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Editorial on the Research Topic

The use of deep learning in mapping and diagnosis of cancers
Deep Learning (DL) is a subset and an augmented version of Machine Learning

(ML), which in turn is a subgroup of Artificial Intelligence (AI), that uses layers of neural

networks, similar to human brain, for performing complex tasks quickly and accurately.

AI can recognize patterns in a large volume of data and extract characteristics

imperceptible to the human eye (1). Convolutional Neural Network (CNN) is the

most commonly used network of DL, which contains multiple layers, with weighted

connections between neurons that are trained iteratively to improve performance. DL

can be supervised or unsupervised, but most of the practical uses of DL in cancer has been

with supervised learning where labelled images are used for data training (2). Despite the

growing number of uses of DL in cancer mapping and diagnosis, there are uncharted

territories in DL which remain to be explored to utilize it to its full capacity. Also, in spite

of the revolution in cancer research that DL has ushered in, there are a lot of challenges to

overcome, before DL can be widely used and accepted in every corner of the world.
Role of DL in oncology

There has been an unprecedented surge in DL based research in oncology due to the

availability of big data, powerful hardware and robust algorithms. Screening and

diagnosis of cancer, prediction of treatment response, and survival outcome and

recurrence prediction, are the various roles of ML and DL in cancer management. AI

algorithms integrated with clinical decision support (CDS) tools can automatically mine

electronic health record (EHR) and identify cohort that would benefit maximum from
frontiersin.org01
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cancer screening programmes (3) . For success fu l

implementation of AI in cancer diagnosis, it is imperative for

the radiologists and pathologists to collaborate with the key

stakeholders, industrial partners and scientists (4). With ever

increasing cancer burden worldwide, and availability of

molecular targeted therapies, DL has served as an elixir, by its

ability to screen, detect and diagnose tumours rapidly, and

predict biomarkers non-invasively on imaging (5). Studies

have shown that DL can be used to stage and grade tumours

quickly and provide non-invasive histopathological diagnosis in

cases where obtaining an invasive sample is risky. Patients,

clinicians, radiologists and the pathologists, all have the

potential to be benefitted by this DL technology as the utility

of DL is no longer limited to tumour diagnosis, but to the cancer

care as a whole. Prediction of overall survival, progression free

survival, and disease free survival, assessment of response to

treatment and outcome prediction are few of the many ways DL

can benefit patients afflicted with cancer, the mere thought of

which was previously unfathomable (5). Treatment planning

and patient management can be hastened through the wider

applications of DL based image interpretation, for example, non-

responders to treatment detected on DL based baseline image

interpretation, can be spared of further invasive treatment, and a

change in management strategy may be considered for them.
Major applied uses of DL technology

Image classification and regression

DL can be used for classifying a lesion into benign or

malignant, for treatment response evaluation and survival

prediction. If DL models can be trained using a large dataset

from a source domain, then it can be used in a target domain

with a small sample size (2).
Object detection

DL can be used in tumour localization.
Semantic segmentation

DL can mark specific areas of concern on an image and assist

the radiologists in decision making (2).
Image registration

Images acquired at different times can be accurately linked

using DL, thus, enabling the radiologists to compare the

images (2).
Frontiers in Oncology 02
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Federated learning

Robust deployable model can be built notwithstanding

geographic boundaries, if multiple organizations/institutions/

hospitals jointly train a model on a large data after de-

identification of patient information (6).
Systematic review and
meta-analysis data

A systematic review and meta-analysis from 1st January 2012

to 6th June 2019, comparing the diagnostic accuracy of health-

care professionals with deep learning algorithms using imaging,

found 10 studies on breast cancer, 9 studies on skin cancer, 7

studies on lung cancer, 5 studies on gastroenterological or

hepatological cancers, 4 studies on thyroid cancer, 2 studies on

oral cancer, and 1 study on nasopharyngeal cancer (7). Another

systematic review on AI techniques in cancer diagnosis and

prediction from articles published from 2009 to April 2021,

revealed 10 articles pertaining to brain tumours, 13 articles

related to breast cancer, 8 articles each related to cervical, liver,

lung, and skin cancers, 6 articles related to colorectal cancer, 5

articles each related to renal and thyroid cancers, 2 articles each

related to oral and prostate cancers, 7 articles related to stomach

cancer, and 1 article each related to neuroendocrine tumours

and lymph node metastasis (8). Few studies involving AI in

cancer diagnosis and management include:
a. Histology prediction and screening of breast cancer on

mammography (9, 10).

b. Brain tumour segmentation (11–14).

c. Lung nodule segmentation on computed tomography

(CT) (15–17).

d. Liver tumour segmentation on CT (17, 18).

e. Prostate gland tumour detection on magnetic resonance

imaging (MRI) (19, 20).

f. Brain tumour survival prediction (21–23).

g. F. Glioblastoma recurrence prediction (24).
Challenges and limitations of DL
a. Requirement of a large data: DL models need a large

data (in thousands) to be trained and availability of such

a huge data may not be possible in every institution.

b. Precise data annotation: Tumour region needs to be

annotated or labelled accurately without contamination

from surrounding non-tumour regions. This may not

always be possible as many a times, tumours are
frontiersin.org
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infiltrative in nature and not discrete, and may be

located within a region containing some other

pathology, for example, infiltrative lung tumour

located within a collapsed lung, in which case precise

margin delineation may not be possible.

c. There is need for equal representation of data on

training and test sets failing which data gets skewed

and bias is introduced (2).

d. Heterogeneity of data: Difference in training set of

images and deployable image sets may affect the

performance of a model, for example if the CT

scanner used while acquiring images for training is

different from the one on which the model is

validated, then performance may be reduced.

e. Patient privacy concerns: Despite the available methods

for deidentification of patient information, the problems

of patient privacy still loom large (2).

f. Problem of hidden layers: DL uses multiple layers of

neural network to analyse data, which remain hidden,

and the exact reasoning of outcome is not decipherable,

which makes it difficult to be relied upon and

convincingly used.

g. Infrastructure: Use of DL requires a robust

infrastructure which may not be available everywhere.

h. Lack of trained personnel and expertise and lack of

awareness about collaboration for implementation of AI

projects (25).
Imaging biobanks

Repositories of human tissue sample stored in an organized

manner for research purpose is known as “biobank”, and

collection of medical image data for long term storage and

retrieval for research is known as “imaging biobank” (26, 27)

Digital Imaging and Communications in Medicine (DICOM) is

the universal format for Picture Archiving and Communication

System (PACS) storage and data sharing across all institutions

(26). The data needs to be de-identified and informed consent of

the patient obtained prior to data archiving (28). Few examples

of such open-source platforms include The Cancer Genome

Atlas (TCGA) program, The Cancer Imaging Archive (TCIA),

and European Genome–phenome Archive (EGA) (29, 30). In

India, collaboration between the Department of Biotechnology

(Government of India) under the guidance of the National

Institution for Transforming India (NITI) Aayog, and Tata

Memorial Centre has led to the creation of The Tata Memorial

Center Imaging Biobank (31). World’s biggest multi-modality

imaging study was commenced by the UK Biobank in 2014 to

have a repository of neuro, cardiac, and abdominal MRI

imaging, dual energy x-ray absorptiometry (DEXA) and

carotid ultrasonography (32). Similarly, CAN-I-AID (Cancer
tiers in Oncology 03
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Imaging Artificial Intelligence Database) biobank project has

been initiated by Dr. Abhishek Mahajan at the Clatterbridge

Cancer Centre, Liverpool, United Kingdom (UK). Such imaging

biobanks for public use should be encouraged as it fulfils the

requirement of large image data to promote DL based research

across the globe.
Articles in research topic

In this Research Topic, we present 20 topics, 19 of which are

original articles and one is a systematic review. There is one article

on cervical cancer screening: Sun et al. used Stacking-Integrated

Machine Learning Algorithm based on demographic, behavioural,

and clinical factors to accurately identify women at high risk of

developing cervical cancer and suggested the use of this model to

personalise cervical cancer screening programme. Three articles on

lung cancer: Shen et al. showed that DL based CT images have the

potential to accurately predict malignancy and invasiveness of

pulmonary subsolid nodules on CT Images and thus aid in

management decisions. Sun et al. conducted a study to establish

the role of Convolutional Neural Network-Based Diagnostic Model

to differentiate between benign and malignant lesions manifesting

as a solid, indeterminate solitary pulmonary nodule (SPN) or mass

(SPM) on computed tomography (CT). Xia et al. compared and

fused DL and Radiomics features of ground-glass nodules to predict

the invasiveness risk of stage-I lung adenocarcinomas in CT scan

and concluded that fusion of DL and radiomics features can refine

the classification performance for differentiating non-invasive

adenocarcinoma (non-IA) from IA and the prediction of

invasiveness risk of GGNs is similar to or better than radiologists

using AI scheme. One article on thyroid cancer:Wu et al. combined

ACR TI-RADS with DL by training three commonly used deep

learning algorithms to differentiate between benign and malignant

in TR4 and TR5 thyroid nodules with available pathology and

concluded that irrespective of the type of TI-RADS used for the

classification competition, DL algorithms outperformed

radiologists. One article on bladder cancer: Zhang et al. proposed

a DLmodel based on CT images to predict muscle-invasive status of

bladder carcinoma pre-operatively and concluded that DL model

exhibited relatively good prediction ability with capability to

enhance individual treatment of bladder carcinoma. One article

on periampullary region: Tang et al. used DL to identify

periampullary regions on MRI images and achieved optimal

accuracies in the segmentation of the peri-ampullary regions on

both T1 and T2 MRI images concordant with manual human

assessment. One article on rectal cancer: Zhang et al. segmented

rectal cancer via 3D V-Net on T2WI and DWI and then compared

the radiomics performance in predicting KRAS/NRAS/BRAF status

between DL-based auto segmentation and manual-based

segmentation. They concluded that 3D V-Net architecture could

conduct reliable rectal cancer segmentation on T2WI and DWI

images. One article on jaw lesions: Chai et al. showed that AI-based
frontiersin.org
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cone-beam CT can distinguish between Ameloblastoma and

Odontogenic Keratocyst with better accuracy than the surgeons.

Two articles on spine: Ouyang et al. evaluated the efficiency of DL-

based automated detection of primary spine tumours onMRI using

the turing test. Hallinan et al. developed a DL model for classifying

metastatic epidural spinal cord compression onMRI and which had

comparable agreement to a subspecialist radiologist and clinical

specialists. One article on kidney tumour: Sun et al. conducted a

study on kidney tumour segmentation based on FR2PAttU-Net

model. One article on brain tumour: Kandalgaonkar et al.

conducted a study predicting IDH subtype of Grade 4

Astrocytoma and Glioblastoma from tumour radiomic patterns

extracted from Multiparametric MRI using a machine learning

approach and inferred that it may be used in either escalating or de-

escalating adjuvant therapy for gliomas or for using targeted agents

in future. One article on survival rate prediction in cancer patients:

Sinzinger et al. developed Spherical Convolutional Neural Networks

for survival rate prediction in cancer patients and concluded that it

is beneficial in cases where expert annotations are not available or

difficult to obtain. One systematic review and meta-analysis: Guha

et al. performed a systematic review and meta-analysis

differentiating primary central nervous system lymphoma

(PCNSL) from glioblastoma (GBM) using deep learning and

radiomics based ML approach. There are five non-imaging related

articles: Zhu et al. developed transparent machine learning pipeline

to efficiently predict Microsatellite instability (MSI), thus, helping

pathologists to guide management decisions. Wang et al. conducted

a study to reveal the heterogeneity in the tumor microenvironment

of pancreatic cancer and analyze the differences in prognosis and

immunotherapy responses of distinct immune subtypes. Menon

et al. explored the histological similarities across cancers from a

deep learning perspective. Huang et al. studied the effects of biofilm

nano-composite drugs OMVs-MSN-5-FU on cervical lymph node

metastases from oral squamous cell carcinoma (OSCC) on the

animal model. Zormpas-Petridis et al. prepared a DL pipeline for

mapping tumour heterogeneity on low-resolution whole-slide

digital histopathology images. Figure 1 shows the list of authors

based on type of articles submitted towards Research Topic.
Conclusions

DL has ushered in revolution in the field of oncology

research, from cancer screening and diagnosis, to response

assessment and survival prediction, thus positively influencing

patient management. With the increasing cancer burden and

limited number of specialized healthcare providers, there is a

growing inclination to use DL at various levels of cancer

diagnosis to cater to the needs of patients and the healthcare

providers alike. Despite the umpteen benefits, there are a few

challenges that DL needs to conquer, before it can be
Frontiers in Oncology 04
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ubiquitously used. Through this Research Topic, we wish to

acquaint the readers with the latest ongoing DL based research

in cancer diagnosis, which can pave the way for further

innovations and research in this field, as full potential of DL is

still underutilized.
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For stage-I lung adenocarcinoma, the 5-years disease-free survival (DFS) rates of

non-invasive adenocarcinoma (non-IA) is different with invasive adenocarcinoma (IA).

This study aims to develop CT image based artificial intelligence (AI) schemes to

classify between non-IA and IA nodules, and incorporate deep learning (DL) and

radiomics features to improve the classification performance. We collect 373 surgical

pathological confirmed ground-glass nodules (GGNs) from 323 patients in two centers.

It involves 205 non-IA (including 107 adenocarcinoma in situ and 98 minimally invasive

adenocarcinoma), and 168 IA. We first propose a recurrent residual convolutional neural

network based on U-Net to segment the GGNs. Then, we build two schemes to classify

between non-IA and IA namely, DL scheme and radiomics scheme, respectively. Third,

to improve the classification performance, we fuse the prediction scores of two schemes

by applying an information fusion method. Finally, we conduct an observer study to

compare our scheme performance with two radiologists by testing on an independent

dataset. Comparing with DL scheme and radiomics scheme (the area under a receiver

operating characteristic curve (AUC): 0.83 ± 0.05, 0.87 ± 0.04), our new fusion scheme

(AUC: 0.90 ± 0.03) significant improves the risk classification performance (p < 0.05).

In a comparison with two radiologists, our new model yields higher accuracy of 80.3%.

The kappa value for inter-radiologist agreement is 0.6. It demonstrates that applying AI

method is an effective way to improve the invasiveness risk prediction performance of

GGNs. In future, fusion of DL and radiomics features may have a potential to handle the

classification task with limited dataset in medical imaging.

Keywords: lung adenocarcinoma, deep learning, radiomics, invasiveness risk, ground-glass nodule, CT scan

INTRODUCTION

As the most common histologic subtype of lung cancer, lung adenocarcinomas accounts for
almost half of lung cancers. The persistent presence of ground-glass nodules (GGN) in computed
tomography (CT) image usually serves as an indicator of the presence of lung adenocarcinoma
or its precursors (1). According to the guideline of the 2011 International Association for the
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Study of Lung Cancer/American Thoracic Society/European
Respiratory Society International (IASLC/ATS/ERS)
classification, lung adenocarcinoma includes atypical
adenomatous hyperplasia (AAH), adenocarcinoma in situ
(AIS), and minimally invasive adenocarcinoma (MIA) and
invasive adenocarcinoma (IA) (2). Previous reported studies has
depicted that the different subtypes of lung adenocarcinoma
have different 3-years and 5-years disease-free survival (DFS)
rates (3). For stage-I lung adenocarcinoma, the 5-years DFS of
AIS and MIA is 100%, but IA is only 38–86% (4, 5). Meanwhile,
the standard surgical treatment for lung adenocarcinoma is still
lobectomy, but non-IA patients may be candidates for limited
surgical resection (6). Thus, it is important to discriminate
between IA and non-IA (including AIS and MIA) by using
non-invasive CT image.

In order to classify between non-IA and IA GGNs,
investigators and researchers have proposed two kinds of
computer-aided diagnosis (CADx) schemes including CT
radiomics feature analysis method and deep learning (DL)
architecture based scheme (7). The radiomics feature analysis
approachmainly includes tumor segmentation, radiomics feature
extraction and selection (8), and machine-learning classifier
training/testing process, respectively (9–11). The related studies
usually compute a large number of handcrafted imaging features
to decode the different tumor phenotypes (6, 12–14). Unlike
radiomics feature analysis scheme, DL based scheme use the
convolutional neural network (CNN) to build an end-to-
end classification model by learning a hierarchy of internal
representations (15–17). Although DL scheme can improve the
classification performance and reduce the workload of hand-craft
feature engineering (i.e., tumor boundary delimitation), it needs
to be trained with larger dataset than radiomics feature based
scheme (18, 19). However, under common medical diagnosis
conditions, collecting, and building a large uniform image dataset
is very difficult because of the inconformity of CT screening
standard and lacking surgical pathological confirmed GGNs.
Thus, how to improve the CADx performance with a limited
dataset is a challenge task.

To address this issue, we have fused the DL and radiomics
features to build a new AI scheme to classify between non-IA and
IA GGNs. We first collected 373 surgical pathological confirmed
GGNs from 323 patients in two centers. To segment the GGNs
in CT images, we trained a recurrent residual convolutional
neural network (RRCNN) based on U-Net model. Then, we
respectively built a DL model and radiomics feature analysis
mode to classify between IA and non-IA GGNs. Finally, we
applied an information fusion method to fuse the prediction
scores generated by the two models. In order to evaluate the
performance of our new scheme, we used an independent dataset
to conduct an observer study by comparing our prediction score
with two radiologists (an experienced senior radiologist S.P.
Wang and a junior radiologist W. Hao).

MATERIALS AND METHODS

Image Dataset
In this study, we respectively collected 373 surgical pathological
confirmed GGNs from two centers. For the cases with multifocal

ground-glass nodules (multi-GGNs), we treated each GGN as
an independent primary lesion (20). The inclusion criteria were:
(1) diagnosed with stage-I lung adenocarcinoma cancer; (2)
histopathologically confirmed AIS, MIA and IA pulmonary
nodules; (3) available CT examination within 1 month before
surgery; and (4) the tumor manifesting as GGN on CT with a
maximum diameter of (3mm, 30mm). The exclusion criteria
were: (1) preoperative systemic therapy; (2) lacking CT images
before surgery; (3) histopathologically described GGN not
identifiable on CT; and (4) artifacts appeared in CT images. We
only collected the latest CT examination images of each patient
before surgery. The time interval between chest CT examination
and operation was 1–30 days (mean, 8.3 days). The institutional
review board of two centers approves this retrospective study,
and written informed consents were waived from all patients. The
details of GGNs in the two centers were depicted as follows.

In the first dataset, we collected 246 GGNs from 229 patients
(involving 82 males and 147 females) in Taizhou Municipal
Hospital (Zhejiang, China). Among these nodules, 55 GGNs
were AIS, 64 GGNs were MIA, and 127 GGNs were IA. All the
CT scans were reconstructed by using the standard convolution
kernel, and each slice was reconstructed with a matrix 512× 512
pixels (GE scanner). CT parameters were as follows: 120 kVp tube
voltage, and 100–250mA tube current. The pixel spacing of CT
scan ranged from 0.684 to 0.703mm, and the slice thickness was
1.25 or 5 mm.

The other 127 GGNs were collected from 94 patients
(involving 35 males and 59 females) in Fudan University
Shanghai Cancer Center (Shanghai, China). In this dataset, 52
AIS GGNs, 34 MIA GGNs, and 41 IA GGNs were involved. The
CT examinations were performed with a fixed tube voltage of 120
kVp and a tube current of 200mA. The pixel spacing of CT image
ranged from 0.684 to 0.748mm, and the slice thickness was 1 or
1.5mm. Each slice was reconstructed with an imagematrix of 512
× 512 pixels.

In order to train and test our proposed schemes, we divided
the GGNs into two parts. We used 246 GGNs in the first dataset
to build a training and validation dataset to train our scheme.
Meanwhile, to evaluate our new scheme performance, we selected
the 127 GGNs in the second part to build an independent testing
dataset. The details of our dataset were listed in Table 1.

Methods
In this study, we first built a DL based model and a radiomics
feature based model, respectively. Then, to improve the scheme
performance, we used an information-fusion method to fuse the
prediction scores of the two schemes. The framework of our
proposed scheme was illustrated in Figure 1.

Before building the scheme, we first used a series of
preprocessing technique to process the initial CT images. To
avoid the biases caused by the variant spacing of CT scans in
our dataset, we applied a cubic spline interpolation algorithm to
resample CT images to a new spacing of 1mm × 1mm × 1mm.
Then, we used an intensity window range of [−1,200, 600] to
scale the resampled axial CT images to an intensity range of 0–
255. After normalized all the CT images, we cropped the GGN
into a 3D cubes with a patch of 64 × 64× 64mm. During this
process, we used the position of GGN center point in Cartesian
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TABLE 1 | Demographic characteristics of 323 patients with 373 GGNs in two datasets.

Characteristic Training and validation dataset

(N = 246)

Testing dataset

(N = 127)

Non-IA IA P Non-IA IA P

119 127 86 41

Sex Male 40 42 0.15 19 16 0.15

Female 73 74 43 16

Age (mean ± SD, year) 56.5 ± 11.8 59.7 ± 10.3 0.03 51.8 ± 12.1 58.1 ± 8.6 0.03

Location RUL 48 (19.5%) 52 (21.1%) 0.64 28 (22.0%) 18 (14.2%) 0.13

RML 6 (2.4%) 9 (3.7%) 6 (4.7%) 3 (2.4%)

RLL 17 (6.9%) 19 (7.7%) 15 (11.8%) 7 (5.5%)

LUL 34 (13.8%) 32 (13.0%) 25 (19.7%) 7 (5.5%)

LLL 14 (5.7%) 15 (6.1%) 12 (9.4%) 6 (4.7%)

Diameter (mm) (3, 10) 72 (29.3%) 42 (17.1%) 0.004 67 (52.8%) 8 (6.3%) <0.0001

(10, 20) 39 (15.9%) 68 (27.6%) 19 (15.0%) 22 (17.3%)

(20, 30) 8 (3.3%) 17 (6.9%) 0 (0%) 11 (8.7%)

Type pGGN 88 (35.8%) 65 (26.4%) 0.0002 78 (61.4%) 18 (14.2%) <0.0001

sGGN 31 (12.6%) 62 (25.2%) 8 (6.3%) 23 (18.1%)

IA, invasive adenocarcinoma; pGGO, pure ground glass nodule; sGGN, part-solid ground glass nodule.

FIGURE 1 | Flowchart of the proposed scheme.

coordinates drawn by radiologist to locate each GGN in CT
image. Last, in order to reduce the computational cost of our
model, we normalized the intensity of cropped GGN cubes to an
intensity range of 0–1.

Second, we built a 3D RRCNN based on U-Net model to
segment the GNNs in CT images. The architecture of our
segmentation DL model were showed in Figure 2. The inputs
of 3D RRCNN model were our cropped GGN patches, and
the outputs were the segmented 3D masks. For each layer of
the 3D RRCNN, we used a RRCNN block with a 3 × 3 × 3

convolutional layer, a batch normalization layer and a standard
rectified linear unit (ReLU). In each convolutional layer, we
also embedded a residual unit and a recurrent unit into the
block (21). To build the segmentation model, we used the
257 GGNs in the lung image database consortium and image
database resource initiative (LIDC-IDRI) to train our proposed
RRCNN model (22). Four radiologists delineated the boundaries
of nodules in LIDC-IDRI database. We used the boundary voted
by three or more radiologists as the “ground-truth” of each
nodule. To generate the training GGNs for RRCNN model, we
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FIGURE 2 | Segmentation results of a GGN. From top to bottom: original CT images, heat map of CNN features, and segment masks of the GGN.

applied some data augmentation techniques (i.e., rotation of
image by 90◦ increments, left-right flipping, up-down flipping)
to augment the dataset. Moreover, we applied the Dice similarity
coefficient (DSC) of nodule to define the loss function of our
segmentation model (23). Figure 2 shows an example of GGN
segmentation results.

Third, we used a transfer learning method to build a
DL based invasiveness risk prediction model. In this model,
we fixed the parameters in CNN-pooling processes of the
segmentation model. To build a classification model, we added
two fully connected (FC) layers into the DL model, and
used deep features generated by the CNN-pooling layers of
segmentation model to feed into the FC layers. Then, we

used the GGNs in our training and validation dataset to
fine-tune our classification CNN model. In this process, we
selected the cross entropy to calculate the loss, and used
an Adam optimizer with a weight decay of 1e-4 to update
the parameters. Figure 3 shows the architectures of our proposed
DL model.

Fourth, we built a radiomics feature analysis model to classify
between non-IA and IA GGNs. For each CT scan in our dataset,
we used the RRCNN model to segment 3D GGNs. Then, we
computed 1,218 radiomics features to quantify each GGN. These
imaging features involved: 430 LoG features, 688 wavelet features,
18 histogram features, 14 shape features, and 68 texture features.
The LoG features and wavelet features were computed by using
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FIGURE 3 | The architectures of Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net model and the transfer learning method based risk

prediction model.

the Laplacian of Gaussian (LoG) filter and wavelet filter to filter
the initial image, respectively. The LoG image was obtained
by convolving the original image with the second derivative
of a Gaussian kernel. Five sigma values including 1, 2, 3, 4,
and 5 were used to calculate the LoG features. In Among the
68 texture features, 22 were gray level co-occurrence matrix
texture features (GLCM), 14 were gray level dependence matrix
texture features (GLDM), 16 were gray level run length matrix
texture features (GLRLM), and 16 were gray level size zone
matrix texture features (GLSZM). After extracting the radiomics
features, we scaled each feature to [0, 1] by using a feature
normalization technique. To reduce the dimensionality of initial
features, we applied the univariate feature selection method
with ANOVA F-value to select the best features and remove
the redundant features (24). After feature selection processing,
we used these selected imaging features to train a support
vector machine (SVM) classifier and build a radiomics feature
based model.

Finally, we used an information-fusion method to fuse
the prediction scores of two classification models. In brief,
the information-fusion strategies includes the maximum,
minimum, and weighting average fusion. For maximum and
minimum strategy, we compared two prediction scores of each
GGN, and selected the maximum or minimum value as the
fusion prediction score. For weighting average strategy, we
systematically increased the weighting factor of prediction score
generated by DL based scheme from 0.1 to 0.9 (or 0.9–0.1 for the
prediction score generated by radiomics feature based scheme)
to compute the fusion prediction score. A similar method was
applied in our previously reported literature (25).

Performance Evaluation
After obtaining the prediction scores, we generated the receiver
operating characteristic (ROC) curves and computed the
area under a ROC curve to evaluate the performance of
our proposed models. In order to compare the new scheme
performance with radiologists, we conducted an observer study
by testing on an independent testing dataset. Two radiologists

(a junior radiologist: Wen Hao with 5-years experience; a
senior radiologist: Shengping Wang with 14-years experience
in CT interpretation) were independently to diagnose all the
GGNs in testing dataset by blinding to the histopathologic
results and clinical data. Since two radiologists only provided
a binary result for each case, we calculated some additional
metrics to assess and compare the prediction performance.
The evaluation indexes were accuracy (ACC), F1 score,
weighted average F1 score, and Matthews correlation coefficient
(MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
), respectively. The

equation of F1 score was defined as follows.

F1 =
2× Precision× Recall

Precision+ Recall

where TP, FP, TN, FN denoted true positive, false positive, true
negative, and false negative, respectively. Precision denoted the
precision value (Precision = TP

TP+FP ), and Recall denoted the

recall value (Recall = TP
TP+FN ).

In this study, we implemented the above model building
and performance evaluation processes on the Python 3.6 by
using a computer with Intel Core i7-8700 CPU 3.2 GHz ×
2, 16 GB RAM and a NVIDIA GeForce GTX 1,070 graphics
processing unit. To build the DL and radiomics feature
based scheme, we applied some publicly available Python
packages, i.e., SimpleITK, pyradiomics (26), Pytorch, scikit-
learn, scikit-feature, scipy. We used the default configuration
of performance evaluation functions. Thus, the scheme
performance can be easily compared and evaluated in
future studies.

All the codes of our proposed models were open
source available at https://github.com/GongJingUSST/DL_
Radiomics_Fusion.

RESULTS

Table 1 listed the detailed demographic characteristics of the
patients in two datasets. A total of 323 patients [117 (36.2%)
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FIGURE 4 | Boxplots of the mean CT value of IA and non-IA GGNs in our dataset. (A) Illustrates boxplot of the training and validation dataset. (B) Shows boxplot of

the testing dataset.

FIGURE 5 | Heat map of the 20 imaging features selected in the radiomics based model.

males, and 206 (63.8%) females, P > 0.05] with 373 GGNs
were involved in our dataset. Among these GGNs, 107 were AIS
(28.7%), 98 were MIA (26.3%), and 168 were IA (45%). Of all 373
GGNs, 228 (61.1%) were located in right lobe, and 145 (38.9%)
were located in left lobe (P > 0.05). In the dataset, the diameters
of 189 (50.7%) GGNs were smaller than 10mm, the diameters of
148 (39.7%) GGNs were in a range of (10mm, 20mm), and the
diameters of 36 (9.6%) GGNs were larger than 20mm (P < 0.05).
Of 373 GGNs, 249 nodules (66.8%) showed pure GGNs without

solid components, and 124 nodules (33.2%) showed part-solid
GGNs on CT images. Figure 4 illustrates the boxplots of GGN
mean CT values in training and testing dataset. In training and
validation dataset, the mean CT value of IA and non-IA GGNs
were −439 ± 138 and −533 ± 116, respectively. Meanwhile, in
the testing dataset, the mean CT value of IA and non-IA were
−381± 182 and−553± 142.

Figure 5 shows the heat map of the 20 selected imaging
features in the radiomics feature based scheme. In Figure 5,
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TABLE 2 | AUC values and the corresponding 95% CI generated by different

methods with 127 GGNs in testing dataset.

Method AUC 95% CI

Deep learning based scheme 0.83 ± 0.05 [0.75, 0.90]

Radiomics feature based scheme 0.87 ± 0.04 [0.80, 0.93]

Minimum 0.83 ± 0.05 [0.75, 0.90]

Maximum 0.90 ± 0.03 [0.84, 0.95]

0.1 × Radiomicsa+0.9×DLb 0.85 ± 0.04 [0.77, 0.91]

0.2 × Radiomics+0.8×DL 0.86 ± 0.04 [0.78, 0.92]

0.3 × Radiomics+0.7×DL 0.87 ± 0.04 [0.80, 0.93]

0.4 × Radiomics+0.6×DL 0.88 ± 0.04 [0.81, 0.94]

0.5 × Radiomics+0.5×DL 0.89 ± 0.04 [0.83, 0.95]

0.6 × Radiomics+0.4×DL 0.90 ± 0.04 [0.83, 0.95]

0.7 × Radiomics+0.3×DL 0.90 ± 0.04 [0.83, 0.90]

0.8 × Radiomics+0.2×DL 0.90 ± 0.04 [0.83, 0.88]

0.9 × Radiomics+0.1×DL 0.89 ± 0.03 [0.83, 0.94]

a Radiomics: prediction scores generated by radiomics feature based scheme.
b DL: prediction scores generated by deep learning based scheme.

these 20 imaging features selected from the initial feature pool
were LoG image based features. It can be seen that LoG features
play an important role in building the radiomics feature based
classification model. Most of the selected imaging features have a
different distribution between non-IA and IA GGNs. It indicated
that most of these selected features have a potential to differ
non-IA from IA GGNs.

Table 2 listed the AUC values and the corresponding 95%
confidence interval (CI) of the models proposed in this study.
Testing on the independent testing dataset, the DL based scheme
and radiomics feature based scheme yielded an AUC value of
0.83 ± 0.05 and 0.87 ± 0.04, respectively. When we applied the
information-fusion method, the scheme performance changed
with the different fusion strategy. By using a maximum fusion
strategy, our scheme yielded a highest AUC value of 0.90 ± 0.03.
Comparing with the performance generated individually, the
fusion scheme significantly improved the scheme performance (P
< 0.05). Meanwhile, there is no significant difference between DL
based scheme and radiomics feature based scheme (P = 0.09).

Figure 6 shows performance comparisons of three models
and radiologists. Figure 6A shows scatter plot of prediction
score distributions of non-IA and IA nodules, and Figure 6B

shows ROC curves of the three models and the prediction scores
of two radiologists. Figure 6A showed that a large number of
prediction scores generated by DL and radiomics based models
were scattered and inconsistent in both non-IA and IA nodules.
It indicated DL model and radiomics model might provide
different information in classifying between non-IA and IA
nodules. ROC curves also showed the trend that fusing the scores
of DL based scheme and radiomics feature based scheme can
improved the scheme performance. In a comparison with two
radiologists, the fusion scheme yielded higher performance. In
order to further compare the fusion scheme performance with
two radiologists, Table 3 illustrated and compared the accuracy,
F1 score, weighted average F1 score, and Matthews correlation

FIGURE 6 | Performance comparisons of three models and radiologists. (A)

Shows scatter plots of prediction score distributions of non-IA and IA nodules.

Left to right: prediction scores generated by DL and radiomics models for

non-IA and IA nodules in testing dataset, respectively. (B) Shows ROC curves

of the three models and the prediction scores of two radiologists.

coefficient of each scheme. Evaluating the results showed in
Table 3, our fusion scheme yielded higher performance than two
radiologists in terms of each index. It indicated that our CADx
scheme matched or even outperformed radiologist in classifying
between non-IA an IA GGNs. To test the interrater reliability
of the results of two radiologists, we also calculated the Cohen’s
kappa value to measure their agreement (27). The Cohen’s kappa
value of two radiologists was 0.6. It indicated that two radiologists
had a moderate agreement in predicting the invasiveness risk
of GGN.

DISCUSSION

In this study, we developed a CT image based CADx scheme
to classify between non-IA and IA GGNs by fusing DL and
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TABLE 3 | The comparison of classification performance tested on 127 GGNs in

independent testing dataset, in terms of accuracy (ACC), F1 score, weighted

average F1 score, and Matthews correlation coefficient (MCC), respectively.

ACC (%) F1 (%) F1weighted (%) MCC (%)

Senior radiologist 67.7 64.3 68.5 44.8

Junior radiologist 70.9 63.4 71.8 42.6

Our fusion model 80.3 75.2 80.9 62.8

TABLE 4 | Comparison of dataset, methods, and AUC values reported in different

studies.

Work Dataset Method AUC

Wang et al. (19) 1,545 nodules Deep learning 0.892

Zhao et al. (15) 651 nodules Deep learning 0.880

Gong et al. (28) 828 nodules Deep learning 0.92 ± 0.03

Our study 373 nodules Fusion of deep learning

and radiomics

0.90 ± 0.03

radiomics features. Our study has a number of characteristics.
First, we built an AI model to classify between non-IA and IA
GGNs by fusing DL and radiomics features. Since DL based
scheme and radiomics feature based scheme used different
imaging features to decode the phenotypes of GGN, our
fusion model integrated these quantitative and deep features to
character the CT features of tumor. Comparing with model built
with DL and radiomics features individually, the fusion model
has improved the scheme performance significantly (i.e., results
showed in Table 2 and Figure 6). It showed that deep feature and
radiomics feature may provide complementary information in
predicting the invasiveness risk of GGN. To build a robust model,
we used the surgery histopathological confirmed GGNs from
two centers to train and test the classification scheme. In order
to evaluate the performance of our scheme, we compared the
scheme prediction scores with two radiologists by testing on an
independent dataset. Comparing with two radiologists, our new
scheme yielded higher performance in classifying between non-
IA and IA GGNs (i.e., results showed in Figure 6 and Table 3).
Meanwhile, comparing with previously reported studies (15, 19,
28), our study can yield a rather high classification performance
by using a limited dataset (i.e., results showed in Table 4). If
the robustness of our model was confirmed with more diverse
and larger dataset in future studies, the proposed AI scheme
would have a high impact on assisting radiologists in their clinical
diagnosis of GGNs.

Second, we applied a transfer learning method to build a DL
based scheme by training with a limited dataset. Since the DL
based scheme was a data-driven model, we should train and
build a DL model with a large dataset. To address this issue,
we proposed a RRCNN model to segment GGNs, and then
used a transfer learning method to fine-tune the segmentation
DL model. In this process, our classification DL model shared
the same deep features with the segmentation model. As the
training images of two model was same, it was easily to transfer

the segmentation model to classification task. In a comparison
with radiomics feature based model, the DL based scheme
yielded equivalent performance (P > 0.05). It demonstrated that
transferring segmentation DL model to classification task was
feasible. Thus, our new scheme may provide a new way to build a
DL based classification model with limited dataset.

Third, we built a radiomics feature based scheme to predict the
invasiveness risk of GGN. To quantify the imaging phonotypes
of GGN, we initially computed 1,218 radiomics features. To
remove the redundant imaging features, we applied a univariate
feature selection method to select the robust features. Most of
the selected imaging features were LoG image based features. It
showed that LoG features were essential for classifying between
non-IA and IA GGNs. By observing the heat map of 20 selected
image features, we found that those features had a different
distributions in non-IA and IA group. It indicated that these
selected imaging features had a potential to classify between
non-IA and IA GGNs.

Fourth, in order to evaluate the performance of our proposed
scheme, we conducted an observer study by comparing with
two radiologists. Senior radiologist obtained higher sensitivity
(90.2 vs. 78.1%) and false positive rate (43.0 vs. 32.6%) in
distinguishing between IA and non-IA GGNs. It indicated that
senior radiologist was more sensitive to the positive GGNs (i.e.,
IA GGNs). Meanwhile, the accuracy of senior radiologist was
lower than that of junior radiologist. Since the number of non-
IA GGNs is larger than that of IA GGNs in our testing dataset, it
indicated that the number of negative GGNs (i.e., non-IA GGNs)
miscategorized into IA class by senior radiologist was larger.
Thus, senior radiologist paid more attention to IA GGNs than
non-IA GGNs. Two radiologists had a moderate agreement on
diagnosing the invasiveness risk of GGNs. By validating on an
independent testing dataset, our AI scheme outperformed two
radiologists in classifying between non-IA and IA GGNs (i.e.,
results showed in Table 3 and Figure 6). It demonstrated that
CT image based AI scheme was an effective tool to distinguish
between non-IA and IA GGNs. Due to the different ways of
surgical management for GGNs with different subtypes of lung
adenocarcinoma, our AI scheme may have a potential to assist
both radiologists and thoracic surgeons in their decision-making.

Despite of the promising results, this study also had several
limitations. First, our dataset was small, and only a total of 373
GGNs were involved in this study. The diversity of GGNs in our
dataset cannot sufficiently represent the general GGN population
in clinical practice. Since the DLmodel was data-driven, it may be
under-fitting due to lack of training dataset. Thus, large diverse
dataset and cross-validation method should be used to validate
the reproducibility and generalization of our scheme. Due to the
different scanning parameters, the tube current, pixel spacing,
and slice thickness of CT image was variety. Whether and how
these scanning parameters affect the scheme performance have
not been investigated in this study (29).

Second, we only extracted and investigated two type CT
image features of lung adenocarcinoma namely, DL image
feature and radiomics feature, respectively. Although the scheme
performance has been improved by fusing two types of
imaging features, CT image features cannot decode the whole
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phenotypes of lung adenocarcinoma tumor. The clinical data,
such as smoking history, family history, carcinogenic exposure
history, chronic obstructive pulmonary disease, emphysema,
interstitial lung disease, etc., may also provide useful classification
information. In future studies, we should also apply and
combine other types of features (i.e., clinical information,
tumor biomarkers, gene feature) to improve the scheme
performance (30).

Third, to improve the scheme performance, we only applied a
simple information-fusion method to fuse the prediction scores
of DL and radiomics based scheme. Due to the limited dataset,
our proposed DL scheme and radiomics model may be over-
fitting during training process. By applying different weights to
the prediction scores of two models, fusion model can weak the
over-fitted model’s impacts. The over-fitting can be alleviated to
some degree by fusing the prediction scores generated by two
models. Although the scheme performance has been improved,
it may not be the optimal way to combine two types of image
features. Thus, we should investigate and develop new fusion
methods to fuse the different types of features in future studies.
The weak interpretation of DL based scheme is also a limitation
of this study. In addition, we used the positions delineated by
radiologist to crop GGN patches and generate the training and
testing images. The human intervention may also affect the
scheme performance.

Last, in our observer study, two radiologists read CT images
with time and information constraints, which is different
from real clinical situation. The insufficient diagnosis time
and clinical information may result in the low performance
of two radiologists. Moreover, this is an only technique
development study, and we need to conduct rigorous and valid
clinical evaluation before applying the proposed scheme into
clinical practice.

CONCLUSION

In this study, we developed an AI scheme to classify between
non-IA and IA GGNs in CT images. To improve the scheme
performance, we fused the prediction scores generated by DL
based scheme and radiomics feature based scheme, respectively.
The results shows that fusion of DL and radiomics features can
significantly improve the scheme performance. Comparing with
two radiologists, our new scheme achieves higher performance. It
demonstrates (1) fusing DL and radiomics features can improve
the classification performance in distinguishing between non-
IA and IA, (2) we can build classification DL model with the

limited dataset by transferring segmentation task to classification

task, (3) AI scheme matches or even outperform radiologists in
predicting invasiveness risk of GGNs. Therefore, to improve the
diagnosis performance of GGNs, one should focus on exploring
and computing robust imaging features, and developing optimal
method to fuse different types of features.
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Digital Histopathology Images
Konstantinos Zormpas-Petridis1*, Rosa Noguera2,3, Daniela Kolarevic Ivankovic4,
Ioannis Roxanis5†, Yann Jamin1† and Yinyin Yuan6*†
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Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain, 3 Low Prevalence Tumors,
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High computational cost associated with digital pathology image analysis approaches is a
challenge towards their translation in routine pathology clinic. Here, we propose a
computationally efficient framework (SuperHistopath), designed to map global context
features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently
combines i) a segmentation approach using the linear iterative clustering (SLIC)
superpixels algorithm applied directly on the whole-slide images at low resolution (5x
magnification) to adhere to region boundaries and form homogeneous spatial units at
tissue-level, followed by ii) classification of superpixels using a convolution neural network
(CNN). To demonstrate how versatile SuperHistopath was in accomplishing
histopathology tasks, we classified tumor tissue, stroma, necrosis, lymphocytes
clusters, differentiating regions, fat, hemorrhage and normal tissue, in 127 melanomas,
23 triple-negative breast cancers, and 73 samples from transgenic mouse models of high-
risk childhood neuroblastoma with high accuracy (98.8%, 93.1% and 98.3%
respectively). Furthermore, SuperHistopath enabled discovery of significant differences
in tumor phenotype of neuroblastoma mouse models emulating genomic variants of high-
risk disease, and stratification of melanoma patients (high ratio of lymphocyte-to-tumor
superpixels (p = 0.015) and low stroma-to-tumor ratio (p = 0.028) were associated with a
favorable prognosis). Finally, SuperHistopath is efficient for annotation of ground-truth
datasets (as there is no need of boundary delineation), training and application (~5 min for
classifying a whole-slide image and as low as ~30 min for network training). These
attributes make SuperHistopath particularly attractive for research in rich datasets and
could also facilitate its adoption in the clinic to accelerate pathologist workflow with the
quantification of phenotypes, predictive/prognosis markers.

Keywords: deep learning, machine learning, digital pathology, computational pathology, tumor region
classification, melanoma, neuroblastoma, breast cancer
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INTRODUCTION

The analysis of histopathological images of surgical tissue
specimens stained with hematoxylin and eosin (H&E) remains a
critical decision-making tool used for the routine management of
patientswithcancerand the evaluationofnew therapeutic strategies
in clinical trials (1–3). In several precisionmedicine settings, there is
an increasing demand for accurate quantification of histological
features.However, in their diagnostic practice, pathologists exercise
a predominantly qualitative or semi-quantitative assessment with
an inherent degree of inter- and intra-observer variability, which
occasionally hampers their consistency (4–7). In the new era of
digital pathology, advanced computational image analysis
techniques are revolutionizing the field of histopathology by
providing objective, robust and reproducible quantification of
tumor components, thereby assisting pathologists in tasks such as
tumor identification and tumor grading (8, 9). Histopathological
image analysis can now be performed in high-resolution H&E-
stained whole-slide images (WSI) using state-of-the-art deep
learning and classical machine learning approaches for single cell
segmentation and/or classification. The new ability to map the
spatial context of each single cell also opened new avenues for the
study of the tumor micro-environment (10–16), which is key to
guide the delivery of precisionmedicine including immunotherapy.

However, computational pathology is still not widely adopted in
the oncological setting. One of the challenges lies in the gigabyte
sizes of high-resolution WSIs, which result in computationally
expensive approaches. WSIs need to be divided into images
patches (typical size: 256x256) before being processed by deep
networks such as convolutional neural networks (CNNs) (17).
Secondly, single-cell approaches provide markers that are often
hard-to-be-evaluated or even interpreted by the pathologists and
can be prone to the generalization errors when applied in new
unseen dataset. As a result,many promisingmarkers eventually fail
to reach the clinic due to a lack of cross-validation in new
independent datasets. On the other hand, tissue classification
approaches, which target multicellular assemblies and
paucicellular areas where individual cells are incorporated into
the region segmentation,wouldbeaccessible for visual validationby
pathologists. Such algorithms would enable the characterization of
the distribution and interrelationship of global features that are
currently detectable by human perception but not quantifiable
without artificial intelligence- (AI-)assisted numerical expression.

Current computedpathology tools primarily focuson individual
cell analysis at high-resolution (40x/20xmagnification)with limited
local context features, whereas pathologists frequently employ
collateral information, taking into account the overall tissue
microarchitecture. Many established clinical markers are actually
identified at low or intermediate magnifications, including tumor
architecture-based grading systems (18, 19), stroma-tumor ratio
(20, 21), infiltrating lymphocytes (TILs) (22, 23) and necrosis (24–
26). This has not been yet fully emulated by computational
pathology methodologies. However, some methods for the
classification of tissue components have been suggested either
using image patch classification typically with a CNN or pixel-
level classification/segmentation typically with a U-Net-like
Frontiers in Oncology | www.frontiersin.org 222
architecture (27), mainly for tasks such as the dichotomized
classification of tissue (e.g. cancerous vs non-cancerous) (28, 29),
the segmentation of a feature of interest (e.g. glands) (16, 30) or
multi-type tissue classification (9, 31–35). For segmentation
purposes, U-Net-like architectures are usually preferred over
CNNs, which have established limitations in conforming to object
contours. Yet, CNNs have also resulted in promising segmentation
approaches (36–38) with the enhanced capability of classifying a
large number of categories (39). Multi-scale approaches
incorporating information from various image resolutions have
also been proposed (40–43). Different approaches have been
explored for the classification of epithelium or stroma using
superpixels-based segmentation of image patches with either
hand-crafted or deep learning features (44, 45). Bejnordi and
colleagues used a similar method for their multi-scale approach
for the classification of tissue or non-tissue components on low
resolution images and stroma and background regions from
intermediate and high resolution images (46). However, these
methods are typically performed on high-magnifications image
patches (20-40x andmore rarely 10x) and are associatedwith a high
computational cost.

Here, we propose a framework (SuperHistopath), which canmap
most of the global context features that contribute to the rich tumor
morphological heterogeneity visible to pathologists at low resolution
and used for clinical decision making in a computationally efficient
manner. We first apply the well-established simple linear iterative
clustering (SLIC) superpixels algorithm (47) directly on the WSI at
low resolution (5x magnification) and subsequently classify the
superpixels into different tumor region categories using a CNN
based on pathologists’ annotations. SuperHistopath particularly
capitalizes on:

i. the use of superpixels which provide visually homogeneous
areas of similar size respecting the region boundaries and
avoid the potential degradation of classification performance
associated with image patches, (no matter how small)
spanning over multiple tissue categories.

ii. the use of CNN necessary to accurately classify and map the
multiple tissue categories that constitute the rich and
complex histological intratumoral heterogeneity.

iii. the computational efficiency, faster processing speed and
lower memory requirements associated with processing the
WSI at low resolution.

We applied SuperHistopath to H&E-stained images from
three different cancer types: clinical cutaneous melanoma,
triple-negative breast cancer and tumors arising in genetically-
engineered mouse models of high-risk childhood neuroblastoma.

MATERIALS AND METHODS

Datasets
All digitized whole-slide images (WSI) used in this study were
H&E-stained, formalin-fixed and paraffin-embedded (FFPE)
sections, and scaled to 5x magnification as presented in
Table 1 (image sizes at 5x varied from ~8000x8000 to
January 2021 | Volume 10 | Article 586292
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~12000x12000 pixels). We applied our framework to clinical
patient samples of cutaneous melanoma and triple-negative
breast cancer, in addition to tumor samples from transgenic
mouse models of childhood neuroblastoma. Both the Th-MYCN
and Th-ALKF1174L/MYCN mouse models have been shown to
spontaneously develop abdominal tumors, which mirror the
major histopathological characteristics of childhood high-risk
disease (50, 51).
Region Classification
First, each dataset was pre-processed using the Reinhard stain
normalization (52) to account for stain variabilities that could
affect classification. Then, all images were segmented using the
simple linear iterative clustering (SLIC) superpixels algorithm,
which groups together similar neighboring pixels. With our
pathologist’s input, we selected the optimal number of superpixels
by visually identifying a superpixel size that capture only
homogeneous areas and adhere to image boundaries. This is a
critical step for ensuring accurate tissue segmentation, and
therefore, classification (Figure 1). The number of superpixels
was adapted for each image to ensure a homogenous superpixel
size across thedatasets andwasautomatically set basedon the image
size according to Equation 1 (53).
Frontiers in Oncology | www.frontiersin.org 323
Ni = ceiling
Si
U

� �
(1)

where Ni is the number of superpixels in the ith image, Si is
the size of image i in pixels, and U is a constant held across all
images that defined the desired superpixels size.

The SLIC algorithm inherently provides a roughly uniform
superpixel size. Setting U = 1500, Equation 1 gave a mean
superpixels size of 51 × 51 pixels, equivalent to an area of
approximately 117 × 117 mm2. Bilinear interpolation was
subsequently use to resize each superpixel to a fixed size of
56 x 56 or 75 x 75 pixels (the minimum input size for inception-
like network architectures).

Region annotations were provided by a senior pathologist with
over 20 years of experience for the melanoma and breast cancer
clinical datasets, and a senior pediatric neuropathologist with over
20 years of experience for the neuroblastoma mouse datasets. For
training and testing, superpixels were assigned to each category
based on their isocenter locationwithin the annotated regions.Note
that region annotations for our algorithm do not need to delineate
boundaries as illustrated in Figure 1B.

The numbers of clinically relevant tissue categories, number
of WSIs and superpixels used for training and testing are
summarized for each tumor types in Table 2. Standard image
TABLE 1 | Summary of the datasets used.

Cancer type Number
of WSIs

Digital
scanner

Pixel resolution (5x
magnification)

Dataset

Cutaneous melanoma 127 Aperio
ImageScope

2.016 mm The Cancer Genome Atlas (TCGA)

Triple-negative breast
cancer

23 NanoZoomer
XR

2.3 mm Internal dataset,
Collaboration with The Serbian Institute of Oncology

High-risk
neuroblastoma
(mouse models)

73 NanoZoomer
XR

2.3 mm Internal dataset
Tumors samples coming from established Th-MYCN and Th-ALKF1174L/MYCN transgenic
mouse colonies (48, 49) and processed by a clinical histopathological core facility
A B

FIGURE 1 | Representative examples of the SLIC superpixels segmentation and ground-truth annotations in TCGA melanoma samples (A) Whole-slide image
segmentation using the SLIC superpixels algorithm. Note how the superpixels adhere to the boundaries of the different components of the tumor with each
superpixel containing a single type of tissue (B) Ground-truth annotations are provided by the pathologists by marking samples of the region components (the
different colors represent different regions) without the need for delineating the boundaries of the tumor components.
January 2021 | Volume 10 | Article 586292
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augmentations, such as rotations (90°, -90°, 180°), flips
(horizontal and vertical), and contrast (histogram equalization)
were performed in each case to capture more variation and even
out the training dataset imbalances.

Training of the Convolutional
Neural Networks
Our custom-designed CNN for superpixel classification consists
of 6 convolutional layers (32, 32, 64, 64, 128, 128 neurons,
respectively) of 3 x 3 filter size and 3 max-pooling layers, followed
Frontiers in Oncology | www.frontiersin.org 424
by a “flatten” layer and a dense layer of 256 neurons (Figure 2). A
superpixel RGB image (post-interpolation) was used as input into
the network and normalized from range 0–255 to range 0–1 using
themaximumvalue. The output of the networkwas a label assigned
to each superpixel based on which region category it belonged to.
After empirical experimentation, a ReLU activation function was
used in all layers except for the last layer where standard softmax
was used for classification. Theweights incident to eachhiddenunit
were constrained to have a norm value less than or equal to 3 and a
dropout unit of 0.2was used before everymax-pooling operation to
TABLE 2 | Summary of the datasets used for training and testing the convolutional neural network.

Cancer type Number of WSIs used for network training Regional classification

Cutaneous melanoma Total 27 6 categories Superpixels for training
Training 22 Tumor tissue 21940
Testing 5 Stroma 12419

Normal epidermis 1646
Lymphocytes cluster 2367
Fat 15484
Empty/white space 3412

Triple-negative breast cancer Total 23 6 categories Superpixels for training
Training 18 Tumor tissue 18873
Testing 5 Stroma 24220

Necrosis 15102
Lymphocytes cluster 3472
Fat 10044
Empty/white space 16473

High-risk neuroblastoma (mouse model) Total 60 8 categories Superpixels for training
Training 44 Region of undifferentiated neuroblasts 20512
Testing 16 Tissue damage (necrosis/apoptosis) 17645

Differentiation region 5740
Lymphocytes cluster 4009
Hemorrhage (blood) 6124
Muscle 6415
Kidney 14976
Empty/white space 21470
January 2021 | Vo
Note that the testing datasets consisted of whole-slide images from different patients from the training dataset.
FIGURE 2 | Architecture of our custom-designed convolutional neural network for the classification of superpixels into different tissue-level categories.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zormpas-Petridis et al. SuperHistopath: Low-Resolution Digital Pathology Mapping
avoid overfitting (54). The weights of the layers were randomly
initialized using “Glorot uniform” initialization (55), and the
network was optimized using the Adam method (56) with a
learning rate of 10-3 and a categorical cross-entropy cost function.
The number of trainable parameters for our custom-made network
is ~1.9M. The network was implemented in python (v. 3.6.5) using
the Keras/Tensorflow libraries (v. 2.2.4/1.12.0, respectively).

To choose the best network for our framework, we tested
other known neural network architectures as implemented in the
Keras framework, including InceptionV3 (57), Xception (58),
InceptionResNetV2 (59), and ResNet (60). We initialized the
weights using the pre-trained ImageNet weights. To optimize
each network, we excluded the final classification layer, and
added three additional layers, i) a global average pooling layer, ii)
a dense layer of 256 neurons with ReLu activation, constrained to
have a norm value less than or equal to 3, and iii) a dense layer
tailored to the number of classes of each cancer type using the
softmax function for classification.

For inception-like architectures (Inception v3, Inception
ResNetV2, Xception) only superpixels of size 75 x 75 were used.
We trained all the networks for 50 epochs using batch sizes of 150
and 256 for superpixels of sizes 75 x 75 and 56 x 56, respectively,
and kept the models with the highest validation accuracy.

The Xception and custom-made networks were re-trained
from the beginning for each cancer type, without applying any
further changes.
Application of SuperHistopath
for the Quantification of Clinical Features
of Interest
In the melanoma dataset, we calculated the number of pixels
belonging to each classified category. For each patient we derived
i) the ratio of pixels classified as stroma region to all pixels in tumor
compartments, and ii) the ratio of pixels classified as clusters of
lymphocytes to all pixels in tumor compartments; we evaluated the
prognostic value of these quantitative indices using survival
analysis. Patients were divided into high- and low-risk groups
based on split at the median value of all scores to ensure both
groups were of similar size. Kaplan-Meier estimation was used to
compare overall survival in the 127 patients. Differences between
survival estimates were assessed with the log-rank test and hazard
ratios were calculated using Cox’s proportional-hazard regression.

In the neuroblastoma dataset, we evaluated the differences in
phenotype between the Th-ALKF1174L/MYCN (n=7) and Th-
MYCN tumors (n=6) by quantifying the proportion of pixels
Frontiers in Oncology | www.frontiersin.org 525
classified by our SuperHistopath as regions rich in undifferentiated
neuroblasts, differentiating neuroblasts, tissue damage (necrosis/
apoptosis) hemorrhage and clusters of lymphocytes. Note that i)
we did not quantify stroma in these tumors as they faithfully
mirror the stroma-poor phenotype which define high-risk disease
ii) lymphocytes clusters universally correspond to encapsulation of
lymph node by the tumor, rather that tumor infiltrates, consistent
with the “cold” immune phenotype of high-risk disease. We focus
on identifying any significant difference in the ratio of
differentiation or the ratio of hemorrhagic regions to all tumor
compartments between the two tumor types using the Mann-
Whitney U test, with a 5% level of significance.
RESULTS

SuperHistopath Can Accurately Map
the Complex Histological Heterogeneity
of Tumors
Melanoma
We first developed and evaluated our framework on the H&E-
stained, FFPE sections of clinical specimen of cutaneous
melanoma scaled to 5x magnification. Figure 1 shows the
results of the segmentation using the simple linear iterative
clustering (SLIC) superpixels algorithm, which groups together
similar neighboring pixels.

The optimizedXception network achieved the highest score and
classified the melanoma sample regions into 6 predefined tissue
categories of interest: tumor tissue, stroma, cluster of lymphocytes,
normal epidermis, fat, and empty/white space with an overall
accuracy of 98.8%, an average precision of 96.9%, and an average
recall of 98.5% over 14,092 superpixels in a separate test set of five
images (Tables 3, 4). Our custom CNN also achieved comparable
performance to the state-of-the-art networks with an overall
accuracy of 96.7%, an average precision of 93.6%, and an average
recall of 93.6% (Figure 2, Supplementary Table 1). The confusion
matrices for the XCeption and our custom CNN networks are
presented in Table 4 and Supplementary Table 1, respectively.
Figure 3 shows qualitative results of our approach’s regional
classification in representative melanoma WSIs using the
optimized Xception network.

Breast Cancer
SuperHistopath classified sample regions into 6 predefined tissue
categories of interest: tumor, necrosis, stroma, cluster of
TABLE 3 | Evaluation metrics of the different neural network architectures in the TCGA melanoma test dataset.

Network Accuracy (%) Precision (%) Recall (%) Parameters (in millions)

InceptionV3 97.5 94.2 96.7 ~22.4
InceptionResNetV2 97.7 94.1 97.3 ~54.8
ResNet50 93.8 92.2 88.9 ~24.2
Xception 98.8 96.9 98.5 ~21.4
Our custom-made CNN 96.7 93.6 93.6 ~1.9
January 2021 | V
The bold values in the Accuracy (%), Precision (%) and Recall (%) fields indicate the highest value i.e. the best performance achieved amongst the networks under comparison. The bold
value in the Parameters (in millions) field indicate the network with the fewer parameters used amongst the networks under comparison.
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lymphocytes, fat, and lumen/empty space with an overall
accuracy of 93.1%, an average precision of 93.9%, and an
average recall of 93.6% using Xception and 91.7%, 92.5%,
91.8% respectively using our custom-made CNN over 10,349
superpixels in the independent test set of five images. The
Frontiers in Oncology | www.frontiersin.org 626
confusion matrices for the XCeption and our custom CNN
networks are presented in Table 5 and Supplementary Table
2, respectively. Figure 4 shows qualitative results our approach’s
regional classification in representative triple-negative breast
cancer WSIs.
A B

D E F

G

C

FIGURE 3 | (A–F) Representative examples of the results obtained from the application of the SuperHistopath pipeline in whole-slide images of tumors (5x) of the
Cancer Genome Atlas (TCGA) melanoma dataset [(G) Magnified regions of interest]. Note the important clinically-relevant phenotypes characterized by clusters of
lymphocytes infiltrating the tumor in samples (B, D). or the majority of clusters of lymphocytes residing just outside the tumor area (left and central part) with only a
few clusters infiltrating the tumor (right part) in sample (C).
TABLE 4 | Confusion matrix of the classification of superpixels using the optimized Xception network in melanoma patients in 6 categories: tumor, stroma, normal
epidermis, cluster of lymphocytes (Lym), fat and empty/white space (separate test set of 5 whole-slide images).

Tumor Stroma Epidermis Lym Fat Empty space

Tumor 5286 10 7 8 0 0
Stroma 9 986 0 0 2 0
Epidermis 22 0 545 0 1 0
Lym 0 0 1 821 0 0
Fat 0 9 0 0 5603 3
Empty space 0 0 0 0 98 681
January
 2021 | Volume 10 |
Overall accuracy = 98.8%, average precision = 96.9%, average recall = 98.5%.
The bold values indicate the correct predictions of the network.
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Neuroblastoma
SuperHistopath classified the tumor regions into eight predefined
tissue categories of interest: undifferentiated neuroblasts, tissue
damage (necrosis/apoptosis), areas of differentiation, cluster of
lymphocytes, hemorrhage, muscle, kidney, and empty/white
space with an overall accuracy of 98.3%, an average precision of
98.5%, and an average recall of 98.4% using Xception and 96.8%,
97.1%, 97.2% respectively using our custom-made CNN over 9,868
superpixels in the independent test set of 16 images. The confusion
matrices for the XCeption and our custom CNN networks are
presented in Table 6 and Supplementary Table 3, respectively.
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Figure 5 shows qualitative results of our approach’s regional
classification in representative WSIs of neuroblastoma arising in
the Th-MYCNmouse model.

SuperHistopath Pipeline for the Analysis
of Low-Resolution WSI Affords Significant
Speed Advantages
The average time for the SLIC superpixels algorithm to segment
aWSI in 5x magnification was < 2 min using a 3.5 GHz Intel core
i7 processor. The average time for both the Xception and our
custom-made CNN network to classify every superpixel in the
TABLE 5 | Confusion matrix of the classification of superpixels using the optimized Xception network in triple-negative breast cancer patients in six categories: tumor,
necrosis, cluster of lymphocytes (Lym), stroma, fat, and lumen/empty space (separate test set of five whole-slide images).

Tumor Necrosis Lym Stroma Fat Empty space

Tumor 1830 13 15 42 0 0
Necrosis 50 1446 2 320 0 0
Lym 4 2 705 10 0 0
Stroma 42 120 20 3836 0 1
Fat 0 0 0 0 562 5
Empty space 0 0 0 0 67 1257
January
 2021 | Volume 10 |
Overall accuracy = 93.1%, average precision = 93.9%, average recall = 93.6%.
The bold values indicate the correct predictions of the network.
A B

D E F

G

C

FIGURE 4 | (A–F). Representative examples of the results obtained from the application of the SuperHistopath pipeline in whole-slide images of tumors (5x) of the
triple-negative breast cancer (G) Magnified regions of interest. Note the important clinically-relevant features, such as the amount of tumor necrosis inside tumors
(A) and (B), lymphocytes which, are infiltrating the tumor in large number in samples (C, D), but are surrounding the stroma barrier without infiltrating the tumor in
samples (A, B, E, F).
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images was 1–2 min using the same processor. A quick
convergence of the networks (around epoch 30) was observed
in all cases, which needed ~3 h for Xception and only ~30 min
for our custom-made CNN using a Tesla P100-PCIE-16GB GPU
card, and therefore the latter was used for experimenting.

SuperHistopath Can Provide
Robust Quantification of Clinically
Relevant Features
Stroma-to-Tumor Ratio and Clusters of
Lymphocytes Abundance as Predictive Markers
of Survival in Melanoma
We first use SuperHistopath to quantify both the stroma-to-
tumor ratio and the immune infiltrate, which have both shown to
Frontiers in Oncology | www.frontiersin.org 828
provide prognostic and predictive information in patient with
solid tumors, including melanoma (20, 21, 23). The important
role of immune hotspots has been established based on density
analysis of single cell classification of lymphocytes in high-
resolution images (61, 62). Here, we demonstrate in our
melanoma dataset of 127 WSIs i) that a high stromal ratio as
identified in low resolution WSIs is a predictor of poor prognosis
(SuperHistopath: p = 0.028, Coxph-Regression [discretized by
median]: HR = 2.1, p = 0.0315; Figure 6A) and ii) that clusters of
lymphocytes hold predictive information in our melanoma
dataset, with a high lymphocyte ratio being an indicator of
favorable prognosis [SuperHistopath: p = 0.015, Coxph-
Regression (discretized by median): HR = 0.4, p = 0.018;
Figure 6B]. Pearson’s correlation showed no significant
TABLE 6 | Confusion matrix of the classification of superpixels using the optimized Xception network in the Th-MYCN and Th-ALKF1174L/MYCN mouse models in eight
categories: region of undifferentiated neuroblasts, necrosis, cluster of lymphocytes (Lym), hemorrhage (blood), empty/white space, muscle tissue and kidney (separate
test set of 16 whole-slide images).

Undifferentiated region Necrosis Lym Differentiation Blood Empty space Muscle Kidney

Undifferentiated region 1403 3 0 14 1 0 0 0
Necrosis 13 1642 1 26 49 2 5 18
Lym 6 5 1150 0 0 0 0 3
Differentiation 0 0 0 1261 0 0 0 0
Blood 1 7 0 0 1327 0 9 0
Empty space 0 2 0 0 0 560 3 2
Muscle 0 2 0 0 1 0 1176 0
Kidney 0 0 0 0 0 0 0 1176
J
anuary 2021 | Volum
e 10 | Article
Overall accuracy = 98.3%, average precision = 98.5%, average recall = 98.4%.
The bold values indicate the correct predictions of the network.
A

B

FIGURE 5 | (A) Representative examples of the results obtained from the application of the SuperHistopath pipeline in whole-slide images of tumors (5x) arising in
genetically-engineered mouse models of high-risk neuroblastoma [(B) Magnified region of interest].
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correlation between stromal ratio and clusters of lymphocytes
ratio (r = -0.13, p = 0.13), and between absolute sizes of stroma
and clusters of lymphocytes (r = 0.13, p=0.11). Taken together,
our data, captured from low resolution (5x) WSIs, are consistent
with those extracted from single-cell analysis in high-resolution
WSIs (53).

Necrosis Quantification
We use the SuperHistopath to quantity tumor necrosis in our
breast cancer and childhood neuroblastoma preclinical datasets.
Tumor necrosis, defined as confluent cell death or large area of
tissue damage hold predictive and prognostic information, both
at diagnosis and after chemotherapy, in many solid tumors
including breast cancer and childhood malignancies (24–26,
63, 64). While visible at 5x objective lens magnification, its
quantification can often be a challenging task even for
experienced pathologists. Here, we show that SuperHistopath
can provide satisfactory quantification of necrosis in clinical
breast cancer samples by distinguishing from stroma with high
specificity (91.5%) and satisfactory precision (79.5%) and in the
high-risk neuroblastoma mouse models with high precision and
specificity (93.5% and 98.9% respectively).

Quantification of Neuroblastoma Differentiation
We used SuperHistopath to quantify the phenotype of MYCN-
driven transgenic mouse models of high-risk stroma-poor
neuroblastoma. We show that SuperHistopath can identify
Frontiers in Oncology | www.frontiersin.org 929
areas of differentiation, a critical feature for the stratification of
children neuroblastoma, with both high precision and specificity
(100% and 96.9% respectively). SuperHistopath also showed that
expression of ALKF1174L mutation significantly shift the MYCN-
driven phenotype from poorly-differentiated and hemorrhagic
phenotype (Th-MYCN: 1.8 ± 1.3% differentiating area and 29.2 ±
6.7% hemorrhage, Figure 6C) into a differentiating phenotype
also characterized by the almost complete abrogation of the
hemorrhagic phenotype (Th-ALKF1174L/MYCN: 20.3 ± 3.1%
differentiating area and 0.2 ± 0.1% hemorrhage, p=0.0003 and
p=0.0008 respectively, Figure 6D) as previously demonstrated
(51, 65).
DISCUSSION

In this study, we implemented SuperHistopath: a digital
pathology pipeline for the classification of tumor regions and
the mapping of tumor heterogeneity from low-resolution H&E-
stained WSIs, which we demonstrated to be highly accurate in
three types of cancer. Combining the application of the SLIC
superpixels algorithm directly on low magnification WSIs (5x)
with a CNN architecture for the classification of superpixels,
contributes to SuperHistopath computational efficiency
al lowing for fas t process ing , whi l s t a ffording the
quantification of robust and easily interpretable clinically-
relevant markers.
A

B

DC

FIGURE 6 | Quantification of clinically relevant features with SuperHistopath. (A, B) show associations between survival outcomes and SuperHistopath-defined risk
groups in the Cancer Genome Atlas (TCGA) cohorts of patients with melanoma. (A) Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low
risk group (red) classified by stromal cells ratio derived from SuperHistopath and (B) Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low
risk group (red) classified by immune infiltrate based on lymphocytes cluster ratio derived from SuperHistopath. (C, D) show the SuperHistopath-based quantification
of tumor phenotype in genetically-engineered mouse model of high-risk neuroblastoma. (C) Representative SuperHistopath-segmented whole-slide images (5x) and
pie chart showing the Super-CNN quantified mean composition of the tumors arising in Th-MYCN (n=6) and Th-ALKF1174L/MYCN (n=7) mouse models of high-risk
neuroblastoma. Note the marked difference of phenotype induced by the expression of the ALKF1174L mutation characterized by (D) a significantly increased
neuroblastoma differentiation neuroblasts and the total abrogation of the characteristic hemorrhagic phenotype of Th-MYCN tumors.
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Applying our computational approach on low-resolution
images leads to markedly increased processing speed, for both
the classification of new samples and network training. Here, we
chose the (5x) magnification as a compromise between tumor
structures visibility and computational cost. Specific metrics such
as stroma-to-tumor ratio could potentially be derived from images
at even lower magnifications (e.g. 1.25x) as recently shown (53).
Digital histology images are conventionally processed at 40x (or
20x) magnification where cell morphology is most visible. At those
resolutions, WSIs are large (representative size at 20x: 60000 x
60000 pixels), requiring of a lot of memory and images to be
divided into patches (tiles) for processing. Under these conditions,
the training of new networks for cell segmentation and
classification typically requires days and the application to new
WSI samples can take hours prior to code optimization. In
contrast, the training of our neural network until acceptable
convergence needed as little as ~30 min and application on new
samples ~5 min (for both superpixel segmentation and
classification) in our study. High-resolution images are essential
when studying cell-to-cell interactions, however we show that the
processing of low resolution images is appropriate for the
extraction of specific global context features.

Furthermore, SuperHistopath combines the main advantages of
regional classification and segmentation approaches. On one hand,
classification approaches applied on smaller patches resulting from
splitting WSIs allow the use of CNN for the robust classification of
many categories necessary to capture intratumor heterogeneity
(39), yet at the expense of higher risk of misclassification, especially
close to regional boundaries where an image patch, regardless of its
size, may contain multiple tumor components. Overlapping
(sliding) window approaches can improve the issue, yet at an
increased computational cost. On the other hand, segmentation
approaches such as U-Net-like architectures can resolve the
regional boundaries issue but appear to work better for few
classes, typically two. SuperHistopath efficiently combines the use
of a segmentation approach using superpixels to adhere to region
boundaries with CNN classification to cover the rich tumor
histological heterogeneity (here 6-8 region categories depending
on the cancer type).

Our method also markedly simplifies and accelerates the
process of preparing ground-truth (annotations) datasets as i)
the use of superpixels alleviate the need for careful boundary
delineation of the tumor components of interest (Figure 1B),
a cumbersome and time-consuming process necessary
for using U-Net-like architectures and ii) each annotated
region contains large numbers of superpixels facilitating the
collection of the large datasets traditionally required by deep
learning methods.

The appropriate choice of superpixel size is crucial to warrant
both accurate tissue segmentation and classification. Equation 1
ensured a uniform superpixel size for every whole-slide image
regardless of their original size. The main considerations for
choosing superpixels size (i.e. setting the constant U) is to ensure
that they only contain a single tissue type, while being large
enough to contain sufficient tissue information. In our study, we
found that classification is not sensitive to small changes of U.
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However larger superpixels (U > 1750) did not adhere well to the
tissue boundaries, whereas smaller superpixels (U < 1250) indeed
led to a slight decrease in classification performance.

Many promising computational pathology-derived biomarkers
ultimately fail to translate in the clinic due to their inherent
complexity and the difficulty for pathologists to evaluate them in
new datasets. In this proof-of-concept study, we showed that
SuperHistopath can quantify well-understood features/markers
already used, albeit only qualitatively or semi-quantitatively, by
pathologists, including the stroma-to-tumor ratio, lymphocyte
infiltration, tumor necrosis, and neuroblastoma differentiation.
We also show that SuperHistopath-derived results corroborated
those obtained from single-cell analysis on high-resolution samples
(53). The computational efficiency of SuperHistopath, combined
with the simple superpixels-enabled data collection, could facilitate
its adoption in the clinic to accelerate pathologist workflow, could
assist in intra-operative pathological diagnosis and should facilitate
working with large datasets in clinical research.

Moving forward, we plan to expand the types of global context
features extractable from SuperHistopath in more cancer types.
We will also evaluate the accuracy of SuperHistopath on digitized
frozen tissue sections to demonstrate its potential to assist in the
rapid intra-operative pathological diagnostic. We will also update
our previous framework (SuperCRF) which incorporates region
classification information to improve cell classification (53) using
SuperHistopath. Together both SuperHistopath and SuperCRF
would provide invaluable tools to study spatial interactions across
length scales to provide a deeper understanding of the cancer-
immune-stroma interface, key to further unlock the potential of
cancer immunotherapy (17).

In this proof-of-concept study, we applied our method to three
cancer types with disparate histology without any changes (just
retraining). While the approach could thus be virtually extended
to any type of cancer, improvement could be made tailored to a
specific global feature, cancer type or dataset and could include
further exploring i) the use of SVM to combine the CNN-extracted
features with handcrafted ones, ii) the use of other image color
spaces which has been shown to improve classification in certain
cases (66) and iii) alternative superpixel algorithms such as the
efficient topology preserving segmentation (ETPS) algorithm (67).
Additionally, further improvement of this proof-of-concept
framework could be sought via experimentation with
hyperparameter tuning, or the use of other custom and well-
established architectures (59, 68). Since superpixels only capture
small homogeneous areas, combination with other approaches
such as classification of larger image patches with a deepCNN or
U-net-like architectures might be more appropriate for the single
purpose of segmenting some large and multi-component tumor
structures, e.g. certain types of glands (16).

To conclude, our novel pipeline, SuperHistopath can accurately
classify and map the complex tumor heterogeneity from low-
resolution H&E-stained histology images. The resulting enhanced
speed for both training and application (~5 min for classifying a
WSI and as low as ~30 min for network training) and the efficient
and simple collection of ground-truth datasets make
SuperHistopath particularly attractive for research in rich datasets
January 2021 | Volume 10 | Article 586292
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and would facilitate its adoption in the clinic to accelerate
pathologist workflow in the quantification of predictive/prognosis
markers derived from global features of interest.
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Wuhan, China, 6 Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, China,
7 Department of General Internal Medicine, Kliniken Hirslanden Beau-Site, Bern, Switzerland

Objective: The purpose of this study was to improve the differentiation between
malignant and benign thyroid nodules using deep learning (DL) in category 4 and 5
based on the Thyroid Imaging Reporting and Data System (TI-RADS, TR) from the
American College of Radiology (ACR).

Design and Methods: From June 2, 2017 to April 23, 2019, 2082 thyroid ultrasound
images from 1396 consecutive patients with confirmed pathology were retrospectively
collected, of which 1289 nodules were category 4 (TR4) and 793 nodules were category 5
(TR5). Ninety percent of the B-mode ultrasound images were applied for training and
validation, and the residual 10% and an independent external dataset for testing purpose
by three different deep learning algorithms.

Results: In the independent test set, the DL algorithm of best performance got an AUC of
0.904, 0.845, 0.829 in TR4, TR5, and TR4&5, respectively. The sensitivity and specificity
of the optimal model was 0.829, 0.831 on TR4, 0.846, 0.778 on TR5, 0.790, 0.779 on
TR4&5, versus the radiologists of 0.686 (P=0.108), 0.766 (P=0.101), 0.677 (P=0.211),
0.750 (P=0.128), and 0.680 (P=0.023), 0.761 (P=0.530), respectively.

Conclusions: The study demonstrated that DL could improve the differentiation of
malignant from benign thyroid nodules and had significant potential for clinical
application on TR4 and TR5.

Keywords: artificial intelligence, thyroid imaging reporting and data system (TI-RADS), ultrasound, thyroid cancer,
deep learning
INTRODUCTION

With the utilization of high-frequency ultrasound in clinical practice and the gradual enhancement
of public health awareness especially on physical examination, the detection of thyroid nodules
(TN) has increased, with a prevalence ranging from 19% to 68% in the general unselected
population (1, 2). Moreover, the incidence rate of thyroid cancer has continued to increase and
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is now the highest cause of cancer in women under 30 years old
in China (3, 4). Ultrasound has an irreplaceable role in early
detection of thyroid cancer due to its accessibility, high
resolution, safety, using no radiation, and provision of real-
time imaging with multi-dimensions. Experience and skills of
different operators influence the accurate differential diagnosis of
TN, and thus, a precise and independent method is needed.

To implement standardizedmanagement of the thyroid nodules,
the Thyroid Imaging Reporting and Data System (TI-RADS)
Committee of American College of Radiology (ACR) published a
white paper in 2017 that presented a new risk stratification system
from TR1 to TR5 for classifying thyroid nodules by adding scores of
the five characteristics on ultrasound, composition, echogenicity,
shape, margin, and echogenic foci (5). Recommendations for biopsy
or ultrasound follow-up are determined on the nodule’s ACR TI-
RADS categories and its maximum diameter (6), which provides
clarity for the further diagnosis and treatment measures. The
guidance of ACR TI-RADS has been proven to be a reliable tool
to assist doctors to differentiate between malignant and benign
thyroid nodules (7–11), with a pooled sensitivity of 0.79 (95%
confidence interval [CI] = 0.77-0.81) and a pooled specificity of 0.71
(95% CI = 0.70-0.72) (12, 13).

Artificial Intelligence (AI) is of unique value for its time-
saving and non-dependence on radiologist’s experience, and
performs extremely well on the tasks of detection, extraction
and classification of the TN on ultrasound images (14–18).
Recently, AI has accomplished many complex tasks on thyroid
ultrasound, such as the differentiation of malignant from benign
thyroid nodules using ultrasound images from multiple cohorts
(19), developing a deep learning (DL) algorithm to decide
whether a TN should undergo a biopsy (16), using ultrasound
elastography to improve thyroid nodule discrimination (20) and
applying ultrasound images to predict metastasis in the cervical
lymph nodes (21, 22).

However, there are still some flaws in these studies. First,
pathological results of some nodules are missing in almost all of
the published studies (19). Second, all types of thyroid nodules
were included, but some nodules are easily diagnosed by doctors
and AI is not that necessary. For example, cystic nodules are
usually echoless with clear boundaries and it is not surprising
that AI performs diagnosing them as benign.

ACR TI-RADS is popularly used in routine clinical practice,
and has proven value. It is still an open question if the
combination of DL and TI-RADS can improve the differential
diagnosis of TNs. TR1, TR2, TR3 have a very low (less than 5%)
chance of malignancy (6) and the necessity for them to proceed
AI analysis seem less sufficient. Adversely, malignant thyroid
nodules were most distributed in TR4 and TR5. However, it is
difficult for radiologists to differentiate benign from malignant
nodules in the same category causing that they have same
ultrasound descriptive features (23). A non-invasive method
such as DL is needed to avoid the need for unnecessary biopsy.

The purpose of this study was to evaluate whether DL based
on ACR TI-RADS category 4 and 5 could improve the
differentiation of malignant from benign thyroid nodules, and
explore the clinical application potential for it.
Frontiers in Oncology | www.frontiersin.org 235
MATERIALS AND METHODS

Source of the Data
This study was approved by the Ethics Committee of Tongji
Medical College of Huazhong University of Science and
Technology. Informed consent from the patients was exempted
(2019S1233). All ultrasound images included were consecutively
acquired from 11 operators with more than 5 years of experience
from Tongji hospital, Wuhan, China (internal cohort), and
Xiangya Hospital of Central South University, Changsha, China
(external cohort) from June 2017 to April 2019. Ultrasound
equipment manufactured by GE Healthcare (LOGIQ E9, LOGIQ
S7), Samsung (RS80A), and Philips (EPIQ5, EPIQ7 and IU22), was
used to generate the thyroid ultrasound images. Ultrasound images
were derived from the picture archiving and communication
system (PACS) workstations.
Images Enrolments and Grouping
The inclusion criteria for thyroid nodules in this study were
patients who 1) underwent total or nearly total thyroidectomy or
lobectomy; 2) had pathological specimens examined within one
month after US examination; 3) had complete medical information
including preoperative ultrasound of the thyroid nodules; 4) had no
previous surgical treatment or FNA performed on the nodules.

Exclusion criteria were lesions 1) with unsatisfactory ultrasound
image quality; 2) where the finding on ultrasound did not match
with the pathological results in position or size; 3) received
chemotherapy and/or radiotherapy such as iodine 131 treatment
before ultrasound examination.

From June 2nd, 2017 to April 23th, 2019, 4910 thyroid images
from 2779 consecutive patients and 213 thyroid images from 195
consecutive patients with confirmed postoperative pathological
results were retrospectively collected in Tongji hospital and
Xiangya Hospital of Central South University. Three doctors
(C.R, Y.R, and W.G) scored these images on the five features
according to ACR TI-RADS lexicon (6). The opinion of the third
was referred to for cases where the first opinions differed. Only
nodules of TI-RADS category 4 (dataset I) and category 5 (dataset
II) were enrolled, and they were merged together as new dataset III
(i.e. combination of ACR TI-RADS 4 and 5). In accordance with
the pathological results, images of each category were sorted out
into a benign group and a malignant group.

Establishment of Training Set and Test Set
Each inner dataset (I, II, III) was randomly divided into two sets,
90% for training and validation, and the residual 10% (test set A)
for testing. In addition, another independent outer test set
(test set B) was obtained for testing as well. Three convolutional
neutral Network (CNN) models named ResNet-50, Inception-
Resnet v2, Desnet-121 were used for analysis. The workflow of the
selection and construction is shown in Figure 1.

Three independent experienced radiologists (X.J and Y.Y and
Z.B) with 8 years, 9 years and 24 years of experience, respectively,
read the images and gave their judgments according to the ACR
TI-RADS lexicon (5, 6) and their own clinical experience. If their
April 2021 | Volume 11 | Article 575166
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opinions did not agree, the opinion of the most senior radiologist
was used.

Processing of Ultrasound Images
Nodules were manually marked, and the region of interest (ROI)
of the thyroid nodules was cut out using rectangular boxes by
Image J (version 1.48, National Institutes of Health, USA) by a
radiologist, in which the cropped images include the entire
thyroid nodule. All the images were resized to 299 × 299 pixels
to standardize the distance scale. Due to the limited quantity of
the dataset, augmentation strategy was introduced to process the
images. All preprocessing steps were conducted using the Keras
Image Data Generator and then fed into the input.

Construction of CNNs
The tasks on three sets (datasets I, II, and III) were trained on
three pre-trained convolutional neural networks, named
Frontiers in Oncology | www.frontiersin.org 336
ResNet50, Inception-ResNet v2, Desnet 121, respectively. The
initialization set of the parameters of these models was referred
to ImageNet and obtained from Keras Team (https://github.
com/keras-team/keras-applications/releases). The learning rate
was set to 0.03 and decelerated by a factor of 0.1 for each 50
epochs when the accuracy had no further improvement in the
training and validation set. Model learning continued until the
least loss of the validation set appeared and the final model was
determined accordingly. Optimizer of Stochastic Gradient
Descent (SGD) and binary cross entropy technique were used
to decrease loss in the process in CNNs. All models were trained
in Python 3.6.2 (https://www.python.org) by using a computer
with a GeForce GTX 2080 Ti graphics processing unit (NVIDIA,
Santa Clara, California, America), a Core i9-9900K central
processing unit (Intel, Santa Clara, California, America).

The class activation mapping (CAM) technique was also used
to produce the heated maps which indicated the focus of the
CNN model’s prediction (24, 25). The CAM can be regarded as
FIGURE 1 | Workflow of the construction of the training and test dataset.
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the multiplication of the feature maps of the pooling layers and
weight of the fully connected layer, which prevented loss of the
special information when feature maps were transferred to
eigenvector. It highlighted the specific discriminative regions
demonstrated as thyroid cancer by CNN. Packages Matplotlib
3.1.1 (https://matplotlib.org) and Open cv-Python 3.4.4.19
(https://github.com/skvark/opencv-python) was employed to
generate heatmaps (Figure 3).
Statistical Analysis
The performance of the three algorithms was measured by the
area under the receiver operating characteristic curve (AUROC)
of the training and test dataset. The cut-off value was obtained as
the threshold value when the Youden index reached its
maximum. Then, the accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) of
each method were calculated to judge the performance of the
experts and the CNNs. Delong test was introduced to evaluate
the statistical difference between different AUCs. Ninety-five
percent confidence interval (CI) was utilized to estimate the
range of these evaluation values. P-value less than 0.05 with two
tailed was considered statistically significant. Interobserver
agreements on thyroid nodules were assessed using Kruskal–
Wallis test. Kappa values were interpreted as follows. Less than
0.20mean poor agreement, from 0.20 to 0.40 mean fair agreement,
from 0.40 to 0.60 imply moderate agreement, between 0.60 and
0.80 imply substantial agreement, and excellent agreement tend to
Frontiers in Oncology | www.frontiersin.org 437
be over 0.80. F score was introduced to measure the efficiency of
the CNNs while taking both Precision and Recall into account, the
formula is as follows. When b = 1, the F1 score improves Precision
and Recall as much as possible, and makes the difference between
the two as small as possible.

F   score = 1 + b2� �� Precision� Recall
b2 � Precisionð Þ + Recall

The curve of ROC was performed and portraited using the
pROC package of R software (version 1.8) and MedCalc (version
11.2, Ostend, Belgium). Outcome of evaluation values was also
obtained by SPSS (version 22.0, IBM, Chicago) and R software.
RESULTS

Characteristics of the Thyroid Nodules
A total of 2295 thyroid images from 1593 patients were used in this
research (Table 1). In the internal cohort, the mean age of all
patients was 45.48 ± 10.33, of which 1059 were woman, 337 were
men. In the external cohort, the mean age of all patients was 45.54 ±
11.82, of which 150 were woman, 47 weremen. 1146 thyroid images
of TR4 and 698 thyroid images of TR5 were enrolled in training set
in this research, which consisted of 637 benign images and 509
malignant images in the former, 297 benign images and 401
malignant images in the latter. 143 thyroid images of TR4 and 95
thyroid images of TR5 were predicted for the internal test in this
A B

DC

FIGURE 2 | Heatmaps of the region of interest (ROI) of the thyroid nodules using class activation mapping (CAM). The red color showed the prediction regions the
CNNs focused which estimated to be determined as the thyroid cancer. Three radiologists and DL correctly predicted a malignant (A) thyroid nodule diagnosed as
micro papillary carcinoma TR4 and a benign (B) one diagnosed as non-toxic nodular goiter of TR4. ResNet50, Desnet121, and the radiologists deemed a malignant
nodule (C) diagnosed as papillary carcinoma of TR5 as malignance but a DL algorithm named Inception-ResNet version 2 judged it as benign. All CNNs correctly
predicted a benign (D) thyroid nodule diagnosed as Hashimoto’s thyroiditis of TR5 but the radiologists all predicted wrongly.
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research, while 112 of TR4 and 101 of TR5 for the external test. The
characteristics of the thyroid nodules in five ACR TI-RADS features
were summarized in Table 2.
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DL Performance Compared With
Radiologists
The performance of DL was better compared to the radiologists
in three tasks. In the internal test set, the AUROC of the best
algorithm in differentiation of thyroid nodules was 0.936 (95%CI
0.898-0.973) in TR4, 0.915 (95%CI 0.857-0.973) in TR5 and
0.892 (95%CI 0.850-0.933) in TR 4&5 respectively, which
overwhelmingly exceeded the radiologists respectively (P < 0.001).
In the external test set, the AUROC of the optimal algorithm was
0.904 (95%CI 0.833-0.951) in TR4, 0.845 (95%CI 0.759-0.909) in
TR5 and 0.829 (95%CI 0.772-0.877) in TR 4&5 respectively, which
again was better than the radiologists (P < 0.001).

Evaluation of the performance on differentiation of malignant
from benign thyroid nodules in TR4, TR 5 and TR 4&5 were
TABLE 1 | Basic information of the patients.

Internal dataset (n=1396) External dataset (n=197)

Age (year) 45.48 ± 10.33 (8-71) 45.54 ± 11.82 (16-77)
≤20 13(0.9) 1(0.5)
20-30 85(6.1) 27(13.7)
30-40 281(20.1) 37(18.8)
40-50 549(39.3) 62(31.5)
≥50 468(33.5) 70(35.5)

Gender
Male 337(24.1) 47(23.9)
Female 1059(75.9) 150(76.1)
TABLE 2 | Characteristics of the thyroid nodules in internal set enrolled in this survey.

Task1 Task2 Task3

Training
dataset
(n=1146)

Test dataset
A (n=143)

Test dataset
B (n=112)

Training
dataset
(n=698)

Test
dataset A
(n=95)

Test dataset
B (n=101)

Training
dataset
(n=1844)

Test dataset
A (n=238)

Test dataset
B (n=213)

Pathology
benign 637(55.6) 70(49.0) 77(68.8) 297(42.6) 32(33.7) 36(35.6) 934(50.7) 102(42.9) 113(53.1)
malignant 509(44.4) 73(51.0) 35(31.2) 401(57.4) 63(66.3) 65(64.4) 910(49.3) 136(57.1) 100(46.9)

Diameter (mm)
≤ 0.5 221(19.3) 26(18.1) 19(17.0) 93(13.3) 14(14.7) 9(8.9) 314(17.0) 40(16.8) 28(13.1)
0.5‐1.0 431(37.6) 57(39.9) 55(49.0) 295(42.3) 41(43.2) 35(34.7) 726(39.4) 98(41.2) 90(42.3)
1.0‐2.0 176(15.4) 39(27.3) 28(25.0) 125(17.9) 25(26.3) 29(28.7) 301(16.3) 64(26.9) 57(26.8)
> 2.0 318(27.7) 21(14.7) 10(9.0) 185(36.5) 15(15.8) 28(27.7) 503(23.3) 36(15.1) 38(17.8)

Internal
Composition
Cystic/partially
cystic/spongifom

0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Mixed 48(4.2) 7(4.9) 6(5.3) 3(0.4) 1(1.1) 1(1.0) 51(2.8) 8(3.4) 7(3.3)
Solid/almost
solid

1098(95.8) 136(95.1) 106(94.6) 695(99.6) 94(98.9) 100(99.0) 1793(97.2) 230(96.6) 206(96.7)

Echogenicity
Anechoic 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Hyperechoic/
isoechoic

30(2.6) 6(4.2) 4(3.6) 5(0.7) 1(1.1) 0(45) 35(1.9) 7(2.9) 4(1.9)

Hypoechoic 1113(97.1) 137(95.8) 107(95.5) 681(95.6) 92(96.8) 100(99.0) 1814(98.3) 229(96.2) 207(97.2)
Very hypoechoic 3(0.3) 0(0) 1(0.9) 12(1.7) 2(2.1) 1(1.0) 15(0.8) 2(0.8) 2(0.9)

Shape
Wider-than-tall 1143(99.7) 142(99.3) 112(100.0) 478(68.5) 65(68.4) 70(69.3) 1621(87.9) 207(87.0) 182(85.4)
Taller-than-wide 3(0.3) 1(0.7) 0(0) 220(31.5) 30(31.6) 32(31.7) 223(12.1) 31(13.0) 31(14.6)

Margins
Smooth/
Ill-defined

992(86.6) 108(75.5) 85(78.9) 477(68.3) 60(63.2) 62(61.4) 1469(79.7) 168(70.6) 147(69.0)

Lobulated/
irregular

153(13.3) 35(37.5) 27(24.1) 210(30.1) 30(31.5) 32(31.7) 363(19.7) 65(27.3) 59(27.7)

Extra-thyroid
extension

1(0.1) 0(0) 0(0) 11(1.6) 5(5.3) 7(6.9) 12(0.6) 5(2.1) 7(3.3)

Echogenic foci
None/large

comet-tail artifacts
991(86.5) 122(85.3) 93(83.0) 92(13.2) 16(16.8) 19(18.8) 1083(58.7) 138(58.0) 112(52.6)

Macrocalcifications
133(11.6) 16(11.2) 10(8.9) 17(2.4) 5(5.3) 3(3.0) 150(8.1) 21(8.8) 13(6.1)

Peripheral
calcifications

22(1.9) 6(4.2) 6(5.4) 3(0.4) 0(0) 1(1.0) 25(1.4) 6(2.5) 7(3.3)

Punctate
echogenic foci

22(1.9) 7(4.9) 5(4.5) 601(86.1) 76(80.0) 78(77.2) 623(33.8) 83(34.9) 83(39.0)
April 2021
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recorded in Tables 3–5, respectively. ResNet-50 performed best
in the certain classification in both TR4 and TR5 dataset.
Meanwhile, performance in two datasets was also excellent
with a stable repeatability, of which the kappa value was all
over 0.50.

Heatmaps Generated by CAM
Heatmaps were generated to present the recognition pattern of
the deep learning model as demonstrated in Figure 2. The
greatest predictive regions of the tumor CNNs concentrated
were shown as red and yellow; whereas the areas green and
blue regions were of less predictive significance. This shows that
the DL algorithms focuses on the most predictive image features
of thyroid nodules malignance risk.
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DISCUSSION

In this study, we combined ACR TI-RADS with DL by training
three commonly used deep learning algorithms to discriminate
between benign and malignant in TR4 and TR5 thyroid nodules
with available pathology. As shown in Figure 3, no matter which
type of TI-RADS was used for the classification competition, DL
algorithms performed better than radiologists. The accuracy in
all models was higher in TR4 and TR5 for test set A and test set B,
which was parallel to the performance of the radiologists.
However, in the case of mixing different feature sets containing
TR4 and TR5, DL still had good performance but slightly weaker
than the two separated sets, which might be related to more
complex tasks.
TABLE 3 | Performance of deep learning containing three CNNs compared with
the radiologists in differentiating benign and malignant thyroid nodules classified
into ACR TI-RADS category 4.

ResNet-50 Inception- Desnet-121 Radiologists P
Resnet-v2 value

Internal dataset (n=143)
Accuracy 0.874

(0.810-0.919)
0.846
(0.778-
0.896)

0.846
(0.778-
0.896)

0.734
(0.656-0.800)

0.010

Sensitivity 0.836
(0.727-0.909)

0.918
(0.824-
0.966)

0.863
(0.758-
0.929)

0.684
(0.564-0.786)

0.004

Specificity 0.914
(0.816-0.965)

0.771
(0.653-
0.860)

0.871
(0.765-
0.936)

0.786
(0.668-0.871)

0.066

PPV 0.910
(0.809-0.963)

0.807
(0.703-
0.883)

0.875
(0.771-
0.938)

0.769
(0.645-0.861)

0.115

NPV 0.842
(0.736-0.912)

0.900
(0.788-
0.959)

0.859
(0.752-
0.927)

0.705
(0.590-0.800)

0.024

Kappa
value

0.749 0.691 0.693 0.470

F1 0.846 0.775 0.846 0.649
AUROC 0.936

(0.898-0.973)
0.902
(0.853-
0.952)

0.911
(0.865-
0.958)

0.735
(0.652-0.819)

External dataset (n=112)
Accuracy 0.830

(0.749-
0.890)

0.821
(0.739-
0.882)

0.795
(0.710-
0.860)

0.741
(0.653
-0.814)

0.033

Sensitivity 0.829
(0.657-0.928)

0.657
(0.477-
0.803)

0.800
(0.625-
0.909)

0.686
(0.506-0.826)

0.108

Specificity 0.831
(0.725-0.904)

0.896
(0.800-
0.951)

0.792
(0.682-
0.873)

0.766
(0.653-0.852)

0.101

PPV 0.690
(0.528-0.819)

0.742
(0.551-
0.875)

0.636
(0.477-
0.772)

0.571
(0.410-0.719)

0.037

NPV 0.914
(0.816-0.965)

0.852
(0.752-
0.918)

0.897
(0.793-
0.954)

0.843
(0.732-0.915)

0.226

Kappa
value

0.626 0.571 0.553 0.429

F1 0.812 0.785 0.775 0.713
AUROC 0.904

(0.833-0.951)
0.845
(0.765-
0.907)

0.842
(0.761-
0.904)

0.726
(0.634-0.806)
TABLE 4 | Performance of deep learning containing three CNNs compared with
the radiologists in differentiating benign and malignant thyroid nodules classified
into ACR TI-RADS category 5.

ResNet-
50

Inception- Desnet-
121

Radiologists P
Resnet-v2 value

Internal dataset (n=95)
Accuracy 0.863

(0.780-
0.918)

0.811
(0.720-0.877)

0.832
(0.744-
0.894)

0.695 (0.596-
0.778)

0.022

Sensitivity 0.841
(0.723-
0.917)

0.841
(0.723-0.917)

0.952
(0.858-
0.988)

0.635
(0.504-0.750)

<0.001

Specificity 0.906
(0.738-
0.975)

0.750
(0.562-0.879)

0.594
(0.408-
0.758)

0.813
(0.630-0.921)

0.026

PPV 0.946
(0.842-
0.986)

0.869
(0.752-0.938)

0.822
(0.711-
0.898)

0.870
(0.730-0.946)

0.055

NPV 0.744
(0.576-
0.864)

0.706
(0.523-0.843)

0.864
(0.640-
0.964)

0.531
(0.384-0.672)

0.026

Kappa
value

0.709 0.592 0.582 0.396

F1 0.854 0.791 0.793 0.688
AUROC 0.915

(0.857-
0.973)

0.838
(0.756-0.919)

0.906
(0.846-
0.966)

0.724
(0.617-0.831)

External dataset (n=101)
Accuracy 0.822

(0.735-
0.885)

0.713
(0.618 to
0.792)

0.802
(0.713-
0.869)

0.703
(0.607-0.784)

0.080

Sensitivity 0.846
(0.731-
0.920)

0.615
(0.486-0.731)

0.754
(0.629-
0.849)

0.677
(0.548-0.785)

0.211

Specificity 0.778
(0.604-
0.893)

0.889
(0.730-0.964)

0.889
(0.730-
0.964)

0.750
(0.575-0.873)

0.128

PPV 0.873
(0.760-
0.940)

0.909
(0.774-0.970)

0.925
(0.809-
0.976)

0.830
(0.697-0.915)

0.132

NPV 0.737
(0.566-
0.860)

0.561
(0.424-0.690)

0.667
(0.515-
0.792)

0.563
(0.413-0.702)

0.203

Kappa
value

0.616 0.446 0.598 0.397

F1 0.808 0.711 0.796 0.694
AUROC 0.845

(0.759-
0.909)

0.770
(0.676-0.848)

0.842
(0.756-
0.907)

0.713
(0.615-0.799)
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Patients with suspected thyroid nodules, nodular goiter, nodules
accidentally discovered by radiological examination such as
computed tomography (CT), magnetic resonance imaging (MRI),
or 18F-flurodeoxyglucose positron emission computed tomography
(FDP18-PET) scan showing thyroid uptake should undergo
diagnostic thyroid ultrasound examination as recommended by
ATA Guidelines 2015 (26). The benign and malignant ultrasound
results of nodules will determine whether FNA and follow-up are to
be carried out (27), and the choice of treatment methods will be
influenced by ultrasound opinions and cervical lymph node
conditions (28). In ultrasound diagnosis, malignant nodules have
various manifestations and particularly those with atypical
appearances and fuzzy boundaries lead to diagnostic difficulties
(29, 30). Radiologists frequently disagree over the interpretation of
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these malignant tumors. DL may provide assistance for radiologists
with good accuracy and consistency.

The performance of DL is often better than that of radiologists
and even machine learning, in the diagnosis of thyroid nodules.
Xia and colleagues (31) achieved an accuracy of 87.7% in
differentiating malignant and benign nodules by constructing
extreme machine learning based on collected features obtained
from 203 ultrasound images of 187 patients with thyroid cancer. Li
and colleagues (19) got an accuracy of 89.8% (95% CI 86.8–92.3)
in internal validation set with the DCNNmodel versus 78.8% with
the radiologists and 85.7% (95% CI 79.2–90.8) versus 72.7% (65.0–
79.6%) in external validation set. Machine learning gives opinions
by extracting computational features and calculating statistically
significant finite features and modeling. The modeling process of
machine learning requires the segmentation of images to be more
accurate, while the commonly manual work is difficult to control.
Limited quantities of features and smaller sample size also resulted
in inferior performance and narrow application range.

Moreover, the DL result in thyroid nodules of all TR categories
was not that impressive because it contained some tasks that even
radiological beginners can do such as recognizing and selecting the
TR1 nodules and labelling them as benign (5). Limiting the work
to differentiation between subtype TR4 and TR5 is difficult for
radiologists because they had similar visible features (20). As
recent studies have reported, DL had achieved great success on
the classification on thyroid cancer (32), when all types of thyroid
nodules were included. In these studies, pathological results of
some nodules were not available (19), while in our study all the
nodules correlated with surgical pathology. Limitations of the TR
categories on ultrasound images avoid heterogeneity of the dataset
to a degree. In specific classification, our study revealed that a
precise set of certain categories contributed to the higher accuracy
compared with former studies (19, 32).

The result of this study may potentially be of clinical value.
TI-RADS is already widely applied worldwide and combining the
TI-RADS and DL provides more accurate results and should be
easily accepted clinically. Previous studies had reported that
interobserver agreement in the lexicon was also substantial
thus the pre-classification was easily performed and credible
wherever used (33). Application of the DL based on ACR TI-
RADS will supply useful suggestions when there is doubt over the
diagnosis and will support services where medical resources
were unbalanced.

Our study also had limitations. First, this was a retrospective
study with limited categories of data. The performance of our DL
system is expected to increase by including more data and
expanding several sets from other hospitals. And exclusion of
TR3 thyroid nodules decrease clinical application to some extent.
Second, ultrasound systems of different manufactures and
heterogeneity of operators may give rise to the variability in the
training process. The inter-reader reliability of nodule extraction
was not assessed. Third, the images reviewed were static in this
study that features from multi-sections were not considered.

To be summarized, the study demonstrated that DL based on
ACR TI-RADS could improve the differentiation of malignant
from benign thyroid nodules with great clinical application
potential. With a stable repeatability, DL algorithms showed
TABLE 5 | Performance of deep learning containing three CNNs compared with
the radiologists in differentiating benign and malignant thyroid nodules classified
into ACR TI-RADS category 4 and 5.

ResNet-
50

Inception- Desnet-121 Radiologists P
Resnet-v2 value

Internal dataset (n=238)
Accuracy 0.832

(0.779-
0.874)

0.811
(0.756-
0.856)

0.824
(0.770-0.867)

0.718
(0.658-0.772)

0.007

Sensitivity 0.882
(0.813-
0.929)

0.794
(0.715-
0.857)

0.824 (0.747-
0.882)

0.662
(0.711-0.898)

<0.001

Specificity 0.745
(0.647-
0.824)

0.833
(0.744-
0.897)

0.843 (0.755-
0.905)

0.794
(0.700-0.865)

0.227

PPV 0.822
(0.748-
0.878)

0.864
(0.788-
0.916)

0.875 (0.802-
0.925)

0.811
(0.723-0.877)

0.429

NPV 0.826
(0.730-
0.894)

0.752
(0.660-
0.826)

0.782 (0.691-
0.853)

0.638
(0.547-0.720)

0.009

Kappa
value

0.635 0.619 0.660 0.442

F1 0.852 0.784 0.836 0.668
AUROC 0.879

(0.835-
0.922)

0.883
(0.841-
0.926)

0.892
(0.850-0.933)

0.728
(0.663-0.793)

External dataset (n=213)
Accuracy 0.784

(0.724-
0.834)

0.770
(0.709-
0.822)

0.761
(0.699-0.813)

0.723
(0.659-0.779)

0.009

Sensitivity 0.790
(0.695-
0.862)

0.860
(0.773-
0.919)

0.710
(0.609-0.794)

0.680
(0.578-0.768)

0.023

Specificity 0.779
(0.689-
0.849)

0.690
(0.595-
0.772)

0.805
(0.718-0.871)

0.761
(0.670-0.834)

0.530

PPV 0.760
(0.664-
0.836)

0.711
(0.620-
0.788)

0.763
(0.662-0.843)

0.716
(0.613-0.801)

0.055

NPV 0.807
(0.718-
0.874)

0.848
(0.754-
0.911)

0.758
(0.670-0.830)

0.729
(0.638-0.805)

0.071

Kappa
value

0.567 0.544 0.517 0.442

F1 0.784 0.770 0.758 0.722
AUROC 0.829

(0.772-
0.877)

0.807
(0.748-
0.858)

0.793
(0.733-0.845)

0.721
(0.655-0.780)
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better performance than radiologists for TNs of TR4 and TR5
categories, which are the most difficult categories for diagnosis in
clinical practice. Prospective studies with long-term follow-up
will be needed to examine the utility of the system and assess its
effectiveness in routine clinical practice.
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FIGURE 3 | Performance of the ensemble D-CNN models in identifying patients with thyroid cancer in TR4 (A), TR5 (C), and TR4&5 (E) on three inner test datasets
and TR4 (B), TR5 (D), and TR4&5 (F) on three outer test datasets. The red dots on each ROC curve demonstrate the performance of the radiologists. AUC, area
under the curve; DCNN, deep convolutional neural network; ROC, receiver operating characteristics curve.
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Background: Development and validation of a deep learning method to automatically
segment the peri-ampullary (PA) region in magnetic resonance imaging (MRI) images.

Methods: A group of patients with or without periampullary carcinoma (PAC) was
included. The PA regions were manually annotated in MRI images by experts. Patients
were randomly divided into one training set, one validation set, and one test set. Deep
learning methods were developed to automatically segment the PA region in MRI images.
The segmentation performance of the methods was compared in the validation set. The
model with the highest intersection over union (IoU) was evaluated in the test set.

Results: The deep learning algorithm achieved optimal accuracies in the segmentation of
the PA regions in both T1 and T2 MRI images. The value of the IoU was 0.68, 0.68, and
0.64 for T1, T2, and combination of T1 and T2 images, respectively.

Conclusions: Deep learning algorithm is promising with accuracies of concordance with
manual human assessment in segmentation of the PA region in MRI images. This
automated non-invasive method helps clinicians to identify and locate the PA region
using preoperative MRI scanning.

Keywords: peri-ampullary cancer, periampullary regions, MRI, deep learning, segmentation
INTRODUCTION

The peri-ampulla (PA) region refers to the area within 2cm of the main papilla of the duodenum,
including Vater ampulla, lower segment of common bile duct, opening of pancreatic duct, duodenal
papilla and duodenal mucosa nearby (1–4). This region was deep and narrow in the abdomen and
has many adjacent organs and blood vessels, so it is difficult to identify this area using conventional
imaging examinations. At the same time, the PA region was prone to a series of diseases, including
malignant tumors such as periampullary carcinoma (PAC) and benign lesions such as chronic mass
pancreatitis, the inflammatory stricture of the lower of common bile duct, or the lower of common
bile duct stone etc. (5, 6). The treatment and prognosis of these diseases vary differently, so accurate
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diagnosis of these disease has important clinical significance.
However, the imaging diagnosis of this kind of disease is based
on the determination of the specific location of PA region.

So far, among all these modern imaging techniques, magnetic
resonance imaging (MRI) is a preferable choice to detect the
diseases of the PA region for its advantages of excellent soft-
tissue contrast and fewer radiation exposures (5, 7). However, the
accuracy and specificity of MRI are still unsatisfying in the
diagnosis of the diseases. A study has reported that the specificity
of MRI was only 78.26%, while the accuracy was 89.89% in the
diagnosis of PAC (5). Similarly, our previous study also found that
MRI had only 87% accuracy in detecting PAC (8). For the disease in
PA region, misdiagnose will lead to many adverse factors for the
follow-up treatment of patients (8, 9). Therefore, it is necessary to
further improve the preoperative diagnostic accuracy of the diseases
in this special region. Meanwhile, the precise segmentation of PA
region is the first and foundation for the accurate diagnosis.

Deep learning is an emerging sub-branch of artificial
intelligence that has demonstrated transformative capabilities
in many domains (10). Technically, deep learning is a type of
neural network with multiple neural layers that is capable of
extracting abstract representations of input data like images,
videos, time series, natural languages, and texts. Recently, there is
a remarkable research advance of applying deep learning in
healthcare and clinical medicine (11–13). Deep learning has
applications in the analysis of electronic health records,
physiological data, and especially in the diagnosis of diseases
using medical imaging (14). In the analysis of medical images of
MRI, computed tomography (CT), X-ray, microscopy, and other
images, deep learning shows promising performance in tasks like
classification, segmentation, detection, and registration (15).
Recently, considerable literature has grown up in analyzing
image segmentation of different human organs using deep
learning, such as pancreas (16), liver (17, 18), heart (19), brain
(20, 21), etc. However, the PA region remains largely under-
explored in medical image analysis based on advanced deep
learning algorithms. Though the neural networks have been
applied to classify ampullary tumors, the images were taken by
endoscopic during operations rather than preoperative and non-
invasive MRI or CT scanning (22). To our best knowledge, there
is no reported work has been devoted to develop and evaluate
deep learning methods to segment the PA region in MRI images.

Therefore, in this study, we presented a deep learning method to
automatically segment the PA region in MRI images. We
retrospectively collected an MRI image dataset from different
types of PA region diseases to train, including PAC and non-
PAC patients, so that the PA region could be accurately identified
on the MRI image information of different cases. In a training-
validation approach, we developed the deep learning method in the
training set and validated the performance in the validation set. This
would provide a basis for further research on the diagnosis of PAC.
MATERIALS AND METHODS

The overall workflow of this study was illustrated in Figure 1.
First, patients were included, and the MRI images were obtained.
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Next, the PA regions were annotated in the MRI images by
experts. Based on the raw images and annotation information,
the deep learning segmentation algorithms were trained and
evaluated in training and validation datasets, respectively.
Finally, the performance was summarized and reported.

Patients Characteristics
This was a retrospective study approved by the Ethics Committee
of the Affiliated Hospital of Southwest Medical University
(No.KY2020157). A total of 504 patients who underwent MRI
examinations in the Department of Hepatobiliary and Pancreatic
Surgery of the Affiliated Hospital of Southwest Medical
University were included from June 1, 2018 to May 1, 2019. In
these people, 86 persons were diagnosed as peri-ampullary
carcinoma through pathology after surgery or endoscopy, and
the other 418 persons show no peri-ampullary lesion determined
by radiologist. All patients underwent MRI examinations. The
demographic and clinical characteristics of PAC and non-PAC
patients were shown in Table S1 and Table S2, respectively.

MRI Techniques
After 3-8 hours of fasting, patients were asked to practice their
breathing techniques. MRI was performed in all patients with a
3.0-T MR equipment (Philips Achieva, Holland, Netherlands)
with a quasar dual gradient system and a 16.0-channel phased-
array Torso coil in the supine position. Drinking water or
conventional oral medicines were not restricted. The MR scan
started with the localization scan, followed by a sensitivity-
encoding (SENSE) reference scan. The scanning sequences
were as follows: breath-hold axial dual fast field echo (dual
FFE) and high spatial resolution isotropic volume exam
(THRIVE) T1-weighted imaging (T1WI), respiratory triggered
coronal turbo spin echo (TSE) T2-weighted imaging (T2WI),
axial fat-suppressed TSE-T2WI, single-shot TSE echo-planar
imaging (EPI) diffusion-weighted imaging (DWI), and MR
cholangiopancreatography (MRCP). For the dynamic contrast
enhancement (DCE)-MRI, axial-THRIVE-T1WI were used.
15mL of contrast agent Gd-DTPA was injected through the
antecubital vein at a speed of 2mL/s. DCE-MRI was performed in
three phases, including arterial, portal, and delayed phase, and
images were collected after 20s, 60s, and 180s, respectively (10).
In result, among the 504 patients, 485 patients had THRIVE-
T1W images (n = 5,861), and 495 patients had T2 W images
(n = 2,558).

MRI Imaging Analysis
Post-processing of MRI images was performed using the
Extended MR Workspace R2.6.3.1 (Philips Healthcare) with
the FuncTool package. MRI showed typical PAC imaging
manifestations: (1) the mass was nodular or invasive; (2)
Tumour parenchyma on T1WI was equal or marginally lower
signals; (3) Tumour parenchyma on T2WI was equally or slightly
stronger signal; (4) DWI showed high signal intensity; (5) the
mass was mild or moderate enhancement after contrast and (6)
when MRCP was performed, the bile duct suddenly terminated
asymmetrically and expanded proportionally (double-duct signs
may occur when the lesion obstructed the ducts (8).
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FIGURE 1 | Overall flowchart of this study. First, MRI images were obtained from enrolled patients and manually annotated by experts to obtain the masks for later
deep learning algorithm development. The dataset was randomly divided into subsets for algorithm training, validation, and testing, respectively. Five models were
developed and evaluated, and the UNet16 and FCNRes50 achieved the best performance.
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Pathological Examination
The pathological data from all of the cases were analyzed by two
pathologists with more than 15 years of diagnostic experience.
The pathologists were bl inded to the cl inical and
imaging findings.

Image Annotation
First, all MRI images were annotated by two experienced
radiologists using in-house software. In the annotation, one
radiologist was required to manually draw the outlines of the
PA regions in the MRI images. The outline information was used
to generate a corresponding mask image in the same size to
indicate the segmentation and of the PA region. An expert
radiologist reviewed all manual annotations to ensure the
quality of the annotations, which served as ground truths to
develop and validate deep learning algorithms (23–26).

Among the 504 patients, 485 patients had T1 images (n =
5,861), and 495 patients had T2 images (n = 2,558) were
processed separately. We developed algorithms for three cases,
namely using only T1, only T2, and combination of T1 and T2.
In a cross-validation approach, we first randomly divided the
patients into three independent cohorts, namely one training
cohort (80%), one validation cohort (10%), and one test cohort
(10%). Their images and corresponding annotated mask images
were also accordingly grouped into one training set, one
validation set, and one test set, respectively. In other words,
the MRI images and the corresponding mask images of the
training cohort were used to train deep learning algorithms, and
those images of the validation and test cohort were later used to
select and evaluate the performance of deep learning algorithms.

Deep Learning Methods
In this study, we developed deep learning algorithms using
multiple layers of convolutional neural network (CNN) to
automatically segment PA regions in MRI images. CNN is
usually utilized to extract hierarchical patterns from images in a
feedforward manner. CNN-based deep learning algorithms have
achieved remarkable performance in many computer vision
applications surpassing human experts (10). In medical image
analysis, UNet adopted a two-block structure utilizing multiple
layers of CNN (27). More specifically, the architecture consisted
of two components. Namely, one encoder transformed the high
dimensional input images into low dimensional abstract
representations, and one following decoder projected the low
dimensional abstract representations back to the high
dimensional space by reversing the encoding. Finally, generated
images were output with pixel-level label information indicating
the PA region. The detailed structures were illustrated in Figure
S1A for UNet16 and Figure S1B for FCNRes50, respectively. In
order to systematically investigate the performance of the deep
learning approach, in this study, we also considered another four
structure variations, namely ATTUNet using the attention gate
approach in UNet (27), FCNRes50 using ResNet50 as the
downsampling approach FCNRes50 combine residual network
and fully convolutional network structures to extract pixel-level
information and generate segmentation (28), UNet16 use VGG16
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as the downsampling approach (29), and SUNet using SeLu as the
nonlinear activation function instead of ReLu.

In the deep learning algorithm training stage, the MRI images
of the training cohort were input into the encoder one by one. The
output masks generated by the decoder were compared against
the corresponding ground truth to calculate the loss function,
which indicated the deviations of predicted segmentation. By
using the back-propagation technique of stochastic gradient
descent optimization, the encoder-decoder structure was
continuously optimized to minimize the loss. More technically,
the weights between neural network layers were adjusted to
improve the capability of segmentations. Once the training
started, both the encoder and decoder were all trained together.
In this manner, a satisfying deep learning neural network could
hopefully be obtained after training with enough training
samples. Meanwhile, since the input and output were both
images, this deep learning approach enjoyed significant
advantages over the conventional image analysis methods by
eliminating the exhausting feature engineering or troublesome
manual interferences. After the training stage, the trained
encoder-decoder structure was used in passive inferences to
predict PA regions in MRI images. In inferences, the weights
were kept unchanged. In the validation stage, the MRI images of
the validation set were input into the neural network, and the
corresponding mask images were obtained. The images of the test
cohort were used in evaluating the performance of the selected
best model. We systematically considered four different variations
of the UNet structures and one FCNRes50 structure to seek the
best performing deep learning structure. Deep learning
algorithms were trained, validated, and tested separately using
respective images. The five models were trained, validated, and
tested in the dataset contained both T1 and T2 images.

All programs were implemented in Python programming
language (version 3.7) with freely available open-source
packages, including Opencv-Python (version 4.1.0.25) for
image and data processing, Scipy (version 1.2.1) and Numpy
(version 1.16.2) for data management, Pytorch (version 1.1) for
deep learning framework, Cuda (version 10.1) for graphics
processing unit (GPU) support. The training and validation
were conducted in a computer installed with an NVIDIA
3090Ti deep learning GPU, 24GB main memory, and Intel(R)
Xeon(R) 2.10GHz central processing unit (CPU). It is worth
mentioning that the validation task could be done using a
conventional personal computer within an acceptable time
since the passive inference requires fewer computations.

Statistical Evaluation of Segmentation
The performance of the segmentation task for the PA region in
MRI images was quantitatively evaluated using intersection over
union (IoU) and Dice similarity coefficient (DSC). For one PA
region instance in an MRI image, the manually annotated
ground truth and the deep learning predicted segmentation
were compared at pixel-level to see how the two regions
overlapped. In general, larger values of IoU and DSC indicated
better segmentation accuracies. The average IoU and DSC were
calculated based on predictions for all images in the validation
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set. For simplicity, we used IoU as the main measurement, and
the performance of five deep learning structures was ranked
according to IoU. The predictions of T1 and T2 MRI images
were conducted separately in the same manner.
RESULTS

MRI Images
In preparing the training, validation, test datasets, we divided the
initial dataset based on patients to ensure that images from a
given patient would only appear in one dataset. In result, for T1
images (n = 5,861), the training set included 598 images from 67
PAC patients, and 4,177 images from 322 patients without PAC.
The validation set included 99 images from 8 PAC patients, and
418 images from 40 patients without PAC. The test set included
67 images from 8 PAC patients, and 439 images from 40 patients
without PAC. For T2 images (n = 2,558), the training set
included 374 images from 68 PAC patients, and 1,676 images
from 329 patients without PAC. The validation set included 44
images from 8 PAC patients, and 205 images from 41 patients
Frontiers in Oncology | www.frontiersin.org 548
without PAC. The validation set included 42 images from 8 PAC
patients, and 217 images from 41 patients without PAC. For the
dataset combined T1 and T2 MRI images (n = 8,419). The
training set included 959 images from 69 PAC patients, and
5,701 images from 335 patients without PAC. The validation set
included 176 images from 9 PAC patients, and 806 images from
42 patients without PAC. The test set included 89 images from 8
PAC patients, and 668 images from 41 patients without PAC.

Segmentation Performance
For the five segmentation deep learning structures, we followed the
same training approach in separated training, validation, and
testing. Specifically, each image formed a batch (batch size = 1),
and ten rounds were repeated (epoch = 10) to ensure the
convergence of the loss. The optimizer of all models is Adam,
with a learning rate of 0.0001. The final segmentation performance
of all five structures was presented in Table 1 for T1 images, Table
2 for T2 images, and Table 3 for T1 and T2 images, respectively.
We found that UNet16 outperformed all the rest structures with
the best performance for both of only T1 (IoU = 0.68, DSC = 0.79)
and combined T1 and T2 (IoU = 0.64, DSC = 0.74), respectively.
TABLE 1 | Segmentation performance of deep learning structures in the test T1 images ranked by mean IoU.

Model IoU DSC

Total PAC non-PAC Total PAC non-PAC

UNet16 0.68 ± 0.21 0.67 ± 0.18 0.69 ± 0.21 0.79 ± 0.21 0.78 ± 0.17 0.79 ± 0.21
FCNRes50 0.67 ± 0.24 0.65 ± 0.22 0.67 ± 0.24 0.77 ± 0.26 0.76 ± 0.23 0.77 ± 0.26
UNet 0.53 ± 0.33 0.37 ± 0.34 0.55 ± 0.32 0.62 ± 0.36 0.44 ± 0.39 0.64 ± 0.35
SUnet 0.49 ± 0.30 0.40 ± 0.31 0.50 ± 0.30 0.59 ± 0.34 0.50 ± 0.35 0.60 ± 0.33
ATTUnet 0.44 ± 0.32 0.31 ± 0.32 0.46 ± 0.32 0.53 ± 0.37 0.37 ± 0.38 0.55 ± 0.36
Ma
y 2021 | Volume 11 | Ar
UNet16 achieved the best performance.
TABLE 2 | Segmentation performance of deep learning structures in the test T2 images ranked by mean IoU.

Model IoU DSC

Total PAC non-PAC Total PAC non-PAC

FCNRes50 0.68 ± 0.20 0.66 ± 0.18 0.69 ± 0.21 0.79 ± 0.21 0.78 ± 0.16 0.79 ± 0.21
UNet16 0.67 ± 0.19 0.60 ± 0.21 0.68 ± 0.18 0.78 ± 0.19 0.72 ± 0.21 0.79 ± 0.18
ATTUnet 0.58 ± 0.26 0.51 ±0.29 0.60 ± 0.25 0.69 ± 0.27 0.61 ± 0.32 0.71 ± 0.26
SUnet 0.48 ± 0.25 0.52 ± 0.25 0.47 ± 0.25 0.60 ± 0.28 0.64 ± 0.28 0.59 ± 0.28
UNet 0.40 ± 0.30 0.35 ± 0.29 0.42 ± 0.30 0.50 ± 0.35 0.44 ± 0.34 0.51 ± 0.34
FCNRes50 achieved the best performance.
TABLE 3 | Segmentation performance of deep learning structures in the test T1 and T2 images ranked by mean IoU.

Model IoU DSC

Total PAC non-PAC Total PAC non-PAC

UNet16 0.64 ± 0.25 0.61 ± 0.18 0.65 ± 0.25 0.74 ± 0.26 0.74 ± 0.18 0.74 ± 0.27
FCNRES50 0.55 ± 0.30 0.47 ± 0.27 0.56 ± 0.30 0.64 ± 0.33 0.59 ± 0.30 0.65 ± 0.33
ATTUnet 0.45 ± 0.34 0.34 ± 0.32 0.46 ± 0.34 0.53 ± 0.38 0.42 ± 0.36 0.54 ± 0.38
SUnet 0.40 ± 0.33 0.28 ± 0.31 0.41 ± 0.33 0.48 ± 0.37 0.34 ± 0.36 0.50 ± 0.37
UNet 0.35 ± 0.35 0.21 ± 0.29 0.37 ± 0.36 0.42 ± 0.40 0.27 ± 0.34 0.43 ± 0.40
UNet16 achieved the best performance.
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The performance of FCNRes50 is better than UNet16 in only T2
(IoU = 0.68, DSC = 0.79) images segmentation. As shown in the
tables, the performance of patients with PAC and patients without
PAC is calculated, respectively. Figure 2 demonstrated the
segmentation samples obtained by UNet16 for T1 images,
FCNRes50 for T2 images, and UNet16 for combined T1 and T2
images. In terms of speed, the algorithms could output the
segmentation for a given image within two seconds, which
significantly improved the efficiency of image analysis.
DISCUSSION

PAC occurs in 5% of gastrointestinal tumors, and pancreatic cancer
is the most common, followed by distal cholangiocarcinoma (2,
30). Pancreatoduodenectomy (PD) was the standard treatment for
patients with PAC (31). However, complications such as pancreatic
fistula, biliary fistula, infection, and hemorrhage often occur after
PD surgery. A previous study has shown that the incidence of
postoperative complications of PD may be as high as 30-65% (32).
For patients with benign lesions, unnecessary PD surgery could
lead to the occurrence of these surgical complications in patients, or
even death in some patients. Meanwhile, if malignant lesions are
misdiagnosed as benign lesions, it will undoubtedly delay the
treatment of patients, resulting in poor prognosis. Due to the
anatomical complexity of the periampullary region and less of
particular serum markers, the early-accurate diagnose of PAC still
remains challenging. Currently, non-invasive diagnostic methods,
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including ultrasound scan, CT imaging as well as MRI, have been
successfully applied to the detection and diagnosis of PAC. One
study has reported that the specificity of ultrasound scan was only
52.1%, while the accuracy was 61.61% in the diagnosis of PAC (6).
Another study has reported that the specificity of CT was only
16.7%, while the accuracy was 84.4% in the diagnosis of PAC (33).
So far, among all these modern imaging techniques, MRI has been
reported to be an optimal choice for allowing assessment of
periampullary lesions (32). However, there are still limiting
factors in the evaluation of the disease using MRI because the
PA region is small and the relatively complicated anatomy.
Moreover, the tapered area of the distal biliary and pancreatic
ducts contain little or no fluid. Physiologic contraction of the
sphincter of Oddi also makes it difficult to evaluate the PA region
(34). Recently, with the significant development in deep learning
and increasing medical needs, artificial intelligence technology has
significant advantages in improving the diagnosis of diseases.
Therefore, we proposed and developed a deep learning method
to automatically segment the PA region in MRI, which could be
further extended to future AI-based diagnosis of the disease in PA
region using AI, and also facilitate the plan of surgery and
endoscopic treatment for clinicians.

In this work, we developed deep learning structures to
automatically segment the PA region using MRI T1 and T2
images. Recently, there were abundant reported studies
developing AI algorithms for segmentation of abdominal organs
or structures including pancreas (16), liver (17, 18), spleen (35, 36),
gallbladder (37), kidney (38, 39), the local lesions of stomach (40),
FIGURE 2 | Examples of PA regions of PAC patients (top panel) and PA regions of patients without PAC (bottom panel). The first column were examples of T1 MRI
image obtained by UNet16 trained using only T1 images, the second column were examples of T2 MRI image obtained by FCNRes50 trained using only T2 images,
the third column were examples of T1 MRI image obtained by UNet16 trained using both T1 and T2 images, and the fourth column were examples of T2 MRI image
obtained by UNet16 trained using both T1 and T2 images. Blue, algorithm; red, expert.
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etc. However, there is no report of PA region segmentation using
AI algorithms. To our best knowledge, this work is the first
systematic study of developing and evaluating deep learning
approaches for the segmentation of the PA regions in MRI. To
evaluate the performance of various deep learning structures, we
implemented five algorithms that appeared in deep learning
literature, including UNet (27), ATTUNet (41), FCNRes50 (28),
UNet16 (29), and SUNet. UNet was the most used deep learning
structure in medical image analysis using the encoder and decoder
components based on CNN (42). The rest variations improve the
UNet structures with attention or replace nonlinear activation
functions. This study considered these structures and compared
their performance in the same datasets.

In total, 504 patients were included in this study and 5,861 T1
images and 2,558 T2 images were collected. All images were
manually annotated by experts to delineate the PA regions in the
MRI images. By dividing patients into training and validation
cohorts, their images were split into a training set for algorithms
training and a validation set for final performance evaluation. As a
result, UNet16 achieved the best performance among the five
structures with the highest IoU of 0.68 and DSC of 0.79 for T1
images. The model with the best performance for T2 images
segmentation is FCNRes50 with an IoU of 0.68 and DSC of 0.79.
UNet16 achieved the best performance in the dataset of combined
T1 and T2. The IoU is 0.64 and the highest DSC is 0.74 which are
not better than the results obtained in the independent T1 or T2
datasets. Therefore, the results showed that UNet16 and FCNRes50
were able to accurately identify the PA region in MRI images.

However, there are still several limitations in this study. First, we
only focused on developing an AI to automated localize and
segment the PA regions in MRI of PA cancer, but did not make
a diagnosis. In the future, we would collect more data and extend
the present deep learning framework to classify and diagnose PA
cancer. Second, this is a retrospective study from a single hospital,
which may inevitably lead to selective bias for the patients. The
results need to be validated by prospective and external cohorts.
Third, the applied AI technologies in this study are still in rapid
evolution with more emerging advanced deep learning algorithms.
In the future, it’s necessary to evaluate new deep learning algorithms
in PA cancer image analysis to achieve better performance.

In conclusion, we established an MRI image dataset,
developed an MRI image data annotation system, established
an automatic deep learning the PA region image segmentation
model, and realized the location of the PA region.
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Background: Clinical treatment decision making of bladder cancer (BCa) relies on the
absence or presence of muscle invasion and tumor staging. Deep learning (DL) is a novel
technique in image analysis, but its potential for evaluating the muscular invasiveness of
bladder cancer remains unclear. The purpose of this study was to develop and validate a
DL model based on computed tomography (CT) images for prediction of muscle-invasive
status of BCa.

Methods: A total of 441 BCa patients were retrospectively enrolled from two centers and
were divided into development (n=183), tuning (n=110), internal validation (n=73) and
external validation (n=75) cohorts. The model was built based on nephrographic phase
images of preoperative CT urography. Receiver operating characteristic (ROC) curves
were performed and the area under the ROC curve (AUC) for discrimination between
muscle-invasive BCa and non-muscle-invasive BCa was calculated. The performance of
the model was evaluated and compared with that of the subjective assessment by
two radiologists.

Results: The DL model exhibited relatively good performance in all cohorts [AUC: 0.861 in
the internal validation cohort, 0.791 in the external validation cohort] and outperformed the
two radiologists. The model yielded a sensitivity of 0.733, a specificity of 0.810 in the
internal validation cohort and a sensitivity of 0.710 and a specificity of 0.773 in the external
validation cohort.

Conclusion: The proposed DL model based on CT images exhibited relatively good
prediction ability of muscle-invasive status of BCa preoperatively, which may improve
individual treatment of BCa.

Keywords: bladder cancer, deep learning, computed tomography, diagnosis, computed-assisted, artificial intelligence
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INTRODUCTION

Bladder cancer (BCa) is one of the most common and lethal
malignancies worldwide (1, 2). Clinical treatment decision
making primarily relies on the absence or presence of muscle
invasion and tumor staging (3). Nonmuscle-invasive BCa
(NMIBC) and muscle-invasive BCa (MIBC) exhibit significant
differences in prognosis, management and therapeutic aims (3,
4). Accurate preoperative assessment of the muscular
invasiveness of BCa is crucial for selecting the optimal therapy
for individual patients.

Cystoscopy examination together with histological evaluation
of the resected tissues is the mainstay of diagnosis and clinical
staging of BCa. As biopsy is operator dependent and unlikely to
sample every part of the tumor, incorrect staging occurs, and up
to 25% of MIBC cases are initially misdiagnosed as NIMBC (5,
6). Repeated examinations could improve the diagnostic
accuracy, but the invasive nature has made this process
undesirable. Developing a noninvasive method for preoperative
evaluation would greatly benefit BCa patients. Computed
tomography (CT) imaging has been widely used to
preoperatively evaluate BCa patients and assist in tumor
staging, especially for T3 and T4 tumors (7). Given its inability
to differentiate among layers of the bladder wall, the role of
traditional CT in the classification of NIMBC and MIBC is
limited. Thus, developing a technique that could provide
additional information about the status of muscular invasion
of BCa would enable traditional CT to play a larger role in BCa
evaluation and assist in patient management.

Deep learning (DL) is a novel and promising technique that
has demonstrated great potential in disease diagnosis (8–10). DL
can extract and combine features from images to construct a
model that reveals the relationship between images and diseases.
It has been reported that the DL model could facilitate imaging
diagnosis in various diseases with high accuracy, including liver
fibrosis, pancreatic cancer and pulmonary nodules (9, 11, 12).
For BCa, the DL model based on CT images has demonstrated
the potential to assist in therapy evaluation (13). However, the
use of the DL based on CT images to discriminate betweenMIBC
and NIBC has not yet been reported.

Therefore, the aim of this study was to develop and validate a
DL model based on CT images for individualized prediction of
the muscle-invasive status of BCa preoperatively.
MATERIALS AND METHODS

Study Population
This retrospective study was approved by the Institutional
Review Board of the two medical centers, and the requirement
of informed consent was waived. The inclusion criteria were as
follows: (i) patients who underwent transurethral resection of
bladder tumor (TURBT) or radical cystectomy in the two centers
with pathologically confirmed urothelial carcinoma and
(ii) availability of preoperative CT urography (CTU) within 20
days before surgery. Patients were excluded if (i) they had
preoperative therapy, including chemotherapy or radiotherapy;
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(ii) they had other tumors simultaneously; (iii) their TURBT
specimens had no muscle after resection; or (iv) no visible tumor
was detected on preoperative enhanced pelvic CT images. Two
radiologists (H.S. in Center 1 and Z.W. in Center 2) identified
patients according to the above criteria, and 366 patients were
recruited from May 2014 to July 2018 from Center 1 (91 patients
with MIBC, 275 patients with NIMBC) and 75 patients from
April 2018 to May 2020 in Center 2 (31 patients with MIBC, 44
patients with NIMBC). We divided the patients into three
cohorts: 293 patients treated between May 2014 and September
2017 in Center 1 were allocated to the training cohort, 73 patients
treated between October 2017 and July 2018 in Center 1 were
allocated to the internal validation cohort, and all 75 patients
treated in Center 2 constituted the external cohort. The training
cohort was further randomly assigned into a development set
(n=183) for model training and a tuning set (n=110) for model
selection. The study flow and recruitment pathway are presented
in Figure 1.

Clinical-pathologic information, including age, sex and
pathologic T stage, was obtained from medical records. Two
experienced radiologists (6 and 14 years of experience in in
urogenital imaging) reviewed all the CT images together and
recorded data, including the number of tumors, the size and the
CT attenuation of the largest tumor. Any disagreement was
resolved by consensus.

CT Imaging
All the enrolled patients in both centers underwent preoperative
CTU with a similar protocol setup with different systems. The
CT image acquisition settings are provided in Supplementary
Table S1. Patients fasted for 4-6 hours, and then were asked to
drink about 1000 ml water about 45 minutes before the scan and
not to urinate until the scan was finished. Patients were scanned
from the hemidiaphragm to the pelvic floor. For the contrast
scans, patients were injected with 100 ml of nonionic contrast
material (Ultravist 370, Bayer Schering Pharma AG, Germany)
followed by a 100-ml saline chaser intravenously at a rate of 4–
4.5 mL/s after the unenhanced scan. Renal corticomedullary-
phase, nephrographic-phase and excretory-phase images were
acquired at 25 s, 75 s and 300 s after the bolus-triggering
threshold of 120 HU was achieved in the thoracoabdominal
aorta junction. To show BCa lesions better, coronal and sagittal
reformations were reconstructed besides axial images. But only
the axial nephrographic-phase images were used for
subsequent analysis.

Tumor Region Segmentation
Regions of interest (ROIs) were delineated semiautomatically on
thin-slice CT images of the nephrographic phase by an
experienced radiologist (G.Z., 6 years of experience in urogenital
imaging and 5 years of experience in tumor segmentation) who
was blinded to the pathological status of muscular invasion of
lesions. For patients with multiple lesions, only the largest lesion
was chosen for segmentation. A three-dimensional ROI of the
whole tumor was delineated semiautomatically using the
Deepwise Research Platform (Deepwise Inc., Beijing, China,
http://label.deepwise.com). On the platform, a level-set-based
June 2021 | Volume 11 | Article 654685
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segmentation algorithm was initially used to outline the tumor
margin automatically, and then the radiologist manually corrected
the tumor margin where it was not accurate. After 8 weeks, 93
patients in the development set were selected randomly, and their
tumors were segmented again by the same radiologist and another
radiologist (X.Z., 1 year of experience in urogenital imaging and
tumor segmentation) to evaluate intra- and interobserver
reproducibility by calculating intra- and interclass dice coefficients.

Development and Validation of the Model
The pipeline of DL modeling is presented in Figure 2. Before the
training of the model, the images were preprocessed. The voxel
size was normalized to 1.0 x 1.0 x 1.0 mm3, and the pixel values
were rescaled to (0,1). To further utilize the segmentation and
focus the model’s attention on the tumor area, the masked tumor
region and the original tumor region were stacked vertically, then
cropped it according to the tumor center to form an input volume
of 2 x 64 x 64 x 64 for channel, depth, height and width,
respectively. Our model was constructed on the basis of Filter-
guided Pyramid Network (FGP-Net), a novel 3D convolutional
network structure that was designed to capture the global feature
and the local features simultaneously in our previous study (14).
To avoid overfitting, the growth rate of the dense block was
reduced to 8, and a dropout layer with a drop rate of 0.5 was
added. In addition, the input patches were augmented by random
cropping and rotation during the training process. The output of
our model was the probability of the MIBC. Focal loss with a
gamma of 1.5 and a class weight of 3 were used to manage the
unbalanced amount of MIBC and NMIBC tumors. The Adam
optimizer was used to minimize the focal loss with an initial
learning rate of 0.001 (15). The output of our model was the
probability of the MIBC, the model that achieved the highest area
under the receiver operating characteristic curve (AUC) on the
tuning set during the training procedure was selected, and the
Frontiers in Oncology | www.frontiersin.org 355
cut-off value was selected at the points that maximized the Youden
index value on the tuning set. The AUC, accuracy, sensitivity, and
specificity of all sets were calculated. The calibration curve with
LOESS smoother was generated to assess the calibration of the DL
model (16).

Two methods that visualizing the feature extraction process
by the convolutional neural network were used to demonstrate
whether the DL model learned valuable features from
meaningful CT areas. First, the feature maps before
discriminative filter learning modules in our model were
extracted to show the target area of the model. The value of
the area on the feature map indicated its contribution to the final
result. The higher the value, the larger the contribution of the
area. Using gamma correction (g=2.0), the feature maps were
transformed, mapped to a colored scheme and overlaid on the
original images. Second, t-distributed stochastic neighborhood
embedding (t-SNE), which is an unsupervised dimension-
reduction algorithm to visualize high-dimensional data, was
used to test the effectiveness of the learned features. In this
study, t-SNE was used to reduce the dimension of features (the
output of the layer before the final fully connected layer) from
150 to 2 with a learning rate of 450 and a perplexity of 30.

Subjective Image Evaluation
For subjective assessment of muscular invasion of BC based on
CT images, a tumor was defined as MIBC if it invaded perivesical
fat with the tumor bulging out or based on the presence of
abnormal enhancement of bladder wall; otherwise, it was
considered NIMBC. Examples of these imaging features were
demonstrated to two radiologists (Reader 1, L.X., Reader 2, D.Z.,
with 3 and 9 years of experience in CTU, respectively) before
they started the review process. The two radiologists reviewed all
the images in validation cohorts (n=148) and determined
whether the tumor was MIBC or NMIBC independently,
FIGURE 1 | The study flow and the recruitment pathway. BC, bladder cancer; TURBT, transurethral resection of bladder tumor; CTU, computed tomography urography.
June 2021 | Volume 11 | Article 654685
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without knowledge of pathological information (including the
status of muscular invasiveness of tumors). For patients with
multiple tumors, only the largest tumor was evaluated. The
performance of the two radiologists for diagnosing MIBC was
evaluated by calculating accuracy, sensitivity and specificity.

Statistical Analysis
A two-sided P<0.05 indicated statistically significant differences.
Analysis of variance or Kruskal-Wallis H test was used to
compare clinical characteristics among development, tuning,
internal and external validation cohorts. These statistical
analyses were performed by using SPSS version 25.0 (IBM,
SPSS; Chicago, IL, USA). The comparison of the AUC was
calculated by the DeLong test (17) which was performed by
using R (version 3.6.0). The ROC curves, decision curve analysis
(DCA) and calibration curves were calculated using scikit-learn
(version 0.22.1) and matplotlib (version 3.1.3).
RESULTS

Patient Clinical Characteristics
Patient characteristics in all the cohorts are shown in Table 1. No
significant differences in gender or CT-reported largest lesion
diameter (P > 0.05) were noted among the training, internal
validation and external validation cohorts. Patient age, CT-
Frontiers in Oncology | www.frontiersin.org 456
reported number of lesions, CT attenuation of the largest
lesion and pT stage were significantly different. The proportion
A B

D

EC

FIGURE 2 | Workflow of the deep learning model for the prediction of muscle invasiveness status in bladder cancer patients. (A) Collection of the CT images of
MIBC and NMIBC. (B) Semiautomatic segmentation of the tumor region. (C) The masked tumor region and the original tumor region were stacked vertically to form
the input volume, and the cropped 2-channel input was constructed. (D) The structure of our deep-learning model. The model was constructed on the basis of
Filter-guided Pyramid Network (FGP-Net), a novel 3D convolutional network structure that is designed to capture the global feature and the local features
simultaneously. (E) Internal and external validation of our model. CT, computed tomography; FC, fully connected layer.
TABLE 1 | Clinical characteristics of patients with bladder cancer.

Characteristics Training
cohort*
(n=293)

Internal
validation

cohort (n=73)

External
validation

cohort (n=75)

p-
value

Age 0.038
Median (IQR) 65 (56,72) 68 (61,74) 65 (59,77)
Gender 0.166
Female 75 (25.6) 13 (17.8) 13 (17.3)
Male 218 (74.4) 60 (82.2) 62 (82.7)
CT-reported number
of lesions

0.016

Unifocal 229 (78.2) 66 (90.4) 54 (72.0)
Multifocal 64 (21.8) 7(9.6) 21 (28.0)
CT-reported largest
lesion diameter (cm)

0.063

Mean ± SD 2.71 ± 1.67 2.33 ± 1.62 2.78 ± 1.70
≤3 188 (64.2) 57 (78.1) 52 (69.3)
>3 105 (35.8) 16 (21.9) 23 (30.7)
CT attenuation of the
largest lesion (HU)

0.030

Mean ± SD 67.1 ± 14.0 56.3 ± 20.9 70.5 ± 13.0
Pathologic T stage 0.010
≤T1 217 (74.1) 58 (79.5) 44 (58.7)
≥T2 76 (25.9) 15 (20.5) 31 (41.3)
J
une 2021 | Volu
me 11 | Article 6
*The training cohort (n=293) is the combination of the development (n=183) and tuning
(n=110) cohorts. IQR, interquartile; SD, standard deviation.
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of MIBC was significantly increased in the external validation
cohort (P = 0.010).

The Performance Assessment and the
Clinical Usefulness of the Model
For the semiautomatic segmented ROI, the intraclass dice
coefficient (0.800 ± 0.201) indicating favorable reproducibility,
while the interclass dice was relatively low (0.706 ± 0.253). The
ROC curves of the DL model are presented in Figure 3A. The
model produced satisfactory performance in the development
(AUC 0.936) and tuning (AUC 0.891) cohorts. The AUC in the
internal validation cohort and the external validation cohort
reached 0.861 (95% CI: 0.765, 0.957) and 0.791 (95% CI: 0.678,
0.904), respectively, demonstrating good differentiating ability
between MIBC and NMIBC and good model robustness. The
Frontiers in Oncology | www.frontiersin.org 557
cut-off value that maximized the Youden index was 0.337. The
performance of our model for differentiating between MIBC and
NMIBC on development and tuning sets is also summarized
in Table 2.

The calibration curves of the model exhibited good agreement
between the model predicted outcome and the real status of
muscular invasiveness (Figure 3C). The DCA indicated that the
DL model could add more benefit to patients than the “treat all”
or “treat none” strategies when the threshold probability was
ranged from 0 to 0.74 in the internal validation cohort and 0.21
to 0.79 in the external validation cohort (Figures 3D, E).

The Comparison With Radiologists
In the subjective assessment of muscular invasion of BCa, the
two radiologists generally performed slightly worse compared
A B

D E

C

FIGURE 3 | Performance of the deep learning model for the differentiation of MIBC and NMIBC. (A) Receiver operator characteristic curves of the model in four
different cohorts. (B) Comparison of the performance between the model and two radiologists. (C) Calibration curves of the model in internal and external validation
cohorts. The calibration curve showed that the predicted probabilities generally agreed with the observed probabilities. The predictive performance of the model in
the external validation cohort exhibited a closer fit to the perfect calibration. (D, E) showed decision curve analyses (DCA) in the internal and external validation
cohorts respectively. DCA compared the net benefit of the deep learning model versus treat all or treat none are shown. The net benefit was plotted versus the
threshold probability. The net benefits of the deep learning model (blue line) were superior to the benefits of treating all or treating none.
TABLE 2 | Performance of the model in development, tuning and validation cohorts.

AUC (95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Development cohort
(n=183)

0.936
(0.901, 0.971)

0.836
(0.773, 0.885)

0.872
(0.736, 0.947)

0.824
(0.747, 0.882)

Tuning cohort
(n=110)

0.891
(0.832, 0.950)

0.800
(0.711, 0.868)

0.828
(0.635, 0.935)

0.790
(0.683, 0.87)

Internal validation cohort (n=73) 0.861
(0.765, 0.957)

0.795
(0.681, 0.877)

0.733
(0.448, 0.911)

0.810
(0.682, 0.897)

External validation cohort (n=75) 0.791
(0.678, 0.904)

0.747
(0.631, 0.837)

0.710
(0.518, 0.851)

0.773
(0.618, 0.880)
June 2021 | Volum
AUC, area under the receiver operating characteristics curve; CI, confidence interval.
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with the DL model (Table 3 and Figure 3B). In the internal
validation cohort, the accuracy and specificity of Reader 1 (0.685
and 0.621) and Reader 2 (0.585 and 0.517) were lower than those
of the model (0.795 and 0.810), while the sensitivity of them
(0.933 and 0.800) exceeded that of the model (0.733). In the
external validation cohort, Reader 1 demonstrated comparable
performance compared to the model with the same accuracy
(0.747) and similar specificity (0.727 vs 0.773) and sensitivity
(0.774 vs 0.710). However, the performance of Reader 2 was
inferior to the model in general with a lower accuracy (0.573 vs
0.747) and specificity (0.386 vs 0.773) but higher sensitivity
(0.839 vs 0.710).

Additional Analysis
Violin plots of the predicted score for muscle invasion in the
development, tuning, internal and external cohorts are shown in
Figure 4A. NMIBC patients had significantly lower predicted
scores than those with MIBC in the development (median 0.214
[interquartile range 0.136-0.291] vs 0.813 [0.607, 0.938], P<
0.001), tuning (0.225 [0.161, 0.304] vs 0.539 [0.385, 0.846], P <
0.001), internal validation (0.216 [0.172, 0.288] vs 0.422 [0.327,
0.843], P < 0.001) and external validation (0.184, [0.124, 0.305] vs
0.759 [0.307, 0.889], P < 0.001) cohorts. The waterfall plots in
Figures 4B, C illustrate the distribution of the predicted score
and the status of muscular invasion of individual patients in the
internal and external validation cohorts, respectively.

We used feature maps and t-SNE to visualize the learned
features. Figure 5A demonstrates feature maps of four examples
(two for MIBC and two for NMIBC) from the external validation
cohort. The focus area of the model or the active area is
illustrated by bright colors. These regions represent different
characteristics of lesions and were in accord with human
observations, and the models would aid in the classification of
lesions. T-SNE visualization demonstrated that the learned
features of the DL model can distinguish MIBC and NMIBC.
The locations of BC lesions depended on the similarity of their
features. They were close to each other if they had similar
features; otherwise, they were far apart. As shown in
Figure 5B, MIBC and NMIBC clusters were basically separated
Frontiers in Oncology | www.frontiersin.org 658
except for several outliners, demonstrating that the developed
model has captured effective features for differentiation.
DISCUSSION

The aim of this double-center study was to predict the muscular
invasiveness of bladder cancer based on enhanced CT images. Our
DL model exhibited relatively good performance to discriminate
NMIBC fromMIBC. The AUCwas 0.861 in the internal validation
cohort and 0.791 in the external validation cohort.

Preoperative evaluation ofmuscle invasion in bladder cancer is
important for patient management. Currently, transurethral
resection of bladder tumor is the standard for preoperative T
staging evaluation (3, 7, 18–21). As the procedure highly depends
on surgeon experience and biopsy quality, its diagnostic accuracy
for MIBCs varies. MRI is also recommended, and the Vesical
Imaging-Reporting and Data System based on multiparametric
MRI has been proposed for the diagnosis of MIBCs (22). But it is
still a subjective evaluation process based on the experience of
radiologists. In recent years, researchers have investigated
alternative techniques to assist muscle invasiveness evaluation.
Garapati et al. (23) explored machine learning methods to
discriminate between MIBC and NMIBC in 84 BC lesions from
76 CTU cases retrospectively. They found thatmorphological and
texture features achieved comparable performance with AUCs of
about 0.90. Some other studies developed MRI-based radiomic
models for preoperative prediction of the muscle-invasive status
of BCa with AUCs ranging from 0.87 to 0.98 (24–27). These
studies revealed encouraging results for avoiding subjectivity in
the preoperative assessment of BCa, but external validation in
larger cohorts is required to verify the clinical validity of these new
techniques. In contrast to the above studies, we investigated the
feasibility of using DL on CT images to differentiate between
MIBC and NMIBC. We used a well-designed deep learning
structure, which utilizes the dense block and the pyramid
structure to extract the features effectively and integrate the
global features and the local features (14). Considering the
relatively small sample size, several methods were utilized to
alleviate the problem of overfitting, including reducing the
growth rate of the dense block and data augmentation. The focal
loss, which is designed to handle the imbalance of the data amount
and the difficulty, was employed (15). Regarding diagnostic
performance, the AUCs in this study were slightly lower than
those in other studies. When we analyzed what went wrong and
why, we found that most true NMIBC cases that were mistakenly
identified asMIBCwere large (typically >4 cm), and almost all the
MIBC cases falsely recognized as NIMBC were small (typically <
1 cm). These findings suggest that the DL model considers the
tumor size as one of the key features to determine the muscle-
invasive status of BCa.

In general, the DL model outperformed the two radiologists in
terms of accuracy, and the DL model also demonstrated increased
specificity. But the DL model exhibited reduced sensitivity. This
finding may be explained by the fact that radiologists are more
prone to suspect a tumor to bemuscularly invasive due to their fear
of the negative consequences of missing MIBC. Moreover,
TABLE 3 | Performance of two radiologists and the deep learning model on
validation cohorts.

Validation
cohort

Reader Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

Internal Reader 1 0.685
(0.564, 0.786)

0.933
(0.660, 0,.997)

0.621
(0.483, 0.742)

Reader 2 0.585
(0.454, 0.688)

0.800
(0.514, 0.947)

0.517
(0.383, 0.649)

Model 0.795
(0.681, 0.877)

0.733
(0.448, 0.911)

0.810
(0.682, 0.897)

Reader 1 0.747
(0.631, 0.837)

0.774
(0.585, 0.897)

0.727
(0.570, 0.845)

External Reader 2 0.573
(0.454, 0.685)

0.839
(0.655, 0.939)

0.386
(0.247, 0.545)

Model 0.747
(0.631, 0.837)

0.710
(0.518, 0.851)

0.773
(0.618, 0.880)
AUC, area under the receiver operating characteristics curve; CI, confidence interval.
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surprisingly, Reader 1, who had less experience in urogenital
imaging, demonstrated better performance than Reader 2. Thus, a
radiologist’s experience may not necessarily have a positive
correlation with prediction accuracy. On the other hand, our
results also indicated that the DL model could produce a more
stable, objective and balanced outcome for discrimination
between MIBC and NMIB compared to subjective assessment
by radiologists.
Frontiers in Oncology | www.frontiersin.org 759
ROI segmentation is an essential part of the research process.
Currently, 3D segmentation of the whole tumor is widely
adopted by researchers because it is thought to provide a more
comprehensive evaluation compared to one ROI from the largest
cross-sectional area of the tumor. Researchers typically need to
manually draw the outline of the tumor on each image slice,
which is time consuming, especially when the study population is
large. Automated segmentation has been proposed, but the
A

B

C

FIGURE 4 | Illustrations of the performance of the deep learning model. (A) Violin plots of predictive scores in the development, tuning, internal validation and
external validation cohorts. (B, C) showed waterfall plots of the distribution of predictive scores and muscle invasive status of each patient in the internal and external
validation cohorts respectively.
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accuracy for BCa remains unclear. In this study, we applied a
semiautomatic approach to segment each tumor. This method is a
combination of automated segmentation by the platform and small
modification by the radiologist. According to our experience, this
semiautomatic method not only greatly accelerates the study
process but also ensures the accuracy of ROI delineation. The
interclass dice coefficient of 0.706 forROI segmentationwas slightly
low. We analyzed those significantly different segmentations
between the two radiologists and found that the radiologist with
less experiencemistakenly identifiedBCa lesions inpatientswith an
irregular bladder shape or with prostate hyperplasia. This
radiologist also failed to correctly segment some BCa lesions that
presented as abnormal enhancement of the focal bladder wall. This
result reminded us of the importance of the experience and the
training of radiologists for ROI segmentation to reach a solid and
reliable result.

Although the resultswerenot very satisfactory, our study still has
several strengths. First, this study explored the capacity of a DL
model based on CT images to determine the status of muscle
invasiveness of BCa, which provided a basis for subsequent studies
to apply this technique to tackle relevant clinical problems. Second,
unlike some other studies that used cross validation or single-center
validation, this study used an external validation cohort enrolled
from a different hospital, which allowed us to investigate the
generalizability of the DL model. In addition, the study
population of this study was larger than many other studies
focusing on the application of machine learning in BCa. Third,
CT-related studies of discriminating MIBC from NMIBC are
limited. There is no doubt that CT has its limitations due to its
Frontiers in Oncology | www.frontiersin.org 860
low resolution of soft tissue. However, our study indicated thatwith
the help ofnovel techniques, such asDL,we can also obtain valuable
information fromroutineCTimages toguidepatient therapy.Thus,
it is still worth performing CT-based studies to solve clinical
problems in BCa management.

Our study has some limitations. First, this is a two-center
study, but the number of patients in Center 2 is relatively small.
Multicenter studies with larger population or prospective clinical
trials should be conducted to validate the results in the future.
Second, the proposed DL model exhibited its potential but the
performance was less than satisfactory and has yet to be
improved. Constant efforts should be made to optimize the
model before it could be applied in real clinical practice. Third,
the model was based on visible tumors on enhanced CT given
that we excluded tumors detected by cystoscopy but invisible on
CT images. Although these tumors constitute a small proportion
of BCa, they may still limit the scope of the model’s application to
some extent. Fourth, in this study, we did not incorporate other
clinical information which may be helpful for determining the
invasiveness of BCa, such as urine DNA or RNA. We aimed to
investigate the potential of deep learning to facilitate CT
evaluation of BCa, thus we focused on CT images only. It’s
possible that integrating those useful clinical information into
the model might further improve the prediction accuracy. Fifth,
we only chose the largest one among multiple lesions for
segmentation and there is a chance that the largest one didn’t
have the highest T stage. But usually larger lesions are supposed
to have higher T stage, and it’s very difficult to make one-to-one
correspondence between the lesion on CT images and the lesion
A

B

FIGURE 5 | Examples of feature maps from validation cohorts and visualization of the effectiveness of the learned features. (A) Two cases from MIBC and two
cases from NMIBC are shown. The active regions were mainly overlaid on the areas with visual characteristics that were helpful for discriminating between MIBC and
NMIBC, including the internal region of the tumor, corresponding bladder wall, and the surrounding outside pelvic fat. (B) Colored points represent the NIMBC (blue)
and MIBC (orange). Effective features were learned by the model, and the two categories of nodules were well clustered. The eight examples show images
corresponding to circled points. Nodules in sets a and c were highly discriminated by the model, whereas nodules in sets b and d were less discriminated because
they shared similar features with the opposite tumor.
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pathologist evaluated, we think choosing the largest one for
analysis is acceptable.

In conclusion, we developed a DL model based on enhanced
CT images to predict muscle invasiveness of BCa. This model
should favorable performance. It could provide more useful
information for individual preoperative evaluation, may
facilitate clinical decision making and improve patient care.
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Predicting Malignancy and
Invasiveness of Pulmonary
Subsolid Nodules on CT Images
Using Deep Learning
Tianle Shen1†, Runping Hou1,2†, Xiaodan Ye3, Xiaoyang Li1, Junfeng Xiong2, Qin Zhang1,
Chenchen Zhang1, Xuwei Cai1, Wen Yu1, Jun Zhao2*‡ and Xiaolong Fu1*‡

1 Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China, 2 School of
Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China, 3 Department of Radiology, Shanghai Chest
Hospital, Shanghai Jiao Tong University, Shanghai, China

Background: To develop and validate a deep learning–based model on CT images for
the malignancy and invasiveness prediction of pulmonary subsolid nodules (SSNs).

Materials and Methods: This study retrospectively collected patients with pulmonary
SSNs treated by surgery in our hospital from 2012 to 2018. Postoperative pathology
was used as the diagnostic reference standard. Three-dimensional convolutional
neural network (3D CNN) models were constructed using preoperative CT images to
predict the malignancy and invasiveness of SSNs. Then, an observer reader study
conducted by two thoracic radiologists was used to compare with the CNNmodel. The
diagnostic power of the models was evaluated with receiver operating characteristic
curve (ROC) analysis.

Results: A total of 2,614 patients were finally included and randomly divided for training
(60.9%), validation (19.1%), and testing (20%). For the benign andmalignant classification,
the best 3D CNN model achieved a satisfactory AUC of 0.913 (95% CI: 0.885–0.940),
sensitivity of 86.1%, and specificity of 83.8% at the optimal decision point, which
outperformed all observer readers’ performance (AUC: 0.846±0.031). For pre-invasive
and invasive classification of malignant SSNs, the 3D CNN also achieved satisfactory AUC
of 0.908 (95% CI: 0.877–0.939), sensitivity of 87.4%, and specificity of 80.8%.

Conclusion: The deep-learning model showed its potential to accurately identify the
malignancy and invasiveness of SSNs and thus can help surgeonsmake treatment decisions.

Keywords: pulmonary subsolid nodules, computed tomography, diagnosis, computer-aided diagnosis (CAD),
deep learning
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INTRODUCTION

Lung cancer is one of the most lethal malignancies worldwide
(1). Early detection and accurate diagnosis of pulmonary nodules
can decrease the mortality of lung cancer (2). According to the
content of solid component, pulmonary nodules can be divided
into solid nodules and subsolid nodules (SSNs). They have great
difference in clinical management due to their different biological
characteristics (3).

SSNs are defined as nodular areas of homogeneous or
heterogeneous attenuation that did not completely cover the
whole lung parenchyma within them, including pure ground-
glass nodules (PGGNs) and part-solid nodules (PSNs) (4)
(Supplementary Figure S1). According to the pathology, SSNs
can be further divided into benign and malignant lesions, of
which malignant SSNs include pre-invasive (atypical
adenomatous hyperplasia, AAH; adenocarcinoma in situ, AIS;
minimally invasive adenocarcinoma, MIA) and invasive lesions
(invasive pulmonary adenocarcinoma, IA) (5). The three
categories of SSNs have different biological characteristics and
need different clinical management. Benign SSNs include
hemorrhage, inflammation, fibrosis, pulmonary alveolar
proteinosis, etc. (6), which need almost no intervention but
only follow-up. In contrast, malignant SSNs include subtypes
of adenocarcinoma, and those malignant pathological types need
careful intervention, such as surgical resection and stereotactic
body radiation therapy (SBRT) (7). To be specific, receiving
systematic lymph node dissection has no statistical significance
on improving the prognosis of patients with pre-invasive SSNs
(8, 9). The pre-invasive malignant SSNs may just need to be
treated with conservative approach (sub-lobectomy or wedge
resection) with long-term CT follow-up, while more aggressive
surgical treatment (standard lobectomy with extended lymph
node dissection) is necessary for patients with invasive (IA)
SSNs. Also, the prognosis of different pathological subtypes
varies greatly after the corresponding treatment (10, 11).
Therefore, accurate classification of SSNs has a great
importance for clinical decision-making and prognosis
evaluating, especially for thoracic surgeons as it determines the
candidates of surgery and the type of lung resection.

Nowadays, the prevalence application of high-resolution CT
scanning makes more SSNs be detected at an early stage.
However, for those detected SSNs, there exist many difficulties
for accurate diagnosis during clinical practice. For example, the
synchronous or asynchronous appearance of multiple primary
SSNs, the inappropriate location of the SSNs, and the poor
physical condition of the patients make it impossible to access
each SSN by biopsy. Therefore, CT imaging has become the most
important method to help clinicians make the diagnostic
decisions of SSNs. As reported, clinicians often make decisions
according to some CT morphological features (12, 13).
Nevertheless, these morphological features are subjective and
qualitative, which often lead to low inter-observer agreement
and unsatisfied accuracy (14–16). The inaccurate diagnosis
caused by the above limitations have led to undertreatment or
Frontiers in Oncology | www.frontiersin.org 264
overtreatment for patients with SSNs in clinical practice.
Therefore, a more objective and quantitative method to
accurately distinguish the malignancy and invasiveness of SSNs
is urgently needed.

Recently, deep learning has been widely used to analyze
medical images on various image modalities (17–20). Previous
studies have shown the efficiency of deep learning in pulmonary
nodule detection and classification areas (21–23). However, most
of these studies are based on solid nodules, and few concentrate
on SSNs. Therefore, this study aims to develop and validate a
deep learning–based malignancy and invasiveness prediction
model in patients with SSNs from the realistic clinical cohort.
MATERIALS AND METHODS

Patients
With approval from the institutional review board, we
retrospectively collected patients with pulmonary nodules in
Shanghai Chest Hospital from January 1, 2012, to December
31, 2018. The inclusion criteria include the following: (1) Patients
received surgical resection of pulmonary nodules in our hospital.
(2) Patients received pre-surgery chest CT scanning (thickness
≤5 mm) in our hospital. (3) Subsolid nodules were confirmed in
the chest CT. Patients were excluded if (1) post-surgery
pathological results were not available; (2) distant metastasis
was found in preoperative examinations; (3) other malignant
radiological features were present including enlarged hilar nodes,
pleural effusion, atelectasis, etc.

CT Image Acquisition and
Nodule Segmentation
Chest CT scans were taken with a 64-detector CT row scanner
(Brilliance 64; Philips, Eindhoven, Netherlands). Part of the
patients conducted a target thin-section helical CT scan with
layer thickness of 1 mm, while the others only had the whole lung
scan with a layer thickness of 5 mm.

SSNs were manually segmented by one radiation oncologist
(with 5 years of experience in CT interpretation) using the MIM
software (version 5.5.1, shown with window level −400 and
window width 1,600), then the region of interest (ROI) was
confirmed by one radiologist (with over 10 years of experience in
CT interpretation).

Image Preprocessing
The image preprocessing procedure are as follows: CT scans were
converted into Hounsfield units (HU), then voxel intensity was
clipped to [−1,024, 400] and [−160, 240] HU, respectively. Min-
Max normalization was used to rescale the image to [0,1]. Linear
interpolation was applied to get isotropic volumes with a
resolution of 0.5 mm × 0.5 mm × 0.5 mm. Then, an image
cube and the corresponding segmentation mask with 64 × 64 ×
64 voxels were cropped from the interpolated CT image centered
on the tumor. The cropped image cubes were used as the input of
our 3D CNN classification model.
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Pathological Information
According to the pathological report, each SSN was given a
specific label (benign, AAH, AIS, MIA, IA). For the malignancy
classification, patients who had at least one pathologically
confirmed malignant SSN (including AAH, AIS, MIA, IA)
were regarded as positive samples with label 1, and those
without malignant findings were negative samples with label 0.
For the invasiveness classification, patients who were
pathologically confirmed as AAH, AIS, or MIA were regarded
as pre-invasive samples with label 0, while patients confirmed as
IA were regarded as invasive samples with label 1.

Development of the Classification Model
We respectively established a binary classifier to distinguish
benign and malignant SSNs and another one to recognize pre-
invasive and invasive SSNs. The framework of our models is
shown in Figure 1.

We totally constructed three models for the malignancy and
invasiveness prediction of SSNs, respectively. First, a logistic
regression model built with nodule size was used as the baseline
clinical model. Second, a 3D CNN model based on modified
adaptive DenseNet using the lung window image as input was
constructed (AdaDense) (24). The adaptive dense connected
structure can effectively reuse the shallow layers’ features by
allowing each layer access to feature maps from all of its
preceding layers, which makes it easier to get a smooth
decision function with better generalization performance.
However, as most of the subsolid nodules’ size are small,
there exist lots of noisy information from the background
in the cropped image patches. Therefore, we considered
incorporating the segmentation mask as attention map to help
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the network focus on regions within the nodule. Moreover,
studies have shown that solid portions of SSNs detected by
mediastinal window can help distinguish pure ground-glass
nodules and part-solid nodules (25, 26), and the proportion of
solid components are considered to be related with the
malignancy and invasiveness classification (8, 27). Therefore,
to take the segmentation mask and solid component factors into
account, we finally built another 3D CNN model using the lung
window image [HU: (−1,024,400)] incorporated with
mediastinal window image [HU: (−160,240)] and mask image
as input (AdaDense_M). Then, given the CT image of SSNs, the
CNN model output the predicted probability of the SSN being
malignancy or invasiveness.

The architecture of the AdaDense_M model can be seen in
Figure 1, which consists of two parts, data fusion and main
structure. For the data fusion part, the CT image patch in
different windows and the corresponding segmentation mask
were separately convolved by a kernel of 3×3×3 to obtain
channels 1, 2, and 3, respectively. Then the three channels
were concatenated together and convolved by a 3×3×3 kernel
with stride=2 as the input of the main structure. This operation
reduced the original feature map of 64×64×64 to the size of
32×32×32. For the main structure part, there were three dense
blocks connected by transition layers. Each of the dense block
contained four bottleneck structures, and after each bottleneck
layer, all feature maps in the previous layers were adaptively
concentrated together to realize feature reuse. The bottleneck
layer can reduce the number of input feature maps, thereby
improving the computational efficiency. The transition layer
further compressed parameters by reducing half of the feature
maps after dense blocks.
FIGURE 1 | Framework of our model. We developed a 3D CNN model for the malignancy and invasiveness recognition of subsolid pulmonary nodules. The 3D
CNN model was based on modified 3D adaptive DenseNet and was improved by incorporating different window images and segmentation mask.
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As the sample size was limited, we used data augmentation to
avoid overfitting. We did online augmentation including
rotations, reflection, and translation. For a given nodule patch
and the corresponding mask, they were first translated by one to
three voxels in three directions. Then the translated images were
randomly rotated by 90, 180, 270, and 360° around the x-, y-, and
z-axis. Finally, the rotated images were randomly flipped along
the x-, y-, and z-axis.

For the network training, we used cross-entropy function as
loss function and Adam optimizer to train the model. Xavier was
used to initialize the network. The learning rate was set to 1e-4.
Maximum iterative epoch was 1,000. We early stopped the
training process when the validation dataset’s performance had
no improvement within five epochs. The batch size for each
iteration was set to 24. The multiple test method was used to
improve the stability of testing performance. Given a test
example, the input image patch with different windows and the
corresponding mask was randomly generated 10 times to obtain
10 different prediction probabilities, and the final prediction
result was computed by averaging all prediction probabilities.
The study was implemented with Tensorflow framework on a
GeForce GTX 1080Ti GPU.

Observer Reader Study
To compare the performance of the CNN model with human
experts for malignancy prediction, an observer reader study was
conducted in the same testing dataset. Two radiologists (with
over 10 years of clinical experience) were respectively asked to
grade the SSNs based on preoperative CT images. The scores
ranged from 0 to 10, and the higher the score was, the more likely
they thought the SSN was malignant. The detailed scoring
criteria can be found in Supplementary Figure S2. The
radiologists made their own decisions independently. Also, the
radiologists were given access to patients’ demographics and
clinical history as auxiliary information.

Model Evaluation and Statistical Analysis
To evaluate different models’ performance, the receiver operating
characteristic curve (ROC) was plotted, and the area under the
ROC curve (AUC), sensitivity, and specificity were calculated to
evaluate these models’ discrimination ability. Delong test was
used to pairwise compare different ROCs. Calibration curve was
utilized to assess the calibration ability of the model. Brier score
was calculated to quantify the calibration of those models, of
which lower values (closer to 0) indicate better calibration.
Decision curve analysis was used to determine the clinical
usefulness of different models by calculating the net benefit of
the constructed models at different threshold probabilities.

Mann-Whitney test was used to compare differences of the
mean value of patient’s age and max diameter in different groups.
Pearson’s c2 test was used to compare differences of patients’
gender and location proportion in different groups.

The statistical analysis was conducted with R software
(Rproject.org) and python (version 3.7). P-value less than 0.05
was considered as statistically significant difference.
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RESULTS

Patient Characteristics
From the total of 2,614 patients, 1,791 were malignant and 823
were benign nodules. The number of patients with 1 mm layer
thickness was 1,735 (accounting for 66.4%), while the other 879
(33.6%) patients were with scans of 5 mm thickness. The median
nodule diameter was 1 cm. All patients’ characteristic statistical
information are shown in Table 1. Detailed distribution of
nodule sizes is shown in Supplementary Figure S3. Generally,
female patients with larger diameter and location of right upper
and left upper lobe were more likely to be malignant. The
patients were randomly divided into training (60.9%),
validation (19.1%), and testing datasets (20%) for the following
analysis. The distribution of different subtypes of SSNs on each
dataset is shown in Table 2. No significant difference was found
among the datasets (Supplementary Table S1).

Performance of the Observer
Reader Study
The observer readers’ classification ROC, AUC, sensitivity, and
specificity are shown in Table 3 and Supplementary Figure S4.
As we can see, one radiologist achieved the best performance
with an AUC of 0.877 (95% CI: 0.843–0.911), sensitivity of
95.4%, and specificity of 66.7%, which was significantly better
than another radiologist reader with an AUC of 0.815 (95% CI:
0.774–0.856). The difference also indicated the low inter-
observer agreement of the malignancy recognition in
clinical practice.

Performance of the 3D CNN Model for
Malignancy Prediction
The ROC curves of the 3D CNN models for malignancy
classification in the testing dataset are shown in Figure 2. As
we can see, the best CNN model based on CT images was 3D
CNN incorporated with different window images and the
segmentation mask (AdaDense_M). The AUC of the best
CNN model was 0.913 (95% CI: 0.885–0.940), which was
significantly better than the 3D CNN only with the lung
window image input (AdaDense) with an AUC of 0.848 (95%
CI: 0.810–0.886). Also, the CNN model performed significantly
better than clinical features-based model (AUC: 0.618),
and adding clinical features to the CNN model yielded no
significant improvement (AUC: 0.914, p = 0.489). The
sensitivity and specificity of the AdaDense_M model at the
optimal decision point were 86.1 and 83.8%. With a sensitivity
of 100, 98, and 95%, the percentages of benign nodules that
could be correctly identified was 32.5, 47.4, and 63.0%. Also, the
Adadense_M model performed better than all the observer
readers (AUC: 0.846±0.031).

The calibration curve and decision curve of the CNN model
(AdaDense_M) were plotted in Figure 3. The Brier score was
0.101, showing satisfactory consistency between the predicted
malignant probability and actual observation (Figure 3A). Also,
the model can bring apparent benefits for the malignancy
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classification when the threshold was set to 0.01–0.99 compared
with the treat-all strategies (perform surgeries in all
patients) (Figure 3B).
Performance of the 3D CNN Model for
Invasiveness Prediction
The ROC curves of the 3D CNN models for invasiveness
classification in the testing dataset are shown in Figure 4A.
The CNN model (AdaDense_M) achieved satisfactory AUC of
0.908 (95% CI: 0.877–0.939), sensitivity of 87.4%, and specificity
of 80.8% at the optimal decision point. The confusion matrix is
shown in Table 4. Calibration curve showed satisfactory
consistency between the predicted invasiveness probability and
the actual observation with a Brier score of 0.124 (Figure 4B).
TABLE 2 | Distribution of SSN subtypes on each dataset.

Training Validation Testing Total

Benign 516 154 154 824
AAH/AIS 180 53 64 297
MIA 371 118 129 618
IA 525 175 175 875
Frontiers in Oncolo
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FIGURE 2 | The ROC curves of the CNN models for malignancy prediction.
The ROC curves of the AdaDense_M (CNN incorporated with different
window images and segmentation mask), AdaDense (CNN only with the lung
window image as input), and baseline clinical model (diameter) for malignancy
prediction in the testing dataset. The three models’ corresponding AUCs
were 0.913, 0.848, and 0.618, respectively. DeLong tests showed that the
AdaDense_M performs significantly better than the AdaDense model and the
clinical model (p<0.001).
TABLE 1 | Clinical characteristic of total patients.

Clinical Characteristics Total Patients (n=2,614) Malignant Nodules
(n=1,791, 68.5%)

Benign Nodules (n=823, 31.5%) Statistical Significance (Test Used)

Gender
Male 924 (35.3%) 577 (32.2%) 347 (42.2%) P<0.0001

(Pearson c2)Female 1,690 (64.7%) 1,214 (67.8%) 476 (57.8%)
Age
Median (Range) 57 (15–84) 58 (15–84) 57 (19–81) P=0.055

(Mann-Whitney)
Max Diameter (cm)
Median (Range) 1.0 (0.2–4.5) 1.1 (0.2–4.5) 0.9 (0.2–4.4) p<0.0001

(Mann-Whitney)
Solid Ingredients
PGGNa 1,768 (67.6%) 1,199 (66.9%) 569 (69.1%) P=0.286

(Pearson c2)
PSNb 846 (32.4%) 592 (33.1%) 254 (30.9%)

Location
Right Upper Lobe 949 (36.3%) 671 (37.5%) 278 (33.8%) p<0.0001

(Pearson c2)
Right Middle Lobe 198 (7.6%) 117 (6.5%) 81 (9.8%)

Right Lower Lobe 469 (17.9%) 289 (16.1%) 180 (21.9%)

Left Upper Lobe 670 (25.6%) 505 (28.2%) 165 (20.0%)

Left Lower Lobe 328 (12.5%) 209 (11.7%) 119 (14.5%)
Ju
aPGGN, Pure ground-glass nodules.
bPSN, Part solid nodules.
TABLE 3 | Performance of the observer reader study.

AUC Sensitivity Specificity

Radiologist1 0.815 80.8% 76.5%
Radiologist2 0.877 95.4% 66.7%
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DISCUSSION

Accurate diagnosis of malignancy and invasiveness of SSNs plays
an important role in clinical decision-making, especially for
Frontiers in Oncology | www.frontiersin.org 668
thoracic surgeons. In this study, we developed and validated a
novel deep-learning model based on preoperative CT images for
accurate classification of SSNs. Moreover, the deep-learning
model outperformed radiologists for malignancy prediction.

According to the Fleischner recommendations (3), follow-up
CTs are recommended when subsolid nodules are initially
detected to differentiate them between transient and persistent.
Then, if the nodules are persistent, the management would be
determined based on the patient's age, performance status,
nodule size, and solid portion size. However, as there exist no
national strategy for early-stage lung cancer screening in China,
patients with pulmonary nodules may come to the hospital for a
variety of reasons. Thus, for Chinese patients in clinical routine,
A B

FIGURE 3 | The calibration curve and decision curve of the CNN model for malignancy prediction. (A) The calibration curve of the CNN model (AdaDense_M) for
malignancy prediction. The diagonal dotted line represents a perfect prediction by an ideal model. (B) The decision curve of the CNN model (AdaDense_M) for
malignancy prediction. The gray solid line represents the assumption that all patients had malignant nodules. The black solid line represents the assumption that no
patients had malignant nodules. The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true
positive, weighting by the relative harm of a false-positive and a false-negative result.
A B

FIGURE 4 | The ROC curve and calibration curve of the CNN model for invasiveness prediction. (A) The ROC curve of the CNN model (AdaDense_M) for
invasiveness prediction with an AUC of 0.908 in the testing dataset. (B) The calibration curve of the CNN model (AdaDense_M) for invasiveness prediction in the
testing dataset. The diagonal dotted line represents a perfect prediction by an ideal model.
TABLE 4 | Confusion matrix of the CNN model for invasiveness prediction.

CNN prediction

Ground Truth Pre-invasive Invasive Total

AAH/AIS 59 5 64
MIA 97 32 129
IA 22 153 175
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the lesions are usually larger at the first visit, resulting in the risk
of diagnosis by dynamic follow-up. Therefore, it is necessary to
diagnosis SSNs based on preoperative CT images at a single
point. Furthermore, this diagnostic result greatly determines the
subsequent treatment strategies in clinical practice. For SSNs that
are basically diagnosed as benign, almost no intervention but
only follow-up is needed. While for SSNs highly suspicious of
malignancy, surgery or SBRT is usually adopted according to the
individual condition of patients. More specifically, sub-
lobectomy is more appropriate for pre-invasive SSNs, while
lobectomy with extended lymph node dissection is more
suitable for invasive SSNs. Currently, the inaccurate diagnosis
based on radiologists’ subjective judgment may cause
overtreatment or undertreatment, which is harmful for the
long-term survival of patients. Here, we established a
quantitative deep-learning model that can accurately identify
the malignancy and invasiveness of SSNs before the operation.
This will play an important guiding role in the decision-making
of the final surgical resection range, which can avoid unnecessary
surgical trauma, reduce the complications of patients, and
preserve the lung function to the greatest extent, and at the
same time, patients can get radical treatment opportunities.

Considering that CNN has great advantage in automatically
extracting deep representative image features, we decided to
establish a CNN model for malignancy and invasiveness
recognition of SSNs. Our established CNN model incorporated
with different window images and segmentation mask
(Adadense_M) finally achieved satisfying classification
performance. Besides that, we tried to developed a fusion
model by combining the CNN model’s prediction result and
the best radiologist’s score with logistic regression. The fusion
model finally achieved an AUC of 0.956 (95% CI: 0.938–0.975)
for malignancy prediction, which was significantly better than
the CNN model or radiologist alone. This result means that the
CNN model has great potential to help the radiologist make
better diagnosis of malignancy of SSNs.

Small sample size was the bottleneck to develop a high-
efficacy prediction model for previous studies to distinguish
pulmonary SSNs (28–32) (Table 5). Our study utilized the
largest sample size to date with detailed CT images and
pathologic information of SSNs. Compared with models built
with qualitative features and radiomics (28–30), our CNN model
can automatically learn deep representative features, which have
stronger predictive ability than the hand-crafted features. Thus,
our CNN model performs significantly better than other
radiomics models for malignancy prediction of SSNs.
Furthermore, in comparison with models developed with CNN
(31, 32), our AdaDense_M model creatively uses the prior
Frontiers in Oncology | www.frontiersin.org 769
segmentation mask and tumor cube in mediastinal window as
attention map, which can make the network focus on
information within the tumor and its solid components.
Results show that the CNN model we built achieved a high
AUC value for invasiveness prediction of SSNs among the
existing studies.

This study also has some limitations. First, we only included
patients with pathologically confirmed SSNs who had undergone
surgical resection, which results in a selection bias of more
malignant patients. If more benign samples can be included,
our model would be further improved. Second, there are 33.5%
patients who only conducted regular CT scans with the layer
thickness of 5 mm. Due to the small size and unique morphology
of SSNs, the regular CT scans of SSNs are too blurred to excavate
deep features for CNN. More thin-section CT scan data will be
collected in the future, and the model performance may be
further improved. Moreover, external dataset and prospective
cohort are also required to validate the generalization ability of
our model.

CONCLUSION

We constructed a deep learning–based model to identify the
malignancy and invasiveness of pulmonary SSNs based on CT
images. The model achieved a satisfactory performance and was
proven with potential to guide the selection of surgery candidates
and type of lung resection methods.
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Radiomic features extracted from segmented tumor regions have shown great power in gene
mutation prediction, while deep learning–based (DL-based) segmentation helps to address
the inherent limitations of manual segmentation. We therefore investigated whether deep
learning–based segmentation is feasible in predicting KRAS/NRAS/BRAF mutations of rectal
cancer using MR-based radiomics. In this study, we proposed DL-based segmentation
models with 3D V-net architecture. One hundred and eight patients’ images (T2WI and DWI)
were collected for training, and another 94 patients’ images were collected for validation. We
evaluated the DL-based segmentation manner and compared it with the manual-based
segmentation manner through comparing the gene prediction performance of six radiomics-
basedmodels on the test set. The performance of the DL-based segmentation was evaluated
by Dice coefficients, which are 0.878 ± 0.214 and 0.955 ± 0.055 for T2WI and DWI,
respectively. The performance of the radiomics-based model in gene prediction based on
DL-segmented VOI was evaluated by AUCs (0.714 for T2WI, 0.816 for DWI, and 0.887 for
T2WI+DWI), which were comparable to that of corresponding manual-based VOI (0.637 for
T2WI, P=0.188; 0.872 for DWI, P=0.181; and 0.906 for T2WI+DWI, P=0.676). The results
showed that 3D V-Net architecture could conduct reliable rectal cancer segmentation on
T2WI and DWI images. All-relevant radiomics-based models presented similar performances
in KRAS/NRAS/BRAF prediction between the two segmentation manners.

Keywords: rectal cancer, deep learning, radiomics, magnetic resonance imaging, gene mutation
INTRODUCTION

It is clear that (1) Epidermal Growth Factor Receptor (EGFR) inhibitors could provide a beneficial
clinical outcome for metastatic Colorectal Cancer (mCRC) patients with wild-type rat sarcoma viral
oncogene homolog (RAS) genes rather than mutant types. However, some patients with wild-type
RAS still exhibit no response to anti-EGFR therapies. To address this confusion, the downstream
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factors of the RAS pathway was explored, and a specific mutation
in the BRAF gene (V600E) (2) was confirmed to be responsible
for less response from EGFR inhibitors and a worse prognosis.
Therefore, the National Comprehensive Cancer Network
(NCCN) guideline (3) recommends that the genotype of
KRAS/NRAS/BRAF should be determined in patients with
mCRC and further claims that patients with these mutations
should not be provided with medication such as cetuximab or
panitumumab, either alone or in combination with other
anticancer drugs, since there is little chance of them having
any benefit and the toxicity and expense suffered will not
be reasonable.

Up to now, it is still a state-of-the-art routine practice to
detect gene mutation status by pathologically analyzing biopsy
samples or resected tissues. However, there is a growing
recognition (4) that tissue-based genetic tests have some
limitations such as intratumoral heterogeneity, clonal
evolution, and poor DNA quality, especially in biopsy samples,
which can lead to a suboptimal profile of tumor genetic
characteristics and be of limited value in routine practice. In
recent years, liquid biopsy has emerged to be an alternative
method to determine gene status. However, this newly raised
technology is still limited for clinical practice due to the
availability of samples for testing, the non-standardized
method, and the low sensitivity in low-stage tumor (5).
Therefore, efficient identification of RAS and BRAF status in
rectal cancers using a non-invasive method, which could feasibly
reveal the whole tumor gene features in real-time, would be of
meaningful assistance in providing individual tailored therapy.

There have been a certain number of researches based on
PET/CT (6), CT (7), or MRI (8) focusing on detecting RAS gene
mutations in rectal cancer, while these studies all delineated
tumors manually. It is worth noting that the inherent limitations
of manual segmentation, such as long time-consumption and
inter- and intra-observer variability, have significant impact on
medical image quantitative analysis (9) and the efficacy and
safety of the radiotherapy plan (10). Fortunately, state-of-the-art
auto segmentation based on deep-learning architecture has been
developed and shown to be able to address these problems.
Successful application included making differential diagnosis in
brain (11) and contouring gross tumor volumes in rectal cancer
radiotherapy (12). For 3D medical image segmentation, 3D V-
Net, a special fully convolutional neural network (CNN), has
been shown to be able to produce satisfactory segmentation
results (13). The network first detects the boundary from a
“coarse” resolution, then provides accurate spatial localization
through a “fine” resolution.

Radiomics, with its high-throughput quantitative image
features, has shown exciting power in assessing treatment
response (14), genetic profile (8), predicting lymph node
(15), and distant metastasis (16) in respect to rectal
cancers. Furthermore, combinations of DL-based automatic
segmentation and radiomics have been demonstrated with
great potential in glioma grading (17), treatment response
assessment (18), and the isocitrate dehydrogenase-1 (IDH1)
mutation prediction (19) of glioblastoma. However, the
combination of DL-based auto segmentation with MR-based
Frontiers in Oncology | www.frontiersin.org 273
radiomics in predicting gene mutation for rectal cancer has not
been investigated. Thus, we attempt to segment rectal cancer via
3D V-Net on T2WI and DWI and then compare the
performance of radiomics in predicting the KRAS/NRAS/
BRAF status between DL-based auto segmentation and
manual-based segmentation.
MATERIALS AND METHODS

Dataset
This retrospective study was approved by the institutional review
board in our hospital, and informed patient consent was waived.
A total of 202 participants (mean age 59.88 ± 11.82 years, 139
males and 63 females) with rectal adenocarcinoma confirmed by
colonoscopy biopsy were recruited from 333 patients who had
underwent pelvic MR imaging on a 3.0T scanner (November
2016 to May 2019) after screening according to the following
exclusive criteria: (a) treated with any strategy before MR
imaging or surgery (n=75); (b) the interval between MR
imaging and postoperative pathology was more than 4 weeks
(n=8); (c) gross artifacts or severe distortion of MR images
(n=18); (d) absence of visible lesion or the volume of lesion
was less than 1 cm3 on MR image (n=7); (e) other pathological
types of tumor (mucinous adenocarcinoma, neuroendocrine
carcinoma, and malignant melanoma) (n=23). Among the 202
participants, 94 patients were subject to a KRAS/NRAS/BRAF
mutation test, and the interval was less than 4 weeks between MR
imaging and the gene test. Among the 94 patients who
underwent the gene test, 53 patients harbored mutant KRAS/
NRAS/BRAF, and 41 patients were wild type. The remaining 108
patients were not tested for mutations and could not be used to
assess mutation prediction, but they were suitable for modeling
segmentation. Therefore, we used the 108 patients without the
gene test as the training set for the auto segmentation model and
the 94 patients with the gene test as the test dataset, each
including both the T2WI and DWI images. The radiomics-
based model for gene mutation prediction was constructed
based on 94 patients’ MR images via 5-fold cross validation.
Considering the different imaging modalities and tumor
segmentation manners, we constructed six radiomics-based
models, which were T2WI+manual-based VOI, T2WI+DL-
based VOI, DWI+manual-based VOI, DWI+DL-based VOI,
T2WI+DWI+manual-based VOI, and T2WI+DWI+DL-based
VOI. The detailed experiment flow chart is shown in Figure 1,
and patients’ baseline clinical characteristics for genotype
prediction is summarized in Table 1.

MR Image Acquisition
All MR scanning was performed on a 3.0T MR scanner
(Discovery MR750, GE Medical Systems) with an eight-
channel phased-array coil. Bowel preparation was implemented
by drinking folium sennae soup (a kind of laxative) after dinner
the night before the examination. Antispasmodic and other
intestinal contrast agents were not used. Rectal MRI protocols
included axial T1WI (TR/TE = 487/8 ms), coronal and sagittal
T2WI (TR/TE = 7,355/136 ms), oblique axial small FOV FRFSE
July 2021 | Volume 11 | Article 696706
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TABLE 1 | Patient baseline characteristics for genotype (KRAS/NRAS/BRAF) prediction.

Characteristics Wild type (n = 41) Mutant type (n = 53) P

Age, years (Mean ± SD) 60.44 ± 12.93 61.57 ± 10.30 0.639
Gender, n (%) 0.297
Male 29 (70.7%) 32 (60.4%)
Female 12 (29.3%) 21 (39.6%)

Histologic grade, n (%) 0.206
Well 5 (12.2%) 9 (17.0%)
Moderate 35 (85.4%) 38 (71.7%)
Poor 1 (2.4%) 6 (11.3%)

pT stage, n (%) 0.021
T1/2 22 (53.7%) 16 (30.2%)
T3/4 19 (46.3%) 37 (69.8%)

pN stage, n (%) 0.183
N0 25 (61.0%) 25 (47.2%)
N1 16 (39.0%) 28 (52.8%)

CEA, n (%) 0.543
≤5 ng/ml (normal) 27 (65.9%) 38 (71.7%)
>5 ng/ml (abnormal) 14 (34.1%) 15 (28.3%)

CA-199, n (%) 0.588
≤27 u/ml (normal) 35 (85.4%) 43 (81.1%)
>27 u/ml (abnormal) 6 (14.6%) 10 (18.9%)
Frontiers in Oncology | www.frontiersin.org
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Chi-squared or Fisher’s exact tests, as appropriate, were used to compare the differences in categorical variables, while independent samples t test was used to compare the differences in
age. Bold value: Rectal cancer with more advanced T stage is prone to evolve mutant KRAS/NRAS/BRAF (P=0.021). p, pathological.
FIGURE 1 | Experiment flow chart. VOI, volumes of interest.
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T2WI (TR/TE = 6,055/130 ms, Slice Thickness = 3 mm, Gap =
0.3 mm, FOV=200 × 200 mm, Matrix = 352×256), and axial
single-shot EPI DWI (TR/TE = 4,734/80 ms, Slice Thickness =
4 mm, Spacing = 0.5 mm, FOV=340 × 340 mm, Matrix =
128×140, NEX = 8, b = 0, 1,000 s/mm2). An oblique axial
T2WI high-resolution sequence was planned perpendicularly
to the bowel with the tumor, while the axial DWI sequence
was performed parallelly to the horizontal line.

Imaging Pre-Processing
As the reliability of manual VOI delineation had been reported in
our previous study (20), the whole-tumor volume was manually
delineated as the ground truth annotation on T2WI and DWI
(b=1,000 s/mm2) images by one radiologist with 8 years of
experience in abdominal MRI and scrutinized by another
senior abdominal MRI radiologist with 20 years of experience.
The regions of contiguous normal rectal wall and lumen against
tumor were manually labeled on T2WI images, and the magnetic
susceptibility artifacts were labeled on DWI images, which were
used for the training and validation of the automated tumor
segmentation algorithm. All manual delineations were
performed using ITK-SNAP (version 3.8) (21). Because of the
peristalsis of rectum and different imaging parameters such as
matrix, FOV (Field of View), slice thickness, and scan position
Frontiers in Oncology | www.frontiersin.org 475
line, the processing of the registration and image fusion between
T2 and DWI images was not performed.

All MR images were normalized to accelerate the convergence
of neural network training. First, the MR images were resampled
to the same spatial resolution: 0.4×0.4×3.3 (mm), and then the
gray values were linearly normalized into the range [0, 1].
Considering the GPU memory, the input 3D patch size was set
to 96×96×32. Due to the limited amount of training images,
image augmentation was performed, which included shift,
rotation, scale, and flip slightly.

Network Architecture of 3D V-Net
We applied cascade learning in this work based on 3D V-Net for
the tumoral tissue segmentation of the rectum on T2WI and
DWI sequences. The code of 3D V-Net was improved from the
V-Net (13). The architecture of the conventional V-Net has two
pathways: the left part of the network consists of a compression
path, while the right part decompresses the signal until its
original size is reached. The detailed network architecture is
shown in Figure 2. The proposed cascade neural network
includes one coarse model and one fine model. The coarse-to-
fine segmentation method detects the boundary from coarse
resolution to the highest fine resolution to provide accurate
spatial localization. The input of the 3D V-Net is a single
FIGURE 2 | The schematic network architecture of cascade V-Net.
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sequence of a patient such as T2WI, while the output is a map of
classification probability, which determines whether voxels of
image belong to tumor or background. The loss function based
on the Dice coefficient (range [0, 1]), which we sought to
maximize, was performed in the training process. It is defined as

D =
2oN

i pigi

oN
i p

2
i +oN

i g
2
i

Where N is the number of voxels of the image, pi is the
prediction probability of the i-th voxel which belongs to the
target region, and gi denotes whether the i-th voxel belongs to
ground truth annotation or not (1 means yes, 0 means no). The
volume size of the input and output image is 512×512×30, and
the parameters of spacing for the coarse model and fine model
are [3,3,3] and [0.4,0.4,1.6], respectively. Similar to other CNN,
the training process was iterated with min-batch and stochastic
gradient descent to ensure quick convergence. Tumor volume
was segmented using forward propagation in the test process.

Genes (KRAS/NRAS/BRAF) Mutational
Status Analysis
The tissue blocks were acquired from resected tumors, and
pathologists selected the samples for gene mutational analysis.
Genomic DNA was extracted from 5 mm formalin-fixed,
paraffin-embedded (FFPE) tumor tissue sections, using a DNA
FFPE Tissue Kit (AmoyDx, China). KRAS (exons 2, 3, and 4),
NRAS (exons 2, 3), and BRAF (exons 15, V600E) mutations were
detected by using polymerase chain reaction (PCR) and
amplification-refractory mutation system (ARMS). Among the
53 patients with mutant genes, 48 patients were KRAS mutation,
four patients were NRASmutation, and one was BRAFmutation.

Radiomics Features Extraction,
Selection, and Classifier Modeling for
Gene Mutation Prediction
Radiomics analysis was performed by a clinical research platform
(uAI Research Portal, United Imaging Intelligence Co., Ltd,
China). The code for radiomics analysis was developed based
on pyradiomics (https://pyradiomics.readthedocs.io/en). First, a
total of 2,600 features were extracted from the labeled tumor
volume of each MR sequence. These features were computed by
the combination of 104 original image features with 25 image
filters. The original image features include First-order, Shape,
Gray Level Co-occurrence Matrix (GLCM), Gray Level Run
Length Matrix (GLRLM), Gray Level Size Zone Matrix
(GLSZM), Gray Level Dependence Matrix (GLDM), and
Neighborhood Gray-Tone Difference Matrix (NGTDM). The
image filters consist of Gaussian noise, curvature flow, Laplacian
of Gaussian, Discrete Gaussian, Speckle noise, Recursive
Gaussian, shot noise, and Wavelets. Second, feature selection
was performed on the extracted features (2,600 dimensions) by
least absolute shrinkage and selection operator (Lasso) method
to work out an optimal feature subset (around 10 dimensions, for
example). We set two parameters for LASSO, the feature scaler
and shrinkage penalty, as min-max scaler and 0.02, respectively.
The selected features for each radiomics-based model are
Frontiers in Oncology | www.frontiersin.org 576
presented in the supplementary material. Then, a radiomics-
based model was built by support vector machine (SVM)
classifier with the selected features. The parameters of SVM
consist of penalty factor C (3.0), Gamma (0.03), and kernel
(radial basis function). The predict models were verified by five-
fold cross-validation and thus derived an average performance.

Statistics
Differences of patient baseline characteristics between the wild-type
and mutant groups were tested using independent samples t test
and chi-squared or Fisher’s exact tests, as appropriate. Performance
of the V-Net with respect to tumor segmentation was evaluated in
the test dataset using the Dice coefficient. The AUC (area under the
curve), accuracy, sensitivity, and specificity were calculated to
evaluate the performance of the radiomics-based model in
differentiating gene status. DeLong’s test was used to compare
two AUCs of the manual based model and deep learning–based
model of identical imaging modality. The statistical analyses
were conducted with SPSS (version 26.0), Medcalc (version 20.0),
and PyCharm (version 2018, Python version 3.0). A two-sided
p value < 0.05 was statistically considered significant difference.
RESULTS

Performance of 3D V-Net
Segmentation Algorithm
The ground truth annotation includes 202 rectal cancers on
T2WI and DWI sequences. To evaluate the performance of the
3D V-Net, the Dice Similarity Coefficient (DSC) was used to
compare segmentations between AI and a radiologist. The
volumetric segmentations generated from the deep learning
model are probability maps. The mean and standard deviation
of the Dice is 0.878 ± 0.214 and 0.955 ± 0.055 for T2WI and DWI
separately in the test dataset. A paradigm of tumor segmentation
results are shown in Figure 3.

Clinical and Pathological Characteristics
Among the 202 participants, 94 patients underwent a KRAS/
NRAS/BRAF mutation test. There were 53 patients who harbored
mutant genes, and 41patients were wild type. A statistical difference
in terms of age, gender, histologic grade, pN stage, CEA, and CA-
199 levels was not found between wild-type and mutant groups,
except at the pT stage (p = 0.021). It seems that a tumor with more
advanced T stage is prone to evolve mutant gene (Table 1).

Testing of Gene Mutation Prediction With
Radiomics Signature
We built radiomics-based models with extracted features from
two MR sequences of T2WI and DWI. Each sequence was
processed separately to compute features from DL-based and
manual-based VOI, respectively. Furthermore, we combined all
features computed from T2WI and DWI sequences, and then
applied the feature selection method LASSO to obtain an optimal
feature subset. Thus, in total we collected six feature subsets and
built six radiomics-based models for gene prediction. The mean
performance of each model based on five-fold cross-validation is
July 2021 | Volume 11 | Article 696706
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listed in Table 2 and includes accuracy, specificity, sensitivity,
and AUC. For each imaging modality, the prediction
performance of gene mutation did not show any statistical
difference between DL-based segmentation and manual-based
segmentation (Table 2 and Figure 4).
DISCUSSION

In this study, we segmented rectal cancer via 3D V-Net on T2WI
and DWI and then compared the radiomics performance in
predicting KRAS/NRAS/BRAF status between DL-based auto
segmentation and manual-based segmentation. By virtue of
volumetric convolution and coarse-to-fine segmentation
models, higher tumor segmentation performance (Disc=0.878
and 0.955 for T2WI and DWI) was achieved by V-Net in our
Frontiers in Oncology | www.frontiersin.org 677
study compared with Trebeschi’s (22) (Dice=0.70 for confusion
image of T2WI and DWI) and Wang’s (Dice=0.74 for T2WI)
(12) work. This could be explained with low signal noisy ratio
caused by 1.5T MR scanner in Trebeschi’s work, volumetric
information loss with 2D U-net architecture in Wang’s work,
and their relatively small sample size (n=140 and 93,
respectively). It has been widely recognized that qualified
standard input image data are crucial for training CNN
architecture to obtain high performance (23). We recruited
MR images from 202 rectal patients who underwent 3.0T MR
scans, which ensured eligible input data with high signal noise
ratio and spatial resolution. Furthermore, we manually labeled
regions of contiguous normal rectal wall and lumen against
tumor on T2WI images and the magnetic susceptibility
artifacts on DWI image. This process is distinctive to previous
work (12, 22) and helpful to confirm the boundary of VOI.
TABLE 2 | Performance of the radiomics-based models in predicting genotype (KRAS/NRAS/BRAF).

Imaging modality VOI Accuracy Specificity Sensitivity AUC P

T2WI Manual 0.669 0.614 0.716 0.637 0.188
DL 0.674 0.464 0.744 0.714

DWI Manual 0.776 0.731 0.809 0.872 0.181
DL 0.711 0.678 0.736 0.816

T2WI+DWI Manual 0.829 0.803 0.847 0.906 0.676
DL 0.783 0.661 0.882 0.887
July 2021 |
 Volume 11 | Article 6
For each model, the mean performance from five-fold cross-validation is presented in this table. DeLong’s test was used to compare the two AUCs of the manual-based model and the
deep learning–based model for identical imaging modality. DL, deep learning; VOI, volumes of interest; AUC, area under the curve.
FIGURE 3 | Illustration of automated segmentation using 3D V-Net versus ground truth on rectal MR images of a 51-year-old male. Purple indicates tumor, yellow
indicates normal rectal wall, and blue indicates lumen. The Dice was 0.980 on T2WI and 0.981 on DWI for this patient.
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Though the T2WI had higher spatial resolution, the higher
Dice was achieved on DWI. The noise, intensity non-uniformity,
partial volume averaging, and tumor background contrast were
key elements to influence the accuracy of segmentation (24).
Compared to T2WI, the tumor background contrast and
intensity uniformity on DWI were greater, which may facilitate
the computer to identify and recognize the tumor region. As
there was greater non-uniformity of intensity and low tumor
background contrast on T2WI, especially in respect to muscle,
bladder, and normal rectal wall, which may present similar signal
intensity and texture to tumorous tissue, we found that after
intensity histogram match there were still two samples that
totally failed to give the correct segmentation (Disc=0). One of
them put the segmentation label on the right piriformis, and the
other put the segmentation label on the uterus (Supplementary
Figure 1). Except for intensity non-uniformity and low tumor
background contrast on T2WI, limited training samples may be
another reason that contributes to failed segmentations.

The ultimate goal of auto segmentation is to facilitate clinical
or experimental application. Since the genotype (KRAS/NRAS/
BRAF) is strongly correlated with response to anti-EGFR
therapies (25), we evaluated the reliability and usefulness of
auto segmentation with radiomics analysis on these genotype
predictions. No matter whether referring to single imaging
modality or combined imaging modality, we found that the
performance of genotype prediction is similar between
manual-based and DL-based segmentation (Table 2). For
example, the AUC is 0.906 for manual-based and 0.887 for
DL-based VOI in combination of T2WI and DWI features on the
test dataset (P=0.676). When referring to radiomics analysis, the
genotype prediction performance of DWI is superior to that of
T2WI, and combination modality surpasses any single imaging
modality no matter whether it is manual-based VOI or DL-based
VOI (Table 2). The KRAS/NRAS/BRAF are the downstream
effectors of the EGFR signal pathway involved in tumor cell
proliferation, differentiation, and invasion (26). Tumors with
Frontiers in Oncology | www.frontiersin.org 778
mutant genes more likely exhibit greater aggressiveness and
angiogenesis, which will result in faster progress, worse
survival, and lower apparent diffusion coefficient (ADC) value
(27). The DWI can indicate the functional information of tissue
by evaluation of water molecular mobility, which is estimated
with ADC value, while T2WI are prone to indicate anatomic
information, which might explain the higher genotype prediction
performance of DWI compared to that of T2WI. Cui and his
colleagues (8) developed a radiomics signature to predict KRAS
mutations with moderate performance on T2WI (AUC=0.682
for internal validation and 0.714 for external validation), which
is concordant to our genotype prediction performance with
T2WI (AUC=0.714, DL-based VOI). We noted that for T2WI
modality, the AUC of the radiomics-based model with DL-based
VOI is higher than that of manual-based VOI (0.714 vs 0.637).
In theory, the manual segmentation is the ground truth for
radiomics analysis. So, the performance of the DL-based model
should not be superior to manual-based VOI. To assess the
difference of gene prediction performance between these two
models, a Delong’s test was used, and the result showed no
statistical significance (P=0.181). We speculate that limited
sample size may be one reason. On the other hand, DL-based
VOI may contain some peritumoral region, which could exhibit
an inflammatory response and tumor microinvasion. The
inflammatory response and tumor microinvasion may provide
additional information that is related to gene mutation. Meng
et al. (28) investigated a radiomics-based model in predicting the
KRAS-2 genotype based on multiparametric MRI (T1WI, T2WI,
DWI, and DCE) with 0.651 of AUC in the validation cohort,
which is slightly inferior to our combination model (T2WI+
DWI, AUC=0.878 for manual VOI) and may be attributed to
low signal noise ratio and spatial resolution of their 1.5T MR
scanner. Several studies have demonstrated the value of CT
radiomics (7) (AUC = 0.829) or texture analysis (AUC = 0.82)
(29) or PET/CT (AUC = 0.684 ~ 0.75) (30) on genotype prediction
of KRAS/NRAS/BRAF or KRAS alone. Compared with CT or
FIGURE 4 | Mean receiver operating characteristics (ROC) curve of five-fold cross validation for each radiomics-based model. DL, deep learning; AUC, area under
the curve.
July 2021 | Volume 11 | Article 696706
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PET/CT, MRI can be of benefit with no concern about radiation
exposure and contrast agent injection and simultaneously provide
a wonderful detailed tissue contrast.

Though 202 patients were involved in our analysis, it is still
necessary to validate this framework and compare it with
different architectures, such as the recently developed
Generally Nuanced Deep Learning Framework (31), in larger
and diverse datasets. Currently, all segmentation acquired with
deep learning architecture should be carefully reviewed before
being submitted for further application, especially for making a
radiotherapy plan. The requirement of high-quality annotated
data is a great challenge for auto segmentation, which needs a
standard imaging protocol, strict quality control, and accurate
annotation. For rectum DWI, magnetic susceptibility artifact is
the main obstacle that affects the accuracy of auto segmentation.
Therefore, we labeled the artifact on DWI of the training dataset.
If possible, labeling all anatomic structures and artifacts on the
training dataset will definitely improve the performance of deep
learning architecture, but that will be a huge workload.
Considering the great performance of combined imaging
modality on predicting genotype, further investigation of
combining CT and MRI is needed.
CONCLUSIONS

In this study, 3D V-Net architecture provided reliable rectal
cancer segmentation on T2WI and DWI compared with expert-
based segmentation, and auto segmentation was subjected to
radiomics analysis in the prediction of KRAS/NRAS/BRAF
mutation status and may produce a good prediction result.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
Frontiers in Oncology | www.frontiersin.org 879
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by institutional review board of Xijing hospital.
Written informed consent for participation was not required
for this study in accordance with the national legislation and the
institutional requirements.
AUTHOR CONTRIBUTIONS

GZ and LC produced the manuscript. GZ and LC conceived and
designed framework of this article. GZ, LC, AL, XP, JS, and YeH
collected and analysed the data. JZ and YiH supervised this study
and reviewed the manuscript. All authors contributed to the
article and approved the submitted version.
FUNDING

This research was funded by Key Research and Development
Projects in Shaanxi, grant number 2018ZDXM-SF-059.
ACKNOWLEDGMENTS

We thank Huan Wang, PhD, for his constructive comments in
revision. We thank Dr. Liz White for helping to proofread
the manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
696706/full#supplementary-material
REFERENCES
1. Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis

CS. Extended RAS Mutations and Anti-EGFR Monoclonal Antibody Survival
Benefit in Metastatic Colorectal Cancer: A Meta-Analysis of Randomized,
Controlled Trials. Ann Oncol (2015) 26(1):13–21. doi: 10.1093/annonc/mdu378

2. Pietrantonio F, Petrelli F, Coinu A, Di Bartolomeo M, Borgonovo K, Maggi C,
et al. Predictive Role of BRAF Mutations in Patients With Advanced
Colorectal Cancer Receiving Cetuximab and Panitumumab: A Meta-
Analysis. Eur J Cancer (2015) 51(5):587–94. doi: 10.1016/j.ejca.2015.01.054

3. NCCN Clinical Practice Guidelines in Oncology. Colon Cancer, Version 4
(2020). Available at: https://www.nccn.org/professionals/physician_gls/
default.aspx.

4. Sclafani F, Chau I, Cunningham D, Hahne JC, Vlachogiannis G, Eltahir Z,
et al. KRAS and BRAF Mutations in Circulating Tumour DNA From Locally
Advanced Rectal Cancer. Sci Rep (2018) 8(1):1445. doi: 10.1038/s41598-018-
19212-5

5. Vymetalkova V, Cervena K, Bartu L, Vodicka P. Circulating Cell-Free DNA
and Colorectal Cancer: A Systematic Review. Int J Mol Sci (2018) 19(11):3356.
doi: 10.3390/ijms19113356
6. Kim SJ, Pak K, Kim K. Diagnostic Performance of F-18 FDG PET/CT for
Prediction of KRAS Mutation in Colorectal Cancer Patients: A Systematic
Review and Meta-Analysis. Abdom Radiol (2019) 44(5):1703–11. doi:
10.1007/s00261-018-01891-3

7. Yang L, Dong D, Fang M, Zhu Y, Zang Y, Liu Z, et al. Can CT-Based
Radiomics Signature Predict KRAS/NRAS/BRAF Mutations in Colorectal
Cancer? Eur Radiol (2018) 28(5):2058–67. doi: 10.1007/s00330-017-5146-8

8. Cui Y, Liu H, Ren J, Du X, Xin L, Li D, et al. Development and Validation of a
MRI-Based Radiomics Signature for Prediction of KRAS Mutation in Rectal
Cancer. Eur Radiol (2020) 30(4):1948–58. doi: 10.1007/s00330-019-06572-3

9. Owens CA, Peterson CB, Tang C, Koay EJ, Yu W, Mackin DS, et al. Lung
Tumor Segmentation Methods: Impact on the Uncertainty of Radiomics
Features for Non-Small Cell Lung Cancer. PloS One (2018) 13(10):e0205003.
doi: 10.1371/journal.pone.0205003

10. Chen AM, Chin R, Beron P, Yoshizaki T, Mikaeilian AG, Cao M. Inadequate
Target Volume Delineation and Local-Regional Recurrence After Intensity-
Modulated Radiotherapy for Human Papillomavirus-Positive Oropharynx
Cancer. Radiother Oncol (2017) 123(3):412–8. doi: 10.1016/j.radonc.2017.04.015

11. Rauschecker AM, Rudie JD, Xie L, Wang J, Duong MT, Botzolakis EJ, et al.
Artificial Intelligence System Approaching Neuroradiologist-Level
July 2021 | Volume 11 | Article 696706

https://www.frontiersin.org/articles/10.3389/fonc.2021.696706/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.696706/full#supplementary-material
https://doi.org/10.1093/annonc/mdu378
https://doi.org/10.1016/j.ejca.2015.01.054
https://www.nccn.org/professionals/physician_gls/default.aspx
https://www.nccn.org/professionals/physician_gls/default.aspx
https://doi.org/10.1038/s41598-018-19212-5
https://doi.org/10.1038/s41598-018-19212-5
https://doi.org/10.3390/ijms19113356
https://doi.org/10.1007/s00261-018-01891-3
https://doi.org/10.1007/s00330-017-5146-8
https://doi.org/10.1007/s00330-019-06572-3
https://doi.org/10.1371/journal.pone.0205003
https://doi.org/10.1016/j.radonc.2017.04.015
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Gene Prediction With MR-Based Radiomics
Differential Diagnosis Accuracy at Brain MRI. Radiology (2020) 295(3):626–
37. doi: 10.1148/radiol.2020190283

12. Wang J, Lu J, Qin G, Shen L, Sun Y, Ying H, et al. Technical Note: A Deep
Learning-Based Autosegmentation of Rectal Tumors in MR Images.Med Phys
(2018) 45(6):2560–4. doi: 10.1002/mp.12918

13. Milletari F, Navab N, Ahmadi S. V-Net: Fully Convolutional Neural Networks
for Volumetric Medical Image Segmentation. In: 2016 Fourth International
Conference on 3D Vision (3DV), 25-28 Oct. 2016. IEEE (2016). p. 565–71. doi:
10.1109/3DV.2016.79

14. Jeon SH, Song C, Chie EK, Kim B, Kim YH, Chang W, et al. Delta-Radiomics
Signature Predicts Treatment Outcomes After Preoperative Chemoradiotherapy
and Surgery in Rectal Cancer. Radiat Oncol (2019) 14(1):43. doi: 10.1186/
s13014-019-1246-8

15. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and
Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph
Node Metastasis in Colorectal Cancer. J Clin Oncol (2016) 34(18):2157–64.
doi: 10.1200/JCO.2015.65.9128

16. Liu H, Zhang C,Wang L, Luo R, Li J, ZhengH, et al. MRI Radiomics Analysis for
Predicting Preoperative Synchronous Distant Metastasis in Patients With Rectal
Cancer. Eur Radiol (2019) 29(8):4418–26. doi: 10.1007/s00330-018-5802-7

17. Chen W, Liu B, Peng S, Sun J, Qiao X. Computer-Aided Grading of Gliomas
Combining Automatic Segmentation and Radiomics. Int J Biomed Imaging
(2018) 2018:2512037. doi: 10.1155/2018/2512037

18. Park JE, Ham S, Kim HS, Park SY, Yun J, Lee H, et al. Diffusion and Perfusion
MRI Radiomics Obtained From Deep Learning Segmentation Provides
Reproducible and Comparable Diagnostic Model to Human in Post-
Treatment Glioblastoma. Eur Radiol (2020) 31:3127–37. doi: 10.1007/
s00330-020-07414-3

19. Choi Y, Nam Y, Lee YS, Kim J, Ahn KJ, Jang J, et al. IDH1 Mutation Prediction
Using MR-Based Radiomics in Glioblastoma: Comparison Between Manual
and Fully Automated Deep Learning-Based Approach of Tumor Segmentation.
Eur J Radiol (2020) 128:109031. doi: 10.1016/j.ejrad.2020.109031

20. Zhang G, Ma W, Dong H, Shu J, Hou W, Guo Y, et al. Based on Histogram
Analysis: ADCaqp Derived From Ultra-High B-Value DWI Could be a Non-
Invasive Specific Biomarker for Rectal Cancer Prognosis. Sci Rep (2020) 10
(1):10158. doi: 10.1038/s41598-020-67263-4

21. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-
Guided 3D Active Contour Segmentation of Anatomical Structures:
Significantly Improved Efficiency and Reliability. NeuroImage (2006) 31
(3):1116–28. doi: 10.1016/j.neuroimage.2006.01.015

22. Trebeschi S, van Griethuysen JJM, Lambregts DMJ, Lahaye MJ, Parmar C,
Bakers FCH, et al. Deep Learning for Fully-Automated Localization and
Segmentation of Rectal Cancer on Multiparametric MR. Sci Rep (2017) 7
(1):5301. doi: 10.1038/s41598-017-05728-9

23. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial
Intelligence in Radiology. Nat Rev Cancer (2018) 18(8):500–10. doi:
10.1038/s41568-018-0016-5

24. Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in Auto-
Segmentation. Semin Radiat Oncol (2019) 29(3):185–97. doi: 10.1016/
j.semradonc.2019.02.001
Frontiers in Oncology | www.frontiersin.org 980
25. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G,
et al. Effects of KRAS, BRAF, NRAS, and PIK3CAMutations on the Efficacy of
Cetuximab Plus Chemotherapy in Chemotherapy-Refractory Metastatic
Colorectal Cancer: A Retrospective Consortium Analysis. Lancet Oncol
(2010) 11(8):753–62. doi: 10.1016/S1470-2045(10)70130-3

26. Khan K, Valeri N, Dearman C, Rao S, Watkins D, Starling N, et al. Targeting
EGFR Pathway in Metastatic Colorectal Cancer-Tumour Heterogeniety and
Convergent Evolution. Crit Rev Oncol Hematol (2019) 143:153–63. doi:
10.1016/j.critrevonc.2019.09.001

27. Beckers RCJ, Lambregts DMJ, Lahaye MJ, Rao SX, Kleinen K, Grootscholten
C, et al. Advanced Imaging to Predict Response to Chemotherapy in
Colorectal Liver Metastases - A Systematic Review. HPB (2018) 20(2):120–
7. doi: 10.1016/j.hpb.2017.10.013

28. Meng X, Xia W, Xie P, Zhang R, Li W, Wang M, et al. Preoperative Radiomic
Signature Based on Multiparametric Magnetic Resonance Imaging for
Noninvasive Evaluation of Biological Characteristics in Rectal Cancer. Eur
Radiol (2019) 29(6):3200–9. doi: 10.1007/s00330-018-5763-x

29. Taguchi N, Oda S, Yokota Y, Yamamura S, Imuta M, Tsuchigame T, et al. CT
Texture Analysis for the Prediction of KRAS Mutation Status in Colorectal
Cancer Via a Machine Learning Approach. Eur J Radiol (2019) 118:38–43.
doi: 10.1016/j.ejrad.2019.06.028

30. Mao W, Zhou J, Zhang H, Qiu L, Tan H, Hu Y, et al. Relationship Between
KRAS Mutations and Dual Time Point (18)F-FDG PET/CT Imaging in
Colorectal Liver Metastases. Abdom Radiol (2019) 44(6):2059–66. doi:
10.1007/s00261-018-1740-8

31. Pati S, Thakur SP, Bhalerao M, Baid U, Grenko CM, Edwards B, et al.
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-
To-End Clinical Workflows in Medical Imaging. ArXiv (2021), abs/
2103.01006.

Conflict of Interest: Authors LC, AL and XP were employed by Shanghai United
Imaging Intelligence Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhang, Chen, Liu, Pan, Shu, Han, Huan and Zhang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
July 2021 | Volume 11 | Article 696706

https://doi.org/10.1148/radiol.2020190283
https://doi.org/10.1002/mp.12918
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1186/s13014-019-1246-8
https://doi.org/10.1186/s13014-019-1246-8
https://doi.org/10.1200/JCO.2015.65.9128
https://doi.org/10.1007/s00330-018-5802-7
https://doi.org/10.1155/2018/2512037
https://doi.org/10.1007/s00330-020-07414-3
https://doi.org/10.1007/s00330-020-07414-3
https://doi.org/10.1016/j.ejrad.2020.109031
https://doi.org/10.1038/s41598-020-67263-4
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1038/s41598-017-05728-9
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1016/j.semradonc.2019.02.001
https://doi.org/10.1016/j.semradonc.2019.02.001
https://doi.org/10.1016/S1470-2045(10)70130-3
https://doi.org/10.1016/j.critrevonc.2019.09.001
https://doi.org/10.1016/j.hpb.2017.10.013
https://doi.org/10.1007/s00330-018-5763-x
https://doi.org/10.1016/j.ejrad.2019.06.028
https://doi.org/10.1007/s00261-018-1740-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Haibin Shi,

Soochow University, China

Reviewed by:
Huaiqiang Sun,

Sichuan University, China
Amit Mehndiratta,

Indian Institute of Technology Delhi,
India

*Correspondence:
Chunyan Wu

wuchunyan581@sina.com
Xiwen Sun

sunxiwen5256@163.com

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 09 October 2021
Accepted: 19 November 2021
Published: 21 December 2021

Citation:
Sun K, Chen S, Zhao J, Wang B,

Yang Y, Wang Y, Wu C and Sun X
(2021) Convolutional Neural

Network-Based Diagnostic Model
for a Solid, Indeterminate Solitary

Pulmonary Nodule or Mass on
Computed Tomography.
Front. Oncol. 11:792062.

doi: 10.3389/fonc.2021.792062

ORIGINAL RESEARCH
published: 21 December 2021

doi: 10.3389/fonc.2021.792062
Convolutional Neural Network-
Based Diagnostic Model for a
Solid, Indeterminate Solitary
Pulmonary Nodule or Mass
on Computed Tomography
Ke Sun1,2†, Shouyu Chen3†, Jiabi Zhao2†, Bin Wang2, Yang Yang2, Yin Wang3,
Chunyan Wu4* and Xiwen Sun2*

1 Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China, 2 Department of Radiology, Shanghai
Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China, 3 Department of Computer Science and
Technology, College of Electronics and Information Engineering, Tongji University, Shanghai, China, 4 Department of
Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China

Purpose: To establish a non-invasive diagnostic model based on convolutional neural
networks (CNNs) to distinguish benign from malignant lesions manifesting as a solid,
indeterminate solitary pulmonary nodule (SPN) ormass (SPM) on computed tomography (CT).

Method: A total of 459 patients with solid indeterminate SPNs/SPMs on CT were
ultimately included in this retrospective study and assigned to the train (n=366),
validation (n=46), and test (n=47) sets. Histopathologic analysis was available for each
patient. An end-to-end CNN model was proposed to predict the natural history of solid
indeterminate SPN/SPMs on CT. Receiver operating characteristic curves were plotted to
evaluate the predictive performance of the proposed CNN model. The accuracy,
sensitivity, and specificity of diagnoses by radiologists alone were compared with those
of diagnoses by radiologists by using the CNN model to assess its clinical utility.

Results: For the CNNmodel, the AUCwas 91% (95% confidence interval [CI]: 0.83–0.99)
in the test set. The diagnostic accuracy of radiologists with the CNN model was
significantly higher than that without the model (89 vs. 66%, P<0.01; 87 vs. 61%,
P<0.01; 85 vs. 66%, P=0.03, in the train, validation, and test sets, respectively). In
addition, while there was a slight increase in sensitivity, the specificity improved
significantly by an average of 42% (the corresponding improvements in the three sets
ranged from 43, 33, and 42% to 82, 78, and 84%, respectively; P<0.01 for all).

Conclusion: The CNN model could be a valuable tool in non-invasively differentiating
benign from malignant lesions manifesting as solid, indeterminate SPNs/SPMs on CT.

Keywords: neural network model, computed tomography, differential diagnosis, solid, indeterminate solitary
pulmonary nodule, lung adenocarcinoma
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1 INTRODUCTION

With the use of thoracic low-dose computed tomography (CT)
for lung cancer screening, an increasing number of solitary
pulmonary nodules (SPNs) or masses (SPMs) are deliberately
or incidentally discovered. Solid SPNs are extremely common,
and malignancy account for approximately 60% (range: 55–66%)
(1, 2). Data from the Prostate, Lung, Colorectal, Ovarian Cancer
Screening Trial indicated that SPMs were highly predictive of
malignancy (odds ratio, 10.3; 95% confidence interval [CI], 2.46–
43.38) (3). Solid malignant lesions are related to rapid cancer
growth and high risks of recurrence and metastasis, despite their
small size (4, 5). Therefore, the most crucial task for radiologists
and clinicians is to accurately determine the natural history of
the lesions. Surgery is the diagnostic gold standard and definitive
treatment for malignant cases. However, 25–46% of patients with
SPNs have benign disease despite a preoperative suspicion of
cancer, and an incorrect diagnosis results in unnecessary invasive
resection and monetary and time costs (6, 7).

High-resolution computed tomography (HRCT) can non-
invasively provide specific information about pulmonary lesions
(8). However, there are challenges associated with the visual
assessment of CT images. First, a series of CT images consist of
hundreds of slices; radiologists have to browse through these
slices and carefully consider them, which is time-consuming,
tedious, and subjective. Second, visual evaluations are inadequate
to distinguish benign from malignant lesions manifesting as
solid, indeterminate SPNs or SPMs because of the considerable
overlap in the radiographic characteristics of these lesion types
(Figure 1). For example, 21–58% of malignant lesions have
smooth edges, and approximately 25% of benign nodules are
irregularly shaped with spiculated or lobulated margins (9–12).
In this study, a solid, indeterminate lesion was defined as a non-
calcified lesion or a lesion without features strongly suggestive of
a benign etiology, usually greater than 8 mm in size (13).

Recently, machine learning has shown outstanding
capabilities as one of the most promising tools for the
detection, diagnosis, and differentiation of lung lesions. Over
the years, two computational strategies have been developed to
predict the malignancy of lung lesions on CT images: radiomics
based on quantitative radiological image features and deep
learning methods such as those based on cascade convolutional
neural networks (CNNs). The extraction of radiomics features
relies heavily on accurate lesions boundary outline, and
predictive models are built based on a prior knowledge of
which features are significant. Whereas CNNs could
automatically extract potential features beyond human
perception from medical images to predict whether a lesion is
benign or malignant by amplifying aspects of the input images
that are important for discrimination and suppressing irrelevant
Abbreviations: CT, computed tomography; SPNs, solitary pulmonary nodules;
SPMs, solitary pulmonary masses; CI, confidence interval; HRCT, high-resolution
computed tomography; CNN, cascade convolutional neural network; ROI, region
of interest; HU, Hounsfield unit; 3D, three-dimensional; CAM, class activation
map; SD, standard deviations; ROC, receiver operating characteristic; AUC, area
under the ROC; PSPs, pulmonary sclerosing pneumocytomas; FOP, focal
organizing pneumonia.
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variations (14). When successfully applied, it is expected to
improve diagnostic accuracy and reduce unnecessary invasive
procedures and costs and anxiety of patients. Several studies have
revealed the predictive value of CNNs and the promising
prospects they afford for lung lesion differentiation (15–18).
However, (1) these models lack interpretability and are often
referred to as “black boxes”, which renders them difficult for the
users to understand; (2) no specific emphasis has been given to
distinguishing benign from malignant lesions manifesting as
solid, indeterminate pulmonary lesions. Therefore, this study
aimed to develop an interpretable CNN-based non-invasive
diagnostic model for solid, indeterminate SPNs or SPMs on
CT and to evaluate its clinical utility.
2 MATERIALS AND METHODS

The retrospective study was approved by the ethics committee of
“Shanghai Pulmonary” Hospital. The informed consent
requirement was waived.

2.1 Study Population
We retrospectively included 459 consecutive patients with solid,
indeterminate SPNs or SPMs on CT between January 2018 and
December 2018. Patients who met the following criteria were
included: (1) presence of a primary intrapulmonary lesion;
(2) the diameter of an existing lesion of >8 mm [because pure-
solid nodules measuring <8 mm has the relatively low prevalence
of malignancy, and the risks of surgical diagnosis usually
outweigh the benefits (13); thus, the Fleischner Society
guidelines recommend routine follow-up for management (19),
and additionally, in our hospital, one of the criteria for surgical
excision is a diameter greater than 8 mm (20)]; (3) histologically
confirmed diagnosis after surgical resection; and (4) preoperative
CT slice thickness of 1–1.25 mm. The exclusion criteria were as
follows: (1) a clearly benign diagnosis based on the initial CT
reports; (2) a history of malignancy; (3) lesions with calcification
regardless of type; (4) obvious artefacts on CT images. Eligible
patients were sorted randomly, and the benign and malignant
groups were divided into the training (n=366), validation (n=46),
and test (n=47) sets according to the 8:1:1 ratio for model
learning, respectively, shown in Figure 2.

2.2 CT Parameter Acquisition and Image
Annotation and Interpretation
All patients underwent Chest CT examinations before surgery in
our institution, and the detailed scanning parameters are shown
in Supplement Table 1. Two thoracic radiologists (with 3 and 7
years of work experience) detected the location of pulmonary
lesions, marked their coordinates (X, Y, and Z axes), and
measured their diameters on the section that displayed the
longest diameter of the lesion. When annotations differed,
radiologists discussed them until consensus was achieved.

Additionally, these lesions were evaluated for shape (regular
or irregular), the presence of spiculation, lobulation, and pleural
retraction. The mean CT density was calculated by measuring
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the average CT value of the region of interest (ROI) that carefully
placed in an area away from vessels, bronchi, and necrosis. The
readings were interpreted using Radiant software (http://
radiantviewer.com) with the lung window setting (window
level, −450 Hounsfield unit [HU]; width, 1,500 HU) and
mediastinal window setting (window level, 40 HU; width, 400
HU). Based on the experienced evaluation, the other two
radiologists (with 4 and 9 years of experience in reading
thoracic CT scans, respectively), uninformed of the
pathological results, made a diagnosis. In case of a discrepancy
between the two radiologists, a third radiologist with an
experience of more than 29 years in thoracic CT made the
final decision.

2.3 CNN Model Construction
2.3.1 Image and Data Preprocessing
The voxel spatial resolution of all patients’ raw CT were
standardized on all three axes, to 0.6 × 0.6 × 0.6 mm3 each
voxel. Then small three-dimensional (3D) tensor with size of
128×128×128 voxels centered at each nodule is extracted using
Frontiers in Oncology | www.frontiersin.org 383
corresponding coordinates annotation. The size ensured that
each nodule was entirely covered. In the training phase, it was
necessary to randomly rotate the tensor at arbitrary angle in the
3D space, as a data augmentation method. Then we selected
three orthogonal slices passing through the center point and
stacked them, resulting in a 3×128×128 tensor. Furthermore, we
cropped a 3×104×104 sub-region that could completely cover all
lesions, and resized it to the voxels of 3×224×224, as a data
augmentation method also. Finally, the CT value interval was
clipped to [−1,100 HU, 100 HU], and the result was further
linearly mapped to the value interval [0, 1]. Each 3×224×224
tensor represented one patient in the network pipeline. The
preprocessing was shown in Figure 3.

2.3.2 The Structure of the CNN Model
Figure 4 shows the pipeline of benign and malignant prediction
for solid, indeterminate SPNs or SPMs on CT. ResNet was used
as the basis of the deep learning model (21). Specifically, the
selected network was ResNet-101. As a transfer learning method,
ResNet’s weights parameter pre-trained on the ImageNet image
FIGURE 2 | Flow chart of inclusion and exclusion criteria for eligible patients and specific allocations in the train, validation, and test sets.
FIGURE 1 | Examples of solid, indeterminate SPN/SPMs without features strongly suggestive of a benign etiology. (A1) Invasive adenocarcinoma (IAC); (B1) granuloma;
(C1) pulmonary sclerosing pneumocytoma (PSP); (D1) focal organizing pneumonia (FOP). (A2–D2) paraffin section (hematoxylin and eosin [H&E], 100 ×) of IAC,
granuloma, PSP, and FOP, respectively.
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FIGURE 3 | The process of data preprocessing. (A) Three-dimensional (3D) tensor was obtained from the original CT sequence according to nodule coordinates labeled
by radiologist. (B) The tensor is rotated at arbitrary angle around its center point. (C, D) Three orthogonal slices spanning center point were extracted and stacked to
form a pseudo-RGB map (3×128×128 tensor). (E) Random cropping with 3×104×104 subregion. (F) Nodule images were resized to voxels of 3×224×224.
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dataset was loaded to initialize sub-network 1 of our model (22).
In sub-network 2, the last two layers in the original network were
replaced by two fully connectied layers with 512 and 2 output
nodes, respectively, and their weight parameters were initialized
randomly. We chose to use 2D-CNN rather 3D-CNN for the
following reasons: (1) the number of CT cases is small and
training CNNs from scratch on top of this would lead to
overfitting, and there are currently no pre-trained 3D-CNN
model weights available on large publicly available 3D CT
datasets; (2) the data augmentation method used in the paper
that rotated in 3D space could also help 2D-CNN capture the 3D
features of nodules, and better prediction results could be
achieved using 2D-CNN model with transfer learning.
Furthermore, to increase the generalizability of the model and
avoid overfitting, mix-up algorithm was adopted (23).

2.3.3 Experiment Parameter Setting
The train dataset was used to train the deep learning algorithm, a
separate validation dataset to tune parameter, and the test dataset
to assess the final model. During the training stage, only weight
parameters in the last two fully connected layers and all batch
normalization layers in the network were trained for 1 epoch,
and others remained unchanged. This can be considered as a
warm-up training. Then the entire model was trained for
additional 60 epochs. This process simultaneously optimized
all network layers, making the lower convolutional layer more
suitable for edge and corner features in CT data, as well as for the
specific data distribution resulting from our combination of
orthogonal slices. The weights corresponding to the epoch with
the lowest validation loss were chosen as the optimal model and
saved. The model used Adam as weights optimizer and cross-
entropy as loss function (24). The learning rate was 1e-2, and
weight decay was 5e-5. One cycle strategy was used to adjust the
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learning rate during model training (25). The dropout
probabilities of the last two fully connected layers in the model
were set 0.25 and 0.5, respectively. A batch size of 64 was used. It
took about 5 s to train the neural network on all 366 training
samples (tensor size: 366×3×224×244) for one epoch. See the
code for the detailed procedure. Code implementation was based
on the fastai framework (26) and available online https://github.
com/DrIsDr/TJU_Chen_SK.

2.3.4 Visualization of the CNN Model
The CNN models were often referred to “black-box” technology
due to lack of interpretability, making it difficult for users to
understand the inference procedure. We used the class activation
map (CAM) to visualize the discriminative process of the neural
network (27), and the results are shown in Figure 5. The CAM
could generate the response heatmaps to reversely deduce the
process of the model making diagnosis. Red areas had the highest
activation value, which suggested that the model mainly
extracted diagnostic characteristics from the region, whereas
the blue areas had the lowest activation value, meaning that
less discriminative features were found in this region.

As can be seen in the Figure 5, the CNN model produced
high activation value (red areas) in the regions where the nodule
was located and adjacent to the nodule only when the nodule was
correctly classified. In other words, the model captured the
internal and external features of nodules to make a diagnosis.
More examples are shown in the Supplementary Figure 1.

2.5 Statistical Analysis
Baseline characteristics and image information of the
participants were summarized as mean ± standard deviations
(SD) values for continuous variables, and as frequency and
percentage for categorical variables. Statistical significance was
FIGURE 4 | End-to-end CNN model illustration. For the input nodule images (from the left side), the neural network made the prediction (right side) and outputted
two values, representing benign and malignant probabilities (summed to 1). The final diagnosis of each nodule by the model depended on which class was predicted
with a probability greater than 50%. The architecture was composed of convolution, batch normalization, max pooling, fully connection, global average pooling, and
residual building block. Sub-net 1 was pretrained on ImageNet dataset with ~15 million neutral images, while sub-net 2 was trained from scratch. The 56x56@256
(x3) below the first residual building block meant the spatial size and number of channels of the output feature map in this block were 56x56 and 256 respectively,
while x3 meant the block contained 3 residual units.
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tested using Student’s t-test, Welch’s t-test, Mann-Whitney U-
test, and Kruskal-Wallis for continuous variables as appropriate,
and Chi-square test for categorical variables. A p-value < 0.05
was considered to be statistically significant. The predictive
results of CNN model were compared with the pathological
gold standard. The diagnostic performance of the CNN model
was described using the area under the receiver operating
characteristic (ROC) curve (AUC) with 95% CI. The mean
value of accuracy, sensitivity, and specificity of diagnoses by
radiologists alone were compared with those of diagnoses by
radiologists with the assistance of the CNN model to evaluate its
clinical utility. All statistical analyses are based on SPSS 20.0
software (SPSS Inc., Chicago, IL, USA) and R version 3.6.3 (R
foundation for Statistical Computing).
3 RESULTS

3.1 Baseline Characteristics
A total of 459 patients with solid, indeterminate SPNs or SPMs
were included. Of the 459 patients, 183 had benign disease (83
males and 100 females; mean age, 53.67 ± 12.33) and 276 had
malignant disease (151 males and 125 females; mean age, 60.53 ±
9.30). Among the 183 benign cases, there were 124, 55, and 4
granulomas, pulmonary sclerosing pneumocytomas (PSPs), and
focal organizing pneumonia (FOP), respectively. The subtype of
malignancy only included lung adenocarcinomas.

The clinical baseline characteristics and image features are listed
in Table 1. Between the benign and malignant groups, clinical
variables, such as age (P<0.01) and gender (P=0.05), demonstrated
statistical difference. However, no statistically significant
association was observed in terms of radiological features.

3.2 Performance of the CNN Model
The model demonstrated superior performance in the train set
(AUC: 0.94, 95% CI: 0.92–0.96); the results in the validation and test
sets showed slightly lower but still satisfactory differentiation
performance (validation set: AUC 0.88, 95% CI: 0.78–0.99; test
set: AUC 0.91, 95% CI: 0.83–0.99) (Figure 6). The total
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concordance rates between the CNN model and final pathological
assessments generated by the final paraffin section in the train,
validation, test cohorts were 87% (318/366), 83% (38/46), and 83%
(39/47), respectively (Supplement Table 1). The sensitivity and
specificity were 89% (95% CI: 0.85–0.92) and 84% (95% CI:0.80–
0.87) in the train set, 86% (95% CI: 0.73–0.93) and 78% (95% CI:
0.64–0.88) in the validation set, and 86% (95% CI: 0.73–0.93) and
79% (95% CI: 0.65–0.88) in the test set (Table 2).

3.3 Clinical Utility of the CNN Model
Three radiologists blinded to the pathological results twice assessed
the benignity or malignancy of each patient and made a final
decision in consensus. The average time required for diagnosing
each patient was 3 min. The diagnostic accuracy of radiologists
alone was lower than that of the CNN model in all patients (train
set: 66 vs. 87%, P<0.01; validation set: 61 vs. 83%, P=0.02; test set: 66
vs. 83%, P=0.06). When radiologists used the CNN model, their
diagnostic accuracy was higher than that achieved by radiologists
alone (train set: 89 vs. 66%, P<0.01; validation set: 87 vs. 61%,
P<0.01; test set: 85 vs. 66%, P=0.03) (Supplement Table 2).
Additionally, specificities increased significantly, by an average of
42% (train set: from 43 to 82%; validation set: from 33 to 78%; test
set: from 42 to 84%; all P-values < 0.01); and sensitivities improved
slightly (train set: 81 vs. 95%, P<0.01; validation set: 79 vs. 93%,
P=0.04; test set: 82 vs. 89%, P=0.37) (Table 3). Thus, the CNN
model could help radiologists to enhance the capability of
distinguishing benign from malignant lesions with radiographic
solid, indeterminate SPN or SPM characteristics at all three levels of
CT expertise, effectively preventing misdiagnosis.
4 DISCUSSION

Deep CNN is a type of deep learning approach in which
computers are not explicitly programmed but can perform
tasks by analyzing relationships of existing data. In this
retrospective study, our CNN model achieved better accuracy
than three radiologists in differentiation between benignity and
A B

FIGURE 5 | Class activation map (CAM) for two example nodules (nodule A and B) in the test set. For each nodule, the first row (nodule images input to neural
network) represented the three views of each nodule, the second (the benign probability) and third row (the malignant probability) represented the corresponding
response heatmaps when the model classifies the nodule as benign and malignant, respectively (red regions are of highest interest and blue lowest).
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malignancy for solid, indeterminate SPNs or SPMs. When
radiologists used the CNN model, the mean accuracy was 87%,
and the specificity improved by 42%, which would have
Frontiers in Oncology | www.frontiersin.org 787
facilitated timely diagnosis and treatment for lung cancer and
avoided unnecessary excision for benign cases by a non-invasive,
highly efficient, and reproducible method. Furthermore, to
enhance interpretability, we used visualization techniques to
analyze the process of the CNN model classification. To the
best of our knowledge, this is the first attempt to differentiate
radiographically solid, indeterminate lesions using interpretable
CNN technology based on thin-section CT scans.

The solid SPN is an extremely common type of tumor, and
approximately 60% of solid SPNs are malignant (1, 2). Published
studies have reported that nodal metastasis and intrapulmonary
and extrapulmonary diffusion could be found in malignant solid
lesions, even in subcentimeter small nodules (4). Thus,
differentiation of benign and malignant lesions is the most
critical step for patient management.

Chest CT examinations can provide specific information about
morphological and density characteristics and are helpful to
estimate the probability of malignancy for pulmonary solid
lesions. Multiple studies have revealed that spiculation, lobulation,
irregular shape, and pleural retraction are associated with
malignancy, whereas lesions with a regular shape and the smooth
margin are more likely to be benign (28, 29). However, in our
dataset, no radiologically available features were observed (Table 1),
which means that trained radiologists have difficulty distinguishing
the nature history of solid, indeterminate solitary pulmonary by
visual assessment alone. The overlap of radiographic characteristics
does not seem too unusual. As noted previously, for pulmonary
lesions with smooth edges, the risk of malignancy was
FIGURE 6 | The receiver operating characteristic curves of the CNN model
used in this study.
TABLE 1 | The baseline characteristics and imaging information of patients included in the study.

Variables Total (n=459) Benign (n=183) Malignant (n=276) P-value

Age, mean ± SD, y 57.80 ± 11.12 53.67 ± 12.33 60.53 ± 9.30 <0.01
Gender, n (%) 0.05
Male 234 (51) 83 (45) 151 (55)
Female 225 (49) 100 (55) 125 (45)
Image information
Diameter, n (%) 0.14
≤30 mm 379 (83) 157 (86) 222 (80)
>30 mm 80 (17) 26 (14) 54 (20)
Tumors location, n (%) 0.07
RUL 123 (27) 40 (22) 83 (30)
RML 45 (10) 19 (10) 26 (9)
RLL 97 (21) 50 (27) 47 (17)
LUL 111 (24) 41 (22) 70 (25)
LLL 83 (18) 33 (18) 50 (18)
Shape, n (%) 0.50
Regular 103 (22) 44 (24) 59 (21)
Irregular 356 (78) 139 (76) 217 (79)
Lobulation, n (%) 0.59
Presence 290 (63) 117 (64) 173 (63)
Absence 168 (37) 66 (36) 102 (37)
Spiculation, n (%)
Presence 244 (53) 94 (51) 150 (54) 0.53
Absence 215 (47) 89 (49) 126 (46)
Pleural retraction, n (%) 0.92
Presence 232 (51) 93 (51) 139 (50)
Absence 227 (49) 90 (49) 137 (50)
CT value, mean ± SD, HU 31.24 ± 24.86 33.07 ± 27.22 30.03 ± 23.14 0.20
December 2021 | Volume 11 | Article
The data are expressesed as mean ± standard deviations for continuous variables, and the frequency and percentage for categorical variables.
A p-value < 0.05 was supported to be statistically significant.
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approximately 35% (range: 21–58%) (9–12). Chu et al. reported that
95% (214/225) of solid cancerous nodule had a regular shape (30).
Also, Zerhouni et al. recorded that 25% of benign nodules showed
irregular margins with lobulation or spiculation, and only 18% of
these lesions were correctly assessed on CT (9). In addition, in the
study by Xu et at., lung cancer risk was absent in solid indeterminate
nodules attached to the pleural or a fissure during 1 year of follow-
up (31).

Thus, it is very pivotal to differentiate benign from malignant
solid, indeterminate SPNs or SPMs by using a new approach to
overcome the naked limitation. However, some studies revealed and
exploited the massive potential of image features that may be
visually imperceptible to even very experienced thoracic
radiologists and can be extracted from CT scans by using (1)
radiomics methods or (2) deep learning approaches based on
CNNs (32–34). Both methods have been widely used to classify
and identify the natural history of sub-solid nodules including the
part-solid and pure ground glass nodules, scoring tremendous
achievements (35–39). Nevertheless, few studies have focused on
the differentiation of solid pulmonary lesions. Shen et al. established
a multiclassifier fusion based on radiomic features, including
geometric features, textures features, gray-level features, and
wavelet features to predict benign and malignant primary solid
nodules, achieving an AUC of 0.915 in the test set (40). However,
not all benign cases in this study were pathologically confirmed, a
stable 2-year follow-up period does not guarantee its benign nature.
In addition, radiomics methods that extract quantitative biological
features are limited by prior knowledge of significant characteristics,
which may be unbefitting for pulmonary lesions with considerable
Frontiers in Oncology | www.frontiersin.org 888
overlapping features. The CNN method could simplify the
redundancies and learn discriminating features directly from CT
images, facilitating greater reproducibility. In this study, our CNN
model in the test set had an AUC of 0.91, comparable with the
previously reported value, which indicated good performance. The
specificity of our model was significantly higher than that of the
three radiologists. In fact, most benign lesions in our study
mimicked the morphological characteristics of lung cancer.
Radiologists are prone to classifying these lesions as malignant in
clinical practice, yielding high sensitivity with low specificity.
However, when radiologists used the CNN model, their specificity
improved significantly by 42% while maintaining the
high sensitivity.

Additionally, the CNNmodel is highly efficient in distinguishing
benignity from malignancy for solid, indeterminate lesions.
Radiologists spent an average of 3 min to read and interpret a set
of CT images of one patient, while the CNN model could process
the 366 patient images in just 5 s. Moreover, in routine clinical
practice, radiologists usually need to review and compare prior CT
images to make a diagnosis, which would require more time despite
yielding higher accuracy. In our model, on the basis of coordinate
information, we adopted a supervised learning method, guided the
neural network model to extract features layer-by-layer from CT
images of interest, constantly enhanced the intensity of feature
abstraction, and finally output the result of the prediction. Thus, we
used an end-to-end computational method that could greatly
simplify the traditional workflow.

A limitation of our model is the overfitting issue caused by the
single-institute small data size. To compensate for this limitation, we
utilized the pretrained network on ImageNet that included millions
of natural images, in a process termed transfer learning. Although
there is no intuitive approach for using a pretrained model with
non-medical images for differentiation of medical images, some
features including the edges, corners, orientations, and textures are
generic. We compared the performance of the CNN model with or
without pretrained procedure using the same experimental
parameters, and the results showed the pretrained CNN model
performed much better than the untrained one (Supplementary
Figure 2). In addition, data augmentation was also used to resolve
this problem. Randomly rotating nodules/masses in 3D space,
TABLE 2 | Predictive performance of the CNN model.

Train set Validation set Test set

AUC 94 (0.92–0.96) 88 (0.78–0.99) 91 (0.83–0.99)
ACC 87 (0.83–0.90) 83 (0.70–0.91) 83 (0.70–0.91)
SE 89 (0.85–0.92) 86 (0.73–0.93) 86 (0.73–0.93)
SP 84 (0.80–0.87) 78 (0.64–0.88) 79 (0.65–0.88)
All values shown as % (95% confidence interval).
CNN, convolutional neural network; AUC: area under curve; ACC, accuracy; SE,
sensitivity; SP, specificity.
TABLE 3 | Comparison of the diagnostic performance of radiologists without and with the CNN model.

Training set Validation set Test set

Radiologists alone Radiologists with CNN Radiologists alone Radiologists with CNN Radiologists alone Radiologists with CNN

ACC 66
(0.61–0.71)

89
(0.85–0.92)

61
(0.47–0.74)

87
(0.74–0.94)

66
(0.52–0.78)

85
(0.72–0.93)

SE 81
(0.77–0.85)

95
(0.92–0.97)

79
(0.65–0.88)

93
(0.82–0.98)

82
(0.69–0.90)

89
(0.77–0.95)

SP 43
(0.38–0.48)

82
(0.78–0.86)

33
(0.21–0.47)

78
(0.64–0.88)

42
(0.29–0.56)

84
(0.71–0.92)

FPV 57
(0.52–0.62)

19
(0.15–0.23)

67
(0.53–0.79)

22
(0.12–0.36)

58
(0.44–0.71)

16
(0.08–0.29)

FNV 19
(0.15–0.23)

6
(0.04–0.09)

21
(0.12–0.35)

7
(0.02–0.18)

18
(0.10–0.31)

11
(0.05–0.23)
December 2021 | Vo
All values shown as % (95% confidence interval).
CNN, convolutional neural network; ACC, accuracy; SE, sensitivity; SP, specificity; FPV, false positive value; FNV, false negative value.
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extracting three orthogonal slices to form pseudo-RGB map,
cropping, and resizing the input images for neural network could
help 2D-CNN capture rich 3D features. In the future, a larger
multicenter study should be used to validate this model and
improve the performance of this algorithm.

Other limitations should be mentioned. Lesions were not
automatically detected, but based on radiologist annotations,
which would lead to interobserver variability and error
propagation to CNN model because of this process. However,
to reduce this bias, all lesions were marked in consensus by two
experienced radiologists. Furthermore, we used the Grad-CAM
method to visualize the intermediate variables generated by the
trained model for the prediction process of the images. Given an
image patch, the model does focus on the nodule, demonstrating
that the region of interest used by the model for feature
recognition is correct and that such interpretable analysis is
appropriate for the form of our annotation (which includes
nodule location and class) currently provided. At present, the
design of CNN algorithms and the abundance of clinical data are
mutually reinforcing. In the future, as more data become
available and finer-level annotation information becomes more
widespread, CNNs can be more useful for clinical applications.
Considering actual clinical limitations, the design of our cohort
was restricted to allow differentiation between adenocarcinomas
and benign diseases including granulomas, PSP, and FOP.
Actually, it makes sense to use CNN model to further predict
the results of benign lesions for subclassification. However, in
our study, we did not perform this task. Understandably, the
multi-classification tasks for benign lesions are difficult due to
the disparity in sample distribution of benign subtypes (124
granulomas; 55 PSPs; 4 FOPs), as a well-performing model
requires a large number of sample data of each type of disease.
We plan to conduct a more in-depth evaluation of the
application of CNN model to multi-classification tasks based
on large samples in the upcoming studies.

In conclusion, we established a CNN model based on CT
images that can serve as a valuable tool for radiologists to
differentiate radiographic solid, indeterminate SPNs or SPMs.
Moreover, a visualization procedure was presented to enhance
interpretability of CNN model.
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Supplementary Figure 1 | The more represented results for using CAM to
visualize the discriminative process of the neural network. (nodules A–D): examples
of CNN model incorrectly predicting the benignity and malignancy of nodules.
(nodules E–J) examples of CNN model for accurate prediction of nodal benignity
and malignancy. As shown in nodule H, the ROI heat values used to determine
malignancy is low, but the ROI heat values used to determine non-benign is high,
which can be explained by the fact the CNN determines this case as malignant by
referring more to the surrounding area than to the nodal region. What is more, we
can learn from nodule I that the CT images of this case obviously have texture noise
that is not present in other cases, but the CNN still correctly detects the ROI and
makes a judgment, which reflects the robustness of the CNN model. CAM, class
activation map; CNN, convolutional neural network; ROI, region of interest; CT,
computed tomography.
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Objective: The purpose of this study was to utilize a convolutional neural network (CNN)
to make preoperative differential diagnoses between ameloblastoma (AME) and
odontogenic keratocyst (OKC) on cone-beam CT (CBCT).

Methods: The CBCT images of 178 AMEs and 172 OKCs were retrospectively retrieved
from the Hospital of Stomatology, Wuhan University. The datasets were randomly split
into a training dataset of 272 cases and a testing dataset of 78 cases. Slices comprising
lesions were retained and then cropped to suitable patches for training. The Inception v3
deep learning algorithm was utilized, and its diagnostic performance was compared with
that of oral and maxillofacial surgeons.

Results: The sensitivity, specificity, accuracy, and F1 score were 87.2%, 82.1%, 84.6%,
and 85.0%, respectively. Furthermore, the average scores of the same indexes for 7
senior oral and maxillofacial surgeons were 60.0%, 71.4%, 65.7%, and 63.6%,
respectively, and those of 30 junior oral and maxillofacial surgeons were 63.9%, 53.2%,
58.5%, and 60.7%, respectively.

Conclusion: The deep learning model was able to differentiate these two lesions with
better diagnostic accuracy than clinical surgeons. The results indicate that the CNN may
provide assistance for clinical diagnosis, especially for inexperienced surgeons.

Keywords: deep learning, convolutional neural network, Inception v3, ameloblastoma, odontogenic keratocyst,
cone-beam CT
INTRODUCTION

Ameloblastoma (AME) and odontogenic keratocyst (OKC) are common radiolucent lesions of the
jaws in oral and maxillofacial surgery (1, 2). Radiographic examinations are vital for patients with
odontogenic lesions, notwithstanding that histopathological findings are the gold-standard
diagnostic criteria (3, 4). However, because of the overlap of morphological characteristics in
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radiography, it is usually difficult to accurately distinguish these
two diseases. Current treatment modalities for AME are wide
local excision and immediate reconstruction, but OKC is
generally treated with more conservative surgical methods,
such as marsupialization and/or enucleation. Given that they
have different treatment strategies, it is imperative to differentiate
these conditions before surgery (5–8).

Clinically, the differentiation between AME and OKC in
radiography is mainly based on some features, such as
buccolingual expansion, the number of locules, internal density,
and the root resorption of the adjacent teeth (Figure 1).
Nevertheless, only relying on these features is insufficient to
obtain a strong differential diagnosis. Previous studies have
sought more instrumental radiographic findings, such as the
width-to-length ratio, volumetric measurement, and assessment
of the Hounsfield unit, to distinguish these two lesions (9–11).
However, these studies have the same limitation in that they only
focused on low-level and limited features. Therefore, it can be
contended that the current knowledge of radiography is still at tip
of the iceberg, and more undetected information waits to be mined.

Recently, deep learning, which has been shown to outperform
humans in object recognition and visual tasks, has achieved
tremendous progress (12, 13). Deep learning algorithms have
already been successfully used in medical practice, such as for the
detection of incidental esophageal cancers, dermatologist-level
Frontiers in Oncology | www.frontiersin.org 292
classification of skin cancer, prediction of tyrosine kinase
inhibitor treatment response, and diagnosis of COVID-19
pneumonia (14–17). In oral and maxillofacial oncology, some
researchers have used deep learning methods to distinguish AME
and OKC in panoramic radiographs and benefited greatly from
the methods (18–20). However, panoramic radiography is not as
good as cone-beam CT (CBCT) in demonstrating lesions. As the
optimal examination for jaw lesions, CBCT has a high resolution,
enabling it to comprehensively and clearly display lesions
without distortion, superimposition, and misrepresentation of
structures (21, 22). Lee et al. have demonstrated that their deep
learning model trained with CBCT images performed better than
that trained with panoramic images in diagnosing odontogenic
cystic lesions (23). Consequently, we aimed to use a
convolutional neural network (CNN) to automatically classify
AME and OKC in CBCT data. Furthermore, we compared the
diagnostic accuracy of the proposed model with that of senior
and junior oral and maxillofacial surgeons.
MATERIALS AND METHODS

Patient and Data Collection
The 350 patients in this study were obtained from the Hospital of
Stomatology, Wuhan University, and all of them underwent
A B

C D

FIGURE 1 | (A) Ameloblastoma (AME). Axial view of CBCT shows the lesion with buccal expansion, obvious cortical bone resorption, and a multilocular pattern. (B)
Typical H&E staining of AME (×200). (C) Odontogenic keratocyst (OKC). Axial view of CBCT shows that the lesion grows along the bone, with unapparent disruption
of the cortical bone and the unilocular pattern. (D) Typical H&E staining of OKC (×200).
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surgical treatment with a diagnosis of jaw cystic disease from
2012 to 2020. The pathological diagnosis was made by one
pathologist and reviewed by one pathologist from the
Department of Oral Pathology, Wuhan University, based
on criteria according to the World Health Organization
Classification of Head and Neck Tumors (4th, 2017) (24).
Their imaging data were retrieved from the picture archiving
and communication system (PACS) and saved in DICOM
format. All CBCT scans of patients were performed with the
same CBCT device (NewTom VG, Italy). The tube voltage was
set to 110 kV, and the tube current and the exposure time were
regulated by the automatic exposure control system. The images
were reconstructed with an isotropic voxel size of 0.3 mm and a
0.3-mm axial pitch.

The inclusion criteria were as follows: 1) complete clinical
records, 2) definitive histopathological confirmation of the lesion
as AME or OKC, and 3) availability of preoperative CBCT. The
exclusion criteria included the following: 1) multiple OKCs or
nevoid basal cell carcinoma syndrome and 2) images with
apparent artifacts involving the regions of interest (ROIs).

Finally, an equalized dataset consisting of 178 AMEs (130 solid/
multicystic ameloblastomas and 48 unicystic ameloblastomas) and
172 OKCs was included in this study. The data were randomly
partitioned into two parts: 272 patients in the training set and
78 patients in the testing set, at a ratio of approximately 7:3
(Table S1).

Image Processing
The CBCT data were loaded in the open source software 3D
Slicer (version 4.11; www.slicer.org) and were demonstrated in
three dimensions. The ROI of each slice was manually delineated
by a junior surgeon using the semiautomatic segmentation
method and then examined and modified by two professional
Frontiers in Oncology | www.frontiersin.org 393
surgeons. The labeled masks were saved in the axial sequence for
the subsequent training process. To manifest the lesions more
clearly, the open source software mDicom (MicroDicom) was
utilized to adjust the raw DICOM images into the bone window
(WW/WL, 1,000/300 HU), and then all axial sequences were
exported as 512 * 512 pictures in PNG format.

The original pictures were cut into smaller rectangular
patches that comprised only the lesions according to labeled
masks. The rectangles should be reshaped to squares by padding
the black-filled region to fit the CNN architectures and resized to
150 * 150 due to the inconsistent sizes of cropped images. In the
training process, in order to reduce redundancy and avoid
overfitting of the model, we selected one out of every three
consecutive images in a series of each patient. Hence, only one-
third of the images of each patient were retained. In the test
phase, all images of each patient were tested, and the final
classification result was up to the category with larger
numbers. If the numbers of the two categories are equal, it
means that the model made an incorrect diagnosis of the patient.
The experimental procedure is illustrated in Figure 2, and some
processed pictures of one patient are presented in Figure 3. After
each case was processed identically, we obtained 272 patients in
the training dataset and 78 in the testing dataset, consisting of
11,820 and 11,455 slices, respectively.

Model Interpretation and Training Process
We selected the Inception v3 network as the classifier in our
study because it performed better than the other three models
(Table S2). Inception v3 clustered similar sparse nodes into a
dense structure to increase both the depth and width of the
network and reduce the computation process efficiently (25). The
network consisted of five convolutional layers, two max-pooling
layers, 11 inception modules, one average pooling layer, and one
FIGURE 2 | Flow diagram of the study. The training and testing datasets contained 272 and 78 patients, respectively. A total of 189 images comprising the region
of interest (ROI) of one patient in the training dataset were cropped into smaller rectangles, padded into square images using black, and resized to 150 * 150 to gear
the CNN. To reduce redundancy, we selected one image out of every three images. The series in the testing dataset underwent the same process except for
changing the number of images. As shown in the picture, 120 slices of AME patient were tested by the trained CNN. Ninety slices were predicted to have AME and
30 slices were predicted to have OKC, so AME was ultimately considered.
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fully-connected layer (Figure 4). The convolution layers were
used to extract the features in the jaw images. The pooling layers,
including the max-pooling layers and average pooling layer, were
utilized to reduce the dimension of features and reduce the
Frontiers in Oncology | www.frontiersin.org 494
amount of calculation. The inception module applied different
sized convolution kernels to realize multiscale feature fusion. The
fully connected layer integrated the output features of the
convolution layer or pooling layer and output the probability
FIGURE 3 | The images used for training were obtained after a series of processing steps, and these 12 images came from one patient.
FIGURE 4 | Inception v3 consists of five convolutional layers, two max-pooling layers, 11 inception modules, one average pooling layer, and one fully connected layer.
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value of each category after the Softmax activation function. To
tackle the problem of limited dataset in medicine, transfer
learning was applied in most situations. As done before (26),
the CNN was trained on a large ImageNet dataset to learn the
hierarchical features. Then, we applied the pretrained CNN with
properly adjusted weights in our task.

In this work, our model was performed using a PC with the
64-bit Ubuntu 16.04 operating system, CUDA 9.0, an Intel E5-
2650 v4 CPU, 256 GB RAM, a TITAN Xp GPU, and Python 3.5.
In the model training process, the datasets were split into
training and validation sets at a ratio of 4:1. We utilized the
RAdam optimizer to train the layers in batches with a step size of
12 images and a learning rate of 0.0001. After 100 epochs, the
training was stopped since both the accuracy and cross-entropy
loss were not further improved. The learning history of the
model is shown in Figure 5.

Testing Surgeons
Clinical surgeons were tested using the identical testing dataset to
obtain an objective assessment of the model. Seven senior
surgeons and 30 junior surgeons participated in this study, and
their results were classified into two groups: senior surgeons and
junior surgeons. For each patient, two screenshots comprising
three CBCT views, instead of the complete CBCT series, were
offered for testing. Only the pictures of patients were
summarized into a questionnaire with no more clinical
information provided (Figure S1).

Statistical Analysis

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F1 score =
2 ∗TP

2 ∗TP + FP + FN

(TP: true positive, FP: false positive, TN: true negative, FN:
false negative)

In this study, the accuracy, specificity, sensitivity (recall), and
F1 score were used to assess the performance of Inception v3 and
surgeons. For statistical analysis, we regarded the AME as positive
and the OKC as negative. The sensitivity was derived by dividing
the total number of patients correctly classified as having AME by
the total number of AME cases. The specificity was derived by
dividing the total number of patients correctly classified as having
OKC by the total number of OKC cases. The accuracy was
calculated by dividing the number of correctly classified patients
by the total number of test patients. The F1 score is the harmonic
average of the precision and recall and is considered to
comprehensively measure classification performance.
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RESULTS

Patient Characteristics
The demographic and clinical data of the subjects in this study
are presented in Table 1. The ages for AME cases range from 9 to
81 years, which is wider than the ages for OKC cases that range
from 10 to 70 years. The average age of patients with AME
and OKC are 40.3 ± 16.5 years (mean ± standard deviation) and
41.5 ± 17.6 years (mean ± standard deviation), respectively. Both
AME and OKC have a predilection for the mandible.

Comparison Results Between Model and
Surgeons
Inception v3 obtained the highest scores among the participants,
with a sensitivity of 87.4%, a specificity of 82.1%, an accuracy of
84.6%, and an F1 score of 85.0% (Table 2). For Inception v3, the
diagnostic accuracy of AME (87.4%) was slightly higher than that
of OKC (82.1%). Compared with lesions in the maxilla, the
model had better diagnostic performance for the mandible, and
the accuracies are shown in Table 3. The average prediction time
for an image was 3.13 ms using the model, and the total time for
diagnosing the 78 patients was 35.87 s.
FIGURE 5 | Convergence of the network training. At each epoch, the model
was trained using all images in the training dataset, and the accuracy was
evaluated. At the end of each epoch, we measured the accuracy of the
model on the validation dataset. After 100 epochs, the training was stopped
since both accuracy and cross-entropy loss would not be further improved.
TABLE 1 | Demographic data of the study subjects.

Characteristics OKC (N = 172) AME (N = 178)

Age (mean ± SD) 41.5 ± 17.6 40.3 ± 16.5
Location
Maxilla 63 (36.6%) 24 (13.5%)
Mandible 109 (63.4%) 154 (86.5%)
Gender
Male 91 (52.9%) 108 (60.7%)
Female 81 (47.1%) 70 (39.3%)
January 2022 | Volume 11
SD, standard deviation; OKC, odontogenic keratocyst; AME, ameloblastoma.
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The average sensitivity, specificity, accuracy, and F1 score for
the classification of the group of 7 senior surgeons were 60.0%,
71.4%, 65.7%, and 63.6%, respectively, and those of the group of
30 junior surgeons were 63.9%, 53.2%, 58.5%, and 60.7%,
respectively. The diagnostic outcomes of the CNN model and
5 surgeons were presented by confusion matrices (Figure 6). The
average time to make diagnoses for 78 patients by 7 senior
surgeons was 1,471 s. For the 30 junior surgeons, the average
time was 1,113 s.
DISCUSSION

AME is the most common benign odontogenic tumor,
accounting for approximately 10% of all odontogenic
Frontiers in Oncology | www.frontiersin.org 696
tumors (27). AME can arise from any odontogenic epithelium,
so it can manifest widely varied radiographic findings. As the
third most common odontogenic cyst, OKC represents nearly
12% of all odontogenic cysts, also arising from odontogenic
epithelium (28). According to the literature reports, OKC is
inclined to grow along the bone without the same buccolingual
expansion of AME that usually results in bone resorption.
However, these results could also be observed when
OKC reached a large size. These confusing radiographic
manifestations contributed to the difficulty of differential
diagnosis. For AME, the main treatment modality is wide local
excision and immediate reconstruction (6). Nevertheless, OKC is
generally treated with more conservative surgical methods, such
as marsupialization and/or enucleation, followed by adjunctive
treatments, including cryotherapy with liquid nitrogen or the
TABLE 2 | Comparison results of Inception v3 and surgeons.

Sensitive (%) Specificity (%) Accuracy (%) F1 score (%)

Inception v3 87.2 82.1 84.6 85.0
Senior surgeons 60.0 71.4 65.7 63.6
Junior surgeons 63.9 53.2 58.5 60.7
January 2022 | Volume 11 |
TABLE 3 | Diagnostic accuracy in the maxilla and mandible.

Testing number Sensitive (%) Specificity (%) Accuracy (%) F1 score (%)

Maxilla 15 50.0 81.8 73.3 50.0
Mandible 63 91.4 82.1 87.3 88.9
FIGURE 6 | Confusion matrices of Inception v3 and five oral and maxillofacial surgeons showed the specific diagnostic performance. The color shade of the grid
represented the proportion of each class.
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application of fixative Carnoy’s solution, to reduce recurrence
(5). As a consequence, precise preoperative diagnosis is necessary
for determining appropriate treatment strategies.

This study can be regarded as a successful application of deep
learning in the field of odontogenic diseases with CBCT data. The
results showed that our CNN model exhibited superior
performance in differentiating AME and OKC compared with
the oral and maxillofacial surgeons. Its diagnostic capability
considerably outperformed senior and junior surgeons. Notably,
though the sensitivity of junior surgeons (63.9%) was higher than
that of the senior surgeons (60.0%), it did not mean that the junior
surgeons had better diagnostic capabilities. This was because the
junior surgeons in this study were inclined to choose the AME. As
shown in the results, the specificity of junior surgeons (53.2%) was
significantly lower than that of senior surgeons (71.4%).
Furthermore, the CNN model spent extremely less time in
diagnosis than the senior and junior surgeons. The average
diagnosis time for the group of senior surgeons was longer than
that for the group of junior surgeons. A possible explanation for
this might be that senior surgeons would consider more details
when they made a diagnosis. There are also some studies that
developed deep learningmodels for differentiating AME andOKC
in panoramic radiographs and achieved a high classification
accuracy for lesions of the mandible (18–20). However, these
models cannot perform well for lesions of the maxilla due to the
inherent limitations of the panoramic radiograph, including the
distortion, superimposition, and misrepresentation of structures.
In contrast, CBCT has a higher resolution, enabling it to
comprehensively and clearly display lesions in the maxillofacial
region, which has many complex anatomic structures (21, 22). As
a result, in our work, it was not necessary to deliberately select the
location of onset. Our CNN model could substantially distinguish
OKC and AME regardless of whether the lesion was in the maxilla
or mandible. Bispo et al. used deep learning methods to
differentiate them in multidetector CT images. However, their
work was based only on extremely limited data from 40 patients,
which would weaken the credibility of their results (29). In
contrast, a larger dataset consisting of 350 patients was used in
our study. Consequently, the convincing results indicated that our
model could provide assistance for clinical diagnosis, especially for
inexperienced surgeons.

In our study, we found that the diagnostic accuracy in the
maxilla was lower than that in the mandible, and the possible
explanations might be as follows. First, the low incidence in the
maxilla results in less available data. Second, there may be more
similar manifestations in the maxilla. There are few bone
absorptions when lesions are small because of the intrinsic
sinus cavities in the maxilla. However, the flimsy maxillary
cortex is more susceptible to extensive destruction which often
involves the nasal cavity and ethmoidal and sphenoidal sinuses,
by both AME and OKC (30).

In the present study, two special and effective methods were
used to improve the performance of the model. First, we cropped
the original images using a tailored processing method. The
original images contained many irrelevant anatomical structures,
such as teeth, craniofacial bones, and muscles, and such loud noise
might interfere with the model accurately extracting the features
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from the ROIs. Shin et al. proved that slice-level classification is
more challenging than patch-level classification (31). Monkam and
his colleagues compared the performances of several models based
on different sized patches (32). Given that the sizes of ROIs in our
database covered a large variation, it was irrational to establish a
one-size-fits-all patch size. We tailored the optimal patch size for
each slice by automatically measuring the mask to determine a
suitable width and length of the rectangle. This process proved to
be conducive to reducing the memory footprint and increasing the
accuracy. Second, we noticed that the adjacent slices in the CBCT
scans of one patient were extremely similar, which could lead to
redundancy. As a solution, we selected one image out of every
three images. This processing not only improved the training
speed in every epoch but also effectively avoided overfitting and
improved the model performance.

Keep in mind that our study still has some limitations. First, the
diagnostic accuracy of the surgeons might be underestimated.
Neither the model nor the surgeons were allowed to utilize the
clinical information of patients, which is indispensable in clinical
practice. In addition, we tested surgeons using only partial images
of the CBCT series. Second, we did not perform external data
validation; therefore, the generalizability of the model should be
considered. The difficulty of obtaining sufficient images restricts the
application of deep learning in the field of medical research. It is no
exception that we used a relatively small amount of data, and all
data were from the same medical center. Third, the CNN model
was only based on 2D ROI patches of axial images, which might
result in ignoring contextual information. Apparently, we
suboptimally used the CBCT data, which are amenable to
providing 3D manifestations. Ciompi et al. effectively classified
pulmonary perifissural nodules by combining several 2D views
(33), and Xu et al. designed a 3D CNN for automatic bladder
segmentation to fully exploit 3D CT images (34). These studies of
predecessors are bound to guide subsequent works, which are
worthy of undertaking in the future. For example, we can attempt
to multistream architectures based on three dimensions of CBCT
or utilize a 3D-CNN to improve the classification accuracy. We can
also search for the most suitable window setting to fully manifest
lesions and pay more attention to overcoming the conundrum in
differentiating lesions in the maxilla. Furthermore, external
validations are indispensable to strengthen the generalization and
credibility of the model. Additionally, we expect that deep learning
will make greater advances and yield greater benefits for
medical systems.

In conclusion, the CNN model achieved a fulfilling accuracy
in diagnosing AME and OKC through CBCT, and the model
significantly outperformed senior and junior surgeons of oral
and maxillofacial. While these results require further validation,
our work suggests that the CNN model can provide substantial
assistance with non-invasive diagnosis and therapy guidance
for patients.
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Purpose: The purpose is to accurately identify women at high risk of developing cervical
cancer so as to optimize cervical screening strategies and make better use of medical
resources. However, the predictive models currently in use require clinical physiological
and biochemical indicators, resulting in a smaller scope of application. Stacking-
integrated machine learning (SIML) is an advanced machine learning technique that
combined multiple learning algorithms to improve predictive performance. This study
aimed to develop a stacking-integrated model that can be used to identify women at high
risk of developing cervical cancer based on their demographic, behavioral, and historical
clinical factors.

Methods: The data of 858 women screened for cervical cancer at a Venezuelan Hospital
were used to develop the SIML algorithm. The screening data were randomly split into
training data (80%) that were used to develop the algorithm and testing data (20%) that
were used to validate the accuracy of the algorithms. The random forest (RF) model and
univariate logistic regression were used to identify predictive features for developing
cervical cancer. Twelve well-known ML algorithms were selected, and their performances
in predicting cervical cancer were compared. A correlation coefficient matrix was used to
cluster the models based on their performance. The SIML was then developed using the
best-performing techniques. The sensitivity, specificity, and area under the curve (AUC) of
all models were calculated.

Results: The RFmodel identified 18 features predictive of developing cervical cancer. The
use of hormonal contraceptives was considered as the most important risk factor,
followed by the number of pregnancies, years of smoking, and the number of sexual
partners. The SIML algorithm had the best overall performance when compared with
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other methods and reached an AUC, sensitivity, and specificity of 0.877, 81.8%, and
81.9%, respectively.

Conclusion: This study shows that SIML can be used to accurately identify women at
high risk of developing cervical cancer. This model could be used to personalize the
screening program by optimizing the screening interval and care plan in high- and low-risk
patients based on their demographics, behavioral patterns, and clinical data.
Keywords: machine learning, cervical cancer, risk, artificial intelligence, personalized screening
INTRODUCTION

Cervical cancer is one of the most common malignant tumors in
women worldwide (1). The 5-year survival rate for early-stage
cervical cancer is high, ranging from 80% to 90% (2). However,
the cure rate goes down to 10% for stage 4 disease (3). Cervical
screening has, therefore, an important role in identifying the disease
at an early stage and hence reduces the morbidity and mortality
from the disease. The incidence and mortality from cervical cancer
vary across different countries and tend to be lower in highly
developed countries due to well-established screening and
vaccination programs (4). However, underdeveloped regions often
do not have sufficient medical resources allocated to screening. This
implies that there is an increased need to identify women at a high
risk of developing cervical cancer to optimize the screening interval
and hence make better use of medical resources (5, 6).

Parametric prediction models can be used to better identify the
early risk warning signs of cervical cancer (7–9). However, to our
knowledge, there is currently no comprehensive risk prediction
model based on demographic information, behavioral habits, and
medical history for cervical cancer. Predictionmodels need to be able
tomakeuse of individual information to accurately predict the risk of
developing the disease. Artificial intelligence (AI) and machine
learning (ML) can be used to analyze large volumes of data to
make accurate predictions and to identify hidden interactions (10,
11).Therefore, theuseofAIandMLin themedicalfieldhas increased
exponentially during the past few years. However, current risk
prediction models for cervical cancer are based on former-
generation algorithms, such as the decision tree model and random
forest (RF) (12).Until recently,more powerful algorithms such as the
stacking-integration machine learning (SIML) have yet to be fully
explored. SIML’s automatic large-scale integration strategy can
effectively combat overfitting by adding regular items and
transferring the integrated knowledge to a simple classifier, which
is the best way to improve the effectiveness of machine learning.

This study aimed to develop an SIML that could be used to
identify women at a high risk of developing cervical cancer based
on their demographic, behavioral, and medical history and hence
personalize the screening program according to their risk factors.
MATERIALS AND METHODS

Study Populations
These data were obtained from the public dataset provided by
Kelvin Fernandes in the UCI database. The data were based on
2101
early screening data for cervical cancer collected at the Hospital
Universitario de Caracas, Venezuela, from March 2012 to
September 2013 (13). The majority of patients were of low
socioeconomic status, low income, and low educational level.
The patients were aged 13–84 years, with an average age of 27
years, and 88.6% of them had at least one pregnancy. The data
collected included demographics, behavioral patterns, and
medical histories of 858 patients. A total of 18 different
potential risk variables were identified and coded, as shown in
Supplementary Table S1. Due to missing variables for privacy
concerns, not all patient variables were available for analysis.
Feature datasets excluded variables with more than half loss rate
or those that have all identical values. The original general data
parameter index code is available in Supplementary Table S1,
and the main content of the modeling is shown in Figure 1.

Dataset Preprocessing
The premise of an efficient and reliable disease risk prediction
model was the accuracy of the data. Visualization of the data was
first performed using the public packages related to ML in R,
version 3.6.0 (The R Foundation for Statistical Computing,
Vienna, Austria), while the PRISM software version 7.0 for
Windows (GraphPad Software Inc., San Diego, CA, USA) was
used to plot the data (Supplementary Figure S1).

Following visualization of the data, 18 high-risk prediction
features (Supplementary Table S1) of a positive biopsy were
identified. Continuous variables were categorized as follows. The
ages of the patients were grouped into four categories: below 20
years, 20–29 years, 30–44 years, and 45–60 years, while the age of
first sexual intercourse was grouped into five groups: below 13
years, 13–15 years, 16–17 years, 18–19 years, and above 20 years.
Other classification variables were input according to the
original characteristics.

Not all the data for each predictive feature were available.
About 20%–30% of the clinical predictive data and about 0%–
15% of the behavioral data were missing. The missing part of the
data had to be estimated by using the information available in the
existing data to replace the missing data with values (14).
However, due to a large number of missing data, conventional
mean and median filling methods could not be used in this case,
since these techniques cannot guarantee data authenticity
because the filling values are mostly unreal values, which will
affect the accuracy of model construction. Therefore,
nonparametric missing value imputation using RF (MissForest)
was used to process missing data as suggested by Stekhoven et al.
February 2022 | Volume 12 | Article 821453
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(15). The parameters of the model were set as follows: the
maximum iterations were set to 10. The number of trees was
chosen to be 100.

Feature Selection
The model was designed to rely on a limited and effective set of
features that do not require excessive input from patients. Using
the RF model, a total of 18 predictors for developing cervical
cancer were identified. The univariate logistic regression and
feature selection model were then used to quantify the odds ratio
(OR) and the contributing risk of each predictive value for
developing cervical cancer. The analysis of feature selection
was based on the RF classifier, whereby the importance of each
predictive feature was sorted by using the error rate
measurement. Specifically, for each tree in the RF, the error
rate for classification of the out-of-bag portion of the data was
recorded. The feature importance score was calculated by
estimating improvement in the classification error rate of each
feature. Finally, the importance scores of all trees in RF were
averaged to get the final score of each feature (16). Nine
important predictive features were finally identified.

Treatment of Imbalanced Data
Imbalanced data refer to the uneven distribution of data among
different categories, whereby the main categories have a much
larger representation (17). The imbalance ratio (IR) is expressed
as the ratio of the number of large sample categories to the
number of small sample categories. A large IR generally has a
negative impact on the classification effect of the model and can
lead to an inaccurate classification.
Frontiers in Oncology | www.frontiersin.org 3102
Two techniques were used to deal with imbalanced data in
our study. The first method involved the use of resampling based
on samples (oversampling, undersampling, and hybrids). The
other method combines the use of resampling methods via the
random oversampling example (ROSE) (18) and synthetic
minority oversampling technique (SMOTE) (19) algorithms. In
this study, five different resampling methods and RF were
combined to build the models, and ultimately the best method
was selected and integrated into the final SIML.

Model Development
Following class imbalance treatment, the cervical cancer
screening data were randomly assigned to the training dataset
(80% of data) and testing dataset (20% of the data). The training
dataset was used to develop the algorithm, while the testing
dataset was used to evaluate the performance of the algorithm.
We then selected 12 widely used ML algorithms including RF,
Stochastic Gradient Boosting (SGB), Bagged Classification and
Regression Tree (TreeBag), eXtreme Gradient Boosting
(XGBoost), Monotone Multi-Layer Perceptron Neural Network
(MonMLP), Support Vector Machines with Radial Basis
Function Kernel (SVMRadial), K-Nearest Neighbors (KNN),
Gaussian Process with Radial Basis Function Kernel
(GaussPrRadial), Regularized Logistic Regression (RgeLogistic),
Stabilized Linear Discriminant (SLDA), AdaBoost Classification
Trees (AdaBoost), and Logistic Model Trees (LMT). All of these
supervised algorithms were implemented using the free and
open-source library caret in R3.6.0. To adjust the optimal
tuning parameters of each ML algorithm, we used 10-fold
cross-validation and repeated three times on the training set.
FIGURE 1 | Flowchart illustrating the development and validation of ML models. ML, machine learning.
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This method involved dividing the training set into 10 sets and
using nine sets for training and the remaining set was used for
verification. This was performed 10 times, and the results of the
different test sets were averaged, ensuring an independent result
from the actual dataset subdivision (20).

RF, TreeBag, SGB, AdaBoost, and XGBoost are integrated
algorithms that combine multiple simple tree models (21, 22)
and are considered to be the most accurate for making
predictions using various datasets for several applications.
MonMLP is a feed-forward Artificial Neural Network (ANN)
model, which maps multiple input datasets to a single output.
As a popular ML algorithm, MonMLP has incomparable
advantages in prediction accuracy. However, it requires
tuning of many parameters and a large number of data for
training (23). SVMRadial is an SVM model with Radial Basis
Function, which constructs a decision curve in high-
dimensional feature space to perform binary classification
(24). KNN, GaussPrRadial, RegLogistic, and SLDA are
relatively efficient and effective simple classification
algorithms in data mining. Although these algorithms are
relatively simple, they still perform very well and result in a
model that is easier to interpret (21, 25). LMT is an algorithm
generated by the combination of linear logistic regression and
decision tree induction. It has been proven to be an accurate
and simple classifier, which is also competitive with other
advanced classifiers (such as RF) and easier to explain (26).

The performances of the algorithms were compared to select
the optimal stacking algorithm. Stacking is a common integrated
learning framework in the Kaggle competition, integrating many
models to improve the result prediction accuracy. It is generally
used to train a two-layer learning structure. The first layer
(known as the learning layer) trains n different classifiers, and
their predicted results are combined into a new feature set, which
is then used as the input of the next layer classifier (27)
(Figure 2). Stacking has the characteristics of distributing
multiple classifiers while ensuring excellent performance. In
summary, the stacking-integrated learning framework has two
requirements for base classifiers: large differences between
classifiers and high accuracy of classifiers. However, it is prone
to overfitting (28). The features of the second layer come from
learning the results of the first one. Thus, the original features
should not be included in the features of the data of the second
layer to reduce the risk of overfitting. The best choice of the
second layer classifier is a relatively simple classifier. RegLogistic
is a better method in Stacking (29), but LMT is more robust in
overfitting (26), and can therefore be used instead.

Model Comparisons
The optimal tuning parameters of each ML algorithm were
determined by cross-validation on the training samples after
imbalance data processing. The models’ internal verification
scores were obtained from the training dataset, while the
external validation scores were obtained from the test sets.
External validation scores could be used to test the
generalization power of the model. The performance
evaluation of binary data (positive vs. negative) was mainly
based on the sensitivity ( TP

TP+FN ) and specificity ( TN
TN+FP ), where
Frontiers in Oncology | www.frontiersin.org 4103
TP, FP, TN, and FN represent the number of true positives, false
positives, true negatives, and false negatives, respectively. The
area under the curve (AUC) was used to reflect the relationship
between two performance variables. F1 scores and F2 scores were
also used to measure the model’s accuracy.

F1 = 2 ∗ precision ∗ recall
precision+recall , F2 = (1+22) ∗ precision ∗ recall

22 ∗ precision+recall , in which
 precision = TP

TP+FP   and recall = TP
TP+FN

Alternatively, the F1 score and F2 score were a kind of
harmonic mean of model accuracy and recall (30), comparing
different model performances in identifying true disease
predictions when compared to false positives. The weight of
the F2 score was more inclined to the recall value of the model
and focuses on the sensitivity index of the model.

The entropy weight method was an objective weighting
method that can be used to reduce the influence of human
factors. After averaging the seven performance metrics of the 12
models, we calculated the weights of each metric using the
entropy weight method (Supplementary Table S2).

The base models in the stacking structure were selected to be
independent and weakly correlated. The correlation coefficients
between the 12 models were calculated, and the correlation
coefficient matrix was used to cluster the model by hierarchical
clustering. Each cluster selected a classifier with the best
performance as the base model.
RESULTS

Study Participants
The baseline characteristics of the participants are summarized
in Table 1. Among the 858 screened patients, 4 (0.46%) were
excluded, as they were over 60 years old. The majority of the
included cases (46.14%) were aged between 20 and 29 years,
31.38% had their first sexual intercourse between 13 and 15 years
old, 15.69% of the patients were smokers, 68.97% of patients took
hormonal contraceptives, and 9.25% of the patients had sexually
transmitted disease. However, only 6.44% of the performed
biopsies were positive.

Predictors for a Positive Biopsy
The result of the univariate logistic regression analysis evaluating
the relationship between behavioral habits, medical history, and
positive biopsy is summarized in Table 1. The p values of age
(p = 0.045), first sexual intercourse (age) (p = 0.061), number of
pregnancies (p = 0.071), and use of hormonal contraceptives
(years) (p = 0.007) were less than 0.1, suggesting a relationship to
the occurrence of cervical cancer. Among them, the risk of
cervical cancer was significantly higher in the 45–60 age group
when compared with those under 20 years old (OR = 7.689, 95%
CI: 1.952–30.281). Compared with those less than 13 years old
for the first intercourse, the risk of cervical cancer was
significantly lower in people who had sex for the first time
after the age of 20 (OR = 0.132, 95% CI: 0.020–0.898). The longer
use of hormonal contraceptives and a larger number of
pregnancies were also features associated with an increased
risk of developing cervical cancer, with ORs of 1.092 (95% CI:
1.024–1.165) and 1.180 (95% CI: 0.986–1.413) respectively.
February 2022 | Volume 12 | Article 821453
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The feature selection method using RF was applied. Figure 3
demonstrated the relative importance of 18 variables in cervical
cancer risk prediction. Based on this analysis, nine predictors had
relative importance greater than one. The use of hormonal
contraceptives (years) was identified as the most important risk
factor, followed by the number of pregnancies, smoking (years),
Frontiers in Oncology | www.frontiersin.org 5104
number of cigarette packets smoked annually, number of
sexual partners, the use of an intrauterine device (IUD) (years),
number of sexually transmitted diseases (STDs), human
immunodeficiency virus (HIV), and age. These nine features
were incorporated into the model and cross-validated. In
contrast, in the univariate logistic regression, the number of
TABLE 1 | Sociodemographic factors associated with cervical cancer: univariate logistic regression analysis.

Total (n = 854) Biopsy negative (n = 799) Biopsy positive (n = 55) p Odds ratio (95% CI)

Age, years 0.045
<20 179 (20.96) 173 (21.65) 6 (10.91) Referent
20–29 394 (46.14) 366 (45.81) 28 (50.91) 0.085 2.206 (0.897–5.426)
30–44 262 (30.68) 245 (30.66) 17 (30.91) 0.153 2.001 (0.773–5.178)
45–60 19 (2.22) 15 (1.88) 4 (7.27) 0.004 7.689 (1.952–30.281)

Number of sexual partners 2.00 (2.00–3.00) 2.00 (2.00–3.00) 2.00 (2.00–3.00) 0.986 1.001 (0.850–1.180)
First sexual intercourse(age), years 0.061
<13 11 (1.29) 9 (1.13) 2 (3.64) Referent
13–15 268 (31.38) 256 (32.04) 12 (21.82) 0.063 0.211 (0.041–1.085)
16–17 271 (31.73) 252 (31.54) 19 (34.55) 0.186 0.339 (0.068–1.683)
18–19 199 (23.30) 180 (22.53) 19 (34.55) 0.363 0.475 (0.096–2.361)
≥20 105 (12.30) 102 (12.77) 3 (5.45) 0.038 0.132 (0.020–0.898)

Num of pregnancies 2.00 (1.00–3.00) 2.00 (1.00–3.00) 3.00 (1.00–4.00) 0.071 1.180 (0.986–1.413)
Smoking, yes 134 (15.69) 123 (15.39) 11 (20.00) 0.365 1.374 (0.690–2.734)

(n = 134) (n = 123) (n = 11)
Smoking (years) 7.00 (2.00–11.00) 6.67 (2.00–11.00) 10.00 (3.00–15.00) 0.100 1.062 (0.988–1.141)
Smoking (packs/year) 1.38 (0.51–3.00) 1.35 (0.51–3.00) 2.00 (1.25–3.40) 0.169 1.017 (0.910–1.137)
Hormonal contraceptives, yes 589 (68.97) 553 (69.21) 36 (65.45) 0.561 0.843 (0.474–1.499)

(n = 589) (n = 553) (n = 36)
Hormonal Contraceptives(years) 2.00 (1.00–5.00) 2.00 (1.00–4.50) 1.50 (0.50–9.50) 0.007 1.092 (1.024–1.165)
IUD, yes 199 (23.30) 187 (23.40) 12 (21.82) 0.788 0.913 (0.472–1.768)

(n = 199) (n = 187) (n = 12)
IUD (years) 2.19 (1.60–3.77) 2.17 (1.56–3.65) 3.00 (2.50–4.88) 0.352 1.081 (0.918–1.272)
STDs, yes 79 (9.25) 67 (8.39) 12 (21.82) 0.395 2.000 (0.406–9.886)

(n = 79) (n = 67) (n = 12)
Number of STDs 2.00 (1.00–2.00) 2.00 (1.00–2.00) 2.00 (1.00–2.00) 0.926 0.958 (0.388–2.365)
STDs: condylomatosis 44 (55.70) 37 (55.22) 7 (58.33) 0.842 1.135 (0.327–3.941)
STDs: vaginal condylomatosis 4 (5.06) 4 (5.97) 0 (0.00) / /
STDs: vulvo-perineal condylomatosis 43 (54.43) 36 (53.73) 7 (58.33) 0.768 1.206 (0.347–4.183)
STDs: syphilis 18 (22.78) 18 (26.87) 0 (0.00) / /
STDs: HIV 18 (22.78) 13 (19.40) 5 (41.67) 0.100 2.967 (0.811–10.861)
February 20
22 | Volum
Portions in bold represent p < 0.1. IUD, intrauterine device; STD, sexually transmitted disease.
FIGURE 2 | Flowchart of the integrated stacking structure. 1) The training sets were divided into two groups of data: training and verification sets, and the training set
is divided into five equal parts. 2) Take TreeBag as an example (The Figures above are Treebag, MonMLP, and XGBoost); train1, train2, train3, train4, and train5 are
used as verification sets in proper sequence, and the rest are used as training sets. The model is trained by 5-fold cross-validation, and then predicted on the test set.
Therefore, TreeBag can get five prediction results, which are vertically overlapped and merged into a matrix. The other two models are the same. 3) The predicted
values of the three models are taken as three characteristic variables, and the resulting classifier LMT is used for fitting. Then, the reserved training set was averaged.
The verification set of each characteristic variable was used to verify the performance of the LMT-stacking model. TreeBag, Bagged Classification and Regression Tree;
MonMLP, Monotone Multi-Layer Perceptron Neural Network Random Over-Sampling Examples; XGBoost, eXtreme Gradient Boosting; LMT, Logistic Model Trees.
e 12 | Article 821453
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sexual partners was not significantly correlated (p = 0.986) with
the occurrence of cervical cancer.

These nine features were incorporated into the model and
cross-validated.

Prediction Performance of the
Sampling Method
Table 2 described the comparative performance scores of
different sampling methods using RF. Each sampling model
had been verified internally and externally. In the external
validation, SMOTE-based RF performed best among all
classifiers with an AUC of 0.849 and had the highest score in
four of our seven performance metrics. The sensitivity and
specificity were 90.9% and 73.1%, respectively, both higher
than 70%. The accuracy, precision, F1 score, and F2 score were
74.2%, 18.9%, 0.312, and 0.195, respectively. SMOTE was
therefore selected as the imbalance data processing algorithm
for the final model.

Evaluation of the model performance using the receiver-
operating characteristic (ROC) (Supplementary Figure S2)
Frontiers in Oncology | www.frontiersin.org 6105
showed the comparison of the prediction ability of external
and internal validation of the model under different sampling
models. The curves modeled the sensitivity proportion of actual
at-risk women identified at risk of developing cervical cancer to
the specificity proportion of identified no-risk women in
the models.

Prediction Performance of 12 Machine
Learning Models
Toward at-risk patients of cervical cancer classification, Figure 4
compared the performance metrics of 12 different models.
According to the entropy weight score, TreeBag resulted in the
best performance, with an AUC score of 0.852 for the test
dataset. The sensitivity and specificity were 100% and 73.1%,
respectively. Compared to RF, the performance of sensitivity and
AUC was improved. As a whole, the tree-based models (TreeBag,
RF, Adaboost, XGBoost, SGB, and LMT) performed better than
other models, and the performance difference between the
models was minor. Additionally, the performance of the deep
learning model MonMLP ranked third, with an AUC of 0.793
FIGURE 3 | Variable importance measures for each predictor of morbidity. IUD, intrauterine device; STD, sexually transmitted disease; HIV, human
immunodeficiency virus.
TABLE 2 | Prediction performance of random forest algorithm on different sampling models.

Methods Cutoff Accuracy Precision Sensitivity Specificity F1 Score F2 Score AUC

Oversampling Train set 0.703 0.978 0.749 1.000 0.977 0.857 0.535 0.997
Test set 0.099 0.660 0.159 1.000 0.637 0.275 0.172 0.803

Undersampling Train set 0.333 0.761 0.191 0.840 0.756 0.312 0.195 0.870
Test set 0.343 0.743 0.163 0.727 0.744 0.267 0.167 0.739

Both sampling Train set 0.672 0.947 0.550 0.977 0.945 0.704 0.440 0.988
Test set 0.191 0.597 0.138 1.000 0.569 0.242 0.151 0.784

ROSE Train set 0.270 0.773 0.171 0.659 0.781 0.272 0.170 0.733
Test set 0.178 0.632 0.129 0.818 0.619 0.222 0.139 0.745

SMOTE Train set 0.600 0.952 0.586 0.864 0.958 0.698 0.436 0.968
Test set 0.268 0.742 0.189 0.909 0.731 0.312 0.195 0.849
Febr
uary 2022 | Volu
me 12 | Article 8
The portions in bold represent the model is optimal in a single index. ROSE, random oversampling example; SMOTE, synthetic minority oversampling technique; AUC, area under
the curve.
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and sensitivity and specificity of 72.7% and 83.1%, respectively.
The MonMLP model was significantly better than other models
with top performance in terms of specificity. The tuned
parameters of these models were listed in Supplementary
Table S3.

According to the correlation results of the 12 models
(Supplementary Figure S4), we divided the 12 models into 4
clusters (Figure 4) by using the hierarchical clustering method.
The intra-cluster model prediction difference was small, while
the inter-cluster model was large. In the first group, TreeBag and
RF were included, and the correlation between them was as high
as 0.80. Treebag was better than RF in predicting high-risk
patients with cervical cancer. According to the hierarchical
clustering results, AdaBoost, XGBoost, and SGB belonged to
the tree model based on boosting integration and were divided
into the second group. The correlation between the three models
was greater than 0.50. The best model was XGBoost with an
AUC, sensitivity, and specificity of 0.795, 81.8%, and 73.8%,
respectively. The third group consisted of the MonMLP model
and two simplistic models (RgeLogistic and SLDA). In terms of
performance, MonMLP performed better than the other two
models. This was partly due to the small number of positive
biopsies, and therefore the two simplistic models could not learn
enough logical relationships. In the fourth group, only LMT,
KNN, GaussPrRadial, and SVMRadial performed well.

Prediction Performance of
Stacking Models
In order to meet the two requirements of the stacking
structure for the base classifier and improve the performance
Frontiers in Oncology | www.frontiersin.org 7106
(27), we selected an optimal model from each group, namely,
TreeBag, XGBoost, MonMLP, and LMT. The performance
ranking of those models might be TreeBag > MonMLP >
XGBoost > LMT. LMT model was a simpler model based on
the Logistic and tree model, with high generalization and
strong generalization robustness (26). Therefore, we chose
LMT as the second layer structure of stacking (result
classifier) and TreeBag, XGBoost, and MonMLP as the first
layer (base classifier). Finally, two LMT-stacking models
with different tuning parameters were built by training
(Supplementary Table S3). The AUC, sensitivity, and
specificity of the LMT-Stacking1 model were 0.877, 81.8%,
and 81.9% (Figure 4), respectively, and 0.877, 81.8%, and
90.9%, respectively, for the LMT-Stacking2 model. The
difference in AUC between the two models was only 0.1%,
and the performance difference was not significant. Similar
results were seen in the ROC curves for each of the models, as
shown in Supplementary Figure S5.
DISCUSSION

AI and ML algorithms are increasingly used in healthcare to
analyze large datasets and perform predictions. However, the use
of these algorithms in identifying women at high risk of
developing cervical cancer is limited and often based on
former generation models, which have more limited accuracy
than more advanced algorithms. In this study, we have proposed
the use of SIML that integrates multiple algorithms to improve
the prediction accuracy.
FIGURE 4 | Prediction performance of ML models on the test sample. ML, machine learning; TreeBag, Bagged Classification and Regression Tree; MonMLP,
Monotone Multi-Layer Perceptron Neural Network Random Over-Sampling Examples; XGBoost, eXtreme Gradient Boosting; LMT, Logistic Model Trees; RF, random
forest; SGB, Stochastic Gradient Boosting; SVMRadial, Support Vector Machines with Radial Basis Function Kernel; KNN, K-Nearest Neighbors; GaussPrRadial,
Gaussian Process with Radial Basis Function Kernel; RgeLogistic, Regularized Logistic Regression; SLDA, Stabilized Linear Discriminant; AdaBoost, AdaBoost
Classification Trees; AUC, area under the curve.
February 2022 | Volume 12 | Article 821453

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Optimization of Cervical Cancer Screening
The findings of this study indicated that various ML
algorithms could be used to predict women at high risk of
developing cervical cancer based on demographic, behavioral,
and clinical data. However, the SIML with TreeBag, XGBoost,
and MonMLP as base classifier and LMT as result classifier
provided the best overall performance. Compared with the LMT-
Stacking1 model, the sensitivity of the LMT-Stacking2 model
was highly improved, while the specificity decreased. However,
because the data had few positive samples and the sensitivity
varied significantly, the performance of the LMT-Stacking1
resulted in a better overall performance because it was
more balanced.

Predictors for Developing Cervical Cancer
According to the feature selection based on RF, hormonal
contraceptives (years), the number of pregnancies, smoking
(years), the number of sexual partners, the use of IUD (years),
and smoking (packs/year) were identified to be the most
important influencing factors for the at-risk patient, especially
the long-term use of hormone contraceptives. Human
papillomavirus (HPV) infection was the leading cause of
cervical cancer (31). According to Cox (32), the risk of
developing an HPV infection was not only related to age but
also increased with the increasing number of sexual partners,
highlighting the need to improve awareness and improve
vaccination campaigns. Co-infection with HIV might impair
the ability of the immune system to control HPV infection.
Additional risk factors included smoking, high parity, and long-
term use of hormonal contraceptives (31). Exogenous hormones
had been considered as auxiliary factors in the pathogenesis of
cervical cancer caused by HPV. If the HPV-positive women took
the hormone contraceptives for a long time, the risk of cervical
squamous cell carcinoma tripled (33). Smoking was related to the
development of squamous cell carcinoma and was an auxiliary
factor and primary carcinogen in the development of cervical
cancer (34). The use of IUD could create a potential malignant
focus close to the cervical canal, eventually creating a
transformation zone whereby preneoplastic lesions arise. The
transformation zone was both targeted by HPV and a major
effecter and inductive site for cell-mediated immune
response (35).

Machine Learning and Cervical Cancer
Most studies on cervical cancer made use of ML to predict
survival in cervical cancer (36). Although some studies had used
generalized estimating equation regression models to predict the
early risk probability of developing cervical cancer (34), their
prediction accuracy remained limited. Our ML model utilized
more features and could, therefore, improve the prediction
accuracy. The Pittsburgh cervical cancer screening model
consisted of 19 variables, including cytological examination
and HPV test results. The incidence of cervical cancer was
predicted by combining the case results, detailed medical
history [including gender, HPV vaccination status,
menstruation, contraception history, age, and race (37)]. The
model could be used for risk stratification of patients only after
Frontiers in Oncology | www.frontiersin.org 8107
screening. The advantage of our proposed model was that it
provided a simple tool to identify high-risk groups before
screening by combining behavioral data provided by patients
with clinical data.
LIMITATIONS

The main limitation of this study was the limited sample size and
population coverage. Compared with deep learning, SIML had
the advantage of being suitable for small sample data, which only
needed 80–560 samples. The specific sample size required
depended on the dataset and sampling method (38). Therefore,
the sample size in our study was sufficient to build a model. If the
overall sample size was increased, the performance of the model
could be improved significantly. Additionally, some potentially
important parameters, such as previous screening information,
were not considered in our study. Data on variation in behavioral
patterns over time were not available, and therefore, we could not
establish their impact on the model. Moreover, samples were
obtained from the same institution, limiting the generalizability
of the model. Although we used a combination of internal and
external validation, we recommend the use of external datasets to
further test the performance of this model.
CONCLUSIONS

This study shows that SIML can be used to accurately identify
women at high risk of developing cervical cancer and
performed better than other ML algorithms. This model
could be used to personalize the screening program by
optimizing the screening frequency and improving the care
plan in high- and low-risk women based on their demographics,
behavioral patterns, and clinical data. This will eventually
reduce unnecessary screening in low-risk groups and hence
reduce the screening costs.
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Supplementary Figure 1 | Visualization results before and after missing values
was filled. The part of red color is the missing value, with each column as the
standard. The larger the value is, the darker the color is. On the contrary, the smaller
the value is, the lighter the color is.

Supplementary Figure 2 | Receiver operating characteristic curves for Random
Forest prediction performance of difference Sampling models.

Supplementary Figure 3 | Receiver operating characteristic curves for 12 ML
models.

Supplementary Figure 4 | Correlation coefficient diagrams of 12 ML models.

Supplementary Figure 5 | Receiver operating characteristic curves for LMT-
stackingmodels.
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29. Džeroski SaŽ B. Is Combining Classifiers With Stacking Better Than Selecting
the Best One? Mach Learn (2004) 54(3):255–73. doi: 10.1023/B:MACH.
0000015881.36452.6e

30. Goutte C, Gaussier E. A Probabilistic Interpretation of Precision, Recall and F-
Score, With Implication for Evaluation. Lect Notes Comput Sci (2005)
3408:345–59. doi: 10.1007/978-3-540-31865-1_25

31. Vesco KK, Whitlock EP, Eder M, Burda BU, Senger CA, Lutz K. Risk Factors
and Other Epidemiologic Considerations for Cervical Cancer Screening: A
Narrative Review for the U.S. Preventive Services Task Force. Ann Intern Med
(2011) 155(10):698–705, W216. doi: 10.7326/0003-4819-155-10-201111150-
00377

32. Cox JT. The Development of Cervical Cancer and its Precursors: What Is the
Role of Human Papillomavirus Infection? Curr Opin Obstet Gynecol (2006) 18
Suppl 1:s5–13. doi: 10.1097/01.gco.0000216315.72572.fb

33. Moreno V, Bosch FX, Munoz N, Meijer CJ, Shah KV, Walboomers JM, et al.
Effect of Oral Contraceptives on Risk of Cervical Cancer in Women With
Human Papillomavirus Infection: The IARC Multicentric Case-Control Study.
Lancet (2002) 359(9312):1085–92. doi: 10.1016/S0140-6736(02)08150-3

34. Fang JH, Yu XM, Zhang SH, Yang Y. Effect of Smoking on High-Grade
Cervical Cancer in Women on the Basis of Human Papillomavirus Infection
Studies. J Cancer Res Ther (2018) 14(Supplement):S184–9. doi: 10.4103/0973-
1482.179190

35. Cortessis VK, Barrett M, Brown Wade N, Enebish T, Perrigo JL, Tobin J, et al.
Intrauterine Device Use and Cervical Cancer Risk: A Systematic Review and
Frontiers in Oncology | www.frontiersin.org 10109
Meta-Analysis. Obstet Gynecol (2017) 130(6):1226–36. doi: 10.1097/
AOG.0000000000002307

36. Matsuo K, Purushotham S, Jiang B, Mandelbaum RS, Takiuchi T, Liu Y, et al.
Survival Outcome Prediction in Cervical Cancer: Cox Models vs Deep-
Learning Model. Am J Obstet Gynecol (2019) 220(4):381.e381–381.e314. doi:
10.1016/j.ajog.2018.12.030

37. Austin RM, Onisko A, Druzdzel MJ. The Pittsburgh Cervical Cancer
Screening Model: A Risk Assessment Tool. Arch Pathol Lab Med (2010)
134(5):744–50. doi: 10.5858/134.5.744

38. Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting Sample Size
Required for Classification Performance. BMC Med Inform Decis Mak (2012)
12:8. doi: 10.1186/1472-6947-12-8

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Sun, Yang, Liu, Tang, Zeng, Gao, Chen, Liu and Peng. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
February 2022 | Volume 12 | Article 821453

https://doi.org/10.1023/B:MACH.0000015881.36452.6e
https://doi.org/10.1023/B:MACH.0000015881.36452.6e
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.7326/0003-4819-155-10-201111150-00377
https://doi.org/10.7326/0003-4819-155-10-201111150-00377
https://doi.org/10.1097/01.gco.0000216315.72572.fb
https://doi.org/10.1016/S0140-6736(02)08150-3
https://doi.org/10.4103/0973-1482.179190
https://doi.org/10.4103/0973-1482.179190
https://doi.org/10.1097/AOG.0000000000002307
https://doi.org/10.1097/AOG.0000000000002307
https://doi.org/10.1016/j.ajog.2018.12.030
https://doi.org/10.5858/134.5.744
https://doi.org/10.1186/1472-6947-12-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Fu Wang,

Xi’an Jiaotong University, China

Reviewed by:
Yi Xianfu,

Tianjin Medical University, China
Meng Wang,

University of California, San Francisco,
United States

*Correspondence:
Feifei Mao

maofeifei01@126.com
Xiaoqin Wang

xiaoqinwang2@outlook.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 10 December 2021
Accepted: 19 January 2022

Published: 17 February 2022

Citation:
Wang X, Li L, Yang Y, Fan L,

Ma Y and Mao F (2022) Reveal
the Heterogeneity in the Tumor
Microenvironment of Pancreatic

Cancer and Analyze the
Differences in Prognosis and
Immunotherapy Responses

of Distinct Immune Subtypes.
Front. Oncol. 12:832715.

doi: 10.3389/fonc.2022.832715

ORIGINAL RESEARCH
published: 17 February 2022

doi: 10.3389/fonc.2022.832715
Reveal the Heterogeneity in the
Tumor Microenvironment of
Pancreatic Cancer and Analyze the
Differences in Prognosis and
Immunotherapy Responses of
Distinct Immune Subtypes
Xiaoqin Wang1*†, Lifang Li2†, Yang Yang3†, Linlin Fan1, Ying Ma1 and Feifei Mao4*

1 Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 2 Emergency
Department, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 3 Department of Hepatobiliary and
Pancreatic Surgery, The First People’s Hospital of Changzhou, Changzhou, China, 4 Tongji University Cancer Center,
Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China

Purpose: The current clinical classification of pancreatic ductal adenocarcinoma (PDAC)
cannot well predict the patient’s possible response to the treatment plan, nor can it predict
the patient’s prognosis. We use the gene expression patterns of PDAC patients to reveal
the heterogeneity of the tumor microenvironment of pancreatic cancer and analyze the
differences in the prognosis and immunotherapy response of different immune subtypes.

Methods: Firstly, use ICGC’s PACA-AU PDAC expression profile data, combined with the
ssGSEA algorithm, to analyze the immune enrichment of the patient’s tumor
microenvironment. Subsequently, the spectral clustering algorithm was used to extract
different classifications, the PDAC cohort was divided into four subtypes, and the
correlation between immune subtypes and clinical characteristics and survival prognosis
was established. The patient’s risk index is obtained through the prognostic prediction
model, and the correlation between the risk index and immune cells is prompted.

Results: We can divide the PDAC cohort into four subtypes: immune cell and stromal cell
enrichment (Immune-enrich-Stroma), non-immune enrichment but stromal cell enrichment
(Non-immune-Stroma), immune-enriched Collective but non-matrix enrichment (Immune-
enrich-non-Stroma) and non-immune enrichment and non-stromal cell enrichment (Non-
immune-non-Stroma). The five-year survival rate of immune-enrich-Stroma and non-
immune-Stroma of PACA-CA is quite different. TCGA-PAAD’s immune-enrich-Stroma
and immune-enrich-non-Stroma groups have a large difference in productivity in one
year. The results of the correlation analysis between the risk index and immune cells
show that the patient’s disease risk is significantly related to epithelial cells, megakaryocyte-
erythroid progenitor (MEP), and Th2 cells.
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Conclusion: The tumor gene expression characteristics of pancreatic cancer patients are
related to immune response, leading to morphologically recognizable PDAC subtypes
with prognostic/predictive significance.
Keywords: pancreatic cancer, immune subtypes, heterogeneity, prognosis, microenvironment
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal
malignant neoplasms around the world (1–4), and its genetic and
phenotypic heterogeneity makes generally effective therapies
ineffective (5–9). The salient feature of pancreatic cancer is that
it has an immunosuppressive microenvironment, the prognosis of
patients is poor, and most of the patients’ tumors will metastasize
(10, 11). Research on the immune microenvironment of
pancreatic cancer may help improve the therapeutic effect (12,
13). By detecting the expression of anti-tumor immune genes,
markers that can predict patient response to treatment have been
screened (14). In addition, mutations in genes such as PIK3CA,
FGFR3, and TP53 have been shown to be related to tumor
immune infiltration (15–18). Although we have a better
understanding of the molecular mechanism and genetic
background of pancreatic cancer, the 5-year survival rate for this
disease is approximately 10% in the USA (19). Several phase III
clinical trials that are effective for other cancers have not worked
well in pancreatic cancer patients (7). Tumor heterogeneity and
host differences will affect the characteristics of its tumor
microenvironment. It is necessary to identify new biomarkers
and explore new treatment approaches to provide more and more
effective references for overcoming the immunosuppressive
mechanism in the pancreatic cancer microenvironment.

The immune microenvironment plays an important role in
tumor cell invasion and pancreatic cancer progression (20), and
immune expression characteristics may affect the degree of
inhibition of cancer cells. Invasive PDAC has epithelial-to-
mesenchymal transition (EMT)-like characteristics and has
been shown to be a poor prognostic factor for pancreatic
cancer (21). The immune microenvironment with EMT-like
tumors is conducive to tumor growth. Researchers reported on
three subtypes of pancreatic cancer: classic, quasi-mesenchymal,
and exocrine, and clarified the genetic markers of different
subtypes, which may help to carry out more targeted
treatments for patients (22). Other researchers have identified
two tumor-specific subtypes based on gene expression: basal-like
subtype and classical subtype (23). The classic subtype is
consistent with the subtype described by Collisson et al.
Tumor subtypes defined by exocrine-like genes have not been
validated in its data set, and may be related to tissue
contamination. Recently, researchers classified pancreatic
cancer into four subtypes based on genomic studies—
squamous cells, pancreatic progenitor cells, immunogenicity
and abnormally differentiated endocrine and exocrine-
identified the differences between pancreatic cancer subtypes
and provided Different subtypes of treatment options (22, 24).
Among them, squamous cells, pancreatic progenitor cells, and
2111
abnormally differentiated endocrine and exocrine (ADEX)
subtypes correspond to the quasi-mesenchymal, classical, and
exocrine-like subtypes reported by Collisson et al. (22). Recently,
studies have shown that ADEX and immunogenic subtypes are
related to the lower purity of the sample (24, 25). Although
researchers have basically determined the characteristics of some
pancreatic cancer subtypes, research conclusions about exocrine
differentiation or immunogenic subtypes are still inconsistent.

Therefore, we aim to redefine the subtypes of PDAC and
clarify its immune expression patterns, provide useful clues for
exploring the different immunosuppressive mechanisms of
PDAC, and use it in the stratification of patient clinical trials,
so as to provide patients with PDAC more precise treatment.
RESULTS

Classification of Distinct Tumor
Microenvironment Subtypes
Single sample gene set enrichment analysis (ssGSEA) defines an
enrichment score to indicate the absolute enrichment degree of
the gene set in each sample in a given data set. The enrichment
score of each immune category can be found in the R package
GSVA In the realization (26). Firstly, ssGSEA algorithm (27) was
utilized to analyze the expression profiling database of the
PACA-AU pancreatic cancer in the International Cancer
Genome Consortium (ICGC). We obtained the immune
enrichment of the tumor microenvironment of each patient’s
tumor tissue. And the tumor microenvironment-related genes
come from the following references (Table 1).

Subsequently, we apply the spectral clustering algorithm to
extract different categories based on the ssGSEA scores
(Figure 1A). Meanwhile, we used t-distributed stochastic
neighbor embedding (tSNE) to show the groups (Figure 1B),
and revealed an immune-enriched subtype (Immune-enrich)
exists in the cohort, and the rest are of the Non-immune type,
that is, less immune infiltration (Figure 1C). In addition, even in
the presence of a large population of immune cells, stromal cells
also play vital roles in tumor immunity evasion. Therefore, we
further dissected the enrichment of stromal cells in the patient’s
gene expression profile. Also using ssGSEA analysis, we found
that the cohort had characteristics of activated stromal response
(Figure 1C). Based on the above classification, we can divide the
pancreatic cancer cohort into four subtypes: immune cell and
stromal cell enrichment (Immune-enrich-Stroma), non-immune
enrichment but stromal cell enrichment (Non-immune-Stroma),
Immune enrichment but non-matrix enrichment (Immune-
enrich-non-Stroma) and non-immune enrichment and non-
stromal cell enrichment (Non-immune-non-Stroma). Immune-
February 2022 | Volume 12 | Article 832715

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mao et al. Heterogeneity in Pancreatic Cancer Microenvironment
enrich-Stroma subtypes mainly enrich tumor immune-related
molecular signatures, including T cell-inflamed GEP, Expanded
immune signature, Immunophenoscore, Immune enrichment
score, CD8 T cell exhaustion, myeloid-derived suppressor cells
(MDSC), cytotoxic cells, Immune cell subset, etc. At the same time,
it also enriches PD1 and stroma related signatures, including anti-
PD-1 resistant, nivolumab responsive and normal stroma. The
signatures of Non-immune-Stroma subtypes mainly include anti-
PD-1 resistant, activated stroma, CAF-stimulated, and normal
stroma, while its immune-related family features are very low.
Immune-enrich-non-Stroma subtypes mainly enrich tumor
immune-related signatures, including T cell-inflamed GEP,
Expanded immune signature and cytotoxic cells, etc., while its
stromal signatures expression is very low. Non-immune-non-
Stroma subtypes, as the name suggests, are rarely enriched in
tumor immunity and stromal signatures.

Comparison of the Striking Differences
in the Immune Microenvironment
of the Four Subtypes
As follow, the four subtypes have the following immune
differences (Figure 2A). Patients with immuno-enriched subtypes
(Figure 2A redand light blue boxes) showed significant enrichment
in the characteristics of recognizing immune cells or immune
responses (all P <0.05). We further compared the difference in
gene expression between immune-enriched and non-immune-
enriched patients, mainly using the limma algorithm, and P<0.05
as the standard of significant difference (Table S1). At the same
time, the significantlydifferent genes of stromal cell enrichment and
non-stromal enrichment was compared (Table S2).In order to
verify the accuracy and consistency of the analysis method, we use
the same strategy to predict the enrichment of other data. The first
50genes that are differentially up-regulated are selected to construct
a gene set, and the ssGSEA algorithm is used to predict the
Frontiers in Oncology | www.frontiersin.org 3112
enrichment of other data. In addition, select significantly different
immune activity or immune cell-related genes to verify their
enrichment. The analysis results show that the GSE124231 data
set (Figure 2B, n=48), the GSE131050 data set (Figure 2C, n=66),
the PACA-CA data set (Figure 2D, n=234) and the TCGA-PAAD
database (Figure 2E, n = 177) can be divided into immune
enrichment and stromal cell enrichment groups. According to
the constructed gene set, samples of different data sets can
be divided into immune-enrich-Stroma, immune-enrich-non-
stroma, non-immune-stroma and non-immune-non-stroma
types. And immune enrichment type samples are mainly enriched
for immune-related signatures, such as immune enrichment score,
immunophenoscore, Immune cell subsets, etc. Stromal cell
enrichment types mainly enrich stroma-related signatures, such
as normal stroma, activated stromanivolumab responsive, etc.
The above results show that the accuracy and consistency of our
classification and research methods are trustworthy.

Four Immune Subtypes Are Related
to Clinical Characteristics and
Survival Prognosis
Based on the previous results, we have divided patients into 4
different subtypes of immune enrichment and stromal cell
enrichment. Therefore, we need to further compare the clinical
characteristics of different types and try to explore the relationship
between each type and patient survival prognosis. Firstly, we
sequentially compared the clinical information between different
subtypes in the PACA-AU, PACA-CA and TCGA-PAAD cohorts.
Statistics showed that there were significant differences among
subtypes in the PACA-AU cohort, which included donor_sex,
donor_vital_status, donor_relapse_type, donor_age_at_diagnosis
and enrollment, donor_survival_time, donor_interval_up,
donor_interval_up, donor_interval_up (Table S3). In the PACA-
CAcohort, clinical markers such as donor_age_at_diagnosis and
enrollment, donor_age_at_last_followup, donor_survival_time,
donor_interval_of_last_followup are significantly different among
subgroups (Table S4). Age_at_initial_pathologic_diagnosis,
family_history_of_cancer (%), history_of_chronic_pancreatitis
(%), history_of_diabetes (%) and other clinical indicators were
significantly different among 4 subsets in the TCGA-PAAD cohort
(Table S5).

Then, we successively explored the relationship between
different subgroups in the cohort and the survival prognosis of
patients. In the PACA-AU cohort, the 1-year (Figure 3A) and 5-
year (Figure 3C) survival rates between different subtypes are
significantly different (p.value <0.05), and the survival rate of the
Immune_enrich_Stroma subgroup is higher than that of the
other three groups. However, the difference in 3-year survival
rates between patient groups was not significant (Figure 3B).
Finally, we compared the survival rates of all PACA-AU patients
(8 years) and found that the survival rates of different subgroups
are still significantly different (p.value <0.05) (Figure 3D).
Similarly, we compared the survival rates of patients in the
PACA-CA cohort for 1 year (Figure 3E), 3 years (Figure 3F),
5 years (Figure 3G) and all patients (12 years) (Figure 3H) in
detail, and found There are no significant differences between
TABLE 1 | Immune-related gene signatures and their references.

Signature name Reference

Immune enrichment score Yoshihara et al. Nat Commun. 2013 (28)
6-gene IFN-gsignature Chow et al. J Clin Oncol. 2016 (suppl) (29)
Activated stroma Moffitt et al. Nat Genet. 2015 (30)
Immune cell subsets Cancer Genome Atlas Network. Cell. 2015

(31)
T cells Bindea et al. Immunity. 2013 (32)
CD8 Tcells Bindea et al. Immunity. 2013 (32)
T. NK. metagene Alistar et al. Genome Med. 2014 (33)
B-cell cluster Iglesia et al. Clin Cancer Res. 2014 (34)
Macrophages Bindea et al. Immunity. 2013 (32)
Cytotoxic cells Bindea et al. Immunity. 2013 (32)
Immunophenoscore Charoentong et al. Cell Rep. 2017 (35)
T cell-inflamed GEP Cristescu et al. Science. 2018 (36)
Expanded immune signature Ayers et al. J Clin Invest. 2017 (37)
TGF-b-associated ECM Chakravarthy et al. Nat Commun. 2018) (38)
MDSC Yaddanapudi et al. Cancer Immunol Res.

2016 (39)
CAF Calon et al. Cancer Cell. 2012 (40)
TAM M2/M1 Beyer et al. PLoS One. 2012 (41)
CD8 T cell exhaustion Giordano et al. EMBO J. 2015 (42)
T cell exhaustion early/late stage Philip et al. Nature. 2017 (43)
Nivolumab responsive Riaz et al. Cell. 2017 (44)
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different subgroups. It is worth mentioning that there is a
relatively large difference in the five-year survival rate between
the immune-enrich-stroma and non-immune-stroma groups of
PACA-CA (Figure 3I). The analysis results of the TCGA-PAAD
cohort showed that the survival rates of patients in different
subgroups were 1 year (Figure 3J), 3 years (Figure 3K), 5 years
(Figure 3L) and all patients (8 years) (Figure 3M). It was found
that there were no significant differences between the different
subgroups. However, the one-year survival rate difference
between immune-enrich-stroma and immune-enrich-non-
stroma groups is relatively large (Figure 3N). In general, the
classification of the PACA-AU cohort can provide an important
reference for their clinical survival prognosis.

Prognostic Prediction Model Based on
Signatures of Tumor Microenvironment
Since the subtype classification in the PACA-AU cohort has a
strong correlation with survival prognosis, we use PACA-AU data
as training data, and PACA-CA and TCGA-PAAD as test data to
Frontiers in Oncology | www.frontiersin.org 4113
construct a prognostic predictionmodel. Firstly, PACA-AU data is
treated as training data for parameter training of predictionmodels
and selection of related gene sets. PACA-CAandTCGA-PAADare
regarded as testing data to test the parameters given by the training
set and the predictive ability of the gene set. Then, use the cox
regression algorithm to initially screen the genes that are
significantly related to the patient’s overall survival (P<0.05), and
use the LASSO algorithm to further screen these genes. In the end,
the best gene panel is obtained, and the forest diagram of the
multivariate COX regressionmodel is drawn (Figure 4A). In detail,
those genes are KRT6C, PRR11, LTC4S, FGG, SERPINB3,
CACNA2D3, FLT3LG, FDCSP, C5ORF46, FAM107A, CCL19,
BLK, SLAMF1 and their multiple regression coefficients are 0.58,
0.89, -0.68, 0.69, 0.27, -0.56, -0.83, -0.54, 0.73, 0.97, -0.42, 0.62, 0.78.
Subsequently, based on the expression level andmultiple regression
coefficients of gene panel obtained above, calculate their risk score.
We further divided patients into high-risk groups and low-risk
groups basedon the risk indexof the sample.Kaplan-Meier survival
analysis was performed and showed in survival curve. There is a
A B

C

FIGURE 1 | Classification of distinct tumor microenvironment subtypes (A) Spectral classification of tumor microenvironment in PACA-AU alignment. This plot shows
a heat map of the ssGSEA score, estimated using the gene set from the ICGC database. Based on tSNE cluster analysis, 7 subgroups were obtained, namely
PDAC1, PDAC2, PDAC3, PDAC4, PDAC5, PDAC6, PDAC7. Based on Spectral classification, 6 subgroups were obtained, namely PDAC1, PDAC2, PDAC3, PDAC4,
PDAC5, PDAC6. (B) tSNE classification of tumor microenvironment in PACA-AU cohort. (C) This figure shows the 4 immune subtypes of the PACA-AU cohort based
on ssGSEA analysis and the main signatures of each subtype.
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significant difference in survival probability between the high-risk
group and the low-risk group in PACA-AU cohort (p <0.05)
(Figure 4B). At the same time, we drew the ROC curve of the
one-year, three-year, and five-year survival period of the patients in
the training set based on the risk index (Figure 4C).However, there
was no significant difference in the survival probability between the
high-risk group and the low-risk group in the TCGA-PAAD
testing set.

At the same time, we drew the ROC curve of patient survival in
PACA-CA (Figure 4E) cohorts based on the risk index. The ROC
curve of the prediction model of the PACA-CA training set shows
that thepredictionmodel is relatively ideal, and thepredictionof the
1-year survival period is slightly better than the 3-year and 5-year
Frontiers in Oncology | www.frontiersin.org 5114
survival periods. In addition, the prediction effect of the PACA-CA
testing set (Figure 4D) is slightly inferior to that of the PACA-AU
training set, except for the 5-year survival period of the TCGA-
PAAD testing set. Overall, the prognosis prediction model can
better predict the grouping of patients based on the risk index,
which provides guidance for the prognosis prediction of patients.

Immune Cells Related to Risk Index
Based on the previous results, we want to know which immune
cells are specifically related to the risk index of the PACA-AU
cohort. Therefore, we used the sample risk index to make further
correlation analysis with the expression of various immune cells
and immune molecules. The results showed that the patient’s risk
A B
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C

FIGURE 2 | Comparison of the striking differences in the immune microenvironment of the four subtypes. (A) Comparison of the striking differences in the immune
microenvironment of the four subtypes. Red represents immune-enrich-stroma subtype, Light_blue represents immune-enrich-non-stroma subtype, Green
represents non-immune-non-stroma subtype, and Navy blue represents non-immune-stroma subtype. (B) Immune-enrich-Stroma, Immune-enrich-non-Stroma, Non-
immune-Stroma and Non-immune-non-Stroma types in the GSE124231 data set (n=48). (C) Four types in the GSE131050 data set (n=66). (D) Four types in the
PACA-CA data set (n=234). (E) Four types in the TCGA-PAAD database (n = 177).
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index and epithelial cells, megakaryocyte-erythroid progenitor
(MEP), and Th2 cells showed a positive correlation with p<0.01.
In addition, T cells, NK cells, memory B-cells, mast cells and other
immune cells have a negative correlation with p <0.01 (Figure 5).
DISCUSSION

In this study, we used the ssGSEA algorithm to calculate the
ssGSEA scores of PACA-AU pancreatic cancer patients, and
Frontiers in Oncology | www.frontiersin.org 6115
then combined the Spectral clustering algorithm to extract the 4
subtypes in the cohort. We further compared the differences in
the immune microenvironment of the four subtypes, and
screened the immune enrichment and stromal enrichment
molecular markers. Genes with significant differences are
mostly related to immunity in (Table S1). For example,
changes in the expression of PTPRCAP affect the survival rate
of cancer patients (45), and the single nucleotide polymorphism
(SNP) of PTPRCAP is associated with the susceptibility of gastric
cancer (46). Natural killer cell granule protein 7 (NKG7) is
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FIGURE 3 | Four immune subtypes are related to clinical characteristics and survival prognosis Comparison of survival rates between subgroups in different cohorts
(A) Comparison of 1-year survival rate of PACA-AU cohort. (B) Comparison of 3-year survival rate of PACA-AU cohort. (C) Comparison of 5-year survival rate of
PACA-AU cohort. (D) Comparison of survival rates of all PACA-AU cohort. (E) Comparison of 1-year survival rate of PACA-CA cohort. (F) Comparison of 3-year
survival rate of PACA-CA cohort. (G) Comparison of 5-year survival rate of PACA-CA cohort. (H) Comparison of survival rates of all PACA-CA cohort. (I) Comparison
of survival rates of the Immune-enrich-Stroma and Non-immune-Stromasubtypes. (J) Comparison of 1-year survival rate of TCGA-PAAD cohort. (K) Comparison of
3-year survival rate of TCGA-PAAD cohort. (L) Comparison of 5-year survival rate of TCGA-PAAD cohort. (M) Comparison of survival rates of all TCGA-PAAD
cohort. (N) Comparison of survival rates of the Immune-enrich-Stroma and Immune-enrich-non-Stroma subtypes.
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related to inflammatory diseases (47), and its lack will result in a
significant reduction in IFN-g produced by T cells and NK cells.
In addition, NKG7 is related to the cytotoxic degranulation of
CD8+ T cells (48). Researchers have discovered that CD96 can
serve as a new immune checkpoint receptor target for T cells and
natural killer cells (49). Similarly, we observed the top genes and
their stromal functions in (Table S2). For example, Slits3 is
expressed in primary bone marrow stromal and bone marrow-
derived endothelial cells and stromal cell lines, and plays a role in
in vitromigration and in vivo homing of hematopoietic stem and
progenitor cells (50). SPARC is a stromal cell protein, which can
be produced by cells associated with tumor stromal cells and has
high expression levels in many cancers. It plays an important role
in the fibroproliferative reaction of tumors (51).
Frontiers in Oncology | www.frontiersin.org 7116
Using the same research method, it was verified in the
GSE124231 (n=48), GSE131050_Linahan (n=66), PACA-CA
(n=234), TCGA-PAAD (n=177) cohorts, and the typing was
accurate in different cohorts. Further compare the clinical
information of patients in the cohort, and in-depth exploration
of the difference in survival of patients with different subgroups.
We found that in the PACA-AU cohort, the 1-year, 5-year, and
8-year survival times of different subsets patients were
significantly correlated. Next, cox regression combined with
Lasso algorithm was performed to construct a multivariate
COX model. Calculate the patient’s risk index based on gene
expression level and multiple regression coefficients, and divide
the patients into high-risk groups and low-risk groups based on
the risk index. Interestingly, the PACA_AU and PACA-CA risk
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FIGURE 4 | Prognostic prediction model based on signatures of tumor microenvironment (A) features: significant factor name; multi_beta: Cox multiple regression
coefficient; multi_HR: Cox multiple regression risk ratio; multi 95% CI for HR: Cox multiple regression risk ratio 95% confidence interval; Forest diagram: horizontal line
shows the confidence interval interval, and the dot represents the hazard ratio; multi_p.value: Cox multiple regression proportional hazard hypothesis test P value.
(B) Survival curve of the high and low risk groups in the training set. The horizontal axis represents time (unit: day), the vertical axis represents survival rate. A flat curve
represents a high survival rate or a longer survival period, and a steep curve represents a low survival rate or a shorter survival period. (C) ROC curve of the training set
prediction model. The horizontal axis is the false positive rate FP, and the vertical axis is the true positive rate TP. The legend in the upper left corner corresponds to
the AUC value of the ROC curve for different survival periods. (D) Survival curves of the high- and low-risk groups in the PACA-CA testing set. (E) ROC curve of
PACA-CA test set prediction model. The horizontal axis is the false positive rate FP, and the vertical axis is the true positive rate TP. The legend in the upper left corner
corresponds to the AUC value of the ROC curve for different survival periods. The horizontal axis is the false positive rate (FP), and the vertical axis is the true positive
rate (TP). The legend in the upper left corner corresponds to the AUC value of the ROC curve for different survival periods.
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indexes are significantly correlated with the survival level
of patients.

In PADA-AC and TCGA-PAAD, the survival time difference
between different immune subgroups is not significant. Only the
five-year survival of immune-enrich-stroma and non-immune-
stroma group in PACA-CA cohort and the one-year survival of
immune-enrich-Stroma and immune-enrich-non-Stroma group
in TCGA-PAAD cohort are relatively large. On the one hand, the
cohort clustering algorithm may not cover all patients in the
cohort, on the other hand, it may also be because the cohort
samples are not large enough, and the representativeness of the
statistical results needs to be further improved.

We initially explored the types of immune cells related to the
risk index, and we identified immune cells that are positively and
negatively related to the risk index. This research lays the
foundation for the subsequent in-depth exploration of the
correlation mechanism between immune cells and patient
disease risk. However, only analyzing the types of immune
cells is insufficient for the study of the mechanism. In the later
stage, we will conduct more in-depth analysis and verification of
important immune cells and their molecular signatures.
METHODS

Project and Sample
Dataset of 461 PACA-AU donors were downloaded from ICGC
database (https://dcc.icgc.org/projects/PACA-AU) with detailed
clinical information. The independent datasets used for
Frontiers in Oncology | www.frontiersin.org 8117
verification come from GSE124231, GSE131050_Linehan,
PACA-CA and TCGA-PAAD projects, including 48, 66, 234
and 177 donors respectively. Moreover, patients in the PACA-
CA and TCGA-PAAD cohorts had detailed clinical information.

Bioinformatics Analysis
1) ssGSEA algorithm: Use the R package “GSVA” and use ssGSEA
to explore the PACA-AU pancreatic cancer expression profile data
of the ICGC database, and analyze the immune enrichment of
each patient’s tumor microenvironment. Additionally, the gene
expression of all samples were took as the input and ssGSEA
algorithms were occupied to determine the proportion of the
various immune cells of all PDAC samples. The immune gene
signatures were listed in the Table 1. According to the immune
enrichment status of PACA-AU samples, they are divided into
immune cells and stromal cell enriched (immune-enrich-stroma),
non-immune enrichment but stromal cell enrichment (non-
immune-stroma), and immune-enriched but Non-matrix
enrichment (immune-enrich-non-stroma) and non-immune
enrichment and non-stromal cell enrichment (non-immune-
non-stroma). According to the ssGSEA score obtained by each
sample, the Spectral clustering algorithm is used to extract
different classifications. In addition, the R package “limma” was
used to analyze immuno-enriched and non-immune-enriched
patients, as well as the significantly different genes of stromal
cell enrichment and non-matrix enrichment, and P<0.05 was
taken as the significant difference.

2) The unsupervised clustering of the data set was performed
mainly based on tSNE which embedded in t-distributed random
FIGURE 5 | Immune cells related to risk index Immune cells associated with the risk index of PACA-AU patients. The red line indicates a positive correlation
between the risk index and immune cells, and the gray line indicates a negative correlation between the risk index and immune cells. The size of the circle indicates
different correlation coefficients, and the larger the area of the circle, the larger the correlation coefficient.
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neighborhoods (45). In this study, we use tSNE to show the
different subgroups of the PACA-AU cohort.

3) We performed Kaplan-Meier survival analysis on the
samples and plotted survival curves. Survival analysis divided
the samples into high-index groups and low-index groups based
on the median. Data visualization is mainly done in the R
environment (version 4.1.0). Kaplan-Meier survival analysis
relies on the use of the “survival” package. The ROC curve is
drawn based on the’survivalROC’ package.

4) Prognosis prediction model establishment process: a). Use
the training set to perform unit cox regression on each gene to
initially screen disease-related genes; b). After obtaining all cox
significant genes in all units, perform 1000X LASSO regression to
calculate the frequency of each gene and rank it; c). According to
the sorting result of the previous step, build the gene set
incrementally. Use each gene set to perform multiple cox
regression to get the contribution of each gene; d). Obtain the
optimal gene set according to the gene contribution degree, and
perform multiple cox regression analysis on these genes. Finally,
we determined the regression coefficient of each gene; e).
Calculate the death risk score of each patient through
regression coefficients; f). The death risk score model is tested
in the training set (comparing the predicted situation with the
actual situation); g). The same model is tested in the independent
testing set at the beginning (comparison of the predicted
situation with the actual situation).

5) Construct the optimal multivariate COX model based on
the Lasso algorithm. This analysis uses the LASSO algorithm for
gene screening: In the field of statistics and machine learning,
Lasso algorithm (least absolute shrinkage and selection operator,
also translated as minimum absolute shrinkage and selection
operator, lasso algorithm) is a regression analysis method that
simultaneously performs feature selection and regularization
(mathematics).It aims to enhance the predictive accuracy and
interpretability of statistical models. Lasso adopts the linear
regression method of L1-regularization, so that the weight of
some learned features is 0, so as toachieve thepurpose of sparseness,
selection of variables, and construction of the best model. The
characteristic of LASSO regression is to perform variable selection
and regularization while fitting a generalized linear model.
Therefore, regardless of whether the target dependent variable
(dependent/response variable) is continuous, binary or discrete, it
can be modeled by LASSO regression and then predicted.
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6) We use the Lasso algorithm (glmnet package) to select the
best gene model based on the COX multiple regression model,
and finally draw the unit cox regression model forest diagram
based on the gene Panel as follows: We calculate the risk score
(Risk Score) of each patient based on the expression of the gene
Panel and the multiple regression coefficient. The formula is as
follows:

Riskscore =o
n

i=1
bi ∗ xi

xi represents the expression level of each gene in the Panel, bi is
the multivariate COX regression beta value (multi_beta)
corresponding to each gene.
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Joint Precision Medicine, Beijing, China, 3 Beijing Key Laboratory of Spinal Disease Research, Beijing, China, 4 Institute of
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China, 6 Department of Radiology, Peking University Third Hospital, Beijing, China

Background: Recently, the Turing test has been used to investigate whether machines
have intelligence similar to humans. Our study aimed to assess the ability of an artificial
intelligence (AI) system for spine tumor detection using the Turing test.

Methods: Our retrospective study data included 12179 images from 321 patients for
developing AI detection systems and 6635 images from 187 patients for the Turing test.
We utilized a deep learning-based tumor detection system with Faster R-CNN
architecture, which generates region proposals by Region Proposal Network in the first
stage and corrects the position and the size of the bounding box of the lesion area in the
second stage. Each choice question featured four bounding boxes enclosing an identical
tumor. Three were detected by the proposed deep learning model, whereas the other was
annotated by a doctor; the results were shown to six doctors as respondents. If the
respondent did not correctly identify the image annotated by a human, his answer was
considered a misclassification. If all misclassification rates were >30%, the respondents
were considered unable to distinguish the AI-detected tumor from the human-annotated
one, which indicated that the AI system passed the Turing test.

Results: The average misclassification rates in the Turing test were 51.2% (95% CI:
45.7%–57.5%) in the axial view (maximum of 62%, minimum of 44%) and 44.5% (95% CI:
38.2%–51.8%) in the sagittal view (maximum of 59%, minimum of 36%). The
misclassification rates of all six respondents were >30%; therefore, our AI system
passed the Turing test.

Conclusion: Our proposed intelligent spine tumor detection system has a similar
detection ability to annotation doctors and may be an efficient tool to assist radiologists
or orthopedists in primary spine tumor detection.
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Ouyang et al. Turing Test of Spine Tumors
INTRODUCTION

Magnetic resonance imaging (MRI) is commonly used to
diagnose spine disorders (e.g., myelopathy, spine canal
stenosis, and traumatic injury). Spine tumors may cause spine
fractures, instability, neurological deficits, or even paralysis.
However, they are rarely observed because of their low
incidence. Thus, it is difficult for junior radiologists or
orthopedists to accumulate diagnostic experience, and they
may not be capable of detecting different spine tumors on
MRI. Deep learning (DL)—a class of artificial intelligence (AI)
—is now prevalent in computer vision tasks. For spine imaging,
especially MRI, DL, and other AI systems are being applied as
diagnostic imaging technologies (1–5). Hallinan et al. (6) used a
DL model for automated detection of the central canal, lateral
recess, and neural foraminal stenosis in lumbar spine MRI;
Huang et al. (7) utilized a DL-based fully automated program
for vertebrae and disc quantifications on lumbar spine MRI;
Merali et al. (8) developed a DL model for the detection of
cervical spinal cord compression in MRI scans, and Ito et al. (9)
developed the DL-based automated detection of spinal
schwannomas in MRI. However, evaluation measures for AI
methods are lacking because conventional radiology assessment
systems do not meet the requirements of DL models. Thus, in
this study, we applied the Turing test, a classical evaluation
method in AI, on primary spine tumor DL detection on
MR images.

Alan Turing, a British mathematician and theoretical
computer scientist, is widely regarded as the founding father of
AI. Alan Turing’s paper in 1950 entitled “Computing Machinery
and Intelligence” had considered the question ‘‘Can machines
think?’’ (10). Subsequently, he replaced the question with a
significantly more practical scenario, namely, the Turing
imitation game. The game has now become widely known,
particularly in the clinical domain, as the Turing test. The
Turing test (11, 12) is proposed to assess if a machine can
think like a human, which reframed his question as follows: Can
a machine display intelligence via imitation? Although this
proposal is complex, a common operation of the Turing test
requires an interrogator to communicate electronically with a
subject to judge whether the subject is a human or machine (13,
14). The machine performed well if the interrogator makes an
incorrect identification as often as a correct one. When
evaluating the automated detection ability of a DL model, the
gold standard is a comparison with the manual annotation of the
same images by radiologists or orthopedists. However, the use of
manual spine tumor annotations as the gold standard has been
questioned because annotations themselves are subjective. For
example, when a patient’s spine tumor is annotated by two
different doctors, their annotations will hardly denote the same
exact square, thereby reflecting inter- and intra-observer
variability. Thus, the first purpose of using the Turing test was
to confirm whether the automated detection ability of our DL
models could achieve a clinically applicable standard compared
with that of manual annotations at a tertiary university hospital.
To this end, we proposed a simple interface program with choice
questions to assess automated detection versus manual
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annotation based on position, shape, and area overlap. We
hypothesized that if a clinical respondent is unable to
distinguish the different bounding boxes drawn by an
automated detection system and those produced manually by a
spine expert, then it is likely that this DL model will be
considered adequate for clinical application, which may assist
orthopedists to find the primary spine tumors efficiently in the
future. The second aim of this study was to assess the accuracy
rate, false-positive, and false-negative results of the manual
annotations from radiologists and orthopedists. It’s important
to note that in this study, we mostly focused on the primary
tumors located in the skeletal spine structures, thus we did not
collect the intradural or intramedullary nervous system tumors.
METHODS

Patient and Image Acquisition
We reviewed consecutive spinal tumor patients histologically
diagnosed with primary spine tumors at our hospital between
January 2012 and December 2020. Although primary spine
tumors are rarely observed because of their low incidence,
Peking University Third Hospital (PUTH) is a famous spine
center in North China, and we can collect enough primary spine
tumors patients in this study. The MR images of intradural or
intramedullary nervous system tumors and ones acquired from
other hospitals were excluded. Our database contained 508
patients, 226 women and 282 men (mean age, 49.0 [range, 3–
84] years), including 19532 MR images with tumors. We used
12179 images from 321 patients to develop AI detection systems
and 6635 images from 187 patients as a test set. For the Turing
test, 100 patients were randomly selected from 187 patients in the
test set. Sagittal and axial images were selected as representatives
for manual annotation and training for the automated detection
model because they span a wider range of spine regions, crucial
for training the DL models for automated detection. Thus, the
remaining 718 coronal images in the database did not participate
in the training and testing process.

Preoperative MRI scans were performed on Discovery
MR750 3.0T or Optima MR360 1.5T (GE Healthcare;
Piscataway, NJ, USA). Conventional MRI scanning sequences
included axial T2-weighted imaging (T2WI), sagittal T2WI,
coronal T2WI, T1-weighted imaging (T1WI), and fat-
suppressed T2WI scans. For axial and sagittal reconstruction,
the scans were performed with the following parameters: field of
view = 320 mm × 320 mm; matrix = 94 × 94; flip angle = 90; slice
thickness = 3.0 mm; slice spacing = 3.3 mm; FS-T2WI turbo spin
echo, repetition time (TR) = 2500–4000 msec, and echo time
(TE) = 50–120 msec; and T1WI, TR = 400–800 msec, and TE =
10–30 msec.

Turing Test of Spine Tumors Detection
The study was approved by the PUTH Medical Science Research
Ethics Committee review board, which waived the need for
informed consent as this was a retrospective review of a
previous prospective study.
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In our case, the Turing test was carried out with a choice
question, each choice question featured four similar MR images
as candidates, and three of the candidates were results predicted
by DL models, one of them was annotated by doctors. Among
them, the results predicted by the DL model were obtained by a
DL-based tumor detection system with Faster Region-
Convolutional Neural Network (Faster R-CNN) (15)
architecture in our study, and only one was manually
annotated by one of the five annotation doctors A-E (four
radiologists and one orthopedist). One hundred patients and
200 choice questions (one axial choice question and one sagittal
choice question for each patient), were randomly selected from
our database for the Turing test. Without knowing which were
human annotations, every choice question was shown to six
respondent doctors F-K (four radiologists and two orthopedists)
to select which one (reasonable candidate) among the four MR
images was annotated by the annotation doctor. Since the DL-
based tumor AI detection system is designed to react similarly to
human intelligence, we considered the doctor’s lesion annotation
as the correct option. Therefore, if the respondent did not
correctly identify the image annotated by a human, his answer
was considered a misclassification. The AI system passed the
Turing test if the misclassification rates of the six respondents
were all >30%. Figure 1 shows the flow of the Turing test, which
introduces the specific steps of the Turing test.

Misclassification Rate =
F

T + F

where T represented the respondent correctly identifying the
image annotated by a human, and F represented the respondent
did not correctly identify the image annotated by a human.

Manual Annotation Database
Spine MRI data from Digital Imaging and Communications in
Medicine files were exported in Joint Photographic Experts
Group (JPEG) format from the picture archiving and
communication systems of our hospital. These JPEG images
were manually annotated using software Labelme, an image
labeling tool developed in the Computer Science and Artificial
Frontiers in Oncology | www.frontiersin.org 3123
Intelligence Laboratory at the Massachusetts Institute of
Technology. Labelme is capable of creating customized labeling
tasks or performing image labeling; we annotated the images by
manually inputting a minimal bounding box containing every
tumor lesion on each sagittal or axial MRI slice to generate JPEG
images for the automated detection training (Figure 2). Taken
together, four radiologists and one orthopedist (doctors A–E)
annotated 19532 MRI slices. To ensure that each tumor was
recognized by the DL model under different conditions, all slices
on T1W1 and T2W1 MR images were annotated.

Manual Annotation Assessment by Doctors
Before testing whether automated detection was sufficiently
similar to manual annotation (namely, indistinguishable when
judged by a blinded respondent), we randomly assessed the
manual annotations to reduce inter- and intra-observer
variability. The other three senior radiologists, except doctor F-
K in our hospital, randomly and independently examined and
verified the annotation images of doctors A–E. Based on the
evaluation of the manual annotations, the computer engineers
calculated the ultimate accuracy rate, false-positive rate, and
false-negative rate of their labels by utilizing the confusion
matrix. Clinical information of patients was not provided for
any of the doctors to ensure a fair comparison between humans
and DL models.

Architecture of Deep Learning-Based
Automated Detection
In this study, we trained the automated DL detection model
using the locations and bounding box labels of spine tumors as
training data. The automated detection model was trained and
validated using a computer equipped with a Quadro P6000
graphics processing unit (NVIDIA; Santa Clara, CA), a Xeon
E5-2667 v4 3.2 GHz CPU (Intel; Santa Clara, CA), and 64 GB
of RAM.

We used PyTorch, a suitable framework for DL, to train a
neural network model applied to the spine tumor dataset of MR
images. A two-stage DL system with Faster R-CNN (15)
architecture was used as the training model and consisted of a
FIGURE 1 | The flow of the Turing test. This figure shows the specific steps of the Turing test.
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region proposal network (RPN) and region regression. The RPN
was used to generate many anchors to get region proposals. It
used SoftMax to recognize whether the anchors were positive or
negative, the lesions are generally considered to be in positive
anchors. Then the region regression could correct the positive
anchors to obtain accurate proposals. Three different backbones
of the proposed model were used to extract MR image feature
maps, like ResNet-50 (16), ResNet-101 (16), and ResNet-152
(16), consisting of 50, 101, and 152 convolutional, pooling, and
activation layers, respectively. These feature maps were shared
for the RPN layer and region regression. And Feature Pyramid
Networks (17) were also used in the model to solve the multi-
scale problem in object detection.

The first-stage inputs were the MRI spine data of the three
different backbones; the outputs were the different regions and
activation maps, which were subsequently used as second-stage
Frontiers in Oncology | www.frontiersin.org 4124
inputs. In the second stage, the region of interest (ROI) pooling
layer collected the input feature maps and proposals, combining the
information to extract proposal feature maps. Subsequently, a small
network (i.e., multiple fully connected layers) was constructed with a
regression branch to obtain the final precise positions of the lesion
area. For efficient computing, all-region features were fed to the same
regressor. Finally,weobtained theoutputof the threemodels.Wecall
the Faster R-CNN framework with the backbone ResNet50,
ResNet101, and ResNet152 as CNN1 (convolutional neural
network 1), CNN2, and CNN3, respectively. Figure 3 shows the
automated detection framework of our Turing test.

Evaluation Measurement in
Artificial Intelligence
The tumor detection performance was evaluated from the aspect
of the class label and position accuracy, which could be measured
FIGURE 3 | The framework of automated detection of spine tumors utilizing the Turing Test. Faster RCNN is used as the framework, and ResNet50, ResNet101,
and ResNet152 are used to extract image features respectively.
FIGURE 2 | Labeling tool used by doctors to annotate tumor coordinates: Labelme. The Labelme displays the currently annotated image. The red annotation box
indicates that the current location is a tumor. The annotation tool will automatically generate the coordinates of the upper left point and the lower right point.
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with average precision. Compared with the ground truth
annotated by doctors, when the intersection of union (IoU)
went over the threshold, the prediction was considered correct.
The IoU formula is as follows:

IoU =
bpred  ∩​  bgt
bpred  ∪ ​ bgt

where, bpred and bgt represent a bounding box of predictions and
ground truth, respectively.

Training Implementation Details
In the training stage, the input images were divided into mini-
batches. Each mini-batch contained eight images per GPU,
and each image had 2000 region of interest samples with a
ratio of one positive to three negatives. Specifically, anchors
with an IoU >0.7 with the annotated bounding boxes) were set
as positive examples; those with an IoU <0.3 were set as
negative examples. The RPN anchors spanned five scales
{16, 32, 64, 128, 256} and three aspect ratios {0.5, 0.8, 1.3},
totaling 15 anchors. The threshold of the non-maximum
suppression layer was set to 0.5. We trained on one GPU
with SGD for 10 epochs with a learning rate of 0.01, which was
decreased by 0.5 every epoch. We used a weight decay of
0.0005 and momentum of 0.9. Due to the similarity between
medical pictures, having more training pictures helps the
DL model to better extract features, which can enhance
the generalization of the model. Therefore, for better
performance, axial and sagittal images were trained together
for the MRI dataset. Similarly, T1W1 and T2W1 were trained
together as a training set.

Turing Test Software Program
To complete the Turing test, the annotated images were reviewed
by a team of 6 respondents, including two radiologists and one
orthopedist who worked at our hospital for approximately 10
years, and other two radiologists and one orthopedist who
worked there >20 years. The six respondents (doctors F–K)
specialized in spine tumors and had not performed the
annotation previously (doctors A–E). The six respondents’
answering processes were double blindly designed to ensure no
communication with any other people occurred.

We set up a Turing test software program with choice
questions (Figure 4). In every choice question, the respondents
were shown an interface with four MR images of an identical
tumor; three featured bounding boxes were generated by DL
models, whereas only one featured a bounding box drawn by an
annotation doctor. The four images with correspondent
bounding boxes featured were randomly ordered in each
question. The respondents would be asked, “Which one is
annotated by a human?” Each respondent reviewed
approximately 200 choice questions (sagittal and axial figures)
from 100 patients, randomly selected from a pool of 6635
annotated images of the test set. Figures of the interfaces were
presented for assessment in questions only once owing to the
random nature of the selection process. The display could be
adjusted to a standard window, and a magnifying tool was
Frontiers in Oncology | www.frontiersin.org 5125
provided to enable a detailed image inspection. Additionally,
the software program documented respondent responses
provided for each question and the time required to choose
each respondent.

Specifically, in the selection of questions shown in Figure 4,
prediction 3 is the result annotated by one of the doctors A-E,
and predictions 1, 2, and 4 is the tumor location predicted by
models CNN 3, CNN1, and CNN2, respectively. The network
depth of the models CNN 1, CNN 2, and CNN3 differed.
Compared with CNN 1, CNN 2 and CNN3 have a
sequentially increasing number of network layers; the more
the layers of the network mean the richer the abstract features
of different levels that can be extracted. Moreover, the deeper
the network, the more abstract the features, and the more
semantic information.

Statistical and Data Analyses
All statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS, version 26.0; IBM
Corporation, Armonk, N.Y., USA). Results were obtained for
the fivefold cross-validation of object detection. The Mann–
Whitney U test and chi-squared test were used for comparisons
between groups for continuous and categorical variables,
respectively. A P-value <0.05 was considered significant. The
criteria of true detection and false detection were calculated for
the DL-based automated tumor detection on MR images and the
annotation team.
FIGURE 4 | The choice interface of a Turing test software program. This
software displays four options of one choice question, including amplification,
timing, and technical functions. The user can click the next button to continue
to the next question. After confirming the answer to the current question, click
the save button to save the answer. After all the questions are completed,
click the exit button to exit the program. Of these four options, prediction 3 is
the result annotated by one of the doctors A-E, and prediction1, 2, and 4 is
the result of the tumor location predicted by the model CNN 3, CNN1, and
CNN2 respectively.
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RESULTS

Patient Characteristics and Data Split
We obtained the MRI dataset of the primary spine tumors to
train and evaluate our model. We trained together in these two
views and tested them separately. Concerning primary spine
tumors, 19532 images from 508 patients were included in the
MRI dataset. We chose 12179 images from 321 patients to
develop AI detection systems, including 7788 images (2346
axial; 5442 sagittal) randomly selected from 193 patients as the
training set and 4391 images (1199 axial; 3192 sagittal) from 128
patients randomly selected as the validation set. The validation
set was used to determine the network structure and help train a
better model. Moreover, 6635 images (1835 axial; 4800 sagittal)
from the other 187 patients were randomly selected as test set
and Turing test data source. The dataset only contained axial and
sagittal views, and the remaining 718 coronal images were not
used for the training or the Turing test.

Evaluation Measurement Among Doctors
The five doctors annotated primary spine tumors on MR images;
the total number of annotated images for each doctor was 4527
(A), 4159 (B), 3910 (C), 3727 (D), and 3209 (E). As Figure 5
shows, there were a total of 26 tumor histological categories in
our dataset, such as schwannoma, myeloma, and chordoma,
among others. In the dataset, there were 3758 schwannoma
images and only 25 ganglion neurofibroma images. The
evaluations of the five annotation doctors are listed in
Figures 6, 7 and include detailed accuracy rate, false-positive
rate, and false-negative rate of the spine tumors MRI manual
annotations for each doctor. In the training set of primary spine
tumors, the five doctors’ MRI annotations accuracy rates were
94.44% (A), 98.16% (B), 92.20% (C), 97.84% (D), and 87.99%
(E); the false-positive rates were 1.40% (A), 0.00% (B), 5.50% (C),
0.00% (D), and 0.00% (E); the false-negative rates were 4.16%
Frontiers in Oncology | www.frontiersin.org 6126
(A), 1.83% (B), 2.30% (C), 2.16% (D), and 12.00% (E).
The average accuracy rate, false-positive rate, and false-
negative rate of doctors A-E were 94.13%, 1.38%, and 4.49%
respectively. In the test group of primary spine tumors, the five
doctors’ MRI annotations accuracy rates were 97.90% (A),
97.90% (B), 98.40% (C), 98.75% (D), and 96.43% (E); the false-
positive rates were 0.50% (A), 0.00% (B), 0.00% (C), 0.00% (D),
and 0.00% (E); the false-negative rates were 1.60% (A), 2.10%
(B), 1.60% (C), 1.25% (D), and 3.57% (E). The average accuracy
rate, false-positive rate, and false-negative rate of doctors A-E
were 97.88%, 0.10%, and 2.02% respectively. Tables 1 and 2 show
the details of the precision, recall, F1-score, specificity, and
sensitivity in the training and testing sets.

Evaluation With the Turing Test
The mean Average Precision (mAP) results of CNN1, CNN2, and
CNN3 were 79.1%, 79.8%, and 80.6% respectively in the axial
view, and 84.5%, 85.2%, and 86.1% in the sagittal view,
respectively when IoU was over 0.3. These three models were
used for Turing testing. The Turing test contained 100 choice
questions in the axial view and another 100 choice questions in the
sagittal view. Figure 8 shows the overall percentage of annotation
images incorrectly identified by each respondent when asked the
following: “Which one was drawn by a human?” in axial and
sagittal views. The misclassification rates for the respondents were
44% (F), 52% (G), 62% (H), 59% (I), 46% (J), and 44% (K) in the
axial view question, and the average misclassification rate was
51.2% (95% CI: 45.7–57.5%). Among the results of doctors who
wrongly selected the prediction of the DL model but did not
correctly select the annotations of the doctors A-E, 47.6% chose
the prediction by CNN3, 27.4% by CNN2, and 25.0% by CNN1 in
the axial view question. Moreover, the misclassification rates
for the respondents were 46% (F), 36% (G), 51% (H), 59% (I),
36% (J), and 39% (K) in the sagittal view question, and the average
misclassification rate was 44.5% (95%CI: 38.2–51.8%). Among the
FIGURE 5 | The number of images of different tumor categories.
March 2022 | Volume 12 | Article 814667

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ouyang et al. Turing Test of Spine Tumors
results of doctors who wrongly selected the prediction of the DL
model but did not correctly select the annotations of the doctors
A-E, 48.4% chose the prediction by CNN3, 26.2% by CNN2, and
25.4% by CNN1 in the sagittal view question. According to the
results selected by doctors F-K, CNN 3 performed better and
the predictions were closer to the manual annotations. Among
the six respondents, the lowest misclassification was achieved
by an expert radiologist with 25 years of experience. The
misclassification rates of the respondents during the Turing test
represented an inability to distinguish the annotation source
between a human and a computer. The misclassification rates
were all >30%, indicating that the DL models passed the Turing
test. Therefore, the automated detection of spine tumors by our
DL model was equal to that of annotation doctors in our hospital.
Frontiers in Oncology | www.frontiersin.org 7127
The complete raw results from the Turing test are provided as
Supplemental Material (see file “TuringTestResults”). Figure 9
shows an MRI scan in which all doctors chose the DL prediction
in both axial and sagittal views, which indicated their failure.
Figure 10 shows an MRI scan in which all doctors F-K correctly
selected the annotations of doctors A-E in axial and sagittal
views, respectively.

Table 3 shows the assessment time required by each
respondent for each multiple-choice question in the Turing
test. In the axial view, the average time per question needed by
each respondent for the Turing test was 10.72 s (F), 12.08 s (G),
15.73 s (H), 9.46 s (I), 5.69 s (J), and 9.01 s (K). For the 100 choice
questions in the axial view, the mean time for each question was
10.45 (range: 5–70) s; therefore, the entire assessment took
FIGURE 7 | Manual annotation results on MRI primary spine tumor dataset in testing set. This figure shows in detail the accuracy rate, false-positive rate, and false-
negative rate of the testing set annotated by doctors A-E.
FIGURE 6 | Manual annotation results on MRI primary spine tumor dataset in training set. This figure shows in detail the accuracy rate, false-positive rate, and false-
negative rate of the training set annotated by doctors A-E.
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approximately 17 min 25 s per participant (range: 9 min 29 s–26
min 13 s). Moreover, in the sagittal view, the average time per
question taken by each respondent for the Turing test was 9.25 s
(F), 13.92 s (G), 10.04 s (H), 9.66 s (I), 7.41 s (J), and 9.02 s (K).
For the 100 choice questions in the sagittal view, the mean time
for each question was 9.88 (range: 4–54) s; therefore, the entire
assessment took approximately 16 min 28 s per participant
(range: 12 min 21 s–23 min 12 s). No correlation was observed
between the time required and the level of accuracy of the
assessment. All time results are provided as Supplemental
Material (see file “TimingResults”).
DISCUSSION

Rather than assessing the performance of our DL model, this
study aimed primarily to evaluate whether our DL model for the
automated detection of primary spine tumors was as good as that
of standard manual annotation methods using the Turing test
(18, 19). Although it is doubtful whether AI will ever pass the
Turing test for various complex clinical scenarios, it is easy to
misunderstand the role of AI in future medical development. AI
should complement rather than replace medical professionals.
One of our primary aims in using the DL model was to develop a
novel method of detecting primary spine tumors from MR
images, which is likely to assist orthopedists to find the spine
tumors efficiently and reduce the burden on them in the future.
The results showed that the accuracy of our DL automatic
detection was comparable to that of annotation doctors in
Frontiers in Oncology | www.frontiersin.org 8128
radiology or orthopedics. Despite some reports on the
applications of AI systems for the spine (20–28), especially on
MRI (29) and tumor (30), few studies used the Turing test to
evaluate the automatic detection of primary spine tumors in MR
images based on DL.

Regardless of symptoms and physical observations, AI
facilitates the diagnosis of spine tumors over humans (31).
Bluemke et al. (32) reviewed AI radiology research to make a
brief guide for authors, reviewers, and interrogators. Wang et al.
(33) made a multi-resolution approach for spine metastasis
detection using deep Siamese neural networks. Liu et al. (34)
compared radiomics with machine learning in the prediction of
high-risk cytogenetic status in multiple myeloma based on MRI.
The performance of our proposed automatic detection model is
not only comparable to that of actual radiologists or orthopedists
but also helps to minimize the possibility of overlooking tumors.
Massaad et al. (35) used machine learning algorithms to assess
the performance of the metastatic spine tumor frailty index.
Furthermore, the application of this model can reduce the delay
in diagnosing spine tumors because it responds significantly
more quickly than humans. Additionally, due to time
constraints, radiologists or orthopedists could not evaluate all
MR images on their own; sometimes other surgeons or
physicians must assess MR spine images. Fortunately, the
detection rate of this system is comparable to that of
annotation doctors, and the possibility of missing tumors
becomes significantly less. Consequently, patients with primary
spine tumors can be referred to spine tumor surgeons earlier and
more safely.
TABLE 2 | The details of precision, recall, f1 score, specificity, and sensitivity of the testing set annotated by the doctor A-E.

Doctor A Doctor B Doctor C Doctor D Doctor E

Precision 99.50% 100.00% 100.00% 100.00% 100.00%
Recall 98.42% 97.94% 98.43% 98.77% 96.55%
F1 score 98.96% 98.96% 99.21% 99.38% 98.25%
Specificity 99.48% 100.00% 100.00% 100.00% 100.00%
Sensitivity 98.42% 97.94% 98.43% 98.77% 96.55%
M
arch 2022 | Volume 12 | Artic
Precision = TP/(TP+FP); Recall = TP/(TP+FN); F1 score= (2*Precision*Recall)/(Precision + Recall);
Specificity = TN/(FP+TN); Sensitivity = TP/(TP+FN).
TP = true-positive: It is actually a lesion area, and the doctor annotated it as a lesion area;
FP = false-positive: It is actually not a lesion area, but the doctor annotated it as a lesion area;
FN = false-negative: It is actually a lesion area, but the doctor annotated it is not a lesion area;
TN = true-negative: It is actually not a lesion area, and the doctor annotated it is not a lesion area.
TABLE 1 | The details of precision, recall, f1 score, specificity, and sensitivity of the training set annotated by the doctor A-E.

Doctor A Doctor B Doctor C Doctor D Doctor E

Precision 98.60% 100.00% 94.50% 100.00% 100.00%
Recall 95.95% 98.20% 97.62% 97.89% 89.29%
F1 score 97.26% 99.09% 96.04% 98.93% 94.34%
Specificity 98.56% 100.00% 94.67% 100.00% 100.00%
Sensitivity 95.95% 98.20% 97.62% 97.89% 89.29%
Precision = TP/(TP+FP); Recall = TP/(TP+FN); F1 score= (2*Precision*Recall)/(Precision + Recall);
Specificity = TN/(FP+TN); Sensitivity = TP/(TP+FN).
TP = true-positive: It is actually a lesion area, and the doctor annotated it as a lesion area;
FP = false-positive: It is actually not a lesion area, but the doctor annotated it as a lesion area;
FN = false-negative: It is actually a lesion area, but the doctor annotated it is not a lesion area;
TN = true-negative: It is actually not a lesion area, and the doctor annotated it is not a lesion area.
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Although the MR images used in this study corresponded to
various spine tumor types, the object detection model achieved
high accuracy. However, there are always exceptions in clinical
settings. For instance, sometimes, it is difficult to identify spine
tumors because of signal intensity, location, configuration, or
tumor shape. Therefore, the differentiation of spine tumors in
neuroimaging is not always reliable. Nevertheless, the use of MRI
has facilitated the diagnosis of spine tumors. Another drawback
is that if the patient is allergic to contrast agents and/or
experiences renal insufficiency, an enhanced MRI scan cannot
be performed. In this case, if our proposed system is used to
detect spine tumors, we can determine whether other imaging
modalities, such as positron emission tomography-computed
Frontiers in Oncology | www.frontiersin.org 9129
tomography, should be performed. If MRI cannot be
performed owing to renal dysfunction, the proposed system
allows for MRI to be performed as minimally as possible.

Some individuals believe that passing the Turing test suggests
that human-level intelligence can be achieved by machines.
However, achieving human-level AI is still far from reality (36,
37). This study, compared to other Turing test studies to date, is
one of a few to include a large number of patients with primary
spine tumors and a large set of marked spine tumor MR images.
The human respondents in this study had only a fair level of
agreement with one another, averaging approximately 51.17%
accuracy for selecting the human annotation. In a prior report
from Scheuer et al. (38), the skilled human interrogators in their
A B

FIGURE 9 | (A) Shows that all doctors F-K have selected prediction 2 which is predicted by the model CNN1 instead of prediction 4 annotated by one of the
doctors A-E in axial. (B) Shows that four of all doctors F-K have selected the predictions from the models instead of the prediction 3 annotated by one of the doctor
A-E in the signal. Among them, four of all doctors F-K chose prediction 4 from the model CNN3, they were doctors F, H, I, and J And doctor G chose prediction 1
predicted by CNN1, and doctor K chose the prediction 2 predicted by CNN2.
FIGURE 8 | The misclassification rates of all six respondents in axial and sagittal views.
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study had a higher sensitivity (45%) for electroencephalography
spike events marked by three neurologists. However, the longer
the Turing test, the bigger the challenge for a machine to
satisfactorily pretend to be a human. In our test of 100 choice
questions in the axial or sagittal view, which took approximately
17 min, it would be extremely difficult for a machine to mislead a
clinical respondent. Additionally, one of the major challenges in
clinical studies dealing with bounding box lesion annotation is to
define a “gold standard.” Gooding et al. (13) made an evaluation
of auto contouring in clinical practice using the Turing test, and
Sathish et al. (18) compared lung segmentation and nodule
detection between convolutional neural network and humans
using the Turing test. Using the choice monitor, the respondents
assumed the human’s label as the golden standard; hence, they
tried to judge the best labels as objectively as possible. This study
has demonstrated that with training, the DL model can improve
its ability at tumor annotation and mislead the respondents’
judgments. In several studies, DL technology has been shown to
have a reasonable ability to discriminate between abnormal
construct and normal construct in the spine.

Despite a design to limit selection and respondent biases, this
study has some limitations. First, the spine tumor MR images
were all obtained from a single center, drawn from a cohort of
documented patients, and the number of MR images utilized in
this study was significantly limited. Hence, it is necessary to
improve the accuracy of our system by incorporating multi-
center MRI data. Despite the limited number of images, we were
able to amplify the training datasets by applying random
Frontiers in Oncology | www.frontiersin.org 10130
transformations (e.g., flipping and scaling) to the images. This
technique has proven valuable for DL with small datasets.
Another limitation was that the proposed system only analyzed
and detected the location and approximate outline of spine
tumors. Other relevant characteristics, such as whether a spine
tumor was benign or malignant, were not recognized in our DL
model. Therefore, further research of methods to identify other
spine tumor characteristics is necessary. Furthermore, only axial
and sagittal images were obtained in our study; hence, the
addition of coronal images would improve the model’s
performance. In addition, to help doctors with image
annotation and follow-up, we converted the DICOM into an
easy-to-read JPEG. The average misclassification rate of doctors
in our current Turing test was over 35%. Despite these
limitations, we believe that in the future, our system, with its
high accuracy and comparable performance to clinical experts,
could be applied to different settings and conditions.
CONCLUSION

In conclusion, this study proposed an AI primary spine tumor
detection system that passed the Turing test; respondents were
unable to distinguish between our DL model and annotation
doctors. The present results show that our DL model may be an
efficient tool to assist radiologists or orthopedists in primary
spine tumors detection, increasing efficiency and sparing time.
TABLE 3 | The Average Time (second) Per Question Taken by Each Respondent in the Turing test.

Doctor F Doctor G Doctor H Doctor I Doctor J Doctor K

Axial view(s) 10.72 12.08 15.73 9.46 5.69 9.01
Sagittal view(s) 9.25 13.92 10.04 9.66 7.41 9.02
March 2
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FIGURE 10 | (A) Shows that all doctors F-K have correctly selected the prediction 4 annotated by doctors A-E in the axial. And (B) shows that all doctors F-K have
correctly selected the prediction 1 annotated by doctors A-E in sagittal.
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In the future, larger multi-center datasets are necessary to
increase the accuracy of our system and validate our model.
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The incidence rate of kidney tumors increases year by year, especially for some incidental
small tumors. It is challenging for doctors to segment kidney tumors from kidney CT
images. Therefore, this paper proposes a deep learning model based on FR2PAttU-Net to
help doctors process many CT images quickly and efficiently and save medical resources.
FR2PAttU-Net is not a new CNN structure but focuses on improving the segmentation
effect of kidney tumors, even when the kidney tumors are not clear. Firstly, we use the
R2Att network in the “U” structure of the original U-Net, add parallel convolution, and
construct FR2PAttU-Net model, to increase the width of the model, improve the
adaptability of the model to the features of different scales of the image, and avoid the
failure of network deepening to learn valuable features. Then, we use the fuzzy set
enhancement algorithm to enhance the input image and construct the FR2PAttU-Net
model to make the image obtain more prominent features to adapt to the model. Finally,
we used the KiTS19 data set and took the size of the kidney tumor as the category
judgment standard to enhance the small sample data set to balance the sample data set.
We tested the segmentation effect of the model at different convolution and depths, and
we got scored a 0.948 kidney Dice and a 0.911 tumor Dice results in a 0.930 composite
score, showing a good segmentation effect.

Keywords: kidney tumor segmentation, FR2PAttU-Net, KiTS19, data augmentation, CT
INTRODUCTION

In recent years, the incidence rate of kidney tumors has increased (1–3). If we rely on artificial ways
to process medical image data of patients, it will waste a lot of time. And because of the difference in
medical experience, some small and challenging methods to find tumors are easily ignored by
doctors, and subjective factors lead to misjudgment. Therefore, how to use the deep learning model
to segment kidney tumors is a challenging task (4). However, most kidney image analysis is usually
based on kidney segmentation rather than tumor segmentation or two deep models: the first to
segment the kidney and the second to segment the tumor on the kidney (5, 6). Among many current
research schemes, they get scored about 0.97 kidney Dice and 0.85 tumor Dice (7). These methods
can provide higher values from the extracted features by pre-analyzing the information provided by
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the image; they play a role in the early detection and diagnosis of
abnormalities. However, new research in this field is still
significant because effective and accurate segmentation always
has room for improvement, especially considering ignoring
minor medical errors (8, 9). In these cases, the segmentation
task of kidney and kidney tumors becomes more complex (10).
Therefore, it is necessary to study the application of more in-
depth learning methods in kidney tumors without manual
intervention, improve the analysis efficiency, and reduce
workload of experts to improve the segmentation effect
of tumors.

This paper proposes an automatic segmentation method of
kidney and tumor in CT image to support the diagnosis of
kidney disease of experts: a flexible model that can segment
kidneys and tumors simultaneously. In the design of our
improved model, we consider the primary shortcomings of the
existing deep learning model and develop a new, efficient and
automatic kidney segmentation method. In this article, we
emphasize the following contributions:

(1) We use the cascade network model. The first model is used to
coarse segment the kidney and tumor ROI (the kidney
without tumor is not segmented). The second model is used
to finely segment the tumor in CT images to improve the
segmentation effect of the tumor.

(2) We propose to reconstruct labeled CT images based on tumor
size to balance the kidney tumor data set and reduce the
impact of category imbalance.

(3) We propose the FR2PAttU-Net model and verify it in the
KiTS19 data set. Finally, it can segment tumors with high
precision, even when kidney tumors are unclear.

Therefore, we believe that the proposed FR2PAttU-Net model
provides an effective kidney tumor segmentation method,
improving the segmentation effect and diagnosis rate of
kidney tumors.

The overall structure of this paper is as follows. Section 2
introduces the relevant research and findings; Section 3 discusses
the methods; Section 4 reports the experiments carried out to
verify our research, the comparative analysis of the
corresponding results and other similar studies, and Section 5
gives the discussion and conclusions.

Related Work
The task of kidney segmentation has not only recently started.
Several methods have been developed in the past few years, and
more and more expressive results have been obtained to solve
this problem.

In 2015, Ronneberger et al. (11) proposed the U-Net model to
realize the segmentation of medical images. The U-Net model is one
of the earliest algorithms for semantic segmentation using a Fully
Convolutional Network. The symmetric U-shaped structure that
contains the compression path and the expansion path in the paper
was very innovative at the time. Due to its relatively simple task, U-
Net has achieved a meager error rate through 30 pictures,
supplemented by a data expansion strategy, and won the
Frontiers in Oncology | www.frontiersin.org 2134
championship’s championship. First, it established the position of
the U-Net model in medical image segmentation. Then a variant
algorithm based on the U-Net model is applied in multiple
directions of medical image segmentation.

Since U-Net, a series of algorithms have been derived for
medical image segmentation. For example, Yang et al. (12)
proposed a method for measuring lung parenchymal
parameters based on the ResU-Net model based on lung
window CT images, and analyzed the relationship between
lung volume and CT value or density, and concluded that lung
volume is negatively correlated with CT value or density. Oktay
et al. (13) proposed a new attention gate (AG) model for medical
imaging, which can automatically learn to focus on target
structures of different shapes and sizes, and use the model
trained by AGs to implicitly learn to suppress outside areas in
the input image while highlighting salient features useful for
specific tasks. The experimental results show that, while
maintaining computational efficiency, AGs consistently
improve the prediction performance of U-Net under different
data sets and training scales. Alom et al. (14) proposed a U-Net-
based recurrent convolutional neural network (RCNN) and a U-
Net model-based recurrent, residual convolutional neural
network (RRCNN), named RU-Net and R2U-Net, respectively.
The proposed model utilizes the capabilities of the U network,
residual network, and RCNN. The experimental results show
that compared with the equivalent model, including U-Net and
residual U-Net (ResU-Net), the model has the advantages of
segmentation tasks. Better performance. Wang et al. (15) used U-
net combined with the recurrent residual and attention models
to segment the image. Experiments show that they can obtain
better results.

Since 2020, the segmentation of kidney and kidney tumors
based on the U-Net model has gradually increased. Isensee et al.
(16) introduced nnU-Net (‘no-new-Net’), which eliminated
many of the powerful reasons for the unnecessary bells and
whistles in the proposed network design, and instead focused on
the remaining aspects of the performance and versatility of the
composition method. nnU-Net achieved the highest average dice
score in the challenge online leaderboard. Da Cruz et al. (17)
used U-Net 2D for initial segmentation and delineated the
kidney (CT) image. In the KiTS19 challenge, its average Dice
coefficient is 93.03%. Turk et al. (18) used the superior
characteristics of the existing V-Net model to propose a new
hybrid model, which improved the previously unapplied encoder
and decoder stages and obtained 97.7% kidney Dice and 86.5%
tumor Dice.

In 2021, Heller et al. (19) released the KiTS19 challenge and
published the top five methods and segmentation effects in the
article: The fifth place was made by Ma (20). A 3D U-Net is used
as the main architecture which is based on nnU-Net
implementation. Compared to the original 3D U-Net, the
notable changes are padding convolutions, instance
normalization, and leaky-ReLUs. This submission scored a
0.973 kidney Dice, and a 0.825 tumor Dice resulting in a 0.899
composite score. The fourth place was made by Hou et al. (21).
They use a cascaded volumetric convolutional network for
March 2022 | Volume 12 | Article 853281
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kidney tumor segmentation fromCT volumes. There are two steps
in this model, and one is coarse location, the other is fine
predictions. This submission scored a 0.974 kidney Dice and a
0.831 tumor Dice resulting in a 0.902 composite score. The third
place was made by Mu et al. (22). They used multi-resolution VB-
nets for segmentation of kidney tumor, and they scored a 0.973
kidney Dice and a 0.832 tumor Dice resulting in a 0.903 composite
score. The second place was made by Hou et al. (23). They used
cascaded semantic segmentation for kidney and tumor. This
cascaded approach had three stages. Stage 1 performed a coarse
segmentationof all kidneys in the image. The second stage is run for
each rectangular kidney region that is foundby thefirst stage, and in
the third stage of the model, a fully convolutional net is used to
segment the tumor voxels from the kidney voxels. This submission
scored a 0.967 kidney Dice and a 0.845 tumor Dice resulting in a
0.906 composite score. The first place was made by Isensee et al.
(24). Three 3DU-Net architectureswere tested usingfive-fold cross
validation, and this submission scored a 0.974 kidney Dice and a
0.851 tumor Dice resulting in a 0.912 composite score.

Based on the above analysis, we find that most algorithms in
the field of medical image segmentation take the U-Net
architecture as the starting point for further development and
derive a series of improved and variant algorithms from realizing
the task of medical image segmentation. Although most models
can achieve good results, there is always room for effective and
accurate segmentation improvement. Furthermore, although
multiple networks will increase the time cost, they can improve
the segmentation effect simultaneously. Therefore, in this
work, we propose the FR2PAttU-Net model to improve the
segmentation performance of kidney tumor CT images.
MATERIALS AND METHODS

This section will introduce the overall scheme of kidney tumor
segmentation. The first section introduces the structure of the
Frontiers in Oncology | www.frontiersin.org 3135
FR2PAttU-Net model for kidney and tumor segmentation. The
second section presents the steps of kidney tumor segmentation,
namely, data preparation, coarse segmentation, and fine
segmentation. We will explain each piece in detail next.

FR2PAttU-Net
We propose the FR2PAttU-Net model, where F, R2, P, and Att
are the abbreviations for Fuzzy set, Recurrent Residual, Parallel,
and Attention, respectively. The “U”-shaped architecture of the
standard U-Net is used in our network. Figure 1 shows
the architecture and layers that make up our network, with the
contraction path defined on the left of the model and the
symmetrical expansion path specified on the right. All
convolutional layers are modified from consecutive 3 × 3
kernels to parallel kernels, and we will introduce the specific
structures and functions of F, R2, P, and Att step by step.
Furthermore, we use the activation function Leaky-ReLU.

Image Enhancement Based on Fuzzy Set (F)
Image enhancement emphasizes or sharpens certain features of
an image, such as edges, contours, contrast, etc., for display,
observation, or further analysis and processing. The processed
image is transformed through specific image processing into an
image of better visual quality and effect or more “useful” for a
particular application. Fuzzy sets provide a form of loose
processing information. For example, using fuzzy sets to
enhance images of kidneys and kidney tumors can make the
entire kidney more clearly delineated, making it more adaptable
to the network.

Image enhancement based on fuzzy sets mainly includes three
steps: image fuzzy feature extraction, membership function value
correction, and fuzzy domain inverse transformation (25).
Define Z as an object set, where z represents a type of element
in Z. A fuzzy set A in Z is mainly characterized by a degree of
membership mA(z). In this regard, the fuzzy set A is composed of
z-values and membership
FIGURE 1 | FR2PAttU-Net Model.
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We use fuzzy sets to perform a gray-scale transformation to
enhance the image. Then, we stipulate the following fuzzy rules:

R1: IF one pixel is dark, THEN makes this pixel darker;
R2: IF one pixel is gray, THEN keeps it gray;
R3: IF one pixel is bright, THEN makes this pixel brighter;
This rule represents our approach. But, of course, the pixels in

the IF condition are dark (either gray or bright), and this concept
is blurred. In the same way, the darker (or staying gray, or
merrier) in the THEN conclusion is also fuzzy. To this end, we
need to establish a membership function to determine the
membership of a pixel to three conditions (26).

The determination of the membership function is very
complicated. However, here we try to make it simple. First, a
pixel is dark (fuzzy), then the approximate shape of its
membership function is that the domain membership is 1
when it is lower than a certain value z1. After the gray level
crosses a specific value, z2, its membership degree is 0. So, of
course, z1 ≠ z2. Then we perform linear interpolation between z1
and z2, and then we can get the membership function of R1.
Similarly, R2 and R3 are the same.

For pixel Z0, it is necessary to calculate the corresponding
membership degrees mdark(Z0), mgray(Z0), and mbright(Z0)
according to the rules R1, R2, and R3. This process is called
fuzzification. The function (or the corresponding relationship)
used to fuzz an input quantity is the knowledge base.

After fuzzification, the three membership degrees mdark(Z0),
mgray(Z0), and mbright(Z0) corresponding to a pixel can be
deblurred. There are many de-obfuscation algorithms, and
Equation (1) is the center of gravity method.

v0 =
mdark(z0)� vd + mgray(z0)� vg + mbright(z0)� vb

mdark(z0) + mgray(z0) + mbright(z0)
(1)

Among them, nd, ng, and nb are the single output values.
Then, pixel Z0 must calculate the corresponding membership
degrees mdark(Z0), mgray(Z0), and mbright(Z0) according to R1, R2,
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and R3. Finally, we obtain a weighted maturity estimate, which is
the most output value. At this point, the output n0 is obtained.

The specific transformation result can be obtained by
Equations (2) and (3).

m = image½x�½y� (2)

f (x) =

0,  0 ≤ m < 0:15

(m − 0:15)=0:28� 127,  015 ≤ x < 0:43

(m − 0:45)=0:28� 255 + (0:71 −m)=0:28� 127,  0:43 ≤ x < 0:71

255, else

8>>>>><
>>>>>:

(3)

image[x][y] is the pixel value at point (x, y), This article takes
m values 0.15, 0.43, 0.71, 1, respectively, and divides the entire
pixel value into four regions to complete the pixel conversion.

The effect of the fuzzy set enhancement algorithm is shown in
the Figure 2.

Recurrent-Residual-Parallel Convolutional
Network (R2P)
The residual network enables the training of deeper networks, and
the recurrent residual convolutional layer allows the network to
extract better features. The network provides for the network to
deepen and avoid the inability to learn the gradient under the same
amount of parameters, resulting in better performance. As shown
in Figure 3, the model uses the recurrent residual block instead of
the traditional Conv + ReLU layer in the encoding and decoding
process, which can train a deeper network. All convolution layers
are composed of successive convolution (convolution kernel 3 × 3)
are modified to parallel convolutional network, and we tested
parallel convolutions (convolution kernel = 3 × 3), and parallel
convolutions (convolution kernel = 3 × 3 and 5 × 5), and perform
parallel convolution operations on the image, stitching all outputs
into one deep feature map. Different convolution and pooling
operations can obtain more information about the input image,
and processing these operations in parallel and combining all the
A B

FIGURE 2 | Result of fuzz set enhancement algorithm, (A) is the original CT image, (B) is the image enhanced by the fuzzy set.
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results will yield a better image representation. We use different
convolution kernels for image feature extraction, which fully
increases width of the model, increases the receptive field, and
improves the robustness of the network, thereby improving the
ability of the model to adapt to features of different scales in the
image. Then, summation of features at other time steps is used to
obtain a more expressive quality, which helps extract lower-level
features; finally, skip connections are not cut off in the original U-
Net but are cascaded operate.

Attention Gate (Att)
An attention gate is added to the model, which automatically
learns to distinguish the shape and size of objects. Figure 4 shows
the calculation method of the attention gate. First, the output g
corresponding to the decoder part is upsampled + convolved,
and then 1-dimensional convolution is used to reduce the
dimension of g and x (from the encoder at the same level). As
a result, the number of channels becomes 1/2 of the original.
Then the two parts of the results are added; after the activation
function Leaky-ReLU and one-dimensional convolution, the
number of channels is reduced to 1. Then through the Sigmod
function, a 1-dimensional attention map with the same size as x
is obtained, and the original x is used as element-wise
multiplication to get a weighted vector.

Leaky-ReLU
Furthermore, the Leaky-ReLU activation function and batch
normalization follow closely (27). The difference from ReLU is
Frontiers in Oncology | www.frontiersin.org 5137
that the negative axis of Leaky-ReLU retains a tiny constant leak
so that when the input information is less than 0, the information
is not wholly lost, and the corresponding retention is carried out.
That is, ReLU has no gradient when the value is less than zero,
and Leaky-ReLU gives a slight incline when the value is less than
0. It is equivalent to allowing backpropagation of gradients
corresponding to intervals less than 0 rather than direct interception.

Segmentation Scheme
This paper mainly segments kidneys and tumors from three
parts. In the first part, kidney data is collected and preprocessed.
We picked out the slice range containing the kidney from the CT
images and discarded the invalid area that did not include the
kidney and tumor. The second part is coarse segmentation. We
use the first model to segment the approximate size of the kidney
and tumor. This step is only used to locate the initial location of
the kidney and tumor, select the ROI, and do not segment. The
third part analyzes ROIs and reconstructs CT images with labels
to balance the kidney tumor segmentation dataset. Then we use
the second model for fine segmentation of kidneys and tumors,
where the ROI region is used as the input image to improve the
segmentation effect. The segmentation scheme is shown in
Figure 5. Each of these steps is described in detail in the
subsections that follow.

Data Preparation
In this study, we downloaded the available data set from the
homepage of the KiTS19 data set and did not use additional data.
A total of 210 scans with high-quality ground truth
segmentations were downloaded from the KiTS19 data set,
publicly available on GitHub (https://github.com/neheller/
kits19). The homepage of the KiTS19 data set provides other
instructions on the preparation of the data set and the ethics
committee (28). Manual segmentation may cause many errors in
subsequent kidney or kidney tumor monitoring. In addition, it is
very time-consuming and may degrade system performance
(29). Despite these adverse effects, we still used the KiTS19
dataset because of the lack of available datasets in the
literature. Patients with cysts and tumor thrombi were
excluded from the KiTS19 dataset because in these patients,
the tumor was beyond what we thought was the primary site and
the appropriate boundaries were unclear. Therefore, we only
selected kidneys with tumor lesions in this study to construct
FIGURE 3 | Recurrent-residual-parallel convolutional network (R2P).
FIGURE 4 | Attention Gate (Att).
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training and test datasets. The task is the segmentation of kidneys
and kidney tumors in contrast-enhanced abdominal CT without
judging the type of tumor.

Tomake the data satisfy our networkmodel, we cut the 3D data
into several 2D images with 512 × 512 pixels. In addition, all the
slices without kidneymarkers are discarded. Processing the original
CT images before sending them to the network is a crucial step for
practical training. The first aspect to consider is the presence of
unexpectedsubstances thatmayappear in thebodyof thepatient. In
particular, the metal artifacts have a significant negative impact on
the quality of CT images, which is a well-known fact. The main
problem with artifacts is that the areas generated in the image have
abnormal intensity values or are much higher or lower than the
intensity values of pixels corresponding to organic tissues. Since
deep learning algorithms are based on data-driven models,
abnormal voxels corresponding to non-organic artifacts can
significantly affect learning. To reduce the impact of non-organic
artifacts, we uniformly process the complete data set, namely,
training and test data. We only consider the effective intensity
range between 0.5 and 99.5% in all images and tailor the outliers
accordingly. After preprocessing, data is normalized with the
normal foreground mean and standard deviation to improve the
training effect of the network.

Coarse Segmentation Based on FR2PAttU-Net Model
Since some organs in the abdomen in CT images are similar in
shape and texture to the kidney, they will also segment them at
the end, so it is necessary to coarse segment and extracts the
kidney ROI. Coarse segmentation based on FR2PAttU-Net is
performed on each slice, thus constructing a 2D segmentation of
kidney tumors. The model is trained from CT images with an
original size of 512 × 512 pixels. The tumor and the kidney are
regarded as the same type to make a label to construct a binary
segmentation model. That is, the label only includes the
background and the kidney. After the model segmented the
tumor and kidney area, the ROI area smaller than 128 × 128 was
expanded to 128 × 128 and expanded the ROI area larger than
128 × 128 to 256 × 256, it was better to obtain the kidney, tumor,
Frontiers in Oncology | www.frontiersin.org 6138
and background information. Through the coarse segmentation
of the kidney, the kidney region is separated, which reduces the
scope of the problem and increases the chance of successful
segmentation of kidney tumors. Figure 6 shows coarse
segmentation results of CT images ranging from 512 × 512
pixels to 128 × 128 pixels.

Fine Segmentation Based on FR2PAttU-Net Model
Coarse segmentation can reduce the range of the segmented image
and save the entire computing resources of themodel. Since thefine
segmentation needs to use the coarsely segmented ROI area as
training data, to avoid the impact of the imbalanced distribution of
thedata in training seton the tumor segmentation results, this paper
needs to enhance the small sample data to balance the sample data
set. This paper calculates and counts the tumor size in the training
set. There are 4,691 ROI images containing tumors. The area size
distribution of the connected regions is shown in Figure 7.

Analyzing the data in Figure 7, we found that the tumor size
distribution in the training set was not even, where the tumor
area differed by about a factor of 2 between 0–500 and 2,000–
3,000. Therefore, we must reconstruct the data to balance the
kidney tumor segmentation dataset. For fewer datasets, we
adopted data augmentation methods such as flipping, rotating,
shifting, and mirroring and extended them to more data to
balance the kidney tumor dataset. Figure 8 shows several
commonly used data augmentation functions.

We use the second model to accurately segment kidneys and
tumors after balancing the dataset in the ROI region. Here, the
input image is the kidney ROI region, all pixels predicted to be
background are set to 0, and kidney and tumor are represented
by different pixels.
EXPERIMENTAL RESULTS

In this section, we detail the experimental results validating the
proposed method. First, we introduce the metrics used for
performance validation and then discuss the results obtained
FIGURE 5 | The overall process. Contains three parts: data preparation, coarse segmentation, and fine segmentation. Section Data Preparation introduces data
preparation in detail, Section Coarse Segmentation Based on FR2PAttU-Net Model introduces coarse segmentation and Section Fine Segmentation Based on
FR2PAttU-Net Model introduces fine segmentation.
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in each step of the proposed process in detail. In addition to this,
we also provide a series of case studies and a comparative
analysis with the relevant literature.

Evaluation Indicators
To measure the accuracy of our method, we use metrics
commonly used in CAD/CADx systems to evaluate the
classification and segmentation methods of medical images
(30). The metric used is the Dice similarity coefficient. It
measures the spatial similarity or overlap between two
segments and is commonly used to evaluate the ground truth
and segmentation performance of the medical images. Equation
(4) and Figure 9 shows the calculation method of DSC.
Frontiers in Oncology | www.frontiersin.org 7139
DSC =
1
n
Sn
i=1

2 Ai ∩ Bij j
Aij j + Bij j i = 1,…2, n (4)

This article randomly selected200CT images for testing, and the
rest was used as the training set. To avoid that a particular image
area is equal to 0 and cannot calculate the formula, we add 1 to the
numerator and denominator of the calculation formula (4).
Therefore, the Dice calculationmethod is changed to Equation (5):

Kidney(Tumor) Dice =
1
200o

199

i=0

2 Ai ∩ Bij j + 1
Aij j + Bij j + 1

i

= 0, 1, 2…, 199 (5)
FIGURE 7 | Training data distribution. The abscissa is the Area of connection of 4,691 tumors, and the ordinate is the number of samples of 4,691 tumors.
A

B

FIGURE 6 | Result of coarse segmentation on CT image of 512 × 512 pixels to 128 × 128 pixels, (A) is CT image of 512 × 512 pixels, (B) is CT image of 128 ×
128 pixels.
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Among them, Ai is the i-th segmented area, and Bi is the i-th
label image, Kidney(Tumor) Dice is the average of n results.

Experimental Results
In our experiments, we used the CT data described in Data
Preparation. Our model is trained by an Adam optimizer, and
the learning coefficient is set to 0.001. The batch size is set to 8
and the total epoch is formed to 500,000 (steps_per_epoch = 500,
epochs = 100). This model is trained on NVIDIA GeForce RTX
3060 (12GB) graphics processing unit (GPU).

We tested the renal tumor segmentation results of multiple
models on the same dataset to verify the effectiveness of the
FR2PAttU-Net model for image segmentation. The U-Net model
training and segmentation results are saved in Figure 10 and
Table 1, and the R2AttU-Net model training and segmentation
results are saved in Figure 11 and Table 2. Figures 12, 13 are the
training results of FR2PAttU-Net using various convolutions, and
Tables 3, 4 are the segmentation results of FR2PAttU-Net using
various convolutions.

Tables 1–4 are results of fine segmentation. That is, the input
image is 128 × 128. Each table has six columns, input image pixel
Frontiers in Oncology | www.frontiersin.org 8140
size, last layer image pixel size, total training time, kidney Dice,
tumor Dice, and Composite score. With the deepening of the
network, the image pixels of the previous layer gradually decrease
until the GPU Terminates the experiment when out of memory
is displayed. Comparing Tables 1–4, we find that with the
deepening of the model, the training time of the model will be
longer and longer, but our model can still extract better feature
information. Furthermore, performing multiple convolution
operations on the image in parallel can obtain different
information about the input image than consecutive
convolution operations; processing these operations in parallel
and combining all the results will result in better image
representation, resulting in a better tumor segmentation.

Figure 14 shows the overall segmentation effect based on the
FR2PAttU-Net model (convolution kernel = 3 × 3 and 5 × 5) on
the kidney CT images of three patients. Each patient shows five
pictures, among which, A is the original image, B is the label, C is
the coarse segmentation result, D is the label of ROI, and E is the
fine segmentation result. Figure 14-1 is the first type of case; the
tumor and kidney are more prominent, a relatively common
type. Figure 14-2 shows the results of the second type of case. In
A B DC

FIGURE 8 | Data enhancement. (A) is the original kidney ROI image, (B) is the result of horizontal flipping, (C) is the result of vertical flipping, and (D) is the result of rotating.
FIGURE 9 | Calculation method of DSC. (A) segmentation result, (B) label.
 FIGURE 10 | Training result (U-Net).
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this case, both the kidney and tumor area are small, and the
tumor is blurred, making it difficult to distinguish with the
human eye directly. Finally, Figures 14-3, 14-4 are the third
types of cases in which both kidneys have tumors, our model
detects two tumors separately, and two ROI regions are extracted
from the image.

Recreating the anatomy of the patient in CT images is a
significant problem (31). We can post-process the CT image of
the patient after the kidney tumor segmentation is completed so
that the doctor can observe the spatial structure of the kidney
and tumor of the patient. Figure 15 shows the post-processing
process. In the fine segmentation stage, we use an image of 128 ×
128 pixels, so the segmentation result is also 128 × 128 pixels. We
constructed a marked ROI region for the segmentation results of
kidney and tumor (ROI 1, ROI 2). The background pixels
remained unchanged and converted the pixels of the kidney
and tumor into pixels of the segmentation result. The ROI area is
then matched to the CT image of the patient (512 × 512 pixels),
FIGURE 11 | Training result (R2AttU-Net).
TABLE 2 | Fine segmentation based on R2AttU-Net model.

Input image size (pixel) Last layer image size (pixel) Total training time Kidney Dice Tumor Dice Composite score

128 × 128 8 × 8 About 1,500 s 0.906 0.836 0.871
128 × 128 4 × 4 About 2,000 s 0.925 0.858 0.892
128 × 128 2 × 2 About 3,700 s 0.921 0.867 0.894
Average 0.917 0.854 0.886
Frontiers in Oncology | www.front
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TABLE 1 | Fine segmentation based on U-Net model.

Input image size (pixel) Last layer image size (pixel) Total training time Kidney Dice Tumor Dice Composite score

128 × 128 8 × 8 About 500 s 0.391 0.456 0.424
128 × 128 4 × 4 About 700 s 0.472 0.415 0.444
128 × 128 2 × 2 About 1,100 s 0.583 0.460 0.522
Average 0.482 0.444 0.463
FIGURE 12 | Training result [FR2PAttU-Net (kernel = 3)].
FIGURE 13 | Training result [FR2PAttU-Net (kernel = 3 and 5)].
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TABLE 3 | Fine segmentation based on FR2PAttU-Net model (parallel convolutions [convolution kernel = 3 × 3)].

Input image size (pixel) Last layer image size (pixel) Total training time Kidney Dice Tumor Dice Composite score

128 × 128 8 × 8 About 2,200 s 0.948 0.906 0.927
128 × 128 4 × 4 About 3,000 s 0.929 0.902 0.916
128 × 128 2 × 2 About 6,300 s 0.951 0.915 0.933
Average 0.943 0.908 0.926
Frontiers in Oncology | www.front
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TABLE 4 | Fine segmentation based on FR2PAttU-Net model [parallel convolutions (convolution kernel = 3 × 3 and 5 × 5)].

Input image size (pixel) Last layer image size (pixel) Total training time Kidney Dice Tumor Dice Composite score

128 × 128 8 × 8 About 2,700 s 0.948 0.914 0.931
128 × 128 4 × 4 About 4,400 s 0.951 0.913 0.932
128 × 128 2 × 2 About 11,400 s 0.946 0.905 0.926
Average 0.948 0.911 0.930
A B D EC

FIGURE 14 | Kidney tumor segmentation based on FR2PAttU-Net model. (A) Original image, (B) Label, (C) Result of coarse segmentation, (D) label of ROI,
(E) Result of fine segmentation.
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showing the specific location of the kidney and tumor of the patient,
which is convenient for expert diagnosis and observation.
DISCUSSION AND CONCLUSIONS

Many deep learning methods have been used for kidney and
tumor segmentation in the past few years. Figure 14 can
intuitively see that the FR2PAttU-Net model proposed in this
paper is used for the segmentation effect of kidneys and tumors.
Table 5 shows the average Dice calculated by some algorithms or
methods. Among them, the data used by FR2PAttU-Net, U-Net,
ResU-Net, AttU-Net, R2U-Net, R2AttU-Net, and nnU-Net are
precisely the same. It is the data introduced in Data Preparation,
and the methods of data preprocessing and data enhancement
are the same. The other models from References (17, 18) and
(20–24) use the KiTS19 dataset, but the FR2PAttU-Net model
uses fuzzy sets to enhance the image. Therefore, we directly
quoted their results without additionally testing the performance
Frontiers in Oncology | www.frontiersin.org 11143
of our data on their model. As a result, we get scored a 0.948
kidney Dice and a 0.911 tumor Dice resulting in a 0.930
composite score; in the case of this test, the effect is better than
U-Net, ResU-Net, AttU-Net, R2U-Net, R2AttU-Net, nnU-Net.
However, our kidney Dice is about 0.2 lower when compared to
other algorithms. Still, tumor Dice is about 0.4 higher, which
means that the proposed method can simultaneously pay
attention to the more prominent feature (kidney) and more
minor features (tumors). It proves that the parallel convolution
method has a particular segmentation effect and research value in
kidney and tumor segmentation.

In conclusion, this paper proposes a kidney tumor
segmentation model based on FR2PAttU-Net, which can
effectively segment kidney tumors. This method is a cascade
deep learning model, adding residual-recurrent-parallel
convolutional networks, attention gates, Leaky-ReLU, and a
20% batch normalization layer to the original U-shaped
structure of the U-Net. We also use an Image enhancement
algorithm with fuzzy sets to alter the input image pixels to
March 2022 | Volume 12 | Article 853281
FIGURE 15 | Post-processing.
TABLE 5 | Segmentation results of several algorithms or methods.

References Algorithms or methods Kidney Dice Tumor Dice Composite score

This paper FR2PAttU-Net 0.948 0.911 0.930
Reference (11) U-Net 0.482 0.444 0.463
Reference (12) ResU-Net 0.688 0.694 0.691
Reference (13) AttU-Net 0.789 0.735 0.763
Reference (14) R2U-Net 0.681 0.711 0.696
Reference (15) R2AttU-Net 0.917 0.854 0.886
Reference (16) nnU-Net 0.905 0.864 0.882
Reference (17) AlexNet+ U-Net 0.9303 \ 0.9303
Reference (18) Hybrid V-Net 0.977 0.865 0.921
Reference (20) Cascaded U-Net ensembles 0.973 0.825 0.899
Reference (21) Cascaded volumetric convolutional network 0.974 0.831 0.902
Reference (22) multi-resolution VB-nets 0.973 0.832 0.903
Reference (23) Cascaded semantic segmentation 0.967 0.845 0.906
Reference (24) 3d U-net based on five-fold cross-validation 0.974 0.851 0.912
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improve the robustness of the model. The FR2PAttU-Net
model increases the width of the model and enhances the
adaptability of the model to the features of different image
scales, and obtains an excellent segmentation effect in the
kidney CT image. In future work, we will collect more
medical data for validating the reliability of the FR2PAttU-
Net model.
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Histopathology image analysis is widely accepted as a gold standard for cancer diagnosis.
The Cancer Genome Atlas (TCGA) contains large repositories of histopathology whole
slide images spanning several organs and subtypes. However, not much work has gone
into analyzing all the organs and subtypes and their similarities. Our work attempts to
bridge this gap by training deep learning models to classify cancer vs. normal patches for
11 subtypes spanning seven organs (9,792 tissue slides) to achieve high classification
performance. We used these models to investigate their performances in the test set of
other organs (cross-organ inference). We found that every model had a good cross-organ
inference accuracy when tested on breast, colorectal, and liver cancers. Further, high
accuracy is observed between models trained on the cancer subtypes originating from the
same organ (kidney and lung). We also validated these performances by showing the
separability of cancer and normal samples in a high-dimensional feature space. We further
hypothesized that the high cross-organ inferences are due to shared tumor morphologies
among organs. We validated the hypothesis by showing the overlap in the Gradient-
weighted Class Activation Mapping (GradCAM) visualizations and similarities in the
distributions of nuclei features present within the high-attention regions.

Keywords: TCGA, cross-organ inference, tissue morphology, class activation map (CAM), histopathology, deep
learning, cancer classification
1 INTRODUCTION

Cancers originating from different organs and cell types are known, with the most common ones
being breast, lung, colorectal, prostate, and stomach. The most common causes of cancer deaths are
lung, colorectal, and liver (1). Pan-cancer omics studies have revealed commonalities in driver
mutations, altered pathways, and immune signatures (2, 3). Molecular profiling helps to cluster and
distinguish different cancers and their subtypes by different computational methods (4–7). Given
the diverse nature of different cancers and their origin, it will also be interesting to examine the
morphological patterns that are unique and shared across different cancers from the
histopathological standpoint. Histopathology continues to play a crucial role in cancer
diagnostics. Digitization of tissue samples as whole slide images (WSIs) enables computer-based
diagnosis and analysis. The deep learning approaches can be used to analyze the cancerous and non-
cancerous patterns present in these tissues.
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Deep learning has significantly improved the accuracy of a
wide variety of computer vision tasks. The success of
convolutional neural networks (CNNs) in the ImageNet Large
Scale Visual Recognition Competition (8) resulted in a widespread
adoption of CNNs for the task of image recognition, object
detection, and image retrieval in several fields. Different studies
show the effectiveness of CNNs and the utility of models with
ImageNet pretrained weights in analyzing the tissue (9–14).
Coudary et al. (12) extracted 512 × 512 non-overlapping patches
of whole slide tissue images as input image patches for the WSI.
The method rejected all the background and noisy patches with a
mean intensity of half of the pixels greater than a set threshold. An
ImageNet pretrained Inception-v3 (15) network was finetuned for
the classification of cancerous and non-cancerous lung tissue
slides. Tabibu et al. (11) extended the same idea to the renal cell
carcinomas and performed cancer vs. normal classification and
subtype classification by finetuning the entire ResNet-18,34 (16)
networks and reported both slide-wise and patch-wise results.
Wang et al. (13) adopted a threshold-based segmentation for
background region detection by operating on the Hue Saturation
Value (HSV) color space to get the required mask for patch
filtering and identified the regions of metastatic breast cancer
using ImageNet pretrained GoogLeNet (17). Xu et al. (10)
performed classification and segmentation tasks on brain and
colon pathological images using CNNs for feature extraction and
training using a fully connected network (FCN). There are also few
attempts to perform pan-cancer analysis using a deep learning
approach. Fu et al. (18) have used features frommodels trained for
cancer vs. normal classification task to predict genomic, molecular,
and prognostic associations across organs. Cheerla et al. (19) have
used multimodal learning to predict survival from genetic data as
well as histopathology images across organs. Noorbakhsh et al.
(20) have reported the correlation of organs based on the slide-
wise area under the receiver operating characteristic curve (ROC-
AUC). In this work, training is performed at the patch level, and
inference is made at the slide level using a threshold for the
fraction of patches in a slide predicted as cancerous. They used
inception v3 (15) by using the CNN as a feature extractor and
finetuning the last fully connected layer. They also performed
hierarchical clustering of slide-wise ROC-AUC scores across
organs and showed correlations of logits of the models of
specific organs to suggest shared tumor morphology. We took
this a step further to analyze cross-organ correlations
quantitatively as well as qualitatively.

The contribution of this work is three-fold:

• Analyze each slide at the patch level and report high patch-
level cancer vs. normal accuracies to set high benchmarks.

• Reveal tumor similarities between certain groups of organs/
subtypes using patch-level analysis of WSIs from a deep
learning perspective.

• Demonstrate the consistencies of these correlations both
qualitatively and quantitatively, which is the first of its kind
to our knowledge.

We reported the self organ classification results with AUC, F1
score, and accuracies for 11 cancer subtypes and the best and
Frontiers in Oncology | www.frontiersin.org 2147
worst cross-organ inference results for each of these
trained models.

In the cross-organ inference, the trained models are used for
inference on the images of the other organs. The t-distributed
stochastic neighbor embedding (t-SNE) (21) plot of embeddings
obtained from each trained model shows the separability of
cancer and normal features across organs. The GradCAM
visualization of each trained model tested on the patches of
other organs supports the cross-organ performance between a
specific pair of organs, indicating the presence of common
morphological patterns. We showed that the distributions of
the nucleus features present in the high-attention regions for
pairs with good cross-organ performance are well aligned
compared to those with poor cross-organ performance. A
uniform workflow which performs satisfactorily across organs
is established. This includes patch extraction from tissue-rich
regions of WSI based on intensity values and connected
components present in its binarized format, hyperparameter
tuning (using Bayesian optimization) to decide on the
model architecture.
2 METHOD

2.1 Dataset and Preprocessing
We used the publicly available data set of WSIs from TCGA
project (22) across multiple organs. Experiments were performed
using the formalin-fixed paraffin-embedded (FFPE) slides. As
pointed out by (23), the FFPE sections reveal useful cellular
details of the tissue. These slides can confirm the diagnosis, in
contrast to the frozen slides that can affect the morphological
features of the tissue. 9,792 whole slide images spanning seven
organs, namely, breast, colorectal, kidney, liver, lung, prostate,
and stomach, were used. Some of these organs have multiple
subtypes: lung [lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC)], kidney [kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), and kidney chromophobe (KICH)], and colorectal
[colon adenocarcinoma (COAD) and rectum adenocarcinoma
(READ)]. We also considered cancer images specific to breast
[breast invasive carcinoma (BRCA)], stomach [stomach
adenocarcinoma (STAD)], liver [liver hepatocellular carcinoma
(LIHC)], and prostate [prostate adenocarcinoma (PRAD)]. The
number of slides and images considered in this study are shown
in Figure 1.

H&E-stained WSI contains several cells and comprises as
many as tens of billions of pixels, which is computationally
infeasible for training neural networks. Resizing the entire image
to a smaller size would hamper the cellular-level details, resulting
in lower classification performance (24). Therefore, the entire
WSI is commonly divided into partial patches or tiles analyzed
independently. We adopted the strategy mentioned in Coudary
et al. (12), by extracting 512 × 512-sized patches with no overlap
at a ×20 magnification. The patch-filtering method of (11) was
used to filter out background and noisy patches. We also added
another patch-filtering step to avoid patches with a fractal
March 2022 | Volume 12 | Article 842759
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structure by considering only those patches with ten or more
connected components present in its binarized format. Since
patch-wise labels were not available for TCGA dataset, the slide
label was assigned to patches as shown to be effective by (11, 12).
A train-validation-test split of 70–20–10 was performed before
training the models. Data augmentation techniques such as
random horizontal flip and random crop were used to improve
generalizability. The images were normalized using the mean
and standard deviation across all the three (RGB) channels
calculated on the training set.

2.2 Cancer vs. Normal Classification
We trained one model for each of the eleven subtypes (eleven
models in total) using a ResNet-18 architecture pretrained on the
ImageNet dataset. The ResNet style of architecture has
performed well compared to other computer vision models on
Frontiers in Oncology | www.frontiersin.org 3148
the ImageNet dataset (16). ResNet-18 was chosen over other
models (ResNet-34,50,101) since 18 layers were found sufficient
to yield superior performance in the classification tasks across
most cancers, and a further increase in the number of layers led
to a marginal increase in performance at the expense of a large
increase in the number of trainable parameters. The schematic
flow diagram is shown in Figure 2 for the classification task. We
replaced the last layer of ResNet-18 which provided the logits for
the thousand classes of the ImageNet classification task with a
fully connected network (FCN). The size of the last layer of this
FCN was fixed at two since the task was a binary classification.

The entire network parameters were optimized to minimize
the cross-entropy loss on the train data via backpropagation. The
optimizer, learning rate, number of FCN layers, number of
neurons in each layer, and dropout probabilities for each FCN
layer were chosen by a hyperparameter search using Bayesian
FIGURE 2 | Overview of architecture used in our work: patch extraction (left): red shows rejected background patches, and green shows patches used for the
training model, ResNet-18 architecture (middle) and Fully connected network (right).
FIGURE 1 | The number of slides (top) and patches (bottom) used in the study. Numbers of patches belonging to both classes (left bar represents cancer samples
and right bar represents normal samples) are shown in the form of two rectangular bar plots.
March 2022 | Volume 12 | Article 842759
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optimization. The batch size was set to 256. Owing to the class
imbalance in the cancer and normal samples across organs,
weighted cross entropy was used as the loss function. We also
employed a stratified sampling technique to maintain the ratio of
positives and negatives.

2.3 Hyperparameter Search
We used Optuna framework (25) for hyperparameter tuning
with the search space of the optimizer sampled from a categorical
distribution of optimizers (Adam, RMSProp, SGD), learning rate
sampled from a log-uniform distribution of values ranging
[1e−05, 1e−01], dropout sampled from a uniform distribution
of values from [0.2, 0.5], number of layers of FCN uniformly
sampled from values [1, 3], and number of neurons per layer
uniformly sampled from values ranging [4, 128]. We ran 20 trials
for hyperparameter search, and in each trial we trained the
model for 20 epochs. Finally, the optimal hyperparameters that
had the maximum validation accuracy across all trials were used
to train the model for 50 epochs. We tested the usefulness of
hyperparameter tuning on four organs and found a significant
improvement in the performance (accuracy, AUC, F1 score).
Hence, we adopted the same strategy for all the other organs
during the training. The contour plot indicating the
hyperparameter tuning is shown in Supplementary Figure S1.

2.4 GradCAM Analysis
We used the GradCAM (26) visualization technique to support
the cross-organ inference results. We obtained a thresholded
GradCAM heatmap and a bounding box over the high-attention
region for each of the patches under study. Thresholding of the
high-attention regions (green) of the heatmap was done by
converting the image to the HSV color space, since the hue
channel models the color type and is helpful in segmenting
regions based on a specific color criteria. To obtain the bounding
box containing the segmented region, we applied canny edge
Frontiers in Oncology | www.frontiersin.org 4149
detection to the thresholded image. For each of the obtained
contours, we applied closed-polygon approximation followed by
finding a rectangular bounding box. We explored through these
thresholded and bounding box outputs whether the regions of
high saliency have overlap across models trained on different
organs. We quantified the overlap by using IoU (intersection
over union) of the bounding box representations, with IoU = 1
representing a perfect overlap and IoU = 0 representing no
overlap. We also reported the Jaccard index to quantify the
overlap using the thresholded pixel maps.

2.5 Nucleus Feature Extraction
Different studies have demonstrated the association of nucleus
features to the clinical outcome and molecular data (11, 27–29).
We hypothesized that the shared regions between cancers might
show similar nucleus shapes and density features due to the
similarity in the tumor microenvironment. We used the
GradCAM high-attention regions to analyze the geometrical
features of the nuclei such as eccentricity, convex area, region
solidity, diameter, major axis, and minor axis and graphical
features such as Voronoi diagram, Delaunay triangulation,
minimum spanning tree, and nucleus density that characterize
the arrangement of nuclei. We compared the distributions of
these features to comment on the shared tumor morphology. The
steps involved are shown in Figure 3.

• Region extraction: for the patches under study, we first
extracted the high-attention regions corresponding to the
model trained using that organ and the high-attention
regions of the model trained on the other organ. We
extracted three regions, the overlapped area of intersection
and areas specific to each of the models. The overlap region
was obtained by performing a logical AND operation between
the thresholded GradCAM images. Specific regions were
obtained by subtracting the overlapped regions from the
thresholded GradCAM images.
A

B C D E H

G

F

FIGURE 3 | Nucleus segmentation workflow involved in segmenting nuclei from the specific regions of a sample patch: (A) COAD sample patch, (B) GradCAM
outputs of BRCA model (top) and COAD model (bottom), (C) thresholded GradCAM mask, (D) BRCA-specific mask (top), overlapping mask (middle), and COAD-
specific mask (bottom), (E) masked regions of BRCA-specific (top), overlap (middle), and COAD-specific (bottom), (F) nucleus segmented regions of BRCA-specific
(top), overlap (middle), and COAD-specific (bottom), (G) obtaining the nucleus shape and graphical features for each region, and (H) distributions of these features.
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• Nucleus segmentation: for each of the extracted regions, we
performed the nucleus segmentation using a hierarchical
multilevel thresholding approach (30).

• Nucleus features: we extracted geometrical shape features
from the nucleus segmented images using the connected
component analysis (11). Inter-nucleus architecture-based
features were obtained by using graph-based techniques (31).
3 RESULTS AND DISCUSSION

3.1 Quantitative Analysis
We performed two sets of experiments for the overall analysis.
The first experiment was to come up with a trained model for the
cancer vs. normal classification task in each of the mentioned
organs/subtypes. A high classification performance was observed
for most models (Figure 4). The second experiment was the
cross-organ inference by testing each of these trained models on
the held-out test of all the other organs. We report similarities
between specific organ pairs based on performance (accuracy >
0.9) (Figure 5). Best and worst performances (AUC, F1) for the
cross-organ inference are indicated in Table 1. The ROC curve
for the cross-organ inference is shown in Figure S2.
Frontiers in Oncology | www.frontiersin.org 5150
3.2 Cross-Organ Similarities
We found that most models show a good cross-organ inference
accuracy when tested on BRCA, LIHC, COAD, and READ
(Figure 5), which suggests that these cancers may have shared
tumor morphologies. Colorectal subtypes (READ and COAD)
show similarities with each other along with BRCA and LIHC.
These observations on COAD, READ, and BRCA are consistent
with the clustering of pan-gynecological and pan-
gastrointestinal observed by (20). In contrast, most of the
models perform poorly when tested on the kidney (KIRC,
KIRP, and KICH) and lung subtypes (LUAD and LUSC). This
suggests that kidney and lung cancer subtypes have morphology
features localized relative to the organ of origin. The unique
characteristics of kidney cancers are also seen with respect to
their gene expression pattern as observed in our previous work
(32). Interestingly, within cancer subtypes, we also observed that
the performance of KICH and KIRP models on KIRC as a test
set does not yield comparable performance. This suggests that
KIRC has more subtype-specific features that are not present in
other subtypes. Although READ and STAD are gastrointestinal
cancers, the cross-organ inference is not high using the READ
model. We observed that the cross-organ performance is not
uniform within adenocarcinomas (LUAD, COAD, PRAD,
READ, and STAD).
FIGURE 4 | Self-organ inference showing the performance obtained using models trained on each cancer and tested on a held-out test set of the same cancer.
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The t-SNE embedding was obtained for different model-
organ pairs. Figure 6 shows t-SNE plots for KICH, LUSC,
PRAD, and READ. The t-SNE plots of other model-organ
pairs are shown in the supplementary section (Figure S3).

The embeddings show that the models are able to exhibit
separability in feature space between cancer and normal patches
for the subtype that it was trained on as well as for subtypes/
organs with cross inference accuracy >90%. However, the t-SNE
embeddings also indicate that few of the normal and cancer
samples are at close proximities after projection to the 2D space.
Frontiers in Oncology | www.frontiersin.org 6151
This could possibly be attributed to the models not being fully
accurate, the 2D projection error, or the assumption that all
patches in a cancer slide are cancerous.

3.3 Cross-Organ GradCAM Visualization
A further qualitative analysis was done comparing the GradCAM
outputs of the model-organ pairs, with cross-organ inference
accuracy >90% as well as cross-organ inference accuracy < 80%.
Figure 7 shows the quantitative results of the degree of overlap
between GradCAM outputs using the IoU and Jaccard index.
FIGURE 5 | Cross-organ inference results: accuracies obtained using models trained on the organs along the rows and tested on the organs along the column are shown.
TABLE 1 | Cross-organ inference indicating the quantitative results of best and worst inferences of individually trained models when tested on other unseen organs.

Model F1 score AUC

Best Worst Best Worst

BRCA READ 0.9443 KICH 0.6600 READ 0.9837 KIRC 0.7815
COAD READ 0.9799 KIRC 0.5287 READ 0.9981 KIRC 0.6246
KICH COAD 0.9294 STAD 0.7519 KIRP 0.9783 STAD 0.8163
KIRC KIRP 0.9423 PRAD 0.7678 KICH 0.9881 PRAD 0.8069
KIRP KICH 0.9490 PRAD 0.6893 READ 0.9840 PRAD 0.6692
LIHC READ 0.9442 KIRC 0.6157 READ 0.9893 KICH 0.7203
LUAD LUSC 0.9381 KIRC 0.5675 LUSC 0.9831 KIRC 0.6256
LUSC BRCA 0.9251 KIRC 0.5769 LUAD 0.9683 KIRC 0.5998
PRAD BRCA 0.9422 KICH 0.5632 LIHC 0.9453 KICH 0.5481
READ COAD 0.9680 KIRC 0.4987 LIHC 0.9507 KIRC 0.5246
STAD READ 0.9410 KICH 0.6921 BRCA 0.9822 KICH 0.8062
March 2022 | V
olume 12 | Article
 842759

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Menon et al. Histological Similarities Across Cancers
FIGURE 6 | t-SNE embeddings of the trained models (mentioned in the title of each figure) helping to visualize the separability of cancer and normal embeddings of
organs unseen by the trained models.
FIGURE 7 | Cross-organ GradCAM results showing the IoU and Jaccard index of high-attention regions. The model used for visualization is indicated on the title of
each plot, and the subtypes used are indicated on the x-axis.
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Figure 8 shows the visualization using the BRCA model on
COAD, LIHC, and READ subtypes. The visualization for other
cross-organ inferences are provided in the supplementary section
(Figures S4, S5). The visualization outputs in green indicate
regions with high attention, those in red indicate regions with
moderate attention, and those in blue indicate no attention
during the classification task. Ground-truth visualizations for
the patch of an organ are obtained by using the model trained on
the same organ. We compared the degree of overlap of the
visualization outputs to comment on the shared tumor
morphology. We observed a positive correlation between the
observed cross-organ inference accuracy, i.e., the IoU and the
Frontiers in Oncology | www.frontiersin.org 8153
Jaccard index are high for model-organ pairs with high cross-
organ inference accuracy and low for model-organ pairs with low
cross-organ inference accuracy. For example, the BRCA model
has the highest cross-organ accuracy, highest IoU, and Jaccard
index on COAD. The same trend is observed in the models of
other organs.

3.4 Cross-Organ Similarities Seen in the
Distribution of Nucleus Features
To further strengthen the hypothesis about cross-organ
similarities, we observed the distribution of shape features of
the nuclei present in the high-attention regions. We considered
FIGURE 8 | Cross-organ GradCAM visualization of the BRCA model on COAD and KICH cancer patches. Columns show the input patch, GradCAM output,
GradCAM thresholded, and GradCAM with bounding box, respectively. Top 2 rows show COAD input patches and visualization using the BRCA model (1st row)
and COAD model (2nd row). Bottom 2 rows show KICH input patches and visualization using the BRCA model (3rd row) and KICH model (4th row).
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two groups that showed good (BRCA and COAD) and another
that showed poor (BRCA and KICH) performances in cross-
organ inferences to characterize the nucleus morphological
characteristics. We considered the high-probability patches [P
(cancer) > 0.98] of COAD and KICH for the analysis. The
distributions of some of the geometrical features of nuclei
(main region extent and solidity) present in the regions
focused by BRCA and COAD models on COAD patches are
similar and correlated in contrast to the distributions seen with
BRCA and KICH model on KICH patches (Figure 9).

We found that eight nucleus shape features and three inter-
nucleus density features are significantly (p-value greater than
0.05) associated with the similarities observed between tumor
morphologies (Table 2). Some of the significant nucleus shape
features include total area (p-value = 0.0736), main extent (p-
value = 0.1002), main region solidity (p-value = 0.0583), and
some of the significant nucleus density features include neighbor
count within a radius of 10, 20, and 30 pixels (p-value = 0.5974,
0.6044, 0.1945). We observe from the cross-organ performance
table and the cross-organ GradCAM results that the BRCA
model performs well on COAD patches and poorly on KICH
patches and a similar behavior is seen in the distribution of
nucleus geometrical features observed between the pairs of two
groups (BRCA-COAD and BRCA-KICH).
Frontiers in Oncology | www.frontiersin.org 9154
4 CONCLUSION

In this work, we explored tumor features and morphology across
multiple organs from a deep learning perspective. This has not
been extensively studied compared to the pan-cancer studies
based on molecular profiling. We report similarities based on
very high performance obtained with models trained on one
cancer and tested directly on another. This level of performance
can be achieved only if the learnt features are general or common
between cancers. Our observations span not only cancers
originating from the same organ but also different organs,
which are interesting. We observed that good cross-organ
performance is also reflected in the separability of normal and
cancerous patches in feature space when visualized using the t-
SNE plot.

We also explored GradCAM techniques to establish that the
models with high cross inference accuracy had a significant
overlap in their attention regions. This suggests that the deep
learning model is able to pick up shared morphological features
that span across organs during classification. We further showed
similarity at the nucleus level by analyzing the distribution of
geometrical and graphical features of nuclei present in the
overlapping and non-overlapping regions. Overall, our study
presents the proof-of-principle experiment that deep learning
FIGURE 9 | Graph showing nuclei shape distribution of BRCA and COAD models inferred on COAD patches (left) and BRCA and KICH models inferred on KICH
patches (right). The x-axis represents value of the feature, and the y-axis represents the PDF. In each subplot, “Total” is the overall high-attention region of the
corresponding model, “overlap” is the common region of high attention for the two models, and “specific” is the “total” region excluding the “overlap”.
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and computational approaches can be adopted to explore the
shared morphology across different cancers. There is a need for
further characterization at the experimental level, which will be
taken up as future work. We made publicly available the model
checkpoints, the source code, and the best model architectures
for most common cancers using TCGA data. All the resources
can be accessed from the project page at https://bhasha.iiit.ac.in/
tcga_cross_organ_project.
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This work was developed to the effects of biofilm composite nano-drug delivery system
(OMVs-MSN-5-FU) on lymph node metastasis from oral squamous cell carcinoma.
Mesoporous silica nanoparticles loaded with 5-FU (MSN-5-FU) were prepared first.
Subsequently, the outer membrane vesicles (OMV) of Escherichia coli were collected to
wrap MSN-5-FU, and then OMVs-MSN-5-FU was prepared. It was then immersed in
artificial gastric juice and artificial intestinal juice to explore the drug release rate. Next, the
effects of different concentrations of the nano-drug delivery systems on the proliferation
activity of oral squamous carcinoma cell line KOSC-2 cl3-43 were analyzed. Tumor-
bearing nude mice models were prepared by injecting human tongue squamous cell
carcinoma cells Tca8113 into BALB/c-nu nude mice. They were injected with the OMVs-
MSN-5-FU nano drug carrier system, and peri-carcinoma tissue and cervical lymph node
tissue were harvested to observe morphological changes by Hematoxylin – eosin (HE)
staining. The scanning electron microscope (SEM) results showed that all MSN, MSN-5-
FU, OMV, and OMV-MSN-5-FU were spherical and uniformly distributed, with particle
sizes of about 60nm, 80nm, 90nm, and 140nm, respectively. Among them, OMV had a
directional core-shell structure. The cumulative drug release rates of artificial gastric juice
in 48 hours were 61.2 ± 2.3% and 26.5 ± 3.1%, respectively. The 48 hours cumulative
drug release rates of artificial intestinal juice were 70.5 ± 6.3% and 32.1 ± 3.8%,
respectively. The cumulative release of MSN-5-FU was always higher than OMV-MSN-
5-FU. The cumulative release of MSN-5-FU was always higher than OMV-MSN-5-FU.
After injection of OMVS-MSN-5-FU, the number of cancer cells was significantly reduced
and cervical lymph node metastasis was significantly controlled. HE staining results
showed that OMVS-MSN-5-FU injection reduced the number of stained cells. Dense
lymphocytes were clearly observed in the cortex of neck lymphocytes. The OMVs-MSN-
5-FU drug delivery system can slow down the drug release rate, significantly inhibit the
proliferation activity of oral squamous cancer cells, and control the metastasis of cancer
cells to cervical lymph nodes.

Keywords: outer membrane vesicle, mesoporous silica nanoparticle, oral squamous carcinoma, lymph node
metastasis, drug release rate
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INTRODUCTION

Squamous cell carcinoma is a common malignant tumor of the
head and neck, accounting for approximately 80% of all head and
neck tumors, classified into oral cancer, laryngeal cancer, and
nasopharyngeal cancer, etc. (1). Lymph node metastasis is an
important cause of poor treatment effects and even death in
cancer patients (2). Due to the special physiological anatomy of
the oral maxillofacial region, most patients with squamous cancer
are prone to neck lymph node metastasis, which seriously affects
the prognosis (3). Data show that approximately 14% to 40% of
patients with oral squamous cell carcinoma have cervical lymph
node metastasis (4). Therefore, diagnosis of the cervical lymph
node metastasis of oral squamous cell carcinoma is important (5).
5-Fluorouracil (5-FU) is a pyrimidine fluoride. It can inhibit the
activity of thymine nucleotide synthase and is a commonly used
anti-metabolism and anti-tumor drug. 5-FU has been widely used
in the treatment of colorectal cancer, head and neck squamous
cell carcinoma, and liver cancer (6–8). However, 5-FU can cause
serious systemic side effects, such as mucositis and diarrhea,
which is attributable to too little accumulation of 5-FU drugs in
tumor tissue (9). Therefore, increasing the accumulation of 5-FU
in the target area can enhance the efficacy of the drug and reduce
the side effects.

Nowadays, nano-drug delivery systems play an important role
in the pharmaceutical research and application, and nano-drug
delivery systems prepared by encapsulating drugs in natural or
synthetic polymer compounds can improve the therapeutic effects
(10). By molding drugs into various nanostructures, they can be
made more bioavailable and therapeutic. Polymer nanocarriers,
solid lipid nanoparticles, nanostructured lipid carriers,
nanoemulsions, nanodiamonds, vesicle-based drug carriers,
metal-based nanoparticles, and nano-vaccines all have positive
application effects as intelligent substitutes for drug delivery in the
central nervous system (11). Nevertheless, the nano-preparation
is only enriched in the liver or spleen, without a long-term
circulation, and thus it can’t reach the targeted organs or tissue.
To enhance the therapeutic efficiency of the nano-drug delivery
system, to modify the cell membrane on the outer layer can
significantly increase the drug loading. Additionally, the cell
membrane has good biocompatibility, which also improves the
stability of the nano-particles. Gram-negative bacteria outer
membrane vesicles (OMV) are spherical biofilms, which are
closed entities originating from endophytic cells (12). It can
regulate the host’s immune response and participates a variety
of biological and pathophysiological processes. Zhang et al. (13)
improved the radiosensitivity of extranodal nasal NK/T cell
lymphoma by combining radiotherapy with nano-drug delivery
system, overcame the multi-drug resistance of chemotherapy
drugs, and provided a new idea for the further development
and optimization of treatment regimen for extranodal nasal NK/T
cell lymphoma.

In this study, a biofilm composite nano drug delivery system
(OMVs-MSN-5-FU) was prepared and immersed in artificial
gastric juice and artificial intestinal juice to explore the drug
release rate, and the effect of OMVS-MSN-5-FU on cervical
lymph node metastasis was investigated. This study may provide
Frontiers in Oncology | www.frontiersin.org 2158
a theoretical basis for the therapeutic effect of oral squamous
cell carcinoma.
MATERIALS AND METHODS

Laboratory Reagents
5-FU (Beijing Bailingwei Technology Co., LTD.); Cetyl trimethyl
ammonium bromide (Jining Sanshi Biotechnology Co., LTD.);
Ethyl orthosilicate (Tianjin Kermel Chemical Reagent Co., LTD.);
(Tianjin Guangfu Fine Chemical Research Institute); Dimethyl
sulfoxide (Jiangsu Haolong Chemical Co., LTD.); and Phosphate
buffer salt solution (PBS, Hyclone Corporation, USA) were
utilized. All other reagents were domestic analytical pure reagents.

Preparation of Mesoporous Silica Carrier
The synthesis steps of mesoporous silica carrier were shown in
Figure 1. 0.535g cetyltrimethylammonium bromide (CTAB) was
dissolved in 240mL sterilized ultrapure water, and ultrasonic
dispersion was performed for 15min. Then, 1.25mL of 2mol/L
NaOH solution was added, followed by ultrasonic dispersion for
5min. The liquid was stirred continuously at 80°C for 30 minutes.
Ethyl orthosilicate (TEOS) was added dropwise every 4s, totaling
5mL. After 2-hour reaction, the liquid was left at room temperature
for 30min. The lower layer solution was taken for centrifugation at
10,000rpm for 3min to obtain the precipitate. The mesoporous
silica nanoparticles (MSN)were then immersed in ethanol solution,
followed by ultrasonic dispersion and centrifugation at 10,000 rpm
for 3 minutes. The above steps were repeated three times. Next, the
sample was transferred in a vacuum drying oven and dried
overnight to obtain the purified MSN sample.

3-aminopropyltriethoxysilane (AMEO) was mixed with MSN
at a ratio of 2:3, and an appropriate amount of toluene was
added, followed by reflux under nitrogen protection for 12h at
110°C. Then, the solution was centrifuged at 10,000rpm for 3
mins, and the precipitate was washed with ethanol solution. The
above steps were repeated three times. Finally, the surface
amination treatment of MSN was carried out under vacuum
drying conditions. The synthesis steps were shown in Figure 2.

Preparation of MSN-5-FU
MSN-5-FU nanoparticles were prepared by reverse phase
microemulsification. 7.5 mL cyclohexane, 1.6 mL hexanol, and
1.8 mL Triton-100 (surfactant) were mixed evenly, and 5-Fu
solution was added to form an inverting microemulsion.
Magnetic stirring was performed at room temperature for 5
min. 150 mL ethyl orthosilicate and 100 mL 25% ammonia were
added to the mixture, and the reaction was stirred continuously
at room temperature for 24 h. 2 mL acetone was added for
demulsification and centrifugation for 20 min. The products
were collected and dispersed with ethanol and water respectively,
followed by centrifugation to remove unreacted 5-Fu and
solvent. The final nanoparticles were vacuum-dried.

Preparation of OMVs-MSN-5-FU
Luria-Bertani solid medium was used to cultivate Escherichia
coli. After culturing at 37°C for 36 hours, a single colony was
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inoculated in Luria-Bertani liquid medium and continued to be
cultured for 24 hours. 2mL of bacterial solution was inoculated in
blank Luria-Bertani liquid medium, set as the blank control
group. The culture was terminated when the OD600 was 1. Then,
centrifugation was performed at 12,000 rpm for 20 min at 4°C.
The supernatant was then passed through the 0.45mm disposable
filter. The filtrate was transferred to 20mL ultrafiltration
centrifuge tube, followed by centrifugation at 8000rpm at 4°C
for 15min. The centrifugal liquid was concentrated to 1.5mL, and
PBS was used for resuspension to obtain OMVs.

High-pressure nitrogen was used to extrude the OMVs to
uniform their particle sizes. The above steps were repeated 3
times. OMVs and MSN-5-FU were mixed at a ratio of 1:5, and
then extruded 6 times. The extruded effluent was centrifuged at
8000 rpm at 4°C for 20 minutes, and the supernatant was
discarded. The bottom precipitate was OMVs-MSN-5-FU.

Characterization Test

a. Transmission electronmicroscope (Talos F200X S/TEM, Beijing
Opton Optical Technology Co., LTD.) and scanning electron
microscope (LSM 900, Beijing Precise Instrument Co., LTD.)
were used to observe the morphology of nanoparticles.
Frontiers in Oncology | www.frontiersin.org 3159
b. The Malvern Zeta particle size analyzer was used to measure the
Zeta potential of nanoparticles, the measurement temperature
was set to 25°C, and the equilibration time was 2 minutes.
In Vitro Release Test of OMVs-MSN-5-FU
Drug Delivery System
The release amount of OMVs-MSN-5-FU drug delivery system
was determined through the immersion test of artificial
gastric juice and artificial intestinal juice. The first step was to
prepare artificial gastric juice and artificial intestinal juice.
Preparation of artificial gastric juice: 1mol/mL dilute
hydrochloric acid with pH=1.5 was mixed with 0.001g/mL
pepsin. The mixture was then passed through 0.2mm
disposable sterile filter membrane for filter sterilization.
Preparation of artificial intestinal juice: 6.8g KH2PO4 was
dissolved in 500mL sterile ultrapure water. With the pH of the
solution set to 6.8, 0.01g/mL trypsin was then added. Next, the
mixture was passed through a 0.2mm disposable sterile filter
membrane for filter sterilization. Subsequently, 3mg of MSN-5-
FU drug delivery system was added to 20mL of artificial gastric
juice and 3mg OMVs-MSN-5-FU drug delivery system was
added to another 20mL of artificial gastric juice, followed by
FIGURE 2 | MSN surface amine process.
FIGURE 1 | Flow chart of preparation of mesoporous silica nanoparticles.
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shaking at 135rpm at 37°C. The artificial intestinal juice was
treated in the same way. 2mL release solution was taken after
0.5h, 1.0h, 2.0h, 4.0h, 8.0h, 12.0h, 24.0h, 48.0h, and 72.0h of
shaking, respectively, followed by centrifugation at 2000rpm for
5min at room temperature. Then, the supernatant was taken to
determine the content of 5-FU.

In Vitro Cytotoxicity Test of OMVs-MSN-5-
FU Drug Delivery System
KOSC-2 cl3-43 cells were inoculated in a 96-well plate. 0, 0.1,
0.25, 0.5, 1, 2.5, 5, and 10mmol/L 5-FU, MSN-5-FU, and OMVs-
MSN-5-FU were inoculated, respectively. At 24h, 48h, and 72h of
culturing, 10mL of MTT solution was added to each well. Then,
100mL of dimethylsulfoxide solution was added to each well,
followed by shaking for 10 minutes. Finally, the absorbance was
measured at a wavelength of 570nm. Cell inhibition rate was
calculated. The calculation method of cell inhibition rate is
shown in equation (1), where RI was the cell inhibition rate,
AS was the absorbance value of the experimental well, AK was
Frontiers in Oncology | www.frontiersin.org 4160
the absorbance value of the blank well, and AY was the
absorbance value of the negative well.

RI = 1 −
AS − AK
AY − AK

� 100% (1)

Preparation of Tumor-Bearing
Animal Models
The clean-grade BALB/c-nu nude mice were used, aged about 5
weeks old, weighing 16-21g, regardless of the gender. They were
provided by the XXX animal laboratory. Animal LicenseNo.:SCXK
(Hebei)2019-0027. In XXX animal laboratory, the day and night
cycle was 12 hours at 22~26°C and 45~50% humidity. After three
days of adaptive breeding, they were used in formal experiments.

Human tongue squamous cell carcinoma cells Tca8113 were
cultured first, and PBS was used to prepare a single cell
suspension at a concentration of 1×107 during subculture. 10%
chloral hydrate solution was intraperitoneally injected to
anesthetize BALB/c-nu nude mice, and 0.2mL of Tca8113 cell
FIGURE 3 | Scanning electron microscope images.
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suspension was injected into the buccal mucosa. The growth
status of the tumor was observed regularly.

When the diameter of the tumor was approximately 0.5 cm,
BALB/c-nu nude mice were anesthetized by intraperitoneal
injection of 10% chloral hydrate solution, and 100mg/mL
OMVs-MSN-5-FU suspension was injected into the buccal
mucosa around the tumor in the oral cavity.

Detection of Naa10 and Lymphocyte
Subtypes in Peripheral Blood
Blood was drawn from the tail vein of the tumor-bearing animal
model, andenzyme-linked immunosorbentassaywasused todetect
the level of Naa10 in the peripheral blood. The serum sample was
transferred in an enzyme-labeled plate, and incubated at 37°C for 2
hours. After the supernatant was discarded, 100mL of test reagent A
was added to eachwell. After 1 hour, the supernatantwas discarded
and the cellswerewashedwith sterile ultrapurewater 3 times. Then,
100mLof test reagentBwas added toeachwell. After 1hour, 90mLof
enzyme-labeled reagent was added to each well, and 50mL of stop
Frontiers in Oncology | www.frontiersin.org 5161
solution was added after incubation for 20min. Finally, the
absorbance was measured using a microplate reader at 450nm.

Flow cytometry was used to detect the changes of T
lymphocyte subsets (CD3+, CD4+ and CD8+), B lymphocytes
(CD19+) and NK cells (CD56+) in peripheral blood.

Observation of Tissue Sections
Three days after the injection of OMVs-MSN-5-FU suspension,
the animal model was sacrificed by cervical dislocation, and the
tissue around the carcinoma and ipsilateral cervical lymph nodes
were harvested. The tissue was washed with PBS, and then put in
the embedding box. Then, 70%, 90%, 95%, 95%, 100%, 100%,
and 100% ethanol solution was used in turn to dehydrate the
tissue, followed by immersion in xylene solution for 20 minutes.
This step was repeated 3 times. The treated tissue was embedded
in paraffin solution to made paraffin tissue sections with a
thickness of 3mm. After being dried, the slide was immersed in
xylene solution for 10 minutes, twice. Next, 100%, 100%, 95%,
95%, 80% ethanol solution and distilled water were used in turn
FIGURE 4 | Transmission electron microscope images.
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for tissue rehydration. Subsequently, hematoxylin and eosin
staining solutions were used to stain the tissue, followed by
immersion in xylene. Finally, the slide was sealed using neutral
gum, and visualized under an optical microscope.

Statistical Analysis
SPSS19.0 was used to process the data. The data were all
expressed by the mean ± standard deviation (x(-) ± s).One-
way analysis of variance was used for statistical analysis of the
differences between multiple groups, and P<0.05 was the
threshold for significance.
RESULTS

Transmission Electron Microscopy and
Scanning Electron Microscopy Images of
the Nano-Drug Delivery Systems
The morphology of MSN, MSN-5-FU, OMVs, and OMVs-MSN-
5-FU was visualized under scanning electron microscope and
Frontiers in Oncology | www.frontiersin.org 6162
transmission electron microscope. It was found that, all MSN,
MSN-5-FU, OMVs, and OMVs-MSN-5-FU were spherical in
shape, with uniform distribution. The particle diameters were
approximately 60nm, 80nm, 90nm, and 140nm, respectively.
Among them, OMVs had an oriented core-shell structure. The
scanning electron microscope and transmission electron
microscope results were shown in Figures 3, 4.

Zeta Potential Measurement Results
The average Zeta potentials of MSN, MSN-5-FU, OMVs, and
OMVs-MSN-5-FU were -20.6 ± 2.3mV, -28.7 ± 2.2mV, -18.2 ±
3.1mV, and -17.4 ± 1.7mV, respectively. The average zeta
potential of OMVs was close to that of OMVs-MSN-5-FU. The
results of Zeta potential detection were shown in Figure 5.
In Vitro Release of the Nano-Drug
Delivery Systems
The in vitro release rate of MSN-5-FU and OMVs-MSN-5-FU
drug delivery systems was analyzed. It was noted that,
FIGURE 5 | Average Zeta potential plot.
A B

FIGURE 6 | In vitro cumulative release rate curve of the nano-drug delivery systems. (A) was the cumulative release curve in artificial gastric juice; (B) was the
cumulative release curve in artificial intestinal juice.
April 2022 | Volume 12 | Article 881910

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Effects of OMVs-MSN-5-FU
the cumulative release rate of MSN-5-FU and OMVs-MSN-5-FU
drug delivery system gradually increased in artificial gastric juice
and artificial intestinal juice. In addition, the 48-hour cumulative
drug release rate in artificial gastric juice was 61.2 ± 2.3% and
26.5 ± 3.1%, respectively, and the 48-hour cumulative drug
release rate in artificial intestinal juice was 70.5 ± 6.3% and
32.1 ± 3.8%, respectively. The cumulative release of MSN-5-FU
was always higher than that of OMVs-MSN-5-FU. The
cumulative release rate results were shown in Figure 6.

Cytotoxicity of the Nano-Drug
Delivery Systems
The results of cell viability detected byMTT showed that, with the
increase of the concentration of 5-FU, MSN-5-FU and OMVs-
MSN-5-FU drug delivery systems, the proliferation activity of
KOSC-2 cl3-43 cells showed a gradually decreasing trend. At the
Frontiers in Oncology | www.frontiersin.org 7163
same time, under the same dosage, the inhibitory rate of OMVs-
MSN-5-FU drug delivery system on the proliferation activity of
KOSC-2 cl3-43 cells was higher than that of 5-FU and MSN-5-
FU. The specific results were shown in Figure 7.

Identification of Tumor-Bearing
Animal Models
HE staining was used to analyze the pathological changes of
tumor-bearing animal models. It was found that, the cancer
tissue showed enlarged nuclei, darkened staining, and irregularly
shaped cancer cells. The adjacent tissue mainly consisted of
striated muscle, and there were oval nuclei on the edge.
Observation of cervical lymph node slices revealed that, the
lymphocytes in the cortex were very dense and were divided
by cancer cells. The shape of the nucleus of lymphocytes was
approximately round and there was no cytoplasm; while the
FIGURE 7 | The inhibitory effects of free drug and the nano-drug delivery systems on cell proliferation.
A B

FIGURE 8 | HE staining results of tissue sections. (A) was HE staining of adjacent tissue sections (×400); (B) was HE staining of tissue sections of cervical lymph
node metastases (×400).
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nucleus of cancer cells was enlarged, and the cytoplasm was
connected to each other into a sheet. It suggested that, the cancer
cells have gradually metastasized to the lymph nodes in the neck,
accompanied by cell proliferation. The specific staining results
were shown in Figure 8.

Detection of Naa10 and Lymphocyte
Subgroups in Peripheral Blood
The test results showed that, the model group showed increased
levels of Naa10, CD8+, and CD56+ in peripheral blood, while
Frontiers in Oncology | www.frontiersin.org 8164
decreased levels of CD3+, CD4+, CD4+/CD8+ and CD19+

(P<0.05) versus the normal control group; and that compared
with the model group, the OMVs-MSN-5-FU group showed
decreased levels of Naa10, CD8+, and CD56+ in the peripheral
blood, while increased levels of CD3+, CD4+, CD+/CD8+ and
CD19+ (P<0.05). However, there was no significant difference
between the control group and the OMVs-MSN-5-FU group in
the levels of Naa10 and lymphocyte subgroups (P>0.05). The
detection results of Naa10 and lymphocyte subgroups in
peripheral blood were shown in Figure 9.
A B

D

E F

G

C

FIGURE 9 | Differences in the levels of Naa10 and lymphocyte subgroups in peripheral blood. (A) was Naa10; (B) was CD3+ level; (C) was CD4+; (D) was CD8+;
(E) was CD19+; (F) was CD4+/CD8+ ratio; (G) was CD56+; compared to the control group, *P<0.05; compared to the model group, #P<0.05.
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HE Staining of Peri-Carcinoma and
Cervical Lymph Node Tissue
The HE staining results showed that, the aligned nuclei were
noted in the striated muscle of the peri-carcinoma tissue, and the
injection of OMVs-MSN-5-FU reduced the number of stained
cells. In the cortex of the neck lymphocytes, dense lymphocytes
were clearly observed. The specific staining results were shown
in Figure 10.
DISCUSSION

Patients with oral squamous cell carcinoma have a low survival
rate after treatment, and metastasis may lead to poor prognosis
or even death (14). There are abundant lymphatic tissues in
maxillofacial region, and facial movement promotes the
metastasis of oral squamous cell carcinoma to cervical lymph
nodes (15). Oral squamous carcinoma has a high probability of
metastasis to cervical lymph nodes. If metastasis occurs, patient
survival is greatly reduced. As a thymidylate synthase inhibitor,
5-FU is often injected intravenously for the treatment of cancer
patients (16). 5-FU drugs show good therapeutic effects on
digestive system tumors and breast tumors. It can also be used
to treat ovarian cancer, bladder cancer, and head and neck cancer
(17, 18). However, the drug has a great toxic effect on bone
marrow and digestive tract, so it is important to improve the
therapeutic effect of the drug and reduce the toxic side effects.
William (2021) (19) found that 5-FU was beneficial to improve
the survival rate of colorectal cancer patients, but severe systemic
Frontiers in Oncology | www.frontiersin.org 9165
toxicity (including neutropenia) occurred in 30% of patients, and
0.5-1% of patients were fatal.

In the study, Escherichia coli biofilm was used to prepare a
composite nano-drug carrier system containing 5-FU drugs. OMV
helps bacteria adapt to the ecological niche, and enables them to
compete with others, playing a protective role (20). In this study,
Escherichia coli OMV was used to wrap the MSN-5-FU drug
delivery system, which was then immersed in artificial gastric
juice and artificial intestinal juice to analyze the drug release rate.
The results showed that, comparedwithMSN-5-FU, thecumulative
drug release rate of OMVs-MSN-5-FU was significantly reduced.
This greatly prolonged the targeted action time of the drug and
improved the therapeutic effects. Finally, after co-culturedwith oral
squamous cell carcinoma cell lines, it was found to significantly
inhibit theproliferationactivity of the cells. It suggested thatOMVs-
MSN-5-FU had significant inhibitory effects on the proliferation
activity of oral squamous cell cancer cells, and then enhanced the
therapeutic effects.

Tca8113 is a type of human tongue squamous carcinoma cell
line with very stable genetic traits, and has been widely used in
animal experiments (21). In view of oral squamous cell carcinoma
prone to neck lymphocyte metastasis, Tca8113 cells were used to
prepare a tumor-bearing mouse model, and the neck lymphocyte
metastasis was analyzed by making sections. The results showed
that, there was obvious edema in the peri-carcinoma tissue, and
the increased internal pressure caused the anchor wire connecting
the endothelial cells and surrounding tissues to be pulled, which
increased the pores between the lymphatic endothelial cells. In
order to evaluate the therapeutic effects of OMVs-MSN-5-FU on
A

B

FIGURE 10 | HE staining of tissue sections after treatment. (A) was HE staining of tissue sections adjacent to the carcinoma (×400); (B) was HE staining of the
tissue sections of cervical lymph node metastases (×200).
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the animal model of oral squamous cell carcinoma, the levels of
Naa10 and lymphocyte subgroups in the peripheral blood were
factored into. Naa10 is the only subunit that can be catalyzed in
the N-acetyltransferase A complex, and it plays an important role
in the cell biology process (22). Studies have shown that, Naa10
participates in the autophagy, apoptosis, and proliferation of
tumor cells (23). The results of this study showed that, the level
of Naa10 in the model group was significantly increased, and the
injection of OMVs-MSN-5-FU could reduce the level of Naa10.
Cancer cells can cause the deterioration of the disease through
processes such as immune escape (24). The subgroups of
peripheral blood lymphocytes were then analyzed. The results
showed that, the levels of CD3+, CD4+, CD4+/CD8+ and NK cells
in the peripheral blood of the model group were significantly
decreased, while the levels of CD8+ and B lymphocytes were
significantly increased. This indicated that the lymphocyte
subgroups of model group changed significantly. After injection
of OMVs-MSN-5-FU, the levels of subgroups of peripheral blood
lymphocytes in the animal model almost returned to normal. This
indicated that OMVs-MSN-5-FU can regulate the balance
between effector T cells and helper T cells, to maintain the
stability of the body’s environment, thereby improving the oral
squamous cell carcinoma.
CONCLUSION

To investigate the effect of OMVs-MSN-5-FU compound drugs
on lymph node metastasis of oral squamous cell carcinoma, the
Frontiers in Oncology | www.frontiersin.org 10166
effects of different concentrations of nano drug delivery system
on the proliferation activity of KOSC-2 cl3-43 oral squamous cell
carcinoma cell line were analyzed. The results showed that
OMVS-MSN-5-FU compound drugs could inhibit the
proliferation activity of oral squamous cell carcinoma cells,
regulate the peripheral blood subsets, and inhibit the
metastasis of cancer cells to cervical lymph nodes. However,
some limitations should be noted. This work only analyzed the
effect of the drug on the animal model of oral squamous cell
carcinoma, but did not explore its internal molecular
mechanism. The molecular mechanism will be further explored
in the future.
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Objective: Survival Rate Prediction (SRP) is a valuable tool to assist in the clinical
diagnosis and treatment planning of lung cancer patients. In recent years, deep
learning (DL) based methods have shown great potential in medical image processing
in general and SRP in particular. This study proposes a fully-automated method for SRP
from computed tomography (CT) images, which combines an automatic segmentation of
the tumor and a DL-based method for extracting rotational-invariant features.

Methods: In the first stage, the tumor is segmented from the CT image of the lungs. Here,
we use a deep-learning-based method that entails a variational autoencoder to provide
more information to a U-Net segmentation model. Next, the 3D volumetric image of the
tumor is projected onto 2D spherical maps. These spherical maps serve as inputs for a
spherical convolutional neural network that approximates the log risk for a generalized
Cox proportional hazard model.

Results: The proposed method is compared with 17 baseline methods that combine
different feature sets and prediction models using three publicly-available datasets: Lung1
(n=422), Lung3 (n=89), and H&N1 (n=136). We observed comparable C-index scores
compared to the best-performing baseline methods in a 5-fold cross-validation on Lung1
(0.59 ± 0.03 vs. 0.62 ± 0.04). In comparison, it slightly outperforms all methods in inter-
data set evaluation (0.64 vs. 0.63). The best-performing method from the first experiment
reduced its performance to 0.61 and 0.62 for Lung3 and H&N1, respectively.

Discussion: The experiments suggest that the performance of spherical features is
comparable with previous approaches, but they generalize better when applied to unseen
datasets. That might imply that orientation-independent shape features are relevant for
SRP. The performance of the proposed method was very similar, using manual and
automatic segmentation methods. This makes the proposed model useful in cases where
expert annotations are not available or difficult to obtain.

Keywords: lung cancer, tumor segmentation, spherical convolutional neural network, survival rate prediction, deep
learning, Cox Proportional Hazards, DeepSurv
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INTRODUCTION

The objective of Survival Rate Prediction (SRP) is to estimate the
time until a well-defined “terminal event”, which occurs in some,
but not necessarily all, cases. For cancer patients, the terminal
event may be the death of the patient (“overall survival”), relapse,
or progression of the disease (“relapse-free survival” or
“progression-free survival”, respectively). It has been shown
that image-based characteristics of tumors such as shape, size
and texture are associated with malignancy (1). A research
avenue that has been explored in the last few years is whether
those image-based tumor characteristics can also be used for
predicting the survival of cancer patients (2). Survival rate
prediction (SRP) from the shape, size, and texture of the tumor
is challenging. First, it is not clear if imaging information alone is
enough for SRP. Moreover, the prediction might be affected by
different factors, including image acquisition parameters,
inaccurate segmentation masks, the selected features used for
the prediction, the prediction model itself, as well as the presence
of right-censored data. Although clinical trials are often relied on
clinical assessments like molecular profiling to conduct the
survival analysis (3), such information is not always accessible.

While SRP could be framed as a regression-type problem, that
is, to predict the time from the last observation to the terminal
event, a practical difficulty is that part of the longitudinal data of
patients is missing in training datasets for SRP in cancer. More
specifically, these datasets usually contain right-censored data,
which means that the start of the observation period is known for
all data points, but the definitive end of the observation point
might be missing for some cases. Consider a dataset where some
patients were still alive when the study ended. In such an example,
there would be a lower boundary of the survival times, namely,
the last known date of record, which is lower than the definitive
time of death for some cases. Other reasons for right-censorship
in practice could be that patients dropped out of the study and did
not have a time of death reported. However, it should be noted
that exclusion of such cases is not recommended since that might
bias the analysis towards the more lethal cases.

In the past, SRP was usually performed on small feature sets
of descriptive statistics or clinical assessments (4). used ensemble
data mining to train an outcome calculator on clinical data
including features such as patient age at diagnosis, cancer grade,
lymph node involvement, among many others. When working
with imaging data, radiomics (5) provides a catalog of standard
methods to extract such statistics automatically. These radiomics
features can be used in CoxPH models (4) and other prediction
methods such as decision trees, rule-based classification, or naive
Bayes (6). More recently, deep learning (DL)-based methods have
outperformed conventional algorithms in the field of image
processing in general (7) and in image-based SRP in particular
(8, 9). Among the first approaches using DL, Faraggi and Simon
(10) proposed a feed-forward neural network for a non-linear
risk-score approximation. A more recent example is DeepSurv,
which provides a general framework for DL-based SRP (11).

Since the introduction of DL-based SRP, a vast body of work
has been published where different DL algorithms have been
applied to diverse modalities and features from various organs.
Frontiers in Oncology | www.frontiersin.org 2169
Some examples include SPR for gastric cancer (12), cervical
cancer (13), colorectal cancer (14), liver cancer (15), breast
cancer (16) and oral cancer (17). In particular, this study is
focused on non-small cell lung cancer (NSCLC) SRP. Previous
studies from recent years have already shown the potential of DL
models for survival analysis of lung cancer patients (18–21).

In some studies [e.g (22). and (23)], features from different
modalities including imaging, radiomic features, clinical data,
and molecular information, were combined as inputs to improve
the performance of DL-based SRP models. While such
multimodal prediction pipelines are theoretically superior to
single modality-based predictions, the requirement for the
respective data availability can be a disadvantage for the
application in clinical practice. The financial cost of additional
laboratory testing and expert clinical staging and tumor
segmentation is another limiting factor of multimodal
techniques. In addition, those approaches can only be applied
to sites where the required data can be collected. Thus, it is
clinically relevant to develop an SRP pipeline that requires only
the CT scan of the lung region from the patient.

To our knowledge, previous studies have mainly used
traditional convolutional neural networks (CNNs) for image-
based SRP. One major issue of these types of neural networks is
that their extracted features strongly depend on the spatial
orientation of the tumor. That is, a rotated tumor can
potentially get a different prediction by using traditional CNN.
Instead, spherical CNNs (SphCNNs) are designed to be invariant
against changes in orientation. Thus, SphCNNs are theoretically
better suited for SRP. While traditional CNNs work with inputs
structured in well-defined Cartesian grids, SphCNNs work with
functions defined on the unit sphere. Thus, the use of SphCNNs
for SRP requires a mapping from 3D CT images to functions on
the unit sphere, which are intrinsically 2D. This dimensionality
reduction has the additional effect that the derived DLmodels are
less prone to overfitting in complex tasks with small datasets of
3D images (24). These reasons make it interesting to assess the
ability of SphCNNs for SRP.

The aim of this study is to propose a fully-automatic solution for
SRP of cancer patient data. First, we train a deep learning-based
model that is able to segment tumors from CT images
automatically. In a second step, we use spherical convolutional
neural networks (SphCNNs) to perform deep feature extraction for
SRP. To our knowledge, such spherical features SphCNNs have not
been used in this context before. Thus, we also compare our
SphCNN-based pipeline against more traditional methods using
different prediction models for SRP on radiomic features or features
extracted from fine-tuned DL-based pre-trained classifiers.

The remainder of this paper is structured in the following way.
Section 2 establishes a general framework for SRP consisting of
three stages: tumor segmentation, feature extraction, and survival
prediction. Next, we describe how our proposed pipeline
implements each of those stages. Moreover, the implemented
baseline methods are described. Section 3 lists the experimental
results comparing the proposed method with the baseline models.
Section 4 discusses the findings from the experimental evaluations.
Finally, section 5 reveals the main implications of the results and
makes some conclusions of the study.
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MATERIALS AND METHODS

In the context of this study, we model the SRP of cancer patients
as a three-stage process, consisting of segmentation, feature
extraction, and survival prediction (cf. Figure 1).

I. Tumor Segmentation describes the process of defining
which of the voxels belong to the object of interest, that
is, which parts of the CT image depict the cancerous mass.
Therefore, a binary mask is generated either by manual
annotation through a medical expert or an algorithmic
segmentation method.

II. Feature Extraction is the transformation of high
dimensional input data (in our case, segmented regions of
the image) into fewer but more relevant features.

III. Survival Prediction takes the previously extracted features
and determines the respective value of interest.

We will refer to these three stages when comparing different
prediction pipelines in the experiments. The following
subsections specify the methods we propose for each of the
three SRP stages.
Tumor Segmentation
This study aims to introduce an end-to-end solution for SRP that
does not rely on manual tumor segmentations. Therefore, we
incorporate a fully automatic lung nodule segmentation model,
concretely, the lung cancer detection and segmentation method
we proposed in (25). This method decomposes the segmentation
problem into three separate steps, as shown in Figure 2.

First, an in-painting network (26) is trained to fill randomly
generated holes in Lung-CT images from healthy subjects. The
resulting network can fill missing parts of an image with
semantically meaningful patterns. By considering the
annotated tumor regions of the unhealthy images as missing
content, the in-painting network is used to generate healthy
synthetic images from the unhealthy counterparts.
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Second, the resulting healthy-unhealthy image pairs are used
to train a normal appearance autoencoder (NAA). Here, the
unhealthy images serve as an input and the healthy synthetic
images as corresponding target images for the supervised
training of the NAA model. Therefore, the trained NAA can
generate tumor-free images from arbitrary unhealthy images
without depending on manual annotation masks.

In the final stage, the original (unhealthy) image and the
difference between the original image and the NAA-generated
healthy outputs are fed to a standard U-Net segmentation model.
The U-Net model benefits from this attention cue to learn the
final segmentation mask by receiving the original and difference-
image as separate channels. The method is described in more
detail in (25). Performance metrics of this method for the
datasets that are relevant for this study are presented in Table 1.

Feature Extraction
This section discusses how our pipeline extracts descriptive
variables that are meaningful for the prediction task from the
raw data, i.e., the lung-CT images.

SphCNNs (27, 28) extend the standard operations used by
traditional Cartesian CNNs to work on signals defined on the
sphere. The network topology of SphCNN consists of stacks of
spherical filters that are applied on the spherical activation
signals via spherical convolution (cf. Figure 3). The
convolution operation is often carried out as a multiplication
in the spherical harmonics domain. One characteristic property
of SphCNN is that it can be used for solving problems where
rotational equivariance (i.e., the output rotates when the input is
rotated) or rotational invariance (i.e., the output is always the
same even if the input is rotated) is required (28). As mentioned,
SRP should be rotational invariant, which means that the
prediction should be the same regardless of the orientation of
the tumor in the lungs. Our implementation builds upon the
code provided in (27).

In order to apply SphCNN on volumetric CT images, it is
necessary to map the segmented tumor onto the unit sphere S2.
FIGURE 1 | General pipeline for survival rate prediction.
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TABLE 1 | Performance metrics (mean ± std) of the automatic segmentation methods evaluated on two lung cancer datasets.

Dataset Dice Precision Recall Specificity

Lung1 0.77 ± 0.17 0.76 ± 0.20 0.82 ± 0.15 1.00 ± 0.00
Lung3 0.76 ± 0.18 0.74 ± 0.22 0.85 ± 0.16 1.00 ± 0.00
Frontiers in Oncology | www.fro
ntiersin.org
 4171
 April 2022 | Volume 12 | A
For the training dataset Lung1, the observed values are averaged over five evaluation folds. For the validation dataset Lung3, the values are averaged over all samples. Note that we
rounded to two digits so 1.00 in the last column results from rounding a value close to one.
A B

C

FIGURE 2 | Overview of the tumor segmentation method. The segmentation method incorporates (A) an image inpainting network, (B) a variational autoencoder,
and (C) a U-Net for the final segmentation. Replicated from (25) with permission from Springer Nature Switzerland AG.
FIGURE 3 | Pipeline of the proposed method, which is divided into three steps. I. The input consists of the CT image and segmentation of the tumor mass. The
experiments compare the predictive performance of provided manual segmentation masks with our automatic segmentation. II. The volumetric images are projected
into the spherical domain to be usable with Spherical CNNs. In this study, we propose three spherical mappings; a) the extended Gaussian image (EGI), b) the
depth-based projection of the mask (b), and c) the spherical intensity mapping of the masked image content. III. The Spherical CNN consists of a cascade of
spherical kernel stacks followed by spherical pooling operations. The Spherical CNN is embedded in the DeepSurv framework that includes a fully connected layer
that pass the activation signal to a single output node. This scalar output is the approximation of the log-risk function hq (x) in Cox proportional hazards model which
is optimized through DeepSurv.
rticle 870457
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We propose three different mapping methods for this projection,
a) the extended Gaussian image (EGI) of the tumor mask, which
is the orientation distribution function of the normal vectors
from the surface of the tumor (29), b) a depth-based projection
(30) of the segmentation mask, and c) an intensity-based
projection of the tumor. As for the EGI, it is generated from
the normal vectors derived from the provided manual
segmentations or the generated automatic segmentation masks
(cf. Figure 4A). Regarding the depth-based projection, first, an
enclosing sphere is centered at the tumor’s center of mass. Next,
a ray is cast from each sampling point on the surface of the
sphere to the centroid. The distance to the first intersection point
then decides the value of the spherical signal at that specific
orientation (cf. Figure 4B). For an alternative mapping, we
accumulate the intensity values within the tumor along every
ray (cf. Figure 4C). These three functions on the sphere are used
as input channels for the SphCNN. These three functions on the
sphere are used as input channels for the SphCNN. Notably, we
explore two configurations here; the first input configuration
only uses the segmentations’ depth-based projection (later
referred to as SphCNN[1]). The second uses the EGI and the
intensity-based projection from the image (SphCNN[2] in the
following). This choice of input channels is motivated by
the question of whether the image content carries additional
predictive power to the use of the segmentation mask alone.

Prior to the comparative experimental evaluation presented
in the results section, we empirically determined a suitable
network topology for our purpose. Those tests uncovered that
a deeper SphCNN was not beneficial over a more shallow
architecture for the given problem. Therefore, the best-
performing model consists of three layers. The first
convolutional layer lifts the input signal from the sphere, S2

onto the SO (3) manifold. Next, the spherical activation maps are
fed to another convolutional layer [operating on SO (3)] and,
finally, a dense layer that connects via linear activation function
to the scalar output neuron. Interposed spherical pooling layers
condense the spatial dimension of the activation maps. The last
Frontiers in Oncology | www.frontiersin.org 5172
fully-connected layer encodes 40 features. The configuration of
the empirically determined training parameters used in the
experiments is provided in APPENDIX A.

Survival Prediction
In this paper, we aim to predict the relative risk of a patient and
the chance of survival for different times. Every longitudinal
entry in the clinical datasets records the observation time T and a
binary event variable E, which indicates whether the event of
death occurred at time T. T represents the actual survival time
when E is equal to one (representing the state ‘True’). However, if
E is equal to zero (representing the state ‘False’), the data entry is
considered as right-censored, and T can only be seen as a lower
bound for the actual unknown time of survival.

One possible approach to handle this type of data could be to
disregard all data points with E≠1 and perform regression on the
remaining data. However, as mentioned previously, this
approach would bias the method towards the subjects with
higher mortality. Instead, the problem of SRP under the
presence of right-censored data is commonly modeled via
survivor- and hazard functions.

The standard method of handling SRP on right-censored data
is the Cox’s Proportional Hazard model (CoxPH) (31). Cox (31)
defined the survivor function as F(t)=P(T ≥t), that is, the
probability P of the actual death of the patient to be larger or
equal to the time t. Cox also defined the hazard function l(t)
which models the age-specific failure rate as:

l tð Þ = lim
Dt!0+

1
Dt

P t 〈T 〈 t + Dtjt ≤ Tð Þ : (1)

He proposed the Cox proportional hazards model (CoxPH) to
approximate the hazard function as:

l(tjx) = l0 tð Þ · eh xð Þ = l0 tð Þ · ebTx , (2)

Where l0(t) is the (unknown) baseline hazard, b is the model
parameter vector, h(x) is the so-called log-risk function, and x are
A B C

FIGURE 4 | Illustrative depiction of the three proposed spherical mappings. Note that volumes are here drawn as image slices, and therefore, the spheres are
depicted as circles. (A) The extended Gaussian image (EGI) can be viewed as an accumulation of the gradient vectors (small red arrows) at the surface of the
tumoral boundary. (B) Depth-based projection of the solid segmentation mask. A ray (red arrow) is cast from a projecting sphere to the surface of the segmentation.
The distance from the sphere to the surface determines the value of the spherical signal at the respective position. (C) Intensity-based projection of the voxel image
content. A ray (red arrow) is cast from the surrounding sphere through the segmented tumor image towards the centroid. The value of the spherical signal is the sum
of all intensities of the voxels that the ray traversed.
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covariates. Note that in our specific problem, the covariates are
the features extracted from the sample, as discussed in the
previous subsection.

One well-known restriction of the CoxPH is the assumption
that h(x) is linear, i.e. h(x) = bTx, which can limit the capability of
the function to model SRP. DeepSurv (11) tackled this problem
by training a neural network to approximate h(x) which is able to
model non-linearities in the hazard function. Thus, the hazard
function in DeepSurv becomes:

l(tjx) = l0 tð Þ · ehq xð Þ, (3)

where h ≈ hq(x) with q being the learned parameters of the
neural network.

One advantage of DeepSurv is that it is more than a method, it
is a generic pipeline that can easily be connected to a feature
extraction neural network. In the original paper, DeepSurv used
a set of fully-connected layers followed by a linear combination
layer to estimate hq(x). Instead of fully-connected layers, we used
the SphCNN described in the previous section while keeping the
same loss function that aims to minimize the average negative log
partial likelihood of h(x), as described in (11).

Beyond DeepSurv, a family of techniques that aim to address
the shortcomings of CoxPH are large-margin methods such as
regression or ranking-based support vector machines (SVMs)
(32, 33). Other techniques that have been applied successfully for
SRP are ensemble models that use, e.g., gradient-boosting to
learn a partial likelihood function (34). Notice that these
methods can only be used when the feature extraction is
independent of the survival prediction model, which is not our
case. Thus, DeepSurv is a well-suited choice for combining
feature extraction and prediction simultaneously and is
therefore used in the proposed method.
1https://scikit-survival.readthedocs.io/en/stable/api/metrics.html
Baseline Methods
In order to assess the relative performance of the proposed
method, we compared it against multiple feature sets and
prediction method combinations. As for the features, we
computed radiomics features (RF) (5, 22) and deep learning-
based 2D (slice-based) image features (DIF) (22). Instead of the
pre-trained neural network used in (22), we used ResNet50 (35),
which is very well-known for its good performance in transfer
learning tasks. In particular, the DIF features were extracted from
the 2D axial slice with the largest tumor area in the segmentation
mask with the pre-trained ResNet50. The RF and DIF sets consist
of ca. 1,500 and 1,000 features, respectively. Moreover, subsets of
32 features were extracted from RF and DIF after a feature
selection procedure, which are referred to as RF32 and DIF32,
respectively (more details are provided in APPENDIX B). For
this, we used the library function from scikit-learn (36) to rank
each regressor (i.e., each entry of the extracted feature vector)
based on its cross-correlation with the target.

As survival prediction methods we used support vector
machines with ranking (SVM-K) and regression (SVM-R)
objective (32), CoxPH (31, 37), and the gradient boosting-based
ensemble (EGB) model proposed in (34). Thus, we implemented
the sixteen combinations of four features sets and four survival
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prediction methods. In addition, we implemented the method
proposed by Aerts et al. (2) in which CoxPH is applied to the so-
called radiomics signature that consists of four radiomic features.
This method is referred to as RS-CoxPH in the experiments.
Hyperparameters such as the learning rate or method-specific
engineering values were empirically tuned in a set of preceding tests.
RESULTS

We performed intra- and inter-dataset experiments with
different pipelines and dataset configurations to assess the
model performance and robustness of the different methods as
shown in Figure 5. In particular, we trained our models on the
CT data from the publicly available Lung1 (n=422) (38), Lung3
(n=89) (39), and H&N1 (n=136) (40) datasets. While Lung1 and
Lung3 contains data from Non-Small Cell Lung Cancer
(NSCLC) patients acquired in different institutions, H&N1
depicts head and neck cancer. We used as ground truth
prediction values the right-censored times of survival that were
reported from the respective data providers.

We used the concordance index (C-Index) (41) as our main
performance criterion, which is commonly used for problems
with right-censored data like SRP. The C-Index measures how
good the survival times of a set of patients are ranked and can be
seen as a generalization of the area under the receiver operating
characteristic (ROC) curve (AUROC) that can take into account
right-censored data. We used the implementation of the C-Index
from the python library scikit-survival1.

Results for Lung1
Intra-dataset performance was assessed using 5-fold cross-
validation on Lung1. We kept the fold splits consistent for all
evaluated methods. In addition to the 17 baseline methods
described in Subsection 2.4, we tested the proposed method
with both manually annotated segmentation masks and
automatic masks generated by the method described in Sect. 2.1.

Figure 6 shows the observed C-indices of the 5-fold cross-
validation experiment. As shown, the combination of EGB and
DIF32 obtained the best performance with a C-index of 0.62 ±
0.04 in this experiment, while the worst performance was
measured on SVM-R with DLF32: 0.38 ± 0.04. In comparison,
the proposed method achieved 0.58 ± 0.04 for the manual masks
and 0.59 ± 0.03 for the automatic ones.

Inter-Dataset Evaluation
In order to assess the robustness of the methods, inter-dataset
validation was carried out by training the methods (including the
automatic segmentation) on Lung1 and validating on additional
images from a different dataset. In particular, we used the models
that were fitted to Lung1 for inference on two independent
datasets: Lung3 and H&N1. As mentioned, Lung3 has the same
type of patients (i.e. NSCLC-patients), while H&N1 contains
images of patients with head and neck cancer.
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Results of these experiments are reported in Figures 7 and 8.
The best-performing method was the proposed one (C-index
0.64 both for Lung3 and H&N1), followed by EGB with RF32 (C-
index 0.63 both for Lung3 and H&N1). EGB with DLF32 - the
best method in the previous experiment - decreased its
performance in this test to 0.61 for Lung3 and 0.62 for
H&N1, respectively.

Since our automatic segmentation method was trained and
developed for lung cancer, it did not yield meaningful
segmentation results for CT images from head and neck
regions. Actually, it is well-known that automatic segmentation
Frontiers in Oncology | www.frontiersin.org 7174
of head and neck cancer is a very difficult task (42). Thus, our
methods were tested only with the manually annotated masks
provided in the datasets.

As shown in the experiments, the proposed method performed
better when all spherical mappings were used. As expected, the
proposed method yields slightly better results with manual
segmentations compared to the use of automatic segmentation.

Kaplan-Meier Analysis
Validation datasets from the respective experiment were
stratified according to our best-performing method’s assigned
FIGURE 5 | Schematic overview of the experiments. Intra-data-set uses Lung1 for training and testing in a cross-validation setup. For Inter-dataset evaluation,
methods were trained on Lung1 and evaluated on Lung3 or H&N1.
FIGURE 6 | Cross evaluation results for 17 baseline SRP methods and the proposed one. The models were trained on four splits from the Lung1 Data and
evaluated on the remaining fifth split. We report the average across the splits (marker) as well as the observed minimum and maximum observed values (line).
Compared prediction methods are Support Vector Machines with regression (SVM-R) and ranging (SVM-K) objective, Cox Proportional Hazards model (CoxPH),
Ensemble Gradient Boosting (EGB) and DeepSurv, a deep-learning-based prediction framework. Baseline features are Radiomics Features (RF) and pre-trained deep
2D Image Features (DIF). Both feature sets were also used with feature selection (RF32 and DIF32 respectively). In addition, we also include the Radiomics Signature
(RS-CoxPH) suggested by Aerts et al. (2) in out comparison. Our proposed method uses a Spherical Convolutional Neural Network (SphCNN) with manual (SphCNN
[…, manual]) and automatic (SphCNN[…, auto]) tumor segmentation. The spherical input for the SphCNN is either extracted via depth-image projection from the
segmentaion mask (SphCNN[1,…]) or composed of intensity projection and extended gaussian image from the CT-image (SphCNN[2,…]).
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risk score (i.e., SphCNN[2]). The stratification into risk groups
was done based on the median of the predicted risk scores.
Therefore, half of the higher-risk samples were binned into one
group and the other half into another. Then, non-parametric
Kaplan-Meier (KM) estimations were evaluated on each group
separately (cf. Figure 9).

As shown, the KM curves also reflect the relative performance
assessment reported in the previous subsections. Concretely, the
evaluation folds of the cross-validation experiments reported
mixed observations regarding their performance. In contrast, our
method showed promising stratification abilities when tested on
the external datasets (Lung3, H&N1). There is also a potential
trend observable regarding the type of cancer. Lung cancer data
has good short-term separability but often fails for long-term
prediction (over five years). In contrast, head and neck cancer data
showedmore confident separation (i.e., the survival curves become
more distant from each other) for periods larger than ten years.
Frontiers in Oncology | www.frontiersin.org 8175
DISCUSSION

The primary goal of this study was to introduce a novel fully-
automatic lung cancer SRPmodel based on CT-images. In addition,
we performed a benchmark with various SRP models evaluated on
publicly available data. We run our experiments in both inter and
intra dataset evaluation schemes. This section discusses some
findings and analytical aspects of the presented investigations.

Perhaps themost apparent observation is that the C-index values
from SVM-R scored lower than all other methods across different
features. This difference in prediction performance confirms the
previous claim that regression methods are poorly fit for working
with right-censored data. Historically, this misfit motivated the
development of ranking and hazard-based SRP models. Thus, we
will focus the discussion on the remaining prediction methods.

In contrast, we found that pre-trained ResNet50 with feature
selection (DIF32) had the highest predictive power in the
FIGURE 7 | Performance comparison for the models trained on Lung1 and evaluated on Lung3. We used the prediction methods and features as labelled
in Figure 6.
FIGURE 8 | Performance comparison for the models trained on Lung1 and evaluated on H&N1. We used the prediction methods and features as labelled in
Figure 6 with the exception that no automatic segmentation was evaluated here.
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cross-validation experiment. Notice that the original set of
features (DIF) did not perform well in the experiments. That
means that the boost in performance is mainly due to the feature
selection method. We like to emphasize that the reported use of
DIF with feature selection entails the risk of overfitting the given
training set. Since only the 32 highest-rated regressors were
selected on the training data, the possibility arises that this
selection might be biased towards the respective training
dataset. By using additional validation datasets, we confirmed
the predictive power of this model but, in that case, we did not
observe any advantage of this method over the other tested
methods. In comparison, the proposed method used 40 features
that, according to the results, are enough to encode the most
relevant information for SRP. Thus, the results support that a
small set of spherical features or DIF are beneficial for SRP.

Regarding radiomic features, feature selection resulted in
worse performance except for EGB in the inter-dataset
evaluation. In specific, it should be noticed that the employed
cross-correlation based feature selection method aim to hold
only those subset of the features that are more linearly correlated
with respect to the class labels statistically. However, this linear
statistical association does not necessarily represent their more
prognostic values of the feature subsets. Accordingly, although
the selected subset of radiomic features is more correlated with
the target values, their prediction power is not as high as the
whole radiomic feature set. In addition, the observation that such
a feature selection method leads to improving the performance of
DL-based features but not the radiomic features can be explained
by the fact that DL-based features were extracted from a single
2D slice, i.e., the central tumoral slice, while the radiomics
descriptors were extracted from the tumor volumes. Therefore,
the less complicated attributes of the tumors in 2D slices which
were captured by the DL model, are more prone to show stronger
association with the target labels compared against the 3D
radiomics descriptors that were extracted from the irregular
tumor volumes with a large variety of texture, intensity, and
morphological characteristics.
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Furthermore, we noted that except for SVM-R, all evaluated
prediction methods resulted in C-indices at a comparable level.
In our experimental setup, the individual remaining prediction
methods do not seem to have an advantage over other prediction
methods. Besides, the differences in the feature extraction
methods were mostly consistent for different prediction models
and datasets. Therefore, we observe that the choice of extracted
features is much more important for designing a successful SRP
pipeline than the selection of the prediction model, as long as
they are designed to handle right-censored data.

Our proposed method automatically extracts morphological
features in the spherical domain. Intuitively, our spherical
mapping methods can be understood as a compact
representation of tumor surface texture, size, shape, and
internal structure. Using such spherical signals combined with
a rotation-invariant SphCNNs, we obtained C-indices
comparable to conventional methods on the cross-validation
experiment. Moreover, the proposed method slightly surpassed
the others when referring to the inter-dataset evaluations. Our
results suggest that the proposed SphCNN-based SRP is robust
when applied to new, unknown datasets. The observed statistics
also indicate a similar accuracy on both the lung cancer data and
the head and neck images. This finding hints that the
morphological features that the SphCNN internalized during
training might have prognostic relevance for tumors in general.
However, since the differences between the proposed method
and the best-performing baselines were small, we can only argue
that the proposed method has overall competitive performance.

In clinical settings, it may be difficult or unfeasible to have
high-quality annotated segmentation masks of the tumors. For
that reason, it is relevant to have a fully automated solution that
includes an automatic segmentation tool. Since manual
annotations performed by experts have higher quality than
segmentations from automatic tools, we expected a reduction
in the performance of the proposed SRP method when used on
automatically segmented tumors. From the results, such a
reduction was slightly negative for the intra-dataset experiment
FIGURE 9 | Kaplan–Meier curves for the validation sets used in the experiments. The datasets are stratified into low- and high-risk groups based on the risk
predictions of our best-performing method. Top row: survival curves from five individual folds from Lung1. Bottom: The model was trained on Lung1 and evaluated
on the Lung3 (right) and H&N1 (left) datasets, respectively.
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(0.58 ± 0.04 vs. 0.59 ± 0.03) and very small for the inter-dataset
evaluation (0.64 vs. 0.62). This means that our proposed pipeline
can yield similar results when it is run autonomously without a
manual - and potentially expensive - human intervention.

To gain insights if the segmentation mask or the segmented
image channels are beneficial for SRP, we tested our method in
two different configurations, SphCNN[1] and SphCNN[2].
While the former represents a higher compressed version of
the signal, the latter is assumed to preserve more structural
information. Our reported results support the assumption that
SphCNN[2] is slightly superior in this context.

As mentioned, DeepSurv is a general pipeline that can
potentially be combined with any feature set, including RF and
DIF. We did not include these combinations in the experiments
since that would require a fine-tuning of the architecture of the
neural network for every specific feature set, which is out of the
scope of this study.

Since the implementation of methods by different research
groups can yield different results, we decided to implement 17
baseline methods in order to have a more fair comparison. The
performance of all tested methods was below 0.65, which is
consistent with previous studies [e.g (2, 21).,]. That means that,
although CT images convey important information for SRP, they
should be complemented with other types of information to
improve the predictions to a level that can be used in clinics.

Limitations of the Study
The main limitation of the study is the number of available images.
It is well-known that DL-based methods require large datasets that
are relatively scarce in cancer research at present. Thus, the main
findings of this study require further validation with larger datasets.
That could help to rule out the possibility that the differences in
performance are related to the specific characteristics of the
datasets. In this study, we avoided overfitting by using two
strategies: a) dimensionality reduction by mapping the 3D data
into 2D spherical mappings and b) the architecture of the proposed
SphCNN is relatively small and has just 40 features in the
penultimate activation. While dimensionality reduction will
always be beneficial and needed, using larger datasets would
enable us to evaluate larger SphCNN architectures with more
parameters bigger feature vectors and overall higher capacity.

Another potential downside of the proposed solution is the
representation of the spherical images and activation functions.
The spherical signals are represented as a regular 2D grid in the
implemented pipeline. While this common practice allows easy
integration into the SphCNN framework, it might introduce
distortions in the image due to the lack of equidistant sampling
on the sphere. Concretely, regions close to the poles are
oversampled compared to the equator. An alternative approach
that samples the sphere more uniformly is described in (43). It is
Frontiers in Oncology | www.frontiersin.org 10177
unclear at this point if and how this change of sampling can affect
the predictions; therefore, more research would be required.
CONCLUSION

This work introduced a newmethod for image-based lung cancer
SRP. For automatic, relevant feature extraction, we mapped the
tumor extracted with a DL-based method into a spherical
domain and used SphCNN for prediction. The experimental
evaluation confirmed the competitive predictive power of our
model when compared to state-of-the-art approaches on the
Lung1 data. A slight advantage over the other techniques was
observed when tested on data from additional datasets (Lung3,
H&N1). The results support that SphCNNs are helpful for
attaining rotational invariance in SRP problems.
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APPENDIX A. TRAINING CONFIGURATION
OF THE PROPOSED METHOD

The training configuration of the SphCNNs used in this study is
reported in Table 2.

APPENDIX B. Feature Selection for
Baseline Methods
Motivated by the study of Aerts et al. (2), we decided to add a basic
feature selection approach to our baseline feature extraction
methods. The basic idea of feature selection in this context is to
reduce the size of the feature vector that is presented to the
prediction model for better convergence. Therefore, the cross-
correlation of the features with the ground truth was measured on
the respective training set. Next, only the features with the top 32
correlation scores were selected for prediction. The number 32 was
selected to have a similar order of magnitude to the deep spherical
features (i.e., the number of neurons in the penultimate layer of the
SphCNN). Other feature vector sizes might lead to different results.
Frontiers in Oncology | www.frontiersin.org 13180
B.1. Feature Selection for
Radiomics Features
In (2), features were selected based on their score within one of
four categories (tumor intensity, tumor shape, tumor texture,
and wavelet). In contrast, we score the cross-correlation as
mentioned above on the complete set of approx 1500
radiomics features. A posthoc inspection of the selected
radiomics revealed that the biggest group of selected features
(18 out of 32) were first order-based statistics (mainly energy and
total energy from different wavelet levels). The next biggest group
were Gray Level Run Length Matrix components (8 out of 32),
followed by Gray Level Size ZoneMatrix entries (6 out of 32). For
a detailed explanation of the different types of radiomics features,
we refer to the documentation of pyradiomics.

2

B.2. Feature Selection for Deep ResNet50 Features
Feature extraction via a pre-trained ResNet50 model transforms
the CT-images slices into feature vectors of length 1000.
The auxiliary hypothesis is that the ResNet50 model is
equipped with 2D filter stacks that extract meaningful
information for general image processing tasks. Since some of
the tasks that the model was previously trained for might be
unrelated to the prediction problem at hand, we test a possible
reduction of the included features. For consistency with the
radiomics baseline, the previously described feature selection
method is used to reduce the size of the prediction input to 32.
Unlike the features selected from radiomics, deep ResNet50
features are extracted by the pre-trained model and therefore
do not carry interpretable labels.
TABLE 2 | Configuration of the SphCNN prediction models.

Batch-size: 32

Number of epochs: 1000
Learning-rate: Epoch 0-500: 1e-3 - 1e-5 (decreasing), Epoch 500-1000:

1e-5 (constant).
Optimizer: ADAM
Dropout: Yes, Rate 0.01
Batch-normalization: Yes
Normalize inputs: Yes
2https://pyradiomics.readthedocs.io/en/latest/
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Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, 3 NUS Graduate School, Integrative
Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore, 4 Department of Computer
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Background: Metastatic epidural spinal cord compression (MESCC) is a devastating
complication of advanced cancer. A deep learning (DL) model for automated MESCC
classification on MRI could aid earlier diagnosis and referral.

Purpose: To develop a DL model for automated classification of MESCC on MRI.

Materials and Methods: Patients with known MESCC diagnosed on MRI between
September 2007 and September 2017 were eligible. MRI studies with instrumentation,
suboptimal image quality, and non-thoracic regions were excluded. Axial T2-weighted
images were utilized. The internal dataset split was 82% and 18% for training/validation
and test sets, respectively. External testing was also performed. Internal training/validation
data were labeled using the Bilsky MESCC classification by a musculoskeletal radiologist
(10-year experience) and a neuroradiologist (5-year experience). These labels were used
to train a DL model utilizing a prototypical convolutional neural network. Internal and
external test sets were labeled by the musculoskeletal radiologist as the reference
standard. For assessment of DL model performance and interobserver variability, test
sets were labeled independently by the neuroradiologist (5-year experience), a spine
surgeon (5-year experience), and a radiation oncologist (11-year experience). Inter-rater
agreement (Gwet’s kappa) and sensitivity/specificity were calculated.

Results:Overall, 215 MRI spine studies were analyzed [164 patients, mean age = 62 ± 12
(SD)] with 177 (82%) for training/validation and 38 (18%) for internal testing. For internal
testing, the DL model and specialists all showed almost perfect agreement (kappas =
0.92–0.98, p < 0.001) for dichotomous Bilsky classification (low versus high grade)
compared to the reference standard. Similar performance was seen for external testing on
May 2022 | Volume 12 | Article 8494471181
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a set of 32 MRI spines with the DL model and specialists all showing almost perfect
agreement (kappas = 0.94–0.95, p < 0.001) compared to the reference standard.

Conclusion: A DL model showed comparable agreement to a subspecialist radiologist
and clinical specialists for the classification of malignant epidural spinal cord compression
and could optimize earlier diagnosis and surgical referral.
Keywords: deep learning model, metastatic epidural spinal cord compression, MRI, Bilsky classification, spinal
metastasis classification, spinal metastatic disease, epidural spinal cord compression
INTRODUCTION

Spinal metastases are common and seen in up to 40% of cancer
patients. Up to 20% of these patients develop complications
including spinal cord compression, which can lead to permanent
neurological dysfunction if treatment is delayed. With the
development of more effective systemic therapy (such as
targeted and immunotherapy), the survival of patients with
metastatic cancer has increased, and consequently, the
incidence of spinal metastases is expected to rise (1–3).

Suspicion for spinal metastases begins in the clinic, as greater
than 85% of patients present with back pain. Imaging is then
required to confirm the presence of spinal metastases and the
associated complications. MRI is the most accurate modality due
to improved soft-tissue resolution, which allows assessment of
the extent of metastatic bony involvement, compression
fractures, and the presence of metastatic epidural spinal cord
compression (MESCC) (4).

The degree of MESCC is assessed on axial T2-weighted
(T2W) MR images using a six-point grading scale developed
by the Spine Oncology Study Group (SOSG), commonly referred
to as the Bilsky grading scale (5). Low-grade disease (Bilsky 0, 1a,
and 1b) can be considered for initial radiotherapy (including
stereotactic body radiotherapy (SBRT)/stereotactic radiosurgery),
whereas higher-grade disease (Bilsky 1c, 2, and 3) should be
considered for surgical decompression followed by radiotherapy
(6). MESCC requires urgent treatment to prevent permanent
neurological injury, but significant delays in management have
been reported. A study by van Tol et al. (2021) showed median
delays of 21.5, 7, and 8 days for the diagnosis, referral, and
treatment of MESCC, respectively (7).

A deep learning (DL) model to automatically detect and
classify low- versus high-grade Bilsky MESCC on MRI could
alert the radiologist and clinical teams, ensuring prompt
reporting and appropriate referral. This is important to prevent
poor functional outcomes and increased requirements of
healthcare resources (8). Automated tools for detecting urgent
findings on MRI are important due to increasing demand for the
modality, while faced with a shortage of radiologists (9). In the
United Kingdom, 3.4 million MRI studies are reported every
year, and patients can wait over 30 days for a report (10, 11).
Even for emergent indications including suspected MESCC
where reporting should be performed within hours, more than
a third of reports were provided greater than 48 h later at one
healthcare trust (10, 12).
2182
Prior DL in spine MRI has shown promise, especially with the
use of convolutional neural networks (CNNs), which can
automatically learn representative features from images to
perform classification tasks. Most recently, several teams have
developed DL models for the automated classification of
degenerative narrowing in the lumbar spine (13, 14) or
adjacent segment disease along the cervical spine (15). DL for
spinal metastases on advanced imaging, including MRI, is still in
the preliminary phase. A study by Wang et al. (2017) showed the
feasibility of automated spinal metastatic disease detection on
MRI using a small set of 26 patients (16). The group achieved a
true positive rate of 90% with a false-positive rate of up to 0.4 per
case. DL for the detection of spinal metastases on CT has also
shown promise for quantifying metastatic bone disease burden
(17). Currently, to our knowledge, no DL model has been
developed to assess MESCC on MRI.

The aim of this study was to train a DL model for the
automated Bilsky classification of MESCC using axial T2W
MRI. This could aid earlier diagnosis of MESCC and identify
suitable candidates for radiotherapy versus emergent surgical
decompression. Once trained, the performance of the DL model
was compared with that of a radiation oncologist, spine oncology
surgeon, and subspecialty radiologist, on an internal test set. The
DL model performance and generalizability were also assessed
on an external test set.
MATERIALS AND METHODS

This study was approved by our institutional review board and
compliant with the Health Insurance Portability and Accountability
Act (HIPAA). A waiver of consent was granted due to the
retrospective nature of the study and the minimal risk involved.

Dataset Preparation
Retrospective, manual extraction, and anonymization of MRI
spines from patients with known vertebral metastatic disease and
thoracic MESCC were done over a 10-year period from
September 2007 to September 2017 at the National University
Hospital, Singapore. Adult patients (≥18 years) were included
with a selection of studies across different MRI scanners (GE and
Siemens 1.5- and 3.0-T platforms). A heterogeneous training
dataset obtained using a range of MRI platforms and T2W
parameters was used to prevent overfitting and provide a more
generalizable DL algorithm. MRI spines with instrumentation,
May 2022 | Volume 12 | Article 849447
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suboptimal image quality (e.g., motion and cerebrospinal fluid
flow artifacts), and non-thoracic spine regions were excluded.
Axial T2W DICOM images were utilized. Supplementary
Table 1 provides details on the MRI scanners and T2W
sequence parameters.

The dataset at the National University Hospital, Singapore,
was assigned as the internal dataset and was randomly split into
82% and 18% for the training/validation and test sets,
respectively. This is an acceptable split for DL datasets (18).

A dataset of MRI spine studies from patients with known
metastatic disease and MESCC was also obtained for external
testing from Ng Teng Fong General Hospital (Siemens 1.5-T
MRI platform). The inclusion and exclusion criteria were
identical to the internal dataset. The MRI spines were obtained
over a 5-year period from September 2015 to September 2020,
encompassing anonymized axial T2W DICOM images. No
further training was performed on this dataset.

Dataset Labelling
Internal training data were manually labeled by two board-
certified radiologists with sub-specialization in musculoskeletal
radiology (JH; 10-year experience) and neuroradiology (AM; 5-
year experience). Each radiologist labeled at least 100 MRI
thoracic spine studies independently. With the use of an open-
source annotation software (LabelImg, https://github.com/
tzutalin/labelImg), bounding boxes were drawn to segment the
region of interest (ROI) around the spinal canal along the
thoracic spine (C7–T1 through to the conus at T12–L3). A
bounding box was placed on each axial T2W image.

When drawing each bounding box, the annotating radiologist
classified the MESCC using the Bilsky classification (4). This
grading scheme consists of six classifications with grades 0, 1a,
and 1b amenable to radiotherapy and grades 1c, 2, and 3more likely
to require surgical decompression. A visual scale was provided to all
annotating readers (Figure 1). Degenerative changes (disk bulges
and ligamentum flavum redundancy) leading to moderate-to-
severe spinal canal stenosis were labeled by the annotating
radiologists and excluded from further analysis (19, 20).

The internal and external test sets were labeled using the same
visual scale by the musculoskeletal radiologist (JH) with 10-year
experience and served as the reference standard. For comparison
with the DL model and to assess interobserver variability, the
internal and external test sets were also labeled independently by
a subspecialist neuroradiologist (AM; 5-year experience), a spine
oncology surgeon (JT; 5-year experience), and a radiation
oncologist (BV; 11-year experience). The specialist readers
were blinded to the reference standard.

Deep Learning Model Development
A convolutional prototypical network is a newly proposed neural
network architecture for robust image classification with cluster
assumption (21). Specifically, it is assumed that there exists an
embedding space in which data points cluster around a single
prototype representation for each class. Different types of loss
functions are proposed for the training of the network with the
general stochastic gradient descent method (22). Several studies
have demonstrated the robustness of convolutional prototypical
Frontiers in Oncology | www.frontiersin.org 3183
networks towards data scarcity and class imbalance problems,
which have also led to more compact and discriminative features
in the embedding space (21, 22).

In this paper, a convolutional prototypical network was trained
with ResNet50 as its backbone to project ROI images into a high-
dimensional embedding space (23). The Apache SINGA (24)
platform was adopted for efficient training of the deep network,
and MLCask (25), an efficient data analytics pipeline management
system, was adopted to facilitate managing different versions of the
developed pipelines. We used the output from the global average
layer of ResNet50 as the feature representation for each image in
the embedding space. A class prototype was assigned for each
Bilsky score in the embedding space. The prediction probability of
a data point was calculated for each class via a SoftMax over the
negative distance to the class prototypes. The network was trained
with a cross-entropy loss on the prediction probability using a
standard SGD optimizer, and a compact regularization was
introduced to further minimize the distance between the data
points and their corresponding class prototypes. Simultaneously,
the virtual adversarial loss was introduced to ensure our model
makes consistent predictions around the neighborhood of each
data point with adversarial local perturbation (26). An ablation
study was also conducted to demonstrate the effectiveness of the
virtual adversarial loss and the compact regularization loss. The
ablation study details are included as the Supplementary
Material, and Supplementary Table 2 shows the ablation
study results. The Supplementary Material including
Supplementary Table 3 has also been provided to compare
our developed model with both the standard ResNet50 and the
plain convolutional prototypical network.
FIGURE 1 | Bilsky classification of metastatic epidural spinal cord
compression on MRI of the thoracic spine. Axial T2-weighted (repetition time
ms/echo time ms, 5,300/100) images were used. Training of the deep learning
model was performed by a radiologist by placing a bounding box around the
region of interest at each T2-weighted image. A bounding box example is
included for a low-grade Bilsky 1b lesion (1b). CSF, cerebrospinal fluid.
May 2022 | Volume 12 | Article 849447
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For inference, the first step is to extract the ROI of an input
image. The extracted ROI is then projected into the embedding
space. Finally, the label of the input image is predicted as the label
of its nearest class prototype in the embedding space
(Supplementary Figure 1). The DL model (SpineAI@NUHS-
NUS) code is at https://github.com/NUHS-NUS-SpineAI/
SpineAI-Bilsky-Grading. Supplementary Figure 2 shows a
flow chart of the developed DL model in a clinical setting.

Statistical Analysis
All analyses were performed using Stata version 16 (StataCorp,
College Station, TX, USA) with statistical significance set at 2-
sided p < 0.05. Postulating that a kappa of 0.9 is to be anticipated,
at least 138 samples (MRI studies) were required to provide a 95%
CI width of 0.1. Over the 10-year study period, 174 subjects with
239 MRI studies were collected, which was sufficient for the
analysis. Descriptive statistics for continuous variables were
presented as mean ± SD (range) and n (%) for categorical
variables. Inter-rater agreement using dichotomous (low-grade
versus high-grade) Bilsky classification was assessed using Gwet’s
kappa to account for the paradox effect of a high percentage of
normal classification (27). Sensitivity and specificity were also
presented for dichotomous Bilsky gradings only. Sensitivity is the
percentage of high-grade Bilsky classifications that are correctly
identified by the DL model and specialist readers, whereas
specificity is the percentage of low-grade Bilsky classifications
that are correctly identified by the DLmodel and specialist readers.

Levels of agreement were defined for Gwet’s kappa: <0 = poor,
0–0.2 = slight, 0.21–0.4 = fair, 0.41–0.6 = moderate, 0.61–0.8 =
substantial, and 0.81–1 = almost-perfect agreement (28). Also,
95% CIs were calculated.
RESULTS

Patient Characteristics in Datasets
Data collection over the 10-year study period identified 174
patients with 239 MRI spines for analysis. Of these, 24 MRI
spines from 10 patients were excluded due to instrumentation (4
MRI spines), suboptimal image quality (2 MRI spines), or non-
thoracic spine MRI (18 MRI spines). A total of 164 patients
encompassing 215 MRI thoracic spines were evaluated. Overall,
the mean age of all 164 patients was 62 ± 12 (SD) (range: 18–93
years). The patient group was predominantly male (91/164
patients, 55.4%), with breast and lung being the most common
primary cancers (63/164 patients, 38.4%). There was a wide range
of sites of MESCC along the thoracic region, with a predominance
of disease in the semirigid thoracic region between T3 and T10
(73/164 patients, 44.5%). The patient demographics, cancer
subtypes, and MESCC distribution along the thoracic region for
the training and test sets are displayed in Table 1.

The internal dataset of 215 MRI spines was randomly split
into 177 (82%) studies for training/validation and 38 (18%)
studies for internal testing. A flow chart of the internal dataset
study design is provided in Figure 2.

For the external dataset, 32 patients with 32 MRI spines
covering the thoracic region were available for external testing.
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Overall, the mean age of the 32 patients was 60 ± 13 (SD) (range:
19–85 years). Similar to the internal dataset, the patient group had
a predominance of men (20/32 patients, 62.5%), with the lung
being the most common primary cancer (13/32 patients, 40.6%).

Reference Standard
The number of ROIs and the corresponding Bilsky classifications
in the internal training and test sets, and external test sets are
highlighted in Table 2. In the internal training/validation set,
high-grade Bilsky classification (1c/2/3) accounted for 462/5,863
ROIs (7.9%) with a predominance of low-grade Bilsky
classification (0/1a/1b) at the remaining 5,401/5,863 ROIs
(92.1%). In the internal test set, high-grade Bilsky classification
(1c/2/3) accounted for 84/1,066 ROIs (7.9%) with a
predominance of low-grade Bilsky classification (0/1a/1b) at
the remaining 982/1,066 ROIs (92.1%). In comparison, for the
external test set, there was a greater proportion of high-grade
Bilsky classification (169/754 ROIs, 22.4%) and a reduced
predominance of low-grade Bilsky classification (585/754 ROIs,
77.6%). The greater proportion of higher-grade Bilsky
classification in the external test set was likely due to more
targeted axial T2W images at the sites of MESCC.

Internal Test Set Region of Interest
Classification
For the internal dataset, there was almost perfect agreement
between the reference standard for dichotomous Bilsky
classification and the DL model and all specialist readers, with
kappas ranging from 0.92 to 0.98, all p < 0.001 (Table 3). A
kappa of 0.98 (95% CI = 0.97–0.99, p < 0.001) for the spine
surgeon was the highest, with similar kappas of 0.97 (95% CI =
0.96–0.98, p < 0.001) and 0.96 (95% CI = 0.95–0.98, p < 0.001)
for the radiation oncologist and neuroradiologist, respectively.
DL model kappa of 0.92 (95% CI = 0.91–0.94, p < 0.001) was
slightly lower compared to that of the specialist readers.

The sensitivity for the DL model (97.6%, 95% CI = 91.7%–
99.7%) was the highest for the internal dataset, and this was
significantly higher compared to both the neuroradiologist
(84.5%, 95% CI = 75.0%–91.5%) and spine surgeon (79.8%,
95% CI = 69.6%–87.7%), p = 0.003 and p < 0.001, respectively
(Table 4 and confusion matrix in Supplementary Table 4). High
specificities (range = 93.6%–99.5%) were seen for the DL model
and specialists. The spine surgeon had a specificity of 99.5% (95%
CI = 98.8%–99.8%), which was significantly higher than the DL
model, neuroradiologist, and radiation oncologist, with
specificities of 93.6% (95% CI = 91.9%–95.0%), 98.1% (95% CI
97.0%–98.8%), and 97.9% (95% CI = 96.7%–98.7%), p < 0.001,
p = 0.004, and p = 0.002, respectively.

External Test Set Region of
Interest Classification
For the external dataset, the DL model and all the specialist
readers also had almost perfect agreement (kappas 0.94–0.95, all
p < 0.001) compared to the reference standard for dichotomous
Bilsky classification (Table 3). The neuroradiologist kappa of
0.95 (95% CI = 0.93–0.97, p < 0.001) was only slightly higher
compared to the rest, with similar kappas of 0.94 (95% CI = 0.92–
May 2022 | Volume 12 | Article 849447
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0.96, p < 0.001), 0.94 (95% CI = 0.92–0.96, p < 0.001), and 0.94
(95% CI = 0.91–0.96, p < 0.001) for the DL model, radiation
oncologist, and spine surgeon, respectively.

The sensitivity for the DL model on the external dataset was
89.9% (95% CI = 84.4%–94.0%), and this was not significantly
different from the other readers, including the neuroradiologist
with the highest sensitivity of 92.9% (95% CI = 87.9%–96.2%), all
p > 0.05 (Table 4 and confusion matrix in Supplementary
Table 5). The neuroradiologist had no significantly higher
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sensitivity compared to the other readers, all p > 0.05. The
spine surgeon had a specificity of 99.3% (95% CI = 98.3%–
99.8%), which was significantly higher than the specificity of the
neuroradiologist at 97.9% (95% CI 96.4%–98.9%), p = 0.042.

DISCUSSION

MRI is an essential tool in the assessment of MESCC, which is a
potentially devastating complication of advanced cancer. Bilsky
FIGURE 2 | Flow chart of the study design for the internal training/validation and test sets. The deep learning model performance was compared with an expert
musculoskeletal radiologist (reference standard) and three specialist readers.
TABLE 1 | Patient demographics and clinical characteristics for the internal and external test sets.

Characteristics Internal training set (n = 129) Internal test set (n = 35) External test set (n = 32)

Age (years)* 61 ± 13 (18–93) 61 ± 12 (39–87) 60 ± 13 (19–85)
Women 55 (42.6) 18 (51.4) 12 (37.5)
Men 74 (57.4) 17 (48.6) 20 (62.5)
Ethnicity
Chinese 93 (72.1) 28 (80) 23 (71.9)
Malay 21 (16.3) 3 (8.6) 7 (21.9)
Indian 7 (5.4) 2 (5.7) 0 (0)
Others 8 (6.2) 2 (5.7) 2 (6.2)
Cancer subtype
Breast 23 (17.8) 8 (22.9) 3 (9.4)
Lung 21 (16.3) 11 (31.4) 13 (40.6)
Prostate 19 (14.7) 5 (14.3) 4 (12.5)
Colon 15 (11.6) 3 (8.6) 3 (9.4)
Renal cell carcinoma 10 (7.8) 2 (5.7) 1 (3.1)
Nasopharyngeal carcinoma 9 (7) 3 (8.6) 1 (3.1)
Others 32 (24.8) 3 (8.6) 7 (21.9)
No. of MRI thoracic spines 177/215 (82.3) 38/215 (17.6) 32
MESCC location
Diffuse thoracic# 30 (23.3) 8 (22.9) 3 (9.4)
C7–T2 13 (10.1) 3 (8.6) 6 (18.8)
T3–T10 55 (42.6) 18 (51.4) 15 (46.9)
T11–L3 31 (24.0) 6 (17.1) 8 (25)
May 2022 | V
MESCC, malignant epidural spinal cord compression.
*Values are mean ± SD (range) for numerical variables and n (%) for categorical variables.
#Two or more sites of thoracic epidural disease.
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et al. (2010) developed an MRI classification for MESCC that
aimed to improve communication between specialists and aid
decision making for initial radiotherapy versus expedited
surgical decompression. In our study, we trained a DL model
for automated Bilsky MESCC classification on thoracic spine
MRI using manual radiologist labels. On an internal test set, the
DL model showed almost-perfect agreement (k = 0.92, p < 0.001)
for dichotomous Bilsky classification (low grade versus high
grade), similar to specialist readers (k = 0.96–0.98, all p <
0.001), which included a radiation oncologist, a neuroradiologist,
and a spine surgeon. In a further step, external testing of the DL
model was performed on a dataset from a different institution to
assess generalizability. For the external dataset, the DL model and
all the specialist readers also had almost perfect agreement (kappas
0.94–0.95, all p < 0.001) for dichotomous Bilsky classification.

DL is already being used in spine diseases to aid in the
diagnosis of spinal stenosis on MRI spines, surgical planning, and
prediction of outcomes in patients with spinal metastases (8, 29).
DL in spinal oncology imaging is limited with most researchers
focusing on the detection of metastases (30), or automated
spinal cord segmentation as an organ at risk for radiotherapy
Frontiers in Oncology | www.frontiersin.org 6186
planning (31). Average Dice similarity coefficients for spinal cord
segmentation are as high as 0.9 for automated lung cancer
radiotherapy planning using DL on CT studies (32, 33).
Automated detection of spinal cord compression on MRI has
currently only been assessed in the cervical spine. Merali et al.
(2021) developed a DL model for degenerative cervical spinal
cord compression on MRI using 201 patients from a surgical
database (34). Their DL model had an overall AUC of 0.94 with a
sensitivity of 0.88 and specificity of 0.89.

To our knowledge, no team has currently looked at the
automated prediction of metastatic epidural spinal cord
compression on MRI, which is a medical emergency. The
current National Institute for Health and Care Excellence
(NICE) guidelines state that metastatic epidural spinal cord
compression should be treated as soon as possible, ideally within
24 h, to prevent irreversible neurological dysfunction (35). Our
MRI Bilsky grading prediction model could improve the imaging
and clinical workflow of patients with spinal metastases. MRI
studies with MRI studies with high-grade Bilsky disease could be
triaged for urgent radiologist review, with the radiology reporting
augmented by an automated selection of key images at the sites of
TABLE 2 | Reference standards for the internal (training and test) and external (test) sets showing the number of Bilsky MESCC grades.

Bilsky MESCC grade Internal training/validation set Internal test set External test set

0 4,508 (76.9) 849 (79.6) 454 (60.2)
1a 424 (7.2) 82 (7.7) 48 (6.4)
1b 469 (8.0) 51 (4.8) 83 (11)
1c 216 (3.7) 35 (3.3) 51 (6.7)
2 105 (1.8) 26 (2.4) 39 (5.2)
3 141 (2.4) 23 (2.2) 79 (10.5)
Total 5,863 1,066 754
May 2022 | Volume 1
Values are n (%). A region of interest (bounding box) for Bilsky grade was drawn at each axial T2-weighted image.
MESCC, malignant epidural spinal cord compression.
TABLE 3 | Internal and external test set classifications using dichotomous Bilsky gradings (low versus high grade) on MRI.

Reader Internal test set External test set

Kappa (95% CI) p-Value Kappa (95% CI) p-Value

DL model 0.92 (0.91–0.94) <0.001 0.94 (0.92–0.96) <0.001
Neuroradiologist 0.96 (0.95–0.98) <0.001 0.95 (0.93–0.97) <0.001
Radiation oncologist 0.97 (0.96–0.98) <0.001 0.94 (0.92–0.96) <0.001
Spine surgeon 0.98 (0.97–0.99) <0.001 0.94 (0.91–0.96) <0.001
2 | Article
Gwet’s kappa was used.
DL, deep learning model.
TABLE 4 | Internal and external test set sensitivity and specificity for the deep learning model and specialist readers using dichotomous Bilsky gradings (low versus high
grade) on MRI.

Reader Internal test set External test set

Sens (95% CI) Spec (95% CI) Sens (95% CI) Spec (95% CI)

DL model 97.6 (91.7–99.7) 93.6 (91.9–95.0) 89.9 (84.4–94.0) 98.1 (96.7–99.1)
Neuroradiologist 84.5 (75.0–91.5) 98.1 (97.0–98.8) 92.9 (87.9–96.2) 97.9 (96.4–98.9)
Radiation oncologist 94.0 (86.7–98.0) 97.9 (96.7–98.7) 88.8 (83.0–93.1) 98.5 (97.1–99.3)
Spine surgeon 79.8 (69.6–87.7) 99.5 (98.8–99.8) 83.4 (77.0–88.7) 99.3 (98.3–99.8)
DL, deep learning model; Sens, sensitivity; Spec, specificity.
849447

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hallinan et al. Deep Learning Model for MESCC
the highest-grade Bilsky lesions and spinal cord compression.
These key images could also be circulated to an on-demand spine
oncology multidisciplinary team (spine surgeons, oncologists, and
radiation oncologists) for more streamlined decision making and
appropriate referral. It should be emphasized that the treatment of
MESCC is not just dependent on imaging but is also heavily
weighted on clinical presentation, e.g., myelopathy, weakness, and
loss of bowel and bladder function. Individuals can present with
high-grade Bilsky scores and not be suitable surgical candidates.
Further work using our Bilsky prediction model could involve
combining imaging data with clinical information (e.g., age, cancer
subtype, and degree of neurological impairment) to improve the
selection of patients for more aggressive management including
surgery and/or SBRT (21, 36). Our DL model is focused on Bilsky
classification and currently does not have the ability to segment or
outline tumors. DL auto-segmentation of tumors in MR images
could optimize and reduce the time taken for radiotherapy
planning (32). Future research will focus on developing a DL
model for this application, which will be especially useful
for SBRT.

Our study has limitations. First, we utilized axial T2W images
along the thoracic region, which was recommended as the most
accurate method for MESCC classification on MRI in the study
by Bilsky et al. (2010) (4). In further studies, we could enhance
the model performance for the detection and classification of
MESCC by combining multiple MRI sequences, including
sagittal T2W and gadolinium-enhanced T1-weighted axial and
sagittal image sets. Second, we chose to use dichotomous Bilsky
classification (low grade vs. high grade) with the inclusion of
Bilsky 1c under high-grade disease. This is controversial, as
patients with Bilsky 1c are unlikely to have neurological
deficits requiring urgent surgical treatment. However, for the
purpose of treatment triaging, we decided to be more
conservative and classify 1c under high grade. Third, the
reference standard was a single expert musculoskeletal
radiologist who reviewed the test set independently from the
other three specialist readers. No consensus labeling was
performed for the readers, as this may have been biased
toward the expert. Fourth, the test sets were only assessed by
specialist readers to ensure the most rigorous comparison with
the DL model. Assessment by less experienced readers (e.g.,
radiology or surgical trainees) was not analyzed but could be
performed through further studies that include the use of semi-
supervised reporting augmentation by the DL model. Finally,
labeling of images for model development was a labor-intensive
manual process (highly supervised). This was believed to be the
most accurate method for training the model but potentially
limited the number of MRI studies that could be used for
training. Alternatively, future larger datasets could utilize semi-
supervised learning, which can leverage unlabeled data to boost
the DL model performance and reduce the data annotation
burden (37–39). Future work could also utilize additional
external datasets to ensure the DL model is not overfitted to
our institution data and is generalizable to new, unseen data.

In conclusion, we demonstrated that our DL model is reliable
and may be used to automatically assess the Bilsky classification of
Frontiers in Oncology | www.frontiersin.org 7187
metastatic epidural spinal cord compression on thoracic spine
MRI. In clinical practice, the early diagnosis of spinal cord
compression is important to prevent permanent neurological
dysfunction (40). The DL model could be used to triage MRI
scans for urgent reporting, augment non-sub-specialized
radiologists when they report out of hours, and improve the
communication and referral pathways between specialties
including oncology, radiation oncology, and surgery. Finally, the
proposed framework, which makes use of Apache SINGA (24) for
distributed training, has been integrated into our MLCask (25)
system for handling healthcare images and analytics.
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Supplementary Figure 1 | Deep learning model development pipeline. Given the
x as the input data of medical images, our goal is to classify these images into the
corresponding Bilsky class. We first extract the region of interest (ROI) of x and feed
them to the feature extractor and perturbation generator. The produced r and radv
are the representation and virtual adversarial perturbation of data, respectively. We
assign prototypes for each Bilsky class in the embedding space and calculate
prediction probability for both the original and perturbated data points via a SoftMax
over the negative of distance to the class prototypes. Correspondingly, �y1 and ŷ 1

are the original prediction and perturbated predictions. Finally, the deep learning
network is trained by minimizing the virtual adversarial loss on consistency
regularization and the cross-entropy loss on the prediction probability. Note, in the
embedding space, the orange-colored points are prototypes for each Bilsky class,
data points of other colors represent images with different Bilsky classes. The grey-
colored points are original data before perturbation.

Supplementary Figure 2 | Flow chart of deep learning model deployment for
clinical usage. We embed the developed deep learning model in the above pipeline
for deployment. Input MRI images from patient studies will go through ROI detection
Frontiers in Oncology | www.frontiersin.org 8188
with the clinicians, then the developed model is used to make predictions for the
studies and report the prediction results back to the clinicians

Supplementary Table 1 | MRI Platform and parameters for MRI spine axial T2-
weighted Imaging. TE, echo time; TR, repetition time; GE, General Electric, *MRI
scanner at the external center (Ng Teng Fong General Hospital, Singapore). All four
other scanners were situated at the National University Hospital, Singapore. All
studies were performed in the supine position with a torso coil.

Supplementary Table 2 | Ablation study on the developed model.

Supplementary Table 3 | Comparison study on the developed model.

Supplementary Table 4 | Confusion matrix of the deep learning model on the
internal test set.

Supplementary Table 5 | Confusion matrix of the deep learning model on the
external test set.
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Background: Microsatellite instability (MSI) is associated with several tumor types and
has become increasingly vital in guiding patient treatment decisions; however, reasonably
distinguishing MSI from its counterpart is challenging in clinical practice.

Methods: In this study, interpretable pathological image analysis strategies are
established to help medical experts to identify MSI. The strategies only require
ubiquitous hematoxylin and eosin–stained whole-slide images and perform well in the
three cohorts collected from The Cancer Genome Atlas. Equipped with machine learning
and image processing technique, intelligent models are established to diagnose MSI
based on pathological images, providing the rationale of the decision in both image level
and pathological feature level.

Findings: The strategies achieve two levels of interpretability. First, the image-level
interpretability is achieved by generating localization heat maps of important regions
based on deep learning. Second, the feature-level interpretability is attained through
feature importance and pathological feature interaction analysis. Interestingly, from both
the image-level and feature-level interpretability, color and texture characteristics, as well
as their interaction, are shown to be mostly contributed to the MSI prediction.

Interpretation: The developed transparent machine learning pipeline is able to detect
MSI efficiently and provide comprehensive clinical insights to pathologists. The
comprehensible heat maps and features in the intelligent pipeline reflect extra- and
intra-cellular acid–base balance shift in MSI tumor.
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INTRODUCTION

Microsatellite instability (MSI) is the condition of genetic
hypermutability that results from impaired DNA mismatch
repair. Cells with abnormally functioning mismatch repair are
unable to correct errors that occur during DNA replication and
consequently accumulate errors. MSI has been frequently observed
within several types of cancer, most commonly in colorectal,
endometrial, and gastric adenocarcinomas (1). The clinical
significance of MSI has been well described in colorectal cancer
(CC), as patients with MSI-high colorectal tumors have been shown
to have improved prognosis compared with those with MSS
(microsatellite stable) tumors (2). In 2017, the U.S. Food and
Drug Administration approved anti–programmed cell death-1
immunotherapy for mismatch repair deficiency/MSI-high
refractory or metastatic solid tumors, making the evaluation of
DNA mismatch repair deficiency an important clinical task.
However, in clinical practice, not every patient is tested for MSI,
because this requires additional next-generation sequencing (3, 4),
polymerase chain reaction (5), or immunohistochemical tests (1, 6,
7). Thus, it is in high demand for a cheap, effective, and convenient
classifier to assist experts in distinguishing MSI vs. MSS.

Numerous publications have identified histologic features
that are more commonly seen in MSI. By far, it is a well-
known fact that tumors that have undifferentiated morphology,
poor differentiation, and the high infiltration of TIL cells are
more likely to be MSI (8–11). Unfortunately, it is still challenging
to distinguish MSS from MSI based on pathologist’s visual
inspections from pathological images because the morphology
of MSS is similar to that of MSI (12). The recent technical
development of high-throughput whole-slide scanners has
enabled effective and fast digitalization of histological slides to
generate WSIs. More importantly, the thriving of various
machine learning (ML) methods in image processing makes
this task accessible. In recent years, ML has been broadly
deployed as a diagnostic tool in pathology (13, 14). For
example, Iizuka et al. built up convolutional neural networks
(CNNs) and recurrent neural networks to classify WSI into
adenocarcinoma, adenoma, and non-neoplastic (15). The study
by Bar et al. demonstrated the efficacy of the computational
pathology framework in the non-medical image databases by
training a model in chest pathology identification (16). Notably,
deep learning (DL) model has been used to predict MSI directly
from H&E histology and reported the network achieved
desirable performance in both gastric stomach adenocarcinoma
(STAD) and CC (17). These studies attest to the great potential of
ML methods in medical research and clinical practice.

There is no doubt that the ML revolution has begun, but the lack
of the “interpretability” of ML is of particular concern in healthcare
(18, 19). Here, the “interpretability”means that clinical experts and
researchers can understand the logic of decision or prediction
produced by ML methods (20). In essence, it urges ML systems
to follow a fundamental tenet of medical ethics, that is, the
disclosure of necessary yet meaningful details about medical
treatment to patients (21). Unfortunately, to the best of our
knowledge, most of the existing MSI diagnosis systems, especially
Frontiers in Oncology | www.frontiersin.org 2191
DL-based systems, are non-interpretable. Therefore, there is an
urgent need to establish a new research paradigm in applying an
interpretable ML system in medical pathology field (22–26).

In this study, we used H&E-stained WSI from TCGA: 360
formalin-fixed paraffin-embedded (FFPE) samples of CC (TCGA-
CC-DX) (27), 285 FFPE samples of STAD (TCGA-STAD) (28), and
385 snap-frozen samples of CC (TCGA-CC-KR). H&E-stained
images in these databases have already been tessellated into
108,020 (TCGA-STAD), 139,147 (TCGA-CC-KR), and 182,403
(TCGA-CC-DX) color-normalized tiles (17), and all of them only
target region with tumor tissue. The aims of the study are as follows:
(i) to build an image-based ML method on MSI classification and
post-process the fed image to a heat map to interpret the diagnosis
ofMSI at an image level; and (ii) to design a fully transparent feature
extraction pipeline and understand the pathological features’
importance and interactions for predicting MSI by training a
feature-based ML model.

Our contributions are two folds. First, we developed ML models
with decent power in the prediction of MSI. This model can exhibit
a visual heatmap demonstrating high-contribution regions for MSI
prediction in the H&E image. Second, we certified certain
pathological features with non-trivial importance in MSI
classification, which is not explicitly studied in the previous
research. Therefore, our study facilitates MSI diagnosis based on
H&E image and sheds light on the understanding of MSI at both
image-level and features level.
MATERIALS AND METHODS

Histopathology Image Sources
The whole-slide H&E-stained histopathology images were obtained
from TCGA, including three cancer subtype datasets. Dataset DX
consisted of 295 MSS patients and 65 MSI patients from FFPE
samples of CC. Dataset KR contained 316 MSS patients and 72MSI
patients from snap-frozen samples of CC. Dataset STAD collected
225 MSS patients and 60 MSI patients of FFPE STAD. Two criteria
in the published study (17) classify patients as MSI: (i) all the
patients who were previously defined as MSI were included in the
MSI group (29); and (ii) some patients with unknown MSI status
but with a mutation count of >1,000 were also defined as MSI (30).

All the images used in our models have already gone through
tumor tissue detection and have been tessellated into small tiles
in J.N. Kather’s work (https://zenodo.org/record/2530835 and
https://doi.org/10.5281/zenodo.2532612). The proceeding for
getting the tiles is of two steps. First, the tumor region is
identified from WSI image, and second, the tumor is divided
into small square subregions, called tiles, where the edge of each
tile is 256 µm. There are 108,020 tiles in TCGA-STAD cohort,
139,147 in TCGA-CC-KR, and 182,403 in TCGA-CC-DX. Color
normalization has already been performed on every tile using the
Macenko method (31), which converts all images to a reference
color space. In all cases, training and test sets were split on a
patient level, and no image tiles from test patients were present in
any training sets.
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Details of Deep Learning and Grad-CAM
The DL model that we considered is ResNet-18, which is one of
the state-of-the-art CNNs (17, 32). We adopted all of the default
settings in ResNet-18 and did not fine-tune any hyperparameters
on it. ResNet-18 is built in Python 3.7 with TensorFlow-GPU
1.14.0 and Keras 2.3.0. Because the ResNet-18 is insensitive to the
adversarial samples, we did not pre-process any image tiles in the
three TCGA datasets. The patient-level areas under the curve
(AUCs), receiver operating characteristic (ROC) curves, and 95%
stratified bootstrap confidence intervals (CIs) for ROC curves
were computed and visualized by two R packages: pROC (33)
and ggplot2 (34). Gradient-weighted Class Activation Mapping
(Grad-CAM) utilizes the gradient information abundant in the
last convolutional layer of a CNN and generates a rough
localization map of the important regions in the image. We
apply the rectified linear unit to the linear combination of maps
to generate localization maps of the desired class. Grad-CAM
visualization was implemented in Python 3.7 with TensorFlow-
GPU 1.14.0 and Keras 2.3.0.

Image Pretreatment
Before feature extraction, we apply pretreatments to the tiles
before feature extraction and we summarized the pretreatments
and associated implementation details in Table 1. First, white
balance is performed on our cohorts because the natural
appearance tone of the object may alter in the formation of
images when exposed in a lightning condition of different color
temperature (37). Because every tile has an area without cell
organization, i.e., without H&E stain, we could view that part as
the neutral reference in adjustment. In addition to the color cast,
overexposure and underexposure also may result in the
distortion of our features (38). Still, taking the unstained area
as the reference, we regulated all tiles into the same level of
brightness. In addition, to get the location of immune cells’
nuclei, we similarly perform color deconvolution (39, 40) to
separate color space from immunohistochemical staining on
each tile. Finally, to extract the Haralick texture features (41,
42) of tumor cells, we used a positive cell detection algorithm to
locate every tumor cell in each tile and use its batch process to get
needed features.

Feature Extraction
In global color feature extraction, the region of interest (ROI) is a
stained area. We recordedmean value, quantiles (25%, 50%, and 70%),
and higher-order moments (variance, kurtosis, and skewness) in ROI
of each channel in RGB and HSV as our global features. Moreover,
with Gaussian mixture model (GMM) model (43), we perform image
Frontiers in Oncology | www.frontiersin.org 3192
segmentation to each tile to divide the ROI into three clusters and
record the corresponding features in every cluster as our local features.
We located immune cells’ nuclei after color deconvolution according to
their size and grayscale and calculated the amount as the feature. As for
the differentiation degree of tissue in tiles, we performed dilation,
erosion, and circle Hough transforms (44) to identify outlines similar to
circle in images and to decide their differentiation degree. Because the
more regular shapes exist, the more highly the tissue differentiates.
Because we have recorded the tumor cell’s location, we extract Haralick
features of each tumor cell in one tile and adopt the mean value of all
cells’ as this tile feature via QuPath software (45). In addition, we also
recorded the count of a tumor cell as our feature.

Details of Random Forest and Benchmark
Machine Learning Methods
Our RF method was built and tested using Python version 3.7.1
with RandomForestClassifier in sklearn.ensemble library (46).
During training, 70% of patients in every dataset were
randomly selected, and all of their tiles were used in training,
whereas the rest of the tiles were held out and used as test sets.
There are some anomalous tiles in each dataset, i.e., blurred or
color disorder, resulting in the loss of the information
contained in them. Therefore, we disposed of all of them in
every dataset. In addition, we also delete the tiles owning an
extreme immune cell number (a value that significant in 1%
level) because an extremely small number may represent the
non-tumor area, whereas a too large number represents
lymphatic concentration area. In each forest, we set 500 trees
in total and take Gini impurity as the criterion. For each forest,
we tune the minimum node size of random forest (RF), which is
an important parameter to prevent overfitting, and we keep
other parameters with the default settings. We used a simple
tuning criterion as follows: Consider the candidate minimum
node size: 15, 16, …, 25, and then the size associated with the
least out-of-bag error of RF is chosen. The selected minimum
node size is 23 for the STAD cohort, 17 for both the KR and the
DX cohorts. Again, we used pROC packages to compute AUC
and assess 95% stratified bootstrapped CIs and ggplot2 package
to visualize the model performance.

Out of comparison, we also consider two benchmarking ML
methods suggested by a reviewer including support vector
machine (SVM) (47) and generalized linear model (GLM) (48).
The ridge regularization in GLM is selected via 10-fold cross
validation. Because hundreds of thousands of tiles brought huge
computational burden, SVM ran very slow even in the state-of-
the-art implementation (49), and thus, we did not tune the
parameters in SVM and set them as default.
TABLE 1 | Pre-treatment, software, and parameters used in each pre-treatment.

Pretreatment Software Parameters

White balance OpenCV-Python Default
Brightness Adjustment OpenCV-Python Target average brightness in RR: 240
Color Deconvolution ImageJ (35) Default
Tumor Cell Identification scikit-image (36) Objects with size: 5–17
Ju
Reference region (RR): an area without cell organization, whose values in RGB channels within (180, 255). The parameters are manually selected according to the experience of image
analysis for H&E images.
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Permutation Feature Importance and
Conditional Minimal Depth
Permutation-based feature importance (50) is a widely used model
inspection technique for RF. It is defined to be the decline in a
model accuracy when one feature’s values are randomly shuffled.
The shuffle procedure cancels the relationship between the label and
the feature, and thus, the drop in the model accuracy can serve as a
measurement for the importance of the feature in RF. An alternative
feature importance, minimal depth (51), is defined as the depth
when a feature splits for the first time in a tree. For example, if a
feature splits the root node in a tree, then its minimal depth is 0. The
mean of minimal depths over all trees in a forest can measure the
feature importance. The importance ordering of features under it
keeps highly consistent with the result from the permutation-based
method (Figure S4).

To investigate the interaction between two different features, we
used a generalization of minimal depth, conditional minimal depth,
that measures the depth of the second feature in a subtree with the
root node where the first feature splits (52). Specifically, we recorded
all of such splits with the first feature and calculated the mean of
conditional minimal depths of the second features given the first
feature. A large gap between the mean of conditional minimal depth
and the mean of minimal depth implies possibilities for the second
feature being used for splitting after the first feature. The occurrence
of the large gap implies that the two features have a strong
interaction. We used R version 3.5.1 with randomForest package
(53) to rebuild that RF and analyze and visualize the relations
between different features with randomForestExplainer package (52).

Ablation Experiment for Deep Learning
Ablation experiment (54–56) is conducted to investigate the
contribution of pathological features in DL. Specifically, we
eliminated the RGB mean differences between MSI and MSS
groups in the test set by adjusting the mean value in each tile in
the test set to the mean value of all the tiles as a whole. Then, we feed
the adjusted tiles in the test set into the trained neural network. The
drops of AUCs after reevaluation can verify the contribution of the
RGB feature in the classification of the DL network.

Role of the Funding Source
The funder of this study had no role in study design, data
collection, data analysis, data interpretation, and writing of the
report. The corresponding author had full access to study data
and final responsibility for the decision to submit for publication.
RESULTS

A Deep Learning Classifier and Image-
Level Visual Interpretability
We used a commonly used end-to-end CNN, ResNet-18 (32) in
the study. To fit this DL model for different cancer subtypes, we
trained three ResNet-18 networks based on 70% of the tiles
randomly sampled from three datasets, the remaining 30% of the
tiles in each dataset were used for testing. In the testing cohort, a
Frontiers in Oncology | www.frontiersin.org 4193
patient’s slide was predicted to be MSI if at least half of the tiles
were predicted to be MSI. The patient-level accuracy and AUC
were 0.84 in the KR cohort, 0.81 in the DX cohort, and 0.80 in the
STAD cohort (Figure 1B).

On the basis of the trained DL model, the Grad-CAM was
used to make the convolutional-based model more transparent
by generating localization maps of the important regions (57). To
unveil the hidden logic behind the DL and provide visual
interpretability, we deployed Grad-CAM to find out which part
of the H&E image supports DL’s classification. Two typical
images for interpreting DL prediction logic are shown
(Figure 1A). The region highlighted by Grad-CAM points out
the important region for DL decision but not statistical
correlation. Our pathologist noted that the highlighted region
in Figure 1A tended to be where immune cells are mainly
concentrated in the tumor organism; meanwhile, we also
found that the highlighted region presented distinct color and
texture characteristics. We were intrigued by this phenomenon
and further examined this important region in great detail.

Transparent Pathological Image Analysis
Workflow and Feature-Based
Classification Model
The results from Grad-CAM suggested that certain features of
the H&E-stained images might encode essential regions of the
tumor organism. To further investigate this, we developed a
multi-step, automatic and transparent workflow (Figure 2). In
the first step, we standardized the three image datasets by
standard image processing techniques (e.g., white balance and
brightness adjustments). After the image pre-processing, we
extracted visible pathological features. Motivated by the
feedback from Grad-CAM and existing studies (9, 58, 59), we
focused on these H&E feature characteristics: global and local
color features in RGB and HSV channels, the numbers of
infiltrating immune cells and tumor cells, the grading of
differentiation, and the texture features from tumor cells. A
total of 182 features were extracted from each image tile, and
some representative ones are displayed in Figure 3.

We then applied RF (50), one of the most popularML algorithms,
to all three databases to classify MSI versus MSS on H&E-stained
histology slides. We randomly selected 70% of patients in every
dataset during training, and all their tiles were used in training,
whereas the rest of the tiles were held out and used as test sets. In the
test sets of each dataset, true MSS image tiles cohort had a median
MSS score (the proportion of the prediction result judged to be MSS
in each decision tree of the forest) that was significantly different from
those of MSI tiles (the P-values of the two-tailed t test were 0.02,
0.0024, and 0.002 in the three datasets), indicating that our models
can distinguish MSI from MSS. Because one patient may have many
different tiles, we obtained the patient-level MSI scores by averaging
the RF’s prediction on all its tiles. AUCs for MSI detection were 0.78
(95% CI: 0.7–0.82) in KR cohort, 0.7 (95% CI: 0.65–0.74) in DX
cohort, and 0.74 (95% CI: 0.65–0.79) in STAD cohort (see
Figures 4B, Figures S1B, S2B). These results show that visible
pathological features can be useful in MSI prediction. Comparing
the AUCs of DL and RF, we can see that DL is superior to RF in
July 2022 | Volume 12 | Article 825353
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prediction, yet we would show that RF can reveal informative
messages about the impact of pathological features on MSI
prediction. From the comparison among RF, SVM, and GLM, we
see that, from predictive power, RF surpasses the other benchmarking
ML methods.

Feature-Level Visual Interpretability:
Feature Importance and Interactions
One of the attractive advantages of RF is that it can evaluate the
importance of the features. Therefore, we verify and quantify
Frontiers in Oncology | www.frontiersin.org 5194
these features’ power in distinguishing MSI from MSS by
extracting information from a trained model. A representative
pattern can be discovered from the visualization of permutation-
based feature importance (50, 60) in the KR dataset (Figure 4A) .
From the figure, we can deduce that the texture features play a
dominant role. Because the texture features reflect the surface’s
average smoothness of the tumor cells in one tile, we deduce that
the characteristics of the tumor surface are an important clinical
indicator in automatic MSI diagnosis. Color features also have
important contributions. In the global color feature, the higher-
A
B

FIGURE 1 | (A) The original tile and the corresponding heatmap output by the GCAM. The image in the left of (A1) and (A2) display tiles from the TCGA-CC-DX dataset
labeled with MSI and MSS, respectively. The ellipse upon the images corresponds the most contributed region revealed by GCAM. In the heatmaps, the brighter region
contributes more to the classification. For instance, the red one is the most highlighted area, while the blue regions contribute limitedly. Scale bar, 256 µm (B) Patient-level
receiver operating characteristic (ROC) curve for classifying MSI versus MSS in the three datasets with deep learning. The 95% confidence intervals (CI) were computed by the
bootstrap method.
FIGURE 2 | The workflow of studying pathological features in discriminating against MSI from MSS. Five main steps—pretreatments, feature extraction, model
training, patient-level predictions, and feature contributions analysis—were sequentially executed to improve image quality, generate pathological features, build
statistical model, evaluate model performance, and measure features’ contributions, respectively.
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order statistics (skew and kurtosis) contribute more than the
first-order statistics (mean and quantile), indicating that some
useful information contributing to classification are hidden in
high-order features. Local color features also deserve our
attention. Compared with global color features, the local ones
were useful in image segmentation by dividing slices into
different clusters, and we obtained the information in each
cluster. Figure 3 demonstrates the clinical utility of the clusters
as they closely reflected tumor tissue versus non-tumor tissue.
The number of infiltrating immune cells was also important as
expected, whereas the differentiation grade contributed the least
in every dataset.

It is widely accepted that feature interactions (i.e., the joint
effect of features) can be important for the complex disease
(61–64). Our feature-based RF models also allow us to exploit
the pairwise feature interactions in MSI classification, and
thus, we can attain a more clear understanding of the
characteristics of MSI tiles and the mechanism of RF. Here,
we use conditional minimal depth (51) to quantitatively assess
feature interaction and then demonstrate the foremost 15
pairwise interactions (Figures 4C, Figures S2C, S3C). The
feature types with the most effective interaction effect with
other features in each dataset are the local color feature in KR,
the global color feature in DX, and texture features in STAD.
The three features enhanced the importance of the features
interacting with them, even the features themselves may have
a weak effect before. It is also worthy to note that interactions
incline to occur more often between color features and texture
Frontiers in Oncology | www.frontiersin.org 6195
features or between local color and global color features. To
understand how the paired features jointly help the MSI
diagnosis, we plot the prediction values of typical feature
interaction on a grid diagram (Figure 5 and Figure S3). In
the KR dataset, a greater immune cell number and a lower
value of the 75th percentile of red channel lead to a higher
probability of MSS. In DX, a higher value of the max caliper in
tumor cells and a fewer tumor cell number lead to a higher
probability of MSS. In STAD, a lower value of the optical
density range of tumor cells’ nucleus in Hematoxylin stains
and a higher value of texture feature correlation in eosin stains
lead to a higher probability of MSS.
DISCUSSION

To our knowledge, this is the first study to not only build up a
classification model in distinguishing MSI from MSS but also
provide an interpretability analysis. Previous studies in
investigating the pathologic predictors of MSI through feature
extraction and logistics regression model suffered from the
limited learning capability as well as the small sample size
and thus could not achieve satisfactory performance (9). Other
works on MSI classification paid attention to the enhancement
of the prediction accuracy by establishing a DL network but did
not provide a detailed description of the mechanism behind the
model (17). In this study, we tackled these problems through
using three different cancer types datasets from TCGA and
A B

DC

FIGURE 3 | Typical feature extraction result. (A) GMM model for image segmentation. The figure on the left is a tile from the TCGA-CC-DX dataset, and its image
segmentation tiles processed by the GMM method are shown in the figure on the right. The green part whose grayscale is the lowest among the three parts tends to
be tumor tissue, whereas the blue and red ones represent non-tumor tissue. (B) Tumor cell detection before Haralick texture identification. The figure on the left is an
original tile, whereas the one on the right is processed with tumor identification. Each red circle in the tile on the right indicates the boundary of one tumor cell.
(C) Infiltrating immune cells detection. The detection of immune cells allows us to calculate the connectivity domain. (D) The grading of differentiation. Detect the
circularly similar arrangement in one slice and grade the degree of differentiation based on its amount. Scale bar, 256 µm.
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following the framework of interpretability with two steps: first,
built up a high-performance DL network with a visual
explanation capacity as model-based interpretability; second,
we further analyzed and confirmed features’ power using a
feature-based interpretable model.

To build an interpretable DL network, we trained residual
learning CNNs and deployed Grad-CAM to the final
convolutional layer of the network to produce the heatmap
that reflects the highly contributed region. Notably, through its
coarse localization map of the image’s essential regions, it
provided preliminary insight into highly contributed
pathological features. It is worthy to note that the prediction
Frontiers in Oncology | www.frontiersin.org 7196
performance of our method is also desirable, and it is comparable
to the predictors proposed in other published research (17).
Although Grad-CAM is also used in the recent literature, they
just use it to quantify possible differences between real and
synthetic images.

To understand the contribution of the pathological features on
MSI classification, we manually extracted the clinically meaningful
features via image processing methods, trained an RF classifier
based on those features, assessed the importance of those features,
and exploited their interaction. This procedure achieves feature level
interpretability at the expense of prediction performance; however,
we interestingly found that the texture and color of the H&E image
A

B

C

FIGURE 4 | The visualization of performance and interpretability of the RF in KR dataset. (A) The bar plot of permutation-based variable importance. Features are
arranged from top to bottom in order of importance (the names of the features are provided in the order in Table S2). (B) The patient-level ROC curve for classifying
MSI versus MSS with random forest. Three colors distinguish GLM, SVM, and RF. The 95% confidence intervals (CIs) computed by the bootstrap method are as
follows: (0.53, 0.83) for GLM, (0.49, 0.72) for SVM, and (0.70, 0.82) for RF. (C) The bar plot of the mean of conditional minimal depth (the top 15 feature pairs of
interaction are shown). A feature pair of interaction is listed as A × B, where A and B are one of feature type and their concrete names are listed in Table S3. Feature
pairs are arranged from the bottom to top in the order of the occurrences, which are represented by the color intensity of the bars. The bar’s length indicates the
mean of conditional minimal depth and the distance from the dot to the y-axis measures the mean of minimal depth of (B) The length of the dot line implies the gap
between them, measuring the effect of pairwise feature interaction. A large gap implies a strong interaction (see also Figures S1–S3).
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and the interactions among them were crucial for diagnosing MSI.
To the best of our knowledge, this has not been noted before. From
the widely studied underlying biology of immune infiltration in
MSI, numerous pieces of evidence indicate that a high tumor
mutational burden increases the likelihood that immunogenic
neoantigens expressed by tumor cells induce increased immune
infiltration (65–67). In addition, color feature is regard as an
important feature for the diagnosis of TFE3 Xp11.2 translocation
renal cell carcinoma viaWSI (58). Finally, the pivotal roles of color
and texture features found in our study reflect extra- and
intracellular acid–base balance shift in MSI tumor (68). Another
interesting fact is that the feature type that tends to interact with the
other features has a clear difference in the three datasets due to the
image heterogeneity raised from the diversity of cancer type (CC or
STAD) and tissue preservation methods (snap-frozen or FFPE)
(69), indicating that the feature interaction mode was influenced by
preservationmethods and tumor types. However, this insight would
not be attained from “black-box” ML method. Moreover, we
hypothesized that the dominant-role features such as color in RF
models were also important in the DL model. To test our
hypothesis, we eliminated the mean color differences between
MSI and MSS groups and reevaluated our DL models’ AUCs.
Specifically, we calculated the RGB mean value of all tiles in both
groups and centralized the RGB mean value of every tile into that
population mean value. We found that the AUCs were reduced by
0.11, 0.12, and 0.14 in DX, KR, and STAD datasets, respectively,
supporting our hypothesis that color features also contributed to the
DL model.

We note that our findings warrant replications through further
biological experiments. The H&E stain is capable of highlighting
the fine structures of cells and tissues. Most cellular organelles and
extracellular matrix are eosinophilic, whereas the nucleus, rough
endoplasmic reticulum, and ribosomes are basophilic. Our study
shows that the spectrum, intensity, and texture of colors matter in
Frontiers in Oncology | www.frontiersin.org 8197
distinguishing MSI fromMSS, which needs further validation. We
hypothesize that MSI tumor usually has distinct color/texture
characteristics due to diverse gene mutation pattern (1, 70).
Furthermore, the methodology of this study could be applied to
the pathological analysis of other diseases, like infectious, in which
color/texture characteristics of the H&E images are also crucial for
disease diagnosis. One limitation of this study is that the cases in
TCGA datasets may not be an unbiased collection from the real
situation because pathologists may only upload the representative
ones. Although our model performed well in these histopathology
images, we should admit that their performance in the actual
clinical settings requires further research. Therefore, one of our
future direction is integrating more available datasets considered
in (71), and we point out that it can naturally improve the
specificity and control sensitivity simultaneously. Another
limitation is that our study only focused on H&E-stained
images, and we could not confirm whether the pattern in this
study, especially the color features’ contribution, works in other
types of histopathology slices. The classifier models, which can be
used for the diagnosis of other cancer types based on
immunochemical stained images and in vivo images (72, 73),
remain to be explored and established.

Further, our framework provides a positive feedback cycle in
assisting pathologist’s diagnosis of MSI (Figure 6). Specifically, the
localization map outputted by our DL models can help experts to
narrow their focus on the specific region of the whole H&E slide,
thereby contributing to a more accurate and apprehensible
diagnosis with the prediction result of our model. The features’
distribution under our interpretable model can provide experts
with more insight into analyzing the slices of MSI and MSS from
clinical perspectives. Further, considering the similar feature
distribution pattern in three datasets that we used, it is possible
that, after running the same pipeline on MSI H&E slides under
different cancer types, we can discover a generalization pattern
FIGURE 5 | The visualization of typical pairwise features’ interaction in KR dataset. The prediction value ranges from 0 to 1 with color from blue to red. The bluer
means a larger probability of MSI, whereas the redder tends to be MSS (see also Figure S3).
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behind them. After training on a larger dataset, the accuracy of the
identification and the interpretability could improve, thereby
contributing to accurate sample curation and treatment
development of this aggressive cancer subtype.
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Predicting IDH subtype of
grade 4 astrocytoma and
glioblastoma from tumor
radiomic patterns extracted
from multiparametric magnetic
resonance images using a
machine learning approach

Pashmina Kandalgaonkar1,2†, Arpita Sahu1,2*†,
Ann Christy Saju2,3, Akanksha Joshi1,2, Abhishek Mahajan1,2,
Meenakshi Thakur1,2, Ayushi Sahay2,4, Sridhar Epari2,4,
Shwetabh Sinha2,3, Archya Dasgupta2,3, Abhishek Chatterjee2,3,
Prakash Shetty2,5, Aliasgar Moiyadi2,5, Jaiprakash Agarwal2,3,
Tejpal Gupta2,3 and Jayant S. Goda2,3*

1Department of Radiodiagnosis, Tata Memorial Center, Mumbai, India, 2Homi Bhabha National
Institute, Mumbai, India, 3Department of Radiation Oncology, Tata Memorial Center, Mumbai, India,
4Department of Pathology, Tata Memorial Center, Mumbai, India, 5Department of Neurosurgery,
Tata Memorial Center, Mumbai, India
Background and purpose: Semantic imaging features have been used for

molecular subclassification of high-grade gliomas. Radiomics-based

prediction of molecular subgroups has the potential to strategize and

individualize therapy. Using MRI texture features, we propose to distinguish

between IDH wild type and IDH mutant type high grade gliomas.

Methods: Between 2013 and 2020, 100 patients were retrospectively analyzed for

the radiomics study. Immunohistochemistry of the pathological specimen was

used to initially identify patients for the IDH mutant/wild phenotype and was then

confirmed by Sanger’s sequencing. Image texture analysis was performed on

contrast-enhanced T1 (T1C) and T2 weighted (T2W) MR images. Manual

segmentation was performed on MR image slices followed by single-slice

multiple sampling image augmentation. Both whole tumor multislice

segmentation and single-slice multiple sampling approaches were used to arrive

at the best model. Radiomic features were extracted, which included first-order

features, second-order (GLCM—Grey level co-occurrence matrix), and shape

features. Feature enrichment was done using LASSO (Least Absolute Shrinkage

and Selection Operator) regression, followed by radiomic classification using

Support Vector Machine (SVM) and a 10-fold cross-validation strategy for model

development. The area under the Receiver Operator Characteristic (ROC) curve
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and predictive accuracy were used as diagnostic metrics to evaluate the model to

classify IDH mutant and wild-type subgroups.

Results: Multislice analysis resulted in a better model compared to the single-

slice multiple-sampling approach. A total of 164 MR-based texture features

were extracted, out of which LASSO regression identified 14 distinctive GLCM

features for the endpoint, which were used for further model development.

The best model was achieved by using combined T1C and T2W MR images

using a Quadratic Support Vector Machine Classifier and a 10-fold internal

cross-validation approach, which demonstrated a predictive accuracy of 89%

with an AUC of 0.89 for each IDH mutant and IDH wild subgroup.

Conclusion: A machine learning classifier of radiomic features extracted from

multiparametric MRI images (T1C and T2w) provides important diagnostic

information for the non-invasive prediction of the IDH mutant or wild-type

phenotype of high-grade gliomas and may have potential use in either

escalating or de-escalating adjuvant therapy for gliomas or for using targeted

agents in the future.
KEYWORDS

glioblastoma, radiomics, molecular subgroups, machine learning, texture feature
Introduction

High-grade gliomas, especially grade 4 astrocytomas and

glioblastomas, are not only the most common primary

malignant brain tumors in the adult population but are also

associated with intrinsic heterogeneity and invasive properties

and are clinically associated with high morbidity and lethality

(1). With a better understanding of biology and the advent of

newer molecular techniques, researchers have been able to

develop unique biomarkers that could predict treatment

response and predict these tumors with a high degree of

accuracy, paving the way for a more personalized treatment

approach. The two molecular biomarkers of significant interest

that have translated into clinical practice are Isocitrate

Dehydrogenase (IDH) and MGMT (O (2)-methylguanine-

DNA methyltransferase), both of which are responsible for

epigenetic alterations in glioblastomas. The evaluation of these

biomarkers has now become the norm in tailoring therapy and

disease prediction.

Glioblastomas, although previously categorized under grade

4 gliomas, are now considered biologically and molecularly

distinct entities, namely, glioblastoma IDH-wildtype and IDH-

mutant grade 4 astrocytoma, based on ‘the present’ World

Health Organization classification of brain tumors. IDH

mutations are identified in approximately 5%–13% of

glioblastomas and are associated with a significantly better

prognosis, particularly when resection includes the non-
02
202
enhancing tumor component, which is traditionally left

unresected (3). Therefore, it is essential to distinguish the IDH

mutation status for planning the most appropriate management

strategies, as IDH-mutated tumors have more prolonged overall

survival and a higher chance of responding to chemotherapy or

radiotherapy (4, 5).

Current ly , IDH mutat ion status is assessed by

immunohistochemistry (IHC) or DNA sequencing techniques

of the tumor specimen, which is invasive, and given the

morphological heterogeneity and invasiveness of high-grade

gliomas, the full extent of intratumoral phenotypic/genotypic

heterogeneity may not be represented in the tumor specimen.

Additionally, the widespread use of these biomarkers remains a

challenge due to either a lack of expertise or cost issues

associated with their testing. For these reasons, accurate

preoperative assessment of the IDH mutation from

radiological images is important for prognostic evaluation and

optimizing therapy for high-grade gliomas (which in our study

are grade 4 astrocytoma, IDH-mutant, and glioblastoma,

IDH-wildtype).

Studies have demonstrated that certain quantitative image

features, like texture features, can be used to predict both IDH

mutations on preoperative imaging of gliomas (6). Tumor

radiomics based on texture analysis of MR images represent a

quantitative approach in which several individual imaging

features that are not easily perceived by the unaided eye are

processed using advanced algorithms to reveal measurable
frontiersin.org
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indices. Given the inherent tumor heterogeneity in

histopathological tissues and the universal availability of MRI,

we expected the use of machine learning classifiers of the tumor

texture features extracted from multiparametric magnetic

resonance imaging (MRI) in a large cohort of GBM patients to

subclassify them based on the IDH status as confirmed by

immunohistochemistry and/or gene sequencing as the gold

standard. The study aimed to explore the accuracy of MR-

based tumor radiomics and develop a robust model using a

machine learning approach to classify GBM into two distinct

molecular subgroups of IDH wild and IDH mutant types in a

fairly large cohort of patients.

In this retrospective single-center study, we developed a

simple radiomics model using a Support Vector Machine

algorithm, based on a minimal set of tumor features obtained

using a single and multislice tumor segmentation approach on

multiparametric MRI sequences for pretreatment prediction of

IDH1 status in high-grade glioma patients.
Materials and methods

Patient population

The study was initiated at a tertiary cancer care center

through an institutional intramural grant (Grant no. TRAC/

1016/1710/001) after obtaining due approval from the

Institutional Ethics Committee (IEC). All histologically

confirmed high-grade glioma patients, patients who had

complete clinical and pretreatment imaging data in Digital

Imaging and Communications in Medicine (DICOM) format,

and patients whose IDH status was determined by

immunohistochemistry and/or Sanger sequencing were

included in the study for radiomic feature extraction,

classification, and building the model for sub-classifying the

high-grade gliomas based on their IDH status.
Molecular subtyping

IDH mutant or wild phenotype was classified by initial

screening using immunohistochemistry (IHC) of the paraffin-

embedded tissue followed by DNA sequencing in cases where

IHC results were equivocal as per the institutional protocol. The

IDH R132H mutation was tested by IHC for all the glial tumors.

The antibody used for IDH immunohistochemistry was mouse

monoclonal anti-IDH1R132H, clone H09 from Dianova GMBH

(Hamburg, Germany). Tumors that stained for IDH antibody

were considered positive for IDH mutations, while tumors that

did not stain for IDH were subjected to Sanger sequencing,

considered the gold standard for detecting IDH mutations.

Sanger sequencing for IDH1R132 and IDH2R172 loci was

performed by PCR using specific primers from Sigma-Aldrich.
Frontiers in Oncology 03
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On sequencing, other alterations besides the commonest R132H

were identified. If sequencing was negative, an absence of IDH

mutation was confirmed, and such tumors were deemed IDH

wild-type GBM. If IHC was negative and sequencing was

positive, such tumors were considered IDH mutant (2).
Radiomics pipeline

A visualization of the steps in the radiomics workflow is

depicted in Figure 1. Initially, the brain tumor images were

acquired from two different MRI machines (1.5 Tesla Philips™

and 3 Tesla General Electric™). The DICOM compatible images

were imported into the TexRad software™ and reconstructed. The

reconstructed images were preprocessed using spatial scaled filters

(SSFs) to reduce the background noise and increase the sharpness of

the tumor edges. The preprocessed images were used to contour the

region of interest (ROI). The segmented images were augmented to

increase the number of image data sets. Shape, first order (or

histogram), and second order texture (GLCM) features were then

extracted from the region of interest. The extracted features were

then scaled down using the LASSO regression method. Finally, the

data analysis step involved building a model from the selected

radiomic features to predict the endpoint of interest (IDH wild vs.

IDH mutant high-grade glioma).
Image acquisition protocol

Magnetic resonance imaging sequences of 100 patients were

obtained at our institution using Philips Ingenia 1.5T and GE

Signa 3T MRI with a pre-fixed standard scanning protocol for

brain tumor imaging. Axial T1 contrast (T1C) and T2W images

were obtained from the vertex to the skull base, encompassing

the whole brain, where the primary tumor is visible in its

entirety. These sequences were archived in the institutional

Picture Archival and Communication System (PACS) and

transferred to the radiomics (texture) analysis system

(TexRAD™). The radiological features on the T2W and

contrast-enhanced T1W MR images were evaluated and

discerned by an experienced neuro-radiologist, and the texture

features were extracted on the TexRad™ console.
MR image preprocessing, segmentation
(ROI generation), and augmentation

Magnetic Resonance Imaging of the brain was acquired on

two different MRI machines (1.5 Tesla Phillips™ and 3 Tesla

General Electric™). The acquisition details of the MR images for

the brain imaging protocol for both machines have been

explicitly described in Table 1. The resultant imaging protocol
frontiersin.org
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will result in some imaging heterogeneity. Therefore, before

segmentation and ROI delineation, image preprocessing was

performed using the Laplacian of Gaussian (LOG) bandpass

filters to remove the background noise (Gaussian filter) and

enhance the tumor edges (Laplacian filter). This allowed for the

extraction of specific structures corresponding to the filter width.

Spatial scale Filters (SSF) used filtration values of 0, 2 mm, 3 mm,

4 mm, 5 mm, and 6 mm in width (radius), representing the

increasingly coarser level of texture scales for first-order

statistics. The use of a filtration algorithm before radiomic

feature extraction helps in nullifying some of the effects of
Frontiers in Oncology 04
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heterogeneous acquisition protocols and improves the

robustness of the feature selection by removing the features

affected by MR noise and imaging heterogeneity.

Tumor segmentation and region of interest (ROI)

delineation were performed manually with the freehand

drawing function (polygon tool) of the software. The ROI

contours and segmentation were separately verified by a

neuro-oncologist with 10 years of experience and a

neuroradiologist with 10 years of experience. The

segmentation was verified by them individually, and any

discrepancy was resolved by a consensus. For analysis, the
FIGURE 1

Radiomics study flow. The radiomic workflow involves MR brain imaging and data acquisition, followed by slice by slice image segmentation, data
augmentation by single slice multiple sampling technique, Image pre-processing by spatial scale filters which involve the use of LoG (Laplacian of
Gaussian) bandpass filter, extraction of first order, and second-order features from the texture analysis software, feature selection using LASSO
regression and statistical analysis and model development using Support Vector Machine (SVM) and a 10-fold cross-validation strategy.
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final contours as verified by the neuroradiologist were

considered. Two types of segmentation techniques were used,

i.e., whole tumor segmentation (volumetric) as well as single

slice with multiple sampling segmentation methods, which in

turn were used for data augmentation as described in prior

literature (7, 8). A total of 831 Axial T1C and 831 T2 image

datasets were obtained for analysis from the study population.
MR texture analysis

The radiomic features were extracted from the segmented

images using proprietary texture analysis research software

(TexRAD™ Research Version 3.10, TexRAD Ltd, Cambridge,

UK), and the machine learning algorithm (SVM) developed a

predictive model for molecular sub-classification of high-grade

gliomas and was blinded to molecular diagnosis. Eighty-two

radiomic features were extracted separately for T1W + C and

T2W images using the TexRAD tool, which included 36 first-
Frontiers in Oncology 05
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order features at various SSFs (0, 2, 3, 4, and 6) (Figure 3).

Second-order features such as Gray Level Co-occurrence

Matrices (GLCM) and topographic features were extracted

without applying filters. Twenty GLCM features each for pixel

pairs spaced 1 pixel (GLCM1) and 4 pixels apart (GLCM4)

respectively, and 6 Shape features (Figure 2). The details of all

the texture features are provided in Table 2.
Radiomic feature selection

The least absolute shrinkage and selection operator (LASSO)

logistic regression algorithm was used for reducing the excessive

dimensionality of data and selecting the most significant features

in the training data set. Radiomic features with non-zero

coefficients were selected from the training data. The analysis

was performed using R™ software version 3.6.3, Vienna,

Austria, and R Studio™ version 1.2.5033, Boston, USA using

the “glmnet” package.
FIGURE 2

Representative multi-slice region of interest (ROI) of an IDH wild-type GBM done on axial T1 + C and T2 MR Images using slice-by-slice image segmentation.
TABLE 1 MR image acquisition protocol.

MRI Machine Sequences FOV (cm) Matrix NEX Slice thickness (mm):
Slice gap (mm)

GE Signa 3T Axial T2 24 320 × 224 1 5:1.5

Axial T1 + C 24 320 × 190 1 5:1.5

Philips Ingenia 1.5T Axial T2 23 (AP)
18.5 (RL)

448 × 304 2 5:1

Axial T1 + C 23 (AP)
18.5 (RL)

232 × 104 2 5:1
FOV, Field-of-view; NEX, Number of excitations; AP, Anteroposterior; RL, Right left.
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TABLE 2 Demographic, tumor and treatment profile of grade 4 IDH mutant astrocytoma and IDH wild type glioblastoma.

Overall
(Total N = 100)

IDH Wild
(N = 83)

IDH Mutant
(N = 17)

p-value

BASELINE CHARACTERISTICS

AGE

Median age 52 years 54 years 34 years < 0.001

Range 19–71 years 19–71 years 23–68 years

IQR 38–59 years 46–59 years 27–43 years

GENDER

Male 70 58 (69.9%) 12 (70.6%) 0.954

Female 30 25 (30.1%) 5 (29.4%)

CENTRICITY

Unicentric 94 78 (94%) 16 (94%) 0.982

Multicentric 6 5 (6%) 1 (6%)

LATERALITY

Right 37 33 (39.8%) 4 (23.5%) 0.450

Left 53 42 (50.6%) 11 (64.%)

Central/Bilateral 10 8 (9.6%) 2 (11.8%)

LOCATION

Cerebellum 2 2 (2.4%) 0 (0%) 0.479

Frontal 31 20 (24.1%) 11 (64.7%)

Insular 2 2 (2.4%) 0 (0%)

More than two 32 29 (34.9%) 3 (17.6%)

Occipital 2 2 (2.4%) 0 (0%)

Parietal 17 15 (18.1%) 2 (11.8%)

Temporal 14 13 (15.7%) 1 (5.9%)

HISTOPATHOLOGY

MGMT

Unmethylated 36 32 (48.5%) 4 (33.3%) 0.333

Methylated 42 34 (51.5%) 8 (66.7%)

Unknown 22

ATRX

Retained 73 71 (88.8%) 3 (17.6%) < 0.001

Lost 15 5 (6.3%) 10 (58.8%)

Non-contributory 8 4 (5.0%) 4 (23.5%)

Unknown 3

Overall

P53

Negative 2 2 (2.4%) 0 (0%) 0.518

Positive 98 81 (97.6%) 17 (100%)

Median Mib 1 index (%) 17.5
(IQR 4%–55.5%)

17.5
(IQR 13.5–22.5)

17.5
(IQR 8–23.75)

0.188

TREATMENT DETAILS

EXTENT OF SURGERY (n = 99)

Gross total resection 34 31 (37.8%) 3 (17.6%) 0.271

Near-total resection 26 20 (24.4%) 6 (35.3%)

Subtotal resection 39 31 (37.8%) 8 (47.1%)

RADIOTHERAPY

RT received Yes 88 72 (86.7%) 16 (94.1%) 0.451

No 12 11 (13.3%) 1 (5.9%)

Median RT dose 59.4 Gy, Range (56.5 Gy to 59.4 Gy) 59.4 Gy, Range (56.5 Gy to 59.4 Gy) 59.4 Gy, Range (56.7 Gy to 59.4 Gy) 0.781

(Continued)
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Radiomic feature classification
and modeling

The features selected by LASSO were used as a training set for

model development. A Support Vector Machine (SVM) classifier

with a 10-fold cross-validation strategy was used in the prediction of

the two main molecular subgroups. The performance of the model
Frontiers in Oncology 07
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was assessed using the Area Under Curve (AUC). Multiple models

were sequentially evaluated by the system using a combination of

selected texture features to arrive at the best model. The SVM

analysis was conducted withMATLAB™ version 9.0 (R2016a), The

MathWorks, Inc., Natick, MA, USA. Standardization (z-score

normalization) was done on the extracted features before SVM

analysis as the predictors were of different scales.
TABLE 2 Continued

Overall
(Total N = 100)

IDH Wild
(N = 83)

IDH Mutant
(N = 17)

p-value

Median RT fractions 33 (IQR 30 to 33 fractions) 33 (IQR 30 to 33 fractions) 33 (IQR 31 to 33 fractions) 0.451

ADJUVANT TMZ (Temozolomide)

Adj. TMZ Received Yes 74 60 (72.3%) 14 (82.4%) 0.389

No 26 23 (27.7%) 3 (17.6%)

Median cycles of adjuvant TMZ 6 (IQR 4.25–11) 6 (IQR 4–6.50) 11 (IQR 6–12) 0.038
fronti
IQR, Inter quartile range; TMZ, Temozolomide; RT, Radiation Therapy; ATRX, Alpha-Thalassemia/Mental Retardation Syndrome, X-Linked; MGMT, O6-Methylguanine-DNA
Methyltransferase.
FIGURE 3

Representative image of the region of interest (ROI) contoured on a T2W MRI and corresponding filtered images using Laplacian of Gaussian
(LOG) bandpass filtration algorithm showing SSF-2 (fine texture), SSF 4 (Medium texture), and SSF 6 (Coarse texture).
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Statistical analysis

Quantitative variables were expressed as mean and/or median.

The Student t-test for independent samples was used for the

comparison of two different groups. In the case of variables that

werenotdistributednormally, theMann–Whitneyranksumtestwas

used. The diagnostic accuracy for IDH genotype prediction by

textural features was evaluated by analyses of receiver-operating

characteristic (ROC) curves using immunohistochemistry/gene

sequencing results as the gold standard. The area under the ROC

curve (AUC) was evaluated to assess the performance of the

developed model. The diagnostic metrics used to assess the model

were theAUC,sensitivity, specificity, andoverall accuracyasreported

in various literature studies investigating Machine Learning-Based

Radiomics Signatures for different types of cancers (9–11).
Radiomics quality assurance score
and the image biomarker
standardization initiative

Imaging data for extracting radiomic features have been used

as a tool for testing medical hypotheses. However, the radiomic

features extracted from the image data had high dimensionality,

requiring complex models to predict or correlate with the

endpoints of interest. This limits its usage for only research

purposes without real-world application in the clinics and guides

the clinical decision-making process, resulting in a huge

translational gap. Therefore, Lambin et al. developed a

standardized radiomic quality assurance score (RQS) for

evaluating the performance, reproducibility, and/or clinical

utility of radiomic biomarkers. The RQS is a reporting system

of metrics used to validate the robustness of radiomic studies

(12). The RQS comprises 16 components, as represented in

Supplementary Table 1.

Apart from the RQS, our study tried to adhere to the Image

Biomarker Standardization Initiative (IBSI) guidelines which

were initiated to address the challenges in utilizing radiomics

as an image-based biomarker (13) For this study, we evaluated

all the processing steps from image processing, segmentation,

and ROI delineation to the computation of radiomic features

were evaluated in this study (Supplementary Table 2).
Results

Baseline demographics and tumor
and treatment characteristics of the
study cohort

One hundred and thirty-three patients with a histological

diagnosis of high-grade gliomas (CNS WHO grade 4 of adult
Frontiers in Oncology 08
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type diffuse gliomas) were screened for the radiomic study.

Based on the inclusion criteria, only a hundred patients were

eligible for the study. Seventeen patients had IDHmutations and

83 patients had IDH wild-type glioblastoma. The median age of

patients at presentation was 52 years (a range of 19 to 71 years)

and the majority of them were males (70%), The demographic

details of the study population are presented in detail in Table 2.

All but one patient underwent maximal safe resection of the

tumor, whereas one patient underwent only biopsy, followed by

risk-based adjuvant therapy incorporating both radiotherapy

and chemotherapy as deemed appropriate after discussion in a

joint multidisciplinary clinic Table 3.
Molecular subgrouping

Of the 100 patients who were studied, IHC for IDH1R132H

was done on all the cases. IDH1/2 sequencing was performed on

cases that were deemed negative on IHC for IDH1R132H but

showed loss of expression for ATRX. The cases which were

negative for IDH1R132H on IHC and showed retained

expression of ATRX were taken as IDH wild type (14). A total

of 13 patients (13%) were positive for IDH1R132H on IHC.
TABLE 3 Radiomic features extracted.

Texture Features Used

1st Order Features Mean
Standard Deviation
Mean of Positive pixels
Entropy
Skewness
Kurtosis

GLCM features Autocorrelation
Cluster prominence
Cluster shade
Cluster tendency
Contrast
Correlation
Dissimilarity
Homogeneity
Joint average
Joint energy
Joint entropy
Idm (inverse difference moment)
Diffentropy
Diffvariance
Idmn (inverse difference moment normalized)
Idn (inverse difference normalized)
Inverse variance
Sum entropy
Sum squares
Join tmax

Shape Features Perimeter
Area
Elongation
Sphericity
Long axis
Short axis
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Eighty-seven patients (87%) were negative for IDH1R132H on

immuno-histochemistry. Among the 87 patients, six showed loss

of expression of ATRX and underwent Sanger sequencing for

confirmation of IDH status. Of these six patients, four showed

IDHmutations on Sanger sequencing: two patients were positive

for IDH1R132C only, while one patient had an IDH1R132L

mutation and another patient showed an IDH1R132H

mutation. Two of the six patients showed no point mutation

for IDH1 or IDH2 and were considered IDH-wild type.

Therefore, of the 100 patients, 17 patients were considered

IDH mutant subtype, while 83 patients were IDH wildtype.
Performance of the binary
classification model

Out of a total of 82 texture features each in T1W + C and

T2W images, LASSO regression for feature selection elucidated

seven discriminant features for T1W + C images and seven

discriminant features for T2W images, which were used for

further model development.

A combination of LASSO selected first order texture features,

second order (GLCM) features, and topographic features were

used to create different models using both T1W + C and T2W

images in an attempt to arrive at the best SVM model Table 5.

Among various models evaluated, a combination of 14 GLCM

features from combined T1W + C and T2W images resulted in the

best classifier, as depicted in Table 4. The model based on a

CombinedMulti-slice Texture Analysis of T1 + C and T2 weighted

MR imaging using a Quadratic Support Vector Machine Classifier

and a 10-fold internal cross-validation approach, resulted in the

best performance in predicting the molecular subtypes with a

predictive accuracy of 89% and a Receiver Operator Characteristic

(ROC) analysis demonstrating an AUC of 0.89 for each IDH

positive and IDH negative subtype (Figure 4). Of the 83 IDH

negative cases, 80 tumors were true positive while three tumors

were false negative, resulting in a very high sensitivity of 96%, but

at the same time, the model specificity was 52.9%. This low

specificity is due to the unbalanced classification of IDH

subtypes. Similarly, for 17 IDH positive cases, nine tumors were

true positives while eight tumors were false negatives, resulting in a

sensitivity of only 53% but a high specificity of 96.4% as depicted in

the confusion matrix (Figure 5), Table 6.
Discussion

We developed a Support Vector Machine (SVM) based

classification model with satisfactory performance to probe the

genomic profile (IDH mutant vs. IDH wild type) of grade 4 adult

diffuse gliomas, based on MR image phenotypes. The SVM

classifier had an overall accuracy of 89% for predicting IDH

wild-type tumors from IDH mutants. Our results suggest the use
Frontiers in Oncology 09
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of multiparametric MR radiomics along with machine-learning

models to classify the molecular subtype of grade 4 adult type

diffuse gliomas consistent with the new 2021 WHO classification.

By employing a specific ML classifier, several clinical applications

for the detection of IDH status in high-grade gliomas can be

achieved with or without histopathology of the tumor specimen.

IDH mutations are considered to be an early event in

gliomagenesis and are one of the most critical genetic biomarkers

for high-grade gliomas having prognostic implications (improved

survival with IDHmutant than wild-type glioblastomas {31 months

vs 15 months}) (15). Additionally, IDH1 mutation is sufficient to

establish the glioma hypermethylator phenotype, which is a

powerful determinant of tumor pathogenicity (16). Therefore,

having a preoperative assessment of IDH gene mutation status in

glioma may help in optimizing glioma therapeutics. While

immunohistochemistry is considered a routine screening method

for detecting IDH mutations in the majority of cases, Sanger

sequencing is considered to be a confirmatory test for identifying

IDH mutations. However, high-grade gliomas, especially

glioblastomas, show marked intratumoral heterogeneity in IDH

status. Pathological tissue biopsies from the different parts of tumors

may yield varied results regarding the IDH status as these high-

grade gliomas are considered to be heterogeneous. Therefore, a

non-invasive method like magnetic resonance imaging could be put

to effective use for objectively quantifying structural heterogeneity

within the tumor using image-based radiomic analysis. Radiomics is

a novel approach for the high-throughput extraction of quantitative

image features from a specified ROI (17). These quantitative

features (radiomic features) have been successfully used to

develop models using sophisticated machine learning algorithms

for identifying image biomarkers with the capability to predict the

genotype of a tumor (18). Published studies have leveragedmachine

learning classifiers to develop radiomic signatures to predict IDH

mutation status in gliomas (11, 19, 20). Within the framework of

radiomics, tumor texture features as extracted from MR images of

brain tumors are predefined and quantitative features are derived by

computational methods that describe the spatial variations in the
TABLE 4 A combination of LASSO selected features that resulted in
the best classification model.

T1W + C TEXTURE FEA-
TURES (N = 7)

T2W TEXTURE FEA-
TURES (N = 7)

KURTOSIS_0_T1C MEAN_0_T2

ENTROPY_2_T1C MPP_0_T2

KURTOSIS_2_T1C KURTOSIS_0_T2

MEAN_5_T1C MEAN_4_T2

KURTOSIS_5_T1C GLCM1_clusterShade_T2

SKEWNESS_6_T1C GLCM1_idn_T2

GLCM4_correlation_T1C GLCM1_sumEntropy_T2
GLCM 1, GLCM features of pair of pixels which are 1 pixel apart; GLCM 4, GLCM
features of a pair of pixels which are 4 pixels apart; T1C, Contrast-enhanced T1 weighted
images; idn, inverse difference normalized.
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intensity of the images along the entire cross-section of the tumor

that is beyond visual perception. These features have the potential to

yield additional information not only about the tumor biology but

also about the genomic profile. Thus, they allow the prediction of

the IDH genotype in glioma patients with a high degree of accuracy
Frontiers in Oncology 10
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(21). The present study was done to investigate the feasibility of

using machine learning-based radiomic signatures to predict the

IDH subtype in high-grade gliomas in a high throughput setting.

Radiomics-based machine learning tools or deep learning

tools have been used for subclassifying various grades of gliomas
BA

FIGURE 4

ROC curves of the best model for prediction of the two molecular subgroups using combined multi-slice T1 + C and T2w GLCM features using
Quadratic SVM, (A) IDH positive and (B) IDH negative.
TABLE 5 Showing the molecular classification (IDH mutant and IDH wild type) of grade-IV GBM modeled by using Support Vector Machine as the
radiomics classifier on MRI-based sequences.

ImageSingle slice v/s
Multi slice

MRI
sequence

IDHClassification Radiomics
classifier

Diagnostic
Metrics

Validation Process

AUC Accuracy 10-fold internal cross-
validation

Hold
Validation

Single slice analysis T1C IDH –VE (694) Linear SVM 0.91 89.8% YES NO

IDH +VE (137) 0.91

T2W IDH –VE (689) Cubic SVM 0.84 86.9% YES NO

IDH +VE (149) 0.84

Multi-slice analysis T1C IDH –VE (83) Linear SVM 0.87 87% YES NO

IDH +VE (17) 0.87

T2W IDH –VE (83) Quadratic SVM 0.80 91% YES NO

IDH +VE (17) 0.80

T1C + T2W IDH –VE (83) Quadratic SVM 0.89 89% YES NO

IDH +VE (17) 0.89

T1C + T2W IDH –VE (83) Cubic SVM 0.81 90% NO YES
(90:10)

IDH +VE (17) 0.81
AUC, Area under the curve; SVM, Support Vector Machine.
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into IDH wild-type or mutant-type entities (22). However, the

literature on this subject is quite sparse (Table 7). A Taiwanese

group used radiomic features consisting of morphological,

intensity, and textural features to develop a prediction model

for IDH mutation (26) and textural features yielded the best

accuracy of 85%. Going further, the group used the same set of

patients to interpret the status of IDH status in glioblastomas

from transformed magnetic resonance imaging patterns (26). By

ranklet transformation of collected images from 39 patients (32

IDH wild and seven IDH mutant cases), three feature sets were

extracted, with each feature set having 14 GLCM textural

features. They achieved an accuracy of 90%, a sensitivity of
Frontiers in Oncology 11
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57%, and a specificity of 97%. In contrast to the Taiwanese

group, our study used both axial T2 and axial post-contrast T1 +

C images, and unlike the largest single slice that was used in this

study, we incorporated tumor contours on each axial slice of

both the sequences wherever the tumor was present. This took

into account the heterogeneity present within the entire tumor

volume, which has an advantage over core biopsy methods,

which target only a l imited sect ion of the tumor

for histopathology.

Comparative models studying the predictive abilities of

radiomic features have been rarely performed in the literature.

A multicentric study compared various machine learning

classifiers to predict the genetics of GBM on different MRI

sequences. This study was done on 156 adult patients with a

pathologic diagnosis of GBM. Radiomic features were extracted

using various extraction tools like NET, CET, and NEC with a

custom version of Pyradiomics and selected through the Boruta

algorithm. The investigators used various radiomic classifiers

like AdaBoost (AB), Extreme Gradient Boosting (xGB), Gradient

Boosting (GB), Decision Tree (DT), and Random Forest (RF),

Logistic Regressor (LR), two stacking classifiers (ST, ST_ABC),

and K Neighbors (KN). It is used to classify IDH mutants from

the IDH wild subtype of GBM. Based on the results, the AB

classifier performed the best, with a reported accuracy for

classifying the IDH phenotype. (overall accuracy of 89% and

ROC-AUC of 87.7%) (27). The SVM classifier we used to predict

the IDH subtype performed relatively well (ROC-AUC of 89%

and overall accuracy of 89%, similar to the above study) (27).

Isocitrate dehydrogenase (IDH) mutations are quite

common in low-grade gliomas, unlike in higher grade gliomas.

Machine learning-based radiomic feature modeling has been
FIGURE 5

Confusion matrix of the best model for prediction of the two molecular subgroups using GLCM features of combined multi-slice T1 + C and
T2w images using Quadratic SVM.
TABLE 6 Performance of best classification model.

Diagnostic metrics IDH −VE
(n = 83)

IDH +VE
(n = 17)

AUC 0.89 0.89

TP 80 9

TN 9 80

FP 8 3

FN 3 8

Sensitivity 96% 53%

Specificity 52.9% 96.4%

FNR 4% 47%

PPV 90.9% 75%

NPV 75% 90.9%

Overall Accuracy 89%
AUC, Area under the curve;
TP, True positive; TN, True negative; FP, False positive; FN, False negative; FNR, False
negative rate; PPV, Positive predictive value; NPV, Negative predictive value.
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tried in various grades of gliomas (28). Sakai et al. in a

heterogeneous cohort of gliomas [n = 100 (grade-I I = 11;

grade-3 = 8 and grade IV: 81)] used MRI-based radiomic

features to predict IDH1 Mutation Status in Gliomas using a

gradient tree boost machine learning classifier. The best

performance was seen with a DWI-trained XG Boost model,

which achieved ROC with an Area Under the Curve (AUC) of

0.97, an accuracy of 0.90 on the test set. They used the same

machine learning classifier (XG boost) on the FLAIR-MR images

used as a test set and achieved a ROC with an AUC of 0.95 and

an accuracy of 0.90. Their results showed that the model that was

trained on combined FLAIR-DWI radiomic features did not

provide an increment in terms of accuracy. Using

multiparametric radiomic features derived from preoperative

MRI can predict IDH1 mutation status with approximately 90%

accuracy (28).

Although a single institutional study, the radiomic analysis

and model development were done on a relatively small sample

size. In our study, we used two approaches to analyze the texture

data: a volumetric approach and a single slice multiple sampling

approach. Analysis was done using a Support Vector Machine

classifier based on features selected by LASSO regression, which

selected the best of all the features. Support Vector Machine

utilizes the concept of a hyperplane, which is a plane that has the

maximum margin, and considers the furthest of the points

falling on either side of the hyperplane and is less vulnerable

to overfitting as compared to other simple classifiers like logistic
Frontiers in Oncology 12
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regression. Moreover, outliers have less impact on the SVM as

opposed to other machine learning algorithms, especially when

in higher dimensional data. Various classifier models were used

and validation was done using 10-fold internal cross-validation

as well as hold-out validation at ratios of 9:1, 8:2, and 7:3, and the

latter yielded suboptimal results due to a lack of adequate sample

size. The texture features analyzed included first-order and

GLCM features. To overcome the limitation of the small

sample size, an augmentation strategy called the single slice

multiple sampling approach was evaluated. This approach

enabled us to reduce the potential overfitting of data, which is

known to happen in machine learning approaches, and this

approach also yielded appreciable results. Although the SVM

classifier has several advantages that have been elucidated, it

does have some limitations and uncertainties when it comes to

building models for very large data sets. Moreover, the algorithm

does not perform well for datasets where target classes are

overlapping. It also underperforms in situations where the

number of radiomic features for each data point exceeds the

number of training data samples. The SVMwill underperform in

these situations.

Our study was a single institutional study with a quality-

controlled central pathological laboratory and uniform radiology

and radiomic review. One of the strengths of the study was that

all the image delineation was verified by an experienced neuro-

oncologist with 10 years of experience, blinded to the results of

the molecular subgrouping. Being a tertiary cancer institute, it
TABLE 7 Literature review of studies using radiomics and or semantic features for glioblastoma molecular subgroup classification using various
diagnostic metrics.

No. Author
(year)
No. of
patients

MRI sequences Model used for subgroup
classification

AUC Sensitivity Specificity PPV

3 Hsieh et al.
(23)
(2020),
(n = 39)

Feature-based with use of ranklet transformation
on axial T1 + C MR images

KNN and
SVM

Test Cohort – 0.57 – –

Pasquini
et al. (24)
(2021),
(n = 100)

Featureless radiomics on MPRAGE, FLAIR, T1W,
T2W, DWI with ADC, PWI) with DSC sequence

4 block 2D-
CNN
architecture

Training and test
(80:20) set.

0.86 ± 0.05,
the highest

achieved using
rCBV maps

0.76 ± 0.05 – –

2 Calabrese
et al. (25)
(2020),
(n = 199)

Fully automated deep learning-based tumor
segmentations using T1W, T2W, T2W/FLAIR,
DWI, SWI, HARDI fractional anisotropy
(HARDI FA), ASL, and T1C.

Automated
dCNN
segmentation

10-fold stratified shuffle
split cross-validation
strategy with a train/
test split of 60:40

0.95 ± 0.03 0.93 ± 0.08 – –

4 Pashmina
et al.
(Present
study)
(n = 100)

Feature-based radiomics using axial T1 + C and
T2W MR images

LASSO
regression
and SVM

10-fold internal cross-
validation

0.89 0.96 for IDH
wild,
0.80 for IDH
mutant

0.53 for IDH
wild,
0.03 for IDH
mutant

0.91
for
IDH
wild,
0.75
for
IDH

mutant
frontier
SVM, Support Vector Machine; LASSO, Least absolute shrinkage and selection operator; CNN, Convolutional neural network; IDH, Isocitrate dehydrogenase; ADC, apparent Diffusion
Coefficient; DSC, Dynamic Susceptibility Contrast; PWI, perfusion-weighted images.
sin.org

https://doi.org/10.3389/fonc.2022.879376
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kandalgaonkar et al. 10.3389/fonc.2022.879376
catered to a large and diverse pool of patients. The use of the

single slice multiple sampling methods in this study not only

helped in data augmentation but also prevented data loss. The

main presumed weakness lies in the heterogeneity of MRI

acquisition parameters in the study population and the fact

that uniformity in image acquisition is necessary for radiomic

analysis was acknowledged (29). Regardless of the heterogeneity

in MR acquisition parameters, we were able to achieve a fair bit

of accuracy, suggesting that this would consequently have a good

implication if validated in a large cohort of patients in real-world

clinical practice. Additionally, the current methodology of using

internal cross-validation has the limitation of inflating the

performance metrics. However, with a limited sample size, we

thought that the internal 10-fold cross-validation would be the

best strategy to utilize for model development. We are accruing

more patients to evaluate the model on an external dataset, and

this will be done in future studies.

In addition to radiomics features, our study did not include

semantic features as those established by “The Visually

AcceSAble Rembrandt Images” (VASARI) project could have

potentially improved the performance of the model. Next, the

study was limited by its small sample size with a skewed

distribution of the various molecular subgroups. The relatively

small sample size of our study also limited the use of deep

learning algorithms, such as convolutional neural network

(CNN) analysis, which requires a massive number of image

datasets, which would not have been possible without the

pooling of image data from multiple institutions, which in

itself could have introduced a confounding factor of image

heterogeneity, resulting in variability and generalization gaps

in the predictive model. Although we did 10-fold internal cross-

validation, the lack of an external validation cohort limits its

robustness. These create future opportunities to incorporate

clinical parameters and semantics features to complement the

radiomic signatures to develop a more robust predictive model

with better diagnostic metrics to classify the molecular

subgroups of glioblastoma. The model developed in the

current study is planned to be tested on an independent

validation cohort and subsequently on a larger imaging dataset.
Conclusion

The results of the study affirm that a texture feature-based

radiomic model of multiparametric MR images can effectively

classify molecular subgroups of GBM with an acceptable degree

of accuracy using a machine learning approach. The proposed

image-based radiomic approach provides an alternative non-

invasive and efficient method to sub-classify the molecular

subgroup and can aid in optimizing the adjuvant therapy of

glioblastomas. Given that radiogenomics is rapidly evolving,
Frontiers in Oncology 13
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machine learning approaches combined with clinical and

radiological semantic (VASARI) features may show superior

outcomes. The field of radiomics needs to be further researched

to translate findings into an interpretable format for presurgical

prediction of the molecular genotype of GBM.
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Classifying primary central
nervous system lymphoma from
glioblastoma using deep
learning and radiomics
based machine learning
approach - a systematic review
and meta-analysis

Amrita Guha1*, Jayant S. Goda1*, Archya Dasgupta2,
Abhishek Mahajan1, Soutik Halder3, Jeetendra Gawde3

and Sanjay Talole3

1Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai,
India, 2Department of Radiation Oncology, Tata Memorial Centre, Homi Bhaba National Institute,
Mumbai, India, 3Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute,
Mumbai, India
Background: Glioblastoma (GBM) and primary central nervous system

lymphoma (PCNSL) are common in elderly yet difficult to differentiate on

MRI. Their management and prognosis are quite different. Recent surge of

interest in predictive analytics, using machine learning (ML) from radiomic

features and deep learning (DL) for diagnosing, predicting response and

prognosticating disease has evinced interest among radiologists and

clinicians. The objective of this systematic review and meta-analysis was to

evaluate the deep learning & ML algorithms in classifying PCNSL from GBM.

Methods: The authors performed a systematic review of the literature from

MEDLINE, EMBASE and the Cochrane central trials register for the search

strategy in accordance with PRISMA guidelines to select and evaluate studies

that included themes of ML, DL, AI, GBM, PCNSL. All studies reporting on ML

algorithms or DL that for differentiating PCNSL from GBM on MR imaging were

included. These studies were further narrowed down to focus on works

published between 2018 and 2021. Two researchers independently

conducted the literature screening, database extraction and risk bias

assessment. The extracted data was synthesised and analysed by forest plots.

Outcomes assessed were test characteristics such as accuracy, sensitivity,

specificity and balanced accuracy.

Results: Ten articles meeting the eligibility criteria were identified addressing

use of ML and DL in training and validation classifiers to distinguish PCNSL from

GBM on MR imaging. The total sample size was 1311 in the included studies. ML
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approach was used in 6 studies while DL in 4 studies. The lowest reported

sensitivity was 80%, while the highest reported sensitivity was 99% in studies in

which ML and DL was directly compared with the gold standard

histopathology. The lowest reported specificity was 87% while the highest

reported specificity was 100%. The highest reported balanced accuracy was

100% and the lowest was 84%.

Conclusions: Extensive search of the database revealed a limited number of

studies that have applied ML or DL to differentiate PCNSL from GBM. Of the

currently published studies, Both DL & ML algorithms have demonstrated

encouraging results and certainly have the potential to aid neurooncologists

in taking preoperative decisions in the future leading to not only reduction in

morbidities but also be cost effective.
KEYWORDS

machine learning, deep learning, predictive analytics, primary central nervous system
(CNS) lymphoma, glioblastoma, magnetic resonance imaging, metaanalysis,
systematic review
Introduction

Primary Central Nervous System Lymphomas (PCNSL) and

Glioblastomas(GBM) are tumours of the adults and elderly,

however, they are distinct entities in terms of their cell of

origin, incidence, natural history, treatment protocols and

prognosis (1). Even though these tumours are different, they

appear radiologically appear similar on Magnetic resonance

imaging(MRI) with only a few discerning features (2).

Although there are a few semantic MR imaging features that

help the radiologist to differentiate PCNSL from GBM (3), these

features are subjective and dependant on the expertise and the

experience of the radiologist with a resultant dependence on the

gold standard histopathology of the tumour specimen (4).

Certain special MRI sequences such as Diffusion Weighted

Imaging (DWI), MR spectroscopy (MRS) may complement

the semantic features (5), and could be useful in differentiating

the two tumours but these special MR protocols are resource

intense and their use is limited due to lack of widespread

availability and associated cost escalations have practise

implications in high throughput cancer centres.

Tumor radiomics based on texture feature analysis of MR

images represents an abstract mathematical quantitative

approach whereby multiple individual imaging features not

easily discerned by the naked eye are processed by means of

sophisticated algorithms to reveal quantifiable indices (6).

Radiomics maximizes the number of quantitative image

features from digital images and as a result, can overcome

intratumoral heterogeneities in both the molecular and

histopathological assessment of various tumour histologies
02
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using measurable values that contribute to tumor diagnosis,

pre-surgical grading, response to treatment, prognostication of

cancers and predicting gene mutation. Moreover, with

quantified analyses of images, it has also been incorporated

with various novel computer technologies, such as machine

learning and deep learning algorithms like deep convolutional

neural network (dCNN) (7–15)

Even before deep learning methods were available, majority

of ML based radiology studies used texture features extracted

from manually segmented tumour images followed by

application of conventional ML tools such as random forests

and support vector machines (15–17) The advent of advanced

computational methods like deep learning algorithms brought a

paradigm shift in the image based classification of tumours and

their biology (18). The development of the convolutional neural

network (CNN), that comprises of convolution and pooling

layers, has led to automation in identifying relevant image

features for various classification tasks (19).

Although, various ML tools like random forest or support

vector machine models and DL algorithms like CNN have been

used to classify PCNSL from GBM, the results have been

heterogeneous in terms of the specificity, sensitivity and accuracy

of the various computational methods in differentiating these

tumours precluding their use in clinical practice. Therefore, there

remains a need for systematic and thorough review of all the

existing literature that have looked into the classification aspect

PCNSL vs GBM by various ML and DL tools.

Thus, the purpose of this systematic review and metanalysis

was to estimate the diagnostic accuracy of ML-based radiomics

and DL models in classifying PCNSL and GBM in an endeavour
frontiersin.org
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to eventually help neurooncologists in their management

decisions upfront. In addition, we evaluated different

combinations of selection methods and classifiers, trying to

make comparison of models’ performances.
Methods

Literature review

This study was conducted in concordance with Preferred

Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA) guidelines (Figure 1). Quality of primary studies

was assessed using the QUADAS 2 tool (Figure 2).

Literature Search Strategy:

Eligible studies reporting on the diagnostic yield of machine

learning or big data in differentiating PCNSL from GBM were

identified through a systematic search of the medical literature

using a validated search strategy. An electronic search of

Medline via PubMed, EMBASE and Cochrane database was

conducted without any language restrictions from January 1990

till December 2021 to identify potentially relevant articles.

Different key-words including Medical Subject Heading

(MeSH) terms were combined using Boolean operations

‘AND’ and ‘OR,’ namely, “Magnetic Resonance Imaging”

[MeSH] OR “MRI” AND “primary central nervous system
Frontiers in Oncology 03
217
lymphoma” [MeSH] OR “brain lymphoma” OR “PCNSL”

AND “diagnosis” OR “accuracy” OR “yield” AND “radiomics”

OR “Machine learning” OR “deep learning” OR “Artificial

Intelligence” OR “AI.” The Cochrane Central Register of

Controlled Trials (CENTRAL) and Database of Abstracts of

Reviews of Effectiveness (DARE) were also searched

electronically from inception until December 2021. Electronic

search was further supplemented by hand-searching of review

articles, cross references, and conference proceedings.
Eligibility criteria

a. Selection of studies
All studies reporting on ML algorithms that aimed to

differentiate between GBM and PCNSL on MR imaging were

included. Studies that compared ML with radiologists were

excluded in this meta-analysis in order to maintain homogeneity,

and we intend to explore this in a subsequent paper. Articles were

also excluded if they were commentaries, editorials, letters, or case

reports Two reviewers (AG and JSG) extracted relevant data from

each selected article, including study characteristics and findings of

test results using a standardized data extraction sheet that was

verified independently by the third reviewer (A.M). Any

discrepancy was resolved by consensus. Quality of individual

primary study in the meta-synthesis was assessed using the
FIGURE 1

PRISMA 2009 Flow Diagram.
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QUADAS 2 quality assessment tool for studies that uses criteria

scored as ‘yes, unclear, or no’ risk of bias, and assigns overall quality

rating as ‘low, high, or unclear’ to each individual study.

Furthermore, we also used the Radiomic Quality score (RQS), a

quality assessment tool specifically developed to evaluate quality of

radiomics in neuro-oncology studies (20). Studies were scored upto

a maximum of 36, involving six key domains.

b. Type of participants
Patients of PCNSL & GBM with pathological confirmation

of disease. In addition, all the patients had DICOM MR images

of the tumour.

c. Diagnostic metrics
The diagnostic metrics included the Sensitivities and

specificities of all the included studies. If papers described

performance using receiver operating characteristic curves, we

back-calculated possible sensitivities and specificities.
Quality assessment

Quality of primary studies was assessed using the QUADAS

2 tool and the Radiomic Quality Score (RQS) by two
Frontiers in Oncology 04
218
independent reviewers [AG and JSG]. The QUADAS-2 tool is

recommended by the agency for healthcare research and

Quality, the Cochrane Collaboration and the United Kingdom

National Institute for Health and Clinical excellence in order to

assess the risk of bias among 4 domains (patient selection, index

test, reference standard and flow & timing). Any disagreement

between the two reviewers were solved by mutual consensus, and

then independently scored by a third reviewer (AD). Four main

domains including patient selection, index test, reference

standard, and flow and timing were evaluated and plotted for

various risk bias domains (Figure 2).
Statistical analyses

We performed a meta-analysis of the performance of ML

and DL algorithms in differentiating PCNSL from GBM.

Reference standard was pathologic confirmation on biopsy of

concomitant primary CNS lymphoma or GBM. Results for

studies pooled in the quantitative analysis were calculated as

proportions, with meta-analysis performed using the generalized

linear mixed model (random-effects model) to produce

summary estimates with 95% confidence intervals (CIs).All

statistical analyses were performed on R Studio version
FIGURE 2

Studies included in the meta-analysis with the quality of diagnostic accuracy studies (QUADAS) scores.
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3.6.1.The ‘meta’, ‘mada’ and R-packages were used to draw forest

plots. We also used the mada package, a freely available package

to construct hierarchical summary receiver operating

characteristic (HSROC) models, as recommended by the

Cochrane Collaboration for meta-analyses of diagnostic tests.

The ‘robvis’ package was used for QUADAS analysis. Balanced

accuracy was also calculated using the average of sensitivity and

specificity for all the studies. The I (2) was estimated to test level

of heterogeneity.
Results

Literature search

Seventy studies of interest were found, of which 38 were

duplicates. Of the remaining 32, seven were rejected based on

title and abstract. Of the twenty-five full-text manuscripts

retrieved, ten were selected for this meta-analysis after

considering the inclusion and exclusion criteria (Figure 1). The

total sample size in the 10 studies was 1311 and the overall

accuracy (9 studies), sensitivity, and specificity values of each

study was documented. There was no available accuracy value in

one of the studies (21), nor were we able to reverse calculate it

with the given information. 5 studies used a 3T MRI scanner,

while 3 studies used both 3T and 1.5 T. Two studies (22, 23) did

not provide details on the scanner used or the scanning protocol.

None of the studies had a prospective design.

All eligible studies were relatively recent, and conducted

between 2018 to 2021. 60% of the studies were conducted from

hospitals in Asia (China/South Korea). The metananalysis

included ten studies that compared PCNSL from GBM. A

summary of the general characteristics of included studies is

presented in Table 1, while the method-related information is

summarized in Table 2. All studies reported at least one of the

following: accuracy, sensitivity, specificity, or AUC (Table 3).

Half of the studies used SVM as part of their ML algorithm,

while 40% used CNN (23) (23–25), and one paper (26) used step

wise selection with unsupervised learning. All of the studies

performed some version of internal independent or internal

cross-validation to train their ML algorithms, but only one of the

studies externally validated their model (24).

Among 10 studies, seven studies were from single centre,

and 3 studies were from multicentre data source (25–27).
Risk of bias assessment

The QUADAS tool assessment of risk of bias in the included

studies are shown in Figure 2. In domain 1, 60% studies reported

well-documented image acquisition protocols or use of publicly

available image databases, with one study having a high risk of

bias and two others with unclear risk in accruing for patient
Frontiers in Oncology 05
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selection. The patient selection for these trials was based on a

case-control design because outcomes were known prior to

implementation of ML.

Additionally, in the second domain (“index tests”), the study

designs for the papers examined had prior knowledge of the

reference standard prior to implementing the index test, which

introduces a high risk of bias. Hence, the authors decided to

evaluate only the results of validation/test data set to conduct the

statistical analysis in this study. Only one study was externally

validated (21), therefore, all the other included studies were

assigned a high risk of bias. As noted previously, future studies of

ML should attempt to remove this risk of bias as much as

possible, ideally by utilizing a prospective design and

external validation.

As judged in domain 3, the reference standard of histological

diagnosis was considered to provide an accurate classification of

the target condition, although this reporting could be improved

if the authors provided details regarding how the histological

samples were obtained and processed and the specific

histological characteristics that determined the diagnosis.

Finally, most of the studies apparently included all eligible

patients in the analysis and had clearly defined inclusion and

exclusion criteria, with a resultant low amount of bias in the

fourth domain, “flow and timing”.

Overall, a high risk of bias was estimated in the studies as

summarized in Figure 2. Consequently, the quality assessment

was limited regarding the applicability of ML based

radiomics analysis.
Assessment of the radiomics
quality score

The median RQS score of the 10 studies was 16.0, which was

44.4% of the ideal score of 36 (Table 4). The lowest score was 13

and the highest score was 18 (50% of the ideal quality score).

Compared with the ideal score, the RQS of the selected studies

was lowest in the high level of evidence domain and open science

and data domain (0%), followed by biological/clinical validation,

and feature reproducibility in image and segmentation.

Feature reduction was missing from the study with the

lowest score (28). Meanwhile, studies with the highest score

earned additional points by using validation based on a dataset

from another institute.
Subgroup analysis

Data extraction

Two of the ten studies (29) (30), utilized a single MRI

sequence acquired by either conventional imaging, while the

remaining studies implemented both conventional and
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TABLE 1 Summary of the study profile & methodology of the reviewed studies.

Sr. Author/ Patient cohort Classifier/algorithm used Internal External MRI used MRI
sequences

Image Segmentation
& Feature extraction

tool

Reference
Standard

test

Type of
study

T1 contrast
enhanced

Scale Invariant Feature
Transformation (SIFT)

Histopathology Retrospective
study

la T1W, T2W &
T1W contrast
enhanced

Pyradiomics Histopathology Retrospective
study

Not reported Patch based Sparse
representation method

Histopathology Retrospective
study

T1W contrast,
DWI, T2W

Pyradiomics Histopathology Retrospective
study

la MR perfusion
using DSC
images & DTI

3D slicer, intensity-based
feature extraction from MR
maps

Histopathology Single
Institutional
retrospective
study

T1W contrast lifeX Histopathology Single
Institutional
retrospective
study

T1W contrast,
T2 FLAIR, DSC

Segmentation done
semiautomatically by two
neuroradiologists

Histopathology Retrospective
study

la T1 Contrast,
DSC-PWI

3D Slicer, Time intensity
curve normalization

Histopathology Retrospective
study

T1 W contrast, &
FLAIR, ADC

Pyradiomics Histopathology Single
Institutional
retrospective
study

T1 Contrast Not Reported Histopathology Single
Institutional
retrospective
study

fusion tensor Imaging; DSC, Dynamic Susceptibility; ML , Machine learning; CNN, convolutional
n; SVM, Support Vector Machine; LOGISMOS, Layered Optimal Graph Image Segmentation for
NN, Convolutional neural network; LOOCV, Leave One Out Cross Validation.
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No Year/
country

validation
set

validation
set

for
ImaginPCNSL GBM

1 Chen (1) et
al/China/
2018

30 66 Convolutional neural network, Yes, cross
validation

Yes 3 Tesla

2 Xiao (2) et
al/2018/
China

22 60 Machine learning: Naïve Bayes (NB), SVM, LR,
Random Forest model

Yes ,10-fold
internal cross
validation

No 1.5 & 3 Te

3 Guoqing (3)
et al/2018/
china

32 70 Convolutional neural network Yes,
Independent set

No 3 Tesla

4 Kim (4) et
al/2018/ S
Korea

65 78 Logistic regression, SVM, Random Forest model No Yes,
Independent
set

3 Tesla

5 Shrot (5) et
al/2019/
Israel

12 41 Machine learning:
Binary SVM

Yes, Leave one
out cross
validation

No 1.5 & 3 Te

6 Chen (6) et
al/2020/
China

62 76 5 selections: Distance correlation, RF, LASSO, XG
boost, GBDT; 3 Classifiers: LDA, SVM, LR

Yes,
Independent set

No 3 Tesla

7 Park (7) et
al/Korea/
2020

95 165 Convolutional Neural network Yes, Internal
Validation set

Yes,
Independent
set

3 Tesla

8 Escoda (8)
et al /2020/
Spain

47 48 Logistic binary regression Yes,
Independent set

No 1.5 & 3 Te

9 Bathla (9) et
al /2021/
USA

34 60 Machine learning
SVM with Polynomial kernel, SVM with radial
kernel ,neural network, MLP, Random Forest
Model, GBRM, Adaboost

Yes (5 fold
cross
validation)

No Not
Reported

10 McAvoy
(10) et al/
2021/USA

135 113 Convolutional Neural network yes,
independent

No 3 Tesla

FLAIR, Fluid Attenuation & Recovery; MLP, Multilayer Perception; SVM, Support Vector Machine; GBRM, Generalised Boosted regression Model; DTI, Di
Neural network; RF, Random forest; LASSO, Least Absolute Shrinkage and Selection Operator; PCA, Principal Component Analysis; LR, Logistic Regressio
Multiple Objects and Services; MLP, Multilayer perceptron; SIFT, Scale invariant feature transform; mRMR, Minimum redundancy maximum relevance; C
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advanced perfusion and Diffusion Weightage Imaging (DWI)

sequences. An imbalance in the ratio of sample size between

PCNSL cohort and GBM cohort was observed in all the studies

with a ratio of almost 2:1 and 3:1 in favour of GBM cohort.

However, two of the studies had a balanced sample size between

PCNSL and GBM cohort (27, 29).
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Heterogeneity assessment

Significant heterogeneity was present amongst the included

studies regarding their scanning protocols, image sequences

selected for analysis, methods of drawing ROI, feature

engineering, and methodology of using ML/DL algorithms.
TABLE 2 Summary of the results of the reviewed studies.

Sr.
No.

Author/
Year/
country

Diagnostic metrics of the best performing
model from the validation set

Study limitations reported Study strengths
reported

Accuracy Sensitivity Specificity AUC

1 Chen (1) et
al/2018/
China

0.906 0.8 0.955 0.982 - Single MR sequence was used Calculation methods are fast

2 Xiao (2) et
al/2018/
China

0.82 0.78 0.91 0.9 - non enhancing & multiple lesions were excluded
- Different scanners were used for image acquisition
resulting in imaging protocol heterogeinity

- Image pre-processing
technique used

3 Guoqing (3)
et al/2018/
China

0.945 0.9 0.96 NA Not reported -Completely automated

4 Kim (4) et
al/2018/ S
Korea

0.947 0.966 0.929 0.956 - Retrospective study with patient selection bias
- MR images of validation & discovery cohort were
obtained from the same machine thereby may not be
generalizable to other MR machines
-Features were chosen empirically

Not reported

5 Shrot (5) et
al/2019/
Israel

NA 1.00 1.00 NA -ROI tracing was done manually leading to intra &
interobserver variability
-Small sample size
- Non enhancing part of the tumour was excluded
- Impact of each MR sequence on the classification model
not reported

Not reported

6 Chen (6) et
al/2020/
china

0.979 0.982 0.976 0.978 -Isolated evaluation of T1C images
-Diagnostic Performance of radiomics based machine
learning was not compared with other MR technology
-Small sample size
-No external validation

Not reported

7 Park (7) et
al/Korea/
2020

NA 0.95 0.76 0.89 -Diagnostic performance dropped in external data set due
to overfitting
- Spatial heterogeneity
- Differences in contrast preloading & Image acquisition
protocol results in variability of time signal intensity curves

Not reported

8 Escoda (8)
et al/2020/
Spain

0.93 0.93 0.92 NA -Retrospective nature of the study.
- Wide range of MR sequences

-Near Homogenous Imaging
protocol.
- Balancing of tumour types
- semi-automation in image
segmentation & co-
registration
- Objective approach to
classification process

9 Bathla (9)
et al /2021/
USA

0.934 0.97 0.871 0.977 Small sample size
-Absence of external validation set
-Did not assess deep neural networks

-Well documented Imaging
protocol
- use of feature selection
techniques, discrimination
and nested cross validation

10 McAvoy
(10) et al/
2021/USA

0.93 1 0.86 0.94
(GBM)

- Retrospective study with small number of patients
- Loss of data while exporting the image data sets

Not reported

0.94 0.87 1 0.95
(PCNSL)
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The forest plots for balanced accuracy, sensitivity, and specificity

were plotted based on the total sample size, and the forest plot

for accuracy was plotted based on 1051 samples (excluding the

study conducted by Park JE (21) as accuracy data was not

available). The I (2) was estimated to test the level of

heterogeneity; and since this was greater than 50%, random

effect model for meta-analysis was used.

A large difference between the confidence region and 95%

prediction regions in the Hierarchical Summary Receiver Operator

Curve (HSROC) plot curve represents the heterogeneity across the

studies in Figure 3. A forest plot was drawn to estimate the

heterogeneity in sensitivity, specificity, accuracy and balanced

accuracy as represented in Figures 4A–D. Significant

heterogeneity was found in both sensitivity (I (2) 83%, p < 0.01),

specificity (I (2) 87%, p ≤ 0.01) and accuracy (I (2) 65%, p ≤ 0.01).
Threshold effect assessment (HSROC)

The Spearman correlation coefficient between the sensitivity

and false-positive rate was − 0.16 (p = 0.66), indicating the

absence of a threshold effect. A threshold effect indicates a
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positive correlation between sensitivities and the false-positive

rate that leads to a “shoulder arm” plot in the summary receiver-

operating characteristic curve space. However, the visual

assessment of the HSROC indicates the absence of a threshold

effect as shoulder is absent in the HSROC space.
Data analysis

The HSROC based on a random effect model was applied to

account for both intra- and interstudy variances in analysing the

diagnostic accuracy of the ML and DL algorithms utilizing

radiomic features for classifying PCNSL from GBM. The area

under the curve (AUC) data available from 7 studies showed a

ranged between 0.89 to 0.98 in the validation data set indicating

high diagnostic performance.
Subgroup analysis

The pooled sensitivity, specificity, and accuracy were

combined using a random effects model because of the

heterogeneity across the reviewed studies in Figures 4A–D.
TABLE 3 Summary of the diagnostic metrics of all the studies included in the meta-analysis.

Author Year Sample Size (N) Accuracy (%) Sensitivity (%) Specificity (%) Balanced Accuracy (%) AUC (%)

Chen Y (1) 2018 96 90.6 80.0 95.5 87.8 98.2

Xiao DD (2) 2018 82 82.0 78.0 91.0 84.5 90.0

Wu G (3) 2018 102 94.5 90.0 96.0 93.0 NA

Shrot S (5) 2019 53 93.6 100 100 100 NA

Chen C (6) 2020 138 97.9 98.2 97.6 97.9 97.8

Park JE (7) 2020 260 NA 95.0 76.0 85.5 89.0

Escoda A (8) 2020 95 93.0 93.0 92.0 92.5 NA

Bathla G (9) 2021 94 93.4 97.0 87.1 92.1 97.7

McAvoy (10) M 2021 248 94.0 87.0 100 93.5 95.0

Kim Y (4) 2018 143 94.7 96.6 92.9 94.7 95.6
fronti
TABLE 4 Summary of Radiomics Quality Score (RQS) of individual studies.

Sr. No Name RQS score % RQS checkpoint 1
(image protocol quality)

RQS checkpoint 12 RQS checkpoint 3

1 Chen Y (1) (2018) 16 44.44% 1 1 14

2 Xiao DD (2) (2018) 16 44.44% 1 1 14

3 Wu G (3) (2018) 15 41.67% 1 1 13

4 Short S (5) (2019) 13 36.11% 1 1 11

5 Chen C (6) (2020) 17 47.22% 1 1 15

6 Park JE (7) (2020) 18 50.00% 1 1 16

7 Pons-Escoda A (8) (2020) 16 44.44% 1 1 14

8 Bathla G (9) (2021) 16 44.44% 1 1 14

9 McAvoy (10) M (2021) 16 44.44% 1 1 14

10 Kim Y (4) (2018) 17 47.22% 1 1 15
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In the subgroup analysis, the overall sensitivity of diagnosing

PCNSL was lower (92% (95% CI, 0.88, 0.95)) than the specificity

(94% (95% CI, 0.89, 0.97)). We did not find any significant

differences in sensitivity, specificity or accuracy based on sample

sizes less than or greater than 100.
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Discussion

This systematic review and meta-analysis evaluated the

efficacy of deep learning/machine learning based algorithms in

differentiating PCNSL from GBMs, a dilemma often
FIGURE 3

Hierarchical Summary Receiver Operator Curve (HSROC) plot displaying the diagnostic performance of radiomic based ML tools & DL tools in
differentiating PCNSL from GBM. Hierarchical Summary Receiver Operator Curve (HSROC) plot displaying the diagnostic performance of
radiomic based ML tools & DL tools in differentiating PCNSL from GBM. Each coloured triangle represents each of the studies in the meta-
analysis. The plotted curve is the regression line that summarizes the overall diagnostic accuracy. The pooled sensitivity and specificity estimate
is based on the assumption of conditional independence and the use of perfect reference standards. The “TP”, “FP”, “FN”, “TN” rates for the two
studies (Park JE 2020 and Shrot S 2019 studies) as the former study has no available accuracy value and the latter one has both sensitivity and
specificity equal to one.
B

C D

A

FIGURE 4

(A–D) Performance evaluation of the ML and DL algorithms of all the studies in distinguishing PCNSL from GBM as represented by the random
forest plots. (A) Forest plots of sensitivity. (B): Forest plots of accuracy. (C) Forest plot of balanced accuracy, (D) Forest plots of specificity.
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encountered with neuroradiologists and the neurosurgeons,

often requiring invasive biopsies to classify the above entities.

Apart from the dilemma of differentiating the above malignant

lesions, neuroradiologists often also have difficulty in

differentiating PCNSL from inflammatory conditions (multiple

sclerosis and tumifactive demyelination) often having

therapeutic implications. Therefore, having non-invasive

tools like radiomics and AI would help increase the diagnostic

ability of the neuroradiologists to differentiate not only

malignant from benign inflammatory conditions but also

classify malignant lesions like PCNSL and GBM which are

hitherto difficult to distinguish using radiological semantic

features. This could be further useful in patients where

histopathological examination cannot be done due to a

multitude of reasons such as deep location within the brain

and poor performance status.IN such a scenario, non- invasive

methods like radiomics and deep learning from the MR images

may help the clinician.

Although radiomics and deep learning algorithms have been

used for a multitude of neurological conditions (31–34) its use in

classifying malignant conditions and differentiating them is of

paramount importance as the therapy and prognosis changes

across the spectrum of brain tumours. The present study

highlights the use of ML and DL algorithms for discriminating

PCNSL and GBM on radiological imaging. We identified 10

studies that trained predictive models using ML or DL

algorithms to classify PCNSL from GBM against the reference

gold standard histopathology. All the studies, used classifiers

that trained on radiomic features extracted from MR images or

classifiers using deep learning algorithms like convolutional

neural network (CNN).

The pooled analysis of all the studies showed encouraging

results with ML or DL classifiers performing extremely well with

highest accuracy of 97.9% and the lowest of 82% in

differentiating PCNSL from GBM. The area under the curve

(AUC) ranged between 89%-98.2% among all the studies that

were reviewed. (Table 4 and Figure 4)

The diagnostic metrics from the pooled analysis of the

results of the 10 studies showed a high degree of concordance

in classifying PCNSL from GBM as against the reference

histopathology. However, these positive results must be

interpreted with caution as a multitude of factors such as small

sample size, heterogenous imaging protocols, patient selection

criteria into the training and the validation set may have led to

overfitting of the data at the time of model development.

Overfitting is common in radiomic studies involving machine

learning and deep earning classifiers that reduces its potential for

immediate incorporation into clinical practise and use it for

treatment decisions (29–31).

Therefore, ML and DL classifiers need to be trained in large

data sets using highly heterogenous population. Further, these

models (classifiers) show variations with subtle changes in the

methods of segmentation, pre-processing of MR images
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acquired from heterogenous MR machines. A previously

conducted systematic review and meta-analysis in 2018

included 8 studies which used ML based classifiers for

differentiating PCNSL from GBM. Seven of the eight studies

did not have any external validation except for one study in

which the ML classifier modelled on the training set was

validated on an external data set (32). Similar to the above

metaanalysis, our metaanalysis also had a single study that was

externally validated on a different data set. There has been a

spurt in publications on ML/DL models in classifying PCNSL

versus GBM since 2018, and we found a total of 24 articles

investigating role of ML and DL algorithms for classifying

PCNSL and GBM. In order to make the meta-analysis more

robust, we focussed on studies reporting on the performance of

their ML/DL models exclusively against the reference

standard (histopathology).

A recent systematic review from 23 studies also investigated

the role of DL & ML in differentiating PCNSL from all grades

(Grade-II-IV) of Gliomas (31). However, significant differences

exist in the methodology and the search strategy of our

metaanalysis. Moreover, our metaanalysis included only those

studies that used ML or AL for differentiating PCNSL from

Glioblastoma against the gold standard histopathology. By

combining all the studies, on DL/ML in differentiate ng

PCNSL from GBM, they were left with a heterogenous dataset

precluding any further mathematical analysis to derive a

meaningful data, and hence had to contend with only a

systematic review of the available literature.

However, at the very outset and literature search strategy

stage of our manuscript, we identified the heterogeneity in

methodology of the conducted studies, and realised they could

be broadly classified into 2 types- those comparing ML/DL

with histopathology as a gold standard, and then those

comparing ML/DL models with radiologists performance. We

found around 12 papers under each category, and analysed them

separately. This current manuscript deals with the performance

of ML/DL methods versus histopathology as a gold

standard. Hence, mathematical analysis in the form of

statistical tests for a meta-analysis were performed to evaluate

the proof of performance of advanced computing methods in

differentiating PCNSL from GBM and not other gliomas.

To summarise, ML and DL tools may complement the

radiologic features to differentiate PCNSL from GBM. These

tools may have the potential to assist radiologists in approaching

cases that may have features common to both PCNSL and GBM.

Presently these algorithms may have certain deficiencies,

however with refinement in the computing processes, ML/DL

based models will likely help the neurosurgeons improve the

quality of managing patients of brain tumours by optimizing the

use of invasive diagnostic procedures in the future, thereby

reducing the incidence of complications that compromise

patient quality of life and life expectancy while expediting

initiation of intervention.
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Strengths of the study

We assessed ML and DL performance in both internal and

external validation data sets which enhanced the credibility of

the review. Being able to compare both the analytic methods to

the gold standard histopathology in the test cohort and

validation cohort have produced fairly clear results.

Limitations of the Study

Application of ML in neuroradiology for solving the

dilemma of whether an image depicts GBM or PCNSL is

relatively new. There is currently a limited number of

publications that address this scientific inquiry. Our search

strategy for the present study only included limited databases

(PubMed, EMBASE & Cochrane database). All the studies that

were reviewed varied in terms of the imaging protocols used,

types of MRI machines used, MR sequences used (i.e., T1-

weighted, T2-weighted, diffusion-weighted, etc.), method of

tumour segmentation, tools for feature selection and reduction

and ultimately the types of classifiers used for training the image

datasets. Future studies that address distinguishing GBM from

PCNSL should prospectively evaluate the performance of their

model and also consider the utility of newer MRI techniques that

may improve differentiation of these two pathologies.

Additionally, our assessment of bias revealed inherent issues

with applying the QUADAS-2 to ML studies. Despite these

limitations, we maintain that assessment of bias is an

absolute necessity.
Future directions:

Prospective multicentre trials are the need of the hour to

generate more robust data so that results from an independent

external validation dataset are available. The inherent variability

across studies with regard to the process of conducting each step

leading to the radiomics model could be attributed to high bias

and heterogeneity, not necessarily underlying biologic effects,

standardization in image acquisit ion, segmentation

methodology, feature selection and classification, statistical

analysis, and the reporting format should be established

for reproducibility and the generalization of ML-based

radiomics studies (33). Essential steps for standardization

include optimizing the standard imaging acquisition process,

fully automating the process for segmentation and feature

engineering, reducing the redundancy of feature numbers,

enhancing the reproducibility of radiomics features, and

reporting the results transparently. The guidelines suggested

by the relevant professional societies, such as the Society of

Nuclear Medicine and Molecular Imaging, the Quantitative

Imaging Network, Radiology Society of North America,

and the European Society of Radiology that lead the

field in imaging methods, including radiomics, should be

considered (34).
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Conclusion

The systematic review of studies investigating ML & DL based

algorithms to differentiate PCNSL from GBM have demonstrated

encouraging results and certainly have the potential to aid

neurooncologists in taking preoperative treatment decisions in

the future leading to not only reduction in morbidities but also be

cost effective. It is likely that predictive analytics using ML or DL

based algorithms will help optimize diagnostic decision-making

process and individualise patient management. Although studies

had limited sample size, formal predictive analytics, using these

models may have the potential to improve clinician performance

complementing human expertise and experience with the

computational power. However, one must keep in mind the

pitfalls associated with overfitting the data due to limited image

data sets and resultant lack of training these algorithms to

maximize the generalizability and their utility. Therefore,

prospective multicentric trials with large data sets should be

initiated to train the models on large heterogeneous and real-

world data sets that account for the heterogeneity encountered in

acquisition of images in the real-world clinical practice.
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