifier to identify the most important pests in
greenhouse of northern China, namely whitefly (Bemisia tabaci)
and thrips (Frankliniella occidentalis). This work provides
a major step toward population estimation in greenhouses
and providing accurate, rapid and reliable results to aid in
decision making processes for pesticide application and pest
management approaches.

MATERIALS AND METHODS

Data Collection
Red-green-blue (RGB) color images were captured automatically
by a pest monitoring device (Figure 1) in a greenhouse
located in Fangshan district, Beijing, China (39◦38′19.29′′N,
116◦01′29.98′′E). The device consisted of a solar panel, sticky
trap, image acquisition module and storage battery. The device
was deployed in the center of the greenhouse, and the height
of the sticky trap (25 × 30 cm, Pheorbio R©) was above the
crop at 1.5 m from ground level. The sticky trap is a typical
attractant trap used widely for collection of pests of interest
whereby insects became adhered to the sticky surface. The
experiment was carried out on green pepper plants cultivated
under greenhouse conditions.

Two species, adult-stage whitefly (B. tabaci) and thrips
(F. occidentalis) were selected as the detection target in this study.
Solid-color traps were used to avoid “noise” in the digital images
caused by grids, as previously reported elsewhere (Xia et al.,
2015; Espinoza et al., 2016). Images of the sticky trap (25 ×
20 cm) were collected and transmitted to a remote server at
2,560 × 1,920 pixels every 2 h daily (8:00 a.m. to 18:00 p.m.).
Generally, the sticky paper is replaced every 6 days to maintain
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FIGURE 1 | Image acquisition equipment and sticky trap for detection of
insect pests in greenhouse conditions (Li et al., 2021).

good trapping effectiveness. Therefore, in this study, eighteen
original images were selected to extract training samples from
six consecutive days, that is, three original images were selected
each day in the period (one image in the morning, midday, and
afternoon, respectively). Likewise, eighteen original images were
selected to create test samples from another six consecutive days.
Thereafter, sample images of three classes, two target species
and background, were extracted with a square box of 32 × 32
pixels manually from the original images. Ultimately, 500 sample
images for each class, totally 1,500 sample images, were randomly
selected from the first eighteen original images to construct the
training dataset. And all target species (whitefly and thrips) on
the second eighteen original images were used as test dataset.

Detection Method
The proposed detection method consisted of three stages:
candidate object location, feature extraction and multi-class
recognition. The candidate object location is a pipeline to detect
the location of objects (section “Candidate Object Location”),
feature extraction devotes to extract feature of the detected
objects (section “Feature Extraction”) and these obtained objects
were then further classified into whitefly, thrips and background
in the stage of multi-class recognition (section “Multi-Class
Recognition Model”). These procedures are outlined in the
following subsections.

Candidate Object Location
Before performing feature extraction and pattern recognition, the
locations of candidate targets within the image are determined.
The locationpipeline in the sticky trapping images involved
several subroutines, as shown in Figure 2. First, a color-based
segmentation approach is design to extract the sticky paper
region from the original image. Then, the sticky trapping image

is divided into sub-block images and objects in each sub-block
image are locally detected using a saliency region detection
model. Subsequently, a threshold is determined and used to
obtain the location of the objects.

Extraction of Sticky Paper Region
The sticky paper region, denoted as the region of interest
(RoI) in this study, is extracted from the original image. First,
the original image (Figure 3A) is transformed into YCbCr
color space from the RGB color space and the RoI could be
distinguished from background based on the Cb component of
YCbCr color space (Figure 3B). Subsequently, the Cb component
is processed into a binary image (Figure 3C) using the Ostu
method (Otsu, 1979) and a morphological fill operation. Finally,
the RoI image (Figure 3D) is obtained by performing a logical
conjunction between the original image (Figure 3A) and the
binary image (Figure 3C).

Image Blocking
The small-sized insect pests in this study can be distinguished
more accurately at a small scale as opposed to a global (i.e., whole
RoI) image. Thus, the RoI image is divided into multiple sub-
blocks using a sliding window and each block size was 64 × 64
pixels, as shown in Figure 4.

Saliency Region Detection
In the sub-block image, small-size insects in local window were
regarded as “novelty” objects or saliency regions. These insects
can be identified and localized using the saliency region detection
method. In this study, a spectral residual model (Zhou and
Zhang, 2007) is used to locate the small-size insects in each sub-
block image. To construct the saliency map, the spectral residual
is extracted by analyzing the log-spectrum of the input sub-block
image. Given a sub-block image I(x), the saliency map image S(x)
can be obtained using the following equations:

A(f ) = | F[I(x)] | (1)

P(f ) = ϕ(F[I(x)]) (2)

L(f ) = log(A(f )) (3)

R(f ) = L(f ) − hn(f )∗L(f ) (4)

S(x) = g(x)∗F−1
[exp(R(f )+ iP(f ))]2 (5)

where F and F−1 denote the Fourier Transform (FT) and Inverse
Fourier Transform (IFT), respectively. A(f ) and P(f ) denote the
amplitude and phase spectrum of the image, respectively. L(f )
and R(f ) denote the log spectrum and spectral residual. hn(f )
and g(x) denote local average and Gaussian filter, respectively.

The pipeline of saliency region detection is illustrated in
Figure 5. First, the log-spectrum using two-dimensional fast
Fourier transform (2DFFT) and a logarithm to the input sub-
block image (Figure 5A) are calculated. As shown in Figure 5B,
most of the log-spectrum distribute in the low frequency portion
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FIGURE 2 | Flow chart of the candidate object location pipeline from source image to detection results.

FIGURE 3 | Illustration of the sticky trap region extraction using image processing technology: (A) original image, (B) Cb component in YCbCr color space, (C)
binary image, and (D) extraction result of the specific region of interest.

FIGURE 4 | Image blocking diagram. (A) This sticky trapping image is divided into a specific region of interest with a specific scale and (B) an illustration of an
enlarged sub-block image.

FIGURE 5 | Illustration of saliency region detection for insect pests collected on sticky traps and identified with image acquisition software: (A) a sub-block image
from the sticky trap, (B) log-spectrum distribution of the sub-block, (C) the spectral residual image, (D) a saliency map of the insect pests and (E) binary image of
the saliency map.
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(white regions of the center), which represents the input image
includes slowly changing background and a few salient objects.
The spectral residual is obtained by the log-spectrum minus
the average spectrum which can be approximated using a
local average filter (e.g., step size = 3). However, it can be
found from Figure 5C that the spectral residual contains high
frequency information, which is sharply different from the
log-spectrum. After using a two-dimensional inverse Fourier
transform (2DIFFT), the saliency map in spatial domain is
constructed and the novelty objects (candidate insects in this
study) of the image can be seen more clearly in the saliency
map (Figure 5D).

Image Binarization
The saliency map is an explicit representation of candidate insects
in the image. Furthermore, there may be multiple objects within a
saliency region. In this section, a threshold segmentation method
combined with watershed theory (Meyer, 1994; Dorj et al., 2017)
is designed to detect insects within this saliency region. First,
the saliency map image is transformed into a binary image
using an adaptive threshold value and then watershed algorithm
(Tarabalka et al., 2010; Zhang et al., 2014) is selected to segment
multiple objects. Since the intensity of the histogram of the
saliency map only had a peak and the peak is close to the darkest
side, as shown in Figure 6, the threshold value is adaptively
determined by using a triangle theory. The steps are as followed:

S1: Constructing a line from the peak to the first darkest point
on the intensity histogram.

S2: Calculating the distance from each point of
histogram to the line.

S3: The location Ta which has the largest distance d is the
threshold value.

A binary image could be obtained by using the proposed
threshold method. Furthermore, the size of target pests is
approximately from 5 pixels to 25 pixels in a sub-block image.
Therefore, non-target objects whose sizes are less than 5 pixels
or more than 25 pixels are removed from the binary image.
Ultimately, the remaining isolated individuals represent the
location results (Figure 5E).

Feature Extraction
To identify insect species on the RoI image, all isolated insects
are segmented and their features are extracted from sub-
block images. As shown in Figure 7, the sample pest i on
a sub-block image (Figure 7A) could be segmented into an
isolated pest (Figure 7C) by performing a logical conjunction
operation between the sub-block image and the detected region
(Figure 7B). As shown in Figure 7C, the shape of segmented
object is different from its original appearance because of
inaccurate segmentation for some pixels of the insects, especially
in the boundary of insect region. Therefore, the insect contours
are not smooth and the insects can’t be accurately identified
based solely on shape feature. However, for the two species
(whitefly and thrips), different color variation occurs as shown
in Figure 4B. Therefore, the color feature is a critical factor

to identify the insect species. To determine the optimal color
feature, four color models widely used in computer vision-based
applications (Kurtulmus et al., 2011; Hu et al., 2012; Reyes
et al., 2017; Tan et al., 2018) are evaluated: RGB (red, green and
blue), HSV (hue, saturation and value), YCbCr (luminance, blue-
difference and red-difference) and L∗a∗b∗ (lightness, green-red,
and blue-yellow).

The features of each segmented sample are represented by
average values of R, G, and B components in RGB space, H, S,
and V component in HSV space, Y, Cb, and Cr components in
YCbCr space, L∗, a∗, and b∗ in L∗a∗b∗ color space, respectively.
The transformations are shown in Eqs (6)–(9).

R =
∑nj

i=1 Ri

nj
, G =

∑nj
i=1 Gi

nj
, B =

∑nj
i=1 Bi

nj
(6)

H =
∑nj

i=1 Hi

nj
, S =

∑nj
i=1 Si

nj
, V =

∑nj
i=1 Vi

nj
(7)

Y =
∑nj

i=1 Yi

nj
, Cb =

∑nj
i=1 Cbi

nj
, Cr =

∑nj
i=1 Cri

nj
(8)

L∗ =
∑nj

i=1 L
∗

i
nj

, a∗ =
∑nj

i=1 a
∗

i
nj

, b∗ =
∑nj

i=1 b
∗

i
nj

(9)

where R, G, B, H, S, V , Y , Cb, Cr L∗, a∗, and b∗ denote the
average value of corresponding color component over all pixels.
nj denotes the number of image pixel of the jth segmented
insect sample. The three average components of a sample in each
color space constructed a three-dimensional vector fi1, fi2, fi3
, as shown in Figure 7D, which is used as the input of the
classifier (discussed in Section “Multi-Class Recognition Model”)
for species classification.

Multi-Class Recognition Model
After features extraction, a following step is to develop an
efficient model to identify different insect species. In this study,
the supervised learning model, support vector machine (SVM)
(Chen et al., 2010; Li et al., 2010; Saruta et al., 2013), is used
as a classifier to discriminate objects between whitefly, thrips or
background. For the SVM model, all samples are viewed as points
in p-dimensional space and these points in separate categories are
divided through a clear gap that is as wide as possible (Rumpf
et al., 2010). New examples are then mapped into the same space
and predicted to a certain category based on which side of the
gap they fall (Larese et al., 2014). In this study, each sample in
the training set is marked as belonging to a whitefly, a thrips
or background object and all samples are formed into pairs
of features-label examples such

{
xi, yi

}
, where xi is the three-

dimensional feature vector and yi is a class label. Our ultimate
goal is to find the “maximum-margin hyperplane” that can divide
the groups of samples. One of many possible hyperplanes can be
expressed by the following equation:

f (xi) = wTxi + b = 0 (10)

Frontiers in Plant Science | www.frontiersin.org 5 June 2022 | Volume 13 | Article 91554376

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-915543 June 22, 2022 Time: 14:26 # 6

Li et al. Detecting Small-Sized Insects

FIGURE 6 | Determination of the threshold value for each saliency map.

FIGURE 7 | Images documenting feature extraction of individual insects. (A) Sub-block image, (B) a detected region, (C) an isolated insect, (D) feature vector in
color space.

where w ∈ Rd and b ∈ R. A support vector classifier selects
the hyperplane that maximizes the margin. This optimization
problem can be posed as follows:

min
w,b

∣∣∣∣w∣∣∣∣, yi(wTxi + b)− 1 ≥ 0 (11)

In this study, the LIBSVM package (Chang and Lin, 2015),
which supports support vector classification (C-SVC, mu-SVC)
and regression (epsilon SVR, nu-SVR), is used to conduct the
identification model development.

Performance Evaluation
The detection results are evaluated using metrics, such as
the true positive rate (TPR), false positive rate (FPR) and
detection accuracy. These metrics have been widely used in object
classification and detection areas (Xia et al., 2012; Nasirahmadi
et al., 2017; Shrestha et al., 2018). TPR refers to the effectiveness
of a classifier to identify positive samples, whitefly and thrips in
this study. A high TPR value means that most of the positive

samples are detected successfully. While FPR indicates that how
effectively a classifier could identify negative samples. A low FPR
value indicates the identification results contain a low percentage
of false alarms and a high percentage of true positives. These
parameters are calculated as follows:

TPR =
TP

TP + FN
(12)

FPR =
FP

TN + FP
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

where TP, TN, FP, and FN denote true positive (correctly
identified), true negative (correctly rejected), false positive
(incorrectly identified) and false negative (incorrectly
rejected), respectively.
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FIGURE 8 | Feature distribution of all the training samples. (A) Sample distribution in RGB color space, (B) sample distribution in L*a*b* color space, (C) sample
distribution in YCbCr color space, and (D) sample distribution in HSV color space.

RESULTS

Sample Distribution in Different Color
Space
After saliency region detector scanning across all images, the
locations of most potential objects are detected. To identify those
objects into different species, the feature distribution of whitefly,
thrips and background are analyzed in four color spaces. The
component of R, G, a∗, b∗, Cb, Cr, H, S in RGB, L∗a∗b∗, YCbCr
and HSV color space are illustrated in Figure 8. The distributions
of different features showed that there is considerable overlap
between targets (whitefly and thrips) and background in the RGB
color feature space. Therefore, it is difficult to classify whitefly and
thrips from the background category (Figure 8A). As shown in
Figure 8B, whitefly can be separated from background category
in L∗a∗b∗ color space but thrips still can’t be separated from
background category. Furthermore, the distribution of YCbCr
features was similar to L∗a∗b∗ color space and thrips can’t be
separated from category. In addition, there is some confusion
between whitefly and thrips (Figure 8C). Figure 8D documents
the distribution of the three categories in HSV color space, which

shows that it is relatively easy to classify the three categories.
Therefore, the components of H, S and V are used to detect
different insect species in current study.

Detection Results
The images captured from the field are complicated due to
variable conditions such as unstable illumination, light reflection
and various objects. Figure 9 shows some examples of insect
detection of different species in three sub-blocked images with
different image quality.

As shown in Figure 9A, it is a good-quality image with
smooth background. However, most of background in Figure 9B
is whitened because of the sticky glue degenerated over time,
and light reflection causes low-quality image in Figure 9C, which
brings difficulties to the insect detection. The location results
using the saliency region detection method are numbered as
shown in Figures 9D–F, respectively. Every identified object is
located using a bounding box, red for thrips, blue for whitefly
and green for background category (non-target) in Figures 9G–I,
respectively. The results showed that all whiteflies and thrips
in Figure 9A are detected successfully. However, there were
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FIGURE 9 | Original images, location results and detection results of three image samples with different quality. (A,D,G) Are for sample 1, (B,E,H) are for sample 2,
(C,F,I) are for sample 3.

some missing detections marked with black ellipse in Figure 9B.
Furthermore, some spots (marked with black rectangle) caused
by sticky glue are falsely classified as whiteflies in Figure 9C.

The insect detection performance is evaluated using TPR,
FPR and accuracy which are described in section “Performance
Evaluation.” Initially, the two pest species in the testing dataset
are separately marked manually and subsequently the evaluation
metrics are calculated according to the detection results using
Eqs (11)–(13). The overall detection performance on the three
categories is shown in Table 1. The TPRs for whitefly and
background categories were over 90% and the lowest TPR rate
of 80.1% is obtained by the thrips category. The reason may

be that some insects are attached to the sticky traps for a long
time, and they became obscure due to weathering and dryness
causing lack of detection. Additionally, the size of thrips is
particularly small, ranging from 5 pixels to 20 pixels, such that
it merged with the background thereby becoming indistinct. The
feature distribution between the background and thrips in section
“Sample Distribution in Different Color Space” may further verify
the result. However, these recently trapped insects are easier to
locate and identify.

The detection method for all categories produced false
positives. The lowest FPR of 9.9% is for whitefly but is higher
for thrips (12.3%) and background detection (11.6%). These are
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TABLE 1 | Detection performance for small-size pests (whitefly and thrips) by the
SVM classifier using field sticky trap images (n = 18, mean ± SD).

Objects Performance metrics

TPR FPR Accuracy

Whitefly
Thrips
Background

0.931 ± 0.031
0.801 ± 0.037
0.930 ± 0.021

0.099 ± 0.019
0.123 ± 0.039
0.116 ± 0.037

0.939 ± 0.015
0.898 ± 0.022
0.933 ± 0.014

typically caused by degeneration of glue on the sticky trap and
these produced “noise” in the form of point, stripe and bulk spot.
The latter two noises could be easily filtered by this proposed
location method. However, spot noises are easier misclassified
into pest targets, especially whiteflies due to their size and color
being similar to the targets.

The accuracy metric for whitefly is the highest at 93.9%
followed by 93.3% for background category and 89.8% for thrips.
The identification accuracy is further evaluated by correlation
analysis between the proposed method and manual counting,
as shown in Figure 10. The coefficient of determination, R2,
reached values of 0.9785 and 0.9572 for whitefly and thrips in
the test dataset, respectively. Compared with manual counting,
the proposed detection algorithm tended to overestimate the
abundance of whitefly and underestimate thrips. Additionally,
there are higher FPR for whitefly and increased TPR for thrips
in the test dataset.

DISCUSSION

Principle and Feasibility Analysis
This study clearly demonstrates the utility of using a remote
imaging approach combining image processing and pattern
recognition technology to locate and identify whitefly and thrips
on sticky trap in greenhouse conditions. The detection of
whitefly and thrips on the sticky trap is primarily composed
of two procedures: candidate target location and subsequent
identification. Compared with detection in a large image, the
small-sized whiteflies and thrips are more accurately recorded
on small visual areas. The image blocking procedure is included
in the study to split original image into small sub-blocking

images to increase area occupancy rate. From the perspective of
information theory, an image consists of two parts: the novelty
part (saliency regions) and redundant information (Zhou and
Zhang, 2007). The background in a sub-blocking image is the
statistical redundant component and whitefly and thrips in the
image could be regarded as the novelty component. There are
different spectral responses for the novelty and redundant parts of
the frequency domain. After removing the frequency response of
the redundant part from the whole spectrum, the novelty part can
be obtained. The most important advantage is that the saliency
region detection model is independent of species, features, or
other forms of prior knowledge of the objects.

The second step after object location is multi-class
identification. The segmented objects in the first step not
only contain whitefly and thrips, but also include the non-target
category. However, the identification of whiteflies and thrips
from non-targets is challenging and feature extraction is a
key step in the classification process. Similar studies on the
insect detection extracted shape features such as size, body
eccentricity and solidity to classify species (Solis-Sánchez et al.,
2011; Wang et al., 2012; Espinoza et al., 2016). However, due
to the small size characteristics of whiteflies and thrips, the
contours of the pests are not smooth after they are extracted
from background and could not be accurately identified based
on shape features. Despite the challenges, color feature analysis
revealed different feature distribution in HSV color space and
three color components (H, S, and V) are used as feature input of
SVM classifier to identify whiteflies and thrips in this study.

Robustness Analysis
The image-based pest identification method has previously
demonstrated high performance on collected images in the
laboratory conditions (Cho et al., 2007; Boissard et al., 2008).
However, field condition are very different from the laboratory
environment since the sticky trap images captured in greenhouse
can be influenced by various factors including sticky glue
degeneration, light reflection and unstable variable illumination
conditions (Xia et al., 2012). For example, Cho et al. (Cho et al.,
2007) utilized the RGB and YUV color model to separate three
different species. In addition, insect segmentation by YCbCr color
model has revealed better results than other methods among
different color models (Xia et al., 2015), but these segmentation
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FIGURE 10 | Comparison of results between the proposed detection method and manual counting for (A) whitefly and (B) thrips using the testing dataset.
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FIGURE 11 | Pest segmentation results of a sub-blocking image with noise by different methods. (A) Original image, (B) segmentation result of YCbCr color model,
(C) segmentation result of the proposed method.

TABLE 2 | Comparison between the proposed and previous methods for detection of whitefly and thrips using sticky trap images.

Method Imaging
scene

Segmentation Features Classification
method

Pest species Average
accuracy (%)

Qiao et al. (2008) Field-based Thresholding Color and size Comparative method Whitefly 76.9

Xia et al. (2015) Lab-based Thresholding Color and size Mahalanobis distance Whitefly, aphids,
thrips

91.0

Espinoza et al. (2016) Lab-based Thresholding Morphology and color ANN Whitefly and
thrips

94.0

Li et al. (2021) Field-based No Deep learning automatically Softmax Whitefly and
thrips

94.4

The proposed method Field-based Spectral residual model Color SVM Whitefly and
thrips

91.9

methods based on the color model have some shortcomings when
applied into field images. As shown in Figure 11A, there is some
noise in upper part of the image caused by degeneration of sticky
glue and light reflection. The segmentation result (Figure 11B)
using the YCbCr color model shows these objects (marked with
black ellipse in Figure 11A) are entirely missed. However, these
objects in the noise region still can be segmented by the proposed
method (Figure 11C). Although the multifractal analysis method
was designed against noise when used under field conditions and
showed high performance regarding accuracy, only one species
of pest, whiteflies, had been detected and the image collected
device and procedure was relatively complex (Xia et al., 2012).
Rather than directly counting the pests captured on the traps, Sun
et al. (2017) treated trapped pests as noise with 2DFT serving
as a noise collector. This method obtained a high correlation
with human counting when there was no other noise, but the
Fourier transform in a case when there are noise and pests at low
population density is similar to another case when pests at high
population density and no noise. In addition, it could not address
the problem associated with multi-class identification.

In current study, the pests are regarded as novelty objects
and located by the saliency region detection method which is
independent of color features and other forms of prior knowledge
of the objects. Therefore, good robustness of pest segmentation in
field images could be obtained by the proposed method.

Conversely, since some pests are attached to the trap for a
long time, there is limited resolution in the imaging and the
pest region in the saliency map is unclear, which will cause
missing detection after binary image processing. Contrasting
with the Otsu algorithm (Otsu, 1979), the threshold selected by
the triangle method (section “Candidate Object Location”) can
improve the detection rate since it utilized the single-peaked
feature of a histogram, but there are still some pests with low
novelty that are not reliably detected. In actual application, the
optimal option is replacement of the sticky trap on schedule
to avoid loss of resolution and missing data due to sticky
trap degeneration.

Comparisons With Previous Methods
Regarding to insect pest detection using sticky traps, several
image-based methods had been reported, including handcrafted
feature-based and deep learning-based methods. However, it is
difficult to compare the performances of these previous studies
with the proposed one quantitatively because of the use of
different dataset which is not publicly available. Therefore, a
qualitative analysis had been made in this study. Comparisons
of the proposed approach with some methods for detecting
greenhouse pests, such as whitefly and thrips, using sticky
trap images are summarized in Table 2. Two previous method
proposed by Xia et al. (2015) and Espinoza et al. (2016) used
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images scanned in the laboratory as research materials, but the
comparison showed that the prediction results of the proposed
method outperformed the method of Xia et al. (2015). While
the detection results reported by Espinoza et al. (2016) presented
the higher accuracy, the study used thresholding method to
segment targets, which causes the results were likely influenced
by the segmentation threshold. Qiao et al. (2008) reported a fact
that a small threshold loses relevant information, while a large
threshold produces more noise, so its accuracy is much lower
than that of the proposed method. It must be acknowledged
that the performance of the proposed model is lower than that
of deep-learning-based method reported by Li et al. (2021),
however, the method based on deep learning technology has high
complexity and depends on high-performance hardware, such
as GPUs1.

Pest Identification and Management
During our experiments in a greenhouse planted with pepper,
whitely and thrips are the two main pests. Although only whitefly
and thrips are identified in this study, the proposed method can
have additional applications into the detection of multiple pests
in greenhouse agriculture. The methodology for the detection of
more than three species is similar to that proposed in section
“Detection Method” except that more categories will be required
to extract information to allow for the construction of a new
baseline dataset.

In ecological studies, IPM usually relies on pest population
density assessment in a given area and is often estimated based on
trap counts (Petrovskii et al., 2012; Pinto-Zevallos and Vänninen,
2013). Therefore, precision identification and counting of pests
in a sticky trap image is of critical importance for the estimation
of population density. However, the relationship between trap
counts of whitefly and thrips and the actual population
density in the greenhouse is not clear. Such validation studies
would form a critical future basis for pest management using
image processing of pest populations in greenhouses (or open
field situations).

CONCLUSION

This study proposed a novel approach for the detection of adult-
stage whiteflies and thrips on sticky traps in greenhouses. The
approach consisted of three modules: object location, feature
1 https://www.nvidia.cn/

extraction and multi-class recognition. The sticky trap image was
divided into sub-block images and novelty objects within each
sub-block image were located using a saliency region detection
model. Furthermore, average values of three components in HSV
color space were extracted to train a SVM classifier. Ultimately,
HSV color features were calculated and used as input of the
trained SVM model to identify whether a detected object was a
whitefly or a thrips.

The study shows that adult thrips can be identified with a
TPR of 80.1%, FPR of 12.3% and accuracy of 89.8%. Better
performance is attained for the identification of whitefly, with a
value of 93.1% for TPR, 9.9% for FPR, and 93.9% for accuracy.
The proposed method in this study provides the possibility of
counting different species of pests in greenhouse conditions
by an automated pipeline, alleviating the time-consuming and
inaccurate approach associated with grower-based identification
of minute insect pests. The findings of the study contribute
valuable information pertaining to population density estimation
of small insect pests in greenhouse conditions and have broad
utility to other systems allowing for decision making processes
regarding integrated pest management approaches.
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Resistance characteristics of 
broad-leaf crop canopy in 
air-assisted spray field and their 
effects on droplet deposition
Shuo Wu , Jizhan Liu *, Junquan Zhen , Xiaojie Lei  and 
Yao Chen 

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, 
Jiangsu University, Zhenjiang, China

Air-assisted spray technology is widely applied in high-efficiency pesticide 

applications. The resistance characteristics of the crop canopy reflect its 

energy dissipation effect on the assisted airflow, connecting the structure 

of the crop canopy, assisted airflow velocity, and droplet deposition 

effect. Using a common broad-leaf crop canopy as the research object, 

the resistance characteristics of the crop canopy in the air-assisted 

field were investigated in this study by performing theoretical analysis 

and wind tunnel tests. Further, the feasibility of using the resistance 

characteristics of the crop canopy was assessed to evaluate its droplet 

deposition effect. The results showed that under the conditions of 

different number of leaf layers and initial leaf azimuth angles, the canopy 

pressure drop experiences a non-linear increasing trend with increasing 

assisted airflow velocity and that its regression function conforms to the 

Darcy–Forchheimer function. Moreover, when the initial azimuth angles 

of single- and multi-layer leaves were 90°–270°, the change rate of 

the canopy pressure drop with airflow velocity was 7–9 m/s, and there 

was a critical wind speed. However, with an increasing number of leaf 

layers in the crop canopy and changes in the initial leaf azimuth angle, 

the corresponding changes between the maximum canopy pressure drop 

and resistance coefficient were non-linear. Thus, it is proposed that the 

resistance characteristics of multi-layer leaves cannot be  quantified as 

the results of the linear superposition of the resistance characteristics 

of several single-layer leaves—that is, it should be  regarded as a whole 

research object. Combined with the analysis of the influence of the crop 

canopy resistance on droplet deposition, it is considered that when the 

crop canopy has multiple leaf layers in the airflow direction, the existing 

air-assisted spray technology cannot guarantee droplet deposition and 

canopy penetration simultaneously.

KEYWORDS

air-assisted spray, crop canopy, resistance characteristics, droplet deposition, 
pesticide spraying
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Introduction

Crop protection is an important agronomic practice that helps 
ensure crop yield and quality, with pesticide usage being one of the 
more effective and widely employed crop-protection methods 
(Davydov et  al., 2018). However, droplet drift, poor canopy 
penetration, and poor target deposition in pesticide spraying can 
lead to problems such as pesticide and water wastage, 
environmental pollution, and food safety concerns 
(Carvalho, 2006).

Air-assisted spray technology can reduce droplet drift and 
improve canopy penetration and droplet deposition uniformity by 
transporting pesticide droplets to the target surface and driving 
canopy leaves by means of airflow. This method is simple, reliable, 
and easy to control, making it one of the most widely used spray 
techniques (Hong et  al., 2018). Its integration with pesticide 
adjuvants, electrostatic spraying, targeted spraying, variable-rate 
spraying, and other technologies has also become a development 
trend in crop protection research (Krogh et al., 2003; Stajnko et al., 
2012; Patel, 2016; Abbas et al., 2020).

However, Foqué et al. compared the droplet deposition results 
of vertical sprays with and without air assistance and found that, 
in some cases, vertical spray deposition was significantly better 
without air assistance than with it (Foqué et al., 2012). Similarly, 
our team has been engaged in the research and development of 
strawberry pesticide spraying technology and equipment for some 
time. We found that a continuous increase in airflow velocity does 
not always improve droplet deposition (Wang et  al., 2020), 
because, although the ability of the airflow to change the physical 
characteristics of the pesticide—such as the droplet size and 
motion—effectively to improve the canopy penetration and 
deposition, the motion of crop leaves affected by the assisted 
airflow force has an equally important effect on droplet deposition. 
Not all of the crop leaf motion affected by the assisted airflow force 
in air-assisted spray technology is positive (Derksen et al., 2008).

Therefore, the authors conducted related research on the 
motion characteristics of strawberry leaves in an air-assisted spray 
field and their effects on droplet deposition (Wu et al., 2021). 
Efficient droplet deposition of the crop canopy required that when 
a leaf moved due to the assisted airflow, contact was ensured 
between the front and back of the leaves and the droplets, and a 
reasonable state of motion was achieved to ensure effective 
deposition. Moreover, the initial position and attitude of crop 
leaves relative to the assisted airflow affected their state of motion. 
When the initial azimuth angle of the strawberry leaves was 
90°–270°, the airflow more than the critical wind speed drove the 
leaves to produce a high-frequency, high-amplitude state of 
vibration that produced a good deposition effect for droplets of 
small diameters.

Although the initial position and attitude of crop leaves 
relative to the assisted airflow and speed of the assisted airflow 
affect droplet deposition, it can be difficult to obtain the initial 
position and attitude of all leaves in the crop canopy in real time. 
Moreover, the group effect of crop leaves makes the movement of 

the group significantly different from that of a single leaf. 
Consequently, it can be difficult to evaluate the droplet deposition 
effect of the crop canopy directly through the initial position and 
attitude of the leaf group relative to the assisted airflow and 
assisted airflow velocity.

Based on droplet deposition methods—such as the use of 
water-sensitive paper—to evaluate the crop canopy droplet 
deposition effect under different air-assisted spray conditions, an 
efficient deposition mechanism can be achieved by combining 
high-speed photography with droplet tracing technology, a widely 
used research method in the field of crop protection (Sánchez-
Hermosilla and Medina, 2004; Wang et al., 2008). However, this 
traditional method can be hampered by expensive equipment, 
cumbersome processes, and repetition. How to realize the rapid 
and low-cost evaluation of the effect of droplet deposition on the 
crop canopy remains a difficult technical problem.

The resistance characteristics of the crop canopy reflect its 
effects on the airflow energy dissipation at the macro level, which 
are closely related to the characteristics of the crop canopy—that 
is, the number of leaves, their initial positions, and the attitude of 
the leaves relative to the assisted airflow—and assisted airflow 
velocity (Lhomme, 1991; Fang et al., 2020). In air-assisted spray 
operations, the airflow and droplets interact with each other, so 
the resistance characteristics of the crop canopy are closely related 
to the droplet deposition effect (Liu et al., 2021a). Clearly, the 
resistance characteristics of the crop canopy can easily form the 
basis for establishing the relationship among the crop canopy 
structure, assisted air velocity, and droplet deposition effect. In 
addition, it is easy to perform rapid measurement at low cost.

Consequently, a broad-leaved crop canopy was considered the 
research object in this study. Based on the relevant theories and 
wind tunnel tests, the resistance characteristics of single and 
multi-layer leaves in the assisted airflow field were studied. The 
effects of the number of leaf layers, initial position and attitude of 
the leaves relative to the assisted airflow, and effect of the assisted 
airflow velocity on the resistance characteristics were analyzed. 
The feasibility of evaluating the deposition effect of crop canopy 
droplets based on the resistance characteristics of the crop canopy 
was assessed. This research provides a theoretical basis for and 
insight that will facilitate rapid, low-cost research and development 
of crop protection technology and equipment.

Theory

Motion of broad-leaf crop leaves in 
air-assisted spray field

As leaves are the basic elements of the crop canopy, their 
motion in the air-assisted spray field constitutes the mathematical 
basis of relevant theoretical and experimental studies. In a 
previous study, we proposed a visual descriptive method for leaf 
motion in an air-assisted spray field, as detailed below (Wu 
et al., 2021).
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As shown in Figure 1, the base coordinate system, ,X Y Ze e e  
is used to represent zero rigid bodies such as the plant roots or 
ground. The 

eX -axis in the base coordinate system, ,X Y Ze e e  is 
parallel and opposite to the horizontal component of the airflow, 

.


V  Concurrently, the dynamic relative reference system, OXYZ, 
for leaf motion can be  established in the base coordinate 
system, .X Y Ze e e

The dynamic relative reference system, OXYZ, has the 
following features: Point O is the mass center of the leaf; the 
OX-axis is parallel to the horizontal component of the airflow, 

,


V  and has the opposite direction; the OY-axis is vertically 
orientated; the elliptic ABCD simplifies the representation of 
the leaf; and line segments CD and AB represent the long and 
wide axes of the leaf, respectively. Line segment CE represents 
the slender stem, and point C represents the thin and short 
petiole connecting the stem and the leaf. The angle between the 
normal vector, ,n  on the front surface of the leaf, ABCD, and 
the OZ-axis is the inclination angle, θ, of the leaf. The angle 
between the normal vector, ,n  on the front surface of the leaf, 
ABCD, on the OXY horizontal plane and the OX-axis is the 
azimuth angle, φ, of the leaf, counterclockwise being the 
positive direction. The characteristic normal vector, ,n  of the 
position and posture of the leaf relative to the dynamic relative 
reference system, OXYZ, is (sinθcosφ, −sinθsinφ, cosθ), and 
the position vector, ,r  of the dynamic relative reference system, 
OXYZ, relative to the base coordinate system, ,X Y Ze e e  is (xo, 
yo, zo). Therefore, the position and posture of the leaf relative to 
the base coordinate system, ,X Y Ze e e  can be expressed by (xo, 
yo, zo, sinθcosφ, sinθsinφ, cosθ), characterized by the 
vector basic.n

The motion of the leaf in the base coordinate system in the 
air-assisted spray field can be expressed as follows:

 n A nbasic first trans basic final, ,× = � (1)

where 
nbasic first,  is a vector of the initial position and posture 

of the leaf relative to the base coordinate system, ,X Y Ze e e  at the 
beginning; 

nbasic first,  is a vector of the initial position and posture 
of the leaf relative to the base coordinate system, ;X Y Ze e e  and 
Atrans  is the position and posture change matrix of the leaf as 

influenced by the airflow relative to the base coordinate 
system, .X Y Ze e e

Mechanism of capturing droplets in crop 
leaves

The process of droplet capture in crop leaves can 
be complicated, with the droplets, airflow, and leaves interacting 
during contact. However, the contact between leaves and droplets 
is the premise of effective deposition. To simplify the analysis, only 
the influence of the airflow on leaf movement was considered in 
this study, ignoring the influence of the airflow on the droplets and 
that of the droplets and leaves on the airflow during the contact 
process between the leaves and droplets.

In a previous study, as shown in Figure 2—combined with the 
relevant research conclusions of Dorr et al.—the contact process 
between droplets and plant leaves was thought to occur in three 
stages: that is, the pre-contact, spreading, and rebound, 
sputtering, or deposition stages (Dorr et  al., 2016; Wu et  al., 
2021). Droplets are accelerated by the nozzle injection pressure 
and sprayer airflow in the pre-contact stage, having initial kinetic, 
potential, and surface energies, with the total energy being E1. 
After a droplet collides with a leaf surface, the initial kinetic 
energy and potential energy of the droplet are converted into 
surface energy because of the enlargement of the droplet surface 
area, with the energy dissipation during the collision being Ediss,0–

1. When the diffusion radius reaches its maximum, the droplet 
begins to shrink under the action of surface tension, during 
which the energy dissipation is Ediss,1–2.

When the droplet reaches its maximum contraction stage, the 
total energy, E2, can be expressed as follows:

E E E E2 1 0 1 1 2= − −− −diss diss, , � (2)

When E2 is not sufficiently large to overcome the constraints 
of the droplet potential energy, adhesion to the leaf, surface 
tension, and other factors, the droplet does not separate from 
the leaf, but rather is effectively deposited on its surface. The 
motion of the leaf influences the initial total energy, E1, of the 
droplet as well as the state change of the droplet energy 
dissipation during its contact with the leaf, thus influencing the 
effective deposition of droplets on the leaf surface. Efficient 
droplet capture by the crop canopy requires movement of the 
leaves, induced by the sprayer airflow, ensuring that both the 
front and back surfaces of the leaves make contact with the 
droplets—that is, reasonable motion of the leaves ensures the 
effective deposition of spray droplets.

FIGURE 1

Visual description of leaf movement of broad-leaved crops in 
air-assisted spray field.
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As shown in Figure 3, in order to obtain sunlight throughout 
the day fully, the crop leaves generally grow around. According 
to the definition of the azimuth angle of the leaf in Section 
“Motion of broadleaf crop leaves in air-assisted spray field,” the 
initial azimuth angles of the leaves in the crop canopy relative 
to the assisted airflow are generally 0°–360°. In this study, the 

crop canopy was stratified along the direction of the assisted 
airflow and droplets. The assisted airflow and droplets will 
attenuate after passing through each leaf layer. In an actual crop 
canopy, the leaves will overlap, and simultaneously, multiple 
leaves in a local area range will jointly affect the droplet capture 
process of the next leaf layer. To analyze the droplet capture 

FIGURE 2

Schematic of droplet capture by leaves.

Strawberry

Cucumber

Grape

Tomato

Top-view

Front-view

Top-view

0°

90°

270°

90°

180°

270°

 1 N  2

 1 N  2  1 N  2
Front-view

FIGURE 3

Schematic diagram of quantitative analysis of the droplet capture process in the crop canopy.
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process of crop canopy quantitatively, it was assumed for 
simplicity that the leaves in each layer of the crop canopy would 
not overlap and each leaf in each layer would only affect the 
motion and droplet capture process of the corresponding leaves 
after the direction of their respective airflow and droplets. In a 
previous study, combining a droplet capture test of crop leaf 
motion in the air-assisted spray field and the above theoretical 
analysis, we found that when the initial azimuth angle of the leaf 
relative to the assisted airflow was 90°–270°, with the 
appropriate inclination of the applicator fan being the high-
frequency and high-amplitude vibration state of the leaf driven 
by the assisted airflow greater than the critical wind speed, there 
were good positive and negative uniform deposition effects on 
droplets of small diameters (Wu et al., 2021). Therefore, on the 
premise that the initial azimuth angle of the leaf is known, the 
droplet capture effect can be analyzed. The attenuation analysis 
of assisted airflow is based on the airflow resistance 
characteristics of canopy. In this study, the leaf sample layout 
scheme of the canopy airflow resistance characteristics test and 
the correlation analysis between the canopy airflow resistance 
characteristics and droplet capture were based on the 
above assumptions.

Description method and theory of crop 
canopy resistance characteristics

After the assisted airflow passes through the crop canopy, 
some of its energy is dissipated by it. The resistance characteristics 
of the crop canopy macroscopically reflect the energy dissipation 
effect of the crop canopy on assisted airflow, which is closely 
related to the number of leaves, the initial position and attitude of 
leaves relative to the assisted airflow, and the velocity of the 
assisted airflow.

In this study, the Darcy–Forchheimer function in Equation 
(3) can be used to characterize the resistance characteristics of the 
crop canopy (Molina-Aiz et  al., 2006; Nield and Bejan, 2006; 
Dullien, 2012):

 	

∂
∂

= − ⋅ ⋅ + ⋅ ⋅ ⋅( )p
L

D v C p vµ 0 5 2. � (3)

To facilitate the wind tunnel test, Equation (3) can 
be integrated to obtain Equation (4):

 	
20.5µ ρ∆ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +p D L v C L v A � (4)

where p is the pressure loss of the assisted airflow after 
passing through the crop canopy ( Pa ), L is the length of the 
crop canopy along the direction of the assisted airflow (m), D 
is the viscosity coefficient (m s− −⋅2 2 ), μ is the aerodynamic 
viscosity at the experimental temperature and has a value of 
1 79 10 5. × ⋅− Pa s , ρ is the air density at the experimental 

temperature and has a value of 1 189 3. kg m⋅ − , v is the assisted 
airflow velocity (m s⋅ −1 ), C is the resistance coefficient, and 
∆p  is the dynamic pressure loss of the assisted airflow 
through the crop canopy, collectively referred to as the canopy 
pressure drop.

In this study, the canopy pressure drop and resistance 
coefficient were used to assess the resistance characteristics of the 
crop canopy comprehensively.

Materials and methods

Leaf sample selection and basic 
properties

As shown in Figure  4, simulated broad-leaf crop leaves 
composed of resin were selected for the experiment, to overcome 
a series of problems including the individual differences among 
real crop leaves and the potential effects of repeated tests on their 
physical properties (Liu et  al., 2021a). The sample sizes and 
physical parameters are listed in Table 1.

Establishment of crop canopy resistance 
characteristic measurement system

As shown in Figure 5, we designed and built a linear wind 
tunnel measurement system to measure the resistance 
characteristics of the crop canopy, including the tunnel body, 
power module, and measurement module (Molina-Aiz 
et al., 2006).

The tunnel body includes the air inlet, power section, 
stability section, rectification section, contraction section, test 
section, expansion section, and air outlet; the power module 
includes a three-phase DC motor (Shengxiang Machinery 
Factory, Wuxi, China), frequency converter (Jintian Technology 
Co., Ltd., Guangdong, China), leaf, and fairing; the 
measurement module includes a leaf sample-fixing device, 

L  

W 

FIGURE 4

Sample leaf of simulated broad-leaved group.
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hot-wire anemometer (KIMO, Bordeaux, France), and digital 
micromanometer (DP1000, Hangzhou, China). The sampling 
frequency of the hot-wire anemometer was 10 Hz, and the 
accuracy was 0.01 m/s. The range of the digital micromanometer 
was 0–200 Pa, with an accuracy of 0.1 Pa. The technical 
parameters of the tunnel body and power module are 
summarized in Table 2.

Airflow resistance characteristic test of 
multi-position attitude of single leaf

As depicted in Figures 6, a leaf sample fixing and rotating device 
was constructed, including a thin metal rod, a clamp, and suction 
cups. The thin metal rod was fixed in the wind tunnel test section 
by utilizing suction cups, a clamp was fastened to the rod to affix the 
leaf sample, and the rod could rotate around the suction cups.

The single-factor control variable method was adopted in this 
study, as illustrated in Figure 7. The initial azimuth, φ, of the leaf 
sample relative to the assisted airflow was controlled by the rotation 
of the leaf sample fixing device, and the airflow velocity in the test 
section was controlled by a frequency converter with a varied range 
of 0–12 m/s. This airflow velocity range is commonly used in the 
air-assisted spray. The airflow velocity at the front of the leaf sample 
was measured using an airflow velocity sensor in front of the sample. 
The pressures at the front and rear air outlets of the leaf sample were 
measured using a pressure sensor and micromanometer. The 
distance between the airflow velocity sensor and the sample was 
280 mm. The distance between the pressure sensor and the sample 
was 280 mm. This information will not be repeated below.

The specific test arrangements are listed in Table 3. To reduce 
the number of tests, we set eight eigenvalues for the initial azimuth 
angle of the leaf sample relative to the assisted airflow. Each group 
of tests was repeated three times, and the average value 
was calculated.

Airflow resistance characteristic test of 
multi-position attitude of multi-layer leaf

We divided the crop canopy into multiple leaf sample layers 
in the direction of the assisted airflow, as shown in Figure 8. 

According to the simplification and assumption mentioned in 
Section “Mechanism of capturing droplets in crop leaves,” the 
leaves in the different layers of the crop canopy will not overlap, 
and each leaf in each layer will only affect the motion and 
droplet capture process of the corresponding leaves after the 
direction of their respective airflow and droplets. The influence 
of each leaf layer on the rear leaf layer can be regarded as the 
linear superposition of the effects of multiple leaves on the 
corresponding leaves at the rear. Therefore, we  set one leaf 
sample in each leaf layer. In fact, the number of leaves in each 
layer of a crop canopy is very large. If the control variable 
method is used to study the influence of the azimuth difference 
of the leaves in each layer on the overall resistance characteristics 
of the crop canopy, the task will become impossible. Therefore, 
based on the simplified assumption that the resistance 
characteristics of multiple leaves in each sample layer have 
linear relationships with those of the individual leaves, we set 
one leaf sample in each leaf sample layer. The initial azimuth 
angle, φ, of the leaf sample relative to the assisted airflow was 
controlled by rotating the leaf sample fixing device, and the 
airflow velocity in the test section was controlled to 0–12 m/s by 
a frequency converter. The airflow velocity at the front of the 
leaf sample was measured using an airflow velocity sensor in 
front of the sample. The pressures at the front and rear air 
outlets of the leaf sample were measured using a pressure sensor 
and micromanometer. To reduce the number of tests, we used 
two or three leaf sample layers, and the number of leaf samples 
in each leaf layer was set to two with significantly different 
initial azimuth angles of 0° and 180°, the specific arrangements 
of which are listed in Table 4.

Each group of experiments was repeated three times, and the 
average value was calculated. For convenience, each group of 
multi-layer leaf tests is described in the form N(φ1, φ2, φ3), where 
N is the number of leaf sample layers, φ1, φ2, and φ3 are the initial 
azimuths of the leaf samples in the first, second, and third layers, 
respectively.

Results and discussion

Airflow resistance characteristics of a 
single leaf at different initial azimuth 
angles

In the motion analysis of crop leaves in an airflow field, when 
the state of motion of the leaves changes suddenly, the airflow 
velocity corresponding to the change of motion is called the 
critical wind speed (Shao and Chen, 2011; Tadrist et al., 2015). In 
this study, the change in canopy pressure drop of leaf samples was 
an important basis for evaluating whether the state of 
motion changed.

Through comparison, as shown in Figure 9, we found that 
under different initial azimuth conditions, the canopy pressure 
drop of a single leaf exhibited a non-linear increase with a 

TABLE 1  Sample size and physical parameters.

Parameter Value

Leaf length L (mm) 73.46

Leaf width W (mm) 62.24

Leaf area (mm2) 3,078

Density (kg·m−3) 900

Petiole length (mm) 15.74

Petiole modulus of elasticity (MPa) 22.5

Elastic modulus of leaf (MPa) 2.36

Ra (μm) 0.16
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continuous increase in the assisted airflow velocity. When the 
initial azimuth angle was 90°, 135°, 180°, 225°, and 270°, the 
critical wind speed was 7–9 m/s. When the assisted air velocity 
was less than the critical wind speed, an increase in the assisted 
air velocity did not significantly improve the leaf canopy 
pressure drop. However, when the air velocity was greater than 
the critical wind speed, the leaf canopy pressure drop increased 
rapidly with increasing assisted air velocity. Moreover, when the 
initial azimuth was 0°, 45°, and 315°, there was no critical wind 
speed, marking a sudden change in the canopy pressure drop 
with increasing assisted airflow velocity. As shown in Figure 10, 
this finding was obtained because when the initial azimuth of 
the leaf was 0°, 45°, and 315°, the assisted airflow and front face 
of the leaf formed an effective airflow load surface, with the 
airflow load driving the leaf inclination with increasing airflow 
velocity and the windward area also gradually increasing, 

resulting in a gradually increasing canopy pressure drop. When 
the initial azimuth of the leaf was 90°, 135°, 180°, 225°, and 
270° and the air velocity was less than the critical wind speed, 
and the increase in assisted air velocity did not significantly 
improve the windward area of the leaf. However, when the 
assisted air velocity was greater than the critical wind speed, the 
leaf presented an unstable high-frequency and high-amplitude 
vibration state, greatly dissipating the assisted air energy, 
resulting in a rapid increase in the canopy pressure drop.

Simultaneously, we  performed quadratic polynomial 
regression fitting on the test data. The obtained curve 
corresponding to Equation (5) conforms to the configuration of 
Equation (4), where the determination coefficient R2 is 0.83–0.98:

 	
2

1 2∆ = + +p K v K v A � (5)

1 2 3 4 5 6 8 9 17 0

111213

Airflow

Schematic diagram of crop canopy resistance measurement system 

Site layout of test equipment 
1. Rectifier air inlet; 2. Contraction section: 3. Airflow velocity sensor and pressure sensor; 4. Leaf sample; 5. Leaf sample-fixing 

device: 6. Test section; 7. Pressure sensor; 8. Diffusion section; 9. Power section; 10. Axial flow motor; 11. Frequency converter: 12. 
Data collector; 13. Computer 

A

B

FIGURE 5

Measurement system of crop canopy resistance characteristics. (A) Schematic diagram of crop canopy resistance measurement system. (B) Site 
layout of test equipment. 1. Rectifier air inlet; 2. Contraction section; 3. Airflow velocity sensor and pressure sensor; 4. Leaf sample; 5. Leaf sample-
fixing device; 6. Test section; 7. Pressure sensor; 8. Diffusion section; 9. Power section; 10. Axial flow motor; 11. Frequency converter; 12. Data 
collector; 13. Computer.
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Referring to Equation (4), we  calculated the maximum 
canopy pressure drop and resistance coefficient C of the leaf 
under different initial azimuth conditions using the 
coefficients K1 and K2 of the regression fitting curve of 
Equation (5), as shown in Figures 11, 12 (Sanz, 2003; Song and 
Fu, 2020). When the initial azimuth of the leaf was 180°, the 
maximum canopy pressure drop and airflow resistance 
coefficient were greater than those at other initial azimuth 
angles, with values of 7.37  ±  0.77 Pa and 0.35  ±  0.02, 
respectively. When the leaf azimuth was 90°, 225°, and 270°, 
the maximum canopy pressure drop and airflow resistance 
coefficient were less than those at other azimuth positions, 
with values of 3.75 ± 0.56 Pa and 0.19 ± 0.01, 3.10 ± 0.53 Pa 
and 0.12  ±  0.01, and 3.09  ±  0.65 Pa and 0.11  ±  0.02, 
respectively. When the initial azimuth of the leaf was at other 

positions, the difference between the maximum canopy 
pressure drop and airflow resistance coefficient was 
not obvious.

The reason for this finding is that the maximum canopy 
pressure drop and resistance coefficient of the leaf reflected the 
dissipation capacity of the leaf to the airflow energy. This energy 
dissipation capacity includes two parts—that is, when the assisted 
airflow passes through the leaf canopy, part of the energy is 

TABLE 2  The technical parameters of the tunnel body and power 
module.

Parameter Value

Overall size (length × width × height) 4,000 × 900 × 1,350 mm

Motor power (w) 650

Fan impeller diameter (mm) 800

Test section size (length × width × height) 400 × 400 × 600 mm

Wind speed in test section (m·s−1) 0.5–20.0

Relative standard deviation of velocity uniformity in 

test section

≤2.0%

Relative deviation of velocity stability in test section ≤2%

Airflow deflection angle ≤2°

Thin metal 

Fixture  Sucke

Leaf 

FIGURE 6

Leaf sample fixation and rotation device.

0°

90°

180°

270°

Top view

Airflow Airflow 

FIGURE 7

Azimuth adjustment diagram of leaf sample.

TABLE 3  Test scheme of airflow resistance characteristics of single 
leaf at multiple positions.

Test Number Initial azimuth angle φ (°)

1 0

2 45

3 90

4 135

5 180

6 225

7 270

8 315

Front view
Layer 1 Layer 2 Layer 3

Airflow Airflow 

FIGURE 8

Schematic diagram of leaf sample layer division.

TABLE 4  Test scheme of airflow resistance characteristics for multi-
position attitude of multi-layer leaves.

Test number Number of leaf 
sample layers N

Initial azimuth of 
each leaf layer (φ1, 

φ2, φ3)

1 2 (0°, 0°)

2 2 (0°, 180°)

3 2 (180°, 180°)

4 2 (180°, 0°)

5 3 (0°, 0°, 0°)

6 3 (0°, 0°, 180°)

7 3 (0°, 180°, 0°)

8 3 (0°, 180°, 180°)

9 3 (180°, 180°, 0°)

10 3 (180°, 180°, 180°)

11 3 (180°, 0°, 0°)

12 3 (180°, 0°, 180°)
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dissipated due to friction, leaf upwind blocking, and other factors 
and the other part is transformed into the kinetic energy of the 
leaf. However, when the leaf azimuth changes constantly, the 

weight of energy dissipation of factors such as friction, leaf upwind 
resistance, and leaf kinetic energy conversion is an ever-
changing process.

A B

C D

E F

G H

FIGURE 9

Variation of canopy pressure drop with airflow velocity under different azimuth conditions. (A) Azimuth 0°. (B) Azimuth 45°. (C) Azimuth 90°. 
(D) Azimuth 135°. (E) Azimuth 180°. (F) Azimuth 225°. (G) Azimuth 270°. (H) Azimuth 315°.
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Airflow resistance characteristics of 
multi-leaf and multi-position attitude

Through the comparison in Figure 13, we found that with an 
increasing number of leaf layers, the canopy pressure drop still 
increases in a linear nonlinear proportion with continual increases 
in the assisted airflow velocity, with a critical wind speed in the 
7–9 m/s range. When the air velocity is less than the critical wind 
speed, an increase in the assisted air velocity does not significantly 
improve the canopy pressure drop. However, when the air velocity 
is greater than the critical wind speed, the pressure drop 
increases rapidly.

We performed quadratic polynomial regression fitting on 
the experimental data to obtain the curve of Equation (5) and 
used the coefficients K1 and K2 of the fitting curve of Equation 
(5) to calculate the maximum canopy pressure drop and 
resistance coefficient of the leaves under different leaf layers 
and initial azimuth angles. The comparisons in Figures 14, 15 
indicate that when the number of leaf layers is two, the 
maximum canopy pressure drop and resistance coefficient of 
the leaf are not more than those of a single leaf and that they 
have numerical ranges of 2.53–6.10  ±  0.55 Pa and 0.08–
0.29 ± 0.55, respectively. When the number of leaf layers is 
three, the maximum canopy pressure drop and resistance 
coefficient of the leaf are clearly more than those of the single-
layer leaf, and their numerical ranges are 3.83–12.09 ± 0.77 Pa 
and 0.04–0.38 ± 0.02, respectively. Moreover, the ratio of the 
number of leaf layers with an initial azimuth of 180° to the 
number of leaf layers with an initial azimuth of 0° directly 
affects the maximum pressure drop and resistance coefficient 
of the crop canopy. When the number of leaf layers with an 
initial azimuth of 180° is large, the maximum pressure drop of 
the crop canopy is relatively small. As the number of leaf layers 
in the crop canopy and the differences in the initial azimuths 
of the leaves in the layer increase, the corresponding change 
between the maximum canopy pressure drop and the 
resistance coefficient is non-linear and difficult to quantify, as 
the result of the linear superposition of the resistance 

characteristics of multiple single-layer leaves. Thus, it is 
recommended that when there are multiple leaf layers in a 
canopy, it should be regarded as a single research object.

Relationships between resistance 
characteristics of crop canopy and 
droplet deposition effect

In the process of air-assisted spraying, there should be  a 
positive correlation between the energy dissipation effect of the 
canopy on the assisted airflow and its ability to capture droplets 
(Cox et al., 2000; Endalew et al., 2010a). Based on this premise, 
we analyzed the relationship between the resistance characteristics 
of the crop canopy and the fog droplet deposition effect.

When the crop canopy had only a single leaf in the 
direction of the assisted airflow, the canopy pressure drop 
increased non-linearly with increasing assisted airflow velocity, 
meaning that the droplet-catching ability of the leaf also 
increased. When the initial azimuth angle of the leaf was 
0°–90° or 270°–360°, an increase in the windward load area 
increased the canopy pressure drop, but the droplet deposition 
on the back of the leaf could not be  guaranteed. When the 
initial azimuth angle of the leaf was 90°–270°, if the wind speed 
of the assisted airflow was greater than the critical wind speed, 
the unsteady high-frequency and high-amplitude vibration 
state of the leaf increased the canopy pressure drop, with the 
leaf exhibiting a good droplet deposition effect on both sides, 
which is consistent with the conclusions of previous studies. 
Consequently, for single-layer leaves, we could evaluate the 
corresponding initial azimuth and droplet deposition effect by 
considering when the canopy pressure drop value changed with 
the airflow velocity and whether there was a critical wind 
speed, combining the maximum canopy pressure drop value 
and resistance coefficient.

When the crop canopy had multiple leaves in the direction 
of the assisted airflow, the leaves in the first layer inevitably 
captured most of the droplets when the velocity of the assisted 

Azimuth 0° Azimuth 180°

Motion    

Vibration   
V   V   

A B

FIGURE 10

Motion of leaves at different airflow velocities, V, and azimuth angles, φ. (A) Azimuth 0°. (B) Azimuth 180°.

93

https://doi.org/10.3389/fpls.2022.924749
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al.� 10.3389/fpls.2022.924749

Frontiers in Plant Science 11 frontiersin.org

airflow was greater than the critical wind speed, resulting in 
poor canopy penetration. When the assisted airflow velocity 
was kept below the critical wind speed and the initial azimuth 
angle of each layer of leaves was 90°–270°, although canopy 
penetration could be guaranteed, the droplet deposition effect 
of the corresponding leaf layer was worse. Moreover, as the 
number of leaf layers in the crop canopy increased and the 
initial azimuth angles of the leaves within the canopy changed, 
the corresponding changes in the maximum pressure drop and 
resistance coefficient were non-linear and difficult to quantify. 
It was difficult to judge the number of leaf layers and the 
specific canopy structure based on the resistance 
characteristics of the crop canopy with the characteristics of 
multiple leaves. Consequently, it was considered that existing 
air-assisted spray technology could not guarantee the droplet 
deposition effect and canopy penetration at the front layer 
when the canopy had multiple leaves in the assisted 
airflow direction.

Application potential of resistance 
characteristics in the evaluation of 
air-assisted spraying effect

Combining CFD technology with field testing is a common 
method of studying the distribution and attenuation law of the 
coupled field of airflow and droplets in the inner space of a crop 
canopy (Endalew et al., 2010b,c). The distribution and attenuation 
law of the coupling field between the assisted airflow and droplets 
in the inner space of a complex crop canopy is always a research 
problem. The existing CFD technology can only simplify the crop 
canopy into a porous medium model for calculation and analysis. 
The distribution and attenuation law of the coupled field of the 
assisted airflow and droplets in the internal space of the crop 
canopy completely ignores the characteristics of the crop leaves 
and canopy under airflow stress, and accuracy cannot 
be  guaranteed. Based on the field test of the distribution and 
attenuation law of the coupling field between the assisted airflow 
and droplets in the inner space of the crop canopy, the canopy was 
layered along the assisted airflow direction, and the relationships 
between the distribution and attenuation and the canopy leaf area 
index, porosity, resistance coefficient, and other structural 
characteristic parameters were established (Sun et al., 2015; Sun 
and Liu, 2019). However, the influence of the motion 
characteristics of the crop canopy under assisted airflow force on 
the changes in the canopy leaf area index, porosity, resistance 
coefficient, and other structural characteristic parameters was still 
ignored. Liu et al. considered the potential influence of the airflow 
stress movement characteristics of a crop canopy on droplet 
deposition (Liu et  al., 2021b). However, only under certain 
working conditions, the canopy deformation characteristics of 
cotton crop are small, so it is difficult to apply his approach to 
other crops, and it is impossible to establish a universal and 
efficient theoretical model. Section “Introduction” mentioned that 
the evaluation of the droplet deposition effect of the crop canopy 
under different air-assisted spraying conditions based on water-
sensitive paper and other droplet deposition measurement 
methods has the problems of expensive equipment, a complicated 
process, and repetition. In this study, the effects of airflow-forced 
movement characteristics of crop canopy on air-assisted spraying 
were considered, and the effects of number of the leaf layer, initial 
position, and attitude of leaves relative to the assisted airflow as 
well as assisted airflow speed on the resistance characteristics of 
the crop canopy were analyzed. Finally, the application potential 
of crop canopy resistance characteristics in air-assisted spraying 
effect evaluation was verified.

Conclusion

In general, our experimental data showed that the number of 
leaf layers and the initial azimuth of leaves in the crop canopy 
significantly affected the resistance characteristics of the canopy 
and that these resistance characteristics were also being closely 

FIGURE 11

Variation of maximum canopy pressure drop with initial azimuth.

FIGURE 12

Variation of drag coefficient with initial azimuth.

94

https://doi.org/10.3389/fpls.2022.924749
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al.� 10.3389/fpls.2022.924749

Frontiers in Plant Science 12 frontiersin.org

related to the effects of droplet deposition. Using a broad-leaved 
crop canopy as an example, the following conclusions can 
be drawn.

Under the conditions of different leaf layers and initial leaf 
azimuth angles in different leaf layers, the canopy pressure drop 
increases non-linearly with increasing assisted airflow velocity. 
The curve equation obtained by regression fitting conformed to 
the Darcy–Forchheimer equation. When the initial azimuth of the 
single-layer leaf was 90°–270°, there was a critical wind speed in 
the 7–9 m/s range, and when the assisted air velocity was less than 
this critical wind speed, an increase in the assisted air velocity did 
not significantly improve the canopy pressure drop. However, 

when the air velocity was greater than the critical wind speed, the 
canopy pressure drop of the leaf increased rapidly with increasing 
assisted air velocity.

For a single leaf, when the initial azimuth angle of the leaf 
was 180°, the maximum canopy pressure drop and airflow 
resistance coefficient were greater than those of the other initial 
azimuth positions, at 7.37 Pa and 0.35, respectively. When the 
leaf azimuth angle was 90°, 225°, and 270°, the maximum 
canopy pressure drop and airflow resistance coefficient were 
smaller than those of other azimuth positions, with values of 
3.75 and 0.19, 3.10 and 0.12, and 3.09 and 0.11, respectively. 
When the initial azimuth was in other positions, the differences 

FIGURE 13

Variation of canopy pressure drop with air velocity with different numbers of leaf sample layers.

FIGURE 14

Variation of maximum canopy pressure drop with the number of 
leaf layers and initial azimuth.

FIGURE 15

Variation of resistance coefficient with the number of leaf layers 
and initial azimuth.
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between the maximum canopy pressure drops and airflow 
resistance coefficients were not obvious.

When the number of leaf layers was two, the maximum 
canopy pressure drop and resistance coefficient were not more 
than those of a single leaf, with values of 2.53–6.10 Pa and 0.08–
0.29, respectively. When there were three leaf layers, the maximum 
canopy pressure drop and resistance coefficient were clearly larger 
than those of a single leaf, with values of 3.83–12.09 Pa and 0.04–
0.38, respectively. Moreover, the ratio of the number of leaf layers 
with an initial azimuth angle of 180° to the number of leaf layers 
with an initial azimuth angle of 0° directly affected the maximum 
pressure drop and resistance coefficient of the crop canopy. The 
maximum pressure drop of the crop canopy was relatively small 
when the initial azimuth angle was 180°.

We analyzed the relationships between the resistance 
characteristics of the crop canopy and droplet deposition effect. 
For single-layer leaves, we  evaluated the corresponding initial 
azimuth and droplet deposition effect based on whether the 
canopy pressure drop changed with air velocity and whether there 
was a critical wind speed and combined the maximum canopy 
pressure drop and resistance coefficient. When the crop canopy 
had multiple leaves in the assisted airflow direction, the existing 
air-assisted spray technology could not guarantee the droplet 
deposition effect and canopy penetration simultaneously.

Our experiment had several limitations. Although we focused 
on the resistance characteristics of single and multi-layer leaves in 
an assisted airflow field, the number of leaf layers in the crop 
canopy and initial azimuth angle of the leaves in the layer 
significantly affect their resistance characteristics. However, in the 
real world, the leaves are different and the leaf population structure 
of the crop canopy is much more complex than that set in this 
study. When the assisted airflow passes through the crop canopy, 
its change law becomes more complex, and the movement law of 
the leaf population is significantly different from that examined in 
this study. Moreover, due to connections between stems, many 
leaves move in concert, which needs to be investigated further. This 
study indicates that when the number of layers of the crop canopy 
exceeds 1 in the direction of assisted airflow, air-assisted spraying 
technology cannot guarantee that every layer of leaves in the crop 
canopy has a good droplet deposition effect in theory. Solving this 
problem is of great significance for the research and development 
of crop protection technologies and equipment.
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Early evaluation of adjuvant 
effects on topramezone efficacy 
under different temperature 
conditions using chlorophyll 
fluorescence tests
Jinwei Zhang 1, Yaqiong Xie 2, Chunhua Zhang 3, Peng Zhang 3, 
Chunhong Jia 1*  and Ercheng Zhao 1*
1 Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China, 
2 MAP Field Crop Division, Sinochem Agriculture Holdings, Beijing, China, 3 Beijing Grand Agro Chem 
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Proper selection of adjuvant applications is an important strategy to 

enhance herbicide efficacy and reduce active ingredient input especially 

under adverse environmental conditions. In this study, a two-factor split-

plot-design experiment was conducted to evaluate the effects of two 

adjuvants on the efficacy of topramezone on the grassy weed species 

giant foxtail (Setaria faberi Herrm.) and the broadleaved weed species 

velvetleaf (Abutilon theophrasti Medik.) under three different temperature 

conditions. The two tested adjuvants were methylated seed oil (MSO) and 

organosilicone. Three temperature levels, 35/30°C, 25/20°C, and 15/10°C 

(day/night), were used in the laboratory and greenhouse experiment. Plant 

chlorophyll fluorescence measurements shortly after herbicide application 

and classic whole-plant bioassay methods were used to evaluate the 

herbicide efficacy among the different treatments. Results indicated that 

the maximum quantum efficiency (Fv/Fm) of the top leaf of the weeds 

treated with topramezone mixed with MSO was significantly lower than 

that of the weeds treated with topramezone mixed with organosilicone 

and without an adjuvant at 2–3 days after treatment under all three 

temperature levels. The herbicide response of the plants treated with 

topramezone mixed with organosilicone and topramezone alone was not 

significantly different. These results corresponded well with the results of 

the classic whole-plant test. MSO has been shown to be good at enhancing 

the efficacy of topramezone on these weed species under all three 

temperature conditions. The measurement of chlorophyll fluorescence is a 

promising technique for evaluating the effects of adjuvants on the efficacy 

of herbicides shortly after herbicide treatment.
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topramezone, adjuvant, methylated seed oil, chlorophyll fluorescence test, early 
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Introduction

To enhance their efficacy, many postemergence herbicides 
have to be  applied together with adjuvants (Hart et  al., 1992; 
Bunting et al., 2004; Bautista et al., 2020). An adjuvant is any 
substance in an herbicide formulation or added to a spray tank to 
improve herbicidal activity or application characteristics (Foy, 
1989). There are various types of adjuvants with varying degrees 
of effectiveness at improving herbicide efficacy. Selecting the 
proper adjuvant for herbicides is difficult but very important 
because the efficacy of herbicides on weeds is usually dependent 
on the herbicide type, weed species, the selected adjuvant, 
environmental conditions and so on (Penner, 2000). This can 
reduce the herbicide active ingredient input and environmental 
risk. Methylated seed oil (MSO) is a fatty acid from seed oil 
esterified with methanol. Reports have shown that MSO enhances 
the efficacy of several herbicides on certain weed species, as MSO 
contributes to increasing the penetration of herbicides into plants 
(Thompson et al., 1996; Young and Hart, 1998; Sharma and Singh, 
2000; Pester et al., 2001; Bukun et al., 2010; Zhang et al., 2013a). 
Organosilicone surfactants were introduced to work as adjuvants 
for pesticides in the 1980s, and since then, their chemical 
structure and synergistic mechanism have been extensively 
researched (Stevens, 1993; Knoche, 1994). Because of the 
numerous advantages of these two adjuvants, MSO and 
organosilicone are typically the most commonly used adjuvants 
for pesticide application in China. Topramezone, a 
hydroxyphenylpyruvate dioxygenase inhibitor, was commercially 
introduced in 2006 (Grossmann and Ehrhardt, 2007) and 
registered in China in 2010. When applied as a postemergence 
herbicide, it controls a wide spectrum of annual grass and 
broadleaved weeds (Zhang et al., 2013a) and is safe for maize 
(Soltani et al., 2007; Gitsopoulos et al., 2010). In China, MSO is 
the only recommended adjuvant for this herbicide, as is the case 
in other countries. Thus, trying to find a new adjuvant for 
topramezone application will provide additional options for weed 
control in maize.

Environmental factors, such as temperature, relative 
humidity, soil moisture, rain, and wind, contribute to the amount 
and rate of herbicide uptake and the final efficacy (Zabkiewicz, 
2000). In particular, the environmental temperature is variable 
at different latitudes or under certain small-scale regional 
conditions even in the same crop growing season. Temperature 
can influence the absorption, translocation, and metabolism of 
herbicide active ingredients in plants. Similarly, the effect of an 
adjuvant on herbicide efficacy varies under different 
environmental temperature conditions. One of the main 
functions of a right and good adjuvant is to overcome or 
minimize adverse factors. There has been long history on the 
effect of environmental conditions on the efficacy of herbicides 
(Hammerton, 1967; Peregoy et al., 1990; Hinz and Owen, 1994; 
Levene and Owen, 1995). However, as an increasingly extensive-
used herbicide in maize field in China, from the Northeast to the 
Southwest region, there has been very few research on the 

impact and interaction effects of adjuvant type and 
environmental temperature conditions on the efficacy of 
this herbicide.

It is valuable and useful to evaluate the effect of an adjuvant 
on the efficacy of herbicides under different environmental 
conditions, especially under adverse conditions. A fast and 
nondestructive herbicide efficacy evaluation approach shortly 
after herbicide treatment could be  an efficient method for 
agronomists to screen the right adjuvant for a certain herbicide. 
With the rapid development of plant phenotypic analysis, methods 
such as RGB imaging, multispectral imaging, hyperspectral 
imaging, thermal imaging, chlorophyll fluorescence, 3D sensing, 
and others have been introduced to test the response of plants 
under environmental (biotic and abiotic) stress efficiently (Lee 
et al., 2010; Belin et al., 2013; Huang et al., 2015; Lowe et al., 2017). 
Utilizing the improvement of these technologies, scientists in 
weed science also want to evaluate the efficacy of herbicides on 
weeds and their safety on crops (Streibig et al., 2014; Travlos et al., 
2021). Chlorophyll fluorescence test has been used as a sensitive 
indicator of the physiological status of plants. It can monitor 
spatial and temporal variations by providing images of 
photosynthesis activity (Schreiber, 2004; Abbaspoor and Streibig, 
2007; Belin et al., 2013). By utilizing this technology, Woodyard 
et al. (2009) evaluate the joint activity of mesotrione and atrazine 
in a tank-mix application on sensitive and resistant broadleaved 
weeds, Kaiser et al. (2013) and Wang et al. (2016, 2018) measured 
the herbicide resistance of Alopecurus myosuroides in the 
greenhouse and field conditions, and Li et al. (2018) identified 
herbicide stress in soybean shortly after treatment.

Understanding the effect of the two common used adjuvants 
in China in different environmental conditions, especially 
detecting it in a much efficient way, is beneficial to enhance 
herbicide efficacy and reduce active ingredient input. The 
objectives of this research were (a) to detect the effects of two 
adjuvant types (MSO and organosilicone) on the efficacy of 
topramezone under different environmental temperature 
conditions and (b) to determine whether the plant chlorophyll 
fluorescence test can be  used as a nondestructive method to 
evaluate the effect of adjuvants on the efficacy of herbicides shortly 
after herbicide treatment.

Materials and methods

Chemicals and plant materials

In this study, the applied solution was prepared using a 
commercial herbicide and adjuvant products, including Baowei™ 
(336 g a.i. L−1 topramezone, SC, BASF Co., Ltd.), GY-HMax™ 
(methylated soybean oil, an MSO adjuvant, Central Research 
Institute of China Chemical Science and Technology), and 
BREAK-THRU® (S240, an organosilicone adjuvant, Omya. Agro. 
AG, Switzerland). The spray herbicide solutions were prepared 
according to the data in Table 1.
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The dicotyledonous weed velvetleaf (Abutilon theophrasti 
Medic.) and monocotyledonous weed giant foxtail (Setaria 
faberi Herrm.) were selected as sample plants in this study, 
because they were two of the most common infested weed 
species in maize field in China. The weed seeds (provided by 
Herbiseed Co., UK) were pregerminated in plastic pots 
(11 × 11 × 6 cm) filled with vermiculite (2–3 cm) in a 
greenhouse (25/20 ± 1°C day/night, 122 μmol m−2  s−1 
supplemental light for 12 h, and 55 ± 10% RH). After 
germination, the velvetleaf seedlings were transplanted into 
11 × 11 × 12 cm plastic pots (3 plants per pot), and the giant 
foxtail seedlings were transplanted into 7 × 7 × 8 cm 
compostable pots (4 plants per pot). All the pots were filled 
with a mixture of vermiculite: peat: clay (1:1:1 by volume). The 
plants were irrigated daily with tap water. The homogeneous 
plants were selected as plant samples for the experiment when 
they had developed 3–4 true leaves.

Experimental design and tests

The sample plants were moved into a growth chamber 2 days 
before herbicide application and were watered according to their 
demand. After 2 days of cultivation in the chamber, herbicides 
were applied using a track sprayer (Aro, Langenthal, Switzerland) 
with a spray volume of 200 l ha−1 (nozzle: 8002 EVS, Teejet® 
Spraying Systems Co., Wheaton, IL, United States) at 3.2 kPa. The 
sample plants were cultivated in the growth chamber for 2 more 
days and then moved back to the greenhouse. The plants were 
watered daily with tap water. The aboveground biomass of the 
plants was harvested 3 weeks after herbicide application and dried 
at 80°C for 48 h before weight measurement. The experiment was 
established as a two-factor split-plot design, with environmental 
temperature treatment in the main plots and adjuvant treatments 
in the subplots. Three replicates were used for each treatment, and 
the whole experiment was repeated once.

The temperature of the artificial growth chamber (KBF720, 
Binder GmbH, Tuttlingen, Germany) was set to produce a high 
temperature (35/30°C, day/night), moderate temperature 
(25/20°C, day/night) and low temperature (15/10°C, day/night). 
The photoperiod was adjusted to 12/12 h (day/night), and the 
relative humidity was adjusted to 75% for both the day and 
night time.

To evaluate herbicide efficacy, the PSII maximum quantum 
efficiency (Fv/Fm) of the fourth leaf (the top leaf of the plant), 
defined as Fv/Fm, was measured and recorded using a 
chlorophyll fluorometer (Imaging-PAM, M-Series MAXI 
Version, Heinz Walz GmbH, Effeltrich, Germany) at 2, 3, 4 
and 5 days after treatment (DAT). The Fv/Fm was calculated 
according to equation (1):

	 F F F F Fov m m m/ ( ) /= − � (1)

where Fm is the maximal fluorescence yield and F0 is the dark 
fluorescence yield. For the determination of F0, the plants were 
dark adapted for 30 min prior to the measurement. All 
measurements were conducted in a dark room under green 
illumination to avoid other photosynthetically active radiation 
except that emitted by the Imaging-PAM light source. After dark 
adaptation, the plants were illuminated with a light-saturated 
pulse of 2,634 μm m−2  s−1 photosynthetic photon flux density 
(PPFD) and a wavelength of 450 nm for Fv/FM determination. 
Usually, all PSII reaction centers are open after dark adaptation, 
and nonphotochemical energy dissipation is minimal. During the 
saturation pulse, the fluorescence yield is maximal. The 
Imaging-PAM fluorometer also measures other parameters related 
to chlorophyll fluorescence, including effective quantum yield. 
The maximum quantum efficiency of PSII, however, was selected 
for this study because it remains unchanged until the next F0 and 
Fm determination.

While measuring the Fv/Fm value, chlorophyll fluorescence 
images were taken using a charge coupled device(CCD)camera 
mounted above the plant pots. The spatial resolution of the 
camera was 640 by 480 pixels, and the field of view was 10 by 
13 cm. Only the plants were measured; the background was 
removed from the images. Fluorescence intensities are 
displayed as false colors. Light-emitting diodes (LEDs) were 
placed around the lens of the camera. Blue (450 nm) LED light 
provides pulse-modulated excitation light and simultaneously 
serves as actinic illumination and saturation pulses. The red 
long-pass filter in front of the CCD chip confined the 
detection window to wavelengths longer than 620 nm. In total, 
nine individual velvetleaf and twelve giant foxtail plants were 
measured for each treatment.

Statistical analysis

To estimate the significance of the herbicide effect, the variable 
relative index (RI) of Fv/Fm and plant dry weight (DW) were 
calculated according to the following equations:

	
RI

F F
F FF F
v m treatment

v m control
v m/

/
/

=
( )
( ) �

(2)

TABLE 1  Herbicide solution preparation for the experiment.

Treatment Herbicide dose  
(g a.i. ha−1)

Adjuvant dose (%)

Topramezone alone 6.3 0

Topramezone with MSO* 6.3 0.300 (v/v)

Topramezone with 

organosilicone

6.3 0.025 (v/v)

Control 0 0

*MSO means methylated seed oil.
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(3)

The data were subjected to univariate analysis via the GLM 
process using SPSS 22.0 (version 22.0) software. The assumptions 
of variance analysis were tested by ensuring that the residuals were 
random and homogenous, with a normal distribution, using 
residual plots and the Shapiro–Wilk normality test. The data from 
two repeated experiments were combined for analysis because 
there were no interaction effects between the two experiments. 
When there was a significant interaction between the treatments 
of temperature and adjuvant (P<0.05), the means were separated 
by Fisher’s protected LSD test at the 5% level of probability.

Results

Effects of adjuvants as revealed by plant 
chlorophyll fluorescence measurements

The relative maximum quantum efficiency (Fv/Fm) index 
( RIF Fv m/ ) of the giant foxtail treated with topramezone plus MSO 
under the high and moderate temperature conditions was 
significantly lower (p < 0.05) than that of the topramezone alone 
treatment group from 2 DAT to 5 DAT. Under low temperature 
conditions, similar differences between the two groups appeared 
after 4 DAT. In the case of topramezone applied mixed with 
organosilicone, there was no significant difference in the RIF Fv m/  
value compared with that of the treatment of herbicide applied 
alone in any of the three temperature conditions. Additionally, the 
RIF Fv m/  value of the giant foxtail ranked as moderate < high < 

low for each adjuvant treatment from 3 DAT to 5 DAT (Table 2).
The chlorophyll fluorescence images taken at 5 DAT showed 

that the weed treated with herbicide mixed with MSO was injured 
more severely than the weeds treated with herbicide alone and 
mixed with organosilicone under all 3 temperature conditions (the 
false color of the normal plant leaves was blue, while the false color 
of the leaves changing from green to yellow and even to black 
demonstrated that the plants were injured more severely). In 
addition, the plants treated under high and moderate temperature 
conditions were injured more severely than those treated under 
low temperature conditions for each herbicide treatment 
(Figure 1).

Similar to the case of giant foxtail, the RIF Fv m/  value of 
velvetleaf treated with topramezone together with a tank-mix of 
MSO under the high and moderate temperature conditions was 
significantly lower (p < 0.05) than that of the topramezone alone 
treatment group from 2 DAT to 5 DAT, while there were no 
differences under the low temperature conditions. With respect to 
the treatment of topramezone together with a tank-mix of 
organosilicone, there was no significant difference compared with 
the treatment of topramezone alone under any of the three 
temperature conditions. With respect to all three herbicide 

treatments, the RIF Fv m/  value of the treated velvetleaf under 
moderate and high temperature conditions was significantly lower 
(p < 0.05) than that under low temperature conditions (horizontal 
comparison). The chlorophyll fluorescence images taken at 5 DAT 
also showed that velvetleaf plants treated with herbicide together 
with a tank-mix of MSO were more injured than those treated 
with herbicide alone and together with organosilicone under 
moderate and high temperature conditions, while the difference 
was not apparent under low temperature conditions (Figure 2).

The abovementioned results indicated that the MSO adjuvant 
significantly enhanced the efficacy of topramezone under all 
temperature conditions for giant foxtail and under high and 
moderate temperature conditions for velvetleaf, while the effect of 
organosilicone on enhancing the efficacy was not significant for 
either weed species. Additionally, the efficacy of topramezone was 
better under relatively high temperatures than under relatively low 
temperature conditions for giant foxtail and velvetleaf after it was 
tank-mixed with MSO (Table 3).

Effects of adjuvants according to 
whole-plant biomass measurements

The relative dry weight index (RIDW) of both weed species 
treated with topramezone together with MSO was significantly 
lower (p < 0.05) than that treated with topramezone applied alone 
and together with organosilicone under all three temperature 
conditions, while the difference between the last two treatments 
was not significant under any of the three temperature conditions 
at 3 weeks after treatment (WAT). Additionally, the RIDW value 
under the different temperature conditions ranked as  
high < moderate < low for both weed species for each adjuvant 
treatment (Table 4).

The images taken at 3 WAT also apparently showed that both 
weed species treated with topramezone together with MSO were 
injured more than those treated with the other adjuvant and 
applied alone under all temperature conditions (Figures 3, 4). The 
results demonstrated that the MSO adjuvant significantly but not 
the organosilicone adjuvant enhanced the efficacy of topramezone 
under all temperature conditions for both weed species and that 
the efficacy of topramezone was better under relatively high 
temperature conditions than under relatively low 
temperature conditions.

Discussion

Effects of two adjuvants on enhancing 
the efficacy of topramezone under 
different environmental temperatures

In our study, both the leaf chlorophyll fluorescence 
measurements and whole-plant bioassay results demonstrated 
that the MSO adjuvant significantly enhanced the efficacy of 
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topramezone under all temperature conditions for both weed 
species, especially for those under relatively high temperatures. 
Zollinger (2010) summarized that the MSO adjuvant had the 
unique advantage of enhancing herbicide efficacy when 
applied at reduced rates under adverse environmental 

conditions (e.g., hot weather, low relative humidity, and high 
temperature). In our case, when the plants were cultivated in 
the 35/30°C (day/night) conditions (the high temperature 
conditions), the dose of herbicide we applied (6.3 g a.i. ha−1) 
was only 1/4 of the recommended dose (the recommended 

TABLE 2  Effects of two adjuvants on the maximum quantum efficiency (Fv/Fm) of giant foxtail (Setaria faberi Herrm.) at 2–5 days after treatment 
(DAT).

Days After Treatment 
(DAT)

Adjuvant
V m/RIF F

High temperature Moderate temperature Low temperature

2 Alone 0.97 ± 0.07aA 0.98 ± 0.04aA 0.99 ± 0.02aA

Org 0.89 ± 0.13abA 0.95 ± 0.06abA 1.00 ± 0.02aA

MSO 0.89 ± 0.20bB 0.86 ± 0.08bB 0.99 ± 0.02aA

3 Alone 0.79 ± 0.25aB 0.57 ± 0.19abC 0.96 ± 0.03aA

Org 0.78 ± 0.20aB 0.60 ± 0.19aC 0.98 ± 0.04aA

MSO 0.73 ± 0.19aB 0.55 ± 0.16bC 0.96 ± 0.05aA

4 Alone 0.56 ± 0.26aB 0.32 ± 0.09aC 0.68 ± 0.17aA

Org 0.42 ± 0.21abB 0.36 ± 0.12aC 0.75 ± 0.20aA

MSO 0.37 ± 0.22bA 0.26 ± 0.07bC 0.54 ± 0.09bA

5 Alone 0.45 ± 0.23aB 0.28 ± 0.08aC 0.49 ± 0.16aA

Org 0.36 ± 0.17aB 0.23 ± 0.09aC 0.57 ± 0.27aA

MSO 0.27 ± 0.08bB 0.13 ± 0.04bC 0.39 ± 0.15bA

The topramezone dose was 6.3 g a.i. ha−1; control means treated with tap water; Alone means that topramezone was applied alone; Org means that topramezone was applied with a tank-mix 
of organosilicone; MSO means topramezone was applied with a tank-mix of MSO. The means in the same column followed by a common letter are not significantly different at p = 0.05 
(vertical comparison). The means in the same row followed by a capital common letter are not significantly different at p = 0.05 (horizontal comparison).

FIGURE 1

Chlorophyll fluorescence images of giant foxtail at 5  days after treatment. The topramezone dose was 6.3  g a.i. ha−1; control means treated with 
tap water; Alone means topramezone was applied alone; Org means topramezone was applied with a tank-mix of organosilicone; MSO means 
topramezone was applied with a tank-mix of MSO.
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dose of topramezone registered in China is 22.5–27.0 g a.i. 
ha−1). Therefore, our result is mostly consistent with the 
results in the report of Zollinger. Our previous research 
(Zhang et al., 2013b) showed that MSO enhanced the efficacy 
of topramezone on giant foxtail and velvetleaf by decreasing 

the solution surface tension and leaf-droplet contact angle and 
by increasing both the spread area and wetting time on weed 
leaf surfaces. This resulted in a decreased crystal amount of 
the active ingredient and an increased foliar uptake and final 
translocation of the active ingredient in the plants. 

FIGURE 2

Chlorophyll fluorescence images of velvetleaf at 3  days after treatment. The topramezone dose was 6.3  g a.i. ha−1; control means treated with tap 
water; Alone means topramezone was applied alone; Org means topramezone was applied together with a tank-mix of organosilicone; MSO 
means topramezone was applied together with a tank-mix of MSO.

TABLE 3  Effects of two adjuvants on the maximum quantum efficiency (Fv/Fm) of velvetleaf (Abutilon theophrasti Medik.) at 2–5 days after treatment 
(DAT).

Days After Treatment 
(DAT)

Adjuvant
V m/RIF F

High temperature Moderate temperature Low temperature

2 Alone 0.92 ± 0.07aB 0.92 ± 0.07aB 0.99 ± 0.03aA

Org 0.88 ± 0.10abA 0.88 ± 0.08abA 1.00 ± 0.03aA

MSO 0.86 ± 0.09bB 0.84 ± 0.08bB 0.99 ± 0.03aA

3 Alone 0.72 ± 0.15aB 0.69 ± 0.14aB 0.87 ± 0.20aA

Org 0.72 ± 0.16aB 0.63 ± 0.17abB 0.90 ± 0.15aA

MSO 0.59 ± 0.09bB 0.54 ± 0.12bB 0.86 ± 0.23aA

4 Alone 0.58 ± 0.19aB 0.52 ± 0.20aB 0.79 ± 0.17aA

Org 0.45 ± 0.13abB 0.47 ± 0.24abB 0.83 ± 0.15aA

MSO 0.39 ± 0.10bB 0.38 ± 0.16bB 0.78 ± 0.19aA

5 Alone 0.46 ± 0.11aB 0.48 ± 0.18aB 0.70 ± 0.12aA

Org 0.34 ± 0.12abB 0.39 ± 0.31abB 0.67 ± 0.19aA

MSO 0.25 ± 0.09bB 0.32 ± 0.21bB 0.69 ± 0.08aA

The topramezone dose was 6.3 g a.i. ha−1; control means treated with tap water; Alone means that topramezone was applied alone; Org means that topramezone was applied together with a 
tank mix of organosilicone; MSO means topramezone was applied together with a tank mix of MSO. The means in the same column followed by a common letter are not significantly different 
at P = 0.05 (vertical comparison). The means in the same row followed by a capital common letter are not significantly different at p = 0.05 (horizontal comparison).
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Additionally, studies have shown that the absorption and 
translocation of herbicide active ingredients in plants 
decreased under high temperature stress, which ultimately 
decreased herbicide efficacy (Hawxby et  al., 1972; Devine 
et al., 1983; Coetzer et al., 2001). Thus, the application of MSO 
adjuvants could contribute to the enhancement of herbicide 
efficacy, especially under adverse environmental conditions.

Adjuvant organosilicone had no effect on the efficacy of 
topramezone under any of the three temperature conditions. 
Organosilicone adjuvants usually enhance the efficacy of certain 
herbicides by reducing the surface tension of the spray solution, 
promoting infiltration of the active ingredient into stomata, and 
increasing droplet spreading over the leaf surface (Field et  al., 
1992). Though a large number of studies have demonstrated good 
effects of organosilicone on enhancing the efficacy of herbicides 
with many different modes of action, there are still some reports 
indicating antagonistic action between L-77 (a type of 
organosilicone adjuvant) and glyphosate (Sharma and Singh, 
2000). This is similar to the findings in our study; hence, the reason 
(perhaps from the perspective of deposition, retention, uptake, 
translocation and so on) needs to be further studied in future.

Chlorophyll fluorescence measurement 
as a method to evaluate the effect of 
adjuvants on herbicide

Measuring changes in the chlorophyll fluorescence induction 
curve (Kautsky curve) has been used in plant photosynthesis 
research (Christensen et al., 2003; Korres et al., 2003). This method 
is effective at providing a snapshot of the physiological status of a 
plant exposed to various stress factors and contains important 
information about the photosynthetic apparatus. Because of its 
nondestructive, highly sensitive, rapid speed and easy-to-operate 
characteristics, this method has been used to measure the effects of 
herbicides that inhibit photosystem II and those with other modes 
of action (Habash et al., 1985; Percival et al., 1992; Klem et al., 2002). 
With the development of this technology and new instruments, 
Wang et al. (2018) demonstrated that chlorophyll fluorescence can 
be used to identify the effects of ALS (acetolactate synthase) and 
ACCase (acetyl CoA carboxylase) inhibitor herbicides on the PSII of 
weed species and crops under different growing conditions. Similar 
to other 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) 
inhibitors, topramezone blocks the formation of homogentisate by 

TABLE 4  Effects of two adjuvants on the dry weight of giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medik.) at 3 weeks 
after application.

Weed Adjuvant RIDW

High temperature Moderate temperature Low temperature

Giant foxtail Alone 0.36 ± 0.08aB 0.38 ± 0.09aAB 0.51 ± 0.19aA

Organosilicone 0.29 ± 0.14abB 0.41 ± 0.20aAB 0.46 ± 0.18abA

MSO 0.21 ± 0.08bB 0.32 ± 0.06bAB 0.40 ± 0.08bA

Velvetleaf Alone 0.41 ± 0.22aB 0.46 ± 0.30aB 0.66 ± 0.37aA

Organosilicone 0.38 ± 0.23aB 0.38 ± 0.30aB 0.59 ± 0.38abA

MSO 0.23 ± 0.04bB 0.25 ± 0.07bB 0.48 ± 0.20bA

The topramezone dose was 6.3 g a.i. ha−1; control means treated with tap water; Alone means that topramezone was applied alone; Org means that topramezone was applied together with a 
tank mix of organosilicone; MSO means topramezone was applied together with a tank mix of MSO. The means in the same column followed by a common letter are not significantly different 
at P = 0.05 (vertical comparison). The means in the same row followed by a capital common letter are not significantly different at p = 0.05 (horizontal comparison).

FIGURE 3

Images of giant foxtail taken at 3  weeks after herbicide application. The topramezone dose was 6.3  g a.i. ha−1; control means treated with tap 
water; Alone means topramezone was applied alone; Org means topramezone was applied together with organosilicone; MSO means 
topramezone was applied together with MSO.
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inhibiting 4-HPPD (Grossmann and Ehrhardt, 2007). As 
homogentisic acid is a precursor of the most common plastoquinone 
(PQ-9), the electron transport efficiency between PSI and PSII 
decreases after the inhibition of HPPD (Xu et al., 2019), and the 
photosynthesis of herbicide-treated plants becomes interrupted. 
Thus, less energy can be used by the plants via photosynthesis and is 
therefore reemitted as chlorophyll fluorescence in a shorter 
wavelength compared with that which occurs in unstressed status. 
Therefore, chlorophyll fluorescence imaging technology should 
theoretically be  capable of evaluating the efficacy of such mode 
of herbicides.

In our case, we employed chlorophyll fluorescence imaging 
technology to evaluate the effects of adjuvants on herbicide 
efficacy under different environmental temperature conditions. 
The classic whole-plant bioassay and plant chlorophyll 
fluorescence measurement results at 2-5 DAT under high and 
moderate environmental temperatures corresponded well with 
each other for both the grassy weed giant foxtail and the 

broadleaved weed velvetleaf. This is quite similar to the result of 
Vranjes et al. (2019) when they did their research on the response 
of chenopodium album and abutilon theophrasti to the treatment 
of mesotrione. The RIF Fv m/  value of the treatment involving the 
herbicide applied together with MSO in a tank mixture was 
significantly decreased compared with that of the treatment 
involving the herbicide applied alone. In the case of low 
temperature, the chlorophyll fluorescence measurement at 2-5 
DAT was not consistent for velvetleaf, and the RIF Fv m/  value did 
not significantly vary among the different adjuvant treatments. 
Hence, chlorophyll fluorescence measurements are capable of 
evaluating the effects of adjuvants on the efficacy of herbicides 
under relatively high environmental temperature conditions for 
some grassy weed species, but attention should be paid under 
relatively low temperature conditions and for some broadleaved 
weed species. As stated above, this technology has already been 
applied for herbicide efficacy evaluation in the field accompanying 
the improvement of technology and new instruments (Wang 

FIGURE 4

Images of velvetleaf taken at 3  weeks after application. The topramezone dose was 6.3  g a.i. ha−1; control means treated with tap water; Alone 
means topramezone was applied alone; Org means topramezone was applied together with organosilicone; MSO means topramezone was 
applied together with MSO.
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et  al., 2016, 2018; Li et  al., 2018). Hence this method will 
accelerate the progress of screening the right adjuvant for 
herbicides and improve the digital component of classic herbicide 
bioassays practically.

Conclusion

Selecting an appropriate spray adjuvant for herbicides under 
different environmental conditions is an important strategy to 
enhance the efficacy of herbicides, reduce the application dose, 
and enhance environmental safety. Both the weed leaf chlorophyll 
fluorescence test and the whole-plant bioassay results 
demonstrated that the MSO adjuvant significantly enhanced the 
efficacy of topramezone under all temperature conditions for 
both weeds, the grassy weed species giant foxtail (Setaria faberi 
Herrm.) and the broadleaved weed species velvetleaf (Abutilon 
theophrasti Medik.), especially under relatively high temperature 
conditions. However, the organosilicone adjuvant had no effect 
on the efficacy of the herbicide on either weed species under any 
of the temperature conditions. The underlying reason (perhaps 
from the aspect of deposition, retention, uptake, translocation 
and so on) needs to be further studied. There was a relatively 
good correlation between chlorophyll fluorescence measurements 
and whole-plant bioassay results for both weed species under 
high and moderate temperature conditions. Hence, chlorophyll 
fluorescence measurements should be capable of evaluating the 
effects of adjuvants on herbicide efficacy under certain 
environmental conditions. However, attention should still be paid 
under relatively low temperature conditions for broadleaved 
weed species.
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Development of multifunctional
unmanned aerial vehicles versus
ground seeding and
outplanting: What is more
effective for improving the
growth and quality of rice
culture?
Peng Qi1,2,3, Zhichong Wang4, Changling Wang1,2,3, Lin Xu1,2,
Xiaoming Jia1,2, Yang Zhang4, Shubo Wang1,2,3, Leng Han1,2,3,
Tian Li1,2,3, Bo Chen5, Chunyu Li5, Changjun Mei6, Yayun Pan7,
Wei Zhang8, Joachim Müller4, Yajia Liu1,2,3* and
Xiongkui He1,2,3*
1College of Science, China Agricultural University, Beijing, China, 2Centre for Chemicals Application
Technology, China Agricultural University, Beijing, China, 3College of Agricultural Unmanned
System, China Agricultural University, Beijing, China, 4Tropics and Subtropics Group, Institute
of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany, 5Yuren UAV (Zhuhai) Co.,
Ltd., Zhuhai, China, 6Agricultural and Rural Bureau of Huaiyuan, Huaiyuan, China, 7Anhui Difa
Agricultural Technology Co., Ltd., Huaiyuan, China, 8Anhui Zhongke Intelligent Sense Technology
Co., Ltd., Wuhu, China

The agronomic processes are complex in rice production. The mechanization

efficiency is low in seeding, fertilization, and pesticide application, which

is labor-intensive and time-consuming. Currently, many kinds of research

focus on the single operation of UAVs on rice, but there is a paucity of

comprehensive applications for the whole process of seeding, fertilization,

and pesticide application. Based on the previous research synthetically,

a multifunctional unmanned aerial vehicle (mUAV) was designed for rice

planting management based on the intelligent operation platform, which

realized three functions of seeding, fertilizer spreading, and pesticide

application on the same flight platform. Computational fluid dynamics (CFD)

simulations were used for machine design. Field trials were used to measure

operating parameters. Finally, a comparative experimental analysis of the

whole process was conducted by comparing the cultivation patterns of mUAV

seeding (T1) with mechanical rice direct seeder (T2), and mechanical rice

transplanter (T3). The comprehensive benefit of different rice management

processes was evaluated. The results showed that the downwash wind field

of the mUAV fluctuated widely from 0 to 1.5 m, with the spreading height of

2.5 m, and the pesticide application height of 3 m, which meet the operational

requirements. There was no significant difference in yield between T1, T2,

Frontiers in Plant Science 01 frontiersin.org

108

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.953753
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.953753&domain=pdf&date_stamp=2022-07-28
https://doi.org/10.3389/fpls.2022.953753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpls.2022.953753/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-953753 July 23, 2022 Time: 15:46 # 2

Qi et al. 10.3389/fpls.2022.953753

and T3 test areas, while the differences in operational efficiency and input

labor costs were large. In the sowing stage, T1 had obvious advantages since

the working efficiency was 2.2 times higher than T2, and the labor cost was

reduced by 68.5%. The advantages were more obvious compared to T3, the

working efficiency was 4 times higher than in T3, and the labor cost was

reduced by 82.5%. During the pesticide application, T1 still had an advantage,

but it was not a significant increase in advantage relative to the seeding stage,

in which operating efficiency increased by 1.3 times and labor costs were

reduced by 25%. However, the fertilization of T1 was not advantageous due

to load and other limitations. Compared to T2 and T3, operational efficiency

was reduced by 80% and labor costs increased by 14.3%. It is hoped that this

research will provide new equipment for rice cultivation patterns in different

environments, while improving rice mechanization, reducing labor inputs, and

lowering costs.

KEYWORDS

multifunctional UAV, seeding, fertilizing, plant protection, mechanization, CFD
simulation, rice

Introduction

Rice is one of the most important crops throughout the
world. As a staple food for more than half of the world’s
population, rice is cultivated in more than 100 countries, and
90% is produced in Asia (Bhandari, 2019; Fukagawa and Ziska,
2019). The rice cultivation area in China is about 30 million hm2,
accounting for 30% of the crop cultivation area in China and
20% of the rice cultivation area around the world. The total rice
production is nearly 20 million tons in China, accounting for
40 of total grain production in China and 35% of the total rice
production all over the world (Zhu et al., 2007; He et al., 2008).
With 60% of the Chinese population relying on rice as a staple
food, rice has the largest area of cultivation, and the highest
yield, which occupies an extremely important position in food
security. (Feng et al., 2020).

However, there are many segments and complex agronomic
technical measures in rice cultivation, which lead to the low-
efficiency mechanization of the whole production process. There
are great differences in the mechanization levels of rice seedling,
transplanting, fertilization and pesticides management, machine
harvest, postharvest transportation, and grain drying (Chen
et al., 2017b). The rice cultivation process is divided into
four main parts: tillage, seeding, management, and harvest.
The tillage and harvest are mechanized, but the seeding and
management still cannot meet the requirements of modern
agriculture (Li et al., 2012; Song et al., 2018b). Especially in
the hilly areas, the arable land is small and scattered, where
the terrain is rugged. There are also problems with the use
of mechanical operations on the plains. For example, the soil

is compacted resulting in uneven seed emergence, and there
is an inconvenience in the use of small farm machinery (Lan
et al., 2017). They are time-consuming, inconvenient, and labor-
intensive, which seriously affect the progress of mechanization
(Bao and Li, 2004; Zhang and Zhou, 2019).

With the development of modern manufacturing, many
forms of agricultural equipment are used in rice production.
Unmanned aerial vehicle (UAVs), with the advantages of fewer
site requirements, low energy consumption, high safety, and
no space restrictions, has been widely used in rice agricultural
production (Wang et al., 2019). The continuous improvement
of agronomic technology, intelligent supporting technology,
and equipment for the whole process of rice production
have been introduced, which promoted many scholars to use
UAV applications for rice management (Zhang and Gong,
2014; Zhou et al., 2017, 2019). Firstly, for the effect of plant
protection UAV operating parameters on droplets and control
effectiveness, some previous explorations have been conducted.
Wang et al. (2017) studied the effect of spray parameters of
small, unmanned helicopters on the deposition of droplets.
The experimental results showed that the droplet distribution
decreased from the upper to the lower layer of the rice canopy
and decreased with the increase of flight speed. Chen et al.
(2016) studied the effect of HY-B-10L unmanned helicopter
spray parameters on the droplet deposition distribution in the
hybrid rice canopy. The results showed that the vertical wind
field above the plant canopy weakened with increasing height,
and the amount of droplet deposition gradually decreased; the
lower the operating speed, the more droplets were deposited
below the aircraft. Xue et al. (2013) applied N-3 UAV to
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investigate the effect of different flight heights on the control
of rice Planthopper and Cnaphalocrocis medinalis. The results
showed that low flight altitude was effective in controlling rice
Planthopper and C. medinalis, and the application volume was
directly proportional to the control effect at the same flight
altitude. Secondly, for agricultural UAV seeding, our researchers
have conducted a lot of research. In 2014, Li et al. (2016)
conducted UAV spreading experiments. The results showed
that a 0.09 hm2 rice field only required 305 s to complete
rice seed spreading. Cheng and Li (2020) studied the effects
of direct seeding on rice growth characteristics and yield.
The results showed that UAV direct seeding had significant
advantages over hole-direct seeding and manual sowing in
seedling quality indexes. The yield of UAV direct seeding was
454.9 kg/667 m2, which was higher than that of manual sowing
at 417.9 kg/667 m2, but lower than that of hole direct seeding
at 509.3 kg/667 m2. Thirdly, UAVs had also been studied
for agricultural fertilization. Ren et al. (2021) designed a rice
fertilizer spreading system. The test results showed that fertilizer
spreading uniformity was significantly influenced by flow rate,
UAV flight speed, centrifugal disc speed, and drop-in position
angle, all of which interacted with each other. The best fertilizer
spreading performance was achieved when the drop-in position
angle was forty, the centrifugal disc speed was 1,100 r/min, the
fertilizer flow rate was 3,460 particles/s, and the flight speed
was 5 m/s. The coefficient of variation was 8.86% currently. The
fertilizer application efficiency of the UAV was about 12.5 times
that of manual fertilizer application.

In 2012, there were less than 10 Chinese agricultural UAV
manufacturers and only a few hundred agricultural UAVs. With
the promulgation of the Centra Document No. 1 in 2014, the
number of UAV enterprises have increased by nearly hundreds,
and the sales amount has reached 60 thousand units by 2020.
Correspondingly, agricultural UAV ownership has reached 110
thousand units (Yubin and Guobin, 2018; Yongwang et al.,
2020). The rapid development of the UAV industry and the
rise in labor costs have accelerated the use of UAVs in the
rice cultivation process. Especially in areas where large ground
machinery cannot operate rice cultivation, the application of
UAVs has broad prospects.

Currently, UAVs are widely used in different aspects of
agriculture, but mostly single function. UAVs have developed
rapidly in agricultural fields, such as disease and insect pest
control, pollination, and agricultural information acquisition
by remote sensing, but the development of UAV air sowing
is relatively backward (Wan et al., 2021). Considering the
characteristics of different application of UAVs in seeding,
fertilization, and pesticide application in rice cultivation, the
idea to design an multifunctional unmanned aerial vehicle
(mUAV) is proposed (Figure 1), which can combine all these
functions. The focus of this article mainly included the following
aspects: (1) The mUAV were structured as a modularity of
different functions. A sophisticated flight platform was designed
and improved, which was based on modular design theory
connected to different functional devices, and these different
modules corresponded to different functions. This structure

FIGURE 1

mUAV total design solution.
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could increase the utilization rate of machinery and reduce the
idle rate of agricultural machinery. It could also reduce the
acquisition cost of agricultural machinery and protect farmers’
income. (2) The appropriate range of operational parameters
was selected for the different functional modular devices. Two
approaches were used to evaluate the operational patterns
separately. Numerical simulation analysis was prioritized,
which focused on the downwash airflow motion regulation.
Afterwards, field tests were combined for verification, which
clarified the particle distribution at the target under the action of
downwash airflow. It was hoped that the content of these studies
would provide some guidance for practical use by farmers.
(3) Comparative field trials were conducted in the mUAV,
mechanical seeding, and mechanical transplanting the latter
two, of which were the mainstream mechanized operations in
society. Each of the three types of equipment was applied to
the whole process of rice cultivation to summarize and analyze
the impact of labor cost, as well as rice yield in the whole
process of rice cultivation. It was hoped that the comparison
test would provide a reference basis for farmers to recognize and
understand the advantages and weaknesses of the mUAV when
they chose the mUAV for their operations.

Materials and methods

Multi-rotor unmanned aerial vehicle
platform and multifunctional
component design

In this research, based on the current UAV models, an eight-
rotor UAV with 20 kg loading capacity was designed based
on “Yuren” automatic flight control system. Multifunctional

TABLE 1 Basic parameters of the multifunctional UAV.

Parameters Values

Dimensions/mm3 3,740× 3,740× 800

Fight velocity/ms−1 0–7

Fight altitude/m 0.5–5

Number of nozzles 8

Number of rotors 8

Spaying width/m 8–10

Spreading fertilizer width/m 9–12

Seeding width/m 5–7

Maximum load/kg 20

Battery capacity/mA·h 5,500

component system was designed based on this UAV platform. Its
core working components were mainly divided into three parts:
flight control platform, spreading system, and spraying system.
The spreading system and the spraying system were connected
with the rotary arm through the quick release buckle to realize
the agricultural various agricultural operation requirements of
sowing, spreading fertilizer, and spraying. A three-dimensional
model of the whole structure was constructed using Unigraphics
NX (Siemens PLM Software), as shown in Figure 2. The basic
parameters were listed in Table 1.

Operational parameters optimization

Multifunctional unmanned aerial vehicle wind
field computational fluid dynamics simulation
by using ANSYS

The wind field below the UAV rotor was mainly composed
of the UAV rotor wind field and the external environment wind

FIGURE 2

3D overall design of mUAV. 1 represents the public flight control platform, 2 represents the device for spreading seed or fertilizer, and 3
represents the entire system used for pesticide application.
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field, which was the main factor affecting the particle trajectory.
During the stable flight of the UAV, a strong rotor wind
field would be generated, which had a certain coercive effect
on the particle movement. Therefore, the computational fluid
dynamics (CFD) method was used to explore the influence of
the mUAV rotor wind field on the particle movement. Through
the research on the distribution characteristics and development
regularity of the mUAV rotor wind field, the influence of the
mUAV rotor wind field on the particle movement can be more
accurately explored and understood.

An accurate 3D model of mUAV played a key factor in
CFD simulation, but the complex structure led to difficulties
in modeling and boundary conditions. As shown in Figure 2,

the mUAV is a full-size structure, which was not necessary
because the shape of the mUAV was a complex-curved surface.
Therefore, simplifying the structure was very necessary for CFD
simulation. The simplified result was shown in Figure 3.

In the 3D coordinates, the forward motion in X direction
was the front of the MUVA flight, the forward motion in Y
direction was the right offset, and the forward motion in Z
direction was the descent direction.

The mUAV was located at the center of the coordinate
system (X = 0, Y = 0, Z = 0) and the distances between the mUAV
and the ground were 1–6 m. The entire computational domain
was a cylinder with a radius of 8 m, as shown in Figure 4A. The
rotation direction of the mUAV blades was shown in Figure 4B.

FIGURE 3

The simplified structure for numerical simulation processes. (A) Represents the simplified rotor and other structures, while (B) represents the
specific structure of each propeller after simplification.

FIGURE 4

Computational domain settings in numerical simulation. (A) Stands for the name of the boundary condition, where 1 represents the top surface
of the computational domain, 2 represents the location of the mUAV, 3 represents the space wall, and 4 represents the ground. (B) Stands the
top view of the rotor in the computational domain, where R1–R8 represents each rotor, respectively, and the corresponding black portion of
arrows represent the direction of rotation of that rotor in the computational domain.
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The eight rotors of the mUAV were the rotational domain and
the cylindrical air was the stationary domain. The interface
meshes were established for accurate calculation between rotors
domain and air domain.

The SpaceClaim software (Release 2021 R1, Ansys, Inc.,
PA, United States) was used to develop the CFD models of
simplified mUAV model, Mesh in Workbench was used for
meshing and as the solver. The unstructured tetrahedral mesh
was applied, and the size of the grids was defined. The mesh
size of the rotational domain was defined as 10 mm, the mesh
of the stationary domain was defined as 400 mm, and the mesh
quality was improved by defining the dimensions of faces and
lines separately. Also, it had turn on features, such as Capture
Curvature and Proximity to improve mesh quality. Transient
SST k-ε model was employed (Wang et al., 2001; Omar et al.,
2016), the computation lasted 1,000 steps with a time step of
0.005 s. The workstation was used to calculate the results of the
rotational speed of the rotating domain at 2,500 r/min.

Experimental parameters
Seeds and fertilizers were evenly distributed in the soil,

which was beneficial to seed emergence and balanced fertilizer
nutrition. Therefore, refer to the test regulations of the technical
specifications in EN13739-1 (2011) Agricultural machinery –
Solid fertilizer broadcasters and full width distributors –
Environmental protection and NY/T1003 (2006) Technical
specifications of quality evaluation for fertilizing machinery,
the distribution of particles in the field was an important
test parameter. To reduce the particle bouncing and other
factors affecting the collection efficiency, particle size uniformity
detector (AAMS-SALVARANI BVBA, Germany) was used as a
dedicated tester to collect particles. During the test, Pocketwind
IV Anemometer (Lechler GmbH·Agricultural Nozzles and
Accessories, Germany) was used as a device for recording wind
speed and temperature of the environment. If the wind speed

exceeded 4 m/s and the temperature exceeded 30◦C, it would
be regarded as invalid data. In the experiment, about 667 m2

of open space was selected as the UAV operation area, and the
center of the area was used as the collection location of the
detector. When the UAV was operating, the detector area would
be fully covered to ensure accurate data. The speed of the UAV
was set between 2 and 2.5 m/s and keep the flight height at
1.5, 2, and 2.5 m, respectively. After the UAV landed safely, the
particles in each detector were recorded.

For the sowing test (Figure 5A), to simulate the real working
environment, the fields, which were soaked in water, were
selected. The detectors were fixed in the test field with an
interval of 2 m and perpendicular to the UAV course. The
detector was divided into 6 × 6 partitions, with an outer size
of 500 mm × 500 mm, which can easily count the number of
seeds in each small partitions. There was some variation in the
location of fertilizer test site (Figure 5B), which was selected on
a dryland. In addition to using a collector,8200 mm× 500 mm
size circular collectors were used to collect fertilizer particles in
a 3× 6 array at 1,500 mm× 1,200 mm intervals.

The plant protection application experiment was conducted
at the jointing-booting stage of paddy. The fixed rods were
inserted into the paddy field, which were arranged in a 3 × 9
matrix with a cortege spacing of 3,000 mm × 1,000 mm
(Figure 6A). One end of the double-head clamp was fixed
on the fixed rod, and the other end clamped the droplet
collector (Polyethylene Card, PVC), as shown in Figure 6B.
The two droplet collectors were located at the top and middle
ends of the same fixed rod. It was placed horizontally, which
accounted for 100 and 50% of the length of the rice, respectively.
The Allura red solution with a concentration of 10 g/L was
prepared as a droplet deposition tracer, which was put into
the UAV tank before flight. The UAV was operated with
the parameters shown in Table 2. The Wind Master model
(Gill Instruments Ltd., United Kingdom) was used on site to

FIGURE 5

Test site for rice seeding and fertilization. (A) Represents the rice seeding test site, where detector is to collect the rice seeds that fall on the
ground; Label is to identify the location. (B) Represents the fertilizer spreading test site, where detector is used to collect ground fertilizer
particles, and collector is used as another way to collect ground fertilizer particles.
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FIGURE 6

Rice pesticide application test site. (A) Represents the field sampling site of rice field, where the sampling points are arranged on the fixed rod.
(B) Represents a partial schematic of each fixed rod, where the double-head clamp connects the fixed rod to the droplet collector.

TABLE 2 Spray test and environmental parameters.

Test number Flight height (m) Flight speed (m·s−1) Wind speed (m·s−1) Temperature (◦C)

1 1.0 6.0 2.7 34.6

2 2.0 6.0 2.5 32.5

3 3.0 6.0 2.2 31.2

4 3.0 4.0 2.6 30.4

5 3.0 5.0 2.7 32.7

6 4.0 6.0 1.7 30.5

monitor the environmental parameters. After the UV landed,
the sampling bottle collected 50 ml of liquid in the tank.
After the droplet collectors were naturally dried, each droplet
collector was individually packaged in a plastic sealing bag and
stored in darkness.

Refer to ISO22866 (2005) and ISO24253-1 (2015) standards.
Deionized water (50 ml) was added to the plastic sealing bag of
polyethylene film, then the plastic sealing bag was placed in a
shaker at 500 r/min for 10 min. The eluate was measured with
a 722 spectrophotometer. The droplet deposition refers to the
mass of the droplet per unit area, which was calculated using the
following Eq. 1 (Qin et al., 2014; Wang et al., 2020):

βdep =
(ρsmpl − ρblk) × Feal × Vdii

ρspray × Acol
(1)

βdep: Droplet deposition [ µg
cm2 ]; ρsmpl: Sample Collection Values;

ρblk: Blank Control Values; Feal: Calibration Factor (per
fluorimeter scale unit) [ µg

L ]; Vdii: Volume of dilution liquid used
to solute tracer from collector [L]; ρspray: Tracer concentration in
spray liquid [ µg

L ]; Acol : the area of the collector for catching the
spray deposition[cm2

].
The uniformity of the particles or spray deposition on the

sampling places are reported as the coefficient of variation
(CV) of the measured deposition values, and a lower CV
value indicates a better uniformity of deposition distribution.
Equation 2 describes the calculation of the CV (%) using the ISO

standard 24253-1.

CV =

√∑n
i =1

(
Xi−

−

X
)2

(n−1)
−

X
× 100% (2)

Xi : Samples from each collection point;
−

X: Corresponding
to the average value of the collected samples; n: Number of
samples collected.

All statistical analyses were performed using IBM SPSS
Statistics for Windows (IBM Corp., Armonk, NY, United States).
Two-way analysis of variance (ANOVA) was adopted to explore
the effects of broadcast and spray on distribution uniformity on
the field. In all trials, the mean values of distribution uniformity
at different parameters, together with those of percentage,
were compared using one-way ANOVA via the Duncan test
(α = 0.05).

Application experiment of rice cycle
cultivation management

To better understand the performance of mUAV operated
in an outdoor environment, comprehensive comparison
experiments were conducted at different growth stages of rice
using different agricultural machinery.
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There were three main modes of local rice cultivation:
The first one was rice direct seeder cultivation, which was
an important way to fully mechanize rice cultivation. The
second one was mechanized rice transplanter, which is also an
important mode and guarantees and supports mechanization
planting. The third was artificial transplanting, which is a
traditional rice transfer method that had been gradually replaced
by mechanical transplanting. Therefore, the comprehensive
comparative experiment was set up with three cultivation
patterns: the first experimental field was the multifunctional
UAV directly sowing, fertilizing, and applying pesticide. The
second experimental field was sown with a rice direct seeder,
and fertilizer and pesticide were applied using other ground
machinery. The third experimental field was sown with a rice
transplanter, while other ground machinery was used to apply
fertilizer and pesticides. The area of each experiment area was
2.2 hm2, which were marked as T1, T2, and T3 respectively.

Full mechanization referred to the mechanization of efficient
production technologies in rice production, such as tillage,
planting, plant protection, fertilization, harvesting, drying, and
straw treatment. According to the agricultural characteristics
and experimental requirements of rice cultivation, there were
five main segments: tillage, seeding, planting, fertilization, and
harvesting. This experiment was conducted to compare the
feasibility of UAV application in the whole process of rice and
a comprehensive comparison with two mechanical planting
methods. The test site was in Zhuangqiao Village, Wanfu
Town, Huaiyuan County, Bengbu City, Anhui Province in
2020, and the trial included evaluation of labor costs, rice yield
and profit, cost analysis of transplanting, etc. To match the
actual production conditions, the agricultural materials and
equipment used during the experiments process were provided
by local cooperatives.

Agronomic process of different cultivation
modes of rice
Ploughing stage

All experimental fields were cultivated with a 1804D model
tractor (YTO GROUP CORPORATION, China) and a 1GS-
3300 model rotary tiller (YTO GROUP CORPORATION,

China) with a width of 3,000 mm for the purpose of breaking
the soil stubble. At the same time, 40 kg/667 m2 base fertilizer
was applied, and the soil and fertilizer were mixed using
rotary tillage. In the field, a ditch with a depth and width of
300 mm × 300 mm was dug at an interval of 4,000 mm for
water retention and to prevent waterlogging. The herbicide
was sprayed by a 3WPZ-1500B self-propelled boom sprayer
(Qingzhou Aike Machinery Technology Co., Ltd., Qingzhou,
China). The difference was that T1 and T3 irrigations were kept
for 7 days, and the water was drained, while T2 did not require
further treatment. As shown in Figure 7.

Sowing stage

In the T1 experimental area, the seeds were soaked 24 h in
advance and germinated to a length of 1.5–2 mm (Tao et al.,
2011), and the seeds were sown into soil at 5 kg/667 m2 using
a UAV broadcast. In the T2 experimental area, the seeds were
only soaked about 12 h until just about to germinate, and the
seeds sown into soil at 6 kg/667 m2 using a rice direct seeder
(Huaiyuan County Sanliu Agricultural Machinery Co., Ltd.,
Huaiyuan, China). In the T3 experimental area, the seeds were
cultivated 20 days in advance, which was the seedling raising
period, and then the seedlings were collected and transported,
then 4–7 seedlings per hole were inserted into the experimental
field with a row spacing of 140 mm × 300 mm using a
NSD8 model mechanical rice transplanter (Kubota Agricultural
Machinery (Suzhou) Co., Ltd., Suzhou, China). According to the
agronomic characteristics, T1 and T2 were selected as suitable
for direct seeding with the same seed variety, and T3 was selected
as another variety suitable for transplanting.

Top dressing stage

Topdressing was mainly in the tillering and booting period,
and the amount of fertilization was 15 kg/667 m2 each time,
for a total of two times. The main difference between the three
experimental areas were the use of different equipment. In the
T1 area, the feeding port suitable for the caliber was installed
to the UAV broadcast, and then the top-dressing operation was
carried out. In the T2 and T3 experimental areas, to reduce the

FIGURE 7

Agricultural process of rice cultivation in different experimental areas. a Compared to T1 and T3, the workload in the T2 region is reduced by
about half, b compared to T1 and T3, the T2 area is only about 60% irrigated, keeping the soil from drying out, but not having standing water, c

the seeds germinated to 2 mm, which took about 20 h, d the seeds were just ready to germinate, but did not grow, taking about 8 h. T1
represents mUAV experiment area, T2 represents mechanical rice direct seeder area, T3 represents mechanical rice transplanter area. P1
represents soil preparation stage, P2 represents seeding stage, P3 represents fertilization stage, P4 represents pesticide application, and P5
represents harvester stage.
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cost of agricultural equipment, the sports chassis of the 3WPZ-
1500B self-propelled machine, and the separately purchased
fertilizer spreader were used to work together.

Pesticide application stage

In the actual management of diseases and pests, pest
prevention is the main method of pest and disease control.
Therefore, according to the needs of agricultural control and
the occurrence of pests and diseases, pesticides were generally
sprayed before the occurrence of pests and diseases. The
pesticides were mainly insecticides and fungicides, which were
sprayed 3–4 times during the rice cultivation process. The
main differences between the three experimental fields were the
agricultural equipment and the amount of pesticide applied. In
the T1 experimental area, the application system was installed
on the UAV platform, and the pesticides were mixed and
diluted with an application rate of 1.5−2 L/667 m2. The 3WPZ-
1500B self-propelled boom sprayer was used in the T2 and
T3 experimental areas to spray with the application rate of
15−20 L/667 m2.

Harvest stage

The rice yield was evaluated, reference to the National Grain
High Yield Creation Yield Measurement, Acceptance Method,
and the DB32/T 1093-2015 Standard. Five units were selected
in the diagonal direction of each experimental area, each unit
of 20 × 667 m2 was used as a production measurement unit.
Five sampling points were randomly selected in each production
measurement unit. For the experimental field with obvious row
spacing and plant spacing, representative rice panicles within a
certain range were selected from each sampling point, and the
number of panicles per 667 m2 was calculated. Representative
mature rice ears with ten holes per unit were selected to measure
the plant height and root length of rice. After natural air-drying,
the number of grains per ear, seed setting rate, and thousand-
grain weight were determined, and the theoretical yield per
667 m2 was calculated. For the experimental field where the
row spacing and plant spacing cannot be clearly distinguished,
a square frame of 1,000 mm × 1,000 mm was made with
hard iron wire, and the number of ears and yield per 667 m2

were calculated. Finally, the 4LZ-200 rice combine harvester
(Luoyang Zhongshou Machinery Equipment Co., Ltd., Luoyang,
China) was used to harvest rice.

Results

Characteristics of downwash airflow at
different heights

As shown in Figure 8, the velocity of the downwash flow
field was varied along the Z-axis in the range of 1–6 m from the
ground for the UAV.

Higher wind speeds were generated at the wingtips of the
rotor blades, and two distinct areas of acceleration appeared
below each rotor blade. An upward (Z-axis negative direction)
airflow appeared in the center of the mUAV broadcast. The
vertically downward scrubbing airflow created a negative
pressure that caused the surrounding air to converge on the
downward scrubbing airflow. The vertically downward airflow
touched the ground, causing the airflow to flow sideways, and
this airflow met the airflow that was brought to the center,
forming a vortex.

At the same time, various combinations of altitudes can be
seen. As the flight height of the mUAV increased, the velocity
change tended to level off at the position near the ground, the
airflow gradually increased along the radius direction, and the
vortex gradually moved away from the center.

In all the interfaces shown in Figure 8, a straight line was set
at 0.5 m intervals along the Z-axis direction. This straight line
indicated that the velocity changed at different distances in the
Y-axis (Figure 9).

Four small peaks and one trough were observed at 0.5 m
(Figure 9A) and 1 m (Figure 9B) below the UAV at all test
heights. The wind speed at this point was unstable and there
was an effect of wind speed in the opposite direction (Z-axis
negative direction). Since the mUAV was so low to the ground,
the strong airflow hit the ground and bounced off the ground,
which referred as the ground effect.

An upward (Z-axis negative direction) velocity was observed
in the range of 0.5–1.5 below the mUAV at flight heights of
1 and 2 m. Until the flight altitude of 3 m (Figure 9C), the
velocity direction was still downward (positive Z-axis direction)
despite the sharp change in the center of the mUAV. Moreover,
above 1.5 m from the bottom of the mUAV, the velocity change
tended to smooth out.

In addition, the flow field below the mUAV became more
stable with the increasing flight altitude, and the same trend was
observed at flight altitudes of 4–6 m (Figures 9D–F).

According to the above simulation results, it was suggested
that the mUAV should operate at a height of 2 m or more.

Variation of spread distribution with
height

When the mUAV was used for seeding tests, the flight
altitude had an (positive or negative) effect on the uniformity of
spreading, which was 24.36, 22.83, and 13.05% in the horizontal
direction for the three altitudes tested. As shown in Figure 10A,
the fluctuations were relatively large at the position of test point
(1,4) and less in the middle (2,3).

When the mUAV performed fertilizer spreading was tested,
there was the same trend at different heights, and the weight
of particles collected by the detector that showed more in the
middle and less on both sides. The variability was greater on
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FIGURE 8

Flow field velocity vector illustration of the mUAV flying at different altitudes. (A–F) Indicate that the mUAV is flying at 1, 2, 3, 4, 5, and 6 m above
the ground, respectively.

the right side than on the left side, as shown in Figure 10B. In
the circular detector (Figure 10C), the left collector had a large
particle dispersion and good uniformity of dispersal to the off-
right of the mUAV route. The CV in the horizontal direction
fluctuated from 11.98 to 23.68% over the range of test heights.

According to the simulation results (Figure 9), the mUAV
tended to have a smoother downwash airflow with an increasing
height, which was more conducive to the uniform distribution
of particles. However, the actual motion of the particles in the
air varied greatly under the influence of the ambient wind field
forces. The higher the flight height, the longer the fall time in
the air and the more uncontrolled the trajectory of the particles,
which led to greater uncertainty in the particle fall point. As
shown above, 2.5 m would not be the most suitable height,

but it could meet the requirements of agronomic spreading and
minimize the influence of ambient wind field forces.

Variation of spray distribution with
height and velocity

As shown in Figure 11A, the deposition of droplets in
the upper and middle of rice was affected by the flight height
of the mUAV. The low flight (H = 1 m) can significantly
increase the deposition of the upper and middle, and the
deposition in the upper and middle layers was 0.0849 and
0.0446 µL cm−2. From H = 2 m to H = 3 m, there was
no significant difference in the deposition between the upper
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FIGURE 9

Variation curve of velocity at different altitudes during simulation. (A–F) Indicate that the mUAV is flying at 1, 2, 3, 4, 5, and 6 m above the
ground, respectively. The “Z” in each figure indicates the distance from below the mUAV, “for FFF meters” indicates the altitude at which the
mUAV is flying. The curves in each graph indicate the wind speed of the mUAV at distance “Z,” where positive values indicate a vertical
downward wash and negative values indicate a vertical upward wash.

and middle of rice, but the deposition at H = 3 m was
higher than that at H = 2 m and H = 4 m. In the range
of UAV flight speed of 4–6 m s−1 (Figure 11B), low flight
speed could significantly increase the deposition of droplets
in the upper layer, but it had no significant effect on the
deposition of the middle.

When the mUAV was flying at an altitude of 1–6 m above the
ground, Figure 12 showed the wind speed profiles for different
flight heights of 0.5 m above the ground. The intensity of the
downwash airflow was highest and unstable when the mUAV
was flying at 1-m height, which resulted in a high air mass
flow rate and an increase in the number of particles per unit
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FIGURE 10

The uniformity of spreading in the horizontal direction at different heights. (A) Represents uniformity of horizontal distribution of sown seeds.
(B) Represents uniformity of horizontal distribution of fertilizer in square collectors. (C) Represents uniformity of horizontal distribution of
fertilizer in circular collectors. In all figures, the horizontal coordinates indicate the collector number, and the vertical coordinates indicate the
distribution, where “h” indicates the flight height of the mUAV from the ground.

FIGURE 11

Distribution characteristics of droplet deposition in the rice canopy. (A) Represents deposition distribution affected by flight heights,
(B) Represents deposition distribution at affected by flight speeds. Where “H” represents the mUAV flight height, “V” represents the mUAV flight
speed, “Upper” represents the upper rice layer, and “Middle” represents the middle rice layer. a, b, c, and d indicate a significant difference at
P < 0.05.

time of droplet movement, which eventually manifested itself
as an increase in deposition. One possibility inferred from this
was that the downwash airflow velocity of the mUAV above
the canopy should be less than 5 m/s to evenly distribute the
deposition above and below the canopy.

Under the same speed conditions, the droplet deposition in
the upper and middle layers tended to decrease with the increase
of flight height, which may be affected because of droplet drift
caused by the increase of height. Under the condition of the
same flight height, the deposition of the upper and middle also
decreased with the increase of the speed. This was caused by the
low flight speed, which led to the increase of the spraying flow
droplet deposition. According to the CV values of the droplet’s

deposition and distribution in the rice canopy, the 3-m flying
height with a speed of 5 ms−1 were selected/recommended
during the spraying operation.

Yield of different cultivation patterns

After analysis of the yield components, it was found that
the panicles distribution density, spikelet per panicle, as well
as thousand grain weight, were all significantly affected by the
methods of cultivation (Table 3). Meanwhile, the performance
of T1 with T2 in the number of panicles per square was similar,
while T3 had the lowest value (P < 0.05) among these methods.
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FIGURE 12

Velocity variation curve at 0.5 m from the ground at different flight heights. Where “Z = 0.5 m for 1 m,” “Z = 1.5 m for 2 m,” “Z = 2.5 m for 3 m,”
“Z = 3.5 m for 4 m,” “Z = 4.5 m for 5 m,” “Z = 5.5 m for 6 m,” the size of the downwash airflow at 0.5 m from the ground when the UAV is flying
at 1, 2, 3, 4, 5, and 6 m, respectively.

T1 and T2 were 19.7 and 9.5% higher than T3, respectively.
The cultivation methods did not have an obvious difference
of the number of spikelets per panicle. T2 increased the value
(P < 0.05) by 24.6% compared with T3. The thousand grain
weight were similar between T1 and T2, approximately 14.6%
less in T1 compared with T3 area. However, there were no
significant differences in seed-setting rate and predicted yield
among the three experimental areas.

Comparison of benefits of different
cultivation methods

The experimental site in this study was professionally
managed by a cooperative production, and the statistics
were based on workers employed and agricultural equipment
purchased by the company.

As shown in the Table 4, the T1 area (mUAV broadcast)
had significant advantages in the seeding session. Its operational
efficiency was 2.2 times and 4 times higher than T2 and T3,
respectively. The effect of pesticide spraying in T1 area was also
higher than T2 and T3 area by 33%. However, the fertilizer
application efficiency in T1 was five times lower than T2 and T3.

According to the management company salary standard,
the driver should be paid RMB 200 per day, and the support
staff should be paid RMB 150 per day. All agronomic segments
required one driver and several support staff. The number
of employees used for planting was the regular operation
configuration. The seeding segment in T1 area had one less
support staff than T2 and T3 areas, and the fertilizer stage had
two less support staff than T2 and T3 areas.

As shown in Figure 7 in the process of P1 to P5, rice
harvesting cost (P5) was the same and the difference in labor
cost was mainly in P1 to P4. The labor cost was calculated based
on the number of employees, the number of operations, and the
work efficiency (Table 5).

In soil preparation stage, it was mainly because T2 did not
require 100% irrigation, but only about 60% of the irrigation. As
a result, T2 area has a 32.6% reduction in labor costs compared
to T1 and T3 areas. T2 and T3 had high loads of ground
equipment, which consequently led to 16.5% higher labor cost
for fertilizer application in T1 than T2 and T3. Pesticide spraying
by mUAV (T1) had the advantage of reducing labor costs by 25%
in T1 area compared to the other two areas. The UAV had an
advantage over the rice direct seeder, but the advantage was not
significant with higher only 8.7%. Compared to transplanting,
the mUAV significantly reduced labor costs by 34.1%.
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TABLE 3 Effect of different cultivation methods on grain yield and its components of rice.

Test area No. of panicle per
square (No/m2)

No. of spikelet
per panicle

Seed-setting
rate (%)

Thousand grain
weight (g)

Yield
(kg/667 m2)

T1 374.83a 121.93ab 94.52a 22.57b 577.41a

T2 342.83ab 140.37a 94.80a 23.50b 600.99a

T3 313.17b 112.67b 95.57a 26.42a 554.43a

a, b indicates a significant difference at P < 0.05.

TABLE 4 Efficiency and number of employees of sowing, fertilizing, and application operations in different experimental areas.

Test area Agronomic
sessions

Work efficiency
(667 m2/day)

Labor cost
(RMB/day)

Number of
employees/day

Number of
operations*

T1 Sowing 200 350 2 1

Fertilization 160 350 2 2

Spraying 400 350 2 3

T2 Sowing 90 500 3 1

Fertilization 800 1,500 4 2

Spraying 300 350 2 3

T3 Sowing 50 500 3 1

Fertilization 800 1,500 4 2

Spraying 300 350 2 3

* Number of operations throughout the growth cycle of rice.

TABLE 5 Labor cost of soil preparation, sowing, fertilizing, and spraying in different experimental areas*.

Test area Soil preparation
cost**/ RMB

Sowing
cost/RMB

Fertilization
cost/ RMB

Spraying cost/
RMB

Total cost/
RMB

T1 766.67 175.00 437.50 262.50 1641.67

T2 516.67 555.56 375.00 350.00 1797.22

T3 766.67 1000.00 375.00 350.00 2491.67

*Based on 66.7 thousand m2 . **Including all labor costs for irrigation during the rice cultivation process.

Discussion

With the increasing application of UAVs in precision
agriculture, the CFD was applied to the improve the downwash
airflow of agricultural UAVs, from which the particle motion
in the airflow was analyzed. For example, Yang et al. (2017,
2018a) simulated the velocity distribution of the downwash
airflow field and the spatial distribution of droplets during the
hovering condition of multi-rotor aircraft based on the Fluent
k-ε turbulence model, which was verified by combining with
indoor hovering experiments. From the wind field simulation
results, it reflected the overall wind field spatial distribution
pattern, and the simulated value of the average wind speed at
the marker point was within 9% error with the experimental
measurement results.

In this study, we simulated the wind field of the designed
mUAV to provide a theoretical basis for the parameter setting
of the field test. The different flow velocity of the downwash
airflow from the center outward caused the effect of the flow

field spreading outward from top to bottom. This resulted in an
increase in spray width, and the spray width was proportional to
the flight height (Yang et al., 2018b). The airflow along the outer
rotor caused two peaks in a certain range. The effect became
relatively poor (Zhang et al., 2016) when the multi-rotor UAV
was operated at an altitude below 1 m. In addition, when the
wind speed was smaller horizontally and larger (Chen et al.,
2017a) vertically downward, the rotor’s downwash airflow had
better deposition uniformity. Particles in the air were mainly
affected by wind field forces and gravity, etc. When out of
the downwash airflow region, they were mainly affected by
the environmental wind speed, which was non-constant, and
this affected the final position of the particles. These factors
led to uneven distribution of rice seeds, fertilizer particles, and
pesticide droplets. There was a risk of drift loss of pesticide
droplets (Zhang et al., 2015; Wen et al., 2018). Therefore,
based on the premise of satisfactory distribution uniformity
and mUAV flight safety, the following operational parameters
were selected in this work for experiments with a width of
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4 m and a flight height 2−6 m at regular flight speed and
lower flight height.

The simulation parameters were given as a guide, the
specific operating parameters needed to be derived from actual
tests. Song et al. (2018a) designed an air-powered UAV rice
spreading device that used airflow to blow seeds out in different
directions. The results showed that the UAV’s operating height
in the range of 1−2.8 m had no significant effect on the
spreading width and spreading uniformity. Considering the
factors of spreading width and uniformity CV, as well as the
field operating environment, the flight height of 2 m was
considered to be the appropriate operation height of this UAV
platform. Liu et al. (2020) studied the effect of quadrotor UAV
spreading parameters on the seed distribution of Astragalus
membranaceus. The results showed that the flight height was
the most important factor affecting the uniformity of seed
distribution. Meanwhile, the height of 1.5 m was recommended
as the optimal operation height. Wang et al. (2016a,b) analyzed
the distribution characteristics of droplets in different parts
of space by comparing different UAVs, different flight modes,
flight speeds, flight heights, and crosswinds using a spatial
mass balance test. The results showed that the wind speed
was fast and strong when the UAV flew at 2 m height.
As the height increased, the airflow in the vertical direction
weakened significantly. Although the increased flight altitude
reduced the dispersion of droplet deposition rate and improved
the uniformity of droplet distribution, there was a significant
upward trend in the percentage of downwind drift. The above
results showed that it was a double-edged sword that the method
of adjustment of distribution uniformity by flight height. The
airflow motion gradually decreased with increase of height, and
there was a gradual diffusion change from vertical downward
motion to horizontal motion (Shi, 2015). Simply increasing the
flight height had an effect on the uniformity of distribution.
However, as the flight height increased, the particles were
weakened by the force of the downwash airflow, and it was
susceptible to interference from ambient wind speed. Therefore,
the operating parameters chosen in this study were flight height
of about 2.5 m for broadcast application, and height of 3 m for
pesticide application.

The application of UAVs in the whole process of rice
cultivation or in individual segments can be seen to satisfy
the requirements of modern paddy cultivation. Li et al. (2016)
used a small multi-rotor UAV for rice broadcasting, the
results showed that CV was far smaller than that of artificial
broadcasting. The average yield of field broadcasted by UAV
was 7,705.5 kg/hm2, implying that rice air broadcasting by
UAV was feasible. Zhu et al. (2021) conducted a comparative
trial of five cultivation methods: mechanical transplanting,
unmanned machine seeding, mechanical precision hole sowing,
mechanical seedling throwing, and manual seeding. The results
showed that the number of seedlings in descending order
was manual seeding, UAV seeding, mechanical precision hole

sowing, mechanical transplanting, and mechanical seedling
throwing. The total effective number of spikes was higher in the
treatments of unmanned seeding and mechanical transplanting.
The theoretical yield of each treatment was in the order
of mechanical precision hole sowing, mechanical seedling
throwing, UAV seeding, mechanical transplanting, and manual
seeding. The analysis of the labor cost in the seedling planting
process showed that the mechanical precision hole sowing or
UAV seeding method was worthy of promotion. Zheng et al.
(2021) conducted a comparison test on four different seeding
methods: mechanical powder seeding, precision hole direct
seeding, UAV seeding, and manual seeding. The results showed
that the highest number of seedlings and the highest effective
spikes were achieved in the UAV seeding treatment, with the
effective spikes reaching 3,811,500 spikes/hm2. The actual yield
of UAV seeding was 6,549 kg/hm2, which was 1.2% lower than
that of mechanical precision hole seeding. Moreover, the lowest
labor cost was 40.5 Yuan/hm2 for the UAV broadcast. The
results of our work showed similar trends, with the number of
seedlings per square in descending order of mUAV direct seeder,
mechanical rice direct seeder, and mechanical rice transplanter.
The theoretical yields were in the downhill order of mechanical
direct seeder, mUAV direct seeder, and mechanical transplanter.

With the strict emission limits for environmental protection
regulations and limits for exhaust pollutions from diesel engines
of non-road mobile machinery (GB20891, 2014), the UAV used
electrical energy as power, compared to traditional agricultural
machinery burning diesel to obtain power, which reduced
pollutant emissions. The results of Xu et al. (2012) showed
that the average fuel consumption for the whole process of
rice production in the southern double-season rice area was
95.08 L/hm2, of which 36.65 and 37.88 L/hm2 was for tillage
and harvesting, respectively, 12.15 L/hm2 for transplanting,
and 8.4 L/hm2 for mechanized plant protection. Data from
the National Bureau of Statistics of China (NBS, 2021) showed
that it was 4,734 hectares in the sown area of early-season
rice in 2021. It was only 42.26% of mechanical rice cultivation
rate of China in 2015. In this study, it provided a viable
solution for rice cultivation in the application of mUAV in
seeding, fertilizing, and applying pesticides, which contributed
tremendously to the reduction of labor commitment and
mechanization enhancement.

In addition, the cost of farm machinery was different in
the three segments of seeding, fertilization, and spraying. The
total input cost of farm machinery used in the mUAV seeding,
mechanical seeding, and mechanical transplanting was about
110 thousand RMB, 215 thousand RMB, and 235 thousand
RMB. However, the tractor used in the mechanical direct seeder
and transplanter test area can also be used in the tillage stage.
Therefore, it reduced the cost of farm machinery inputs in
mUAV pilot area with certain extent, and it was increased rate
of farm machinery utilization, but it would also increase the rate
of depreciation.
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At present, China’s agricultural UAVs are mostly used in
plant protection, UAV broadcast applications are still in the
preliminary research and trial application stage. There are still
many problems with UAV applications.

In the fertilization process, the mUAV had no advantage
over ground fertilization machinery. Although the number of
workers was reduced, the operating efficiency and labor costs
were lower than those of ground machinery. This was mainly
due to the weight limitation of mUAV, as traditional ground
machinery can be loaded up to 800–1,000 kg. UAVs had great
advantages over manual fertilization. The results of the study by
Ren et al. (2021) showed that the efficiency of UAV fertilization
was about 12.5 times higher than manual fertilization, and
the cost of UAV fertilization was reduced to 18.45 RMB/hm2.
Liu et al. (2019) designed a spreading device for granular
herbicides, and the results showed that the control effect was
not significantly different from manual application, and the
operational productivity reached 80–120 667 m2/h, which was
15–25 times higher. Diao et al. (2020) compared it to mechanical
precision hole seeding and UAV direct seeding trials. The results
showed that the yield of both was comparable. Although the
UAV was slightly lower than the mechanical precision hole
seeding, the operational cost was reduced by about 50% and
the operational efficiency was increased by more than 5 times.
There are limitations in the UAV fertilizer application process,
the same problems existed with ground machinery in the middle
and late stages of rice growth and in complex hilly areas
(Xie et al., 2013), such as poor adaptability, high operational
intensity, and severe crushing of rice (Chen et al., 2012; Qi et al.,
2016; Shi et al., 2018; Song et al., 2018b). Therefore, there is still
a great market demand for mUAV fertilizer application.

In the soil preparation process, there were two main ways
of mechanized rice direct seeding, water direct seeding, and dry
direct seeding. Water direct seeding was primarily applied in
the south, rice seeds was germinated working in a leveled soil
without waterlogging. Dry direct seeding was mostly applied in
the north, which can be directly in the sowing of seeds without
germination, but it has higher requirements for the plot (Luo
et al., 2019). At this stage, the mUAV pilot area had advantages
over the water broadcast pilot area, with lower labor costs.
However, mUAV had no advantage compared to dry broadcast.

After the rice emerged in the experiment, it was observed
that the seedlings emerged unevenly at both ends of the field,
which might be due to uneven sowing caused by the change
in speed when the mUAV was changing rows and turning.
As the same time, the shape of the centrifugal spreading was
circular, which easily led to overseeding between adjacent widths
and result in poor uniformity (Qin and Liu, 2006). Zhou et al.
(2018) studied the effect of UAV spreading methods on the
characteristics of rice plants in terms of lodging resistance.
The results showed significant differences in the main physical
characteristics of the stalks between the different spreading
methods, which showed that the stalks were thin at the 2nd

and 3rd internodes. Also, the plants were taller, with less
folding resistance and a higher lodging index. Apart from
that, conventional spreaders buried the seeds into the soil, but
the seeds from the UAVs were exposed on the surface of the
field which were vulnerable to the sun or being fed by birds,
which affected the seeds’ rooting and germination. On the other
hand, rice seeds must be germinated before spreading. If the
turntable was rotated too fast, it hit the wall which caused
damage to the seed buds. Maximum range was also limited,
the continuous flight capacity of the battery was generally 10–
20 min, which led to the efficiency of the UAV work that could
not be fully developed. The field operation required to carry
several batteries, which were high-cost. It is also a problem that
the UAV industry currently confronts.

However, as of 2016 (Luo et al., 2019), China’s
comprehensive rice mechanization level was 79.2%, with
tillage, sowing, and harvesting levels of 99.3, 44.5, and 87.1%,
respectively. This is only the achievement of moving from the
primary stage to the intermediate stage, indicating that we still
need to continue our efforts to completely solve the problem of
mechanization of rice cultivation in China. China should learn
from the advanced equipment and technology of developed
countries to develop a proper route for itself, agricultural
mechanization development of China cannot directly copy the
way of other country, and agricultural mechanization of China
can only be realized step by step (Yang et al., 2003).

Conclusion and outlook

Conclusions: In this study, a mUAV with three functions
of seeding, spreading fertilizer, and applying pesticide was
developed. CFD numerical simulation was used to initially
obtain downwash airflow characteristics, and feasible operating
parameters were obtained through practical operation test
methods in the field. Through the whole rice cultivation
comparison test with mechanical direct seeder and mechanical
transplanter, the mUAV was summarized and analyzed in
terms of operational efficiency, labor input, and yield in the
management process.

The main conclusions were drawn as follows. (1) The
modular design of the mUAV, its products could be used in
the three segments of rice seeding, pesticide application and
fertilization, and its ability could meet the requirements of
rice production. Compared with other mechanical cultivation
methods, this mUAV operation method could reduce the input
of machinery types. (2) The range of operations allowed for
the mUAV was verified in numerical simulations and from the
perspective of real measurements. There was a strong initial
value of airflow directly below the rotor, and a height of
more than 1.5 m is recommended. It was recommended to
fly at a height of 2.5 m for seeding and 3 m for pesticide
application. (3) A comprehensive comparison was conducted
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in the whole rice cultivation and the results showed that the
efficiency of sowing seeds by mUAV was 2.2 times and 4 times
higher than that of mechanical direct seeding and transplanting,
respectively. The labor cost was reduced by 68.5 and 82.5%,
respectively. The efficiency of mUAV application was 1.3 times
higher than mechanical direct seeding and rice transplanting.
The cost of labor was reduced by 25%. However, the mUAV
fertilization was not as efficient as mechanical direct seeder and
transplanter, with 80% lower operational efficiency and 14.3%
higher labor costs.

Outlook: Although the development of UAV research
and applications in China started slowly and initially relied
heavily on state funding, several research institutions and
universities have conducted research on agricultural UAV.
Especially in recent years, China has been paying more and
more attention to the development and research of agricultural
UAV. By the end of 2015, more than 3,000 agricultural
UAV had been put into agricultural production in China,
the number of flight controllers had exceeded 2,500, and
there were more than 400 manufacturing companies in related
industries. As of 2020, China’s agricultural UAV holdings were
about 100,000 units, with an additional demand of 50,000
units in 2020 alone, which showed that agricultural UAV
were in a phase of rapid development. With the massive
transfer of agricultural population, rural labor capacity was
insufficient, which made the utilization of agricultural resources
inefficient, and it even seriously affected the production
efficiency of agriculture. In some areas, there were also problems
such as desertion, which was not conducive to the rational
optimization of the rural industrial structure. Especially in
remote hilly mountainous areas, ordinary ground machinery
could not work in the fields, and there was a great lack of
machinery in the rice production process. The mUAV could
be controlled remotely and could also automatically route its
operations. This not only solved the difficult problem that
some ground machinery hardly worked in the paddy field,
but also did not cause damage to the rice. The emergence
of the mUAV has become an important breakthrough in
solving this problem.
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Driven by the demand for efficient plant protection in orchards, the

autonomous navigation system for orchards is hereby designed and

developed in this study. According to the three modules of unmanned

system “perception-decision-control,” the environment perception and map

construction strategy based on 3D lidar is constructed for the complex

environment in orchards. At the same time, millimeter-wave radar is further

selected for multi-source information fusion for the perception of obstacles.

The extraction of orchard navigation lines is achieved by formulating a four-

step extraction strategy according to the obtained lidar data. Finally, aiming

at the control problem of plant protection machine, the ADRC control

strategy is adopted to enhance the noise immunity of the system. Different

working conditions are designed in the experimental section for testing the

obstacle avoidance performance and navigation accuracy of the autonomous

navigation sprayer. The experimental results show that the unmanned vehicle

can identify the obstacle quickly and make an emergency stop and find

a rather narrow feasible area when a moving person or a different thin

column is used as an obstacle. Many experiments have shown a safe distance

for obstacle avoidance about 0.5 m, which meets the obstacle avoidance

requirements. In the navigation accuracy experiment, the average navigation

error in both experiments is within 15 cm, satisfying the requirements for

orchard spray operation. A set of spray test experiments are designed in the

final experimental part to further verify the feasibility of the system developed

by the institute, and the coverage rate of the leaves of the canopy is about

50%.

KEYWORDS

orchard plant protection, crawler sprayer, autonomous navigation, laser lidar,
obstacle avoidance
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Introduction

Among orchard management operations, plant protection
management is provided with the highest labor intensity (Liu
et al., 2020). Exploring an automatic sprayer with a high degree
of automation and a high pesticide utilization is a hot spot for
agricultural machinists. There are mainly two thorny problems
in the development of automated orchard sprayers: one is to
achieve efficient penetration of pesticides in a low dense canopy
and reduce the loss of chemical solution (Meng et al., 2022;
Wang C. et al., 2022), while the other is to let the machine
traverse the orchard autonomously without manual control in
the orchard with a closed canopy and blocked vision (Bergerman
et al., 2015; Ye et al., 2018; Zhang et al., 2020). Considerable
research has been conducted on the above two issues.

The leaves can rotate under the blowing of the centrifugal
fan, and those of the fruit tree can be fully sprayed because of
the air assistance of the air-driven sprayer (Boatwright et al.,
2020; Boatwright and Schnabel, 2020). In general, the effect is
better than that of hydraulic atomization, making the way of
wind assistance more frequently adopted in the orchard. In the
field of air-driven orchard sprayers, the development process
proposed by the developed countries in Europe is relatively
richer, where the development has always been committed to
solving environmental problems such as low utilization of spray
pesticides and pesticide pollution of soil and atmosphere (Fox
et al., 2008; Boatwright and Schnabel, 2020). The porous air bag
orchard spray, the multi-airway orchard spray and the small
orchard air-driven sprayer have been developed consecutively
(Fox et al., 2008). At this stage, the planting mode of orchards
has been standardized and transformed accordingly, which
has promoted the development and application of air-assisted
sprayers in small and medium-sized orchards, making it a main
force of orchard spray plant protection management machinery
under the dwarf dense planting mode (Owen-Smith et al., 2019;
An et al., 2020).

Another thorny problem of orchard spray is to realize
automatic driving. In the complex and closed environment
of the orchard, many sensors and positioning devices may
be subject to a low accuracy or even failure (Fei and
Vougioukas, 2022). Exploring a reliable autonomous driving
scheme in orchard has been extensively studied. After decades
of exploration, a complete unmanned system scheme with
“perception-decision-making-control” progression has been
formed (Bergerman et al., 2015; Jones et al., 2019). At the
level of “perception,” sensors are mainly used to obtain orchard
environmental data, including fruit tree information, road
information, etc., which will be then applied to make the next-
stage decision; at the level of “decision making,” the obtained
environmental information is further processed, and then the
travel track is extracted for judging whether there are obstacles;
and at the level of “control,” the controller is designed to
drive the system to follow the trajectory. The result of this

research shows that in the entire autonomous driving process,
it is the most difficult task to effectively perceive the orchard
environment, perform real-time positioning, and effectively
avoid obstacles. Visual sensors or radar sensors are generally
used as the perception part, the representative literature, and the
advantages and disadvantages are listed in Table 1.

In general, GNSS-based orchard navigation and positioning
is based on satellite map or known structured orchard map,
which fails to realize obstacle avoidance and navigation in
unknown environment. Millimeter wave radar can only sense
obstacles, but it cannot build a global map. Therefore, the
above two methods are generally combined with other sensors
to guide the unmanned system through the fusion strategy.
Therefore, the development of autonomous obstacle avoidance
and navigation orchard vehicles based on binocular vision, lidar,
or multi-sensor fusion has been extensively studied. A previous
study (Chen et al., 2021) adopted a binocular vision method
to build a simultaneous localization and mapping (SLAM),
which realized the perception of orchard environment through
vision and generated a detailed global map supporting long-
term, flexible, and large-scale orchard picking. On the basis
of binocular vision, the study discussed in Liu et al. (2022)
proposed a trinocular vision system for orchard vehicle based on
a wide-angle camera and binocular stereo vision system, which
finally realized orchard row detection and obstacle detection
simultaneously. Besides, based on the vision technology, the
study discussed in Li Y. et al. (2020) proposed a visual perception
method based on convolutional neural network, and realized
obstacle detection and colligation avoidance in robot harvesters.
Ravankar et al. (2021) used lidar sensors to navigate unmanned
vehicles in the vineyard, and developed a point cloud processing
algorithm to avoid dynamic obstacles in the vineyard while
smoothing the robot’s trajectories. A previous study (Ji et al.,
2021) built a tracker platform based on 3D/2D lidar and
GNSS/AHRS to acquire fusion point cloud data, and finally
realized obstacle perception and target tracking. The study
explained in Kragh and Underwood (2020) adopted the fusion
of lidar and visual sensors and proposed a multimodal fusion
algorithm from the scene analysis domain for obstacle detection
in agriculture with moving ground vehicles. One of the previous
studies (Emmi et al., 2021) proposed the field autonomous
navigation system based on 2D lidar and RGB cameras, and
realized the robot positioning in a hybrid topological map
through data fusion. Previous research (Rovira-Más et al., 2020)
proposed an autonomous navigation strategy based on the
integration of three sensing devices, namely, 3D vision, lidar,
and ultrasonics. It is pointed out that this augmented perception
overcomes the problem of GNSS frame loss and achieves high
navigation accuracy in grapes.

Based on the above research, an automatic spray working
in orchard is developed in this study using laser radar and
millimeter wave radar sensing technology. At the same time,
the air spray method is used for pesticides spraying. The crawler
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TABLE 1 Classification of driverless perception and decision system working in orchard.

Advantage Shortcoming

GNSS (Guevara et al., 2020; Mao
et al., 2022)

It can work in the orchard all day and is completely
unaffected by the weather

In the orchard, the loss of signal caused by canopy
occlusion, multipath effect, radio frequency
interference, etc., results in great errors to GNSS
navigation and even led to invalid navigation

Binocular vision (Stefas et al.,
2016; Lin et al., 2021; Ma et al.,
2021; Vrochidou et al., 2022)

Low cost and abundant information (depth map and
RGB map)

The accuracy is poor, and is seriously reduced in dim
light and at night, failing to meet the needs of
overnight operation in orchards

Lidar (Bergerman et al., 2015;
Blok et al., 2019; Jones et al., 2019;
Guevara et al., 2020; Zhang et al.,
2020)

The cost is high, and is greatly affected by bad weather
such as rain and snow

The cost is high, and is greatly affected by bad weather
such as rain and snow

Millimeter wave radar (Li X. et al.,
2020; Wang et al., 2021)

It has a strong penetrability and is not affected by light,
and can meet all kinds of weather in the orchard

The atmospheric attenuation is large and the detection
distance is short, so it cannot be perceived in a large
range

chassis and laser radar navigation scheme are adopted according
to the standard hedgerow orchard planting mode (as shown
in Figure 1). Finally, the full autonomous spray operation is
realized in the orchard environment. The main contributions of
this work are summarized as follows: (1) An orchard navigation
strategy based on laser radar is proposed, and at the same
time, combined with ultrasonic radar, the accurate perception
of obstacles and high-precision planning of navigation route are
realized. (2) An air spray device is developed to realize the twice
atomization of liquid medicine and improve the penetration
rate of droplets.

FIGURE 1

Overview of orchard environment.

The rest of this article is organized as follows: section
“Design of hardware system” introduces the hardware part
of the system, including the chassis, sensor module, spray
system, and other core modules; section “Design of software
system” proposes the environment perception and navigation
based on lidar, as well as the control strategy; section
“Experiments and discussions” discusses the experiments of
obstacle avoidance and navigation accuracy under unfair
conditions, also the preliminary spray experiment; and section
“Conclusion” summarizes the full study.

Design of hardware system

As shown in Figure 2, the electric air-driven crawler sprayer
is composed of power unit, traveling system, transmission
device, control device, pneumatic system, spray device, etc.
The main components of the electric air-driven crawler sprayer

FIGURE 2

Hardware module of orchard autonomous navigation spray
system.
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FIGURE 3

The main hardware distribution of the orchard autonomous navigation spray system.

shown in Figure 3 are remote control track chassis, frame, 200-
L medicine tank, 48-V Servo electrode, centrifugal fan, water
ring, 170-F gasoline engine and centrifugal pulley. The chassis
and spray device are powered by different units, respectively.
The track chassis is electric, and the 170-F gasoline engine is
used as the power unit for the spray device to transmit the
power to the centrifugal fan at the rear to ensure sufficient
power. Actions such as forward, turning, and moving backward
of the machine are realized by the electric part driving the left
and right gear motors. The pump pressure of the Model 25A
plunger pump can be adjusted by the pressure valve preset,
which adopts centrifugal belt installation installed on the output
shaft of 170-F gasoline engine, and applies belt transmission
between the fan pulley and the plunger pump pulley to form
a three-axis linkage. When the output speed of the gasoline
engine exceeds 600 rpm/min, the pulley of the walking device
begins to work. The fan rotation and the power of the plunger
pump are provided by the transmission of the gasoline engine,
and the installation height of the plunger pump can be adjusted
according to the demand during the actual working process to
fully provide tension to the power transmission belt.

Chassis drive

Considering that the platform is mainly used for spray
operation in hedgerow orchards, the mechanical part of
the navigation robot hardware platform is correspondingly
improved. Therefore, the chassis needs to be equipped with a
medicine box and spray system weighing about 250 kg. Given
that the liquid medicine will shake with the movement of the
platform during the operation and the situation of the muddy
road, as shown in the Figure 4, the medicine box is embedded

into the chassis for obtaining a low-center of gravity-tracked
chassis structure. The chassis design parameters are shown in
Table 2.

Sensors and information processing
modules

The sensor module, processor framework, and
communication transmission process are shown in Figure 5,
where it can be observed that the core of the sensor module is
the lidar sensor and the sprayer is equipped with RS-LiDAR-
16, i.e., RoboSense1 16-wire laser radar. The RS-LiDAR-16
emits and receives high-frequency laser beams through 16
groups of built-in laser components, and carries out real-
time 3D imaging through 360◦ rotation. The measurement
distance can reach 150 m, the accuracy is within ±2 cm,
and 300,000 points clouds can be formed per second on

1 https://www.robosense.cn/en

FIGURE 4

Structure diagram of crawler chassis diagram.
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TABLE 2 Chassis hardware structure parameters.

Index Load (kg) Width (m) Length (m)

Parameter 250 1.2 1.2

Index Ground clearance (mm) Turning radius (m) Top speed km/h
Parameter 150 <7 ≥4

average. The vertical angle measurement is 15–15◦ for
ensuring the real-time perception of the environment in
the orchard. Also, N100 IMU of Wheeltec Company2 is
applied to the inertial measurement unit (IMU) with a three-
axis accelerometer, a three-axis gyroscope, and a three-axis
magnetometer, among which, the accelerometer resolution
is less than 0.5 mg, and the range is ±16 g; the gyroscope
resolution is less than 0.02◦/s; and the range is ±2,000◦/s;
the magnetometer resolution is 1.5 mg, and the range
is ±4,900. The N100 IMU can meet the effective output
of inertia parameters such as attitude angle and velocity in
orchard environments. The model used by the ultrasonic
obstacle avoidance sensor is DYP-A19-V1.0 (Best Sensor)3,
whose measuring range is 28–450 cm, with an accuracy
of ±(1 + 0.3% of the current ranging). The CPU of the control
host is i7 4700M, equipped with 8-G memory and 128-G
storage for realizing the solution of sensor data, information
storage, and output.

2 http://wheeltec.net/product/html/?144.html

3 http://www.dypsensor.com/en/proData.aspx?cid=142&pid=122

FIGURE 5

Sensor and information processing module information
transmission process.

Spray system module

Orchard electric air-driven crawler sprayer can satisfy
the requirements for modern orchard plant protection spray
operation, and the spray unit is powered by a diaphragm pump.
The sprayer follows two atomization processes. First, the liquid
medicine is extracted from the medicine box and atomized once
through the spray system, when the diaphragm pump is the
power source. Then, the liquid medicine passes through the
infusion tube and is transported to each nozzle at the ring baffle,
and the high-pressure air flow is generated by the centrifugal fan
to produce a second atomization of the droplets.

As shown in Figure 6, the spray device of the orchard electric
air-driven crawler sprayer is mainly composed of a centrifugal
fan, an arc-shaped aqueduct on both sides of the tail and nozzles.
Ten spray nozzles are arranged in a circle along both sides at
the end of the machine, and five nozzles are evenly arranged on
each pipe ring. Each nozzle is equipped with a switch that can be
adjusted independently, and the nozzle angle can be adjusted as
well; from bottom to top on the left are nozzles No. 1, 2, 3, 4, and
5, respectively, and the nozzles are symmetrically distributed
both on the right and the left. The detailed parameters are shown
in Table 3. The application of a segmented water ring can ensure

FIGURE 6

Sprinkler distribution map.
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FIGURE 7

Software block diagram of unmanned spray truck based on
“perception decision control”. (A) Relationship between three
layers. (B) Obstacle avoidance fusion output based on
decision-level fusion.

that the pressure of each sprinkler is basically the same, and the
direction and angle of the nozzle can be adjusted according to
the actual growth of the fruit trees in the pear orchard during
the spray operation.

Design of software system

The navigation system is provided with the function of
switching between manual control and autonomous driving, so
that the user can remotely control the chassis to the orchard
before operation and switch to the autonomous navigation
mode after the navigation task is planned during operation,
thereby realizing full autonomous operation. After operation,
the user can remotely control the chassis out of the orchard,
and handle emergencies by remote control at the same time.
As shown in Figure 7A, the overall system is divided into
three parts, i.e., perception, decision, and control. First, the local
map is constructed based on lidar; then, the operation path is
planned in accordance with the constructed map and finally,

FIGURE 8

Construction of local map based on RS-LiDAR-16. (A) Local map
acquisition. (B) Schematic diagram of navigation line.

the planned path is transmitted to the trajectory controller
for the unmanned vehicle traveling according to the preset
trajectory. At the same time, it can realize automatic obstacle
avoidance, including obstacle detection, type recognition, and
selective bypassing of static and dynamic obstacles, which are
also involved in the perception layer and decision-making layer.
As shown in Figure 7B, two sensors based on ultrasonic radar
and laser radar are used for obstacle perception. Given that the
longitudinal sensing range of laser radar is only 30, it is difficult
to perceive ground obstacles. The ultrasonic radar located under
the vehicle is used for obstacle fusion sensing. The two sensing
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FIGURE 9

Navigation line extraction rules among fruit trees.

strategies are fused based on the decision-making layer, and the
weighted decision-making method is adopted. Each laser radar
and ultrasonic radar have 50% weight. When the proportion
of perceived obstacles is greater than or equal to 50%, the
path needs to be replanned, that is, when any sensor senses
an obstacle, the path needs replanning. The overall software is
secondary developed based on Autopilot Kit.4

Environment perception and
navigation based on laser radar

As shown in Figure 8A, the automatic tracking navigation
can be realized by constructing a local map through laser radar.
The navigation system detects the fruit trees and takes the two
lines of center lines as the traveling track to carry out the
traveling operation when the spray truck travels in the orchard,
and can automatically complete the turning and move to the
next row of operation when reaching the ground, as shown in
Figure 8B. The navigation rules are as follows: The centerline
is taken as the travel track when traveling in two rows; the
trajectory is determined by a distance of one-half row when
there are fruit trees on only one side; when the spray truck
reaches the end-member of field, a = b = 1/2 line spacing
(determined at the center), and C is not less than the safe

4 https://www.agilex.ai/solution/5?lang=zh-cn

distance. The next center position is determined as the spray
truck moves on to the next row and turns to move on to the
next row of work.

As shown in Figure 9, the navigation line extraction rules
of the spray truck between fruit trees are divided into four
steps: Step 1: Data collecting of the 3D original point cloud
data between the rows of the target orchard; Step 2: Data
preprocessing (clipped and dimensionality reduction) of the 3D
original point cloud data; Step 3: European clustering; and Step
4: Tree row fitting and the navigation line generation. Because
the extreme weather, such as rain, fog, and high temperature,
is not suitable for spray operation, this study does not consider
extreme weather navigation line extraction.

The original point cloud data of the 3D space obtained
between the rows of the target orchard are collected, as shown in
Figure 9 (Step 1), where the block is a mobile robot model; other
white point clouds are the relative positions of the objects in
the 3D scene; the coordinate origin, such as the point clouds on
the left and right sides of the mobile robot are fruit trees; those
in front are ground reflections; and those in the back are the
mobile robot operators. Point clouds have a 360◦ horizontal full
coverage and a vertical coverage from the ground to above the
fruit trees. The RS-LiDAR-16 laser radar adopted in this study
is a 16-wire laser radar with a horizontal field of view of 360◦, a
vertical field of view of 30◦ (±15◦), and a maximum detection
distance of 200 m.

In Step 2, the preprocessing of the 3D original point
cloud data is mainly completed via clipping and dimensionality
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reduction. The 3D clipping mainly involves data clipping based
on the x-, y-, and z- axes, and the specific clipping process is
as follows: The clipping threshold of xyz is set according to the
plant spacing, row spacing, and the average net trunk length
of fruit trees; that of x-axis is at least three times of single row
spacing; that of y-axis is at least 1.5 times of single row spacing;
and that of z-axis does not exceed the average net trunk length.
The clipping purpose is to select a certain visual range, reduce
the amount of data, and improve the processing speed.

The dimensionality reduction of the cropped data mainly
aims to project the cropped 3D data into a given 3D space
plane (x = 0, y = 0, z = 1), thereby realizing the dimensionality
data reduction from 3D to 2D, and simplifying the geometric
problem, as shown in Figure 9 (Step 2). The left and right points
in the figure are the projection of the trunk in the plane (x = 0,
y = 0, z = 0), while the middle point denotes the projection of
the operator in the plane (x = 0, y = 0, z = 1).

Euclidean clustering method is used in Step 3 for clustering
the effective points after search. The midpoint of each category
of the data is calculated to replace the corresponding category,
and equivalent points of two left tree row, the obstacle, and the
right tree row are all marked as shown in Figure 9 (Step 3).

Finally, the left tree row straight line and the right tree row
straight line are made to fit using the least square method in Step
4. The left tree row equation and the right tree row equation
are obtained as shown in Figure 9 (Step 4), and the fitted
left and right tree row lines are marked, respectively. Finally,
the center line of the left and right tree rows is adopted for
calculating the navigation line, and the fitted navigation line is
also marked in the map.

Control strategy

The hereby designed tracked vehicle controls the speed and
direction of the driving wheels on both sides for an accurate
tracking of the desired trajectory as shown in Figure 10, where
Oxy is the geodetic coordinate system; Cxcyc is the tracked
vehicle coordinate system;C is the coincidence point between the
geometric center and the centroid of the tracked vehicle; and 2L

is the center distance of the tracked vehicle.
The status quantity of tracked vehicle is q=(x,y,θ)T , where

(x,y) represents the position of tracked vehicle, and the
kinematic model of tracked vehicle is calculated as: ẋ

ẏ
θ̇

 =
 cos θ

sin θ

0

0
0
1

[ v
ω

]
(1)

where v is the vehicle speed; ω is the angular velocity of vehicle
centroid; vR is the right track speed; and vL is the left track speed.

It can be seen that u=[v,ω]T is the control quantity of crawler,
when the track vehicle control problem turns into tracking the
track vehicle reference trajectory by finding a suitable control

FIGURE 10

Definition of crawler coordinate system.

quantity under the condition of given initial state information
and speed information. Deriving the kinematic model further, it
can be obtained as follows:[

v
ω

]
=

1
2

[
1 1
−

1
L

1
L

][
vL
vR

]
(2)

The control of speed and steering angle is particularly
important during the operation of tracked plant protection
vehicle. Assuming the nozzle sprays liquid medicine at a
constant flow rate, the unmanned vehicle is required to travel
at a constant speed. Whether the unmanned vehicle needs
human participation in the control at the boundary turn of
the plot is determined by whether the steering angle can be
accurately controlled. In addition, during the operation of
the plant protection unmanned vehicle, the total mass of the
vehicle will be reduced with the spraying of liquid medicine,
and the shaking of liquid medicine in the medicine box, air
resistance, non-linear friction, and the unmodeled part of the
system will cause multi-source and unknown interference to the
agricultural unmanned vehicle. For solving these problems, the
active disturbance rejection control (ADRC) control strategy is
adopted for the controller of the plant protection unmanned
vehicle. The control system is designed based on the discussions
in Wang S. et al. (2022), as shown in Figure 11, with the
following two ADRC controllers involved: One receives the
desired speed and outputs the speed control quantity while the
other receives the desired angular speed and outputs the angular
speed control quantity. At the same time, the tracked vehicle
transmits the actual speed and angular speed to the controller.

Experiments and discussions

In this section, we discuss on several groups of obstacle
avoidance experiments, such as navigation accuracy
experiments and fog drop coverage tests that are designed;
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FIGURE 11

System control block diagram based on ADRC (ESO, extended state observer; TD, tracking differentiator; NLSEF, non-linear state error
feedback).

also discussed are the obstacle avoidance experiments that
include static obstacle experiments and dynamic obstacle
experiments. The specific experimental process is shown in
Figure 12.

Obstacle avoidance performance test

Static obstacle test
Fixed human obstacles

In this experiment, the size of the selected work area was
about 10 m × 15 m. First, the closed-loop track was formed
by manually manipulating the UGV as shown in Figure 13,
where the orange arrow indicates the direction of travel. During
manual operation, the lidar combined with the IMU data would
map the working area, and then switch to the automatic mode,
when the UGV would return to the starting point of the manual
operation, and follow the manual operation track automatically
for trajectory tracking control. At this time, two fixed persons
were set as obstacles in the track as shown in the figure. The
upper part of the figure depicts the key five-frame pictures of
the UGV avoiding obstacle 1, where it can be observed that
the UGV could identify and avoid obstacles well: the UGV
in the test started braking at a distance of about 0.5 m from
the obstacle, bypassed the person from the right, and quickly
returned to the set track to continue driving. The lower part
of the figure describes the key five-frame pictures of the UGV
avoiding obstacle 2. Similar to facing obstacle 1, the UGV started
braking at a distance of about 0.5 m from the person, turned left
to avoid the person, and finally returned to the preset track. In
the fixed-person obstacle experiment, the height of the person

was about 1.8 m and the width was about 0.5 m. The UGV could
avoid obstacles well and return to the preset track as expected.

Fixed pole obstacles

To further test the UGV’s capability of recognizing the size
of obstacles, resin tubes and wooden strips were selected for
obstacle avoidance experiments. The height of the resin tube
was about 1.5 m and the diameter was about 0.05 m; the height
of the wood strip was about 1.5 m and the diameter was about
0.04 m. The same terrain (10 m × 15 m) was selected for two
groups of experiments whose preset trajectories were different.
The placement position of obstacles varied as well.

As shown in Figure 14, the upper part of the figure
displays the key five-frame pictures of the UGV avoiding
obstacle 1 when the wooden strip was used as an obstacle.
It can be seen from the image of Frame 1 in the figure that
the unmanned vehicle recognized the obstacle and braked
sharply when it was about 0.5 m away from the wooden
strip. Frames 1, 2, 3, and 4 show that the UGV started
to bypass the obstacle at this time, while Frame 5 presents
that the UGV had completed the detour process and was
returning to the preset track. The lower part of the figure
shows the five key frames of the UGV bypassing obstacle 2
of the resin tube. Similar to the wooden strip experiment,
the UGV stopped about 0.5 m away from the obstacle,
continued to bypass the obstacle, and returned to the preset
track as expected.

The second set of experiment was also carried out, and
the preset track was redesigned in the experiment, as shown
in Figure 15. The upper and lower parts of the figure still
show the five key frames of the UGV avoiding obstacles
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FIGURE 12

Experimental flow chart.

FIGURE 13

Experiment of fixed human obstacle.

when the wood strips and resin pipes were used as obstacles,
respectively. Similar to the previous set of experimental results,
the unmanned vehicle stopped quickly at a distance of 0.5 m
from the obstacle, avoided the obstacle by detouring, and finally
returned to the preset track. Replacing the curve preset track
with the straight-line preset track can better display the process
of UGV bypassing obstacles and returning to the preset track.

Besides, the UGV deviated from the preset track by about
0.3–0.5 m while bypassing the obstacles.

Moving obstacle test
Moving human obstacles

To further test the obstacle avoidance performance of the
UGV, dynamic obstacles were set in this section. As shown
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FIGURE 14

Experiment of fixed pole obstacle (Group 1).

FIGURE 15

Experiment of fixed pole obstacle (Group 2).

in Figure 16, the travel track of the UGV, and two groups of
moving person obstacles were all set in advance during the travel
process. The UGV followed the red arrow to travel to the other

side when passing the moving person obstacle 1, and followed
the red arrow to start and stop on the track when passing the
moving person obstacle 2. The upper part of Figure 16 depicts
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the six key frames of the UGV avoiding obstacle 1 with a moving
person as the obstacle. It can be seen from the image of Frame
1 that the UGV was traveling according to the preset track at
this time, and in Frame 2, the person had started to set off, and
the tracks of human and UGV would coincide. In Frames 3 and
4, the UGV completely coincided with the person’s movement
track, when the UGV started to stop suddenly and tried to
detour. The person continued to move. It can be seen in Frame
5 that the UGV had an obvious detour, and the heading angle
was deflected, but the moving person had left the preset track
at this time. In Frame 6, the person had completely left the
preset track, the UGV returned to the preset track and continued
to move forward.

The lower part of Figure 16 depicts the seven key frames
of the UGV avoiding obstacle 2 with a moving person acting
as the obstacle. It can be seen from Frame 1 that the UGV
was traveling according to the preset track at this time, and in
Frame 2, the person had started to set off, and the tracks of
human and the UGV would coincide. In Frame 3, the person had
stopped on the UGV preset track, and the UGV started to stop
suddenly. Frames 4, 5, and 6 show that the UGV bypassed the
stopped person and started to approach the preset track. Frame
7 shows that the UGV had completed the obstacle avoidance
of the moving person, completely returned to the preset track,
and continued to travel. The experiments of two different
modes of moving people as obstacles show that the UGV also
had good detection and obstacle avoidance performance for
unknown moving obstacles. Especially for the sudden obstacles,
it could quickly brake and make evasive actions, and return to
the preset track.

Moving pole obstacles

To further test the obstacle avoidance ability of UGV for
small-sized and moving obstacles, the experiment of hand-held
moving resin rods as obstacles was carried out. As shown in
Figure 17, two groups of moving resin rods were set as obstacles
during the UGV’s traveling process, the hand-held moving rod
was placed in front of the UGV for 5 s and then withdrawn when
the UGV passed the moving resin rod 1, and when the UGV
passed the moving resin rod 2, the hand-held moving rod had
been placed in front of the UGV for 30 s.

The upper part of Figure 17 describes the key six-frame
picture of the UGV bypassing obstacle 1 with the moving rod
acting as the obstacle. It can be seen from Frame 1 in Figure 16
that the UGV traveled according to the preset trajectory. In
Frames 1 and 2, the resin rod was picked up and placed in
front of the UGV, when the UGV started to brake and make
an emergency stop to avoid obstacles. The emergency stop was
maintained until Frames 4 and 5. In Frame 6, the moving resin
rods were evacuated and the UGV started to move on.

The lower part of Figure 17 shows the 10 key frames of the
UGV bypassing obstacle 2 with the moving rod acting as the
obstacle. It can be seen from Frames 1, 2, and 3 that the UGV

traveled according to the preset trajectory, when the resin rod
was picked up and placed in front of the UGV, and the UGV
started to brake and make an emergency stop to avoid obstacles.
Compared with the previous groups of experiments, the moving
rod was placed in front of the UGV for a longer time, about 30 s.
It can be seen from Frame 5 that the UGV started to deflect
the heading angle to the left, trying to avoid obstacles, but if it
moved forward to the left, human would appear as obstacles.
In Frames 5 and 6, the UGV turned around the yaw angle and
deflected to the right, and began to prepare for detour, and then
in Frames 7 and 8, the UGV bypassed the obstacle from the side.
In Frame 9, the obstacle was successfully avoided and the preset
track was approached. In Frame 10, it completely returned to the
preset trajectory and continued to move forward to complete the
obstacle avoidance process.

In the moving rod experiment, the diameter of the moving
rod was only 0.05 m. When the moving rod suddenly
appeared in front of the UGV, the UGV detected it, and
when the obstacle stayed for a long time, the UGV made a
detour. The above groups of experiments verify the real-time
detection performance of the designed UGV for small-sized and
moving obstacles.

Navigation accuracy experiment

To verify the navigation accuracy of the UGV automatic
navigation system, the evaluation was performed by designing
and measuring the difference between the manual navigation
route and the automatic navigation route. As shown in
Figure 18, the paint would flow out from the paint bag and
form a paint line on the ground for recording the travel track in
real time by hanging the paint bag at the tail of UGV under the
real environment. The manual control was the white paint line;
the automatic navigation was the yellow paint line; the length of
the selected track line was about 8 m; and a point was selected
every one meter as the measurement point (x1,x2,x3,x4x5,x6,x7,x8 );
and the automatic navigation performance was evaluated by
measuring the distance between the yellow paint line and the
white paint line. As shown in the formula provided in Eq. (3),
the average value was taken as the navigation accuracy of the
planned route.

Navigation accuracy =
∣∣∣∣ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

8

∣∣∣∣
(3)

Navigation accuracy experiment (Group 1)
The size of the operation area was about 10 m × 15 m

in the first set of navigation accuracy experiment. First, the
UGV was manually controlled to form the trajectory shown in
Figure 19, when the paint bag hanging at the tail of the UGV
was filled with white paint, forming a white paint trajectory line
on the ground. Then, the UGV was switched to the automatic
mode and returned to the starting point of manual control,
and automatically followed the manually operated track for the
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FIGURE 16

Experiment of moving person obstacle.

FIGURE 17

Experiment of moving pole obstacle.
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FIGURE 18

Navigation accuracy test scheme.

track tracking control. At this time, the paint bag hanging at the
tail of the UGV was yellow paint, forming a yellow paint track
line on the ground. The eight selected points were shown in
Figure 19, and the measurement results were shown in Table 4.
It can be concluded from Table 4 that the error of each point
was within 15 cm in the eight selected points, and the average

navigation accuracy was 13.625 cm, meeting the navigation
accuracy requirements of the UGV working in the orchard.

Navigation accuracy experiment (Group 2)
The size of the operation area was about 10 m× 10 m in the

second group of navigation accuracy experiment. The UGV was
still manually controlled to form a white paint track line on the
ground at first, and was then switched to the automatic mode
for the tracking control, forming a yellow paint track line on
the ground. Similarly, eight points were selected as the sampling
points, as shown in Figure 20. The measurement results of each
point were shown in Table 5, where it can be observed that
the error of each point was still within 15 cm, and the average
accuracy was 10.3125 cm, which, compared with the first group
of accuracy experiments, was much improved. Given that the
test site of the second group was flatter than the first group, there
was less shaking of the UGV.

In the above two groups of accuracy experiments, the error
of all sampling points was within 15 cm, and the navigation
accuracy was about 10 cm in the relatively flat area, meeting the
navigation requirements of the orchard spray system.

Spray experiment

The standard orchard demonstration area in Xiying Village
was selected for the spray test. The specific parameters of the

FIGURE 19

Navigation accuracy experiment (Group 1).
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TABLE 3 List of nozzle parameters from No. 1 to 5.

Nozzle serial number 1 2 3 4 5

Spray pitch (cm) 8 8 8 8 8

Sprinkler angle (◦) 0 18 36 54 72

Sprinkler height (cm) 30 46 60 75 88

Wind velocity (m/s) 20 20 20 20 20

Spray volume (L/min) 1.7 1.7 1.7 1.7 1.7

1, 2, 3, 4, and 5 represent the nozzle numbers of the nozzles of the orchard electric air-driven crawler sprayer.

TABLE 4 Navigation accuracy test value of each sampling point (Group 1).

Collection point Point 1 Point 2 Point 3 Point 4 Point 5

Measured value 12 cm 14 cm 14 cm 15 cm 14 cm

Collection point Point 6 Point 7 Point 8 Average
Measured value 13 cm 14 cm 13 cm 13.625 cm

FIGURE 20

Navigation accuracy experiment (Group 2).

planting mode were as follows: The orchard area was more than
300 acres; the spacing of each row of fruit trees was about 3 m;
the spacing between the trees was 1.5 m; the growth height of
the fruit trees was 3 m; and the height of the trunk was about
0.5 m. The canopy of fruit trees was of small crown and sparse
layer type, with a crown diameter length of 1.5 m, which could
be divided into three layers in the vertical direction. The whole
tree retained one main branch, while the side branches were
less reserved and the branches were simple. The angle with the

central trunk was between 60◦ and 80◦, and the pruning method
resembled the spindle shape.

Three trees set the five positions of east, south, west, north
and middle in the canopy were selected. The first layer was 1
m away from the ground, and every 50 cm from the bottom
to the top of the canopy was used as a layer, and then, the
second layer and the third layer in the same way. Besides, the
water-sensitive paper was fixed on the leaves of the east, south,
west, north, and middle with an alligator clip, and three trees
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TABLE 5 Navigation accuracy test value of each sampling point (Group 2).

Collection point Point 1 Point 2 Point 3 Point 4 Point 5

Measured value 14 cm 12 cm 11 cm 10 cm 10.5 cm

Collection point Point 6 Point 7 Point 8 Average
Measured value 10 cm 3 cm 12 cm 10.3125 cm

FIGURE 21

Spray diagram and collection point layout.

TABLE 6 Coverage of each sampling area under different layers.

Sampling point 1 2 3 4 5

Upper layer/100% 75.2 69.5 46.5 59.4 60.3

Middle layer/100% 50.7 33.9 43.3 58.5 45.2

Lower level/100% 79.2 43.5 27.5 56.5 51.4

were continuously arranged from west to east along the traveling
direction of machines and tools. The arrangement of canopy
droplet samples was shown in Figure 21. The scanner was used
for obtaining the spray landing area of droplets on each piece
of water-sensitive paper, and finally obtaining the coverage per
unit area as shown in Table 6.

The coverage rate of the leaves of the canopy was almost
no more than 80%, most of them gathering at 50%, when
the spray effect was consistent with the growth conditions
of the pear trees.

Conclusion

At this stage, automation technology has been widely
transferred to orchard equipment, which has promoted the

intelligent development of agricultural equipment. Aiming at
the problem of automatic spray in complex and closed orchard
environment, a 3D laser lidar orchard map construction strategy
is adopted in this study, and at the same time, the air spray
is selected to realize two atomization of the liquid medicine
and improve the penetration rate of the droplets. The 3D laser
lidar can facilitate all-weather orchard operations compared to
the characteristics of visual navigation greatly affected by light,
which is necessarily important for the large-scale occurrence of
diseases and pests, also the urgent need for fast operation time.
Millimeter wave radar is selected for obtaining multi-source
information of obstacle avoidance, which improves the accuracy
of obstacle avoidance. However, the autonomous navigation
spray system developed in this study fails to take much account
of the spray system, such as variable spray and profiling
spray technology. To this end, the precision spray technology

Frontiers in Plant Science 16 frontiersin.org

142

https://doi.org/10.3389/fpls.2022.960686
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-960686 July 26, 2022 Time: 13:45 # 17

Wang et al. 10.3389/fpls.2022.960686

will be further explored to achieve independent and accurate
pesticide spraying in the orchard environment on the basis of
automatic navigation.
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Although drift is not a new issue, it deserves further attention for Unmanned

Aerial Spraying Systems (UASS). The use of UASS as a spraying tool for

Plant Protection Products is currently explored and applied worldwide. They

boast different benefits such as reduced applicator exposure, high operating

efficiency and are unconcerned by field-related constraints (ground slope,

ground resistance). This review summarizes UASS characteristics, spray drift

and the factors affecting UASS drift, and further research that still needs to be

developed. The distinctive features of UASS comprise the existence of one or

more rotors, relatively higher spraying altitude, faster-flying speed, and limited

payload. This study highlights that due to most of these features, the drift of

UASS may be inevitable. However, this drift could be effectively reduced by

optimizing the structural layout of the rotor and spraying system, adjusting the

operating parameters, and establishing a drift buffer zone. Further efforts are

still necessary to better assess the drift characteristics of UASS, establish drift

models from typical models, crops, and climate environments, and discuss

standard methods for measuring UASS drift.

KEYWORDS

unmanned aerial spraying systems, spray drift, downwash airflow, drift measurement,
relative movement

Introduction

Unmanned Aerial Spraying Systems (UASS) consist drones that carry a spraying
device. They are operated by a control system and comprise sensors to spray plant
protection products. UASS have been developed rapidly during recent years as a spray
tool for the application of plant protection products (He et al., 2018; Wang L. et al.,
2022). According to existing reports, the use of UASS to carry out chemical spraying
covers most parts of the world. In East Asia, where field conditions are limiting and
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where the original plant protection equipment is still in use,
there is an urgent demand for UASS on the market (Lan and
Chen, 2018). The number of UASS has exploded in this region.
In 2014 China owned less than 1,000 plant protection drones,
with an annual operating area lesser than 0.28 million ha.
By the end of 2020, the number of drones in China reached
106,000, with a total yearly working area of 64 million ha (Zhang
et al., 2021). In Europe, due to restrictions in application of
plant protection products with aerial technology (128/CE/2009),
UASS have not yet been used at a large scale yet (Reger
et al., 2018). However, in mountainous grape-growing areas,
producers and researchers have shown strong interest for UASS
(Sarri et al., 2019; Bloise et al., 2020). The UASS can spray
in the hilly and steep slope areas without being restricted
by field obstacles (Delpuech et al., 2022). This has positive
practical significance for separating the applicator from the
tanks and replacing the backpack sprayer (Wang et al., 2020).
In addition, although agricultural aviation is active on the
American continent, with mainly manned fixed-wing aircraft,
which are widely used in the United States, Canada, and Brazil,
experimental research on UASS is also being carried out (Teske
et al., 2018; Richardson et al., 2019; Li et al., 2021a,b).

UASS boast advantages in pesticide spraying. On the one
hand, compared to any other ground spraying technique, the
drone isolates the tank from the applicator, thus favoring
operator safety (Qin et al., 2016; Morales-Rodríguez et al.,
2022). As with other aerial techniques, physical damage to crops
can be avoided. It can easily spray above high standing crops
(bananas, corn, and rubber) and operate over complex terrain
(steep slopes, terraces) where backpack sprayers are confronted
to critical operator issues regarding tediousness and safety (Lan
and Chen, 2018; Cavalaris et al., 2022). Moreover, exploitation
costs are reduced by shortening the time of spray application
and by lowering the amount of plant protection products
applied (Morales-Rodríguez et al., 2022). Carbon-based fuel can
also be replaced by electricity derived from renewable energies.
It thus lowers the carbon impact and save costs since carbon-
based fuel can be replaced by energy that, technically, could
be easy to generate in a farmyard (Hussain and Nishat, 2022).
Currently, UASS has been widely used over flat fields or terraces
with low-lying crops, including grain crops such as wheat, corn,
rice, and cash crops such as cotton, citrus, and grapes (Pan et al.,
2016; Sarri et al., 2019; Wang L. et al., 2019; Chen et al., 2020a;
Meng et al., 2020; Chen H. et al., 2021). Spraying with UASS
has proven to be feasible in the prevention and control of crop
diseases and pests by spraying insecticides or fungicides (Meng
et al., 2018; Yan et al., 2022). In the case of trees grown on steep
slopes, the quality of the application is partially limited by the
flight altitude of the sensor and terrain following technology
with the help of lidar for example (Meng et al., 2022b; Wang
C. et al., 2022). Moreover, a denser crop canopy also presents
limitations in terms of droplet penetration (Chen et al., 2020b;
Yu et al., 2022). For these latter reasons, the application with

UASS on 3D crops in mountainous and hilly areas is still
being investigated.

Although the market is open to UASS, the risk of
environmental drift caused by drone spray is also noteworthy
(Wang et al., 2020a, 2021). The risk of spray drift could be closely
related to operational efficiency and operating parameters. On
one hand, the operating efficiency of a single UASS has increased
from 2 to 3 hectares per hour to the current 15–20 hectares
per hour within the past 5 years (Chen H. et al., 2021). The
result of single-machine efficiency implies that more chemicals
can be sprayed in a short time (Wang Z. et al., 2022), however
more pesticide droplets may also be scattered in the air (Liu
et al., 2021). The overall environmental risks due to efficiency
improvements need to be assessed. On another hand, drift can
be minimized when low flying altitude is applied (1–3 m). Due
to the varying growth heights of crops, the actual flying altitude
is rather generally comprised between 3 and 10 m (Wang
et al., 2019b, 2021). The flight speed generally ranges between
1 and 6 m/s (Chen H. et al., 2021). Flying altitude and speed
may cause the droplets to move in the air for a longer time.
Nevertheless, they are also susceptible to the natural lateral wind
and environmental climate, forcing which result in drift (Chen
H. et al., 2021).

Studies on drone drift include theoretical (CFD simulations)
and experimental studies. Current research on theoretical
analysis focuses on the changes in the wind field of the UASS
rotor and the movement of droplets affected by the wind
field using calculations and simulations (Zhu et al., 2019; Tang
et al., 2020, 2021; Zhang et al., 2022). Experimental research is
mainly carried out in wind tunnels or in the field combined,
with present-day climate environment and crop types. Current
experimental studies on drift include the characteristics of UASS
drift, drift distance, and the influence of operating parameters or
spraying systems on the drift (Wang et al., 2020, 2020a, 2021).
However, current research on UASS drift is still scarce. Data on
the spray drift of drones and their impact on the environment
are scarce, and the factors affecting drift are still being studied.
Existing technical standards do not address the drift of UASS,
including how to test drift in the field and wind tunnels (Wang
et al., 2020). In addition to the European ban on aerial sprayers,
no relevant country or region implements a specific legislation
on drone drift (Reger et al., 2018).

Although drift is not a new concern, it requires further
attention toward new equipment that is being widely used.
This literature review focuses on the emerging issue of
drift caused by UASS. Articles from scientific journals were
searched and analyzed from 2014 by setting keywords, such
as UAV/UASS plus spraying or drift, etc., including a part of
Chinese literature indexed by the engineering index. Section
“Characteristics of unmanned aerial spraying systems and spray
drift” describes UASS platforms, the spraying systems and
the characteristics of spray drift generated by drones. Drift
evaluation protocols test methods developed for drones, and
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the possible environmental risks are also included. Section
“Factors influencing unmanned aerial spraying systems drift”
rather focuses on more fundamental processes where spraying
is combined with the displacement of the UASS. This chapter
reviews the factors that affect the drift of the UASS including
atomization, downwash airflow, and the relative movement.
The atomization factor caused by the structural design of the
spraying system includes the selection of nozzles, the layout of
nozzles and rotors, and the properties of the liquid (Chen P.
et al., 2021). For the downwash airflow, the number and size
of rotors and payload were investigated. The relative movement
refers to changes in the UASS flight process that may either come
from itself or from the surrounding environment, including
the UASS flight parameters and natural lateral wind (Wang
et al., 2020). The issue of evaporation during spraying is not
considered in this article. Finally, since current research on the
drift of UASS sprayers is still limited, the lack of research studies
and the future research that needs to be developed are discussed
in Section “Discussion and further recommendations.”

Characteristics of unmanned aerial
spraying systems and spray drift

Characteristics of unmanned aerial
spraying systems

Unmanned aerial spraying systems platform
Fuel-powered agricultural helicopters first appeared in Japan

in the 1980s (Chen H. et al., 2021). With the recent technical
developments, electrical single-rotor or multi-rotor models
have gradually replaced fuel-powered helicopters (He et al.,
2017; Chen H. et al., 2021). Table 1 summarizes the technical
parameters of a few typical UASS. The structure of electrical
rotary-wing plant protection UASS mainly comprises the rotor,
tank, spraying system, control system, environmental sensor,
energy system, etc. The rotor provides lift for the UASS and
at the same time generates a unique downwash wind field
(Zhan et al., 2022). Drone rotors available on the market are
built with single rotors, two rotors, four rotors, six rotors, and
eight rotors. The tank is the major element of UASS, and its
volume is related to the maximum payload weight. According
to Table 1, the tank volume in new models has been increasing
in recent years. The initial payload range is 8–15 L, and some
current models can reach up to 20–40 L. The control system
and environmental sensing sensors are the fastest elements of
the drone update iteration, evolving from the initial manual
control mode, semi-automatic (ex. Trajectory from Point A
to Point B mode) control mode to fully autonomous mode.
Positioning sensors have evolved from the Global Navigation
Satellite System (GNSS) with meter-level errors to Real Time
Kinematic (RTK) with centimeter-level errors. In addition, air

pressure sensors, ultrasonic sensors, radar, binocular vision,
and other sensors used for altitude determination, distance
measurement, and obstacle avoidance are constantly updated
(Wang L. et al., 2019; Chen H. et al., 2021).

Spraying system
The nozzle represents an essential part of the UASS

spraying system. As illustrated in Figures 1, 2, commonly used
nozzles for UASS include hydraulic and centrifugal nozzles
(He et al., 2018). Hydraulic nozzles are derived from ground
spray equipment and are currently the most common type of
nozzle for UASS. The chemical solution is atomized through
the nozzle cavity under a given pressure and forms a liquid
film. The liquid film is continuously stretched and formed
into a filamentary shape under the pressure difference. When
the liquid film collides with relatively static air, it splits into
fine droplets (ASAE ANSI/ASABE, 2020; He et al., 2018). The
hydraulic nozzle atomization can be modified by adjusting
the pressure, changing the surface tension of the solution or
equipping the nozzle with air inclusion or Venturi nozzles
(Al Heidary et al., 2014).

The centrifugal spraying system adopted by UASS mainly
consists of a rotary disc centrifugal nozzle. The rotary disc-
type centrifugal nozzle comprises multiple radial grooves on
the inner wall of the rotary disc (Qingqing et al., 2017). The
groove ends are generally equilateral pins. The existence of
radial grooves can reduce the slippage of the solution and allow
the solution and rotary disc to share similar circumferential
speeds (He et al., 2018). The solution in the nozzle enters the
high-speed rotating turntable through the draft tube, and the
droplets fly out in a spiral tangential direction along the edge
of the turntable under the action of centrifugal force, forming
droplets of uniform size (Gao, 2013; Qingqing et al., 2017).
With a centrifugal nozzle, the spray mix relies on gravity to
enter the turntable and is ejected from the radial direction
under centrifugal force on radial pins (Qingqing et al., 2017).
The required spray pressure is therefore, slight, resulting in a
narrow droplet spectrum but also a weak droplet penetration.
However, as the droplets flowing out of the nozzle do not
interfere with one another, the distribution of droplet deposition
is more uniform and controllable (Hayashi and Takeda, 1986).
The spectrum of the atomized droplets can be adjusted by
controlling the rotational speed of the spray disc in order to
meet different droplet size requirements. Under the different
voltages, the rotation speed of the nozzle can vary from 0
to 17,000 revolutions per minute (RPM) (Wang et al., 2020).
The spray disc is not easy to clog and is particularly suitable
for spraying wettable powders and suspension agents with low
solubility (Qingqing et al., 2017; Wang et al., 2020). It is adapted
to a high concentration of UASS chemical liquid. However,
centrifugal nozzles produce fine droplets, and as their direction
of movement is horizontal, the risk of drift is high (Wang et al.,
2020).
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TABLE 1 The technical parameters of some typical UASS.

Model
(Manufacturer,
release time)

Dimensions
(Frame arms

unfolded, mm)

Rotors
(Number*diameter

*pitch, mm)

Payload
(Kg)

Fully loaded
weight (Kg)

Geolocation
technology

T30 (DJI, 2021) 2,858× 2,685× 790 6*38*508 30 66.5 RTK,Horizontal± 10 cm,
vertical± 10 cm

T16 (DJI, 2019) 2,520× 2,212× 720 6*33× 177.8 16 40.7

MG-1P (DJI, 2018) 1,460× 1,460× 578 4*21*177.8 10 22.5 GNSS/RTK

V40 (XAG, 2021) 2,795× 828× 731 2*47*457.2 16 44 RTK,Horizontal± 10 cm,
vertical± 10 cm

P40 (XAG,2021) 2,110× 2,127× 555 4*40*352.1 20 45

P20 (XAG, 2019) 1,830× 1,822× 452 4*33*292.1 10 28

FIGURE 1

Examples of Hydraulic nozzles. (A) Hollow cone nozzle (TR80-02c, Lechler), (B) flat fan nozzle (HYPRO, 110-015), (C) air induction nozzle (IDK
120-01, Lechler).

In the early stages of UASS development, the flow rate
could be modified by changing the nozzle type or adjusting the
flight speed (Chen et al., 2020a). However, changing the nozzle
implies a change in the size of the droplets. The influence of
the flight speed on the droplet distribution and drift can thus
be ignored. At present, the flow rate can be essentially modified
by increasing the number of water pumps and nozzles and
by adjusting the pump flowrate. The number of pumps and
nozzles carried by drones has also been increasing as operational
efficiency is being developed (Chen H. et al., 2021).

According to Table 2, the difference between both spraying
systems is the range of values of the nozzle Volume Median

Diameter (VMD). For the hydraulic spraying system, the droplet
size is affected by the nozzle type, operating pressure, and the
nature of the solution. For centrifugal nozzles, the significant
factor is the speed of the spray plate. The droplet size is strongly
related to drift (Al Heidary et al., 2014). Choosing a nozzle with
a larger VMD can reduce the risk of drifting in the spraying
system, such as air induction nozzles that are widely used in
boom sprayers. However, choosing anti-drift nozzles on UASS
may not always be suitable for crop protection. Due to load
limitation, the improvement of the spraying quality of UASS
implies a reduction in the atomized particle size in order to
ensure a higher droplet density and coverage. However, by

Frontiers in Plant Science 04 frontiersin.org

148

https://doi.org/10.3389/fpls.2022.870956
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-870956 August 2, 2022 Time: 14:41 # 5

Chen et al. 10.3389/fpls.2022.870956

FIGURE 2

Centrifugal nozzle (2018, XAG Co., Ltd).

reducing the size of the droplets, the risk of drift is increased.
For UASS, improving the spray quality and reducing the risk of
drift have contradictory effects.

Characteristics of unmanned aerial
spraying systems spray drift

Downwash and outside airflow
The most significant feature of rotary-wing UASS is to

carry one or more rotors (Li J. et al., 2018). However, rotor
movement can also cause vortex or turbulence (Fengbo et al.,
2017; Wang et al., 2020). When the wing generates a positive
lift due to the pressure difference between the upper and
lower wing surfaces, the high-pressure airflow below follows
the wingtips, then rolls upwards and flows toward the lower
pressure upper side of the wing, forming a spiral-shaped vortex
(Wen et al., 2018). Wingtip vortices are not unique to drones,
and they can also occur in helicopters and fixed-wing aircraft
(Mickle, 1996). However, the high-speed rotor of the drone
will cause the movement of the droplets under the rotor to be
more complex. With a stronger rotor downwash, the vortex
in flight is stronger (Zhan et al., 2022). Under the entrapment
of the vortex, a greater number of droplets spread to both
sides of the route, further worsening the downwind drift (Wang
et al., 2020a). This vortex generated by the joint action of
the rotor downwash airflow and the outside air is a major
factor affecting the drift of UASS spray (Tang et al., 2021).
Two types of outside airflow exist: the relative air movement
caused by the drone’s forward speed and the natural wind.
Wen et al. (2018) showed that a spiral wake occurs behind
the aircraft when the flight speed exceeds 3 m/s. The higher
the speed, the longer the spiral vortex prevails in the air.
Moreover, when the drone hovers, instead of drifting, the
droplets fall directly to the ground with the downwash of the
main rotor (Wen et al., 2018). Results concerning hovering
situations are derived from software simulations, therefore, the
same observations might not be made in the case of field trials.
On one hand, even when no environmental wind blows, fine

droplets sprayed by UASS with centrifugal nozzles can drift
beyond 4 m downwind due to the effect of the rotor wind and
the Brownian motion (Wang et al., 2020). On the other hand,
since the UASS operate above the canopy droplets in the air
can easily drift outside the crop with a crosswind (Li L. et al.,
2018). Consequently, UASS drift cannot be totally avoided under
the combined effects of the rotor wind field, natural wind, and
sprayer movement.

Unmanned aerial spraying systems drift
measurement method

Drone drifting still lacks a standard testing method, and
existing research mainly refers to the ISO22866 standard
(Iso, 2005). The drift phenomenon can be evaluated through
sedimentation and/or airborne drift according to the spatial
position of collectors (Grella et al., 2017). Sedimentation
drift involves the collection of ground deposition at different
distances downwind that is typically used to assess water course
exposure (Wang J. et al., 2018). Airborne drift consists of the
collection of droplets during their transport in the atmosphere
typically at several meters from the field edge and at different
heights reaching several meters above the ground (Wang et al.,
2021). This airborne drift can be used to evaluate the transport of
droplets and further consequences in terms of resident exposure
(Al Heidary et al., 2014).

In the existing literature, UASS drift tests are mainly carried
out in the field (Wang et al., 2019a, 2020, 2021). Table 3
summarizes the test methods from certain field tests found in
the literature. The drift collection is made in the downwind
direction and perpendicular to the UASS flight direction (Wang
et al., 2020). For the different spatial positions of the collectors,
spray drift is detected by extracting a dye tracer from the
polyethylene wire, active sampler or rotary impactors for
catching airborne drift. Petri dishes, Mylar cards or filter papers
are used as collectors to sample sedimentation drift (Wang et al.,
2019a, 2021; Ahmad et al., 2022). According to the statistics
in Table 3 provided by the literature, the sampling points of
sediment drift are usually arranged in non-target areas ranging
from 1 to 50 m, while airborne drift includes one or more
sampling points within 50 m.

The He research team proposed a 3D mass balance test
method consisting of a 5 m × 5 m × 2 m tunnel frame
with ∅2 mm drift collection lines on four sides (left–right–
ground–top) to collect the droplets sprayed inside the tunnel
by a UASS () (Wang et al., 2016). Quantitative information
can thus be obtained along the four directions, although
information is lacking at different distances on the ground.
Wang et al. (2021) used a near-ground drift test platform with
Petri dishes to collect sedimented droplets at different distances
downwind from the UASS route. Wang et al. (2019a) and
Wang et al. (2020) arranged the collection poles at a height of
1 m within a 2–50 m range in the downwind direction and
fixed Mylar plates (5 × 8 cm) to each collection pole. The
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TABLE 2 Characteristics and comparison of different UASS spraying systems.

Spraying system Nozzles VMD (µm) Droplet size
adjustment

method

Hydraulic spraying system Flat fan 110–200 Adjust pressure,
solution properties,

nozzle type

Hollow cone 90–150

Air induction 220–400

Centrifugal spraying system Centrifugal 90–300 Change the speed of
the spray plate

TABLE 3 Field test methods for UASS spray drift evaluation in the literature.

UASS sprayer Fluorescence
tracer

Testing method
(Sampling location)

Material References

Z-3 Rhodamine-B Sediment (2–100 m) and
Airborne (2, 50 m)

polyester card
(φ = 90 mm) and polyester fiber (φ = 1 mm)

Xinyu et al., 2014

Yamaha R-MAX II / Sediment (7.5–48 m) and
Airborne

Deposition sheet (40 * 25 cm) and SKC
AirCheck HV30 sample pump

Brown and Giles,
2018

3WQF120-12 Brillant sulfoflavin
dye (BSF)

Sediment (1–20 m) and Airborne
(5,10,20 m)

Petri dishes and rotary impactors Wang X. et al., 2018

3WQF80-10 BSF Airborne drift A cuboid aluminum sampling frame (5 m× 5
m× 2 m)

Wang X. et al., 2018

X-4 Tartrazine
solution

Sediment and Airborne (5,10 m) filter paper and water sensitive paper Li J. et al., 2018

3QF120-12 Rhodamine-B Sediment (1–50 m) and Airborne
(10,25,50 m)

mylar card (10× 8 cm), monofilament line
(Ø = 0.45 mm)

Wang X. et al., 2018

MG-1S Allure red Sediment drift (0.5–12.5 m) Mylar cards Chen et al., 2020a,b;
Chen S. et al., 2020

P20 (XAG) Rhodamine-B Sediment (2–50 m) and Airborne
(2,12 m)

mylar plate (5× 8 cm2) and monofilament
line (ϕ = 0.6 mm)

Wang et al., 2020

3WQF120-12,
3WM6E-10,
3WM8A-20

Pyranine Sediment (2 m) and Airborne
(2–20 m)

Petri dishes, rectangle collection frames with
polyethylene tubes (5.5× 2.0 m), rotary

samplers

Wang et al., 2021

airborne drift near the ground was estimated after recovering
the Mylar plates. Assessing sedimentation drift is the most
common method in spray drift research, and it reflects the real
value of ground drift at different distances from the downwind
direction. However, data on the vertical spatial distribution
of drift is still lacking. In order to efficiently understand
the spatial distribution of droplets on the downwind side of
a UASS flight path, both sediment and airborne drift need
to be considered.

Since field tests can be easily affected by weather conditions,
wind tunnels are a solution to provide stable and controllable
wind conditions, allowing for repeatable operations (Iso
International Standard, 2009). Wang et al. (2020b) placed the
single rotor and nozzle of the drone in a wind tunnel. The rotor
refers to one single spray unit of a quadrotor UASS “3WQFTX-
10” (Anyang Quanfeng Aviation Plant Protection Technology
Co., Ltd., China), with a size of 76.2 cm. Ling et al. (2018)
placed a UASS carrying a spraying system inside a 2 m × 2 m

wind tunnel for spray testing. The UASS model used here was a
miniature version. Although these studies attempted to test the
UASS in a wind tunnel, the use of a single rotor or the reduction
in the size of the UASS may differ from reality. A research
team from South China Agricultural University and Nanjing
Research Institute for Agricultural Mechanization, China, built
a set of UASS test platforms (as illustrated in Figure 3). The
test platform can hold up to 4, 6, and 8 rotors (adjusted as
needed). The rotor speed can be adjusted within the range
of 600–2,500 RPM. The spraying system is located under the
rotor, and can be installed with a hydraulic spraying system
or a centrifugal spraying system, where the position of the
nozzle relative to the rotor can be adjusted freely. In addition,
the test platform can adjust the pitch angle from –30◦ to 30◦.
Liu et al. (2021) combined the UASS platform with the wind
tunnel and placed the platform at the extremity of the wind
tunnel in order to build an indoor drift test device. Although
the sampling area is not located inside the wind tunnel, this
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FIGURE 3

The UASS spraying test bench in South China Agricultural
University.

method is a good attempt to reduce disturbances from natural
environmental conditions.

Potential environmental risks
The UASS uses low application volume rates for spraying

because of the limited payload (Zhan et al., 2022). Compared
with ground sprayers, the amount of spray per unit area of
drones is less even though the rate of active substance can be
equivalent (Qin et al., 2016; Wang G. et al., 2019). The drift
rate (as normalized by the application volume, ISO 22866)
is therefore not significantly reduced. The conclusions of the
study by Wang G. et al. (2019) are that pesticide droplets from
multi-rotor drones drift further away than with a traditional
backpack sprayer. In addition, the amount of drift in the air is
greater (Wang G. et al., 2019). Indeed, according to a study by
Li L. et al. (2018) the multiple rows of vertical crop canopies
can effectively prevent droplets from moving during ground
equipment spraying, thus resulting in a lower extent of drift
outside the crop than with UASS. The Wang field experiment
study also demonstrated that the UASS drift of almost all
treatments at 50 m was lower than the detection limits, and that
the drift distance of the UASS model was much shorter than
that of an aerial manned aircraft sprayer (Wang et al., 2020).
However, the above conclusions are particular cases that depend
on the spraying system, crop type and operation scenario.

Xu et al. (2020) performed preliminary research on
applicator exposure in a rice paddy by multi-rotor UASS.
They clearly highlighted that the risk of exposure using UASS
applicators was almost zero due to the separation between
the applicator and application machine. In contrast, backpack
sprayer application resulted in entire body exposure of the
applicator to the pesticide. Yan et al. (2021) compared the
amount of insecticide droplet drift with the mortality of bees
for multi-rotor plant protection UASS and for electric backpack

sprayers. After pesticide application by the multi-rotor drone
and electric backpack sprayer, the droplet deposition at a
distance of 5 m downwind was 0.107 9 µg cm−2 and 0.002
2 µg cm−2 respectively. The number of bee deaths caused by
the plant protection drone application drift was 62.9 fold that
of the electric backpack sprayer (Yan et al., 2021). Current
UASS drift research focuses on sediment and airborne drift,
while the impact on non-target organisms is still limited.
Further tests are still necessary to evaluate the environmental
risks of drone drift.

Factors influencing unmanned
aerial spraying systems drift

Atomization and sprays

Nozzles
The nozzle is at the core of the spraying system as it plays

a key role in spray atomization. Spray atomization refers to the
process of spraying a liquid into a gas medium at high speed
through a nozzle, dispersing and fragmenting it, and finally
forming fine particle droplets (He et al., 2018). Both the size
of the droplets generated by atomization and the proportion
of fine droplets have an impact on the drift (Al Heidary et al.,
2014). In the spraying process of ground spray equipment, air
induction fan nozzles are used in specific anti-drift scenarios.
Table 4 summarizes drift test results from UASS equipped with
different nozzles in the field. Regardless of the different UASS
models and test areas, IDK 120-015 presents a better anti-drift
effect than TR 80-0067. Hollow cone nozzles produce finer
droplets and are often used for pest control in orchards; IDK
nozzles produce larger droplet sizes than flat fan nozzles. The
average VMD (DV50) values of IDK 120-015 and TR 80-0067
in this test were 114.9 and 312.6 µm, respectively, and the
proportions of droplets with a particle size smaller than 75
µm were 16.1 and 1.8%, respectively. The air induction nozzle
can produce coarser droplets, thus reducing the risk of droplet
drifting (Wang et al., 2020a).

A correct selection of nozzles has significant effects in
reducing drift (Herbst et al., 2020; Wang et al., 2020). According
to Table 4 the result of 90% of total sedimentary drift locations
correlates strongly with droplet size (Dv50). The influence of
the nozzle on drift depends on the droplet size (Dv50) produced
by atomization. The larger the droplet size, the better anti-drift
performance (Wang et al., 2020). Larger droplets, which hardly
moved upwards with the vortex, traveled much shorter distances
and floated at lower altitudes. When the size of the droplets
increased, their maximum drifting distance gradually decreased
and was less affected by crosswind speed and direction (Wang J.
et al., 2018, Wang et al., 2020, 2021). This conclusion has been
verified in several of the studies presented in Table 4. When the
crosswind blew from the right-hand side, large droplets (200
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TABLE 4 Comparison of the 90% drift distance with different nozzles and UASS in the literature.

Nozzles UASS Dv50/µm Wind speed
(m/s)

Distance 90% of total
sedimentary drift (m)

References

Centrifugal nozzle
(XAG company)

P20 (4-Rotor) 100 1.16± 0.06 13.2 Wang et al., 2020

150 1.30± 0.05 12.0

200 0.61± 0.03 5.7

Hollow cone nozzle,
TR 80-0067

3WQF120-12
(Helicopter)

114.9± 0.7 3.31± 0.17 9.99 Wang et al., 2021

3WM6E-10
(6-Rotor)

3.79± 0.58 11.53

3WM8A-20
(6-Rotor)

3.47± 0.37 11.70

Air-injector nozzle,
IDK 120-015

3WQF120-12
(Helicopter)

312.6± 1.8 3.11± 0.40 9.13

3WM6E-10
(6-Rotor)

3.45± 0.46 7.90

3WM8A-20
(6-Rotor)

3.37± 0.56 13.62

Flat fan nozzle, LU
120-02

3WQF120-12 268.6 2.82± 0.76 10.05 Wang J. et al., 2018

and 400 µm) tended to deposit faster and closer to the swath,
while fine droplets (50 and 100 µm) were displaced by the
crosswind with a strong non-uniform spatial distribution and a
tendency to float toward the far left-hand side (Tang et al., 2021).
The drift distance of droplets gradually decreases as the droplet
size increases. Research by Wang et al. (2020) shows that large
droplets are more affected by gravity and mainly deposit on the
lower half of the 2 m, while fine droplets remain suspended in
the air and are less affected by gravity, thus leading to a higher
slope of airborne drift at 12 m.

Layout of nozzles
The location of the nozzle under the rotor affects the

movement of the droplets (Chen H. et al., 2021). As illustrated
in the Figure 4, four standard layouts of rotors and nozzles
are possible. (i) The nozzle can be located directly below the
rotor, (ii) the nozzle can be located directly below the rotor
(extended), (iii) the nozzle can be located inside the rotor, or
(iv) the nozzle can be separated from the rotor (spray boom).
However, studies on the impact of the spatial layout of rotors
and nozzles on spray drift are still scarce. The typical nozzle
arrangements are spray boom and vertical suspension under
the rotor. The sensitivity to spray drift depends on the position
of the nozzle. Indeed, the nozzles at the two extremities of
the boom are sensitive to the rotor vortex. The closer the
nozzle to the wingtip of the rotor, the greater the amount of
droplets drawn by the wingtip vortex (Wang J. et al., 2017).
To reduce spray drift, the length of the boom (similar to
Figure 4D) should not be greater than the diameter of the
rotor (Chen H. et al., 2021) as has been advised for larger aerial
spraying systems. A reduction in the distance between nozzles

can also decrease the droplet drift caused by wingtip vortices
(Wen et al., 2018).

Adjuvant and formulation
Adjuvant can significantly reduce the surface tension of

the solution (Meng et al., 2021, 2022a). In a field trial study,
Silwett DRS-60, ASFA + B, T1602, Break-thru Vibrant, QF-
LY and Tmax could reduce spray drift by 65, 62, 59, 46,
42, and 19%, respectively, in comparison with water. The
adequate concentration of adjuvants can reduce the percentage
of fine droplets and thus significantly decrease the risk of
drift in agricultural spraying (Wang X. et al., 2018). Wind
tunnel experiments in different meteorological condition also
demonstrated that the addition of spray adjuvants to the
spray solution can affect the level of spray drift level (Wang
et al., 2020a). The effect of adjuvant has also been found to
lessen drift by modifying the surface tension of the solution,
thus contributing to a reduction of the proportion of fine
droplets. It therefore plays a significant role in reducing the
drift risk of UASS.

Ultra-low volume spraying by UASS entails exigent
demands in pesticide formulations. The drift of herbicides
generally produces a higher impact on the environment
than for fungicides and insecticides. In the early stage of
UASS application, the blind use of herbicides to affect non-
target organisms is a common strategy (Shan et al., 2021).
While Japan developed drone sprayers earlier, herbicides were
processed in the form of granules specifically for drone
application according to the properties of drone aircraft
spraying (Yuan et al., 2018). Granules can be employed in
paddy fields such as rice, thus reducing environmental risks
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FIGURE 4

The relative position of the rotor and the nozzle. (A) Inside under the rotor (T30, from DJI), (B) below the rotor (extended, 3WWDZ-16, from
Tuogong), (C) below the rotor (P30, from XAG), (D) boom (kongzhongbaoma, from SCAU).

for non-target areas. Further efforts in the future will still be
necessary to develop adequate pesticide formulations for UASS
(Yuan et al., 2018).

Downwash airflow

Rotor airflow is a typical feature in UASS (Zhan et al., 2022).
The airflow of the rotor directly affects the movement of the
droplets in space. It is the main factor that affects the airborne
delivery of droplets to the target but also the leading cause
of drift (Li J. et al., 2018). The following section summarizes
the factors that cause variations in rotor airflow, including
rotor and payload.

Rotors
The UASS are divided into single rotor and multi-rotor

Systems. Figure 5 introduces several multirotor UASS and Table
5 summarizes the effective coverage area and average wind
pressure of certain UASS. A single-rotor therefore covers a larger
effective area than a multi-rotor. However, the take-off weight
of the multi-rotor is not lower than that of the single-rotor. In
terms of the downward wind pressure generated by the rotor,
the multi-rotor performs better than the single-rotor; however
its effect on drift cannot yet be explained.

Even though data on the way the type and number of rotors
affect drift is still lacking, the influence of rotors on drift has

been acknowledged (Richardson et al., 2019). As mentioned
in Table 4, Wang studied the drift characteristics of hollow
cone and air-injector nozzles mounted on UASS with different
numbers of rotors (Wang et al., 2021). Based on 90% of the
total drift distance, they demonstrated that the single rotor case
always provided lowest drift distances. Following a computer
simulation, Tang et al. (2021) observed that the largest droplets
(200 and 400 µm) would be deposited near the swath, while the
smallest droplets (50 and 100 µm) would remain airborne on the
far left-hand side. Since the application height of the helicopter
was low, a spanwise vortex appeared near the ground on the left-
hand side of the helicopter. As a result, fine droplets were lifted
due to the strong downwash flow while larger droplets were
deposited before entering the vortex (Tang et al., 2021). These
findings could be further exploited in order to significantly
reduce the spray drift. In the case where a stronger downwash
airflow would be produced, the effect of the vortex would be
more prominent, and a greater amount of droplets would drift
toward both sides of the route owing to the vortex wake of
the UASS sprayer (Wang et al., 2021). Focusing on droplet
deposition, the droplets were concentrated on 19.37% of the
surface without a downwash flow field. The deposition area was
a regular rectangle with a width of 2.6 m, which is the target area.
When a downwash flow field was activated, the drift distance of
the droplets increased and a greater amount of droplets traveled
to non-target areas. The width of the droplet deposition area
was 12.8 m, and droplets were observed on 41.06% of the test
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FIGURE 5

The UASS with different numbers of rotors. (A) Eight-rotor UASS
(MG-1P, from DJI), (B) quadrotor UASS (P30, from XAG), (C)
six-rotor UASS (M45, from GKXN,China), (D) two-rotor UASS
(V40, from XAG).

area (Shi et al., 2019). Furthermore, it is generally believed
that apart from favoring the displacement and deposition of
droplets, the external high-speed airflow would also lead to a
second atomization, resulting in a larger variation in droplet
sizes (Butler Ellis et al., 2002; Ferguson et al., 2015; Wang et al.,
2021).

Payload
The tank represents the most significant constituent of

airborne equipment as it defines the payload and productivity.
Its shape and size affect the UASS weight and control
performance of the entire body and can even affect the
distribution of the downwash airflow (Li J. et al., 2018). The
spray method found on UASS is an air assisted spraying system
similar to that of an orchard sprayer. Airspeed and air volume
are the main factors in orchard spray technology that affect the
distribution of deposits inside and outside the fruit tree canopy
(Zhai et al., 2018). The airspeed and air volume of the orchard
sprayer are obtained by adjusting the speed of the fan (Balsari
et al., 2019). The difference between the UASS and the orchard
sprayer is that the wind speed and air volume produced by
the orchard sprayer are stable and controllable. The wind field
generated by the UASS rotor is affected by external factors and is
relatively uncontrollable. Indeed, the lift generated by the UASS
rotor(s) is related to the load that is constantly changing because
of the continuous discharge of the tank mixture (Zhan et al.,
2022). According to a study, the RPM of each rotor blade was
found to decrease by 14–20% as the payload decreased from 10
to 0 kg (Ismail et al., 2021). Therefore, in present-day spraying
activities, changes in RPM could produce a downwash airflow
pattern that constantly varies from the starting point up to the
finishing point. This could have an effect on the distribution of
the pesticide along the flight pathway (Ismail et al., 2021).

At present, 90% of electric multi-rotor drones have a
tank capacity smaller than 15 L (Wang et al., 2020), but the
developmental trend is now to increase the load. Some drone
companies have even released electric drones with 40 L payloads,
such as DJI’s T40 and XAG’s P40. The load factor (the ratio
of load/total weight) has become an essential factor that can
change wind strength of the rotor. As the weight of the UASS
decreases, the downwash decreases, thus reducing its ability to
draw droplets toward the ground and thereby further increasing
airborne drift (Teske et al., 2018). The extent to which the
payload affects drift still needs to be further investigated with
subsequent research.

Relative movement

The drone constantly moves during the spraying process.
Due to its displacement or to variations in external factors,
the airflow can change (Wang L. et al., 2019; Tang et al.,
2020). First of all, the forward movement of the UASS itself
involves flight parameters, including flight speed, flight height,
and flight direction. Secondly, variations in the external natural
environment take place, such as natural wind blowing in the
field. This section summarizes and discusses the factors related
to relative motion and potential effects on spray drift.
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TABLE 5 Comparison of effective wind field area and average wind pressure of some UASS.

Type Model Rotor diameter
(mm) * number

Cover effective
areaa/m2

Standard takeoff
weight/kg

Average wind
pressureb/(kg·m−2)

Oil single rotor 3WQF120-12 2,410 * 1 4.56 42 9.21

Electric single rotor S40-A 2,400 * 1 4.52 40 8.85

Electric multi-rotor V40 2021 1,194 * 2 2.24 44 19.64

P40 2021 1,016 * 4 3.24 45 13.89

P80 2021 1,194 * 4 4.48 80 17.86

T16 838.2 * 6 3.3 41 13.67

T30 965.2 * 6 4.38 66.5 15.18

aThe cover effective area is equal to the coverage area of the rotor multiplied by the number of rotors.
bThe average wind pressure is equal to the take-off weight divided by the effective coverage area.

Flying speed
While the rotary wing drone hovers, the wingtip vortex flows

outwards to the sides of the fuselage (Wen et al., 2018). However,
as the drone moves forward, a spiral wake vortex develops
behind the fuselage (Wen et al., 2019). The greater the flight
speed and the higher the flight altitude, the farther the diffusion
distance of the wake vortex. Wen et al. (2018) studied a single-
rotor UASS in a CFD simulation analysis. Results indicated that
38% of droplets drifting in the air were due to the spiral wake
vortex when the flight speed was 5 m s-1, the flight altitude
was 3 m, and the particle size was less than 100 µm. The 100
µm droplets account for about 80% of the total number of
drifting droplets (Wen et al., 2018; Wang et al., 2020). In the case
when the drone flew too fast (more than 5 m s-1), the direction
of the downwash airstream of the rotor changed from vertical
downward to obliquely downward due to the relative moving
external wind, which weakened the pressure effect on sprayed
droplets. The horizontal velocity component of the downwash
airflow contributed to an increase in the external wind speed
flowing opposite to the flight direction, and thus aggravating
the spray drift toward the rear of the fuselage (Wang et al.,
2020). Consequently, the flight speed was found to produce a
significant effect on spray drift characteristics for UASS aerial
application indeed, a reduction in flight speed could effectively
decrease the potential spray drift (Teske et al., 2018; Wang et al.,
2020,a; Zhang H. et al., 2020).

Flight altitude
Airflow control has been achieved in orchard spraying by

adjusting the distance between the nozzle and the spray target
(Balsari et al., 2019). Generally, a reduction in the distance from
the target should ensure sufficient air volume and air speed,
while simultaneously decreasing the drift during spraying. The
flight altitude refers to the height of the drone relative to the
crop, which is the shortest distance the droplets need to travel
to reach the surface of the target. Changes in altitude ought
to affect the strength of the rotor wind field (Wen et al., 2018;
Zhang H. et al., 2020). Indeed, the higher the altitude, the
weaker the downwash airflow of the rotor at the top of canopy,
and more easily sprayed droplets can drift with the crosswind

(Wang et al., 2019a). Wang used a QuanFeng120 UASS in
a pineapple field under various meteorological conditions.
When the operation altitude was less than 2.5 m, the mean
speed varied between 1.14 and 2.82 m/s, and the 90% spray
drift distance remained within a 10 m range (Wang J. et al.,
2018). Considering an operation altitude up to 3.5 m and the
natural wind speed ranging between 2.02 and 3.59 m/s, the
90% spray drift distance can reach 33.54–46.50 m (Wang J.
et al., 2018). Various experimental studies all come to the same
conclusion that the maximum flight altitude should not be
above 2.5 m in order to reduce the extent of droplet drifting
(Wang J. et al., 2018).

Flight direction
Two concepts of flight direction are investigated here. The

first concerns the forward and backward movement of the
aircraft during route planning. Wang C. et al. (2018) studied
the influence of forward and backward motion on droplet
deposition in a tunnel frame of 5 m × 5 m × 2 m with
2 mm diameter drift collection lines on four sides (left—right—
ground–top). When the UASS flew forward, the deposition
rate ratio of downwind varied between 57.3 and 64.8%, while
the bottom part varied between 30.3 and 38.8%. However, the
deposition rate ratio of downwind decreased to 24.4–28.7%
when flying backward, and the bottom part increased to 51.5–
60.4%. As a result, the deposition rate of the bottom part of
backward flight can reach 60% in comparison with forward
flight. Therefore, the backward direction had a better result and
allowed for a reduction in drift, optimizing the deposition rate
on the target plant and the utilization of pesticides (Wang C.
et al., 2018). However, this result was caused by the asymmetric
structure of the single rotor UASS, and may not be applicable to
the symmetrical multi-rotor UASS.

The second concept is the movement (perpendicular or
parallel) of the flight route relative to the row of crops. When an
application operation proceeds in a perpendicular direction to
the row orientation, a higher proportion of drift can be observed
in comparison with an application operation that runs parallel
to the row orientation. This is attributed to the high proportion
(> 50%) of gaps in the canopy parallel to the wind direction
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(Brown and Giles, 2018). Consequently, a UASS flying backward
or parallel to the direction of a row of vines should significantly
reduce the risk of drift. However, these research data remain
very specific, and such a conclusion may vary according to the
different UASS models and crop types.

Crosswind
The main feature of rotary-wing UASS is airflow, and often

natural wind interferes directly with the airflow distribution of
the rotor during operation (Li J. et al., 2018). Similarly to any
other type of spraying system, the influence of crosswind on
the drift of UASS remains significant (Wang C. et al., 2018).
Studies have demonstrated how, under conditions of average
temperature of 31.5◦C and average relative humidity of 34.1%,
the effect of crosswind can be more significant than the flight
height and flight speed of the UASS (Wang X. et al., 2017).
Consistently with the effect of flight altitude, crosswinds tend
to reduce the strength of the vertical downward rotor wind
field, thus causing droplets to deposit along the downwind
side, reducing the amount of deposition in the target area and
increasing the proportion of drift (Wang X. et al., 2018).

Discussion and further
recommendations

Optimization of spraying system and
structure layout

At present, the Chinese market alone is concerned by
more than 178 types of agricultural drones, and the spraying
systems carried by the drones are also very diverse (He,
2018). The spraying systems proposed by manufacturers can
differ significantly, and models from a single manufacturer but
produced at different periods can also be different. However,
these drones dating from different periods are widespread in
the market. Due to this fact, a universal operating rule or anti-
drift suggestion is difficult to establish. Therefore, the UASS
system structure design still needs to be further improved
corresponding technical standards need to be set. Drone
manufacturers have focused on improving the drone platform
during the previous development processes, such as positioning
accuracy, autonomous control, and environmental sensing
devices. However, the spraying system, as a core component
of the drone, has been ignored (Li J. et al., 2018). Spraying
studies are scarcely conducted before drone manufacturers
release drones, while they are more frequently based on existing
drones for testing. In subsequent developments, an upgrade of
the drone spraying system could become a primary solution.

The choice of spray head type should take into account
the application scene, the spray purpose, and its chemical
formulation. It is recommended that target crops and
environmental conditions be included, but this rather relies
on experimental data. The centrifugal nozzle presents certain

advantages in terms of droplet size, controllability and a
reduced relative span (Qingqing et al., 2017). However, most of
the droplet classification of current centrifugal spraying systems
lies within the fine particle range. The reduction in the drift of
the centrifugal spraying system using chemicals and adjuvant is
also an issue that deserves improvement. In addition, the simple
choice of hydraulic anti-drift nozzles to reduce drift may lead to
reduced spray coverage. Therefore, it is necessary to equilibrate
the relationship between drift and deposition distribution for
hydraulic nozzles. The selection of formulations may require
a focus on the risks related to herbicides. Drones carrying rice
seeds and fertilizer granules have appeared and are employed in
China (Song et al., 2018). The spreading of herbicide particles
using drone based spreading devices may become a novel
direction of research.

Optimization of the layout of nozzles and rotors is
significant factor in reducing drift (Wen et al., 2018). The
characteristics of the nozzle vary with the requirements of
the application scenario (Chen et al., 2020a). A combination
between the characteristics of the rotor wind field and of the
nozzle spray should be made in order to select the most optimal
spatial layout. This would be the most crucial and effective
solution to solve the issues in spray drifting. The selection
of the appropriate nozzle according to the rotor downwash
flow field, although a critical issue for UASS, has not been
sufficiently described in the existing literature. On one hand,
the number of rotors and downwash flow field intensity is
strictly an engineering issue related to the design, stability and
payload capacity of UASS (Zhang H. et al., 2020). Since rotors
are conveniently employed to support nozzles, the downwash
field flow may contribute toward droplet penetration into the
foliage (Zhang S. et al., 2020). On the other hand, the choice of
the nozzle is depends on agronomical specifications (expected
dosage/ha, spray quality, as well as technical possibilities
in terms of nozzle flowrate, nozzle technology, etc. Such a
pragmatic approach leads to a few practical consequences in
terms of spray deposition and spray drift which are well
described in the literature. The physical description of the
rotor and nozzle combination is possible in a fixed position
but may become more complex when considering the travel
speed and influence of atmospheric conditions. In this sense, the
effective horizontal spray distribution (spray swath) for UASS
is not easily predictable and still needs to be experimentally
investigated. In addition, the load in the tank, which constantly
decreases during the spraying flight, tends to affect the rotor
thrust. Attention should therefore be paid to the manner in
which the rotor wind field variations can affect the spray
quality and drift.

Drift test database and modeling

The development of drone spray technology is relatively
new, and the UASS spray drift data base is still limited
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(Wang et al., 2020,b). According to the study developed
in Part 3, the drift of UASS is simultaneously affected by
multiple operating parameters. Current research focuses on
the influence of a specific factor or a small number of factors
on drift while ignoring the interactions between multiple
factors (Chen P. et al., 2021). The choice of operating
parameters can be easily affected by the experience level of
the operator, and the use of models can reduce the risk of
drift caused by human decision-making errors (Chen et al.,
2022). The selection of operating parameters for drone sprayers
relies on a large number of field trials. The conduction of
further assessments on larger-scale application fields would
help to optimize operating parameters and fully understand
the potential and limitations of UASS spray technology.
According to recent observations, future research should
incorporate more parameters, including system parameters,
operating parameters, and environmental parameters, into
the scope of the study so as to build a more accurate
spray model. The existing AGDISP (Agricultural Dispersal)
and CHARM (Comprehensive Hierarchical Aeromechanics
Rotorcraft Model) were not originally designed for UASS
sprayers. The previous models could not include all UASS
platforms, rotor configurations, and spraying system types.
However they could still act as a reference for UASS drift
models (Chen H. et al., 2021). Therefore, a large accumulation
of simulation or field data can provide the opportunity
to establish a suitable model for UASS. Nevertheless, as
the weather and crop structure in field experiments remain
uncontrollable variables, it is challenging for these variables to
be integrated into a decisive strategy (Bartzanas et al., 2013).
Numerical modeling techniques such as CFD can effectively
quantify the impact of mechanical designs, environmental
parameters and weather conditions in a virtual environment.
In addition to the drone itself, wind conditions and crop
canopy are also important influencing factors. Hong et al.
(2021) proposes a review of fluid dynamic approaches of
spray drift taking into account influencing factors (including
droplet size, wind conditions, and canopy interaction) into
account to build accurate spray models, however this review
does not concern the specific case fo UASS. In the future, a
greater number of CFD studies will be implemented for the
range of conditions for evaluating multi-rotor UASS to be
expanded, thereby forming a modeling method to optimize
UASS performance systematically.

In summary, the drift of UASS is an inevitable phenomenon.
However, the establishment of reasonable measures, such as
suggesting drift buffers throughout test data or models, is
a necessary step toward drift reduction. Test data can help
optimize the model in order to guide the process of selecting
operating parameters. In addition, the structural design of
the UASS sprayer system is still at a stage of continuous
improvements, while the accumulation of test data should
contribute to further improve the system.

Standardization of measurement
methods

Table 3 in section “Unmanned aerial spraying systems
drift measurement method” highlights a lack of consistent test
protocols in existing research projects. Many UASS spraying
systems are available, and the types of sampling collectors and
collection locations are also diverse. Therefore, a summary
and comparison of existing research data are difficult to make.
The ISO22866 standard provides a field drift test method,
which can be used to compare the drift characteristics and
environmental risks between different types of spray equipment.
However, it may not be suitable for the UASS drift test. For
example, it is necessary to determine a unified test method
according to various typologies of UASS, including a number
of spraying systems and spatial layouts. Including the upwind
drift data caused by the UASS wingtip vortex into the scope
of the evaluation is a necessary step. NY/T 3213 is China’s first
agricultural UASS industry standard (Zhang S. et al., 2020). The
standard determines the modeling rules, quality requirements,
inspection methods, and rules of the UASS. However, the
standard only defines the measurement of the UASS spray width,
and the UASS drift test method is not mentioned. In order to
further clarify the drift characteristics of UASS and to establish a
drift model or database of UASS, it is necessary to first determine
the corresponding field test method.

Major difficulties still arise when testing drone spray in
wind tunnels. The principle of drift testing in wind tunnel
is that it should have a sufficient size so that the airflow is
not disturbed by the inner wall or sprayer (or its installation)
(Iso 22856, 2008). Moreover, height and downwind distance
of the wind tunnel should be sufficient to contain enough
sampling equipment or collectors. According to Table 3, the
length of the UASS is generally greater than 2 m, the height
range lies between 0.5 and 0.7 m, and the size range of
the rotor is 0.53–1.19 m. According to the specifications of
the wind tunnel for spray testing mentioned in the literature
(Ling et al., 2018; Ding et al., 2019; Liao et al., 2019; Wang
et al., 2020,b), the width of most wind tunnel cross-sections
ranges between 1.2 and 3 m, while the height is 1.1–2 m
high. As the length of the rotor itself interferes with the
current cross-sectional dimensions of the wind tunnel, the
whole machine or the rotor are difficult to place inside the
wind tunnel. The test method of UASS drift should take
into account the characteristics of the UASS system. For
example, the rotor wind field may impact the movement of
the droplets as well as the secondary atomization. However,
the ISO 22856 standard mentions that the spray generator
mounting, control, and supply lines are to be arranged in
order to minimize disturbance to the airflow, thus leading to
a contradiction. It is therefore crucial to revise the field and
indoor drift test methods based on the characteristics of UASS
spraying systems.
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Conclusion

The rapid development of drone sprayers has provided
novel opportunities for chemical spraying techniques, but the
drift of the UASS is also a noteworthy feature. The high-speed
motion of the rotor causes the droplets to be drawn in by
vortices on both sides of the wingtips, while the forward
motion of the aircraft causes the vortices to produce long
trailing vortices at the rear. Under the combined action of
the lateral wind and the wake vortex, the droplets are easily
dispersed toward the non-target areas. However, drone drifting
is not an uncontrollable phenomenon. UASS drift has been
found to be affected by the droplet size, layout of nozzles,
number and size of rotors, payload, flying speed, flying altitude,
and crosswind. By optimizing the structural layout of the
rotor and spraying system, adjusting the operating parameters,
and establishing a drift buffer zone, the drift of the droplets
can be effectively reduced. For this new spray equipment,
it is necessary for researchers to further investigate the drift
characteristics of UASS, establish drift models of typical models,
crops, and climate environment, and discuss standard methods
for measuring UASS drift.
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The intelligent pesticide application techniques in orchards have grown 

rapidly worldwide due to the decrease in agricultural populations and 

the increase in labor costs. However, whether and how intelligent 

pesticide application techniques are better than conventional pesticide 

application remains unclear. Here, we  evaluated the performance of 

the unmanned aircraft vehicle (UAV) and unmanned ground vehicle 

(UGV) on pesticide application, ecological environment protection, and 

human’s health protection compared to conventional manual methods. 

We  quantified characteristics from the aspects of working effectiveness, 

efficiency, environmental pollution, water saving and carbon dioxide 

reduction. The results showed that the UAV application has the advantages 

of a higher working efficiency and less environmental pollution and 

natural resource consumption compared to the UGV and conventional 

manual methods despite of its worse spray performance The UGV 

application techniques could improve spray performance at the cost of 

high environmental pollution. The conventional spray gun technique 

was unfriendly to environmental and resource protection although it 

showed a better spray performance. Thus, the balance of improving spray 

performance and controlling environmental pollution is the key to improve 

the performance of UAV and UGV technology in the future. The study 

could be  useful in the development of intelligent pesticide application 

techniques and provide scientific support for the transition of intelligent 

management in orchards.
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plant protection, UAV, UGV, application performance, ecological assessment, 
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Introduction

Orchard area and fruit production have rapidly increased to 
meet the higher demand for fruit consumption over the past 
decades. The global orchard area and fruit production increased 
by approximately 22 and 54%, respectively (FAO, 2020). As the 
country with largest population in the world, China has the largest 
orchard area and the highest fruit production in the world (Jiang 
et  al., 2021). The fruit industry is not only an advantageous 
industry in China but also a labor-intensive industry. Plant 
protection is an important part of orchard management with high 
labor demands (He et  al., 2017). However, rapid urbanization 
during past decades has led to severe labor shortages in the orchard 
industry, and the challenges associated with the aging population 
in the county is becoming increasingly prominent (Zhao et al., 
2021). At present, most management of orchard pesticide 
application relies on manual operation, which is characterized by 
high labor intensity, low efficiency and low standardization (Zhai 
et al., 2018; Liu et al., 2021). Moreover, pesticide application has 
potential damage both in human and environment (Pan et al., 
2020; Cai et  al., 2021). In general, green and sustainable 
development is an important objective of global agricultural 
transformation (Abbas and Sagsan, 2019; Guo et al., 2020). Cleaner 
production with a reduction in greenhouse gas emissions and 
resource consumption in agricultural management is urgent and 
important based on global climate change (Young et al., 2015). 
How to strengthen ecological environmental protection during the 
utilization of pesticides in orchard is a key issue in national 
development plans (Li et al., 2022). In addition, legislation and 
ethics have to go hand in hand when considering the design of 
legal solutions due to the value-laden nature of the concerns 
associated with robotic systems (EU, 2016; Benos et al., 2022).

Generally, the air-assisted spray method (a machine with 
pump and air-assisted equipment) and the human spray gun 
method (a machine with pump and several spray guns) are widely 
used in orchard plant protection (Khot et al., 2012; Lu et al., 2021). 
The former method has been recognized as a high-efficiency 
pesticide application technology and is widely used for pest 
control in orchards (Li et al., 2022). However, it is only suitable in 
standardized orchards with fixed wide spacing and relatively flat 
pavement (Wang et al., 2022). Human spray guns can make up for 
this shortcoming. However, high labor costs limit its application 
in large-scale orchard management (An et al., 2020). To solve 
these problems, intelligent pesticide application technology can 
be an alternative choice in orchard plant protection, which has 
been growing rapidly worldwide as a new method for the 
application of plant protection products, especially in East Asian 
and Southeast Asian countries (He et  al., 2017; He, 2018). 
Unmanned aircraft vehicles (UAVs) and unmanned ground 
vehicles (UGVs) are two major kinds of intelligent equipment that 
have been widely adapted for agricultural management (Kefauver 
et al., 2017; Zhang et al., 2019). Intelligent pesticide application 
technology fits the current development requirements of modern 
agriculture: high efficiency, high quality and economically efficient 

as well as standardization and informatization (Wang et al., 2016; 
Lan and Chen, 2018). It has a major advantage in low labor 
demand, which is important for orchard management in the 
future. Moreover, intelligent equipment can also ignore terrain 
obstacles and planting patterns, which is important for orchards 
in hilly areas and disorderly planting orchards, such as orchards 
in southwestern China (Wang et  al., 2022). Some intelligent 
equipment has the ability to work at night, which can significantly 
improve working efficiency. Finally, the outstanding progress in 
vision sensors in conjunction with that of machine learning has 
allowed the sustainable targeted application (Benos et al., 2021).

A comprehensive evaluation of the stability and effectiveness of 
intelligent pesticide application techniques during actual operation 
scenario is important for technological improvement and 
popularization; however, this exploration is still limited. Many 
studies have focused on parameter optimization in specific 
equipment. For example, the influence of operating techniques on 
the spray effect through ground machine application, including 
travel speed, nozzle type, and spray pressure, has been explored by 
many researchers (Nuyttens et al., 2007; Li et al., 2021a, 2022; Grella 
et al., 2022). Similarly, flight height and velocity, tree shape, UAV 
type and drift have been widely studied for UAV application (Tang 
et al., 2018; Meng et al., 2020; Wang et al., 2021). On the other hand, 
previous studies have also focused on equipment design and 
remolding to improve application performance (Li et al., 2017; He, 
2019). These studies were meaningful for improving the equipment 
and application effectiveness. However, it is difficult to achieve 
farmer recognition. Previous study showed that farmers from larger 
farms focus more on financial benefits from robots and prefer large 
autonomous tractors. Conversely, small-scale or organic farmers 
consider environmental benefits of field crop robots relatively more 
important and favor small robots (Spykman et  al., 2021). Few 
studies have focused on the effects of different pesticide application 
techniques on the ecological environment. It was essential to carry 
out a comprehensive comparison between conventional and 
intelligent technology and evaluate the difference between different 
pesticide application techniques in terms of both economic and 
ecological benefits. Some studies have compared UAV application 
methods to air-assisted spray methods in terms of spraying 
performance (Sarri et al., 2019; Martinez-Guanter et al., 2020; Li 
et al., 2021a). However, most studies were concentrated in a small 
area (less than 0.1 ha), which is quite distinct from the actual 
operation situation. On the other hand, the ecological characteristics 
of separate application techniques, such as environmental pollution, 
resource consumption and greenhouse gas emission, should also 
be evaluated due to the national green and sustainable development 
strategy in agricultural management, but it is still limited.

Thus, to understand the comprehensive performance of 
intelligent pesticide application technology and conventional 
technology in orchards, a comparison study through field 
positioning experiments was conducted. This study aimed to 
clarify the characteristics of different pesticide application 
techniques from the aspects of working effectiveness, efficiency, 
environmental pollution, water savings and CO2 reduction and to 

162

https://doi.org/10.3389/fpls.2022.959429
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiang et al.� 10.3389/fpls.2022.959429

Frontiers in Plant Science 03 frontiersin.org

put forward suggestions for the development of orchard plant 
protection in the future, providing scientific support for the 
transition of intelligent management in orchards.

Materials and methods

Study area

A pear (Pyrus bretschneideri) orchard was selected as the target 
study area, which was located in Pinggu district, Beijing (Figure 1). 
The 4-year-old pear orchard covered an area of approximately 13 
hectares. The dwarfing and dense planting mode was adapted in the 
target pear orchard. The distances between rows and trees were 4 and 
1.5 m, respectively. The average height of the trees was approximately 
3 m. Tests were conducted during October 2021. The daily daytime 
temperature ranged from 18 to 25°C, while the humidity was 45%. 
The wind speed was below 1 m/s during the experiment.

Sprayer characteristics

Five orchard pesticide application equipment were adapted in 
the study, including three mainstream orchard unmanned aircraft 

vehicles, one unmanned ground vehicle and one conventional 
manual spray gun (Figure 2). The basic parameters of the different 
equipment are shown in Table 1. All treatments were modeled on 
the actual operation parameter environment, which was promoted 
by the guidance of local orchardists and professional operators.

Experimental design

Three treatments were set in this study: spraying by 
unmanned aircraft vehicle (UAV), spraying by unmanned 
ground vehicle (UGV) and spraying by conventional spray gun 
(CONV). The average level of three major UAVs was adapted in 
order to represent the common performance about UAV 
application techniques. To better simulate the actual working 
environment, a 1 ha test field was set in the T1 and T2 
treatments, which contained approximately 40 rows of pear 
trees. The large working area included at least 1 battery change 
or water refill. Considering the relatively low working efficiency 
in conventional manual application, a 0.08 ha test field was set 
in T3, which contained 5 rows of pear trees. Three types of 
unmanned aircraft vehicles were adapted for the test, and two 
repetitions were set for each piece of equipment. Meanwhile, 
both the T2 and T3 treatments were repeated 3 times. All 

FIGURE 1

Location of the study area and test fields. Field 1 represents the test field of the unmanned aerial vehicle and ground machine spraying method; 
Field 2 represents the test field of the conventional artificial method.
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intelligent application equipment were operated manually by 
professional operator and tried to keep uniformity in repetition. 
Through positioning experiments, the characteristics of 
different pesticide application techniques in spraying 
performance, working efficiency, environmental pollution and 
resource consumption were comprehensively analyzed.

Spray effectiveness test
Five consecutive trees were sampled in the middle row of 

each test field, and sample trees were no less than 10 m from 
the beginning and end of the row to ensure that the equipment 
was working stably when passing through (Figure 3A). The 
sample tree was divided into three layers, including upper, 
middle and lower layers, and the height of each layer was 2, 1.5, 
and 1 m, respectively. The number of sample points set in the 
upper, middle and lower layers was 4, 5 and 8, respectively 
(Figure 3B). The well-grown leaf which was fully expanded was 
chosen as the sample leaf, and 2 white art papers 
(60 mm × 40 mm) were attached on both the adaxial side and 
abaxial side of it. Ponceau 4R, a kind of food coloring with no 
risk of environmental pollution and human damage, was added 

as a replacement for pesticide in the test. All samples were 
scanned with a scanner (DS-1610, Epson, Beijing, China) at 
400 dpi to obtain images. ImageJ, an image processing program, 
was used for the analysis to obtain spray coverage (Zhu 
et al., 2011).

The deposit coverage on both the adaxial side (CAD) and 
abaxial side (CAB) of the leaf was calculated in different layers 
during the test. The ratio of deposit coverage on the abaxial side 
and whole leaf (RBW) was calculated to account for droplet 
distribution uniformity on leaves (Li et al., 2022). The coefficient 
of variation, CV (%) was also calculated in the study.

	
RBW = CAB

CAB+CAD 	
(1)

	
CV = SD×100%

X 	
(2)

where SD represents the standard deviation of each treatment 
and x represents the mean value of each treatment.

A

D

B C

E

FIGURE 2

Major pesticide application equipment used in the study, including unmanned aircraft vehicles (A–C), unmanned ground vehicles (D) and 
conventional manual spray guns (E).

TABLE 1  Equipment and application parameters of unmanned aircraft vehicles (UAV), unmanned ground vehicle (UGV) and conventional manual 
spray guns (CONV) used in the trials.

Parameter UAV-1 UAV-2 UAV-3 UGV CONV

Tank capacity 30 l 20 l 40 l 200 l 300 l

Working speed 1.1 m/s 1.5 m/s 2.6 m/s 1 m/s 3.5 m/min

Spray width 7 m 3.5 m 3.2 m 6–8 m 10–12 m

Flight height 4.5 m 3.3 m 5.5 m – –

Flow rate 2.98 l/min 3.01 l/min 2.82 l/min 8 l/min 22 l/min

Engine power 7.2KW 7.2KW 7.2KW 9.5KW 4.8 KW

The engine power of the UAV represents the battery charge engine power.
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Environmental pollution test
Pesticide application pollution mainly includes ground 

residue, machine residue and human body residue (Musiu et al., 
2019; Rani et al., 2021). Deposit coverage was used to evaluate the 
degree of pollution in different positions. For the ground residue 
test, white art papers were attached to the ground at the center of 
rows and trees (Figure 4A). For the machine residue test, white art 
papers were randomly attached around the equipment, including 
the rotor, arm, tank, and shell (Figure 4C). For the human body 
residue test, white art papers were randomly pasted on the head, 
arm, chest and leg (Figure 4B). All samples were also scanned with 
a scanner (DS-1610, Epson, Beijing, China) at 400 dpi to obtain 
images, and ImageJ was used for the analysis to obtain average 
spray coverage.

Working efficiency test
Working efficiency (WE, ha/h) referred to the area of 

application completed in unit time. This study provides significant 
guidance for orchard management between different application 
techniques. The calculation formula was as follows:

	
1=

WE=
∑

n

i

A

iT

	

(3)

where Ti represents the overall application time in process i 
(h). The process includes dosing, battery change and machine 
transfer. A represents the application area (ha). In this study, 
stopwatch was used to record the progress of application. For 
UAV application, time recording was initiated at the route 
planning and ended at the complement of the last line of trees. For 
the ground machine and conventional manual techniques, time 
was started at dosing and ended at the complement of the last line 
of trees. Considering the difference in the application area 
between treatments, the application area per unit time was 
uniformly converted.

Water consumption test
Orchard workers usually use a fixed amount of pesticide, 

although the application technique varies. Thus, we calculated the 
overall water consumption among the different treatments. The 
calculation formula was as follows:

	
W W Wi== 1 b e

n∑ −
	 (4)

where W represents the overall water consumption in the test 
(L). Wb represents the volume of water in the beginning (L); We 
represents the volume in the end (L); and n represents the time of 
dosing. The average water consumption per unit area was 
uniformly converted.

Machine CO2 emission test
Machine CO2 emissions (ECO2, kg) refer to the CO2 directly 

generated by the combustion of gasoline used in agricultural 
production. The emission was equal to the amount of gasoline 
multiplied by the CO2 emission coefficient of gasoline. The 
calculation formula was as follows:

	
E

G G
AC

b e
02 = ×2.9251

−( )
	

(5)

where Gb represents the gasoline in the beginning and Ge 
represents the gasoline in the end, kg; A represents the application 
area, ha. The CO2 emission coefficient of gasoline in China was 
2.9251, kgCO2-eq/kg. The determination of the CO2 emission 
coefficient was referred from Intergovernmental Panel on Climate 
Change (IPCC) guidelines for greenhouse gas inventory and 
provincial guidance for greenhouse gas inventory complications 
(Paustian et al., 2006; Yan et al., 2022). In the UAV application 
treatment, the oil consumption of the generator used for battery 
charging was mainly recorded. Gasoline consumption of the engine 
was recorded in the UGV treatment while gasoline consumption of 
the pump was recorded in the conventional spray gun treatment.

A B

FIGURE 3

Layout of the test (A) and sample point (B). The yellow line represents the flight route of the UAV; the blue line represents the route of UGVs and 
humans; the red triangle represents the sample trees; and the black rectangle represents the sample point.
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Data processing and analysis

Feature normalization was adapted in the study to make 
different types of data in the same range. StandardScaler was one 
of the feature normalization methods which had been widely 
adapted in data processing. After normalization, the mean value 
of each column of the matrix was 0 and the standard deviation was 
1. The calculation formula was as follows:

	
X =

( )x− µ
σ 	

(6)

where X represents the result after feature normalization; x 
represents the initial data; μ represents the average value of 
dataset; σ represents the standard deviation of dataset.

All statistical analysis were conducted by SPSS 26.0 software 
(IBM Crop., Armonk, NY, United States). Before the statistical 
tests, assumptions of normality and homoscedasticity of the 
datasets were tested using the Shapiro–Wilk and Levene tests, 
respectively. One-way analysis of variance was applied to test the 
effects of different pesticide application techniques on spray 
performance, environmental residue, working efficiency and 
resources consumption. Significant differences between various 
treatments were identified by the least significant difference test at 
the p < 0.05 level. Data visualization was performed using the R 
package ggplot 2.

Results and discussion

Assessment of spraying performance

Various deposit coverages occurred in different layers between 
different spraying techniques (Table  2). The average deposit 
coverages of UAV, UGV, and CONV in the test were 3.4, 60.3 and 
34.9%, respectively. Similar to previous studies, deposit coverage on 
the adaxial side was higher than that on the abaxial side in all 
treatments (Grella et al., 2020; Salcedo et al., 2020). According to the 
UAV’s low-volume-spray characteristics, the deposit coverage in 
UAV was significantly lower than that in the other treatments. The 
average deposit coverage was approximately 3.4%. The deposit 
coverage decreased from the upper to lower layer on both the 
adaxial and abaxial side. The deposit coverage on the abaxial side of 
the lower layer was approximately 1.1%. In addition, the average CV 
of UAV (66.2%) was higher than that of the other treatments. This 
result indicated that UAV application technology is unstable, which 
could affect the overall pest control in the orchards. Generally, it 
could achieve pest control effects when the deposit coverage exceeds 
1% during UAV application (Wang et al., 2022) due to its high-
concentration spraying property. The results indicated that UAV 
application could adapt to orchard pest control. However, unstable 
effectiveness would reduce acceptance for farmers because of the 
uncertainty in the control effect. Previous research also showed 
mediocre performance in UAV spraying (Li et  al., 2021c). In 

A

C

B

FIGURE 4

Layout of the sample site in the test of ground residue (A), human body residue (B) and machine residue (C). The red circle represents the sample 
point.
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contrast to field crops, pest control in orchards is stricter because it 
will affect the economic benefit significantly.

Unmanned ground vehicle application technology showed the 
highest deposit coverage on both the adaxial and abaxial sides of 
leaves among all treatments. In contrast to the UAV, the deposit 
coverage increased from the upper to the lower layer. This was 
mainly because the ground machine sprays from the bottom to the 
top through high-pressure assistance. It had a relatively low average 
CV (37.1%) in different layers, which is more stable than UAV 
application. Generally, deposit coverage of approximately 30–70% 
in ground pesticide application equipment is normal, and some 
high-application-volume operations even approach 100% (Gil et al., 
2021; Wang et al., 2022). Although ground machines have better 
performance in pesticide application, high environmental pollution 
and pesticide residues should be given more attention.

Conventional spray gun technology showed similar 
characteristics to UGV in different layers. The deposit coverage in 
each layer was lower than that in ground machine technology, and 
the average CV was 42.2%. The results showed that the 
conventional method has satisfactory performance in orchard 
plant protection. However, human application is uncertain. It 
depends on the experience of the farmers, degree of fatigue and 
other factors associated with the farmers, which could directly 
affect the performance of plant protection in practice (Foque et al., 
2012). At present, there is no deposit coverage standard for fruit 
trees, and it is difficult to compare the performance of different 
application techniques. The perspectives of uniformity and 
penetration are usually selected as indices of application evaluation 
(Wang et al., 2022). For further study, a reasonable assessment 
index system should be  built through big data surveys and 
multipoint experiments.

Assessment of environmental pollution

Deposit coverage on the ground, machine and human body 
were estimated in the study, which could represent the 

environmental pollution in different spraying technologies. The 
average level of environmental pollution during pesticide 
application was CONV > UGV > UAV (Figure 5). UAV showed a 
relatively lower environmental residual than the other treatments. 
Deposit coverage on the ground, machine and human body were 
22, 15 and 6%, respectively. Although UAV application technology 
uses a low-volume spraying method, it can still cause ground residue 
in actual applications. Drift of droplets could lead to uncertainty in 
pesticide application (Wang et  al., 2021). On the other hand, a 
suitable flight route is also important to in the application of a 
sprayer above the canopy of the tree. Machine pollution of UAV 
application technology mainly came from the interaction of air flow 
and environmental wind, which allow droplets to drift to the surface 
of the machine. Human body pollution in UAV application could 
also come from droplet drift. Drift characteristics increase the 
uncertainty of environmental pollution in agricultural UAV 
applications (Liu et  al., 2020; Martinez-Guanter et  al., 2020). It 
would be harmful to the surrounding environment when we use 
UAV technology in agricultural management, such as pesticide and 
herbicide application.

High ground residual and machine residual values occurred 
in UGV, which were significantly higher than those in UAV. The 
deposit coverages of UGV on the ground and machined were 93 
and 88%, respectively. High-volume spraying under UGV 
technology could achieve better performance on leaves at the cost 
of environmental pollution. It also demonstrated that the pesticide 
utilization efficiency of UGV application technology could 
be improved, which was meaningful for green and sustainable 
development in agricultural management. However, UGV showed 
a lower residual on the human body, with an of average 2% 
coverage. The remote operation using in UGV technology could 
effectively reduce the exposure of humans in the application 
environment and protect operators from pesticide damage.

Conventional spray gun showed the highest environmental 
pollution compared to UAV and UGV. The deposit coverage on 
the ground and machine were close to UGV. Human body residue 
amount was significantly higher than others, which could lead to 

TABLE 2  Comparison of deposit coverage on the adaxial side (CAD) and abaxial side (CAB) of the leaf between different layers and spraying 
techniques.

Layer Treatment CAD CAB

Mean (%) ± SE CV (%) Mean (%) ± SE CV (%)

Upper UAV 6.8 ± 1.6c 66.4 1.6 ± 0.2c 46.2

UGV 51.8 ± 6.4a 41.1 34.3 ± 8.9a 48.3

CONV 23.1 ± 4.2b 42.3 16.2 ± 6.5b 46.5

Middle UAV 5.7 ± 0.9c 63.5 1.4 ± 0.9c 65.7

UGV 79.6 ± 5.6a 27.0 42.2 ± 6.9a 59.2

CONV 47.4 ± 3.7b 19.6 33.3 ± 8.3ab 45.5

Lower UAV 3.2 ± 0.2c 28.5 1.1 ± 0.2c 57.5

UGV 91.1 ± 3.1a 17.5 62.6 ± 4.8a 40.3

CONV 52.6 ± 7.8b 17.9 36.7 ± 5.4b 42.6

Mean represents average values of 18–27 biological replicates. ± indicates standard error of each dataset. The different letters in the same column indicate significant differences at the 
p < 0.05 by ANOVA test with LSD as post hoc test.
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greater potential threat to the operator. It is easy to understand 
that operators were fully exposed to the application environment, 
which could result in a large amount of residue on the body. 
Operator health has received increasing social attention because 
of the high operator exposure, which has been accused of negative 
health issues such as respiratory, dermatological, neurological, 
reproductive, endocrine, and gastrointestinal diseases (Nuyttens 
et al., 2009). Conventional pesticide application technology was 
not sustainable unless personnel safety was addressed.

Generally, the results indicated that intelligent plant protection 
technology could reduce environmental pollution and human 
damage compared to conventional methods. However, there is still 
much room for improvement to reduce the ground and machine 
residue to further increase the pesticide utilization efficiency. For 
UAV application technology, drift influence should be evaluated 
both in theory and in practice. Meanwhile, for UGV application 
technology, volume control and spray angle improvement may 
be useful for the reduction in environmental pollution.

Assessment of working efficiency

Working efficiency could directly affect cost estimation and 
technology promotion. The results showed that the working 

efficiency of UAV application was approximately 1.82 ha/h, 
which was the highest among all treatments (Table 3). This 
result was lower than data recommended from UAV companies 
or some previous studies. However, these studies did not 
consider the time of dosing, charging, or changing the battery. 
The properties are very important in practice. The duration of 
a single flight of a UAV was usually no more than 20 min, and 
it needed to be  maintained through battery replacement in 
large-scale operation. Although each battery replacement and 
charging time could be  shortened by engaging experienced 
workers, multiple uses during application would result in 
longer time of application. Meanwhile, all UAV operations 
should be  carried out on the ridge, and the round-trip 
operation also requires time. The results in this study could 
be closer to the actual application.

The working efficiency of UGV application following UAV 
was approximately 1.29 ha/h. The results might be higher because 
the test field was in a standardized orchard, which was easier for 
UGV working. The flat terrain allowed the ground machine to 
move at a constant speed, and rational planting allowed the 
machine to turn around more easily. However, in some disorderly 
planting orchards, the ground machine often needs to return to 
the original path and then proceed to the next row. For some hilly 
orchards, the moving speed could also be  difficult to control, 

FIGURE 5

The droplet residue on the ground, machine and human body of unmanned aircraft vehicle technique (UAV), unmanned ground vehicle technique 
(UGV) and conventional manned technique (CONV). Different letters in the same column indicate significant differences at the p < 0.05 level under 
ANOVA test with LSD as post hoc test. UAV had 18 biological replicates while UGV and CONV had 13 biological replicates.
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which would affect the working efficiency of the intelligent 
ground machine.

Conventional technology showed the lowest working 
efficiency compared to others, which was approximately 0.09 ha/h. 
The result could be lower than actual application because of the 
efficiency of a single operator. In most orchard pesticide 
applications, there are usually at least two people working 
simultaneously using spray gun technology. One pump could 
connect to 4 spray guns at the same time. Thus, the actual working 
efficiency was difficult to calculate considering different orchard 
scales or management. However, compared with intelligent 
application technology, working efficiency assessment based on a 
single-person working environment is still meaningful.

In general, the higher working efficiency that occurred in the 
UAV and UGV applications showed the advancement of intelligent 
pesticide application techniques. The working efficiency of the 
UAV was almost 20 times higher than that of the conventional 
method. UGV could also improve efficiency, which was 
approximately 14 times that of conventional technology. Due to 
the shortage of the agricultural population and the increase in 
labor costs, intelligent pesticide application technology will be an 
alternative in the future due to its significantly high efficiency.

Assessment of water-saving potential

The economical utilization of resources is also an important 
aspect for the comparison of different pesticide application 
techniques. The results showed that the variation characteristics 
of water consumption among the different treatments were 
UAV < UGV < Conventional (Table 3). The average water usage 
in UAV application was approximately 105 l/ha. The lower 
water consumption was mainly due to its low-volume 
and high-concentration spraying characteristics. The water 
consumption under UGV application was approximately 360 l/
ha, which was almost three times higher than that under UAV 
application. The water consumption of conventional technology 
was approximately 3,375 l/ha, which was significantly higher 
than that of the other treatments. The results indicated that 
intelligent plant protection equipment has a significant 
advantage in water savings during pesticide application 
compared to conventional methods, especially in UAV 
application technology. New spraying technology could save 

approximately 3,000 l/ha water resources within a single-time 
application. Generally, orchards usually need at least 8 pesticide 
applications during the growing season. The adaptation of 
intelligent application technology could have vast water saving 
potential in orchard management. Meanwhile, in actual 
orchard plant protection, farmers usually adapt the same 
amount of pesticide regardless of the application technique to 
ensure control effectiveness. Thus, current intelligent 
application techniques cannot reduce pesticide consumption. 
However, with the development of variable pesticide 
application technology, it will be possible to achieve both water 
and pesticide savings through intelligent techniques in the 
future (Chen et al., 2021).

Assessment of CO2 emission reduction 
potential

UAV application showed higher gasoline consumption 
compared to UGV and conventional technology. The average 
gasoline consumption of UAV application was approximately 
3 l/h, while gasoline consumption of UGVs and conventional 
technology was 1.52 and 1.48 l/ha, respectively (Table 3). UAV 
technology was recognized as cleaner energy equipment 
because of replacing fuel with electric power (Matlock et al., 
2019). However, in practical operation, UAV application needs 
to maintain its endurance through long-term battery charging, 
which still requires a high amounts of gasoline consumption of 
gasoline. The results showed that the gasoline consumption of 
UAV application in fixed time was twice that in UGV application 
and the conventional method. The average CO2 emissions of 
machines through the combination of working efficiency and 
gasoline usage were also calculated in the study. The average 
CO2 emissions of the UAV, UGV and conventional techniques 
were 3.60, 3.15 and 39.00 kg/ha, respectively. Although UAV 
application consumes more gasoline in a fixed time, high 
working efficiency could eliminate its negative effect on CO2 
emissions to a certain degree. In contrast, conventional 
application technology has much higher CO2 emissions due to 
its low working efficiency. UGV application showed better 
performance in reducing CO2 emissions than the other 
treatments. The results indicated that intelligent pesticide 
application technology could effectively reduce CO2 emissions 

TABLE 3  Comparison of the working efficiency and resource consumption of different spraying technologies.

Treatment Area (ha) Time (h) Efficiency Water usage Gasoline usage CO2 emission

ha/h ± SE L/ha ± SE L/h ± SE kg/ha ± SE

UAV 1.00 0.55 1.82 ± 1.1a 105 ± 1.1c 3.00 ± 0.5a 3.60 ± 0.5b

UGV 1.00 0.78 1.28 ± 0.9b 360 ± 6.2b 1.52 ± 0.4b 3.15 ± 1.3b

Conventional 0.08 0.84 0.09 ± 0.01c 3,375 ± 101.9a 1.48 ± 0.2b 39.00 ± 4.2a

All values in table represent average values of 3–9 biological replicates. ± indicates standard error of each dataset. Different letters in the same column indicate significant differences at 
the p < 0.05 level under ANOVA test with LSD as post hoc test.
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from the machine itself compared with the conventional 
method. The application of intelligent techniques in orchards is 
of great significance to the national carbon neutrality strategy.

Perspectives and implications

The innovation on pesticide application technique is 
important and urgent for orchard management due to the rapid 
decrease in agricultural labor and the increase in labor costs. 
Intelligent pesticide application techniques should be developed 
to cope with the current dilemma in orchard management (He, 
2018). However, different pesticide application techniques have 
their own characteristics (Figure  6), and there is still no 
satisfactory application technique to date. UAV application 
technology could significantly improve the working efficiency, 
which has been recognized by most researchers (Li et al., 2021b). 
It also had a significant advantage in pollution control and water 
resource reduction during pesticide application due to its 
low-volume spraying. Higher working efficiency also led to lower 
carbon dioxide emissions from the machine itself. However, 
spraying uniformity was the greatest challenge for UAV application 
technology, which could directly affect the effectiveness of pest 
control in orchard management (Qin et al., 2018). A previous 
study had also showed that spraying performance of UAV 
technique was much poorer than conventional methods, especially 

in spray uniformity and penetration (Wang et al., 2022). Even in 
field crops application with lower canopy, the spray performance 
and pest control effectiveness under UAV application were still 
unsatisfied (Li et  al., 2021b). The research emphasis of UAV 
application technology should focus on improving the application 
effect and reducing drifting pollution. Nozzle improvement, 
droplet control, airflow control and operation parameter 
optimization are of great significance in improving the application 
effectiveness of UAV technology (Wang et  al., 2022). For the 
orchard manager, UAV spraying technology could only 
be considered if the spraying uniformity and penetration have 
been improved and can achieve better performance in pest or 
disease control.

Fewer studies had evaluated the performance of UGV 
application technique in orchard management in past years. 
Interestingly, our study proved that UGV application technology 
also has advantages in working efficiency improvement, water 
savings and carbon dioxide emission reduction compared to 
conventional methods. UGV application technology had a better 
spraying uniformity with the price of higher pesticide pollution, 
which differed from UAV spraying technology. For orchard 
managers, UGV application technology could be a better choice 
for the replacement of conventional methods considering the 
stable application performance and low natural resource waste. 
However, how to control environmental pollution during actual 
practice is also important to the development of UGV application 

FIGURE 6

Comprehensive comparison of characteristics in different pesticide application techniques. Blue line represents unmanned aircraft vehicle 
technique (UAV), green represents unmanned ground vehicle technique (UGV) and red line represents conventional manned technique (CONV). 
Data was normalized and 0 represents the average value of each column. Positive values represent performance above average in each column 
whereas negative values represent performance below average.
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technology in the future. It is possible to reduce environmental 
pollution and increase pesticide utilization efficiency through the 
adjustment of flow and spray angle. On the other hand, 
considering the cost of intelligent equipment and the planting 
scale of orchards, conventional spray gun technology could also 
be a valid choice. However, with orchard standardization and scale 
management, intelligent pesticide application techniques will play 
an important role in the future of orchard management. Different 
scales and types of orchards could influence the performance of 
different pesticide application techniques. To improve the 
application performance and environmental pollution of 
intelligent application techniques, we should also pay more effort 
in better detection sensors together with more accurate machine 
learning algorithms. Precision application technology which is 
based on monitoring sensors and recognition algorithms, as well 
as control of spray parameters will play an important role in 
intelligent equipment in the future.

This study systematically clarified the characteristics of 
intelligent unmanned vehicle techniques in pesticide application 
from the aspects of working effectiveness, efficiency, environmental 
pollution, water saving and carbon dioxide reduction, which are 
important for the development of intelligent equipment in orchard. 
It should be noted that our study was conducted in a standardized 
orchard. To cover a wider range of working environments, we will 
further consider the effects of orchard type, planting scale, ecological 
area, and other factors on the performance of different pesticide 
application techniques. Moreover, a meta-analysis could also help 
to achieve more accurate and universal results. Meanwhile, all 
intelligent equipment in this study were operated manually which 
may cause various among receptions. As the development of 
automatic navigation and application in UAV and UGV, the artificial 
error can be avoided for further research.

Conclusion

This study clarified the characteristics of different pesticide 
application techniques from the aspects of working effectiveness, 
efficiency, environmental pollution and resource protection. UAV 
application techniques have advantages of high working efficiency 
and low environmental pollution and natural resource 
consumption. However, it performed worse in spray performance 
compared to the UGV and conventional manual methods. UGV 
application techniques could improve spray performance at the 
cost of high environmental pollution. The conventional spray gun 
technique also showed good spray performance. However, the 
tradition method was unfriendly to environmental protection and 
the green development of agriculture. Intelligent pesticide 
application techniques could be an alternative to conventional 
methods. Improving spray performance and controlling 
environmental pollution are major directions for UAV and UGV 
technology improvement in the future.

Further research should be  undertaken to investigate the 
comprehensive performance of intelligent application techniques 

in different kinds of orchards. A meta-analysis can be carried out 
to make the results more accurate and universal. This study 
comprehensively evaluated the characteristics of different 
pesticide application techniques and put forward suggestions for 
the development of orchard plant protection in the future, 
providing scientific support for the transition of intelligent 
management in orchards and the development of smart 
agriculture in China.
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As a major global pest, fall armyworm (FAW), Spodoptera frugiperda, invaded China in

2019, which has seriously threatened the safety of China’s food production and raised

widespread concerns. As a new low-volume application technology, an unmanned aerial

spray system (UASS) is playing an important role in the control of FAW in China. However,

the studies on the effect of the water application volume on the efficacy of FAW using

UASS have been limited. In this study, Kromekote® cards were used to sample the

deposition. The method of using a sampling pole and sampling leaf for the determination

of deposition. Four water application volumes (7.5, 15.0, 22.5, and 30.0 L/ha) were

evaluated with regard to the corn FAW control efficacy. A blank control was used as

a comparison. The control efficacy was assessed at 1, 3, 7, and 14 days after treatment

(DAT). The tested results showed that sampling methods have a significant effect on

deposition results. The number of spray deposits and coverage on the sampling pole

were 35 and 40% higher than those on the sampling leaves, respectively. The deposition

and control efficacy gradually increased as the water application volume increased. The

control efficacy at 14 DAT under different water application volumes was in the range of

59.4–85.4%. These data suggest that UASS spraying can be used to achieve a satisfying

control of FAW, but the control efficacy of the water application volume of 30.0 and 22.5

L/ha did not differ significantly. Considering work efficiency, a water application volume

of 22.5 L/ha is recommended for field operation.
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INTRODUCTION

The fall armyworm (FAW), Spodoptera frugiperda, is a major
global pest. The FAW displays outstanding adaptable and
migratory capacity and is an agricultural pest characterized by
outbreaks. When the temperature is suitable, FAW can lay eggs
once every 2–3 days, about 1,500 eggs are laid at a time, and
a life cycle can be completed in 30–45 days (Cui et al., 2019).
It can travel a 1,600 km migration distance within 30 h if the
weather conditions are suitable (Lu et al., 2021). It originated in
North America and invaded Africa in 2016. In 2 years, it spread
across 44 countries in Africa and caused great damage to corn
cultivation (Goergen et al., 2016). Since 2018, FAW has been
expanding northward and southward into Asia, and the degree of
occurrence has seriously increased, with it now has spread to 16
countries in Asia. In January 2019, it invaded Yunnan Province,
China. Since then, it has seriously threatened the safety of China’s
food production. After 6 months, it was found in more than 22
provinces, seriously threatening the grain production (Jing et al.,

2019). It has attracted wide attention internationally due to its

strong adaptability, migration ability (Westbrook et al., 2015),

and the characteristics of outbreak damage (Johnson, 1987).
FAW larvae attack a large number of cultivated plant species
(Casmuz et al., 2010), such as corn, sorghum, cotton, peanut,
and soybean. In sub-Saharan Africa, more than $13 billion a
year is at risk of crops being destroyed by the FAW (Harrison
et al., 2019). In the United States, an outbreak year can cost as
much as $500 billion in yield loss (Mitchell, 1979; Montezano
et al., 2018). In Brazil, about $600 million was spent in 2009 to
control FAW (Ferreira Filho et al., 2010). When 55–100% of corn
plants were infected with FAW in the mid-to-late corn stage, the
yield decreased by 15–73% (Hruska and Gould, 1997). Currently,
FAW control is primarily achieved by spraying insecticides with
large volume sprays. A crop protection unmanned aerial spray
system (UASS) represents a new pesticide spraying technology
adapted to the development of modern agriculture. UASS has
many advantages compared with manned aircraft and traditional
application machinery, including high efficiency, low drift, no
need to take off from an airport, a lower price and labor operation
cost, and no damage to the physical structure of crops and
soil (Zhang et al., 2015). Meanwhile, it is more suitable for
complex and tall crops where no machine can normally move.
It can fly quickly to the exact location to accurately process the
target area, and be pre-programmed to navigate its way around.
Furthermore, the use of a low or ultra-low spray volume can
reduce pesticide use by 15.0–20.0%, which can be used as an
important technical support for the pesticide reduction program
in China (Lan and Chen, 2018; Meng et al., 2019).

In recent years, the use of and research on UASS have rapidly
developed across the world (Huang et al., 2013; Berner and
Chojnacki, 2017). In the most recent 5 years, research on UASS
has been carried out in China, the United States, Brazil, Poland,
and other countries (Faiçal et al., 2014, 2017; Pachuta et al., 2018).
Researchers have studied the addition of additives (He et al.,
2017; Xiao et al., 2019), droplet deposition (Qin et al., 2016;
He et al., 2017; Zhang et al., 2017; Wang et al., 2019a), control
efficacy (Qin et al., 2016; Zhang et al., 2017; Wang et al., 2019a;
Xiao et al., 2019), etc., in UASS. Xiao et al. (2019) studied the

effects of aviation spray adjuvants on cotton defoliation and boll
opening. The results showed that adding aviation spray adjuvants
could increase the defoliation rate by 3.1–34.6% and the bell
opening rate by 6.7–29.6%. He et al. (2017) studies showed
that increasing the water application volume can significantly
increase the deposition density of droplets while adding spray
adjuvants can significantly increase the deposition and effective
deposition rate of droplets. Wang et al. (2019a) studied the
effect of a low water application volume on droplet deposition
and control efficacy, and the results indicated that different
water application volumes significantly influenced the droplet
deposition and control efficacy of wheat pests and diseases. Qin
et al. (2016) found that flight parameters not only affect the
control efficacy of rice planthoppers (Nilaparvata lugens) but
also affect the droplet distribution uniformity in a rice canopy.
Zhang et al. (2017) used UASS to study the effect of different
citrus tree shapes on droplet deposition and control efficacy. The
results showed that the droplet distribution performance and
control efficacy of hedgerow-shaped plants were the best. Xin
et al.’s (2018) research showed that with the increase of the UASS
water application volume, the thidiazuron and diuron residues
in cotton leaves also increased. Phani et al. (2021) studied the
effects of different pesticides on the control effect of FAW using
high-volume spraying, and screened out the pesticides with better
control effect. Yan et al. (2021) studied the control effect of
FAW by using a plant protection UASS to spray solid particles
of pesticides. Lu et al. (2021) used a plant protection UASS to
study the effect of spraying time on the control effect of FAW
and recommend the best spraying time. Different application
parameters have a great effect on the control of different pests and
diseases by plant protection UASS. Meanwhile, in the prevention
and control of pests and diseases, excessive water application
volume will not only cause the loss of pesticides but also reduce
work efficiency, while too low water application volume often
fails to achieve the effect of pest control. However, none of the
above studies involved the effect of different water application
volumes of plant protection UASS on the control effect of FAW.
It is unknown whether the plant protection UASS low water
consumption spray can effectively control the FAW. Therefore,
a crop protection UASS was used to study the effects of four
different water application volumes on the control efficacy of
FAW, and determine the optimal water application volume.

In the dose transfer process, the deposition structure plays
an important role. This is because it associates the target
organism with the pesticide application (Ebert et al., 1999).
The deposit structure has a significant effect on the control
of pests and diseases. However, different sampling materials
and sampling arrangement methods have been used to obtain
different deposition results. Therefore, the choice of sampling
material and sampling arrangement method is very important
for the deposition results. Commonly used sampling materials
include Kromekote R© cards, water-sensitive paper, Petri dishes,
and filter paper (Brain et al., 2017). The most common sampling
methods include the arrangement of sampling materials on a
slant on the plant leaf (Qin et al., 2016; Wang et al., 2019b) or
horizontally on the sampling pole (Kharim et al., 2019; Wang
et al., 2019a). However, different sampling methods lead to
different deposition results, which makes it difficult to compare
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the data in different papers. Therefore, this study compared the
droplet deposition using different sampling methods under the
same spray conditions.

An experiment was carried out in Yunnan Province, China
to study the control efficacy of UASS on FAW. Due to the
climate characteristics of this experiment site, the air humidity
is relatively high, and the water-sensitive paper is easily affected
by moisture, which can easily affect the test results. The use
of stainless steel samplers is more troublesome for subsequent
acquisition of test data (droplet density and coverage), while
Kromekote cards are similar to water-sensitive paper, which is
not easily disturbed by external conditions and has a better
stability. Therefore, the experiment chose the Kromekote R© card
as the deposition acquisition material, and DepositScan was used
to obtain the droplet density and coverage. The experiment
compared the effect of four different water application volumes
(7.5–30.0 L/ha) on the control efficacy of FAW in corn.

MATERIALS AND METHODS

Sprayers
The spraying equipment is an eight-rotor electrical-powered
UASS (MG-1P, Shenzhen DJI Technology Co., Ltd., Guangzhou,

China). The spraying equipment is shown in Figure 1. The MG-
1P UASS is powered by lithium-ion batteries, which provide a
flight time of about 15min on one charge. It can be operated
remotely or automatically and can fly according to a pre-
programmed route. TheMG-1P platformwas equipped with four
XR11001 or XR110015 nozzles (TeeJet Technologies, Wheaton,
IL). Due to the limited range of the UASS flight speed, the
water application volumes in this test were difficult to achieve
when only using a change in flight speed. Therefore, the tests
used XR11001 and XR110015 nozzles to achieve different water
application volumes. The nozzles were mounted under rotors
and angled vertically downward and in a parallel direction with
reference to the direction of flight. The arrangement of the four
nozzles was rectangular, and the length and width were 132 and
56 cm, respectively. The spray pressure, output rate, and flight
height of the UASS were set through the remote controller. When
using XR11001 or XR110015 nozzles, the spray pressure and
output rate were 2.0 bar and 0.32 L/min or 2.5 bar and 0.54
L/min, respectively.

Experimental Design
The experiment was conducted in September 2019 at Corteva
Yunnan research center, Kunming City, Yunnan Province
(E103◦8′52′′; N24◦46′47′′), China (the field is private land, and

FIGURE 1 | The DJI MG-1P eight-rotor electric unmanned aerial spray system (UASS).
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the owner of the land permitted to conduct the study on this site).
The corn variety in the experimental site field was Tian Cui 311,
and the sowing time was July 20, 2019. The corn plant height, row
spacing, and plant spacing during application were about 0.4, 0.4,
and 0.3m, respectively. The corn growth periods were small, with
flaring open stages. FAW kills the growing point of corn plants,
causing numerous holes in the whorls and upper leaves (Yan et al.,
2021). The field observation and survey rate of the harmed corn
plants reached above 10%, and most of the corn plants reached
the damage level of 3 (Davis scale) (Davis et al., 1992).

The dimension of the experimental field was about 170m ×

118m, and it was divided into five treatments. Each treatment
was replicated three times for a total of 12 plots. Each plot
was a 50m × 22m area. Then, 10m buffer zones between
plots were set to avoid the drift pollution of droplets. Among
them, there were four treatments for the DJI MG-1P UASS
and one treatment for the blank control. In the experiment,
the effect of water application volumes on the spray deposition
and control effect was studied. The DJI MG-1P UASS used
four different water application volumes of 7.5, 15.0, 22.5, and
30.0 L/ha.

Sampling Point Arrangement
Two sampling methods were used to analyze the influence of
different sampling methods on the deposition results (Figure 2).

The first sampling method was Kromekote R© cards horizontally
arranged at a distance of 5 cm from the crop canopy using
a sampling pole. This method has the characteristic that the
deposition sampling efficiency is not related to the crop canopy.
This standard method can be used to compare the results with
other research in further work. The second sampling method
was Kromekote R© cards arranged on the first corn leaf from
the top with a stapler at an angle of almost 50 ± 10 degrees.
The droplet deposition on the first leaf from the top of the
corn had an important role in the control efficacy of FAW.
There were two main considerations in using this sampling
method. On the one hand, the droplet was mainly deposited
on the first leaf from the top of the corn; on the other hand,
the FAW mainly lays eggs and hatches on the first leaf from
the top of the corn (Yan et al., 2021). For analyzing the droplet
deposition, 11 sampling points were uniformly arranged in the
experiment plot.

Water Application Volume
In the experiment, the spray height was 2.0m. Under the spray
pressure of 2.0 and 2.5 bar, the droplet size of the XR11001
nozzle and XR110015 nozzle was 90.4–121.2 µm (Jeon and
Tian, 2010) and 154.2–183.0 µm (Guo et al., 2020), respectively.
Different water application volumes of UASS were achieved
by changing the flight speed and nozzles. The corresponding

FIGURE 2 | (A) The actual arrangement in the field. (B) Sampling point arrangement.
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TABLE 1 | The speed of flight under different water application volumes.

Nozzles Water application volume (L/ha) Spray pressure(bar) Droplet size (µm) Output rate(L/min) Swath width (m) Flight speed(m/s)

XR11001 7.5 2.0 90.4–121.2 0.32 5.0 5.7

XR110015 15.0 2.5 154.2–183.0 0.54 4.8

22.5 3.2

30.0 2.4

flight speed according to the water application volume was
ascertained under the conditions of spray pressure, output rate,
and swath width. The flight speed was calculated according
to Formula (1) (American Society of Agricultural Engineers,
1995). When the water application volumes were 7.5, 15.0, 22.5,
and 30.0 L/ha, the corresponding flight speeds were as shown
in Table 1.

V =
K3 × Q

RS
(1)

where, R is the water application volume, L/ha; Q is the output
rate, L/min; K3 is a constant, 600; V is the flight speed, km/h; and
S is the swath width, m.

Measurement of Droplet Deposition
Before application, 10.0 g/L of Allura Red (80% purity, purchased
from Beijing Oriental Care Trading Ltd., China) was added
to the tank using a tracer. The tracer is used to measure the
deposition of droplets on Kromekote R© cards (Qin et al., 2018).
After application, the Kromekote R© cards contained in a self-
sealing bag were brought to the laboratory for collection and
processing. Kromekote R© cards were scanned at a resolution
of 600 dpi with a scanner (Model GT-1500 Seiko Epson
Corporation. Japan). Then, the imagery software DepositScan
(USDA, Wooster, OH, USA) was utilized to extract and analyze
the droplet density and coverage on the scanned photos (Xiao
et al., 2019).

The climatic conditions were recorded using a weather meter
(Model NK-5500, Nielsen-Kellerman Co., Boothwyn, PA, 209
USA), which indicated temperatures of 22.9–29.5◦C, relative
humidity of 45.4–72.2%, and wind velocities of 0.4–2.2 m/s
during the deposition test.

Control Efficacy
The insecticide used in this experiment was a 25% Spinetoram
water-dispersible granule (Delegate R©) produced by CortevaTM

agriscience Company, USA. The dosage for each treatment was
30 g a.i/ha.

The efficacy experiment was based on the insecticide field
efficacy test guideline (II) standards and the Davis scale. A
five-point sampling method per plot was selected. The FAW
numbers and the damage index of three plants of corn per
point before spraying were investigated and the corns were
marked with a red string (Wang et al., 2019a,b). Then, 1, 3,
7, and 14 days after application, the number of FAW and the
damage index of corn in the same location and plant were
investigated again. The overall control efficacy against corn FAW
was calculated without regard to the instars of the corn FAW.

The control efficacy was obtained based on the population
numbers of live insects in each zone before and after spraying.
The control efficacy was calculated according to Equations (2)
and (3) (Wang et al., 2019b). The damage index of the corn
method referred to the investigation method of Davis et al.
(1992). Figure 3 shows a visual map of the corn FAW damage
to leaf feeding. A numerical scale (0–9) was employed, where
0 indicates no visible damage and 9 indicates heavy damage,
which is also known as the Davis scale. This method can
quickly and easily distinguish small differences in plant damage.
It was based on the types and numbers of feeding lesions at
7 and 14 days after infestation. The damage index of each
treatment area was calculated according to the damage index
Equation (4).

Mortality (%) = (The number of pests before application

−The number of pests after application)/

The number of pests before application × 100 (2)

Control effect (%) = [Observed mortality (%)

−Control mortality (%)]

/[100 − Control mortality (%)] × 100 (3)

Damage index =

∑

(Number of damage leaves at each level

×Corresponding level value)

Total number of investigation × 9
× 100

(4)

Data Analysis
A significant difference was obtained using analysis of variance
(ANOVA) by Duncan’s test at a significance level of 95%
with SPSS v17.0 (SPSS Inc., an IBM Company, Chicago, IL,
USA), and Excel software (Microsoft Office 2019, Microsoft
Corporation, Redmond,Washington, USA) was used to calculate
the coefficient of variation (CV). The CV was used to show the
uniformity of droplet deposition and can be presented as (Xiao
et al., 2019).

CV =
S

X
× 100%, (5)

S =

√
√
√
√

n
∑

i= 1

(Xi − X)2/(n − 1) (6)

where, S is the standard deviation (SD) of the samples in the same
test group, Xi is the droplet density or coverage of each sampling
point, X is the mean value of the droplet density or coverage in
each test group, and n is the number of sampling points in each
test group.
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FIGURE 3 | A visual map of some different damage levels of corn fall armyworm. (1) There was only needle-like damage on the leaves, and the damaged area was

<5%. (3) There were pin-eye or small annular lesions on the leaves, and the damaged leaf area is between 6 and 15%. (5) Several small and medium irregular holes

appeared on the leaves, and the damaged area was between 16 and 25%. (7) There are many large, elongated lesions on the leaves, ranging from 26 to 50% of the

damaged area. (9) Corn leaves are destroyed and it is difficult to restore normal growth.

RESULTS

Visual Photos of Droplet Deposition
The droplet deposition has a great effect on the control efficacy.
Figure 4 is a visual photo of the droplet deposition of the MG-
1P UASS with different water application volumes and sampling
methods. Three qualitative conclusions can be drawn from the
visual photos: (1) the water application volume has a significant
effect on the droplet density and coverage; (2) the droplet density
and coverage obtained by sampling on the pole were higher than
those obtained by sampling on the leaf; and (3) a significant
difference in the deposition was observed at different sampling
points, indicating poor deposition uniformity.

Quantitative Analysis of Deposition
Characteristics
Effect of Sampling Methods on Droplet Deposition
The droplet deposition (droplet density and coverage) values
obtained by different sampling methods are shown in Figure 5.
Under the water application volumes of 7.5–30.0 L/ha, the
droplet density and coverage achieved by the sampling on the

pole method were 24.3 droplet/cm2 and 8.4%, respectively; by
the sampling on the leaf method, they were 18.0 droplet/cm2 and
6.0%, respectively. The droplet density and coverage obtained by
the sampling on the pole method were 35.0 and 40.0% higher
than those obtained by the sampling on the leaf method, and the
difference was significant (p< 0.01). The CV values of deposition
obtained by the two sampling methods were all higher than
60.0%, indicating that the uniformity of the deposition was poor.

Effect of Water Application Volumes on Droplet

Deposition
The droplet density and coverage under different water
applications are shown in Figure 6. When the water applications
volume of the UASS was in the range of 7.5–30.0 L/ha, the
droplet density was 12.5–37.0 droplet/cm2 and the coverage was
5.9–11.8%. The droplet density and coverage increased as the
water application volumes increased. Through linear fitting of the
data, a good linear relationship was found between the droplet
deposition (droplet density and coverage) and water application
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FIGURE 4 | A visual aid showing deposition on the representative Kromekote® cards by UASS application.

FIGURE 5 | Effects of sampling pole method and sampling leaf method on deposition characteristics of droplet density and coverage. (A) Droplet density and (B)

coverage. The numbers in the figure are the mean value (CV), and the different lowercase letters after the numbers indicate the significant difference, p < 0.01.

volume. The coefficients of determination of the droplet density
and coverage were 0.89 and 0.92, respectively.

Control Efficacy for Fall Armyworms
Effect of Water Application Volumes on the Control

Efficacy
The control efficacy under different water application volumes
achieved by the UASS sprayer on FAW is indicated in Figure 7.

From the live insect investigation results, the control efficacy
significantly increased as the water application volume increased
(p < 0.01). At 7 days after treatment (DAT), the best control
efficacy was achieved at 30.0 L/ha using the UASS sprayer.
However, the control efficacy of the water application volume
of 30.0 and 22.5 L/ha did not differ significantly. Meanwhile,
it can also be seen that the control effect of the same water
application volume varies with different application days. The
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FIGURE 6 | Droplet deposition at different water application volumes for various treatments. (A) Droplet density and (B) coverage. The numbers in the figure represent

the mean value (CV). The green line is a fitted curve for the droplet density/coverage and water application volume.

control efficacy gradually increased from 1 to 7 DAT and
decreased from 7 to 14 DAT. The peak of the control efficacy
appeared at 7 DAT. This changing trend was the same under
different water application volumes.

Effect of Water Application Volumes on the Damage

Index
The damage index of FAW for corn when employing the UASS
sprayers and a blank control at 0, 1, 3, 7, and 14 DAT is
indicated in Figure 8. Before application, the damage index of
each treatment area was approximately the same, which indicated
that the original insect population of each treatment was similar.
The trough of the damage index appeared at 7 DAT, after which
the damage index began to increase, which corresponds to the
results of the insect control efficacy. At 14 DAT, the blank control
displayed the largest difference in the damage index compared
with the treatment, which was 61.7% higher than the worst
control efficacy treatment of the UASS.

DISCUSSION

The experimental results of this study show that there are
significant differences between the two sampling methods used
for droplet deposition. The results of this experiment were
related to the angle of the Kromekote R© card arrangement. The
Kromekote R© card arrangement affects the sampling efficiency
of the droplet to some extent. Capri et al. (2005) measured
the off-target deposition of chlorpyrifos in two fields: one field
was flat and the other field was sloped. It was indicated that
the flat field deposition was higher than that of the sloped

field. Besides, the Kromekote R© cards arranged on the sampling
leaves were affected by the shielding of the leaves. Various crops
have different canopy sizes, canopy shapes, foliage densities, and
planting arrangements, all of which affect the droplet density
and coverage (Heidary et al., 2014; Pan et al., 2016; Badules
et al., 2017; Hong et al., 2017, 2018). Mostly, the upper layer
of the plant canopy displays higher deposition than that of the
lower layers. In a study on cotton defoliant spraying, the droplet
density and coverage of the upper layer increased by 61.9 and
150.0%, respectively, compared with the lower layers (Xiao et al.,
2019). The reason for this was that the upper leaves of the
cotton canopy were complex and overlapping, which affected the
deposition of the lower droplet. Lefrancq et al. (2013) used 51
glass Petri dishes to successfully collect the sample deposition
of kresoxim-methyl in a vineyard catchment, for which the
change in the deposition values was caused by the droplet being
intercepted by the vine plant canopy. Of course, various sampling
methods have different advantages. In this study, the sampling
pole method can avoid the influence of the canopy structure
and arrangement angle on droplet deposition and collect droplet
deposition without bias, which will help in comparing the results
obtained from different research. The sampling pole method
should be used for physical characterization studies. For example,
the performance of different UASS and the effects of operating
parameters on droplet deposition characteristics were studied.
However, it cannot replace the deposition of droplets on the
leaves. The method of arranging the Kromekote R© cards directly
on the leaves could directly obtain the deposition of the droplets
on specific leaves at different growth stages of the plant, which
helped build a relationship between the droplet deposition and
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FIGURE 7 | Control efficacy (%) of fall armyworm (FAW) was evaluated at 1, 3, 7, and 14 days after treatment (DAT) resulting from field-treated 25% Spinetoram

water-dispersible granule (Delegate® ) with an unmanned aerial spray system sprayer at four spray volumes (the different lowercase letters indicate significant results, p

< 0.01).

control efficacy. The sampling leaf method needs to include a
more natural target configuration to be representative of the
target structure. For example, the control effect of pests and the
penetration research test of droplets.

Control efficacy experiments on corn FAW were performed
with different water application volumes using UASS sprayers.
The experimental results of this study show that the control
efficacy gradually increased with the water application volume
increased. Wang et al. (2019a) used UASS to study the control
experiments of three different water application volumes (9.0,
16.8, and 28.1 L/ha) on wheat aphids. Their results were
consistent with this experimental research results. However, their
control efficacy results were better than this experimental result,
which may be related to the operating parameters of the UASS
and the droplet size. Qin et al. (2016) compared the control
efficacy of low-volume spraying technology for rice planthoppers
(N. lugens). By optimizing the spraying parameters of the UASS,
the control efficacy was improved. Chen et al. (2020) used
three nozzles with different droplet sizes to study the effects of
different droplet sizes on the rice planthopper control efficacy.

The results show that the selection of nozzles with smaller
atomizing particle sizes for UASS can improve the control efficacy
of rice planthoppers (N. lugens). In addition, different results
were found by other researchers. Roehrig et al. (2018) tested spray
volumes between 40 and 160 L/ha and verified that the 130 L/ha
was higher than the others for soybean yield, being statistically
similar to the 160 L/ha. Sánchez-Hermosilla et al. (2011) reduced
application volumes from 1,000 to 500 L/ha and improved crop
control product application in tomatoes by altering the spray
gun (900 and 1,800 L/ha) on the vertical spray boom. Berger-
Neto et al. (2017) compared two spray volumes of 100 and 200
L/ha, and concluded that spray volume did not affect the control
of white mold in soybean. Garcerá et al. (2014) also found that
spray application volumes (11.74, 17.65, and 32.21 L/ha) did
not affect two of the organophosphate insecticides controlling
California red scale infestation. Their results were not consistent
with our research results. This may be caused by excessive spray
volume. Wang et al. (2019a) conducted experiments on wheat
with different sprayers, and the results proved that high-volume
(225 and 450 L/ha) spraying easily leads to run-off and lower
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FIGURE 8 | The damage index changed with the application time.

deposition, thereby reducing the control efficacy of high-volume.
Thus, it is not necessary to use high-volume spraying, as a certain
number of spray volumes achieve good efficacy.

In this study, the number of live insects decreased significantly
by 1 DAT, but the damage index did not change much.
This may be because the investigation method of the damage
index has hysteresis compared with the investigation method
of the insect control efficacy. The control effect was best
on the 7DAT. At 14 DAT, the control efficacy was reduced,
indicating that the insecticides had a shelf life of fewer than
14 days, increasing the number of live insects. The control
efficacy of the water application volume of 30.0 and 22.5
L/ha did not differ significantly. Considering work efficiency,
a water application volume of 22.5 L/ha is recommended
for field operation. The control efficacy (84.8%) of the
UASS sprayer meets basic field control requirements, but the
UASS has the advantage of a high efficiency in comparison
with the large-capacity spray, which has an important role
in the rapid control of explosive pests. Of course, further
work will be to continuously improve the control efficacy of
the UASS by adding spraying adjuvants or optimizing the
spraying system.

CONCLUSIONS

In this study, four different water application volumes were used
for pesticide application in the cornfield. The droplet deposition
characteristics of different sampling methods and the control
efficacy for corn FAW using different water application volumes
were compared in this research. The conclusions are as follows:

1) The droplet density and coverage were affected by the
sampling method;

2) There was a good linear relationship between the droplet
deposition (droplet density or coverage) and water
application volumes;

3) The control efficacy increased and the damage index
decreased with the increase of water application
volumes. When using plant protection UASS in the
field, it is recommended to use 22.5 L/ha of water
application volume.

The experiments demonstrated the feasibility of UASS sprayers
in controlling corn FAW fields. However, the control efficacy
of UASS needs to be further improved. Due to the poor
deposition uniformity, effective measures, such as adding an
adjuvant in the tank or optimizing the spraying system, which
can improve the deposition uniformity, will be needed in
the future.
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Image-based deep learning method for plant disease diagnosing is promising

but relies on large-scale dataset. Currently, the shortage of data has become an

obstacle to leverage deep learning methods. Few-shot learning can generalize

to new categories with the supports of few samples, which is very helpful for

those plant disease categories where only few samples are available. However,

two challenging problems are existing in few-shot learning: (1) the feature

extracted from few shots is very limited; (2) generalizing to new categories,

especially to another domain is very tough. In response to the two issues, we

propose a network based on theMeta-Baseline few-shot learningmethod, and

combine cascaded multi-scale features and channel attention. The network

takes advantage of multi-scale features to rich the feature representation, uses

channel attention as a compensation module e�ciently to learn more from

the significant channels of the fused features. Meanwhile, we propose a group

of training strategies from data configuration perspective to match various

generalization requirements. Through extensive experiments, it is verified that

the combination of multi-scale feature fusion and channel attention can

alleviate the problem of limited features caused by few shots. To imitate

di�erent generalization scenarios, we set di�erent data settings and suggest

the optimal training strategies for intra-domain case and cross-domain case,

respectively. The e�ects of important factors in few-shot learning paradigm

are analyzed. With the optimal configuration, the accuracy of 1-shot task and

5-shot task achieve at 61.24% and 77.43% respectively in the task targeting to

single-plant, and achieve at 82.52% and 92.83% in the task targeting to multi-

plants. Our results outperform the existing related works. It demonstrates

that the few-shot learning is a feasible potential solution for plant disease

recognition in the future application.

KEYWORDS

few-shot learning, meta-learning, multi-scale feature fusion, attention, plant disease

recognition, cross-domain, training strategy, sub-class classification
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1. Introduction

Plant disease has always been a significant concern in

agriculture since it results in reduction of crop quality and

production (Campbell and Madden, 1990; Oerke and Dehne,

2004; Strange and Scott, 2005). Image-based auto-diagnosing

method is very accessible and economical for farmers. It is

especially friendly to those farmers who are in remote areas or

on a small scale. In recent years, deep learning methods are

widely used in image-based recognition (Lin et al., 2021). Many

networks have achieved excellent performance when trained

with relevant large-scale datasets. As we know, the performance

of deep learning network relies on data. As the network gets

deeper, the number of trainable parameters becomes larger and

the demand for data increases. Insufficient data can easily lead to

overfitting (Simonyan and Zisserman, 2014; Dong et al., 2021).

In plant disease recognition, the existing data resources are

limited. Meanwhile, creating a large-scale plant disease dataset

is difficult due to: (1) the number of species and diseases are very

huge; (2) disease identification and annotation requires expert

involvement; (3) some diseases are too rare to collect sufficient

samples. The long-tailed distribution of data is common in

nature and it is difficult to be used to train a balanced model.

In brief, creating large-scale dataset of plant disease is a time-

consuming and exhausting work (Deng et al., 2009; Singh et al.,

2020). Severe shortage of data has become a barrier to take

advantage of deep learning methods.

Generally, there are three ways to alleviate the problems

caused by data shortages. Data augmentation, as the most

common solution, augments instances by image scaling,

rotation, affine transformation, etc. Transfer learning method

delivers prior knowledge from source domain to target domain

and adapts to the target domain by a small amount of data. But

the two solutions cannot generalize to new categories in test,

which means that the classes in test must have been learned in

training. In addition to these two solutions, meta-learning, an

approach that mimics human learning mechanisms, has been

proposed in recent years. The objective of this solution is not

to learn knowledge, but to learn to learn. Different from the

conventional classification methods, few-shot learning (FSL) is

a kind of meta-learning method which can quickly generalize to

unseen categories with the supports of few samples.

One branch of FSL is metric-based method (Wang et al.,

2020). The principle is that the features of samples belonging

to the same category are close to each other, while the features

of samples belonging to different categories are far from each

other. The earliest representative work is Siamese Network,

which is trained with positive or negative sample pairs (Koch

et al., 2015). Vinyals et al. (2016) proposed the Matching

Networks, and they borrowed the concept “seq2seq+attention”

to train an end-to-end nearest neighbor classifier. Snell et al.

(2017) proposed Prototypical Network, which learns to match

the proto center of class in semantic space through few samples.

Sung et al. (2018) proposed Relation Network, which

concatenates the feature vectors of the support samples

and the query samples to discover the relationship of classes.

Li et al. (2019) proposed CoveMNet based on the covariance

presentation and covariance metric of the consistency of

distribution. The network extracts the second order statistic

information of each category by an embedding local covariance

to measure the consistency of the query samples with the novel

classes. Chen et al. (2020) proposed Meta-Baseline method,

which achieves good performance on some FSL benchmarks.

The accuracy achieves at 83.74% with 5-way, 5-shot task

of Tiered-ImageNet, and 90.95% with 1-way, 5-shot task

of Mini-ImageNet.

Recently, FSL has started to be used in research on plant

disease identification. Argüeso et al. (2020) used Siamese

Network on the dataset PlantVillage (PV). Jadon (2020)

proposed SSM-Net that uses the Siamese framework and

combines two features from a Conv and a VGG16. Zhong

et al. (2020) proposed a novel generative model for zero-shot

and few-shot recognition of citrus aurantium L. diseases by

using conditional adversarial auto-encoders. Afifi et al. (2021)

compared Triplet network, Baseline, Baseline++, and DAML on

PV and coffee leaf datasets. The results show that the Baseline

has the best performance. Li and Chao (2021b) proposed a

semi-supervised FSL method and tested it with PV. Nuthalapati

and Tunga (2021) introduced transformer into plant disease

recognition. Chen et al. (2021) used meta-learning on Mini-

plant-disease dataset and PV. Li and Yang (2021) used Matching

Network and tested cross-domain performance by mixing pest

data. These methods have been tried from various perspective

and have made important progresses. Nevertheless, FSL still has

two common challenging issues: (1) limited features extracted

from few samples are less representative for a class (Wang et al.,

2020); (2) the generalization requirements are very high and

various. In this work, we tackle the two issues by using multi-

scale feature fusion (MSFF) and improving training strategies.

CNN is widely used in image-based deep learning methods.

In a CNN architecture, the local features with more details

and small perceptive fields are extracted from low-level layers,

while the global features with rich semantic information and

large perceptive fields are extracted from high-level layers

(Goodfellow et al., 2016). MSFF is the technology using multi-

scale features which are extracted from different layers of

CNN (Dogra et al., 2017). In object detection and semantic

segmentation, many excellent networks are proposed by using

MSFF, such as Feature Pyramid Network (Lin et al., 2017), U-

net (Ronneberger et al., 2015), Fully Convolutional Network

(Long et al., 2015) etc. MSFF is also used in image restoration,

image dehazing and image super resolution etc. (Li et al.,

2018; Zhang and Patel, 2018; Zhang et al., 2018; Lan et al.,

2020). These methods fuse features by using dense connection,

feature concatenation or weighted element-wise summation

(Dong et al., 2020). In common, the mentioned methods
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have encoder-decoder framework. The multi-scale features

extracted from encoder are reused in decoder to enhance

feature representation. However, in conventional classification

task, MSFF is seldom used because the network does not

have decoder. Generally, only the top semantic features are

fed into classifier, but other scale features are abandoned. But

in fact, the high-level features and the low-level features are

not subordination relationship. The local features including

rich fine-grained features can be an effective compensation to

formulate a richer feature representation of sample (Lim and

Kang, 2019). In the data-limitation condition, it requires to

extract as many features as possible from a limited amount of

data. Therefore, in this work, we propose to leverage the MSFF

to enhance feature representation. Multi-scale features can be

fused in different ways. In our work, we use cascaded multi-scale

feature fusion (CMSFF).

The channels of feature maps increase after feature fusion.

But it does not mean that all channels are the same

significance. The contribution of each channel is different.

Some channels should be emphasized and some should be

suppressed. Attention can help to focus on the meaningful

channels. Attention mechanism plays important role in human

perception to selectively focus on salient parts in order to

capture visual structure better (Guo et al., 2021). It has been

leaded into some areas of machine learning such as computer

vision, natural language processing etc. and has significance to

improve performance (Hu, 2019; Hafiz et al., 2021). It not only

tells where to focus, but also improves the representation of

interests. Recently, some light-weight attention modules have

been proposed. Wang et al. (2017) proposed Residual Attention

Network that uses encoder-decoder style attention module.

Hu et al. (2018) introduced a compact module to exploit the

inter-channel relationship, which was named as Squeeze-and-

excitation module. Woo et al. (2018) proposed Convolutional

Block Attention Module that includes channel attention (CA)

and spatial attention. These light-weight attention modules can

be easily embedded into deep learning networks as plug-ins. In

this work, we use the CA to weight the accumulated channels

obtained from CMSFF. The CMSFF and CA is an effective

combination to enhance the representation of category under

few-shot condition.

As the definition of FSL, it is asked to generalize to novel

categories or novel domains. Generalizing to new categories

within the same domain of training is defined as intra-domain

classification, while generalizing to novel domain is defined

as cross-domain classification. Long-tail distribution of data

is common in plant disease datasets. To identify the part of

categories with few samples, the model can be trained with the

part of diseases that have more samples. This generalization

happens in the same domain. Cross-domain happens when a

set of categories with few shots is required to be identified

but does not belong to any dataset. Cross-domain adaption

happens between different datasets, which is more difficult than

intra-domain adaption. However, researchers found that it is

frequently encountered situation and inescapable for boosting

FSL to practical application. Guo et al. (2020) established a new

broader study of cross-domain few-shot learning benchmark

and pointed out that all meta-learningmethods underperform in

relation to simple fine-tuning methods, which indicates that the

difficulty of the cross-domain issue. Adler et al. (2020) proposed

a method of representation fusion by an ensemble of Hebbian

learners acting on different layers of a deep neural network,

which is from feature representation perspective. Li W.-H.

et al. (2022) proposed a task-specific adapters for cross-domain

problem from the perspective of network architecture. Qi et al.

(2022) proposed a meta-based adversarial training framework

for this problem, which is also from the perspective of network

architecture. As we know, there is no research that has been

done from a training strategy perspective. These efforts are the

kind of general explorations of using general benchmarks (e.g.,

ImageNet, CIFAR etc.) and rarely discuss specific domains. In

fact, different domain has its own characteristics and resources

to utilize when crossing domains. Hence, in this work, we

propose a set of training strategies to match various cases of

generalization using the available data resources.

The contributions of this work are summarized as: (1)

we propose a Meta-Baseline (MB) based FSL approach

merging with CMSFF and CA for plant disease recognition;

(2) we propose a group of training strategies to meet

different generalization requirements; (3) through extensive

comparative experiments and ablation experiments, we validate

the superiority of ourmethod and analyze various factors of FSL.

Comparing with the existing related works under the same data

conditions, our method has achieved at the best accuracy.

2. Materials and methods

2.1. Materials

In this research, three public datasets are used in our

experiments. Mini-ImageNet is a subset of the ImageNet, which

includes 100 classes and 600 images per class. We select 64

classes in our experiments. The second is PV (Hughes and

Salathé, 2015) released in 2015 by Pennsylvania State University.

It is the most frequently used and comprehensive dataset in

academic research up to now in plant disease recognition.

Totally, it includes 50,403 images which crosses over 14 crop

species and covers 38 classes, as shown in Table 1. Because

the number of samples in PV is unbalanced, we use the

data after augmentation and select 1,000 images per class to

keep balance. The third is the dataset of apple foliar disease

(AFD), which was published in FGVC8 Plant Pathology 2021

Competition. All images of AFD were taken in wild with

complicated backgrounds, as shown in Figure 1A. We perform

pre-processing to reduce the complexity of the surroundings

Frontiers in Plant Science 03 frontiersin.org

188

https://doi.org/10.3389/fpls.2022.907916
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2022.907916

TABLE 1 The 14 species and 38 categories in PV.

Species Class number Class name

Apple 4 Apple scab, black rot, cedar apple rust, healthy

Blueberry 1 Healthy

Cherry 2 Healthy, powdery mildew

Corn 4 Gray leaf spot, common rust, healthy, northern leaf

blight

Grape 4 Black rot, black measles, healthy, leaf blight

Orange 1 Haunglongbing

Peach 2 Bacterial spot, healthy

Pepper 2 Bacterial spot, healthy

Potato 3 Early blight, healthy, late blight

Raspberry 1 Healthy

Soybean 1 Healthy

Squash 1 Powdery mildew

Strawberry 2 Healthy

Tomato 10 Bacterial spot, early blight, healthy, late blight, leaf

mold, septoria leaf spot, spider mites, target, mosaic

virus, yellow leaf curl virus

TABLE 2 The algorithm of meta-learning.

Algorithm of meta-learning

Input: data_loader,n_way,n_shot,n_query,task_per_batch

Output: avg_acc, avg_loss

for i in epoch:

train :

for j in batch:

task = task(data_loader, n_way, n_shot, n_query, task_per_batch)

x0 · · · xn = fθ (task.x_shot)

x = mean(x0 · · · xn)

y = fθ (task.x_query)

logits = classifier(distance(x, y))

loss = cross_entropy(logits, task.label)

acc = compute_acc(logits, task.label)

loss.backwardpropagation& optimize

end for

validation : val

compute : avg_acc, avg_loss

end for

return: avg_acc, avg_loss

by removing background other than leaves. YOLO-v3 (Redmon

and Farhadi, 2018) is adopted to detect leaves in images which is

shown in Figure 1B. After segmentation and resizing, the images

with a single leaf in each image are used in this work, as shown

in Figure 1C.

The hardware configurations are: Graphics: Tesla V100-

DGXS-32GB; Video Memory: 32G × 4; Processor: Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20GHz; Operating System:

Ubuntu 18.04.6 LTS.

2.2. Problem formulation

In FSL paradigm, given two labeled sets with categories

Ctrain and Cnovel, Ctrain is used in training and Cnovel is used in

test. The two sets are exclusive,Ctrain∩Cnovel = ∅, whichmeans

that categories used in test are not seen during training. Data is

formulated to tasks and each task T is made up of a support set S

and a query set Q. The sample of S is denoted by (xs, ys) which is

a (image, label) pair and the sample of Q is denoted by (xq, yq).

In training, the label yq is used for calculating loss, which is

supervised learning.

An N-way, K-shot task indicates that the S contains N

categories with K samples in each category, and the Q contains

the sameN categories withW samples in each category. The goal

is to classify theN×W unlabeled samples of Q intoN categories.

For evaluation, the average accuracy is computed from many

tasks sampled from Cnovel, N ∈ Cnovel.

2.3. Architecture

2.3.1. Meta-Baseline framework

Like classical classification structure, our framework

contains two components: an encoder and a classifier, which is

illustrated in Figure 2A. The encoder noted as fθ is a CNN-based

network merging with CMSFF and CA. It is trained in two

stages: base-training and meta-learning.

In base-training, the network contains fθ and base-training

classifier, which is trained with image-wise data. The goal in

this stage is to learn the general features as prior knowledge.

Some large-scale general datasets with more classes and diverse

data, such as ImageNet, Mini-ImageNet etc. are good choices for

learning prior knowledge. The classifier can be linear classifier,

fully connected layer, SVM, or other classifiers. The cross-

entropy loss is calculated to update the parameters of fθ during

back propagation. After base-training is completed, the classifier

is removed and the trained model is delivered to the meta-

learning stage.

In meta-learning, fθ is initialized by the trained model from

base-training. Meta-learning is a concept of learning to learn.

So, the purpose is not to learn the knowledge of the training

classes, but to learn how to differentiate between classes. Aiming

at the objective, the classifier in meta-learning is replaced by

a distance measurement module. The classification result is

decided by the distances from the support samples to the query

sample. Meta-learning is a task-driven paradigm where training

data is formulated as N-way, K-shot tasks. Based on a simple

machine learning principle: test and training conditions must
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FIGURE 1

(A) The original samples of AFD. (B) The leaf detection result by YOLO-v3. (C) The samples of 10 classes after segmentation and resizing.

match (Vinyals et al., 2016), the data of Cnovel is also formatted

into tasks in test.

Given an N-way, K-shot task, K samples of a category c

in S are embedded into feature space by fθ and become K

feature vectors. A mean vector of the K vectors are calculated

as the centroid of c, which is consider as the representative of

category c:

ωc =
1

|Sc|

∑

xs∈Sc

fθ (xs) (1)

where, Sc denotes the samples of class c in S, |Sc| = K, xs denotes

each sample of class c. The query sample xq in an N-way, K-

shot task is also embedded by fθ . The probability that sample

xq belongs to class c is calculated as:

p(y = c|xq) =
exp(γ . < fθ (xq),ωc >)

∑

c′ exp(γ . < fθ (xq),ωc′ >)
(2)

where, < ., . > denotes the distance of two vectors, c′ denotes all

the classes in S, ωc′ denotes all the centroids of S, γ is a learnable

parameter to scale the distance. In training, we use cross-entropy

loss to update the parameters of the network. The algorithm of

meta-learning is shown in Table 2.

2.3.2. Distance measurement

After embedding, the 2D color image has been a high

dimensional vector in semantic space. The distance of query

sample to the class centroid is calculated by a distance metric.

Distance metric uses distance function which provides a

relationship metric between each element in the dataset. In

many machine learning algorithms, distance metric is used to

know the input data pattern in order to make any data-based

decision. The most common used measures to calculate the

distance between two vectors are cosine similarity, dot product

and Euclidean distance.

Cosine similarity is a measure of similarity between two

non-zero vectors of an inner product space. It is measured by

the cosine of the angle between two vectors and determines

whether two vectors are pointing in roughly the same direction.

It is the same as the inner product after normalization (Han

et al., 2012). In Euclidean geometry, the dot product of the

Cartesian coordinates of two vectors is widely used. It is often

called as inner product or projection product of Euclidean

space. The length of projection represents the distance of two

vectors. In mathematics, the Euclidean distance between two

high-dimensional vectors is the square root of the sum of the

squares of the distances in each dimension.

2.3.3. MSFF

Basically, the structure of MSFF includes two categories:

parallel multi-scale feature fusion (PMSFF) and cascaded multi-

scale feature fusion (CMSFF). The two fusion methods are

illustrated in Figure 2B. The PMSFF concatenates the features

from different layers of CNN simultaneously. The different

resolutions of feature maps are uniformed before concatenation.

Comparatively, the CMSFF fuses the different resolution feature

maps step by step. Taking Resnet12 as backbone network, four

convolutional blocks are linked. A group of feature maps of

double times of channels and half resolution is generated after

each block forwarding. In the backward fusion, small size feature

maps are two times up-sampled and concatenated with the

feature maps of previous block. After a series of up-sampling

and concatenation, all channels are fused together to be the fused

full-scale feature, noted as F. The CMSFF is used in this work.

2.3.4. CA

The CA is used to exploit the inter-channel relationship of

features by learning the weights of channels (Woo et al., 2018).

The structure of CAmodule is shown in Figure 2B. Each channel

of F is considered as a feature detector. The spatial dimension

of input feature map is aggregated by pooling operation. In

this module, average-pooling and max-pooling are conducted

simultaneously and two spatial context descriptors: Favg and
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FIGURE 2

(A) The network architecture of our method. The training includes two stages: base-training stage and meta-learning stage. The CMSFF+CA

Encoder is unfolded to CMSFF module and CA module. (B) The parallel multi-scale feature fusion and cascaded multi-scale feature fusion.

Fmax, are generated, respectively. Then they are forwarded to

a shared network which is composed of multi-layer perceptron

(MLP) with one hidden layer. The element-wise summation of

the two outputs from MLP goes through a sigmoid. Then the

channel attention mapMc ∈ R
C×1×1 is produced.

3. Results

We carried out 43 groups of comparison experiments

and ablation experiments to illustrate our method,

training strategies, and the effects of various factors.

The details of experiments and results are illustrated

and analyzed as below. The bold values listed in tables

indicate the highest results for each group under the same

conditions.

3.1. Data settings

The PV is separated into three parts for training, validation,

and test, respectively. According to the requirement of FSL:

the testing categories are novel, the classes of the three parts

do not intersect, Ctrain ∩ Cval ∩ Ctest = ∅. In this work,
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TABLE 3 Three data settings of PV used in our experiments.

ID Training Validation Test

PV-Setting-1

(22-6-10)

(PV-1-22): apple-3,blueberry-1,cherry-2,corn-3,grape-

3,orange-1,peach-2,pepper-1,potato-2,raspberry-1,soybean-

1,squash-1,strawberry-1

Apple-1,corn-1,grape-1,pepper-

1,potato-1,strawberry-1

(PV-1-10T): tomato-10

PV-Setting-2

(22-6-10)

(PV-2-22): apple-2,blueberry-1,cherry-1,corn-2,grape-

2,orange-1,peach-1,pepper-1,potato-1,raspberry-1,soybean-

1,squash-1,strawberry-1,tomato-6

Apple-1,corn-1,grape-1,potato-

1,tomato-2

(PV-2-10): apple-1,cherry-1,corn-1,grape-1,peach-

1,pepper-1,potato-1,strawberry-1,tomato-2

PV-Setting-3

(10-6-22)

(PV-3-10): apple-1,cherry-1,corn-1,grape-1,peach-1,pepper-

1,potato-1,strawberry-1,tomato-2

Apple-1,corn-1,grape-1,potato-

1,tomato-2

(PV-3-22): apple-2,blueberry-1,cherry-1,corn-2,grape-

2,orange-1,peach-1,pepper-1,potato-1,raspberry-

1,soybean-1,squash-1,strawberry-1,tomato-6

The total 38 classes are separated into three parts for training, validation and test, respectively. “Apple-1” means a class of apple species.

FIGURE 3

(A) The testing classes of PV-Setting-1. (B) The testing classes of PV-Setting-2. (C) The testing classes of PV-Setting-3.

PV is split to three settings as shown in Table 3. PV-Setting-1

is with 22 classes for training, 6 classes for validation, and 10

classes covered by tomato for test. The samples are shown in

Figure 3A, which are very similar with each other. PV-Setting-

2 is with 22 classes for training, six classes for validation,

and 10 classes belonging to nine different species for test. The

samples of this setting are shown in Figure 3B. PV-Setting-3

exchanges the training set and testing set of PV-Setting-1 and

keeps the same validation set as PV-Setting-1, using 10 classes

for training and 22 classes for test. The samples are shown in

Figure 3C. The three settings represent “sub-class” task, “train

more, test less” task and “train less, test more” task, respectively.

In addition, 10 classes of AFD and 200 samples per class are used

in this work for cross-domain testing purpose. Since all classes

belong to the same super-class: apple leaf, it is also a sub-class

classification task.

3.2. Training strategy

The domain of training is noted as source domain (SD), and

the domain of test is noted as target domain (TD). Data from

different domains can be used in the three stages: base-training,

meta-learning, and test. It is special that there are two training

stages of our method, and the datasets used in the two stages

could be different.We just consider the domain ofmeta-learning

stage as SD. When SD is the same as TD, it is intra-domain

adaption, otherwise, it is cross-domain adaption.

In order to mimic different adaption situations, we design

different data configurations. Five adaption configurations using

Mini-ImageNet, three PV settings, and AFD are proposed.

As shown in Figure 4, S1 uses a general dataset (e.g., Mini-

ImageNet) in base-training and meta-learning, then uses target

dataset (e.g., PV) in test, which is the adaptation from one
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FIGURE 4

The data formats used in base-training, meta-learning, and test. The five training strategies.

domain to another, denoted in Formula 3. S2 uses a general

dataset in base-training, target dataset in meta-learning and

test, which is denoted in Formula 4. S3 uses target dataset in

three stages, which is denoted in Formula 5. S4 uses general

dataset in base-training, similar-target dataset (e.g., PV) inmeta-

learning, and target dataset (e.g., AFD) in test, which is denoted

in Formula 6. When AFD is used in test, PV is considered as

a similar domain as the target domain, because they are both

associated with leaf diseases of the plants. S5 uses the similar-

target dataset in base-training and meta-learning, and target

domain dataset in test, which is denoted in Formula 7. S1, S4,

S5 are cross-domain, and S2, S3 are intra-domain.

S1 :G → G → T (3)

S2 :G → T → T (4)

S3 :T → T → T (5)

S4 :G → S → T (6)

S5 : S → S → T (7)

where, G denotes the general domain, T denotes the target

domain, S denotes the similar-target domain.

As shown in Table 4, e1, e2, and e3 are conducted with Mini-

ImageNet and PV-Setting-1 by using S1, S2, S3. e4, e5, e6 are

conducted with Mini-ImageNet and PV-Setting-2 by using S1,

S2, S3. e7, e8, e9 are conducted with Mini-ImageNet and PV-

Setting-3 by using S1, S2, S3. e10, e11, and e12 are conducted

with Mini-ImageNet, PV-Setting-2, and AFD by using S1, S4,

S5. For the 12 experiments, the training epoch is 100, and the

learning rate is 0.1 and decayed to 0.01 after 90 epochs in base-

training. In meta-learning, the training epoch is 50, and the

learning rate is 0.001. The validation task is 5-way, 1-shot, 15-

query. The backbone network is Resnet12. The distance metric

is cosine similarity.

3.2.1. Intra-domain

According to the definitions of SD and TD, e2, e3, e5, e6,

e8, e9 are intra-domain experiments, because the data used in

meta-learning and test is from the same dataset. The results

are shown in Table 4 and Figure 5A. In PV-Split-2, the accuracy

of e5 is better than e4 and e6. In PV-Split-3, the accuracy of

e8 is better than e7 and e9. What the two settings have in

common is that the disease classes belong to different plants.

To the diverse species cases, S2 is better than S1 and S3.

Especially when the number of species is bigger, the superiority

of S2 is more obvious. As listed, e6 gets close to e5, but e8

is much better than e9, which means that the general dataset

is better supported when the testing data is more diverse. A

broad prior knowledge is very useful for adapting to diverse

target. However, in PV-Split-1, e3 is the best one by using S3

because the testing data belongs to the same plant. So, the

features of testing data are intensive and the general date in

base-training is not helpful. Oppositely, the data belonging to

the same dataset is easier for adaption. In short, to the intra-

domain cases, if the testing classes are of super-classes, S2 is
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TABLE 4 The group of experiments with di�erent training strategies and di�erent data settings.

ID Method TS Base-training Meta-learning Test 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

PV-Setting-1

e1 MB S1 Mini Mini PV-1-10T 41.08 60.59 66.27 69.87 71.26 71.86 72.30

e2 MB S2 Mini PV-1-22 PV-1-10T 56.07 72.90 76.62 78.87 79.74 79.81 80.11

e3 MB S3 PV-1-22 PV-1-22 PV-1-10T 57.85 75.04 79.08 81.51 82.47 82.83 83.08

PV-Setting-2

e4 MB S1 Mini Mini PV-2-10 60.23 83.08 87.02 88.97 89.61 89.76 90.12

e5 MB S2 Mini PV-2-22 PV-2-10 80.88 91.75 93.44 94.27 94.53 94.70 94.84

e6 MB S3 PV-2-22 PV-2-22 PV-2-10 81.05 91.47 93.14 94.00 94.29 94.41 94.53

PV-Setting-3

e7 MB S1 Mini Mini PV-3-22 65.46 85.37 88.81 90.54 91.09 91.33 91.45

e8 MB S2 Mini PV-3-10 PV-3-22 78.74 88.96 90.58 91.52 91.97 92.05 92.17

e9 MB S3 PV-3-10 PV-3-10 PV-3-22 74.58 84.77 86.82 87.82 88.29 88.43 88.57

AFD

e10 MB S1 Mini Minit AFD-10 28.26 39.12 44.20 47.83 49.02 50.31 51.32

e11 MB S4 Mini PV-2-22 AFD-10 38.41 51.71 55.58 58.08 58.84 59.70 60.09

e12 MB S5 PV-2-22 PV-2-22 AFD-10 36.19 49,16 54.05 57.13 58.47 59.25 59.46

(Task in meta-learning: 5-way, 1-shot, 15-query; backbone network: Resnet12; batchsize: 128; Lr: 0.1 in base-training, 0.001 in meta-learning; distance metric: cosine similarity; Mini,

Mini-ImageNet; TS, training strategy).

the best strategy. If the testing classes are sub-classes, S3 is the

best strategy.

3.2.2. Cross-domain

Experiments e1, e4, e7, e10, e11, e12 are cross-domain cases.

e1, e4, e7, e10 are the experiments with the worst results in their

respective data settings by using S1, due to the big gap between

the general domain and target domain.

Comparing e10, e11 and e12, e11 has the highest accuracy

by using S4, which are shown in Table 4 and Figure 5B. e12

is not as good as e11 because too intensive features extracted

from monotonous samples leads to weaker adaptation. S4 is

the best training strategy for cross-domain cases, which uses

general dataset in base-training to learn the prior knowledge in a

wide range, and uses similar-target dataset in meta-learning for

adapting to new domain smoothly.

3.3. CMSFF and CA

Ablation experiments e13–e22 are conducted to show the

positive effects of CMSFF module and CA module, respectively.

The results are listed in Table 5. Under four data configurations:

PV-Setting-1, PV-Setting-2, PV-Setting-3, and AFD, we execute

8 experiments. The training settings are listed: Mini-ImageNet

is used in base-training; backbone network is Resnet12; distance

metric is cosine similarity; training strategy is S2 and S4. Taking

e2, e5, e8, e11 as the baseline, the CMSFF module is added

and the results of e13, e15, e19, e21 show the improvement of

CMSFF. e14, e18, e20, and e22 indicate that CA has further

improved the performances on the basis of CMSFF. e15 and

e17 are used to compare the PMSFF module with the CMSFF

module, and the results show that CMSFF outperforms PMSFF.

3.4. Sub-class classification

Sub-class is defined as the classes belong to the same entry

class. The PV-Setting-1 and AFD are sub-class classification

examples. Sub-class classification is also named as fine-grained

vision categorization which aims to distinguish subordinate

categories within entry level categories. Because the samples

belonging to the same super-class are similar with each other,

sub-class classification is a challenging problem.

In Table 4, the PV-setting-1 is the lowest accuracy group

among the three PV-settings, as the samples all belong to

tomato and are indistinguishable. The results of AFD group

are worse than PV-Setting-1, which is not only because of Sub-

class reason, also due to cross-domain and in-wild setting of

images. Even if the images of AFD are already pre-processed,

the backgrounds of images are still different from PV. Also, the

illumination condition, resolution, photography devices are all

different. Intuitively, the gap of features from SD to TD causes

the accuracy declining.
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FIGURE 5

(A) Intra-domain experiments with three data settings. (B) Cross-domain experiments with AFD. (C) The accuracy decreases as Way increases.

(D) Distance metrics.

3.5. Way and shot

N-way and K-shot are the configurations of the task that

indicate the difficulty of the task. Given a fixed K, the accuracy

decreases as N increases. The result of PV-split-1 with N-way,

10-shot is shown in Figure 5C. The accuracy drops down from

85.39% to 64.35% as N-way increases from 3 to 10.

All experimental results listed in Table 4 are executed

with fixed 5-way, which indicates that regardless of the data

configurations, all experiments follow the common trend:

accuracy increases with the number of shots. The accuracy

sharply increases as the Shot increases from 1-shot to 5-shot, and

tends to be stable when the Shot is larger than 10. After the shot

is larger than 20, the growth is not significant. From 1-shot to

50-shot, the increase of accuracy ranges from at least 10% to a

maximum of 32%.

The results show that the accuracy increases with the

number of shot and decreases with the number of way. More

ways means higher complexity, and more shots means more

supporting information. In existing researches, theN−way is set

to 5 generally. In application scenarios, the N is determined by

the number of target categories and should not be limited to 5.

For example, a plant may have more than five diseases, then the

ways should the same as the number of diseases that may occur

in the specific scenario. N-way and K-shot are a pair with trade-

off relationship. When expanding novel classes, we can increase

the number of shots as compensation to maintain accuracy. For

a new class to be identified, it is acceptable to collect 10 to 50
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TABLE 5 The ablation experiment results of MB, MB+CMSFF, and MB+CMSFF+CA.

ID Method TS 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

PV-Setting-1

e2 MB S2 56.07 72.90 76.62 78.87 79.74 79.81 80.11

e13 MB+CMSFF S2 61.20 77.09 80.92 83.03 84.05 84.34 84.56

e14 MB+CMSFF+CA S2 61.24 77.43 81.28 83.59 84.46 84.70 84.86

PV-Setting-2

e5 MB S2 81.05 91.47 93.14 94.00 94.29 94.41 94.53

e15 MB+PMSFF S2 81.46 91.86 93.51 94.57 94.81 94.88 95.03

e16 MB+CMSFF S2 82.21 92.32 93.87 94.71 95.03 95.15 95.31

e17 MB+PMSFF+CA S2 81.87 92.39 93.93 94.86 95.29 95.31 95.50

e18 MB+CMSFF+CA S2 82.52 92.83 94.39 95.29 95.65 95.73 95.74

PV-Setting-3

e8 MB S2 74.58 84.77 86.82 87.82 88.29 88.43 88.57

e19 MB+CMSFF S2 76.61 88.45 90.17 91.32 91.78 91.86 92.14

e20 MB+CMSFF+CA S2 78.15 89.57 91.24 92.46 92.67 93.02 93.07

AFD

e11 MB S4 38.41 51.71 55.58 58.08 58.84 59.70 60.09

e21 MB+CMSFF S4 40.77 54.14 57.68 60.13 61.30 62.03 62.69

e22 MB+CMSFF+CA S4 43.94 56.93 60.64 63.66 64.50 65.55 66.18

(Base-training: Mini-ImageNet; backbone network: Resnet12; distance metric: cosine similarity; TS, training strategy).

samples as its support set. However, the positive relationship of

shots and accuracy is not linear. The increase of accuracy as K-

shot has ceiling.When theK is larger than 30, the accuracy is still

growing but very slowly.

3.6. The diversity of meta-learning data

The number of classes in meta-learning is noted as Ntrain,

and noted as Ntest in test. Comparing e5 with e8, they are both

trained with Mini-ImageNet in base-training. e5 uses 28 classes

in meta-learning and 10 classes in test, which is the caseNtrain >

Ntest . The training set and testing set of e5 are exchanged in e8,

which is the case Ntrain < Ntest .

The training tasks and testing tasks are all formulated as 5-

way, which means that five classes are sampled in each task. The

N-way of task is the same in e5 and e8. However, the accuracy

of e5 is at least 2% higher than e8. It indicates that the size of

data used in meta-learning is a factor effects the performance.

Using more classes in meta-learning leads to positive results,

providing more diverse features and improving the robustness

of the model.

3.7. Distance metric

In this work, we compared three distance metrics: dot

product, cosine similarity, and Euclidean distance. The same

distance measurement module is used in meta-learning and test.

This is because even if there is no parameter to be trained in this

module, the losses calculated from the distance measurement

still affect the parameter updates in the iterations.

An appropriate distance metric significantly helps in

improving the performance of classification, clustering process

etc. Cosine similarity hits the best performance, as shown

in Table 6 and in Figure 5D. The reason is that the vectors

obtained from encoder are high dimensional vectors. The

cosine similarity has often been used to counteract the

problem of Euclidean distance in high dimensional space. The

normalization in cosine similarity also has positive effect.

3.8. Backbone networks

In this work, we compared different backbone networks:

Convnet4 (Snell et al., 2017), AlexNet (Krizhevsky et al., 2012),

Resnet12, Resnet18, Resnet50, Resnet101 (He et al., 2016),

DenseNet (Huang et al., 2017), MobileNet-V2 (Sandler et al.,

2018). The Convnet4 is the classical architecture used in FSL

which stacks four blocks of convolutional calculation. Different

networks include different sizes of trainable parameters. The

trainable parameters are more in base-training than in meta-

learning because the base-training classifier is removed in

meta-learning. The size of trainable parameters, learning rate

(Lr), training time, and epochs in the two training stages are

listed in Table 7. e25–e31 are conducted with the configuration:
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TABLE 6 The results of di�erent distance metrics.

ID Metric 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

e23 Dot product 77.58 86.2 87.52 88.05 88.55 88.65 88.88

e5 Cosine similarity 80.88 91.75 93.44 94.27 94.53 94.70 94.84

e24 Euclidean distance 75.96 89.17 91.52 92.64 93.17 93.23 93.42

(Method: MB; backbone network: Resnet12; batchsize: 128; Lr: 0.1 in base-training, 0.001 in meta-learning).

TABLE 7 The experiment e�ciencies of di�erent backbone networks.

Base-training Meta-learning

ID Backbone network Size Lr Training time Epoch Size Lr Training time Epoch

e25 Convnet4 215.6 K 0.01 40 m 100 113.1 K 0.001 31 m 50

e26 AlexNet 3.8 M 0.01 40 m 100 3.7 M 0.001 17 m 50

e5 Resnet12 8.0 M 0.1 1.2 h 100 8.0 M 0.001 18 m 20

e27 Resnet18 11.2 M 0.1 1.4 h 100 11.2 M 0.001 40 m 50

e28 Resnet50 23.6 M 0.1 2.3 h 100 23.5 M 0.001 38 m 30

e29 Resnet101 42.6 M 0.01 3.3 h 100 42.5 M 0.001 35 m 20

e30 DenseNet 791.1 K 0.1 3.8 h 100 769.2 K 0.001 1.9 h 50

e31 MobileNet-v2 3.6 M 0.1 2.2 h 100 3.5 M 0.001 1.0 h 50

(Bae-training: Mini-imageNet; meta-learning: PV-2-22; distance metric: cosine similarity).

TABLE 8 The results of di�erent backbone networks.

ID Backbone networks 1-shot 5-shot 10-shot 20-shot 30-shot 40-shot 50-shot

e25 Convnet4 69.06 85.91 89.91 91.88 92.35 92.79 93.11

e26 AlexNet 68.35 83.12 85.73 87.00 87.27 87.44 87.92

e5 Resnet12 80.88 91.75 93.44 94.27 94.53 94.70 94.84

e27 Resnet18 78.58 89.16 91.36 91.96 92.26 92.44 92.78

e28 Resnet50 80.89 90.91 92.56 93.86 94.08 94.15 94.33

e29 Resnet101 74.93 85.59 87.63 89.12 89.67 89.91 89.91

e30 DenseNet 79.39 89.21 90.82 91.84 92.21 92.10 92.50

e31 MobileNet-V2 78.17 89.21 91.48 92.42 92.83 93.02 93.41

(Method: MB; backbone network: resnet12; batchsize: 128; Lr: 0.1 in base-training, 0.001 in meta-learning; Data: Mini-imageNet in base-training, PV-setting-2 in meta-learning and test).

Mini-ImageNet is used in base-training (100 epochs) and PV-2-

22 is used in meta-learning. The different number of iterations

is due to the different convergence speed in meta-learning. The

performances of the backbone networks are listed in Table 8.

Resnet12 and Resnet50 outperform the other networks, with

Resnet12 being more efficient.

In base-training and meta-learning, we use the validation

data to test the accuracy of 5-way, 1-shot tasks which is shown

in Figure 6. The black numbers on the black lines are the best

accuracy in base-training, and the black numbers on the red

lines are the best accuracy in meta-learning. The lifting ranges

of accuracy in meta-learning are marked in red numbers. It is

shown that the model trained in base-training stage already has

the identification ability with few shots to some extent, even

without training with tasks in meta-learning. However, in base-

training, themodel is already convergent by training with image-

wise data, and the accuracy of task testing no longer increases. In

fact, the model still has space to improve. Based on this, in meta-

learning, by using task-wise data, the accuracy has been further

promoted around 20% to 30%.

In recent years, the architectures of networks go deeper

and deeper. Some researchers proposed a question that do we

really need so deep networks? Our results show that a medium-

sized network outperforms other networks in this task. We

summarized two reasons: (1) In CNNs, the simpler and more

basic features are learnt in shallower layers, the more abstract

and complex features are learnt from deeper layers. From

shallower layers to deeper layers, the features transition from
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FIGURE 6

The best validation accuracy (%) of “1-shot, 5-way” task in base-training and meta-learning. The red digits represent the accuracy lifting ranges

(%) of meta-learning.

edges, lines, and colors, to textures and patterns, to complex

graphics, even to specific objects. For our specific task, even

humans (e.g. plant experts) rely more on color, shape, and

texture for disease identification. Hence, the too deep networks

may be not critical meaningful. (2) FSL is the kind of learning

task with limited data-scale. For a deeper network, it always has

large number of parameters needed to be updated. In the data-

limitation condition, too deep network could meet insufficient

updating of parameters in backpropagation due to the too

long backpropagation path. In parameter updating, shallower

networks are more flexible, while the deeper networks look

bulky. In short, it does not mean that deeper networks always

outperform shallower networks. The size of network should

match the specific task and data resources.

3.9. Compare with related works

In order to show the superiority of our method, we

conducted several experiments to compare with some recent

related researches. Argüeso et al. (2020) used Siamese Network,

Triplet Network, and PV as their experimental material. They

set a different data splitting: 32 classes are used for training

and the rest six classes (apple four classes, blueberry healthy,

cherry healthy) for testing. They listed results of three methods:

transfer learning, Siamese Network, and Triplet Network. Their

backbone network is Inception-V3. In order to be comparable,

we executed the experiments with the same data setting as their

work. Mini-ImageNet is used in base-training, 32 classes of PV

are used in meta-learning, and the rest 6 classes are used in test.

The results of e32–e34 are shown in Table 9.

We also compared with Li and Chao (2021b). They proposed

a Semi-supervised (SS) FSL approach. The baseline is a typical

fine-tuning model. The Single SS adds Semi-supervised step

on the top of baseline. The Iterative SS adds one more Semi-

supervised step on the top of Single SS. PV was also used

as their experimental material and set to three splits. Each

split has 28 classes for training and the rest 10 classes for

testing. They compared with Argüeso et al. (2020) too. We

also conducted experiments by our methods with the same

data settings as Li and Chao (2021b). The results of e35–e43

are shown in Table 9. All the comparison results are shown in

Figure 7.

The data settings of the two references are different from our

data settings. The results indicate that our method outperforms

the existing works with all data settings, which means that our

method is superior and robust.

4. Discussion

4.1. Motivation and contribution

The method learning from few samples is very promising

in plant disease recognition, which has wide range of

potential application scenarios for its saving of cost on

data. When expanding the range of application, a well-

established model of FSL can easily generalize to novel

species or diseases without retraining and providing large-

scale training data. However, some existing limitations of

the FSL itself and the specific applied areas are needed to

be considered. Our main contributions in this work are

two-folds: (1) we propose to merge the CMSFF in the

backbone network to enhance the feature representation, and

combine the CA to focus on the informative channels; (2) we

propose a group of training strategies to match the different

generalization scenarios.

4.2. Limitation and future work

The theoretical research of FSL is in the stage of rapid

development at present. Although FSL is very suitable for

plant disease recognition, the applications of smart agriculture

have just begun (Yang et al., 2022). In this research direction,
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TABLE 9 The results compared with related works.

ID Method 1-shot 5-shot 10-shot 20-shot

Data setting in Argüeso et al. (2020)

Finetuning (Argüeso et al., 2020) 18.2 25.4 30.3 41.1

Siamese contrastive (Argüeso et al., 2020) 50.2 64.2 70.2 74.1

Siamese triplet (Argüeso et al., 2020) 65.2 72.3 76.8 81.8

Single SS (Li and Chao, 2021b) 74.5 89.7 92.6 93.9

Iterative SS (Li and Chao, 2021b) 75.1 90.0 92.7 93.9

e32 Ours MB 76.4 91.0 93.2 94.2

e33 Ours MB+CMSFF 80.0 91.9 93.7 94.3

e34 Ours MB+CMSFF+CA 80.4 92.8 94.1 94.3

Data Split-1 of Li and Chao (2021b)

Baseline (Li and Chao, 2021b) 32.8 46.7 64 73.2

Single SS (Li and Chao, 2021b) 33.7 50.9 66.7 74.7

Iterative SS (Li and Chao, 2021b) 34 53.1 68.8 75.6

e35 Ours MB 55.7 72.8 76.7 79.5

e36 Ours MB+CMSFF 60.6 78.4 82.4 84.3

e37 Ours MB+CMSFF+CA 60.7 78.1 82.2 84.5

Data Split-2 of Li and Chao (2021b)

Baseline (Li and Chao, 2021b) 43.9 68.5 78.7 89.1

Single SS (Li and Chao, 2021b) 44.7 74.7 85.7 89.7

Iterative SS (Li and Chao, 2021b) 46.4 76.9 89.2 91.9

e38 Ours MB 77.1 91.1 92.9 93.8

e39 Ours MB+CMSFF 78.8 91.6 93.5 94.6

e40 Ours MB+CMSFF+CA 79.1 92.2 94.0 95.1

Data Split-3 of Li and Chao (2021b)

Baseline (Li and Chao, 2021b) 50.7 63.1 77.2 89.3

Single SS (Li and Chao, 2021b) 52.3 67.6 79.9 90.1

Iterative SS (Li and Chao, 2021b) 55.2 69.3 80.8 91.5

e41 Ours MB 78.1 89.4 91.4 92.6

e42 Ours MB+CMSFF 80.6 90.8 92.4 93.3

e43 Ours MB+CMSFF+CA 81.5 91.1 92.8 93.4

(Ours: backbone network: Resnet12; distance metric: cosine similarity; base-training: Mini-ImageNet).

there are still huge potential space needed to explore. In

here, we discuss the limitations of this work and some

future works.

1. Multi-disease. The PV and AFD used in this work as

target data which have a common characteristic that only single

disease is included in per image. In fact, once a plant is infected

by the first disease, it is easily infected by other diseases because

the immune system is attacked and becomes weak (Barbedo,

2016). Multiple diseases occur in a plant is more common in the

real field condition. But the combinations of different diseases

are too many to collect sufficient samples for each category

from classification perspective (e.g., three diseases of a species

generate 7 categories). The current researches prefer to solve

this problem by semantic segmentation. We do not cover this

challenging problem due to limitations of data resources in

this work.

2. Formulation of meta-learning data. The samples of PV

were taken under controlled condition (lab-settings), which have

a clean board as the unified background, the illumination is

under controlled, only single leaf in per image, only single

disease occurs in per leaf. The settings are simple and very

different from the in-wild conditions. That is the reason

many researches already achieved high accuracy by using deep

learning CNNs on PV (Hasan et al., 2020). But the samples of

AFD were taken under in-wild condition, which have complex

surroundings. When testing with AFD, we use PV in meta-

learning, mainly considering that both datasets are about plant

diseases. Since we did not find any other appropriate dataset, the
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FIGURE 7

The results compared with related works. (A) Our work compares with (Argüeso et al., 2020) and (Li and Chao, 2021b). (B) Our work compares

with Li and Chao (2021b) using the data split-1. (C) Our work compares with Li and Chao (2021b) using the data split-1. (D) Our work compares

with Li and Chao (2021b) using the data split-1.

degree of similarity of the data used in training and test was not

taken in account.

According to our hypothesis, the degree of similarity of

data used in meta-learning and test is higher, the adapting is

easier, and the result would be better. It is demonstrated that

the selection of meta-learning data is critical in this pipeline.

The data used in meta-learning stage should be determined by

the target. When the application scenarios cannot be predicted,

how to formulate an appropriatemeta-learning dataset is worthy

to study. Inspired by Nuthalapati and Tunga (2021) and Li

and Yang (2021), the effectiveness of a mixed dataset for meta-

learning will be considered.

3. Sub-class classification. For the application of plant

disease recognition, it is more meaningful to distinguish the

diseases belonging to the same species. What farmers need

more than anything else is a diagnostic assistant that can

identify similar diseases belonging to the same plant. Although

sub-class classification is difficult (Liu and Wang, 2021), it

is an inescapable work in plant disease recognition and the

performance is needed to be improved urgently. Fine-grained

features of the lesions being the distinguishable features to solve

this issue. In this direction, lesion detection and segmentation,

fine-grained visual classification are involved.

4. The quality and quantity of training data. Most of

the current researches of FSL deal with the configuration of

data used in test, but very little work has concerned the data

used in training. The common sense is that deep learning

networks rely on large-scale data. However, a new direction is

discussing the quality and quantity of training data recently (Li

and Chao, 2021a,c; Li et al., 2021; Li Y. et al., 2022). These works

indicate that part of data can achieve at the same performance

as full data. Date quality can be assessed, which can guide to

establish a dataset with enough diversity data while without

redundant samples. The networks of appropriate depth using

good data can achieve optimal results in many traditional CNN

classification tasks.

In this work, we use large-scale data in base-training and

meta-learning. The quantity of data follows the conventional

settings for comparison purposes. The data quality assessment

work is not involved in this work. For the specific topic of

plant disease, the data quality is very important. We know that

at different stages of development of plants and diseases, the

symptom appearances are very different. How to construct a

comprehensive set without redundant data to represent a disease

is a valuable work in the future (Barbedo, 2018).

5. Cross-domain.The significance of cross-domain has been

introduced in prior sections. We emphasize cross-domain again

because it is common when we cannot predict the species,

surroundings, and photo conditions in test. In this work, we

consider it from training strategies. There are many aspects to

explore in future work, such as network architecture, feature

distribution calibration etc.

5. Conclusion

In response to the two problems when using FSL for plant

disease recognition, we propose a network based on the MB

approach that merges CMSFF and CA to obtain a richer feature

representation. From experiments, we found that the CMSFF is

effective to obtain richer feature representation, especially under

the few-shot condition. The CA is an important compensation to

the CMSFF, which helps to focus on these meaningful channels.

Our method outperforms the existing related works, which

indicates that our method is highly robust. The CMSFF+CA

is an appropriate combination that fits for any algorithm that

needs enhance the feature representation. In addition, a group

of training strategies is proposed to meet requirements of

different generalization situations. Many factors are discussed

Frontiers in Plant Science 15 frontiersin.org

200

https://doi.org/10.3389/fpls.2022.907916
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2022.907916

in this work, such as backbone networks, distance metrics etc.

The limitations of this work and some new related research

directions are discussed.
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Variable application by wind is an efficient application technology 

recommended by the Food and Agriculture Organization (FAO) of the United 

Nations that can effectively improve the deposition effect of liquid medicine 

in a canopy and reduce droplet drift. In view of the difficulty of modelling 

wind forces in orchard tree canopies and the lack of a wind control model, 

the wind loss model for a canopy was studied. First, a three-dimensional 

wind measurement test platform was built for an orchard tree canopy. The 

orchard tree was located in three-dimensional space, and the inner leaf 

areas of the orchard tree canopy and the wind force in different areas were 

measured. Second, light detection and ranging (LiDAR) point cloud data of 

the orchard tree canopy were obtained by LiDAR scanning. Finally, classic 

regression, partial least squares regression (PLSR), and back propagation (BP) 

neural network algorithms were used to build wind loss models in the canopy. 

The research showed that the BP neural network algorithm can significantly 

improve the fitting accuracy of the model. Under different fan speeds of 1,381 

r/min, 1,502 r/min, and 1,676 r/min, the coefficient of determination (R2) of 

the model were 81.78, 72.85, and 69.20%, respectively, which were 19.38, 7.55, 

and 12.3% higher than those of the PLSR algorithm and 21.48, 22.25, and 24.3% 

higher than those of multiple regression analysis. The comparison showed 

that the BP neural network algorithm obtains the highest model accuracy, but 

because the model is not intuitive, PLSR has the advantages of intuitive and 

simple models in the three algorithms. In practical applications, the wind loss 

model based on a BP neural network or PLSR can be selected according to the 

operational requirements and software and hardware conditions. This study 

can provide a basis for wind control in precise variable spraying and promote 

the development of wind control technologies.

KEYWORDS

wind variable application, wind loss, regression algorithm, canopy thickness, leaf 
area, LiDAR
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Introduction

Pesticide spraying can effectively control diseases and pests 
and improve fruit quality and fruit yield (Eugen et  al., 2017; 
Nuyttens et al., 2017; Gu et al., 2020). At present, continuous and 
undifferentiated application is widely used for pesticide 
applications in orchards, which presents a series of economic and 
ecological problems such as large amounts of pesticide spraying, 
low utilization rates, excessive pesticide residues in agricultural 
products, and environmental pollution (Abbas et  al., 2020; 
Manandhar et  al., 2020; Song et  al., 2020). Accurate variable 
spraying can be utilized according to information on crop canopy 
characteristics, realizing pesticide application according to the 
presence or absence of crops, canopy volume, and density and 
effectively addressing problems in existing application operations 
(Zhou et  al., 2017; Colaço et  al., 2018), which can effectively 
promote sustainable agricultural economy and ecology.

Variable wind applications can disturb leaves, enhance the 
ability of droplets to penetrate and deposit in the canopy, and 
improve spray operation quality (Gu et al., 2014). This approach 
is an internationally recognized technical means to effectively 
improve the utilization rate of pesticides (Chen et al., 2017; Li 
et al., 2017). At present, research on wind regulation is in the 
primary stages of development, the regulation method is not 
mature, and there is a lack of effective control models. Whether 
wind control is appropriate during the application process directly 
affects the operational effect (Al-Jumaili and Salyani, 2014; Chen 
et al., 2017; Song et al., 2017). If the wind force is too small, the 
chemical solution cannot penetrate the surface of the canopy and 
deposit inside the canopy, resulting in incomplete disease 
prevention and control, increasing the occurrence of diseases. 
Excessive wind force will cause the drifting of liquid medicine, 
polluting the soil and the surrounding environment and 
endangering humans and livestock. Khot et al. (2012) studied 
variable spraying under different wind conditions and walking 
speeds. Their test results showed that a 70% air-assisted spray was 
more effective than the 100% air-assisted spray, which can 
effectively reduce droplet drift. Wind regulation methods have 
mainly focused on wind regulation technologies and sprayer 
devices, the establishment of distribution methods for wind and 
fog fields outside a canopy, and so on. There is less research on the 
distribution of wind fields and wind demand and loss models in 
orchard tree canopies (Zhai et al., 2018). Accurately regulating the 
wind force of a spray and studying the influence law of wind force 
on fog droplets in a canopy is the focus of this current research.

Wind regulation includes wind direction, wind speed, and 
wind volume. The basis of wind regulation is to control the 
direction of air supply consistent with the direction of spray (Duga 
et al., 2015b). Wind speed and wind volume are the main research 
topics of wind regulation, and the two are coupled relationships. 
Through the coordinated regulation of the air inlet and outlet of a 
sprayer fan, wind force regulation can be achieved to provide 
appropriate wind force for an orchard tree canopy and ensure that 
the liquid medicine evenly covers the fronts and backs of leaves 

and the surfaces of orchard tree branches. The distribution of wind 
power in space and the canopy of an air-delivered sprayer is 
mainly studied through computational fluid dynamics (CFD) 
simulation technology. CFD technology can reduce the cost of 
wind prediction, and it is an important means to study the wind 
fields of sprayers. Dekeyser et al. (2013) used CFD to simulate a 
wind field outside the air outlet of a horizontal axis sprayer, 
distribution sprayer, and independent nozzle air sprayer. Through 
experimental verification, it was concluded that the CFD 
simulated wind field can better fit the experimental data. Duga 
et al. (2015a) studied the influence of external wind force and 
spray type on spray distribution in different orchards by 
establishing three-dimensional numerical models of tree crowns 
for four orchard trees using CFD modeling and orchard test 
verification methods and improved the quantitative understanding 
of spray design, wind force, and canopy structure interaction. In 
the above research, through CFD modeling, the wind field 
distribution of the sprayer was found to be mostly the wind field 
outside the canopy. There has been less research on wind fields 
inside a canopy. Hong et  al. (2017) used CDF technology for 
modeling by using virtual porous media instead of actual trees. It 
was found that canopy size and canopy density have a great impact 
on air entering the canopy, and the air velocity will decrease with 
increasing canopy thickness, tree height, and canopy density. They 
established a CFD model for the distribution of wind forces in a 
canopy but did not obtain an effective mathematical model that 
could directly calculate the wind force in a canopy.

The wind regulation model is the basis of wind regulation. 
The wind force is affected by the canopy thickness and canopy 
density during canopy penetration. Most of the existing studies 
have focused on modern orchards, and the research objects were 
characterized by small canopy thicknesses, dense branches and 
leaves, and uniform distribution. The wind loss model can make 
the wind force regulation reasonable. Through the wind loss 
model, the wind loss can be  calculated through the canopy 
information, and then the wind speed served by the sprayer can 
be  known. Reasonable wind for spray can improve the 
uniformity of pesticide deposition and the efficacy. Research on 
a wind field and wind loss model in a traditional thick canopy 
has not been carried out. Due to the large changes in canopy 
thickness and density in different areas of orchard tree canopies, 
the distribution of wind forces in different areas of a canopy has 
the characteristics of large differences in change rules and  
is difficult to measure and quantify, which hinders the 
establishment of wind control models.

At present, research on variable wind spraying technology has 
achieved variable spray volume control and wind direction 
control, and variable spray technology has been preliminarily 
achieved. However, there is a lack of research on the law of wind 
change in orchard tree canopies. To study the law of wind loss 
under different influencing factors in orchard tree canopies, based 
on previous canopy volume detection (Gu et al., 2021a) and the 
fitting model of LiDAR point cloud data and the leaf area (Gu 
et al., 2021a, 2022). By gridding the tree canopy, the wind was 

204

https://doi.org/10.3389/fpls.2022.1010540
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gu et al.� 10.3389/fpls.2022.1010540

Frontiers in Plant Science 03 frontiersin.org

measured outside and inside the canopy. The wind loss model in 
canopies based on the wind speed at the entrance of the canopies, 
canopy thickness, and canopy leaf area/LiDAR point cloud data 
are evaluated in this study. The classic regression, PLSR, and BP 
neural network algorithms are used to establish the wind loss 
model in canopies, which provides an effective basis for wind 
regulation for accurate variable spraying and plays an important 
role in achieving pesticide reduction and increased efficiency.

Materials and methods

Test platform

We designed a three-dimensional measurement platform of 
orchard tree canopies, enveloped a whole orchard tree canopy in 
the platform, and achieved the positioning of canopies in three-
dimensional space. Figure 1 shows a schematic diagram of the 
wind measurement process in a canopy. The sprayer sends air 
through the air supply system. The sprayer applies the pesticide on 
one side of the orchard tree when working between rows, and then 
spray on the other side when the row changed. According to the 
operation mode of the sprayer, only one side of the orchard tree 
canopy was studied. In the wind measurement of canopy, the 
outermost side of the tree is the wind inlet measurement point, 
and the central line of the tree row is the wind outlet measurement 
point. The wind force at the canopy inlet (black measurement 

point) and outlet (red measurement point) is measured by a wind 
meter, and L is the distance (2 M) from the wind supply center of 
the sprayer to the position of the orchard tree row during the wind 
measurement process. A Langshan 3 WGF-300D air-driven 
orchard applicator is used for air supply. The working pressure of 
the applicator is 1.2–1.5 MPa, the flow of the medicine pump is 60 
l/min, the fan speed is 0–2,800 r/min, the volume of the medicine 
box is 300 l, and the overall dimension is 2.5 × 1.3 × 1.16 M.  
Moreover, the spray width is greater than or equal to 20 M, the 
spray height is greater than or equal to 7 m, and the operation 
speed is 3–4.2 km/h. The thermal anemometer is used to measure 
the wind force in the canopy. The model is gm8903, the 
measurement range is 0–30 m/s, and the resolution is 0.001 m/s. 
The canopy between the measurement points of the canopy inlet 
and canopy outlet is the wind measurement canopy area 
(green area).

According to the distribution of the orchard tree canopy in the 
grid area, the canopy is divided into different measurement areas 
by dividing lines. The number of measurement areas is the same 
as the number of applicator nozzles, and the measurement area is 
divided into 0.2 × 0.2 M (Figure 2), realizing the positioning of 
different measurement areas in the canopy area. Marking the 
positions of wind measurement points at the entrance and exit of 
the canopy with label paper is conducive to the smooth progress 
of wind speed measurement in the canopy. In Figure 2, the red 
point is the measurement position mark point, and the green 
frame is the measurement division area.

FIGURE 1

Schematic diagram of the canopy wind measurement.
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Test orchard tree

The selected orchard tree in the test is shown in Figure 3. 
The test site is the Xiaotangshan National Precision Agriculture 
Research Demonstration Base in Changping District, Beijing. 
The test tree was one Fuji apple tree, and the tree was 5 years 
old. The tree used in the research is open center tree shape 
(Gao et  al., 2015). It has the advantages of obvious middle 
trunk, main branch, and natural stratification. During the 
processes of growth, the tree pruning amount is light, growth 
and formation are fast, and bearing of fruits early. The height 
of the tree was 2.3 M, the lower edge of the canopy was 0.8 M 
from the ground, and the crown was 1.5 M high and 2.5 M 
wide. The row spacing is 4 M and the plant spacing is 3.5 M. The 
experimental research time was October 11, 2020. According 
to the definition of the growth stage of mono- and 
dicotyledonous plants (Bleiholder et al., 2001), the apple tree 
is in the final stage of the principal growth stage: maturity of 
the fruit and seed; fruit ripening for consumption; and fruit 
achieving typical taste and firmness. At this time, the apples are 
mature with typical taste and hardness. Apple trees in the 
orchard have no fallen leaves, and the distribution of the leaf 
area in the canopy has not changed.

Test method of wind in the canopy and 
natural wind measurement

Before the test, the air supply width of different wind forces of 
the sprayer was determined, the measurement position was set to 
1, 1.5, and 2 M away from the fan outlet, and the air supply width 
range of the wind force from the sprayer outlet to the measurement 
position was measured based on a position 1 M away from the 
horizontal ground in the vertical direction. During the 

measurement process, different applicator fan speeds were set, the 
wind speed boundary was measured as 2 m/s, the horizontal 
displacement between the measurement position and the left and 
right sides of the air outlet was recorded, and the wind supply 
width of the sprayer was determined.

The wind measurement points were laid out on a three-
dimensional measurement test bench, as shown in Figure 2, and 

FIGURE 2

Canopy grid division and measurement point marking for the airflow test.

FIGURE 3

Test orchard tree.
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the wind speed measurement points were marked at the entrance 
and exit of the canopy with label paper (Figure 4A). The air supply 
width was determined according to the results. Before the test, the 
moving distance of the applicator was calibrated. After each 
measurement, the wind speed at the corresponding canopy 
position at the air outlet of a group of sprayers moved forward  
and continued to measure the next test unit, as shown in 
Figure 4B. During the experiment, the sprayer is in the middle of 
tree row. The center of sprayer from the center line of tree row is 
2 M, and consistent with the distance of the fruit farmers’ 
planting operation.

During the measurement of the wind speed at the wind inlet 
and outlet at the marked position of the canopy, to detect the wind 
force at different positions in the canopy and reduce artificial 
interference, an anemometer measuring probe was fixed on the 
1.5 M probe rod (Figure 5), the probe was placed at the measuring 
point in the canopy through the probe rod, the wind speed was 
measured, and the wind value at each measuring position was 
read 3 times.

When the orchard experiment was conducted, the nature 
wind speed was measured. We  set up a WindSonic portable 
weather station which was used to measure natural wind speed in 
the orchard. The data was obtained once per minute.

Data processing method of the wind 
measurement test in the canopy

During the test, the fan speeds of the sprayer were set to 1,381, 
1,502, and 1,676 r/min, and the wind speeds at the inlet and outlet 
of the wind were obtained to conduct an experimental study on 
the wind loss in the canopy. The three levels of spray fan speed 
represent different air-supplied conditions for the diversity of test 
conditions. The wind loss model is different with different air 
supply speed. The canopy wind loss rate was calculated using the 

inlet and outlet wind speeds of the canopy wind, and the 
calculation formula is:

	 ( )
anopy

anopyIN anopyOUT anopyIN/
C

C C C

SpeedLoss
Speed Speed Speed

=
−

	
(1)

where,
SpeedLossCanopy - wind speed loss rate.
SpeedCanopyIN - inlet wind speed, m/s.
SpeedCanopyOUT - outlet wind speed, m/s.

Due to the influence of the location of air inlets and outlets 
and the external natural wind, any unreasonable data groups need 
to be removed in the process of calculating the wind loss. First, 
according to the wind blowing process, the wind speed at the 
canopy outlet should be able to continuously disturb the leaves 
(Dai, 2008), ensure that the liquid medicine is evenly deposited on 
the fronts and backs of the leaves at the canopy outlet, and remove 
the measurement points where the wind speed at the canopy wind 
outlet is zero. Due to the influence of natural wind, the 
measurement points where the wind speed at the canopy inlet is 
less than that at the canopy outlet are removed. Due to the small 
canopy thickness and density of branches and leaves at individual 
positions of the canopy, the data of measurement points with 
equal wind speed at the entrance and exit of the canopy are 
removed. Using the above process, effective data for the study of 
the wind loss model of the orchard tree canopy are obtained.

Measurement of canopy thickness and 
leaf area

Before the wind measurement test, the canopy thickness and 
leaf area of different areas of the orchard tree canopy were 
measured. The canopy thickness measurement adopted the 

A B

FIGURE 4

Canopy airflow measurement test. (A) Layout of canopy airflow test points. (B) Canopy airflow measurement test.
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canopy volume detection method CMC (canopy meshing profile 
characterization; Gu et al., 2021b) obtained in previous research 
to calculate the thickness of different canopy positions.

The measurement method for the canopy leaf area adopts a 
non-destructive statistical measurement method to calculate 
the leaf area for different areas in the canopy (Figure 6). To 
manually measure the leaf area of apple trees in different areas, 
a three-dimensional measurement grid frame of canopy leaf 
area is used to divide the apple tree canopy into different areas. 
It is necessary to count the number of leaves in the three grades 
of large, medium, and small leaves in the measurement area, 
multiply the calculated average value of leaf area in each grade 
by the number of leaves in each grade, and sum the leaf area 
calculated in each grade to obtain the sum of the leaf area in this 
area. The leaf area obtained by statistical analysis was compared 

with the total leaf area measured by the leaf area instrument one 
by one, and the relative error was 1.8% (Gu et al., 2022). The 
accuracy is high and is feasible and appropriate for this 
experimental study.

Wind loss model

To obtain the wind speed at the entrance of the canopy, the 
wind stroke in the canopy, the leaf area/LiDAR point cloud data 
in different areas of the canopy, and the wind loss rate in the 
canopy under different wind conditions, multiple regression, 
PLSR, and BP neural network algorithms that can perform 
regression analysis on multiple dependent variables and multiple 
independent variables were used.

Classic regression analysis was carried out using Minitab 
software; the appropriate relationship model was selected, the 
regression statistics were stored, the residual analysis and 
confidence interval were tested, and a lack-fit test was carried 
out. When creating regression equations, the PLSR algorithm 
considers extracting the principal components of dependent 
variables and independent variables (principal component 
analysis: PCA) and extracting the maximum correlation between 
principal components (canonical correlation analysis: CCA). 
This is the product of three basic algorithms, PCA, CCA, and 
multiple linear regression, which can remove the redundancies 
among data to the greatest extent. The BP neural network 
regression algorithm can carry out more accurate regression on 
multiple influencing factors and obtain an accurate model. 77 
sets of data were obtained in the research. To prevent the 
obtained model from fitting the training set well, the fitting effect 
of data other than the training data is inconsistent. 70% of the 
data are used for model establishment, and the remaining 30% 

FIGURE 5

Airflow measurement in the canopy.

FIGURE 6

Leaf area measurement by statistical analysis.
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of the data are used for model verification. The data set was 
disorganized in the process, and the training and test set was 
randomly extracted.

Results

In this study, the selected object is orchard trees that are 
widely planted in Chinese apple orchards and have large canopy 
thicknesses. During the experiment, the natural wind speed range 
was 0.2 m/s-0.9 m/s, less than 1 m/s. Since the air-assisted sprayer 
supplied high-intensity wind, the interior of the tree canopy would 
not be affected by the natural wind. The concept of canopy zoning 
is used to study the wind loss model, which meets the actual 
requirements of orchard pesticide application.

The sprayer ranges of the air delivery 
width

Table 1 shows that there is a large gap between the first group 
and the second group at the fan speed range of 490 r/min. The 
reason is that the natural wind force interferes with the wind force 
measurement resulting in the wind turbine wind force 
measurement process. At fan speeds of 1,207 and 1,280 r/min, the 
measured fan speed range is relatively uniform. The measured 
values in Table 1 indicate that the air supply range of the sprayer 
can be set to 0.2 M. This is consistent with the wind grid size of  
0.2 × 0.2 M set in this study.

Normality test of the residual of the wind 
measurement experimental data

Before the multiple regression analysis of the data, a residual 
normal analysis of the test data is required (Figure 7). The normal 
probability diagram of the residual is approximately a straight line, 
indicating that the data are randomly distributed, have good 
fitting to the random error, and can extract all the predictable 
data ranges.

Correlation analysis of the research 
factor interaction items

During the modeling process, in addition to the influencing 
factors of experimental research, data interaction is key to an 
accurate model. Table 2 shows a correlation analysis between the 
two factors of the overall canopy data under different fan speeds. 
According to Table 2, the correlation between the influencing 
factors under different fan speeds is generally less than 0.5, which 
shows that the above factors are independent of each other. 
During wind loss model research on the data, the interactions 
between the factors were not considered.

Research on wind loss models in 
canopies based on classic regression 
algorithms

Based on the canopy leaf area group data and LiDAR point 
cloud data group, a multiple regression model within the canopy 
was constructed by using the classic regression method, and the 
model was evaluated. The canopy inlet wind speed, canopy 
thickness, canopy leaf area, and canopy wind loss model under 
different wind conditions were calculated, and the canopy inlet 
wind speed, canopy thickness, LiDAR point cloud data, and 
canopy wind loss rate model were evaluated. Formulas 2–7 are 
the regression models of 1,381 r/min canopy leaf area, 1,381  
r/min canopy LiDAR point cloud, 1,502 r/min canopy leaf area, 
1,502 r/min canopy LiDAR point cloud, 1,676 r/min canopy leaf 
area and 1,676 r/min canopy LiDAR point cloud data set in turn:

	
anopy1

2 5
1 2 30.303 1.59 10 0.403 1.4 10

CSpeedLoss
x x x− −
=

− × + − × 	
(2)

	
anopy2

2 6
1 2 40.301 1.64 10 0.401 3 10

CSpeedLoss
x x x− −
=

− × + − × 	
(3)

	
anopy3

2 5
5 2 30.341 2.77 10 0.284 2.4 10

CSpeedLoss
x x x− −
=

+ × + − × 	
(4)

	
anopy4

2 5
5 2 40.335 3.16 10 0.286 1.8 10

CSpeedLoss
x x x− −
=

+ × + − × 	
(5)

	
anopy5

2 6
6 2 30.277 1.12 10 0.283 9 10

CSpeedLoss
x x x− −
=

+ × + − × 	
(6)

	
anopy6

2 6
6 2 40.274 1.2 10 0.285 6 10

CSpeedLoss
x x x− −
=

+ × + − × 	
(7)

TABLE 1  The measurement range of the air delivery width of the sprayer.

Fan speed  
(r/min)

Measurement 
position from wind 

outlet (m)
Wind supply width (m)

490 1 0.18 0.1

1.5 0.32 0.09

2 0.33 0.078

1,207 1 0.23 0.1

1.5 0.4 0.1

2 0.21 0.23

1,280 1 0.25 0.12

1.5 0.2 0.13

2 0.11 0.14
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where:
SpeedLossCanopy1—Wind loss rate based on canopy leaf area at 

1381 r/min.
SpeedLossCanopy2—Wind loss rate based on the LiDAR point 

cloud of the canopy at 1381 r/min.
SpeedLossCanopy3—Wind loss rate based on canopy leaf area at 

1502 r/min.
SpeedLossCanopy4—Wind loss rate based on the LiDAR point 

cloud of the canopy at 1502 r/min.
SpeedLossCanopy5—Wind loss rate based on canopy leaf area at 

1676 r/min.
SpeedLossCanopy6—Wind loss rate based on the LiDAR point 

cloud of the canopy at 1676 r/min.
x1—wind speed at canopy inlet at 1381 r/min, m/s.
x2—canopy thickness, m.

x3—canopy leaf area, cm2.
x4—LiDAR point cloud data of canopy, PCs.
x5—1,502 r/min, wind speed at canopy inlet, m/s.
x6—1,676 r/min, wind speed at canopy inlet, m/s.

Table 3 shows the R2 of the above regression model (Formulas 
3–8), and it is clear that the R2 range of the canopy regression 
model at different speeds is 45–60.4%. The difference between the 
leaf area and LiDAR point cloud data group in the regression 
model R2 is small, which can be ignored in the range of 0 ~ 0.2%, 
indicating that the leaf area data and LiDAR point cloud data have 
the same impact on the wind loss model, and they have a strong 
correlation. Consistent with the research results of Sanz-Cortiella 
et al. (2011); Zhang et al. (2017) and Gu et al. (2021a) on the 
relationship between LiDAR point cloud data and canopy leaf 

A B

C

FIGURE 7

Normal distribution of residuals in the canopy leaf area data set at different sprayer fan speeds. (A) 1381 r/min data set. (B) 1502 r/min data set. 
(C) 1676 r/min data set.

TABLE 2  Correlation analysis of all data before and after the canopy at different speeds.

Fan speed (r/min) Canopy thickness × 
inlet wind speed

Canopy thickness × 
leaf area

Inlet wind speed × 
leaf area

Canopy thickness × 
LiDAR point cloud 

data

Inlet wind speed × 
LiDAR point cloud 

data

1,381 0.487 0.416 0.374 0.498 0.490

1,502 0.351 0.400 0.352 0.475 0.541

1,676 0.226 0.412 0.238 0.487 0.404
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area, when calculating the canopy wind loss model, the leaf area 
data and LiDAR point cloud data are selected to build the wind 
loss model. Because LiDAR point cloud data are easier to obtain 
than the leaf areas of different canopy areas, LiDAR point cloud 
data are used to replace the canopy leaf area data.

Table 4 analyses the significance of various test factors on the 
regression process of the model. In the variance calculation 
process, the p value distribution of LiDAR point cloud data and 
canopy leaf area in the model is 0.281–0.851, which are both 
greater than 0.1 and indicate that these two factors have no 
significant impact on the model. Based on previous research on 
the distribution of wind fields in a canopy (Hong et al., 2017), it is 
concluded that density is the main factor affecting the distribution 
of wind fields in a canopy because the research object is modern 
orchards, which are characterized by thin canopies and dense leaf 
distributions. The orchard trees selected in this study are 
traditional thick canopy orchard trees, and the leaves in the 
canopy are unevenly distributed, which has little impact on the 
wind loss under the action of wind. Through the above analysis, 
the canopy leaf area and LiDAR point cloud data are removed, and 
the wind loss model of canopy inlet wind speed and overall 
canopy thickness is further studied. The model of the wind loss 
rate in the canopy under different rotating speeds of 1,381, 1,502, 
and 1,676 r/min (Formulas 8–10) are calculated.

	
2

anopy7 1 20.3 1.74 10 0.4CSpeedLoss x x−= − × +
	

(8)

	
2

anopy8 5 20.335 2.53 10 0.278CSpeedLoss x x−= + × +
	

(9)

     
2

anopy9 6 20.274 1.07 10 0.281CSpeedLoss x x−= + × +
	

(10)

where:
SpeedLossCanopy7—Wind loss rate based on canopy thickness at 

1381 r/min.
SpeedLossCanopy8—Wind loss rate based on canopy thickness at 

1502 r/min.
SpeedLossCanopy9—Wind loss rate based on canopy thickness at 

1676 r/min.

The R2 values of the obtained model are 60.3, 50.6 and 44.9% 
at 1381 r/min, 1,502 r/min and 1,676 r/min, respectively. Through 
the study of different canopy wind loss models, it is concluded that 
the canopy inlet wind speed and canopy thickness are the main 
influencing factors of wind loss, among which the canopy 
thickness is more significant. Hong et al. (2017) also demonstrated 
that canopy thickness is the main factor affecting the distribution 
of wind in a canopy.

Through the above analysis, it is concluded that the accuracy 
of the regression model gradually decreases with increasing fan 
speed because with increasing fan speed, the wind speed at the 
entrance of the canopy increases, and after the wind enters the 
canopy, it is affected by factors such as the density and direction 
of branches in the canopy, resulting in a decline in the fitting effect 
of the wind loss model. This is consistent with the research results 
of Khot et al. (2012), who found that 70% wind assistance achieves 
a better result than 100% wind assistance.

Research on the wind loss model in a 
canopy based on the PLSR algorithm

Through classic multiple regression analysis, it is concluded 
that the correlation coefficient R2 of the regression model is small, 
and the interpretation ability of the prediction data is weak. To 
obtain a better wind loss model based on multiple regression, the 
PLSR algorithm is used to study the canopy wind loss model based 
on canopy inlet wind speed and canopy thickness. Formulas 
11–13 are the wind loss models obtained under the conditions of 
fan speeds of 1,381, 1,502, and 1,676 r/min, respectively.

      
2

anopy10 1 20.282 1.22 10 0.391CSpeedLoss x x−= − × +
	
(11)

     
2

anopy11 5 20.213 3.39 10 0.319CSpeedLoss x x−= + × +
	
(12)

	
2

anopy12 6 20.22 1.03 10 0.321CSpeedLoss x x−= + × +
	
(13)

where,
SpeedLossCanopy10—Wind loss rate based on PLSR at 1381 r/min.
SpeedLossCanopy11—Wind loss rate based on PLSR at 1502 r/min.
SpeedLossCanopy12—Wind loss rate based on PLSR at 1676 r/min.

TABLE 3  R2 values of the regression models under different spray fan 
speeds.

Project
1,381 r/min 1,502 r/min 1,676 r/min

Leaf 
area LiDAR Leaf 

area LiDAR Leaf 
area LiDAR

Model 2 3 4 5 6 7

R2 60.4% 60.3% 51.2% 51.4% 45% 45%

TABLE 4  Significance of the factors of the regression models of the 
canopy wind loss model under different spray fan speeds.

Fan 
speed r/
min

Model

Significance

Inlet 
wind 
speed

Canopy 
thick

Leaf 
area LiDAR

1,381 2 0.22 0.000 0.604

3 0.231 0.000 0.851

1,502 4 0.022 0.000 0.351

5 0.017 0.000 0.281

1,676 6 0.267 0.000 0.726

7 0.260 0.000 0.721
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Table  5 shows that the fitting accuracy of the model 
obtained by PLSR is higher than that of the multiple regression 
model by 2.1, 14.7, and 12%. With the increase in the fan speed, 
the obtained canopy wind loss model R2 gradually decreases. As 
the fan speed increases, the wind speed at the canopy inlet 
gradually increases, but as the fan outlet of the sprayer remains 
unchanged, the increase in the wind speed at the canopy inlet 
does not increase synchronously with the fan speed. The wind 
loss rate obtained through the wind inlet and the canopy wind 
outlet fluctuates greatly, resulting in the fitting effect of the 
model not increasing with increasing speed. At the same time, 
it is concluded that the prediction of the model for the 
verification set is weak, and the prediction ability gradually 
decreases with increasing speed. The reason for this 
phenomenon is that the wind loss rate gradually increases with 
the fluctuation of fan speed, and the extraction of verified data 
sets has a great impact on the verification results. The root mean 
square error of the data is less than 0.3, indicating a good degree 
of data concentration.

Study of the wind loss model in the 
canopy based on the BP neural network

The fitting accuracy of the regression model obtained by the 
PLSR algorithm is significantly higher than that of the multiple 
regression model, but the fitting accuracy of the model is still low, 

at less than 0.7, which cannot predict the canopy wind loss well. The 
BP neural network can use the error after output to evaluate the 
leading error of the output layer, update the error of the previous 
layer, and gradually calculate the errors of other layers to obtain a 
more accurate regression model calculation of the data. A BP neural 
network is used to train the wind loss model of the data group at 
different speeds through the test data group, and the prediction 
ability of the model to the data is obtained through analysis.

N-fold crossover divides the data set for many times, and 
averages the results of multiple evaluations, so as to eliminate the 
adverse effects caused by unbalanced data division in a single 
division. The model with the best generalization ability can 
be selected from a variety of models. It can effectively solve the 
over fitting of data, avoid the limitations and particularity of fixed 
divided data sets, and have more obvious advantages in small-
scale data sets. In the study, 3-fold cross validation and 5-fold 
cross validation were selected according to the number of data sets 
(77 sets). The BP neural network-n-fold cross validation method 
is adopted, and the training sets and test sets with different ratios 
are used for multiple tests, and the results are averaged.

Under the conditions of different fan speeds of 1,381, 1,502 
and 1,676 r/min, the R2 of wind loss model of the BP neural 
network-3-fold cross validation is 76.55, 63.53 and 60.22%. The R2 
of the BP neural network-5-fold cross validation is 81.78, 72.85 
and 69.20%. The models of BP neural network-5-fold cross 
validation were better than the BP neural network-3-fold cross 
validation. The accuracy of both the models is higher than that of 
the model obtained by the PLSR algorithm. The BP neural 
network-5-fold cross validation are used for the wind loss model. 
Figure 8 shows the relationship of BP neural network-5-fold cross 
validation between the predicted value and measured value of 
wind loss through the trained BP neural network model.

The equation of the two fitting formulas is shown in 
Formulas 14–16:

	 Y T1 10 93= . 	 (14)

TABLE 5  R2 and RMSE of the airflow speed loss rate model under 
different fan speeds.

Fan 
speed r/
min

Model R2 Model 
RMSE

Validation 
set R2

Validation 
set RMSE

1,381 62.4% 0.262 52.8% 0.164

1,502 65.3% 0.216 33.5% 0.216

1,676 56.9% 0.234 10.8% 0.188

A B C

FIGURE 8

BP neural network training model measurement accuracy based on different conditions. (A) 1381 r/min. (B) 1502 r/min. (C) 1671 r/min.
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	 Y T2 20 99= . 	 (15)

	 Y T3 30 90= . 	 (16)

where,
Y1—Prediction value of the wind loss rate of the BP neural 

network model at 1381 r/min.
Y2—Prediction value of the wind loss rate of the BP neural 

network model at 1502 r/min.
Y3—Prediction value of the wind loss rate of the BP neural 

network model at 1676 r/min.
T1—Measured value of wind loss at 1381 r/min.
T2—Measured value of wind loss at 1502 r/min.
T3—Measured value of wind loss at 1676 r/min.

The R2 of the formulas of 1,381, 1,502 and 1,676 r/min is 
95.13, 94.74, and 94.25%. The root mean square error is 0.15, 0.18, 
and 0.15. The standard error is 0.02, 0.03, and 0.03. The smaller 
the root mean square error and standard error, the models more 
stable. According to the metrics above, the BP neural network 
model can better fit the data.

Discussion

In this study, the classic regression algorithm, PLSR algorithm, 
and BP neural network algorithm are used to obtain a wind loss 
model. The BP neural network model has the highest accuracy, 
and the classic regression model has the lowest accuracy.

The process of obtaining functional equations through classic 
regression depends on the selection of equation types. Whether 
the selection of equation types is appropriate has a great impact 
on the accuracy of the model. In the process of data regression 
using classic regression and the PLSR algorithm, the obtained 
regression equation is more intuitive. The calculation processes of 
PLSR and classic regression models are highly dependent on the 
mathematical knowledge of operators. For functional equations 
with low regression accuracy, it is necessary to carry out stepwise 
regression. In the BP neural network training process, to obtain a 
better model and accuracy, it is necessary to set reasonable 
parameters and approach the objective function through multiple 
regression training (Lu, 2014). This algorithm cannot directly 
calculate the regression equation, and it needs a program to 
calculate the obtained model by importing software (Xin et al., 
2002). The BP neural network cannot directly reflect the 
relationship between the input and output data but can only draw 
the relationship model of the input and output by tracing points. 
The BP neural network can be used for the regression of complex 
models, especially when the relationship of variables in the model 
cannot be determined. Through the above analysis, it is concluded 
that the BP neural network regression algorithm is better than the 
PLSR algorithm and classic regression algorithm. Because the 

wind loss model obtained by the BP neural network algorithm is 
not intuitive, PLSR has the advantages of an intuitive and simple 
model in the three algorithms, which may cause some wind 
delivery errors in the spraying process. In the process of variable 
spraying selection, the wind loss model based on a BP neural 
network or PLSR can be  selected according to the required 
spraying accuracy and spraying error range.

This research shows that there is a correlation between the 
inner leaf area of the canopy and LiDAR point cloud data, which 
is consistent with the research results of Sanz-Cortiella et  al. 
(2011); Sanz et  al. (2013) and Zhang et  al. (2017). However, 
because these two factors have no significant impact on wind loss, 
the obtained wind loss model does not present leaf area and 
LiDAR point cloud data as independent variables in the model. 
On the one hand, the canopy leaves of orchard trees are not 
concentrated in the direction of canopy thickness, which has little 
impact on wind loss; on the other hand, the wind from the sprayer 
is strong, and the leaves in the canopy have little impact on its loss.

There are many factors affecting the loss of wind power in and 
out of the canopy. In addition to the thickness of the canopy and the 
number of leaves in the canopy, the loss is also affected by the 
growth direction of the branches in the canopy, the leaf inclination 
of the leaves, and the distribution form of the leaves in the canopy. 
Measurement methods are also important factors affecting the loss 
of wind power. In this study, an anemometer is used for multipoint 
measurement, and the measurement results are more accurate. 
However, there are shortcomings of low measurement efficiency, 
and wind measurements in the same measurement area are not 
obtained at the same time. In future research, multiple anemometers 
can be used to measure at the same time to reduce the impact 
caused by anemometer measurements during the testing process.

Conclusion

In the process of variable wind spraying, the appropriate wind 
force is determined in real time according to parameters such as 
canopy size and biomass in the canopy of orchard trees so that the 
droplets can penetrate the surface of the canopy and deposit into 
the interior of the canopy for the effective prevention and control 
of diseases and pests. The influencing factors and models of the 
wind loss rate in the canopy under different sprayer fan speeds are 
studied. Through classic regression analysis, the PLSR algorithm, 
and the BP neural network regression algorithm for data 
processing and model establishment, the following conclusions 
are drawn:

Classic regression analysis was used to conduct multiple 
regression analysis on the relevant factors that were assumed to 
affect the wind loss rate in the canopy. Under the conditions of 
different fan speeds of 1,381, 1,502, and 1,676 r/min, the R2 values 
of the obtained model are 0.603, 0.506, and 0.449, respectively. 
With increasing fan speed, the R2 of the obtained canopy wind 
loss model gradually decreases. The wind force at the entrance of 
the canopy and the travel of air flow in the canopy are the main 
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factors affecting the wind loss rate. Due to the uneven distribution 
of leaves in the canopy of orchard trees, the influence of the inner 
leaf area of the canopy and LiDAR point cloud data on the wind 
loss rate was not significant and was not studied as an influencing 
factor. However, it was shown that there was a correlation 
between the inner leaf area of the canopy and LiDAR point 
cloud data.

Using the PLSR algorithm and BP neural network algorithm 
to study the regression model of canopy wind loss can further 
improve the accuracy of the model. Under the above fan speed 
conditions, the R2 values obtained by the PLSR algorithm are 
0.624, 0.653, and 0.569, which are 0.021, 0.147, and 0.120 higher 
than those of the multiple regression algorithm, respectively. 
Compared with the above two methods, the BP neural network 
regression algorithm can significantly improve the fitting accuracy 
of the model. Under different fan speeds, the determination 
coefficients R2 of the model are 0.783, 0.679, and 0.715, which are 
0.18, 0.173, and 0.266 higher than those of the multiple 
regression analysis.

In this study, combined with the canopy volume and canopy 
leaf area model, a wind loss rate model under different algorithm 
conditions is proposed, which provides a reference for the wind 
control of a sprayer.
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Extensive research has been conducted on plant protection unmanned aerial

vehicle (UAV) chemical application technology in recent years owing to its

importance as a means of pest and disease control. UAV spraying in orchards

faces the drawback of drift risk and can be hazardous to non-targeted crops,

humans, and the environment. A detailed and systematic analysis must be

performed to determine the uniformity and drift risk of plant UAV sprays. In

this study, a peach orchard is sprayed with a plant-protection UAV at three

different flight velocities and we evaluate the combined pesticide deposition

performance of the canopy, ground loss, downwind ground drift, and airborne

drift. Additionally, the droplet size and coverage rate in the canopy are

calculated by using water-sensitive paper. The results demonstrate that there

is significant difference in the droplet size at flight velocities of 1–3 m/s.

The droplet size in the lower canopy is slightly smaller than those in the

middle and upper parts. Increasing the flight velocity helps the pesticide

droplets to spread and penetrate the canopy. However, it also causes a non-

uniform pesticide deposition, reduced effective coverage ratio and effective

density ratio. Among the three pesticides used in the experiment, imidacloprid

exhibits the best deposition efficiency. The deposition amount and normalized

deposition amount in the canopy were the highest at a flight velocity of 2 m/s,

accompanied by a lower ground loss under the canopy. The highest near-field

ground drift is observed at a velocity of 1 m/s, and the far-field airborne drift

is highest at 3 m/s. Lastly, this study provides a reference for the commercial

application of plant-protection UAVs.

KEYWORDS

unmanned aerial vehicle (UAV), spray deposition, spray drift, combined pesticides,
canopy, peach orchard
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Introduction

Diseases and pests are the primary factors affecting crop
production, which includes the yield and quality of grain
(Godfray et al., 2010). Statistical data confirm that diseases,
pests, and weeds account for 30% of the global crop losses each
year (Guo et al., 2019). Therefore, active measures must be taken
to reduce the impact of diseases and pests. Currently, the most
widely used method for the prevention and control of diseases
and pests involves spraying chemical pesticides on crops (Chen
et al., 2021; Sparks and Bryant, 2021; Zhang Y.L. et al., 2021).
Various methods have been developed to improve the spraying
efficiency and control the effect of pesticides, such as ground
spraying, aerial spraying, air-assisted spraying, and knapsack
spraying (Qin et al., 2016; Pan et al., 2017; Wang et al., 2019b).

Extensive research has been conducted on plant-protection
unmanned aerial vehicles (UAVs) in East Asia, China, and
other regions in recent years (Li et al., 2019; Chen et al.,
2021). In China, plant protection UAVs have been widely
implemented for field crops, fruit trees, tea trees, cotton, and
several other crops. This method significantly improves the
operational efficiency, and reduces the labor and exposure to
pesticides when compared to traditional knapsack spraying
methods. Additionally, plant protection UAVs can overcome
the limitations of traditional ground spraying equipment and
can also realize free pesticide application operations in hills,
mountains, and paddy fields. Furthermore, the downwash
airflow generated by the rotors can overturn the leaves and
promote the penetration and attachment of fine droplets
inside the canopy (Meng et al., 2019). These advantages
have led to the increased application of plant-protection
UAVs.

Droplet deposition and spray drift characteristics are
important indicators for the evaluation of plant protection
equipment. Extensive research has been conducted on the
factors affecting droplet deposition in UAV spraying, such as
droplet size (Chen et al., 2020), flight velocity (Meng et al.,
2020; Zhang S.C. et al., 2021), flight height (Zhang S.C. et al.,
2021), tree shape (Pan et al., 2017; Tang et al., 2018; Meng
et al., 2020), wind field (Chen et al., 2017), spray volume (Wang
et al., 2019a; Li et al., 2021b), aerial spray adjuvants (Meng
et al., 2018), UAV type (Wang et al., 2017, 2021), and nozzle
type (Wang et al., 2021). In terms of crop types, the existing
studies are primarily focused on field crops. The effects of UAV
parameters on droplet deposition in wheat (Lou et al., 2018;
Shan et al., 2021), cotton (Qin et al., 2018), and rice (Chen
et al., 2020), corns (Zheng et al., 2017) were analyzed extensively.
The canopy of fruit trees is three-dimensional and the density
of branches and leaves is higher when compared to field
crops. Overcoming these limitations and improving the droplet
deposition uniformity in the canopy is an important research
objective for plant-protection UAVs. Chen et al. (2017) and

Tang et al. (2018) analyzed the effects of flight velocity, height,
and application rate on droplet deposition and distribution in
citrus canopies.

The existing studies on spray tests in orchards with UAV
sprayers primarily use tracers to simulate pesticides. The droplet
deposition on the target and the spread of the tracer solution
may not concur with the results of actual pesticide spraying
due to the aerosol characteristics. Additionally, a compound
pesticide spraying mode is generally adopted during actual
application to avoid various diseases and pests, which increases
the uncertainty of deposition.

Peach (Prunus persica) is one of the most popular fruits
worldwide and presents several health benefits. Peach trees
are particularly vulnerable to pests and diseases (e.g., Myzus
persicae, Cercospora circumscissa Sacc.) at different growth
stages (Li et al., 2018; Samad et al., 2019). The spraying
of pesticides and fungicides can ensure the quality and
yield of peaches. In addition to the advantages of UAV
spraying techniques mentioned above, the UAV spraying of
chemical pesticides can overcome the drawback of a lack
of row spacing for Y-shaped peach trees. However, the
research on the canopy deposition of pesticides sprayed
by plant-protection UAVs remains limited. Therefore, a
detailed and systematic analysis of the spray deposition
and drift from a UAV sprayer in a peach orchard is
crucial.

In this study, spraying tests were conducted in a peach
orchard to obtain a better understanding of the canopy
deposition and droplet drift characteristics of plant-protection
UAV spraying methods. The spray solutions were prepared by
using three commonly applied pesticides. The effects of flight
velocity on the canopy deposition and drift were analyzed.
The deposition distribution characteristics of insecticides and
fungicides in the canopy were also analyzed using ultra-high-
performance liquid chromatography-tandem triple quadrupole
mass spectrometry. This study can provide data support for
the selection and optimization of the pesticide application
parameters for fruit trees using plant-protection UAVs.

Materials and methods

Experimental plots

The experiments were carried out commercial peach
orchard at growth stage BBCH 91 “Shoot growth completed;
foliage still fully green” (Meier et al., 1994) located at Dahuashan
Town, Pinggu District, Beijing, China. The main peach variety
of the orchard is Okubo. The trees were planted at a density of
1,000 trees/ha with a canopy height of 3.5 m, row spacing of 5 m,
and between-tree spacing of 2 m.
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Plant protection unmanned aerial
vehicle

A four-rotor electric plant protection UAV with a spray
tank volume of 22 L was used in the experiment (3WYD-4-
22A, Wuxi Hanhe Aviation Technology Co., Ltd.), as shown
in Figure 1. This UAV is based on a three-blade propeller
design which effectively reduces the vibration of the airframe
during the spray operation and also improves the flight balance.
Additionally, strong downwash airflow can be generated to
promote the penetration of droplets into the canopy. A flat-fan
nozzle is fixed under each rotor wing. The pesticide application
operation mode includes both automatic and manual modes. In
the automatic mode, the flight velocity, height, application rate,
and route can be set beforehand, and the UAV can implement an
autonomous spray operation. Thus, the flight errors caused by
manual operation can be effectively avoided. Before conducting
the experiment, the effective spray swath of the UAV was
determined to be 4.0 m. Table 1 lists the technical parameters
of the plant-protection UAV used in this experiment.

Experimental design

The experiments were conducted in a field with an area
of 150 m × 50 m; the plant protection UAV performed the
spraying operations along tree rows with a spraying length of
50 m. The UAV performed one-and-a-half rounds of spraying in
each test, covering three adjacent rows of fruit trees. The spray-
treated area was 50 m × 15 m. The measurements comprised
four parameters: droplet deposition in the canopy, ground
loss, ground drift, and airborne drift. Water-sensitive paper
(WSP, 26 mm × 76 mm, Syngenta Crop Protection AG, Basel,
Switzerland) and a Mylar card (MCD, 85 mm × 54 mm, Wuxi

TABLE 1 Technical parameters of the plant protection UAV
used in this study.

Classification Parameters

Number of rotors 4

Number of nozzles 4

Nozzle type Flat-fan, Lu120-015

Flow rate (in L/min) 0–7, adjustable

Tank capacity (in L) 22

Size (in m) 1.235× 1.235× 0.647

Rotor diameter (in mm) 838

Flight velocity (in m/s) 1.0–7.0

Effective spray swath (in m) 4

Flight duration (in min) 30

Operation efficiency (in ha/hour) 10–14

Positioning mode GNSS + RTK

Operation method Intelligent stability control

Weight (in kg) 23.5

Baike Electronic Materials Co., LTD., China) were selected as
the droplet collectors. Figure 2 depicts the sample layout of the
experimental area.

Canopy deposition
Three typical peach trees were selected as targets in the

spray-tested area. The canopy of each peach tree was divided
into three layers, i.e., upper, middle, and lower. Each canopy
layer was divided into five azimuths based on the UVA
flight direction: front, back, left, right, and center positions,
corresponding to locations 1, 2, 3, 4, and 5 in Figure 2,
respectively. There were 15 sampling points in the target tree.
A WPS card was fixed on the leaf using a paper clip at each
sampling point to ensure that the sensitive side of the WPS faced

FIGURE 1

Experimental site. (A) 3WYD-4-22A plant protection UAV; (B) spraying in peach orchard.
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FIGURE 2

Schematic diagram of sample layout in the treated area.

upward, which was used to measure the droplet size, coverage,
and density in the canopy. Five complete leaves were collected
from each sampling point to determine the pesticide content on
the leaf surface (mg/kg).

Ground loss
During the actual chemical applications, the pesticide

droplets are not completely deposited in the canopy. Some of
the droplets pass through the canopy and are deposited on
the ground, causing soil pollution. Five MCDs were arranged
on the ground under the three target peach trees to collect
the pesticides lost on the ground. MCDs were placed in five
directions under the canopy, similar to the arrangement of the
WPS in each canopy layer.

Downwind ground drift
The plant-protection UAV adopts the aerial operation mode.

The pesticide droplets easily form a downwind drift due to
crosswinds, causing pesticide damage to adjacent sensitive
crops, along with water pollution, fish and shrimp deaths, and
other events. Five MCDs were arranged on the ground in the
downwind direction at distances of 1, 3, 5, 10, 20, and 50 m
from the edge of the spray swath to measure the drift mass at
different distances.

Airborne drift
To further understand the drift potential of UAV spraying, a

metal pole was fixed at a distance of 100 m from the edge of the
treated area. Nine MCDs were successively fixed from bottom to
top at intervals of 1 m at a height of 2–10 m from the ground.
The card interface was perpendicular to the wind direction.

The flight velocity of the UAV sprayer was set to 1, 2, and
3 m/s, and the relative height between the UAV sprayer and the
top of the canopy was set to 2 m. In this study, the application

rate was set as 33 L/ha. Therefore, the nozzle flow rate at 1, 2,
and 3 m/s were 0.79, 1.58, and 2.37 L/min, respectively. During
the experiment, the mean temperature, mean humidity, and
mean wind speed of the environment were 16.8◦C, 46.3%, and
1.8 m/s, respectively.

After the spraying is completed, the droplets were allowed to
dry on the target surface for 5 min, and all samples were carefully
collected and stored in ziplock bags. A desiccant must be placed
in the ziplock bag to collect the WPS to prevent them from
being contaminated by moisture. The collected peach leaves and
MCDs were stored in a small refrigerator for further analysis.

Reagents of combined pesticides

Combined pesticide were prepared by using three
widely applied pesticides and fungicides: difenoconazole,
azoxystrobin, and imidacloprid. Formulations containing 325 g
L−1 suspension concentrate of difenoconazole-azoxystrobin
(200 g L−1 for azoxystrobin and 125 g L−1 for difenoconazole)
were obtained from Syngenta Nantong Crop Protection Co.,
Ltd. (Jiangsu, China). This formulation is widely employed
to control and prevent peach anthracnose, peach brown
spot shot holes, and other diseases. Formulations containing
imidacloprid (25%, wettable powder) were obtained from Hebei
Kaisite Agrochemical Co., Ltd. (Hebei, China). Imidacloprid
wettable powder (WP) is used to control peach aphids, scale
insects, and other common pests.

The three analytical standards used in the pesticide
deposition detection stage were purchased from Beijing
Mindleader Agroscience Co., Ltd. (Beijing, China), with purities
of 98.0% for azoxystrobin, 95.0% for difenoconazole, and
97.0% for imidacloprid. Analytical grade NaCl and MgSO4

were obtained from Sinopharm Chemical Reagent Co., Ltd.
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(Shanghai, China). Methanol, acetonitrile, and ammonium
acetate were purchased from Thermo Fisher Scientific
(Waltham, MA, United States). The primary secondary amine
(PSA) and graphitized carbon black (GCB) were provided
by Shanghai Aladdin Biochemical Technology Co., Ltd. All
the solvents used for measuring pesticide deposition were of
the LC-MS grade.

Sample processing

The water-sensitive paper samples were scanned into
digital grayscale images by using a TSN450 handheld scanner
(Tiancai Electronics (Shenzhen) Co., Ltd.) with a resolution of
1200× 1200, and the blue droplet spots on the WPS surface were
analyzed by using the iDAS image processing software which
was developed by the National Research Center of Intelligent
Equipment for Agriculture (Xu et al., 2016). This software can be
used to quickly calculate the spray deposition parameters, such
as the droplet spectral distribution, coverage, and number of
droplets. In this study, the droplet coverage rate (Cov), volume
median diameter (VMD), diffusion ratio (RD), and droplet
density (Dent) of droplets on a WPS were measured.

The pesticide deposition on the peach leaves was recorded
in terms of the mass of active ingredient (a.i.) per leaf (mg
a.i. per kg biomass). Pesticide recovery on mylar cards in
the ground loss, ground drift, and airborne drift tests was of
the mass of the active ingredient (a.i.) per unit area of the
maylar card (µg a.i. per cm2). Based on the application rate,
the theoretical deposition of the three pesticides is determined
to be 2.00 µg a.i. /cm2 for azoxystrobin, 1.25 µg a.i. /cm2

for difenoconazole, and 0.75 µg a.i. /cm2 for imidacloprid.
Ultra-high-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) was used to determine the
deposition of the three pesticides from the leaves and droplet
collection cards. The deposition amounts of the difenoconazole,
azoxystrobin, and imidacloprid agents were represented by
DEPDif, DEPAzo, and DEPImi, respectively. The UPLC-MS/MS
parameters of azoxystrobin, difenoconazole, and imidacloprid
were determined before the measurement, and the calibration
curves, R2, LOD, LOQ, recoveries, and RSD of azoxystrobin,
difenoconazole, and imidacloprid in the leaves were developed
based on the analytical standards.

The uniformity of the droplet distribution is an important
index of the pesticide application quality, which is described by
the coefficient of variation (CV). The smaller the CV value, the
more uniform the droplet distribution. The calculation formula
is given as:

CV =
S
X
× 100% S =

√∑n
i=1

(
Xi− X

)2

n = 1

where CV denotes the coefficient of variation (%), S
denotes the standard deviation of one group, X denotes

the average deposition data for one group, n denotes the
number of samplers, and Xi denotes the deposition from
each sampling point.

The droplet size distribution is a parameter which directly
reflects the distribution of droplets in the target. When applying
pesticides, a relatively uniform droplet size deposit on the leaves
achieves better coverage and control. Diffusion ratio, RD, was
used to measure the spectral distribution quality of the droplet
(Musiu et al., 2019). It represents the uniformity of the droplet
size distribution on a WPS. In general, this value exhibits a
positive correlation with the uniformity of the droplet size
distribution; a larger RD indicates a more uniform droplet
spectrum.

RD =
NMD
VMD

Here, NMD, i.e., the number median diameter, denotes the
droplet diameter below which the droplet diameter is 50% of the
total number of drops (in µm). VMD, i.e., the volume median
diameter, denotes the droplet diameter below which smaller
droplets constitute 50% of the total volume (µ m).

Droplet deposition penetration in the tree canopy represents
the diffusion ability. The penetration efficiency in the vertical
direction of the canopy was calculated as follows:

PEV =
DEPLow

DEPUpp&Mid
× 100%

where PEV denotes the vertical deposition penetration (in %),
DEPLow denotes the mean value of the amount of deposition in
the lower canopy (mg/kg), and DEPUpp&Mid denotes the mean
value of the deposition amount collected in the upper and
middle canopies (mg/kg).

The diffusion efficiency in the horizontal direction of the
canopy was calculated as follows:

PEH =
DEPint

DEPext
× 100%

where PEH denotes the deposition penetration in the horizontal
direction (in %), DEPint denotes the mean value of the amount
of deposition in the interior zone (mg/kg), and DEPext denotes
the mean value of the deposition in the exterior zone (mg/kg).
Samples 1, 2, 3, and 4 at the periphery of the canopy were set as
the exterior zones, and sample 5 was set as the interior zone. The
deposition in the canopy improves when this value is closer to 1
(Chen et al., 2022).

The minimum droplet density and coverage rate required
for canopy deposition in the traditional ground orchard air-
assisted spray mode with an application rate of 500–7000 L/ha,
are 30/cm2 (Grella et al., 2022) and 10–15% (Deveau et al.,
2021), respectively. However, ultra-low volume (ULV) or very
low volume (VLV) applications are adopted for plant protection
UAV sprays implemented in orchards with an application rate of
45–150 L/ha. The minimum droplet density threshold required
for effective spray swath measurement of the plant protection
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UAV is 15 deposits/cm2 (MH/T 1002.1, 2016). Therefore, we
selected the effective coverage ratio (ECR) and effective density
ratio (EDR) as the two indicators, according to Wang et al.
(2022), to evaluate the deposition performance of the plant-
protection UAV. ECR represents the ratio of the sample number
with a droplet coverage of more than 1% of the total samples,
and EDR represents the ratio of the sample number with a
droplet density of more than 15 deposits/cm2 to the total
samples.

The deposition efficiency of the three pesticides could not be
compared owing to the difference in the contents of the active
ingredients of the three pesticides in the spray tank. Therefore,
the measured amount of sediment was normalized to obtain the
normalized deposition amounts, DEPAzo−nor, DEPDif−nor, and
DEPImi−nor (mg·cm2/kg·µg) based on the previously described
content of the active ingredients of the three pesticides (2.00 µg
a.i. /cm2 for azoxystrobin, 1.25 µg a.i. /cm2 for difenoconazole,
and 0.75 µg a.i. /cm2 for imidacloprid).

An ANOVA test was conducted to evaluate the droplet
parameters and deposition data at different canopy locations
and three flight velocity settings, at a significance level of 0.05.
All the statistical analyses were performed using the IBM SPSS
Statistics (Version 17.0) software for Windows.

Results

The effect of flight velocity on droplet
size in the canopy

Figure 3 depicts the distribution of the droplet VMD for
different combinations of velocity and canopy height. The size
of the droplets gradually increases with an increase in the flight
velocity from 1 to 3 m/s; this change can be observed by the
naked eye, as shown in Figure 4. The blue color represents
the distribution of the droplets. The flight velocity significantly
affected the droplet size in the same canopy layer. For example,
in the upper canopy, the corresponding droplet sizes at flight
velocities of 1, 2, and 3 m/s were 302, 423, and 496 µm,
respectively, and the droplet size at 3 m/s increased by 64.23%
when compared to that at 1 m/s. This was mainly attributed to
the downwash airflow generated by the UAV rotor. An increase
in the flight velocity leads to the formation of wingtip vortices
and other airflow structures. These flow structures drive the
movement of fine droplets with the airflow, resulting in an
increase in the number of larger droplets deposited on the
canopy. The canopy height level does not significantly affect the
droplet size. However, the lower canopy droplet size (VMDLow)
is slightly lower than the upper canopy droplet size (VMDUpp)
and the middle canopy droplet size (VMDMid), as expected.
During the droplet deposition on the canopy, the branches
and leaves on the upper layer block the large droplets, while
the fine droplets easily pass through the pores of the branches

FIGURE 3

Comparison of droplet volume median diameter on WPS at
three canopy layers. Letters indicate significant differences
between flight velocities (Duncan test, α = 0.05).

and leaves and settle into the canopy. Particularly, smaller
droplets may be required to ensure an effective deposition of
pesticides in a canopy with high crown density. For UAVs, the
downwash airflow may promote the penetration of droplets into
the interior of the canopy. On the one hand, the downwash
airflow causes disturbance to the canopy, breaking the original
branch and leaf distribution structure, and the porosity of the
canopy becomes larger; On the other hand, the downwash
airflow increases the movement velocity of the droplets and
enhances the kinetic energy of the droplets transported to the
canopy.

The diffusion ratio is a widely used international index
to measure the spraying effect of droplets. It can effectively
characterize the uniformity of the droplet diameter distribution
on the surface of the target. The ideal value of the droplet
diffusion ratio is 1; that is, the volume of all the droplets is
identical. Generally, the droplet distribution is considered even
when the diffusion ratio range lies within 0.67–1 (Chen et al.,
2022). Figure 5 presents the diffusion ratio of the droplets on the
surface of the water-sensitive paper at different flight velocities.
Unfortunately, the droplet distribution was not ideal for the
set experimental conditions and the level of RD > 0.67 was
not achieved. The diffusion ratios exhibited significant variation
between different velocities at the same canopy height. Overall,
the diffusion ratio of the surface of the water-sensitive paper
exhibited a gradual decreasing trend with the increase in flight
velocity, indicating that an increase in the flight velocity reduces
the uniformity of the droplet size distribution. The average
diffusion ratios at velocities of 1, 2, and 3 m/s were 0.58, 0.45,
and 0.39, respectively, as shown in Table 2. The DR values at
different canopy heights did not vary significantly at the same
velocity. However, Xu et al. (2017) confirmed that when the
plant protection drones perform rice application operations, the
diffusion ratio in the middle layer of the rice is better than that
in the upper and lower layers.
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FIGURE 4

Droplet distribution stains on water sensitive paper in canopy layers under different flight velocity of UAV.

FIGURE 5

Mean diffusion ratio for different canopy locations and flight
velocity. Letters indicate significant differences.

The effect of flight velocity on droplet
coverage characteristics in canopy

Figure 6 presents the correlation between Cov and Dent
under real operating conditions for plant-protection UAVs. Cov
and Dent exhibit a good linear correlation, except for a few
values with Cov of more than 20% for 3 m/s, which concurs
with the findings of Grella et al. (2020). The study reported that
a good linear correlation is generally observed between Cov and
Dent when the Cov is less than 20% in the measurement of the
droplet deposition using water-sensitive paper. This is primarily
attributed to the fact that more droplets exhibit overlapping
staining when the Cov exceeds 20%. The effect of pest control
exhibits a strong correlation with the coverage characteristics of
droplets; however, excessive droplet coverage does not indicate
high control efficiency (Garcerá et al., 2011). Chen et al. (2013)
considered a Cov of more than 30% on water-sensitive paper
to indicate excessive spraying. For the conventional orchard
air-assisted spraying approach, the effective thresholds of dents
for fungicide and insecticide spraying were 70 deposits/cm2

and 30 deposits/cm2, respectively (Zhu et al., 2011; Salcedo
et al., 2020). However, the plant protection UAV adopts an
ultralow-volume spray method (ISO 5681, 2020) with less water
consumption and a larger concentration of pesticides. Further
research is required to determine the consistency of the droplet
density and coverage required for disease and pest control

with the conventional spraying methods. However, in China,
the minimum value of Dent required for the effective spray
amplitude of the current plant protection UAV is observed
to be 15 deposits/cm2 based on a large number of spraying
experiments conducted in the early stage; relevant standards
have also been formulated for regulation (MH/T 1002.1, 2016;
Song et al., 2017). Therefore, droplet densities higher than
15 deposits/cm2 and coverage rates higher than 1% (Wang
et al., 2022) were selected as the effective deposition thresholds.
For the three flight velocities, the number of samples that met
the requirements was the largest at 1 m/s, followed by the 2
and 3 m/s conditions. The maximum Dent difference does not
significantly vary for the three flight velocities, while the Cov
varies considerably. For more samples, Cov was below 3% at
1 m/s, below 6% at 2 m/s, and mostly below 15% at 3 m/s.
Additionally, although the Cov of some samples reached 30%
at a velocity of 3 m/s, the Dent did not increase significantly,
primarily due to the large size of the droplets at this velocity.

The effective coverage ratio (ECR) and effective density ratio
(EDR) were calculated based on the aforementioned effective
droplet deposition requirements (Table 2). The ECR at the
flight velocities of 1 and 2 m/s were 73.3 and 71.1, respectively;
however, it was significantly reduced at 3 m/s, which was 57.8
and 21.14% lower than that at 1 m/s. The EDR gradually
decreased with an increase in the flight velocity, and the EDR
was 48.90, 33.33, and 28.90% at the velocities of 1, 2, and 3 m/s,
respectively. In terms of Cov within the canopy, the upper
canopy coverage (CovUpp), middle canopy coverage (CovMid),
and lower canopy coverage (CovLow) all exhibited an increasing
trend with an increase in the flight velocity, such that the CovMid
at 1 m/s was 2.44%, and the CovMid at 3 m/s increased to 6.49%.
These results indicate that the ECR and EDR of the droplets
decrease despite the increase in the flight velocity and the
mean coverage (CovMean). Overall, an increase in flight velocity
reduces the proportion of effective droplet coverage which meets
pest control requirements.

The Cov at the three canopy heights did not significantly
vary at different velocities. The interior zone coverage (CovInt)
and exterior zone coverage (CovExt) of the canopy are relatively
similar, primarily due to the divergent canopy pattern of peach
trees. Therefore, it is not as difficult to apply pesticide inside
the canopy as that of dense fruit trees. CovInt reached 9.35 at
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TABLE 2 Spray coverage characteristics in canopy for the different flight velocities.

Parameters Treatment

1 m/s 2 m/s 3 m/s

Upper canopy coverage CovUpp (%) 2.25± 1.71a 2.98±3 .10a 3.4± 4.34a

Middle canopy coverage CovMid (%) 2.44± 1.54a 3.67± 3.71a 6.49± 10.30a

Lower canopy coverage CovLow (%) 1.69± 1. 51a 2.82± 2.30a 4.17± 4.38a

Exterior zone coverage CovExt (%) 2.3± 1.68a 3.15± 3.11a 3.52± 6.00a

Interior zone coverage CovInt (%) 1.45± 0.95a 3.09± 4.27a 9.30± 8.62b

Mean coverage CovMean (%) 2.13± 1.59a 3.14± 3.32ab 4.68± 6.89b

Coverage distribution uniformity CV (%) 74.70 105.88 147.49

Effective coverage ratio ECR (%) 73.30 71.10 57.80

Upper canopy droplet density DenUpp (deposits/cm2) 16.27± 13.49a 11.41± 9.31a 9.08± 10.67a

Middle canopy droplet density DenMid (deposits/cm2) 18.84± 9.17a 13.93± 10.81a 12.66± 15.80a

Lower canopy droplet density DenLow (deposits/cm2) 13.92± 11.81a 11.84± 9.82a 13.85± 10.38a

Exterior zone droplet density DenExt (deposits/cm2) 17.43± 12.26a 12.54± 9.56ab 9.57± 11.01b

Interior zone droplet density DenInt (deposits/cm2) 12.01± 6.92a 11.83± 11.46a 21.06± 14.12a

Mean droplet density DenMean (deposits/cm2) 16.34± 11.54a 12.39± 9.83a 11.86± 12.42a

Effective density ratio EDR (%) 48.90 33.33 28.90

Upper canopy droplet size VMDUpp (µm) 302.15± 50.17a 423.54± 74.33ab 496.92± 341.03b

Middle canopy droplet size VMDMid (µm) 297.00± 35.11a 427.00± 74.17a 639.33± 278.91b

Lower canopy droplet size VMDLow (µm) 290.13± 33.19a 376.87± 113.07b 449.93± 129.10b

Mean droplet size VMDMean (µm) 301.89± 39.58a 420.54± 82.35b 512.51± 261.30c

Average diffusion ratio RD 0.58± 0.11a 0.45± 0.092b 0.39± 0.14c

FIGURE 6

Plots of deposit density and spray coverage rate for different flight velocities. The horizontal red dashed line and the vertical blue dashed line
represent the minimum droplet density (15 deposits/cm2, Song et al., 2017) and coverage (1%, Chen et al., 2022) required for plant protection
UAV application, respectively. (A) 1 m/s. (B) 2 m/s. (C) 3 m/s.

a flight velocity of 3 m/s, which significantly exceeded the value
of others. The individual samples were possibly contaminated
during the application process. The CovMean values at 1, 2, and
3 m/s were 2.13, 3.14, and 4.68%, respectively. The coverage
distribution uniformity (CV) decreased with an increase in the
velocity and the CV value increased from 74.7% at 1 m/s to
147.49% at 3 m/s. This is primarily attributed to the fact that the
downward speed of the down-wash airflow is decomposed with
the increase in flight velocity, and part of the airflow generates a
wingtip vortex. Some droplets deviate from their initial motion
direction under the action of a complex wind field, which can
easily cause a sudden increase or decrease in the deposition in
some canopy areas.

Dents exhibited opposite trends at different canopy heights
(Table 2). The Dent value exhibited a gradual decreasing

trend with the increase of the velocity. For example, the
middle canopy droplet density (DenMid) at 1 m/s decreased
from 18.84 deposits/cm2 to 12.66 deposits/cm2 at 3 m/s,
indicating a decrease of 32.80%. The CovMean and mean
droplet density (DenMean) in the middle layer were higher
than those in the upper and lower layers, which is related
to the special downwash airflow auxiliary spray method of
the UAV. The downwash airflow transports droplets to the
inside of the canopy, and the upper canopy is most disturbed
by the airflow due to the shaking effect of the branches
and leaves. Some of the droplets cannot effectively attach
themselves, while the lower part is more severely occluded
by the middle and upper branches and leaves. The DenMean

values at the three velocities did not exhibit a significant
variation.
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FIGURE 7

Cumulative ratio of droplet number and the corresponding droplet size at various canopy layers under different flight velocity. The vertical
dotted lines represent the VMD when the cumulative proportion of droplet points reaches 0.9, where the blue, red, and black dotted lines
represent the upper, middle, and lower layer of the canopy, respectively. (A) 1 m/s. (B) 2 m/s. (C) 3 m/s.

The cumulative ratio of the droplet number and the
corresponding droplet size were calculated in 20 gradients
(0–50 µm, 50–100 µm, 100–150 µm... 950–1000 µm), and
the results are presented in Figure 7. The droplet number
cumulative ratio curve at various canopy parts exhibits a high
similarity at the same flight velocity. The droplet size varied at
different flight velocities corresponding to a cumulative ratio
equal to 0.9. At 1 m/s, the droplet size corresponding to the
cumulative ratio equal to 0.9 in the middle and lower layers,
was identical at 273 µm, while that in the upper layer was
approximately 315 µm. At 2 m/s, the droplet size at the three
canopy heights was consistent at 355 µm. For 3 m/s, the droplet
sizes in the upper, middle, and lower layers when the cumulative
ratio reached 0.9, were 475, 482, and 370 µm, respectively. In
general, the droplet size at an accumulation ratio of 0.9 exhibited
an increasing trend with the increase in velocity.

Spray deposition characteristics of
combined pesticides in the canopy

The collected leaves were crushed, extracted, and filtered,
and the difenoconazole, azoxystrobin, and imidacloprid
contents were determined by using UPLC-MS/MS. The
proposed method realizes trace detection of pesticide deposition
and better reflects the pesticide attachment on the leaf surface
when compared to the tracer method. We weighed the leaves
at each sampling point due to the difference in the size of
the collected leaves, to effectively characterize the amount of
deposition on the unit leaves. Subsequently, we obtained the
mass of all the leaves and obtained the deposition amount
(mg/kg) of the unit mass. Figure 8 presents the experimental
results, which demonstrate that the standard deviation of
the amount of deposition is relatively large as a whole. This
indicates that the deposition of the pesticide is very uneven,
which corresponds to the trace detection method of the
pesticide. The velocity significantly affected the deposition

amount, and the average deposition was the lowest at a velocity
of 3 m/s. Furthermore, we calculated the mean deposition
of the three pesticides at different velocities (Table 3). The
azoxystrobin mean deposition (DEPAzo−Mean) was the highest
at 27.01, 30.61, and 20.56 mg/kg, followed by the Imidacloprid
mean deposition (DEPImi−Mean) and difenoconazole mean
deposition (DEPDif−Mean). The deposition amount was
normalized owing to the differences in the dosages of the three
pesticides during dispensation. The results demonstrated that
the imidacloprid normalized deposition (DEPImi−nor) was
the highest, followed by azoxystrobin normalized deposition
(DEPAzo−nor) and difenoconazole normalized deposition
(DEPDif−nor), which is mainly attributed to the precipitation
of imidacloprid. In terms of dosage forms, azoxystrobin and
difenoconazole are used as the suspension agents (SC) and
imidacloprid is used as a wettable powder (WP). The pipe
connected to the liquid pump is located at the bottom of
the spray tank, and the content of the active ingredient of
imidacloprid in the liquid can be increased at the bottom
of the pipe or at the bottom of the tank even though
the spray tank is shaken before the spray test to mix the
liquid.

The deposition distribution characteristics of the pesticide
solutions were analyzed at different locations in the canopy.
The results demonstrated that an increase in the flight velocity
improved the penetration efficiency of the pesticide solution.
For example, the azoxystrobin vertical penetration efficiencies
(PEVAzo) at 1, 2, and 3 m/s were 81.44, 90.19, and 155.97%,
respectively, and that at 3 m/s was 91.51% higher than that at
1 m/s. Similarly, the lateral horizontal diffusion efficiency of
the canopy also improved. The horizontal diffusion efficiency
of azoxystrobin (PEHAzo) increased from 98.32% at 1 m/s to
261.47% at 3 m/s. However, a higher flight velocity increases
the coefficient of variation of the droplet deposition distribution,
due to which the deposition distribution becomes uneven and
the azoxystrobin deposition distribution uniformity (CVAzo)
reaches 130% at 3 m/s.
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FIGURE 8

Deposition amount of pesticides at different velocities and
canopy heights. (A) Azoxystrobin, (B) Difenoconazole, and
(C) Imidacloprid.

The effect of flight velocity on ground
loss

The effects of different flight velocities on the ground loss
of pesticides under tree canopies were analyzed. The ground
loss value of the three pesticides was minimum when the flight
velocity was 2 m/s, and the deposition loss on the ground was
similar at velocities of 1 and 3 m/s, as shown in Figure 9. This
is because the droplets are driven to move toward the canopy by
the downwash flow when the wind velocity is 1 m/s, and some

droplets drop from the leaf surface or are directly deposited
on the ground through the canopy gap. The downwash airflow
velocity decomposed at a flight velocity of 3 m/s, and the fine
droplets moved along a zig-zag direction to the ground under
the action of the wing tip vortex, resulting in a large pesticide
loss.

The effect of flight velocity on spray
drift

Figure 10 depicts the pesticide drift curve within 50 m of
the drift treatment area. The drift volume exhibits a gradual
decreasing trend with an increase in the flight velocity. This
concurs well with the existing reports (Chen et al., 2020). The
drift percentage can reach 85% at 1 m, and the drift percentage
is less than 5% when the distance is 10 m. The drift percentage
was less than 0.2% 50 m downwind (Table 4).

The pesticides can still be detected 100 m downwind, and the
drift percentage goes up to 1%, indicating that the application
drift of the plant-protection UAV remains relatively significant.
Figure 11 presents the drift percentages at different heights.
Overall, the pesticide drift in the vertical direction was not
closely related to the height. However, the vertical distribution
of the three pesticides was saddle-shaped at 3 m/s, and the drift
volume was highest at 3 and 8 m. The airborne drift was the
highest at 3 m/s when compared to the three flight velocities,
which was the opposite of the close ground drift (the drift
volume was the highest at 1 m/s at the three flight velocities).
This is primarily attributed to the increase in the flight velocity,
which forms a characteristic airflow structure such as a wingtip
vortex. These vortex structures typically exhibit higher energy,
and the fine droplets can be transported in the air over a
long distance under the joint action of the ambient crosswind.
Among the three pesticides, imidacloprid presented the highest
drift percentage, followed by azoxystrobin, while difenoconazole
presented the lowest drift percentage, which was consistent with
canopy normalization deposition.

Discussion

In recent years, the use of plant protection UAVs for
pesticide spraying operations has been increasing rapidly in
China. The application field has gradually extended from
grain crops to commercial crops such as fruit trees, tea trees,
and vegetables. This operation method does not consider
topographic factors, and thus presents broad development
and application potential in hilly areas where it is difficult
to operate ground machinery. The plant protection UAV
presents the characteristics of low water consumption and high
liquid concentration when compared to the traditional spraying
method. Multiple pesticides can be simultaneously included in
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TABLE 3 Spray deposition distribution characteristics in canopy for the different flight velocities.

Parameters Treatment

1 m/s 2 m/s 3 m/s

Difenoconazole vertical penetration efficiency PEVDif (%) 76.63 103.03 173.36

Azoxystrobin vertical penetration efficiency PEVAzo (%) 81.44 90.19 155.97

Imidacloprid vertical penetration efficiency PEVImi (%) 79.90 89.47 170.01

Difenoconazole horizontal diffusion efficiency PEHDif (%) 97.24 52.76 267.97

Azoxystrobin horizontal diffusion efficiency PEHAzo (%) 98.32 68.21 261.47

Imidacloprid horizontal diffusion efficiency PEHImi (%) 97.36 54.59 271.28

Difenoconazole deposition distribution uniformity CVDif (%) 63.70 79.78 150.12

Azoxystrobin deposition distribution uniformity CVAzo (%) 51.95 75.57 130.00

Imidacloprid deposition distribution uniformity CVImi (%) 55.28 80.20 149.91

Difenoconazole mean deposition DEPDif−Mean (mg/kg) 13.55± 8.63ab 17.42± 13.90a 9.88± 14.84b

Azoxystrobin mean deposition DEPAzo−Mean (mg/kg) 27.01± 14.04ab 30.61± 13.13a 20.56± 26.69b

Imidacloprid mean deposition DEPImi−Mean (mg/kg) 19.38± 10.71a 23.77± 19.06a 12.01± 18.00b

Difenoconazole normalized deposition DEPDif−nor (mg·cm2/kg·µg) 10.84± 6.91ab 13.94± 11.12a 7.91± 11.88b

Azoxystrobin normalized deposition DEPAzo−nor (mg·cm2/kg·µg) 13.52± 7.02ab 15.30±11.57a 10.28±13.34b

Imidacloprid normalized deposition DEPImi− nor (mg·cm2/kg·µg) 25.83± 14.28a 31.69± 25.41a 16.01± 24.00b
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FIGURE 9

Histogram of ground loss percentage of three pesticides at
three flight velocities. On the abscissa, the letters A, D, and I
denote Azoxystrobin, Difenoconazole, and Imidacloprid,
respectively. The numbers 1, 2, and 3 denote the flight velocity
of 1, 2, and 3 m/s, respectively.

a single spraying process, which has been widely implemented
to avoid various pests and diseases. For example, the application
strategy of “one spraying and three defenses” is implemented for
wheat when using the plant-protection UAVs in China. A similar
strategy was also used for orchards. Therefore, we conducted
spray tests of a plant-protection UAV using a combination of
three pesticides in a peach orchard. The effect of flight speed on
the droplet size, deposition in the canopy, ground loss, ground
drift, and airborne drift was analyzed.

Firstly, the effect of flight velocity on the volume median
diameter was analyzed (Figure 4). The results demonstrate that
the flight velocity significantly affects the droplet size. A higher
flight velocity increases the droplet size on the target, which

is attributed to the down-wash airflow generated by the UAV
rotor wing. An increase in the flight velocity contributes to
the formation of wingtip vortices and other airflow structures.
These vortex structures cause the fine droplets to spread with
the airflow, resulting in the deposition of larger droplets on the
canopy. It was also observed that the droplet size in the lower
canopy was slightly smaller than those in the middle and upper
parts.

We also analyzed the diffusion ratio (RD) of the dyed
droplets on a water-sensitive paper surface (Figure 5), which
is typically used to characterize the uniformity of the droplet
size distribution. The droplet size distribution was not ideal, and
failed to meet the spray requirement of RD > 0.67. Xu et al.
(2017) conducted a spray test using a plant-protection UAV in
rice, and the obtained RD value did not exceed 0.67. This is
mainly attributed to the combined effect of the plant canopy
and UAV downwash airflow. The canopy foliage blocks larger
droplets from deposition, and the downwash airflow drives
smaller droplets away from the initial trajectory. Computer
simulation modeling must be employed to further analyze the
diffusion law of droplets with different sizes inside the canopy to
optimize the nozzle and flight parameters and achieve a uniform
distribution of droplet sizes.

The droplet coverage characteristics of the water-sensitive
paper were measured. A good linear correlation was observed
between the droplet coverage and droplet density since the
droplet coverage is lower than 20% (Figure 6), which is
consistent with the findings of Grella et al. (2022). Wang et al.
(2022) selected a droplet density higher than 15 deposits/cm2

and a coverage rate higher than 1% as the lowest threshold
indicators and analyzed the spray coverage parameters. For the
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FIGURE 10

The curve of downwind ground drift at the setting distance from the spray treated area. The letters A, D, and I represent Azoxystrobin,
Difenoconazole, and Imidacloprid, respectively. The numbers 1, 2, and 3 represent the flight velocity at 1, 2, and 3 m/s, respectively.

TABLE 4 Spray drift percentage (%) for the three pesticides used in the experiments under the setting flight velocity.

Drift percentage (%) Azoxystrobin Difenoconazole Imidacloprid

1 m/s 2 m/s 3 m/s 1 m/s 2 m/s 3 m/s 1 m/s 2 m/s 3 m/s

Distance from the spray treated
area (in m)

1 53.7930 35.2925 5.5225 64.3002 21.0757 2.9056 85.8106 58.3701 3.2498

3 23.8631 7.6444 1.5557 20.0874 4.4341 1.0670 39.2380 7.5472 2.1489

5 20.6228 1.3623 0.3638 16.0613 1.0287 0.2478 28.5091 3.5206 0.8438

10 4.7109 0.2953 0.2952 3.6673 0.1931 0.2364 2.8036 0.9102 0.6067

20 0.0094 0.1613 0.2142 0.0384 0.1366 0.1820 0.0236 0.8959 0.0692

50 0.0081 0.1422 0.1313 0.0145 0.1189 0.1729 0.0024 0.4365 0.0510

Average 17.1679 7.4830 1.3471 17.3615 4.4978 0.8019 26.0645 11.9467 1.1615

Sampling height at 100 m
distance from the spray treated
area (in m)

2 0.0019 0.0708 0.4194 0.0072 0.0392 0.1423 0.0073 0.2016 0.9993

3 0.0022 0.0809 0.5098 0.0186 0.0167 0.2735 0.0112 0.1240 1.0283

4 0.0019 0.1005 0.4406 0.0068 0.0471 0.1873 0.0012 0.1428 0.7536

5 0.0000 0.0602 0.2631 0.0076 0.0523 0.0623 0.0099 0.0699 0.3878

6 0.0043 0.1436 0.3329 0.0262 0.0540 0.0832 0.0006 0.2900 0.6540

7 0.0011 0.0958 0.3590 0.0043 0.0361 0.1426 0.0015 0.1716 0.5961

8 0.0011 0.0715 0.6266 0.0051 0.0592 0.2888 0.0015 0.1581 0.9262

9 0.0048 0.0943 0.4399 0.0071 0.0240 0.1541 0.0519 0.1431 0.6550

10 0.0023 0.0484 0.0626 0.0146 0.0264 0.0253 0.0016 0.1348 0.1223

Average 0.0021 0.0851 0.3837 0.1083 0.0394 0.1510 0.0096 0.1595 0.6803

three flight velocities considered in the experiment, the number
of samples that met the requirements was largest at a speed of
1 m/s, followed by 2 and 3 m/s. This implies that increasing the
flight velocity can reduce the control effect when the application
rate is fixed. Consequently, the effective coverage ratio (ECR)
and effective density ratio (EDR) were calculated at different
speeds (Table 2); they tended to decrease with an increase in
the flight velocity. Furthermore, we observed that the average

droplet coverage rate gradually increased with the increase in
the flight velocity, and the average coverage rates at 1, 2, and
3 m/s were 2.13, 3.14, and 4.68%, respectively, which was not
consistent with the expected values. This is mainly attributed
to the increase in the droplet size as explained earlier. Blue
streaks were observed on the surface when processing the water-
sensitive paper, which indicate the “hard landing” of a droplet.
That is, the droplets from UAV applications may impact the
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FIGURE 11

Airborne drift profile at 100 m distance from treated area. The
letters A, D, and I represent Azoxystrobin, Difenoconazole, and
Imidacloprid, respectively. The numbers 1, 2, and 3 represent the
flight velocity at 1, 2, and 3 m/s, respectively.

target surface with significant high-speed horizontal motion
(Li et al., 2021a). This was mainly attributed to the combined
action of forward flight inertia and downwash airflow, which
extended the dyed area.

The droplet density gradually decreased with the increase
in the flight velocity, contrary to the droplet coverage. This is
because the droplet density measurement does not consider the
droplet point area in the statistics as long as the dyed droplet
point exists individually. Therefore, the number of droplets did
not increase at a flight velocity of 3 m/s despite the increase of
the droplet coverage rate. In general, the droplet coverage rate
and density in the middle canopy were higher than those in
the upper and lower canopies, which was primarily attributed
to the disturbance of the upper canopy due to airflow and the
occlusion of the lower canopy due to branches and leaves.

The droplets on all the water-sensitive paper samples were
statistically analyzed. The droplet size was divided into 20
gradients with an interval of 50 µm in the range of 0–1000 µm.
The cumulative ratio of the droplet numbers under different
operating conditions was calculated (Figure 7). The droplet size
corresponding to the droplet number cumulative ratio value of
0.9 increases with the increase in the flight velocity. At 2 m/s,
the corresponding droplet sizes of the upper, middle, and lower
canopies were observed to be identical when the cumulative
ratio was 0.9. The droplet sizes for the three canopy heights
varied at 3 m/s.

For the pesticide deposition in the canopy, we used UPLC-
MS/MS to determine the active ingredient amounts of the three
pesticides on the leaves in different parts of the canopy. The
flight velocity significantly affects the pesticide deposition. The
mean deposition amount was highest at 2 m/s and lowest at
3 m/s. Zhang et al. (2012) reported that the deposition amount
negatively correlated with the flight velocity of rice sprayed
with an unmanned helicopter. In this study, the flight velocity
significantly affects the uniformity of deposition. Therefore,
an increase in the flight velocity is detrimental to uniform
deposition. The CV reduced from 60% at 1 m/s to 140% at

3 m/s, which is consistent with the findings of Qiu et al.
(2013). However, Chen et al. (2016) reported that the flight
velocity significantly affects the deposition amount, but does
not significantly affect the deposition uniformity. This deviation
in the experimental conclusions is primarily attributed to the
differences in the target plant and the types of plant protection
UAVs used. Among the three pesticides used in this study, the
normalized deposition amount of imidacloprid was the highest,
indicating that it had the best deposition efficiency, followed
by azoxystrobin and difenconazole. This phenomenon may be
attributed to the fact that the dosage form of imidacloprid is a
wettable powder (WP), which tends to accumulate at the bottom
of the tank during operation. It was observed that an increase in
the flight velocity improved the vertical penetration efficiency
(PEV) and horizontal diffusion efficiency (DEV) while causing
an uneven deposition distribution.

The ground loss percentage of the applied amount under
the canopy was relatively large in terms of the pesticide loss
and spray drift (Figure 9 and Table 4), particularly for the
imidacloprid component, which reached a maximum of nearly
100%. For the three flight velocities, the ground loss percentage
was the lowest at 2 m/s, and the deposition amount and
normalized deposition amount were the highest at this speed,
indicating that a better deposition effect was achieved at a 2 m/s
flight velocity. The ground loss in vineyards with UAV spraying
were studied by Biglia et al. (2022), and found that the ground
losses decrease with the increase of the UAV cruise speed. This
difference is mainly caused by the canopy morphology, planting
pattern of fruit trees and UAV operation mode. The ground drift
percentage gradually decreased with the increase in the distance
from the spraying-treated area, and the drift percentage was
lower than 5% when the distance was 10 m, this is consistent
with the results obtained by Wang et al. (2021). The sprayed
pesticide could still be detected in the air at 100 m downwind,
and the airborne drift percentage of imidacloprid reached 1%
at a height of 2 m under 3 m/s. In general, the airborne drift is
larger at the heights of 3 and 8 m, which makes the distribution
curve appear saddle shaped. At present, the aerial drift of plant
protection UAV sprays is mainly measured in the near field
within 20 far away from the spray area (Wang Z. C. et al., 2020;
Wang et al., 2021). Wang G. B. et al. (2020) tested the airborne
drift at 12 m from the sprayed erea, and found that at a height of
1–5 m from the ground, spray drift gradually decreased with the
increase of height.

Conclusion

In this study, the effects of flight velocities on the droplet
size, deposition distribution in the canopy, ground loss, and
spray drift of peach orchards were systematically analyzed
to improve the spray effect. The flight velocity significantly
affects the droplet size, and an increase in the flight velocity
increases the droplet size on the target. The droplet size in
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the lower canopy was slightly smaller than those in the middle
and upper parts. Unfortunately, the diffusion ratio of the
droplets is not ideal and is not greater than 0.67. A higher
flight velocity presented a larger droplet coverage rate and a
smaller density on the target, which was mainly attributed to
the expansion of the dyed area formed by the hard landing
of the droplet. The increase in the flight velocity reduced
the effective coverage ratio and effective density ratio, while
increasing the vertical penetration efficiency and horizontal
diffusion efficiency; however, it also reduced the uniformity
of the droplet deposition distribution. The ground loss and
spray drift were significantly high during the operation of
the plant protection UAV, and the maximum airborne drift
percentage reached 1% at a distance 100 m away from the
spraying treated area.

This study quantified the deposition and drift of pesticides
from the plant protection UAVs sprayed at different flight
velocities based on the analysis of ultra-high-performance liquid
chromatography-tandem triple quadrupole mass spectrometry,
which provides a reference for the commercial application
of plant-protection UAVs. However, several aspects must be
determined to determine the effect of other parameters such as
flying height and spraying dosage on the spray effect in order to
improve the spray performance of the plant-protection UAVs.
The actual performance of peach trees must be evaluated for pest
control before the commercialization of the optimized operation
strategy when compared to the traditional manual knapsack
method. Additionally, the residue and digestion dynamics of
pesticides in fruits must be further analyzed after the plant-
protection UAV spraying.
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Optimization and validation of
blade parameters for inter-row
weeding wheel in paddy fields

Yongzheng Zhang1, Liang Tian1, Chengmao Cao1,
Chengliang Zhu2, Kuan Qin1* and Jun Ge1

1School of Engineering, Anhui Agricultural University, Hefei, China, 2Quality Supervision
Department, Anhui Province Agricultural Machinery Test and Appraisal Station, Hefei, China
The performance of existing rice-paddy weeding machines is not optimal. In

this study, the influence of the installation angle of the weeding-wheel blade on

cutting resistance and soil-slippage ability was analyzed. The optimal blade

angle of the weeding wheel (i.e., the angle at which the resistance to the

weeding wheel is minimal and the disturbance speed of the soil maximal) was

shown to be< 20°; numerical simulation showed the actual optimal value to be

0°. Different weeding depths (30, 40, and 50 mm), rotation speed of weeding

wheel (120, 180, and 240 r/min), and weeder forward speeds (0.3, 0.6, and

0.9 m/s) were used as test factors, and the rates of seedling injury and weeding

were used as performance-evaluation criteria to optimize the machine in a

secondary orthogonal-rotation combination test. Field experiments showed

that the weeding wheel can exhibit optimal working performance under the

operating conditions of weeding depth of 39 mm, rotation speed of 175 r/min,

and forward speed of 0.6 m/s. The seedling injury and weeding rates were 4.4%

and 88.2%, respectively, which were consistent with the numerically predicted

results and met the agronomic requirements. This study provides a technical

reference for the improvement of paddy-field weeding components.

KEYWORDS

paddy field, weeding wheel, blade angle, optimal composition, field test
1 Introduction

Weeds spread easily in the rice-field ecosystem and cause great harm to the growth of

rice (Zhang et al., 2015; Zhang et al., 2016; Kaur et al., 2018). Weed control in paddy fields

is an important part of yield assurance (Armengot et al., 2013; Pannacci and Tei, 2014).

Mechanical weeding has attracted wide attention as a non-chemical weed-control

method (Shaner and Beckie, 2014). It has the advantages of low labor intensity, high
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work efficiency, and low cost (Fontanelli et al., 2013); it can also

disturb the field soil and increase its oxygen content, promoting

the growth of crop roots. Different types of weed control

machinery for paddy fields have been developed, among them

battery-assisted inter-row weeders (Jiao et al, 2022), self-

propelled inter-row weeders (Tang et al., 2021a), and vision-

based weeding robots (Wang et al., 2018). However, most of

these studies focused on the light simplification and intelligent

design of the whole machine rather than on the optimization of

the characteristics of key components. Only a few studies have

been conducted on the relationship between the structure of key

weeding components and weeding performance. In actual

operation, weeding machines are prone to problems such as

excessive working resistance, low weeding rates, and excessive

damage to crop seedlings.

In other branches of agriculture, the influence of the

parameters of soil-contacting components on the working

resistance and effectiveness has been studied. Fang et al. (2016)

approached this problem through numerical simulation, using

discrete-element methods. Bentaher et al. (2013) used three-

dimensional reconstruction and the finite-element method to

simulate the interaction between the plow and the soil, obtaining

the working angle of the minimum resistance of the plow. These

researchers assumed dryland soil, but a similar approach may be

applicable to weeding in paddy fields. The soil in rice fields has a

strong adhesive force, and the weeding wheel is subject to great

resistance during operation. Discovering the optimal installation

angle for the blade of the weeding wheel would reduce the

operating resistance and improve the weeding performance.

In this study, the weeding-wheel blade-mounting angle and

the field-operation parameters are optimized. The relationship
Frontiers in Plant Science 02
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between the installation angle of the weeding-wheel blade and

the resistance and weeding performance of the weeding wheel is

determined through theoretical analysis and simulation, and the

optimal combination of parameters for weeding-wheel

operation is determined through orthogonal-rotation tests.

The operational performance of the weeding wheel is verified

by conducting field experiments.
2 Material and methods

2.1 Overall structure of weeder

The team has developed a paddy-field inter-row weeder

(Figure 1) that typically contains rake-tooth weeding wheels, a

frame, front and rear vehicle wheels, a hoeing-depth-adjustment

device, and related accessories (Tian et al., 2022). The most

important working part is the inter-row weeding device,

installed in front of the driver’s seat between the front and

rear wheels of the weeding machine.

The weeding device includes a square shaft, weeding wheels,

and a gearbox (Figure 2A). Each weeding wheel is composed of a

shaft sleeve, blades, blade-mounting seats, and side plates, as

shown in Figure 2B. The width of a weeding wheel is 220 mm; its

radius is designed to be 125 mm. The six blades have rake teeth;

the blade length is 120 mm (Tian et al., 2021).

During operation, the weeding wheel rotates. As it enters the

soil, each blade produces a downward pressure on the soil and

weeds. Subsequently, when the rake tooth is unearthed, the soil

and weeds are thrown back; thus, weeds are removed and the soil

is loosened.
A B

FIGURE 1

Schematic diagram of a paddy field weeding device: (A) top view; (B) bottom view. (1. Suspension device. 2. Hoeing-depth-adjusting device. 3.
Frame. 4. Walking device. 5. Anti-winding knife. 6. Intra-row weeding device. 7. Mud scraper. 8. Inter-row weeding device. 9. Depth-limit plate.).
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2.2 Optimization range analysis of blade
parameters of weeding wheel
Each blade is installed on the hexagonal wheel at a fixed

angle a. As shown in Figure 3A, stands are installed between the

blades and the wheel to ensure stability; thus, a is a constant. In

actual operation, the existence of the stands means thathe blades

cannot be completely buried. The installation angle (a) of the
blade will affect the actual penetration length, and thus the

resistance to the weeding wheel during operation. Figure 3B

reveals that the relationship between a and the actual

penetration length of the blade is

S1 = L cosa  , (1)

S = Smax − S1 = Smax − L cosa  , (2)
Frontiers in Plant Science 03
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where S1 is the length of blade not buried, L is the length of

the blade-installation side, Smax is the total length of the blade,

and all distances are in mm.

In Eq. (2), when the total length of the blade and the

installation-side length are fixed, a smaller a corresponds to a

smaller S. As per an established formula (Liu et al., 2019) and Eq.

(2), the resistance of the weeding wheel to cut the soil can be

expressed as

Pc = kc
3Svm
9:55p

= ðSmax − L cosaÞ 3kcvm
9:55p

 , (3)

where Pc is the resistance of the weeding wheel [N], kc is the

specific energy consumption in cutting [N·m/mm 3], and vm is

the forward speed of the weeding wheel as it cuts the soil [m/s].

In Eq. (3), a is the only variable. It can be seen that Pc
decreases when a also decreases; when a = 0°, the resistance of

the blade to cutting the soil is the smallest.
A B C

FIGURE 3

Operation of weeding wheel: (A) side view of wheel; (B) enlarged view of blade-attachment site, showing the installation angle a; (C) soil-
particle stress-analysis diagram.
A B

FIGURE 2

Schematic diagram of (A) inter-row weeding component and (B) individual weeding wheel (1. Weeding wheel. 2. Gear box. 3. Square shaft. 4.
Rake tooth. 5. Bearing sleeve. 6. Mounting base. 7. Side plate.).
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When the blade is out of the soil, any soil wrapped with weed

roots that has accumulated on it will slip off under the action of

gravity. Different angles of a result in different values of the

sliding force, which should be maximized for the best soil-

desorption effect. To explore the influence of angle on the soil

particle sliding force, mechanical analysis was conducted on soil

particles on the blade out of the soil, as shown in Figure 3C.

The soil particles are subjected to gravitational force –mg ,

the supporting force of the blade –FN , and sliding friction Ff .

(All forces are measured in newtons.) Decompose mg into a

component force F0 perpendicular to the blade downward and a

component force parallel to the blade plane reveals that

F0 = F1 + F2 = mg   cos a (4)

where F1 is the component that provides centripetal force to

the soil, and F2 is the reaction to FN. The normal force, Fnf , on

soil particles can be expressed as

Fnf = manv = FN − F2; (5)

where anv is the normal relative acceleration of soil particles

[m/s2]. The normal relative force, F1 , of the soil particles can be

decomposed into the centripetal force, Fcf , and the tangential

component, Fc , of the soil-implicated movement, related by

Fcf = mata = mw2rQ =
Fc

cos b
; (6)

where ata is the soil-implicated acceleration [m/s2], w is the

angular speed of the weeding wheel [rad/s], rQ is the distance

between the soil particle and the rotation center [mm], and b is

the angle between the soil particles and the rotation center line

and the blade plane[°]. The tangential force, Fta , of the soil

particles parallel to the downward direction of the blade is

Fta = matv = Fc +mgsina − mFN ; (7)

where atv is the tangential relative acceleration of the soil

particles [m/s2] and m is the coefficient of sliding friction between

the soil particles and the blade of weeding wheel. According to

Eq. (4) – (7), the resultant force Fp of soil particles is

Fp = matv + mmatasinb

= mgsina − mmgcosa +mw2rQcosb + mmw2rQsinb (8)

To find the value of a that maximizes Fp , perform the

following calculation:

f a , bð Þ = Fp

f 0
a a , bð Þ = 0

f 0
b a , bð Þ = 0

8>><
>>:

(9)

It can be drawn by calculating Eq.(9) that when a is 20°, Fp
gets the maximum value.
Frontiers in Plant Science 04
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To reduce the cutting resistance as much as possible and

ensure the soil removal ability of the blade, the installation angle

of the blade should be between 0° (where the resistance is

smallest) and 20° (where the soil-removing ability is greatest).
2.3 Simulation test

In order to determine the best installation angle of the blade

of the weeding wheel, five weeding wheel models were designed

with a = 0°, 5°, 10°, 15°, 20°, and their operation was simulated

and analyzed by EDEM discrete-element modeling software.

Because weed growth in paddy fields is complex, directly

analyzing a blade–water–soil model using simulation software

is difficult. Therefore, in this study, a was evaluated from the

resistance received by the weeding wheel in the process of

operation and from the movement speed of soil particles.

During the weeding of paddy fields, the soil in the tillage

layer is saturated with water after irrigation and bubble-field

treatment. In this study, two different particle sizes were chosen

to represent soil and water in the paddy soil layer. To save

simulation time and reduce storage space, the simulation of soil

particles was appropriately enlarged. Soil particles with a radius

of 5 mm were used to simulate paddy soil, and the shear

modulus of water in the simulation experiment was set to

1.0×108 Pa. Based on a review of the paddy-soil literature

(Yang et al., 2021), Poisson’s ratio of the paddy soil was taken

to be 0.5, the shear modulus to be 1.0×108 Pa, the density to be

1860 kg/m3, and the surface energy to be 0.15 J/m2. The weeding

wheel was made of steel, with Poisson’s ratio 0.3, elastic modulus

7.0 × 1010 Pa, and density 7800 kg/m3. To meet the requirements

of the medium-tillage weeding simulation, a virtual soil tank was

established with length × width × height 1000 mm × 450 mm ×

100 mm, and a 20-mm-thick water layer was established on the

soil tank (Jiang et al., 2020).

Table 1 lists the contact parameters of the simulation model.

To ensure the continuity of the simulation process (Zhang et al.,

2020), the fixed time step was set to 4.15×106 s (20% of the

Rayleigh time step). The data storage interval was 0.01 s. After

the simulation, the results were exported and analyzed using the

EDEM software post-processing tool module.

Figure 4 shows the analyzed comprehensive resistance of the

weeding wheels with different blade-installation angles

according to the simulation results:
• When a=0°, the resistance fluctuated in the range of 40–

130 N, and the average resistance was approximately

61 N.

• When a=5°, the resistance fluctuated in the range of 10–

150 N, and the average resistance was approximately

68 N.
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• When a=10°, the resistance fluctuated in the range of

20–150 N, and the average resistance was approximately

73 N.

• When a=15°, the resistance fluctuated in the range of 40–

150 N, and the average resistance was approximately

82 N.

• When a=20°, the resistance fluctuated in the range of 40–

160 N, and the average resistance was approximately 91 N.
Thus, with the increase in a, the resistance of the weeding

wheel increases.
A

B

D E

C

FIGURE 4

Comprehensive resistance diagram of weeding wheel at five installation angles.
TABLE 1 Contact parameter table of simulation model.

Category Coefficient of
restitution

Coefficient of
static friction

Coefficient of
kinetic friction

Weeding
wheel: soil

0.10 0.20 0.20

Weeding
wheel: water

0.05 0.05 0.01

Soil: soil 0.05 0.05 0.05

Soil: water 0.70 0.10 0.05

Water: water 0.01 0.01 0.01
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Figure 5 shows the relationship between soil particle velocity

and blade installation angle of weeding wheel.

During the weeding operation, the disturbance of the

weeding wheel on the soil can be expressed by the velocity of

the soil-particle movement:
Fron
• When a=0°, the maximum value of soil particle velocity

was 3.51 m/s, and the average value was 1.81 m/s.

• When a=5°, the maximum value of soil particle velocity

was 3.02 m/s, and the average value was 1.35 m/s.
tiers in Plant Science 06
237
• When a=10°, the maximum velocity of soil particles was

2.7 m/s, and the average velocity was 1.24 m/s.

• When a=15°, the maximum value of soil particle

velocity was 2.33 m/s, and the average value was

0.9 m/s.

• When a=20°, the maximum value of soil particle velocity

was 2.01 m/s, and the average value was 0.67 m/s.
It can be concluded that with the increase of a, the velocity
of soil particles decreased. As a decreased, the resistance of the
A

B

D E

C

FIGURE 5

Velocity map of soil particles at five installation angles.
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weeding wheel also decreased and the moving speed of the soil

particles increased. When a=0°, the average resistance of the

weeding wheel reached the minimum value of 61 N, and the

movement speed of soil particles reached the maximum value

of 3.51 m/s, as shown in Figure 6. At this time, the soil

disturbance effect was the best. Therefore, the optimal value

of a was 0°.

When the weeding wheel acts on the rice field, the

disturbance of the soil is less when less of the blade has

entered the soil. The smaller the reaction force of the soil on

the blade of the weeding wheel results in less resistance of the

weeding wheel. The cutting pitch of the weeding wheel also

decreases, so less soil is cut in a single time, and better soil-

breaking takes place. Therefore, when a=0°, the resistance of the
weeding wheel is the smallest (Duan et al, 2015). The installation

angle of the blade will affect the penetration angle and

penetration point (Tang et al., 2021b), which in turn will affect

the movement speed of soil particles. In the actual farming

environment, if the penetration angle is too large, the backward

movement speed of soil particles is reduced, so that the turning

speed is lower than the throwing speed, resulting in backwater.

Therefore, when a=0°, the penetration angle of the blade is the

smallest and the movement speed of soil particles is the largest

(Han et al., 2020).
3 Results and discussion

3.1 Test conditions

To verify the performance of the weeding machine

designed in this study, field experiments were conducted in

Fenghuang Town, Fengtai County, Huainan City, Anhui

Province, China. The experiments were conducted nine

days after transplantation, over a test area of ~1.4 hectares.

The rice variety cultivated in the experimental field was
Frontiers in Plant Science 07
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Nanjing 9108; the average height of seedlings was 255 mm.

The rice seedlings grew well, without any obvious diseases or

insect pests. No herbicide was applied to the test field. The

average height of the weeds was 105 mm; their average root

depth was 27 mm. The average density of weeds between rows

was approximately 100 plants/m2, and the average density of

weeds between plants was approximately 25 plants/m2.

Figure 7 shows the field-weeding experiment with the

paddy-field weeding device.
3.2 Test method

Before weeding, the numbers of weeds and seedlings in the

test area were determined. After the weeding test was completed,

the numbers of weeds removed and not removed were both

counted. Each group of data was collected three times, and an

average was taken (Jia et al., 2021).

To verify the weeding performance of the rotary rake-tooth

paddy-field weeding components designed in this study, the

weeding rate (h1) and damaged-seedling rate (h2) were selected
as the test indexes for field performance test:

h1 =
Z − Z1

Z
� 100% ; (10)

h2 =
M1

M
� 100% ; (11)

In Eqs. (10) and (11), h1 is the percent weeding rate of the

row-weeding device; Z is the total number of inter-row weeds

in rice in the test area; Z1 is the total number of residual weeds

among rice rows after weeding; h2 is the percent injury rate

from weeding between rows; M1 is the number of damaged

seedlings crushed, uprooted, and lodged in the test area after

the operation; and M is the total number of seedlings in

test area.
FIGURE 6

Simulation diagram of soil particle velocity at installation angle a = 0°.
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3.3 Experimental design

In the process of weeding, the weeding depth, rotation speed

of the weeding wheel, and forward speed also affect the key

factors of weeding rate and seedling injury rate. So, weeding

depth A [mm], rotation speed B [r/min], and forward speed C

[m/s] were used as test factors. Seedling injury rate R1 and

weeding rate R2 were selected as test indexes. After the test,

Design–Expert software was used to process the data, establish

the regression equation and the optimization model, and obtain

the primary and secondary relationship and the optimal

combination of the influence of the test factors on the test

indicators. Table 2 is the design-factor-level coding table.
3.4 Multi-factor test results and analysis

The results of the quadratic orthogonal-rotation

combination test are shown in Table 3.
Frontiers in Plant Science 08
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3.4.1 Analysis of variance
F-test and variance analysis were conducted for each

coefficient in the regression model. The results of variance

analysis for the seedling injury rate R1 and the weeding rate R2
are shown in Table 4.

The data in Table 4 were subjected to quadratic multiple-

regression fitting, and the quadratic-term model was selected to

establish the regression model between the seedling injury rate

R1, the weeding rate R2, and various influencing factors. The

following quadratic multiple-regression equations relating R1
and R2 to the soil depth A, the rotation speed B of the weeding

wheel and the forward speed C are obtained:

R1 = 4:1 + 0:25A + 0:19B + 0:13C + 0:063AB − 0:29AC

− 0:012BC + 0:21A2 + 0:28B2 + 0:42C2; (12)

R2 = 88:91 + 0:0002A − 0:16B + 0:41C − 0:062AB

− 0:54AC − 0:16BC − 0:80A2 − 1:06B2 − 0:28C2 (13)

As listed in Table 4, the P-values of the model-misfit terms of

the objective functions R1 and R2 are 0.0613 and 0.0676,

respectively; these are greater than 0.05, indicating no misfit

factor. The aforementioned regression equation can be used to

replace the real point of the test to analyze the test results.
The analysis of variance in Table 4 shows that the

significant P-values of the R1 and R2 models are 0.0391 and

0.0221, respectively; these are less than 0.05, indicating that the

model is statistically significant. For objective function R1,

factor C2 is very obvious and factor B2 is obvious; for

objective function R2, factors A2 and B2 are very obvious.

The F values in Table 4 indicate the influence of each

influencing factor on the test index: larger F values

correspond to larger influence. From Table 3, experimental

factor A was the factor exerting the most influence on R1 and
TABLE 2 Coding with factors and levels.

Canonical vari-
able

Natural variable

Weeding
Depth
A/mm

Rotation
Speed

B/r∙min-1

Forward
Speed
C/m∙s-1

–Alpha 30 120 0.3

Lower-level/(-1) 34.22 145.32 0.43

Zero-level/(0) 40 180 0.6

Upper-level/(1) 45.78 241.68 0.77

+Alpha 50 240 0.9
FIGURE 7

Field-weeding experiment.
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TABLE 4 Anova of response surface quadratic model for R1 and R2..

Sources of
Variance

R1 R2

Sum of

squares

Freedom Mean
square

F P Significant Sum of
squares

Freedom Mean
square

F P Significance

Model 6.42 9 0.71 3.28 0.0391 * 30.10 9 3.34 3.92 0.0221 *

A 0.91 1 0.91 4.17 0.0684 0.00069 1 0.00069 0.00081 0.9993

B 0.53 1 0.53 2.44 0.1495 0.37 1 0.37 0.43 0.5252

C 0.24 1 0.24 1.11 0.3168 2.43 1 2.43 2.85 0.1225

AB 0.031 1 0.031 0.14 0.7125 0.031 1 0.031 0.037 0.8520

AC 0.66 1 0.66 3.04 0.1117 2.31 1 2.31 2.71 0.1307

BC 0.0012 1 0.0012 0.0057 0.9410 0.21 1 0.21 0.25 0.6294

A2 0.69 1 0.69 3.19 0.1045 9.91 1 9.91 11.63 0.0067 *

B2 1.2 1 1.2 5.54 0.0405 * 17.70 1 17.70 20.76 0.001 **

C2 3.01 1 3.01 13.85 0.0040 ** 1.29 1 1.29 1.52 0.2465

Residual 2.17 10 0.22 8.53 10 0.85

Lack of fiit 2.17 5 0.43 0.0613 6.92 5 6.92 4.30 0.0676

Pure error 0.02 5 0.03 1.61 5 1.61

Sum 8.59 19 38.63 19 38.63
Frontiers in Plant S
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P indicates the level of significance of test/. When P is less than 0.01, the test is highly significant, which can be symbolized with “**”; when P is less than 0.05, the test is highly significant,
which can be symbolized with “*”.
TABLE 3 Protocols and results.

Experimental number Experimental factor Experimental index

Weeding depth
A/mm

Rotation speed
B/r min-1

Forward speed
C/m s-1

Seedling injury
Rate/%

Weeding rate/%

1 45.78 145.32 0.77 5 86.0

2 50.00 180.00 0.60 5.5 87.5

3 40.00 180.00 0.60 4.1 88.3

4 40.00 180.00 0.60 4.1 88.2

5 45.78 145.32 0.43 5.2 87.1

6 40.00 180.00 0.30 5.1 86.7

7 30.00 180.00 0.60 3.5 86.4

8 34.22 145.32 0.77 5.7 87.7

9 45.78 214.68 0.43 5.4 86.5

10 34.22 214.68 0.43 4.7 86.3

11 45.78 241.68 0.77 5.2 85.3

12 34.22 145.32 0.43 4.7 86.1

13 40.00 180 0.60 4.1 89.1

14 34.22 214.68 0.77 5.6 86.7

15 40 240 0.60 5.4 86.1

16 40 180 0.60 4.1 89.7

17 40 180 0.90 5.3 90.2

15 40 120 0.60 4 86.2

19 40 180 0.60 4.1 89.1

20 40 180 0.60 4.1 89.1
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the least on R2; factor C exerted the least influence on R1 and

the most on R2.

The reason that weeding depth has the greatest impact on

the rate of seedling injury is related to the characteristics of rice-

root growth. Rice is a typical fibrous root plant (Chai et al.,

2019). In the field experiment, when the rice roots were at the

tillering stage, the lateral expansion was the largest (Lee et al.,

2021); the root group was distributed in a flat oval shape in the

range of 20 mm (Zheng et al., 2017; Kahriz and Kahriz, 2018),

and the root length was generally between 40 and 60 mm. When

the weeding depth is greater than 40 mm, the blade on the

weeding roller will inevitably disturb and hurt the roots of rice

seedlings (Van et al., 2008). With the movement of the roots, the

seedlings will also swing towards the weeding-wheel operation

area, leading to further damage. When the deepest depth of the

weeding wheel increases, the thickness and area of the soil layer

stirred by the weeding wheel also increases. While the weeds are

buried and removed, some soil blocks are thrown onto the

seedlings, so that the injury rate increases.

The reason that the weeder forward speed has the greatest

impact on the weeding rate is that when the rotation speed is

fixed, a slower forward speed of the machine implies that a

longer time is available for the weeding wheel to work on a given

length of soil, increasing the cutting frequency of the blade

(Wang et al., 2021) and causing greater soil disturbance (Qi

et al., 2015); therefore, the weeding effect is better.

3.4.2 Response surface methodology
According to the response surface generated by the Design-

Expert software, for the seedling injury rate, the forward speed of

the fixed weeding machine is 0.6 m/s; as shown in Figure 8A,

when weeding depth A is 34.93 mm and rotation speed B is 170.89

r/min, the seedling injury rate has the minimum value of 3.9%.

For the weeding rate, the forward speed of the fixed weeding
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machine is 0.6m/s. As shown in Figure 8B, whenA is 37.76 mm, B

is 174.67 r/min. The maximum weeding rate is 90.2%.

Because the optimal parameter combination of each test

factor of the weeding wheel is different under different

indicators, it is impossible to evaluate the optimal parameter

combination directly; instead, it is necessary to consider the

comprehensive impact of various factors on different indicators

(Li et al., 2021). The main purpose of weeding between rows in a

paddy field is to eliminate young grass between rows and create

favorable conditions for crop growth (Shi et al., 2021), the ideal

effect of inter-row weeding is to reduce the seeding injury rate as

much as possible while ensuring a high weeding rate. Therefore,

the weeding rate index should be given priority. Combining

literature results (Colbach et al., 2014) with the actual situation

of the field experiment, the optimal parameters of the weeding

operation were determined to be A = 39 mm, B = 175 r/min, C =

0.6 m/s. According to the results displayed by the Design-Expert

software, in this case, the seedling injury rate is 4%, and the

weeding rate is 89%.
3.5 Field verification test

On July 5, 2021, a field verification test of the weeding device

was conducted in the experimental field described in subsection

3.1, using the optimal parameter combination described in

subsection 3.4.2. The seedling injury rate and weeding rate

were taken as the test indexes. Five repeated tests were

conducted in total, and an average value was taken

subsequently. Section 3.2 describes the calculation method for

the test structure. Table 5 lists the processed and

analyzed results.

Note that in Table 5 that the weeding rate and seedling

injury rate obtained from the verification test are 88.2% and
A B

FIGURE 8

Response surfaces for (A) injury rate and (B) weeding rate.
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4.4%, respectively, very close to the software predictions (89%

and 4%). This indicates that the software optimization

parameters were accurate and feasible. The weeding quality of

the machine under the optimal parameter combination was

clearly quite good.
4 Conclusion

Existing rice-weeding machines encounter large operating

resistances in paddy fields; they have low weeding rates and high

seedling-injury rates. To solve these problems, the parameters of

the weeding-wheel blades should be optimized. In this study, the

key components of mechanical weeding in a paddy field were

analyzed. The results showed that when the blade installation

angle was 0°, the blade cutting resistance was the smallest; when

the blade installation angle was 20°, the blade had the strongest

soil-removal ability. Therefore, the range of the installation angle

of the weeding-wheel blade should be 0–20°.

EDEM, a discrete-element software, was used to construct a

fluid–solid-coupling simulation model of the components and

water–soil. The installation angle of the blade of the weeding

wheel was taken as the test factor, and the resistance of the

weeding wheel and the velocity of soil particles were taken as the

test indexes. The test results showed that when the blade

installation angle was 0°, the resistance of the weeding roller

was the smallest and the velocity of soil particles was the largest.

The average resistance was 61 N and the average velocity of soil-

particle movement was 1.81 m/s. Therefore, the optimal

installation angle of the weeding wheel blade was determined

to be 0°.

The combination of machine operation parameters was

optimized by conducting a quadratic orthogonal-rotation

combination test. The results revealed that the optimal

weeding depth was 39 mm, optimal rotation speed was 175 r/

min, and optimal forward speed of the machine was 0.6 m/s. The

field verification test showed that, for this combination of

parameters, the weeding rate was 88.2% and the seedling

injury rate was 4.4%, meeting the design requirements of the

rice-weeding device.

In this study, the installation angle of the blade of

the weeding wheel was optimized, and the effects of the
Frontiers in Plant Science 11
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three other key factors (weeding depth, rotation speed,

and forward speed) on the weeding and seedling injury rates

were studied. However, in actual operation, many other

factors (such as the stability of the forward direction of the

machine and the cutting effect of the blade on the weed-root

system) will affect the weeding rate and the seedling injury rate.

Therefore, further research on the effect of the working

parameters of key weeding components on weeding-operation

quality is needed.
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In the area of air-assisted spray, conventional detection of speed and direction

of the wind fields for spray are separately conducted, and multiple kinds of

sensors have to be laid on each coordinate axis during multidimensional

detection. It limits the optimization of operation effect of sprayers based on

wind-field distribution characteristics. This paper proposes a novel detection

method to achieve synchronous measurement of wind speed and direction in

three dimensions. Wind flow was considered as vectors and the sensing

structure with a regular triangular pyramid shape supported by cantilever

pieces was established. Strain gauges were utilized to detect the deformation

in each direction by the wind thrust onto a ball before and after wind flow.

Moreover, the calculation models of wind speed and direction were developed

respectively based on the relationship of ‘strains-force-wind pressure-wind

velocity’ and the principle of space operation of vectors, somultiple parameters

of wind fields could be obtained simultaneously. Calibration was conducted

based on a wind tunnel and the Testo 405i anemometers. The results showed

that: the minimum relative error of wind-speed values was about 0.06%, while

the maximum was about 10%. The average relative error of all the directions

was less than 5%. Furthermore, the measurement of the wind among artificial

tree canopies demonstrated that the proposed method could effectively

measure both speed value and direction of the wind among canopies, and it

also helped to find the wind distribution characteristics of the fan, SFG4-2R.

The results highlighted both the reliability and the practical meaning of the

proposed method, which could be a technical solution for measuring and

evaluating wind-field characteristics of sprayers.
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1 Introduction

Air-assisted spray, including ground air-assisted spray and

Unmanned Aerial Vehicles (UAVs) spray, has been widely

used for plant protection. With the help of strong wind fields,

droplets are delivered onto targets. At present, droplet

deposition in crop canopies is not ideal during spraying,

characterizing the issues of uneven distribution, inadequate

penetration and significant drift (Pascuzzi et al, 2020; Zheng

et al, 2020; Zhang et al, 2020). The fundamental reason is that

the attenuation law of the wind field influenced by canopies has

not been clearly studied, whose core difficulty is lacking

effective detection approaches for the speed and flow

direction of the wind in canopies. If there is a breakthrough

in the real-time detection method of wind field changes in

canopies, it will be of practical significance to help to improve

the effect of air-assisted spray based on detection results.

Currently, the speed and direction of wind fields are

separately measured by using different types of sensors, and

most studies are just about speed quantification. In terms of

the measurement of wind-speed values, impeller-type,

thermosensitive-type and cup-type anemometers are

commonly utilized. The majority of the research was to

verify the consistency between Computational Fluid

Dynamics (CFD) models and trials or to investigate wind-

speed distribution in certain conditions. For impeller-type

anemometers, Jiyu and Yubin et al. used them to investigate

the downwash wind speed of a UAV, SUMA18 (Li et al,

2015a; Li et al, 2019b), as well as the relationship between

wind fields and the distribution of pollen (Li et al, 2017c) or

droplets (Chen et al, 2017). The new research of this team was

continuous to study the consistency between the distribution

of UAV wind fields and that of droplet depositions (Lan et al,

2021; Zhan et al, 2022). All these studies mainly focused on

the same type of UAV. Yang et al. (2017) conducted trials to

verify the accuracy of downwash CFD models by the Kestrel

4500 anemometer, and Zhang et al. (2019a) and Guo et al.

(2020) also did similar works by using Kestrel 4500 or

GM8902+. For thermosensitive-type anemometers, Yang

et a l . (2022a) ut i l ized Testo 405i to examine the

transmission of UAV downwash in corn canopies, and

Zhang et al. (2019b) also applied this anemometer to

observe the conformity between downwash CFD models

and the test results. In addition, Wang et al. (2021)

developed a kind of thermosensitive anemometer to

measure the wind field of a six-rotor UAV, while Cheng

et al. (2021) used CTA-type anemometer to measure that of

an unmanned helicopter. Cup-type anemometers are

generally taken for agricultural meteorological measurement

in outdoor conditions (Xing et al, 2015), not for air-assisted

spray. Although the wind-speed sensors mentioned above in
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these studies have a fast response and good stability, they can

only detect single-dimensional values. If three-dimensional

results are required, such sensors have to be separately laid on

each axis. Meanwhile, each sensor takes up space and may be

interfered by each other so that the wind field shape may be

affected, which will lead to inaccurate results.

In terms of wind direction measurement, wind vane

sensors are conventional devices, often adopted for

acquiring meteorological and environmental parameters

rather than for air-assisted spray. For instance, Li et al.

(2021) used wind vanes to measure the wake variation of

horizontal axis wind turbine. Sharma et al. (2018) used them

to estimate the accuracy of the wind resource of a site.

However, wind vanes can only measure an angle from 0 to

360° in a horizontal plane, not suitable for a vertical layout.

Therefore, the three-dimensional measurement of wind

direction needs another approach.

In order to achieve the synchronous detection of both

wind speed and wind direction, several techniques have been

developed, typically ultrasonic anemometers and Micro-

Electro-Mechanica l System (MEMS) anemometers .

Ultrasonic anemometers measure by using the frequency

difference between the transmitter and the receiver, while

MEMS-type ones mainly rely on the change of pressure or

thermal fields. Researchers have used ultrasonic ones to

measure the downwash of a UAV (Tang et al, 2019) and

environmental parameters (Schramm et al, 2019) to control

drifts, whilst the MEMS type is generally exploited in non-

agricultural areas (Jiang, 2021). Irrespective of the ultrasonic

and MEMS types, the measurement results are two-

dimensional. Even though a study was related to a three-

dimensional wind-field measurement device to observe the

wind field of a hovering UAV (Wu et al, 2019), it described the

distribution of wind-field intensity rather than wind speed, let

alone wind direction. Hence, there is a shortage of the three-

dimensional detection method of wind speed and direction.

In fact, if a particular substance in a specific space can be

called a “field” in physics, it must consist of vectors in

mathematics, and so is the wind field for air-assisted spray.

Any vector in a wind field, ~v, is composed of three basis

vectors ( ~vx , ~vy and ~vz) on the x, y and z axes. If the length

(size) and direction of each base vector can be measured, a

unique wind-speed vector will be determined, and the angle

between the vector and each coordinate axis will also

be unique.

This paper proposes a synchronous three-dimensional

detection method for multiple parameters of wind fields based

on the vector principle. A novel sensing structure and its

matching calculation models were developed to tackle the

practical difficulty of wind-field detection in the area of air-

assisted spray.
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2 Materials and methods

2.1 Materials

2.1.1 Hardware
Figure 1 shows the designed system of measurement. The

materials contained a smooth hollow plastic ball, three cantilever

pieces, three bases, three ball seats and three carbon fiber tubes.

The system was a regular triangular pyramid, and the fiber tubes

were mutually perpendicular. The radius of the ball, R, was 40

mm, and its mass was only about 40 g. Moreover, Wheatstone

Full Bridge was utilized on each cantilever piece to detect and

measure strain variations. The strain gauges were resistive type,

BFH350-6AA, and NI 9237 combined with NI Compact DAQ

9135 was employed to achieve strain data acquisition and saving.

The key specifications of BFH350-6AA, NI 9237 and cantilever

pieces are listed in Table 1.

When flowing around a circular sphere, fluid will form a

thrust on it in the flow direction (Liu et al, 2017). Therefore, if a

force change in this direction can be measured, the thrust will be

obtained. Then, the wind speed value can be calculated

according to the relations between force, wind pressure and

wind speed.
2.1.2 Software
The data acquisition software was developed using

LABVIEW 2016 (Figure 2), including real-time data collection,
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saving and viewing. Three data channels from three Full Bridge

could be acquired separately and saved into the same document.
2.2 Measurement method of wind vector

2.2.1 Measurement of wind vector length
As shown in Figure 3, the ball center was taken as the origin,

O, to establish the Sensing Coordinate System (SCS, marked by

red), O-XYZ, while the center of Triangle ABC was taken as the

origin, OG, to establish the Ground Coordinate System (GCS,

marked by blue), OG-XGYGZG.

In the SCS, the force analysis for the cantilever piece of any

direction can be equivalent to a cantilever beam model

(Figure 4). Since the solution process of the force in each

direction was the same, that in the X direction was taken as an

instance for illustration.

In terms of the cantilever pieces, if the elastic modulus is E,

the strain without flow around is ϵx0, the bending section

coefficient is W, and the distance between the two strain

gauges on the same side is l, the initial component of the force

generated by the gravity of both the ball and the fiber tubes in the

X direction, Fx0, should be

Fx0 =
ϵx0 · E · W

l
(1)

When wind flows around the ball, the strain will be changed

to ϵx1, so the component of the force in this direction, Fx1, will be
BA

C

FIGURE 1

The design of the measurement scheme, where (A) shows the shape and materials, (B) shows the connection between each Wheatstone Full
Bridge and NI 9237, and (C) shows the combination and connections of each component. (1) a smooth hollow plastic ball, (2) cantilever pieces,
(3) ball seats, (4) bases, (5) jacks and (6) carbon fiber tubes.
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Fx1 =
ϵx1 · E · W

l
(2)

The force difference between these two conditions,

Fpx, is

Fpx = Fx1 − Fx0 =
EW
l

(ϵx1 − ϵx0 ) (3)

In addition, the bending section coefficient, W, can be

calculated by

W =
bh2

6
(4)

, where b is the width of the cantilever pieces and h is

its thickness.
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Thus, the force difference (which is also called the

wind thrust),

Fpx, should be

Fpx =
Ebh
6l

(ϵx1 − ϵx0 ) (5)

According to Equation (5), the magnitude and direction of

the thrust can be calculated by the strain variations.

Moreover, the relationship between force and wind pressure is

px =
Fpx
A

(6)

, where A is the flow area, equal to the surface area of the ball

in this study: A=4pR2.
The relation between the wind pressure and wind speed is

(Liu et al, 2021):
BA

FIGURE 2

The developed software, where (A) is the interface of the software and (B) is the LABVIEW code of it.
TABLE 1 The key specifications of BFH350-6AA and NI 9237.

Materials/Device Parameters Values with unit Unit/Remarks

BFH350-6AA Resistance 350 ± 0.1 W

Base length × base width 10.3×3.9 mm

Grid length × grid width 6×2.9 mm

Sensitivity 2.0 ± 1% —

Tolerance to nominal values 1000 ± 3 W

Tolerance to means ≤0.5 W

NI 9237 Excitation 3.3 V/Four 350 W Full Bridges

Sampling rate
fs =

fM
256 · n

fM is the principal time base, and n is an integer from 1 to 31

Accuracy ± 100 ppm·max.value-1

Excitation noise 100 mVrms

Conversion accuracy 2.9802 nV·V-1·LSB-1

Cantilever piece Material 65 Mn —

elastic modulus 1.97×1011 Pa

Width of strain area 7.00 mm

Thickness 0.50 mm

Max.length of strain area 55.00 mm
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px =
v2x

1600
� 103 (7)

Hence, based on the Equations from (5) to (7), if~i = (1, 0, 0)

is the unit base vector of the X direction in the SCS, the wind

vector of this direction, vx
!, should be
vx
! =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2 ϵx1−ϵx0j j

3p lR2 � 10-3
q

·
ϵx1−ϵx0
ϵx1−ϵx0j j · i

!
 ,  or     

vx
! =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2(ϵx1−ϵx0 )

3p lR2 � 10-3
q

, 0, 0

� �
, ϵx1 > ϵx0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2(ϵx0−ϵx1 )

3p lR2 � 10-3
q

, 0, 0

� �
,  ϵx1 < ϵx0

8>>><
>>>:

For the same reason, that of the Y and Z directions in the

SCS should be
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vy
! =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2 ϵy1−ϵy0j j

3p lR2 � 10-3
q

·
ϵy1−ϵy0
ϵy1−ϵy0j j · j

!
,  or

vy
! =

0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2 ϵy1−ϵy0ð Þ

3p lR2 � 10-3
q

, 0

� �
, ϵy1 > ϵy0

0, −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2 ϵy0−ϵy1ð Þ

3p lR2 � 10-3
q

, 0

� �
,  ϵy1 < ϵy0

8>>><
>>>:

(9)

vz
! =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2 ϵz1−ϵz0j j

3p lR2 � 10-3
q

·
ϵz1−ϵz0
ϵz1−ϵz0j j · k

!
,   or

vz
! =

0, 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2 ϵz1−ϵz0ð Þ

3p lR2 � 10-3
q� �

, ϵz1 > ϵz0

0, 0,−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2 ϵz0−ϵz1ð Þ

3p lR2 � 10-3
q� �

,  ϵz1 < ϵz0

8>>><
>>>:

(10)

Finally, based on the Equations from (8) to (10), the three-

directional wind vector and its length can be calculated by
FIGURE 4

The force analysis of the cantilever pieces of the three directions of the Sensing Coordinate System.
BA

FIGURE 3

The coordinate systems, including the Sensing Coordinate System (marked by red), O-XYZ, and the Ground Coordinate System (marked by
blue), OG-XGYGZG, where (A) is the standard view of the coordinate systems whilst (B) is the oblique axonometric drawing for the convenience
of calculation.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1003659
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2022.1003659
Equation (11) and Equation (12):

v! = vx
! + vy

! + vz
! (11)

vj j�!
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200Ebh2

3p lR2 � 10-3 � ( ϵx1 − ϵx0
�� �� + ϵy1 − ϵy0

�� �� + ϵz1 − ϵz0
�� ��)

r

(12)

Equation (12) shows that the measurement result of wind

speed is only related to the strains before and after flow when

the components of the device are fixed, which means

the external conditions have less influence on wind

speed measurement.
2.2.2 Measurement of wind vector direction
If the angle between any wind vector and the unit base

vectors of the three axes of the GCS can be calculated, the

direction of this wind vector will be determined. Therefore, each

point in Figure 3 was firstly coordinated in the same coordinate

system, the SCS, and then the principle of vector coordinate

operation was applied to obtain the results.

If the edge length of the pyramid is k, the coordinate of Point
A, Point B and Point C will be (k,0,0), (0, k,0) and (0,0, k),
respectively. According to geometric relations, the coordinate of

Point M and Point OG should be (0, 2k3 , k3 ) and ( k3 ,
k
3 ,

k
3 ),

respectively. Hence, the vectors OGC
��!

, OGM
���!

and OGO
��!

can be

solved and then unitized to be the unit base vectors of the GCS,

xG
�!, yG

�!and zG
!. Equation (13) are these unit base vectors:

xG
�! = OGC

��!
OGC
��!��� ��� = −

ffiffi
6

p
6 ,−

ffiffi
6

p
6 ,

ffiffi
6

p
3

� �

yG
�! = OGM

���!
OGM
���!��� ��� = −

ffiffi
2

p
2 ,

ffiffi
2

p
2 , 0

� �

zG
! = OGO

��!
OGO
��!��� ��� = −

ffiffi
3

p
3 ,−

ffiffi
3

p
3 ,−

ffiffi
3

p
3

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(13)
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Finally, based on the Equations from (8) to (13), the

direction of the wind vector can be calculated as follows:

cosa = xG
�!

· v!
xG
�!�� �� v!�� �� = −

ffiffi
6

p
6 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵx1−ϵx0j jp

·
ϵx1 −ϵx0
ϵx1 −ϵx0j j+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵy1−ϵy0j jp

·
ϵy1 −ϵy0
ϵy1 −ϵy0j j−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵz1−ϵz0j jp

·
ϵz1 −ϵz0
ϵz1 −ϵz0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵx1−ϵx0j j+ ϵy1−ϵy0j j+ ϵz1−ϵz0j jp

cos b =
yG
�!

· v!
yG
�!�� �� v!�� �� = −

ffiffi
2

p
2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵx1−ϵx0j jp

·
ϵx1 −ϵx0
ϵx1 −ϵx0j j−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵy1−ϵy0j jp

·
ϵy1 −ϵy0
ϵy1 −ϵy0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵx1−ϵx0j j+ ϵy1−ϵy0j j+ ϵz1−ϵz0j jp

cosj = zG
!

· v!
zG
!�� �� v!�� �� = −

ffiffi
3

p
3 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵx1−ϵx0j jp

·
ϵx1 −ϵx0
ϵx1 −ϵx0j j+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵy1−ϵy0j jp

·
ϵy1 −ϵy0
ϵy1 −ϵy0j j+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵz1−ϵz0j jp

·
ϵz1 −ϵz0
ϵz1 −ϵz0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵx1−ϵx0j j+ ϵy1−ϵy0j j+ ϵz1−ϵz0j jp

8>>>>>>>>>><
>>>>>>>>>>:

(14)

, where a, b and j are the angles between the wind vector

and the XG, YG and ZG axes of the Ground Coordinate

System, respectively.

According to Equation (14), in terms of this determined

design, the direction of wind vectors is associated with neither

the material characteristics of the cantilever pieces nor the

geometric features of the devices, only related to the strains

before and after wind flow. Thus, the external influence of

direction measurement has been kept to a minimum in theory

to reduce errors.
2.3 Experiment schemes

2.3.1 Calibration
Figure 5A shows the wind tunnel used for calibration, which

is located on the East Campus of China Agricultural University.

The air volume is adjustable at most 60000 m3·h-1, and the

diameter of the air outlet is 555 mm. As shown in Figure 5B,

the measurement device was placed about 0.5 m in front of the

center of the air outlet to ensure full flow.

Eight-level air volumes were applied, including 1869 m3·h-1,

2386 m3·h-1, 3534 m3·h-1, 4260 m3·h-1, 5191 m3·h-1, 6134 m3·h-1,

7448 m3·h-1 and 8399 m3·h-1. The data were collected for more

than 1 minute under each air volume condition. The maximum

speed from the wind tunnel was approximately 14 m·s-1, while

that from ground air-assisted sprayers and Unmanned Aerial
FIGURE 5

The utilized equipment and settings of the calibration tests, where (A) shows the used wind tunnel and (B) shows the layout of the tests.
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Vehicles is generally less than about 12 m·s-1 (Yang et al, 2020b).

Hence, the range of calibration was sufficient.

Figure 6 shows the process of the tests. Firstly, themeasurement

device collected the strains of three dimensions. Then, a thermal

anemometer, Testo 405i by Testo Germany (Table 2), was used to

measure the wind speed along the three fiber tubes, respectively.

Finally, the wind speed data were calculated, and the calibration

equations by the regression between measurement system results

and anemometer ones were established.

After that, the eight-level air volumes were applied again to

examine the calibration effect. The regression between the

calibrated system results and the anemometer ones was

conducted once more to analyze relevance. Meanwhile, the

relative errors of the three-directional measurement were

indicated, respectively.

2.3.2 Measurement of the wind among
tree canopies

After calibration, the system was exploited to measure the

wind among tree canopies. The wind was from an axial-flow fan,

SFG4-2R, which is commonly used on small Chinese air-assisted

ground sprayers. As shown in Figure 7, the ball was placed

among the artificial trees, and the distance from the fan to the

tree was about 1.20 m. The process was: ①starting the

measurement system, ② turning on the fan to reach the rated

speed (2800 r·min-1), and ③switching off the fan. Real feature of

the wind in canopies was investigated, and the data was collected

for about 10 seconds.
2.4 Data processing methods

2.4.1 Data processing for calibration
In stable wind condition, the measured strains and wind

speeds significantly fluctuated around a mean. Therefore, Global

Average Method (GAM) was applied to process the data from

both the wind measurement system and the anemometer, as
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shown in Equation (15):

v =
o
n

i=1
vi

n
(15)

Furthermore, the regression and relative errors Equation

(16) were calculated using ORIGIN 2018. The data from the

anemometer were taken as the standard to make comparisons of

accuracy:

e =
eane − esys
�� ��

eane
(16)

, where e is the relative error, eane is the data from the

anemometer and esys is that from the measurement system.

2.4.2 Data processing for in-canopy wind
measurement

Due to wind variation caused by canopies, the measured

strains were not fluctuated around a global mean. However, in a

certain small period, strains still fluctuated around a local mean.

Hence, Local Average Method (LAM) was utilized to process

the data.

If the length of the data was U and the grouping interval was

u, the local mean was calculated by Equation (17):

vk+i =
o
u

i=1
xi+ku

u
(17)

, where k= 0, 1,…, Uu − 1. Then, the vector components in the

GCS were calculated by Equation (18):

vxG
�! = v! · cosa

vyG
�! = v! · cos b

vzG
�! = v! · cosj

8>><
>>: (18)

Finally, the wind vectors were drawn by MATLAB 2019b

based on their both starting points and GCS components.
FIGURE 6

The process of the tests, where (A) shows the process of the measurement system and (B) shows that of the thermal anemometer.
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3 Results and discussions

3.1 Calibration results

Figure 8, 9 are the collected data from the measurement

system and the anemometer, respectively.

Figure 10 shows the regression for calibration. The adjusted

R2 was 0.98678, 0.95953 and 0.96997, respectively, indicating a

significant relevance of the results between the thermal

anemometer and the measurement system.

According to Figure 10, the calibration equations for each

direction of the Sensing Coordinate System were:

Z = 1:00354z+0:12686

Y = 1:16564y − 0:5876

X = 0:99875x + 0:05868

8>><
>>: (19)

, where z, y and x are the data from Tube 1, Tube 2 and Tube

3, respectively, while Z , Y and X are that from the

thermal anemometer.

Table 3 lists the result comparison between the anemometer

and the calibrated measurement system using Equation (19).

Three decimal places were kept based on the accuracy of

the anemometer.

Figure 11 is the regression between the anemometer and the

calibrated measurement results.
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According to Table 3 and Figure 11, it can be illustrated that:

(1) the relevance after calibration was greatly improved. The

adjusted R2 was up to 0.99524, 0.99618 and 0.98237 (Figure 11),

respectively. Meanwhile, all the slope values were about 1 and

the intercepts were lower than 0.07. The calibration was proper.

(2) the proposed synchronous detection method and system

could accurately and effectively measure wind speed, as the

minimum relative error was about 0.06%, while the maximum

error was about 10% (Table 3). The average relative error of all

the directions of the SCS was less than 5%. Although the relative

errors seemed to vary greatly, the maximum difference was only

1.4 m·s-1 in terms of the top wind speed of 14 m·s-1. In other

words, the absolute error was still small enough.

(3) compared with the results from the anemometer, the

proposed method and system could obtain the direction of wind

flow since the calculated positive or negative values obviously

indicated it (Table 3). Thus, it is achieved to acquire wind speed

and wind direction synchronously.
3.2 Measurement of the wind among
tree canopies

Figure 12 demonstrates the results of measurement of in-

canopy wind, indicating that:

(1) The system could clearly present the three stages of the trial

(①, ② and ③ in Figure 12A) and the variation of wind. In addition,

one signal cycle was about 160 ms, so the grouping interval in

Equation (17), u, was set as 160 for the LAM processing.

(2) The system could effectively measure both speed value

and direction of the wind between canopies (Figure 12B). The

wind speed in X direction was the core (about from -2.5 m·s-1 to

-3.5 m·s-1), while that in the other two directions was

approximately equal in absolute value (between 1.0 m·s-1 and

1.5 m·s-1). Meanwhile, the wind direction could be known based

on the sign of the values. Thus, the wind in the X and Y direction
FIGURE 7

The setting of measurement of the wind among canopies.
TABLE 2 The key specifications of the thermal anemometer, Testo
405i.

Parameters Values Remarks

Measurement Range 0-30 m·s-1

Sampling Frequency 0.5 Hz

Resolution 0.01 m·s-1

Accuracy ±(0.1 m·s-1 +5% Measured Value) 0-2 m·s-1

±(0.3 m·s-1 +5% Measured Value) 2-15 m·s-1
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of the SCS was upward along the tube, while that in the Z

direction of the SCS was downward.

(3) The wind field of the fan was not strictly parallel to the

ground (Figure 12C). Wind vectors were at an angle with the X,

Y and Z direction, which might be caused by canopy obstruction

and mechanical accuracy of the fan (such as assembly accuracy

and levelling). At the end of data acquisition (after about the 38th

data number), the vector pointed in the opposite direction due to

the elasticity of the cantilever pieces. Thus, the system could

reflect the whole process of the pieces from compression (wind

blowing) to recovery (stopping blowing).

(4) The resultant wind speed was about 3 m·s-1, within the

range from about 2.25 m·s-1 to 3.75 m·s-1(Figure 12D). The

fluctuation might result from the elasticity of the cantilever

pieces and the cycle of fan rotation. Combined with

Figure 12C, it is identified that the wind between canopies was

relatively stable when the fan was working.

Based on the results, if the fan is used to conduct air-assisted

spray parallel to the ground, it should get attention to the

possibility of excessive droplet depositions and drifts at the

upper regions of target tree canopies.
Frontiers in Plant Science 09
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3.3 Discussions

In this paper, a detection method for multiple parameters of

wind-field was developed. The idea was inspired by the practice

(Yang et al, 2022a) and the literature review (Yang et al, 2019c)

by the authors. According to calibrations, the average

measurement error of wind-speed values was small (less than

5%), and wind direction could also be synchronously detected.

In addition, the real application for measuring the wind between

canopies generated by the fan, SFG4-2R, justified that the

method could not only directly obtain the speed and direction

of wind fields but also help analyze wind-field distributions of

specific air-assisted devices. This highlights the practical

application value of the proposed method and system. Thus,

the method was able to effectively deal with the issue of

synchronous three-dimensional measurement of wind speed

and direction.
Moreover, it is a common difficulty for not only agricultural

but non-agricultural fields to achieve simultaneous detection of

wind speed and direction in three dimensions. Combined with a

novel structure for wind sensing and its calculation models on
B

C D

A

FIGURE 8

Some of the strain data collected by the measurement system, where the air volumes were 2386 m3·h-1, 4260 m3·h-1, 6134 m3·h-1 and 8399
m3·h-1 from (A–D), respectively.
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the basis of the relations between strains and wind speed (from

strains to wind thrust to wind pressure to wind speed), stereo

wind measurement could be achieved based on the vectors

calculated by strains, which means that the method is general

and adequate for any wind-field measurement within the sensing

range, not only restricted to be used in air-assisted spray

conditions. For instance, for the ventilation design of nursery

pig houses, the conventional approach for Computational Fluid

Dynamics (CFD) verification was just by evaluating wind speed
Frontiers in Plant Science 10
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errors (Fang et al, 2022). It might be better to use the proposed

method to obtain wind speed and direction at the same time to

achieve multi-parameter verifications. In terms of mining,

sufficient wind speed can dilute harmful gases to ensure the

safety of operators, so it is important to measure accurate wind

speed in downhole situations. Compared with the previous

contribution (Xue et al, 2022), this proposed method could

give 3D results while ensuring accuracy, and then help to

predict the potential spatial distribution of gas. If the method
B

C D

A

FIGURE 9

Some of the wind speed data from the thermal anemometer, where the air volumes were 2386 m3·h-1, 4260 m3·h-1, 6134 m3·h-1 and 8399
m3·h-1 from (A–D), respectively.
B CA

FIGURE 10

The regressions between the thermal anemometer and the measurement system, where (A–C) correspond to Carbon Fibre Tube 1, Carbon
Fibre Tube 2 and Carbon Fibre Tube 3, respectively.
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is applied to measure the wind fields with a speed of more than

15 m/s, the materials of cantilever pieces and the calibration

range should be changed.

Furthermore, it should be pointed out that an open wind

tunnel was exploited for calibration, which was the ONLY

resource that can be found during the epidemic, even though a

closed one may be more suitable due to low turbulence and

uniformed wind. Nonetheless, it was not caused by the limitation

of the method itself and can be addressed. For future study, a

closed wind tunnel and higher precision anemometers will be

taken as standard devices for conducting much more

precise calibrations.

In addition, different cantilever piece materials may form

different vibration periods because of elasticity, which may

influence data processing approaches. In the follow-up study,

the effect of cantilever piece materials can be further analyzed.

However, irrespective of any materials, the calculation of wind

speed and wind direction (the equations from (8) to (14)) will not

change. Only the variable values will differ, while the developed

method is a general detection technique. Moreover, the impact of
Frontiers in Plant Science 11
254
the system size could be further analyzed and adjusted based on

measurement demand, while this paper mainly focuses on the

feasibility and reliability of this new method. Therefore, these two

issues were not examined in this paper.
4 Conclusions

This paper proposes a novel synchronous detection method

with a regular triangular pyramid shape supported by cantilevers

to deal with the difficulty of multi-parameter and multi-

dimensional measurement of wind fields. The wind vector

principle was utilized to develop the calculation models of

values and directions of wind fields, which was related to the

relationship of ‘strains-force-wind pressure-wind velocity’ and

that of space operation of vectors, and tests were conducted. The

conclusions are:

(1) Thermal anemometers (Testo-405i) and an open wind

tunnel were used for calibration. Results showed that the

minimum relative error of wind-speed value measurement was
TABLE 3 The wind speed by the thermal anemometer and the calibrated measurement system.

Air Volume
(m3·h-1)

Wind Speed by the Proposed
Measurement System (m·s-1)

Wind Speed by the Thermal
Anemometer (m·s-1)

Relative Error(%)

Fibre
Tube 1(Z)

Fibre
Tube 2(Y)

Fibre
Tube 3(X)

Fibre
Tube 1(Z)

Fibre
Tube 2(Y)

Fibre
Tube 3(X)

Fibre
Tube 1(Z)

Fibre
Tube 2(Y)

Fibre
Tube 3(X)

1869 3.075 -1.970 -1.712 2.828 2.150 1.782 8.751 8.370 3.901

2386 3.865 -2.827 -2.181 4.097 2.748 2.285 5.655 2.886 4.547

3534 5.820 -4.532 -3.381 5.963 4.528 3.153 2.405 0.084 7.235

4260 6.852 -5.535 -3.743 6.493 5.502 4.169 5.527 0.606 10.211

5191 8.286 -6.702 -4.720 8.479 6.671 4.826 2.279 0.458 2.203

6134 9.804 -7.789 -5.148 9.775 7.774 5.495 0.298 0.193 6.319

7448 11.419 -9.929 -5.154 11.649 10.324 5.256 1.978 3.829 1.933

8399 12.938 -10.817 -6.416 12.838 10.616 6.412 0.776 1.893 0.062

Average Relative
Error (%)

3.458 2.290 4.551
f

B CA

FIGURE 11

The regression between the anemometer and the calibrated measurement results, where (A–C) correspond to Carbon Fibre Tube 1, Carbon
Fibre Tube 2 and Carbon Fibre Tube 3, respectively.
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about 0.06%, while the maximum was about 10%. The average

relative error of all the directions was less than 5%. It could be

i l lustrated that the proposed method had a good

measurement accuracy.

(2) The measurement of the wind among artificial tree canopies

demonstrated that the proposed method could effectively measure

both speed value and direction of the wind among canopies. Wind

vectors could be clearly shown. Moreover, the possibility of bias-to-

upper-part depositions and drifts of the fan, SFG4-2R, should be

noticed according to the results using the method.

The results highlighted the value of practical application of

this approach and showed a technical system solution for

evaluating wind-field characteristics of air-assisted sprayers

based on three-dimensional simultaneous measurement.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Frontiers in Plant Science 12
255
Author contributions

SY: Design, Methodology, Experiments, Data Processing and

Manuscript Writing. WL: Design, Coding and Experiments. XL:

Design and Discussions. ZW: Scheme and Discussions. YZ:

Supervision and Funding. YT: Supervision and Funding. HF:

Experiments. All authors contributed to the article and approved

the submitted version.
Acknowledgments

This study was funded by the National Natural Science

Foundation of China (NSFC, 32171901) and the Research

Innovation Fund for Graduate Students of China Agricultural

University (2020XYZC38A). The wind tunnel used in the

paper was supported by College of Water Resources and

Civil Engineering, China Agricultural University. NI 9237

and compact DAQ 9135 used in the paper were supported

by the team of Professor Zhenghe SONG and Bin XIE, College

of Engineering, China Agricultural University. Meanwhile,
B C

D

A

FIGURE 12

The result of measurement of the wind among tree canopies, where (A) is the strains measured by the system, (B) shows the wind speed of
each SCS direction after the LAM processing, (C) illustrates the wind vector variations based on the LAM-processed data series, and (D) gives the
resultant wind speed values based on each direction results shown in (B).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1003659
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2022.1003659
thanks to Doctor Changkai WEN for specific details of

the devices.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Plant Science 13
256
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Cheng, S. J., Reza, A. D., Yu, S.-H., Choi, Y., and Lee, J. (2021). Mean and
turbulent flow characteristics of downwash air flow generated by a single rotor
blade in agricultural drones. Comput. Electron. Agric. 190. doi: 10.1016/
j.compag.2021.106471

Chen, S. D., Lan, Y. B., Bradley, K. F., Li, J. Y., Liu, A. M., and Mao, Y. D. (2017).
Effect of wind field below rotor on distribution of aerial spraying droplet deposition
by using multi-rotor UAV. Trans. Chin. Soc. Agric. Machinery 48 (08), 105–113.
doi: 10.6041/j.issn.1000-1298.2017.08.011

Fang, J. L., Wu, S., Wu, Z. D., and Ba, W. G. (2022). CFD simulation of vertical
ventilation and optimal design of wind shield in nursery pig house. J. Northeast
Agric. Univ. 53 (5), 59–68. doi: 10.19720/j.cnki.issn.1005-9369.2022.05.007

Guo, Q., Zhu, Y., Tang, Y., Hou, C., He, Y., Zhuang, J. J., et al. (2020). CFD
simulation and experimental verification of the spatial and temporal distributions
of the downwash airflow of a quad-rotor agricultural UAV in hover. Comput.
Electron. Agric. 172, 105343. doi: 10.1016/j.compag.2020.105343

Jiang, Y. T. (2021). Research on stability and reliability of MEMS thermal wind
sensors. master dissertation (China: Southeast University), 1–73. Available at:
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202201&filename=
1022468133.nh.

Lan, Y. B., Qian, S. C., Chen, S. D., Zhao, Y. J., Deng, X. L., Wang, G. B., et al.
(2021). Influence of the downwash wind field of plant protection UAV on droplet
deposition distribution characteristics at different flight heights. Biosyst. Eng. 11
(12), 2399. doi: 10.3390/agronomy11122399

Li, J. Y., Lan, Y. B., Wang, J. W., Chen, S. D., Huang, C., Liu, Q., et al. (2017c).
Distribution law of rice pollen in the wind field of small UAV. Int. J. Agric. Biol.
Eng. 10 (4), 32–40. doi: 10.25165/j.ijabe.20171004.3103

Li, J. Y., Shi, Y. J., Lan, Y. B., and Guo, S. (2019b). Vertical distribution and
vortex structure of rotor wind field under the influence of rice canopy. Comput.
Electron. Agric. 159, 140–146. doi: 10.1016/j.compag.2019.02.027

Liu, Z. J., Zhang, P. Z., Shen, K., and Ni, P. D. (2021). Research on micro
meteorological measurement method of power grid based on MEMS. Electronic
Measurement Technol. 44 (19), 36–390. doi: 10.19651/j.cnki.emt.2107210

Liu, C., Zhao, Z., Du, L. D., and Fang, Z. (2017). Method of measuring two-
dimensional wind based on diametrical pressure differences developed by flow around
cylinder. J. Electron. Inf. Technol. 39 (3), 737–742. doi: 10.11999/JEIT160468

Li, Q., Wang, Y., Kamada, Y., Takao, M., and Cai, C. (2021). Diagonal inflow effect
on the wake characteristics of a horizontal axis wind turbine with gaussian model and
field measurements. Energy 7), 121692. doi: 10.1016/j.energy.2021.121692

Li, J. Y., Zhou, Z. Y., Lan, Y. B., Hu, L., Zang, Y., Liu, A. M., et al. (2015a).
Distribution of canopy wind field produced by rotor unmanned aerial vehicle
pollination operation. Trans. Chin. Soc. Agric. Eng. (Transactions CSAE) 31 (3), 77–
86. doi: 10.3969/j.issn.1002-6819.2015.03.011

Pascuzzi, S., Bulgakov, V., Santoro, F., Anifantis, A. S., Ivanovs, S., and
Holovach, I. (2020). A study on the drift of spray droplets dipped in airflows
with different directions. Sustainability . 12 (11), 4644. doi: 10.3390/su12114644

Schramm, M.W., Hanna, H. M., Darr, M. J., Hoff, S. J., and Steward, B. L. (2019).
Measuring sub-second wind velocity changes for agricultural drift one meter above
the ground. Am. Soc. Agric. Biol. Engineers (ASABE) 5). doi: 10.13031/AEA.12264

Sharma, P. K., Warudkar, V., and Ahmed, S. (2018). A comparative analysis of
wind resource parameters using WAsP and windPRO. Int. J. Green Energy 16 (2),
152–166. doi: 10.1080/15435075.2018.1550783
Tang, Q., Zhang, R., Ding, C., Chen, L., and Deng, W. (2019). Application of
ultrasonic anemometer array to field measurements of the downwash flow of an
agricultural unmanned helicopter. Trans. ASABE 62 (5), 1219–1230. doi: 10.13031/
trans.13336

Wang, L., Hou, Q., Wang, J. P., Wang, Z. W., and Wang, S. M. (2021). Influence
of inner tilt angle on downwash airflow field of multi-rotor UAV based on wireless
wind speed acquisition system. Int. J. Agric. Biol. Eng. 14 (6), 19–26. doi: 10.25165/
j.ijabe.20211406.6477

Wu, Y., Qi, L., Zhang, H., Musiu, E., Yang, Z. P., and Wang, P. (2019). Design of
UAV downwash airflow field detection system based on strain effect principle.
Sensors 19 (11), 2630. doi: 10.3390/s19112630

Xing, H. Y., Yu, X., Zou, S. P., and Zhao, C. (2015). Analysis and design of the
experiment box for the starting wind velocity threshold calibration of cup
anemometer. Chin. J. Sci. Instrument 36 (9), 1996–2004. doi: 10.19650/
j.cnki.cjsi.2015.09.010

Xue, S., Li, P. J., Li, D. L., and Qi, Y. (2022). Ultrasonic downhole wind speed
detection method based on time difference method.Morden Min. 38 (03), 240–243.
doi: 10.3969/j.issn.1674-6082.2022.03.062

Yang, S. H., Tang, Q., Zheng, Y. J., Liu, X. X., Chen, J., and Li, X. L. (2020b).
Model migration for CFD and verification of a six-rotor UAV downwash. Int. J.
Agric. Biol. Eng. 13 (4), 10–18. doi: 10.25165/IJABE.V13I4.5569

Yang, F. B., Xue, X. Y., Zhang, L., and Sun, Z. (2017). Numerical simulation and
experimental verification on downwash air flow of six-rotor agricultural unmanned
aerial vehicle in hover. Int. J. Agric. Biol. Eng. 10 (4), 41–53. doi: 10.25165/
j.ijabe.20171004.3077

Yang, S. H., Xu, P. F., Jiang, S. J., and Zheng, Y. J. (2022a). Downwash
characteristics and analysis from a six-rotor unmanned aerial vehicle configured
for plant protection. Pest Manage. Sci. 78 (4), 1707–1720. doi: 10.1002/ps.6790

Yang, S. H., Zheng, Y. J., and Liu, X. X. (2019c). Research status and trends of
downwash airflow of spray UAVs in agriculture. Int. J. Precis. Agric. Aviation 2 (1),
1–8. doi: 10.33440/j.ijpaa.20190201.0023

Zhan, Y. L., Chen, P. C., Xu, W. C., Chen, S. D., Han, Y. F., Lan, Y. B., et al.
(2022). Influence of the downwash airflow distribution characteristics of a plant
protection UAV on spray deposit distribution. Agronomy-Based 216, 32–45.
doi: 10.1016/j.biosystemseng.2022.01.016

Zhang, H. Y., Lan, Y. B., Wen, S., Xu, Y. T., and Yu, F. H. (2020). Research
progress in rotor airflow model of plant protection UAV and droplet motion
mechanism. Trans. Chin. Soc. Agric. Eng. (Transactions CSAE) 36 (22), 1–12.
doi: 10.11975/j.issn.1002-6819.2020.22.001

Zhang, H., Qi, L. J., Wu, Y. L., Cheng, Z. Z., Liu, W. W., Elizabeth, M., et al.
(2019b). Distribution characteristics of rotor downwash airflow field under
spraying on orchard using unmanned aerial vehicle. Trans. Chin. Soc. Agric. Eng.
(Transactions CSAE) 35 (18), 44–54. doi: 10.11975/j.issn.1002-6819.2019.18.006

Zhang, H., Qi, L. J., Wu, Y. L., Liu, W. W., Cheng, Z. Z., and Musiu, E. (2019a).
Spatio-temporal distribution of down-wash airflow for multi-rotor plant protection
UAV based on porous model. Trans. Chin. Soc. Agric. Machinery 50 112–122 (02).
doi: 10.6041/j.issn.1000-1298.2019.02.012

Zheng, Y. J., Chen, B. T., Lyu, H. T., Kang, F., and Jiang, S. J. (2020). Research
progress of orchard plant protection mechanization technology and equipment in
China. Trans. Chin. Soc. Agric. Eng. (Transactions CSAE) 36 (20), 110–124.
doi: 10.11975/j.issn.1002-6819.2020.20.014
frontiersin.org

https://doi.org/10.1016/j.compag.2021.106471
https://doi.org/10.1016/j.compag.2021.106471
https://doi.org/10.6041/j.issn.1000-1298.2017.08.011
https://doi.org/10.19720/j.cnki.issn.1005-9369.2022.05.007
https://doi.org/10.1016/j.compag.2020.105343
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202201&filename=1022468133.nh
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202201&filename=1022468133.nh
https://doi.org/10.3390/agronomy11122399
https://doi.org/10.25165/j.ijabe.20171004.3103
https://doi.org/10.1016/j.compag.2019.02.027
https://doi.org/10.19651/j.cnki.emt.2107210
https://doi.org/10.11999/JEIT160468
https://doi.org/10.1016/j.energy.2021.121692
https://doi.org/10.3969/j.issn.1002-6819.2015.03.011
https://doi.org/10.3390/su12114644
https://doi.org/10.13031/AEA.12264
https://doi.org/10.1080/15435075.2018.1550783
https://doi.org/10.13031/trans.13336
https://doi.org/10.13031/trans.13336
https://doi.org/10.25165/j.ijabe.20211406.6477
https://doi.org/10.25165/j.ijabe.20211406.6477
https://doi.org/10.3390/s19112630
https://doi.org/10.19650/j.cnki.cjsi.2015.09.010
https://doi.org/10.19650/j.cnki.cjsi.2015.09.010
https://doi.org/10.3969/j.issn.1674-6082.2022.03.062
https://doi.org/10.25165/IJABE.V13I4.5569
https://doi.org/10.25165/j.ijabe.20171004.3077
https://doi.org/10.25165/j.ijabe.20171004.3077
https://doi.org/10.1002/ps.6790
https://doi.org/10.33440/j.ijpaa.20190201.0023
https://doi.org/10.1016/j.biosystemseng.2022.01.016
https://doi.org/10.11975/j.issn.1002-6819.2020.22.001
https://doi.org/10.11975/j.issn.1002-6819.2019.18.006
https://doi.org/10.6041/j.issn.1000-1298.2019.02.012
https://doi.org/10.11975/j.issn.1002-6819.2020.20.014
https://doi.org/10.3389/fpls.2022.1003659
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Wei Qiu,
Nanjing Agricultural University, China

REVIEWED BY

Xavier Frank,
Institut National de recherche pour
l’agriculture, l’alimentation et
l’environnement (INRAE), France
Manas Ranjan Sahoo,
ICAR-Indian Institute of Horticultural
Research, India

*CORRESPONDENCE

Zhang Guozhong
zhanggz@mail.hzau.edu.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 14 August 2022
ACCEPTED 11 October 2022

PUBLISHED 03 November 2022

CITATION

Wanru L, Guozhong Z, Yong Z,
Haopeng L, Nanrui T, Qixin K and
Zhuangzhuang Z (2022) Establishment
of discrete element flexible model of
the tiller taro plant and clamping and
pulling experiment.
Front. Plant Sci. 13:1019017.
doi: 10.3389/fpls.2022.1019017

COPYRIGHT

© 2022 Wanru, Guozhong, Yong,
Haopeng, Nanrui, Qixin and
Zhuangzhuang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 03 November 2022

DOI 10.3389/fpls.2022.1019017
Establishment of discrete
element flexible model of the
tiller taro plant and clamping
and pulling experiment

Liu Wanru1,2, Zhang Guozhong1,2*, Zhou Yong1,2,
Liu Haopeng1,2, Tang Nanrui1,2, Kang Qixin1,2

and Zhao Zhuangzhuang1,2

1College of Engineering, Huazhong Agricultural University, Wuhan, China, 2Key Laboratory of
Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs,
Wuhan, China
The taro harvesting process is affected by a complex system composed of

particle mechanics system and multi-body dynamics system. The discrete

element method(DEM) can effectively solve the nonlinear problem of the

interaction between harvesting components and working materials.

Therefore, the discrete element model of taro tiller plants is of great

importance for taro harvesting. This paper proposes a simulation method to

establish a discrete element flexible plant model and dynamic clamping and

pulling process of taro tiller plant. Discrete Element models of taro corm and

flexible tiller petiole and leaf were established using DEM method, and the

discrete element flexible model of the taro plant was established. Taro

clamping and pulling force testing platform was designed and built. The

single factor and Plackett-Burman experiments were used to determine the

simulation parameters and optimize the taro plant model by taking

the correlation coefficient of clamping force and correlation coefficient of

pulling force collected from the simulation and the bench experiment as the

experiment index. The parameter calibration results of discrete element model

of taro plant are as follows: petiole-petiole method/tangential contact stiffness

was 8.15×109 N·m-3, and normal/tangential critical stress was 6.65×106 Pa. The

contact stiffness of pseudostem- cormmethodwas 1.22×109 N·m-3, the critical

stress of normal/tangential was 1.18×105 Pa, and the energy of soil surface was

4.15×106J·m-3. When the pulling speed is 0.1, 0.2, 0.3, 0.4 and 0.5 m·s-1, the

correlation coefficients between the simulation experiment and the bench

experiment are 0.812, 0.850, 0.770, 0.697 and 0.652, respectively. The average

value of correlation coefficient is 0.756, indicating that the simulated discrete

element plant model is close to the real plant model. The discrete element

model of taro plant established in this paper has high reliability. The final
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purpose of this paper is to provide a model reference for the design and

optimization of taro harvester by discrete element method.
KEYWORDS

taro, discrete element flexible model, parameter variation, clamping and pulling force,
bench experiment, simulation experiment
1 Introduction
Taro is the most important food crop and cash crop of

Araceae, and is the staple food of nearly 70 million people in the

world (Andreas and Waqainabete, 2018; Aditika et al., 2022). It

has a higher starch content than potatoes, sweet potatoes,

cassava, etc. (Singla et al., 2020). Taro is native to India (Wang

et al., 2012). By 2020, the harvested area of African taro was

about 1.6088 million hectares, accounting for 88.91 percent of

the world’s planted area. Chinese taro is mainly distributed in

the Yangtze River basin, Pearl River Basin and Yellow River

basin (Li et al., 2022). Harvesting is an important stage in the

process of taro production presently done by digging and

clamping. Excavating harvest is a segment-type harvest. First,

the thick petiole of the plant is cut off, and then the root and

petiole harvester are used to excavate taro corm. This process

requires two operations, which is inefficient. Gripper harvesting

is combined harvesting, where the belt of the harvester grabs the

leaf petiole and pulls the taro out by the roots, then the petiole is

cut off by a rotating blade. This way of harvesting can be

completed at one time, this way of operation efficiency is high,

so the clamping taro harvest is the future harvest taro important

way of harvesting (Zhou et al., 2015; Zhu et al., 2022). the

research and development cycle of equipment is long, and the

cost of processing and trial production is high. Traditional test

methods cannot accurately analyze taro plants’ force and

movement during harvesting. Therefore. It is of great

significance for the optimal design of key components of the

taro harvester to study the stress and movement of taro plants

under the plant-machine-soil interaction in the process of

pulling taro by digital simulation method.

The clamping and pulling mechanical system together with

taro plants, soil and other microscopic granular materials

constitute a complex physical field system with multi-spatial

scale coupling. Evaluating the accuracy of clamping resistance

and pulling resistance in taro harvesting has an important

impact on the design of the taro harvester, optimization of key

components and power system of taro harvesting equipment,

and evaluation of operation quality and efficiency. The discrete

element method can effectively simulate the nonlinear

relationship between the interaction between harvesting
02
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components and working materials (Ma et al., 2015; Guo

et al., 2021). The key to taro clamping and pulling simulation’s

success is using accurate material parameters and particle

contact model (Liu et al., 2022). Compared with rice, wheat

and maize, corm crops such as taro and potato are also very

important food sources for humans. However, the recent

research on corm crops using the discrete element method

focuses on corm modeling in potato (Liu et al., 2018) and

Cyperus edulis root- corm and soil (HE et al., 2022). Yang

et al. (2022) established a discrete meta-model of cassava petiole

and applied it to the simulation of pre-cut cassava planter

seeding; Chen et al. (2022) established the discrete element

model of cassava seed stem and carried out the simulation test

of vibration seed dispersing mechanism. Yu Qingxu et al.

established the discrete element model of Panax notoginseng

seeds and carried out the planting test, which proved that Panax

notoginseng seeds could be used in the discrete element

simulation experiment (Yu, 2019; Yu et al., 2020; Yu et al.,

2022). Liu (2021) established the discrete element model of sweet

potato corm and carried out the simulation of sweet potato

transport device.

Due to the lack of discrete element model of corm crops, the

development of contact mechanics model between corm crops

and agricultural machinery and various agricultural materials is

limited, and the in-depth multidimensional research on the

internal mechanism of corm crop-soil-machine and tool

interaction has been affected. Therefore, this study’s key is to

construct a discrete element flexible model for the taro plant and

explore the dynamic mechanical behavior of taro clamping and

pulling under plant-machine-soil interaction. Taro plant has

anisotropic, inhomogeneous, and petiole tillering characteristics.

When using discrete element method to estabish taro plant

model, the simple rules of spherical particles cannot be

simulated with the complex shape outline rules such as taro

particle collision and friction between features, so the discrete

element model of the local petioles and corms cannot meet the

needs of taro pulling performance simulation. Currently, there is

no literature report on the establishing a discrete element model

of the taro plant, and its interaction with soil and machine has

also not been solved.

This paper proposed a simulation method to establish a

discrete element flexible plant model and dynamic clamping and
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pulling process of taro tiller plant. which can reduce the testing

cost and shorten the design process in the structural design of

the taro harvester. The remainder of the article is organized as

follows. Section 2 introduces the discrete element flexible model

of taro tiller plant established by EDEM, and the parameters

were calibrated by single factor experiment and Plackett-

Burman experiment. The practicability of the taro plant model

was verified, and the pulling force of the taro plant were explored

in Section 3. Finally, conclusion and the future research

directions that can be studied in depth is presented in Section 4.
2 Materials and methods

2.1 Establishment of discrete
element model of taro tiller plants
based on EDEM

2.1.1 Establishment of discrete element model
of taro corm

The corms of taro planted by Yanglinggou Taro Cooperative

in Hanchuan City, Hubei Province were studied. The

geographical location of the area was 113.660221 east

longitude and 30.521991 north latitude. Taro corms can be

divided into mother corm, sister corms, as shown in
Frontiers in Plant Science 03
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Figure 1A. Sixty taro samples without damage and disease

were collected, and the vernier caliper with an accuracy of

0.01mm was used to measure the physical dimensions of taro

corms, and the average values were calculated. The mean length,

width, height of the mother corm was 64.26, 64.46 and 83.01mm,

respectively. The mean length, width, height of sister corm was

32.06, 29.01 and 40.85mm, respectively, and the mean length,

width, height of sister corm was 27.44, 25.62 and 31.74mm,

respectively, the statistical results are shown in Figure 1B.

3D laser scanning technology can accurately obtain the 3D

contour of complex plants. As taro corm is irregular particles

with complex shapes. A SHINING 3D Einscan-Pro multi-

functional handheld scanner was used to conduct 3D scanning

and collect the position coordinates of taro corm in 3D space, 3D

laser scanning is shown in Figure 1C. Dominik et al. (2021)

established an image database of 7 different trees through

3D scanning. Cucinotta et al. (2019) obtained the wear

morphology of the plowshare through three-dimensional

scanning technology.

Geomagic Warp software is used for reverse engineering

processing to obtain the point cloud data of taro corms, as

shown in the Figure 2A. The point cloud data is converted into a

polygon model to restore the shape contour of taro corms. After

trimming the excess surface, deleting the nail, merging, relaxing,

smoothing and other operations (Hao et al., 2021), A more
B

C D

A

FIGURE 1

Schematic diagram and size statistics of taro corm. (A) The growing position of mother corm, and sister corms; (B) The length, width and height
of mother corm, and sister corms statistics; (C) 3D laser scanning experiment of taro corm; (D) The length, width and height of 1st leaf petiole,
2nd leaf petiole and 3rd leaf petiole statistics.
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accurate polygon model of the taro corm was obtained, as shown

in the Figure 2B. The discrete element model of the taro corm

was established by the fast-filling method of EDEM software,

and the number of sphere elements was 58. The discrete element

model of taro plant is shown in Figure 2C.

The Hertz-Mindlin (no slip) model with high computational

accuracy and simulation speed was used among corm particles,

and the contact radius between spherical particles:

di = r1i + r2i − di (1)

Where di is the contact center distance between two

spherical particles, mm; r1i is the radius of the first sphere

particle, mm; r2i is the radius of the second sphere particle,

mm; di is the overlap distance in the direction of the connecting

line between the center of two spheres, mm.

2.1.2 Establishment of discrete element flexible
model for taro petiole

The taro petiole is in the shape of a tiller, and the inner part

of the petiole is mainly composed of axial vascular bundle fibers.

The diameters of the 1st side petiole, the 2nd side petiole and the

3rd side petiole at different positions from the ground were

measured for 60 plants. I stand for 0-5cm from the ground, II for

5-10cm from the ground, III for 10-15cm from the ground, and

IV for 15-20cm from the ground, as shown in the Figure 1D. The

average diameter of the petiole gradually increases from the

bottom to the top.

Twenty main petioles were cut at a distance of 5-10 cm from

the ground, and the TMS-PRO texture analyzer produced by

TFC Company in the United States was used to measure the

petiole load-deflection curve at an experiment speed of 60

mm·min-1 (Shen et al., 2015), the instrument accuracy is ±1%,

the range is 0~1000 N, and the data acquisition frequency is 50

Hz. The petiole was placed on two horizontal metal supports at

the testing machine’s lower end and aligned the sample’s center

with the center of the upper clamp; the experiment was started

until the petiole was significantly bent, as shown in the

Figure 3A. where midpoint A is the elastic limit point, and
Frontiers in Plant Science 04
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point B is the biological yield point. as shown in the Figure 3B.

The elastic modulus of the petiole is about 16.69MPa after 20

measurements and the average value is obtained by formula (9).

The Poisson’s ratio y of the petiole is 0.4 according to the

relevant literature (Shi et al., 2018), and the shear modulus of the

petiole is 5.96 MPa obtained by formula (10).

The section of the taro petiole can be approximated as a

circle, and the moment of inertia I of the section relative to the

neutral axis is:

I =
p d41−(d1−2h)

4½ �
64

(2)

Where d1 is the petiole outer diameter, mm; h is the petiole

wall thickness, mm.

petiole elastic modulus Ew:

EW = FL31
48SI

(3)

Where F is the loading force, N; L1 is the distance between

two supports, mm; S is the Bending deflection at the midpoint of

the petiole, mm.

Shear modulus G1 of the petiole:

G1 =
E

2(y+1) (4)

The petiole is subjected to clamping load when the taro plant

is pulled from the soil. Combined with the deformation and

damage characteristics of the petiole after loading, the Hertz-

Mindlin with bonding contact model was selected to reflect the

anisotropy and agglomeration characteristics of the petiole, as

shown in the Figure 3C. the fiber state inside the petiole is

characterized by the elastic coefficients Kt, Kn, damping

coefficients Ct, Cn and friction coefficient m between the petiole

particles. The model has a total of 5 parameters, the normal

bond stiffness Sn and the tangential bond stiffness St are iterated

continuously at unit step intervals and update the load on the

bond. The normal critical stress smax and the tangential critical

stress tmax are the critical threshold for judging whether the

cohesive force is broken or not. The cohesive radius is the

maximum distance required for the formation of cohesion
B CA

FIGURE 2

Discrete element model of taro corm. (A) Taro corm 3D scanning point cloud model; (B) Taro corm contour model; (C) Discrete element
model of taro corm.
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between particles. A total of 5876 parallel bonding structures

were generated between particles, as shown in the Figure 3D.

The process model of taro petiole particles from cohesion to

failure:

       DFd = −vnSnAsDt

     DFa = −vtStAsDt

   DTn = −wnSnJDt

DTt = −wtStJDt

8>>>>><
>>>>>:

(5)

Where Fd is the normal adhesion force, N; Fais the tangential

adhesion force, N; Tn is the normal adhesion moment, N·m; Tt is

the tangential adhesion moment, N·m; vn is the particle method

Vertical velocity, m·s-1; vt is the particle tangential velocity, m·s-1;

wn is the normal angular velocity, rad·s-1; wt is the tangential

angular velocity, rad·s-1. Sn is the normal bond stiffness, N·mm-1;

St is the tangential bond stiffness, N·mm-1; As is the contact

area, m2.

The moment of inertia J of the parallel bond and the area of

the contact area As:

J = 1
2 pR

4
B (6)

AS = pR2
B (7)
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Where RB is the bond radius, mm.

Fracture conditions for bond bonds:

smax <
−Fd
AS

+ 2Tt
J RB

tmax <
−Fa
AS

+ 2Tn
J RB

8<
: (8)

Where smax is the normal critical stress, Pa; tmax is the

tangential critical stress, Pa.

2.1.3 Establishment of discrete element flexible
model for the whole taro plant

The taro leaf does not affect the effect of clamping and

pulling. Only its gravity affects the clamping posture. To

improve the simulation efficiency, the material parameters of

the blade part were equivalent to the petiole, and the Hertz-

Mindlin (no slip) contact model was used between the particles.

Taking the corm, petiole and leaf as the aggregation unit,

according to the actual shape of the taro plant and the coordinate

position of each particle cluster unit, the X, Y and Z axis

coordinates of the aggregation unit were located, and the

Hertz-Mindlin with bonding particle contact model was used

to connect the corm to the petiole and the petiole to the leaf.

Micro-unit spherical particles characterize the complex stress-

strain characteristics of plants under macroscopic load, then
B

C D

A

FIGURE 3

Discrete element model of petiole. (A) Three point bending experiment of petiole; (B) Displacement-Force of petiole obtained by three-point
bending test; (C) Discrete element model and particle number of petiole; (D) Inter-particle force of taro.
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global variables were set, the Fixed Time Step was set to 4.60%,

the Cell Size set to 3Rmin, the total number of grids was 3.5×106,

and the time was set to 10s. The discrete element model of taro

plant established is shown in Figure 4.
2.2 Taro clamping and pulling
force experiment

2.2.1 Construction of taro clamping and pulling
force measuring platform

In order to explore the actual interaction and dynamic

mechanical behavior of taro pulling from the soil, a force

measuring device for taro clamping and pulling was designed

and fabricated, Figure 5A is the 3D model, and Figure 5C is the

platform. Working principle: Place the taro plant shown in

Figure 5B in the middle of the left and right clamping boards,

Under the action of the electric push rod, the taro petioles are

clamped at a constant speed. When the clamping plate is in

contact with the taro petiole, the pulling platform was driven by

the 86 stepper motor to lift at a constant speed until the petiole

does contact with the clamping plate, as shown in Figure 5D.

Sliding and pulling up the taro plant from the soil, at this time,

record the minimum clamping force collected by the clamping

platform sensor and the instantaneous pulling resistance

collected by the two sensors of the pulling platform.

When the sensor’s sensitivity is 0.0105mv·V-1, the dynamic

calibration of the sensor is carried out by using weights to

eliminate the influence of the vibration of the force measuring

platform and the gravity of the bench itself. Finally, complete the

process of taro clamping and pulling force measurement
Frontiers in Plant Science 06
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2.2.2 Bench experiment of taro plant clamping
and pulling

Use the SDH-1202 fast halogen moisture meter to measure

the moisture content of taro corms, petioles and growing soil

environment, respectively. Set the drying temperature to 105°C,

until the quality no longer changes, and repeat 5 times. The

average measured moisture content was 75.42% for corms,

88.34% for petioles, and 21.05% for soil. Take the petiole 5 to

10 cm from the ground as the clamping position, the clamping

speed is 12mm·s-1, and the pulling speed is 0.3m·s-1 as the

working conditions, and the petiole does not form with the

clamping plate during pulling. The minimum clamping force FC
is collected at the moment of slippage, and the instantaneous

pulling resistance FL1 and FL2 collected by the two pull-out

sensors are recorded. The sum of FL1 and FL2 is recorded as FL.

The mean va lue of FC and FL was 300 .89N and

201.245N, respectively.
2.3 Simulation experiment of taro
clamping and pulling

2.3.1 Experimental procedure
When the discrete element method is used to carry out the

simulation research of taro clamping and pulling, the accuracy of

the model parameters directly affects the data accuracy of the

minimum clamping force and the instantaneous pulling

resistance. The intrinsic parameters (density, Poisson’s ratio

and elastic modulus) are the material’s inherent properties.

The necessary parameters for the simulation are obtained

through physical experiments and literature results, as shown
FIGURE 4

Discrete element flexible model of taro plant.
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in Table 1. The contact parameters (coefficient of restitution,

coefficient of static friction and coefficient of rolling friction) of

taro corm and petiole were obtained through tribometer

experiment and high-speed photographic experiment in the
Frontiers in Plant Science 07
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early stage. The results are shown in Table 2. The soil in

which taro grows is sandy loam, which has the characteristics

of granular material. Hertz-Mindlin with JKR is a contact model

based on Hertz theory that can characterize the viscoelasticity
TABLE 1 Intrinsic parameters.

Property Value Source

Poisson´s ratio of the device 0.3 a, b f

Poisson´s ratio of the corm 0.25 e

Poisson´s ratio of the petiole 0.4 g

Poisson´s ratio of the soil 0.5 c d b

Young’s modulus of the device (Pa) 2.78×1011 a, b f

Young’s modulus of the corm (Pa) 5.30×106 e

Young’s modulus of the petiole (Pa) 1.67×108 Experiment

Young’s modulus of the soil (Pa) 7.50×107 c d b

Density of the device (kg·m-3) 7.80×103 a, b f

Density of the corm (kg·m-3) 1540 e

Density of the petiole (kg·m-3) 1.13×103 Experiment

Density of the soil (kg·m-3) 2.60×103 1 2 d
fron
Parameter source: a: (Liu et al., 2018); b: (Ucgul et al., 2017); c: (Wang et al., 2022); d: (Ucgul and Saunders, 2020); e: (Horabik et al., 2019); f: (Su et al., 2020). g: (Shi et al., 2018).
B

C D

A

FIGURE 5

Mechanical force measuring platform of clamping and pulling device. (A) Sensor installation location; (B) Taro plant; (C) Mechanical force
measuring platform of clamping and pulling device; 1. 86 stepper motor 2. PC test software 3. 48V power supply 4. DH380 controller 5. Motor
driver 6. DH3820 collector 7. 86-stepper motor controller 8. Clamping force measuring platform 9. Electric pusher petiole 10. Taro Plant. (D)
Clamping position of taro petiole.
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between particles (Horabik and Molenda, 2016). Therefore, the

Hertz-Mindlin with JKR model was used for the soil, and the

Hertz-Mindlin with bonding was used to reflect the adhesion

between the petiole and the soil.

Sn=St, smax=tmax can simplify the parameter calibration, the

inter-particle bonding behavior originates from the liquid bridge

between particles (Zhu et al., 2020), and the material moisture

content is measured by the inter-particle bonding radius.

Assuming that the material moisture is uniformly

distributed, and wrapped around the particle to form a

uniform water film, the sum of the thickness of the water film

and the particle radius represents the bonding radius. Refer to

the existing rhizome agricultural material simulation parameters

to set its range, as shown in Table 3.

Through the particle filling experiment, the density r of the

filling particles is obtained by correcting the bulk density of the

material, and the formula is:

r = 3V
4pkR3

i
ri (9)

Where r is the density of filling particles, kg·m-3; V is the

volume of the container, m3; K is the number of filling particles,

each; Ri is the radius of the filling particles, mm; ri is the bulk
density of the material, kg·m-3.

Volume Vs of filled spherical particles:

VS =
4
3 pr

3 (10)

Combining (9) and (10) yields:

r = V
kVS

ri (11)
Frontiers in Plant Science 08
264
The total volume Vi occupied by the material particles is:

Vi = KVs (12)

Therefore, the bulk density ri of the material:

ri =
rVi
V (13)

Then the total weight mi of material particles is:

mi = riVi =
4
3 pR

3
i ri (14)

The total volume of water in the material Vw:

Vw = 4
3 pR

3
B −

4
3 pR

3
i (15)

According to the material moisture content w:

w =
4
3pR

3
B−

4
3pR

3
ið Þr2

4
3pR

3
i r1

(16)

Derivation of formula (13) yields the bonding radius RB:

RB =
ffiffiffiffiffiffiffiffiffiffiffiffi
r2+wr1

r2
3

q
(17)

Where, w is the moisture content of the material, %; RB is the

bonding radius between particles, mm; ri is the bulk density of

the material, kg·m-3; r2 is the density of water, kg·m-3; Ri is the

filling material particles Radius, mm; Vs is the filling ball particle

volume, m3; Vi is the total volume occupied by material particles,

m3; mi is the total weight of material particles, kg; mw is the total

moisture weight, kg; Vw is the total volume of water in

material, m3.

The virtual prototype model of the pulling device established

by NX.12.0 is saved as stl format and imported into EDEM. In
TABLE 3 Parameter range of particle contact model.

Interparticle contact parameters Ranges

Petiole - Petiole Normal/tangential contact stiffness X1/(N·m-3) 1.0×109<1.2×1010

Normal/tangential critical stress X2/(Pa) 5.0×108<1.5×109

Corm - Soil Normal/tangential contact stiffness X3/(N·m-3) 5.0×105<1.0×107

Normal/tangential critical stress X4/(Pa) 1.0×104<1.6×105

Soil - Soil Surface energy X5/(×105J·m-3) 1.0×105<1.0×107
TABLE 2 Contact parameters.

Property Coefficient of restitution Coefficient of static friction Coefficient of rolling friction

Petiole-Steel 0.1487 0.6135 0.3262

Petiole-Soil 0.1128 0.7054 0.4107

Petiole- Petiole 0.3183 0.5583 0.4267

Pseudostem -Corm 0.0891 0.6073 0.4896

Corm-Steel 0.2769 0.2473 0.3404

Corm -Soil 0.2256 0.4457 0.293

Corm - Corm 0.3257 0.7587 0.6187

Soil-Soil 0.1230 0.3853 0.2670
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order to facilitate simulation and calculation, the parts that are

not related to contact are removed, and the discrete element

model of the taro clamping and pulling device is established. The

size of the clamping plate is 100×50mm. The target save interval

is set to 0.005s, the total simulation time is 3s, the gravitational

acceleration is in the negative direction of the Z axis, and the

value is -9.8kg·m-3. The main operation process Includes the

following 4 steps:

The actual growth depth of taro in the soil is about 15cm

underground, and the surface is exposed to about 1cm of soil.

Therefore, according to the actual growth situation, the taro

plants are grown in a soil trough with a size of 300 × 300 × 200

mm, and a total of 37875 particles are generated in the soil

trough. The position of the clamping experiment platform was

adjusted, and the two clamping plates were fixed at the petiole

5<10 cm from the ground, as shown in Figure 6A.

The left and right clamping plates speed were set to 12

mm·s-1 in the X-axis to clamp the petiole until the clamping

plates on both sides are in contact with the petiole, as shown

in Figure 6B.

The clamping plates continue to clamp the petiole, and the

left and right clamping plates and the pulling platform are set at

a speed of 0.3m·s-1 in the Z-axis direction to pull up the plants

until the clamping plates do not slip with the petioles. Stop the

speed of the clamping plate in the X-axis direction at this time,

record the force change of the clamping plate in the X-axis

direction, and the clamping force collected at the moment of slip

is recorded as the clamping force FC for pulling out the taro, as

shown in Figure 6C.

Continue to pull up the plants in the Z-axis direction until

the plants are completely pulled up from the soil and record the

pulling platform at the force change in the Z-axis direction,

which is recorded as FL. as shown in Figure 6D.
Frontiers in Plant Science 09
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2.3.2 Experiment index
Bench experiment to measure the holding force of the Fa,

pulling force for Fb, simulation experiment of clamping force for

the FC, pulling force for FL, respectively using Origin data

processing software simulation experiment bench experiment

and measurement of two curves for data analysis, the correlation

coefficient of the two clamping force curve for RC, the correlation

coefficient of the pulling force of two curve for RL, The larger the

correlation coefficient is, the higher the similarity of the two

curves is, indicating that the tension measured in the simulation

experiment is closer to the tension obtained in the actual

experiment. RC and RL are calculated according to equations

(18) and (19) respectively:

RC = Cov(Fa ,FC)
sFasFC

(18)

RL =
Cov(Fb ,FL)
sFb

sFL
(19)

Where, Fa =300.89N; Fb =201.245N.

2.3.3 Single factor simulation experiment
In order to ensure the reliability of the discrete element

flexible model of the whole taro plant, the Hertz-Mindlin with

bonding model parameters between petiole, corm and soil, and

Hertz-Mindlin with JKR model parameters between soils were

calibrated. Taking the normal/tangential contact stiffness X1

between petiole, the normal/tangential critical stress X2, the

normal/tangential contact stiffness X3 between corm and soil,

the normal/tangential critical stress X4, and the inter-soil surface

energy X5 as for the experimental factors, single-factor

simulation experiments were carried out with RC and RL as the

experimental indicators. The experimental parameter levels are

shown in Table 4.
B

C D

A

FIGURE 6

DEM simulation process. (A) The taro petiole is placed in the middle of the gripper; (B) The left and right clamping boards clamp the taro
petiole; (C) The ascending mechanism lifts the taro plant; (D) Taro is completely pulled from the soil.
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2.3.4 Plackett-Burman experiment
The Plackett-Burman calibration method is accurate and

efficient and has been widely used in discrete element parameter

calibration (Xia et al., 2019; Fang et al., 2022). First, based on the

single factor experiment results, each factor is increased in equal

steps to create each step parameter level and carry out a

simulation experiment. Then, the parameters are further

reduced through the changing trend of the Correlation

coefficient of clamping force RC and the Correlation coefficient

of pulling force RL, Finally, a multi-factor regression model was

established, the maximum optimal solution of RC and RL was

calculated, and parameter calibration was completed. Single

factor simulation experiment parameters with correlation

coefficient more than 50% were used as the range of Plackett-

Burman experiment parameters, X1 (6.0×10
9<1.0×1010 N·m-3),
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X2 (9×108<1.5×109 Pa), X3 (4.5×106<8.5×106 N·m-3), X4

(7.0×104<1.6×105 N·m-3), X5 (2.0×10
6<6.0×106 N·m-3).
3 Results and discussion

3.1 Parameter calibration of discrete
element model of taro whole plant

3.1.1 Analysis of single factor
experiment results

With the increase of X1 and X2, both RC and RL show a trend

of first increasing and then decreasing, as shown in Figures 7A,

B, mainly because the cross-section of the petiole is composed of

many fiber tubes, and there are a large number of fiber tubes
B C

D E F

A

FIGURE 7

Results of Single factor and Plackett-Burman simulation experiments. (A) Changes of RC and RL at different X1 levels; (B) Changes of RC and RL
at different X2 levels; (C) Changes of RC and RL at different X3 levels; (D) Changes of RC and RL at different X4 levels; (E) Changes of RC and RL
at different X5 levels; (F) Fitting plot of step order and correlation coefficient.
TABLE 4 Value range of single factor exposure parameters.

Contact parameters Level Fixed value

Petiole-
Petiole

X1/(N·m-3) 1.0×109, 4.0×109, 6.0×109,
8.0×109, 1.0×1010, 1.2×1010

X2 = 1.1×109, X3 = 6.5×106, X4 = 1.0×105, X5 = 6.0×106

X2/(Pa) 5.0×108, 7.0×108, 9.0×108,
1.1×109, 1.3×109, 1.5×109

X1 = 0.8×109, X3 = 6.5×106, X4 = 1.0×105, X5 = 6.0×106

Corm -
Soil

X3/(N·m-3) 5.0×105, 2.5×106, 4.5×106,
6.5×106, 8.5×106 1.0×107

X1 = 0.8×109, X2 = 1.1×109, X4 = 1.0×105, X5 = 6.0×106

X4/(Pa) 1.0×104, 4.0×104, 7.0×104,
1.0×105, 1.3×105, 1.6×105

X1 = 0.8×109, X2 = 1.1×109, X3 = 6.5×106, X5 = 6.0×106

Soil-
Soil

X5/(×105J·m-3) 1.0×105, 2.0×106, 4.0×106,
6.0×106, 8.0×106, 1.0×107

X1 = 0.8×109, X2 = 1.1×109, X3 = 6.5×106, X4 = 1.0×105,
frontiersin.org

https://doi.org/10.3389/fpls.2022.1019017
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wanru et al. 10.3389/fpls.2022.1019017
around them. For parenchyma cells, the fibrous tube bundles

shrink when they are clamped, and the culm is deformed. When

pulling up, friction occurs between the clamping plates on both

sides and the epidermis of the culm. Therefore, X1 and X2 will

affect both RC and RL. With the increase of X3 and X4, both RC
and RL showed a trend of first increasing and then decreasing, as

shown in Figures 7C, D, With the increase of X5, both RC and RL
showed a trend of first increasing and then decreasing, as shown

in Figure 7E. The Plackett-Burman experiment was carried out

in the range of experimental factor data with correlation

coefficient more than 50% in the single factor experiment.

3.1.2 Analysis of Plackett-Burman
experiment results

The starting point parameter group of Plackett-Burman

experiment climbing was A1 (the lower limit of the contact

parameter to be calibrated), and the end parameter group was

Am (the higher limit of the contact parameter to be calibrated),

then each step parameter group can be expressed as:

A1

A2

A3

  ·

  ·

  ·

Am

2
666666666666664

3
777777777777775

=

X11 X12 ⋯X1n

X21 X22 ⋯X2n

X31 X32 ⋯X3n

                ·

                ·

                ·

Xm1 Xm2 ⋯Xmn

2
666666666666664

3
777777777777775

=

     A1

A1 + A

A1 + 2A

        ·

        ·

        ·

A1 + (m − 1)A

2
666666666666664

3
777777777777775

(20)

Where, m is the total number of steps for climbing (that is,

the number of calibration experiments), n is the total number of

parameters to be calibrated (n=5), and the step size A is:

A = Am−A1
m−1 (21)

The value range of step order x is 1≤x≤m, and the value

corresponding to each contact parameter group:
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Ax = (x − 1)A + A1 (22)

EC = fC(X1,X2,X3,X4,X5) (23)

EL = fL(X1,X2,X3,X4,X5) (24)

The larger m is, the closer the contact parameters of each

group of calibration experiments are, and the clamping force FC
and the pulling resistance FL will be more accurate with the

change of the parameter group, but the number of simulations

will increase. Based on the calibration accuracy and workload,

this research uses Design Expert software to design 11 groups of

experiments including 5 influencing factors and divides the high

and low levels of each influencing factor into 10 equally for the

steepest climbing experiment. The experimental design is shown

in Table 5.

With the increase of step order, both RC and RL show a trend

of first increasing and then decreasing. The step order and

correlation coefficient are fitted, as shown in Figure 7F. The

fitting equations:

RC = 3:18� 10−4x3 − 0:02x2 + 0:20x + 0:35 (25)

RL = −5:2� 10−4x3 − 0:005x2 + 0:14x + 0:43 (26)
Among them, the coefficient of determination R2
c = 96:65%,

R2
L = 95:06%, the fitting degree of the fitting equation to the

simulation experiment value is good.

According to the minimum value of the quadratic fitting

parabola, when the step order x1 = 6.48, x2 = 6.27, the RC and RL

values are the maximum. x1 and x2 mean x=6.375, at this time

RC=0.865, RL =0.937. According to formula (22), the final

result of the contact parameter group corresponding to the

interaction of the taro plant: X1 (8.15×10
9 N·m-3), X2 (1.22×10

9

Pa), X3 (6.65×106 N·m-3), X4 (1.18×105 N·m-3), X5 (4.15×106

N·m-3).
TABLE 5 Calibration experiment results.

Step order/x X1/×109 X2/×108 X3/×106 X4/×104 X5/×106 FC/N RC FL/N RL

1 6.00 9.00 4.50 7.00 2.00 554.23 0.54 347.03 0.58

2 6.40 9.60 4.90 7.90 2.40 472.35 0.64 318.38 0.63

3 6.80 10.20 5.30 8.80 2.80 385.81 0.78 257.68 0.78

4 7.20 10.80 5.70 9.70 3.20 355.91 0.85 243.70 0.83

5 7.60 11.40 6.10 10.60 3.60 333.84 0.90 217.99 0.92

6 8.00 12.00 6.50 11.50 4.00 314.48 0.96 208.67 0.96

7 8.40 12.60 6.90 12.40 4.40 326.98 0.92 212.82 0.95

8 8.80 13.20 7.30 13.30 4.80 347.49 0.87 234.58 0.86

9 9.20 13.80 7.70 14.20 5.20 371.24 0.81 245.09 0.82

10 9.60 14.40 8.10 15.10 5.60 385.76 0.78 268.68 0.75

11 10.00 15.00 8.50 16.00 6.00 447.02 0.67 347.87 0.58
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3.2 Validation of the taro tiller
plant model

To verify the application of the taro tiller plant model,

Substitute X1, X2, X3, X4, X5 into the simulation experiment,

The clamping speed was set to 12mm·s-1, and the pulling speed

was set to 0.3 m·s-1, the clamping plate was set at 5<10 cm from

the soil surface at the petiole, and the minimum clamping force

FC and the instantaneous pulling resistance FL at the critical

moment of slippage during the pulling process of the taro

are recorded.

The relative velocity of the petiole and the clamping plate

in the pulling direction is an important factor to judge whether

the two have slipped. Therefore, combined with the post-

processing function of EDEM, two local relative velocity

monitoring sensors are established at the petiole clamping

position. To monitor the movement speed of the holding

plate and the taro plant in the pulling direction, as shown in

Figure 8, output the speed changes of the petiole and the

holding plate in the two monitors at each time step, calculated

by formula (27) Obtain the relative motion speed between the

petiole and the clamping plate:

hi =
Vj

Ve
(27)

where hi is the relative velocity of the petiole and the clamping

plate in the pulling direction at the i moment, m·s-1; Vj is the

speed of the clamping plate in the pulling direction, m·s-1; Ve is

the taro plant in the pulling direction. The speed in the pulling

direction, m·s-1.

When hi>1, it means that the petiole and the clamping plate

have slipped, and the clamping force will continue to be applied
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at this time; until hi=1, it means that the petiole and the

clamping plate are not affected by the sliding force and record

this time. It is the FC for taro to pull out, and under this clamping

force, the FL of taro is measured synchronously.
3.3 Comparison of bench experiment
and simulation experiment

When the clamping force of the simulation experiment and

bench experiment set into a fixed value 300 N, respectively, in

the speed of 0.1, 0.2, 0.3, 0.4, 0.5 m·s-1 under the condition of

experiment, we got the data from 10 groups of pulling, the same

speed of simulation experiment data and bench data on the same

picture, as shown in Figure 9. We know from the experiment

data that the pulling variation trend of the simulation

experiment and the bench experiment is basically the same,

but the pulling value of the bench experiment is larger than that

of the simulation experiment, because the environment of the

simulation experiment is more ideal than that of the bench

experiment. By comparing the result of the same experiment

method under the condition of different speed, it is found that

with increasing speed, pulling fluctuation frequency is reduced,

but the volatility increases, this is because the impact of the

speed, the greater the taro plants are bigger, and it also can be

faster from the soil, but the petioles is at risk of being destroyed.

We successively conducted correlation analysis on different

experiments at the same speed and obtained that the

correlation coefficients of pulling variation between simulation

experiment and bench experiment were 0.812, 0.850, 0.770,

0.697 and 0.652, respectively. The average value of correlation

coefficients was 0.756, which indicated that the discrete element
FIGURE 8

The speed monitor established by the simulation experiment.
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plant model established by simulation was close to the real plant.

The discrete element model of taro plant established in this

paper has high reliability.
4 Conclusion

The discrete element flexible model of taro plant was

established by using EDEM software, and a method to test

the clamping and pulling resistance of taro in the harvesting

process was proposed, which provided a theoretical basis and

model reference for the research and development of taro

harvesting machinery. The parameter calibration results of

discrete element model of taro plant are as follows: petiole-

petiole method/tangential contact stiffness was 8.15×109 N·m-

3, and normal/tangential critical stress was 6.65×106 Pa. The

contact stiffness of pseudostem- corm method was 1.22×109

N·m-3, the critical stress of normal/tangential was 1.18×105 Pa,

and the energy of soil surface was 4.15×106J·m-3.

When the pulling speed is 0.1, 0.2, 0.3, 0.4 and 0.5 m·s-1, the

correlation coefficients between the simulation experiment and

the bench experiment are 0.812, 0.850, 0.770, 0.697 and 0.652,

respectively. The average value of correlation coefficient is

0.756, indicating that the simulated discrete element plant

model is close to the real plant model. The discrete
Frontiers in Plant Science 13
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element model of taro plant established in this paper has

high reliability.

In the future, the discrete element flexible model of taro

plants can be applied to many aspects - studying the reaction

force of taro corms and soil slip process when the tractor walking

tire compacts the soil; carrying out the simulation experiment of

the cutting process of petiole, which is used for the structural

design of the cutting blade and the determination of important

parameters such as the cutting angle. It can also provide a basis

for the structural design of the excavating shovel based on

discrete element and multi-body dynamics methods, and at

the same time provide an important theoretical model for the

in-depth study of corm excavation damage.
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Model construction and
validation of airflow velocity
attenuation through pear
tree canopies

Fubin Zhang1, Hao Sun1, Wei Qiu1*, Xiaolan Lv2,
Yunfu Chen1 and Guozhu Zhao1

1College of Engineering/Key Laboratory of Intelligent Equipment for Agriculture of Jiangsu
Province, Nanjing Agricultural University, Nanjing, China, 2Institute of Agricultural Facilities and
Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
To investigate the airflow velocity attenuation inside pear tree canopies and the

factors that influence its effect on air-assisted spraying, the relationship

between the resistance of the canopies to airflow and airflow velocity inside

the canopies was determined. At the same time, the theoretical model of

airflow velocity attenuation in the canopy was constructed, in which the

velocity attenuation factor k and the incoming velocity were the model input

values, and the airflow velocity in the canopy was the model output value.

Then, experimental verification of the theoretical model was completed. The

determination test of airflow velocity inside canopies with three leaf area

densities revealed that the error range between the established theoretical

model and the experimental airflow velocity inside the pear tree canopy was

0.11–1.25 m/s, and the mean size of the model accuracy was 83.4% under

various working conditions. The results revealed that the region from a depth of

0m to 0.3m inside the canopy was the rapid attenuation area of the airflow and

that from 0.3 m to 0.9 m was the low attenuation area. Furthermore, they

revealed that high-speed airflow could strongly disturb the outer branches and

leaves, greatly changing the windward area of the canopy blades and thus

affecting the accuracy of the model. By introducing a dynamic parameter of the

canopy leaf windward area for model correction, the R2 of the model was

above 0.9. Finally, validation of the model was performed in an air-assisted

spraying operation in an orchard. This study can provide a theoretical basis for

the regulation of airflow parameters of air-assisted spraying of pear trees.
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1 Introduction

As the third largest cultivated fruit tree in China, the pear

tree can generate large economic benefits for China every year;

however, it is prone to pests and diseases during the growth

process. As they prevent the yield loss caused by pests and

diseases, pesticides are an indispensable preventive measure in

the process of pear tree cultivation (Pan et al., 2019; Li et al.,

2022). However, frequent chemical application will cause

problems such as pesticide residues and serious pollution.

Air-assisted spraying technology delivers atomized liquid to

a canopy with the help of high-speed airflow, which helps to

achieve a more homogeneous distribution and significantly

improves the deposition of droplets and is, therefore, one of

the most important technical measures for increasing the

efficiency and reducing the application of pesticides in

orchards (Planas et al., 2002; Panneton et al., 2005). Presently,

researchers have conducted several studies on air-assisted

application technology, mostly focusing on changing the type

of fan or related parameters to investigate the movement of

airflow in the air (Mion et al., 2011; Chao et al., 2019; Qiu et al.,

2020). However, the presence of canopy branches and leaves in

fruit trees inevitably makes airflow movement in the canopy

different from that in the air. Therefore, researchers pay more

and more attention to the study of canopy airflow attenuation.

Some scholars have established artificial canopy (Musiu et al.,

2019) and computational fluid dynamics (CFD) porous-medium

canopy models (Endalew et al., 2008; Salcedo et al., 2017; Hong

et al., 2018) to explore the relationship between canopy airflow

attenuation and canopy density. Although the above method can

reflect the energy change of the airflow passing though the

canopy to a certain extent, and has a certain enlightening

effect on the study of airflow attenuation in the fruit trees

canopy, the actual fruit-tree canopy structure is relatively

complex, and there are certain limitations in establishing

artificial canopy and CFD models.

The above research shows that scholars have transitioned

from focusing on the characteristics of sprayer to the stage of

mechanical integration focusing on the characteristics of the

canopy, and have paid attention to the influence of the canopy

on airflow attenuation. However, there are still some limitations

in the study of airflow attenuation in the canopy, mainly because

the energy changes of airflow through the canopy are complex,

and the characteristics of the canopy will significantly affect the

airflow resistance and attenuation in the canopy (Walklate,

1992). Currently, Fruit trees still face “excessive deposition of

droplets on the outside of the canopy and insufficient deposition

of droplets in the inner chamber and the back of the leaves, the

pest-prone areas” (Gil Sierra et al., 2006; Javier Garcia-Ramos

et al., 2012; Dekeyser et al., 2014). Therefore, it is important to

consider the airflow through a canopy and clarify its attenuation

pattern to further improve the application effect and reduce the

amount of liquid spray.
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For that reason, this study took the crown pear as the

research object and constructed a relational quantitative model

for the attenuation of intra-canopy airflow velocity and based on

the results of previous research on intra-canopy airflow velocity;

then, a three-dimensional air-assisted resistance experimental

platform was built to measure the relevant parameters using the

pear tree canopy as the experimental sample. Furthermore, the

experimental values of intra-canopy airflow velocity were

obtained and compared with the theoretical values to verify

the accuracy of the model. The model errors were then analysed

and corrected for accuracy. Finally, the applicability of the model

in air-assisted spraying operation was verified in a real orchard.

This study aims to clarify the attenuation pattern of airflow

velocity inside a canopy and its influencing factors in the air-

assisted spraying operation and provide a new basis for the

machinery and parameter setting of air-assisted application

in orchards.
2 Materials and methods

2.1 Airflow velocity attenuation model

2.1.1 Theoretical model
The air flow is gradually weakened by the obstructive effect

of branches and leaves as it flows inside the canopy. According

to Кайгородoв (Fu, 1963),

dv = −kvdy : (1)

The variation in Eq. (1) is integrated in v:v*!v(y); y:0!y :

Z v yð Þ

v*

1
v
dv =

Z y

0
−kdy : (2)

Thus,

v yð Þ = v*e
−ky , (3)

v(y): the velocity of the airflow at different depths inside the

canopy [m/s];v∗: the velocity of the airflow when it reaches the

surface of the canopy, i.e., the incoming velocity [m/s];k: the velocity

attenuation factor; y: the depth from the canopy surface [m].

2.1.2 Determination of the velocity attenuation
factor k

Among them, the velocity attenuation factor k is influenced

by the canopy structure and other factors. Thus, this study

analyzed the causes of airflow attenuation in the canopy, clarified

the factors that lead to the change in k values, constructed a

correlation model between the k values and canopy structure

parameters, and finally obtained a theoretical model of airflow

attenuation in the canopy that can guide pesticide application.

The fundamental reason for the attenuation of airflow

velocity inside the canopy is that when airflow passes inside
frontiersin.org
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the canopy, the airflow collides with the branches and leaves of

the canopy and is obstructed by the branches and leaves, i.e., the

drag effect, which generates the attenuation of airflow velocity

inside the canopy. Thus, to obtain the relationship between the

velocity attenuation factor and the canopy structure, it is

necessary to investigate the resistance of the canopy to the

airflow so that k values can be analyzed by substitution to

clarify the variation pattern of the velocity attenuation factor

and the mechanism of action leading to the velocity change.

According to the Burr effort equation, when an impermeable

object is placed at a flow field with hydrostatic pressure of P0, air

density of r, and flow velocity of v, and when the flow velocity at

the leeward edge of the object drops to 0 and the static pressure

becomes P, there is a dynamic pressure of

P − P0 =
1
2 rv

2 : (4)

The resistance of the canopy to the airflow is calculated by

the air resistance equation based on the relationship between the

dynamic pressure and drag:

F = 1
2 Cdrv2S0 : (5)

F: the canopy resistance to airflow [N]; Cd: the air resistance

coefficient; r: the air density [kg/m3]; v: the airflow velocity [m/

s]; S0: the windward area [m2].

At any point inside the canopy (x, y, z) where the velocity of

the airflow is v(x, y, z), take a volume element dV and let the

windward area per unit volume of the canopy be T, it is a plane

perpendicular to the airflow, so the air resistance coefficient Cd is

1.0 (Wu and Qian, 2017). Then, the windward area of the leaves

in the volume dV is TdV. Therefore, the resistance to the airflow

in the volume dV is

dF = 1
2 r v x, y, zð Þ½ �2TdV , (6)

dV = dxdydz, (7)
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T: the windward area per unit volume of the canopy [m2]; v

(x, y, z): the velocity at any point within the canopy [m/s]; V: the

volume of the canopy [m3].

For this experiment, the experimental range is in the circular

air-assisted area when the air blown from the fan reaches the

canopy surface. The radius of the air-assisted area is R, and the

canopy thickness is D. Therefore, the area size is

x : −R ! R;    y : 0 ! D;     z :−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
:

The resistance to airflow created by the canopy in the air-

assisted area is

F =
Z R

−R

Z D

0

Z ffiffiffiffiffiffiffiffiffi
R2−x2

p

−
ffiffiffiffiffiffiffiffiffi
R2−x2

p
1
2
r v x, y, zð Þ½ �2TdV : (8)

In the above equation, as the airflow is generated by a fan,

the airflow velocity in the direction perpendicular to the

horizontal depth is small; therefore, only the airflow velocity

along the y direction is retained:

v x, y, zð Þ = v yð Þ, (9)

And

F = pR2Trv�2
4k 1 − e−2kD

� �
: (10)

The above equation constructs an expression for the airflow

resistance when the airflow passes through the canopy of pear

trees. The windward area per unit volume of the canopy in the

equation cannot be obtained directly and needs to be

further transformed.

In this study, image processing (Figure 1) was used to obtain

the ratio of the canopy leaf windward area to its projected area in

the air-assisted area. Then, the windward area per unit volume of

the canopy was obtained by Eq. (11).

T = s
pR2D0 , (11)
FIGURE 1

Schematic of the canopy projection.
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pR2 : the projected area of the canopy in the air-assisted area

[m2]; D′ : the thickness of a section of canopy branches and

leaves [m], s: the windward area of the canopy leaves [m2].

Substituting the windward area per unit volume of the

canopy, i.e., Eq. (13) into Eq. (12), we obtain

F = srv�2
4kD0 1 − e−2kD

� �
: (12)

The parameters such as flow resistance and windward area

of the leaves in the above equation can be determined

experimentally; therefore, the velocity attenuation factor k can

be determined from Eq. (12), and the theoretical model of

airflow velocity attenuation inside the canopy can be obtained

after substituting Eq. (12) into Eq. (3).
2.2 Measurement of airflow velocity
attenuation model parameters

When measuring the canopy aerodynamic resistance and

other related parameters, it is difficult and time-consuming to

use the whole pear tree for experimental measurement. In order

to ensure the accuracy of the test results, pear tree branches and

leaves with different leaf area densities were used for the test. For

minimizing the influence of external airflow on the test results,

the test was carried out in the laboratory without wind. In

September 2021, fresh samples of pear tree branches and leaves

were collected from the family farm of Sisi Yu in Pukou District,

Nanjing, China for the canopy simulation test in a laboratory

environment. Seven-year-old Crown pear trees with an average

tree height of 2.1 m, average canopy width of 1.2 m, and average

stem height of 0.7 m were tested. The leaf area density of the pear

canopy in the orchard ranged from 3.94 –5.72 m2/m3, the leaves

of the main branches were kept in their natural form, and the
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time between sampling and conducting the experiment was

controlled to be within 6 hours.

2.2.1 Test platform
The experimental system consisted of two main

components: the air-assisted platform and the measurement

system (Figure 2). The air-assisted platform consisted of a

variable frequency mixed-flow duct fan (diameter: 260 mm; air

flow: 1080 m3 h-1; rated speed: 3200 r min-1), mobile working

platform (at the fixed walking speed of 1 m/s), and fan position

adjustment system (0–1 m range in the walking direction; 0–1 m

range in the air delivery direction; 0–1.2 m range in the vertical

direction). The fan speed was controlled by a frequency

converter. The measurement system consisted of an TSI 9565

anemometer(TSI Inc., Minnesota, USA, measurement error of ±

0.025 m/s), USB HD camera s(shooting speed: 110 fps); data

storage device, portable computer and push-pull gauge

(ELECALL, China, Zhejiang, the maximum load value was

10 N, the load division was 0.001 N, and the indication error

was ± 0.5%).
2.2.2 Measurement of airflow velocity, leaf
windward area and airflow resistance
in canopy

The test is shown in Figure 3. For the measurement of

airflow velocity, the airflow velocity reaching the canopy surface

and the airflow velocity at different depths in the canopy were

measured by the TSI 9565 anemometer.

For the canopy leaf windward area: a high-speed camera was

used to take pictures of the canopy in the direction of the airflow,

with a white cloth as the background to avoid the influence of

other debris. In the windless condition, the size of the air-

assisted area on the canopy was marked with a marker as a
FIGURE 2

Experimental system.
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selection range for the image processing later. Canopy photos of

each leaf area density were taken to calculate the windward area

of the canopy leaves in the air-assisted area. Combined with the

volume of the canopy in the air-assisted area, the windward area

per unit volume of the canopy was obtained for the canopies of

different leaf area density.

For the canopy resistance to the airflow: the 3D mobile air-

assisted platform was adjusted by turning the ball screw to move

the fan to a position at the height of the middle of the canopy,

with the air outlet position being 0.5 m from the canopy surface.

We found that the airflow blown by the duct fan made a circle of

radius 0.16 m after reaching the air-assisted area of the canopy

surface. The height of the force measurement platform was

adjusted to make the force gauge level with the base plate,

bringing it against the base plate and setting the pressure to

zero before the experiment started. The fan was started, and the

fan wind speed knob was adjusted to control the airflow velocity

of reaching the canopy surface. The push-pull gauge was then

used to measure the canopy resistance to the airflow.
2.3 Verification of airflow velocity
attenuation model

According to previous studies (Guan, 1998), the windward

area per unit volume of the canopy is proportional to the leaf

area density; therefore, this study set up three different leaf area

densities of pear canopies to carry out the experiments: a sparse

canopy with a leaf area density of 4.15 m2/m3, medium canopy
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with a leaf area density of 4.79 m2/m3, and compact canopy with

a leaf area density of 5.65 m2/m3.

The canopy of 0.9 m-depth was selected for verification test.,

The experimental values of the airflow velocity within the

canopy at heights of 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m,

and 0.90 m for incoming flow velocities of 4 m/s, 8 m/s, and

12 m/s were detected. At the same time, the leaf windward area

of pear canopy and the canopy resistance under different airflow

velocity were measured, and the theoretical value of canopy

airflow velocity was calculated by formulas (12) and (3).

The theoretical values of the airflow velocity in the canopy

were compared with the experimental values for analysis to

verify the accuracy of the model and the correction model. The

errors and model accuracy were calculated as follows.

vw = jv2 − v1j (13)

I = 1 − jv2−v1j
v1

� �
� 100% (14)

vw: the error between the experimental and theoretical values

of airflow velocity [m/s]; v2: the experimental value of airflow

velocity [m/s]; v1: the theoretical value of airflow velocity [m/s];

I: the model accuracy.
2.4 Field test

To further verify the applicability of the intra-canopy airflow

velocity attenuation model in the field environment, A field test
FIGURE 3

Experiment set-up.
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was conducted in the crown pear orchard in the Yu Sisi Family

Farm (118.42°E, 32.98°N) in Nanjing in June 2022(average

external temperature: 28°; average airflow velocity: 0.3 m/s).

Three pear trees with leaf area densities similar to those used in

the laboratory test were selected: pear tree A with a leaf area

density of 4.08 m2/m3; pear tree B with a leaf area density of 4.72

m2/m3; and pear tree C with leaf area density of 5.58 m2/m3. Two

sets of intra-canopy airflow velocity measurements were

conducted in this orchard experiment, and the data acquisition

method is shown in Figure 4: (1) the fan speed knob was turned

to ensure the inflow velocity was 8 m/s and 12 m/s when the

inflow reached the surface of the pear tree canopy [the optimum

airflow parameter in the field is 9-11 m/s (Dai, 2008)], and the

moving speed of the experimental platform was set to 0 m/s to

measure the airflow velocity at the positions of 0.30 m, 0.60 m

and 0.90 m inside the pear tree canopy with three different leaf

area densities; (2) the fan speed knob was turned to ensure the

inflow velocity was 8 m/s and 12 m/s when the inflow reached

the surface of the pear tree canopy, and the moving speed of the

experimental platform was set to 1 m/s to measure the airflow

velocity at the positions of 0.30 m, 0.60 m and 0.90 m inside the

pear tree canopy for three different leaf area densities.
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3 Results

3.1 Calculation of the velocity
attenuation factor k

In this study, the canopy airflow resistance and canopy leaf

windward area were measured in a laboratory setting for three

different leaf area densities at incoming velocities of 4 m/s, 8 m/s

and 12 m/s, as shown in Table 1.

The data in Table 1 can be collated and calculated by Eq. (14)

to obtain the velocity attenuation factor k for canopies of

different leaf area densities at different incoming flow

velocities, as shown in Table 2.
3.2 Validation of the airflow velocity
attenuation model

The experimental and theoretical airflow velocities at

positions 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m, and 0.90 m

in the canopy for three different leaf area densities are given

in Figure 5. The processed data reveal that the error values
FIGURE 4

Airflow velocity measurements inside the canopy of pear trees in an orchard.
TABLE 1 Canopy leaf windward area values and canopy resistance to airflow values.

Leaf area
density
(m2 /m3)

Windward area of canopy
Leaves in air-assisted area s (m2)

Windward area per unit
Volume of the canopy T

(m2 /m3)

Resistance F (N)

Incoming Flow
speed v* (4 m/s)

Incoming Flow
speed v* (8 m/s)

Incoming Flow
speed v* (12 m/s)

4.15 0.057 2.353 0.97 2.96 4.98

4.79 0.060 2.480 0.94 2.63 4.49

5.65 0.065 2.673 0.88 2.35 4.11
v* is the velocity of the airflow when it reaches the surface of the canopy.
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of the theoretical and experimental airflow velocities at

different positions in the canopy for the three different leaf

area densities at each incoming velocity range from 0.11 to

1.25 m/s, while the mean theoretical model accuracy is 83.4%

for all the tested operating conditions. Among them, at an

incoming flow velocity of 4 m/s, for the pear canopy with leaf

area densities of 4.15 m2/m3, 4.79 m2/m3 and 5.65 m2/m 3, the

mean model accuracies of the attenuation of airflow velocity in

the canopy are 82.8%, 78.5%, 72.7%, respectively; at the

incoming flow velocity of 12 m/s, for leaf area densities of 4.15

m2/m3, 4.79 m2/m3 and 5.65 m2/m3, the mean accuracies of the

intra-canopy airflow velocity attenuation model are 86.7%,

87.3%, and 85.3%,respectively, for the pear canopy. The

model accuracies lie in between the values above at the

incoming velocity of 8 m/s. In summary, with an increase in

airflow velocity, the mean value of model accuracy increases.

At smaller incoming velocities, although the accuracy

(relative difference) is lower, the absolute difference is in the

range of 0.11–0.84 m/s, which meets the requirements of

model accuracy.
3.3 Error analysis and correction of the
airflow velocity attenuation model

An analysis of the results in Figure 5 reveals that the theoretical

values of the airflow velocity in the canopy obtained using the

model in this paper are larger than the experimental values, and the

error range is between 0.11–1.25 m/s. This is because the model

calculates the theoretical airflow velocity using the windward area of

the canopy leaves measured in the windless state, yet the leaf

windward area of 0–0.3 m in the canopy in the experiment

greatly varies with an increase in the incoming flow velocity,

resulting in large errors between the theoretical and experimental

airflow velocities, as shown in Figure 6

To investigate the specific causes of such errors and the

variation law, the dynamic leaf windward area and canopy

resistance to airflow for a 0.3 m-thick canopy at an incoming

velocity of 6–15 m/s were measured by the method of determining

the canopy aerodynamic parameters in Section 2.2. The variation in
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the leaf windward area, canopy resistance to airflow, and velocity

attenuation factor for a 0.3 m-thick canopy at different incoming

velocities were clarified. The relationship is shown in Figure 7. It can

be seen that the incoming airflow velocity is negatively correlated

with the canopy leaf windward area (Figure 7A), positively

correlated with the resistance (Figure 7B) and positively

correlated with the velocity attenuation factor (Figure 7C). When

the incoming velocity increases, the leaves at 0–0.3 m in the canopy

are converged by the airflow, the windward area of the canopy

leaves reduces, and the velocity attenuation increases. The

experimental airflow velocity is smaller than the theoretical

airflow velocity calculated using the static canopy leaf windward

area, and with an increase in the incoming flow velocity in a certain

range, the error values between the two expand. When the

incoming velocity increases to a certain degree (Lr = 4.15 m2/m3

corresponds to 14 m/s; Lr = 4.79 m2/m3 corresponds to 12 m/s; and

Lr = 5.65 m2/m3 corresponds to 11 m/s), the elastic deformation of

the canopy leaves reaches its maximum value, and the canopy leaf

windward area and velocity attenuation factor stabilize (Molina-Aiz

et al., 2006). The increase in the error between the experimental and

theoretical values of the airflow velocity also stabilizes.

In summary, in order to improve the model accuracy, the

dynamic changes in the canopy leaf windward area based on

different incoming flow velocities were used to modify the 0–0.3

m canopy airflow resistance model. The modified model is

shown in Eq. (15). The corresponding canopy leaf windward

area and canopy resistance to airflow at different incoming flow

velocities in Figure 7 were substituted into the model, and the

theoretical values of airflow velocity in the 0.3 m canopy were

calculated and compared with the experimental values of airflow

velocity to verify the accuracy of the revised model.

F = s0rv�2
4kD0 1 − e−2kD

� �
                                D > 0:3mð Þ

F = s*rv�2
4kD0 1 − e−2kD

� �
    0m ≤ D ≤ 0:3mð Þ

8<
: (15)

s0: the windward area of the canopy leaves in the windless

condition [m2]; s*: the dynamic canopy leaf windward area at

different incoming flow velocities [m2].

The experimental and theoretical airflow velocities at the

0.3 m canopy at an incoming flow velocity of 6–15 m/s were
TABLE 2 Velocity attenuation factor at different operating conditions.

Incoming
flow velocity
v∗ (m/s)

Speed attenuation factor k

Sparse canopy(Lr = 4.15 m2/m3) Medium canopy(Lr = 4.79 m2/m3) Compact canopy(Lr = 5.65 m2/m3)

4 0.746 0.874 1.087

8 1.159 1.457 1.824

12 1.682 2.014 2.401
v∗ is the velocity of the airflow when it reaches the surface of the canopy.
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FIGURE 5

Variation in the intra-canopy airflow velocity with canopy depth for different leaf area densities. (A–C).
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calculated and perform a linear regression analysis, as shown in

Figure 8. The processed data in the figure reveal that, for the three

different leaf area densities in this study, the R2 of the theoretical

and experimental airflow velocity at the depth of 0.3 m in the

canopy is above 0.9 even when the incoming flow velocity is large,

as shown in (Figure 8A–C). This indicates that the theoretical

airflow velocity is in good agreement with the actual airflow

velocity. It can be seen that the modified model, which

considers the coupling effect between the airflow and canopy

and calculates the dynamic values of canopy leaf windward area

has largely solved the problem of large errors between theoretical

and experimental values of airflow velocity in the outer layer of the

canopy when the incoming flow velocity is large.
3.4 Analysis of field test results

In this study, two sets of experiments were designed to

determine the airflow velocity inside the pear canopy in an

orchard environment, where the incoming flow velocities are

8 m/s and 12 m/s, respectively, and the vehicle speeds are 0 m/s

and 1 m/s. The results were compared and analyzed with the

modified theoretical airflow velocities inside the canopy, as

shown in Figure 9.

(1) The effect of the vehicle speed on the magnitude of intra-

canopy airflow velocity was investigated by setting the vehicle

speeds to 0 m/s and 1 m/s. When the incoming flow velocity was

8 m/s, the mean relative errors at the positions of 0.3 m, 0.6 m

and 0.9 m in the canopy were 3.2%, 5.8% and 11.4%,

respectively; when the incoming flow velocity was 12 m/s, the

mean relative errors at the positions of 0.3 m, 0.6 m and 0.9 m

were 2.9%, 7.3%, and 17.9%, respectively. For the three different

leaf area densities, the errors of the experimental values of the
Frontiers in Plant Science 09
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airflow velocity at any position in the canopy were within 0.4 m/s

at incoming flow velocities of 8 m/s and 12 m/s.

Affected by the vehicle speed, the central region of the

airflow is slightly off the measurement point of the canopy

when the machine reaches the measurement location, resulting

in a mildly smaller experimental airflow velocity as the vehicle

moves. The difference increases slightly with the depth of the

canopy, but remains small in general.

(2) Regarding the applicability of intra-canopy airflow

velocity attenuation model in an orchard environment, a

comparison between the theoretical and experimental values of

the intra-canopy airflow velocities of the pear trees at a vehicle

speed of 1 m/s was conducted. It was found that the average

model accuracies at the positions of 0.3 m, 0.6 m and 0.9 m were

94.4%, 85.4% and 72.3%, respectively, when the incoming flow

velocity was 8 m/s. When the incoming flow velocity was 12 m/s,

the average accuracy at the position of 0.3 m, 0.6 m and 0.9 m

were 97.2%, 89.3% and 75.1%, respectively. The errors between

the theoretical and experimental values of the airflow velocity at

any position within the canopies of the three different leaf area

densities at the incoming flow velocities of 8 m/s and 12 m/s

were within the range of 0.7 m/s.

Only the attenuation effect of the canopy on the airflow

was considered when using the model for the theoretical

airflow velocity solution; however, the experimental results

revealed that the airflow was also obstructed by the air (The

deeper the canopy, the stronger the cumulative influence of

the air). Therefore, the accuracy of the model was between

70–80% at the canopy position of 0.9 m, but the absolute

difference was only between 0.4 and 0.7 m/s. In summary, the

attenuation model of intra-canopy airflow velocity

constructed in this study is equally applicable in air-assisted

spraying in orchards.
FIGURE 6

Variation in the windward area of the canopy leaves for different incoming flow velocities.
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FIGURE 7

Leaf windward area of the canopies and velocity attenuation factor versus the incoming flow velocity. (A–C).
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FIGURE 8

Airflow velocity at a depth of 0.3 m in the canopy (A) Lr=4.15 m2/m3 (B) Lr=4.79 m2/m3 (C) Lr=5.65 m2/m3.
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4 Discussion

The superiority of air sprayers in orchard plant protection

operations and their control effects have been discussed for

decades (Delele et al., 2007). Airflow is one of the most essential

parameters of air-spray technology. Therefore, clarifying the

attenuation of airflow in a canopy is key to achieving the

regulation of airflow parameters of wind-delivered spraying in

orchards, and promoting the effect of pest control.

Previous studies on airflow attenuation have reported that

the canopy of fruit trees exerts resistance to the flow of air

through the passage and captures kinetic energy to reduce the

flow rate (Endalew et al., 2008; Endalew et al., 2009). Hence,

CFD simulation models were constructed based on resistance

coefficients, leaf area density, and other parameters to analyse

canopy airflow (Yue et al., 2007; Zhan et al., 2017). However, it

is difficult to theoretically reveal the airflow attenuation in the

canopy and its influencing factors this way. Based on previous

research, the paper constructs a airflow velocity attenuation

model in the canopy. The experimental results in this study can

reveal the effects of the three variables of leaf area density,

canopy depth and incoming velocity on the attenuation of

airflow velocity in the canopy respectively: (1) For the canopy

with a large leaf area density, the attenuation effect of the

canopy on airflow velocity is stronger owing to the denser

branches and leaves, and stronger obstruction effect in the

canopy; (2) with an increase in the canopy depth, the

attenuation degree of airflow velocity gradually decreases,

with a rapid attenuation zone at a height of 0–0.3 m and a

slow attenuation zone at a height of 0.3–0.9 m. It can be found

that the attenuation of airflow in the canopy mainly occurs in

the outermost layer of the canopy, thus more attention should

be paid to the study of the attenuation of airflow in the outer

layer of the canopy. The branches and leaves at a height of 0–

0.3 m in the canopy can be pruned appropriately to increase the
Frontiers in Plant Science 12
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airflow velocity reaching the canopy and increase the

disturbance to the inner canopy to improve the application

effect, and to improve the light transmission and air

permeability inside the canopy to some extent (Li et al.,

2003; McDonald et al., 2013); (3) with an increase in the

incoming flow velocity, the attenuation of airflow velocity

inside the canopy is greater; therefore, the effect of enhancing

the disturbance to the branches and leaves inside the canopy by

increasing the incoming flow velocity will decrease with an

increase in canopy depth; (4) there is a significant difference

between the theoretical and experimental values of the airflow

velocity of the outer canopy on the windward side when the

flow velocity is larger. This is because the airflow affects the

windward area of the outer canopy and subsequently reacts to

the airflow, thereby forming an interactive coupling effect.

This study solves the issue of unclear airflow attenuation in

the canopy, but certain limitations are still present. (1) only the

pear canopy at the same growth period was selected as the

research object to verify the accuracy of the model; the leaf area

density canopy of the limit working conditions was not verified

on other fruit trees. (2) because of the inconvenience in

measuring the aerodynamic resistance parameters of the

canopy, the canopy foliage was selected instead of the entire

canopy. (3) although the influencing factors of the velocity decay

factor k and the previously unknown state were sorted,

resistance F is still an unassailable parameter, and the

quantitative relationship between F and some easily measured

parameters of the canopy needs to be further studied. (4) for

different types of the canopy was not considered, the current

study could not apply directly to commercial orchards based on

different planting systems (open-vase, trellis, high-density, etc.).

Although the study has certain limitations, it theoretically

reveals the attenuation law of the canopy airflow and its

influencing factors. Future studies will track k-values at

different growth stages of several representative pear trees;
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seek the relationship between k-values, canopy types, and

growth periods; and establish a k-value database for pear

trees. At the same time, different fruit tree varieties (such as

apple trees, peach trees) and different planting systems (open-

vase, trellis, high-density, etc.) will be selected to evaluate the

applicability of the model. In addition, the optimal intra-

canopy airflow velocity can be constructed according to the

characteristics of the canopy structure, and the fan speed can

be regulated in combination with the wind flow velocity

attenuation model in the canopy.
5 Conclusions

This paper clarifies that the intra-canopy airflow velocity

attenuation factor k in air-assisted spraying process for pear

trees is related to the resistance F, the canopy leaf windward area

s and the incoming flow velocity v∗, and constructs the model of

airflow velocity attenuation. The model validation results reveal

that the average accuracy of the model is around 80% under

various working conditions.

As the incoming flow velocity changes the windward area of

canopy leaves in the 0–0.3 m region, the greatest difference

between the experimental and theoretical values of intra-canopy

airflow occurs in this region. In this study, the 0.3 m-thick

canopy was used as the research object to modify the model. For

the different leaf area density canopy, the R2 of the theoretical

airflow velocity and the actual airflow velocity is above 0.9.

The field experiment results show that the error between the

theoretical airflow velocity and actual airflow velocity at any

position in the canopy is within 0.7 m/s when the incoming

velocity is 8m/s and 12m/s. This indicates that the airflow

velocity attenuation model has good applicability in the orchards.
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Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology,
Quchan, Iran, 7Department of Chemical Sciences, University of Johannesburg, Doornfontein
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Electrochemical fingerprinting can collect the electrochemical behavior of

electrochemically active molecules in plant tissues, so it is regarded as a new

plant analysis technology. Because the signal of electrochemical fingerprinting

is positively correlated with the amount and type of electrochemically active

molecules in plant tissues, it can also be used to reflect genetic differences

between different species. Previous electrochemical fingerprinting techniques

have been frequently used in phylogenetic studies of herbaceous plants. In this

work, 19 Quercus species (17 evergreen or semi evergreen species and 2

deciduous species) were selected for investigation. The results indicated the

electrochemical fingerprint of some species share similar features but can be

distinguished after changing the recording condition (extraction solvent and

electrolyte). The two sets of electrochemical fingerprint data can be used to

construct different pattern recognition technology, which further speeds up

the recognition efficiency. These electrochemical fingerprints were further

used in phylogenetic investigations. The phylogenetic results deduced from

electrochemical fingerprinting were divided mainly into three clusters. These

can provide evidence for some of these arguments as well as new results.

KEYWORDS

electrochemical fingerprint, phytochemistry, electrochemical sensor, pattern
recognition, phylogenetics
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Introduction

Electrochemical fingerprinting is a new analytical technique,

which can be used to collect the information of electrochemically

active molecules in plant tissues (Xu et al., 2020; Zhou et al., 2020;

Fan et al., 2021; Fu et al., 2021; Wang et al., 2021; Zheng et al.,

2021b; Fu et al., 2022). The fingerprint can be used not only for

plant identification and growth monitoring, but also for

phylogenetic investigation in recent years. These applications are

due to the fact that the type and amount of electrochemically active

substances in plant tissues can reflect their differences at the genetic

level (Karimi-Maleh et al., 2021b; Karimi-Maleh et al., 2021a). Thus,

this new analytical technique is beginning to serve as a

complementary methodology for phytochemical studies and plant

phylogeny. Today, research on electrochemical fingerprinting is

mainly focused on herbaceous and lianas. This is because the active

substances in these plant tissues can be easily extracted and can

contribute a distinct electrical signal. In contrast, there have been

few reports on woody plants based on electrochemical

fingerprinting. This is because woody plants have more cellulose

and lignin in their tissues, which reduces the accuracy of

electrochemical fingerprinting.

Quercus is a family of trees under Fagaceae. It is widely

distributed in Asia, Africa, Europe and America and other

regions, there are about 500 species. Quercus are mainly

distributed in tropical (subtropical) and temperate regions of

the Northern Hemisphere, and are important species of broad-

leaved forests. It occupies a large share in the forest area of the

northern hemisphere and is of great significance to the local

environment beautification and ecological restoration. Abrams

believes thatQuercus has developed root system and thick leaves,

which can keep high water potential of these plants in the case of

drought and prevent wilting (Abrams, 1990). In addition,

Quercus can maintain a higher photosynthetic rate under low

water potential compared with other groups in the same domain,

which is conducive to obtaining competitive advantages in the

environment. Cavende-bares et al. (Cavender-Bares et al., 2004b;

Cavender-Bares et al., 2004a) found that the life history

characteristics of Quercus were also influenced and restricted

by their living environment. For example, Quercus adapted to

post-fire habitat are generally shrub type, with strong

redifferentiation ability of rhizomes. Quercus that grow in

humid environment are generally tall trees. Quercus

distributed in arid environment have resistance mechanism to

xylem catheter embolization, which leads to the small amount of

water passing through, which is a response of plants to drought

stress. Quercus grow in humid environments and are free to

absorb large amounts of water.

The name Quercus was first suggested by the Swedish

naturalist Linnaeus. In 1867, Swedish botanist Oersted

(Øersted, 1867) distinguished Cyclobalanopsis Oerst from

other plants in the genus based on the conformation of shell
Frontiers in Plant Science 02
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bracts into concentric circles, and became an independent

species of Cyclobalanopsis Oerst. In 1924 Trelease (Trelease,

1924) divided Quercus into six subgenus groups, including

Cyclobalanopsis, Cerris, Erythrobalanus, Protobalanus and

other subgenera. Camus (Chevalier and Camus, 1954) divided

Quercus into two subgenera, subgen. Euquercus and Subgen.

Cyclobalanopsis. In 1993, Nixon (Nixon, 1993) adjusted some

species of Quercus and divided Quercus into subgenera Subgen.

Quercus and subgen. Cyclobalanopsis. Japanese scholar Shimaji

thought that Quercus could be divided into three subgenera after

analyzing the anatomical characteristics. It includes subgen.

Erythrobalanus , subgen. Lepidobalanus and subgen.

Cyclobalanopsis, respectively (Shimaji, 1962). Molecular

evidence suggests that there are six large groups of present-day

Quercus, namely group Lobatae (Red Oaks), group Protobalanus

(Intermediate Oaks), group Ilex, group Cerris, group Quercus

(White Oaks) and group Cyclobalanopsis (now a separate genus)

(Manos et al., 1999; Manos and Stanford, 2001; Denk and

Grimm, 2010). In China, botanists have divided Quercus into

five groups according to the phylogeny and quantitative

classification (Peng et al., 2007). They are sect. Engleriana,

sect. Brachylepids, sect. Quercus, sect. Echinolepides and sect.

Aegilops. Among them, sect. Quercus and sect. Aegilops usually

deciduous broad-leaved plants, others are evergreen or semi-

evergreen broad-leaved plants. Most of evergreen species are

called sclerophylla oak because their leaves are leathery, hard

and spiny (Chaudhri et al., 2022; Farooq et al., 2022; Ismail et al.,

2022). There has been a great controversy about the relationship

between species within the sclerophylla oak. In this work, 19

species of Quercus (17 evergreen or semi evergreen species and 2

deciduous species) and 2 species of Cyclobalanopsis were

inves t iga ted us ing e lec t rochemica l fingerpr int ing .

Electrochemical fingerprinting of all plant tissues was collected

under two conditions. The collected results were used not only

for plant identification, but also for phylogenetic investigation.
Materials and method

Sample collection

Leaves of Quercus rehderiana, Q. monimotricha, Q. gilliana,

Q. variabilis, Q. pseudosemecarpofolia, Q. guajavifolia, Q.

longispica, Q. spinosa, Q. engleriana, Q. fimbriata, Q. franchetii,

Q. senescens, Q. baronii, Q. dolicholepis, Q. cocciferoides, Q.

oxyphylla and Q. aquifolioides were collected during field

investigation, Q. aliena, Q. phillyraeoides, Cyclobalanopsos

myrsinifolia and Cyclobalanopsis glauca were collected from

Chengdu City Park and Nanjing Botanical Garden Men. Sun

Yat-Sen (Table 1). The voucher specimens are deposited in the

herbarium of Chengdu Institute of biology (CDBI), Chinese

Academy of Sciences and the herbarium of Nanjing Botanical
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Garden Men.Sun Yat-Sen (NAS). Only mature and healthy leaves

were harvested. All samples were kept frozen (-20°C)

before analysis.
Extraction preparation

All extraction process was conducted under room

temperature. Water and ethanol were used as the solvents in

the extraction procedure. Specifically, 0.3 g leaves were cut and

added to 5 mL of solvent. The mixture was supplemented with

four grinding beads. The tube was put in a tissue grinding device

(Meibi-96, Zhejiang, China) for 2 min extraction. After waiting

for precipitation, the supernatant was collected for

electrochemical fingerprint collection.
Electrochemical fingerprints collection

Phosphate buffer solution (PBS, 0.1 M) and acetic acid buffer

(ABS, 0.1 M) were used as electrolytes to support

electrochemical fingerprint collection. Electrochemical

fingerprinting was determined using a traditional three-

electrode system. A glassy carbon electrode, a platinum wire

and an Ag/AgCl electrode were used as working electrode,

counter electrode and reference electrode, respectively. All

electrochemical experiments were conducted under a CHI
Frontiers in Plant Science 03
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760E working station at room temperature. a differential pulse

voltammetry (DPV) was recorded from -0.1 to 1.3 V. The

experimental data was then normalized for further analysis.
Results and discussion

The information of electrochemically active molecules in

plant tissues was collected by electrochemical fingerprinting.

The anodic scanning representing the electrochemical oxidation

behavior of molecules. As shown in Figure 1 (collected under

PBS after extraction with water), in the range of 0-1.3V, Q.

monimotricha, Q. engleriana, Q. aquifolioides, Q. rehderiana, Q.

spinosa, Q. gilliana and Q. pseudosemecarpifolia all showed

electrochemical oxidation behavior. In addition, these species

show similar electrochemical oxidation trend, with an obvious

electrochemical oxidation peak near 0.4 V. This similarity in

electrochemical behavior is common among plants of the same

genus. This is because species within the genus have relatively

similar genes, and therefore have a high degree of similarity in

the species of electrochemically active molecules in tissues (Ye

et al., 2021). However, beyond the obvious large oxidation peak

of about 0.4 V, different species showed different electrochemical

behaviors. For example, Q. aquifolioides has a half-overlapped

oxidation peak near 0.4 V. Q. rehderiana has a wide oxidation

peak at about 0.6 V, representing a range of substances oxidized

in this window. On the other hand, there are some species that
TABLE 1 Leaves for electrochemical analysis.

NO species Collector Voucher Location

1 Q. monimotricha Jun Hu, et all CDhujun20210713P01S01 Meigu, Sichuan

2 Q. guajavifolia Jun Hu, et all CDhujun20210714P02S02 Meigu, Sichuan

3 Q. aquifolioides Jun Hu, et all CDhujun20210804P02S01 Meigu, Sichuan

4 Q. senescens Jun Hu, et all CDhujun20210717P02S01 Xichang, Sichuan

5 Q. rehderiana Jun Hu, et all CDhujun20210724P01S01 Yongsheng, Yunnan

6 Q. longispica Jun Hu, et all CDhujun20210721P01S01 Huaping, Yunnan

7 Q. pseudosemecarpifolia Jun Hu, et all hujun20210718-B02 Ninglang, Yunnan

8 Q. cocciferoides Jun Hu, et all CDhujun20210727P02S01 Muli, Sichuan

9 Q. fimbriata Jun Hu, et all CDhujun20210808P02S01 Kangding, Sichuan

10 Q. variabilis Jun Hu, et all CDhujun20210809P01S08 Mianning, Sichuan

11 Q. spinosa Jun Hu, et all CDluoyao20210914S002 Lixian, Sichuan

12 Q. dolicholepis Jun Hu, et all CDluoyao20210914S003 Lixian, Sichuan

13 Q. baronii Jun Hu, et all CDluoyao20210914S001 Lixian, Sichuan

14 Q. engleriana Sirong Yi yisirong20210911B01 Zunyi, Guizhou

15 Q. oxyphylla Sirong Yi yisirong20210905B01 Shizhu, Chongqing

16 Q. franchetii Jun Hu, et all hujunCX001 Huili, Sichuan

17 Q. aliena Yao Luo None Chengdu city park, cultivated plants

18 Q. gilliana Jun Hu, et all CDhujun20210809P01S01 Mianning, Sichuan

19 Q. phillyraeoides Yuhong Zheng NAS00590201 Nanjing Botanical Garden Men.Sun Yat-Sen, cultivated plants

20 Cyclobalanopsis glauca Yuhong Zheng None Nanjing Botanical Garden Men.Sun Yat-Sen, cultivated plants

21 C. myrsinifolia Yuhong Zheng None Nanjing Botanical Garden Men.Sun Yat-Sen, cultivated plants
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are very similar in their electrochemical behavior, such as Q.

engleriana and Q. pseudosemecarpifolia.

Figures S1 and S2 show the electrochemical behavior of the

remaining species collected under PBS after water extraction. All

species exhibit essentially the electrochemical behavior described

above. Some of these species exhibit similar electrochemical

behavior, such as Q. oxyphylla and Q. variabilis. Three

electrochemical fingerprints were taken for each sample. It can

be seen that most of the samples have very good repeatability.

However, the DPV curves of some samples do not coincide

completely. However, the different fingerprints have a very

consistent behavior, representing the same molecules involved

in electrochemical oxidation (Zheng et al., 2021a). Some

fingerprints had a higher current intensity than others,

indicat ing a higher concentrat ion of one type of

electrochemically active molecule in the sample. This is very

common in plant samples. Even among plants in the same area,

different environmental factors will lead to changes in the

content of molecules in tissues (Łaska et al., 2019; Ousaaid

et al., 2021).

The use of the same solvent for plant tissue extraction and

the use of the same electrolyte to support electrochemical

fingerprinting can cause different species to exhibit relatively

similar electrochemical behavior. Therefore, we also extracted

the plant tissues with ethanol and collected the electrochemical

fingerprints in ABS environment. Figure 2 shows DPV profiles

of Q. monimotricha, Q. engleriana, Q. aquifolioides, Q.

rehderiana, Q. spinosa, Q. gilliana and Q. pseudosemecarpifolia

after ethanol extraction under ABS. It can be seen that all species

exhibit very different electrochemical behavior under these

conditions than in Figure 1. There are two factors that account

for the difference in electrochemical behavior. First, different
Frontiers in Plant Science 04
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solvents extract different electrochemically active molecules

from plant tissues (Moro et al., 2020). Therefore, there are

different kinds of molecules involved in the process of

electrochemical fingerprinting. On the other hand, ABS has an

acidic pH, so the same electrochemically active molecule behaves

differently in neutral and acidic environments (Fu et al., 2020).

As can be seen from the figure, the electrochemical fingerprints

similar in Figure 1, such as Q. engleriana and Q.

pseudosemecarpifolia, show very large differences in Figure 2.

Therefore, if the fingerprint of both conditions is combined, the

species can be clearly identified. We further conducted

MANOVA tests for our data. The p values of the DPVs

recorded within species all larger than 0.05, indicating no

significant differences. However, when comparing different

species, the p-value is between 3.2e-07 to 6.9e-07. This result

suggesting the significantly different. Therefore, the differences

of electrochemical fingerprints between species are much larger

than the same species. We believe the environmental factors

such as habitat and fertilization certainly affect the content of

many chemical constitutions (including electro-active

compounds) and consequently change signal intensity. Many

GC-MS based works also report the content variation of

extracted compounds (Jin, 2009; Berkov et al., 2012). These

works suggest the environmental factors can only slightly affect

the ratio of compounds without changing compound types.

Therefore, main pattern of voltammograms collected from

different species will be largely unaffected.

Figures S2 and S3 show the electrochemical behavior of the

remaining species collected under ABS after ethanol extraction.

The trends of these electrochemical fingerprints are very similar

to those in Figures S1 and S2. Different species showed

electrochemical oxidation behavior in the scanning window,
FIGURE 1

Electrochemical fingerprint of Q. monimotricha, Q. engleriana, Q. aquifolioides, Q. rehderiana, Q. spinosa, Q. gilliana and Q.
pseudosemecarpifolia after water extraction and recorded under PBS condition with three repetitive tests.
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indicating that chemically active molecules were involved in the

reaction. Different species exhibit different behaviors,

representing differences in the composition and amount of

electrochemically active molecules in their tissues. These

differences can be used not only for rapid identification of

species, but also to reflect genetic differences.
Frontiers in Plant Science 05
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It is not a fast method to use DPV curve to identify species,

especially when some species have similar profiles. Therefore, it is

a scientific way to construct the pattern using electrochemical

fingerprint. Figure 3 shows the scatter plots of Q. monimotricha,

Q. engleriana, Q. aquifolioides, Q. rehderiana, Q. spinosa, Q.

gilliana and Q. pseudosemecarpifolia constructed by
FIGURE 3

Scatter plots of Q. monimotricha, Q. engleriana, Q. aquifolioides, Q. rehderiana, Q. spinosa, Q. gilliana and Q. pseudosemecarpifolia combining
the signals collected under ABS for the water extracts and under PBS for the ethanol extracts.
FIGURE 2

Electrochemical fingerprint of Q. monimotricha, Q. engleriana, Q. aquifolioides, Q. rehderiana, Q. spinosa, Q. gilliana and Q. pseudosemecarpifolia
after ethanol extraction and recorded under ABS condition with three repetitive tests.
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electrochemical fingerprints collected under two conditions. The

data on the X-axis is the current value of the electrochemical

fingerprint collected under PBS after water extraction of different

species tissues, while the data on the Y-axis is the current value

collected under ABS after ethanol extraction of these species. As

you can see, when the two sets of fingerprint data are combined,

different species present different scatter plots. Scatter plots of the

remaining species are provided in Figures S5 and S6. It can be seen

that the difference of scatter plots of different species is greater

than the direct DPV profile. This is because the superposition of

multidimensional data increases the abundance of data and thus

improves the resolution (Dexter et al., 2018; Nonato and Aupetit,

2018). Species identification can be achieved by dividing the

scatter map and counting the number of points in the region.

Further consideration of the distance between points in the

scatter plots can obtain a two-dimensional density diagram. In

this mode, areas with multiple points appear bright, while areas

with fewer points appear dark. Figure 4 shows the 3D density

plots of Q. monimotricha, Q. engieriana, Q. aquifolioides, Q.

rehderiana, Q. spinosa, Q. gilliana and Q. pseudosemecarpifolia

constructed by electrochemical fingerprints collected under two

conditions. In this model, differences between species can be

identified by targeting the highlighted area directly. For example,

the similarQ. engieriana andQ. pseudosemecarpifolia in Figure 1

are not the same in the highlighted area here. More specifically,

Q. engleriana was highlighted in (0.20, 0.03) while Q.

pseudosemecarpifolia in (0.22, 0.31). 2D density plots of the

remaining species are provided in Figures S7 and S8. The similar

profiles of Q. engleriana and Q. pseudosemecarpifolia in Figure

S1 are not the same in the highlighted area here as well. Q.
Frontiers in Plant Science 06
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oxyphylla was highlighted in (0.38, 0.21) while Q. variabilis in

(0.25, 0.18).

From the 2D density plots, it was found that the highlights of

most species were around 0.2 on the X-axis and 0.4 on the Y-

axis. Considering the error of electrochemical fingerprint, this

pattern recognition method has a certain probability of

misjudgment in theory. However, it was not particularly

convenient to determine the unhighlighted areas of the 2D

density plots, so we further constructed the heat map using

electrochemical fingerprinting. Figure 5 shows the heatmap ofQ.

monimotricha, Q. engieriana, Q. aquifolioides, Q. rehderiana, Q.

spinosa, Q. gilliana and Q. pseudosemecarpifolia constructed by

electrochemical fingerprints collected under two conditions.

Heat maps can be graded according to the density of data

points. Moreover, it divides the whole region equally, which is

good for statistical purposes (Hervella et al., 2020). According to

the scoring method of different grades, heat maps are more

suitable for the identification of different species.

In addition to species identification, another potential

application of electrochemical fingerprinting is to use

fingerprint differences to investigate phylogenetic position of

species. This is because although electrochemical fingerprinting

cannot be used for qualitative and quantitative analysis of active

molecules in plant tissues, its current value is proportional to

their amount. At the same time, the amount and types of

electrochemically active substances in plant tissues are

regulated by genes. Therefore, differences in electrochemical

fingerprints can be used to reflect genetic differences between

different species (Fu et al., 2019; Lu et al., 2020; Sun et al., 2021).

The electrochemical fingerprint data under different conditions
FIGURE 4

Two-dimensional density map of Q. monimotricha, Q. engleriana, Q. aquifolioides, Q. rehderiana, Q. spinosa, Q. gilliana and Q.
pseudosemecarpifolia combining the signals collected under ABS for the water extracts and under PBS for the ethanol extracts.
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can be used for cluster analysis after the same processing. The

collection of electrochemical fingerprinting for more than one

condition can increase the abundance of data and provide a more

complete picture of electrochemically active molecules in plant

tissues. Figure 6 shows the clustering analysis graph constructed

by using the electrochemical fingerprints collected under the two

conditions. It can be seen from the figure that the whole system
Frontiers in Plant Science 07
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tree can be divided into five clusters. Cyclobalanopsis myrsinifolia

and Cyclobalanopsis glauca were grouped together as outgroups.

This is because they belong to a different genus than other

species. However, Q. oxyphylla was also grouped together. We

did not find previous reports on Q. oxyphylla in related

phylogenetic studies, so we could not compare this result

with previous investigations. This result deduced from
FIGURE 5

Heatmap of Q. monimotricha, Q. engieriana, Q. aquifolioides, Q. rehderiana, Q. spinosa, Q. gilliana and Q. pseudosemecarpifolia combining the
signals collected under ABS for the water extracts and under PBS for the ethanol extracts.
FIGURE 6

Dendrogram of Q. rehderiana, Q. aliena, Q. monimotricha, Q. gilliana, Q. variabilis, Q. phillyraroides, Q. pseudosemecarpofolia, Q. guajavifolia,
Q. longispica, Q. spinosa, Q. engleriana, Q. fimbriata, Q. franchetii, Q. senescens, Q. baronii, Q. dolicholepis, Q. cocciferoides, Q. oxyphylla,
Q. aquifolioides, Cyclobalanopsos myrsinifolia and Cyclobalanopsis glauca based on electrochemical fingerprints.
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electrochemical fingerprinting potentially provides a report for

future research. Curiously, Q. aquifolioides did not cluster with

any other species. In recent years, several molecular markers

have been used to study the evolutionary history and population

dynamics of Q. aquifolioides, and to reveal the influence of past

climate and geological history on the intraspectic radiation

evolution of this species (Du et al., 2017). Based on chloroplast

fragments (cpDNA), ITS sequences, and microsatellite markers

(nSSR), Feng et al. (2016) investigated the evolutionary history

and population dynamics of Quercus pseudosemecarpifolia,

Quercus aquifolioides, and Quercus rehderiana distributed in

the Eastern Himalaya-Hengduan Mountains and their adjacent

areas. They reveal the effects of the uplift of the Tibetan Plateau

and the quaternary ice age upheaval on the distribution pattern

of genetic variation of quercus sclerotiorum species in the region.

However, due to the limited number of selected molecular

markers and the limitations of selected sample materials, the

current studies cannot fully explain their genetic evolution.

Unfortunately, the results of electrochemical fingerprinting do

not provide further evidence. The remaining species are divided

mainly into three clusters. The first cluster is the largest cluster,

which contains Q. rehderiana, Q. aliena, Q. monimotricha, Q.

gilliana, Q. variabilis and Q. phillyraeoides. Previously, Q.

rehderiana, Q. pseudosemecarpifolia and Q. gilliana were

merged into a species based on AFLP markers (Zhou et al.,

2003). Our results here support the merge of Q. rehderiana and

Q. gilliana, but Q. pseudosemecarpifolia is in another cluster. The

second cluster includes Q. pseudosemecarpifolia, Q. guajavifolia,

Q. longispica, Q. spinosa, Q. engleriana, Q. fimbriata and Q.

franchetii. Ju et al. (2019) reported in recent work that Q.

pseudosemecarpifolia and Q. longispica can be clustered

together. They also reported that Q. guajavifolia and Q.

spinosa could be clustered together. The two species Q.

engleriana and Q. franchetii are rarely studied and no

taxonomic results have been reported. The third cluster

includes Q. senescens, Q. baronii, Q. dolicholepis and Q.

cocciferoides. This result is partly confirmed by the AFLP

analysis (Shuxia et al., 2003; Shuxia et al., 2005). Although

many taxonomists have studied Quercus, it is difficult to grasp

the taxonomic characters of Quercus because of its large number

of species and wide distribution. Many of these species have great

morphological variation in different habitats. At the same time,

the phenomenon of interspecific hybridization is common in

natural environment, which brings some difficulties to

phylogenetic study. Our phylogenetic results here, based on

electrochemical fingerprinting, provide evidence for some of

these arguments as well as new results. This provides a

direction for future phylogenetic studies of Quercus.
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Conclusion

The electrochemical fingerprints of Q. rehderiana, Q. aliena,

Q. monimotricha, Q. gilliana, Q. variabilis, Q. phillyraroides, Q.

pseudosemecarpofolia, Q. guajavifolia, Q. longispica, Q. spinosa,

Q. engleriana, Q. fimbriata, Q. franchetii, Q. senescens, Q.

baronii, Q. dolicholepis, Q. cocciferoides, Q. oxyphylla, Q.

aquifolioides, Cyclobalanopsos myrsinifolia and Cyclobalanopsis

glauca were recorded by their leaf extract under electrolytes.

Water and ethanol were selected as extraction solvents while the

PBS and ABS were used as supporting electrolyte. The

electrochemical fingerprints showed that all Quercus showed

similar electrochemical oxidation trends, but each species still

had its own unique characteristics. Species identification can be

achieved by analyzing electrochemical fingerprints. The

electrochemical fingerprints collected under the two conditions

can be used to form different pattern recognition, which is faster

and more effective than DPV profile. Electrochemical

fingerprinting is used to construct phylogenetic trees because it

can reflect the differences at the genetic level of different species.

Our phylogenetic results here, based on electrochemical

fingerprinting, provide evidence for some of these arguments

as well as new results. This provides a direction for future

phylogenetic studies of Quercus.
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