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Inhibiting YAP in Endothelial Cells
From Entering the Nucleus Attenuates
Blood-Brain Barrier Damage During
Ischemia-Reperfusion Injury

Shuaishuai Gong®, Huifen Ma’, Fan Zheng, Juan Huang, Yuanyuan Zhang, Boyang Yu,
Fang Li* and Junping Kou *

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of
Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China

Blood-brain barrier (BBB) damage is a critical event in ischemic stroke, contributing to
aggravated brain damage. Endothelial cell form a major component of the BBB, but
its regulation in stroke has yet to be clarified. We investigated the function of Yes-
associated protein 1 (YAP) in the endothelium on BBB breakdown during cerebral
ischemia/reperfusion (I/R) injury. The effects of YAP on BBB dysfunction were
explored in middle cerebral artery occlusion/reperfusion (MCAO/R)-injury model
mice and using brain microvascular endothelial cells (BMEC) exposed to oxygen-
glucose deprivation/reoxygenation (OGD/R) injury. The degree of brain injury was
estimated using staining (2,3,5-Triphenyltetrazolium chloride, hematoxylin and eosin)
and the detection of cerebral blood flow. BBB breakdown was investigated by
examining the leakage of Evans Blue dye and evaluating the expression of tight
junction (TJ)-associated proteins and matrix metallopeptidase (MMP) 2 and 9. YAP
expression was up-regulated in the nucleus of BMEC after cerebral I/R injury.
Verteporfin (YAP inhibitor) down-regulated YAP expression in the nucleus and
improved BBB hyperpermeability and TJ integrity disruption stimulated by
cerebral I/R. YAP-targeted small interfering RNA (siRNA) exerted the same effects
in BMEC cells exposed to OGD/R injury. Our findings provide new insights into the
contributions made by YAP to the maintenance of BBB integrity and highlight the
potential for YAP to serve as a therapeutic target to modulate BBB integrity following
ischemic stroke and related cerebrovascular diseases.

Keywords: YAP, verteporfin, endothelial cells, blood-brain barrier, ischemic stroke

1 INTRODUCTION

Ischemic stroke is often accompanied by vascular dysfunction due to damage to the blood-brain
barrier (BBB) (Feigin et al., 2018; Ozen et al., 2018). The BBB is a specialized barrier comprised of
endothelial cells (ECs), tight junctions (TJs), pericytes, astrocytic end-feet processes, and the
basement membrane. These components are crucial for the establishment of a highly regulated
microenvironment, which ensures appropriate neuronal function (Moskowitz et al., 2010; Lallukka
et al., 2018; Sweeney et al, 2019). Therefore, protection against BBB destruction represents an
effective strategy for the clinical prevention and treatment of ischemic stroke.
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ECs represent the most important component of the BBB,
lining the entire microvasculature, and forming TJs to limit
paracellular transport, ECs also display considerably a
limited rate of transcellular transport for hydrophilic
molecules, which contributes to the maintenance of barrier
function (Armulik et al., 2010; Guclu et al., 2014). The
appropriate regulation and maintenance of the barrier
integrity of the ECs that line within blood vessels
represent an essential feature of the BBB. The prevention
of early cytoskeletal changes in microvascular ECs can
attenuate BBB breakdown and secondary tissue injury,
resulting in the amelioration of long-term neurological
deficits (Fernandez-Klett et al., 2013; Hall et al., 2014).
However, the molecular mechanisms that underlie the
regulation of EC function and the associated BBB
alterations that occur under pathological conditions
remain incompletely understood.

The Hippo/Yes-associated protein 1 (YAP) kinase cascade has
been reported to serve as a critical regulator of organ size, tissue
regeneration, and tumor suppression (Halder and Johnson, 2011;
Lin et al, 2017). The Hippo pathway negatively regulates the
activity of transcriptional co-activators, including YAP and
transcriptional co-activator with PDZ-binding motif (TAZ)
(Varelas, 2014). In the nucleus, YAP transcribes genes that
control cell proliferation, apoptosis, and cell fate (Szymaniak
et al, 2015). YAP localization becomes dramatically altered
upon tissue damage, and in some tissues, nuclear YAP
abundance is associated with increased regeneration (Choi and
Kwon, 2015). YAP has been shown to be involved in BBB
dysfunction during ischemic stroke (Ouyang et al., 2020; Gong
et al., 2019), although the function of YAP in the maintenance of
the cerebral endothelial barrier (CEB) remains unclear. We
postulated that YAP might be essential for EC protection and
the maintenance of CEB integrity following ischemic stroke.

In the present study, we investigated the effects of YAP on the
CEB in mouse and cell models of ischemic-reperfusion injury,
with the aim of determining whether YAP represents a potential
therapeutic target for regulating BBB integrity after ischemic
stroke and related cerebrovascular diseases.

2 MATERIALS AND METHODS
2.1 Ethical Approval of the Study Protocol

The welfare of all animals was ensured, and all experimental
procedures were performed in accordance with the Guide for the
Care and Use of Laboratory Animals established by the National
Institutes of Health. The Animal Ethics Committee of China
Pharmaceutical University (Nanjing, China) approved all
protocols [No. SYXK(Su)2018-0008].

2.2 Animals

Male C57BL/6] mice were purchased from the Animal Center of
Yangzhou University (Yangzhou, China). Adequate food and
water were provided. Animals were housed in cage in an
environment maintained at a constant temperature (22-24°C)
with a normal circadian rhythm.

Inhibiting YAP Attenuates I/R Injury

2.3 Cell Culture
bEnd.3 cells were purchased from Bioleaf Biotech (Shanghai, P.R.

China) and cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, Billings, MT, United States) supplemented
with 15% fetal bovine serum (FBS; Gibco), 100 U/mL
penicillin - and 100 U/mL  streptomycin  (Ameresco,
Framingham, MA, United States) at 37°C in a humidified
atmosphere of 5% CO, and 95% air. Cells were plated onto
cell culture dishes and grown to 80-90% confluence before
experimentations.

2.4 Middle Cerebral Artery Occlusion/
Reperfusion Model

Mice were anesthetized in an induction chamber using 3-4%
isoflurane in 30% O,/70% N,. Anesthetization was confirmed
after approximately 2min when respiration slowed to one
breathe per second. Animals were removed from the induction
chamber and placed in an anesthesia mask, which maintained an
isoflurane concentration of 1-1.5%. Middle cerebral artery
occlusion/reperfusion (MCAO/R) was induced using a method
based on intraluminal filaments with slight modification as
described previously (Gong et al, 2019). Briefly, the right
middle cerebral artery of mouse was occluded by inserting a
blunt-tip 4-0 nylon monofilament for 1h followed with
reperfusion for 24 h.

2.5 Oxygen and Glucose Deprivation/

Reperfusion Model

bEnd.3 cells were placed in a 37°C anaerobic chamber (0.2% O,
5% CO,, 95% N,) and cultured in glucose-free medium for 6 h.
After the oxygen-glucose deprivation, the cells were placed in
glucose-containing DMEM with 15% FBS and incubated under
normoxic conditions for hours in order to imitate I/R-like
conditions Cao et al. (2016).

2.6 Transendothelial Electrical Resistance

Assay

The protective effects of verteporfin (VP, CAS No. 129497-78-5)
were examined in vitro. Cells were divided into four groups (n =
3): Control, OGD/R, VP (1 uM, Supplementary Figure S1)
treatment after 6h OGD, and edaravone (Edara, 1 uM, CAS
No. 89-25-8). Edara is a commonly used drug for the clinical
treatment of ischemic stroke and is often used as a positive drug
in basic research (Bao et al., 2018). bEnd.3 cells were cultured on
top of gelatin-coated transwell inserts in 24-well plates for 7 days.
The Transendothelial electrical resistance (TEER) of the EC
monolayer was monitored daily using a Millicell-ERS
voltohmmeter (Millipore, United States). The results obtained
from the experimental groups were measured after subtracting
the value of a blank, cell-free filter.

2.7 TTC Staining

The protective effects of VP were examined in mice that were
randomly divided into four groups (n = 6 per group): sham,
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MCAO/R, VP (10 mg/kg, i. p.) after 1h MCAO, and Edara
(5 mg/kg, i. p.). After 24 h of reperfusion, the mice brains were
quickly removed and frozen at —70°C. The frozen brain was
coronally cut into five slices, then incubated individually using a
24-well culture plate with 1% triphenyl tetrazolium chloride
(TTC) solution at 37°C for 15min. The infarct area was
measured by computerized planimetry after photographing
with a digital camera. The infarct volume is calculated by
summing infarct areas on each slice and multiplying by slice
thickness. The personnel conducting the TTC staining was
blinded to the study group assignment in order to avoid
subjective factors affecting the experimental results Tsubokawa
et al. (2017).

2.8 Determination of Cerebral Edema and

Neurological Deficits

The mice were sacrificed after MCAO/R induction. The brains
were taken out and the wet weight of tissue was accurately
measured. After dried in an oven at 100°C for 48 h, the lung
tissues were weighed again, recording as dry weight. The content
of water in brain were calculated to determine the degree of brain
edema. The neurological deficits of the experimental animals
were graded on an 18-point scale, as previously described Wu
et al. (2019). The evaluation indicators include body symmetry,
gait, climbing, circling behavior, forelimb symmetry, compulsory
circling and whisker response. The index scores are added
together as the final score. The higher the score, the more
severe the neurological deficit.

2.9 Hematoxylin and Eosin Staining

Animal brains were removed 24 h after reperfusion, mice were
euthanized, the brains excised rapidly, and dipped in 4%
paraformaldehyde. Examination was completed in the
Pathology Department of the Jiangsu Center for Safety
Evaluation of Drugs (Jiangsu, P.R. China) and the brain slices
were observed by a digital scanner (NanoZoomer 2.0 RS,
Hamamatsu, Japan).

2.10 Cerebral Blood Flow Measurement
After anesthesia with 3% pentobarbital sodium, an incision of
about 1-2 cm was made in the abdominal cavity of mice. Cerebral
blood flow (CBF) in the mesentery was measured using a laser
Doppler flowmeter Laser. Images were acquired at ischemia onset
and during reperfusion (n = 6 per group).

2.11 Evans Blue Analysis

Evans Blue (EB) extravasation was used to determine BBB
integrity as described previously Wu et al. (2019). At 22h
after reperfusion, 2% EB dye (3 ml/kg, Sigma, United States)
was injected via the tail vein. The mice were euthanized at 2h
after injection of EB and then perfused with saline. The brains
were rapidly taken out and imaged. Then the right hemisphere of
brain tissue was weighed, homogenized in formamide (0.1 g/ml)
and centrifuged at 5,000 g for 30 min after incubated at 60°C for
18 h. The supernatants were collected to determine the quantity
of EB, the absorbance at 620nm was measured

Inhibiting YAP Attenuates I/R Injury

spectrophotometrically using an Infinite M200 Pro plate
reader (Tecan, NC, United States). EB leakage into the brain
tissue was assessed with a standard curve and expressed as
micrograms per Gram of wet brain tissue.

2.12 In vitro Permeability Assay

Cells were incubated in the Millicell™ cell culture inserts in a
humidified atmosphere of 5% CO, and 95% air for 7 days. After
exposure to OGD/R conditions and drugs, the medium was
removed. 200 pL of EB solution (0.67 mg evans blue powder
dissolved in 4% BSA solution) were added into the Millicell cell
culture inserts and 600 pL of 4% BSA solution were added into the
external chamber. The cells were continuously incubated for
another 1h and then the external solution was collected and
the absorbance at 620 nm was measured spectrophotometrically
using an Infinite M200 Pro plate reader (Tecan, NC,
United States). The EB leakage of each group was calculated
according to the standard curve and expressed as a percentage of
the values of control group.

2.13 siRNA Transfection and Plasmid

2.13.1 YAP-siRNA Treatment

YAP-siRNA (sense: 5'-GACAUCUUCUGGUCAGAGA-3/, and
anti-sense: 3'-AGUACCGGAGGUAACAGAG-5') were
constructed by Genomeditech Co., Ltd, (Shanghai, China).
Cells were divided randomly into four groups: Control,
Control + siRNA, OGD/R, OGD/R + siRNA. bEnd.3 cells
were treated with YAP-siRNA or control solvent for 6h in
DEME medium and proliferated for another 24 h. OGD/R was
treated subsequently in DMEM medium. After testing the
expression of YAP by western blot, the cells with adequate
interference efficiency were used in the evaluation of the
downstream signaling pathways.

2.14 Cell Viability

Culture medium containing 5 mg/ml 3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) solution replaced
the complete medium Four hours after incubation at 37°C, the
reaction solution was removed, and 150 uL DMSO was added to
each well. A microplate reader (Epoch, Bio Tek, Winooski, VT,
United States) was used to record the absorbance with dual waves
at 570 and 650 nm after 10 min of shaking.

2.15 Western Blot Analysis

The cells or brain tissue samples (n = 6, for each group) were
decapitated and rapidly collected. The prepared cells or tissues
(brain tissues from the ischemic penumbra) were homogenized in
1:10 (w/v) ice-cold protein extraction buffer in glass
homogenizers. To detect the levels of YAP and phospho- (p)-
YAP in the nucleus, a Nuclear Extraction Kit (Solarbio, Cat:
SN0020) was used to isolate and purify nuclear and cytoplasmic
fractions. To examine the levels of zonula occludens-1 (ZO-1),
occludin, matrix metalloproteinase (MMP)-2 and MMP-9,
soluble proteins were extracted from cell lysates by
centrifugation at 12,000 x g for 10 min at 4°C and collecting
the supernatant. The membranes were blocked with phosphate-
buffered saline containing Tween20 (PBST) containing 5% skim
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FIGURE 1 | Expression of YAP/p-YAP in the brain endothelial cells following MCAO/R-induced injury. Mice were subjected to 1 h of ischemia and 24 h of
reperfusion. (A) MCAO/R-induced changes in YAP/p-YAP protein expression levels in the cytoplasm and nucleus were detected by western blotting analysis. (B) and (C)
MCAO/R-induced changes in YAP/p-YAP protein expression levels were detected by immunofluorescence analysis using a combination of anti-YAP (green), anti-p-YAP
(green), CD31 (red) and DAPI (blue) staining in mice. The white arrow represents the number of YAP protein into the nucleus. Scale bar = 50 pm. Data are expressed

milk for 2h at room temperature and then incubated with
primary rabbit monoclonal antibody overnight at 4°C (YAP,
p-YAP, 1:500; Proteintech Group, United States ZO-1,
occludin 1:500; Abcam, United Kingdom MMP-2, MMP-9, I:
800; CST, United States). The membranes were then washed and
incubated with secondary antibody (anti-rabbit IgG, 1:3,000;
Proteintech Group, United States) for 1.5h at room
temperature. The anti-actin antibody (1:1,000; Proteintech
Group, United States) served as a loading control. The protein
bands were visualized with enhanced chemiluminescence
reagents (ECL), and the signal densitometry was quantified
using a western blotting detection system (Quantity One, Bio-

Rad Laboratories, United States) by an observer blinded to the
groups of animals or cells being examined.

2.16 In vivo and In vitro

Immunofluorescence

Specimens were sectioned at thickness 10 um to adhesive
slides and bEnd.3 cells were cultured on laser confocal
dishes. Specimens were treated with blocking buffer (5%
bovine serum albumin, 0.2%Triton-100) for 1 h at 4 °C and
then incubated overnight at 4°C with primary
antibody against YAP, p-YAP, and ZO-1 (ZO-1, 1:200;
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Proteintech Group, United States; YAP, 1:300; p-YAP, 1:100;
Abcam, United Kingdom), followed by incubation with an
Alexa Fluor 488-conjugated donkey anti-rabbit IgG
(HpL) antibody (Invitrogen, Carlsbad, CA, United States)
and 4',6-Diamidino-2-phenylindole (Beyotime
Biotechnology). Fluorescent images were observed with a
confocal laser scanning microscope (LSM700; Zeiss, Jena,
Germany) and processed using ZEN imaging software.
Regarding the IF brain slice, the location of the studied
brain area was showed as an illustration figure in
Supplementary Figure S1.

2.17 Statistical Analysis

Data are expressed as the mean + SEM. Statistical analyses were
carried out using the Student’s t-test (two-tailed) for comparison
between two groups and one-way analysis of variance (ANOVA)
followed by Dunnett’s test if the data involved three or more
groups. Tests were considered significant at p < 0.05. Analyses
were carried out using Prism v5.01 (GraphPad, San Diego, CA,
United States).

3 RESULTS

YAP is highly expressed in the nuclei of brain endothelial cells
from mice subjected to MCAO/R injury in vivo.

To determine the specific role played by YAP in ischemic
stroke, YAP expression levels were evaluated in the brain after
MCAO/R injury using western blotting and IF analyses. After 1 h
of cerebral ischemia and 24 h of reperfusion, the expression levels
of YAP and p-YAP were reduced in the cytoplasm, and the
expression level of YAP was significantly increased in the nucleus
(Figure 1 and Supplementary Figures S3-5).

Verteporfin (a small molecule inhibitor of YAP) inhibits the
expression of YAP in the nucleus under MCAO/R injury
conditions.

The western blot analysis results showed that VP (10 mg/kg),
when i. p. injected 1h after MCAO, significantly increased the
expression levels of p-YAP and YAP in the cytoplasm and
decreased YAP expression levels in the nucleus (Figure 2A).
In addition, the IF results also showed that the fluorescence
intensity of p-YAP significantly increased (Supplementary
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Fig. 7), and the intensity of YAP in nucleus significantly
decreased after the administration of VP compared with the
intensities observed in the untreated MCAO/R group (Figure 2B
and Supplementary Figure S6).

3.1 Inhibition of YAP Attenuates MCAOQ/

R-Induced Brain Damage

VP (10 mg/kg) significantly reduced cerebral infarct volume,
cerebral edema, and neurological deficits after MCAO/R injury
(Figures 3A,B, Supplementary Figures S8 and 9). The damaged
area of the brain was reduced significantly in MCAO/R model
mice after the administration of VP compared with the untreated
MCAO/R mice (Figure 3C). CBF improved in the ischemic
hemisphere of MCAO/R mice after the administration of VP
compared with untreated MCAO/R mice (Figure 3D). The
efficacy of VP was similar to that observed for Edara, which
was used as a positive control, which indicated that VP treatment
induced improvements following ischemic brain injury in mice.

3.2 The Inhibition of YAP Results in the
Maintenance of BBB Integrity Following
MCAO/R Injury

Compared with the untreated MCAO/R group, the
administration of VP significantly reduced EB leakage,
increased the expression levels of ZO-1 and occludin, and
decreased the expression levels of matrix metallopeptidase

(MMP)-2 and MMP-9 in brain tissues (Figure 4). The efficacy
of VP was similar to Edara, which indicated that VP could
improve BBB integrity following MCAO/R injury.

3.3 YAP is Highly Expressed in the Nucleus
of Cells Exposed to OGD/R Injury In vitro

To evaluate changes in YAP expression in an in vitro model of
cerebral I/R injury, YAP/p-YAP expression levels were examined
in the brain-derived EC line bEnd.3 following the induction of an
OGD/R model. YAP/p-YAP expression levels in the cytoplasm
reduced gradually after 6h of OGD and 6 h of reoxygenation,
whereas YAP expression increased gradually in the nucleus
(Figure 5A). IF analysis also showed changes in YAP/p-YAP
expression occurred after 6h of OGD followed by 6h of
reoxygenation (Figure 5B), which was consistent with the
results of in vivo studies.

3.4 VP Inhibits the Expression of YAP in the

Nucleus Under OGD/R Injury Conditions

Whether VP can inhibit the expression of YAP in the nucleus
under OGD/R injury conditions remains to be elucidated. The
expression levels of the Hippo pathway target kinase YAP and
p-YAP in the Hippo pathway were measured by western blotting
and IF analyses in vitro after the administration of VP. The results
showed that VP (1 uM) significantly increased the expression
levels of p-YAP and YAP in the cytoplasm and decreased YAP
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FIGURE 4 | Effects of VP treatment on BBB damage caused by MCAO/R injury in mice. Mice were subjected to 1 h of ischemia and 24 h of reperfusion. Mice were
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of reperfusion. (B) Representative western blots and quantitative analyses of ZO-1 and occludin expression levels after the administration of VP in mice. (C)
Representative western blots and quantitative analyses of MMP-2/9 expression levels after the administration of VP in mice. Data are expressed as the mean + SD,
n =6. #p < 0.01 vs. Sham group, *p < 0.01 vs. MCAO/R group.

expression levels in the nucleus (Figures 6A-C). Further analysis
showed that under OGD/R conditions, the ratio of translocated
YAP protein into the nucleus was approximately 85%, and after
VP administration, the ratio of translocated YAP into the nucleus
was approximately 30% (Supplementary Figure S10).

3.5 Inhibition of YAP Ameliorates the Loss of
Endothelial Barrier Integrity Induced by
OGD/R Injury

To further investigate the protective effects of VP in vitro, bEnd.3
cells exposed to OGD/R injury were utilized. Compared with the
control group, the cell viability of the OGD/R group decreased,

based on the results of an MTT assay (Figure 7A, Supplementary
Figure S11). Treatment with VP (1 pM) and Edara (1 uM)
significantly increased cell survival following OGD/R injury.
TEER was lower after OGD/R injury compared with the
control group and increased significantly following treatment
with VP and Edara (Figure 7B). EB leakage increased in the
OGD/R group compared with that in the control group, and VP
significantly inhibited OGD/R-induced EB leakage to an
equivalent level as observed for Edara (Figure 7C). Compared
with the OGD/R group, the protein expression levels of ZO-1 and
occludin were increased, and MMP-2 and -9 expression levels
were decreased significantly after VP  administration
(Figures 7D,E).
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3.6 YAP-siRNA Attenuates OGD/R
Injury-Induced Endothelial Barrier
Disruption

To further evaluate the effects of YAP on TJs between ECs,
we knocked down YAP expression in bEnd.3 cells using
YAP-siRNA in vitro (Supplementary Figures S11 and 12).
Compared with the control group, the TEER of cells
subjected to OGD/R. Treatment with YAP-siRNA induced
a significant increase in TEER (Figure 8A). EB leakage
increased in the OGD/R group compared with the control
group. YAP-siRNA significantly inhibited OGD/R-induced
EB leakage to an equivalent level (Figure 8B).
Compared with the OGD/R group, the protein
expressions levels of ZO-1 and occludin increased
significantly after the administration of YAP-siRNA
(Figure 8C). The IF results also showed that the
fluorescence intensity of ZO-1 increased significantly after
the administration of YAP-siRNA compared with that in the
OGD/R group (Figure 8D).

4 DISCUSSION

Here, we identified a previously unrecognized role for YAP in the
maintenance of endothelial T7 stability. The increased expression
of YAP in the nucleus was observed in both cellular and animal
models of cerebral I/R injury. The specific role played by YAP was
investigated through the use of a YAP inhibitor and the use of
YAP siRNA. The results showed YAP inhibition improved
cerebral I/R injury-induced BBB dysfunction. We identified
YAP as a regulator of BBB integrity during pathological
injury. Thus, the inhibition of YAP expression during cerebral
I/R injury may represent a novel strategy for the promotion of
ischemic stroke recovery.

The Hippo/YAP signaling pathway plays an essential role in
central nervous system development Bao et al. (2017). YAP
participates in a range of cellular functions, including
migration, adhesion, phagocytosis, and signal transduction
Guichet et al. (2018). YAP regulates adherens junction
dynamics and EC distribution during vascular development
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(Dieterich et al., 2000; Nagasawa-Masuda and Terai, 2017). The
Hippo/YAP signaling pathway has been reported to be involved
in the destruction of the BBB in an in vivo model (Gong et al.,
2019; Jin et al., 2020). However, no studies have investigated the
function of YAP in the maintenance of CEB integrity in mice and
brain EC models of ischemic stroke. In this study, we found that
YAP was highly expressed in the nucleus following cerebral I/R
injury model induction (Figures 1-5), which indicated that the
Hippo/YAP signaling pathway was linked to CEB injury after
ischemic stroke. We postulate that YAP acts as a key target
protein, which participates in the pathological process and
biologic function of ischemic stroke; however, few studies have
investigated the involvement of YAP in CEB regulation in
ischemic stroke.

To further explore the role played by YAP during brain injury
induced by cerebral I/R, we used a YAP inhibitor, verteporfin
(VP), which is a benzoporphyrin derivative that is clinically used
in photodynamic therapy for neovascular macular degeneration
(Brodowska et al., 2014). Recently, studies have shown that VP
inhibits YAP activation by disrupting YAP-TEA domain

transcription factor (TEAD) interactions, which prevented
YAP-induced oncogenic growth (Liu-Chittenden et al.,, 2012).
However, whether and how VP regulates YAP expression during
the development of ischemic stroke remains unknown. In this
study, VP treatment was found to significantly increase the
expression levels of p-YAP and YAP in the cytoplasm and
decreased YAP expression levels in the nucleus under cerebral
I/R model conditions (Figures 2-6). Furthermore, VP treatment
was able to reduce the cerebral infarct volume and brain water
contents and improve neurological deficits and CBF in cerebral
I/R model mice. Cerebral infarct volume, neurological deficits,
brain edema, and CBF are often used to evaluate the degree of
brain injury (Lochhead et al, 2017). H and E staining is an
important method used to evaluate the degree of pathological
changes in tissue sections (Campbell et al., 2017). Our results
suggested that VP ameliorated MCAO/R-induced brain damage
in vivo (Figure 3, Supplemental Figure S8).

The evolution of BBB breakdown after cerebral I/R occurs
along the following path: I/R rapidly induces cytoskeletal
alterations in BMECs, due to the activation of a variety of
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protease and signaling pathways. Cytoskeletal alterations cause
EC contraction and the disassembly of TJs through junctional-
accessory proteins (for example, ZO-1, occludin). The
disassembly and redistribution of TJs result in subtle BBB
hyperpermeability, inducing the extravasation of fluid and
small macromolecules from the blood to the central nervous
system. The weakened barrier becomes more vulnerable to the
MMP-2/9-mediated degradation of TJs, further damaging the
BBB and permitting the eventual leakage of large macromolecules
Shi et al. (2016). In vivo, EB staining is often used to evaluate the
degree of BBB damage (Nishiyama et al., 2008). VP treatment in
MCAO/R model mice was able to significantly decrease EB
leakage and MMP2/9 expression levels and increase the
expression levels of ZO-1 and occludin compared with
untreated MCAO/R model mice (Figure 4). In vitro, VP
remarkably alleviated OGD/R-induced endothelial-barrier
injury, mitigated bEnd.3 cell leakage, and inhibited the
degradation of TJ proteins (Figure 7) in OGD/R exposed cells
compared with the untreated control, indicating the protective
effects of VP against I/R-induced CEB damage. Meanwhile,

bEnd.3 cells transfected with YAP-siRNA were used to
evaluate the effects of YAP on endothelial barrier integrity
in vitro. YAP expression decreased in following siRNA
interference in bEnd3 cells exposed to OGD/R (Figure 8).
These results indicated that YAP-siRNA was able to maintain
the integrity of the endothelial barrier by promoting the
preservation of TJ, which further indicated that YAP is a vital
target molecule for the maintenance of BBB integrity.

Cerebral ECs are key components involved in the maintenance
of BBB integrity. The loss of BBB integrity is a pathophysiological
hallmark of brain diseases, including Alzheimer’s disease,
epilepsy, and cranial trauma (Straight et al., 2003; Schmidt
et al., 2014; Sharma and Goyal, 2016). Studies have reported
that Hippo (MST)-YAP signaling is involved in brain vessel in
various diseases, including cerebral I/R injury and subarachnoid
hemorrhage, suggesting the potential for the modulation of this
signaling pathway to influence the prognosis of many types of
neurological disorders (Gong et al., 2019; Zhao et al., 2016; Qu
et al., 2018). Future studies remain necessary to elucidate the
specific roles played by this pathway in the development of these
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(red), and DAPI-stained nuclei (blue). Scale bar = 20 um. Data are expressed as the mean + SD, n = 3. *p < 0.01 vs. Control group, *p < 0.05, *p < 0.01 vs. OGD/
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various neurological disorders. As an essential component of this
signaling pathway, YAP has been shown to be involved in several
diseases, including the discord caused by viruses or bacteria (Lee
et al, 2013). Our results suggested that YAP might act as a key
mediator in I/R-induced CEB injury. Our findings provide broad
insights into  brain injury characterized by BBB
hyperpermeability and indicate new therapeutic strategies for
severe diseases associated with dysfunctional TJ signaling.

In summary, the inhibition of YAP expression in the nucleus
beneficially antagonizes the high endothelial permeability induced by

cerebral I/R injury, both in vivo and in vitro. As a regulatory molecule,
YAP contributes to the maintenance of CEB integrity (Figure 9).
Taken together, our findings extend the current understanding of the
regulatory mechanisms associated with TJ function and present
potential novel targets for the development of efficacious drugs
that may prevent and treat damage associated with ischemic stroke
and other related diseases.

In conclusion, we clarified a key role for YAP in BBB
maintenance during stroke. YAP could represent a potential
target in ECs for pharmacotherapeutic interventions designed
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FIGURE 9 | Graphic abstract depicting the role played by YAP to protect against BBB disruption in cerebral ischemia-reperfusion injury.

to protect the BBB. Our data revealed new opportunities for the
prevention of brain damage aggravation following ischemic
stroke.
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Thrombolysis in Acute Ischemic
Stroke Improving Neurological
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Cluster-Randomized Trial (GIANT)

Xuting Zhang'?, Wansi Zhong'?, Xiaodong Ma?, Xiaoling Zhang®, Hongfang Chen*,
Zhimin Wang?®, Min Lou™ and GIANT Investigators

"Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China,
2Department of Neurology, Haiyan People’s Hospital, Jiaxing, China, SDepartment of Neurology, The Second Affiliated Hospital of
Jiaxing University, Jiaxing, China, *Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine,
Jinhua, China, °Department of Neurology, The First People’s Hospital of Taizhou, Taizhou, China

Background and Purpose: We aimed to investigate the effect of Ginkgolide® treatment
on neurological function in patients receiving intravenous (IV) recombinant tissue
plasminogen activator (rt-PA).

Methods: This cluster randomized controlled trial included acute ischemic stroke patients
in 24 centers randomized to intervention of intravenous Ginkgolide® or control group
within the first 24 h after IV rt-PA therapy (IVT). Clinical outcome at 90 days was assessed
with modified Rankin Scale (mMRS) score and dichotomized into good outcome (0-2) and
poor outcome (3-6). Hemorrhagic transformation represented the conversion of a bland
infarction into an area of hemorrhage by computed tomography. Symptomatic
intracerebral hemorrhage (sICH) was defined as cerebral hemorrhagic transformation in
combination with clinical deterioration of National Institutes of Health Stroke Scale (NIHSS)
score >4 points at 7-day or if the hemorrhage was likely to be the cause of the clinical
deterioration. We performed logistic regression analysis and propensity score matching
analysis to investigate the impact of Ginkgolide® treatment with IV rt-PA on good outcome,
hemorrhagic transformation and sICH, respectively.

Results: A total of 1113 patients were finally included and 513 (46.1%) were in the
intervention group. Patients in the Ginkgolide® group were more likely to have good
outcomes (78.6 vs. 66.7%, p < 0.01) and lower rate of sICH (0 vs. 2.72%, p < 0.01),
compared with patients in the control group. The intra-cluster correlation coefficient (ICC)
for good outcome at 90 days was 0.033. Binary logistic regression analysis revealed that

Abbreviations: AIS, acute ischemic stroke; BBB, blood brain barrier permeability; CI, confidence intervals; DNA, deoxy-
ribonucleic acid; ENI, early neurological improvement; ER, endoplasmic reticulum; HI, hemorrhagic infarction; ICC, intra-
cluster correlation coefficient; IVT, intravenous thrombolysis; IQR, interquartile range; MCAO, middle cerebral artery oc-
clusion; mRS, modified Rankin scale; NTHSS, National Institute of Health Stroke Scale; ONT, onset to reperfusion therapy; OR,
odds ratios; PH, parenchymal hemorrhage; PPS, per-protocol set; PAF, platelet-activating factor; rt-PA, recombinant tissue
plasminogen activator; SOD, superoxide dismutase; sSICH, symptomatic intracranial hemorrhage.
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Ginkgolide Thrombolysis Improve Neurological Function

treatment with Ginkgolide® was independently associated with 90-day mRS in patients
with [V rt-PA therapy (OR 1.498; 95% CI 1.006-2.029, p = 0.009). After propensity score
matching, conditional logistic regression showed intervention with Ginkgolide® was
significantly associated with 90-day good outcome (OR 1.513; 95% CI 1.073-2.132,
p =0.018). No significant difference in hemorrhage transformation was seen between the 2
matched cohorts (OR 0.885; 95% CI 0.450-1.741, p = 0.724).

Conclusion: Using Ginkgolide® within 24-hour after IV rt-PA is effective and safe and
might be recommended in combination with rtPA therapy in acute ischemic stroke.

Clinical Trial Registration: http://www.clinicaltrials.gov, identifier NCT0O3772847.

Keywords: Ginkgolide®, stroke, intravenous alteplase, prognosis, improve

INTRODUCTION

Intravenous recombinant tissue plasminogen activator (rt-PA)
administered within 4.5h of onset (or later if a favorable
perfusion imaging profile is present) could improve
neurological outcome in patients with acute ischemic stroke
(AIS). Treatments for AIS continue to evolve after the
superior value of endovascular thrombectomy was confirmed
over systemic thrombolysis. Unfortunately, up to 50% of such
patients with successful recanalization still have an unfavorable
outcome (Hussein et al., 2018), and numerous neuroprotective
drugs have failed to show benefit in the treatment of AIS (Zhao
et al,, 2020). New methods to enhance the general efficacy of
intravenous thrombolysis (IVT) are imperative in patients with
AIS (Knecht et al., 2018).

The core problem in acute stroke is the loss of neuronal cells which
makes recovery difficult or even not possible in the late states. Several
key players in neuronal cell death within the penumbra have been
identified, including excitotoxicity, oxidative stress, and
inflammation. Oxidative stress directly leads to DNA damage that
occurs within minutes after cerebral ischemic strokes (Li et al., 2018).
Reperfusion therapy accompanying re-entry of oxygen and glucose
into the ischemic brain fuels an excess production of reactive oxygen
species (ROS) that overwhelms endogenous antioxidant reserves and
leads to reperfusion injury. Researchers observed that cerebral ROS
generation peaked 1day after transient middle cerebral artery
occlusion (MCAO) in mice, coinciding with an increase in Nrf2,
a transcription factor that regulates antioxidant enzymes (Takagi
et al,, 2014; Yumiko et al., 2017).

Ginkgo biloba leaves extracts can protect against neuronal
death caused by ischemia in animal stroke models (Feng et al.,
2019). These pharmacological effects are attributed to two major
groups of chemical constituents, namely, flavonoids and terpene
lactones. Terpene lactones includes ginkgolides A, B, and C, and
bilobalide, which are the main components of Ginkgolides®. In
MCADO rats, ginkgolides B treatment could significantly increase
the expressions of anti-oxidative stress-related proteins, including
superoxide dismutase (SOD). Diterpene ginkgolides (ginkgolide
A, ginkgolide B and ginkgolide C) were reported to activate Akt
signaling and lead to the nuclear location of Nrf2, which has
protective effects against oxidative stress (Liu et al, 2019).
Furthermore, in Sprague daw rats with MCAO, pretreatment

with bilobalide improved neurological function and increased
SOD activity while decreasing infarct volume and brain edema
(Jiang et al,, 2014).

The immune-mediated inflammatory response that follows
AIS is a therapeutic target under current investigation. Previous
studies have shown that ginkgolides can reduce inflammation,
ameliorate the metabolic disturbances caused by rt-PA. A
derivate of ginkgolide B named XQ-1H, suppressed
neutrophils infiltration and inflammatory mediators, including
matrix metalloproterinase-9 in the ischemic region of the brain
(Fang et al., 2015). Down-regulated matrix metalloproterinase-9
expression could reduce extracellular matrix degradation and
protect blood brain barrier permeability (BBB) via tight junction
in brain endothelial cells (Wei et al., 2013). Finally, pre-
administration of XQ-1H reduced cerebral infarct size and
diminished brain edema after stroke in rats.

Ginkgolide was found to be specific and selective antagonist of
platelet activating factor (PAF) (Koch, 2005), which was involved
in thrombosis for strong platelet aggregation. Thus, Ginkgolide
may enhance the general efficacy of IVT through its
antioxidation,  anti-inflammatory = and  antithrombotic
mechanisms. But so far, there is no large-scale clinical trial to
confirm the general efficacy of Ginkgolide® in AIS with TVT
therapy. Moreover, whether Ginkgolide can increase the risk of
hemorrhagic transformation after intravenous thrombolysis in
AIS patients is unclear. Thus, we aimed to determine the clinical
efficacy and safety of Ginkgolide® combined with IV rt-PA
in AIS.

METHODS
Study Design and Participants

GIANT was an open label, prospective, multicenter cluster-
randomized clinical trial involving 24 hospitals in China
(NCT03772847). We enrolled patients who 1) were 18 years
or older; 2) were AIS patients who met the criteria of IVT
(William et al., 2019); 3) or his/her family member signed an
informed consent. We excluded patients who 1) were diagnosed
as cerebral arteritis; 2) with baseline alanine aminotransferase or
aspartate aminotransferase >3 times the upper limit of normal,
or baseline serum creatinine >1.5 times the upper limit of
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normal; 3) were allergic to ginkgo drugs, alcohol or glycerol; 4)
participated in other clinical trials. The criteria for intravenous
thrombolysis was as follows: 1) Inclusion criteria:Clinical
diagnosis of ischemic stroke causing measurable neurologic
deficit; Onset of symptoms <4.5h before beginning
treatment; Age >18years; 2) Exclusion criteria: Ischemic
stroke or severe head trauma in the previous 3 months;
Previous intracranial hemorrhage; Intra-axial intracranial
neoplasm; Gastrointestinal ~malignancy; Gastrointestinal/
Urinary hemorrhage in the previous 21 days; Major surgery
in the preceding 14 days; Had an arterial puncture of a
noncompressible blood vessel in the previous 7 days;
Intracranial or intraspinal surgery within the prior 3 months;
Symptoms suggestive of subarachnoid hemorrhage; Persistent
blood pressure elevation (systolic >185 mmHg or diastolic
>110 mmHg); Glucose levels <50 or >400mg/dl; Active
internal bleeding; Presentation consistent with infective
endocarditis; Stroke known or suspected to be associated
with aortic arch dissection; Acute bleeding diathesis; Platelet
count <100,000/mm?; Current anticoagulant use with an INR
>1.7 or PT > 15s or aPTT >40s; Therapeutic doses of low
molecular weight heparin received within 24 h; Current use of a
direct thrombin inhibitor or direct factor Xa inhibitor with
evidence of anticoagulant effect by laboratory tests such as
aPTT, INR, ECT, TT, or appropriate factor Xa activity
assays; Evidence of hemorrhage; Extensive regions of obvious
hypodensity consistent with irreversible injury.

The human ethics committee of the Second Affiliated Hospital
of Zhejiang University (SAHZU), School of Medicine, approved
the trial protocol. The clinical trial was conducted according to
the principle expressed in the Declaration of Helsinki. Written
consent was obtained from patients or their relatives.

Randomization
The randomization was conducted by using a computer
generating randomization sequence where twenty-four

hospitals were assigned to the Ginkgolide intervention or
control group randomly. Data on all thrombolytic patients in
both groups were consecutively recorded in a secure, purpose-
built web-based data entry system.

Interventions
Patients in hospitals which were allocated to the treatment arm
received rt-PA (0.9 mg/kg) and an intravenous infusion of
Ginkgolide® (10 ml dissolved in a vehicle containing 250 ml
normal saline, once a day, continuous intravenous injection
for at least 7 days). The recommended course of treatment is
14 days, so our study requires the intervention group to take
medication for at least 7days. Ginkgolide® was infused
intravenously within 24 h after the initiation of alteplase, and
the researcher should record the time from thrombolysis to
Ginkgolide® use. Patients in hospital which were allocated to
the control arm received rt-PA and 250 ml normal saline
combined standard-of-care therapy following current clinical
guidelines. Patients were followed at 7 and 90 days.
Ginkgolide® was obtained from Chengdu

Pharmaceutical Company Limited (each 2ml per

Baiyu
vial,

Ginkgolide Thrombolysis Improve Neurological Function

containing terpene lactone 10mg, batch: No.13110002).
Intravenous rt-PA treatment was initiated at a standard dose
and regimen (0.9 mg/kg, initial bolus of 10% of the final dose and
the remaining dose as an intravenous infusion lasting 60 min)
following current clinical guidelines. When a patient met all the
inclusion/exclusion criteria and signed the informed consent,
Ginkgolide® infusion was initiated within 24 h after starting
the infusion of rt-PA treatment.

Outcome Measures

The primary outcome was the proportion of patients with modified
Rankin scale (mRS) <2 at 90 days. A structured modified Rankin
Score at 90 days of AIS patients was followed up with telephone
questionnaires by external clinical evaluators who were blinded to
the patients’ clinical data. The telephone questionnaire had been
validated and was used in previous trial (Collaboration, 2019). The
process of telephone assessment was recorded and could be
reviewed at any time. Secondary outcomes included National
Institute of Health Stroke Scale (NIHSS) scores at 24 h; early
neurological improvement (ENI), which was defined as (baseline
NIHSS—NIHSS at 7 days)/baseline NIHSS*100%>18% at 7 days.
NIHSS scores were performed by staffs who were not aware of
treatment allocation. The mRS scale at 90 days was also followed up
with telephone questionnaires by external clinical evaluators who
were blinded to the patients’ clinical data. The safety outcomes
included any intracranial hemorrhage transformation and
symptomatic intracranial hemorrhage on the 7-day follow-up.
CT scan was performed within 24h and on 7 + 1th day after
thrombolysis for assessment of hemorrhage, and additional images
might be performed in the case of clinical worsening or at the
discretion of the treating physicians. Hemorrhagic transformation
was classified into hemorrhagic infarction (HI) and parenchymal
hemorrhage (PH). An intracerebral hemorrhage was defined as
symptomatic intracranial hemorrhage (sICH) if the patient had
clinical deterioration causing an increase of NIHSS >4 points and if
the hemorrhage was likely to be the cause of the clinical
deterioration (Hacke et al., 1998).

Sample Size

A pre-randomization survey at participating clusters was
conducted. According to previous study, the neurological
prognosis was increased 21.1% after the treatment of
Ginkgolide. Therefore, a total of 894 patients at 14 hospitals
(considering a median of 80 AIS patients treated with rt-PA per
hospital) would be required to detect a 21% improvement in AIS
patients treated with Ginkgolide combined rt-PA (Yuan and Guo,
2017), with 90% power, 5% significance level, and an intra-cluster
correlation coefficient (ICC) of 0.05. Taking into account an
estimated 20% rate of non-assessable patients, each arm was
required to enroll 560 patients. The sample size calculation
formula is as follows (Nijders and Bosker, 1999):

N = (Zoan +Zig) *[p1 (1= p1) +p0(1 - pO)]
[1+ (nj - 1)pI]/ (p1 - p0)°

Z 1-a/2 and Z1-P: Z statistic of type I errors and type II errors;
pl: Hypothetical rate of primary outcome in the intervention
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group; p0: Hypothetical rate of primary outcome in the control
group; nj: the median number of AIS patients treated with rt-PA
per hospital; pI: intra-cluster correlation coefficient.

Statistical Analysis

We retrieved demographic and clinical data, the vascular risk
factors, time interval from stroke onset to reperfusion therapy
(ONT), baseline NIHSS, 24-hour NIHSS and 7-day NIHSS.
Clinical outcome at 90 days was assessed with mRS score and
dichotomized into good outcome (0-2) and poor outcome (3-6).

Full analysis set analyses were conducted. Per-protocol set
(PPS) analyses were conducted: for these analyses we only
included completers who received therapy at least 7 days and
didn’t experience PH transformation within 24h after
thrombolysis. Our data analyses focused on the predefined
primary and secondary outcomes of the trial in our pre-
registration (NCT03772847). Fisher’s exact test was used to
compare the dichotomous variables between groups, while
independent samples two-tailed f-test or Mann-Whitney U
test was used for the continuous variables, depending on the
normality of the distribution. Intra-cluster correlation coefficients
(ICC) were calculated using the correlation-based estimation
methods for categorical outcomes. To statistically analyze
whether there were differences in primary/secondary outcome
and safety outcomes between two groups, binary logistic
regression analysis was conducted.

Since several baseline factors showed significant differences,
we further created a cohort at a 1:1 ratio using propensity score-
matching techniques. The use of propensity score analyses
balanced the distribution of covariates between treatment and
control groups and therefore minimized the influence of potential
bias. The resulting propensity score for the treatment of
Ginkgolide® included the following 6 variables: age, sex,
baseline NIHSS, history of smoking, hypertension, atrial
fibrillation. An additional conditional logistic regression was
done for primary outcome and safety outcomes by adjusting
baseline NIHSS. Odds ratios (OR), 95% confidence intervals (CI),
and p values were calculated. All tests were two-sided, and
statistical significance was set at a probability value of <0.05.
All statistical analyses were performed with SPSS 20.0, SAS 9.4
and R 4.0.1 package.

RESULTS

Hospital and Patients’ Characteristics
Twenty-four hospitals were involved in the trial, but 4 hospitals in
control group withdrew at the beginning of the study period. 1189
patients fulfilled the inclusion/exclusion criterion. We excluded
29 patients in the control group and 5 patients in the intervention
group because of PH transformation within 24-hour after IV
alteplase. We excluded 42 patients in the intervention group
because they did not receive treatment for at least 7 days. Finally,
1113 patients were enrolled in the PPS analysis. Of these, 513
were in the intervention group and 600 were in the control group.
Study design and timeframe including number of enrolled cases
are provided in Figure 1.
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24 Hospital from Stroke Alliance

|

24 hospitals randomized

12 hospitals allocated to Ginkgolide
group
12 hospitals received received rt-PA
combined with Ginkgolide treatment
560 patients enrolled
560 patients received allocated
treatment

12 hospitals allocated to control group

12 hospitals received rt-PA combined
with normal saline treatment
629 patients enrolled
629 patients received allocated control

|

5 patients excluded because of PH
transformation within 24-hour

treatment less than 7 days

42 patients exclued because of Ginkgolide

29 patients excluded because of PH
transformation within 24-hour

{

|

PPS (n=513): follow-up
0 hospital lost to follow-up

28 patients lost to follow-up for primary
outcome

10 patients lost to follow-up of effective
improving of NIHSS on 7t day

110 patients lost to follow-up of

transformation hemorrhage

PPS (n=600): follow-up

4 hospital lost to follow-up

35 patients lost to follow-up of primary

outcome

2 patients lost to follow-up of effective
improving of NIHSS on 7t day

159 patients lost to follow-up of

transformation hemorrhage

]

12 hospital included in analysis
485 patients included in primary analysis
503 patients included in evaluation of
effective improving of NIHSS

8 hospital included in analysis
565 patients included in primary analysis
598 patients included in evaluation of
effective improving of NIHSS

on 7t day
403 patients included in analysis of
transformation hemorrhage

on 7t day
441 patients included in analysis of
transformation hemorrhage

Abbreviations: rt-PA, recombinant tissue plasminogen activator ; NIHSS, National Institutes of
Health Stroke Scale

FIGURE 1 | Flow of hospitals and patients through the study.

The median age was 69 years (mean 69 + 12 years, range
60-78 years), 452 (40.6%) patients were women. The median
baseline NIHSS score was 5 (IQR 3-10). The median onset to
IVT was 153 min (IQR 108-203 min). The median time from
thrombolysis to Ginkgolide use was 115 min (IQR 15-961 min).
A total of 758/1050 (72.2%) patients experienced good outcome.
Good outcome was achieved in 78.6% patients in the Ginkgolide
group and 66.7% in the control group. Follow-up scans after
treatment revealed hemorrhage transformation in 66/844 (7.8%)
patients, and sICH was observed in 12/844 (1.4%) patients. Baseline
characteristics are shown in Table 1. Results of full analysis set
analysis are shown in Supplementary Tables S1, S2.

Unmatched Analysis

As Table 1 shows, patients in the Ginkgolide® group had higher
rates of smoking (37.2 vs. 30.3%, p = 0.015) and hypertension
(68.4 vs. 60.8%, p < 0.01) than patients in the control group.
However, the intervention group had lower baseline NIHSS (5
(2-9) vs. 5 (3-12), p < 0.001) and lower rates of atrial fibrillation
(16.2 vs. 21.0%, p = 0.04). There were no significant differences in
other variables. Patients in the Ginkgolide® group were more
likely to have good outcomes (78.6 vs. 66.7%, p < 0.01) and lower
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TABLE 1 | Univariate comparison of characteristics stratified by intervention in unmatched and propensity-matched patients.

Unmatched

Ginkgolide n = 513 Control n = 600

Age (year) 67 + 12 69 + 13
Female, n (%) 208 (40.5%) 244 (40.7%)
Smoking, n (%) 191 (37.2%) 182 (30.3%)
Hypertension, n (%) 351 (68.4%) 365 (60.8%)
Diabetes mellitus, n (%) 88 (17.1%) 86 (14.3%)
Atrial fibrillation, n (%) 83 (16.2%) 126 (21.0%)
Baseline NIHSS 5 (2-9) 5 (3-12)
24-hour NIHSS 3 (1-6) 4 (1-9)

Onset-to-needle time (min) 150 (100-205) 156 (112-203)

p Value Propensity-matched? p Value
Ginkgolide n = 404 Control n = 404

0.074 68 + 12 68 + 12 0.528
0.967 252 (62.4%) 240 (59.4%) 0.428
0.015 153 (37.9%) 143 (35.4%) 0.511
0.008 264 (25.3%) 262 (64.9%) 0.941
0.196 65 (16.1%) 65 (16.1%) 1.000
0.040 66 (16.3%) 67 (16.6%) 1.000
<0.001 5 (3-9) 4 (2-9) 0.292
<0.001 2 (1-5) 3 (1-6) 0.485
0.121 148 (98-203) 158 (115-204) 0.280

aThis cohot was created at a 1:1 ratio using propensity score-matching techniques for primary outcome of “good outcome at 90 days”.

Score on Modified Rankin Score
0 1 2 W3 W4 H5 HG6
Control group 333 223 11.
(n=565) - ~ =
Ginkgolide group 42.5 231 13.0
(n=485)
0 10 20 30 40 50 60 70 80 90 100
Proportion, %
No‘symploms De:th
FIGURE 2 | Distribution of Modified Rankin Scores at 90 days Among
Eligible Patients with Ginkgolide intervention vs. Control Group.

rate of SICH (0 vs. 2.72%, p < 0.01), compared with patients in the
control group. Figure 2 shows the distribution of mRS values at
90 days. Patients in the Ginkgolide® group were more likely to
have early neurological improvement (intervention vs control:
74.0 vs 67.7%, p = 0.02). As Table 2 shows, binary logistic
regression analysis revealed that the usage of Ginkgolide® was
independently associated with good outcome (OR 1.498; 95% CI
1.006-2.029, p = 0.009) and early neurological improvement (OR
1.395; 95% CI 1.068-1.814, p = 0.014). The usage of Ginkgolide®
was also not associated with hemorrhage transformation (OR
0.708; 95% CI 0.412-1.218, p = 0.212).

Propensity-Matched Analysis

Propensity score analysis, balanced for age, gender, baseline
NIHSS, history of smoking, hypertension, diabetes mellitus
and atrial fibrillation, identified 404 matched patient pairs for
outcome of “good outcome at 90 days.” As Table 1 shows, all
baseline variables were comparable between two groups.
Considering the powerful effect of baseline NIHSS on primary
outcome, conditional logistic regression was done for outcomes
by adjusting baseline NTHSS. Intervention with Ginkgolide®
significantly associated with 90-day good outcome (OR 1.513;
95% CI 1.073-2.132, p = 0.018) and early neurological
improvement (OR 1.574; 95% CI 1.164-2.128, p = 0.003)

(Table 3). No significant difference in safety outcome of
hemorrhage transformation was seen between the 2 matched
cohorts (Table 3).

DISCUSSION

This cluster-randomized trial showed that Ginkgolide® was
effective in improving neurological deficit after rtPA therapy
in AIS patients. Additionally, the safety data analysis
demonstrated that Ginkgolide® did not increase the incidence
of hemorrhage transformation events.

Although mechanical thrombectomy has recently been
established as the standard of care for selected patients with
large vessel occlusions, less than 10% of all stroke patients are
currently eligible for mechanical thrombectomy based on
current guidelines. In this regard, intravenous thrombolysis
with alteplase remains a viable treatment for the majority of
AIS patients in many centers. A number of experimental
studies showed the neuroprotective efficacy of Ginkgolide,
which can inhibit the platelet aggregation and increase
vascular recanalization in AIS patients (Feng et al., 2019;
Dong et al, 2021). Ginkgolide played a role as an
inhabitation of PAF receptor, which was induced by
ischemic stroke (Joseph et al., 1989). The reduction in PAF
and its pathway were reportedly helpful to reduce the volume
of infarction in acute phase (Oberpichler et al, 1990). A
recently clinical trial also confirmed that Ginkgolide helped
in decreasing accumulation of PAF after ischemic stroke,
which might be one of the mechanisms in reducing stroke
recurrence (Dong et al., 2021). Both Ginkgo biloba extract and
its constituent ginkgolide were proved effectively attenuating
the rtPA-induced disturbances in neurotransmitter, amino
acid, energy, lipid, and nucleotide metabolisms (Pietri et al.,
1997; Huang et al., 2012; Li et al., 2013; Chen et al., 2018; Feng
et al.,, 2019; Liu et al., 2019). Chen et al. showed that rtPA
upregulated the production of glutamic acid, aspartic acid,
N-acetyl-l-aspartic acid, and glutamine. Although both
diterpene ginkgolide and ginkgo biloba extract ameliorated
the upregulation of aspartic acid and glutamine, diterpene
ginkgolide also ameliorated the upregulation of glutamic acid
and N-acetyl-l-aspartic acid (Chen et al., 2018). Thus,
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TABLE 2 | Neurological Outcome and Complication Among Ginkgolide intervention vs. Control Group after binary logistic regression.

Variables ICC Ginkgolide group, Control group, Odds ratio p Value
no. of no. of (95% CI)®
events/Total patients events/Total patients
(%) (%)

Primary outcome

Good outcome at 90 days, No. (%) 0.033 381/485 (78.6) 377/565 (66.7) 1.498 (1.106-2.029) 0.009
Secondary outcome

Early neurological improvement, No. (%) 0.002 372/503 (74.0%) 405/598 (67.7%) 1.392 (1.068-1.814) 0.014
Safety outcome

sICH, No. (%) 0.031 0/408 (0%) 12/441 (2.72%) - -

Hemorrhage transformation, No. (%) 0.041 24/403 (6.0%) 42/441 (9.5%) 0.708 (0.412-1.218) 0.212
AAdjusted for age, hypertension, atrial fibrillation, smoking and baseline NIHSS.
TABLE 3 | Neurological Outcome and Complication Among matched cohorts between two groups after conditional logistic regression.
Variables® Ginkgolide group, no. Control group, no. Odds ratio (95% CI)° p Value

of events/Total patients of events/Total patients
(%) (%)

Primary outcome

Good outcome at 90 days, No. (%) 311/404 (77.0) 285/404 (70.5) 1.513 (1.073,2.132) 0.018
Secondary outcome

Early neurological improvement, No. (%) (%) 321/423 (75.9) 282/423 (66.7) 1.574 (1.164,2.128) 0.003
Safety outcome

sICH, No. (%) 0/318 (0) 5/318 (1.6) — —

Hemorrhage transformation, No.(%) 18/318 (56.7) 20/318 (6.3) 0.885 (0.450,1.741) 0.724
AWe created different cohorts according to the specific outcome at a 1:1 ratio using propensity score-matching techniques.
bAdjusted for baseline NIHSS.
diterpene ginkgolide may exert its neuroprotective effects by =~ Researchers found ginkgolide B reduced reactive oxygen

reducing the excess production of glutamate and aspartate
excitotoxicity, while ginkgo biloba extract may partially
ameliorate the excitotoxicity induced by rtPA. But so far,
there have been few clinical trials of Ginkgolide. GIANT
attained more encouraging results than previous trials
because only patients that received thrombolytic therapy
were allowed in this study. To the best of our knowledge,
this was the largest study to address the management of
Ginkgolide® within the first 24 h after IVT.

In our study, 66.7% of rt-PA-treated patients in the control
group had good outcome after 3 months, which was in
accordance to results in the Thrombolysis Implementation
and Monitor of Acute Ischemic Stroke in China (Zhou et al.,
2020). In our study, the degree of improvement of the
neurological impairment was more pronounced in the
Ginkgolide® combined with IVT, compared with the
control group, indicating that early use of Ginkgolide®
within 24h after IVT might improve the neurological
function of AIS patients. This result was consistent with
those of previous studies that showed ginkgolide B and
bilobalide might provide neuroprotective effects against rt-
PA-induced toxicity.

The antioxidant effects of Ginkgolide® could have
contributed to the clinical benefits reported in the trial

species and restored cerebral blood flow in hyperglycemic
rats (Huang et al, 2012). Of note, ginkgolide B treatment
could significantly increase the expressions of anti-oxidative
stress-related proteins, such as Nrf2. Ginkgolide B was also
believed to interfere with the production of free radicals after
ischemia (Pietri et al., 1997). These characteristics may support
the Ginkgolide® as an antioxidant in AIS patients within the
first 24 h after IVT. Furthermore, ginkgolide B could also
protect brain from endoplasmic reticulum (ER) stress, which
was also an essential signaling event in the progression of brain
ischemic/reperfusion injury. In a cell model, preincubation with
ginkgolide B could attenuate bupivacaine-induced ER stress and
cell apoptosis (Li et al., 2013). Another important component of
Ginkgolide®, bilobalide, can also reduce ER stress by increasing
the expression of catalase and glutathione (Lu et al.,, 2016).
Hence, the early use of Ginkgolide® after IVT may prevent
further oxidative stress injury and ER stress and thereby
improve the functional outcome.

The N-methyl-D-aspartate receptor also played a pivotal role
in the process of glutamate-induced excitotoxicity in stroke (Wu
and Tymianski, 2018). Intravenous rt-PA can potentiate
excitotoxic lesions and lead to neuronal death induced by
NMDA (Nicole et al., 2001). Administration of Ginkgo biloba
extract effectively inhibited NMDA-receptor and ameliorated
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metabolic disturbances induced by rt-PA (Chen et al, 2018).
Moreover, bilobalide enhanced cell viabilities, inhibited
apoptosis, and attenuated mitochondrial membrane potential
depolarization (Shi et al., 2010; Shi et al., 2011). By triggering
various pathways, Ginkgolide® seemed to interrupt the
development of pathological processes that lead to ischemic/
reperfusion injury after rtPA therapy.

During recent years, several cases of hemorrhage including
subdural hematoma (Rowin and Lewis, 1996), subarachnoid
hemorrhage (Vale, 1998), intracerebral hemorrhage (Matthews,
1998), have been reported to occur in coincidence with the use of
Ginkgo products and those observations have generally been
explained by the platelet-activating factor (PAF)-antagonistic
action of ginkgolides. However, in this study, ultra-early
administration of Ginkgolide® after IVT did not involve a
higher risk of hemorrhage transformation or sICH. Indeed,
results from different studies consistently indicated that
Ginkgo does not significantly affect hemostasis nor the safety
of co-administered aspirin, warfarin and other antiplatelet drugs
(Bone, 2008). E Koch confirmed that induction of aggregation of
human platelets by PAF requires higher concentration, which
were generally more than 100 times higher as the peak plasma
values measured after oral intake ginkgo biloba extract at
recommended doses (Koch, 2005). Therefore, the likelihood of
hemorrhage transformation due to PAF is very low, and those
case reports might be coincidences. In vitro multicellular network
model, pretreatment with Ginkgo biloba extract or ginkgolide B
enhanced the trans-endothelial electrical resistance of capillary
endothelial monolayers, reduced the endothelial permeability
coefficients for sodium fluorescein, and increased the
expression levels of tight junction proteins, namely, ZO-1 and
occludin, in endothelial cells (Yang et al, 2017). Results
demonstrated the preventive effects of Ginkgo biloba extract
on neuronal cell death and enhancement of the function of
brain capillary endothelial monolayers after oxygen-glucose
deprivation/reoxygenation injury in vitro. Ginkgolides® are
mainly composed of ginkgo diterpene lactones (ginkgolide A,
B, and C) and bilobalide. Ginkgo diterpene lactone mainly plays a
role in inhibiting platelet aggregation caused by PAF and
inhibiting the production of inflammatory molecules during
ischemia-reperfusion, while bilobalide mainly functions to
maintain the integrity of vascular endothelial cells and
promote vascular endothelial proliferation. Our result also
showed the use of Ginkgolide® was not associated with
hemorrhage transformation after adjusting baseline NIHSS,
indicating that ginkgolides could not increase hemorrhage
transformation in AIS patients receiving IV rt-PA, indicating
that it is safe and effective to use Ginkgolides® within 24 h after
intravenous thrombolysis. It may be due to the anti-platelet
aggregation and anti-inflammation of ginkgolides, while
bilobalide protects blood brain barrier permeability, which
may further diminish the risk of hemorrhage transformation.

Limitations include biased baseline characters such as baseline
NIHSS, hypertension and atrial fibrillation, although after
adjusting for baseline NIHSS and these comorbidities,
intervention with Ginkgolide® was still significantly associated
with 90-day mRS. Secondly, the underlying mechanism of

Ginkgolide Thrombolysis Improve Neurological Function

Ginkgolide improving neurological deficits was not revealed in
our study, which need further imaging or lab markers. Thirdly,
we analyzed patients mostly in the Yangtze River Delta, which
may introduce geographic bias.

CONCLUSION

In summary, the present study suggests that Ginkgolide® use in
patients within the first 24 h after IVT was safe and could have a
favorable impact on functional outcome. Ginkgolide® therapy might
be the treatment of choice for patients at the first 24 h after IVT.
Confirmation of these findings in a larger randomized trial is needed.
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Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in
dietary sources. Previous research has suggested its potential neuroprotective effects on
ischemic stroke animal models. However, these results have been disputable. Here, we
conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment
in ischemic stroke rodent models.

Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic
stroke rodent models.

Methods: A literature search of the databases Pubmed, Embase, and Web of science
identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were
included and analyzed using a random-effects model to calculate the standardized mean
difference (SMD) with corresponding confidence interval (Cl).

Results: As compared with controls, resveratrol significantly decreased infarct volume
(SMD —4.34; 95% CI -4.98 to —-3.69; p < 0.001) and the neurobehavioral score (SMD
-2.26; 95% Cl -2.86 to —1.67; p < 0.001) in rodents with ischemic stroke. Quality
assessment was performed using a 10-item checklist. Studies quality scores ranged from
3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct
volume and the neurobehavioral score was achieved in resveratrol sub-groups with a
dosage of 20-50 mg/kg. In the meta-regression analysis, the impact of the delivery route
on an outcome is the possible source of high heterogeneity.

Conclusion: Generally, resveratrol treatment presented neuroprotective effects in
ischemic stroke models. Furthermore, this study can direct future preclinical and
clinical trials, with important implications for human health.

Keywords: resveratrol, ischemic stroke, meta-analysis, neuroprotection, therapy

INTRODUCTION

Ischemic stroke is one of the major causes of morbidity and long-term disability in the worldwide
population. At present, intravenous thrombolysis and endovascular thrombectomy are effective
therapy within a limited time window (Fisher and Saver, 2015). Owing to the poor regenerative
ability of the adult brain, stroke-induced neuronal injury is permanent and results in a long-term
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neurological deficiency. Therefore, various effective therapy to
reduce post-ischemic neuronal cell or tissue loss remain in further
research.

Resveratrol  (3,5,4'-trihydroxystilbene) (PubChem CID:
445154) is a natural estrogen-like phytosterol that mainly is
found in grapes, blueberries, peanuts, red wine, Semen
Cassiae, and other dietary constituents (Walle, 2011). This
compound exists in two isoforms cis- and trans-resveratrol,
the isomer trans being more active than the cis-form (Amri
al., 2012). preclinical ~studies, resveratrol has
neuroprotective  properties in  both  ischemic  stroke,
intracerebral hemorrhage (Bonsack et al, 2017; Zhao et al,
2019; Abd Aziz et al., 2020), subarachnoid hemorrhage (Zhao
et al., 2017; Li and Han, 2018), and neurodegenerative disease
(Grindn-Ferré et al., 2021). Resveratrol was reported to promote
neurogenesis (Li et al., 2020) and reduce neurotoxicity by altering
glial activity and signaling. In a randomized controlled trial, co-
administration of resveratrol significantly improved the outcome
of patients receiving delayed recombinant tissue plasminogen
activator treatment (Chen et al., 2016). Subsequent preclinical
studies have indicated that resveratrol treatment could reduce
ischemic brain damage, yet there are some disputes over results.
Some studies suggested that the low dosage of resveratrol was
unable to induce a significant reduction (Pang et al., 2015; Faggi
etal, 2018), and resveratrol administration without nanoparticles
did not confer any neurological function recovery (Lu et al,
2020). Moreover, the administration dose, frequency, timing of
treatment, and route in each study are so divergent that the
overall therapeutic effect is difficult to evaluate. Treatment in
some studies was a single dose of 100 mg/kg (He et al,, 2017),
while in other studies was a single dose of 20 mg/Kg (Teertam
et al, 2020). To date, there is no meta-analysis available
investigating the potential effects of resveratrol therapy in pre-
clinical models of ischemic stroke. Addressing all these problems,
we systematically assessed the bias of included studies and then
summarized the optimal pattern of resveratrol therapy. This
meta-analysis may provide significant clues and information
for future clinical research.

et In

MATERIALS AND METHODS

Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) was used to conduct this study (Moher et al.,, 2009). This
meta-analysis was not registered in the International prospective
register of systematic reviews (PROSPERO). However, the
PROSPERO was carefully examined to make sure there is no
registered meta-analysis that is investigating a similar topic.

Search Strategy

Studies of resveratrol-based therapy for rodent models of cerebral
ischemia were identified from PubMed, EMBASE, and Web of
Science, from their inception to July 15, 2021, and using the
following search strategy: (stroke OR cerebrovascular OR cerebral
infarct OR cerebral ischemia/reperfusion OR middle cerebral
artery OR middle cerebral artery occlusion) AND (resveratrol).
The publication language was limited to English.

Resveratrol Effects in Ischemic Stroke

Inclusion and Exclusion Criteria
The inclusion criteria were set up based on the PICOS-scheme

(population, intervention, control, outcome, and study design).
Published studies were included if they met the following criteria:
1) ischemic stroke animal model (rodent models); 2) testing the
effects of purified resveratrol in at least one experimental group
(no additional chemicals or drugs were used); 3) setting a control
group with placebo; 4) providing adequate data on the functional
outcome (neurobehavioral score measured on any scale/rotarod
test) or the structural outcome (infarct volume) determined by a
recognized method (such as TTC staining/Magnetic Resonance
Imaging); 5) study: experimental studies presented in original
research articles and 6) published in English.

The exclusion criteria were as follows: 1) animals treated with
resveratrol analogues; 2) studies that only tested the effects of
resveratrol combined with other chemicals or drugs (such as
nanoparticles); 3) not reporting the number of animals in groups;
4) repeated publications or duplicate report, and abstracts
without full text.

Data Collection

The following information was abstracted by two investigators
independently and discrepancies were resolved by consensus and
then checked by a third investigator. 1) authors, year published,
study country, 2) characteristics of the animals used, including
species of animals, animal model, animal gender, anesthetic type,
and animal number per group, 3) treatment information,
including dosage, administration route, and timing, follow-up
(the longest observation time of outcomes after occlusion), 4) the
outcomes data: functional outcome (neurobehavioral score
measured on any scale/rotarod test), structural outcome
(infarction volume determined by TTC staining/Magnetic
Resonance Imaging/cresyl violet staining/silver staining).

If a study comprised multi-experimental groups distinguished
by dosage, frequency, delivery route, and timing that were
compared with the control group, these experimental groups
would be considered as independent comparisons. If the
outcomes were evaluated at different follow-up times, only the
longest follow-up time was collected. The GetData Graph
Digitizer software was applied when only graphs were available.

Quality Assessment

To evaluate the quality of the eligible studies, we used the
Collaborative Approach to Meta-Analysis and Review of
Animal Data from Experimental Studies (CAMARADES)
checklists (Macleod et al.,, 2004). A sum of the quality scores
was recorded for each study, with a total score of 10 points. Two
researchers independently scored the included studies.
Discrepancies resolved by consensus and then
adjudicated by a third investigator.

were

Statistical Analysis

During data abstraction, we found that infarction volume
determined by TTC staining (n = 46) and functional outcome
determined by neurobehavioral score (n = 24) were available in
large numbers of original studies. Thus, we decided to choose
these as co-primary outcomes in this meta-analysis. Other
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secondary outcomes were rotarod test, and infarction volume
determined by Magnetic Resonance Imaging/cresyl violet
staining/silver = staining. The combined effect size was
calculated as standardized mean difference (SMD) with
corresponding confidence interval (CI) between BMSCs
treated group and control group. The random-effects model
and Hedges calculation (Durlak, 2009) were used for the
pooled SMD, and all analysis was performed with Stata 14.0
software. A p value <0.05 was considered statistically significant.
The inconsistency index (I°) was used to analyze heterogeneity
(Higgins et al., 2003).

Four clinical characteristics were used to group the effect size
of outcome: resveratrol dosage (<10, >10, <20, >20, and <50,
50-200 mg/Kg), frequency of treatment (single treatment;
irregularly treatment; daily treatment), the timing of
administration  (pre-stroke  onset;  post-stroke  onset),
administration route (intraperitoneally; intravenously; oral
gavage; intracarotid arterial). Subgroup analysis and meta-
regression analysis (Higgins and Thompson, 2002) were
conducted to explore the impact of the above clinical
characteristics on outcomes and the possible sources of
heterogeneity.

A leave-one-out sensitivity analysis was conducted by
iteratively removing each study one by one to estimate the
influence of each study.

Publication bias was evaluated by Egger’s tests, Trim and Fill
analysis, and funnel plot (Egger et al., 1997; Vahidy et al., 2016).
Plotting the SMD against the SE can cause distortion of funnel
plots, especially when the included studies have small sample
sizes. Thus, we plotted the SMD against 1/4/n, a sample size-
based precision estimate (Zwetsloot et al., 2017). Each funnel plot
displays all studies in one plot with SMD as the x-value and 1/4/n
as the y-value.

RESULTS

Study Selection

Electronic searching identified 295 articles in PubMed, 101
articles in EMBASE, and 503 articles in Web of Science. After
removing duplicates, 564 articles were screened by abstract and/
or title, resulting in 424 irrelevant records excluded. We retrieved
the full text of the remaining 140 records for further assessment.
Among them, 86 records were excluded due to review, abstracts
without full text, not having purified resveratrol, no in vivo
experiment, not reporting the number of animals in groups,
and or no adequate outcomes (infarction volume or functional
outcome determined by neurobehavioral score measured on any
scale/rotarod test). Therefore, 54 studies (Huang et al., 2001;
Sinha et al., 2002; Inoue, 2003; Gao et al., 2006; Tsai et al., 2007;
Dong et al., 2008; Yousuf et al., 2009; Li et al., 2010; Sakata et al.,
2010; Shin et al., 2010; Ren et al., 2011; Li et al., 2012; Shin et al.,
2012; Hurtado et al., 2013; Lanzillotta et al., 2013; Lin et al., 2013;
Orsu et al,, 2013; Yan et al,, 2013; Saleh et al,, 2014; Wang et al,,
2014; Fang et al., 2015; Hermann et al.,, 2015; Ishrat et al., 2015;
Koronowski et al., 2015; Li et al., 2015; Narayanan et al., 2015;
Pandey et al,, 2015; Pang et al.,, 2015; Abdel-Aleem et al., 2016;

Resveratrol Effects in Ischemic Stroke

Jeong et al., 2016; Li et al., 2016; Lopez et al., 2016; Su et al., 2016;
Wan et al,, 2016; Yang et al.,, 2016; Al Dera, 2017; He et al.,, 2017;
Koronowski et al.,, 2017; Yu et al.,, 2017; Faggi et al,, 2018; Hou
et al., 2018; Liu et al., 2018; Dou et al., 2019; Grewal et al., 2019;
Park et al,, 2019; Yan et al., 2019; Alquisiras-Burgos et al., 2020;
Lu et al., 2020; Mota et al., 2020; Pineda-Ramirez et al., 2020;
Teertam et al., 2020; Yao et al., 2020; McDonald et al., 2021; Yu
et al,, 2021) met our criteria and were used for meta-analysis
(Figure 1).

Study Characteristics

The baseline characteristics of all studies are shown in
Supplementary Tables S1, S2. All studies were carried out in
rodents (rats and mice). The most common model of ischemic
stroke was the t-MCAO induced with nylon monofilament,
although other methods were also used, such as the
photothrombosis, electrocoagulation, and embolic MCAO. The
most common delivery route used for resveratrol was the
intraperitoneal route. Others used were the intravenous,
intracarotid arterial, and oral gavage routes. The dosage of
resveratrol with intraperitoneal route ranged from 2.5 mg/kg
to 100 mg/kg. Resveratrol was administrated either
immediately after ischemic insult or over a period before
ischemia onset. The follow-up time in most studies is 24 h.
Infarction outcome was assessed by TTC staining in 46
studies, cresyl violet staining in four studies, silver-staining in
one study, and MRI in one study. Behavioral outcomes were
evaluated by behavioral scale (0 represents no neurological
deficit) in 24 studies, rotarod test in four studies, limb
function (beam walking test, limb-use asymmetry test, grip
test, and gait assessment) in 5 studies, corner test in 2 studies,
and Morris water maze test in one study. Considering that TTC
staining and neurobehavioral score are the most common
evaluations used in rodent studies of ischemic stroke, we took
them as co-primary outcomes in this meta-analysis.

Quality Assessment

The quality assessment of included studies is summarized in
Table 1. The quality scores varied from 3 to 8, with a mean value
of 5.94. All included studies were peer-reviewed publications.
Most studies reported compliance with animal welfare
regulations. However, only one study was performed on aged
animals (20-month-old aged mice) (Jeong et al., 2016), no study
reported a sample size calculation. Control of temperature was
stated in 40 studies. 38 studies reported random allocation to
treatment or control, 31 studies reported blinding assessment of
outcome, 23 studies stated blinded induction of model, and 32
studies declared no potential conflict of interests. The details of
the quality assessment are presented in Supplementary Table S3.

Meta-Analysis

Our primary aim was to evaluate whether resveratrol had
neuroprotective effects on ischemic stroke. The primary
outcome was composed of two aspects: infarction volume
determined by TTC staining, and behavioral outcomes
determined by neurobehavioral score. Meta-analysis of 46
studies with 68 comparisons showed significant effects of
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FIGURE 1 | PRISMA flow diagram for review and selection process of studies included in meta-analysis of resveratrol in rodent models of ischemic stroke.

TABLE 1 | Percentage of included studies satisfying each criterion of
CAMARADES checklists.

Percentage of qualified
studies (%)

Quality score criterion

Publication in a peer-reviewed journal 100
Control of temperature 74.07
Randomized treatment allocation 70.37
Allocation concealment 42.59
Use of aged animal models 1.85
Blind assessment of outcome 57.41
Avoidance neuroprotective anesthetics 94.44

Sample size calculation 0
Compliance with animal welfare regulations 92.59
Statement of conflict of interest 59.25

resveratrol for reducing infarct volume compared with control
groups (SMD —4.34; 95% CI —4.98 to —3.69; p < 0.001; I* = 85.6%;
Figure 2A).

Meta-analysis of 24 studies with 34 comparisons reported the
neurobehavioral score. The pooled analysis showed that
resveratrol can significantly improve the neurological function
compared with the control groups (SMD —-2.26; 95% CI —2.86 to
-1.67; p < 0.001; I* = 82.0%; Figure 2B).

We also conducted pooled analysis for the secondary outcomes:
infarction outcome assessed by cresyl violet-staining/silver-staining/
MRI (n = 10), and behavioral outcomes evaluated by rotarod test (n =

5). The result was similar: The composite weighted mean (95% CI)
effect size for rotarod tests was 2.59 (0.74, 4.44) (p <0 .001, I’ =
91.9%), and —1.63 (-2.68, —0.58) (p <0 .0011, ¥ = 87.0%) for
infarction outcome assessed by cresyl violet-staining/silver-
staining/MRI. (Supplementary Figures S1A,B).

Stratified Analysis

To identify heterogeneity potentially influencing the analysis,
articles were divided into several groups based on dosage,
frequency of treatment, the timing of administration, and
administration route. Table 2 summarizes the data of primary
outcomes in diverse subgroup analysis. Due to the insufficient
number of comparisons, stratified analysis for rotarod test and
infarction outcome assessed by cresyl violet-staining/silver-
staining/MRI were not conducted.

For TTC staining, no significant between-subgroup
heterogeneity was found in administration timing (p = 0.32).
Significant differences between-subgroup were found in the
dosage (p = 0.044), and frequency of administration (p <
0.001), and administration route (p < 0.001). Among them,
there was a clear difference in therapeutic effect by the dosage
of resveratrol. Compared with —3.93 (95% CI, —4.92 to —2.94) for
doses between 10 and 20 mg/kg and -3.76 (95% CI, —4.88 to
-2.64) for doses less than 10 mg/kg, the effects size for doses
between 20 and 50 mg/kg is —6.02 (95% CI, —-7.92 to —4.13)
(Table 2).
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For the neurobehavioral score, no significant between-subgroup
heterogeneity was found in administration timing (p = 0.731) and
frequency of administration (p = 0.09). Significant differences
between-subgroup were found in the dosage (p = 0.002), and
administration route (p = 0.001). Similarly, there was a significant
difference in treatment effect by dosage of resveratrol. Compared with
-1.22 (95% CI, -2.32 to —0.12) for doses between 10 and 20 mg/kg
and —2.15 (95% CI, —3.63 to —0.67) for doses less than 10 mg/kg, the
effects size for doses between 20 and 50 mg/kg is —3.10 (95% CI,
—-4.20 to —1.99) (Table 2). Thus, we speculated that resveratrol
treatment with 20-50 mg/kg achieves the greatest effects.

However, in the included studies, resveratrol dosage was
confounded with other variables. For instance, out of the 18
comparisons involving lower doses (<10 mg/kg), 15 of them
administered the resveratrol with a single treatment instead of
daily treatment. This makes it difficult to identify whether the
difference in treatment effect was related to the dosage or the
frequency of administration. To elucidate the effect of dose
independently from administration frequency, we assessed the
dosage effect for comparisons only involving single treatment. In
the comparisons involving a single treatment, the estimated effect
of the 20-50 mg/kg dose in this subset was similar to the full
analysis (Figures 3A,B). This implied that the smaller effect
estimated in the lower dose (<10 mg/kg) are indeed associated
with the lower dose instead of administration frequency.

Except for the administration frequency, the routes of
administration may be correlated to the different effects in
dosage. In the 16 comparisons involving 20-50 mg/kg dose, 15
of them administered the resveratrol with the intraperitoneal

route. To elucidate the effect of dosage independently from
administration routes, we assessed the dosage effect for
comparisons only involving the intraperitoneal route. For TTC
staining, significant differences between-subgroup were found
(p < 0.001). Compared with —4.219 (95% CI, —5.282 to —3.156)
for dosage between 10 and 20 mg/kg and —4.23 (95% CI, —6.26 to
—2.211) for dosage less than 10 mg/kg, the effects size for dosage
between 20 and 50 mg/kg is —5.754 (95% CI, —7.666 to —3.843).
This implied that the smaller effect estimated in the lower dose
(<20 mg/kg) is indeed associated with the lower dose instead of
administration routes. Similar results were also found in the
outcomes of the neurobehavioral scores. However, in the
comparisons only involving the intraperitoneal route, the
dosage between 50 and 200 mg/kg achieved the greatest effects
size (SMD, —8.35; 95% CI, —11.63 to —5.07), which is different
from the full analysis. We speculated that the difference may owe
to the administration routes. In the full analysis, some studies
using dosage between 50 and 200 mg/kg delivered the resveratrol
orally. The bioavailability of the oral route is less than the
intraperitoneal route. Thus, the larger effects estimated in the
higher dose (>50 mg/kg) may associate with the administration
routes.

Meta-Regression Analysis

For infarct volume, we discovered that administration timing (p =
0.448), frequency (p = 0.787), and dosage (p = 0.288) had no
significant relation with heterogeneity, only delivery route
presented significantly related with the reduction of infarction
volume (p = 0.033). Similarly, for neurobehavioral score, delivery
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TABLE 2 | Subgroup analysis of primary outcomes (TTC staining and neurobehavioral score) in animal models of ischemic stroke associated with resveratrol therapy.

Variable

Dosage
<10

>10 and <20
>20 and <50
50-200

Frequency
Once

Daily
Unregularly
Administration
timing

Pre

Post
Administration
route
Intraperitoneal
Intravenous

Oral

Intraarterial

TTC staining Neurobehavioral score
No. of Pooled Q p Value P Between No. of Pooled Q p Value for P Between
reports estimates statistic for value (%) group reports estimates statistic heterogeneity value (%) group
(95% CI) heterogeneity p value (95% ClI) p value
0.044 0.002
18 -3.76 107.68 <0.001 84.2% 5 -2.15 17.33 <0.001 76.9%
(—4.88, —2.64) (-3.68, -0.67)
23 -3.93 129.49 <0.001 83.0% 9 -1.22 46.26 <0.001 82.7%
(-4.92, -2.94) (-2.32, -0.12)
16 -6.02 118.37 <0.001 87.3% 12 -3.10 55.82 <0.001 80.3%
(-7.92, -4.13) (-4.20, -1.99)
11 -4.72 100.84 <0.001 90.1% 8 -2.48 48.73 <0.001 85.6%
(-6.55, -2.90) (-3.73, -1.23)
0.001 0.09
34 -4.32 230.36 <0.001 85.7% 1 -2.59 63.47 <0.001 84.2%
(-5.27, -3.37) (-3.80, -1.37)
29 -4.31 199.26 <0.001 85.9% 21 -2.01 105.36 <0.001 81.0%
(-5.30, -3.32) (-2.71, -1.31)
5 -4.79 21.73 <0.001 81.6% 2 -3.83 9.2 <0.001 89.1%
(-6.77, —2.81) (-8.77,1.09)
0.32 0.731
42 -4.02 266.72 <0.001 84.6% 21 -2.43 115.54 <0.001 82.7%
(-4.78, -3.27) (-3.23, -1.64)
26 -5.03 196.77 <0.001 87.3% 13 -2.03 67.2 <0.001 82.1%
(-6.26, -3.79) (-2.97, -1.11)
<0.001 0.001
43 -5.14 232.99 <0.001 82.0% 24 -2.89 99.91 <0.001 77.0%
(-6.01, -4.27) (-3.59, -2.20)
10 -4.07 36.87 <0.001 75.6% 1 NA NA NA NA
(-5.38, -2.75)
15 -2.52 111.83 <0.001 87.5% 8 -0.71 20.04 0.001 65.1%
(-3.57, -1.47) (-1.37, -0.06)
NA NA NA NA NA 1 NA NA NA NA
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FIGURE 3| (A) Effect of resveratrol dose on TTC staining (only including comparisons with single treatment). (B) Effect of resveratrol dose on neurobehavioral score
(only including comparisons with single treatment). Abbreviations: SMD, standardized mean difference; Cl: confidence interval.

TABLE 3 | Meta-regression analysis.

Covariates TTC staining Neurobehavioral score

Coefficient 95% CI p Value Coefficient 95% CI p Value
Dosage —0.493915 -1.414301; 0.427471 0.288 —0.470948 -1.186008; 0.244111 0.188
Frequency -0.213211 —-1.78268; 1.356259 0.787 —-0.258621 —-1.755727; 1.238486 0.726
Timing —-0.781463 —2.828497; 1.265571 0.448 0.038947 -1.619807; 1.697703 0.962
Route 1.215059 0.099148; 2.33097 0.033 1.227027 0.470639; 1.983415 0.002
route (p = 0.002) was a significant source of heterogeneity, while ~ publication bias for TTC staining (p = 0.480) and

administration timing (p = 0.962), frequency (p = 0.726), and
dosage (p = 0.188) had little effect on heterogeneity (Table 3).
Thus, the impact of the delivery route on the outcome is the
possible source of high heterogeneity.

Sensitivity Analysis and Publication Bias

To assess the robustness of the estimated pooled analysis for
infarction volume and neurobehavioral score, we used a leave-
one-out sensitivity analysis by systematically removing each
study and recalculating the pooled effect size of the remaining
studies. For TTC staining and neurobehavioral score, the pooled
effect was stable, which indicates that the results were not driven
by any single study.

The publication bias was evaluated by funnel plots and
Egger’s regression test. It has been demonstrated that the use
of SMD to assess publication bias can lead to distortion of
results due to over-estimation (Zwetsloot et al., 2017). For this
reason, the funnel plot is a graphical representation of trial
size plotted against the reported effect size. Inspection of the
funnel plots revealed slight asymmetry for TTC staining and
neurobehavioral score (Figures 4A,B). In addition, we
performed Egger’s test, which indicated that no significant

neurobehavioral score (p = 0.691).

DISCUSSION

To our knowledge, this is the first preclinical meta-analysis to
investigate the neuroprotective effect of resveratrol treatment in
animals subjected to ischemic stroke.

Summary of Evidence

The following is a summary of these results: 1) Resveratrol has
neuroprotective effects in alleviating infarct volume and
ameliorating neurobehavioral defects in rodent models of
ischemic stroke. 2) The dose of resveratrol was correlated
with effect size in TTC staining and neurobehavioral score.
20-50 mg/kg resveratrol therapy showed the greatest efficacy.
3) Compared with the administration of resveratrol
intravenous and oral, intraperitoneal treatment presented
more effective to reduce infarction volume. However, in
clinical application, the intravenous and oral route is more
common. The subgroup analysis in our meta-analysis
suggested that intravenous treatment achieved greater
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FIGURE 4 | Funnel plot for (A) TTC staining, (B) neurobehavioral score. Each funnel plot displays all studies in one plot with SMD as the x-value and 1/+/n as the
y-value. Abbreviations: SMD, standardized mean difference.

efficacy than oral treatment, possibly due to the increased
bioavailability with intravenous treatment. 4) There were no
significant differences between the estimated pooled effect
size for a single treatment and daily treatment. 5) The
administration timing of resveratrol in our included studies
ranges from 30-days before ischemia onset to 3-days after
ischemia onset. The neuroprotection between the pre-stroke
treatment sub-group and post-stroke treatment sub-group
was not significant, which suggested that resveratrol has a
relatively long therapeutic time window.

Pharmacokinetics and Pharmacodynamics

Properties of Resveratrol

The pharmacokinetics and pharmacodynamics properties of
resveratrol have been studied in several studies. Due to
resveratrol’s low water solubility (<50 pg/ml) and high
permeability, it is classified as the second class of the
biopharmaceutical classification system (Singh and Pai,
2015). The principal absorption site is at the intestine
through passive diffusion or forming complexes with
membrane transporters (Sergides et al., 2016). Resveratrol
can be absorbed through the bloodstream to the liver, where it
is metabolized to form glucuronide, and sulphate derivatives
or free. The free form can be bound in a non-covalent manner
to proteins, such as albumin and lipoproteins (Burkon and
Somoza, 2008). These complexes can be dissociated at cellular
membranes that have receptors for albumin and lipoproteins,
leaving the resveratrol free and allowing it to enter cells. The
peak plasma concentration in humans was reached at 90 min
with a single oral dose treatment of 25 mg. The half-life time
of plasma concentration is around 9.2 h (Walle et al., 2004).
Owing to its lipophilic characteristics, resveratrol has high
absorption (at least 70% after oral consumption), and a high
volume of distribution supporting its potential to accumulate
in tissues such as the brain. Although resveratrol has a high
absorption rate (Walle et al., 2004), the rapid metabolism of
resveratrol leads to approximately 1% bioavailability of the

parent compound (Walle, 2011). Except for the low solubility
and high metabolism, an additional specific problem for the
delivery of appropriate therapeutic resveratrol concentrations
in the brain tissues is the presence of the blood-brain barrier.
Peripheral administration of resveratrol could increase the
antioxidant enzyme activities in the brain of healthy rats,
which suggested that resveratrol is able to traverse the blood-
brain barrier, and have biological activity in the brain (Mokni
et al., 2007). A previous study suggested that only 2% of
plasmatic resveratrol can cross the blood-brain barrier
(Asensi et al, 2002). Despite its low bioavailability,
resveratrol presents significant efficacy in the brain tissues,
and which may ascribe to the metabolites (Walle et al., 2004).
The metabolites of resveratrol, such as resveratrol-3-
O-glucuronide, resveratrol-O-glucuronide, resveratrol-3-
O-sulfate, and resveratrol-4'-O-sulfate, possess anti-
inflammatory and antioxidant properties (Luca et al,
2020). A previous study reviewed the neuroprotection
provided by resveratrol in brain tissues of animals, such as
preserving mitochondrial function, inhibiting the lipid
peroxidation, and inducing phosphorylation of several
mitogen activated protein kinases (Shetty, 2011). Despite
the ability of resveratrol to cross the blood-brain barrier,
recent research aims to explore the methods improving the
permeability and stability of resveratrol in the central nervous
system. Nanotechnology has been proposed for the
incorporation of resveratrol-loaded nanocarriers designed
to deliver resveratrol to brain tissues (Fonseca-Santos and
Chorilli, 2020). The nanocarriers containing resveratrol
reduced infarct volume and improved neurobehavioral
outcomes after ischemic stroke in rats (Ashafaq et al., 2021).

As dietary polyphenolic phytoalexin, resveratrol appeared to
be well tolerated, and non-toxic. In an experimental study,
resveratrol did not cause any adverse effects in rats at 28 daily
doses of 50, 150, or 500 mg/kg (Williams et al., 2009). In a clinical
trial conducted in healthy volunteers, resveratrol was
demonstrated to be safe with 29 daily doses of 0.5, 1.0, 2.5,
and 5.0 g, except the 2.5 and 5.0 g doses caused gastrointestinal
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FIGURE 5 | The possible mechanisms of resveratrol therapy for ischemic stroke. Abbreviations: BDNF, Brain-derived neurotrophic factor; CAT, Catalase; EGF,
Epidermal growth factor; FGF, Fibroblast growth factor; NGF, Nerve growth factor; Nrf2, Transcription factor nuclear factor (erythroid-derived 2)-like 2; GDNF, Glial cell
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symptoms, including nausea, flatulence, abdominal discomfort,
and diarrhea (Brown et al., 2010).

Possible Mechanism of

Resveratrol-Mediated Neuroprotection

The studies included in our meta-analysis indicated the main
mechanisms of neuroprotection include the following biological
activities (Figure 5): 1) Promoting angiogenesis. In an in vitro
study, resveratrol-induced endothelial nitric oxide synthase
phosphorylation led to prompt generation of nitric oxide in
endothelial cells. The elevated nitric oxide increased the secretion
of VEGF and matrix metalloproteinases (MMPs) (Siméao et al,
2012). In vivo model, resveratrol administration elevated matrix
metalloproteinase-2 and vascular endothelial growth factor levels
(Dong et al., 2008). Moreover, resveratrol is an activator of silent
information regulator 2 homologue 1, which enhances angiogenesis
through migration, and sprouting of endothelial cells (Koronowski
et al,, 2017). 2) Promoting neurogenesis. Resveratrol treatment
significantly increased the expression rates of neuronal markers
with bromodeoxyuridine in the ischemic lesion site (Hermann
et al, 2015). 3) Inhibiting neuroinflammation. Resveratrol
reduced interleukin-1pB, tumor necrosis factor-a protein levels,
and immunoglobulin G extravasation in the brain tissues (Jeong
et al., 2016). Meanwhile, Resveratrol promoted the M2 polarization
of microglia after cerebral ischemia (Ma et al., 2020). In addition,
resveratrol modulated inflammation by targeting the gut-brain axis,
such as regulating Th17/Tregs and Th1/Th2 polarity shift in the
small intestinal lamina propria (Dou et al, 2019). Resveratrol
pretreatment also improved the suppressive function of Tregs in
the spleens, which increased levels of anti-inflammatory factors, and

decreased levels of pro-inflammatory factors in the plasma and
ischemic hemisphere (Yang et al., 2016). 4) Antioxidant. Oxidative
stress plays a pivotal role in neurological dysfunction. Resveratrol
delayed the increases in oxygen species in brain tissue after ischemia,
decreased xanthine oxidase activity and expression levels of
inducible nitric oxide synthase, and increased levels of
antioxidant enzymes such as superoxide dismutase, glutathione
peroxidase, and chloramphenicol acetyltransferase (Su et al., 2016;
Al Dera, 2017; Alquisiras-Burgos et al, 2020). 5) Improving
metabolic adaptations. Brain tissues may lack metabolic plasticity
due to their tight regulation of energy metabolism (Khoury et al,
2016). Compared with the control group, the cortex with resveratrol
preconditioning presented increasing acetyl-CoA metabolism, basal
ATP levels, and long-term ischemic tolerance (Khoury et al., 2019).
6) Alleviating brain edema. Astrocytic swelling mediated by AQP4
plays a significant role in cytotoxic edema. Sulfonylurea receptor 1
(SURL) interacted with AQP4 to form a heteromultimeric complex
favoring ion/water osmotic coupling and cell swelling. Following
brain injury, SUR1 is up-regulated in the cells from the
neurovascular unit. Resveratrol was demonstrated to reduce
AQP4 expression (Li et al,, 2015; Alquisiras-Burgos et al., 2020)
in astrocytes, and SURI expression in endothelial cells (Alquisiras-
Burgos et al., 2020) after ischemic stroke. Except for the endothelial
cell and astrocyte, the interconnections between cells also contribute
to brain edema. The neurovascular unit is a physiological and
functional unit encompassing human brain microvascular
endothelial cells, pericytes, smooth muscle cells, astrocytes,
microglia, and neurons. The integrity of the neurovascular unit
may determine the evolution of blood-brain barrier damage,
neuronal death, and neuroinflammation. MMP-9 has been shown
to degrade components of the basal lamina matrix. Some studies
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found that resveratrol could inhibit MMP-2 and MMP-9 activity in
human cerebral microvascular endothelial cells (Cavdar et al., 2012;
Pandey et al., 2015; Wei et al., 2015), which maintain the integrity of
the neurovascular unit and decrease BBB permeability. However,
how resveratrol regulates cell-cell signaling in the neurovascular unit
remains further studied.

Limitations

There are several limitations in terms of drawing definitive
conclusions. 1) our study only included published data in
English, which may lead to a certain degree of selective bias. 2)
we limited outcomes measures in infarct volume and
neurobehavioral score. Thus, we may disregard results seen in
other outcomes. 3) the follow-up time in most included studies is
24 h, few studies evaluated the outcomes on 28 days post-stroke.
Thus, it remains further research whether resveratrol plays an
effective long-term treatment therapy for ischemic stroke.

Clinical Application

Some previous treatments that have shown great efficacy in
animal studies have failed to apply in humans, possibly owing
to the side effects, and narrow therapeutic time windows
(Mergenthaler and Meisel, 2012). The present preclinical
meta-analysis suggested that resveratrol has a relatively long
therapeutic time window in the animal model. The
administration timing of resveratrol in our included studies
ranges from 30-days before ischemia onset to 3-days after
ischemia onset. However, there is still significant work to be
done for clinical application. First, age is one of the non-
modifiable risk factors of ischemic stroke (Campbell and
Khatri, 2020). Nevertheless, the included studies are based
almost exclusively on healthy adult animals. It is doubtful
whether resveratrol can achieve the same effect in the elderly
animal models. In addition, no studies in the present meta-
analysis evaluated the potential side effects of resveratrol
injection on ischemic stroke. Resveratrol, when administered
at a high dose (1,000 mg/kg/day), may cause renal and hepatic
toxicity (Crowell et al., 2004; Rocha et al., 2009). We are incapable
of evaluating the safety of resveratrol treatment from the meta-
analysis. However, a previous clinical study suggested that
resveratrol 2000 mg twice daily was well tolerated by healthy
subjects (la Porte et al., 2010). Thus, the translation of resveratrol
for the therapy of ischemic stroke is promising.
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Metabolomic Profiling of Brain
Protective Effect of Edaravone on
Cerebral Ischemia-Reperfusion Injury
in Mice

Hui-fen Ma?, Fan ZhengT, Lin-jie Su, Da-wei Zhang, Yi-ning Liu, Fang Li, Yuan-yuan Zhang,
Shuai-shuai Gong* and Jun-ping Kou*

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of
Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China

Edaravone (EDA) injection has been extensively applied in clinics for treating stroke.
Nevertheless, the metabolite signatures and underlying mechanisms associated with
EDA remain unclear, which deserve further elucidation for improving the accurate
usage of EDA. Ischemia stroke was simulated by intraluminal occlusion of the right
middle cerebral artery for 1h, followed by reperfusion for 24 h in mice. Brain infarct
size, neurological deficits, and lactate dehydrogenase (LDH) levels were improved by EDA.
Significantly differential metabolites were screened with untargeted metabolomics by
cross-comparisons with pre- and posttreatment of EDA under cerebral ischemia/
reperfusion (I/R) injury. The possibly involved pathways, such as valine, leucine, and
isoleucine biosynthesis, and phenylalanine, taurine, and hypotaurine metabolisms, were
enriched with differential metabolites and relevant regulatory enzymes, respectively. The
network of differential metabolites was constructed for the integral exhibition of metabolic
characteristics. Targeted analysis of taurine, an important metabolic marker, was
performed for further validation. The level of taurine decreased in the MCAO/R group
and increased in the EDA group. The inhibition of EDA on cerebral endothelial cell
apoptosis was confirmed by TdT-mediated dUTP nick-end labeling (TUNEL) stain.
Cysteine sulfinic acid decarboxylase (CSAD), the rate-limiting enzyme of taurine
generation, significantly increased along with inhibiting endothelial cell apoptosis after
treatment of EDA. Thus, CSAD, as the possible new therapeutic target of EDA, was
selected and validated by Western blot and immunofluorescence. Together, this study
provided the metabolite signatures and identified CSAD as an unrecognized therapeutic
intervention for EDA in the treatment of ischemic stroke via inhibiting brain endothelial cell
apoptosis.

Keywords: metabolomic, edaravone, ischemia stroke, taurine, endothelial cells

Abbreviations: CSAD, cysteine sulfinic acid decarboxylase; EDA, edaravone; LDH, lactate dehydrogenase; MCAO/R, middle
cerebral artery occlusion/reperfusion; TUNEL, TdT-mediated dUTP nick-end labeling; H&E, hematoxylin and eosin; EC,
endothelial cell; I/R, ischemia/reperfusion.
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INTRODUCTION

Stroke, one of the neurovascular diseases, is the leading cause of
disability and death globally, resulting from an increasing burden
of vascular risk factors. Ischemic stroke is the most common type,
accounting for 70% of all strokes (Benjamin et al, 2019;
Montaner et al, 2020). Although the precise mechanism
underlying ischemic injury has not been fully elucidated,
vascular pathology has been reported the most common cause.
As a part of the vascular pathologies, endothelial cell (EC) death
could affect the surrounding cellular environment, which made it
a potential target mechanism for the treatment and prevention of
stroke, and ECs line the entire microvasculature and are also
important for maintaining normal brain function. Therefore, it is
necessary to choose the appropriate drugs for ischemic stroke.

Edaravone injection (EDA), as a commonly neurovascular
protective agent, has been widely used in patients with acute
ischemic stroke owing to its scavenging effect on oxygen-free
radical and neurovascular protective effects (Kikuchi et al., 2013).
It has been proven that EDA attenuates the Ca®*-induced
swelling of mitochondria and inhibits neuron apoptosis by
decreasing the expression of Fas-associated death domain
protein, death-associated protein, and caspase-8
immunoreactivity in the middle cerebral artery occlusion
(MCAO) model (Zhang et al., 2005). EDA could suppress the
response to endoplasmic reticulum stress and subsequent
apoptotic signaling in hypoxic/ischemic injury and exhibit
neuroprotective effects via its antioxidant actions, such as
suppression of lipid peroxidation and oxidant-induced DNA
damage (Amemiya et al., 2005; Yung et al., 2007). In addition,
EDA also could inhibit vascular endothelial growth factor
(VEGF) expression, aquaporin-4 expression, nuclear factor-xB
(NF-xB), inducible nitric oxide synthase (iNOS), cytokines,
cyclooxygenase-2, reactive oxygen species (ROS) generation,
and ROS-induced inflammatory reactions in stroke mice and
patients (Kikuchi et al., 2013). However, few of the literature
comprehensively elucidate action characteristics of EDA; thus,
further studies are still needed.

Metabolites are small molecules (typically <1.5kDa),
including lipids, amino acids, carbohydrates, and nucleotides,
that could reflect the downstream function of the gene, protein
expression, and environmental changes, such as drug intake; as a
result, metabolome could provide information about related
mechanisms (Shah et al., 2012). What is more, disease-specific
metabolites can be biomarkers for the diagnosis of diseases and
provide reference for the precise use of drugs in the clinic. The
functional characteristics of Huang-Lian-Jie-Du decoction and
gross saponins of Tribulus terrestris fruit were elucidated for
ischemic stroke with metabolomics (Fu et al., 2019; Wang et al.,
2019). By contrast, the value of metabolites of EDA for stroke has
not been systematically studied. Therefore, the metabolomics was
selected to investigate the potential mechanism of EDA.

Herein, we intended to discover the therapeutic mechanism of
EDA for stroke as comprehensively as possible according to the
metabolite variation characteristics. In this study, untargeted
metabolic profiling was applied to examine the serum and
urine metabolic signature of EDA for improving stroke. The
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metabolic network was constructed with differential metabolites.
Finally, we performed targeted metabolic profiling and verified
the potential therapeutic targets.

MATERIALS AND METHODS

Chemicals and Reagents

The standard compounds of taurine and caffeic acid were
obtained from Shanghai Yuanye Bio-technology Co., Ltd.
(Shanghai, China). Deionized water used in the experiment
was supplied by a Milli-Q Academic ultrapure water system
(Milford, Millipore, United States). Acetonitrile and methanol
were obtained from Merck (Chromatographic, Germany);
formic acid was obtained from Tedia (Chromatographic,
United States). Edaravone injection was obtained from
China National Medicines Guorui pharmaceutical Co., Ltd.

(Anhui, China; lot number: 2005018). The Ilactate
dehydrogenase (LDH) assay kit was purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing,

China), and cysteine sulfinic acid decarboxylase (CSAD)
was obtained from Abcam (Cambridge, England).

Animals and Middle Cerebral Artery

Occlusion/Reperfusion (MCAO/R) Model
Adult male specified-pathogen-free (SPF) C57BL/6] mice
weighing 18-22g were obtained from the Experimental
Animal Research Centre of Yangzhou University
(Yangzhou, China; certificate no SCXK 2017-0007). All
experimental protocols were performed according to the
National Institutes of Health (NIH) guidelines and the
research was approved by the Institutional Animal Care
and Use Committee of the Animal Ethics Committee of the
School of Chinese Materia Medica, China Pharmaceutical
University. All mice were housed with a 12:12 h light-dark
cycle at 23 + 1°C. Prior to experiments, mice were split
randomly into three groups: sham, MCAO/R, and MCAOR
+ EDA. Stroke was induced by the MCAO/R model in mice as
reported previously (Cao et al., 2016). In addition, the right
middle cerebral artery was occluded with a blunt-tip 6-0 nylon
monofilament for 1 h. Then the animals were reperfused by
the careful withdrawal of the filament. Sham-operated control
mice underwent the same surgical procedures except for the
occlusion by nylon monofilament. EDA was administrated
intraperitoneally to mice with 3 mg/kg (refer to the clinical
dose) after 1h of ischemia, the remaining model mice were
given an equal volume of normal saline. Neurological function
was evaluated at 24 h after reperfusion. Neurological deficit
was graded on a score of 0-4 as previously reported (Cao et al.,
2016) with slight modifications, as follows: 0, no observable
deficit; 1, forelimb flexion and preference to walk in one
direction; 2, unable to walk straight or to turn in both
directions, circling to the affected side when held by the
tail on the bench; 3, circling on the spot and walking
circling; and 4, no spontaneous locomotor activity or barrel
rolling, upon stimulation circling.
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Hematoxylin and Eosin (H&E) Staining

H&E staining was used for histomorphological analysis. In short,
brain slices were put into hematoxylin and eosin solution,
redehydrated in gradient ethanol solution again, treated with
dimethylbenzene, and covered with coverslips. The pathological
images were scanned with a digital pathological section scanner
(Hamamatsu, Japan) and analyzed with NDPView2 software.

TTC Staining

After ischemia/reperfusion (I/R), mice were euthanized and
perfused by normal saline. Then, the whole brains were taken
out, frozen at —20° followed by cutting into 1 mm thick slices
rapidly. These brain slices were incubated in 1% TTC for 10 min
at 37°C. The infarcted areas were analyzed with Image] software
(NIH, Bethesda, MD).

Transmission Electron Microscopy

After I/R, mice were euthanized and perfused by normal saline
followed by perfusion with the fixative (2% glutaraldehyde and
2% lanthanum nitrate in 0.1M sodium cacodylate pH 7.4-7.5) at
room temperature, as previously described (Wang Q. et al., 2007).
1 mm® sample obtained from the region encompassing ischemic
infarction of removed brains was kept in the same fixative
overnight at 4°C. The samples were postfixed in 1% osmium
tetroxide for 1h followed by embedding in Epon 812. After
polymerization, three blocks were randomly selected from
each brain sample. An Ultratome (Nova, LKB, Bromma,
Sweden) was used for cutting ultrathin sections. Then, ultrath
insections were mounted on mesh grids (6-8 sections/grid) and
stained with uranyl acetate and lead citrate. Finally, the prepared
samples were examined under a transmission electron
microscope (JEOL Ltd., Tokyo, Japan).

Untargeted Metabolomics Analysis

Sample Pretreatment

Serum and urine of mice were collected after 24 h reperfusion.
After standing for about 60 min, the blood was centrifuged with
3,500 r/min for 10 min at 15°C. The obtained serum samples were
sub-packed and stored at —80°C until the analysis. Urine samples
were collected at 4°C and kept at —80 °C until the analysis. 200 pl
of serum and urine were used for untargeted metabolomics
analysis and 600 pl of methanol was added into samples for
precipitating protein. Samples were subsequently centrifuged
(13,000 rpm, 15min) at 4°C followed by swirling 60s. The
supernatant was transferred to a tube and dried under a gentle
stream of nitrogen at room temperature. Then, the residue was
dissolved with 200 pl methanol and centrifuged (13,000 rpm,
15 min) at 4°C for further analysis.

HPLC-Q-TOF/MS Analysis

The detection of metabolites in urine and serum samples was
performed on an Agilent Technologies 6540 Accurate-Mass
Q-TOF LC/MS (United States) with electrospray ionization
(ESI) source and the data were collected by a mass hunter
workstation. The eluant A and B were deionized water (0.1%
formic acid) and acetonitrile (0.1% formic acid), respectively.
Serum analyses were achieved on a SynergiTM Fusion-RP C18
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column (50 x 2 mm i.d,, 2.5 um) with a gradient elution program:
0-5min, 5-5% B; 5-10 min, 5-30% B; 10-15 min, 30-60% B;
15-20 min, 60-70% B; 20-22 min, 70-80% B; 22-25min,
80-95% B; 25-30min, 95-95% B. Urine analyses were
achieved on a TSK-GEL Amide-80 column (150 x 2.0 mm id.,
5um) with a gradient elution program: 0-7 min, 90-90% B;
7-9 min, 90-75% B; 9-11 min, 75-75% B; 11-13 min, 75-50%
B; 13-20 min, 50-50% B. Both of the flow rates were set at 0.2 ml/
min with the injection volume of 10 ul. The Q-TOF/MS operating
parameters were set as follows: fragment voltage, 120 V; nebulizer
gas, 35 psig; capillary voltage, 4000 V; drying gas flow rate, 9 L/
min; temperature, 325°C; detection range, m/z 50-1,500 in full
scan mass spectra. The MS data acquisition was carried out in
positive and negative ionization modes.

Validation of System Stability

The repeatability and robustness of the experiment were validated
with the pooled quality control sample (QC) (Peron et al., 2020).
The QC sample was prepared to mix equal volumes (30 pl) of
each test sample, and treated with the same method as the test
samples. QC samples were randomly injected throughout the
sequence list.

Data Analysis of Metabolomics Strategies

Before multivariate analysis, the data format (.mzdata) files
obtained by MassHunter Workstation Software (version
B.06.00, Agilent Technologies) were processed by XCMS
software performing on the R+ package (R Foundation for
Statistical Computing, Vienna, Austria), and the data
pretreatment procedures include non-linear retention time
alignment, peak discrimination, filtering, alignment, and
matching. All detected peaks were tabulated with tR-m/z pairs
and outputted for statistical analyses. In order to screen the
significant compounds that were responsible for the difference
between model and model + EDA, metabolomic strategies were
subsequently used to dispose the data. Principal component
analysis (PCA), orthogonal partial least square discriminant
analysis (OPLS-DA), volcano Plot, and heatmap developed by
Metaboanalyst (https://www.metaboanalyst.ca/) were adopted to
do the preliminary screening. PCA is a multivariate technique
which can select the typical variables from a data table by several
linear transformations, and OPLS-DA is a supervised machine
learning model. The online database including HMDB (http://
www.hmdb.ca/), METLIN (http://metlin.scripps.edu/), and
MassBank  (http://www.massbank.jp/) was performed to
identify the potential metabolites by matching with the
message of ion fragments.

Targeted Analysis for Taurine by
HPLC-QQQ-MS/MS

Targeted analysis was performed on a triple quadrupole tandem
high-performance liquid chromatography-mass spectrometry
(HPLC-QQQ-MS/MS) system (Agilent, 6465) with caffeic acid
as the internal standard. Chromatographic separation was
performed on a TSK-GEL Amide-80 column (150 x 2.0 mm
i.d.,, 5 um) with a gradient elution program: 0-1 min, 75-75% B;
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1-2 min, 75-60% B; 2-3 min, 60-60% B; 3-5 min, 60-50% B. The
mobile phase system consists of deionized water containing 0.1%
formic acid (A) and acetonitrile containing 0.1% formic acid (B)
at a flow rate of 0.2ml/min. Multiple reaction monitoring
transitions in the negative mode were performed at
m/z124—79.9 for the target analyte taurine and m/z 179—135
for the internal standard compound. MS parameters for the LC-
MS/MS system, including the fragment and voltage collision
energy of taurine and internal standard were 110, 21, and
90V, 17 V, respectively.

Western Blot Analysis

The RIPA buffer supplemented with protease inhibitor cocktail
was adopted for lysing ischemic penumbra of the brain tissues,
and obtained samples were used for Western blotting as described
previously (Zhai et al., 2017). Protein concentration of tissues was
determined by Bicinchoninic Acid (BCA) Protein Assay Kit
(Biyuntian Biotech. Co., Ltd., China) after centrifuging
(12,000 rpm, 10 min, 4°C). The supernatant was diluted by
loading buffer to 1 ug/ul followed by heating at 100°C for
5min. Equal protein amounts of different groups were
electrophoresed on SDS-PAGE gels and transferred to a
polyvinylidene fluoride (PVDF) membrane. Then, the obtained
PVDF membrane was blocked with 5% BSA solution for 2 h and
incubated with specific primary antibodies overnight at 4°C
followed by suitable secondary antibodies at room temperature
for 2 h. Protein signals were detected with the ECL plus system
and imaged by the gel imaging system (BioRad, Hercules, CA,
United States). The protein levels were calculated by protein
signals to correlative GAPDH or B-actin.

Immunofluorescence Staining

After perfusion with PBS and 4% paraformaldehyde, brain
tissues were picked up and put into 4% paraformaldehyde.
After 24 h, brain tissues were dehydrated with 40% sucrose for
5 days, embedded in OTC, and frozen at —80°C. Brain tissues
were sectioned into slices of 10 um thickness with a cryotome
(Leica, Mannheim, Germany). Brain sections were fixed in 4%
paraformaldehyde, permeabilized with 0.3% Triton X-100 in
PBS, blocked with 5% bovine serum albumin, and incubated
with specific primary antibodies overnight at 4°C. The next
day, tissue sections were incubated with appropriate
fluorescence-conjugated secondary antibodies at room
temperature, and the cell nucleus was stained with DAPI.
The immunofluorescence TUNEL assay was performed
according to the instructions of the manufacturer.
Fluorescent images were observed by confocal laser
scanning microscopy (CLSM, LSM700, Zeiss, Germany).

Statistical Analysis

Student’s t-test and one-way analysis of variance (ANOVA)
followed by Dunnett’s post hoc test operating on the
GraphPad Prism 8.0 (Graph Pad Software, La Jolla, CA,
United States) were used for analyzing two group comparisons
and multiple comparisons, respectively. Differences were
considered significant at p < .05.
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RESULTS

EDA Effectively Ameliorated Brain Ischemia
Reperfusion Injury in Mice

The results of TTC staining demonstrated the marked infarct area
of the brain appeared after cerebral I/R and could be reduced by
EDA (Figures 1A,B). H&E staining of brain sections showed that
cerebral I/R induced cell loss and numerous vacuolated spaces,
whereas EDA ameliorated such histopathological damage, as
shown in Figure 1C. Additionally, the neurobehavioral deficits
could be improved by EDA administration compared with the
model group (Figure 1D). The electron microscope was applied
for observing the morphology of endothelium, the key elements
of the blood-brain barrier. Obviously, the endothelial cells were
destroyed after cerebral I/R and improved by EDA (Figure 1E).
The morphology of cerebral microvascular endothelial cells in
MCAO/R mice changed. Additionally, the cell membrane
integrity was also destroyed in MCAO/R mice. These injuries
of microvascular endothelial cells could be improved by EDA.
Besides, the level of LDH in serum increased in MCAO/R mice
and could be significantly inhibited by EDA (Figure 1F). Taken
together, EDA effectively alleviated the brain injury and
inflammation in MCAO/R mice.

Multivariate Statistical Analysis of

Metabolites in Urine and Serum Samples
Analytical stability was validated by contrasting the difference in
retention time of the QC samples. The overlapped total ion
chromatograms of QC samples showed that retention time
deviation was acceptable (Supplementary Figures 1A-D).
Three ions were randomly chosen from QC samples including
serum-positive, serum-negative, urine-positive, and urine-
negative to evaluate the system reproducibility in the
metabolomic raw data acquisition throughout the whole
experiment. The relative standard deviations (RSD) of the
retention times and corresponding peak areas of the 3 selected
ions in the QC samples were 0.59-2.54 and 1.14%-3.78%, as
shown in Table 1. The results proved that the repeatability and
stability of the HPLC-Q-TOF/MS system were reliable.

PCA was applied to perform unsupervised data analysis on
Sham, MCAOJ/R, and EDA groups, and these groups could be
easily distinguished from each other (Figures 2A-D). The
phenomenon of the EDA group closing to the sham group
compared with the MCAO/R group showed the improvement
of EDA on brain injury. To screen the influential compounds that
caused the difference between EDA and the model group, OPLS-
DA was applied to classify the different samples and select the
differential compounds from obtained data. Figures 2E-H
suggested that the metabolic profiles in the EDA group were
significantly different from those in the MCAO/R group in both
urine and serum samples, and the ions of variable importance
parameters (VIP > 1) were obtained. S-plot was applied to show
those changed ions which significantly contributed to the
classification between EDA and MCAO/R group (Figures
2I-L). Depending on VIP > 1 and p-value (p < .05) acquired
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FIGURE 1 | EDA protects against cerebral I/R injury and endothelial injury. Mice were subjected to 1 h of ischemia, followed by 24 h of reperfusion. EDA (3 mg/kg)
was administered intraperitoneally after ischemia. (A) Representative TTC-stained brain sections. (B) Quantitative analysis of infarct volume. (C) Stained H&E sections of
mice brains. Shrunken cells with pyknotic nuclei are indicated with yellow arrows, while intact cells are indicated with green arrows. (D) Neurological deficit scores in
different groups. (E) The structure and morphology of cerebral microvascular endothelial cells in different groups were examined by electron microscopy. Red
arrow: brain microvascular endothelial cell membrane. Blue arrow: the degree of edema around brain microvascular endothelial cells. (F) LDH activity. All data are
presented as the means + SEM, n = 6. Scale bar = 50 pm. o < .05, #p < .01, #¥p < .001, vs. Sham group, *p < .05, *p < .01, ***po < .001, vs. MCAO/R group.

TABLE 1 | Relative standard deviation (RSD%) of retention time and peak area in QC samples.

Sample Model m/z Retention time (RSD%) Peak area (RSD%)
Serum Positive 203.0541 1.34 2.01
274.2751 0.95 1.93
675.6783 1.12 3.56
Negative 215.0316 1.27 3.78
809.2477 2.08 2.69
279.2312 2.54 217
Urine Positive 1741122 1.83 2.98
114.0654 0.81 1.74
263.1456 1.96 3.14
Negative 172.9869 1.53 1.14
208.0667 0.59 1.22
195.0460 1.21 1.65
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FIGURE 2 | PCA, OPLS-DA score plot, and S-plot of sham, model, and EDA group based on HPLC-Q-TOF/MS system for serum and urine analysis. (A-D) PCA
score plot of model and EDA group. (E-H) OPLS-DA score plot of model and EDA group. (I-L) S-plot of model and EDA group.

through two-tailed Student’s t-test and showed in volcano plot
(Figures 3A-D), the variables can be selected for further
screening. According to the above screening procedures, the
ions were screened and the metabolites were identified, which

were considered as potential biomarkers listed in Supplementary
Table S1. Comparing EDA and MCAO/R groups, 51 and 56

differential metabolites were identified in serum and urine,
respectively. The hierarchical clustering heatmap exhibited the
change of metabolites more intuitively (Figures 3E,F). The
heatmaps showed that EDA and MCAO/R could be grouped

into two parts according to the identified metabolites. The above
data exposed that numerous metabolites changed by EDA.
Among these metabolites, taurine with 30.795 of fold change
showed the greatest change.

Enrichment Analysis of Metabolic Pathway
and Regulatory Enzymes Changed by EDA

In order to comprehensively observe the changes in metabolic
pathways, Metaboanalyst 4.0 (https://www.metaboanalyst.ca/)

Frontiers in Pharmacology | www.frontiersin.org

46

February 2022 | Volume 13 | Article 814942


https://www.metaboanalyst.ca/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Ma et al. Metabolomic of Edaravone on Stroke

A Serum-Positive B Serum-Negative
94 e @ - F oo
- o
ER Fe
g g
el 2
g R M-
o o
A o Lo
.:’d L 13
o e Lo - Lo
-6 -4 = 0 2 -10 05 0.0 05 10
log2 (FC) log2 (FC)
C Urine-Negative D Urine-Negative
2 ] . F8
9 Fa 9 N
2 Fa
g =
g g
& g ke 8 g ¥ Lo
2 i
o > if o o o
T T T T T T T T T
-10 -5 0 5 10 -10 5 0 5 10
log2 (FC) log2 (FC)

class

2
Model

PEROEZNZ14Z01(112)
Urea

Dalucose

PRE11Z)160)

S ety 2oxovaleis acd

Lactosylceramid (18:112:0) tsowalerysareosine
{lphaD-Glucosaminyi}1

peqiet2y1e1z) Danyonositol

s Ditydroxyauinaine-beta
Deglucuronde
Lt

FIGURE 3 | Volcano plot and heatmap of the differential endogenous metabolites between the model and EDA group in serum and urine. (A-D) Volcano plot of
model and EDA group. (E) Heatmap of the differential endogenous metabolites between the model and EDA group in serum. (F) Heatmap of the differential endogenous
metabolites between the model and EDA group in urine. Red represented the metabolites in high abundance; green represented the metabolites in low abundance.

was applied for pathway and biological function enrichment by  biosynthesis, and phenylalanine, taurine, and hypotaurine
introducing all significant metabolites of serum and urine. The  metabolism were screened out (Figures 4A,B). And the
perturbed pathways including valine, leucine, and isoleucine  correlations between biological functions are also shown in
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Figure 4C. The results suggested that EDA could improve many
pathways under MCAO/R. Moreover, the interaction network of
related regulatory enzymes built up with STRING (https://string-
db.org/) is exhibited in Supplementary Figure S2A. And the GO
enrichment analysis of related regulatory enzymes performed by
Metascape (https://www.metascape.org/) showed that cellular
amino acid metabolic process, monocarboxylic acid metabolic
process, metabolism of lipids, and so on were regulated by EDA
(Figure 4D), and the relations of them are exhibited in
Supplementary Figure S2B. According to the results
described previously, a schematic diagram of the changed
metabolic pathways in serum and urine is exhibited in Figure 5.

Semiquantitative Analysis of Taurine and
Validation of CSAD Expression in Pre- and
Posttreatment by EDA

Identification of taurine was characterized by MS profile and
confirmed with a standard compound, as shown in
Supplementary Figure S3. Analyses of all samples showed

that taurine decreased in MCAO/R mice compared with sham
groups and could be improved by EDA (Figure 6A). To explore
the possible reasons for the change of taurine, the level of CSAD,
which is the predominant enzyme that regulates taurine
biosynthesis in the brain, was determined. The expression of
CSAD in the brain decreased in MCAO/R mice and dramatically
increased in mice with the treatment of EDA (Figure 6B). The
results of immunofluorescent staining proved the same tendency
of CSAD expression in brain ECs (Figures 6C,D). These results
demonstrate that the level of taurine was increased by EDA
through promoting the expression of CSAD.

EDA Alleviates MCAO/R Induced Brain EC

Apoptosis In Vivo

As shown in Figures 7A,B, TUNEL assays of brain sections
counterstained with CD31 to mark endothelium proved that
TUNEL-positive brain ECs increased significantly in the
MCAO/R mice, while the number of TUNEL-positive brain
ECs was decreased after treatment with EDA. The levels of
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apoptosis proteins were measured with Western blot. The results  linoleic acid, triacylglycerol (TG), palmitic acid, prostaglandin 12,
showed that EDA significantly inhibited the expression of Bax  urea, and leucine were reduced by EDA, while sphingosine-1-
and cleaved caspase-3, and upregulated the expression of Bcl-2 ~ phosphate, taurine, valine, glutamine, and creatine were improved
compared with the MCAO/R group (Figures 7C,D). These by EDA, especially taurine (Supplementary Table S1). The increased
results suggested that EDA had a protective effect on MCAO/  level of oleic acid leads to mitochondrial-derived reactive oxygen
R-induced brain EC apoptosis. species production, resulting in endothelial dysfunction and

blood-brain barrier disruption (Han et al., 2013; Gremmels et al.,

2015). Linoleic acid associated with cardiovascular and
DISCUSSION cerebrovascular diseases significantly activates pro-inflammatory

signaling in ECs, such as PI3K/Akt and ERK1/2, thus causing
In this study, through analysis of high-through metabolomics  vessel inflammation, endothelial dysfunction, and death (Hennig
data and multistep validations, we attempted to find the untapped et al., 2006; Bin et al., 2013; Satoh, 2013; Marchix et al,, 2015). Adults
therapeutic targets of EDA, a first-line drug for the clinical ~ with high triacylglycerol have increased risks of incident coronary
treatment of stroke, toward elucidating the therapeutic  heart disease and stroke, while lowering triglyceride levels of serum
mechanisms. Initially, we verified that EDA could significantly  improves endothelial function, leading to a decrease in cardiovascular
decrease  cerebral infarction, inflammatory infiltration,  diseases (Hirano et al., 2008; Kajikawa et al., 2016; Lee et al., 2017).
neurological deficits, endothelium injury, and apoptosis in  Similarly, the elevated palmitic acid level is related to the development
MCAO/R mice (Figure 1). The above investigations showed of inflammation and endothelial dysfunction (Yang et al, 2019).

that EDA could effectively alleviate the cerebral ischemia-  Palmitic acid also induces energy metabolism disorders and apoptosis
reperfusion injury in MCAO/R mice, thereby providing  via activation of the apoptotic mitochondrial pathway (Adrian et al,,
reliable samples for subsequent metabolomic analysis. 2017; Wen et al., 2017). Additionally, excess prostaglandin 12, urea,

The results of metabolomic analyses presented the metabolic ~ and leucine could similarly result in vascular endothelial injury and
signature of EDA improvement of cerebral I/R injury, offering  even lead to the disruption of barrier (Dorovini-Zis et al., 1987; De
insights into the therapeutic mechanisms (Figure 5). The  Bock et al, 2013; Lau and Vaziri, 2017; d’Apolito et al., 2018;
metabolites influenced by EDA were mainly lipids, fatty acids in ~ Zhenyukh et al, 2018). Vessel inflammation, endothelial
serum, and were mainly amino acids in urine. Notably, oleic acid, =~ dysfunction, and death were the main factors causing
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cardiovascular and cerebrovascular diseases including stroke. Thus,
reducing levels of differential metabolites damaging ECs is the
potential mechanism of EDA for improving I/R injury.
Sphingosine-1-phosphate, a bioactive intermediate of the
sphingolipid metabolism, serves important physiological functions,
such as proliferation, differentiation, survival, and migration, and is a
key regulator of lymphocyte trafficking, endothelial barrier function,
and vascular tone (Ksigzek et al, 2015). Taurine, a semi-essential
sulfur-containing amino acid, is present in several organs including
the brain and has extensive physiological activities such as anti-
inflammation and anti-oxidative stress, as well as regulation of energy
metabolism, gene expression, osmosis, and quality control of protein.
Thus, taurine protects against injuries of ECs and has potential
ameliorating  effects against cardiovascular diseases and
neurological disorder events such as neurodegenerative diseases,
stroke, and diabetic neuropathy (Ulrich-Merzenich et al, 2007;
Murakami, 2014; Jakaria et al, 2019). Additionally, taurine has
been reported to have a protective effect on the brain in stroke by
down-regulating PARP and NF-kB, and activating GABAA and
glycine receptors, as well as attenuating cell death (Wang GH. et al,,
2007; Sun et al,, 2012). Valine, one of the eight essential amino acids

and sugar-producing amino acids for the human body, could
promote the normal growth of the body, regulate protein and
energy metabolism, and neurological functions (Shimomura and
Kitaura, 2018). Glutamine metabolism is important for ECs in
health and disease conditions, especially in cardiovascular diseases.
Glutamine not only possesses potent antioxidant and anti-
inflammatory effects in the circulation but also drives key
processes in vascular cells, including proliferation, migration,
apoptosis, senescence, and extracellular matrix deposition by
serving as a substrate for the synthesis of DNA, ATP, proteins,
and lipids (Rohlenova et al., 2018; Durante, 2019). Creatine exhibits
ergogenic effects under a number of conditions including
neurodegenerative diseases by maintaining cellular ATP stores.
Moreover, creatine could improve ischemic stroke and other
cerebrovascular ~ diseases due to  antioxidant  activity,
neurotransmitter-like behavior, and prevention of the opening of
the mitochondrial permeability pore (Balestrino et al., 2016). The
metabolites described above could replicate some of the previous
research findings of the treatment of stroke. In this study, the level of
oleic acid and palmitic acid decreased after treating with EDA, which
appears to be in line with the treatment of gross saponins of Tribulus
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terrestris fruit (Wang et al, 2019). Similarly, the decrease of
phenylalanine was in accordance with the previous report (Fu
et al, 2019). Therefore, the possible mechanisms of EDA
improvement of stroke were anti-inflammation and anti-oxidative
stress, as well as a decrease of endothelial dysfunction and
blood-brain barrier disruption by regulating the metabolites
described above.

Subsequently, the pathways mediated by EDA were enriched
with the differential metabolites. The results highlighted amino
acid metabolisms, fatty acid metabolisms, and lipid metabolisms,
such as valine, leucine, and isoleucine biosynthesis, biosynthesis
of unsaturated fatty acids, sphingolipid metabolism as well as
taurine and hypotaurine metabolism pathways (Figures 4A-C).
As described above, valine, leucine, and isoleucine metabolism
and most fatty acid metabolisms were directly associated with
endothelial dysfunction through increasing reactive oxygen
species generation and inflammation, and the change of these

pathways, as well as taurine and hypotaurine metabolism, were
the important pathological factors in stroke (Hennig et al., 2006;
Gremmels et al., 2015; Zhenyukh et al., 2018). Consequently,
EDA mainly improves endothelial dysfunction and blood-brain
barrier function by interfering with these metabolic pathways,
which might be the metabolism mechanism of EDA alleviating
cerebral impairment induced by ischemia-reperfusion.

ECs are the key part of the blood-brain barrier which
maintains the normal function of the central nervous system
and metabolism activity of brain tissue. The death of ECs occurs
at the primary stage of stroke which plays a vital role in the early
impairment of neurological functions and may interfere with later
recovery (Zille et al, 2019). Thus, EC is the potential target
mechanism for the treatment of stroke. Interestingly, taurine, one
of the mainly increased metabolites by EDA, possesses the effect
of endothelium protection. EDA might inhibit the death of ECs
by increasing the level of taurine. Hence, taurine was selected for
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the follow-up validation to explore the potential targets of EDA.
Our research demonstrated that EDA could effectively elevate the
level of taurine. In order to further confirm the mechanism of
EDA increase of taurine, the key regulatory enzymes of taurine
were verified. CSAD is the key synthetase of taurine and expresses
in the brain, while its biofunction in MCAO/R has not been
clarified yet (Park et al, 2014). We found that EDA could
significantly increase the expression of CSAD, which indicated
that EDA might elevate the level of taurine in MCAO/R mice by
increasing CSAD. Therefore, CSAD is a potential target of EDA
therapy for stroke.

Apoptosis is a common way of cell death, and the apoptosis of
ECs is an important pathological process in stroke (Yang et al.,
2018). Bax, Bcl-2, and cleaved caspase-3 are the characteristic
proteins of apoptosis. We found that EDA could effectively
inhibit Bax, Bcl-2, and cleaved caspase-3 by increasing taurine
(Figure 7). Thus, EDA inhibited apoptosis of ECs and
ameliorated cerebral microvascular endothelial dysfunction,
thereby alleviating brain injury induced by I/R. Meanwhile, the
EC apoptosis was inhibited along with the expression of CSAD
increasing. In summary, taurine and CSAD have a critical role in
inhibiting ECs apoptosis, which might be an important
metabolism mechanism of EDA treatment stroke.

Our current study still has several limitations. EDA treats
stroke with many complex mechanisms. Numerous differential
metabolites and pathways were found to be associated with
therapeutic stroke of EDA. Thus, more differential metabolites
need to be further investigated.

CONCLUSION

In the present study, a functional metabolomics strategy was used
to characterize metabolite signatures and their underlying
mechanisms associated with the therapeutic stroke of EDA.
We not only constructed the differential metabolic network
map providing clues for investigating mechanisms but also
identified the biological function of taurine in the process of
EDA improving stroke. It is interesting to note that taurine and its
regulatory enzyme CSAD seem to play a key role in inhibiting EC
apoptosis induced by I/R. Therefore, this study elucidated that
EDA improves stroke via the influence of metabolites and
provided a potential therapeutic target for stroke.
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Background: Ischemic stroke (IS) is a common disease endangering human life
and health. Cerebral ischemia triggers a series of complex harmful events, including
excitotoxicity, inflammation and cell death, as well as increased nitric oxide production
through the activation of nitric oxide synthase (NOS). Oxidative stress plays a major
role in cerebral ischemia and reperfusion. Sphingosine 1-phosphate receptor subtype 3
(S1PR3), a member of S1P’s G protein-coupled receptors STPR1-S1PR5, is involved in
a variety of biological effects in the body, and its role in regulating oxidative stress during
cerebral ischemia and reperfusion is still unclear.

Methods: Transient middle cerebral artery occlusion (tMCAQO) mice were selected as
the brain ischemia—reperfusion (I/R) injury model. Male C57/BL6 mice were treated
with or without a selective S1PR3 inhibition after tMCAO, and changes in infarct
volume, Nissl staining, hematoxylin-eosin (H&E) staining and NOS protein, nitric
oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA) content after
tMCAO were observed.

Results: In the cerebral ischemia—reperfusion model, inhibition of S1PR3 improved the
infarct volume and neuronal damage in mice after tMCAQ. Similarly, inhibition of S1PR3
can reduce the expression of NO synthase subtype neuronal NOS (nNOS) and reduce
the production of NO after cerebral ischemia. After cerebral ischemia and reperfusion,
the oxidative stress response was enhanced, and after the administration of the STPR3
inhibitor, the SOD content increased and the MDA content decreased, indicating that
S1PRS3 plays an important role in regulating oxidative stress response.

Conclusion: Inhibiting ST1PR3 attenuates brain damage during I/R injury by regulating
NNOS/NO and oxidative stress, which provides a potential new therapeutic target and
mechanism for the clinical treatment of IS.

Keywords: S1PR3, cerebral ischemia-reperfusion injury, nitric oxide, oxidative stress, CAY-10444
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S1PR3 Inhibition Reduce I/R Damage

INTRODUCTION

Cerebrovascular disease is the main disease that endangers
human health. Ischemic stroke (IS) is the most common type
of stroke, accounting for 60-70% of all strokes (Wang et al,
2020). When brain tissue is ischemic for a long period of time,
the restoration of blood flow will further damage brain tissue,
which is cerebral ischemia-reperfusion (I/R) injury (Taoufik
and Probert, 2008). Oxidative stress is a pathophysiological
phenomenon in which cells in the body are affected by the outside
world, which causes excessive production of reactive oxygen
species (ROS), and leads to impairment between oxidation and
antioxidant systems, making the system prone to oxidation and
cell damage. In cerebral I/R injury, oxidative stress can damage
nerve cells through direct damage to reactive oxygen species and
activation of other signaling pathways (Frantseva et al.,, 2001).
Nitric oxide (NO) has dual neuroprotective and neurotoxic
functions in cerebral ischemic injury (Beray-Berthat et al., 2003),
which depends on factors such as the time period after ischemic
brain injury, the nitric oxide synthase (NOS) subtype of NO,
and the source of cells. Immediately after cerebral ischemia,
the NO released by endothelial nitric oxide synthase (eNOS)
plays a protective role by promoting vasodilation and inhibiting
the aggregation and adhesion of microvessels. However, after
the occurrence of cerebral ischemia, NO produced by the
excessive activation of neuronal NOS (nNOS) and by later
inducible nitric oxide synthase (iNOS) contributes to brain
damage (Moro et al., 2004).

Sphingosine 1-phosphate (S1P) is produced by the
phosphorylation of sphingosine by sphingosine kinase. SI1P
is synthesized in the cell and then acts as a bioactive molecule
in the extracellular or intracellular pathways. To date, there are
five subtypes of S1P receptors: SI1P receptor subtype 1 (S1PR1),
S1PR2, S1PR3, S1PR4, and S1PR5, among which S1PR1, S1PR2,
and S1PR3 are commonly expressed in tissues, SIPR4 is mainly
expressed in lymphoid tissues, and S1PR5 is limited to expression
in the brain and spleen (Chun et al., 2010). FTY720, a new class
of immunomodulator, has an excitatory effect on all four receptor
subtypes except SIPR2 (Albert et al., 2005). The study found that
S1P and CYM5442 are full agonists for SIPR3 (Wang et al., 2018).
FTY720-P is a partial agonist for SIPR3 and requires a certain
level of receptor reserve to initiate the response (Stepanovska
and Huwiler, 2020). FTY720-P may also inhibit S1P-induced
leukocyte rolling and P-selectin mobilization by interfering
with S1IPR3 (Nussbaum et al., 2015). In addition, TY-52156 and
CAY-10444 have been widely used as specific SIPR3 receptor
antagonists (Murakami et al., 2010; Li et al., 2015; Shirakawa
et al., 2017; Patil et al., 2019). To study the pathophysiological
mechanism mediated by S1PR3, these agonists and antagonists
have been widely used in experimental studies.

The pathogenicity of S1IPR1 in cerebral ischemia is related to
neuroinflammation. Inhibition of SIPR1 activity with AUY954
not only alleviated the pro-inflammatory response but also
enhanced the anti-inflammatory response after cerebral ischemia.
In addition, the regulatory role of SIPR1 in proinflammatory
response after cerebral ischemia may be related to the activation
of microglia. Such as increasing the number of microglia
and cell proliferation, promoting microglia to amoeboid

cells transformation (Gaire et al, 2018a, 2019). Another
independent study also suggested that S1PR2 was involved
in neuroinflammatory after tMCAO, and S1PR2 may mainly
participate in the pro-inflammatory response of activated
microglia during cerebral ischemia (Sapkota et al., 2019).
However, it is not clear whether SIPR4 or S1PR5 are involved
in the pathogenesis of cerebral ischemia. In the mouse brain
I/R model, SIPR3 is beneficial to the activation of microglia
and polarization of M1-type macrophages (Gaire et al., 2018b).
It is still unclear whether SIPR3 is involved in mediating NO
production and oxidative stress in I/R. We used the SIPR3
antagonist CAY-10444 to study the role of SIPR3 in cerebral
ischemia and reperfusion to provide new methods for the
treatment of stroke.

MATERIALS AND METHODS

Animal Studies

For this experiment, C57BL/6 male mice were selected. The
mice were SPF grade and weighed approximately 20-25 g. All
experimental mice were purchased from Liaoning Changsheng
Biotechnology Co., Ltd. All experimental animals were managed
and used strictly in accordance with the experimental animal
management guidelines of the First Affiliated Hospital of Harbin
Medical University, as recommended by the US National
Institutes of Health. During the experiment, the mice were
housed in an environment with a humidity of 50-60% and
a temperature of 23-25°C, the natural circadian rhythm was
simulated with a 12/12 h alternating light mode, and the mice
were able to eat and drink water freely. Mice are randomly
assigned to each group, 4 mice per group.

Construction of the Transient Middle

Cerebral Artery Occlusion Model

Cerebral ischemia was established by generating the tMCAO
model using a modified intraluminal technique (Liu et al,
2010). The mice were anesthetized with 3% pentobarbital
sodium, their heads were skinned and disinfected, and the anal
temperature probe was inserted to keep the body temperature
at 37 £ 0.5°C. The skin of the neck was cut open to
isolate and expose the common carotid artery, internal carotid
artery and external carotid artery. An incision was made on
the right common carotid artery, where a 0.21 mm thread
was inserted into the internal carotid artery through the
common carotid artery until the middle cerebral artery was
reached. The depth reached approximately 9 £ 1 mm at
the bifurcation of the internal and external carotid arteries.
If there was any resistance, the thread was stopped. One
hour after ischemia, the thread plug was removed, the
skin was sutured, and the mouse was placed on a heating
pad. After waking up, the mice were placed in a constant
temperature incubator for 24 h. The animals in the sham
group were subjected to the same operation process except
that the middle cerebral artery (MCA) was not occluded. An
inspector unknowingly scored mice for neurological deficits.
The deficits were scored as follows: 0, no deficits; 1, forelimb
weakness and torso turning to the ipsilateral side when
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held by tail; 2, unable to extend the opposite forepaw
completely; 3, turning to the paralyzed side; 4, dumping
to the opposite side; and 5, unable to walk spontaneously,
loss of consciousness. It is considered that the tMCAO
model is successful when score is 1-4 points. Mice after
tMCAO were excluded from this study: (1) one that died
before euthanasia; (2) one with a subarachnoid hemorrhage
or intraparenchymal hemorrhage; (3) one with a 0 score or
5 score at the time point of euthanasia. When the mice
were operated, the neck skin opening is narrowed to reduce
the wound surface and unnecessary exposure. The operation
is gentle, reducing the physical strain on the tissue. From
the beginning of anesthesia to awake, the mice are placed
on the 37°C constant temperature heating plate to make the
mice in a more comfortable environment, promoting their
recovery. Each batch of 20 mice were randomly assigned to
4 cages, and the average success rate of the model was over
90%.CAY-10444 was purchased from Cayman Company and
was injected intraperitoneally into mice at 0.5 mg/kg during
reperfusion (Gaire et al., 2018b). CAY-10444 was dissolved
in dimethylsulfoxide (DMSO, less than 2%). Mice in the
V + tMCAO group were intraperitoneally injected with vehicle
(DMSO, less than 2%) after ischemia and reperfusion. Mice were
randomly divided into the following groups: (1) sham group; (2)
24 h-tMCAO group; (3) CAY-10444 + tMCAO group; and (4)
V + tMCAO group.

2,3,5-Triphenyltetrazolium Chloride (TTC)
Staining

After the mouse was sacrificed, the brain was extracted and
cut into seven pieces from the rostral tip (1 mm thick) of
the frontal lobe. The tissue was incubated with 2% 2,3,5-
triphenyltetrazolium chloride solution (2% TTC, Solarbio) at
37°C in the dark for 30 min and then fixed with 4%
paraformaldehyde. Finally, brain slices were imaged with a
camera, and the infarct volume was evaluated by Image] software.
Measure the infarct area and total area of each slice. The infarct
volume of each layer is the product of the infarct area and the
thickness of the layer. The sum of the infarct volume of each layer
is the total infarct volume.

Nissl Staining, and Hematoxylin-Eosin
Staining

The specimens were fixed in 4% buffered formaldehyde, paraffin-
embedded and 4 pm thick histological sections were stained with
H&E. In Nissl staining, the sections were put into toluidine blue,
the staining tank was placed in a constant temperature box at
50-60°C for 25-50 min, 70% ethanol was added for washing,
and finally 95% ethanol was used for rapid differentiation.
Absolute ethanol dehydrates quickly. The tissue sections were
examined and imaged with an optical microscope (Nikon,
Y-TV55, JAPAN).

Immunofluorescent Staining
At the time of 24 h after tMCAO on set, the mice
brain tissues were taken and their hearts were perfused.

Firstly, pre-cooled saline was used for perfusion and flushing
until all blood was released, and then 4% paraformaldehyde
was perfused until the mice became stiff. Secondly, the
tissues were obtained by dissection at 4°C, fixed in 4%
paraformaldehyde for more than 24 h, putting the tissues
fixed in paraformaldehyde in a 30% sucrose solution for
dehydration for 24-48 h, then it was embedded with OCT
and placed in a -80°C refrigerator. The frozen brain tissues
were sliced using a cryostat with a thickness of 7 pm,
and the slices were directly subjected to immunofluorescence
staining. We cover the tissue with 0.5% Triton X-100, permeate
it at room temperature for 20 min, and then incubate
it with 10% goat serum at room temperature for 1 h
(Fulgenzi et al., 2020). The samples were incubated at 4°C
overnight with primary antibodies specifically raised against
the following proteins: NeuN (Abcam, ab104224, 1:1,000), Ibal
(Abcam, ab178846, 1:500), GFAP (Wanlei, WL0836, 1:100),
nNOS (GeneTex, GTX133403, 1:50). Subsequently, the samples
were incubated with the appropriate fluorophore-conjugated
secondary antibodies (BOSTER, BA1089, 1:100) for 1 h at room
temperature in the dark. DAPI (Abcam, ab104139) was used
to stain cell nuclei. Images were captured using a fluorescence
microscope (Nikon, Y-TV55, JAPAN).

Fluoro Jade C Staining

Fluoro Jade C (FJC), a polyanionic fluorescein derivative
that binds sensitively and selectively to degenerating neurons,
was used to examine dynamic time-course changes in dying
neurons in the brains of the animal models described above
(Schmued et al., 2005). Sections were first treated as for IF
staining, and then FJC staining was performed. We immersed
the slides in 80% ethanol solution containing 1% NaOH for
5 min. They were rinsed in 70% ethanol for 2 min, then
incubated them in 0.06% potassium permanganate solution
for 10 min. After rinsing with distilled water for 2 min,
the treated slides were stained in 0.0001% concentration of
FJ-C (United States, Biosensis) solution for 10 min, adding
Solution D (DAPI) to the above FJC solution. Finally,
Slides were mounted with DPX, sections were examined
under a fluorescence microscope and images were captured
for demonstration.

Western Blot Analysis

Brain tissue from the right hemisphere was obtained, and
proteins were extracted on the first day after I/R. The
protein concentration of the samples was determined by the
BCA protein detection Kit. In addition, 30 pg of protein
from each group were loaded onto an 7.5 or 10% SDS-
PAGE gel. After electrophoresis, the brain proteins were
transferred to polyvinylidene fluoride (PVDF) membranes,
blocked with 5% skim milk at room temperature for 1 h,
and then incubated with the primary antibody overnight
in a 4°C refrigerator. After an incubation with goat anti-
mouse and anti-rabbit (Abmart, M21003, 1:2,000) secondary
antibodies for 45 min at room temperature, membranes
were washed with TBST, and then incubated with enhanced
chemiluminescence (ECL) reagent (biosharp, BL520A, China)
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for detection. Primary antibodies included: anti-iNOS (1:1,000,
22226-1-AP, Proteintech, United States), anti-nNOS (1:1,000,
ab76067, Abcam, United States, United States), and anti-eNOS
(1:1,000, ab199956, Abcam, United States). §-Tubulin (1:1,000,
10094-1-AP, Proteintech, United States) was used for internal
comparison. Image]J software was used to quantitatively analyze
the gray values of all protein bands.

Nitric Oxide Detection

NO detection kit was purchased from Nanjing Jiancheng Institute
of Bioengineering. Since NO metabolism will eventually lead
to the production of nitrite, the NO content is measured by
quantifying the levels of nitrate and nitrite in the sample. To
this end, cadmium is used to convert nitrate to nitrite, then the
Griess reaction is performed, and the NO content in each sample
is measured using a microplate reader at 570 nm.

Superoxide Dismutase and
Malondialdehyde Detection

A commercial kit (Wanleibio, Shenyang, China) was used to
measure MDA and SOD levels in the right brain tissue of
mice. All measurements were performed in accordance with the
manufacturer’s instructions. MDA and SOD were determined by
the absorbance at 532 and 570 nm, respectively.

Statistical Analysis

Use GraphPad Prism 8.0 statistical software for statistical analysis,
and the experimental data are expressed as mean + SEM.
Differences between groups were analyzed using one-way
ANOVA followed by the Tukey post hoc test. P < 0.05 was
regarded as statistically significant.

RESULTS

Inhibition of Sphingosine 1-Phosphate
Receptor Subtype 3 Can Improve Infarct
Volume and Neuron Damage in Mice
After Transient Middle Cerebral Artery
Occlusion

In our previous studies, we found that the expression of SIPR3
was highest 24 h after tMCAO and then decreased, so we chose to
extract the brain 24 h after tMCAO. To confirm that inhibition
of SIPR3 can reduce cerebral I/R injury, we performed TTC
staining. Compared with the 24 h tMCAO group, the cerebral
infarction volume of mice was reduced following CAY-10444
administration (P < 0.05) (Figures 1A,B). The brain tissue
morphology of mice was examined after tMCAO. H&E staining
showed that the tissue surrounding the infarct was damaged
after tMCAO, the peripheral neuron was characterized by nuclear
pyknosis, the staining was darker, the penumbra area was swollen,
neuropil vacuolation, glial cell hyperplasia. In the pyramidal cell
layer and granular layer of the cerebral cortex, H&E staining
showed that CAY + 24 h-tMCAO mice had pyknosis and deep
staining of nuclei around the infarct, the number of unclear
structures decreased, the neuropil vacuolation of the infarct focus
are alleviated, and the number of glial cells around the infarct was
also reduced (Figure 2A). Nissl staining of mice after tMCAO
showed the disappearance of Nissl bodies in neurons. Compared
with the 24 h tMCAO group, there were more Nissl bodies
in neurons in the CAY + 24 h tMCAO group (Figure 2B).
Fluoro-Jade C staining was performed on mice brain tissues. The
results showed that the number of Fluoro-Jade C-positive cells
in the 24 h-tMCAO group and the V + 24 h-tMCAO group
increased significantly (P < 0.001 and P < 0.001, respectively),

FIGURE 1 | Infarction volume of mice subjected to tMCAQ after administration of an S1PR3-specific antagonist. (A,B) Representative images and statistical results
of TTC staining of brain tissues in different groups (n = 4). Scale bar = 5 mm. Data are presented as the mean + SEM. P-values were determined by ANOVA followed

by the Tukey post hoc test, “*P < 0.05; ***P < 0.001; and ns, not significant.
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FIGURE 2 | H&E, Nissl and FJC staining in brain tissue of mice subjected to tMCAO after administration of an S1PR3-specific antagonist. (A) H&E staining in brain
tissue of mice subjected to tMCAO after administration of an S1PR3-specific antagonist. Vacuolated neuropil in brain tissue (*). The black arrow points to the glial

cells and the white arrow points to the nucleus of neurons that were reduced and trachychromatic (—), n = 4. Scale bar = 50 um. (B) Nissl staining in brain tissue of
mice subjected to tMCAO after administration of an S1PR3-specific antagonist. The black arrow points to neurons with Nissl bodies. The white arrow points to
neurons with absent Nissl bodies, n = 4. Scale bar = 50 um. (C,D) DAPI (blue)/FJC (green)/NeuN (red) Representative immunofluorescence images and statistical
results of mouse brain tissue slices after tMCAO (n = 4). Data are presented as the mean £+ SEM. P-values were determined by ANOVA followed by the Tukey

post hoc test, P < 0.01; ***P < 0.001; and ns, not significant. Scale bar = 100 um.

while the number of Fluoro-Jade C-positive cells of the mice
treated with CAY-10444 significantly decreased (P < 0.001 and
P <0.001, respectively) (Figures 2C,D). Subsequently, we stained
brain tissues for Ibal and GFAP, we found that the number of
Ibal-positive cells around the infarct area increased significantly
after tMCAO (p < 0.001), showing amoeboid-like changes. After
administrating of CAY-10444, the number of Ibal-positive cells
decreased (p < 0.001) (Figures 3A,B), the number of amoeboid
microglia also significantly reduced. Compared with the Sham
group, the number of GFAP-positive cells increased significantly
after tMCAO in mice (p < 0.001), while the number of GFAP-
positive cells showed a decreasing trend after CAY-10444 was
administered (p < 0.01) (Figures 3C,D).

Inhibition of Sphingosine 1-Phosphate
Receptor Subtype 3 Can Inhibit the
Expression of Neuronal NOS After
Ischemia-Reperfusion

To confirm the effect of SIPR3 on the expression of nNOS, iNOS
and eNOS proteins after cerebral I/R, we used Western blotting to
detect the expression of related proteins 24 h after I/R. As shown
in Figure 4, the expression of nNOS protein in the tMCAO group
increased (p < 0.001), and after CAY-10444 was administered,
the expression decreased (p < 0.01) (Figure 4C). After tMCAO,
the expression of iNOS and eNOS both increased (p < 0.01
and p < 0.001, respectively) (Figures 4B,D). After CAY-10444
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FIGURE 3 | Inhibition of S1PR3 attenuates microglia and astrocyte activation after tMCAQ. (A,B) DAPI (blue)/lbal (red) Representative immunofluorescence images
and statistical results of mouse brain tissue slices after tMCAO (n = 4). (C,D) DAPI (blue)/GFAP (green) Representative immunofluorescence images and statistical
results of mouse brain tissue slices after tMCAO (n = 4). Data are presented as the mean + SEM. P-values were determined by ANOVA followed by the Tukey

post hoc test, *P < 0.05; **P < 0.01; **P < 0.001; and ns, not significant. Scale bar = 100 um. 400x, Scale bar = 50 pm.
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administration, the expression of iNOS and eNOS did not
change significantly (P > 0.05) (Figures 4B,D). Subsequently, we
performed immunofluorescence staining on mouse brain slices
(Figure 5A). The results showed that 24 h after tMCAO, there was
more fluorescent staining of nNOS in the peri-ischemic regions
(p < 0.01). After CAY-10444 administration, nNOS fluorescence
staining was reduced (p < 0.05) (Figure 5B). This shows that after
tMCAQO, inhibition of S1IPR3 reduces the expression of nNOS.

Inhibition of Sphingosine 1-Phosphate
Receptor Subtype 3 Can Inhibit the
Formation of Nitric Oxide After

Ischemia-Reperfusion
To determine whether S1IPR3 mediates the production of NO
and causes brain damage, we measured the content of nitric oxide

in brain tissue. NO content determination in brain tissue showed
that after 24 h of I/R, the NO level in the tMCAO group was
significantly higher than that in the sham group (p < 0.001).
Compared with 24 h-tMCAO and V + 24 h-tMCAO, the NO
level of the CAY-10444 + 24 h-tMCAO group was significantly
lower (p < 0.01) (Figure 5C). This suggests that in I/R injury,
S1PR3 regulates the production of NO by regulating nNOS.

Sphingosine 1-Phosphate Receptor
Subtype 3 Participates in the Regulation
of Superoxide Dismutase and
Malondialdehyde After

Ischemia-Reperfusion
To study whether SIPR3 is involved in the oxidative stress
response in the brain tissue of tMCAO model mice, we examined
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FIGURE 4 | Inhibition of S1PR3 inhibited the expression of NNOS after I/R. (A) Western blot of the sham group, 24 h tMCAO group, CAY10444 + 24 h tMCAQO
group, V + 24 h tMCAOQ group, and INOS, nNOS and eNOS expression. (B-D) The expression levels of INOS, nNOS and eNOS proteins (n = 4). Data are presented
as the mean + SEM. P-values were determined by ANOVA followed by the Tukey post hoc test, **P < 0.01; ***P < 0.001; and ns, not significant.
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the changes in SOD vitality and MDA content in brain tissue after
brain I/R. Compared with the sham group, the SOD vitality in the
brain tissue of mice in the 24 h-tMCAO group was significantly
reduced (p < 0.001). Compared with that of the 24 h tMCAO
group, the SOD vitality of the CAY + 24 h tMCAO group
was significantly higher (p < 0.01) (Figure 6A). MDA content
determination results showed that compared with the sham
group, the MDA content in the brain tissue of the 24 h-tMCAO
group increased significantly up (p < 0.001) and compared with
the 24 h-tMCAO group, the MDA content of the CAY + 24 h-
tMCAO group was significantly decreased (p < 0.01) (Figure 6B).
These results show that S1IPR3 is involved in the regulation of
oxidative stress after I/R.

DISCUSSION

Studies have found that S1PR3 plays a role in cell inflammation,
cell proliferation, cell migration, tumor invasion, I/R, tissue
fibrosis, and vascular activity (Fan et al., 2021). In an in vivo
mouse model of myocardial I/R, it was observed that high-
density lipoprotein and its component S1P protect the heart
from I/R damage through an independent signaling pathway
mediated by S1PR3 (Levkau et al, 2004). SIPR3(-/-) mice
are protected from kidney I/R damage through mechanisms
involving bone marrow-derived dendritic cells (BMDCs) and
their immunomodulatory functions (Bajwa et al., 2012). Bajwa
et al. (2016) found that adoptively transferred S1PR3(-/-)
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FIGURE 5 | nNOS fluorescence image and NO content expression. (A,B) DAPI (blue)/nNOS (green) Representative immunofluorescence images and statistical
results of mouse brain tissue slices after tMCAQ. (C) NO production was measured (n = 4). Data are presented as the mean + SEM. P-values were determined by
ANOVA followed by the Tukey post hoc test, *P < 0.05; *P < 0.01; **P < 0.001; and ns, not significant.
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BMDCs prevent kidney I/R damage through interaction in
the spleen and expansion of splenic CD4 + Foxp3 + T
regulatory cells (Tregs). In contrast to the protective effect
on heart I/R, SIPR3 shows the opposite effect on kidney
I/R, which is speculated to be due to the existence of cells
and tissues at different developmental stages of disease. SIPR1
and S1PR2 has previously been found to be involved in the
activation of microglia during cerebral ischemia reperfusion

(Gaire et al., 2018a, 2019; Sapkota et al.,, 2019). A recent study
showed that SIPR3 contributes to the activation of microglia and
the polarization of M1 macrophages in a mouse brain I/R model
(Gaire et al,, 2018b). In our study, we found that inhibition of
S1PR3 reduced I/R injury, which was confirmed by the reduction
of infarct volume. The results of H&E, Nissl and FJC staining
confirmed the point that SIPR3 mediates brain damage during
cerebral ischemia and reperfusion.
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FIGURE 6 | SOD vitality and MDA content in mice subjected to tMCAO. (A) SOD vitality was measured (n = 4). (B) MDA content was measured (n = 4). Data are
presented as the mean + SEM. P-values were determined by ANOVA followed by the Tukey post hoc test, *P < 0.05; **P < 0.01; ***P < 0.001; and ns, not
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nNOS mediates early neurological damage, and
overexpression of nNOS plays a key role in the early stages
of ischemia and excitotoxic injury (Von Arnim et al., 2001).
iNOS subsequently increased, and both changes have adverse
effects on cerebral ischemia. The production of nitric oxide
(NO) is one branch of the ornithine cycle, which is catalyzed
by L-arginine and oxygen NOS. NO can react with superoxide
to form peroxynitrite (ONOO), which is an effective and
destructive oxidant (Zhang et al., 2018). During ischemia, the
NO produced by nNOS and iNOS may be neurotoxic, partly

increased NO production and
oxidative stress after /R
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FIGURE 7 | S1PR3 mediates NANOS/NO and oxidative stress during cerebral
ischemia and reperfusion.

because the formation of peroxynitrite free radicals causes
direct damage to mitochondrial enzymes and DNA (Zhao et al,,
2000; Sims and Anderson, 2002). In addition, the increase
in NO produced by nNOS or iNOS can promote ischemic
damage through free radical damage, tissue inflammation and
microcirculation failure (Iadecola, 1997). In a cerebral ischemia
model, nNOS knockout mice showed smaller infarct sizes
and fewer neurological defects after middle cerebral artery
occlusion (Nakamura et al,, 2015). Compared with wild-type
mice, mice lacking the iNOS gene showed fewer neurological
deficits and infarct volumes after MCAO (Yang et al., 2019). In
our experiment, the expression of nNOS and iNOS was higher
than that of the sham group after cerebral ischemia, which is
consistent with previous studies. After inhibiting S1PR3, we
found reduced nNOS expression, and significantly reduced NO
content. Heo and Im (2019) found that inhibiting SIPR3 can
reduce the expression of LPS-induced inflammatory genes, such
as INOS and cyclooxygenase-2 (COX-2). However, our research
found that inhibition of S1PR3 did not reduce the expression
of iNOS, indicating that SIPR3 reduces the expression of NO
by reducing nNOS.

Studies have shown that eNOS protein expression in cerebral
blood vessels after focal cerebral ischemia protects against
cerebral ischemia by protecting cerebral blood flow (Muid
et al, 2016). Lv et al. (2020) found that sphingosine kinase 1
(Sphk1)/S1P signaling may mediate angiogenesis after cerebral
ischemia by regulating eNOS activity and NO production. We
found that the expression of eNOS increased after cerebral
ischemia and reperfusion, but inhibition of S1PR3 did not affect
the expression of eNOS, suggesting that SIPR3 does not play a
relevant role in regulating eNOS activity in the tMCAQO model.

We previously mentioned that SIPR3 is involved in
regulating the production of NO and that NO is involved
in excitotoxicity. During cerebral ischemia, NO can mediate
glutamate neurotoxicity in cortical and hippocampal neurons.
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After cerebral ischemic attack, oxidative stress plays a major role
in neuroinflammatory diseases. Mitochondria play a key role
in energy metabolism in the body. When energy metabolism is
dysregulated, mitochondria produce a large amount of ROS and
cause tissue oxidative stress damage (Hussain et al., 2018). Under
normal physiological conditions, SOD (superoxide dismutase),
GPX (glutathione peroxidase), catalase and other antioxidant
enzymes can protect brain tissue from ROS poisoning through
catalysis and maintain sexual balance (Ouyang et al., 2015; Zhang
et al., 2016). During cerebral ischemia and reperfusion, the
production of ROS is significantly increased, and SOD can be
consumed by catalase reactions. As a result, the body’s oxidation
and anti-oxidation balance is broken, making the body more
susceptible to oxidation and causing cells to undergo oxidative
damage (Wang et al, 2019). MDA (malondialdehyde) is an
indicator for the severity of oxidative stress within the tissue,
and the level of MDA can indirectly measure the degree of tissue
damage. High blood lipid levels and high oxygen consumption
are the causes of brain oxidative stress damage (Ozkul et al,
2007). In our study, after cerebral ischemia, the activity of SOD
decreased, and the content of MDA increased. After the SIPR3
inhibitor CAY-10444 was administered to tMCAO mice, the
MDA content in the brain tissues decreased significantly, and
the SOD vitality increased, indicating that S1PR3 is involved in
the regulation of cerebral ischemia and oxidative stress. Previous
studies have found that S1P induces NADPH oxidase activity
and intracellular ROS generation in a time-dependent manner
(Lin et al., 2016). Therefore, more research is needed to confirm
whether S1P is an oxidative stress process regulated by S1PR3
during cerebral ischemia and reperfusion.

CAY10444 has been widely used as a specific antagonist of
S1PR3, but other modes of action have been found. Previous
studies have found that CAY10444 (10 pM) inhibits [Ca?*]i
increases via purinergic P2 receptor or alA-adrenoceptor
stimulation and alA-adrenoceptor-mediated contraction, while
not affecting the SIPR3-mediated decrease of forskolin-induced
cAMP accumulation (Jongsma et al., 2006). The proliferation
of ovarian cancer cells was not affected by SIPR3 inhibitor
CAY10444 (1 pM) (Illuzzi et al., 2010). SIPR3 specific
inhibitor CAY10444 (10 wM) showed no effect on the
protection of platelet-activating factor induced mesenteric
venular microvascular permeability by SIP (Zhang et al., 2010).
The concentrations of CAY-10444 used in these studies may be
too low, mostly 1 or 10 wm, to significantly block the S1PR3
receptor. In previous studies, the use of CAY10444 reduced the
polarization of microglia and proved the effectiveness of the
inhibitor for this model 30305119 (Gaire et al., 2018b). Therefore,
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Excessive activation of N-methyl-p-aspartic acid (NMDA) receptors after cerebral
ischemia is a key cause of ischemic injury. For a long time, it was generally accepted
that calcium influx is a necessary condition for ischemic injury mediated by NMDA
receptors. However, recent studies have shown that NMDA receptor signaling,
independent of ion flow, plays an important role in the regulation of ischemic brain
injury. The purpose of this review is to better understand the roles of metabotropic NMDA
receptor signaling in cerebral ischemia and to discuss the research and development
directions of NMDA receptor antagonists against cerebral ischemia. This mini review
provides a discussion on how metabotropic transduction is mediated by the NMDA
receptor, related signaling molecules, and roles of metabotropic NMDA receptor
signaling in cerebral ischemia. In view of the important roles of metabotropic
signaling in cerebral ischemia, NMDA receptor antagonists, such as GIUN2B-
selective antagonists, which can effectively block both pro-death metabotropic and
pro-death ionotropic signaling, may have better application prospects.

Keywords: NMDA receptor, ion-flow independent, metabotropic signaling, cerebral ischemia, NMDA receptor
antagonists

INTRODUCTION

Glutamate receptors mediate glutamate’s excitatory role in physiological processes such as memory,
learning, and synaptic plasticity (Hansen et al., 2021); thus, they also play a part in several common
neurological diseases, such as depression (Xia et al., 2021), Alzheimer’s disease (Srivastava et al.,
2020) and epilepsy (Alcoreza et al., 2021). Glutamate receptors are both ionotropic and
metabotropic. The ionotropic N-methyl-p-aspartate (NMDA) glutamate receptor is a tetrameric
complex containing two obligatory GluN1 subunits and two additional subunits, either GluN2
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(GluN2A-D) or GIluN3 (GIuN3A-B) (Sun et al, 2019). The
diversity of NMDA receptor subtypes endows the receptor
family with a variety of physiological and pathological
functions (Paoletti et al., 2013; Perez-Otano et al., 2016).

The traditional view on signal transduction through
ionotropic glutamate receptors (NMDA receptors, a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic  acid (AMPA)
receptors, and kainate (KA) receptors) is that glutamate
binding opens ion channels, which allow Na*, K*, or Ca®*
to enter or exit the cell and subsequently transmit ion-
dependent excitatory signaling (Rajani al,, 2020).
However, the discovery of the metabotropic action of KA
receptors in 1998 revealed another mode of signal
transduction (Rodriguez-Moreno and Lerma, 1998). The
metabotropic activities of both KA receptors and AMPA
receptors have been found to modulate neurotransmitter
release (Falcon-Moya and Rodriguez-Moreno, 2021). With
the deepening of research into this subject, there is
increasing evidence that NMDA receptors can also mediate
both ionotropic and metabotropic signaling (Dore et al., 2016;

et

Dore et al, 2017; Montes De Oca Balderas, 2018).
Metabotropic NMDA  receptor signaling, which is
independent of ion flow, is involved in long-term

depression (LTD) (Nabavi et al., 2013), synaptic depression
induced by B-amyloid (AP) (Kessels et al.,, 2013; Tamburri
et al., 2013; Birnbaum et al., 2015), dendritic spine shrinkage
(Stein et al, 2015; Stein et al, 2020) and long-term
potentiation (LTP)-induced spine growth (Stein et al,
2021). Recent studies have found that ion-independent
metabotropic NMDA receptor signaling plays an important
role in the regulation of cerebral ischemic injury (Weilinger
et al., 2016; Chen et al., 2017). Metabotropic NMDA receptor
signaling has not been found in some other important
processes, such as spike timing-dependent plasticity
(Rodriguez-Moreno and Paulsen, 2008; Banerjee et al., 2014;
Andrade-Talavera et al., 2016) and presynaptic glutamate
release modulation (Abrahamsson al, 2017;
Mengual et al, 2019). This mini review provides a
discussion on how metabotropic transduction is mediated
by the NMDA receptor, known related signaling molecules,
and their interplay in cerebral ischemia.

et Prius-

NMDA RECEPTOR METABOTROPIC
OPERATION

The prevailing view on NMDA receptors states that agonist
glutamate and co-agonist glycine (or b-serine) jointly activate
the receptor, initiating excitatory signaling. Unlike this
classical mode, transduction of metabotropic NMDA
receptor signaling only requires ligand binding to either one
of the two agonist-binding sites, the one for glutamate, GluN2,
or the one for glycine, GIuN1 (Rajani et al, 2020). By
measuring Forster resonance energy transfer (FRET)
between fluorescently tagged GIuN1 subunits of NMDA
receptors, Malinow et al. demonstrated that NMDA

exposure induced conformational changes in the
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cytoplasmic domain of NMDA receptors, provoking
synaptic inhibition (Aow et al, 2015; Dore et al., 2015).
This phenomenon can be blocked by the glutamate-binding
site antagonist amino-phosphonovalerate (APV), but not by
the glycine-binding site antagonist 7-chlorokynurenate (7CK)
(Aow et al, 2015 Dore et al, 2015). Low-frequency
stimulation (LFS) in acute hippocampal slices was shown to
induce ion-independent and NMDA receptor-dependent
LTD, which could be blocked by the glutamate-binding site
antagonist D-amino-phosphonovalerate (D-APV), but not
7CK (Nabavi et al., 2013). In calcium-free extracellular
solutions with calcium chelator EGTA or BAPTA, glycine
exposure increased the level of Akt phosphorylation in
cultured mouse cortical neurons, which was inhibited by the
glycine-binding site antagonist, L-689560, and the addition of
NMDA receptor ion-channel blocker, MK-801 or GluN2B-
selective antagonist, Ro 25-6981 could not prevent this effect
(Hu et al., 2016).

Similar to non-channel transmembrane receptors, agonist-
induced conformational change in the cytoplasmic domain of
NMDA receptors is a key requirement for metabotropic
signaling transduction. Using the FRET technique, Dore et al.
showed that in the presence of 7CK or MK-801, FRET between
different GluN1 subunits on individual NMDA receptors could
be reduced after NMDA was administered, which indicated that
the binding of NMDA to NMDA receptors causes
conformational changes in the cytoplasmic domain in the
absence of ion flow (Dore et al., 2015). Intracellular infusion
of a GluN1 C-terminus antibody that can bind and immobilize
two nearby cytoplasmic domains of the GluN1 subunit
prevented FRET changes induced by NMDA exposure (Dore
et al., 2015).

The relative position change and resulting interaction between
different molecules coupled to the C-terminus of NMDA
receptors induced by conformational changes are the
underlying molecular mechanisms of metabotropic NMDA
signaling transduction. Studies have shown that both protein
phosphatase 1 (PP1) and calcium/calmodulin-dependent protein
kinase II (CaMKII) bind to the intracellular C-terminus of
NMDA receptors (Aow et al., 2015; Sun et al., 2018). Without
ligands binding to NMDA receptors, the distance between PP1
and CaMKII is too large for any interaction to occur. However,
when NMDA binds to NMDA receptors, the relative positions of
PP1 and CaMKII change, and the distance between them is
reduced. In this situation, the catalytic site of PP1 can contact
CaMKII, and dephosphorylate it at Thr286 (Aow et al,, 2015).
Thereafter, CaMKII is repositioned on the NMDA receptor and
subsequently activates downstream signaling molecules, thereby
inducing synaptic inhibition in an ion-independent manner
(Aow et al., 2015).

Although it is independent of ion transmembrane flow,
metabotropic NMDA receptor signaling may require the
involvement of intracellular calcium and its effectors. Studies have
indicated that the metabotropic actions of KA receptors are involved
in modulating glutamate release in a biphasic manner (Falcon-Moya
and Rodriguez-Moreno, 2021). KA receptor-mediated facilitation
of glutamate release is dependent on Ca®*, calmodulin, and
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TABLE 1 | Downstream signaling molecules of metabotropic NMDA receptor signaling.

Pathophysiological processes Related subunits

Spine shrinkage Not reported

Downstream signaling molecule

nNOS, NOSIAP, p38, MK2, cofilin

References

Nabavi et al. (2013); Stein et al. (2020)

CaMKIl

Synaptic depression GIuN2 p38 Stein et al. (2020)

LTD GIuN2 p38 Nabavi et al. (2013); Birnbaum et al. (2015)
Not reported PP1, CaMKII Coultrap et al. (2014); Aow et al. (2015)

LTP Not reported CaMKIl Coultrap et al. (2014)

Enhance the function of the AMPA receptor GIuN2A ERK1/2 Li et al. (2016)

Excitotoxic injury GIuN1, GIuN2A Akt Hu et al. (2016)
GIuN1 Src, Panx1 Weilinger et al. (2012); Weilinger et al. (2016)
GIuN2B PI3K, NOX2 Minnella et al. (2018)

protein kinase A (PKA) (Andrade-Talavera et al, 2012;
Andrade-Talavera et al, 2013; Falcon-Moya et al., 2018;
Falcon-Moya and Rodriguez-Moreno, 2021). KA receptor-
mediated depression of glutamate release is dependent on
Ca®*, calmodulin, protein kinase A (PKA), and G-protein
(Falcon-Moya et al., 2018; Falcon-Moya and Rodriguez-
Moreno, 2021). Whether these signaling molecules are
involved in metabotropic NMDA receptor-mediated actions
should be studied in the future.

SIGNALING MOLECULES MEDIATING
METABOTROPIC NMDA RECEPTOR
SIGNALING

Metabotropic NMDA receptor actions signaling
molecules, such as kinases, second messengers, and other
molecules that have been found to be related to synaptic
plasticity and cerebral ischemia (Table 1).

involve

Signaling Molecules Related to Synaptic
Plasticity

Neuronal nitric oxide synthase (nNOS)/nitric oxide synthase
one adaptor protein (NOS1AP)/p38/MAPK-activated
protein kinase 2 (MK2)/cofilin is a key metabotropic
NMDA receptor signaling pathway for gating the
structural plasticity of dendritic spines. nNOS is a member
of the NMDA receptor complex that anchors to the scaffold
protein postsynaptic density-95 (PSD-95) (Sun et al., 2015).
NOSIAP is a carboxy-terminal ligand of nNOS (Zhu et al,,
2020). L-TAT-GESV, an uncoupling agent of the nNOS/
NOS1AP complex (Li et al, 2013), interferes with
dendritic spine shrinkage driven by metabotropic NMDA
receptor signaling (Stein et al., 2020). The NOS inhibitor
I-NNA was shown to abolish high-frequency uncaging
(HFU)-induced = NMDA  receptor-dependent  spine
shrinkage mediated by non-ionotropic signaling (Stein
al., 2020). p38, MK2, and cofilin are specific
downstream signaling molecules of NOS1AP (Stein et al.,
2020). Interestingly, during strong Ca*" influx following LTP
induction, this signaling pathway promotes spine growth
(Stein et al., 2021). It is still unclear how metabotropic
NMDA receptor signaling affects nNOS. Although nNOS

et

is a member of the NMDA receptor complex, it may play
a physiological role in an NMDA receptor-independent
manner. For example, nNOS-derived NO is involved in the
recently discovered developmental switch from an NMDA
receptor-dependent form of spike timing-dependent LTD to
NMDA receptor-independent LTP (Falcon-Moya et al,
2020).

PP1 and CaMKII are two important downstream signaling
molecules of metabotropic NMDA receptor signaling involved in
the process of synaptic depression. PP1 becomes an indirect
coupling molecule of the GluN1 subunit by binding to yotiao
(Westphal et al., 1999). CaMKII is a direct binding partner of
GluN2 subunits. Both residues 1120-1482 or residues 839-1120
in GluN2B and the 1389-1464 sequence in the C-terminus of
GluN2A are sufficient for the binding of CaMKII (Sun et al,
2018). NMDA binding was shown to produce a transient change
in the relative position between PP1 and CaMKII, allow PP1 to
act on CaMKII and dephosphorylate CaMKII at Thr286 (Aow
et al, 2015). This change induced a reorientation of CaMKII
within the C-terminus of NMDA receptors and caused CaMKII
to potentially catalyze substrates necessary for LTD (Aow et al,,
2015).

p38 is also involved in synaptic depression mediated by
metabotropic NMDA receptor signaling. NMDA exposure
increased p38 phosphorylation in cultured neurons, which
could be blocked by D-APV but not by MK-801 (Nabavi et al.,
2013). Synaptic depression can be induced by AP exposure,
and the p38 inhibitor SB239063 abolishes this phenomenon
(Birnbaum et al., 2015). Because p38 is not a member of the
NMDA receptor complex, further studies are needed to
identify the related upstream signaling molecules.

Extracellular signal-regulated kinase 1/2 (ERK1/2)
participates in the transduction of metabotropic NMDA
receptor signaling. Co-incubation of hippocampal slices
with metabotropic glutamate receptor type 5 (mGluR5)
agonist CHPG (15uM) and NMDA (5 pM) induced a
robust increase in the phosphorylation level of ERK1/2,
which could be inhibited by AP5, but not by MK-801
(Krania et al., 2018). This phenomenon could also be
prevented by the Src inhibitor PP1, which indicated the
involvement of Src in this process (Krania et al., 2018).
Glycine increased ERK1/2 phosphorylation in a dose-
dependent manner, in hippocampal neurons exposed to a
Ca’*-free extracellular solution with EGTA, MK-801, and
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strychnine (Li et al., 2016). This effect of glycine appeared in
HEK293 cells transfected with cDNAs of GluN1 and GluN2A,
but not in cells transfected with cDNAs of GluN1 and GluN2B
(Li et al., 2016).

Signaling Molecules Related to Cerebral

Ischemia

The NMDA receptor, Src, and pannexin 1 (Panx1) comprise a
metabotropic signaling complex that is involved in the process
of cerebral ischemia (Li et al., 2021). Src indirectly associates
with NMDA receptors by interacting with NADH
dehydrogenase subunit 2 (ND2) via amino acids 40-80
(Gingrich et al., 2004; Liu et al., 2008; Sun et al., 2016). Src
is anchored to NMDA receptors through the interaction
between the PDZ3 domain of PSD-95 and the SH2 domain
of Src (Kalia and Salter, 2003; Sun et al., 2016). Panx1 interacts
with Src via the amino acid sequence 305-318 at the C
terminus (Weilinger et al., 2012). The relative amount of
Src associated with the NMDA receptor complex increased
following NMDA and glycine exposure, and the
phosphorylation level at Tyr416 also increased (Weilinger
etal., 2016). Src can open Panx1 channels by phosphorylating
Panx1 at Tyr308, which can be prevented by the SFK inhibitor
PP2 (Weilinger et al., 2012; Weilinger et al., 2016). NMDA
receptor competitive antagonists APV plus CGP-78608, but
not MK-801, can prevent NMDA-induced Panxl currents
(Weilinger et al., 2016).

Akt is another downstream metabotropic signaling
molecule involved in cerebral ischemia. In a modified
calcium-free extracellular solution with EGTA or BAPTA,
treating mouse cortical neurons with glycine significantly
enhanced the activity of Akt, which could be blocked by L-
689560, but not by MK-801 or the glycine receptor antagonist,
strychnine (Hu et al., 2016). After inhibiting ion flow by
NMDA receptors, glycine exposure increased Akt
phosphorylation level in GluN1/GluN2A transfected
HEK293 cells, but not in GluN1/GluN2B-transfected cells
(Hu et al., 2016). This indicates that glycine can enhance
Akt phosphorylation through the metabotropic signaling of
NMDA receptors containing GluN2A. Similarly, glycine
could also reduce the infarct volume in the brain of
ischemic stroke rats pre-injected with MK-801 and
strychnine; this effect was sensitive to L-689560 and Akt
inhibitor IV (Chen et al., 2017).

In addition to participating in the regulation of synaptic
plasticity, p38 is involved in neuronal damage induced by
cerebral ischemia. p38 activation induced by glutamate
exposure or NO donors contributes to excitotoxic neuronal
cell death (Cao et al, 2005). The nNOS-PBD (PSD95-binding
domain) construct containing the nNOS PDZ domain and the
adjacent P finger, which binds PSD95 in a manner similar to
nNOS, reduced p38 activation and decreased glutamate-induced
pyknosis in neurons (Cao et al., 2005). The NMDA receptor-
PSD-95-nNOS-NOS1AP-MAP kinase 3 (MKK3) is the upstream
signaling pathway of p38 (Cao et al,, 2005; Li et al,, 2013; Sun
et al., 2015).

Metabotropic Signaling and Cerebral Ischemia

In contrast to previous signaling pathways, NADPH
oxidase-2 (NOX2) activation requires both ionotropic and
metabotropic NMDA receptor signaling. In mouse cortical
neuron cultures, NMDA-induced superoxide production
was blocked by the application of 7CK, L-689560, or
MK-801, and after additional addition of ionomycin to
provide a Ca®' influx, superoxide production was restored
(Minnella et al., 2018). However, AP5 prevented NMDA-
induced NOX2 activation, and this effect could not be
reversed by co-incubation with ionomycin (Minnella et al,,
2018). NOX2 does not form a complex with the NMDA
receptor. The upstream signaling molecule phosphatidyl-
inositol 3-kinase (PI3K) binds to GluN2B via its p85
regulatory subunit (Wang and Swanson, 2020). After
NMDA stimulation, the activation of PI3K induces the
formation of phosphatidylinositol (3,4,5) trisphosphate
(PIP3) and PIP3 activates protein kinase C (PKC) and
phosphorylates the p47°"°* organizing subunit of NOX2
(Brennan-Minnella et al., 2015; Wang and Swanson, 2020).

ROLES OF METABOTROPIC NMDA
RECEPTOR SIGNALING IN CEREBRAL
ISCHEMIA

Metabotropic NMDA receptor signaling regulates the
damage induced by cerebral ischemia in a bidirectional
manner (Figure 1). In general, metabotropic signaling
mediated by GluN2B-containing NMDA receptors plays an
important role in promoting neuronal death, whereas

GluN2A-containing NMDA receptors play a
neuroprotective role.

Pro-Death Effect

The metabotropic NMDA receptor-Src-Panxl signaling

pathway exerts a pro-death effect in cerebral ischemia.
Over-activation of NMDA receptors activates Src, induces
phosphorylation of Panxl at the Tyr308 site, opens the
Panx1 half-channel, and ion-independently causes neuronal
death (Weilinger et al., 2012; Weilinger et al., 2016). A
combination of the competitive glutamate site antagonist
APV and glycine site antagonist CGP-78608 blocked the
opening of the Panxl half channel and prevented
excitotoxic damage in hippocampal CA1l pyramidal neurons
(Weilinger et al., 2016). Polypeptide Src48, which interferes
with GluN1-Src interaction, or Tat-Panx308, which interferes
with Panx1 phosphorylation, showed a neuroprotective effect
in vitro (Weilinger et al., 2016). In an in vivo model of stroke,
Tat-Panx308 reduced infarction volume by approximately
9.7% (Weilinger et al., 2016).

The NMDA receptor-PI3K-PKC-NOX2 is a pro-death
metabotropic NMDA receptor signaling pathway. NOX2 is
the primary source of neuronal superoxide production in
response to NMDA receptor activation (Brennan-Minnella
et al., 2015; Minnella et al., 2018). Superoxide production
largely contributes to neuronal death during excitotoxicity
following cerebral ischemia (Brennan-Minnella et al., 2015).
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FIGURE 1 | Overview of metabotropic NMDA receptor (NMDAR) signaling pathways involved in cerebral ischemia. Excessive glutamate binds to the GIUN2 subunit
of NMDA receptors and initiates several pro-death signaling pathways, such as PIBK-PKC-NOX2, Src-PanX1 and nNOS-MKK3-p38. Glycine binds to the GIuN1 subunit
of GIuN2A-containing NMDA receptors, activates Akt-CREB signaling pathway and promotes the survival of neurons.

The signaling pathway that links NMDA receptors to NOX2
activation as well as superoxide production is triggered by
NMDA binding, but not glycine binding, which can be
blocked by the glutamate-binding site antagonist AP5
(Minnella et al., 2018; Wang and Swanson, 2020). Neurons
deficient in GIluN2B or expressing chimeric GluN2B/
GluN2A C-terminus subunits did not exhibit NMDA-
induced superoxide production, indicating that GluN2B-
containing NMDA receptors are preferentially involved in
NMDA-induced superoxide production (Minnella et al,
2018).

p38 may also be a downstream pro-death metabotropic
signaling molecule of NMDA receptors during cerebral
ischemia. p38 is strongly involved in excitotoxicity, and the
cell-permeable  peptide, TAT-GESV  effectively  inhibits
excitotoxic p38 activation, which protects against excitotoxic
neuronal damage and reduces ischemic injury in neonatal
hypoxia-ischemia rats (Li et al, 2013). NMDA exposure in
cultured neurons activates p38 in an ion-independent manner
(Nabavi et al., 2013).

Pro-Survival Effect

The metabotropic NMDA receptor signaling mediated by
GluN2A may play a neuroprotective role in cerebral
ischemia. Glycine administration reduced infarct volume
in middle cerebral artery occlusion (MCAO) animals
pretreated with MK-801 and strychnine; this effect was
sensitive to glycine site antagonists and can also be
blocked by Akt inhibitors (Chen et al, 2017). After
inhibiting ion flow by NMDA receptors, glycine exposure
increased Akt phosphorylation level in GluN1/GluN2A

transfected HEK293 cells, but not in GluN1/GluN2B-
transfected cells (Hu et al., 2016). This indicates that
glycine can enhance Akt phosphorylation through the
metabotropic signaling mediated by NMDA receptors
containing GluN2A.

FUTURE DIRECTIONS OF NMDA
RECEPTOR ANTAGONISTS

The roles of NMDA receptors in cerebral ischemia are
complex. NMDA receptors mediate both pro-death and
pro-survival  ionotropic  signaling.  Similarly, the
metabotropic signaling of NMDA receptors can either be
beneficial or harmful to neuronal survival. This makes
the design of effective treatment strategies based on
NMDARs difficult. The complexity of NMDA receptor
signaling may be one of the important underlying
reasons for the failure of NMDA receptor antagonists in
the treatment of cerebral ischemia. Researchers should
study how to effectively block all pro-death ionotropic and
pro-death metabotropic signaling. Among all NMDA
receptor antagonists, ion-channel blockers and glycine-
binding site antagonists cannot block pro-death
metabotropic signaling. Although glutamate-binding site
antagonists can inhibit both ionotropic and metabotropic
signaling, they have no selectivity for GIluN2A and
GluN2B. In theory, GluN2B-selective antagonists may have
unique advantages for blocking the pro-death effect of both
ionotropic and metabotropic signaling without influencing
the pro-survival effect of GluN2A. However, existing
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GluN2B-selective antagonists are negative allosteric
regulators and have the disadvantages of off-target effects
and activity dependence (Kew et al., 1996; Fischer et al., 1997;
Dey et al.,, 2016). GluN2B-selective glutamate-binding site
antagonists may be a promising research and development
direction for NMDAR antagonists.
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Background: Stroke is a major cause of long-term disability and death, but the clinical
therapeutic strategy for stroke is limited and more research must be conducted to explore
the possible avenues for stroke treatment and recovery. Since ferroptosis is defined, its
role in the body has become the focus of attention and discussion, including in stroke.

Methods: In this work, we aim to systematically discuss the “ferroptosis in stroke”
research by bibliometric analysis. Documents were retrieved from the Web of Science
Core Collection database on October 30, 2021. Statistical analysis and visualization
analysis were conducted by the VOSviewer 1.6.15.

Results: Ninety-nine documents were identified for bibliometric analysis. Research on
“ferroptosis in stroke” has been rapidly developing and has remained the focus of many
scholars and organizations in the last few years, but the Chinese groups in this field still
lacked collaboration with others. Documents and citation analysis suggested that Rajiv R.
Ratan and Brent R. Stockwell are active researchers, and the research by Qingzhang Tuo,
Ishrag Alim, and Qian Li are more important drivers in the development of the field.
Keywords associated with lipid peroxidation, ferroptosis, iron, oxidative stress, and cell
death had high frequency, but apoptosis, necroptosis, pyroptosis, and autophagy had
scant research, and there may be more research ideas in the future by scholars.

Conclusion: Further exploration of the mechanisms of crosstalk between ferroptosis and
other programmed cell death may improve clinical applications and therapeutic effects
against stroke. Scholars will also continue to pay attention to and be interested in the hot
topic “ferroptosis in stroke”, to produce more exciting results and provide new insights into
the bottleneck of stroke treatment.

Keywords: bibliometric analysis, Web of Science, stroke, ferroptosis, programmed cell death

BACKGROUND

With about 3.0 million new cases occurring every year, stroke is a primary reason of disability and
death in China and the United States (Wu et al., 2019; Barthels and Das, 2020). The burden is
expected to increase further due to population aging, continued high prevalence of risk factors such
as hypertension, and poor management. Although overall access to health services has improved,
access to specialist stroke cure and care is patchy across regions and particularly uneven in backward
areas (Wu et al,, 2019; Zhang et al., 2020). Research has shown that people with hypertension,
obesity, and diabetes have a higher incidence of stroke (Barthels and Das, 2020). The vast majority of
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TABLE 1 | The top 10 funding sources.

Ferroptosis in Stroke

Ranking Funding Source Frequency
1 National Natural Science Foundation of China 43
2 National Institutes of Health 22
3 United States Department of Health Human Services 22
4 NIH National Institute of Neurological Disorders Stroke 12
5 American Heart Association 6
6 Burke Foundation 6
7 Dr Miriam And Sheldon G Adelson Medical Research Foundation 6
8 European Commission 6
9 NIH National Institute on Aging 6
10 NIH National Cancer Institute 5

strokes fall into two categories, hemorrhagic stroke (HS) induced
by ruptured brain blood vessels and ischemic stroke (IS) caused
by blocked brain arteries, both of which lead to local hypoxia and
brain tissue damage (Campbell et al., 2019; Barthels and Das,
2020). Currently, tissue plasminogen activator (tPA), a powerful
thrombolysis for the dissolution of acute thromboembolism, is
the only ischemic stroke drug approved by the Food and Drug
Administration (Kuo et al., 2020). But the tPA has a strict time
window for treatment. Stroke patients must receive tPA within
3 h of the onset of stroke symptoms, but no longer than 4.5 h, and
if the treatment window is exceeded, it may lead to hemorrhagic
transformation, which can cause additional damage to the brain
(Hughes et al., 2021). Routine prophylactic drug interventions,
such as anticoagulants and blood pressure-lowering and
cholesterol-lowering drugs, are necessary for people who have
experienced stroke because they are at increased risk for a second
stroke occurring immediately after the first stroke (Barthels and
Das, 2020). Dismayingly, there is still no effective treatment for
HS (Yin et al.,, 2021). Overall, the clinical therapeutic strategy for
stroke is limited, and more research must be conducted to explore
possible avenues for stroke treatment and recovery.

Ferroptosis is a programmed cell death (PCD) characterized
by iron-dependent lipid peroxidation, including impaired
intracellular cysteine uptake, glutathione depletion, membrane
damage, and damage-related molecule release (Galluzzi et al,
2018; Tang and Kroemer, 2020; Hassannia et al., 2021; Wu et al,,
2021). The term “ferroptosis” was coined by Scott ] Dixon in 2012
and used to describe a type of cell death caused by erastin and also
suppressed by lipophilic antioxidants or iron chelators such as
ferrostatin-1 (Dixon et al., 2012). Recent studies have shown that
the cell phenotype and molecular events of ferroptosis are
different from apoptosis, autophagy, necroptosis, pyroptosis,
and other PCDs (Galluzzi et al.,, 2018; Zhou et al., 2020). PCD
is crucial to the occurrence and development of multiple diseases,
including dysgenopathy, immune system diseases, central
nervous system (CNS) disease, and cancer (Gibellini and
Moro, 2021; Kist and Vucic, 2021; Moujalled et al., 2021).
Moreover, common molecular events involved in ferroptosis
are logically linked to the occurrence and development of
many diseases, such as oxidative stress and abnormal iron,
glutamate, and lipid metabolism (Stockwell et al, 2020;
Plascencia-Villa and Perry, 2021; Yu et al., 2021). Ferroptosis
involves nerve disorders (David et al., 2021), such as Alzheimer’s
disease (AD) (Plascencia-Villa and Perry, 2021), Parkinson’s

disease (PD) (Mahoney-Sanchez et al., 2021, spinal cord injury
(SCI) (Ge et al., 2021), traumatic brain injury (TBI) (Rui et al.,
2020), stroke (Alim et al., 2019; Zhou et al., 2020), and depression
(Cao et al,, 2021). The novel findings provide potential strategies
for the clinical treatment and prognosis of stroke, such as
targeting ferroptosis. However, to the best of our knowledge,
the objective and overall reports on the publishing trend,
powerful research, institutions and their collaborations, and
the hotspots of “ferroptosis in stroke” are lacking.

In this work, we aim to systematically discuss the “ferroptosis
in stroke” research from 2013 to 2021 by bibliometric analysis.
The bibliometric analysis combines mathematical and statistical
methods with data visualization (Chen G. et al., 2021), to present
the annual publications, countries/regions, institutions, journals,
authors, and co-citation; to evaluate global patterns of
collaboration between authors, institutions, and countries; and
to determine the study trend and hotspot in “ferroptosis in
stroke”.

DATA AND METHOD

Data Collection

The keywords of ferroptosis and stroke were indexed in the Web
of Science Core Collection (WOSCC). Articles from 2013 to 2021
(deadline October 30, 2021) were retrieved, and search themes
were as follows: “T'S=(ferroptosis) OR TS=(ferroptotic)”, AND
“TS=(stroke) =~ OR  TS=(cerebrovascular  accident) OR
TS=(cerebrovascular apoplexy)”, AND Language: English,
AND Reference Type: Article OR Review”. A total of 99
references were chosen and then wused to perform a
bibliometric analysis.

Data Analysis

Firstly, through the analysis and retrieval results in WOSCC, the
general information of the literature is preliminarily analyzed,
including the year of publication, country, organization,
journal, and author. Then, the VOSviewer 1.6.15 software
was used to conduct bibliometric and visual analysis,
including main author, keyword, scientific research
partnership, cited analysis, and co-cited analysis. The
standard tournament ranking method was used for ranking
order, and Linlog/modularization was applied in the VOSviewer
software.
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RESULTS
Publication Outputs

There were 99 items on “ferroptosis in stroke” in the WOSCC
from 2013 to 2021 (October 30, 2021), including 51 articles
(51.52%) and 48 reviews (48.48%). The annual publication is
exhibited in Figure 1. There was one publication in 2013, which
subsequently increased year by year, and it was 28 in 2020 and 42
on October 30, 2021 (Figure 1). The number of publication was
small, but it rose steadily rise. A total of 185 sources of funding
supported the research on “ferroptosis in stroke”. The top three
major sources of funding were the National Natural Science
Foundation of China (frequency, 43), National Institutes Of
Health (frequency, 22), and United States Department of
Health Human Services (frequency, 22) Table 1.

Countries and Organization

There were 15 countries and 193 organizations in the 99
documents of “ferroptosis in stroke”, which had been
published in the past 8years. China (63), the United States
(38), and Germany (5) were the top three countries/regions,
and early research began in the United States and China,
which have published documents mainly since 2017
(Figure 1). The United States had the most citation with
2,834, but the citation of publication in China was 2,262.
Cooperation on this subject has been concentrated between
China and the United States, with weak cooperation between
other countries (Figure 2). As shown in Table2, the top 10
institutions in terms of publications were from China (50%) and
the United States (50%). The top three institutions in terms of
publications were Columbia University (United States, six
documents), Weill Cornell Medicine (United States, six
documents), and Zhejiang University (China, six documents),
but the top three institutions ranked by citations were Columbia
University (1,819), Yale University (1,731), and Memorial Sloan
Kettering Cancer Center (1,596) (Table 2). Cooperation between
institutions is presented in Figure 3. The top organizations
showed extensive relationships with others (Figure 3), but
some gray circles indicated that the institutions were isolated.
The data suggest that the top institutions with “ferroptosis in
stroke” research lack cooperation with each other; in particular,

2
%
3
%

-\7c
4
2

27

FIGURE 2 | The cooperative relationship between countries was
generated by the online bibliometric analysis.

the Chinese institutions should improve cooperation with their
counterparts.

Journals

There were 72 journals with documents on “ferroptosis in stroke”.
In Table 4, the top 10 journals were shown to have published
about 34.34% of documents (34/99). Frontiers in Cellular
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TABLE 2 | Top 10 most productive organizations.

o)
o
3
F

Organizations

Columbia University

Weill Cornell Medicine

Zhejiang University

Sichuan University

Memorial Sloan Kettering Cancer Center
Johns Hopkins University

Central South University

Jilin University

Yale University

Harbin Medical University

- © 0N O O~ WN =

o

Ferroptosis in Stroke

Country Documents Citations
United States 6 1819
United States 6 459
China 6 27
China 5 245
United States 4 1596
United States 4 443
China 4 24
China 4 24
United States 3 1731
China 3 200

guangzhou univ chinese med

shanghai jiao tong univ

zheji%g unive.

dept mol & cell biol
908 hosp peoples liberat army .

shenzhen univ

china three gorges uni

hebei med univ

lines indicates the strength of the relationship.

univ aut

weill c¢
colu ,lh‘ ‘V

iNesg@cad SCl panjing univ.chinese med

nanchang univ

gifu pharmaceut univ

nanjing univ

buddhist tzu chi med fdn

oo

first hosp jilin univ

arizona state univ

FIGURE 3 | Co-author analysis of organizations with network visualization by the VOSviewer 1.6.14. Some of the 190 items in the network. The thickness of the

sun yat sen univ

lithuanian univ hith sci
cent south univ

gingdao univ
waffiliated hospporthwest univ

bwelona

Il med

wuhan univ

anhui univ chinese med
jiaxing univ

dalian med univ

johns hopkins sch med

hangzhou nermal univ

Neuroscience was the most active journal, followed by Frontiers in
Neuroscience, Frontiers in Cell and Developmental Biology,
Frontiers in  Pharmacology, Life Sciences, Frontiers in
Neurology, Cell, Cellular and Molecular Life Sciences,
Pharmacology and Pharmacy, and Cell Chemical Biology. All
of the journals had a higher level of JCR partition (70% Q1

and 30% Q2), and Cell Chemical Biology had a minimum IF of
4.003 (Q2) (Table 3). Encouragingly, one article and one review
were published in the Cell journal (Q1, 41.584). The publication
of these articles in the corresponding high-level journals is
enough to indicate that “ferroptosis in stroke” is exciting and
interesting.
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TABLE 3 | Top 10 journals with the largest number of publications.

Ferroptosis in Stroke

Rank Journals Documents 2020 Impact Factor 2020 JCR Partition
1 Frontiers in Cellular Neuroscience 8 5.505 Q1
2 Frontiers in Neuroscience 4 4.677 Q2
3 Frontiers in Cell and Developmental Biology 3 6.684 Q1/Q2
4 Frontiers in Pharmacology 3 5.811 Q1
5 Life Sciences 3 5.037 Q1/Q2
6 Frontiers in Neurology 3 4.003 Q2
7 Cell 2 41.584 Qi
8 Cellular and Molecular Life Sciences 2 9.261 Q1
9 Pharmacology and Pharmacy 2 7.658 Q1
10 Cell Chemical Biology 2 8.116 Q2
TABLE 4 | Top 10 active authors with most documents.
Rank Authors Organizations Documents Citations
1 Rajiv R Ratan Weill Cornell Medicine 7 531
2 Jian Wang Johns Hopkins University 5 477
3 Saravanan S Karuppagounder Weill Cornell Medicine 5 492
4 Brent R Stockwell Columbia University 4 441
5 Zhen-Ni Guo Jilin University 4 24
6 Xuejun Jiang Memorial Sloan Kettering Cancer Center 4 218
7 Peng Lei Sichuan University 4 243
8 Qing-Zhang Tuo Sichuan University 4 243
9 Xiu-Li Yan Jilin University 4 24
10 Yi Yang Jilin University 4 24
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FIGURE 4 | Co-occurrence analysis of authors. The author-date (656 items) was generated, and the color means the average published year.
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TABLE 5 | Top 10 co-citation of cited references on “ferroptosis in stroke”.

Ferroptosis in Stroke

Rank Title Type First author Source Publication Total
year citations

1 Ferroptosis: an iron-dependent form of nonapoptotic cell death Review  SJ Dixon Cell 2012 82

2 Regulation of ferroptotic cancer cell death by GPX4 Article WS Yang Cell 2014 51

3 Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, ~Review BR Cell 2017 50
and disease Stockwell

4 Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in ~ Article  JPF Angeli Nat Cell Biol 2014 44
mice

5 Tau-mediated iron export prevents ferroptotic damage after ischemic Article  QZ Tuo Mol Psychiatr 2017 42
stroke

6 Selenium drives a transcriptional adaptive program to block ferroptosisand ~ Article | Alim Cell 2019 42
treat stroke

7 Inhibition of neuronal ferroptosis protects hemorrhagic brain Article Qi JCI Insight 2017 39

8 Ferroptosis: process and function Review Y Xie Cell Death 2016 39

Differ

9 Glutaminolysis and transferrin regulate ferroptosis Article  MH Gao Mol Cell 2015 39

10 ACSLA4 dictates ferroptosis sensitivity by shaping cellular lipid composition  Article S Doll Nat Chem Biol 2017 37

Authors in stroke” with a high number of citations have been widely

A total of 656 authors drafted the 99 documents in “ferroptosis in
stroke”. Rajiv R. Ratan (Weill Cornell Medicine) contributed
seven documents and ranked first (531 citations), followed by
Saravanan S. Karuppagounder (Weill Cornell Medicine), Jian
Wang (Johns Hopkins University), Brent R. Stockwell (Columbia
University), and Zhenni Guo (Jilin University). Seventy percent
of authors were from China (Table 4). In a co-authorship map,
yellow indicated that many scholars have only recently begun to
work on this topic (Figure 4). Some researchers were also
scattered independently with other active scholars, and Rajiv
R. Ratan, Jian Wang, and Brent R. Stockwell were the center, but
they had not been able to reach all groups (Figure 4). The data
suggest that the active authors on “ferroptosis in stroke” still lack
collaboration with other scholars.

Citations

The top 10 highly cited references and the citation analysis of
documents on “ferroptosis in stroke” are shown in Tables 5, 6.
“Ferroptosis: an iron-dependent form of nonapoptotic cell death”
was the most cited reference in “ferroptosis in stroke” (Table 5),
as Dixon et al. (2012) firstly came up with the concept of
ferroptosis. Two reviews of Brent R. Stockwell were included
in the highly cited references: “Ferroptosis: a regulated cell death
nexus linking metabolism, redox biology, and disease” with 1,378
citations and “Emerging mechanisms and disease relevance of
ferroptosis” with 84 citations (Table 6). Four of the documents
appeared on both lists: “Ferroptosis: a regulated cell death nexus
linking metabolism, redox biology, and disease” (review), “Tau-
mediated iron export prevents ferroptotic damage after ischemic
stroke” (article), “Selenium drives a transcriptional adaptive
program to block ferroptosis and treat stroke” (article), and
“Inhibition of neuronal ferroptosis protects hemorrhagic
brain” (article), which were respectively completed by the
team of Brent R. Stockwell, Qingzhang Tuo, Ishraq Alim, and
Qian Li. The data suggest that Brent R. Stockwell is very interested
in the research on “ferroptosis in stroke”, but the research of
Qingzhang Tuo, Ishraq Alim, and Qian Li are more important
drivers in the development of the field, and articles of “ferroptosis

accepted and have inspired recent researches, and recent studies
should improve scale and breakthrough.

Figure 5 showed the keyword subnetwork and its clustering
graph, and the circle size represented the number of occurrences
of keywords. The top six keywords in terms of occurrence were
“ferroptosis”, “oxidative stress”, “iron”, “cell death”, “lipid
peroxidation”, and “intracerebral hemorrhage” (Figure 5). In
the overlay visualization (Figure 6), the keywords apoptosis,
necroptosis, pyroptosis, autophagy, NLRP3 inflammasome
activation, and Chinese herbal medicine were are also related
to ferroptosis but had few research.

DISCUSSION

In the last few years, research on “ferroptosis in stroke” has been
rapidly developing and remained the focus of scholars and
organizations. Some countries, organizations, and scholars
collaborated on research on “ferroptosis in stroke”, but the
Chinese groups in this field still lacked collaboration with
others. The documents and citation analysis suggested that
Rajiv R. Ratan and Brent R. Stockwell were active researchers,
and the research of Qingzhang Tuo, Ishraq Alim, and Qian Li are
more important drivers in the development of the field. Keywords
associated with lipid peroxidation, ferroptosis, iron, oxidative
stress, and cell death were highly frequent, but apoptosis,
necroptosis, pyroptosis, and autophagy were used in few
research, so there may be more research ideas in the future by
scholars. “Ferroptosis in stroke” is an emerging research topic
that will continue to produce more exciting results and provide
new insights into the bottleneck of stroke treatment.
***Ferroptosis, a newly defined class of PCD in 2012 (Dixon
etal,, 2012), quickly became the focus of attention and discussion
because of its important function in the body, and publication on
this topic has increased year by year. In 2013, Louandre et al.
demonstrated that sorafenib induces ferroptosis in hepatocellular
carcinoma (HCC) cells, and triggering ferroptosis may improve
the antitumor effect of sorafenib in HCC (Louandre et al., 2013);
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TABLE 6 | Top 10 citation analysis of documents on “ferroptosis in stroke”.

Ferroptosis in Stroke

Rank Title Type First Source Publication Total
author year citations

1 Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, Review BR Cell 2017 1378
and disease Stockwell

2 Neuronal cell death Review M Fricker Physiol Rev 2018 275

3 Inhibition of neuronal ferroptosis protects hemorrhagic brain QLi JCI Insight 2017 223

4 Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ~ Article M Zille Stroke 2017 192
ferroptosis and necroptosis

5 Tau-mediated iron export prevents ferroptotic damage after ischemic stroke ~ Article ~ QZ Tuo Mol Psychiatr 2017 188

6 Selenium drives a transcriptional adaptive program to block ferroptosis and  Article | Alim Cell 2019 161
treat stroke

7 Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated Article Y Li Cell Death Differ 2019 132
tissue injury in intestinal ischemia/reperfusion

8 Ferroptosis and its role in diverse brain diseases Review A Weiland Mol Neurobiol 2019 94

9 Ferroptosis: mechanisms, biology and role in disease Review  XJ Jiang Nat Rev Mol Cell 2021 93

Biol
10 Emerging mechanisms and disease relevance of ferroptosis Review BR Trends Cell Biol 2020 84
Stockwell

Henke et al. (2013) found that dysregulated ORAI1-mediated
Ca®" influx contributes to ferroptosis in HT22 cells; based on
their previous research, Speer et al. (2013) suggested that iron
chelators inhibit ferroptosis in primary neurons by targeting the
HIF prolyl hydroxylases. Since then, research on “ferroptosis”
and “ferroptosis in stroke” has been gradually reported.

Studies have confirmed that ferroptosis involves the failure of
GPX4 activity and the metabolic processes of iron, amino acids,
and lipid peroxide, which results in the accumulation of
intracellular reactive oxygen species (ROS) and ferroptotic
death (Stockwell et al., 2017; Wan et al., 2019; Cheng et al,
2021). Ferroptosis is mediated by nuclear factor E2-related factor
2 (NRF2) and Hippo pathways by regulating GPX4 activity (Liu
et al,, 2021). There are still polymolecules involved in ferroptosis,
such as acyl-CoA synthetase long-chain family member 4
deferoxamine (ACSL4), ferritin, divalent metal transporter 1

(DMT1), glutathione (GSH), imidazole ketone erastin,
lysophosphatidylcholine acyltransferase 3 (LPCAT?3),
nicotinamide adenine dinucleotide phosphate (NADPH),

oxidized glutathione (GSSG), solute carrier family three member
2 (SLC3A2), transferrin, and transferrin receptor 1 (TFR1) (Liu
etal, 2021; Zhang et al., 2021). With the deepening of research, the
regulatory network of ferroptosis in stroke is gradually revealed
(Bai et al., 2020; DeGregorio-Rocasolano, et al., 2019; Zille et al.,
2017). Ferritin reduces robust ROS production and GSH
consumption; its decrease is necessary for cerebral ischemia-
induced hippocampal neuronal ferroptosis through p53 and
SLC7A11 in middle cerebral artery occlusion (MCAO) rats
(Chen W. et al,, 2021), and mice lacking mitochondrial ferritin
show graver brain injury and neurological deficits, accompanied by
typical ferroptotic event after cerebral ischemia/reperfusion (I/R)
(Wang et al., 2021). ACSL4 enhances ischemic stroke by increasing
ferroptosis-induced brain damage and neuroinflammation while
inhibiting ACSL4, which promotes the recovery of neurological
function following stroke (Li et al., 2019; Chen J. et al., 2021; Cui
et al, 2021). Tuo et al. (2017) demonstrated that tau suppression
reduces MCAO-induced ferroptosis and influences ischemic stroke
outcome. Nuclear receptor coactivator 4 (NCOA4) facilitates

ferritinophagy-mediated ferroptosis, and NCOA4 deletion
protects neurons from ferritinophagy-mediated ferroptosis after
ischemic stroke (Li C. et al,, 2021). Guo et al. (2021) hypothesized
that PIEZO1 involves cerebral I/R injury via ferroptosis regulation.
In addition, noncoding RNAs are also involved in ferroptosis-
mediated stroke. The IncRNA-MEG3/p53 signaling pathway
mediates ferroptosis of rat brain microvascular endothelial cells
via regulation of the GPX4 transcription and expression (Chen C.
et al,, 2021). The level of IncRNA-PVT1 is upregulated and the
miR-214 level is downregulated in the plasma of acute ischemic
stroke patients, and PVT1 involves ferroptosis via miR-214-
mediated TFR1 and TP53 levels in brain I/R (Lu et al., 2020).
By the bioinformatic analysis, three ferroptosis-related biomarkers
are found as potential diagnostic biomarkers for ischemic stroke,
namely, PTGS2, MAP1LC3B, and TLR4, which are upregulated in
ischemic stroke and provide more evidence about the important
role of ferroptosis (Chen G. et al, 2021). Therefore, extensive
evidence suggests that ferroptosis is one of the key pathological
mechanisms of nerve injury and neurological dysfunction after
stroke, which is a potentially promising therapeutic target (Jin Y.
et al.,, 2021; Li Y. et al.,, 2021).

Previous studies show that ferroptosis is reversed by iron
chelators  (deferoxamine and ceruloplasmin), lipophilic
antioxidants  (ferrostatin-1,  trolox, liproxstatin-1, and
N-acetylcysteine (NAC)), and selenoprotein activator (selenium)
(Figure 7) (Liu et al., 2021; Zhang et al., 2021). Then, significant
progress has been made in preclinical studies targeting ferroptosis
in the treatment of stroke. Intracerebral hemorrhage-induced
neurological defects, dysmnesia, and brain atrophy were
decreased by the ferroptosis inhibitor ferrostatin-1 (Chen et al.,
2019). NAC, a clinically approved redox regulatory compound
containing mercaptan, prevents hemin-induced ferroptosis by
inhibiting toxic lipid generated by arachidonic acid-dependent
ALOXS5 activity (Karuppagounder et al, 2018). Deferoxamine
treatment prevents post-stroke cognitive impairment in diabetes
while increasing AQP4 polarity and blood-brain barrier
permeability (Abdul et al, 2021). Pyridoxal isonicotinoyl
hydrazine protects mice against hemorrhage stroke, by reducing
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ferroptosis, including ROS production, iron accumulation, and
lipid peroxidation in perihematoma (Zhang et al, 2021).
Pharmacological selenium inhibits GPX4-dependent ferroptotic
death, and selenome protects neurons and improves behavior
following hemorrhagic stroke through regulating TFAP2c and
Spl (Alim et al, 2019). And pretreatment with selenium
compounds, such as methylselenocysteine or selenocystamine,
also protects I/R neuronal ferroptosis in vivo (Tuo et al,, 2021).
Some natural products and traditional Chinese medicine-related
content have also been confirmed to improve the prognosis of
stroke by regulating ferroptosis. The baicalin, carthamin yellow,
dauricine, (—)-epicatechin, kaempferol, and paeonol ameliorate
neuronal ferroptosis in vitro or in vivo stroke models via
regulating ACSL4, GPX4, TFRI1, Fe**, and NRF2 pathways
(Chang et al., 2014; Duan et al., 2021; Guo et al., 2021; Jin Z. L.

etal, 2021; Peng et al., 2021; Yuan et al., 2021), which show great
potential in the treatment of stroke. Treating MCAO rats with
Naotaifang (a traditional Chinese herbal medicine compound)
extract involves inhibition of acute cerebral ischemia-induced
neuronal ferroptosis and neurobehavioral disorder through
TFR1/DMTI1 and SCL7A11/GPX4 pathways (Lan et al., 2020).
Electroacupuncture inhibits ferroptosis to protect against MCAO
via regulating iron and oxidative stress-related protein (Li G. et al.,
2021). Furthermore, the new inhibitors of ferroptosis are also being
explored. Yang et al. conducted promethazine derivatives and
screened a  promising lead compound,  2-(1-(4-(4-
methylpiperazin-1-yl)phenyl)ethyl)- 10H-phenothiazine, as a new
type of ferroptosis inhibitor, which displays favorable
pharmacokinetic properties, good ability to permeate the
blood-brain barrier, and excellent therapeutic effect in the
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FIGURE 7 | The crosstalk between ferroptosis and autophagy, apoptosis, necroptosis, and pyroptosis. The iron chelators (deferoxamine and ceruloplasmin),
lipophilic antioxidants (ferrostatin-1, trolox, liproxstatin-1, and N-acetylcysteine), and selenoprotein activator (selenium) can reverse ferroptosis. Mitochondrial function
and ROS production may be key to the crosstalk. Some molecules participate in the crosstalk between them, including ROS; BAX; HSP90; mitochondrial permeability
transition pore (MPTP); NCOA4; NACHT, LRR, and PYD domains-containing protein 1 (NLRP1) inflammasome; C/EBP-homologous protein (CHOP); and p53
upregulated modulator of apoptosis (PUMA).

ischemic stroke model (Yang et al,, 2021). Keuters et al. (2021) The keyword analysis revealed that multiple PCDs were
demonstrated that the benzo[b]thiazine derivative efficiently  involved in the progression of stroke pathology, and apoptosis,
suppresses GSH or GPX4 inhibition-induced ferroptosis in  necroptosis, pyroptosis, and autophagy were related to
neuronal cell lines and decreases infarction volume, edema,  ferroptosis. Some reports show that apoptosis, autophagy,
and pro-inflammatory levels after stroke. Thus, ferroptosis  pyroptosis, and ferroptosis are present together in stroke-
inhibitors and targeting them are potential treatment  induced neuronal damage (Guo et al, 2021; Li et al., 2018).
options for stroke, but more direct clinical evidence remains to ~ The crosstalk between ferroptosis and other PCDs is fascinating
be explored. (Figure 7). Lee et al. (2018, 2020) showed ferroptotic and
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apoptotic agent interactions via the B-cell ymphoma-2 associated
X (BAX)-dependent mitochondrial pathway and ER stress-
mediated PERK-elF2a-ATF4-CHOP-PUMA pathway. Studies
have found that ferritinophagy-mediated ROS production
contributes to ferroptosis and apoptosis (Li L. et al., 2021).
Ferroptosis, an autophagic cell death process, leads to
autophagy activation and consequent ferritin and NCOA4
degradation (Gao al, 2016), and NCOA4-regulated
ferritinophagy maintains ferroptosis via mediating cellular iron
homeostasis, which is also present in stroke (Li C. et al,, 2021).
Mitochondrial permeability transition pore opening is a common
event of ferroptosis and necroptosis, which stimulates formation of
autophagosome, mitophagy, and ROS production, causing
necroptosis/ferroptosis (Basit et al., 2017). Heat shock protein
90 (HSP90) is defined as a common regulatory nodal between
ferroptosis and necroptosis (Wu et al., 2019). Friedmann Angeli
et al. demonstrated that necrostatin-1 (RIP1 inhibitor) inhibits
ferroptosis through a necroptosis/RIP1-independent manner, but
ferroptosis inhibitors cannot inhibit necroptosis (Friedmann
Angeli et al., 2014) and the specific link between ferroptosis and
necroptosis remains to be clarified after stroke (Zille et al., 2017;
Zhou et al., 2021). Carthamin yellow attenuates cerebral I/R injury
via suppressing NF-kB/NLRP3-mediated pyroptosis and ACSL4-
mediated ferroptosis in rats (Guo et al,, 2021b). The regulatory
relationship between ferroptosis and pyroptosis has been proved.
Meihe et al. found that silenced or upregulated NLRP1
inflammasome positively affects ferroptosis in the oxidative
stress model, and NLRP1, NLRP3, IL-1B, and caspase-1 levels
are positively correlated with ferroptosis following ferroptosis
inhibition or ferroptosis activation (Meihe et al, 2021).
However, whether ferroptosis facilitates apoptosis, autophagy,
necroptosis, pyroptosis, or other PCDs or their mutual
regulation following stroke requires the further studies.

et

LIMITATIONS

This is the first bibliometric analysis of “ferroptosis in stroke”, but
some limitations are presented. Firstly, the retrieval time is
October 30, 2021, but the database continues to be updated.
Secondly, the search terms  “TS=(Ferroptosis) OR
TS=(Ferroptotic)”, AND “TS=(stroke) OR TS=(cerebrovascular
accident) OR TS=(cerebrovascular apoplexy)”, AND Language:
English, AND Reference Type: Article OR Review” are used to
define the topic of this studies in the WOSCC database; some
productions may not be contained. Thirdly, there are still some

REFERENCES

Abdul, Y, Li, W, Ward, R, Abdelsaid, M., Hafez, S, Dong, G, et al. (2021).
Deferoxamine Treatment Prevents Post-Stroke Vasoregression and Neurovascular
Unit Remodeling Leading to Improved Functional Outcomes in Type 2 Male
Diabetic Rats: Role of Endothelial Ferroptosis. Trans! Stroke Res. 12 (4), 615-630.
doi:10.1007/s12975-020-00844-7

Alim, I, Caulfield, J. T., Chen, Y., Swarup, V., Geschwind, D. H., Ivanova, E., et al.
(2019). Selenium Drives a Transcriptional Adaptive Program to Block

Ferroptosis in Stroke

articles that are not included in the WOSCC database, so they are
left out. However, WOSCC 1is the dominant database for
bibliometric analysis, and we believe this work could represent
the overall situation and general trend for “ferroptosis in stroke”.

CONCLUSION

Our study discussed the research status of “ferroptosis in stroke”
by bibliometric analysis, which is an increasingly hot research
topic, with more and more scholars, institutions, and countries
pouring in and publishing a lot of high-quality productions. Most
of them are Chinese scholars, but most of them are isolated and
lack communication and cooperation. Researchers need to
strengthen the sharing of results on this topic and promote
the exploration of relevant hotspots. The mechanisms of
apoptosis, necroptosis, pyroptosis, and autophagy engage
crosstalk with ferroptosis in the pathological processes of
stroke, and the different types of PCD is as a single, but in
which the individual pathway is highly interconnected and
concertedly compensated for others (Bedoui et al.,, 2020). The
ferroptosis inhibitors and targeting them are potential treatment
options for stroke, but more direct clinical evidence remains to be
explored. Further exploring the mechanisms of crosstalk between
ferroptosis and other PCDs improves clinical applications and
therapeutic effects against stroke, and a combination of
ferroptosis with other harmful pathway suppression may
provide valid therapies for stroke and brain disorder. The
scholars will also continue to pay attention to and be
interested in the hot topic of “ferroptosis in stroke”.

AUTHOR CONTRIBUTIONS

Conceptualization: YC, TL, and CZ. Data collection and analysis:
QX and TL. Writing—original draft: YC. Writing—review and
editing: CZ.

FUNDING

This study was supported by the National Natural Science
Foundation of China (82072229 and 81901270), Guizhou
Traditional Chinese Medicine Administration (201815797),
and Guizhou Provincial Health and Family Planning
Commission (2019XMSB00022878).

Ferroptosis and Treat Stroke. Cell 177 (5), 1262-e25. doi:10.1016/j.cell.2019.
03.032

Bai, Q., Liu, J., and Wang, G. (2020). Ferroptosis, a Regulated Neuronal Cell
Death Type after Intracerebral Hemorrhage. Front Cel Neurosci 14, 591874.
doi:10.3389/fncel.2020.591874

Barthels, D., and Das, H. (2020). Current Advances in Ischemic Stroke Research
and Therapies. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (4), 165260. doi:10.
1016/j.bbadis.2018.09.012

Basit, F., van Oppen, L. M., Schéckel, L., Bossenbroek, H. M., van Emst-de Vries,
S. E., Hermeling, J. C,, et al. (2017). Mitochondrial Complex I Inhibition

Frontiers in Pharmacology | www.frontiersin.org

83

February 2022 | Volume 12 | Article 817364


https://doi.org/10.1007/s12975-020-00844-7
https://doi.org/10.1016/j.cell.2019.03.032
https://doi.org/10.1016/j.cell.2019.03.032
https://doi.org/10.3389/fncel.2020.591874
https://doi.org/10.1016/j.bbadis.2018.09.012
https://doi.org/10.1016/j.bbadis.2018.09.012
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Chen et al.

Triggers a Mitophagy-dependent ROS Increase Leading to Necroptosis and
Ferroptosis in Melanoma Cells. Cell Death Dis 8 (3), €2716. doi:10.1038/
cddis.2017.133

Bedoui, S., Herold, M. J., and Strasser, A. (2020). Emerging Connectivity of
Programmed Cell Death Pathways and its Physiological Implications. Nat.
Rev. Mol. Cel Biol 21 (11), 678-695. doi:10.1038/s41580-020-0270-8

Campbell, B. C. V., De Silva, D. A., Macleod, M. R,, Coutts, S. B., Schwamm, L. H.,
Davis, S. M., et al. (2019). Ischaemic Stroke. Nat. Rev. Dis. Primers 5 (1), 70.
doi:10.1038/s41572-019-0118-8

Cao, H., Zuo, C,, Huang, Y., Zhu, L., Zhao, J., Yang, Y., et al. (2021). Hippocampal
Proteomic Analysis Reveals Activation of Necroptosis and Ferroptosis in a
Mouse Model of Chronic Unpredictable Mild Stress-Induced Depression.
Behav. Brain Res. 407, 113261. doi:10.1016/j.bbr.2021.113261

Chang, C. F,, Cho, S., and Wang, J. (2014). (-)-Epicatechin Protects Hemorrhagic
Brain via Synergistic Nrf2 Pathways. Ann. Clin. Transl Neurol. 1 (4), 258-271.
doi:10.1002/acn3.54

Chen, B., Chen, Z,, Liu, M., Gao, X., Cheng, Y., Wei, Y., et al. (2019). Inhibition of
Neuronal Ferroptosis in the Acute Phase of Intracerebral Hemorrhage Shows
Long-Term Cerebroprotective Effects. Brain Res. Bull. 153, 122-132. doi:10.
1016/j.brainresbull.2019.08.013

Chen, C, Huang, Y., Xia, P., Zhang, F,, Li, L., Wang, E,, et al. (2021). Long
Noncoding RNA Meg3 Mediates Ferroptosis Induced by Oxygen and Glucose
Deprivation Combined with Hyperglycemia in Rat Brain Microvascular
Endothelial ~Cells, through Modulating the p53/GPX4 axis. Eur.
J. Histochem. 65 (3), 3224. doi:10.4081/ejh.2021.3224

Chen, G., Li, L., and Tao, H. (2021). Bioinformatics Identification of Ferroptosis-
Related Biomarkers and Therapeutic Compounds in Ischemic Stroke. Front.
Neurol. 12, 745240. doi:10.3389/fneur.2021.745240

Chen, J., Yang, L., Geng, L., He, J., Chen, L., Sun, Q., et al. (2021). Inhibition of
Acyl-CoA Synthetase Long-Chain Family Member 4 Facilitates Neurological
Recovery after Stroke by Regulation Ferroptosis. Front. Cel Neurosci 15, 632354.
doi:10.3389/fncel.2021.632354

Chen, W, Jiang, L., Hu, Y., Tang, N, Liang, N., Li, X. F,, et al. (2021). Ferritin
Reduction Is Essential for Cerebral Ischemia-Induced Hippocampal Neuronal
Death through p53/SLC7A11-Mediated Ferroptosis. Brain Res. 1752, 147216.
doi:10.1016/j.brainres.2020.147216

Cheng, Y., Song, Y., Chen, H., Li, Q., Gao, Y., Lu, G,, et al. (2021). Ferroptosis
Mediated by Lipid Reactive Oxygen Species: A Possible Causal Link of
Neuroinflammation to Neurological Disorders. Oxid Med. Cel Longev 2021,
20215005136. doi:10.1155/2021/5005136

Cui, Y., Zhang, Y., Zhao, X,, Shao, L., Liu, G,, Sun, C, et al. (2021). ACSL4
Exacerbates Ischemic Stroke by Promoting Ferroptosis-Induced Brain Injury
and Neuroinflammation. Brain Behav. Immun. 93, 312-321. doi:10.1016/j.bbi.
2021.01.003

David, S., Jhelum, P., Ryan, F., Jeong, S. Y., and Kroner, A. (2021). Dysregulation of
Iron Homeostasis in the CNS and the Role of Ferroptosis in Neurodegenerative
Disorders. Antioxid. Redox Signaling. doi:10.1089/ars.2021.0218

DeGregorio-Rocasolano, N., Marti-Sistac, O., and Gasull, T. (2019). Deciphering
the Iron Side of Stroke: Neurodegeneration at the Crossroads between Iron
Dyshomeostasis, Excitotoxicity, and Ferroptosis. Front. Neurosci. 13, 85. doi:10.
3389/fnins.2019.00085

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R,, Skouta, R,, Zaitsev, E. M., Gleason,
C. E,, et al. (2012). Ferroptosis: an Iron-dependent Form of Nonapoptotic Cell
Death. Cell 149 (5), 1060-1072. doi:10.1016/j.cell.2012.03.042

Duan, L., Zhang, Y., Yang, Y., Su, S., Zhou, L., Lo, P. C,, et al. (2021). Baicalin
Inhibits Ferroptosis in Intracerebral Hemorrhage. Front. Pharmacol. 12, 62937.
doi:10.3389/fphar.2021.629379

Friedmann Angeli, J. P., Schneider, M., Proneth, B, Tyurina, Y. Y., Tyurin, V. A,,
Hammond, V. ], et al. (2014). Inactivation of the Ferroptosis Regulator Gpx4
Triggers Acute Renal Failure in Mice. Nat. Cel Biol 16 (12), 1180-1191. doi:10.
1038/ncb3064

Galluzzi, L., Vitale, I, Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., et al.
(2018). Molecular Mechanisms of Cell Death: Recommendations of the
Nomenclature Committee on Cell Death 2018. Cell Death Differ 25 (3),
486-541. doi:10.1038/s41418-017-0012-4

Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, ., and Jiang, X. (2016). Ferroptosis
Is an Autophagic Cell Death Process. Cell Res 26 (9), 1021-1032. doi:10.1038/cr.
2016.95

Ferroptosis in Stroke

Ge, H., Xue, X,, Xian, J., Yuan, L., Wang, L., Zou, Y., et al. (2021). Ferrostatin-1
Alleviates White Matter Injury via Decreasing Ferroptosis Following Spinal
Cord Injury. Mol. Neurobiol. doi:10.1007/s12035-021-02571-y

Gibellini, L., and Moro, L. (2021). Programmed Cell Death in Health and Disease.
Cells 10 (7), 1765. doi:10.3390/cells10071765

Guo, H,, Zhu, L,, Tang, P., Chen, D,, Li, Y, Li, J., et al. (2021b). Carthamin Yellow
Improves  Cerebral Ischemia-reperfusion I-njury by A-ttenuating
I-nflammation and F-erroptosis in R-ats. Int. J. Mol. Med. 47 (4), 52. doi:10.
3892/ijmm.2021.4885

Guo, X. W,, Lu, Y., Zhang, H., Huang, J. Q., and Li, Y. W. (2021). PIEZO1 Might Be
Involved in Cerebral Ischemia-Reperfusion Injury through Ferroptosis
Regulation: a Hypothesis. Med. Hypotheses 146, 110327. doi:10.1016/j.mehy.
2020.110327

Hassannia, B., Van Coillie, S., and Vanden Berghe, T. (2021). Ferroptosis:
Biological Rust of Lipid Membranes. Antioxid. Redox Signal. 35 (6),
487-509. doi:10.1089/ars.2020.8175

Henke, N., Albrecht, P., Bouchachia, I., Ryazantseva, M., Knoll, K., Lewerenz, J.,
et al. (2013). The Plasma Membrane Channel ORAI1 Mediates Detrimental
Calcium Influx Caused by Endogenous Oxidative Stress. Cel Death Dis 4 (1),
€470. doi:10.1038/cddis.2012.216

Hughes, R. E., Tadi, P., and Bollu, P. C. (2021). “TPA Therapy,” in StatPearls.
Treasure Island, Florida: StatPearls Publishing.

Jin, Y., Zhuang, Y., Liu, M., Che, J., and Dong, X. (2021). Inhibiting Ferroptosis: A
Novel Approach for Stroke Therapeutics. Drug Discov. Today 26 (4), 916-930.
doi:10.1016/j.drudis.2020.12.020

Jin, Z. L., Gao, W. Y., Liao, S. J., Yu, T., Shi, Q., Yu, S. Z, et al. (2021). Paeonol
Inhibits the Progression of Intracerebral Haemorrhage by Mediating the
HOTAIR/UPF1/ACSL4 axis. ASN Neuro 13, 17590914211010647. doi:10.
1177/17590914211010647

Karuppagounder, S. S., Alin, L., Chen, Y., Brand, D., Bourassa, M. W., Dietrich, K.,
et al. (2018). N-acetylcysteine Targets 5 Lipoxygenase-Derived, Toxic Lipids
and Can Synergize with Prostaglandin E2 to Inhibit Ferroptosis and Improve
Outcomes Following Hemorrhagic Stroke in Mice. Ann. Neurol. 84 (6),
854-872. d0i:10.1002/ana.25356

Keuters, M. H., Keksa-Goldsteine, V., Dhungana, H., Huuskonen, M. T.,
Pomeshchik, Y., Savchenko, E., et al. (2021). An Arylthiazyne Derivative Is
a Potent Inhibitor of Lipid Peroxidation and Ferroptosis Providing
Neuroprotection In Vitro and In Vivo. Sci. Rep. 11 (1), 3518. doi:10.1038/
$41598-021-81741-3

Kist, M., and Vucic, D. (2021). Cell Death Pathways: Intricate Connections and
Disease Implications. EMBO J. 40 (5), el106700. doi:10.15252/embj.
2020106700

Kuo, P. C., Weng, W. T,, Scofield, B. A., Furnas, D., Paraiso, H. C,, Intriago, A. J.,
et al. (2020). Interferon-p Alleviates Delayed tPA-Induced Adverse Effects via
Modulation of MMP3/9 Production in Ischemic Stroke. Blood Adv. 4 (18),
4366-4381. doi:10.1182/bloodadvances.2020001443

Lan, B, Ge, ]. W., Cheng, S. W, Zheng, X. L., Liao, J., He, C,, et al. (2020). Extract of
Naotaifang, a Compound Chinese Herbal Medicine, Protects Neuron
Ferroptosis Induced by Acute Cerebral Ischemia in Rats. J. Integr. Med. 18
(4), 344-350. doi:10.1016/j.joim.2020.01.008

Lee, Y. S., Kalimuthu, K., Park, Y. S., Luo, X., Choudry, M. H. A,, Bartlett, D. L.,
et al. (2020). BAX-dependent Mitochondrial Pathway Mediates the Crosstalk
between Ferroptosis and Apoptosis. Apoptosis 25 (9-10), 625-631. doi:10.1007/
510495-020-01627-z

Lee, Y. S., Lee, D. H,, Choudry, H. A, Bartlett, D. L, and Lee, Y. J. (2018).
Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-Talk between
Ferroptosis and Apoptosis. Mol. Cancer Res. 16 (7), 1073-1076. doi:10.1158/
1541-7786.MCR-18-0055

Li, C, Sun, G, Chen, B, Xu, L, Ye, Y,, He, ], et al. (2021). Nuclear Receptor
Coactivator 4-mediated Ferritinophagy Contributes to Cerebral Ischemia-
Induced Ferroptosis in Ischemic Stroke. Pharmacol. Res. 174, 105933.
doi:10.1016/j.phrs.2021.105933

Li, G, Li, X,, Dong, J., and Han, Y. (2021). Electroacupuncture Ameliorates
Cerebral Ischemic Injury by Inhibiting Ferroptosis. Front. Neurol. 12,
619043. doi:10.3389/fneur.2021.619043

Li, L., Li, H, Li, Y., Feng, J., Guan, D., Zhang, Y., et al. (2021). Ferritinophagy-
Mediated ROS Production Contributed to Proliferation Inhibition, Apoptosis,
and Ferroptosis Induction in Action of Mechanism of 2-Pyridylhydrazone

Frontiers in Pharmacology | www.frontiersin.org

84

February 2022 | Volume 12 | Article 817364


https://doi.org/10.1038/cddis.2017.133
https://doi.org/10.1038/cddis.2017.133
https://doi.org/10.1038/s41580-020-0270-8
https://doi.org/10.1038/s41572-019-0118-8
https://doi.org/10.1016/j.bbr.2021.113261
https://doi.org/10.1002/acn3.54
https://doi.org/10.1016/j.brainresbull.2019.08.013
https://doi.org/10.1016/j.brainresbull.2019.08.013
https://doi.org/10.4081/ejh.2021.3224
https://doi.org/10.3389/fneur.2021.745240
https://doi.org/10.3389/fncel.2021.632354
https://doi.org/10.1016/j.brainres.2020.147216
https://doi.org/10.1155/2021/5005136
https://doi.org/10.1016/j.bbi.2021.01.003
https://doi.org/10.1016/j.bbi.2021.01.003
https://doi.org/10.1089/ars.2021.0218
https://doi.org/10.3389/fnins.2019.00085
https://doi.org/10.3389/fnins.2019.00085
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.3389/fphar.2021.629379
https://doi.org/10.1038/ncb3064
https://doi.org/10.1038/ncb3064
https://doi.org/10.1038/s41418-017-0012-4
https://doi.org/10.1038/cr.2016.95
https://doi.org/10.1038/cr.2016.95
https://doi.org/10.1007/s12035-021-02571-y
https://doi.org/10.3390/cells10071765
https://doi.org/10.3892/ijmm.2021.4885
https://doi.org/10.3892/ijmm.2021.4885
https://doi.org/10.1016/j.mehy.2020.110327
https://doi.org/10.1016/j.mehy.2020.110327
https://doi.org/10.1089/ars.2020.8175
https://doi.org/10.1038/cddis.2012.216
https://doi.org/10.1016/j.drudis.2020.12.020
https://doi.org/10.1177/17590914211010647
https://doi.org/10.1177/17590914211010647
https://doi.org/10.1002/ana.25356
https://doi.org/10.1038/s41598-021-81741-3
https://doi.org/10.1038/s41598-021-81741-3
https://doi.org/10.15252/embj.2020106700
https://doi.org/10.15252/embj.2020106700
https://doi.org/10.1182/bloodadvances.2020001443
https://doi.org/10.1016/j.joim.2020.01.008
https://doi.org/10.1007/s10495-020-01627-z
https://doi.org/10.1007/s10495-020-01627-z
https://doi.org/10.1158/1541-7786.MCR-18-0055
https://doi.org/10.1158/1541-7786.MCR-18-0055
https://doi.org/10.1016/j.phrs.2021.105933
https://doi.org/10.3389/fneur.2021.619043
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Chen et al.

Dithiocarbamate Acetate. Oxid Med. Cel Longev 2021, 5594059. doi:10.1155/
2021/5594059

Li, Q., Weiland, A., Chen, X., Lan, X., Han, X., Durham, F., et al. (2018).
Ultrastructural Characteristics of Neuronal Death and White Matter Injury
in Mouse Brain Tissues after Intracerebral Hemorrhage: Coexistence of
Ferroptosis, Autophagy, and Necrosis. Front. Neurol. 9, 581. doi:10.3389/
fneur.2018.00581

Li, Y., Feng, D., Wang, Z., Zhao, Y., Sun, R, Tian, D., et al. (2019). Ischemia-
induced ACSL4 Activation Contributes to Ferroptosis-Mediated Tissue Injury
in Intestinal Ischemia/reperfusion. Cel Death Differ 26 (11), 2284-2299. doi:10.
1038/s41418-019-0299-4

Li, Y., Liu, Y., Wu, P, Tian, Y., Liu, B, Wang, ], et al. (2021). Inhibition of
Ferroptosis Alleviates Early Brain Injury after Subarachnoid Hemorrhage In
Vitro and In Vivo via Reduction of Lipid Peroxidation. Cell Mol Neurobiol 41
(2), 263-278. doi:10.1007/s10571-020-00850-1

Liu, Y., Fang, Y., Zhang, Z., Luo, Y., Zhang, A., Lenahan, C., et al. (2021).
Ferroptosis: An Emerging Therapeutic Target in Stroke. J. Neurochem. 160,
64-73. doi:10.1111/jnc.15351

Louandre, C., Ezzoukhry, Z., Godin, C., Barbare, J. C., Maziére, J. C., Chauffert, B.,
et al. (2013). Iron-dependent Cell Death of Hepatocellular Carcinoma Cells
Exposed to Sorafenib. Int. J. Cancer 133 (7), 1732-1742. doi:10.1002/ijc.28159

Lu, J., Xu, F,, and Lu, H. (2020). LncRNA PVT1 Regulates Ferroptosis through
miR-214-Mediated TFR1 and P53. Life Sci. 260, 118305. doi:10.1016/j.1fs.2020.
118305

Mahoney-Sanchez, L., Bouchaoui, H., Ayton, S., Devos, D., Duce, J. A., and
Devedjian, J. C. (2021). Ferroptosis and its Potential Role in the
Physiopathology of Parkinson’s Disease. Prog. Neurobiol. 196, 101890.
doi:10.1016/j.pneurobio.2020.101890

Meihe, L., Shan, G., Minchao, K., Xiaoling, W., Peng, A., Xili, W,, et al. (2021). The
Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse
Pregnancy. Front Cel Dev Biol 9, 707959. doi:10.3389/fcell.2021.707959

Moujalled, D, Strasser, A., and Liddell, J. R. (2021). Molecular Mechanisms of Cell
Death in Neurological Diseases. Cel Death Differ 28 (7), 2029-2044. doi:10.
1038/s41418-021-00814-y

Peng, C,, Fu, X,, Wang, K,, Chen, L., Luo, B., Huang, N,, et al. (2022). Dauricine
Alleviated Secondary Brain Injury after Intracerebral Hemorrhage by
Upregulating GPX4 Expression and Inhibiting Ferroptosis of Nerve Cells.
Eur. J. Pharmacol. 914, 174461. doi:10.1016/j.ejphar.2021.174461

Plascencia-Villa, G., and Perry, G. (2021). Preventive and Therapeutic Strategies in
Alzheimer’s Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis.
Antioxid. Redox Signal. 34 (8), 591-610. doi:10.1089/ars.2020.8134

Rui, T., Li, Q. Song, S., Gao, Y., and Luo, C. (2020). Ferroptosis-relevant
Mechanisms and Biomarkers for Therapeutic Interventions in Traumatic
Brain Injury. Histol. Histopathol 35 (10), 1105-1113. doi:10.14670/HH-18-229

Speer, R. E,, Karuppagounder, S. S., Basso, M., Sleiman, S. F., Kumar, A., Brand,
D., etal. (2013). Hypoxia-inducible Factor Prolyl Hydroxylases as Targets for
Neuroprotection by "antioxidant" Metal Chelators: From Ferroptosis to
Stroke. Free Radic. Biol. Med. 62, 26-36. doi:10.1016/j.freeradbiomed.
2013.01.026

Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I, Conrad, M., Dixon,
S. J., et al. (2017). Ferroptosis: A Regulated Cell Death Nexus Linking
Metabolism, Redox Biology, and Disease. Cell 171 (2), 273-285. doi:10.1016/
j.cell2017.09.021

Stockwell, B. R,, Jiang, X., and Gu, W. (2020). Emerging Mechanisms and Disease
Relevance of Ferroptosis. Trends Cel Biol 30 (6), 478-490. doi:10.1016/j.tcb.
2020.02.009

Tang, D., and Kroemer, G. (2020). Ferroptosis. Curr. Biol. 30 (21), R1292-R1297.
doi:10.1016/j.cub.2020.09.068

Tuo, Q.-Z., Masaldan, S., Southon, A., Mawal, C., Ayton, S., Bush, A. I, et al.
(2021). Characterization of Selenium Compounds for Anti-ferroptotic Activity
in Neuronal Cells and after Cerebral Ischemia-Reperfusion Injury.
Neurotherapeutics. doi:10.1007/s13311-021-01111-9

Tuo, Q. Z, Lei, P., Jackman, K. A, Li, X. L., Xiong, H., Li, X. L., et al. (2017). Tau-
mediated Iron export Prevents Ferroptotic Damage after Ischemic Stroke. Mol.
Psychiatry 22 (11), 1520-1530. doi:10.1038/mp.2017.171

Wan, J., Ren, H.,, and Wang, J. (2019). Iron Toxicity, Lipid Peroxidation and
Ferroptosis after Intracerebral Haemorrhage. Stroke Vasc. Neurol. 4 (2), 93-95.
doi:10.1136/svn-2018-000205

Ferroptosis in Stroke

Wang, P, Cui, Y., Ren, Q,, Yan, B, Zhao, Y., Yu, P,, et al. (2021). Mitochondrial
Ferritin Attenuates Cerebral Ischaemia/reperfusion Injury by Inhibiting
Ferroptosis. Cel Death Dis 12 (5), 447. doi:10.1038/s41419-021-03725-5

Wu, H., Wang, Y., Tong, L., Yan, H., and Sun, Z. (2021). Global Research Trends of
Ferroptosis: A Rapidly Evolving Field with Enormous Potential. Front. Cel Dev
Biol 9, 646311. doi:10.3389/fcell.2021.646311

Wu, S, Wu, B, Liu, M., Chen, Z., Wang, W., Anderson, C. S, et al. (2019). Stroke in
China: Advances and Challenges in Epidemiology, Prevention, and Management.
Lancet Neurol. 18 (4), 394-405. doi:10.1016/S1474-4422(18)30500-3

Wu, Z, Geng, Y., Lu, X, Shi, Y., Wu, G., Zhang, M., et al. (2019). Chaperone-
mediated Autophagy Is Involved in the Execution of Ferroptosis. Proc. Natl.
Acad. Sci. U § A. 116 (8), 2996-3005. doi:10.1073/pnas.1819728116

Yang, W., Liu, X,, Song, C,, Ji, S., Yang, ], Liu, Y., et al. (2021). Structure-activity
Relationship Studies of Phenothiazine Derivatives as a New Class of Ferroptosis
Inhibitors Together with the Therapeutic Effect in an Ischemic Stroke Model.
Eur. J. Med. Chem. 209, 112842. doi:10.1016/j.ejmech.2020.112842

Yin, J., Wan, J., Zhu, J., Zhou, G., Pan, Y., and Zhou, H. (2021). Global Trends and
Prospects about Inflammasomes in Stroke: a Bibliometric Analysis. Chin. Med.
16 (1), 53. doi:10.1186/s13020-021-00464-9

Yu, Y., Yan, Y., Niu, F., Wang, Y., Chen, X,, Su, G,, et al. (2021). Ferroptosis: a Cell
Death Connecting Oxidative Stress, Inflammation and Cardiovascular
Diseases. Cell Death Discov 7 (1), 193. doi:10.1038/s41420-021-00579-w

Yuan, Y., Zhai, Y., Chen, J., Xu, X., and Wang, H. (2021). Kaempferol Ameliorates
Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by
Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules 11 (7), 923. doi:10.3390/
biom11070923

Zhang, H., Wen, M., Chen, J., Yao, C,, Lin, X,, Lin, Z,, et al. (2021). Pyridoxal
Isonicotinoyl Hydrazone Improves Neurological Recovery by Attenuating
Ferroptosis and Inflammation in Cerebral Hemorrhagic Mice. Biomed. Res.
Int., 20219916328. doi:10.1155/2021/9916328

Zhang, T., Zhao, ], Li, X,, Bai, Y., Wang, B., Qu, Y., et al. (2020). Chinese Stroke
Association Guidelines for Clinical Management of Cerebrovascular Disorders:
Executive Summary and 2019 Update of Clinical Management of Stroke
Rehabilitation. Stroke Vasc. Neurol. 5 (3), 250-259. doi:10.1136/svn-2019-
000321

Zhang, Y., Lu, X, Tai, B., Li, W., and Li, T. (2021). Ferroptosis and its Multifaceted
Roles in Cerebral Stroke. Front. Cel Neurosci 15, 615372. doi:10.3389/fncel.
2021.615372

Zhou, S. Y., Cui, G. Z., Yan, X. L., Wang, X,, Qu, Y., Guo, Z. N., et al. (2020).
Mechanism of Ferroptosis and its Relationships with Other Types of
Programmed Cell Death: Insights for Potential Interventions after
Intracerebral Hemorrhage. Front. Neurosci. 14, 589042. doi:10.3389/fnins.
2020.589042

Zhou, Y., Liao, J., Mei, Z., Liu, X, and Ge, J. (2021). Insight into Crosstalk between
Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. Oxid Med.
Cel Longev, 20219991001. doi:10.1155/2021/9991001

Zille, M., Karuppagounder, S. S., Chen, Y., Gough, P. J., Bertin, J., Finger, J., et al.
(2017). Neuronal Death after Hemorrhagic Stroke In Vitro and In Vivo Shares
Features of Ferroptosis and Necroptosis. Stroke 48 (4), 1033-1043. doi:10.1161/
STROKEAHA.116.015609

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Chen, Long, Xu and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Pharmacology | www.frontiersin.org

85

February 2022 | Volume 12 | Article 817364


https://doi.org/10.1155/2021/5594059
https://doi.org/10.1155/2021/5594059
https://doi.org/10.3389/fneur.2018.00581
https://doi.org/10.3389/fneur.2018.00581
https://doi.org/10.1038/s41418-019-0299-4
https://doi.org/10.1038/s41418-019-0299-4
https://doi.org/10.1007/s10571-020-00850-1
https://doi.org/10.1111/jnc.15351
https://doi.org/10.1002/ijc.28159
https://doi.org/10.1016/j.lfs.2020.118305
https://doi.org/10.1016/j.lfs.2020.118305
https://doi.org/10.1016/j.pneurobio.2020.101890
https://doi.org/10.3389/fcell.2021.707959
https://doi.org/10.1038/s41418-021-00814-y
https://doi.org/10.1038/s41418-021-00814-y
https://doi.org/10.1016/j.ejphar.2021.174461
https://doi.org/10.1089/ars.2020.8134
https://doi.org/10.14670/HH-18-229
https://doi.org/10.1016/j.freeradbiomed.2013.01.026
https://doi.org/10.1016/j.freeradbiomed.2013.01.026
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1016/j.tcb.2020.02.009
https://doi.org/10.1016/j.tcb.2020.02.009
https://doi.org/10.1016/j.cub.2020.09.068
https://doi.org/10.1007/s13311-021-01111-9
https://doi.org/10.1038/mp.2017.171
https://doi.org/10.1136/svn-2018-000205
https://doi.org/10.1038/s41419-021-03725-5
https://doi.org/10.3389/fcell.2021.646311
https://doi.org/10.1016/S1474-4422(18)30500-3
https://doi.org/10.1073/pnas.1819728116
https://doi.org/10.1016/j.ejmech.2020.112842
https://doi.org/10.1186/s13020-021-00464-9
https://doi.org/10.1038/s41420-021-00579-w
https://doi.org/10.3390/biom11070923
https://doi.org/10.3390/biom11070923
https://doi.org/10.1155/2021/9916328
https://doi.org/10.1136/svn-2019-000321
https://doi.org/10.1136/svn-2019-000321
https://doi.org/10.3389/fncel.2021.615372
https://doi.org/10.3389/fncel.2021.615372
https://doi.org/10.3389/fnins.2020.589042
https://doi.org/10.3389/fnins.2020.589042
https://doi.org/10.1155/2021/9991001
https://doi.org/10.1161/STROKEAHA.116.015609
https://doi.org/10.1161/STROKEAHA.116.015609
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

'." frontiers

In Pharmacology

SYSTEMATIC REVIEW
published: 25 February 2022
doi: 10.3389/fphar.2022.796329

OPEN ACCESS

Edited by:

Yongjun Sun,

Hebei University of Science and
Technology, China

Reviewed by:

Zhouqing Chen,

Soochow University, China
Amit Kumar,

Rajendra Institute of Medical
Sciences, India

*Correspondence:
Jianyong Ji
Jiianyong2005@163.com
Wengiang Xin
xinwengiangdr@126.com

These authors have contributed
equally to this work and share first
authorship

Specialty section:

This article was submitted to
Neuropharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 16 October 2021
Accepted: 24 January 2022
Published: 25 February 2022

Citation:

®

Check for
updates

A Meta-Analysis of Using Protamine
for Reducing the Risk of Hemorrhage
During Carotid Recanalization: Direct
Comparisons of Post-operative
Complications

Yongli Pan'", Zhigiang Zhao?®!, Tao Yang?!, Qingzheng Jiao®, Wei Wei*, Jianyong Ji*** and
Wengiang Xin®*

"Department of Neurology, Weifang Medical University, Weifang, China, “Department of Neurosurgery, Heji Hospital Affiiated
Changzhi Medical College, Changzhi, China, Second Department of Internal Mediicine, Gucheng Country Hospital, Shijiazhuang,
China, “Department of Neurology, Mianyang Central Hospital, Mianyang, China, *Department of Neurosurgery, Liaocheng

People’s Hospital, Liaocheng, China, SDepartment of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China

Background: Protamine can decrease the risk of hemorrhage during carotid
recanalization. However, it may cause severe side effects. There is no consensus on
the safety and efficacy of protamine during surgery. Thus, we conduct a comprehensive
review and meta-analysis to compare the differences between the protamine and the no-
protamine group.

Method: We systematically obtained literature from Medline, Google Scholar, Cochrane
Library, and PubMed electronic databases. All four databases were scanned from 1937
when protamine was first adopted as a heparin antagonist until February 2021. The
reference lists of identified studies were manually checked to determine other eligible
studies that qualify. The articles were included in this meta-analysis as long as they met the
criteria of PICOS; conference or commentary articles, letters, case report or series, and
animal observation were excluded from this study. The Newcastle-Ottawa Quality
Assessment Scale and Cochrane Collaboration’s tool are used to assess the risk of
bias of each included observational study and RCT, respectively. Stata version 12.0
statistical software (StataCorp LP, College Station, Texas) was adopted as statistical
software. When /° < 50%, we consider that the data have no obvious heterogeneity, and
we conduct a meta-analysis using the fixed-effect model. Otherwise, the random-effect
model was performed.

Result: A total of 11 studies, consisting of 94,618 participants, are included in this study.
Our analysis found that the rate of wound hematoma had a significant difference among

Pan'Y, Zhao Z, Yang T, Jiao Q, Wei W,
JiJ and Xin W (2022) A Meta-Analysis
of Using Protamine for Reducing the
Risk of Hemorrhage During Carotid
Recanalization: Direct Comparisons of
Post-operative Complications.

Front. Pharmacol. 13:796329.

doi: 10.3389/fohar.2022.796329

protamine and no-protamine patients (OR = 0.268, 95% Cl = 0.093 t0 0.774, p = 0.015).
Furthermore, the incidence of hematoma requiring re-operation (0.7%) was significantly

Abbreviations: CEA, Carotid endarterectomy; CAS, Carotid artery stenting; MI, Myocardial Infarction; RDs, Risk differences;
ORs, Odds ratios; FDA, Food and Drug Administration; Cls, Confidence Intervals; RCTs, Randomized Controlled Trials; TIA,
Transient Ischemic Attacks.

Frontiers in Pharmacology | www.frontiersin.org 86 February 2022 | Volume 13 | Article 796329


http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.796329&domain=pdf&date_stamp=2022-02-25
https://www.frontiersin.org/articles/10.3389/fphar.2022.796329/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.796329/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.796329/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.796329/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.796329/full
http://creativecommons.org/licenses/by/4.0/
mailto:jijianyong2005@163.com
mailto:xinwenqiangdr@126.com
https://doi.org/10.3389/fphar.2022.796329
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.796329

Pan et al.

Protamine in Carotid Recanalization

lower than that of patients without protamine (1.8%). However, there was no significant
difference in the incidence of stroke, wound hematoma with hypertension, transient
ischemic attacks (TIA), myocardial infarction (Ml), and death.

Conclusion: Among included participants undergoing recanalization, the use of
protamine is effective in reducing hematoma without increasing the risk of having other
complications. Besides, more evidence-based performance is needed to supplement this
opinion due to inherent limitations.

Keywords: protamine, carotid recanalization, meta-analysis, carotid stenosis, hemorrhage - cerebral

INTRODUCTION

Ischemic stroke accounts for the mortality of approximately
more than ten million lives per year all over the world (Yip
et al., 2016), and it is an important public health concern.
Considerable research evidence demonstrates that the
prevalence of carotid stenosis is about 7% (Dharmakidari
et al., 2017), which is becoming an important public health
issue (Abbott et al., 2015). Carotid endarterectomy (CEA),
performed to prevent embolus, is considered a conventional
treatment (Howell, 2007). Carotid artery stenting (CAS), a
minimally invasive procedure (Spiliopoulos et al., 2019), has
emerged as an effective treatment modality for carotid artery
stenosis (Setacci et al., 2018). Although these two surgical
interventions have improved the prognosis of ischemic stroke,
they may carry hemorrhage as a severe complication (Spence
et al., 2016). Heparin is a robust anticoagulant used routinely
during both CEA and CAS surgeries to avoid thromboembolic
complications (Lynch and Kavanagh, 2016; Sokolowska et al.,
2016). After such surgeries, some surgeons advocate the
adoption of protamine to achieve a systemic anticoagulant
effect to decrease the risk of hemorrhage (Liang et al., 2021).
Protamine is known to be arginine-rich, making it a positively
charged protein (Bakchoul et al., 2016), and is an approved
drug by the Food and Drug Administration (FDA). Despite its
neutralization action, protamine may cause severe side effects
such as systemic hypotension, anaphylactic reaction,
pulmonary hypertension, and tissue damage of the lungs,
kidneys, and red blood cells (Sokolowska et al., 2016).
Hence, the use of protamine can have a significant
difference in short-term and long-term morbidity and
mortality (Al-Kassou et al., 2020). As one study reviewed
10,059 CEAs performed in 9,260 patients from 2003 to
2012, protamine use remained stable from 2003 through
2007 at 43%. Then, there was a significant increase in
protamine use to 52% from the beginning in January 2008
(Patel et al., 2013). Theoretically, protamine can bind with the
glucosaminoglycan of heparin to form a stable complex,
which, in turn, suppresses the activity of antithrombin,
herein counteracting the anticoagulant effect of heparin and
achieving the effect of hemostasis. Some surgeons advocate the
routine use of protamine to minimize bleeding complications,
whereas some others avoid heparin reversal to minimize the
risk of stroke through thrombus formation on the
endarterectomy surface of the artery (Cho et al, 2012).

Therefore, the purpose of this study is to evaluate the safety
and efficacy of protamine to reduce the risk of hemorrhage
during carotid recanalization.

MATERIALS AND METHODS

Literature Search Strategy

We systematically obtained literature from Medline, Google
Scholar, Cochrane Library, and PubMed electronic databases.
We utilized controlled vocabulary to build the search terms such
as the National Library of Medicine in this study. All four
databases were scanned from 1937 when protamine was first
adopted as a heparin antagonist until February 2021 for the
keywords of protamine, carotid endarterectomy, and carotid
artery stenosis in combination with Boolean logic (Jaques,
1973). The specific search strategy is shown in Table 1. After
the original search, the relevant studies and their references were
searched manually by two authors. Beyond that, all references to
previous reviews and related clinical trials were manually checked
to identify potential publications that were not included in our
electronic search results.

Inclusion and Exclusion Criteria

Studies are considered eligible if they fulfilled the predefined
inclusion criteria: (1) population: participant with carotid
stenosis; (2) intervention: all patients strictly undergoing
carotid recanalization; (3) comparison intervention: use of
protamine to no-protamine group; (4) outcome measures: one
or more of the following outcomes were reported: complications
of wound hematoma, hematoma requiring re-operation, wound
hematoma with hypertension, transient ischemic attacks (TIA),
myocardial infarction (MI), stroke, and death; and (5) official
published prospective and retrospective studies in English.

The exclusion criteria are listed as follows: (1) conference or
commentary articles and letters, (2) atypical patients and
outcome data, (3) case report and case series, and (4) animal
observation.

Data Extraction and Outcome Measures

Data were extracted by using a form prepared in advance and
from the eligible researchers. Each relevant study was
independently captured by two authors for the following
essential details: the first author of the study, publication year,
type of study, quality assessment, endpoints, and study
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TABLE 1 | The specific search strategy.

Protamine in Carotid Recanalization

Carotid stenosis OR carotid artery stenosis OR carotid disease OR carotid artery disease

AND

CAS OR carotid artery stenting OR carotid angioplasty OR carotid stenting OR CEA OR carotid endarterectomy OR endarterectomy OR carotid surgery OR carotid

revascularization
AND
Protamine

Records identified through
database searching
(n=353)

Additional records identified
through other sources
(n=0)

] [ Identification ]

Records after duplicates removed
(n=139)

A 4

Screening

Records screened
(n=139)

Records excluded
(n=102)

) |

A 4

Full-text articles
assessed for eligibility
(n=37)

Full-text articles
excluded, with reasons
(n=26)

A4

Eligibility

A 4

Studies included in
qualitative synthesis
(n=11)

A 4

Included

Studies included in
quantitative synthesis
(meta-analysis)
(n=11)

FIGURE 1 | Flowchart of the study selection process.

characteristics including the number of populations in total,
mean age, and gender ratio, among others. All disagreements
were discussed until a final decision is reached. The primary study
endpoint measurements are relevant to hemorrhagic damage
including wound hematoma, hematoma requiring re-
operation, and hematoma with hypertension, and secondary
endpoints were the composite of ischemic injuries including
stroke, TIA, and MI. Herein, in primary endpoints, all
hematoma was defined as wound hematoma. In secondary
endpoints, stroke was defined as 1 or more of the following:
(1) an increase in the National Institute of Health stroke scale
(NIHSS) score of >4 points from pre-stroke score; (2) an increase
in the MRS score of >2 points from the pre-stroke score; or (3)

stroke leading to a modified Rankin scale (MRS) score of 5
or more.

Statistical Analysis

Stata version 12.0 statistical software (StataCorp LP, College
Station, Texas) was adopted as statistical software. The risk
differences (RDs) or odds ratios (ORs) with the corresponding
95% confidence intervals (95% ClIs) were used as measures of the
treatment effect of protamine. We accessed the heterogeneity
with the Higgins I-square (I°), which indicated the percentage of
the observed between-study viability. I* over 25% and less than
75% was considered as moderately heterogeneous or significant
heterogeneity. If I* was under 50%, the endpoint item was

Frontiers in Pharmacology | www.frontiersin.org

88

February 2022 | Volume 13 | Article 796329


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Pan et al.

Protamine in Carotid Recanalization

TABLE 2 | Characteristics of publication year, country, study type, cases, general anesthesia, and mean age in each group for included studies.

Study Years Country Study design General anesthesia Sample size Mean age (Years)
Protamine No protamine Protamine No protamine
Protamine use in carotid endarterectomy (CEA)
Treiman et al. 1990 United States Non-RCT 100% 328 369 71 71
Mauney et al. 1995 United States Non-RCT 98.3% 193 155 65.9 68.8
Fearn et al. 1997 United Kingdom RCT 100% 31 33 66 61.9
Levison, et al. 1999 United States Non-RCT NA 365 42 70.6 69
Dellagrammaticas et al. 2008 United Kingdom RCT 50% 594 1,513 70 70.4
Stone et al. 2010 United States Non-RCT 50% 2,087 2,500 69.2 70
Mazzalai et al. 2014 Italy Non-RCT 100% 201 1,294 75.7 751
Stone et al. 2020 United States Non-RCT | 100% 53,349 23,966 70.0 £ 9.1 69.1 +9.2
Protamine use in carotid artery stenting (CAS)
Mcdonald et al. 2013 United States Non-RCT NA 555 555 NA NA
Liang et al. 2020 United States Non-RCT NA 944 944 72.7 £ 9.7 732 +94
Liang et al. 2021 United States Non-RCT NA 2,300 2,300 70.6 £+ 9.5 70.4 £ 9.7

Note: NA: not available; RCT, randomized controlled trials.

considered to be homogeneous, and we ran a meta-analysis by
using a fixed-effect model according to the Cochrane Handbook
for Systematic Reviews of Interventions. Otherwise, the random-
effect model was performed.

Quality of Evidence Assessment

We used the guidance from the Grading of Recommendations
Assessment, Development and Evaluation (GRADE) working
group to assess the quality of evidence for the primary
outcome (Li et al., 2019). The GRADE summary of findings
table was produced using the GradePRO software.

RESULTS

Search Result

The screening process is displayed in Figure 1, which is based on
the inclusion and exclusion criteria. The search initially yielded a
total of 353 articles. After the exclusion of duplicated or irrelevant
articles, 139 eligible studies were enrolled in this study. Later, after
evaluating the full text of the remaining articles, 37 articles met
our inclusion criteria. Finally, 11 studies were involved in our
quantitative synthesis.

Characteristics of Included Studies

Detailed characteristics of the 11 observational articles, including
94,618 participants (median sample size, 1,495; range, 64 to 77,315)
with an average age of 76 years (range, 59.1 to 82.6), are listed in
Table 2. The majority of studies were performed in the United States
(Liang et al., 2021; Treiman et al., 1990; Stone et al., 2010; Stone et al,,
2020; McDonald et al., 2013; Liang et al.,, 2020). Two were in the
United Kingdom (Fearn et al., 1997; Dellagrammaticas et al., 2008),
and another one was from Italy (Mazzalai et al., 2014). There were
9 Non-RCTs (Randomized Controlled Trials) (Liang et al., 2021;
Treiman et al., 1990; Stone et al., 2010; Stone et al., 2020; McDonald
et al,, 2013; Liang et al,, 2020; Mazzalai et al., 2014; Mauney et al.,
1995) (n = 92,447) and 2 RCTs (Fearn et al., 1997; Dellagrammaticas
etal., 2008) involving 2,171 patients randomized to either protamine

of heparin or not restrictedly undergoing CEA. In the protamine
group, out of the 60,947 patients, 57,148 were allocated to CEA, and
3,799 were from CAS, with an average age from 65.9 to 79.1 years
old. In the no protamine group, 57.8% of enrolled participants were
from CEA. Nearly all surgeries considered age, whereas only
McDonald et al. (2013) ignored this.

Quality Assessment

Methodological quality and risk of bias in the included observational
studies are assessed by two reviewers independently by using the
Newcastle-Ottawa Quality Assessment Scale (Mitchell-Jones et al.,
2017), which consists of three main categories: selection,
comparability, and outcome, with questions in each area
corresponding to the study quality (Newhall et al, 2016). The
evaluation scores for all non-RCT are listed in Table 3 with the
highest quality of 9 points. Studies that scored lower than 5 points
equate to low quality, and a score of 6-7 points is regarded as
moderate quality. Additionally, the Cochrane Collaboration’s tool is
used for assessing the risk of bias of each included RCT. The results
of the quality assessment of RCT are provided in Table 4.

The Outcome of the Meta-Analysis

There were nearly ten thousand participants, 92% of whom have
been undergoing CEA and 8% had been treated with CAS. The
detailed results and GRADE assessment of outcomes are shown
in Table 5.

Wound Hematoma

We include four independent pieces of research of CEA with 4,706
patients (1,488 of protamine and 3,218 of no-protamine). Among
these studies, the incidence of wound hematoma in the protamine
group is 3.8% (57 of 1,488), which is smaller than the no-protamine
group (9.5%, 305 of 3,218). This comparison fully indicates that the
group of protamine is associated with a significantly lower incidence
of wound hematoma than participants treated with non-protamine
(OR =0.268,95% CI =0.093 t0 0.774, p = 0.015, Figure 2). Similarly,
in the subgroup of CEA, the results are the same. However, a
significant heterogeneity was observed (I* = 77.2%, p = 0.004). A
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TABLE 3 | The quality assessment in randomized controlled trials.

Author, year

Treiman et al. 1990
Mauney et al. 1995
Levison, et al. 1999
Stone et al. 2010
Mazzalai et al. 2014
Stone et al. 2020
Mcdonald et al. 2013
Liang et al. 2020
Liang et al. 2021

Note: NOS , Newcastle-Ottawa scale.

Design

Non-RCT
Non-RCT
Non-RCT
Non-RCT
Non-RCT
Non-RCT
Non-RCT
Non-RCT
Non-RCT

Protamine in Carotid Recanalization

Newcastle-Ottawa scale (NOS)

Selection

WO DMOOWOW

Comparability

N = NN =N NDN =

Exposure

N WWN WNNWW

Total score

 ~N 00 00 00 ~N ~N 0~

TABLE 4 | Cochrane Collaboration’s tool for quality assessment in randomized controlled trials.

Trials Sequence generation Allocation Blinding of Incomplete outcome Selective outcome Others
concealment outcome assessors data reporting
Fearn et al. 1997 Low Unclear Low Low Low Low
Dellagrammaticas et al. 2008 Low Low Low Low Low Unclear
TABLE 5 | The post-operative outcomes of this meta-analysis. The bold values refer to p-value < 0.05.
Outcomes Study Event rates Overall effect Heterogeneity EQ
numbers Protamine No protamine Effect 95% Cls p-Value F?(%) p-Value (GRADE)
estimates
The use of protamine in carotid recanalization
Wound hematoma (WH) 4 57/1,488 (3.83%)  305/3,218 (9.48%) OR (0.268) 0.093-0.774 0.015 77.2 0.004 Low
WH requiring re- 8 409/ 591/ OR (0.475) 0.282-0.798 0.005 77.3 0.000 Low
operation 60,013 (0.68%) 32,714 (1.81%)
WH with hypertension 3 170/1,471 347/2,607 OR (0.704) 0.358-1.388 0.311 76.0 0.015 Low
(11.56%) (13.31%)
Transient Ischemic 5 50/4,193 (1.19%)  91/5,248 (1.73%) OR (0.793) 0.546-1.151 0.222 44.4 0.126 Low
Attacks
Myocardial Infarction 7 430/ 245/ OR (0.935) 0.797-1.096 0.408 0.0 0.446 High
60,030 (0.72%) 33,072 (0.74%)
Post-operative Stroke 10 735/ 426/ OR (1.071) 0.944-1.214 0.286 30.1 0.168 Low
60,916 (1.21%) 33,638 (1.27%)
Post-operative Death 7 138/ 82/30,526 (0.36%) RD (0.000) -0.001-0.001 0.877 0.0 0.719 Low
56,638 (0.24%)
The use of protamine in CEA
Wound hematoma (WH) 4 57/1,488 (3.83%)  305/3,218 (9.48%) OR (0.268) 0.093-0.774 0.015 77.2 0.004 Low
WH requiring re- 6 379/ 546/ OR (0.429) 0.265-0.694 0.001 61.0 0.025 Low
operation 56,769 (0.67%) 29,470 (1.85%)
WH with hypertension 2 22/527 (4.17%) 209/1,663 OR (0.333) 0.057-1.959 0.224 67.6 0.079 Low
(12.57%)
Transient Ischemic 2 3/394 (0.76%) 41/1,449 (2.83%) OR (0.255) 0.068-0.947 0.041 0.0 0.366 High
Attacks
Myocardial Infarction 4 399/ 222/ OR (0.902) 0.764-1.065 0.224 0.0 0.661 High
56,231 (0.71%) 29,273 (0.76%)
Post-operative Stroke 7 641/ 354/ OR (1.029) 0.897-1.180 0.687 37 0.146 Low
57,117 (1.12%) 29,839 (1.19%)
Post-operative Death 4 106/ 54/26,727 (0.20%) RD (0.000) -0.001-0.001 0.878 0.0 0.967 High

52,839 (0.20%)

Note. Cls, confidence intervals; RD, risk difference; OR, odds ratio; EQ , evidence quality.
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Study %
D OR (95% Cl) Weight
Protective Risk
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|
i
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FIGURE 2 | Forest plot for meta-analysis of the incidence of wound hematoma.
Study %
D OR (95% Cl) Weight
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]
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FIGURE 3 | Forest plot for meta-analysis of the incidence of hematoma requiring re-operation.

sensitivity analysis was performed to reveal that the heterogeneity
was decreased by deleting the study conducted by Dellagrammaticas
et al. (P = 51.6%, p = 0.127).

Hematoma Requiring Re-operation
Analysis of risk of hematoma requiring re-operation between
the protamine and no-protamine groups is provided in eight

studies. The proportion estimated in protamine and no-
protamine groups is 0.7% (409 of 60,013) versus 1.8% (591
of 32,714). However, a significant heterogeneity was observed,
and a random effects model was used (I* = 77.3%, p < 0.001). A
specific OR of 0.475 (95% CI = 0.282 to 0.798, p = 0.005;
Figure 3) is obtained, suggesting that the incidence of
hematoma requiring re-operation is significantly lower than
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FIGURE 4 | Forest plot for meta-analysis of the incidence of hematoma requiring re-operation in the subgroup of CEA.
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FIGURE 5 | Forest plot for meta-analysis of the incidence of wound hematoma with hypertension.

patients without protamine. Given a significant heterogeneity,
we conducted a subgroup analysis, and the results showed that
the heterogeneity was decreased (I? = 61%, p =0.025) and that
there is also a significant difference in the subgroup of CEA
between the two groups (OR = 0.429, 95% CI = 0.265 to 0.694,
p = 0.001; Figure 4). In addition, we perform a sensitivity
analysis and found that the heterogeneity was significantly
decreased by  deleting the study conducted by
Dellagrammaticas et al. (I* = 17.7%, p = 0.302).

Wound Hematoma With Hypertension

Three articles (N = 4,078) report the wound hematoma with
hypertension. This analysis does not find a significant difference
between the two groups (OR = 0.704, 95% CI = 0.358 to 1.388, p =
0.311; Figure 5), whereas a high heterogeneity is presented in these
studies (P = 76%, p = 0.015). Therefore, we also analyze the
subgroup of CEA and reveal that there is no difference among
the protamine and no-protamine groups (OR = 0.333, 95% CI =
0.057 to 1.959, p = 0.224; Figure 6). However, a high heterogeneity in
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FIGURE 6 | Forest plot for meta-analysis of the incidence of wound hematoma with hypertension in the subgroup of CEA.
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FIGURE 7 | Forest plot for meta-analysis of the incidence of stroke.

these studies was also observed (I = 67.6%, p =0.079). Moreover, we
performed a sensitivity analysis, but no significant difference was
revealed in the changes of heterogeneity.

Stroke

A total of seven independent studies compare protamine with no
protamine in participants undergoing CEA, while three studies

include participants with carotid stenting. There is no significant
heterogeneity among these studies (I” = 30.1%, p = 0.168). We
think that patients treated with protamine did not have a lower
rate of stroke than those treated with no protamine (OR = 1.071,
95% CI = 0.944-1.214, p = 0.286, Figure 7). In the subgroup of
CEA, there is also no significant difference between the two
groups (OR =1.029, 95% CI = 0.897 to 1.180, p = 0.687; Figure 8).
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FIGURE 8 | Forest plot for meta-analysis of the incidence of stroke in the subgroup of CEA.
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FIGURE 9 | Forest plot for meta-analysis of the incidence of transient ischemic attacks.

Transient Ischemic Attacks
The risk of TIA is reported in 5 observational studies (N =

9,441). Perioperative TIA occurred in the protamine (50 of
4,193, 1.2%) and no-protamine group (91 of 5,248, 1.7%). No
evidence of significant heterogeneity is revealed in these
studies (I* = 44.4%, p = 0.126). The overall analysis does

not prove an apparent difference in TIA rates between
protamine and no-protamine groups (OR = 0.793, 95% CI
=0.546 to 1.151, p = 0.222; Figure 9). However, a difference is
presented in the subgroup of CEA among these two groups
(OR = 0.255, 95% CI = 0.068 to 0.947, p = 0.041;
Supplementary Figure S1).
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Myocardial Infarction (Ml)
The MI is reported in seven studies. In these publications, 60,030

and 33,072 patients are enrolled in the protamine and no-
protamine groups, respectively. The results reveal that there is
no significant difference in occurrence of MI (OR = 0.935, 95% CI
= 0.797 to 1.096, p = 0.408, Supplementary Figure S2) and
between-study heterogeneity is low (I* = 0.0%, p = 0.446).
Similarly, we find that there is also no difference among
protamine and no-protamine patients in the subgroup of CEA
(OR =0.902, 95% CI = 0.764 to 1.065, p = 0.224, Supplementary
Figure $3).

Death

Seven publications report post-operative death enrolling 87,164
patients. No significant difference in mortality between the
protamine and no-protamine group is seen (RD = 0.000, 95%
CI = -0.001 to 0.001, p = 0.877, Supplementary Figure S4). The
same result is found in the subgroup of CEA as well (RD = 0.000,
95% CI = —0.001 to 0.001, p = 0.878, Supplementary Figure S5).

DISCUSSION

Carotid artery stenosis is a major cause of stroke, which is the
most common risk for long-term disability. Surgical treatment
(carotid recanalization) is considered significantly meaningful for
artery stenosis. Even though it reduces the risk of stroke, it carries
arisk of hematoma (Rerkasem et al., 2020). Protamine, which was
primarily isolated from salmon fish sperm, is a small, arginine-
rich, positively charged protein with similarities to histones in
that it has a role in stabilizing DNA in the sperm head (Bakchoul
etal,, 2016; Boer et al.,, 2018). It is adopted in a variety of vascular
and cardiac procedures to reserve systemic heparin
anticoagulation (Phair et al, 2020), especially for carotid
recanalization (Lamanna et al.,, 2019). However, this inevitably
leads to bleeding and then further cause major or minor strokes,
myocardial infarction, or death (Yuan et al., 2018). Herein, we
wonder whether protamine did affect the efficiency and safety of
carotid recanalization and try to illustrate its safety and
effectiveness in this surgery. Our results demonstrate that
protamine can reduce the risk of bleeding without increasing
the risk of having other complications.

Reoperation or reintervention is needed if bleeding happened
during carotid recanalization, which is associated with the chance
of perioperative stroke, MI, or even death. Miklosz et al. (2019)
measured the platelet numbers, collagen-induced aggregation,
etc. in blood extracted from mice and rats and then furthermore
found that protamine has a short-term antiplatelet activity. In
2016, Kakisis et al. (2016) did a meta-analysis showing that the
incidence of wound hematoma in the no-protamine group was
6%, whereas only 1.7% happened in the protamine group. They
finally indicated that protamine significantly reduced the risk of
wound hematoma by 64% without increasing the risk of post-
operative stroke. Similarly, our analysis found that the incidence
of wound hematoma in the protamine group is 3.8% (57 of 1,488),
which is lower than that in the no-protamine group (9.5%, 305 of
3,218). Furthermore, a specific OR of 0.475 (95% CI

Protamine in Carotid Recanalization

0.282-0.798, p = 0.005) was obtained, suggesting that the rates
of hematoma requiring re-operation was lower than that in
patients without protamine. However, we thought the high
rates of wound hematoma may be related to a higher risk of
hypertension, but there is no difference presented in the two
groups (OR = 0.704, 95% CI = 0.358-1.388, p = 0.311). We cannot
distinguish whether this result is directly related to protamine use.
As far as we know, protamine is a multi-cation strong alkaline
polypeptide, which can combine with the glucosaminoglycan of
heparin to form a stable complex and inhibit the activity of
antithrombin, thus counteracting the anticoagulant effect of
heparin and playing the effect of hemostasis. Protamine-
induced circulatory changes have been demonstrated by
Jastrzebski et al. (Cho et al., 2012), who explicated the role of
it by endogenously liberating vasoactive substances.

Cerebral recanalization therapy, either
thrombolysis or mechanical thrombectomy, improves the
outcomes of patients with artery stenosis (Zhang et al,
2019), which exerts an increased impact on ischemic
diseases. However, some complications involving ischemic
injuries such as stroke, TIA, and MI sometimes inevitably
followed. We included these three complications in our
observations. One study had 365 patients who were subjected
to 407 recanalization; 365 (89.6%) received protamine and 42
(10.4%) patients did not; 2.5% (10/407) happened post-
operatively in the protamine group. This meta-analysis did
not find an association between protamine and stroke
(Levison et al., 1999). Likely, in our research, even though
the stroke rates were slightly lower than without protamine,
our results did not obtain statistical significance (OR = 1.071,
95% CI = 0.944 to 1.214, p = 0.286), the same result as TIA. Even
though protamine did not affect the incidence of stroke and TIA
by multivariate analysis, the risk of MI has also been studied
extensively. In light of the 0.7% rate of MI in our study with
protamine showing no significant difference (OR = 0.935, 95%
CI = 0.797 to 1.096, p = 0.408). Furthermore, we should note
that the protamine did not change the rate of death among these
two groups (RD = 0.000, 95% CI = —-0.001 to 0.001, p = 0.877).
Meanwhile, other studies related to this topic did not find an
association between protamine and stroke, TIA, MI, and death.
We suspect that there may be a certain stimulation factor of
protamine that causes a reduction in bleeding.

Our research has several limitations. The dosage of protamine
was not standardized, which may confound the outcomes.
Besides the primary inclusion and exclusion criteria, the
characteristics of the participants were a little different from
each other, potentially causing bias. The number of recent and
high-quality studies was too small. Additionally, some
heterogeneity was found among included trials due to the
different study protocols, patient characteristics, and
definitions of clinical endpoints. Moreover, the current study
is not registered and there may be a slight deviation, but we
strictly followed the procedures of systematic evaluation. Finally,
the exact sequence of disease for the included patients cannot be
known exactly and protamine might have been administered after
a complication occurred rather than before, which might have
affected our results.

intravenous
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CONCLUSION

This study has crucial implications. The current meta-analysis
demonstrates that surgeons should consider routinely using
protamine during carotid recanalization especially for CEA,
due to the lower incidence of wound hematoma and
hematoma requiring re-operation with its use. These findings,
however, have inherent limitations, such as obvious heterogeneity
and data from retrospective reviews; therefore, they cannot be
regarded robust enough to provide a firm recommendation in
clinical practice. With regard to the carotid artery stenting, there
were fewer studies examining the effect of protamine; herein,
further research is necessary to illustrate whether consistent
results exist across all types of carotid revascularization.
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Background: Although ticagrelor plus aspirin is more effective than aspirin alone in
preventing the 30-day risk of a composite of stroke or death in patients with an acute mild-
to-moderate ischemic stroke (IS) or transient ischemic attack (TIA), the cost-effectiveness
of this combination therapy remains unknown. This study aims to determine the cost-
effectiveness of ticagrelor plus aspirin compared with aspirin alone.

Methods: A combination of decision tree and Markov model was built to estimate the
expected costs and quality-adjusted life-years (QALYSs) associated with ticagrelor plus
aspirin and aspirin alone in the treatment of patients with an acute mild-to-moderate IS or
TIA. Model inputs were extracted from published sources. One-way sensitivity,
probabilistic sensitivity, and subgroup analyses were performed to test the robustness
of the findings.

Results: Compared with aspirin alone, ticagrelor plus aspirin gained an additional lifetime
QALY of 0.018 at an additional cost of the Chinese Yuan Renminbi (¥) of 269, yielding an
incremental cost-effectiveness ratio of ¥15,006 (US$2,207)/QALY. Probabilistic sensitivity
analysis showed that ticagrelor plus aspirin had a probability of 99.99% being highly cost-
effective versus aspirin alone at the current wilingness-to-pay threshold of ¥72,447
(US$10,500)/QALY in China. These findings remain robust under one-way sensitivity
and subgroup analyses.

Conclusions: The results indicated that early treatment with a 30-days ticagrelor plus
aspirin for an acute mild-to-moderate IS or TIA is highly cost-effective in a Chinese setting.

Keywords: ticagrelor, aspirin, stroke, transient ischemic attack, cost-effectiveness analysis
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INTRODUCTION

The risk of another ischemic stroke (IS) occurring after an acute mild-to-moderate IS or transient
ischemic attack (TIA) is very high, and nearly 5%-10% of patients would have a stroke in the first few
months (Johnston et al., 2000; Giles and Rothwell, 2007). Aspirin has been used for secondary stroke
prevention among these patients with only modest benefits (Chen, 1997; International Stroke Trial
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Collaborative Group, 1997). Two trials show that adding
clopidogrel to aspirin is superior to aspirin alone in reducing
the risk of stroke and other major ischemic events (Wang et al.,
2013; Johnston et al., 2018). Yet, the efficacy of clopidogrel varies
among individuals with different metabolic activations due to the
reduced function of cytochrome CYP2C19, and a considerable
number of strokes still occur even with clopidogrel or dual
antiplatelet therapy (Pan et al,, 2017).

Ticagrelor is a platelet aggregation inhibitor that reversibly
binds and inhibits the P2Y;, receptor. It has the advantage of
being unaffected by CYP2C19 polymorphisms. The Acute Stroke
or Transient Ischemic Attack Treated with Ticagrelor and ASA
(acetylsalicylic acid) for Prevention of Stroke and Death
(THALES) trial showed that early treatment with ticagrelor
plus aspirin for the first 30 days was superior to aspirin alone
in reducing the 30-day risk of a composite of stroke or death
[5.5% vs. 6.5%; hazard ratio (HR), 0.83; 95% confidence interval
(CI), 0.71-0.96] (Johnston et al., 2020). Adding ticagrelor to
aspirin also reduced the total burden of disability (odds ratio,
0.77;95% CI, 0.65-0.91) owing to IS recurrence (Amarenco et al.,
2021). However, the incidence of severe bleeding was significantly
higher in the ticagrelor-aspirin group (0.5% vs. 0.1%; HR, 3.99;
95% CI, 1.74-9.14) (Johnston et al., 2020).

Although the combination of ticagrelor and aspirin could
reduce the risk of a composite of stroke or death, it is
associated with higher adverse events and higher costs
when compared with aspirin alone. Therefore, medical
decision analysis is needed to evaluate the advantage or
disadvantage of ticagrelor plus aspirin over aspirin alone.
Currently, the best method of doing this is cost-
effectiveness analysis, which aims to assess the overall costs
of different drugs and treatment procedures as well as the
overall effectiveness related to different outcomes. In this
study, we aim to determine the cost-effectiveness of adding
ticagrelor to aspirin in patients with an acute mild-to-
moderate IS or TIA.

METHODS

Model Overview

This study was conducted according to the Consolidated Health
Economic Evaluation Reporting Standards (CHEERS) reporting
guidelines (Husereau et al., 2013). A combination of decision tree
and Markov model was developed using TreeAge Pro 2020
software (Tree Age Software, Inc, One Bank Street,
Williamstown, MA, United States of America) to estimate the
long-term costs and outcomes of two antiplatelet therapies: 1)
ticagrelor plus aspirin therapy: a loading dose of 180 mg ticagrelor
(given as two 90-mg tablets) followed by a maintenance dose of
90 mg ticagrelor twice daily on day 2 to day 30 plus a loading dose
of 300 mg aspirin on day 1 followed by a maintenance dose of
75-100 mg aspirin daily on day 2 to day 30; 2) aspirin-alone
therapy: a loading dose of 300 mg aspirin on day 1 followed by a
maintenance dose of 75-100 mg aspirin daily on day 2 to day 30.
The target population was analogous to that of the THALES trial
(Johnston et al., 2020). Patients were 65 years old on average.

Economic Evaluation of Ticagrelor

They had either an acute mild-to-moderate IS or TIA and were
not undergoing intravenous or endovascular thrombolysis.
Patients in the two treatment arms entered the Markov model
at the health state of modified Rankin scale (mRS) score of 0 and
transited to other health states including mRS 1, 2, 3, 4, 5, and 6
(death) in the next cycle. The occurrence of adverse events such as
IS, intracranial hemorrhage (ICH), and major extracranial
hemorrhage (ECH), as defined according to the Global
Utilization of Streptokinase and Tissue Plasminogen Activator
for Occluded Coronary Arteries trial (Gusto Investigators, 1993),
was incorporated into the model with additional costs and
disutility. The cycle length was 1 month, and the time horizon
was 30 years. The schematic structure of the model is provided in
Figure 1.

Input Parameters

Input parameters of this model were obtained from the
THALES trial (Johnston et al., 2020; Amarenco et al., 2021)
and the most recently published literature if possible
(Table 1). In the aspirin-alone group, the probability of a
primary outcome (the composite of stroke or death) in the
first 30 days was 0.066. In the ticagrelor-plus-aspirin group,
the probability of primary outcome was estimated based on
the HR (0.83) between these two groups. The proportion of
death, IS, and ICH among patients with primary outcome and
the probability of major ECH were extracted according to
their respective event data reported by the THALES trial
(Johnston et al., 2020).

All the patients were assumed to enter the model in the state of
mRS 0, and they would be distributed to different states from
mRS 0 to mRS 6 at the end of the first month after receiving
ticagrelor plus aspirin or aspirin alone. The proportion of patients
in different health states at the end of the first month was
obtained from the THALES trial and has been provided in
Table 1 (Amarenco et al., 2021).

After the initial month, the proportion of patients distributed
to different health states was decided by the recurrent rate of
stroke and the age-specific non-stroke death rates. The
recurrent rate of stroke after the first 30 days was estimated
from the China National Stroke Registry (CNSR) (Xu et al,,
2007), and we assumed that the risk of stroke recurrence
would increase by 1.03-fold per life-year (Pennlert et al,
2014). The death rate after recurrent stroke was reported to
be 0.1933 (Xu et al., 2007), and patients who remained alive
were assumed to be reallocated equally among health states of
equal and greater disability (Pan et al., 2014; Peultier et al.,
2020).

We obtained the age-specific non-stroke death rates from the
most recent published census of China and adjusted the rates
according to the causes of death in 2018 reported in the China
Health Statistics Yearbook 2019 (National Bureau of Statistics of
China, 2021a; National Health Commission of the People’s
Republic of China, 2019). Dependent patients (mRS 3, 4, or 5)
were reported to have increased mortality compared with
independent patients (mRS 0, 1, or 2) (Slot et al., 2009), and
we obtained mRS state-specific hazard ratios from previous
reports (Samsa et al., 1999; Peultier et al., 2020). Patients who

Frontiers in Pharmacology | www.frontiersin.org

99

March 2022 | Volume 13 | Article 790048


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Chen et al.

Economic Evaluation of Ticagrelor

Ticagrelor plus aspirin
S —————————

Patients with an acute
mild-to-moderate
IS or TIA

Aspirin alone %
P Same as above

FIGURE 1 | The schematic structure of the model. A patient with an acute mild-to-moderate IS or TIA entered the model at 65 years old receiving either ticagrelor
plus aspirin or aspirin alone for the first 30 days. Patients would distribute among different health statuses determined by mRS scores at 30 days and transit to a state of
equal or greater disability after recurrent stroke or die after 30 days. IS, ischemic stroke; mRS, modified Rankin Scale; TIA, transient ischemic attack.

stroke

were alive and did not experience a recurrent stroke would
remain in the same health state at the end of one cycle.

Costs

This study was conducted from the perspective of Chinese
healthcare payers, and only direct medical costs were included.
The additional cost of ticagrelor was estimated according to the
median retail price of ticagrelor from the widely used Chinese
Drug Price database (Tuling, www.315jiage.cn). This database
provides information about reference prices in different regions
of China for the same drug. We validated the price of ticagrelor
from this database with other famous Chinese online pharmacies
as well as our institutional clinical database, and the prices were
very close. One-time hospitalization costs for major events and
posthospitalization costs were obtained from the most recent
published studies conducted in China. To account for the
uncertainty, a wide range of +25% was used for all costs.
Costs were converted to 2020 Chinese Yuan Renminbi (¥)
according to the consumer price index (National Bureau of
Statistics of China, 2020).

Utility

Health-related quality of life value (utility scores) was
assigned to all health states. Quality-adjusted life-years
(QALYs) were calculated by multiplying the length period
the patient spent in a particular state by the corresponding
utility score. Utility scores for mRS 0, mRS 1, mRS 2, mRS 3,
mRS 4, and mRS 5 were defined as 0.85 (0.8-1), 0.8 (0.8-0.95),
0.7 (0.68-0.9), 0.51 (0.45-0.65), 0.30 (0.1-0.4), and 0.15
(0-0.32), respectively (Gage et al., 1998; Earnshaw et al.,
2009; Nelson et al., 2016; Peultier et al., 2020). Patients

with recurrent stroke or major ECH were assumed to have
a disutility of 0.66 and 0.2, respectively (Pan et al., 2014). All
costs and utilities were discounted by 3% per year (Weinstein
et al.,, 1996).

Statistical Analysis

The primary measure in this study was the incremental cost-
effectiveness ratio (ICER), which was defined as the
incremental cost per additional QALY gained. One strategy
was considered cost-effective when compared to another if the
ICER was below the willingness-to-pay (WTP) threshold. As
recommended by the World Health Organization, the WTP
threshold was chosen as 1 x gross domestic product (GDP)
per capita if one strategy was to be highly cost-effective. This
WTP threshold corresponded to ¥72,447 (US dollars
$10,500)/QALY in China in the year 2020 (National
Bureau of Statistics of China, 2021b).

The base-case analysis was conducted using the mean value of
all parameters. To identify key parameters related to the
robustness of the results, one-way sensitivity analyses were
performed by varying one parameter while keeping others
fixed. To perform a probabilistic sensitivity analysis, all
parameters were assigned with a distribution accordingly.
These parameters varied simultaneously in the probabilistic
sensitivity analysis with Monte Carlo simulation (10,000
iterations) to evaluate the impact of uncertainty. Moreover,
subgroup analyses were performed in the prespecified
subgroups as defined in the THALES trial by varying the HRs
of primary outcomes between two antiplatelet therapy groups.
The mean and range for these HRs were obtained from the
subgroups reported in this trial (Johnston et al., 2020).
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TABLE 1 | List of input parameters.

Parameters Base case value Range Distribution Source

30-day outcome of aspirin alone

Probability of primary outcome 0.066 0.060-0.073 Beta, SD: 0.003 Johnston et al. (2020)
Proportion of death 0.075 0.052-0.106 Beta, SD: 0.014 Johnston et al. (2020)
Proportion of IS 0.953 0.926-0.970 Beta, SD: 0.011 Johnston et al. (2020)
Proportion of ICH 0.017 0.008-0.036 Beta, SD: 0.007 Johnston et al. (2020)
Probability of major ECH 0.001 0.000-0.003 Beta, SD: 0.001 Johnston et al. (2020)
Proportion of mRS 0 0.365 — — Amarenco et al. (2021)
Proportion of mRS 1 0.395 — — Amarenco et al. (2021)
Proportion of mRS 2 0.140 — — Amarenco et al. (2021)
Proportion of mRS 3 0.056 — — Amarenco et al. (2021)
Proportion of mRS 4 0.034 — — Amarenco et al. (2021)
Proportion of mRS 5 0.004 - - Amarenco et al. (2021)
30-day outcome of ticagrelor added to aspirin
HR of primary outcome 0.830 0.710-0.960 Beta: SD: 0.060 Johnston et al. (2020)
Proportion of death 0.119 0.087-0.160 Beta, SD: 0.018 Johnston et al. (2020)
Proportion of IS 0.911 0.874-0.938 Beta, SD: 0.016 Johnston et al. (2020)
Proportion of ICH 0.066 0.043-0.100 Beta, SD: 0.014 Johnston et al. (2020)
Probability of major ECH 0.005 0.004-0.007 Beta, SD: 0.001 Johnston et al. (2020)
Proportion of mRS 0 0.372 — — Amarenco et al. (2021)
Proportion of mRS 1 0.390 — — Amarenco et al. (2021)
Proportion of mRS 2 0.139 — — Amarenco et al. (2021)
Proportion of mRS 3 0.057 — — Amarenco et al. (2021)
Proportion of mRS 4 0.031 — — Amarenco et al. (2021)
Proportion of mRS 5 0.004 — — Amarenco et al. (2021)
Probabilities
Recurrent rate of stroke per life-year 0.122 0.116-0.128 Beta, SD: 0.003 Xu et al. (2007)
Proportion of ICH 0.075 0.075-0.146 Beta, SD: 0.018 Johnston et al. (2020)
RR of stroke recurrence per life-year 1.030 1.020-1.040 Lognormal, SD: 0.005 Pennlert et al. (2014)
Death after recurrent stroke 0.193 0.174-0.213 Beta, SD: 0.010 Xu et al. (2007)
Mortality hazard ratios
mRS 0 1.000 — Lognormal, SD: 0.050 Samsa et al. (1999)
mRS 1 1.000 — Lognormal, SD: 0.050 Samsa et al. (1999)
mRS 2 1.110 — Lognormal, SD: 0.083 Samsa et al. (1999)
mRS 3 1.270 — Lognormal, SD: 0.127 Samsa et al. (1999)
mRS 4 1.710 — Lognormal, SD: 0.171 Samsa et al. (1999)
mRS 5 2.370 — Lognormal, SD: 0.237 Samsa et al. (1999)
Cost (2020 Chinese Yuan Renminbi, ¥)
Additional cost of ticagrelor 394 174-593 Gamma, SD: 105 Tuling
Hospitalization cost for IS, independent 10,958 13,698-8,219 Gamma, SD: 1370 Wang et al. (2018), Pan et al. (2020)
Hospitalization cost for IS, dependent 13,605 10,204-17,006 Gamma, SD: 1701 Wang et al. (2018), Pan et al. (2020)
Hospitalization cost for IS, death 11,970 8,978-14,963 Gamma, SD: 1496 Wang et al. (2018), Pan et al. (2020)
Hospitalization cost for ICH, independent 13,174 9,881-16,468 Gamma, SD: 1647 Pan et al. (2014)
Hospitalization cost for ICH, dependent or death 17,490 13,118-21,863 Gamma, SD: 2186 Pan et al. (2014)
Hospitalization cost for major ECH 8,535 6,401-10,669 Gamma, SD: 1067 Pan et al. (2014)
Annual posthospitalization cost for independent 8,310 6,233-10,388 Gamma, SD: 1039 Pan et al. (2018)
Annual posthospitalization cost for dependent 12,771 9,578-15,964 Gamma, SD: 1596 Pan et al. (2018)
Utility
mRS 0 0.850 0.800-1.000 Beta, SD: 0.050 Gage et al. (1998), Earnshaw et al. (2009),
Nelson et al. (2016), Peultier et al. (2020)
mRS 1 0.800 0.800-0.950 Beta, SD: 0.038 Gage et al. (1998), Earnshaw et al. (2009),
Nelson et al. (2016), Peultier et al. (2020)
mRS 2 0.700 0.680-0.900 Beta, SD: 0.055 Gage et al. (1998), Earnshaw et al. (2009),
Nelson et al. (2016), Peultier et al. (2020)
mRS 3 0.510 0.450-0.650 Beta, SD: 0.050 Gage et al. (1998), Earnshaw et al. (2009),
Nelson et al. (2016), Peultier et al. (2020)
mRS 4 0.300 0.100-0.400 Beta, SD: 0.075 Gage et al. (1998), Earnshaw et al. (2009),
Nelson et al. (2016), Peultier et al. (2020)
mRS 5 0.150 0.000-0.320 Beta, SD: 0.080 Gage et al. (1998), Earnshaw et al. (2009),
Nelson et al. (2016), Peultier et al. (2020)
mRS 6 or death 0.000
Disutility of recurrent stroke 0.660 0.640-0.680 Beta, SD: 0.010 Ganesalingam et al. (2015)
Disutility of major ECH 0.200 0.160-0.230 Beta, SD: 0.018 Pan et al. (2014)

ECH, extracranial hemorrhage; HR, hazard ratio; ICH, intracranial hemorrhage; IS, ischemic stroke; mRS, modified Rankin scale; RR, relative risk; SD, standard deviation
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FIGURE 2 | Tornado diagram of one-way sensitivity analyses. The plot shows how varying one input parameter to its limits at a time affects the incremental cost-
effectiveness ratio (ICER). ECH, extracranial hemorrhage; EV, expected value; ICH, intracranial hemorrhage; IS, ischemic stroke; mRS, modified Rankin Scale.

group (0.71 10 0.96)

RESULTS

Base-Case Analysis

In the base-case scenario, patients treated with aspirin alone lived
an average of 6.764 QALYs, incurring a cost of ¥147,122. Those
treated with ticagrelor plus aspirin lived an average of 6.782
QALYs (that is, an additional 0.018 QALY), with a lifetime cost of
¥147,391 or an additional cost of ¥269. The ICER for ticagrelor-
plus-aspirin therapy relative to aspirin-alone therapy was ¥15,006
($2,207)/QALY. Under the current threshold of ¥72,447/QALY,
ticagrelor-plus-aspirin therapy was highly cost-effective in the
base-case scenario.

Sensitivity Analyses
One-way sensitivity analyses were conducted to account for the
impact of the uncertainty of different parameters on the ICER,
and the results were presented in the tornado diagram (Figure 2).
Overall, the results were most sensitive to the additional cost of
ticagrelor as well as HR of primary outcome between two
antiplatelet therapy groups. When the additional cost of
ticagrelor ranged between ¥174 and ¥593, the corresponding
ICER was between ¥2,712/QALY and ¥26,127/QALY. When
the HR ranged between 0.71 and 0.96, the corresponding
ICER was between ¥9,354/QALY and ¥21,440/QALY. All the
ICERs, including those obtained by other varying parameters,
were below the WTP threshold, indicating that the study results
were robust.

The result of probabilistic sensitivity analysis is shown in Figure 3.
Among the 10,000 simulation runs, ticagrelor-plus-aspirin therapy

was superior in 99.99% of the simulations at a WTP threshold of
¥72,447/QALY.

Subgroup Analyses

By varying the HRs for primary outcome between two antiplatelet
therapy groups in the THALES trial subpopulations, subgroup
analyses were conducted among the following subgroups
including age, sex, race, weight, body mass index, geographic
region, diagnosis of index event, time from index event to
randomization, time from index event to loading dose,
diabetes mellitus, hypertension, previous ischemic stroke or
TIA, previous aspirin therapy, previous statin therapy, and
smoking status. All the ICERs were below the WTP threshold,
indicating that ticagrelor plus aspirin was cost-effective compared
with aspirin alone in these subgroups (Figure 4).

DISCUSSION

For patients with an acute mild-to-moderate IS or TIA, adding
ticagrelor to aspirin for 1 month increased life expectancy by
0.018 QALY over a lifetime, near 1 week of perfect health, at
excellent value. This dual antiplatelet therapy gained an
additional cost of ¥269, resulting in an ICER of ¥15,006/
QALY. The robustness of our overall conclusion that
ticagrelor-plus-aspirin therapy was cost-effective compared to
aspirin-alone therapy was supported by the sensitivity and
subgroup analyses. In the one-way sensitivity analyses, all the
ICERs were below the WTP threshold when the input variables
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FIGURE 3 | Results of the probabilistic sensitivity analysis. The dots that lie to the right of the willingness-to-pay (WTP) line mean the cases where ticagrelor plus

varied in their plausible ranges one by one. In the probabilistic
sensitivity analysis, ticagrelor-plus-aspirin therapy was superior
in 99.99% of simulations. Moreover, with the variations of HRs
for the primary outcome, this dual antiplatelet therapy was
favored in all the THALES trial subpopulations.

Our results were comparable to other similar studies. For
example, the lifetime additional gain of QALY by ticagrelor-plus-
aspirin therapy is 0.018 in the current study, while the lifetime
QALY gain is 0.17 for clopidogrel when compared with aspirin
for secondary prevention among stroke patients (Schleinitz et al.,
2004) and 0.037 for clopidogrel plus aspirin when compared with
aspirin alone (Pan et al., 2014). The gain of QALY associated with
ticagrelor plus aspirin in our study is relatively smaller than other
treatments. This is mainly because the 30-day incidence of
disability did not differ significantly between the two groups in
the THALES trial. Moreover, the incidence of adverse events such
as major ECH was significantly higher when ticagrelor was added
to aspirin, thus leading to a higher disutility of patients treated
with this therapy. Notwithstanding, the comparable results
between the current and other studies demonstrated the
validity of our model.

To our knowledge, this study provides the first economic data
on ticagrelor added to aspirin for the prevention of recurrent
stroke. The advantage of this study is that we have utilized data
from the THALES trial, which is a large-scale randomized trial
that compares ticagrelor plus aspirin with aspirin alone directly.

We conducted this study from the perspective of Chinese
healthcare payers. There are over two million new cases of
stroke in China every year, and it is related to the highest
disability-adjusted life-years lost of any disease (Wu et al,
2019). Moreover, the stroke burden is expected to increase as
a result of population aging and inadequate management. China
has the largest population around the world, and there are fast-
increasing demands for limited healthcare budgets. This drives
policymakers to move towards a data-driven and evidence-
supporting healthcare system with China’s national health
strategy. Our cost-effectiveness study has the merits of
providing an evidence-based reference regarding the secondary
prevention practices for recurrent stroke.

A large body of studies has been published to assess the cost-
effectiveness of acute stroke treatment and prevention in the last
2 decades. For acute ischemic stroke, intravenous alteplase is the
recommended treatment, and investigators have evaluated its
cost-effectiveness within different time windows after the stroke
onset from the perspective of different countries including the
United States, United Kingdom, China, and so on (Joo et al,
2017). These studies showed that intravenous alteplase was a
dominant strategy compared with traditional treatment.
Likewise, economic evaluation of mechanical thrombectomy, a
recommended treatment for acute IS with a large vessel occlusion,
has been increasingly conducted in recent years. According to a
recent review, 25 studies from 12 different countries were
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Subgroup Hazard Ratio (95% Cl)
Overall 0.83 (0.71-0.96)
Age
<65 yr 0.79 (0.63-0.99)
65-75 yr 0.85 (0.65-1.11)
>75yr 0.88 (0.64-1.22)
Sex
Male 0.82 (0.68-0.99)
Female 0.85 (0.65-1.10)
Race
White 0.78 (0.60-1.00)
Asian 0.86 (0.71-1.05)
Weight
<70 kg 0.80 (0.63-1.01)
270
Body-mass index
<30 0.85 (0.72-1.00)
230 0.71 (0.48-1.06)

Geographic region
Asia or Australia 0.85 (0.70-1.04)
Europe 0.79 (0.61-1.03)
Central or South America 0.71 (0.35-1.46)

ICER
—— 15006 (9354-21441)
— 13093 (5730-22974)

15974 (6626-29301)
17441 (6177-35387)
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Diagnosis of index event
Stroke, NIHSS score <3
Stroke, NIHSS score >3

0.82 (0.66-1.01)
0.84 (0.66-1.06)

TIA 0.80 (0.42-1.52)
Time from index event to randomization

<12 hr 0.84 (0.64-1.10)

212 hr 0.82 (0.69-0.99)
Time from index event to loading dose

<12 hr 0.84 (0.63-1.11)

212 hr 0.82 (0.68-0.98)
Diabetes Mellitus

Yes 0.93 (0.72-1.20)

No 0.78 (0.64-0.94)
Hypertension

Yes 0.78 (0.65-0.93)

No 1.02 (0.74-1.41)
Previous ischemic stroke or TIA

Yes 0.65 (0.46-0.90)

No 0.89 (0.75-1.05)
Previous ischemic heart disease

Yes 1.04 (0.63-1.71)

No 0.81(0.69-0.95)
Previous aspirin therapy

Yes 1.02 (0.65-1.60)

No 0.81(0.69-0.95)
Previous statin therapy

Yes 0.90 (0.59-1.37)

No 0.82 (0.69-0.96)

Smoking status
Current 0.77 (0.57-1.03)
Former 0.93 (0.63-1.36)
Never 0.83 (0.68-1.02)

9354 (-6129-49719)

14525 (7076-24007)
15489 (7076-26626)

13568 (-3278-53549)

15489 (6177-28762)
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FIGURE 4 | Subgroup analyses of incremental cost-effectiveness ratio (ICER) by varying the hazard ratio of primary outcome between the ticagrelor-plus-aspirin
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published, and all these studies but one suggested that mechanical
thrombectomy for stroke treatment was cost-effective (Waqas
et al., 2021). The cost-effective evaluations regarding the long-
term secondary prevention of IS with different drugs were
published. These studies showed that clopidogrel, statin,
warfarin, and dabigatran are regarded as the most cost-
effective treatment for secondary stroke prevention. However,
there is a lack of long-term outcome and resource use data, which
adds great uncertainty to the cost-effectiveness (Pan et al., 2012).

Some limitations of our study should be noted. First, different
treatment methods for IS were not incorporated into our model,
while the mRS distribution of IS patients was significantly
associated with treatment methods. However, we used the 30-
day mRS scores as the post-treatment outcomes in our model as
they were expected to be highly correlated with the post-
treatment 90-day mRS scores (Rost et al., 2016). Moreover,
the cost of IS treatment in the aspirin-alone group would be
higher than the aspirin-plus-ticagrelor group, making aspirin
alone less favorable. Second, our results were based on the
efficacy findings of the THALES trial that was performed
internationally, and the participants were mainly from Europe.

It is unknown whether the combination therapy would show
similar effects if the participants were restricted to Chinese
patients. What is more, the utility scores were not Chinese
population-specific. However, we have considered the
difference in the sensitivity analyses, and the conclusion
remains unchanged. Third, the one-time hospitalization costs
and annual posthospitalization costs were different only between
patients in independent and dependent status. Costs associated
with different mRS scores were not obtained because no literature
was available for these costs in China. Fourth, we assumed that
patients who remained alive would be reallocated equally among
health states of equal and greater disability. Dependent and
independent patients were assumed to have the same
probability of recurrent stroke. These assumptions might not
reflect a real-world situation. However, they are not
unprecedented in other cost-effectiveness studies (Pan et al,
2014; Peultier et al, 2020). Fifth, only direct costs were
included in this analysis. If indirect and intangible costs such
as loss of productivity were taken into consideration, it might
produce a different result. Last, our model was built from the
Chinese perspective and only reflected cost and event rates in
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China. Results might not accurately reflect the cost-effectiveness
of ticagrelor added to aspirin in other countries.

CONCLUSION

Early treatment with a 30-day ticagrelor plus aspirin for an acute
mild-to-moderate IS or TIA is highly cost-effective in a Chinese
setting. However, more studies are needed to evaluate the benefit
and risks of this therapy.
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Materials and methods: \We mined the current literature related to ischemic stroke and
formulated a new formulation of Chinese herbs. Then, we identified the main candidate
target genes of the new formulation by network pharmacology. Next, we performed
enrichment analysis of the target genes to identify the potential mechanism of action of the
new formulation in the treatment of ischemic stroke. Next, we experimentally validated the
mechanism of action of the new formulation against ischemic stroke. Infarct volume and
neurological deficits were evaluated by 2,3,5-triphenyltetrazolium (TTC) staining and
Longa’s score, respectively. The predicted pathways of signal-related proteins were
detected by western blotting.
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Published: 23 March 2022 Results: We mined the current literature and identified a new formulation of Chinese herbs
for the treatment of ischemic stroke. The formulation included Huanggi, Chuanxiong,
Sanleng and Ezhu. Next, we used network pharmacological analysis to identify 23 active
compounds and 327 target genes for the new formulation. The key target genes were
MAPK3, MAPK1, HSPO0AAT, STAT3, PIK3R1, PIK3CA and AKT1. Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis revealed significant enrichment of the
PISK/AKT and MAPK/ERK signaling pathways. By performing experiments, we found that
the new formulation reduced the infarct volume of middle cerebral artery occlusion (MCAQO)

induced mice and activated the PIBK/AKT and MAPK/ERK signaling pathways. These
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Data Mining and Network Pharmacology

findings confirmed that the new formulation has a significant protective effect against
ischemic stroke injury by activating the PISK/AKT and MAPK/ERK signaling pathways.

Conclusion: We identified a new treatment formulation for ischemic stroke by data mining
and network pharmacological target prediction. The beneficial effects of the new
formulation act by regulating multiple target genes and pathways. The mechanism of
action of the new formulation may be related to the AKT and ERK signaling pathways. Our
findings provide a theoretical basis for the effects of the new formulation on ischemic stroke

injury.

Keywords: huanggi-chuanxiong, sanleng-ezhu herb, ischemic stroke, clinical data mining, network pharmacology

INTRODUCTION

Stroke has become the second leading cause of global death and is
the leading cause of death and disability among adults in China.
Ischemic stroke accounts for 69.6-77.8% of stroke cases and is
associated with mortality and recurrence rates of 7 and 16%,
respectively (Wang et al, 2017; Yiping Chen et al, 2020).
Ischemic stroke causes irreversible damage to the brain tissue
by influencing the distribution of affected blood vessels, thus
leading to a variety of neurological symptoms and signs. Ischemic
stroke adversely affects the health of patients and places
significant socioeconomic burden on their families (Mukundan
and Seidenwurm, 2018).

According to the theory of traditional Chinese medicine
(TCM) (Liu et al, 2007), the main syndromes and causes of
ischemic stroke are Qi deficiency and blood stasis syndrome (Li
et al., 2014; Zhai et al., 2020). Therefore, the main principle of
treatment for ischemic stroke is the invigoration of Qi and the
promotion of blood circulation (Yu Wang et al., 2020). Based on
this principle, practitioners of ancient Chinese medicine have
suggested many treatments for stroke (Xu et al., 2019). The most
commonly used and most effective treatment is Buyang Huanwu
Decoction, invented by Wang Qingren, a famous doctor in the
Qing Dynasty. Several studies have shown that the modified
Buyang Huanwu Decoction has significant positive effects on the
neurological deficits of patients with ischemic stroke (Xi Chen
etal,, 2020). When using Buyang Huanwu Decoction, the effect of
invigoration of Qi and the promotion of blood circulation is
mainly induced by two specific drugs: Huangqi and Chuanxiong.
Some drugs mainly treated blood stasis, such as Taoren (Xi et al.,
2013). However, research on the molecular effects associated with
the invigoration of Qi and the promotion of blood circulation is
scarce. Therefore, in the present study, we investigated the
molecular mechanisms underlying the traditional methods
used to prevent and treat ischemic stroke.

Data mining and network pharmacology can systematically
evaluate the interactions between diseases and drugs and identify
the specific mechanisms of action of drugs on their gene targets.
Many previous studies have used data mining and network
pharmacology to investigate the treatment of diseases by TCM
(Li and Zhang, 2013; Sun et al., 2020). These strategies can
provide new ideas for research and allow for the more
accurate application of TCM.

In the present study, data mining and network pharmacology
were used to evaluate the related mechanisms and effects of
Huanggqi-Chuanxiong and Sanleng-Ezhu Herb pairs (HCSE) on
the treatment of patients suffering from ischemic stroke with Qi
deficiency and blood stasis syndrome. Our findings provide
scientific evidence to support the application of the new
formulation for the treatment of ischemic stroke.

MATERIALS AND METHODS

Data Mining

Literature Review

First, we searched the China National Knowledge Infrastructure,
Wanfang Data, and PubMed using the keywords “stroke” and
“ischemic stroke with Qi deficiency and blood stasis syndrome” to
identify articles published the 1st September 2011 and the 1st
September 2021. Then, we used the keywords “circulating blood
and removing stasis” and “broking blood stasis” to search the
clinical literature on the use of TCM to treat ischemic stroke with
Qi deficit and blood stasis syndrome (Liu et al., 2012).

Data Screening
The prescriptions included in the retrieved literature were
analyzed, and matrix distribution was performed.

Association Analysis

The drugs were analyzed using the a priori module included in
SPSS Modeler software (version 18.0; IBM Corp., Armonk, NY,
USA). The minimum number of conditional supports, indicating
the number of drug combinations in the prescriptions, was set to
10. The minimum rule confidence, indicating the probabilities of
occurrence for the first and second terms of the rule, was set to
80%. Drug pairs were then identified based on the association
rules, and the new formulations were combined using TCM
theory analysis.

Network Pharmacology

Prediction of Target Genes for the Drug Ingredients
The active compounds of the drugs were screened based on an
oral bioavailability (OB) > 30%, a drug-likeness (DL) > 0.18,and a
blood-brain barrier (BBB) > —0.3 using the TCMSP database
(https://tcmsp-e.com/) (Ru et al., 2014). Target proteins of the
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TABLE 1 | Drug associations.

Serial number Drug pair Support (%) Confidence (%)
1 Chuanxiong/Huangai 90.79 86.96
2 Huangai/Chuanxiong 84.21 93.75
3 Chishao/Honghua 67.11 82.35
4 Dilong/Honghua 67.11 86.27
5 Danggui/Honghua 67.11 88.23

active ingredients were identified using SwissTargetPrediction
(Swiss Institute of Bioinformatics, Basel, Switzerland; http://www.
swisstargetprediction.ch/) (Daina et al., 2019).

Disease Target Identification

The keyword “ischemic stroke” was used to search disease targets
in the GeneCards database (https://www.genecards.org/) (Safran
et al., 2021). According to the principles of TCM, the main
symptoms of ischemic stroke with Qi deficiency and blood
stasis syndrome are a pale white complexion, a shortness of
breath, palpitations, spontaneous sweating, loose stools, limb
swelling, angular salivation, a purple tongue, a thin and
whitish tongue coating, and a deep and faint pulse. We used
these keywords as search terms in the GeneCards database. These
symptoms were then selected as the targets for Qi deficiency and
blood stasis syndrome. Overlapping targets were considered as
potential targets of ischemic stroke with Qi deficiency and blood
stasis syndrome.

Predicting Overlapping Drug and Disease Targets
Drug and disease targets were imported into Jvenn software
(http://jvenn.toulouse.inra.fr/app/example.html) (Bardou et al,
2014) to construct a Venn diagram; overlapping targets were then
considered to be potential therapeutic targets for the new
treatment for ischemic stroke.

Construction of a Protein-Protein Interaction Network
A PPI network was constructed for the potential therapeutic
target proteins of the new treatment formulation using the
STRING database (https://string-db.org). The results were then
visualized using Cytoscape software (version 3.8.2; https://
cytoscape.org/). The degree of freedom was indicated by node
size and color. The topological properties of the target genes were
analyzed using the CytoNCA tool (Cytoscape software plugin)
(Tang et al.,, 2015; Bei Yin et al., 2020). The PPI network was used
to screen key targets of the new treatment based on a degree
centrality (DC) > two-fold of the median and betweenness
centrality (BC), closeness centrality (CC), and an eigenvector
centrality (EC) > one-fold of the median. Higher quantitative
values were correlated with a greater importance of the node.

Gene Ontology Enrichment and Kyoto Encyclopedia of
Genes and Genomes Pathway Analyses

Metascape (https://metascape.org/) was used to perform GO and
KEGG pathway enrichment analyses of 327 candidate target
genes, according to the molecular function (MF), biological
process (BP), and cellular component (CCT) categories (Zhou

Data Mining and Network Pharmacology

TABLE 2 | Drug associations.

Serial number Drug pair Support (%) Confidence (%)
1 Ezhu/Sanleng 53.62 86.49
2 Sanleng/Ezhu 52.17 88.89
3 Honghua/Danggui 50.72 85.71
4 Chuanxiong/Danggui 50.72 80.00
5 Chuanxiong/Taoren 42.01 86.21

et al,, 2019). p values were used to evaluate the proteins each GO
annotation, thus reflecting the significance of the biological
function. In addition, the FDR error control method (FDR <0.
05) was used to test and correct the p value. The threshold value of
P < 0.05 was finally used to screen the biological processes with
significant differences. GO and KEGG enrichment analyses were
visualized by the Bioinformatics platform (http://www.
bioinformatics.com.cn/).

Experimental Verification

Experimental Animals

Healthy male Institute of Cancer Research mice (ICR; body
weight: 32-35g) were provided by the Comparative Medicine
Center of Yangzhou University (Yangzhou, China) and used after
1 week of acclimation. The mice were housed in a controlled
condition with a 12-h light/dark cycle at 23°C and 60% humidity
with free access to food and water. All experimental investigation
procedures for animals were permitted by the Yangzhou
University Institutional Animal Care and Use Committee
(Grant No. YIACUC-14-0015).

Middle Cerebral Artery Occlusion

The middle cerebral artery occlusion (MCAO) model was created
using the following procedure. The mice were continuously
anesthetized by the inhalation of a mixture of 30% oxygen,
70% nitrogen and 3-4% isoflurane (RWD Life Science,
Guangdong Province, China). The mice were then fixed in the
supine position. Next, we sterilized and dissected the skin of the
middle of the neck. The left common carotid artery (CCA), the
internal carotid artery (ICA), and the external carotid artery
(ECA), were then separated with a blunt instrument. The ECA
was ligated, the CCA and ICA were clamped with a bulldog clip,
and a “V” incision was made in the ECA with ophthalmic scissors.
A 0.23 mm monofilament nylon suture (Beijing Biotechnology
Co., Ltd.) was then inserted through the “V” incision into the ICA
until slight resistance was achieved. After 45 min of arterial
occlusion, the monofilament nylon suture was removed, and
the blood was reperfused for 24h. In the Sham group, only
the CCA, ICA and ECA were separated; no monofilament nylon
suture was inserted. The body temperature of the mice was
maintained at 37.0-37.5°C during surgery.

Experimental Groups and Drug Treatments

The mice were randomly divided into four groups as follows
(n =21 in each group): 1) a control group and 2) a pre-HCSE
(13.65 g/kg) group. Each of these two groups was then further
divided into a Sham group and a MCAO group. All animals were

Frontiers in Pharmacology | www.frontiersin.org

March 2022 | Volume 13 | Article 844186


http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://www.genecards.org/
http://jvenn.toulouse.inra.fr/app/example.html
https://string-db.org
https://cytoscape.org/
https://cytoscape.org/
https://metascape.org/
http://www.bioinformatics.com.cn/
http://www.bioinformatics.com.cn/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Zhao et al.

TABLE 3 | Active compounds contained in the new formulation.

Serial number Herb Active component
1 Huangaqi Betulinic acid

2 Huanggqi Kumatakenin

3 Huangaqi Hederagenin

4 Huanggqi Beta-sitosterol

5 Huanggqi 3,9,10-Trimethoxypterocarpan
6 Huangaqi 7-0O-Methylisomucronulatol

7 Huanggqi Astrapterocarpan

8 Huangaqi Bifendate

9 Huanggqi Formononetin

10 Huangaqi Isoflavanone

11 Huanggqi Isomucronulatol 7-O-glucoside
12 Huangqi 3,4-(4-methoxy-6-hydroxy-1,2-phenyleneoxy)-5-hydroxy-7-methoxy-2H- 1-benzopyran
13 Chuanxiong  Ethyl linoleate

14 Chuanxiong Myricanone

15 Chuanxiong  Perlolyrine

16 Chuanxiong ~ Senkyunone

17 Chuanxiong ~ Wallichilide

18 Chuanxiong  3-Epi-beta-sitosterol

19 Sanleng trans-11-eicosenoic acid

20 Sanleng Hederagenin

21 Sanleng beta-Sitosterol

22 Sanleng Formononetin

23 Sanleng Stigmasterol

24 Ezhu Hederagenin

25 Ezhu Wenijine

26 Ezhu Bisdemethoxycurcumin

FIGURE 1 | Venn diagram of the overlapping drug and disease target
genes. The red circle represents the targets for ischemic stroke with Qi
deficiency and blood stasis syndrome. The blue circle represents the targets
for the new formulation. The 327 overlapping genes are potential
therapeutic targets for the new formulation against ischemic stroke with Qi
deficiency and blood stasis syndrome.

killed at 24 h after cerebral ischemia reperfusion. The method used
to prepare HCSE involved mixing 225g of Huanggi (100 g),
Chuanxiong (50 g), Sanleng (45g), and Ezhu (30g) with eight
times the volume of distilled water, followed by boiling for 2 h.
Then, the filtrate was collected, and the filtrate was extracted again
with three times the volume of distilled water. The filtrate was mixed

Data Mining and Network Pharmacology

Mol ID oB DL BBB

MOL000211 55.38 0.78 0.22
MOL000239 50.83 029 -0.22
MOL000296 36.91 0.75 0.96
MOL000033 36.23 0.78 1.09
MOL000371 53.74 0.48 0.63
MOL000378 74.69 0.3 0.84
MOL000380 64.26 0.42 0.55
MOL000387 311 0.67  -0.06
MOL000392 69.67 0.21 0.02
MOL000398  109.99 0.3 0.17
MOL000438 67.67 0.26 0.34
MOL000442 39.05 048  -0.04
MOL001494 42 0.19 1.14
MOL002135 40.6 0.51 -0.08
MOL002140 65.95 0.27 0.15
MOL002151 47.66 0.24 0.5
MOL002157 42.31 0.71 0.73
MOL000359 36.91 0.75 0.87
MOL001297 30.7 0.2 0.89
MOL000296 36.91 0.75 0.96
MOL000358 36.91 0.75 0.99
MOL000392 69.67 0.21 0.02
MOL000449 43.83 0.76 1
MOL000296 36.91 0.75 0.96
MOL000906 47.93 0.27 0.3
MOL000940 77.38 026  -0.08

twice and concentrated to 225 ml by a rotary evaporator. Therefore,
the final crude drug concentration was 1g/ml. All herbs were
purchased from the Yangzhou Hospital of Chinese Medicine,
Jiangsu Province, China. According to the dose used for ischemic
stroke patients in the clinic (90 ml per day), we determined the dose
for our experimental animals by extrapolation from the human dose
in accordance with a previous study (Reagan-Shaw et al., 2008).
Finally, a dose of 13.65 g/kg was obtained for administration. We
chose 6.83 g/kg, 13.65 g/kg, and 27.3 g/kg as the HCSE doses in our
preliminary study. We found that the neuroprotective effects (as
determined by TTC staining) of the 13.65 g/kg and 27.3 g/kg doses
were better than those with the 6.83 g/kg dose. Therefore, we selected
a dose of 13.65 g/kg for use in the present study.

HCSE was administered intra-gastrically the same day, 24 h,
and 48 h before ischemic surgery, and was administered twice a
day. The Sham group and the ischemia group received the same
amount of 0.9% saline intra-gastrically for the same durations.
Following the last administration, the mice underwent ischemia/
reperfusion or Sham operation.

Neurological Deficit Assessment

The degree of neurological deficit was assessed 24 h after
reperfusion using the Longa score, as follows: 1) no
neurological deficit: 0 points; 2) inability to fully extend the
front paw on the paralyzed side: 1 point; 3) circling to the
paralyzed side during walking: 2 points; 4) leaning towards the
paralyzed side when walking: 3 points; and 5) inability to walk
spontaneously, with loss of consciousness: 4 points. A score of
more than 1 indicates that the MCAO model had been
successfully established.
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FIGURE 2 | Protein-protein interaction network of the core proteins targeted by the new formulation for the treatment of ischemic stroke with Qi deficiency and
blood stasis syndrome. The network included 244 nodes and 1,081 edges. Diamonds repr6+ the target proteins, with darker colors indicating increasing importance.

TTC Staining and the Quantification of Infarct Volume
Next, we performed TTC staining experiments with reference to
relevant published literature (Liu et al., 2020; Zhang et al., 2021).
After 24 h of ischemia/reperfusion, mice were anesthetized by
isoflurane inhalation and killed by cervical dislocation. Brain
tissue was then removed and cut into 2mm thick coronal
sections. The sections were then stained using 2% 2,3,5-
triphenyltetrazolium chloride (Sigma-Aldrich, St. Louis, MO)
in the dark at 37.0°C for 30 min. After staining, the brain

sections were fixed in 4% paraformaldehyde buffer. The live
portion of the brain section was red, and the infarcted portion
was pale white. The infarct volume and whole volume of each
brain slice were measured using Image Pro Plus 6.0 software
(Media Cybernetics, Bethesda, MD, USA). The infarct volume of
each section was multiplied by the layer thickness (2 mm) to
calculate the total infarct volume. The ratio of total infarct
volume/whole brain volume Xx 100% was used as the total
infarct ratio.
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EGFR MAPK14

FIGURE 3 | Key target genes of the new treatment formulation for
ischemic stroke with Qi deficiency and blood stasis syndrome. Diamonds
represent target genes, with darker colors indicating increasing importance.

Western Blot Analysis
Western blotting was carried out as described in our previous

article (Liu et al,, 2021). First, hippocampal and cortical tissues
were lysed with a Whole Protein Extraction Kit (Solarbio, Beijing,
China). The protein concentration of each sample was then
measured using a BCA protein assay kit (Vazyme, Nanjing,
China). Equal amounts of protein (30 ug) were then separated
by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to nitrocellulose membranes
(Millipore, Bedford, USA). The membranes were cultured in 5%
BSA in TBS containing 0.1% Tween 20 for 90 min to prevent non-
specific protein binding sites from binding to antibodies. The
membranes were cut according to molecular weight and then
incubated overnight at 4°C with rabbit anti-AKT (1:1,000, Cell
Signaling Technology), rabbit anti-p-AKT (1:2000, Cell Signaling
Technology), rabbit anti-ERK 1/2 (1:1,000, Cell Signaling
Technology), rabbit anti-p-ERK 1/2 (1:1,000, Cell Signaling
Technology). Subsequently, the membrane was incubated with a
corresponding secondary antibody at room temperature for 2 h.
The protein membranes were then to Super Signal West Pico
chemiluminescence substrates (CWBIO, Beijing, China) and
observed by Fluor Chem M (Protein Simple, USA). Western
blot results were analyzed by Image Pro Plus 6.0.

Data Analysis

Data are expressed as a mean + standard deviation (" X + SD) and
analyzed by GraphPad Prism 8.0. SPSS software (version 21.0;
IBM, Armonk, NY, USA). The student’s two-tailed #-test was
used for comparisons between two groups and one-way analysis
of variance followed by Dunnett’s test was used for the

Data Mining and Network Pharmacology

comparison of three or more groups. p < 0.05 was considered
statistically significant.

RESULTS

Data Mining

Literature Analysis

We identified 177 articles related to TCM treatment of ischemic
stroke with Qi deficiency and blood stasis syndrome, including 76
prescriptions based on 119 TCM drugs. In total, 77 articles were
related to breaking blood and removing blood stasis for the
treatment of ischemic stroke with Qi deficiency and blood
stasis syndrome; these articles included 52 prescriptions based
on 94 TCM drugs.

Types of TCM Drugs

The 10 most common TCM drugs used for the treatment of
ischemic stroke with Qi deficiency and blood stasis syndrome
were Huangqi (n = 69), Chuanxiong (n = 64), Honghua (n = 51),
Danggui (n = 50), Dilong (n = 50), Chishao (n = 46), Taoren (n =
40), Danshen (n = 27), Shuizhi (n = 20), Jixueteng (n = 19), and
Sangi (n = 14). The 10 most common TCM drugs used for
breaking blood and removing stasis were Chuanxiong (n = 46),
Honghua (n = 39), Sanleng (n = 37), Ezhu (n = 37), Danshen (n =
35), Danggui (n = 35), Chishao (n = 29), Taoren (n = 29),
Huangqi (n = 26), and Dilong (n = 19).

Association Analyses

The five most commonly used drug combinations for TCM
treatment of ischemic stroke with Qi deficiency and blood stasis
syndrome were Chuanxiong/Huanggi, Huanggi/Chuanxiong,
Chishao/Honghua, Dilong/Honghua, and Danggui/Honghua
(Table 1). The five most commonly used drug combinations for
breaking blood and removing blood stasis for the treatment of
ischemic stroke with Qi deficiency and blood stasis syndrome were
Ezhu/Sanleng, Sanleng/Ezhu, Honghua/Danggui, Chuanxiong/
Danggui, and Chuanxiong/Taoren (Table 2). Based on these
results, we decided to combine Huangqi, Chuanxiong, Sanleng,
and Ezhu to form a new formulation (HCSE).

Network Pharmacology

Chemical Component Analysis

After excluding components with undiscovered targets, 26 candidate
components of Huangqi, Chuanxiong, Sanleng, and Ezhu were
identified in the TCMSP database based on specific thresholds
(OB > 30%, DL > 0.18, and BBB > —0.3). In total, 12, 5, 5, and
3 compounds were identified from Huangqi, Chuanxiong, Sanleng
and Ezhu, respectively (Table 3). Of these, Huanggi, Sanleng and
Ezhu all contain Hederagenin as a key ingredient; Huangqi and
Sanleng both contain Formononetin as a key ingredient.

Integration of Disease and Drug Target Genes

The GeneCards database was used to integrate 3,854 genes related
to ischemic stroke and 5,103 genes related to the syndrome of Qi
deficiency and blood stasis syndrome; these analyses identified a
total of 2,696 genes. Then, the target genes of the drug
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FIGURE 4 | Gene Ontology (GO) enrichment analysis of the new treatment formulation for ischemic stroke with Qi deficiency and blood stasis syndrome. The top 10
biological processes, cellular components, and molecular functions are shown as a bar chart. The x-axis represents the GO terms and the y-axis represents the number

of annotated genes.

Molecular function

components and disease were compared in a Venn diagram using
Jvenn software. The Venn diagram showed that 327 genes were
potential targets of the new formulation for the treatment of
ischemic stroke with Qi deficiency and blood stasis syndrome

(Figure 1).

PPl Network

We imported the 327 potential therapeutic target genes into the
STRING database. Then, we imported target genes with a
confidence >0.9 into Cytoscape 3.8.2 software to construct a
PPI network. In the PPI network, the nodes represent the target
genes, and the node size and color represent the degrees of
freedom. As shown in Figure 2, the network consisted of 244
nodes and 1,081 edges. The central properties of the nodes were
estimated by topological analysis. Sixteen key gene targets of the
new formulation for the treatment of ischemic stroke with Qi
deficiency and blood stasis syndrome were screened using the
following criteria: DC > 11, BC > 728.62274, CC > 0.37587029,
and EC > 0.09713785. In Figure 3, the size of the nodes is
proportional to the DC. Notably, MAPK3, MAPK1, HSP90AAL,
STAT3, PIK3RI1, PIK3CA, and AKT1 were the main target
proteins involved in the pathogenesis of ischemic stroke with
Qi deficiency and blood stasis syndrome. Among these targets,

MAPK3 (degree = 50) was shown to be the most important
protein in the PPI network.

GO Enrichment Analysis

To explore the functional distribution of the gene targets for the
formulation, we imported the 327 predicted target genes into the
Metascape database for GO enrichment analysis. These genes
were found to be associated with multiple BP, CCT, and MF
categories (p < 0.01; Figure 4). The main BP terms were involved
in cellular response to nitrogen compound, cellular response to
organonitrogen compound, circulatory system processes, the
MAPK cascade, and ion homeostasis. The CCT terms
included membrane rafts, membrane microdomains, post-
synapse, the perinuclear region of the cytoplasm, and
dendrites. The MF terms included protein kinase activity,
phosphotransferase activity, alcohol group as acceptor kinase
activity, transmembrane receptor protein tyrosine kinase
activity, and transmembrane receptor protein kinase activity.

KEGG Pathway Annotation

The 327 potential target genes were imported into the
Metascape database for KEGG pathway enrichment analysis.
Analysis showed that these targets were enriched in 191
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pathways (p < 0.01). The top 20 pathways were analyzed using a
bioinformatics database (Figure 5). Among these, the PI3K/
AKT and MAPK signaling pathways were highly associated with
the target genes, thus suggesting that the active ingredients of
the new formulation exert beneficial effects on Qi and blood
stasis by regulating the PI3K/AKT and MAPK signaling
pathways.

Experimental Verifications

The Neuroprotective Effects of HCSE on Ischemic
Stroke

The volume of cerebral infarcts was determined by TTC staining.
As shown in Figures 6A,B, no cerebral infarction was seen in the
Sham and Sham + HCSE groups. However, the infarct volume in
the MCAO group accounted for approximately 44% of the whole
brain (p < 0.05). Compared with the MCAO group, the infarct
volume in the MCAO + HCSE group was significantly smaller
(approximately 23% of the brain volume; p < 0.05). In addition,
the neurological function of the mice was assessed by applying the
Longa (0-4) scale. As shown in Figure 6C, no neurological
impairment was observed in the Sham and Sham + HCSE

groups, although mice in the MCAO group had the highest
score (approximately 3.64 points) (p < 0.05). Mice in the
MCAO + HCSE group had significantly lower neurological
function scores (approximately 2.35 points) compared to the
MCAO group (p < 0.05).

The Effect of HCSE on the Levels of AKT/P-AKT/ERK
1/2/p-ERK 1/2 Signaling-Related Proteins in the
Hippocampus and Cortex With Ischemic Stroke in
Mice

To investigate the possible mechanisms of HCSE against ischemic
stroke, we investigated the expression levels of AKT/p-AKT/ERK
1/2/p-ERK 1/2 signaling related proteins by Western blotting. In
hippocampal tissue, as shown in Figure 7, there was no
significant difference in the p-AKT/AKT and p-ERK 1/2/ERK
1/2 protein ratios in the Sham + HCSE group when compared
with the Sham group (p < 0.05). The p-AKT/AKT protein ratio in
the MCAO group was lower than that in the Sham group (p <
0.05), while the p-ERK 1/2/ERK 1/2 protein ratio was higher than
that in the Sham group (p < 0.05). However, the p-AKT/AKT
protein ratio in the MCAO + HCSE group was significantly
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FIGURE 6 | The neuroprotective effects of HCSE. (A) TTC staining in the
Sham, Sham + HCSE, MCAO and MCAQO + HCSE groups. (B) The infarct
volume was expressed as the ratio of (infarct volume/the whole brain volume)
x 100%. (C) Longa score. (n = 7 per group; *p < 0.05, significantly
different from the corresponding Sham group, #p < 0.05, significantly different
from the MCAQO group).

higher than that in the MCAO group (p < 0.05), and the p-ERK 1/
2/ERK 1/2 protein ratio was significantly lower than that in the
MCAO group (p < 0.05). Western blot analyses of cortical tissues
revealed the same trend as the hippocampal tissue. As shown in
Figure 8, the p-AKT/AKT protein ratio in the MCAO + HCSE
group was significantly higher than that in the MCAO group (p <
0.05). In addition, the p-ERK 1/2/ERK 1/2 protein ratio was
significantly lower than that in the MCAO group (p < 0.05).

DISCUSSION

Although the treatment of stroke is rapidly evolving, research on
the use of TCM to treat ischemic stroke is scarce. In the present
study, we identified a new treatment formulation for ischemic
stroke by the application of data mining and identified the
mechanism of action of this treatment formulation using
network pharmacology. The new formulation consists of
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FIGURE 7 | Changes in the levels of proteins related to the AKT/p-AKT/
ERK1/2/p-ERK 1/2 signaling pathway in the hippocampus. (A) Western
blotting of related proteins. (B) The ratio of p-AKT/AKT. (C) The ratio of p-ERK
1/2/p-ERK 1/2. (n =7 per group; *p < 0.05, significantly different from the
corresponding Sham group, #p < 0.05, significantly different from the MCAO
group).

Huangqi, Chuanxiong, SanLeng, and Ezhu. We concluded that
the main active ingredients of the new formulation include trans-
11-eicosenoic acid, ethyl linoleate, 7-O-methylisomucronulatol,
myricanone, bisdemethoxycurcumin, wallichilide,
astrapterocarpan, and kumatakenin. The active ingredients
target a series of genes, including MAPK3, MAPKI,
HSP90AA1, STAT3, PIK3R1, PIK3CA and AKTI, and can
potentially regulate the PI3K/AKT, MAPK/ERK, Ras, cAMP
and Rapl signaling pathways to exert a neuroprotective role in
patients with ischemic stroke, Qi deficiency and blood stasis
syndrome. The cerebral protective effects of each of the drugs
that constitutes HCSE have been extensively reported in previous
studies; Huangqi promotes the proliferation of neural stem cells,
Chuanxiong inhibits inflammation, Sanleng prevents the
aggregation of platelets, and Ezhu inhibits autophagy (Huang
et al,, 2018; Fei Yin et al.,, 2020; Min Wang et al., 2020; Jia et al,,
2021; Wang et al, 2021). In the present study, we found that
HCSE effectively reduced cerebral infarcts and the neuronal
dysfunction caused by ischemic stroke with Qi deficiency and
blood stasis syndrome. KEGG pathway annotation suggested that

Frontiers in Pharmacology | www.frontiersin.org

March 2022 | Volume 13 | Article 844186


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Zhao et al.
A
AKT | " T e S
PAKT | S — . “
Rk 12 | S S
Bractin | o — —— ——
& S N $
> o )4 S
B & & XQ\Q
R >
&
3 &

B _ C =

= 7

2 15 = 31

= 2

(=] -~

° a

= 1.0+ 2 2

o &~

< =

= Q

% 0.5 = 14

< N

1] o~

< -

£ 0.0- ‘; 0-

= < (&) <

& g 6@“ &oe \&Ov 5 &

2 7S TS
PN &

FIGURE 8 | Changes in the levels of proteins related to the AKT/p-AKT/
ERK1/2/p-ERK1/2 signaling pathway in the cortex. (A) Western blotting of
related proteins. (B) The ratio of p-AKT/AKT. (C) The ratio of p-ERK1/2/p-ERK
1/2. (n = 7 per group; *p < 0.05, significantly different from the
corresponding Sham group, #p < 0.05, significantly different from the MCAO
group).

the active ingredients of the new formulation exert beneficial
effects by regulating the PI3K/AKT and MAPK signaling
pathways. By analyzing the KEGG enrichment of these targets
in ischemic stroke with Qi deficiency and blood stasis syndrome,
we found that the PI3K/AKT and MAPK signaling pathway were
the main pathways involved. Thus, by regulating the PI3K/AKT
and MAPK signaling pathways, it may be possible to improve Qi
and blood in patients with ischemic stroke.

The PI3K and MAPK signaling pathways are abnormally
regulated in cerebral ischemia; by modulating these pathways, it
is possible to alleviate the neuronal injury caused by ischemia (Tu
etal., 2015). Research has also shown that HSP90 inhibitors protect
against ischemia-induced neural progenitor cell death via the
PI3K/AKT and MAPK/ERK pathways (Kwon et al, 2008;
Wang et al, 2011; Bradley et al,, 2014). On the one hand, the
PI3K/AKT signaling pathway is known to play key roles in
regulating cell proliferation, differentiation, apoptosis, and
migration (Samakova et al., 2019) and is critical for neuronal
growth and survival following cerebral ischemia (Zhao et al., 2016).
Previous studies have reported that modulation of the PI3K/AKT/
mTOR pathway upregulates the bcl-2 protein and increases

Data Mining and Network Pharmacology

ischemic tolerance in the semi-dark zone, thereby reducing
apoptosis, increasing VEGF expression, and promoting cerebral
angiogenesis (Hou et al,, 2018; Liang et al., 2018). On the other
hand, the extracellular signal-regulated kinases MAPK1/ERK2 and
MAPK3/ERK1 are members of the MAP kinase family and are
involved in cell proliferation, differentiation, transcriptional
regulation, and apoptosis. A series of cascade reactions are
known to be involved in ischemic stroke (Sun and Nan, 2016).
Numerous previous studies have shown that the MAPK/ERK
signaling pathway disrupts the blood-brain barrier, affects
neurocyte apoptosis, and enhances the expression of neuronal
inflammatory factors after ischemic stroke (Irving et al, 2000;
Cao etal, 2016; Wang etal., 2019). The downregulation of MAPK1
has been shown to reduce the levels of TNF-a, IL-6, and reactive
oxygen species, thereby reducing neuroinflammation, oxidative
stress, and neuronal damage (Zhang et al.,, 2020). In a previous
study, Mostajeran found that inhibition of the ERK signaling
pathway by U0126 reduced neuronal death and significantly
upregulated the expression of Tie-2, thereby promoting post-
stroke vascular stabilization and angiogenesis (Mostajeran et al.,
2017).

The cascade response of the PI3K and MAPK signaling
pathways is regulated by complex feedback and crosstalk
mechanisms. Zhou et al. reported negative crosstalk between
the MAPK and PI3K/AKT signaling pathways, with AKT
inhibiting the MAPK signaling pathway by phosphorylating
and inhibiting the Rafl node during cerebral ischemia (Zhou
et al., 2015). This is consistent with the results of the present
study, in which phosphorylated AKT levels were significantly
lower, and phosphorylated ERK 1/2 levels were significantly
higher, in mice suffering from ischemic stroke. Levels of
phosphorylated AKT were increased while levels of
phosphorylated ERK 1/2 were decreased in mice with ischemic
stroke when treated with HCSE. We suggest that HCSE protects
against post-ischemic injury not only by reducing ERK activity,
but also by increasing crosstalk between AKT and ERK. The
reduction in ERK activity exerts cerebral protective effects.

In summary, we used data mining and network
pharmacological target prediction to identify a new treatment
formulation (HCSE) for patients suffering from ischemic stroke
with Qi deficiency and blood stasis syndrome. HCSE significantly
reduced infarct volume and improved neurological function. We
found that multiple target genes and pathways participated in the
action of HCSE against cerebral ischemia stroke. The mechanisms
underlying the neuroprotective effects of HCSE were closely related
to activation of the PI3K/AKT and MAPK/ERK signaling
pathways. Our results provided evidence for the positive effects
of HCSE on ischemic stroke with Qi deficiency and blood stasis
syndrome. However, further research now needs to verify the
mechanisms underlying the action of HSCE on the
improvement of cerebral ischemic injury via the regulation of
the PI3K/AKT and MAPK/ERK pathways; it is possible that other
neuroprotective mechanisms are involved. In addition, it is
important to investigate the internal mechanisms that link Qi
deficiency, blood stasis syndrome and cerebral ischemic injury, as
this could provide a more enhanced theoretical basis for the
prevention and treatment of stroke with TCM.
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Yanmin Chang’, Tingting Jiang’, Jianheng Luo’, Jiahui Zhu', Hongge Li'* and Yong Wang '*

' Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China, Department of Neurology, People’s Hospital of Zhengzhou, People’s Hospital of Henan University of Chinese Medicine,
Zhengzhou, China

Metformin is a first-line anti-diabetic agent with a powerful hypoglycemic effect. Several
studies have reported that metformin can improve the prognosis of stroke patients and
that this effect is independent of its hypoglycemic effect; however, the specific mechanism
remains unclear. In this research, we explored the effect and specific mechanism of
metformin in cerebral ischemia-reperfusion (I/R) injury by constructing a transient middle
cerebral artery occlusion model in vivo and a glucose and oxygen deprivation/
reoxygenation (OGD/R) model in vitro. The results of the in vivo experiments showed
that acute treatment with low-dose metformin (10 mg/kg) ameliorated cerebral edema,
reduced the cerebral infarction volume, improved the neurological deficit score, and
ameliorated neuronal apoptosis in the ischemic penumbra. Moreover, metformin up-
regulated the brain-derived neurotrophic factor (BDNF) expression and increased
phosphorylation levels of AMP-activated protein kinase (AMPK) and cAMP-response
element binding protein (CREB) in the ischemia penumbra. Nevertheless, the above-
mentioned effects of metformin were reversed by Compound C. The results of the in vitro
experiments showed that low metformin concentrations (20 uM) could reduce apoptosis
of human umbilical vein endothelial cells (HUVECs) under OGD/R conditions and promote
cell proliferation. Moreover, metformin could further promote BDNF expression and release
in HUVECs under OGD/R conditions via the AMPK/CREB pathway. The Transwell
chamber assay showed that HUVECs treated with metformin could reduce apoptosis
of SH-SY5Y cells under OGD/R conditions and this effect could be partially reversed by
transfection of BDNF siRNA in HUVECs. In summary, our results suggest that metformin
upregulates the level of BDNF in the cerebral ischemic penumbra via the AMPK/CREB
pathway, thereby playing a protective effect in cerebral I/R injury.

Keywords: cerebral ischemia-reperfusion injury, metformin, AMP-activated protein kinase, neuronal apoptosis,
brain-derived neurotrophic factor
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INTRODUCTION

Acute ischemic stroke is the most prevailing type of
cerebrovascular disease. Due to its high morbidity, mortality,
and disability, it has received widespread attention and imposes a
substantial burden on national health and the social economy.
Intravenous recombinant tissue plasminogen activator
thrombolysis (National Institute of Neurological Disorders and
Stroke rt-PA Stroke Study Group, 1995) and mechanical arterial
thrombectomy (Goyal et al., 2015; Campbell et al., 2015;
Berkhemer et al, 2015) are currently the most efficient
treatments for opening occluded blood vessels and restoring
cerebral blood perfusion. However, rapid reperfusion after
cerebral ischemia can cause secondary damage, named
cerebral ischemia-reperfusion (I/R) injury, which is even more
serious than simple cerebral ischemic injury. Cerebral I/R injury
often results in the death of a large number of neurons, leading to
widespread cerebral infarction and severe cognitive dysfunction
(Lin et al., 2016). Therefore, there is an urgent need to identify the
pathogenesis of cerebral I/R injury and find effective therapies.

The neurovascular unit is a concept that emphasizes the
interaction between the cerebrovascular system and brain
tissue cells, which contains neurons, vascular endothelial cells
(ECs), glial cells, and the basement membrane (Iadecola, 2017).
As one of the central components of the neurovascular unit, ECs
can not only provide blood flow and nutrients for the brain but
also play a neuroprotective role by secreting neurotrophic factors.
This effect of ECs is known as nerve-vascular coupling (Guo et al.,
2008; Alhusban et al., 2013; Fouda et al., 2017). Neurotrophic
factors play a crucial role in the nervous system via regulating the
survival and differentiation of neurons (Mizui et al., 2016). Brain-
derived neurotrophic factor (BDNF), as a member of
neurotrophic  factors, = has  powerful  neurogenesis,
neuroprotection, and angiogenesis effects (Caporali and
Emanueli, 2009; Greenberg et al., 2009) and is also relevant to
learning and memory (Tyler et al, 2002; Bekinschtein et al,
2014). Some studies have found that BDNF is involved in the
nerve-vascular coupling between ECs and nerve cells (Guo et al.,
2008). Furthermore, several studies have shown that BDNF can
be upregulated and has an important neuroprotective effect after
experimental stroke (Guo et al., 2008; Alhusban et al., 2013;
Fouda et al., 2017).

Metformin, a first-line biguanide drug, is widely used in
patients with type 2 diabetes because of its hypoglycemic
effect. Several clinical studies have revealed that metformin
can also improve the prognosis of stroke patients (Mima et al.,
2016) and decrease the risk of long-term cardiovascular events
(UK Prospective Diabetes Study (UKPDS) Group, 1998; Nathan,
1998; Selvin and Hirsch, 2008). Furthermore, the activation of
AMP-activated protein kinase (AMPK) plays a dominant role in
the protective effect of metformin (Alexander et al, 2013).
Related studies have shown that AMPK is a vital endogenous
defense factor that plays a protective effect in ischemic stroke via
alleviating neuroinflammation, reducing oxidative stress,
improving mitochondrial dysfunction, and inhibiting cell
apoptosis (Jiang et al, 2018). Metformin has also been
confirmed in many studies to promote phosphorylation of

Metformin in Cerebral Ischemia-Reperfusion Injury

AMPK protein, thereby exerting neuroprotective effects by
activating downstream molecules that reduce the adverse
influences of cerebral I/R injury (Ashabi et al, 2014; Venna
et al.,, 2014; Ashabi et al., 2015).

The specific mechanism by which metformin alleviates
cerebral I/R injury remains ambiguous. Nevertheless, various
in vivo and ex vivo experimental models have shown that
metformin can promote BDNF expression (Patil et al., 2014;
Han et al, 2018; Keshavarzi et al., 2019). Subsequently, we
hypothesized that metformin can upregulate BDNF expression
to exert a neuroprotective effect, thus alleviating cerebral I/R
injury in an experimental model of ischemic stroke. Our study
aimed to further understand the mechanism by which metformin
improves cerebral I/R injury and to provide new evidence and
support for metformin as a therapy that can be synchronized with
vascular recanalization as a treatment for acute cerebral
infarction.

MATERIALS AND METHODS

Animals

Male specific pathogen-free Sprague-Dawley rats (age, 6-8 weeks;
weight, 280-300 g) were purchased from Sipeifu Biotechnology
Co., Ltd. (Beijing, China). During the experiments, two rats per
cage were housed in a specific pathogen-free environment
(temperature 21-24°C, humidity 55%-65% and a 12-h light/
dark cycle) with free access to food and water. All experiments
were performed in accordance with the Experimental Animal
Management Committee of Tongji Medical College of Huazhong
University of Science and Technology (IACUC Number: 2499).

Construction of a tMCAO Model and Drug

Administration in vivo

After anesthesia with 2% sodium pentobarbital (40 mg/kg, i.p.), a
transient middle cerebral artery occlusion (tMCAO) rodent
model was constructed based on previous studies (Yuan et al,
2016). In brief, a neck incision was made, the common carotid
artery was exposed, and the internal carotid and external carotid
arteries were then carefully separated. Next, the blood flow in the
right middle cerebral artery was blocked with a 4-0 monofilament
nylon suture (Cinontech, Beijing, China) coated with poly-L-
lysine. Thereafter, the sutures were pulled out after 60 min of
ischemia. At the beginning of the reperfusion period, rats in each
group were administered metformin (10 mg/kg, ip.; Sigma-
Aldrich, United States) and Compound C (CC, 20 mg/kg, i.p.;
an AMPK inhibitor, APExXBIO, United States), according to the
experimental design (the specific experimental groups are shown
in Figure 1). The concentration and mode of administration of
metformin and Compound C were based on previous research by
Jiang et al. (2014). The sham operation group underwent the
same surgical procedure except for the insertion of the suture and
received an equal volume of the vehicle at the beginning of the
reperfusion period. All rats were euthanized 24 h after the
reperfusion period, then the brain tissues of the ischemic core,
the ischemic penumbra, and the contralateral cerebral
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FIGURE 1 | Schematic diagram of animal experiment groupings and ischemic penumbra. (A) The schematic diagram of animal experiment groupings (1 = 17 in
each group). Abbreviations: tMCAO, transient middle cerebral artery occlusion; Veh, vehicle; Met, metformin; CC, Compound C. (B) The schematic diagram of ischemic
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hemisphere were collected and stored at -80°C for later use. The
body temperature of rats was maintained at 37.1 + 0.5°C from
after anesthesia to before euthanasia with a heating pad.

Neurological Deficit Score

After successful modeling, all rats were evaluated for neurological
deficits using the Zea-Longa five-point scoring system (Longa
et al.,, 1989) before they were euthanized: 0 points, normal; 1
point, weakness of the left forelimb and incomplete extension; 2
points, turning to the left side when walking; 3 points, cannot bear
weight on the left side; and 4 points, no spontaneous activity, and
disturbed consciousness.

TTC Staining

After the rats were euthanized, the volume of cerebral infarction
was measured using the 2,3,5-triphenyltetrazolium chloride
(TTC) staining method. Briefly, the brain was removed and
rapidly frozen in a refrigerator at -20°C for 20 min and cut
into 6-7 slices of 2-mm thickness. Next, the slices were
stained with 2% TTC solution for 20 min. The volume of
cerebral infarction was measured via an Image-Pro Plus
analysis system.

Determination of Brain Water Content

We used our previous experiments (Wang et al, 2018) to
determine the water content of the brain tissue and evaluate
brain edema in the rats in each group. After the brains were taken
out and the cerebellum and brain stem were removed, wet weights
(WW) were obtained. Next, the dry weights (DW) were obtained
after the brain was dried in an oven at 100°C for 24 h. The brain
water content was calculated via the following formula: brain
water content (%) = (WW-DW)/WWx100%.

Immunohistochemical Analysis

After successful modeling, several rats were selected for
anesthesia, followed by perfusion with normal saline and 4%
paraformaldehyde. The brain was then taken out, embedded in
paraffin, and cut coronally into 5-um thick brain slices. Next,
paraffin sections of the brain tissues in each group were
deparaffinized by xylene and then rehydrated with gradient
alcohol (100%, 95%, 80%, and 75%). The tissue sections were

sequentially subjected to antigen retrieval (citric acid antigen
retrieval buffer, high temperature, and pressure conditions),
blocking endogenous peroxidase (3% H,O, solution, protected
from light for 25 min), and serum sealing (5% BSA solution,
40 min). The brain slices were then incubated with the prepared
BDNF primary antibody (1:500; Abcam, United States) at 4°C for
18-24 h. After washing, brain slices were incubated with the
secondary antibody of the corresponding species for 2 h. After
washing again, the brain slices were developed by 3,3'-
diaminobenzidine and counterstained with hematoxylin.
Finally, after dehydration with gradient alcohol and
transparent xylene, the brain slices were mounted with neutral
gum for microscopic examination. Images were obtained using an
Olympus photomicroscope (Nikon, Tokyo, Japan).

Nissl Staining

Paraffin sections were deparaffinized and rehydrated as
previously described. Next, the brain slices were stained with
Nissl solution, washed with distilled water, dried, and mounted
with neutral gum. Finally, the slices were observed and images
were acquired using the Olympus photomicroscope.

Cell Culture

Human umbilical vein endothelial cells (HUVECs) and SH-SY5Y
cells were purchased from the China Center for Type Culture
Collection (Hubei, China). Both types of cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Waltham,
MA, United States) containing 10% fetal bovine serum and 1%
penicillin-streptomycin  solution (Solarbio, Beijing, China) and
incubated in a humidified incubator filled with 5% CO, and 95%
02 at 37°C.

Transfection With Small Interfering RNAs

BDNF small interfering RNA (siRNA) and negative control siRNA
were obtained from Genomeditech (Shanghai, China). The BDNF
siRNA sequence was as follows: 5'-GAAUUGGCUGGCGAUUCA
UAA-3" and 3'-CUUAACCGACCGCUAAGUAUU-5 (the
blocking effect of BDNF siRNA is shown in Supplementary
Figure S3). The HUVECs were cultured in the upper chamber.
After the cells grew normally and the confluence reached 30-50%,
transfection was performed according to the manufacturer’s
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protocols (RiboBio, Guangzhou, China) with a final concentration of
50 nM siRNA. The cells were used for the subsequent Transwell
chamber assay 48 h after the transfection.

Construction of an OGD/R Model and Drug

Administration in vitro

For oxygen-glucose deprivation (OGD), the cells were discarded
from the original medium and rinsed twice with phosphate-buffered
saline, glucose-free DMEM was added and then cultured in a
humidified anaerobic incubator (containing 1% O,, 5% CO,, and
94% N,) at 37°C to simulate the ischemic environment in vitro. In
this study, HUVECs and SH-SY5Y cells were maintained under
OGD conditions for 2, 4, 6, or 8 h and 0.5, 1, 2, or 4 h, respectively.
The culture medium was then replaced with complete DMEM and
the cells were placed in a normal incubator (containing 95% O, and
5% CO,) at 37°C for reoxygenation for 12 h to mimic reperfusion
in vitro. At the beginning of the reoxygenation phase, metformin
(0,5, 10, 20, 50, and 100 uM), AICAR (an AMPK agonist, 500 uM;
MedChemExpress, China), Compound C (10 M), and KG-501 (a
CREB inhibitor, 25 uM; Sigma-Aldrich, United States) were added
to the culture medium to treat HUVECs, and BDNF (0, 10, 20, 50,
and 100 ng/ml; R&D Systems, United States) was added to treat
SH-SY5Y cells in different groups. All cells were collected for later
experiments at the end of the reoxygenation period.

Cell Counting Kit-8 Assay

Approximately 5,000 cells/well were seeded in a 96-well plate. After
the cell processing of each well was completed, the original medium
was discarded, and 100 puL of new DMEM and 10 pL of Cell Counting
Kit-8 (CCK-8) solution (Dojindo Technologies, Japan) were added
and incubated for 2h. Finally, the absorbance of each well was
measured at 450 nm by a microplate reader for subsequent analysis.

Western Blot Analysis

The brain tissue samples in the ischemic penumbra, and the
processed HUVECs were homogenized in RIPA lysis buffer and
then centrifuged to obtain tissue and cell proteins. The protein
concentration was measured using the BCA protein assay kit
(Beyotime, China), and 20 pg of protein was separated for
electrophoresis. Proteins were then transferred to a 0.45-pum
PVDF membrane (Merck, Germany). After blocking with 5%
non-fat milk for 1 h at 18-20°C, the membranes were incubated
with the corresponding primary antibodies at 4°C for 18-24 h.
After washing three times, the membranes were incubated with
secondary antibodies of the corresponding species for 1 h. Finally,
the protein bands were visualized by chemiluminescence and
analyzed using Image]J software. The primary antibodies used in
this study were as follows: AMPK (1:1000; CST, United States),
p-AMPK (1:1000; Abcam, United States), CREB (1:1000; CST),
p-CREB (1:1000; Abcam), BDNF (1:1000; Abcam), and GAPDH
(1:3000; Proteintech, China).

Enzyme-Linked Immunosorbent Assay
Plasma samples were obtained by centrifuging the blood samples
at 1,200 g for 10 min. To detect the BDNF concentration in the

Metformin in Cerebral Ischemia-Reperfusion Injury

plasma of rats and culture supernatant of HUVECs, a BDNF
enzyme-linked immunosorbent assay (ELISA) kit (Multi
Sciences, China) was used according to the manufacturer’s
protocols.

Real-Time Quantitative PCR

TRIzol and reverse transcription kits (Takara, Japan) were used for
RNA extraction and reverse transcription according to the
manufacturer’s instructions. ChamQ SYBR qPCR Master Mix
(Vazyme, China), ¢cDNA, and primers were mixed in the
polymerase chain reaction (PCR) plate, after which the
transcription level of BDNF was analyzed using the StepOnePlus
real-time PCR System. The primers used in this experiment were as
follows: actin (human, 5'-3, forward/reverse), AGAGCTACGAGC
TGCCTGAC and AGCACTGTGTTGGCGTACAG; BDNF
(human, 5'-3', forward/reverse) TGTTGGATGAGGACCAGA
AAGTT and GCCTCCTCTTCTCTTTCTGCTGG; actin (rat, 5'-
3/, forward/reverse) TTGTCACCAACTGGGACGATATGG and
GGGTGTTGAAGGTCTCAAACATG; BDNF  (rat, 5'-3/,
forward/reverse) CAGGGGCATAGACAAAAG and CTTCCC
CTTTTAATGGTC.

Immunofluorescence
Immunofluorescence was used to measure BDNF expression in
ECs in the penumbra of cerebral ischemia. Paraffin sections of
brain tissues were deparaffinized and rehydrated, and antigen
retrieval and serum blocking were performed as described above.
The cells were then incubated at 4°C with the CD31 (1:50; R&D
Systems, United States) and BDNF (1:500; Abcam, United States)
primary antibodies for 18-24 h. After washing, the samples were
incubated with a fluorescent secondary antibody of the
corresponding species for 1h at 18-20°C. Finally, after DAPI
staining, the slices were mounted with anti-fluorescence
quenching mounting tablets and examined under a microscope.
Immunofluorescence staining was also performed to detect
BDNF expression in HUVECs. The cells were seeded on slides
and processed accordingly. After fixation, permeabilization and
serum blocking, the cell slides were incubated at 4°C with the
BDNF primary antibodies (1:500; Abcam, United States) for
18-24 h. After washing, the cell slides were incubated with a
fluorescent secondary antibody of the corresponding species for
1 h at 18-20°C. Finally, after DAPI staining, the cell slices were
mounted with anti-fluorescence quenching mounting tablets and
examined under a microscope.

Analysis of Apoptosis
Apoptosis of neurons in the ischemic penumbra area in vivo and
apoptosis of HUVECs and SH-SY5Y cells under OGD/R
conditions in vitro was detected using a one-step TdT-
mediated dUTP nick-end labeling (TUNEL) apoptosis assay
kit (Beyotime, China) according to the manufacturer’s
instructions. Related steps are referred to in the
immunofluorescence section. The primary antibody used was
as follows: NeuN (1:100; Proteintech, China).

Apoptosis of HUVECs and SH-SY5Y cells under OGD/R
conditions was also detected using the Annexin V-FITC/PI
apoptosis kit (Multi Sciences, China). After the staining, the
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FIGURE 2 | Metformin alleviates cerebral edema, reduces cerebral infarct volume, improves the neurological deficit score, and ameliorates neuronal apoptosis in
the ischemic penumbra. However, Compound C significantly reduces the above-mentioned effects of metformin. (A,B) Cerebral infarct volume was assessed by TTC
staining (n = 5). (C) The neurological deficit score was assessed by the Zea-Longa five-point scoring system (n = 7). (D) Brain edema was evaluated by measuring the
brain water content (n = 6). (E-H) Survival and apoptosis of neurons around the ischemic penumbra were evaluated by Nissl staining (1 = 3, bar = 50 yum) and
TUNEL staining (n = 3, bar = 20 um), respectively. (o < 0.05, ***p < 0.0001 vs. sham; *p < 0.05, #p < 0.01 vs. I/R 1/24 h; %0 <0.05, %0 < 0.01, vs. I/R 1/24 h + Met).
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cells were immediately detected using a flow cytometer (BD
Biosciences, United States). The results were analyzed by
FlowJo software.

The Transwell chamber assay was used to explore the effect of
metformin-treated HUVECs on apoptosis of SH-SY5Y cells
under OGD/R conditions. Briefly, HUVECs were seeded in the
upper chamber and exposed to OGD conditions for 5h after
transfection with siRNA. SH-SY5Y cells were then seeded in the
lower chamber and co-cultured with HUVECs under OGD
conditions for 1h (from hour 5 to hour 6). Subsequently,
HUVECs located in the upper chamber were treated
accordingly at the beginning of the reoxygenation period
(schematic representations of each treatment group are shown
in Figure 8Aand schematic diagram for transwell chamber assay
is shown in Supplementary Figure S2). After a 12-h
reoxygenation period, the cells in the lower chamber were
collected and apoptosis rate was detected by flow cytometry
and TUNEL staining.

Statistical Analysis

All data were analyzed using GraphPad Prism 8 software and
expressed as the mean + SD. Comparisons between two groups
were performed by the independent-samples t-test. Pairwise
comparisons between multiple groups were performed by
ordinary one-way analysis of variance and Tukey’s multiple
comparisons test. Neurological deficit scores were compared
between groups using the Mann-Whitney U test. p < 0.05 was
considered statistically significant.

RESULTS

Metformin Alleviated Cerebral Edema,
Reduced the Volume of Cerebral Infarction,
Improved the Neurological Deficit Score,
and Ameliorated Neuronal Apoptosis in the

Ischemic Penumbra in vivo

To explore the function of metformin on cerebral I/R injury in vivo,
brain edema, the volume of cerebral infarction, and the neurological
deficit score were subjected to statistical analysis after the reperfusion
period. As shown in Figure 2C, treatment with metformin
dramatically improved the neurological deficit score after cerebral
I/R injury in vivo. In addition, after the administration of metformin,
cerebral edema improved remarkably (Figure 2D). TTC staining
revealed that the volume of cerebral infarction was also dramatically
reduced by treatment with metformin (Figures 2A,B). Niss] staining
implied that the number of normal neurons in the ischemic
penumbra was significantly higher in the metformin group than
in the operation group (Figures 2E,F). Moreover, TUNEL staining
showed that apoptosis of neurons in the metformin group was
markedly reduced (Figures 2G,H). However, it is intriguing that
treatment with Compound C at the same time as treatment with
metformin reversed the aforementioned positive effects. This finding
suggests that the protective role of metformin in cerebral I/R injury is
at least partially mediated by activation of AMPK.

Metformin in Cerebral Ischemia-Reperfusion Injury

Metformin Improved Cerebral I/R Injury via

Regulating BDNF Expression in vivo

We speculated that metformin plays an active role in cerebral I/R
injury via regulating BDNF expression. To verify our hypothesis, we
used quantitative PCR and western blotting to measure the mRNA
and protein levels of BDNF in the cortex of the cerebral ischemic
penumbra, and ELISA was used to assess the BDNF concentration in
the plasma of the rats in each group. Western blotting revealed that
administration of metformin further increased BDNF expression
(Figures 3A,B), and ELISA showed that metformin treatment also
upregulated BDNF concentrations in the plasma (Figure 3E). The
results of quantitative PCR showed that metformin also increased
the level of BDNF transcription (Figure 3D), indicating that
metformin regulated BDNF expression at the transcription level.
Furthermore, consistent with the above results, brain slice
immunohistochemistry ~ indicated  that administration of
metformin significantly upregulated BDNF expression in the
penumbra of cerebral ischemia (Figure 3C). Interestingly,
immunofluorescence staining of brain slices revealed that
metformin can act on ECs to promote BDNF expression in ECs.
However, treatment with Compound C inhibited the metformin-
mediated upregulation of BDNF expression (Figure 3F). Therefore,
metformin plays a protective role in cerebral I/R injury at least in part
via regulating BDNF expression in ECs at the transcriptional level,
with AMPK activation as part of the process.

AMPK and CREB Were Involved in

Regulating BDNF Expression in Cerebral I/R
Injury

To further explore whether AMPK was involved in regulating BDNF
expression, we detected the AMPK and p-AMPK expression levels in
the brain tissue around the ischemic penumbra by western blotting.
The results showed that metformin significantly increased the
phosphorylation of AMPK, and this effect was inhibited by
Compound C (Figures 4A,B). Furthermore, previous studies
have found that transcriptional induction of BDNF was closely
related to the CREB protein family (Tao et al., 1998) and have
suggested that metformin could induce BDNF expression at the
transcriptional level. Consequently, we speculated that CREB might
participate in the regulation of BDNF expression in cerebral I/R
injury, and tested this possibility by western blotting to detect CREB
and p-CREB protein levels in the ischemic penumbra. We found that
metformin could increase the phosphorylation level of CREB, and
this phenomenon could also be reversed by Compound C (Figures
4A,C). Therefore, it could be concluded that metformin regulated
BDNF expression in cerebral I/R injury at least in part by regulating
the phosphorylation of AMPK and CREB.

Metformin Upregulated BDNF Expression
and Release, Promoted Proliferation of
HUVECSs, and Inhibited Cell Apoptosis
Under OGD/R Conditions in vitro

Based on the results of our in vivo experiments, we used HUVECs to
construct an OGD/R model in vitro to simulate cerebral I/R injury
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and further explore the effect of metformin in cerebral I/R injury. As
shown in Figures 5A,B, HUVECs could upregulate the expression of
BDNF under conditions of OGD/R 2, 4, 6, and 8 h/12 h and could
significantly upregulate the expression of BDNF under conditions of
OGD/R 4, 6, and 8 h/12 h. Selecting OGD/R 6 h/12 h conditions for
follow-up studies, we found that metformin could further promote
the expression and release of BDNF in HUVECs at a concentration
of 20 uM. As the treatment concentration increased, the effect of
metformin continued to weaken (Figures 5C-E). Furthermore, as
shown in Figures 5F-], metformin at a concentration of 20 M
promoted the proliferation of HUVECs and reduced cell apoptosis
under OGD/R conditions.

Metformin Promoted HUVECSs to Express
BDNF Under OGD/R Conditions via the

AMPK/CREB Pathway in vitro

We then explored whether AMPK and CREB were involved in the
regulation of BDNF expression in HUVECs by metformin under
OGDJ/R conditions. We treated HUVECs with metformin, AICAR
(an AMPK activator), Compound C, and KG-501 (a CREB
inhibitor) at the beginning of the reoxygenation period. Western
blotting revealed that metformin and AICAR significantly increased
the expression of BDNF and phosphorylation levels of AMPK and
CREB at the same time, while Compound C inhibited the positive
effect of metformin and AICAR (Figures 6A-D).
Immunofluorescence staining of the cell slides also revealed that
metformin and AICAR could further upregulate BDNF expression
in HUVECs, while Compound C reversed the effect of metformin
and AICAR (Figures 6F,G). Moreover, quantitative PCR results
showed that metformin and AICAR promoted BDNF expression at
the transcription level, and Compound C exerted an inhibitory effect
also at the transcription level (Figure 6E). We also found that KG-
501 could inhibit the increase in BDNF expression and CREB

phosphorylation caused by metformin but had no effect on the
AMPK phosphorylation level increased by metformin (Figures
6H-K). This suggests that AMPK is located upstream of CERB.
Therefore, we concluded that metformin regulated phosphorylation
of CREB and further regulated BDNF expression by affecting the
phosphorylation level of AMPK in HUVECs under OGD/R
conditions. In brief, metformin promotes BDNF expression in
HUVECs under OGD/R conditions through the AMPK/CREB
pathway.

BDNF Promoted the Proliferation of
SH-SY5Y Cells and Inhibited Cell Apoptosis
Under OGD/R Conditions in vitro

To explore the protective mechanism of BDNF on neurons under
OGD/R conditions, we constructed an in vitro OGD/R model using
SH-SY5Y cells and treatment with BDNF at the beginning of the
reoxygenation period. After the intervention, the proliferation of SH-
SY5Y cells was detected using the CCK-8 assay. The results revealed
that the conditions of OGD/R 0.5, 1, 2, and 4h/12 h dramatically
reduced the proliferation of SH-SY5Y cells, and OGD/R 1h/12h
treatment was selected for follow-up studies (Figure 7B). After
treatment with various concentrations of BDNF, the CCK-8 assay
revealed that the proliferation of SH-SY5Y cells was dramatically
increased under OGD/R conditions when the BDNF concentration
was 20 or 50 ng/ml (Figure 7C). Apoptosis of SH-SY5Y cells was
detected using TUNEL staining and flow cytometry. The flow
cytometry results revealed that BDNF concentrations of 20 and
50 ng/ml significantly reduced OGD/R-induced apoptosis in SH-
SY5Y cells (Figures 7D,E). Furthermore, TUNEL staining revealed
that when the concentration of BDNF was 20 ng/ml, apoptosis of
SH-SY5Y cells under OGD/R 1h/12 h conditions was significantly
reduced (Figures 7F,G). Therefore, BDNF could promote the
proliferation of SH-SY5Y cells and reduce apoptosis under OGD/
R conditions.
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metformin and KG-501 under OGD/R conditions were detected by western blotting (n = 3). (o < 0.05, *p < 0.01, **p < 0.001 vs. sham; *p < 0.05, *p < 0.01, ##p <
0.001, *##*p < 0.0001 vs. OGD/R 6/12 h; NS, not significant, *%p < 0.01, #¥%p < 0.001, $¥%%p < 0.0001 vs. OGD/R 6/12 h + AICAR; ¥p < 0.05, %¥p < 0.01, *%¢p < 0.001,
8888 < 0.0001 vs. OGD/R 6/12 h + Met 20 pM).
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HUVECSs Treated With Metformin Alleviated
Apoptosis of SH-SY5Y Cells Under OGD/R
Conditions in vitro

We examined the function of metformin-treated HUVECs on
apoptosis of SH-SY5Y cells using a Transwell chamber assay
under OGD/R conditions. Flow cytometry revealed that apoptosis
of SH-SY5Y cells could be alleviated in the metformin-treated

HUVEC group (Figures 8B,C). Consistent with the above results,
TUNEL staining showed that metformin-treated HUVECs could
reduce the number of SH-SY5Y cells positive for TUNEL staining
more effectively than in the control group (Figures 8D,E). However,
the improved apoptosis level of SH-SY5Y cells via metformin-
treated HUVECs was partially reversed by transfecting BDNF
siRNA in HUVECs. Therefore, metformin may decrease the
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apoptosis of SH-SY5Y cells partially by upregulating BDNF
expression in HUVECs under OGD/R conditions.

DISCUSSION

In this study, we revealed that acute treatment with low-dose
metformin upregulated the expression of BDNF in ECs in the
ischemic penumbra area in an AMPK-dependent manner,
thereby improving cerebral edema, cerebral infarct volume, the
neurological deficit score, and neuronal apoptosis caused by
cerebral I/R injury in vivo. Metformin also promoted BDNF
expression in HUVECs via the AMPK/CREB pathway, thereby
promoting the proliferation of SH-SY5Y cells and reducing cell
apoptosis under OGD/R conditions in vitro. The mechanism
of metformin observed in this research is summarized in
Figure 9.

AMPK is the main energy homeostasis regulator in the body
and can be activated by phosphorylation when the AMP/ATP
ratio increases (Hardie et al., 2012). Many studies have suggested
that AMPK is an important mediator in the pathogenesis of
stroke (Manwani and Mccullough, 2013). Similarly, we found
that AMPK could be activated by phosphorylation both in
cerebral I/R injury in vivo and under OGD/R conditions
in vitro and that treatment with metformin can further
promote phosphorylation of AMPK. Moreover, we found that
the active influence of metformin in cerebral I/R injury and
promotion of BDNF expression in HUVECs under OGD/R
conditions depend on the activation of AMPK, because the
above-mentioned effects of metformin are all inhibited by
Compound C.

As a transcription factor, CREB is widely expressed in various
organs and participates in the proliferation, differentiation, and
survival of various cell types (Kitagawa, 2007). Related studies
have reported that CREB could be activated by phosphorylation
in the ischemic penumbra area in a model of focal cerebral ischemia

(Tanaka et al., 1999). Moreover, many studies have suggested that
the activation of CREB phosphorylation can have a neuroprotective
effect in models of cerebral ischemia (Miyata et al., 2001; Lee et al.,
2004), which is consistent with our results. Furthermore, our in vitro
data showed that the activation of CREB depends on the activation
of AMPK phosphorylation; that is, AMPK is located upstream of
CREB. Because AMPK agonists and inhibitors can upregulate and
downregulate the phosphorylation level of CREB, but CERB
inhibitors cannot affect the phosphorylation level of AMPK
(Figure 6).

BDNF, as a neurotrophic factor, is widely distributed
throughout the brain, especially in the hippocampus and cortex,
and has a wide range of neuroprotective and neurotrophic
functions (Eyileten et al, 2021). More and more studies have
revealed that BDNF can upregulate and exert neuroprotective
effects in cerebral ischemia (Ferrer et al, 2001; Zhang and
Pardridge, 2001). A study by Dmitrieva et al. found that in
acute ischemic stroke, the body’s endogenous self-protection
mechanism can be stimulated to increase the expression of
endogenous BDNF, thereby promoting repair of damaged
neurons; however, this compensation cannot completely offset
the neuronal damage caused by ischemia (Dmitrieva et al,
2010). Similarly, our study found an increased expression of
BDNF in both the cortex of the ischemic penumbra in cerebral
I/R injury in vivo and in HUVECs under OGD/R conditions
in wvitro and that metformin could further promote the
expression of BDNF. Increased BDNF expression in the cortex
of the ischemic penumbra was accompanied by the improvement
in cerebral I/R injury in vivo, which suggests that metformin
reduces cerebral I/R injury by promoting BDNF expression.

As a first-line hypoglycemic agent, metformin not only has a good
hypoglycemic effect (Sanchez-Rangel and Inzucchi, 2017) but can also
reduce the risk of cardiovascular (Ghotbi et al, 2013) and
cerebrovascular (UK Prospective Diabetes Study (UKPDS) Group,
1998) events and improve the prognosis of stroke patients (Mima
etal,, 2016). Previous studies have suggested that metformin could play
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a positive role in neurodegenerative conditions, such as Parkinson’s
disease (Fitzgerald et al,, 2017; Mor et al,, 2020) and Alzheimer’s disease
(Luchsinger et al., 2016; Farr et al., 2019; Xu et al,, 2021). In the present
study, we found that acute treatment with low-dose metformin
(10 mg/kg) reduced cerebral I/R injury in a rat model of
tMCAO. Interestingly, acute treatment with a low concentration
of metformin (20 uM) promoted BDNF expression in HUVECs
under OGD/R conditions in vitro, while BDNF expression
continued to decrease as the concentration of metformin
increased. This implies that acute treatment with metformin can
only exert a protective effect at low concentrations.

Moreover, metformin not only reduces cerebral I/R injury in a
global cerebral ischemia model (Ashabi et al., 2014; Ashabi et al., 2015;
Ge etal., 2017) but also has a neuroprotective effect in a model of focal
cerebral ischemia (Li et al., 2010; Venna et al, 2014). The above
findings were also observed under long-term chronic metformin
treatment. A study by Li et al. revealed that acute treatment with
metformin aggravated brain damage in the focal ischemia model,
which seems to be inconsistent with our experimental results (Li et al.,
2010). There are several possible explanations for these conflicting
findings. First, the dose of metformin used in our experiment was
10 mg/kg, which is much smaller than the 100 mg/kg dose used in the
study by Li et al. Treatment with the various concentrations of
metformin resulted in differences in the degree of AMPK
activation. Moderate AMPK activation can counteract cerebral
ischemic damage by strengthening catabolic pathways and
reducing ATP consumption (Manwani and Mccullough, 2013;
Jiang et al,, 2018). A study by Jiang et al. found that pretreatment
with acute low-dose metformin can moderately activate AMPK and
has a neuroprotective effect in a model of focal cerebral ischemia
(Jiang et al., 2014). Moreover, high-dose metformin has been shown
to markedly enhance AMPK activation and lactic acid accumulation,
promote ATP consumption, and ultimately aggravate neuronal death
(Jiang et al, 2018). Second, metformin was administered at the
beginning of the reperfusion period in our study, while it was
administered as preconditioning before ischemia in the study by Li
etal. Our treatment was a therapeutic intervention, whereas theirs was
a preventive intervention, and different intervention times sometimes
have different results.

Interestingly, BDNF siRNA transfection in HUVECs was able to
partially reverse the metformin-dependent increase in SH-SY5Y cells
apoptosis under OGD/R conditions based on the results of the
Transwell chamber assay. This result indicates that metformin can
reduce the apoptosis level of SH-SY5Y cells by promoting the BDNF
expression of HUVECs but also through other currently unclear
mechanisms. In addition, according to the ELISA results of the
metformin-treated HUVECs  culture  supernatant, BDNF
concentration was approximately 66 pg/ml, while our in vitro
experiments showed that BDNF could reduce apoptosis levels of
SH-SY5Y cells at 20 ng/ml under OGD/R conditions. These results
also indicate that metformin not only promoted the BDNF
expression of HUVECs, but also enhanced the protective effect of
BDNF through an uncertain mechanism. This will be further
explored in our future studies.

This research also has many shortcomings. First, we only focused
on the effects of metformin in the acute phase and did not investigate
the effects and mechanisms of chronic low-dose metformin. We will

Metformin in Cerebral Ischemia-Reperfusion Injury

address these issues in future experiments. Second, we only explored
whether BDNF promoted the proliferation of SH-SY5Y cells and
reduced apoptosis under OGD/R conditions but not the specific
mechanism of BDNF functions, which will be also one of our later
research focuses. Finally, the intraperitoneal injection method used
in in vivo experiments can greatly reduce the first-pass effect of the
drug, but it is also more invasive. Therefore, the protective effects of
oral metformin against ischemic stroke should be investigated.

In conclusion, this study shows that acute treatment with low-
dose metformin can upregulate BDNF expression in the ischemic
penumbra via the AMPK/CREB pathway, thereby reducing
cerebral I/R injury. The ability of exogenous BDNF to enter the
brain tissue is extremely limited because of the blood-brain barrier;
this study may lead to a new and effective way of activating
endogenous BDNEF. Furthermore, our findings provide new
evidence and support for metformin as a treatment that can
be synchronized with the revascularization of acute cerebral
infarction.
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Background: Vessel recanalization is the main treatment for ischemic stroke; however,
not all patients benefit from it. This lack of treatment benefit is related to the accompanying
ischemia-reperfusion (I/R) injury. Therefore, neuroprotective therapy for I/R Injury needs to
be further studied. Paeonia lactiflora Pall. is a commonly used for ischemic stroke
management in traditional Chinese medicine; its main active ingredient is paeoniflorin
(PF). We aimed to determine the PF’s effects and the underlying mechanisms in instances
of cerebral I/R injury.

Methods: We searched seven databases from their inception to July 2021.SYRCLE’s risk
of bias tool was used to assess methodological quality. Review Manager 5.3 and STATA
12.0 software were used for meta-analysis.

Results: Thirteen studies, including 282 animals overall, were selected. The meta-
analyses showed compared to control treatment, PF significantly reduced neurological
severity scores, cerebral infarction size, and brain water content (p = 0.000). In the PF
treatment groups, the apoptosis cells and levels of inflammatory factors (IL-1p) decreased
compared to those in the control groups (p = 0.000).

Conclusion: Our results suggest that PF is a promising therapeutic for cerebral I/R injury
management. However, to evaluate the effects and safety of PF in a more accurate
manner, additional preclinical studies are necessary.

Keywords: preclinical evidence, potential mechanisms, paeoniflorin, cerebral ischemia-reperfusion injury, animal
studies

INTRODUCTION

Stroke is the second leading cause of death worldwide, and 84.4% of stroke cases are related to
ischemia (Collaborators, 2019). Although mechanical thrombectomy and intravenous thrombolysis
have been widely recommended and used in the treatment of acute ischemic stroke patients, the
treatments are not effective in all patients (Powers et al., 2018; Liu et al., 2020). Besides some known
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FIGURE 1 | Chemical structure of paeoniflorin.

complications, subsequent ischemia/reperfusion (I/R) injury may
be the most important factor resulting in a poor prognosis
(Kalogeris et al., 2016). Cerebral I/R injury is characterized by
a biochemical cascade of ischemic reactions that result in brain
tissue deterioration, limiting the beneficial effects of vascular
recanalization (Hu et al.,, 2015). I/R injury is involved in some
complicated pathophysiological mechanisms, such as the release
of excitatory neurotransmitters, the acceleration of Ca®" influx
into cells, free radical damage, neuronal apoptosis,
neuroinflammation, and fat decomposition (Siesjo, 1992;
Wang and Lo, 2003; Wu et al, 2018). Therefore, currently
used neuroprotective therapies aimed at I/R injury
management need further research.

Animal models of ischemic stroke are crucial for determining
the pathophysiology of ischemic stroke and creating novel stroke
therapies. In vivo stroke models are now predominantly mice and
rats, which is understandable given the lower costs of
procurement and maintenance, as well as the ease of
monitoring and tissue processing (Sommer, 2017). The
intraluminal suture middle cerebral artery occlusion (MCAO)
model, which does not need craniectomy, is the most commonly
used experimental model for ischemic stroke in rats (Alrafiah,
2021).

Paeoniflorin for Cerebral Ischemia/Reperfusion Injury

Paeoniflorin (PF, C23H28011; Figure 1) is a natural
compound derived from Paeonia lactiflora Pall. (Family
Ranunculaceae, molecular mass: 480.5) (Sterne et al., 2019).
Traditional Chinese medicine (TCM) theory believes that
Paeonia lactiflora Pall. has the function of clearing heat and
cooling blood, promoting blood circulation and removing blood
stasis. As an important component of traditional TCM
compounds such as Buyanghuanwu Decoction and Huangqi
Guizhi Wuwu Decoction, Paeonia lactiflora Pall. is widely
used in stroke treatment in China (Chen et al., 2019; He et al.,
2021). The neuroprotective benefits of PF have received a lot of
attention in recent years. At present, the effects and mechanisms
of PF on the central nervous system mainly come from in vitro
experiments on nerve cells (such as primary cortical and
hippocampal neurons, PC12 cells, and microglia cells) and in
vivo investigations (Hu et al., 2018; Cong et al., 2019; Cheng et al.,
2021). Studies have confirmed that PF can cross the blood-brain
barrier, and its mechanism may be related to the mode of cell
death, inflammation, oxidative stress and epigenetics (Jiao et al.,
2021). Furthermore, PF has demonstrated its potential
therapeutic utility in preventing I/R damage in a variety of
tissues (Xie et al, 2018; Wen et al, 2019).Because of the
complexity of clinical medicine, many differences between
preclinical and clinical studies have prevented the further
application of PF. A systematic review can not only offer
reliable evidence but also facilitate the choice of an
appropriate medicine for clinical experiments (van Luijk et al.,
2013). However, no thorough examination of the effectiveness of
PF pooled in preclinical investigations has been done to date. For
this reason, we conducted a full systematic review and meta-
analysis to evaluate PF’s effects in small-animal research on brain
I/R Injury.

MATERIALS AND METHODS

This is a systematic review and meta-analysis based on Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA).

Search Strategy

We systematically searched the following seven databases: China
National Knowledge Infrastructure, Wanfang Database, VIP
Database, PubMed, Cochrane Library, Web of Science, and
EMBASE from their inception to July 2021. The search terms
used were as follows: (“Paeoniflorin® OR “Peoniflorin”) AND
(“Brain Ischemia” OR “Ischemic Encephalopathy” OR “Cerebral
Ischemia®) AND (“Reperfusion Injury” OR “Reperfusion
Damage” OR “Ischemia-Reperfusion Injury”). In addition, all
review articles, meeting abstracts, and their references were
examined thoroughly without language limitations. The search
target was research on animals.

Inclusion and Exclusion Criteria

The inclusion criteria were as follows: (1) establishment of I/R
experimental models through MCAQO; (2) PF as the only
consistent therapeutic medication and the use of placebo or no
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treatment in animals in the control group; and (3) animal
research. The exclusion criteria were as follows: (1)
establishment of I/R experimental models through other
means; (2) PF not being the only intervention; (3) treatment
of animals by using PF analogs; (4) literature with repetitive
content; and (5) in vitro studies.

Data Extraction

Two reviewers (Anzhu Wang and Pingping Huang)
independently selected literature per the abovementioned
criteria and resolved differences by discussion with assistance
from a third reviewer (Xiaochang Ma). The following
information was extracted from each study and is summarized
in a table: (1) study features (names of the first authors and
publication data); (2) animal characteristics including species,
sex, weight, and age; (3) key elements of the MCAO model—the
types of anesthetics used and duration of ischemia; (4)
information about interventions—administration route, dose,
and treatment time; and (5) mean and standard deviation
values of the results. When findings were recorded at different
time points, only those corresponding to the latest time point
were considered. When different doses of a medicine were
administered, the reviewers only record the highest dose. If
data was reported in the form of a figure, the reviewers used a
digital ruler, specifically the Adobe ruler, to determine the
numerical values. If there were several publications with
similar data, we only chose the earliest one or the one with
the most samples.

Quality Assessment

The included studies were assessed for bias by using the
SYRCLE’s risk of bias tool by two independent reviewers
(Anzhu Wang and Pingping Huang) (Hooijmans et al.,, 2014):
which are: selection bias (sequence generation, baseline
characteristics, and allocation concealment), performance bias
(random housing and blinding of investigators), detection bias
(random outcome assessment and blinding of the assessor to
outcomes), withdrawal bias (availability of incomplete outcome
data), selective reporting bias (selective outcome reporting), and
other bias (other sources of bias). When one required standard
was reached, one point was assigned. After evaluating 10
standards, each piece of literature was assigned a
comprehensive quality score. Two reviewers, Anzhu Wang and
Pingping Huang, resolved differences through discussion and
with assistance from Xiaochang Ma, the third reviewer.

Statistical Analysis

Reviewers adopted Review Manager 5.3 and STATA 12.0 for data
analysis. Outcomes were presented as standardized mean
differences with a 95% confidence interval. p < 0.05 indicated
statistically significant. There was statistical heterogeneity
between the Q test and I? results for the literature assessed.
p < 0.1 and I* >50% were regarded to indicate significant
heterogeneity; outcomes were assessed using a random-effects
model. p > 0.1 and I* < 50% were regarded as indicating no
heterogeneity; the outcomes were evaluated using a fixed-effects
model. Potential publication bias was examined and evaluated by

Paeoniflorin for Cerebral Ischemia/Reperfusion Injury

applying Egger’s test. Sensitivity and subgroup analyses for a
single study were performed using Metaninf.

RESULTS

Study Selection

We identified 452 studies in the database search, and 219 studies
remained after eliminating repeated studies. After reading titles
and abstracts, 44 studies are considered. Overall, 175 pieces of
literature were eliminated for the following reasons: (1) PF was
not the intervention drug, no animal experiment, or no MCAO
model; and (2) the articles were reviews or case reports. Finally, 13
were considered after reading the full text and 31 were eliminated.
The reasons for exclusion were: (1) non-continuous
administration; (2) redundant publications; (3) no ischemia-
reperfusion injury; and (4) non-availability of data. The
process of literature selection is shown in Figure 2.

Study Characteristics

A total of 13 studies (Xiao, 2005; Wang, 2008; Tang et al., 2010; He,
2014; Mao et al,, 2014; Rao, 2014; Zhang et al,, 2015; Liu, 2016; Chu
et al,, 2017; Ko et al,, 2018; Liao, 2018; Yu et al,, 2018; Tang et al,
2021), including five English studies (Tang et al., 2010; Zhang et al,,
2015; Chu et al,, 2017; Ko et al,, 2018; Tang et al., 2021) and eight
Chinese studies (Xiao, 2005; Wang, 2008; He, 2014; Mao et al., 2014;
Rao, 2014; Liu, 2016; Liao, 2018; Yu et al., 2018),were considered. The
studies were published from 2005 to 2021. Five of these were master’s
or doctoral theses (Xiao, 2005; Wang, 2008; He, 2014; Rao, 2014; Liao,
2018). All of them were concerned with 282 male Sprague-Dawley
rats, whose weight varied from 180 to 350g In one study,
pentobarbital sodium was used to anesthetize animals (Yu et al,
2018), while isoflurane was used in another (Ko et al., 2018). Chloral
hydrate was used in the remaining 11 (Xiao, 2005; Wang, 2008; Tang
et al,, 2010; He, 2014; Mao et al., 2014; Rao, 2014; Zhang et al., 2015;
Liu, 2016; Chu et al., 2017; Liao, 2018; Tang et al., 2021). Moreover, in
five studies, PF was used before treatment (Xiao, 2005; Wang, 2008;
He, 2014; Mao et al., 2014; Liu, 2016), and in seven, it was used after
treatment (Rao, 2014; Zhang et al., 2015; Chu et al., 2017; Ko et al,
2018; Liao, 2018; Yu et al,, 2018; Tang et al., 2021). In one study, it was
used both before and after treatment (Tang et al., 2010). Furthermore,
in nine out of 13 studies, intraperitoneal administration was adopted
(Xiao, 2005; Wang, 2008; He, 2014; Zhang et al., 2015; Liu, 2016; Chu
etal, 2017; Ko et al.,, 2018; Yu et al., 2018; Tang et al., 2021), while in
three, intravenous tail injection was performed (Tang et al,, 2010;
Liao, 2018; Yu et al, 2018). In the final study, intragastric
administration was adopted (Mao et al, 2014). Neurological
severity scores (NSS) were reported in all studies. Three studies
(Xiao, 2005; Tang et al., 2010; Mao et al., 2014) referred to the scoring
method of Bederson et al. (1986), while three others (Chu et al., 2017;
Ko et al,, 2018; Tang et al., 2021) referred to the scoring method of
Chen etal. (2001). In seven studies (Wang, 2008; He, 2014; Rao, 2014;
Zhang et al., 2015; Liu, 2016; Liao, 2018; Yu et al,, 2018), the scoring
method of Longa et al. (1989) was used. Cerebral infarction size (CIS)
was reported in nine studies (Xiao, 2005; Wang, 2008; Tang et al,,
2010; He, 2014; Rao, 2014; Zhang et al., 2015; Liu, 2016; Liao, 2018;
Yu et al., 2018). One out of the nine studies did not mention the exact

Frontiers in Pharmacology | www.frontiersin.org

April 2022 | Volume 13 | Article 827770


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Wang et al. Paeoniflorin for Cerebral Ischemia/Reperfusion Injury
Records identified through database Additional records identified
.S searching through other sources
§ (n=452) (n=0)
€=
b=
£ v |
= Records after duplicates removed
(n=219)
[ | 1 Records excluded after abstract and title screening
% Records screened R (n=175)
= (n=219) "] 1.PF was not the intervention drug, no animal experiments, or
o no MCAO model
3 2.The articles were reviews or case reports
Full-text articles excluded, with reasons
1 - (n=31)
Full-text articles assessed for _ | 1.Non-continuous administration
eligibility ”| 2.Redundant publications
I~ (n=44) 3.No ischemia-reperfusion injury
% 4.Non-availability of data
&
w
Studies included in synthesis
(n=13)
A4
E Studies included in qualitative
2 synthesis
£ (meta_analysis)
(n=13)
FIGURE 2 | Flow diagram of the study-search process.

method (Liu, 2016). In three of the nine studies, infarct area/
contralateral brain area was used for CIS determination (Xiao,
2005; He, 2014; Rao, 2014). In the remaining five studies, CIS
determination was based on infarction area/total brain area
(Wang, 2008; Tang et al., 2010; Zhang et al., 2015; Liao, 2018; Yu
et al,, 2018). In five studies, the expression of the associated protein
was determined by western blot (WB) (Xiao, 2005; Wang, 2008; He,
2014; Chu et al, 2017; Tang et al, 2021), while in two, reverse
transcription-polymerase chain reaction (RT-PCR) was used (Xiao,
2005; He, 2014). In seven studies, the TUNEL assay was performed
(Wang, 2008; Tang et al., 2010; Mao et al,, 2014; Zhang et al,, 2015;
Liu, 2016; Ko et al, 2018; Tang et al, 2021). In eight studies,
immunohistochemistry (IHC) was performed (Wang, 2008; Tang
et al,, 2010; Mao et al., 2014; Zhang et al., 2015; Liu, 2016; Ko et al.,
2018; Liao, 2018 Yu et al, 2018), while in two, an
immunofluorescence (IF) assay was conducted (Ko et al, 2018;
Tang et al, 2021). Three studies reported brain water content
(BWC) (He, 2014; Rao, 2014; Chu et al, 2017). In two studies,
correlated factors were determined using an enzyme linked
immunosorbent assay (ELISA) (Liao, 2018; Tang et al, 2021).
Two studies focused on morphological changes (Rao, 2014; Yu
et al,, 2018). One study reported results for peripheral blood cells
(Tang et al., 2010). One study reported superoxide dismutase (SOD)
levels (He, 2014), and another reported brain specific gravity and
blood-brain barrier (BBB) permeability (Chu et al., 2017). One study
reported the Rotarod test (Ko et al., 2018), and another reported the

foot fault test (Tang et al., 2021). The general features of the included
studies are listed in Table 1.

Methodological Quality of the Included

Studies

The quality scores of studies ranged from 3 to 6. Two studies did
not report random grouping (Tang et al., 2010; Tang et al., 2021).
Only three studies out of 11 reported the exact randomization
method (He, 2014; Liao, 2018; Yu et al.,, 2018), despite the fact that
11 studies reported randomization (Xiao, 2005; Wang, 2008; He,
2014; Mao et al., 2014; Rao, 2014; Zhang et al., 2015; Liu, 2016; Chu
et al, 2017; Ko et al., 2018; Liao, 2018; Yu et al., 2018). In five
studies (Tang et al., 2010; Rao, 2014; Chu et al., 2017; Ko et al,
2018; Tang et al., 2021), the modeling method was assessed using
doppler analysis, and in six studies (Wang, 2008; He, 2014; Mao
et al.,, 2014; Liu, 2016; Liao, 2018; Yu et al., 2018), NSS was used to
guarantee the unification of experimental baseline standards. In the
remaining studies, the modeling method was not assessed. Four
studies (Tang et al.,, 2010; Chu et al., 2017; Ko et al., 2018; Tang
et al, 2021) reported the feeding environment of the animals.
However, none of the studies reported allocation concealment,
blinding of investigators, or random outcome assessments. In four
studies (Tang et al., 2010; Zhang et al., 2015; Chu et al., 2017; Ko
etal, 2018), assessors were blinded to outcomes. The data reported
in three studies were incomplete (He, 2014; Liao, 2018; Yu et al,,
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TABLE 1 | Basic characteristics of the included studies.

Author

Xiao,
(2005)

Wang,
(2008)

Tang
et al.
(2010)

(2014)

et al.
(2014)
Rao,
(2014)

Zhang
etal.
(2015)
Liu,
(2016)

Chuetal.
(2017)

Liao,
(2018)
Yu et al.
(2018)
Ko et al.
(2018)
Tang

et al.
(2021)

Type

Doctoral
thesis

Master’s
thesis

Journal

Master’s
thesis

Journal

Master’s
thesis

Journal

Journal

Journal

Master’s
thesis
Journal

Journal

Journal

Species

Rat/M/SD
220-250 g

Rat/M/SD
250 =30 g

Rat/M/SD
300-350 g

Rat/M/SD
250-300 g

Rat/M/SD
250+ 109

Rat/M/SD
260-300 g

Rat/M/SD
280 +20 g

Rat/M/SD
250-300 g

Rat/M/SD
280-300 g

Rat/M/SD
200+ 209
Rat/M/SD
180-220 g
Rat/M/SD
250-350 g
Rat/M/SD
200-250 g

Anesthetic

Chloral hydrate

Chloral hydrate

Chloral hydrate

Chloral hydrate

Chloral hydrate

Chloral hydrate

Chloral hydrate

Chloral hydrate

Chloral hydrate

Chloral hydrate
Pentobarbital
sodium

Isoflurane

Chloral hydrate

Ischemia
duration

90 min

90 min

90 min

90 min

90 min

90 min

2h

24 h

90 min

1h

1h

15 min

2h

Time
of PF administration

48 h before MCAO

30 min before MCAO

10 min before MCAO/

30 min after MCAO

48 h before MCAO

3d before MCAO

30 min after MCAO

2 h after MCAO

30 min before MCAO

1 h after I/R

8 h after I/R

6 h after I/R

24 h after MCAO

2 h after MCAO

Control
group

NS

NS

PBS

NS

PBS

NS

NS

NS

NM

NS
NS
NM
Vehicle

(PBS +
DMSO)

Experimental
group
(daily

dosage,
approach,
duration)

40 mg/kg,ip, 24 h

60 mg/kg,ip, 24 h

20 mg/kg,iv, 24 h

20 mg/kg,ip, 72 h

200 mg/kg,ig, 24 h

40 mg/kg
(20 mg/kg,bid),
ip, 24 h

10 mg/kg

(5 mg/kg,bid),ip,7d
60 mg/kg,ip, 24 h
10 mg/kg (5 mg/kg),
bid,ip,7d

5 mg/kg,iv,7d

5 mg/kg,iv,7d

20 mg/kg,ip,6d

10 mg/kg,ip,14d

Outcome
measures

1.01S,2. NSS,3.RT-PCR(COX-2]), 4. WB(COX-2])

1.01S,2. NSS,3.TUNEL,4.IHC(FAS], TNF-al),
5.WB(P-P38], INOS )

1.NSS, 2. CIS, 3.IHC(ED1 |, IL-1B}, TNF-a/, ICAM-
1], MPO|),4.TUNEL

1.C1S,2. NSS,3.BWC,4.S0D1,5.RT-
PCR(Nrf21),6. WB(Nrf21)

1.NSS.2. TUNEL.3.HC(CHOP )

1.NSS,2.CIS,3.BWC.4.Morphological changes

1.NSS,2.CIS,3.HC(NeuNT, GFAPT, MAP-
2]),4.TUNEL

1.NSS,2.CIS,3.TUNEL,4.IHC (Bcl-21, Bax|)

1.NSS,2.BWC,3.Brain specific gravity, 4.BBB
permeability,5.WB(Cx43|,AQP4 | ,p-JNKT,p-
ERKe,p-p38«), 6.IF(AQP4])
1.NSS,2.CIS,3.ELISA(L-1B|, TNF-a), 4.IHC(NF-
kB/P65])

1.NSS,2.CIS,3.Morphological changes,
4.IHC(p-AktT)

1.NSS, 2.Rotarod test, 3.IHC( nAChRs a4f2],
Ki671), 4.IF(CD68T, nAChR a71), 5. TUNEL
1.NSS,2.foot-fault test,3.WB(lba-1|, JNKe,p-
JINK]|,nuclear P65|),4.ELISA(TNF-a/, IL-1B| and
IL-6]),5.IF(ba-1], VWFT,DCXT,P65]),6. TUNEL

Proposed
mechanism

Activation of adenosine A1
receptors and
downregulation of COX-2
Anti-apoptosis,
downregulation of p-p38,
iNOS, FAS, and TNF-a
Anti-inflammation and anti-
apoptosis

Anti-oxidative stress,
activation of SOD, and
upregulation of the Nrf2
pathway

Anti-apoptosis,
downregulation of CHOP

Downregulation of
arachidonic acid expression
via cyclooxygense
pathways, activation of
CBR2

Deactivation of astrocytes
and anti-apoptosis

Anti-apoptosis by
downregulation Bax and
activation Bcl-2
Downregulation Cx43 and
AQP4 via JNK pathway
activation

Downregulation NF-kB
pathway, anti-inflammation
Activation PIBK/Akt signaling
pathway

Anti-apoptosis and
promotion of neurogenesis
Anti-inflammation and
promotion of neurogenesis

AKT, Protein kinase B; AQP4, Aquaporin4; BAX, BCL-2, associated X; BBB, Blood-brain barrier; BCL-2, B-cell lymphoma-2; Bid, Bis in di; BWC, brain water content; CBR2, Cannabinoid 2 receptors; CHOP, C/EBP, homologous protein;
CIS, cerebral infarction size; COX-2, Cyclooxygenase 2; Cx43, Connexin43; d, Day; DCX, doublecortin; ED1, Mouse anti rat CD68; ELISA, Enzyme linked immunosorbent assay; ERK, Extracellular signal-regulated kinase; FAS, fas cell surface
death receptor; GFAP, glial fibrillary acidic protein; h, Hour; i.g, Irrigation; i.p., intraperitoneal; i.v., intravenous; Iba-1, lonized calcium-binding adapter molecule 1; ICAM-1, Intercellular adhesion molecule-1; IF, immunofiuorescence; IHC,
immunohistochemistry; IL-18, Interleukin-18; IL-6, Interleukin-6; iINOS, inducible nitric oxide synthase; JNK, c-Jun N-terminal kinase; Ki67, Mitotic cell marker; MAP-2, Microtubule-associated protein 2; MCAO, middle cerebral artery

occlusion; min, Minute; MPO, myeloperoxidase; nAChRsa4 2, a4 32 nicotinic acetylcholine receptors; nAChRa7, a7 nicotinic acetylcholine receptor; NeulN, Neuron-specific nuclear; NF-xB/P65, Nuclear transcription factor-kappa B; NM, not
mentioned; Nrf2, Nuclear factor erythroid 2-related factor 2; NS, normal saline; NSS, neurological severity score; p-AKT, Phosphorylated AKT; PBS, Phosphate-buffered saline; p-ERK, Phosphorylated ERK; PISK, Phosphoinositide 3-kinases;
p-JNK, Phosphorylated JNK; p-P38, Phosphorylated P38; RT-PCR, Reverse transcription-polymerase chain reaction: SD. Sprague-Dawley; SOD, Superoxide dismutase; TNF-a, Tumor necrosis factor-a; VWF, von willebrand factor; WB,
Western blot. 1, upregulated; |, downregulated; <, No difference.
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TABLE 2 | The research quality of the included studies.

Study 0] @] ® @
Xiao, (2005) 0 0 0 0
Wang, (2008) 0 1 0 0
Tang et al. (2010) 0 1 0 1
He, (2014) 1 1 0 0
Mao et al. (2014) 0 1 0 0
Rao, (2014) 0 1 0 0
Zhang et al. (2015) 0 0 0 0
Liu, (2016) 0 1 0 0
Chu et al. (2017) 0 1 0 1
Liao, (2018) 1 1 0 0
Yu et al. (2018) 1 1 0 0
Ko et al. (2018) 0 1 0 1
Tang et al. (2021) 0 1 0 1

®

[eNeleoNolNolNoNelNoNoNoNeoNoNol

Paeoniflorin for Cerebral Ischemia/Reperfusion Injury

® ] ® Scores
0 0 1 1 1 3
0 0 1 1 1 4
0 1 1 1 1 6
0 0 0 1 1 4
0 0 1 1 0 3
0 0 1 1 1 4
0 1 1 0 1 3
0 0 1 0 1 3
0 1 1 1 1 6
0 0 0 1 1 4
0 0 0 1 1 4
0 1 1 1 1 6
0 0 1 1 1 5

®Sequence generation; @Baseline characteristics; @Allocation concealment; @Random housing; ®Blinding of investigators, ®Random outcome assessment; @Blinding of assessors
to the outcomes; ®Incomplete outcome data; ®@Selective outcome reporting; @Other sources of bias.

2018). Results were inconsistent with the research methods in two
studies (Zhang et al, 2015; Liu, 2016). One study reported the
supply of new animals (Mao et al., 2014). The general features of
the included studies are shown in Table 2 and Figure 3.

NSS

According to p < 0.1 and I* > 50%,an analysis of NSS data in 13
studies (Xiao, 2005; Wang, 2008; Tang et al., 2010; He, 2014; Mao
et al., 2014; Rao, 2014; Zhang et al., 2015; Liu, 2016; Chu et al,,
2017; Ko et al., 2018; Liao, 2018; Yu et al., 2018; Tang et al., 2021)
showed significant heterogeneity among the results of the studies
(p = 0.000, I? = 74.6%). A random-effects model was used for the
analyses, and in comparison with the control group, PF was
shown to reduce the NSS (SMD = -2.04, 95% CI = [-2.64, —1.43],
p = 0.000). After sensitivity analysis of the included studies, PF
was still shown to reduce the NSS in comparison with the control
group (Figure 4). Subgroup analysis indicated that the
improvement in the NSS summarized estimated value did not
depend on the PF intervention time, duration, daily dosage, and
ischemia time (Table 3). Meta-regression did not demonstrate a
prominent influence of the covariates (intervention time,
duration, daily dosage, ischemia time, sample size, route of
administration and anesthetic) on the effects of PF (Table 4).

CIS

Nine studies (Xiao, 2005; Wang, 2008; Tang et al., 2010; He, 2014;
Rao, 2014; Zhang et al., 2015; Liu, 2016; Liao, 2018; Yu et al,,
2018) presented CIS data. According to p < 0.1 and I* > 50%, and
the results showed significant heterogeneity (p = 0.000, I* =
88.1%). In comparison with the control group, PF was shown
to reduce the CIS in the random-effects model (SMD = —4.78,
95% CI = [-6.51, —3.05], p = 0.000). After sensitivity analysis of
the included studies, PF was still shown to reduce the CIS in
comparison with the control group (Figure 5).

BWC

Three studies (He, 2014; Rao, 2014; Chu et al.,, 2017) presented
data for BWC, and the results showed no heterogeneity according
to p > 0.1 and I < 50% (p = 0.383, I* = 0.0%). In comparison with

the control group, PF was shown to alleviate BWC in analyses
with the fixed-effects model (SMD = -3.03, 95% CI = [-4.35,
-1.71], p = 0.000; Figure 6).

Other Outcomes

Seven studies (Wang, 2008; Tang et al., 2010; Mao et al., 2014;
Zhang et al., 2015; Liu, 2016; Ko et al., 2018; Tang et al., 2021)
presented the results of TUNEL staining. Among these, one study
(Zhang et al., 2015) was ruled out because the data were not
available, and another study (Tang et al., 2021) was ruled out
because of substantial heterogeneity in the data. A fixed-effects
model was used with the last five studies (Wang, 2008; Tang et al.,
2010; Mao et al., 2014; Liu, 2016; Ko et al., 2018) because of no
heterogeneity among them according to p > 0.1 and I> < 50% (p =
0.103, I* = 48.1%). In comparison with the control group, PF was
shown to inhibit apoptosis (SMD = -2.62, 95% CI = [-3.32,
-1.93], p = 0.000; Figure 7A).

Two studies presented the results of ELISA (Liao, 2018;
Tang et al., 2021), of which one reported the findings for
interleukin-1p (IL-1f), tumor necrosis factor-a(TNF-a), and
interleukin-6(IL-6) (Tang et al., 2021), while the other one
reported data for IL-18 and TNF-a (Liao, 2018). According to
p > 0.1 and I’ < 50%, the IL-1B results showed no
heterogeneity (p = 0.360, I = 0.0%). In comparison with
the control group using the fixed-effects model, PF was shown
to decrease the level of IL-1B (SMD = —8.45,95% CI = [-11.22,
-5.69], p = 0.000; Figure 7B), and the TNF-a results showed
significant heterogeneity (p = 0.002, I’ = 89.9%) according to
p <0.1and I” > 50%. In analyses with a random-effects model,
in comparison with the control group, PF was shown to
decrease the level of TNF-a, but the difference was not
statistically significant (SMD = -10.57, 95% CI = [-21.54,
0.39], p = 0.059; Figure 7C).

Two studies reported morphological changes (Rao, 2014;
Yu et al,, 2018). In comparison with the control group, most
nerve cells in the hippocampus of cornu ammonis 1(CA1l) in
the PF group were characterized by structural integrity, light
morphological changes, and less karyopyknosis. In other
analyses, one study reported that PF could improve the

Frontiers in Pharmacology | www.frontiersin.org

142

April 2022 | Volume 13 | Article 827770


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Wang et al.

Paeoniflorin for Cerebral Ischemia/Reperfusion Injury

4
3 E 7 @ 3 = c o
= 1 = = @ @ C @ & T =
= c o = = =3 o o = o g ) =
<~ = © - =z I = w [ T
o — (o o = - [ — —_<| = T i -
S S
o = = = o = o = = = = = { o=
2 8 g 8 8 9 @ 8 8 9 & 8 9
w o n oo = Ed E E [=7] [=u] [=u] Eo -
W (@2 | @)~ | @ |~ | Sequence generation { selection bias)
~ ® OO OO O O O M| | O baselnecharacteristics ( selection bias)
N ) N[ [ | ~ W [ [ | | e [ w0 | Allocation concealment ¢ selection hias)
v || | @ @] (@ | @ |Random housing { performance hias)
N ~ ~ ~ | ~ ) ) ~ ~ [ = [ | Blinding investigators { perfaormance bias)
~ ~ ~ ~ SO N ~ ~ ~ ~ ~ | = [ = | Random outcome assessment § Measurement hias)
@ v ||| @~ ||| @]~ | @ |Blinding outcome assessor { Measurement bias)
O -~ OO 6666 @ | @) ncompletoutcomedata ( Attrition bias)
v @ O 000 e O 0| 0|e)|-seedtveoutcome reporting { Reporting hias)
000000 - e e e e e omrmumsmorm
B

Sequence generation ¢ selection hias)

Baseline characteristics ¢ selection hias?

Allocation concealment ¢ selection bias)

Random housing (performance hias)

Blinding investigators (performance hias?

Random outcome assessment ¢ Measurement bias)
Blinding outcome assessor ¢ Measurement hias?
Incomplete outcome data ¢ Attrition bias)

Selective outcome reporting ¢ Reporting hias)

Other sources of hias

0% 25% 50% 75%  100%

. Low risk of hias

|:| Unclear risk of hias

Bl Hioh risk of bias

bias graph.

FIGURE 3 | Evaluation of the literature quality results obtained through SYRCLE's risk of bias based on the Cochrane tool. (A) Risk of bias summary. (B) Risk of

activity of SOD in the MCAO model (He, 2014); one study reported
that PF could increase brain-specific gravity and reduce BBB
permeability in the MCAO model (Chu et al, 2017); one study
(Ko et al,, 2018) reported the findings for the Rotarod test and one
study (Tang et al., 2021) reported the findings for the foot-fault test,
and the results of both tests showed that PF could improve
neurological symptoms. The results of WB (Xiao, 2005; Wang,

2008; He, 2014; Chu et al, 2017; Tang et al, 2021), RT-PCR
(Xiao, 2005; He, 2014), IHC (Wang, 2008; Tang et al., 2010; Mao
et al,, 2014; Zhang et al., 2015; Liu, 2016; Ko et al,, 2018; Liao, 2018;
Yu et al,, 2018), and IF (Ko et al,, 2018; Tang et al., 2021) are shown
in Table 1. Complete data can be found in the Supplementary
Table S1 and the PRISMA 2020 ChecKlist is in the Supplementary
Table S2.
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FIGURE 4 | Forest plots of PF for NSS. (A) Effects of PF on decreasing the NSS in comparison with the control group; (B) sensitivity analysis of PF for NSS.

Publication Bias Egger’s test). The adjusted random-effects pooled HR of —2.036 (95%
For the NSS subset, Egger’s linear regression test was performed, and ~ CI, —2.638 to —1.435), obtained using the trim-and-fill method, was
it indicated the possibility of publication bias (P > It = 0.004 for ~ unchanged because no trimming was performed (Figure 8).
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TABLE 3 | Study characteristics accounting for heterogeneity in the NSS subgroup analysis.

Analysis References Fixed-effects p Random-effects p 12 ph
model, HR model HR (%)
(95% ClI) (95% ClI)
NSS Chu et al. (2017), He, (2014), Ko et al. (2018), Liao, (2018), Liu, -1.657(-1.943, —-1.370)  0.000 —-2.036 (-2.638, 0.000 74.6 0.000
(2016), Mao et al. (2014), Rao, (2014), Tang et al. (2021), Tang —1.435)
et al. (2010), Wang, (2008), Xiao, (2005), Yu et al. (2018), Zhang
et al. (2015)
Subgroup 1
pre-treatment He, (2014), Liu, (2016), Mao et al. (2014), Tang et al. (2010), —-1.430(-1.835-1.025)  0.000 -1.806 (-2.620, 0.000 69.5 0.006
Wang, (2008), Xiao, (2005) -0.992)
post-treatment Chuetal. (2017), Ko et al. (2018), Liao, (2018), Rao, (2014), Tang  -1.883 (-2.288, —-1.479)  0.000 -2.198 (-3.107, 0.000 78.3 0.000
etal. (2021), Tang et al. (2010), Yu et al. (2018), Zhang et al. (2015) —1.289)
Subgroup 2
Duration = 24 h Liu, (2016), Mao et al. (2014), Rao, (2014), Tang et al. (2010), -1.387 (-1.778,-0.995)  0.000 -1.791 (-2.677, 0.000 76.6 0.002
Wang, (2008), Xiao, (2005) —-0.906)
Duration >24 h Chu et al. (2017), He, (2014), Ko et al. (2018), Liao, (2018), Tang  -1.967(-2.387, —1.547)  0.000 -2.291 (-3.131, 0.001 72.1  0.001
et al. (2021), Yu et al. (2018), Zhang et al. (2015) -1.452)
Subgroup 3
Daily dosage Liao, (2018), Tang et al. (2021), Yu et al. (2018) -1.994 (-2.614, -1.373)  0.000 -2.912 (-5.104, 0.000 89.3 0.000
<10 mg/kg -0.721)
Daily dosage Chu et al. (2017), He, (2014), Ko et al. (2018), Tang et al. (2010), -1.681 (-2.173, -1.189) 0.000 -1.802 (-2.712,- 0.000 68.1 0.008
<20 mg/kg Zhang et al. (2015) 0.892)
Daily dosage Liu, (2016), Mao et al. (2014), Rao, (2014), Wang, (2008), Xiao, — -1.478(-1.906, —1.051)  0.000 -1.873 (-2.790, 0.000 73.4 0.005
>20 mg/kg (2005) —0.957)
Subgroup 4
Ischemia time Chu et al. (2017), He, (2014), Ko et al. (2018), Liao, (2018), Mao ~ -1.536 (-1.878,-1.193)  0.000 -1.905 (-2.595, 0.000 72.5 0.000
<90 min et al. (2014), Rao, (2014), Tang et al. (2010), Wang, (2008), Xiao, -1.216)
(2005), Yu et al. (2018)
Ischemia time Liu, (2016), Tang et al. (2021), Zhang et al. (2015) —-1.938(-2.461, -1.416)  0.000 -2.562 (-4.076, 0.001 84.8 0.001
>90 min -1.048)
TABLE 4 | Meta-regression analysis of potential sources of heterogeneity.
Heterogeneity factor Coefficient SE t p-value 95% ClI
Intervention time 1.255402 2.6493 0.47 0.660 —6.100234, 8.611038
Duration 2.497039 4.00392 0.62 0.567 -8.619626, 13.6137
Daily dosage 2.375791 3.072568 0.77 0.483 —6.155026, 10.90661
Ischemia time -0.0238451 2.307099 -0.01 0.992 —6.429379, 6.381689
Sample size 1.095033 1.722891 0.64 0.560 —3.688479, 5.878546
Route of administration 0.6597497 1.856658 0.36 0.740 —4.495158, 5.814658
Anesthetic 0.5705356 2.355482 0.24 0.821 —5.96933, 7.110401
DISCUSSION and brain innate immunity. This process can induce the formation of

The main targets in the treatment of acute stroke are recovery of
cerebral blood flow, and mechanical thrombectomy and intravenous
thrombolysis are the main therapeutic strategies at present. However,
the narrow time windows and contraindications are major obstacles
to the universal application of these therapeutic approaches. On the
other hand, vascular recanalization and I/R are often interrelated
(Smith et al., 2019). The supply of oxygen and glucose is reduced after
the onset of cerebral ischemia, and the recovered oxygen-rich blood
from the ischemic damaged brain tissue would offer the necessary
substrate for the generation of reactive oxygen species (ROS) if
recanalization occurs after the key time window (Eltzschig and
Eckle, 2011). ROS can not only lead to direct cell injuries and
apoptosis but can also trigger the activation of adaptive immunity

various destructive immunological mediators and effectors,
eventually creating a vicious circle (Mizuma and Yenari, 2017).
The mechanisms underlying ischemic stroke have been explored
in depth over many years, although clinical studies did not often yield
good outcomes. Thus, there is a constant need for the identification of
novel neuroprotective agents (Chamorro, 2018). The neuroprotective
effect of PF may be relevant to some molecular mechanisms, such as
the mode of cell death, inflammation, oxidative stress and epigenetics.

Cell death triggered by I/R injury not only consists of cell
necrosis but also includes programmed cell deaths such as
apoptosis (Liao et al., 2020), autophagia (Shen et al., 2021),
and pyroptosis (Gou et al, 2021). These procedures are
monitored by multiple signaling mechanisms by interfering
with a relevant signal pathway to save damaged cells (Datta
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FIGURE 5 | Forest plots of PF for CIS. (A) Effects of PF on decreasing the CIS in comparison with the control group; (B) sensitivity analysis of PF for CIS.

et al., 2020). Apoptotic pathways consist of the intrinsic
apoptotic pathway mediated by mitochondria and the
extrinsic apoptotic pathway mediated by death receptors,

among which caspase and the B-cell lymphoma 2 (BCL-2)
protein family are major molecules (Arya and White, 2015).
Studies have shown that PF can maintain the integrity of the
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FIGURE 6 | Forest plots of PF for BWC.
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mitochondrial membrane, reduce the level of BCL-2 associated
X (BAX), BCL-2 associated agonist of cell death (BAD),
downstream caspase-3 and caspase-9, and increase the levels
of BCL-2 and B cell lymphoma-extra large (BCL-XL), thereby
showing anti-apoptotic effects (Chen et al., 2017; Cong et al.,
2019; Liu et al., 2021; Zhang and Yang, 2021). In autophagia,
which is under the control of autophagia-related genes,
lysosomes are used to degrade unnecessary or damaged
organelles and proteins to maintain cellular homeostasis. The
activation conditions of I/R injuries (such as energy deprivation,
oxidative stress and endoplasmic reticulum stress) could result
in autophagia (Wu et al., 2018). Appropriate autophagia could
offer nerve protection and facilitate improvements in clinical
results by significantly decreasing the levels of neurons, glial,
and endothelial cells (Ajoolabady et al., 2021). PF has been
shown to promote autophagy by regulating the lipidation of
microtubule associated protein 1 light chain 3 (LC3-II) (Cao
et al., 2010). Pyroptosis is a kind of programmed death of
inflammatory  cells, which could cause lysis and
oligomerization of gasdermin protein family members,
including gasdermin D (GSDMD), cell perforation, or even
worse, cell death. The process is triggered by the activation
of inflammasome-mediated caspases, including caspase-1 (Tuo
et al., 2021). In comparison with apoptosis, pyroptosis occurs
more rapidly and is associated with a greater release of
proinflammatory factors (Tsuchiya, 2021). PF has been
shown to alleviate astrocyte pyroptosis caused by hypoxia
through the Caspase 1/GSDMD signal pathway (She et al,
2019).

Cerebral I/R injury triggers inflammation without microorganism
participation, although the inflammation shows features common
with those caused by invading pathogens. This immunologic

response involves the collection and activation of pattern
recognition receptors, including Toll-Like receptors (TLRs),
immune cells of the innate and adaptive immune systems, and
the activation of complement systems to pass signal events.
Because these responses may have adverse consequences, targeted
immune activation has become an emerging treatment modality for
I/R injuries (Carbone et al., 2019; Stoll and Nieswandt, 2019). Some
studies have shown that PF may have anti-inflammatory effects
through the signal pathway of TLR4- Myeloid differentiation factor
88 (MyD88)/Nuclear transcription factor-kappa B(NF-kB) (Zhang
et al, 2017; Yang et al, 2021) and Janus kinase 2 (JAK2)/Signal
transducer and activator of transcription 3(STAT3) (Zhang and
Yang, 2021).

Oxidative stress, which is generated as a result of elevated
levels of ROS and reactive nitrogen species and reduced levels of
antioxidants, can cause damage to cell components, including
proteins, lipids, and DNA (Zhao et al,, 2016). Malondialdehyde
(MDA), as the end product of lipid oxidation, can induce
crosslinking polymerization of proteins, nucleic acids, and
other macromolecules. In addition, due to MDA’s cytotoxicity,
the stronger its activity becomes, the stronger the lipid
peroxidization, which can trigger oxidative stress damage
(Menon et al,, 2020). SOD, an important active ingredient in
organisms, can eliminate harmful substances and maintain good
metabolic conditions. The lower the levels of SOD, the weaker the
cells’ ability to prevent oxidative damage (Cherubini et al., 2000).
Glutathione (GSH), a tripeptide consisting of y-amido bonds and
sulfydryl, can perform integrated detoxification and
antioxidation functions. GSH measurements are also a
common index to evaluate antioxidation ability (Higashi et al.,
2021).  Unsaturated double bonds in cytomembrane
phospholipids are easily attacked by oxygen radicals, resulting
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FIGURE 7 | (A) Forest plots of PF for TUNEL staining; (B) forest plots of PF for IL-1p; (C) forest plots of PF for TNF-a.

in the invagination of phosphatidylserine on cytomembranes,  have shown that PF can improve these targets and alleviate
incompleteness of cytomembranes, and release of lactate  the brain damage (Liu and Wang, 2013; Wang et al, 2020;
dehydrogenase (LDH) (Bhowmick and Drew, 2017). Studies Wu et al., 2020; Zhang and Yang, 2021).
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FIGURE 8 | Funnel plot of PF for NSS. (A) Assessment of publication bias in a funnel plot. (B) Bias assessment plot by Egger’s test.

Epigenetics, the transitive variation of phenotypic characters, is
unrelated to DNA changes, but may be influenced by external and
environmental factors. These factors can turn on and off genes and
thus affect the ways in which cells read genes. There are three
primary epigenetic mechanisms: DNA methylation, histone

deacetylase ~ (HDAC)  family  compete  with  histone
acetyltransferase (HAT) for the right to control lysine residue
acetylation that forms histone, thereby ensuring post-translational
acetylation of chromatin and many other non-histones (He et al,
2013). Many studies have reported the neuroprotective roles of

modification, and non-coding RNA  (Patsouras  and HDAC inhibitors in ischemic stroke (Patnala et al., 2017; Brookes
Vlachoyiannopoulos, 2019). (1) Members of the histone etal,, 2018), and PF has been shown to reduce ischemic brain injuries
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triggered by caspase 3-induced HDAC4 nuclear accumulation
during stroke (Liu et al, 2021). (2) The common non-coding
RNA consists of IncRNAs and miRNAs, and miRNAs have
especially attracted considerable attention in cerebral I/R injuries
studies in recent years (Ghafouri-Fard et al., 2020). miRNAs can not
only influence gene expression by inhibiting mRNA translation or
inducing degradation of mRNA, but also act as damage-associated
molecular patterns and cofactors activating inflammatory cascades
and thrombosis (Hu et al., 2015; Forouzanfar et al, 2019;
Mahjoubin-Tehran et al, 2021). Studies show that PF could
alleviate brain damage by manipulating miR-210 (Jiang et al,
2021) and miR-135a (Zhai et al., 2019).

This is the first preclinical meta-analysis to investigate the efficacy
of PF for cerebral I/R Injury. The findings confirmed that, in
comparison with the control group, PF showed improvements in
the NSS, CIS, and BWC by modulating a wide range of biological
mechanisms such as neuroinflammation, oxidative stress, and
apoptosis. The results of subgroup analysis showed that the longer
the ischemia duration, the more severe the injury and the better the
treatment effect of PF. The effect of PF administered post-MCAOQO was
better than that administered pre-MCAO, but this phenomenon could
be explained by the long observation period. Daily dosage <10 mg/kg
or >20mg/kg for PF were better than daily dosages <20 mg/kg,
indicating a “U-Shaped Dose-Response Curve” between PF dosage
and therapeutic effect. There are barriers to turning experimental
findings into clinically viable therapies, particularly in the research of
cerebrovascular disorders. It is important to confirm PF’s efficacy in
larger animal models, to evaluate the therapeutic benefit of
combination application with other neuroprotective treatments,
and to dlarify its potential side effects and safety in order to
advance PF into clinical trials as soon as feasible.

LIMITATIONS

First, the studies evaluated in this meta-analysis had problems
related to nonstandard methodologies and incomplete reports,
which may have influenced the effectiveness of our conclusions.
None of the included studies mentioned power calculation. The lack
of a formal sample size calculation leads to uncertainty about the
validity of statistical analysis. Particularly for allocation
concealment, blinding methods to address performance bias and
random outcome evaluation were not mentioned in any studies. A
few studies have also been reported on “random housing.” This
could be an issue as cage size, material, placement, bedding, and the
number of animals placed in the cage may affect thermoregulation
and stress level. Lack of information on these elements could
potentially contribute to bias. Second, ischemic stroke shows
high complexity and heterogeneity. Stroke experiment models
can only cover specific features of multiple diseases (Sommer,
2017). Clinical conditions are more complex; for example, many
factors may affect prognosis, including hypertension, diabetes, and
atrial fibrillation (Boehme et al, 2017). The design differences
between experimental studies and clinical studies can result in a
gradual decrease in effectiveness from early clinical trials to phase I1I
trials (Schmidt-Pogoda et al., 2020). Thus, to connect preclinical
and clinical studies, the quality of animal research methods requires

Paeoniflorin for Cerebral Ischemia/Reperfusion Injury

improvement through more systematic methods for the analysis of
experimental data and greater collaboration between clinical and
animal researchers. Third, the funnel plot shows high asymmetry,
indicating a publication bias in this study. The results of the Egger
test further validated this finding. However, the findings using the
trim-and-fill method were unchanged because no trimming was
performed. However, similar to other meta-analyses, these
conclusions are influenced by the fact that preclinical studies are
usually published if the analyses with experimental animals yield
positive results. The resultant lack of studies showing lack of
effectiveness or negative findings can result in overestimation of
the overall curative effects.

CONCLUSION

This preclinical meta-analysis suggests that PF could alleviate
cerebral I/R injuries and potentially serve as a neuroprotective
agent. Despite the lack of clinical trial data and potential
publication biases, these conclusion are worth consideration.
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GLOSSARY

AKT Protein kinase B

AQP4 Aquaporind

BAD BCL-2 associated agonist of cell death
BAX BCL-2 associated X

BBB Blood-brain barrier

BCL-2 B-cell lymphoma-2

BCL-XL B cell lymphoma-extra large
Bid Bis in die

BWOC Brain water content

CA1 Cornu ammonis 1

CBR2 Cannabinoid 2 receptors

CHOP C/EBP homologous protein

CIS Cerebral infarction size

COX-2 Cyclooxygenase 2

Cx43 Connexin43

d Day

DCX Doublecortin

ED1 Mouse anti rat CD68

ELISA Enzyme linked immunosorbent assay
ERK Extracellular signal-regulated kinase
FAS Fas cell surface death receptor
GFAP Glial fibrillary acidic protein
GSDMD Gasdermin D

GSH Glutathione

h Hour

HAT Histone acetyltransferase

HDAC Histone deacetylase

i.g Irrigation

i.p. Intraperitoneal

i.v. Intravenous

I/R Ischemia/reperfusion

Iba-1 Ionized calcium-binding adapter molecule 1

ICAM-1 Intercellular adhesion molecule-1
IF Immunofluorescence

ITHC Immunohistochemistry

IL-1f Interleukin-1p

IL-6 Interleukin-6
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iNOS Inducible Nitric Oxide Synthase

JAK2 Janus kinase 2

JNK c-Jun N-terminal kinase

Ki67 Mitotic cell marker

LC3-II Lipidation of microtubule associated protein 1 light chain 3
LDH Lactate dehydrogenase

MAP-2 Microtubule-associated protein 2
MCAO Middle cerebral artery occlusion

MDA Malondialdehyde

min minute

MPO Myeloperoxidase

MyD88 Myeloid differentiation factor 88
nAChRsa4p2 «4p2 nicotinic acetylcholine receptors
nAChRa7 a7 nicotinic acetylcholine receptor
NeuN Neuron-specific nuclear

NF-kB/P65 Nuclear transcription factor-kappa B
NM Not mentioned

Nrf2 Nuclear factor erythroid 2-related factor 2
NS Normal saline

NSS Neurological severity score

P-AKT Phosphorylated AKT

PBS Phosphate-buffered saline

P-ERK Phosphorylated ERK

PF Paconiflorin

PI3K Phosphoinositide 3-kinases

P-JNK Phosphorylated ]NK

p-P38 Phosphorylated P38

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-
Analyses

ROS Reactive oxygen species

RT-PCR Reverse transcription-polymerase chain reaction
SD Sprague-Dawley

SOD Superoxide dismutase

STATS3 Signal transducer and activator of transcription 3
TCM Traditional Chinese medicine

TLRs Toll-Like receptors

TNF-a Tumor necrosis factor-a

VWF Von Willebrand Factor

WB Western blot
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Neurons and neurogliocytes (oligodendrocytes, astrocytes, and microglia) are essential for
maintaining homeostasis of the microenvironment in the central nervous system (CNS).
These cells have been shown to support cell-cell communication via multiple mechanisms,
most recently by the release of extracellular vesicles (EVs). Since EVs carry a variety of
cargoes of nucleic acids, lipids, and proteins and mediate intercellular communication,
they have been the hotspot of diagnosis and treatment. The mechanisms underlying CNS
disorders include angiogenesis, autophagy, apoptosis, cell death, and inflammation, and
cell-EVs have been revealed to be involved in these pathological processes. Ischemic
stroke is one of the most common causes of death and disability worldwide. It results in
serious neurological and physical dysfunction and even leads to heavy economic and
social burdens. Although a large number of researchers have reported that EVs derived
from these cells play a vital role in regulating multiple pathological mechanisms in ischemic
stroke, the specific interactional relationships and mechanisms between specific cell-EVs
and stroke treatment have not been clearly described. This review aims to summarize the
therapeutic effects and mechanisms of action of specific cell-EVs onischemia. Additionally,
this study emphasizes that these EVs are involved in stroke treatment by inhibiting and
activating various signaling pathways such as ncRNAs, TGF-p1, and NF-«B.

Keywords: extracellular vesicles, oligodendrocytes, astrocytes, microglia, ischemic stroke, non-coding RNAs

1 INTRODUCTION

The neurovascular unit (NVU), which plays a vital role in neurological disorders, is a multifunctional
and morphological entity composed of many cells and materials, including neurons, neurogliocytes,
cells of brain vessels (pericytes, endothelial cells, smooth muscle cells), and the extracellular matrix
(Potjewyd et al., 2018; Forr¢ et al,, 2021). Neurons and neurogliocytes, including oligodendrocytes,
astrocytes, and microglia, are key players in maintaining the homeostasis of the microenvironment in
the central nervous system (CNS). Under ischemic stroke conditions, hypoxia induces cell death and
apoptosis and directly contributes to the release of pro- or anti-inflammatory cytokines and
autophagy-related proteins from glia and neurons, leading to neuroprotection or neurotoxicity
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(Pan et al., 2021; Xin et al., 2021; Hou et al., 2022). Extracellular
vesicles (EVs), present in multiple bodily fluids, are cell-derived
nanoscale particles enclosed by a protein-rich lipid bilayer
(Rodriguez and Vader, 2022). Based on their size, EVs can be
classified into three types as follows (Saltarella et al., 2021): 1)
apoptotic bodies (1,000-5,000 nm) are derived from apoptotic or
necrotic cells that break up into multiple vesicles (Théry et al,
2009; Saltarella et al., 2021); 2) microvesicles (200-1,000 nm) are
pinched off from the cell membrane directly (Théry et al., 2009;
Saltarella et al., 2021); and 3) exosomes, the smallest EVs
(30-150 nm), are produced via an active, energy-dependent,
and organized process (Théry et al., 2009; Brinton et al., 2015;
Saltarella et al., 2021). Although all classes of EVs and their
heterogeneous subsets differ in their biogenesis, diameter, and
cargo, owing to their natural composition, EVs have been
suggested to exhibit a common feature of good
biocompatibility and to transfer homing properties to specific
cell types (Moller and Lobb, 2020; Roefs et al., 2020). Therefore,
EVs are said to play an important role in intercellular
communication as a new paracrine mediator (Moller and
Lobb, 2020; Nagelkerke et al., 2021). All the aforementioned
types of cells have been found to naturally secrete EVs under
normal, physiological, and pathological conditions, owing to the
dynamics of the cell membrane (Zhang et al., 2021a; Forr¢ et al.,
2021). A great deal of evidence has demonstrated that EVs
derived from these cells exert biological functions by
modulating specific aspects, such as participation in
inflammatory reactions, cell migration, proliferation, apoptosis,
and autophagy (Gao et al., 2020; Zhang et al., 2021a; Tallon et al.,
2021). However, data on the precise mechanisms underlying such
a therapeutic approach are limited. In this review, we summarize
the effect of neuron/neurogliocyte-EVs in preclinical studies on
treating neurological disorders by regulating different signaling
pathways of cellular processes, such as cell apoptosis,
inflammation, angiogenesis, and autophagy, and summarize
the mutual mechanisms of the interaction between neuron/
glial cell-EVs and ischemic stroke conditions.

2 THE CHARACTERISTICS AND
BIOGENESIS OF
EXTRACELLULARVESICLES

Despite the identification of well-recognized classes of cell-to-cell
communication approaches, EVs have been a hot topic in the past
several decades as an essential method for transferring cargo to
short or long distances between cells (van Niel et al., 2018).
Nevertheless, only a few people are aware of the discovery of EVs
that can be traced back to the 19th century using a different
nomenclature (Kaddour et al., 2021). In the 1840s, Gulliver’s first
studied milky particles in the blood serum, which he called “the
molecular base of the chyle,” with very small globules of active
Brownian movement and a size ranging from —0.5 to 1 micron;
this may have been the first encounter with EVs in the report
(Gage and Fish, 1924). All eukaryotes can secrete EVs and exhibit
a snapshot of the secreting cells, encapsulating active and specific
biomolecules from the donor cell (Marzan and Stewart, 2021).

Extracellular Vesicle Derived from Neurons/Neurogliocytes

Once EVs are produced in the extracellular space, these nanosized
particles can be uptake by recipient cells, and in turn act as
messengers and perform biological functions via the delivery of
plenty of functional biomolecules including proteins, nucleic
acids, lipids, and metabolites, into recipient cells, both near
and far from the secreting cell (Palviainen et al., 2019; Marzan
et al,, 2021). Currently, there are three main subsets of EVs:
exosomes, microvesicles, and apoptotic bodies. Exosomes are
small EVs with a diameter of 30-150nm and density of
1.13-1.19g/ml (Yang et al, 2020). Exosome production is
mainly classified into three stages: endocytosis, multivesicular
body formation, and release. First, the plasma membranes start
endocytosis, which is followed by the fusion of multiple
intraluminal vesicles to produce endosomes. Second, the
loading of bioactive molecules such as non-coding RNAs
(ncRNAs), lipids, and proteins facilitates the formation of
multivesicular bodies (van Niel et al, 2018). Finally,
multivesicular bodies and plasma membranes are fused to
achieve exosome release. Microvesicles with a diameter of
200-1,000 nm are slightly larger EVs generated by budding
directly from the cell plasma membrane (Thietart and Rautou,
2020). This process involves lipid rearrangements concerning the
asymmetry of the plasma membrane accelerated by membrane
translocases, scramblases, and calpain. Conversely, apoptotic
bodies, the largest among all types of EVs, are 1,000-5,000 nm
in diameter, are secreted by dying cells, and are even more
abundant than exosomes or microvesicles under specific
conditions (Doyle and Wang, 2019; Battistelli and Falcieri,
2020). Many efforts have been made to identify the emerging
role of exosomes and microvesicles in intercellular
communication. However, there is little evidence on the value
of apoptotic bodies in nanomedicine.

3 EXTRACELLULAR VESICLES-DERIVED
FROM NEURONS/NEUROGLIOCYTES
REGULATE CELL DEATH AND APOPTOSIS
IN CENTRAL NERVOUS SYSTEM
DISEASES

Cell death is the consequence of multiple cellular processes that
occur during neurological diseases, including mitochondrial
dysfunction, protein aggregation, free radical generation,
excitotoxicity, and inflammation (Salucci et al, 2021).
Numerous studies have revealed that EVs derived from these
cells are involved in cell death in neurological disorders. A
previous study assessed the overall effects of exosomes derived
from normoxic and hypoxic neurons on the survival and
neuritogenesis of rat cortical neurons (Chiang et al., 2021). As
presented by Chiang et al. (2021), hypoxic concentrated
conditioned media, but not normoxic concentrated
conditioned media, significantly reduced neuronal viability.
They further pelleted exosomes from both normoxic and
hypoxic concentrated conditioned media, and then examined
the effects after administration of PBS and 25, 100, or 200 pug/ml
exosomes in cultured cortical neurons using the CCK-8 assay.
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TABLE 1 | Preclinical studies assessing the effect of EVs-derived from neurons/neurogliocytes on regulating cell death and apoptosis in CNS diseases.

Author, Country Species Model Route
year
Datta Chaudhurietal.  United States  Rats NA co-incubation
(2020)
Song et al. (2019a) China Mice, MCAO IV, co-
Cells incubation
Xu et al. (2019) China Cells OGD co-incubation
Bu et al. (2020) China Rats, MCAOQO, IV, co-
Cells OGD incubation
Huang et al. (2020) China Cells OGD co-incubation
Casella et al. (2020) United States  Mice, MS %
Cells
Chen et al. (2021) China Rats, NA co-incubation
Cells
Chiang et al. (2021) Tianwan Rats, OGD co-incubation
Cells
Chun et al. (2021) United States  Cells NA co-incubation
Qi et al. (2021) China Rats, VD %
Cells
Zhang et al. (2021a)  Germany Mice, MCAO, %
Cells OGD

Cell Mechanism Disease Effect References
source
AS NA NA Inhibit Datta Chaudhuri et al.
(2020)

Bv2 miR-124 NA Inhibit Song et al. (2019a)

Astrocytes  miR-92b-3p Stroke Inhibit Xu et al. (2019)

AS miR-361/AMPK/ Stroke Inhibit Bu et al. (2020)
mTOR/CTSB

N2A NA Stroke Promote  Huang et al. (2020)

Ol IL-10 MS Inhibit Casella et al. (2020)

AS GDNF NA Promote  Chen et al. (2021)

neuron microRNAs Stroke Promote  Chiang et al. (2021)

AS NA NA Inhibit Chun et al. (2021)

HNSCs MIAT/mIR-34b-5p/ VD Inhibit Qi et al. (2021)
CALB1

microglia TGF-p/Smad2/3 Stroke Inhibit Zhang et al. (2021a)

NA, not available; AS, astrocytes; MCAO, middle cerebral artery occlusion; OGD, oxygen-glucose-deprivation; ECs, endothelial cells; Ol, oligodendrocyte; MS, multiple sclerosis; GDNF,
glial cell line-derived neurotrophic factor; VD, vascular dementia; HNSCs, hippocampal neural stem cells; AD, Alzheimer’s disease; Ref, Reference.

They noted a linear trend in the decrease in viability with
increasing hypoxic exosome dose, revealing that hypoxic
exosomes impair neuronal survival in a dose-dependent
manner. However, low concentrations (25 and 100 pg/ml) of
normoxic exosomes did not affect neuronal viability. To further
evaluate the effect on axonal outgrowth, dissociated cortical
neurons were treated with exosomes and subjected to
immunostaining with an anti-Tau antibody. The results
showed that exosomes derived from hypoxic neurons, but not
EVs obtained from normoxic neurons, impaired both dendritic
and axonal outgrowths of cultured cortical neurons (Chiang et al.,
2021). Among the various programmed cell death pathways
(Datta et al., 2020), apoptosis accounts for a large proportion
of cell death through brain injury (Radak et al., 2017), which
efficiently removes damaged cells from DNA damage or during
development (Fan et al., 2020). Apoptosis plays an essential role
in the homeostasis of normal tissues, and scientists have
identified that EVs play essential roles in regulating cell
apoptosis. Huang et al. (2020) indicated that not only hypoxic
neuron-concentrated conditioned media but also EVs derived
from hypoxic neurons exacerbate hypoxia-induced injury on
transplanted mesenchymal stem cell viability, apoptosis, and
oxidative stress in vitro. In addition to neuronal EVs, the
effects of EVs derived from glial cells on cell death and
apoptosis regulation have been studied more extensively. Bu
et al. (2020) performed a series of in vitro experiments and
demonstrated that astrocyte-derived exosomes promoted
hypoxia-inhibited PC12 cell activity and suppressed cell
apoptosis. Likewise, Chun et al. (2021) reported that astrocyte-
derived EVs enhanced the survival and electrophysiological
function of human cortical neurons. Notably, neuronal
apoptosis was significantly increased upon treatment with
conditioned medium from necroptotic astrocytes via EVs

delivery (Chen et al., 2021). Furthermore, Casella et al. (2020)
uncovered oligodendrocyte-derived EVs as an antigen-specific
therapy for experimental autoimmune encephalomyelitis. This
process was safe and restored immune tolerance by inducing
apoptosis of autoreactive CD4" T cells. Concerning the EVs
derived from microglia, EV derived from both hypoxic and
normoxic microglia can repress neuronal apoptosis and
promote neuronal viability in hypoxic cortical neurons (Li
et al,, 2021a; Zhang et al, 2021a). To date, many studies have
assessed the effect of EVs derived from neurons/glial cells in the
regulation of apoptosis in CNS diseases (Song et al., 2019a; Xu
et al., 2019; Bu et al., 2020; Casella et al., 2020; Datta Chaudhuri
et al., 2020; Gao et al., 2020; Nogueras-Ortiz et al., 2020; Zhang
et al.,, 2021a; Chen et al., 2021; Chun et al., 2021; Qi et al., 2021).
The characteristics of these studies are summarized in Table 1.

4 EXTRACELLULAR VESICLE-DERIVED
FROM NEURONS/NEUROGLIOCYTES
REGULATE AUTOPHAGY IN CENTRAL
NERVOUS SYSTEM DISEASES

Autophagy is an evolutionarily conserved cellular mechanism
(Wang et al., 2018), which is a program caused by the regulation
of the internal conditions of cells (Sun et al., 2018), such as
starvation, hypoxic nutrient deficiencies, and infection (Mo et al.,
2020), leading to the degradation of toxic proteins, damaged
organelles, and invading pathogens via the lysosomal pathway
(Liu et al, 2020). On the one hand, autophagy can maintain
cellular nerve homeostasis, since it is associated with degraded
misfolded or nonfunctional proteins and damaged organelle,
suggesting that it plays an essential housekeeping role in the

Frontiers in Pharmacology | www.frontiersin.org

157

April 2022 | Volume 13 | Article 890698


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Lietal

Extracellular Vesicle Derived from Neurons/Neurogliocytes

TABLE 2 | Preclinical studies assessing the effect of EVs-derived from neurons/neurogliocytes on regulating autophagy in CNS diseases.

Author, Country  Species Model Route
year

Pei et al. (2019) China Mice, Cells  MCAO, OGD IV, co- incubation
Pei et al. (2019) China Cells OGD co-incubation
Zang et al. (2020)  China Mice, Cells  MCAO, OGD  SlI, co-incubation
Liu et al. (2021a)  China Mice, Cells  MCAO, OGD IV, co-incubation
Guo et al. (2020)  China Cells NA co-incubation

Li et al. (2019) China Mice, Cells  TBI co-culture, IV

Cell Mechanism Disease Effect References
source
AS NA stroke Inhibit ~ Pei et al. (2019)
AS miR-190b stroke Inhibit ~ Pei et al. (2020)
BvV2 PDE1-B stroke NA Zang et al. (2020)
microglia  miRNA-135a-5p/TXNIP/NLRP3  stroke Inhibit  Liu et al. (2021a)
microglia  a-synuclein transmission PD NA Guo et al. (2020)
Bv2 miR-21 TBI Inhibit ~ Li et al. (2019)

NA, not available; AS, astrocytes; MCAO, middle cerebral artery occlusion; OGD, oxygen-glucose-deprivation; Sl, stereotaxic injection; 1V, intravenous injection; a-syn, alpha-synuclein;

TBI, traumatic brain injury; PD, Parkinson’s disease; Ref, reference.

CNS (Peker and Gozuacik, 2020). On the other hand, autophagy
is also associated with the promotion of cell death. It is possible
that excessive upregulation of autophagy and long-term
autophagy eventually result in self-digestion or have harmful
effects (Bar-Yosef et al., 2019). Abundant evidence indicates that
autophagy and exosomes are inseparable. Autophagy plays a vital
role in the synthesis and degradation of extracellular vesicles
(EVs). It has been reported that autophagosomes not only have a
strong ability to fuse with lysosomes, but also fuse with
multivesicular bodies to form amphiphiles. The amphiphiles
eventually fuse with lysosomes and dissolve the inner material
of the intraluminal vesicles, resulting in a significant reduction in
the release of exosomes. Taken together, these results suggest that
autophagosome formation plays a key role in EV's secretion and
transport (Xu et al., 2018). In addition, much direct evidence has
verified that autophagy could be a therapeutic target in
neurological treatment by using neuron/neurogliocyte-EVs.
For example, in traumatic brain injury, Li et al. (2019)
illustrated that neuronal EVs enriched with miR-21-5p can
suppress neuronal autophagy induced by scratch injury,
directly targeting the Rablla 3'UTR region to reduce its
translation, thus attenuating trauma-induced, autophagy-
mediated nerve injury in vitro. Likewise, Liu et al. (2021a)
found that M2 type microglia derived EVs could transfer miR-
135a-5p into neurons to suppress the expression of thioredoxin-
interacting protein, which in turn suppresses the activation of the
nod-like receptor protein 3 inflammasome, thereby inhibiting
neuronal autophagy induced by ischemia. To date, a vast number
of studies have assessed the interaction between neuron/glial cell-
EVs and autophagy in CNS diseases (Li et al., 2019; Pei et al,
2019; Guo et al., 2020; Pei et al., 2020; Zang et al., 2020; Liu et al.,
2021a). The characteristics of these studies are summarized in
Table 2.

5 EXTRACELLULAR VESICLE-DERIVED
FROM NEURONS/NEUROGLIOCYTES
REGULATE ANGIOGENESIS IN CENTRAL
NERVOUS SYSTEM DISEASES

Angiogenesis is the appearance of new microvessels that branch
off from pre-existing vessels (Ruan et al., 2015). Hypoxic or
insulted tissues can produce vascular endothelial growth factors,

and angiogenesis begins along the concentration gradient of
vascular endothelial growth factor in neonates (Carmeliet and
Tessier-Lavigne, 2005). Angiogenesis plays a vital role in brain
injury recovery following an injury because it promotes blood
flow and metabolic nutrients to reach the injured regions to
promote neural tissue repair by facilitating neurogenesis and
synaptic initiation (Hatakeyama et al, 2020; Ma et al., 2021).
To investigate whether microglial EVs regulate angiogenesis
in vitro, Zhang et al. (2021a) showed that EVs derived from
hypoxia-preconditioned microglia labeled with Dil were taken up
by bEnd.3 endothelial cells. Further experiments concerning the
therapeutic impact of these EVs against hypoxic injury of bEnd.3
cells were performed to evaluate cell viability and cytotoxicity via
the MTT and LDH release assays, respectively. The results
demonstrated that decreased cell viability and increased
cytotoxicity after hypoxia were suppressed by these EVs
(Zhang et al.,, 2021a). Moreover, these EVs can significantly
promote bEnd.3 migration during hypoxia according to the
scratch migration assay. Meanwhile, EVs derived from
preconditioned microglia reversed this effect of impaired tube
formation in bEnd.3 cells caused by hypoxia. Following the
aforementioned in vitro findings, Zhang et al. (2021a) further
indicated that EV administration induces angiogenesis and
diminishes cell injury in the ischemic mouse hemispheres.
Taken together, the evidence suggests that EVs derived from
hypoxic microglia promote cell viability, migration, and
angiogenesis in hypoxic injury. As such, the ability of EVs
derived from neurons and other glial cells to regulate
angiogenesis is unclear, and additional and reliable data are
urgently needed.

6 EXTRACELLULAR VESICLE-DERIVED
FROM NEURONS/NEUROGLIOCYTES
REGULATE NEUROINFLAMMATION IN
CENTRAL NERVOUS SYSTEM DISEASES

Neuroinflammation is integral to the neurological
pathophysiological process and results in damage to tissue
homeostasis (DiSabato et al., 2016; Alawieh et al, 2018),
involving acidosis, excitotoxicity, promotion of cytoplasmic
Ca®" concentrations, loss of glucose and oxygen, destruction of
the blood-brain barrier, and damage to mitochondria (Xu et al.,
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TABLE 3 | Preclinical studies assessing the effect of EVs-derived from neurons/neurogliocytes on regulating neuroinflammation in CNS diseases.

Author, Country Species Model Route Cell Mechanism Disease Effect References

year source

Casella et al. Italy Mice, EAE intrathecal BVv2 IL-4 MS Inhibit ~ Casella et al. (2018)

(2018) Cells injection-

incubation

Huangetal. (2018)  China Mice, TBI, neuronal IV, co-incubation Bv2 miR-124-3p  TBI Inhibit ~ Huang et al. (2018)
Cells scratch-injury

Rojas et al. (2018)  United States  Mice, brain inflammation IV AS DPTIP NA Inhibit  Rojas et al. (2018)
Cells

Chen et al. (2019)  China Human NA NA AS IL-6 ALS Inhibit ~ Chen et al. (2019)

Casella et al. United States  Mice EAE v Ol IL-10 MS Inhibit ~ Casella et al. (2020)

(2020)

Datta Chaudhuri United States  Cells NA co-incubation AS ATP, IL-18 NA Inhibit  Datta Chaudhuri

et al. (2020) et al. (2020)

Li et al. (2020) United States  Cells NA co-incubation AS CK1 AD Inhibit  Li et al. (2020)

Zhang et al. (2020)  China Mice, TBI \% BVv2 miR-711 AD Inhibit ~ Zhang et al. (2020)
Cells

Tallon et al. (2021)  United States  Mice, striatal IL1-p \% neurons, Ol, nSMase2 NA NA Tallon et al. (2021)
Cells injection microglia

Long et al. (2020)  China Mice, LPS and TBI IV, co-incubation AS miR- TBI Inhibit ~ Long et al. (2020)
Cells 873a-5p

NA, not available; EAE, experimental autoimmune encephalomyelitis; MS, multiple sclerosis; TBI, traumatic brain injury; AS, astrocytes; DPTIP, 2,6-Dimethoxy-4-(5-Phenyl- 4-Thiophen-2-
yl-1H-Imidazol-2-yl)-Phenol; ALS, amyotrophic lateral sclerosis; EAE, experimental autoimmune encephalomyelitis; Ol, oligodendrocyte; AD, Alzheimer’s disease; nSMase2, neutral

sphingomyelinase 2; Ref, reference.

2021; Chen et al., 2020a; Forrester et al., 2018). However, the
inflammatory response is a double-edged sword after injury
because it not only intensifies secondary injury to the brain,
but also promotes the recovery of neurological function, thereby
demonstrating that neuroinflammation is related to the
pathogenesis and prognosis of CNS disorders (Zhang et al.,
2021a). Several studies have revealed that various neuron/glial
cell-EVs are involved in the regulation of inflammation and
microglial activation in neurological diseases. Microglia serve
as “brain-resident macrophages” that comprise approximately
10% of all the cells in the CNS (Fakhoury, 2018), the activation of
microglia represents the first step of an inflammatory response,
followed by the activation of other immune cells like neutrophils,
T cells, natural killer cells, etc. (Xin et al., 2021; Iadecola and
Anrather, 2011; Jin et al,, 2010). Thus, the effects of microglial
EVs on inflammation regulation have also been studied
extensively. Casella et al. (2018) engineered a murine microglia
cell line, BV-2 cell, to produce EVs enriched with the endogenous
“eat me” signal Lactadherin on the surface to target phagocytes
while overexpressing the anti-inflammatory cytokine IL-4. A
single injection of these EVs into the cisterna magna
upregulated anti-inflammatory markers, such as chitinase 3-
like 3 and arginase-1, and significantly suppressed tissue
damage in a mouse model of multiple sclerosis and
experimental  autoimmune  encephalomyelitis. ~ Likewise,
overexpression of miR-124-3p in EVs derived from microglia
following traumatic brain injury can reduce neuronal
inflammation and contribute to neurite outgrowth by
transferring these EVs into neurons (Huang et al, 2018).
Similarly, BV2 cell-secreted EVs enriched with miR-711 could
target and suppress Itpkb, thereby suppressing M1 microglial
polarization and promoting M2 microglial polarization (Zhang
et al., 2020). Besides that, the EVs derived from other glial cells,

such as astrocyte and oligodendrocyte, also are involved in the
regulation of inflammation (Casella et al., 2020; Li et al., 2020).
The additional details are provided in Table 3. EV's derived from
glial cells might, therefore, contribute to suppressing
inflammation and microglial activation (Casella et al., 2018;
Huang et al., 2018; Zhang et al., 2020), information regarding
the modulation of neuronal EVs in inflammation is scarce. An
overview of how EVs derived from neurons/glial cells affect
neurological recovery is shown in Figure 1.

7 THE ROLE OF EXTRACELLULAR
VESICLES-DERIVED FROM NEURONS/
NEUROGLIOCYTES IN ISCHEMIC STROKE

A comprehensive literature search of electronic databases,
including PubMed, Cochrane Library, EMBASE, Web of
Science, and China National Knowledge Infrastructure, was
conducted from the inception of these databases until 28
February 2022. We retrieved studies assessing the effect of EV-
derived from neurons/glial cells on ischemic stroke adopting the
following keywords in accordance with Boolean logic: (“ischemic
stroke” OR “middle cerebral artery occlusion” OR “MCAO” OR
“ischemia”) and (“exosome” OR “EVs” OR “Extracellular
vesicles” OR “microvesicles”) AND (“microglia” OR “neuron”
OR “astrocyte” OR “oligodendrocyte”). In addition, all references
from the included articles were manually checked to identify
potential qualifying studies that were missed in the electronic
search results. The process was repeated until no further studies
would be obtained. A total of 29 studies were identified in this
section (Friithbeis et al., 2013; Frohlich et al., 2014; Guitart et al.,
2016; Xin et al,, 2017; Xu et al,, 2017; Hira et al., 2018; Yang et al,,
2018; Song et al., 2019a; Song et al., 2019b; Pei et al., 2019; Tian
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FIGURE 1 | Overview of the effects of extracellular vesicle-derived from neurons/neurogliocytes on neurological recovery in central nervous system diseases.
Predominantly extracellular derived from neurons/glial cells predominantly modulate autophagy, cell death, apoptosis, regeneration, and inflammation through various
pathways. Glial cells are composed of astrocytes, microglia and oligodendrocytes. MicroRNAs (mIRNAs) play key roles in various pathways.

et al,, 2019; Xu et al,, 2019; Chen et al., 2020b; Bu et al., 2020;
Frithbeis et al., 2020; Huang et al., 2020; Pei et al., 2020; Wu et al.,
2020; Xie et al., 2020; Zang et al.,, 2020; Liu et al., 2021a; Yang
et al., 2021a; Zhang et al,, 2021a; Li et al., 2021b; Liu et al., 2021b;
Zhang et al., 2021b; Chiang et al., 2021; Du et al., 2021; Raffaele
et al,, 2021), conducted from 2016 to 2021. The most extensively
adopted species and associated stroke models are mice and
middle cerebral artery occlusion, respectively. Among these 29
publications, 10 focused on microglia-EVs (Yang et al., 2018;
Song et al., 2019a; Tian et al,, 2019; Xie et al., 2020; Zang et al.,
2020; Liu et al,, 2021a; Zhang et al., 2021a; Li et al,, 2021b; Zhang
et al., 2021b; Raffaele et al., 2021), 11 focused on astrocyte-EVs
(Guitart et al., 2016; Xin et al., 2017; Hira et al., 2018; Pei et al.,
2019; Xu et al., 2019; Chen et al., 2020b; Bu et al., 2020; Pei et al.,
2020; Wu et al., 2020; Liu et al., 2021b; Du et al., 2021), 3 focused
on oligodendrocytes (Friihbeis et al., 2013; Frohlich et al., 2014;
Frithbeis et al., 2020) and 5 focused on neuron-EVs (Xu et al,,
2017; Song et al., 2019b; Huang et al., 2020; Yang et al., 2021a;

Chiang et al., 2021), demonstrating that it is sufficient to suggest
that EV's derived from neurons/glial cells play an important role
in regulating the progress and prognosis of ischemic stroke.

7.1 The Extracellular Vesicles Derived From

Neurons

Accumulating evidence has demonstrated that neurons have the
potential to release EVs from their somatodendritic compartments
(Fauré et al., 2006; Lachenal et al., 2011) to regulate local synaptic
plasticity, trans-synaptic communication, and post-stroke recovery.
As mentioned, microglia are professional phagocytes that are, in
part, beneficial due to their ability to reduce neuroinflammation via
phagocytosis of dead neurons and neuronal debris (Sierra et al,
2013). Previous studies have revealed that neurons could inhibit
microglial activation and promote M2-type microglial polarization,
which in turn modulates neuronal survival during ischemic stroke
(Norris et al., 2018; Pluvinage et al, 2019). As such, Yang et al.
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(2021a) indicated that these EV-derived miR-98 act as an
intercellular ~ signal mediating neuronal and microglial
communication by suppressing platelet-activating factor receptor-
mediated microglial phagocytosis during the recovery of
neurological function induced by an ischemic stroke. Likewise,
Song et al. (2019b) conducted an ischemic brain injury study that
resulted in MCAO. They found that EVs derived from hypoxic
neurons inhibited the expression of chemokine (C-X-C motif) ligand
1 (CXCL1) and inflammatory factors in astrocytes, suggesting that
EVs derived from cortical neurons exert protective effects against
neuroinflammation in astrocytes via downregulation of CXCLI.
Additionally, Xu et al. (2017) demonstrated that these EVs could
promote brain vascular integrity by modulating the levels of vascular
endothelial cadherin binding to eukaryotic elongation factor 2
kinase. Herein, miR-132 serves as an intercellular signal that
mediates the neural regulation of brain vascular integrity.
Interestingly, as previously mentioned, EVs derived from hypoxic
neurons, but not EVs obtained from normoxic neurons, impaired
both dendritic, and axonal outgrowths of cultured cortical neurons
(Chiang et al,, 2021). Taken together, EVs derived from neurons
have been shown to be collectively effective in the recovery of
ischemic stroke patients; however, information regarding this
aspect is scarce. Therefore, more evidence-based information is
needed.

7.2 The Extracellular Vesicles Derived From
Oligodendrocytes

Oligodendrocytes are neural tube-derived cells that have the
ability to form myelin, a compact lamellar wrapping revealed
on properly large fiber axons, thereby accelerating nerve
conduction (Cohen, 2005). EVs  derived from
oligodendrocytes also mediate neuroprotection and promote
neuronal homeostasis. Frithbeis et al. (2013) indicated that,
triggered by neuronal signals, oligodendrocytes can release
EVs derived from the multi-vesicular body which appears
prevalent at periaxonal sites in myelinated nerves. In turn,
neurons can internalize EV's derived from oligodendrocytes by
endocytosis and recover EV cargo, thereby importing bioactive
molecules. The supply of cultured neurons with EVs derived
from oligodendrocytes increased neuronal viability under
conditions of cell stress. Electrophysiological analysis using
in vitro multi-electrode arrays also demonstrated an improved
firing rate of neurons exposed to EVs derived from
oligodendrocytes, and further western blot analysis showed
increased activation of pro-survival signaling pathways
(Frohlich et al., 2014). These EVs can directly deliver
antioxidant enzymes, such as catalase and superoxide
dismutase 1. Additionally, Friithbeis et al. (2020) pointed out
that oligodendrocyte-to-neuron EVs transfer promotes long-
term neuronal maintenance by improving the metabolic state
and promoting axonal transport in nutrient-deprived neurons,
suggesting a novel mechanistic link between myelin diseases
and secondary loss of axonal integrity. Oligodendrocyte-EVs
might therefore contribute to supporting neurons; information
regarding this aspect, however, is scarce.

Extracellular Vesicle Derived from Neurons/Neurogliocytes

7.3 The Extracellular Vesicles Derived From
Microglia

Microglia are highly dynamic cells with the potential to transform
their morphology from ramified to amoeboid and alter their
phenotypes in response to ischemic insult (Xin et al., 2021). These
opposing roles of microglia under ischemic conditions correlate
with a distinct phenotype, as suggested by the proinflammatory
M1 and anti-inflammatory M2 types (Xin et al, 2021). M1
phenotype microglia participate in exacerbating brain damage
by secreting interleukin (IL)-6, IL-1f, nitric oxide, and tumor
necrosis factor-a (Tang and Le, 2016; Cheng et al., 2019). M2
microglia remove necrotic tissue and stimulate tissue repair by
releasing IL-4, IL-10, and transforming growth factor-p, thereby
maintaining homeostasis (Ma et al., 2018; Zhang et al., 2018).
Microglia have been shown to support cell-cell communication in
the treatment of stroke via multiple mechanisms, most recently
through the release of EVs. Correspondingly, a variety of
pathological conditions also regulate microglial secretion,
thereby affecting the main components of EVs. For example,
inflammation induced by LPS can alter EV production in
microglial cells and alter the cytokine levels and protein
composition carried by EVs (Yang et al,, 2018). Likewise, Zang
et al. (2020) illustrated that the increase in autophagic flux using
vinpocetine is related to the alteration of microglial EVs contents
and properties to protect the survival and neurite structure of
neurons against ischemic stroke. Taken together, microglia under
different conditions may alter the cargo of microglial EVs, and
thus have different functions. For example, M2 microglial EVs
can reduce glial scar formation by repressing the expression of
astrocyte proliferation gene signal transducer and activator of
transcription 3 and glial fibrillary acidic protein. Similarly, M2
microglial EVs can also reduce neuronal autophagy and
apoptosis, which further inhibits ischemic brain injury (Song
etal,2019a; Liu et al., 2021a). EVs secreted by microglial cell lines
also play a significant role in the treatment of stroke. Tian et al.
(2019) showed that IL-4-polarized microglial cells can ameliorate
the injury induced by ischemic stroke by improving angiogenesis
through the secretion of exosomes. Zhang et al. (2021b) reported
that EVs derived from BV2 in the M2 phenotype were taken up
by neurons and suppressed neuronal apoptosis in response to
ischemic injury, which further reduced the infarct volume and
behavioral deficits in MCAO mice. In addition, ischemic
preconditioning can change the composition of EVs secreted
by microglia, which plays a crucial role in the treatment of stroke.
Xie et al. (2020) indicated that EVs derived from ischemia-
preconditioned microglia regulate the TGF-f/Smad2/3
pathway to promote angiogenesis in a tube formation assay
and neurological recovery in stroke mice. However, Zhang
et al. (2021a) reported that microglial EVs inhibited brain
microvascular endothelial cell proliferation and angiogenesis
by impairing brain microvascular endothelial cell viability and
integrity, as well as the loss of vascular formation. The EVs
isolation process was conducted by ultracentrifugation, whereas
Zhang et al. (2021a) adopted the method of PEG combined with
ultracentrifugation. Different extraction methods of EVs may
have different therapeutic effects on stroke owing to the alteration
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TABLE 4 | Preclinical studies assessing the interaction between EVs-derived from microglia and ischemic stroke.

Author, year Cell status Main effects Main mechanisms
Yang et al. (2018) Normoxic Inflammation alters cytokine levels and protein composition in microglial-EVs IL-6, neuroinflammation
Song et al. (2019a) M2 type Attenuate ischemic brain injury and promote neuronal survival miR-124
Tian et al. (2019) IL-4- Ameliorate the ischemia damage by promoting angiogenesis miR-26a
polarized BV2
Xie et al. (2020) hypoxic Aggravate ischemia induced brain microvascular endothelial cells damage and permeability miR-424-5p/FGF2/STAT3
Zhang et al. (2021a)  hypoxia Regulate inflammatory response, promote angiogenesis and repress apoptosis in vivo and vitro  TGF-p/Smad2/3
Li et al. (2021a) M2 type Glial scar formation via inhibiting astrocyte proliferation and migration miR-124/STAT3
Liu et al. (2021a) M2 type Inhibit TXNIP and NLRP3, thereby reducing neuronal autophagy and ischemic brain injury miR-135a-5p/TXNIP/
NLRP3
Raffaele et al. Normoxic Improve post-stroke recovery by preventing immune cell senescence and favoring TNF
(2021) oligodendrogenesis
Zang et al. (2020) Hypoxia PDE1-B regulates autophagic flux and EVs biogenesis, in turn regulates neuronal survival under  PDE1-B
Zhang et al. (2021b) M2 type BV2 Attenuate neuronal apoptosis and promote the recovery of neurological function miR-137/Notch1

EVs, extracellular vesicles; TGF, transforming growth factor; N-SMase-2, neutral sphingomyelinase-2; STAT3, signal transducer and activator of transcription 3; TXNIP, thioredoxin-
interacting protein; NLRP3, nod-like receptor protein 3; TNF, tumor necrosis factor; PDE, phosphodiesterase enzyme.

of the components of EVs. A series of studies have assessed the
interaction between EVs derived from diverse microglia and
stroke conditions. The main effects and primary mechanisms
of these studies are summarized in Table 4, demonstrating that
microglial EVs may offer a promising strategy for the treatment of
ischemic stroke.

7.4 The Extracellular Vesicles Derived From
Astrocyte

Astrocytes are the most numerous glial cell types in the
mammalian CNS that regulate brain function, synaptic
function, neuronal viability, integrity of the blood-brain
barrier, and neural plasticity via interaction with neurons, and
play essential roles in the progression of ischemia (Tahir et al.,
2022). As such, astrocyte-derived EVs have been shown to
improve neuronal survival, inhibit microglial inflammation,
and promote post-stroke functional recovery. In terms of
neuronal survival, these EVs can not only directly promote
neuronal viability but also indirectly inhibit neuronal
autophagy, inflammation, and apoptosis under hypoxic
conditions. For instance, Pei et al. (2020) used the mouse
hippocampal neuronal cell line HT-22 under oxygen and
glucose deprivation (OGD) conditions to mimic ischemic
injury. Confocal laser microscopy revealed that EVs isolated
from primary astrocytes were taken up by the HT-22 cells.
Further experiments demonstrated that these EVs promoted
HT-22 cell vitality and apoptosis, as determined by the CCK-8
assay and TUNEL staining, respectively, and regulated the
expression of inflammation-related factors (TNF-a, IL-6, and
IL-1p) analyzed by ELISA, levels of apoptosis-related proteins
(cleaved caspase-3, Bax, and Bcl-2), and autophagy-related
proteins (Beclin-1, LC3-I/II, Atg7, and P62) by western blot.
Similarly, Pei et al. (2019) and Chen et al. (2020b) revealed that
astrocyte-derived EVs could suppress autophagy and ameliorate
neuronal damage, and further findings showed the effect of EV's
on the inhibition of OGD-induced neurons apoptosis via
regulating autophagy (Pei et al, 2019). In addition to EVs
derived from normoxic astrocytes, Xu et al. (2019) indicated

that EVs released from ischemic preconditioned astrocytes
ameliorated OGD-induced cell death and apoptosis.
Concerning the regulation of inflammation and functional
recovery, Liu et al. (2021b) established an OGD N9 microglial
model and an MCAO rat model. These findings revealed that
astrocyte-derived EVs inhibited OGD-induced injury and
inflammation by regulating NLPR3, oxidative stress, and
inflammatory factors (IL-1f and IL-18) in N9 microglia;
reduced brain infarction; and improved MCAO rat neural
functions. Additionally, a series of specialized in vitro
experiments have confirmed that these EVs can alleviate nerve
damage and promote functional recovery after stroke. Bu et al.
(2020) showed that these EVs improved neurocognitive function
by evaluating the neurological deficit score and reduced the
cerebral infarct size by TTC staining and cerebral edema. The
main effects and primary mechanisms of astrocytes-EVs on the
treatment of ischemic stroke are summarized in Table 5.

7.5 The Mechanism of Extracellular Vesicles
Derived From Neurons/Glial Cells in the

Effect on Regulating Stroke

7.5.1 Non-Coding RNAs, Especially microRNAs, are
the Key Players

Unlike messenger RNAs (mRNAs), which do not encode proteins,
ncRNAs are ubiquitous throughout the human genome (Yang
et al., 2021b). ncRNAs play an essential regulatory role in various
biological processes such as cell proliferation, epigenetic
modification, and cell apoptosis (Yang et al., 2021b). The top
three most commonly described ncRNA molecules are miRNAs,
long ncRNAs (IncRNAs), and circular RNAs (circRNAs) (Smith
et al,, 2021). miRNAs are a group of non-coding RNA molecules
with a length of 19-25 nucleotides that participate in the regulation
of gene expression after transcription by targeting the
3untranslated region of the target mRNA sequence and
inhibiting mRNA levels (Navabi et al, 2022). IncRNAs are a
class of single-stranded RNA molecules with more than 200
nucleotides that are important in molecular networks (Guo
et al,, 2022). CircRNAs are a class of non-coding RNAs with
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TABLE 5 | Preclinical studies assessing the interaction between EVs-derived from astrocyte and ischemic stroke.

Author, year Cell status Main effects Main mechanisms

Guitart et al. Hypoxic PrP-carrying EVs under ischemic stress protects against oxidative stress, hypoxia, ischemia, and PrP

(2016) hypoglycemia

Hira et al. (2018) Sema3A Increase prostaglandin D2 synthase and GSK-3f+, thus contribute to axonal outgrowth and functional ~ GTPase 1/R-Ras/Akt/
recovery GSK-3p

Pei et al. (2019) Normoxic Suppress autophagy response, enhance neurons viability and ameliorate ischemic damage in vivo and  LC3, P62
vitro

Xu et al. (2019) Hypoxic Protect neurons against OGD injury and elevate the cell viability miR-92b-3p

Chenetal. (2020a)  Hypoxic Suppress neuronal apoptosis and ameliorate neuronal damage via regulating autophagy in vivo and vitro - miR-7670-3p/SIRT1

Du et al. (2021) Normoxic Decrease BNIP2 expression, reduce oxidative stress, and inflammation in HIBD rats miR-17-5p

Wau et al. (2020) Normoxic Downregulate the NF-xB/MAPK axis, thereby promote proliferation and inhibit apoptosis miR-34¢/NF-kB/MAPK/

TLR7

Bu et al. (2020) Normoxic Increase cell activity and suppress cell apoptosis in vitro and alleviate nerve damage in rats miR-36/AMPK/mTOR

Pei et al. (2020) Normoxic Attenuate neuronal apoptosis by suppressing autophagy miR-190b/Atg7

Liu et al. (2021b) Hypoxic Inhibit inflammation in vitro, reduce brain infarction, and improve neural functions in vivo miR-29a/NF-kB/NLRP3

EVs, extracellular vesicles; PrP, prion protein; Sema3A, semaphorin 8A; HIBD, hypoxic-ischemic brain damage; TLR7, Toll-like receptor 7; MAPK, mitogen-activated protein kinase; SIRT1,

sirtuin 1, CTSB, cathepsin B.

Main Cargos

Main discovery

MiR-181c-3p, CXCL1,
miR-132, and miR-98

Phagocytosis, cell death,
neurite outgrowth,
angiogenesis
and neuroinflammation

Not Discussed

MiR-26a, miR-124, TNF,

® ° miR-135a-5p, PDE1-B,
— .° miR-424-5p/FGF2/STAT3,
°

miR-137/Notch1, etc.

Regenesis, apoptosis,
neuroinflammation,

—| proliferation, migration,

and autophagy

Cell survival, axonal transport
> and functional recovery

Microglia

Astrocyte g

PrP, miR-92b-3p,
miR-7670-3p/SIRT1,

miR-36/AMPK/mTOR,
miR-190b/Atg7, etc.

) - ( Axonal outgrowth, ]“‘
® ‘¥ 7, autophagy, apoptosis,
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FIGURE 2| The pathways that are involved in extracellular vesicle derived from neurons/neurogliocytes to regulate stroke recovery. Neurons and various glial cells,
including astrocytes, microglia, and oligodendrocytes, can regulate recipient cells by transferring extracellular vesicles to regulate various biological processes, including
inflammation, autophagy, apoptosis, and neurogenesis, thereby regulating ischemic stroke progression and recovery.

high stability and significant clinical relevance (Long et al., 2022).
Intriguingly, as essential components, ncRNAs are selectively
enriched in EVs, and ncRNAs loaded into EVs exert biological
functions that modulate specific aspects of the onset and
progression of ischemic stroke. Emerging evidence has
demonstrated that a similar observation was also made for EV-
derived ncRNAs derived from the aforementioned neurons/glial
cells in ischemic stroke. For instance, Chen et al. (2020b) suggested

that circSHOC2 expression was significantly upregulated in EVs
released from ischemic-preconditioned astrocytes. Overexpression
of circSHOC2 in neurons yielded the same protective effects as
those from ischemic-preconditioned astrocyte-EVs in vitro, and
similar results were also observed in MCAO mice by sponging
miR-7670-3p, which regulates SIRT1 expression (Chen et al,
2020b). In addition to circRNAs, miRNAs are the most
commonly reported miRNAs, as indicated in a series of

Frontiers in Pharmacology | www.frontiersin.org

April 2022 | Volume 13 | Article 890698


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Lietal

publications. As mentioned above, M2 microglial EV's reduce glial
scar formation and neuronal autophagy, mechanistically, M2
microglial EVs take effect via miR-124/STAT3 pathway and
microRNA-135a-5p/TXNIP/NLRP3 axis, respectively.
Meanwhile, neuronal EV-shuttled miRNA-181c-3p inhibited
inflammation by downregulating CXCL1 in astrocytes in a rat
model of ischemic brain injury (Song et al.,, 2019b).

7.5.2 The Role of a Variety of Messenger RNAs Upon
Extracellular Vesicle-Regulation in Stroke

mRNAs have been previously shown to have great potential for
therapeutic applications in the treatment of ischemic stroke.
Delivery systems for mRNAs, including lipid- and polymer-
based carriers, have been developed to improve mRNA
bioavailability. Among these systems, EVs are the most
common carriers. For example, under OGD conditions, EVs
derived from  OGD-preconditioned  primary  microglia
stimulated both angiogenesis and tube formation in bEnd.3
endothelial cells and repressed neuronal injury. Mechanistically,
OGD induces upregulation of TGF-f1 in OGD-preconditioned
microglia and EVs derived from non-hypoxic microglia or from
different reoxygenation periods (24, 48, and 72 h) (Zhang et al.,
2021a). Zhang et al. (2021a) used TGF-P1 siRNA to transfect
microglia and obtained the corresponding EVs. Enriched TGF-f1
in EVs secreted from OGD-preconditioned microglia, but not
microglia transfected with TGF-B1 siRNA, turned out to be a
vital compound for the therapeutic potential of microglial EVs,
affecting the Smad 2/3 pathway in both endothelial cells and
neurons (Zhang et al., 2021a). This is in addition to the direct
interaction between EVs and mRNA. Thus, neurons/glial cell-EV's
can not only directly interact with mRNA but also indirectly affect
mRNA by acting on miRNAs. Nuclear factor-kB (NF-kB) is
present in almost all cell types and primarily serves as a
transcription factor implicated in various biological processes
(Barnabei et al, 2021). It has been shown to promote multiple
pro-inflammatory mediators, and suppression of NF-kB signaling
correlates with beneficial effects in ischemic stroke by EV-miRNAs.
Liu et al. (2021Db) reported that miR-29a in astrocyte-derived EVs
inhibits brain ischemia-reperfusion injury by downregulating the
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Ischemic stroke elicits white matter injury typically signed by axonal disintegration and
demyelination; thus, the development of white matter reorganization is needed. 2,3,5,6-
Tetramethylpyrazine (TMP) is widely used to treat ischemic stroke. This study was aimed to
investigate whether TMP could protect the white matter and promote axonal repair after
cerebral ischemia. Male Sprague-Dawley rats were subjected to permanent middle
cerebral artery occlusion (MCAO) and treated with TMP (10, 20, 40mg/kg)
intraperitoneally for 14 days. The motor function related to gait was evaluated by the
gait analysis system. Multiparametric magnetic resonance imaging (MRI) was conducted
to noninvasively identify gray-white matter structural integrity, axonal reorganization, and
cerebral blood flow (CBF), followed by histological analysis. The expressions of axonal
growth-associated protein 43 (GAP-43), synaptophysin (SYN), axonal growth-inhibitory
signals, and guidance factors were measured by Western blot. Our results showed TMP
reduced infarct volume, relieved gray-white matter damage, promoted axonal remodeling,
and restored CBF along the peri-infarct cortex, external capsule, and internal capsule.
These MRI findings were confirmed by histopathological data. Moreover, motor function,
especially gait impairment, was improved by TMP treatment. Notably, TMP upregulated
GAP-43 and SYN and enhanced axonal guidance cues such as Netrin-1/DCC and Slit-2/
Robo-1 but downregulated intrinsic growth-inhibitory signals NogoA/NgR/RhoA/ROCK-
2. Taken together, our data indicated that TMP facilitated poststroke axonal remodeling
and motor functional recovery. Moreover, our findings suggested that TMP restored local
CBF, augmented guidance cues, and restrained intrinsic growth-inhibitory signals, all of
which might improve the intracerebral microenvironment of ischemic areas and then
benefit white matter remodeling.

Keywords: tetramethylpyrazine, ischemic stroke, axonal remodeling, synaptic plasticity, white matter
reorganization
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INTRODUCTION

Ischemic stroke is a grave cause of long-term neurological deficits
globally (Chen et al., 2014). Currently, the tissue plasminogen
activator (tPA) is the only FDA-approved therapy for ischemic
stroke (Hughes et al., 2021), and mechanical thrombectomy has
the superiority in treating acute ischemic stroke (Flottmann et al.,
2018). Despite stroke mortality being declined with effective
thrombolysis in the acute window (4.5h) after the onset of
ischemic stroke, most patients show significant disabilities. An
increasing amount of evidence shows that ischemia results in not
only mere neuronal loss but also white matter injury signed with
axonal disintegration and demyelination, which is correlated with
the severity of neurological deficit (Wang et al., 2016). Therefore,
neurorestorative treatments for poststroke white matter
reorganization and functional recovery are urgently required.

TMP has been extensively used for cardiovascular and
cerebrovascular diseases (Chun-sheng et al., 1978; Guo et al,
1983; Zhao et al., 2016). The pharmacokinetics of TMP revealed
that the mean residence time (MRT) of TMP administered
intravenously in healthy rat blood and brain tissues are 84.0
and 98.2 min respectively, while the MRT of TMP administered
intragastrically are 58.9 and 72.9 min, respectively (Wang et al.,
2012). Clinical studies demonstrated TMP treatment
strengthened survivability, improved neurological functions,
and reduced recurrence in stroke patients (Ni et al., 2013).In
addition, TMP could reduce cerebral infarct volume, relieve
neuronal injury, and protect the blood-brain barrier in stroke
models (Tan et al., 2015; Gong et al., 2019). However, whether
TMP could protect the structural integrity of white matter,
promote axonal remodeling, and expedite long-term functional
recovery related to gait is unknown. In this study, we applied MRI
technologies combined with histological analysis to explore the
potential effectivity of TMP on white matter remodeling,
especially axonal reorganization, and evaluated the effect of
TMP on gait function by using DigiGait automated gait
analysis in the subacute phase of permanent MCAO rats.

Ample evidence has shown that the intrinsic axonal growth-
associated signals play a substantial role in axonal regeneration.
GAP-43 participates in regulating axonal elongation, and SYN is
beneficial to axonal sprouting and synaptogenesis (Chung et al.,
20205 Jing et al,, 2020). In particular, the coordinated action of
attractive and repulsive extracellular axonal guidance molecules,
including Netrins and DCGC, §lit-2, and Robo-1, is important for
neurite growth and guidance (Chen et al., 2020; Cuesta et al,,
2020). In addition to neurite growth and guidance, axonal
regeneration could be constrained by neurite growth
inhibitors. NogoA binding with NgR by initiating the
downstream RhoA/ROCK-2 inhibits axonal regeneration and
results in growth cone collapse (Wang et al., 2020). Strategies
stimulating axonal growth-promoting factors and suppressing
growth-inhibiting signals may greatly improve axonal extension
and neurological outcomes (Lu et al., 2021). Therefore, in the
present study, we examined the expressions of these intrinsic
axonal growth-related proteins to gain an insight into the white
matter repair mechanisms underlying TMP treatment.

Tetramethylpyrazine Promotes Post-Ischemic Axonal Remodeling

MATERIALS AND METHODS

Animals and Drugs
A total of 76 adult male Sprague-Dawley rats were purchased
from Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China) weighing 300-320 g (aged 8 weeks) and were
maintained at a specific pathogen-free (SPF) animal research
center in Capital Medical University (SYXK [jing] 2018-0003).
Animal care and experimental protocols were performed in
accordance with the guidelines set by the National Institute of
Health Guide for the Care and Use of Laboratory Animals and
approved by the Capital Medical University Animal Ethics
Committee (Permit Number: AEEI-2018-052).

TMP hydrochloride injection (HPLC >98%) was purchased
from Harbin Medisan Pharmaceutical Co., Ltd., (Lot No.
090923A, Harbin, Heilongjiang, China).

Ischemic Model and Experimental Groups
Focal cerebral ischemia was induced by permanent intraluminal
occlusion of the right middle cerebral artery (MCA), according to
a previously described method (Laing et al., 1993). The rats were
anesthetized with isoflurane (5% for induction and 2% for
maintenance) during the surgery. In brief, a right paramidline
incision was made to separate the right external carotid artery
(ECA) and internal carotid artery (ICA). A small incision was
made at the ECA, and a nylon suture (Beijing Sunbio Biotech Co.
Ltd., Beijing, China) was inserted into the stump of the ECA. The
suture was tightened, and the nylon suture was pushed into the
ICA for around 1.8-1.9 cm until a mild sense of resistance was felt
to block the origin of the MCA. The rats with successful MCAO
showing circling or walking to the contralateral side were
included in this experiment (Yu et al., 2013).

Two rats died during MCAO surgery, and four rats that
exhibited no obvious neurological symptoms were eliminated
from the study. Therefore, 60 MCAO rats were randomly
divided into the model group (n = 18), TMP 40 mg/kg
group (n = 14), TMP 20 mg/kg (n = 14) group, and TMP
10 mg/kg group (n = 14) by experimenters blinded to the
treatment conditions. There were no group differences in
neurological deficit scores and body weight before
treatment. Another 10 sham-operated rats were grouped
into the sham group. TMP dissolved in saline was
intraperitoneally injected to rats 4h after MCAO and once
daily for 14 days. The rats in the sham and model groups were
injected with the same volume of saline (1 ml/kg/day). The rats
from the model group (n = 12), TMP 40 mg/kg group (n = 12),
TMP 20 mg/kg group (n = 11), TMP 10 mg/kg group (n = 11),
and all the sham-operated rats were able to survive.

Rat Gait Analysis

Gait assessment was carried out on day 14 after MCAO using the
DigiGait Imaging and Analysis 15.0 system (Mouse Specifics,
Inc., Boston, United States) (Hampton et al., 2004). In brief, rats
(n =10 per group) were trained to walk as the speed was gradually
increased to 15 cm/s. A high-speed video camera mounted below
captured four paws and their positions relative to the belt, and
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qualified videos contained at least three successive footprints
(Feng et al.,, 2019).

Gait parameters were summarized as follows: steps (the
number of steps in a stride cycle), cadence (the number of
steps taken per second) (Parkkinen et al., 2013), hindlimb
shared stance time (the time in contact with the belt with
hindlimbs), stride length (the distance between two successive
initial postures during the maximal contact), paw area (the
maximal paw area in contact with the belt), and ataxia
coefficient (Caballero-Garrido et al., 2017). Gait detection and
data analysis were conducted by two experimenters blinded to the
group assignment.

MRI Acquisition and Analysis

MRI measurements were performed with a 7.0 T MRI scanner
(Bruker, PharmaScan, Germany) on the 15" day after TMP
intervention (n = 6 per group). The rats were anesthetized
(5% isoflurane for induction and 2% isoflurane for
maintenance) with an anesthesia system (JD Medical Dist. Co.
Inc, United States). MRI images were reconstructed by
Paravision version 5.1 software (Bruker, PharmaScan, Germany).

T2-weighted imaging (T2WT) was conducted with a fast spin-
echo pulse sequence with the following parameters: repetition
time (TR) = 4,400 ms, echo time (TE) = 45 ms, field of view
(FOV) = 3 x 3 cm” ,and matrix size (MS) = 256 x 256 (Li M Z
et al, 2019). Infarct regions were defined by the areas with
hyperintensity on T2 images (Chan et al, 2009). The infarct
volume was calculated as the summation of infarct areas by the
slice thickness (0.7 mm) by ImageJ software (Liu et al.,, 2011).
Similarly, the volumes of bilateral hemispheres and ventricles
were calculated. The ipsilateral residual tissue volume was equal
to subtracting the infarct and ventricular volumes from the
hemisphere volume (Li M et al., 2018).

T2 relaxometry mapping was used to analyze tissue lesions
with a multislice multiecho sequence with the following
parameters: TR = 2,500 ms, TEs from 11 to 176 ms, FOV =
3.3 x 3.3 cm? and MS = 256 x 256 (Zhang et al., 2016). Regions of
interest (ROIs) were manually delineated in the bilateral peri-
infarct cortex, external capsule, internal capsule, motor cortex,
and somatosensory cortex, following a rat atlas (Schober, 1986).
T2 values of ROIs were obtained on coronal T2 relaxometry maps
by Paravision version 5.1 software. The relative T2 (rT2) was
calculated as the ipsilateral T2 value relative to the contralateral
T2 value.

Diffusion tensor imaging (DTI) was conducted to detect the
microstructural changes with an axial single-shot spin echo-
planar imaging sequence with the following parameters: TR/
TE = 6,300/25ms, 30 diffusion encoding directions, and b
values = 0, 1,000 s/mm* (Zhang et al, 2016). The images of
fractional anisotropy (FA), apparent diffusion coefficient (ADC),
axial diffusivity (AD), and radial diffusivity (RD) were
reconstructed with Paravision version 5.1 software. ROIs were
delineated in the bilateral peri-infarct cortex, external capsule,
and internal capsule on DTI parametric maps to obtain DTI
values (Schober, 1986). Diffusion tensor tractography (DTT) was
reconstructed with DSI studio and Diffusion Toolkit software to
determine the orientation and integrity of nerve fibers (Liu et al.,

Tetramethylpyrazine Promotes Post-Ischemic Axonal Remodeling

2011). The mean fiber length and density of the external capsule
and internal capsule were measured (Li M. Z et al., 2018). Data
were presented as the ratio of ipsilateral values relative to
contralateral values (Guo et al., 2011).

Arterial spin labeling (ASL) was performed to quantify the
CBF with an echo-planar imaging fluid-attenuated inversion
recovery sequence with the following parameters: TR/TE =
18,000/25 ms, FOV = 3.0 x 3.0 cm’, matrix size = 128 x 128,
and number of excitations = 1. ASL raw data and CBF maps were
obtained by Paravision version 5.1 software. The CBF values (mL/
100 g/min) of the bilateral peri-infarct cortex, external capsule,
and internal capsule were acquired based on our previous method
(Zhang et al., 2016; Zhang et al., 2019). The relative CBF (rCBF)
was the ratio of the ipsilateral CBF to the contralateral CBF.

Tissue Examination

After MRI scanning, rats were anesthetized for histologic
evaluation and ultrastructural detection. The brains of rats
were processed as previously described (Zhan et al, 2020).
Hematoxylin and eosin (HE) staining was performed to
identify the pathological injury of brain tissues (n = 4 per
group). The number of nerve cells was measured from three
non-overlapping microscopic regions randomly selected in the
peri-infarct cortex, according to the previously described method
(Li M Z et al., 2019). Data were presented by the average number
of cells per mm?.

Luxol fast blue (LFB) staining was carried out to observe
myelinated axon damage (Patro et al.,, 2019) (n = 4 per group).
Three microscopic fields were randomly sampled from the
bilateral external capsule and internal capsule. The integrated
optical density (IOD) in LFB staining was analyzed with the NIS-
Elements Basic Research Image Collection Analysis system
(Nikon, Japan). Data were expressed as the ratio of the
ipsilateral IOD to the contralateral IOD (Li M Z et al,, 2019).

Transmission Electron Microscope Analysis
The ultrastructural changes in axons and synapses in the peri-
ischemic cortex were examined with H7700TEM (Hitachi,
Tokyo, Japan) (n = 2 per group). In order to evaluate the
documentation and arrangement of axonal remyelination, an
average of 43 images of axons were captured from each group,
and G-ratio (axonal diameter/total fiber diameter) was analyzed
(Ramadan et al,, 2017). In addition, the synaptic plasticity was
analyzed with an average of 20 synapses per group. The number
of vesicles in presynaptic membranes was counted, and
ultrastructural synaptic junctions including the presynaptic
membrane length, synaptic cleft width, postsynaptic density
(PSD) thickness, and postsynaptic membrane curvature were
analyzed, as described previously (Xu et al., 2009).

Furthermore, the damage degree of mitochondria in axons
and synapses was scored, according to the evaluation standard:
grade 0, normal structure with intact mitochondrial matrix
granules; grade 1, absent mitochondrial matrix granules; grade
2, swollen mitochondria and transparent matrix; grade 3, the
disintegrating structure of mitochondrial cristae; and grade 4,
destructive bilayer membranes of mitochondria (Hou et al,
2016).
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FIGURE 1 | Effect of TMP on cerebral infarction in MCAQ rats. (A) Typical axial T2 images of each group. The infarct areas are represented with white dotted lines.
The ventricles are represented with red dotted lines in the model group (n = 6). Quantitative analysis of the (B) infarct volume, (C) ventricular volume, and (D) residual

Western Blot Analysis
The rats (n 4 per group) without undergoing MRI

experiments were deeply anesthetized. The perilesional
cortex was separated, and protein levels were determined by
Western blotting, as previously described (Zhan et al., 2020).
Proteins were transferred onto polyvinylidene difluoride
membranes, followed by blocking them with 5% nonfat
milk for 2 h and subsequently incubating membranes at 4°C
overnight with primary antibodies: anti-GAP-43 (1:40000;
Epitomics, #2259-1), SYN (1:320000; Epitomics, #1870-1),
Netrin-1 (1:2,000; Abcam, abl26729), DCC (1:1,000;
Abcam, ab125280), Slit-2 (1:10,000; Abcam, ab134166),
Robo-1 (1:1,000; Abcam, ab7279), NogoA (1:20,000; Abcam,
ab62024), NgR (1:40,000; Abcam, ab62024), RhoA (1:20,000;
Cell signaling, 2117s), ROCK-2 (1:50,000; Abcam, ab125025),
and GAPDH (1:1,60,000; GeneTex, GTX627408). After
washing, membranes were incubated with secondary anti-

rabbit (1:20,000; Applygen Technologies Inc., C1309) or
anti-mouse (1:20,000; NeoBioscience, cat. ANM 02-1, Lot.
0912) IgG (H + L)-HRP for 1h at room temperature.
Immunoreactive protein bands were detected by using the
SuperECL Plus kit (Applygen, China, cat. No. P1050) and
chemiluminescent imager (VILBER, United States). The
intensities of target proteins were quantified by Image]
software.

Statistical Analysis

Data were presented as mean + standard error of the mean
(SEM). Statistical analysis was performed using the SPSS 26.0
software (SPSS Inc., United States). Data were analyzed with a
one-way analysis of variance (ANOVA), followed by Bonferroni’s
post hoc test. Pearson linear regression was conducted to analyze
the correlation between rCBF and DTI metrics. The statistical
significance was defined as p < 0.05.
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FIGURE 2 | Effect of TMP on cerebral tissue injury in MCAQ rats. (A) Typical T2 relaxometry mapping of each group (n = 6). (B) Typical HE staining photographs
showed the degeneration and necrosis of the nerve cells (black arrows) in the peri-infarct cortex (CTX, black boxes) and destructive tissues (#) indicated in the model
group (n = 4). (C) Typical LFB staining photographs showed myelin sheath of the external capsule (EC, green boxes) and internal capsule (IC, orange boxes). Remarkable
cavitation areas with myelin sheath loss (*) in nerve fibers were indicated in the model group (n = 4). Quantitative analysis of relative T2 values of (D) CTX, EC, and IC,

(E) motor cortex (MC), and somatosensory cortex (SC). Quantitative analysis of (F) the nerve cell density of CTX and (G) relative LFB-IOD of EC and IC. *p < 0.05 and **p <
0.01 vs. Model group.
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FIGURE 3 | Effect of TMP on the axonal microstructure in MCAQ rats. (A) Typical axial color-coded FA, FA, ADC, AD, and RD images of each group. ROIs of the
peri-infarct cortex (CTX), external capsule (EC), and internal capsule (IC) were identified on the color-coded FA images in the sham group (n = 6). (B-E) Quantitative
analysis of the relative FA, ADC, AD, and RD of CTX, EC, and IC, respectively. *p < 0.05 and **p < 0.01 vs. Model group.
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RESULTS

TMP Alleviated Cerebral Infarction

T2WI revealed a hyperintense signal in the MCA territory,
indicating tissue infarction (Figure 1A). TMP (20, 40 mg/kg)
treatment obviously decreased the infarct volume compared with
the model group (p < 0.01) (Figure 1B). Notably, in comparison
with sham rats, the bilateral ventricles were severely enlarged, and
the ipsilateral residual volume was decreased after ischemia for
15 days (p < 0.01). TMP (20, 40 mg/kg) effectively relieved the
ventricular dilatation and preserved the residual tissues in
comparison with model rats (p < 005 or p < 0.01)
(Figures 1C,D).

TMP Relieved Cerebral Tissue Injury and
Protected the Myelinated Axons

T2 relaxometry mapping was conducted to determine structural
changes in the gray and white matter (Figure 2A). Quantitative
analysis showed higher rT2 values were detected in the ipsilateral
gray matter (the peri-infarct cortex) and white matter (the
external capsule and internal capsule) areas of model rats
compared with sham rats (p < 0.01). In contrast, TMP (20,
40 mg/kg)-treated rats showed lower rT2 in the peri-infarct
cortex, somatosensory cortex, external capsule, and internal
capsule (p < 0.05 or p < 0.01), and TMP (10 mg/kg) decreased
r'T2 of the peri-infarct and motor cortex as compared with model
rats (p < 0.05 or p < 0.01). TMP (40 mg/kg) additionally decreased
rT2 of the motor cortex compared to the model group (p < 0.01)
(Figures 2D,E).

Furthermore, HE staining (Figure 2B) showed that the nerve
cell density of the peri-infarct cortex was sharply decreased when
compared with the sham group (p < 0.01), whereas a significantly
higher number of nerve cells was found in TMP (20, 40 mg/kg)
treatment groups than in the model group (p < 0.05 or p < 0.01)
(Figure 2F).

LFB staining was performed to examine the alternations of
axons and myelin sheath (Figure 2C). In comparison with the
sham group, the relative LFB-IODs of the external capsule and
internal capsule in model rats were sharply decreased (p < 0.01).
The relative IODs of the external capsule and internal capsule
were increased in TMP (20, 40 mg/kg)-treated rats, and TMP
(10 mg/kg) also enhanced the relative LFB-IOD of the internal
capsule (p < 0.05 or p < 0.01) (Figure 2G). In conclusion, TMP
plays a remarkable role in protecting nerve cells in gray matter
and myelinated axons in white matter after ischemia.

TMP Ameliorated the Damage of the Axonal

Microstructure

DTI was utilized to evaluate the microstructural changes in axons
(Figure 3A). First, the DTI-derived parameter FA characterizes
the alterations of the axonal microstructure. Quantitative data
demonstrated that rFA was sharply decreased in the model
perilesional cortex, external capsule, and internal capsule
compared to the sham group (p < 0.01), while it was reversed

Tetramethylpyrazine Promotes Post-Ischemic Axonal Remodeling

by TMP (20, 40 mg/kg) (p < 0.05 or p < 0.01) (Figure 3B). In
addition, rADC is employed to detect cellular damage. As shown
in model rats, the increased rADC was detected in the peri-infarct
cortex, external capsule, and internal capsule. In contrast, TMP
(20, 40 mg/kg) decreased rADC of the peri-infarct cortex and
external capsule compared with the model rats (p < 0.05 or p <
0.01), and the reduced rADC was also detected in the internal
capsule of TMP (10 mg/kg) group rats (p < 0.05) (Figure 3C).

In particular, rAD and rRD were respectively used to analyze
the alterations of axons and myelin sheath. DTT results showed
elevated rAD and rRD in the peri-infarct cortex, external capsule,
and internal capsule of model rats compared with sham rats (p <
0.05 or p < 0.01). After the treatment with TMP (10, 20, and
40 mg/kg), the rAD of the peri-infarct cortex was significantly
reduced as compared to model rats (p < 0.05). Moreover, TMP
(40 mg/kg) also decreased rAD of the ipsilateral external capsule
(Figure 3D). Moreover, TMP (20, 40 mg/kg) remarkably
decreased rRD in the peri-infarct cortex, external capsule, and
internal capsule in comparison with the model group (p < 0.05 or
p < 0.01). These results suggest that TMP could ameliorate the
damage to the axonal microstructure in ischemic rats.

TMP Facilitated Axonal Restoration

DTT was conducted to demonstrate the integrity and
connectivity of nerve fibers (Figure 4A). The model group rats
showed decreased relative fiber length and density in the external
capsule and internal capsule compared to sham rats (p < 0.01).
After treatment with TMP (40 mg/kg), the relative fiber length
and density of the external capsule were remarkably increased,
and the relative density of internal capsule fibers was also
increased in comparison with model rats (p < 0.05 or p <
0.01). Additionally, TMP (20 mg/kg) elevated the relative
density of internal capsule fibers in comparison with model
rats (p < 0.05 or p < 0.01) (Figures 4B,C).

TMP Improved the Cerebral Perfusion
Cerebral perfusion was quantitatively evaluated with ASL
(Figure 5A). Post hoc comparisons revealed the rCBF of the
peri-infarct cortex, external capsule, and internal capsule in
model rats was significantly decreased in comparison to the
sham group (p < 0.01). TMP treatment (20, 40 mg/kg)
significantly increased the rCBF of the peri-infarct cortex,
external capsule, and internal capsule (p < 0.05 or p < 0.01),
and TMP (10 mg/kg) also increased the rCBF of the peri-infarct
cortex and external capsule compared to model rats (p < 0.05 or
p < 0.01) (Figure 5B).

Furthermore, Pearson linear regression analysis showed rFA
was significantly in positive correlation with rCBF in the peri-
infarct cortex (R = 0.4938 and p < 0.01), external capsule (R =
0.6803 and p < 0.0001), and internal capsule (R = 0.7716 and p <
0.0001). Meanwhile, rADC was strongly in negative correlation
with rCBF in the peri-infarct cortex (R = -0.5093 and p < 0.01),
external capsule (R = -0.7427 and p < 0.0001), and internal
capsule (R = -0.4407 and p < 0.05), suggesting the improvement
of the rCBF might contribute to restore the axonal microstructure
after ischemia (Figure 5C).
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FIGURE 4 | Effect of TMP on axonal restoration in MCAQ rats. (A) Typical 3D reconstruction DTT images of the whole brain and anatomical pathways of the external
capsule (EC) and internal capsule (IC) of each group (n = 6). Quantitation of the (B) relative length and (C) relative density of nerve fibers in EC and IC. *p < 0.05 and “*p <

0.01 vs. Model group.

TMP Elevated GAP-43 and SYN Expressions
and Decreased Damage to Axonal and
Synaptic Microstructures

To test whether TMP treatment of stroke induces axonal and
synaptic plasticity, GAP-43 (a marker for axon growth) and SYN (a
marker for synaptogenesis) were examined. Western blot revealed
that GAP-43 and SYN in the model perilesional cortex were
significantly decreased compared with the sham group (p < 0.05
or p < 0.01). After TMP (10, 20, and 40 mg/kg) treatment, GAP-43
and SYN were significantly elevated in comparison with the model
cortex (p < 0.05 or p < 0.01) (Figures 6A,B).

Notably, electron micrographs showed the ultrastructural
alterations of myelinated axons with the swollen myelin
lamina after MCAO (Figure 6C). Moreover, the measurement
of the G-ratio was significantly declined in the model group as
compared with the sham group (p < 0.01). TMP (10, 20, and
40 mg/kg) dramatically increased the G-ratio in comparison with
model rats (p < 0.01), suggesting axonal remyelination after TMP
intervention (Figure 6C).

In addition, the synaptic ultrastructural analysis showed
MCAO decreased the number of vesicles in presynaptic
membranes, induced structural changes in synaptic
junctions including the decreased presynaptic membrane
length, PSD thickness, and postsynaptic membrane
curvature, and increased the synaptic cleft width. The
synaptic parameters were altered after TMP treatment. TMP
(10, 20, and 40 mg/kg) increased PSD thickness and
postsynaptic membrane curvature and decreased synaptic
cleft width in comparison with model rats (p < 0.01). In
particular, TMP (20, 40 mg/kg) increased the number of
presynaptic vesicles (p < 0.01), and TMP (40 mg/kg) also
extended the presynaptic membrane length (p < 0.05)
(Figures 6I-M-M).

Moreover, quantitation showed that mitochondrial damage
scores in axons and synapses were increased in the model
group compared to the sham group (p < 0.01). TMP (10, 20,
and 40 mg/kg) restored the mitochondrial injury in the
perilesional cortex (p < 0.05 or p < 0.01) (Figures 6F,N).

Frontiers in Pharmacology | www.frontiersin.org

April 2022 | Volume 13 | Article 851746


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Feng et al.

Tetramethylpyrazine Promotes Post-Ischemic Axonal Remodeling

TMP 20 mg/kg TMP 10 mg/kg

Bregma -3.8 mm

B | 3 Sham == Model 33 TMP 40 mg/kg 3 TMP 20 mg/kg B3 TMP 10 mg/kg
15 15 15
Th
om *k
O1.0 A& * * 1.0{ =X 1.0{ =X *k
[} *k  kk gy *
=
m0.5 05 05
0]
m i
0.0 ; 0.0 . 0.0 .
CTX EC IC
C 14 CTX 12 EC IC
« | |R=04938 . “"Tr=0.6803 1.1-{R=0.7716 © Sham
o P<0.01 e s P<0.0001 _, P<0.0001 ® Model
o 1.0 0.9 0.8+ « TMP 40 mg/kg
2 « TMP 20 mg/kg
% 0.6 0.6 0.5 « TMP 10 mg/kg
h's
0.1 0.5 0.9 13 02 05 08 1.1 0. 2
Q 35 e R=-0.5093 ° =0.7427| 4 4]
2 ' o P<0.01 2.0 P<0.0001 !
[} 25"‘ o ® 1.6" 12_
.2 @, ®ow
m 15° o 1.2- 1.0
[} e &5
X o5 , T 08 , , >~ 08 . .
01 05 09 13 02 05 08 1.1 03 06 09 12

Relative CBF
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white dotted lines (n = 6). (B) Quantitation of relative CBF (rCBF) of the peri-infarct cortex (CTX), external capsule (EC), and internal capsule (IC). (C) Correlations between
DTI metrics (rfFA and rADC) and rCBF of CTX, EC, and IC. *p < 0.05 and *p < 0.01 vs. Model group.

TMP Regulated Axonal Guidance Signals
and Inhibited Axonal Growth-Inhibitory
Signals

Western blot results showed that axonal guidance factors DCC,
Slit-2, and Robo-1 were notably downregulated in the
periischemic cortex of model rats compared to sham rats (p <
0.05 or p < 0.01), while TMP (10, 20, and 40 mg/kg) significantly
upregulated DCC, Slit-2, and Robo-1 expressions compared to
the model group (p < 0.05 or p < 0.01). In addition, TMP
(40 mg/kg) also increased the expression of Netrin-1 when
compared to model rats (p < 0.05) (Figures 7A,B).

In particular, the axonal growth inhibitors NogoA/NgR and
RhoA/ROCK-2 were distinctly upregulated in model rats

compared with the sham group (p < 0.05 or p < 0.01). In
comparison with the model group, TMP (20, 40 mg/kg)
treatment downregulated NogoA, NgR, RhoA, and ROCK-2,
and TMP (10 mg/kg) also suppressed NgR, RhoA, and ROCK-
2 levels in the peri-ischemic cortex (Figures 7C,D). To sum up,
TMP improves axonal remodeling by regulating axonal guidance
and growth-inhibitory signals.

TMP Improved the Gait Function

The gait impairment and functional recovery after TMP treatment
were evaluated by the DigiGait-automated gait test (Figure 8A). The
model rats displayed the significantly increased steps and cadence
compared with sham rats (p < 0.05 or p < 0.01). After TMP (10, 20,
and 40 mg/kg) treatment, steps and cadence were decreased in
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FIGURE 6 | Effects of TMP on GAP-43 and SYN expressions and axonal and synaptic microstructural damage in MCAO rats. Typical Western blot images and
analysis for (A) GAP-43 and (B) SYN (n = 4). The protein levels were quantified with GAPDH as the loading control. (C) Representative TEM images of myelinated axonsin
each group, and the axons separating from myelin sheath (red arrows) and abnormal mitochondria (Mit) were indicated in the model group (n = 2). (D) G-ratio indicated
the axonal diameter (r)/total fiber diameter (R). The quantitation of (E) G-ratio and (F) damage score of mitochondria in axons. (G) Representative TEM images of
synapses in each group (n = 2). (H) Vesicles in presynaptic membranes, synaptic cleft, PSD, and postsynaptic membrane curvature are shown on the schematic
diagram. The quantitation of (I) vesicles in presynaptic membranes, (J) presynaptic membrane length, (K) synaptic cleft width, (L) postsynaptic membrane curvature,
(M) PSD thickness, and (N) damage score of mitochondria in synapses. *p < 0.05 and **p < 0.01 vs. Model group.
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comparison with model rats (p < 0.05 or p < 0.01) (Figures 8B,C).
The stride length of the four limbs and hindlimb shared stance time
were shortened in model rats compared to sham rats (p < 0.05 or p <
0.01), which were both reversed by TMP (10, 20, and 40 mg/kg) (p <
0.05 or p < 0.01) (Figures 8D,E).

The paw area of the left hindlimb and right limbs in model rats
was smaller than that in sham rats (p < 0.05 or p < 0.01), which was
increased in TMP (10, 20, and 40 mg/kg) groups, and TMP (20,
40 mg/kg) also increased the paw area of the right forelimbs in
comparison with the model group (p < 0.05) (Figure 8F).

Notably, the model rats showed an increased ataxia coefficient of
the hindlimbs compared with the sham group, representing the
impairment in the interlimb coordination (p < 0.05 or p < 0.01),
whereas it was decreased by TMP (10, 20, and 40 mg/kg) compared
with model rats (p < 0.05 or p < 0.01) (Figure 8G). These data
elucidate that TMP could alleviate gait impairment and improve the
limb locomotor function after ischemic stroke.

DISCUSSION

On the basis of the multiparametric MRI, the present study
revealed that TMP had beneficial effects on protecting both

gray and white matter, especially promoting axonal remodeling
after ischemic stroke, which was coupled with improving cerebral
perfusion. With the information obtained from the DigiGait-
automated analysis, we demonstrated that TMP facilitated gait
function recovery. Meanwhile, intrinsic axonal guidance cues and
growth-inhibitory signals would be participated in the process of
TMP promoting axonal reorganization. Our research would offer
an ideal therapeutic approach to promote post-stroke brain repair.

MRI is an extremely reliable modality to noninvasively reveal
tissue damages (Saar and Koretsky, 2019). In the present study,
T2WTI images exhibited TMP could reduce infarct volumes and
protect residual tissues of ischemic brains, and T2 relaxometry
mapping displayed decreased T2 values located in the peri-infarct
cortex, external capsule, and internal capsule, following TMP
treatment. In corresponding areas, histopathological analysis
confirmed TMP preserved nerve cells in the peri-infarct cortex
and increased LFB positive myelinated nerve fibers in the external
capsule and internal capsule which are the integral white matters.
Therefore, our data indicated TMP not only relieves gray matter
injury but also protects white matter structures.

We noninvasively detected the microstructure and integrity of
gray and white matter by DTI (Jung et al., 2017). The decreased
rFA but increased rADC, rAD, and rRD predominantly appeared
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in the peri-infarct cortex, external capsule, and internal capsule
after stroke. FA as a common parameter of DTI reflects the
density and integrity of the axonal microstructure, while the
reduced FA pixels independently represent demyelination and
axonal loss. The increased ADC is a sign of cellular injury, and the
elevated AD and RD indicate axonotmesis and myelin
degradation, respectively (Mailhard et al, 2013). Notably, a
higher rFA but lower rADC, rAD, and rRD were detected in
corresponding regions after TMP treatment, suggesting TMP
could lessen microstructural injury of axons and myelin sheath
and facilitate axonal remodeling after ischemic stroke. In
particular, DTT maps revealed that TMP intervention robustly
elevated the fiber density and length in the ischemic external
capsule and internal capsule, suggesting fiber tract repair. With
the information obtained from MRI, this study firmly
demonstrated the efficacy of TMP in facilitating white matter
reformation involving demyelination and axonal reorganization,

following ischemia. However, the intricate mechanism remains
unclear and requires further investigation.

Previous studies have revealed that TMP could inhibit platelet
aggregation, reduce blood-brain barrier permeability, and
promote angiogenesis (Tan et al, 2015; Li L et al, 2019),
which were essential for maintaining circulatory homeostasis
following ischemia. CBF improvement is favorable for
relieving axonal injury and promoting white matter
remodeling after ischemia (Hatakeyama et al., 2020). To show
the association between CBF and axonal remodeling, we
quantitatively investigated the CBF with MRI-ASL images and
constructed the correlation between CBF and DTTI indices. Our
findings demonstrated that MCAOQO rats treated with TMP
showed restoration of the CBF in peri-infarct regions.
Interestingly, a strong correlation was observed between rCBF
and rFA/rADC, suggesting elevating regional CBF might
coordinate axonal remodeling.
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On the grounds of the aforementioned results, we further
investigated the level of axonal growth protein GAP-43 and
synaptogenesis marker SYN. GAP-43 exits in the growth-cone
membranes of axons, and SYN lies on the membranes of
presynaptic vesicles. The upregulated GAP-43 and SYN are,
respectively, related to neurite outgrowth and synaptic plasticity
(Chung et al,, 2020; Jing et al.,, 2020). Our results found TMP
treatment markedly improved GAP-43 and SYN expressions in the
peri-ischemic cortex. Furthermore, TEM images provided direct
evidence that TMP could protect the ultrastructure of axons and
synapses. The increased G-ratio of axons in MCAO rats treated
with TMP reflected that TMP alleviated axonal damage and
demyelination (Stikov et al,, 2015). In particular, the synaptic
ultrastructural analysis revealed that TMP induced structural
changes in synaptic junctions. Synapses have dynamic
structures, and the ultrastructural alterations are closely related
to synaptic plasticity (Li et al, 2016). In addition, TMP could
alleviate mitochondrial damage in axons and synapses.
Collectively, these data combined with MRI evidence strongly
support that improved CBF after TMP treatment is beneficial
for axonal outgrowth and synaptic plasticity.

Recently, attractive and repulsive axonal guidance cues such as
Netrin-1 and Slit-2 have been recognized to play a major role in
guiding axonal growth. In this study, we found TMP could
upregulate Netrin-1/DCC and  Slit-2/Robo-1  levels after
ischemia for 15 days. It was worth noting that TMP (40 mg/kg)
significantly increased the Netrin-1 expression compared with the
model group. Netrin-1 is initially characterized as a neural
guidance factor and has been demonstrated as a potent vascular
mitogen that stimulates proliferation, migration, and tube
formation (Park et al, 2004). Subsequently, evidence revealed
that Netrin-1 could induce angiogenesis and improve the post-
stroke neurovascular structure in adult mouse brains (Lu et al.,
2012; Ding et al., 2014). These results, along with the information
obtained from ASL and DTI, raised the interesting possibility of the
beneficial effects of TMP toward CBF augmentation and axonal
repair after ischemic stroke.

It is evident that the growth-inhibitory proteins of myelin-
associated axons make a critical difference in impeding axonal
repair post stroke (Huang et al., 2017). Specifically, NogoA
binding to NgR inhibits axonal sprouting by activating the
downstream RhoA and its effector ROCK-2, disintegrating
axonal growth cones (Zagrebelsky and Korte, 2014). More
obviously, TMP-treated rats exhibited significantly reduced
growth-inhibitory proteins NogoA/NgR and RhoA/ROCK-2.
Our findings were consistent with previous reports showing
upregulated NogoA/NgR and RhoA/ROCK-2, following
ischemic stroke (Kilic et al., 2010). Overall, our findings
proved that axonal guidance and growth-inhibitory signals
within the cerebral microenvironment might contribute to
TMP promoting brain tissue remodeling post ischemia.

Remodeling of gray and white matter accounts for functional
recovery (Rosano et al, 2008; de Laat et al, 2011); thus, we
investigated the therapeutic effects of TMP on gait impairment
using the DigiGait-assisted automated analysis system. Unilateral
ischemia could result in bilateral gait variations (Parkkinen et al,
2013), and clinical studies based on MRI have confirmed that

Tetramethylpyrazine Promotes Post-Ischemic Axonal Remodeling

demyelination and axonal degeneration are parallel to the
attenuated gait speed, stride length, and double support time [56,
57]. The increase in steps and decline in the stride length are related
to the attenuation of gait stability and speed (Krasovsky et al., 2012;
van der Holst et al., 2018); in addition , the reduction in paw area is
due to the inadequate propulsion and weight-bearing capabilities of
the limbs (Zeng et al., 2018). In particular, the shortened hindlimb
shared stance time and increased ataxia coefficient suggest that limb
coordination is impaired by stroke (Langhorne et al, 2011;
Ambrosini et al., 2020). In the present study, gait parameters
were effectively improved after TMP treatment for 2 weeks,
including steps, cadence, stride length, hindlimb shared stance
time, paw area, and ataxia coefficient, demonstrating that TMP
has the potential to alleviate the gait deficit of MCAO rats.

In the present research, we proved TMP alleviated gray and
white matter injury and enhanced axonal remodeling by improving
CBF, inducing endogenous GAP-43 and SYN expressions,
augmenting guidance cues Netrin-1/DCC and Slit-2/Robo-1,
and interfering with intrinsic growth-inhibitory signals NogoA/
NgR and RhoA/ROCK-2. These data provide meaningful evidence
that TMP might improve the intracerebral microenvironment of
ischemic areas and benefit white matter remodeling, in
consequence, contributing to the improvement of functional
recovery after stroke.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The animal study was reviewed and approved by Capital Medical
University Animal Ethics Committee (Permit Number: AEEI-
2018-052).

AUTHOR CONTRIBUTIONS

X-FF conducted this study, dealt with data, analyzed results, and
finished the manuscript. J-FL and M-ZL performed MRI
experiments. YZ collected MRI data. LY prepared samples. YL
carried out a gait test. M-CL collected gait data. Y-MZ fed rats.
LW supervised the experimental work. HZ programmed the
whole work and modified the final manuscript.

FUNDING

This work was supported by the Beijing Municipal Natural
Science Foundation (Grant No.7212161).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2022.851746/
full#supplementary-material

Frontiers in Pharmacology | www.frontiersin.org

April 2022 | Volume 13 | Article 851746


https://www.frontiersin.org/articles/10.3389/fphar.2022.851746/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.851746/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Feng et al.

REFERENCES

Ambrosini, E., Parati, M., Peri, E., De Marchis, C., Nava, C., Pedrocchi, A., et al.
(2020). Changes in Leg Cycling Muscle Synergies after Training Augmented by
Functional Electrical Stimulation in Subacute Stroke Survivors: a Pilot Study.
J. Neuroeng Rehabil. 17, 35. doi:10.1186/s12984-020-00662-w

Caballero-Garrido, E., Pena-Philippides, J. C., Galochkina, Z., Erhardt, E., and
Roitbak, T. (2017). Characterization of Long-Term Gait Deficits in Mouse
dMCAO, Using the CatWalk System. Behav. Brain Res. 331, 282-296. doi:10.
1016/j.bbr.2017.05.042

Chan, K. C, Khong, P. L, Lau, H. F., Cheung, P. T., and Wu, E. X. (2009). Late
Measures of Microstructural Alterations in Severe Neonatal Hypoxic-Ischemic
Encephalopathy by MR Diffusion Tensor Imaging. Int. J. Dev. Neurosci. 27,
607-615. doi:10.1016/j.ijjdevneu.2009.05.012

Chen, B., Carr, L., and Dun, X. P. (2020). Dynamic Expression of Slitl1-3 and
Robol-2 in the Mouse Peripheral Nervous System after Injury. Neural Regen.
Res. 15, 948-958. doi:10.4103/1673-5374.268930

Chen, J., Venkat, P., Zacharek, A., and Chopp, M. (2014). Neurorestorative
Therapy for Stroke. Front. Hum. Neurosci. 8, 382. doi:10.3389/fnhum.2014.
00382

Chun-sheng, L., Hsiao-meng, Y., Yun-hsiang, H., Chun, P., and Chi-fen, S. (1978).
Radix Salviae Miltiorrhizae and Rhizoma Ligustici Wallichii in Coronary Heart
Disease. Chin. Med. J. (Engl) 4, 43-46.

Chung, D., Shum, A., and Caraveo, G. (2020). GAP-43 and BASP1 in Axon
Regeneration: Implications for the Treatment of Neurodegenerative Diseases.
Front Cel Dev Biol 8, 567537. doi:10.3389/fcell.2020.567537

Cuesta, S., Nouel, D., Reynolds, L. M., Morgunova, A., Torres-Berrio, A., White, A, et al.
(2020). Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence
Requires Netrin-1. Front. Cel Dev Biol 8, 487. doi:10.3389/fcell.2020.00487

de Laat, K. F.,, Tuladhar, A. M., van Norden, A. G., Norris, D. G., Zwiers, M. P., and
de Leeuw, F. E. (2011). Loss of white Matter Integrity Is Associated with Gait
Disorders in Cerebral Small Vessel Disease. Brain 134, 73-83. doi:10.1093/
brain/awq343

Ding, Q. Liao, S. J.,, and Yu, J. (2014). Axon Guidance Factor Netrin-1 and its
Receptors Regulate Angiogenesis after Cerebral Ischemia. Neurosci. Bull. 30,
683-691. doi:10.1007/s12264-013-1441-9

Feng, H., Larrivee, C. L., Demireva, E. Y, Xie, H., Leipprandt, J. R., and Neubig, R.
R. (2019). Mouse Models of GNAO1-Associated Movement Disorder: Allele-
and Sex-specific Differences in Phenotypes. Plos One 14,e0211066. doi:10.1371/
journal.pone.0211066

Flottmann, F., Leischner, H., Broocks, G., Nawabi, J., Bernhardt, M., Faizy, T. D.,
et al. (2018). Recanalization Rate Per Retrieval Attempt in Mechanical
Thrombectomy for Acute Ischemic Stroke. Stroke 49, 2523-2525. doi:10.
1161/STROKEAHA.118.022737

Gong, P., Zhang, Z., Zou, Y., Tian, Q. Han, S, Xu, Z, et al. (2019).
Tetramethylpyrazine Attenuates Blood-Brain Barrier ~Disruption in
Ischemia/reperfusion Injury through the JAK/STAT Signaling Pathway. Eur.
J. Pharmacol. 854, 289-297. doi:10.1016/j.ejphar.2019.04.028

Guo, J., Zheng, H. B,, Duan, J. C,, He, L., Chen, N., Gong, Q. Y., et al. (2011).
Diffusion Tensor MRI for the Assessment of Cerebral Ischemia/reperfusion
Injury in the Penumbra of Non-human Primate Stroke Model. Neurol. Res. 33,
108-112. doi:10.1179/016164110x12761752770177

Guo, S. K., Chen, K. J,, Qian, Z. H,, Weng, W. L, and Qian, M. Y. (1983).
Tetramethylpyrazine in the Treatment of Cardiovascular and Cerebrovascular
Diseases. Planta Med. 47, 89.

Hampton, T. G., Stasko, M. R, Kale, A., Amende, I, and Costa, A. C. (2004). Gait
Dynamics in Trisomic Mice: Quantitative Neurological Traits of Down
Syndrome. Physiol. Behav. 82, 381-389. doi:10.1016/j.physbeh.2004.04.006

Hatakeyama, M., Ninomiya, I, and Kanazawa, M. (2020). Angiogenesis and
Neuronal Remodeling after Ischemic Stroke. Neural Regen. Res. 15, 16-19.
doi:10.4103/1673-5374.264442

Hou, S., Shen, P. P,, Zhao, M. M,, Liu, X. P, Xie, H. Y., Deng, F., et al. (2016).
Mechanism of Mitochondrial Connexin43’s Protection of the Neurovascular
Unit under Acute Cerebral Ischemia-Reperfusion Injury. Int. J. Mol. Sci. 17,
679. doi:10.3390/ijms17050679

Huang, S., Huang, D., Zhao, J., and Chen, L. (2017). Electroacupuncture Promotes
Axonal Regeneration in Rats with Focal Cerebral Ischemia through the

Tetramethylpyrazine Promotes Post-Ischemic Axonal Remodeling

Downregulation of Nogo-A/NgR/RhoA/ROCK Signaling. Exp. Ther. Med.
14, 905-912. doi:10.3892/etm.2017.4621

Hughes, R. E., Tadi, P., and Bollu, P. C. (2021). TPA Therapy. Eluru, India:
StatPearls.

Jing, M., Yi, Y., Jinniu, Z., Xiuli, K,, and Jianxian, W. (2020). Rehabilitation
Training Improves Nerve Injuries by Affecting Notchl and SYN. Open Med.
(Wars) 15, 387-395. doi:10.1515/med-2020-0045

Jung, W. B, Han, Y. H,, Chung, J. J., Chae, S. Y., Lee, S. H., Im, G. H,, et al. (2017).
Spatiotemporal Microstructural white Matter Changes in Diffusion Tensor
Imaging after Transient Focal Ischemic Stroke in Rats. Nmr Biomed. 30, e3704.
doi:10.1002/nbm.3704

Kilic, E., ElAli, A, Kilic, U., Guo, Z., Ugur, M., Uslu, U,, et al. (2010). Role of Nogo-
A in Neuronal Survival in the Reperfused Ischemic Brain. J. Cereb. Blood Flow
Metab. 30, 969-984. doi:10.1038/jcbfm.2009.268

Krasovsky, T., Banifia, M. C., Hacmon, R., Feldman, A. G., Lamontagne, A., and
Levin, M. F. (2012). Stability of Gait and Interlimb Coordination in Older
Adults. J. Neurophysiol. 107, 2560. doi:10.1152/jn.00950.2011

Laing, R. J., Jakubowski, J., and Laing, R. W. (1993). Middle Cerebral Artery
Occlusion without Craniectomy in Rats. Which Method Works Best? Stroke 24,
294-298. doi:10.1161/01.5tr.24.2.294

Langhorne, P., Bernhardt, J., and Kwakkel, G. (2011). Stroke Rehabilitation. Lancet
377, 1693-1702. doi:10.1016/S0140-6736(11)60325-5

Li, H., Wang, J., Wang, P., Rao, Y., and Chen, L. (2016). Resveratrol Reverses the
Synaptic Plasticity Deficits in a Chronic Cerebral Hypoperfusion Rat Model.
J. Stroke Cerebrovasc. Dis. 25,122-128. doi:10.1016/j.jstrokecerebrovasdis.2015.
09.004

Li, L., Chu, L., Ren, C., Wang, ], Sun, S, Li, T., et al. (2019). Enhanced Migration of
Bone Marrow-Derived Mesenchymal Stem Cells with Tetramethylpyrazine and
its Synergistic Effect on Angiogenesis and Neurogenesis after Cerebral Ischemia
in Rats. Stem Cell Dev 28, 871-881. doi:10.1089/scd.2018.0254

Li, M., Ouyang, J., Zhang, Y., Cheng, B. C. Y., Zhan, Y., Yang, L., et al. (2018).
Effects of Total Saponins from Trillium Tschonoskii Rhizome on Grey and
white Matter Injury Evaluated by Quantitative Multiparametric MRI in a Rat
Model of Ischemic Stroke. J. Ethnopharmacol 215, 199-209. doi:10.1016/j.jep.
2018.01.006

Li, M. Z,, Zhang, Y., Zou, H. Y., Ouyang, J. Y., Zhan, Y., Yang, L., et al. (2018).
Investigation of Ginkgo Biloba Extract (EGb 761) Promotes Neurovascular
Restoration and Axonal Remodeling after Embolic Stroke in Rat Using
Magnetic Resonance Imaging and Histopathological Analysis. Biomed.
Pharmacother. 103, 989-1001. doi:10.1016/j.biopha.2018.04.125

Li, M. Z,, Zhan, Y., Yang, L., Feng, X. F,, Zou, H. Y., Lei, J. F,, et al. (2019). MRI
Evaluation of Axonal Remodeling after Combination Treatment with
Xiaoshuan Enteric-Coated Capsule and Enriched Environment in Rats after
Ischemic Stroke. Front. Physiol. 10, 1528. doi:10.3389/fphys.2019.01528

Liu, H. S., Shen, H., Harvey, B. K,, Castillo, P., Lu, H,, Yang, Y., et al. (2011). Post-
treatment with Amphetamine Enhances Reinnervation of the Ipsilateral Side
Cortex in Stroke Rats. Neuroimage 56, 280-289. doi:10.1016/j.neuroimage.
2011.02.049

Lu, H, Wang, Y., He, X,, Yuan, F,, Lin, X,, Xie, B., et al. (2012). Netrin-1
Hyperexpression in Mouse Brain Promotes Angiogenesis and Long-Term
Neurological Recovery after Transient Focal Ischemia. Stroke 43, 838-843.
doi:10.1161/STROKEAHA.111.635235

Lu, W.,, Chen, Z.,, and Wen, J. (2021). RhoA/ROCK Signaling Pathway and
Astrocytes in Ischemic Stroke. Metab. Brain Dis. 36, 1101-1108. doi:10.
1007/s11011-021-00709-4

Maillard, P., Carmichael, O., Harvey, D., Fletcher, E., Reed, B., Mungas, D., et al. (2013).
FLAIR and Diffusion MRI Signals Are Independent Predictors of White Matter
Hyperintensities. AJNR Am. J. Neuroradiol 34, 54-61. doi:10.3174/ajnr.A3146

Ni, X,, Ni, X,, Liu, S., and Guo, X. (2013). Medium- and Long-Term Efficacy of
Ligustrazine Plus Conventional Medication on Ischemic Stroke: a Systematic
Review and Meta-Analysis. J. Tradit Chin. Med. 33, 715-720. doi:10.1016/
50254-6272(14)60002-9

Park, K. W, Crouse, D., Lee, M., Karnik, S. K., Sorensen, L. K., Murphy, K. ], et al.
(2004). The Axonal Attractant Netrin-1 Is an Angiogenic Factor. Proc. Natl.
Acad. Sci. U S A. 101, 16210-16215. doi:10.1073/pnas.0405984101

Parkkinen, S., Ortega, E. J., Kuptsova, K., Huttunen, J., Tarkka, L., and Jolkkonen, J.
(2013). Gait Impairment in a Rat Model of Focal Cerebral Ischemia. Stroke Res.
Treat. 2013, 410972. doi:10.1155/2013/410972

Frontiers in Pharmacology | www.frontiersin.org

April 2022 | Volume 13 | Article 851746


https://doi.org/10.1186/s12984-020-00662-w
https://doi.org/10.1016/j.bbr.2017.05.042
https://doi.org/10.1016/j.bbr.2017.05.042
https://doi.org/10.1016/j.ijdevneu.2009.05.012
https://doi.org/10.4103/1673-5374.268930
https://doi.org/10.3389/fnhum.2014.00382
https://doi.org/10.3389/fnhum.2014.00382
https://doi.org/10.3389/fcell.2020.567537
https://doi.org/10.3389/fcell.2020.00487
https://doi.org/10.1093/brain/awq343
https://doi.org/10.1093/brain/awq343
https://doi.org/10.1007/s12264-013-1441-9
https://doi.org/10.1371/journal.pone.0211066
https://doi.org/10.1371/journal.pone.0211066
https://doi.org/10.1161/STROKEAHA.118.022737
https://doi.org/10.1161/STROKEAHA.118.022737
https://doi.org/10.1016/j.ejphar.2019.04.028
https://doi.org/10.1179/016164110x12761752770177
https://doi.org/10.1016/j.physbeh.2004.04.006
https://doi.org/10.4103/1673-5374.264442
https://doi.org/10.3390/ijms17050679
https://doi.org/10.3892/etm.2017.4621
https://doi.org/10.1515/med-2020-0045
https://doi.org/10.1002/nbm.3704
https://doi.org/10.1038/jcbfm.2009.268
https://doi.org/10.1152/jn.00950.2011
https://doi.org/10.1161/01.Str.24.2.294
https://doi.org/10.1016/S0140-6736(11)60325-5
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.004
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.004
https://doi.org/10.1089/scd.2018.0254
https://doi.org/10.1016/j.jep.2018.01.006
https://doi.org/10.1016/j.jep.2018.01.006
https://doi.org/10.1016/j.biopha.2018.04.125
https://doi.org/10.3389/fphys.2019.01528
https://doi.org/10.1016/j.neuroimage.2011.02.049
https://doi.org/10.1016/j.neuroimage.2011.02.049
https://doi.org/10.1161/STROKEAHA.111.635235
https://doi.org/10.1007/s11011-021-00709-4
https://doi.org/10.1007/s11011-021-00709-4
https://doi.org/10.3174/ajnr.A3146
https://doi.org/10.1016/s0254-6272(14)60002-9
https://doi.org/10.1016/s0254-6272(14)60002-9
https://doi.org/10.1073/pnas.0405984101
https://doi.org/10.1155/2013/410972
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Feng et al.

Patro, N., Naik, A. A, and Patro, I. K. (2019). Developmental Changes in
Oligodendrocyte  Genesis, Myelination, and Associated Behavioral
Dysfunction in a Rat Model of Intra-generational Protein Malnutrition.
Mol. Neurobiol. 56, 595-610. doi:10.1007/s12035-018-1065-1

Ramadan, W. S., Abdel-Hamid, G. A., Al-Karim, S., and Abbas, A. T. (2017).
Histological, Immunohistochemical and Ultrastructural Study of Secondary
Compressed Spinal Cord Injury in a Rat Model. Folia Histochem. Cytobiol 55,
11-20. doi:10.5603/FHC.a2017.0001

Rosano, C., Aizenstein, H., Brach, J., Longenberger, A., Studenski, S., and Newman,
A. B. (2008). Special Article: Gait Measures Indicate Underlying Focal gray
Matter Atrophy in the Brain of Older Adults. J. Gerontol. A. Biol. Sci. Med. Sci.
63, 1380-1388. doi:10.1093/gerona/63.12.1380

Saar, G., and Koretsky, A. P. (2019). Manganese Enhanced MRI for Use in Studying
Neurodegenerative Diseases. Front. Neural Circuit 12, 114. doi:10.3389/fncir.2018.
00114

Schober, W. (1986). The Rat Cortex in Stereotaxic Coordinates. J. Hirnforsch 27,
121-143.

Stikov, N., Campbell, J. S., Stroh, T., Lavelée, M., Frey, S., Novek, J., et al. (2015). In
Vivo histology of the Myelin G-Ratio with Magnetic Resonance Imaging.
Neuroimage 118, 397-405. doi:10.1016/j.neuroimage.2015.05.023

Tan, F., Fu, W., Cheng, N., Meng, D. I, and Gu, Y. (2015). Ligustrazine Reduces
Blood-Brain Barrier Permeability in a Rat Model of Focal Cerebral Ischemia
and Reperfusion. Exp. Ther. Med. 9, 1757-1762. doi:10.3892/etm.2015.2365

van der Holst, H. M, Tuladhar, A. M., Zerbi, V., van Uden, . W. M., de Laat, K. F,, van
Leijsen, E. M. C, et al. (2018). White Matter Changes and Gait Decline in Cerebral
Small Vessel Disease. Neuroimage Clin. 17, 731-738. doi:10.1016/j.nicl.2017.12.007

Wang, J., Ni, G, Liu, Y., Han, Y, Jia, L., and Wang, Y. (2020). Tanshinone ITA
Promotes Axonal Regeneration in Rats with Focal Cerebral Ischemia through
the Inhibition of Nogo-A/NgR1/RhoA/ROCKII/MLC Signaling. Drug Des.
Devel Ther. 14, 2775-2787. doi:10.2147/DDDT.S253280

Wang, L. S., Shi, Z. F., Zhang, Y. F., Guo, Q., Huang, Y. W., and Zhou, L. L. (2012).
Effect of Xiongbing Compound on the Pharmacokinetics and Brain Targeting
of Tetramethylpyrazine. J. Pharm. Pharmacol. 64, 1688-1694. doi:10.1111/j.
2042-7158.2012.01546.x

Wang, Y., Liu, G, Hong, D, Chen, F, Ji, X,, and Cao, G. (2016). White Matter Injury in
Ischemic Stroke. Prog. Neurobiol. 141, 45-60. doi:10.1016/j.pneurobio.2016.04.005

Xu, X,, Ye, L., and Ruan, Q. (2009). Environmental Enrichment Induces Synaptic
Structural Modification after Transient Focal Cerebral Ischemia in Rats. Exp.
Biol. Med. (Maywood) 234, 296-305. doi:10.3181/0804-Rm-128

Yu, K., Wu, Y., Hu, Y., Zhang, Q., Xie, H,, Liu, G,, et al. (2013). Prior Exposure to
Enriched Environment Reduces Nitric Oxide Synthase after Transient MCAO
in Rats. Neurotoxicology 39, 146-152. doi:10.1016/j.neuro.2013.09.002

Tetramethylpyrazine Promotes Post-Ischemic Axonal Remodeling

Zagrebelsky, M., and Korte, M. (2014). Maintaining Stable Memory Engrams: New
Roles for Nogo-A in the Cns. Neuroscience 283, 17-25. doi:10.1016/j.
neuroscience.2014.08.030

Zeng, G. R, Zhou, S. D,, Shao, Y. J., Zhang, M. H.,, Dong, L. M,, Lv, . W, et al.
(2018). Effect of Ginkgo Biloba Extract-761 on Motor Functions in Permanent
Middle Cerebral Artery Occlusion Rats. Phytomedicine 48, 94-103. doi:10.
1016/j.phymed.2018.05.003

Zhan, Y., Li, M. Z,, Yang, L., Feng, X. F,, Lei, J. F.,, Zhang, N, et al. (2020). The
Three-phase Enriched Environment Paradigm Promotes Neurovascular
Restorative and Prevents Learning Impairment after Ischemic Stroke in
Rats. Neurobiol. Dis. 146, 105091. doi:10.1016/j.nbd.2020.105091

Zhang, J., Chen, S., Shi, W, Li, M., Zhan, Y., Yang, L., et al. (2019). Effects of
Xiaoshuan Enteric-Coated Capsule on White and Gray Matter Injury Evaluated
by Diffusion Tensor Imaging in Ischemic Stroke. Cel Transpl. 28, 671-683.
doi:10.1177/0963689718802755

Zhang, J., Zou, H., Zhang, Q., Wang, L., Lei, ], Wang, Y., et al. (2016). Effects of
Xiaoshuan Enteric-Coated Capsule on Neurovascular Functions Assessed by
Quantitative Multiparametric MRI in a Rat Model of Permanent Cerebral
Ischemia. BMC Complement. Altern. Med. 16, 198. doi:10.1186/s12906-016-
1184-z

Zhao, Y., Liu, Y., and Chen, K. (2016). Mechanisms and Clinical Application of
Tetramethylpyrazine (An Interesting Natural Compound Isolated from
Ligusticam Wallichii): Current Status and Perspective. Oxid Med. Cel
Longev 2016, 2124638. doi:10.1155/2016/2124638

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Feng, Lei, Li, Zhan, Yang, Lu, Li, Zhuang, Wang and Zhao. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org

182

April 2022 | Volume 13 | Article 851746


https://doi.org/10.1007/s12035-018-1065-1
https://doi.org/10.5603/FHC.a2017.0001
https://doi.org/10.1093/gerona/63.12.1380
https://doi.org/10.3389/fncir.2018.00114
https://doi.org/10.3389/fncir.2018.00114
https://doi.org/10.1016/j.neuroimage.2015.05.023
https://doi.org/10.3892/etm.2015.2365
https://doi.org/10.1016/j.nicl.2017.12.007
https://doi.org/10.2147/DDDT.S253280
https://doi.org/10.1111/j.2042-7158.2012.01546.x
https://doi.org/10.1111/j.2042-7158.2012.01546.x
https://doi.org/10.1016/j.pneurobio.2016.04.005
https://doi.org/10.3181/0804-Rm-128
https://doi.org/10.1016/j.neuro.2013.09.002
https://doi.org/10.1016/j.neuroscience.2014.08.030
https://doi.org/10.1016/j.neuroscience.2014.08.030
https://doi.org/10.1016/j.phymed.2018.05.003
https://doi.org/10.1016/j.phymed.2018.05.003
https://doi.org/10.1016/j.nbd.2020.105091
https://doi.org/10.1177/0963689718802755
https://doi.org/10.1186/s12906-016-1184-z
https://doi.org/10.1186/s12906-016-1184-z
https://doi.org/10.1155/2016/2124638
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

& frontiers | Frontiers in Neuroscience

ORIGINAL RESEARCH
published: 09 May 2022
doi: 10.3389/fnins.2022.861059

OPEN ACCESS

Edited by:

Yongjun Sun,

Hebei University of Science and
Technology, China

Reviewed by:

Shinsuke Nakagawa,

Fukuoka University, Japan

Liping Wang,

Shanghai Jiao Tong University, China

*Correspondence:
Yan-Qiang Wang
wangqiangdoctor@126.com
De-Qin Geng
gengdeqin@hotmail.com

*These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Neuropharmacology,

a section of the journal
Frontiers in Neuroscience

Received: 24 January 2022
Accepted: 06 April 2022
Published: 09 May 2022

Citation:

Zhou M-Y, Zhang Y-J, Ding H-M,
Wu W-F, Cai W-W, Wang Y-Q and
Geng D-Q (2022) Diprotin A TFA
Exerts Neurovascular Protection in
Ischemic Cerebral Stroke.

Front. Neurosci. 16:861059.

doi: 10.3389/fnins.2022.861059

Check for
updates

Diprotin A TFA Exerts Neurovascular
Protection in Ischemic Cerebral
Stroke

Ming-Yue Zhou'?, Ya-Jie Zhang'', Hong-Mei Ding ?*, Wei-Feng Wu', Wei-Wei Cai?,
Yan-Qiang Wang# and De-Qin Geng "

" Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China, ? Department of Neurology,
Nanjing Medical University, Nanjing, China, ° Department of Neurology, The Third Hospital of Huai’an, Huai’an, China,
“ Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, China

Background: It has been established that the dipeptidyl peptidase-4 (DPP-4) inhibitor
Diprotin A TFA can reduce vascular endothelial (VE)-cadherin disruption by inhibiting the
increase in cleaved B-catenin in response to hypoxia, thereby protecting the vascular
barrier of human umbilical vein endothelial cells. In this study, we sought to investigate
the possible effect of Diprotin A TFA on the VE barrier after cerebral ischemic stroke
in mice.

Methods: C57BL/6J mice were divided into five groups, namely, (1) sham, (2) stroke,
(8) stroke + dimethyl sulfoxide (DMSO), (4) stroke + Diprotin A TFA, and (5) stroke
+ Diprotin A TFA + XAV-939. First, the cerebral ischemia model was established by
photothrombotic ischemia, followed by intraperitoneal injection with Diprotin A TFA and
XAV-939 at doses of 70 ng/kg and 40 mg/kg 30 min once in the morning and once in the
evening for 3 days. Immunofluorescence staining and Western blot methods were used
to analyze the expression of vascular and blood-brain barrier (BBB)-associated molecular
markers in the peri-infarct area.

Results: Compared with the vehicle control group, we found that mice injected
with Diprotin A TFA exhibited reduced cerebral infarction volume, increased vascular
area and length around the brain injury, increased pericyte and basement membrane
coverage, upregulated expression of BBB tight junction proteins, and improved their
BBB permeability, whereas the group injected with both drug and inhibitor exhibited
significantly aggravated vascular injury and BBB permeability.

Conclusion: Diprotin A TFA can reduce VE-cadherin disruption by inhibiting
ischemia-hypoxia-induced p-catenin cleavage to protect blood vessels.

Keywords: ischemic stroke, blood-brain barrier, VE-cadherin, g-catenin, Diprotin A TFA

INTRODUCTION

Stroke is well-established as one of the leading causes of death and long-term disability worldwide.
During ischemic stroke, additional injury may occur during arterial reperfusion to the tissue
following deficient oxygen supply. Such injuries include oxidative stress and disruption of the
blood-brain barrier (BBB), followed by intracerebral hemorrhage. The initial ischemic lesions can
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reportedly enlarge within minutes to hours, whereas the process
of activating spontaneous repair mechanisms often lasts weeks to
months (Lo, 2008).

Recovery after brain injury is often determined by the
residual neural tissue’s reorganization. These repair mechanisms
include the plasticity of vascular structures and the repair
of neurovascular units (Freitas-Andrade et al, 2020). An
increasing body of evidence suggests that the BBB is a unique
barrier composed of endothelial cells, tight junctions, pericytes,
astrocytic terminal foot processes, and basement membrane,
essential for regulating the microenvironment (Fischer et al.,
1999; Sandoval and Witt, 2008). Interestingly, it has been
reported that endothelial permeability is regulated to a certain
extent by the dynamic opening and closing of intercellular
adherens junctions (AJs). Current evidence suggests that the AJ
in endothelial cells is mainly composed of vascular endothelial
cadherin (VE-cadherin), an endothelial-specific member of the
cadherin family that binds to protein partners through its
cytoplasmic domain, including p120, B-catenin, and plakoglobin
(Dejana et al., 2008). B-catenin is an essential regulatory protein
of the Wnt signaling pathway that can partially bind to E-
cadherin to stabilize intercellular adhesion. VE-cadherin and -
catenin play a key role in regulating vascular permeability and
integrity (Hashimoto et al., 2017).

A study demonstrated that VE-cadherin exhibited a serrated
staining pattern under hypoxic conditions and Diprotin A
could alleviate VE-cadherin’s disruption by inhibiting B-catenin
cleavage in human umbilical vein endothelial cells (HUVEC)
(Hashimoto et al., 2017). Moreover, the dipeptidyl peptidase-
4 (DPP-4) Inhibitor could exacerbate vascular leakage from
the retina by increasing phosphorylation of Src and VE-
cadherin in a mouse diabetic retinopathy model (Labat-gest and
Tomasi, 2013). From the above literature, it can be concluded
that Diprotin A attenuates hypoxia-induced disruption of
VE-cadherin by inhibiting P-catenin cleavage in HUVEC,
whereas it induces vascular leakage by enhancing the SDEF-
1a/CXCR4/Src/VE-cadherin signaling pathway. Accordingly, we
hypothesized that Diprotin A plays a role in maintaining VE
structure integrity after ischemic stroke.

MATERIALS AND METHODS

Animal Grouping

Adult male C57BL/6] mice (weighing 22-30 g) were purchased
from the Laboratory Animal Center of Xuzhou Medical
University. First, the mice were randomly divided into six
groups, namely, (1) control group: (sham operation group); (2)
experimental group: 6h, 1 day, 3 days, 5 days, and 7 days after
cerebral infarction. Tissue from the ischemic penumbra area of
the cortex (i.e., brain tissue at the junction of ischemic necrotic
tissue and normal tissue) was extracted for Western blotting
to quantify smooth muscle actin (¢-SMA), solute carrier family
16 member 1 recombinant protein (SLC16Al), and Zonula
Occludens-1 (ZO-1) protein expression levels. Subsequently,
the optimal time point to analyze the expression of the above
proteins was selected, then the mice were randomly divided

into the following five groups, namely, (1) sham, (2) stroke, (3)
stroke + dimethyl sulfoxide (DMSO), (4) stroke + Diprotin
A TFA (Diprotin A TFA [DA]: chemical structural analog of
Diprotin A), and (5) stroke + Diprotin A TFA + XAV-939
(XAV-939: B-catenin inhibitor). The following experiments were
performed using methods such as immunofluorescence staining
and Western blotting.

Cerebral Focal Ischemia

The cerebral ischemia model was induced by photothrombotic
ischemia as previously described (Wester et al., 1995; Labat-gest
and Tomasi, 2013). Mice were first anesthetized with 10% chloral
hydrate intraperitoneally (i.p.) (300 mg/kg in 0.9% saline) and
received i.p. injections of 1% Rose Bengal (100 mg/kg in 0.9%
saline; Sigma-Aldrich). The head of the mouse was fixed on an
animal brain stereotaxic apparatus to ensure that the bregma and
. were in the same horizontal plane (RWD). The scalp was cut
open, the anterior fontanel of the skull was exposed, the forelimb
representation area of the sensorimotor cortex was identified, and
a diaphragmatic pad was placed. The position of the cold light
source probe was adjusted to align it with the diaphragm pad, the
mouse was given an 1.p. injection of 1% Rose Bengal, and the cold
light source switched on for irradiation for 12 min (LEICA). At
the end of irradiation, the scalp wound was sutured with sutures
and the mice were placed in a cage.

Drug Administration

According to the instructions of the manufacturers, Diprotin A
TFA (DA) was diluted in normal saline to a concentration of
20 pg/ml, and the drug was ip. injected into mice at a dose
of 70 pg/kg 30 min before establishing the cerebral ischemia
model (Lee et al., 2016). Then, drug injections were given once
in the morning and once in the evening 3 days. XAV-939 was
diluted to a 3.33 mg/ml concentration in a mixed co-solvent
(10% DMSO + 90% corn oil), and XAV-939 was i.p. injected at a
dose of 40 mg/kg 30 min before modeling (Wang et al., 2020).
The drug was injected once daily for 3 days after the model
was established.

Nissl Staining

Mice were perfused transcardially with phosphate-buffered
saline (PBS; 0.1 m phosphate buffer) and 4% paraformaldehyde
(PFA) sequentially, and brains were removed and fixed in
4% PFA overnight at 4°C. Then, the murine brains were
cut into coronal 40-pm-thick sections using an oscillating
microtome (LEICA). Brain sections were sequentially attached
to hydrophobic adhesion slides (VICMED), and Nissl staining
was performed when the brain slices were dried to transparency.
The slides were first placed in 100, 95, and 80% ethanol solutions
for 30s each, then treated with FD Cresyl Violet Solution TM
(FD NeoroTechnologies, Columbia, MD, USA) for 5min, and
washed three times with deionized water. The brain slices were
sequentially dehydrated in 50, 70, 80, 90, 95, and 100% ethanol
solutions for 60 s each, then treated with xylene for 10 min, and
finally fixed with neutral resin.
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Infarct Volume Measurement

The brain infarct volume was quantified as infarct volume
percentage as previously described (Renolleau et al., 1998;
Rousselet et al,, 2012; McBride et al, 2015). Cresyl violet-
stained brain sections were scanned and imaged using an
Epson scanner. The areas of the contralateral hemisphere (C;),
ipsilateral hemisphere (I;), and ipsilateral non-ischemic region
(N;) were determined using the Image] software (NIH), and the
infarct volume (%) was calculated as follows:

> (( Ii;iNi )C,-)
2. G

Infarct volume (%) = x 100.

Evans Blue

The permeability of the BBB was assessed by Evans blue (EB)
exosmosis (Goldim et al., 2019; Ahishali and Kaya, 2021). First,
2% EB (3-4 ml/kg; VICMED) was injected into mice via the
tail vein, and about 1-2h later, the brains of the mice were
perfused and extracted to observe EB extravasation in the
cerebral infarction area and assess BBB permeability. After fixing
the mouse brain with 4% PFA, the slices were cut with an
oscillating microtome to observe EB extravasation under a laser
microscope (Olympus).

Immunofluorescence Staining

Brain sections were blocked with 0.5% TritonX-100 and 10%
donkey serum in PBS for 1h at room temperature, after
which the sections were incubated with primary antibodies
overnight at 4°C. Primary antibodies included rat anti-
CD31 (antiplatelet endothelial cell adhesion molecule-1, labels
blood vessels) (Xu et al, 2017) (BD Pharmingen, 553369),
rabbit anti-desmin (Cell Signaling, #5332), and rabbit anti-
collagen IV (Bio-Rad, 2150-1470). The slides were washed
and then incubated with Alexa Fluor 488-conjugated species-
appropriate secondary antibody (Vector Labs, DI-1488) and
Cy3-conjugated streptavidin (Invitrogen, A10522) for 1h at
room temperature in the dark. Then, the slides were stained
with 4',6-diamidino-2-phenylindole for 5min in the dark,
and the brain slices were washed with PBS, then patched
and mounted.

Western Blotting

First, tissue proteins in the cerebral ischemic penumbra (brain
tissue at the junction of ischemic necrotic and normal tissue)
were placed in a tissue lysis solution. The homogenates were
immediately lysed on ice and centrifuged at 4°C to obtain
protein from the supernatant. Then, the protein concentration
was measured using a BCA protein assay kit (Beyotime). Equal
amounts of protein were loaded, separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, and transferred to
NC membranes. Then, incubation with primary antibodies and
p-tubulin (ProteinTech, 10094-1-AP) was performed overnight
at 4°C. Primary antibodies included rabbit anti-a-SMA (Cell
Signaling, 19245), rabbit anti-SLC16A1 (NovusBio, NBPI-
59656), mouse anti-ZO-1 (Invitrogen, 33-9100), rabbit anti-
occludin (Invitrogen, 40-4700), and rabbit anti-PDGFR-f (Cell

Signaling, 3169). Then, protein samples were incubated with
secondary antibodies for 1h at room temperature. The target
proteins were visualized using a ChemiDoc imaging system (Bio-
Rad). For quantification, the density of the blots of interest was
normalized to that of tubulin, and optical density was assessed
using Image] analysis software.

Image Analysis

Brain angioarchitecture analyses were performed using the open-
source “Angiotool” software (National Cancer Institute, USA)
(Zudaire et al.,, 2011). CD31-stained brain sections were used
to analyze blood vessel’s area and length. The vascular area was
defined as the area of the segmented vessel. The vascular length
was defined as the sum of the Euclidean distances between all
vessel pixels in the image (Gambardella et al.,, 2012). Desmin-
and CD31-positive fluorescent areas were determined to assess
pericyte coverage on vessels using the Image] area measurement
tool. Pericyte coverage was described as the percentage of
desmin-positive fluorescent area covering the CD31-positive
capillary area (Bell et al, 2010). The basement membrane
coverage was defined as the percentage of collagen IV-positive
fluorescent area covering the CD31-positive capillary area (Xu
etal., 2017).

Statistical Analysis

All statistical analyses were performed using the GraphPad
Prism 8.0 software. For normally distributed measurements,
one-way ANOVA followed by Tukey’s post-hoc test was used
for three or more groups. The Kruskal-Wallis test (three
or more groups) was used for measurements that were not
normally distributed. p < 0.05 was considered statistically
significant, and data were presented as mean £ SEM from three
independent experiments.

RESULTS

Changes in Cerebrovascular Sertoli Cell,
Endothelial Cell, and BBB Tight Junction

Protein After Photothrombotic Stroke

To understand the expression of pericyte a-SMA (labeled
arterioles) (Xu et al., 2017), SLC16A1 (expressed in venous
capillary endothelial cells) (Yao et al, 2020), and BBB tight
junction protein ZO-1 around ischemic infarcts in the cerebral
cortex, Western blot experiments were performed. The mouse
brain was intact for 2,3,5-triphenyltetrazolium chloride (TTC)
staining after cerebral ischemia (Joshi et al., 2004; Yi et al., 2020),
in which the cortex’s white area was the cerebral infarction area
and the area surrounded by the black line was the ischemic
penumbra area; the tissue at this site was harvested for Western
blot (Figure 1A). First, wildtype mice were subjected to a sham
operation and cerebral ischemia and the ischemic penumbra
brain tissues were extracted for Western blot (Figure 1B). The
results revealed that the expression levels of a-SMA, SLC16A1,
and ZO-1 were significantly reduced on day 3 (Figures 1C-E),
indicating that the degree of damage to cerebral vessel structures
was the most severe on day 3 after the model was established.
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The subsequent experiments were performed 3 days after the
ischemia model.

DA Reduces Cerebral Ischemic Damage
First, DA was i.p. injected into mice at 60 days, followed by
photothrombosis 30 min later to establish a cerebral ischemia
model. DA was injected once in the morning and once in the
evening for the next 3 days. XAV-939 was injected as described
above, and Nissl staining of brain sections was conducted
(Figure 2A). The area surrounded by a red line in the right
upper cortex of the brain slice is the infarct area, which is seen
to be lighter in color than the surrounding normal tissue (Joshi
et al., 2004; Yi et al., 2020), and the cortical infarct areas are all
circled with red circles (Figure 2B). The cerebral infarct size was
significantly reduced in the DA-treated group and increased in
the DA- and XAV-939-treated group (Figure 2C). Moreover, the
cerebral infarction volume in the DA-treated group was lower
than that in the vehicle control group, the degree of brain injury
was mild, and the infarct volume in the DA- and XAV-939-
treated group was increased, indicating that XAV-939 exerts an
inhibitory effect on the efficacy of DA drug (Figure 2D).

DA Improves the Permeability of the BBB
After Cerebral Ischemic Injury

It is well-recognized that EB is an azo dye preparation for
assessing capillary permeability since its molecular weight is
similar to plasma albumin and its high affinity for plasma
albumin in the blood. As plasma albumin does not normally
penetrate the BBB, EB bound to plasma albumin cannot stain
the BBB if it is intact. Therefore, the permeability of the BBB
can be assessed by the extravasation of EB (Goldim et al,
2019). As shown, EB extravasation in the brain-injured area
was significantly reduced in DA-treated mice compared with
control mice, indicating that BBB permeability was reduced
in DA mice, while EB extravasation in the brain-injured area
was increased in mice treated with both DA and XAV-939,
indicating that XAV-939 could inhibit the drug efficacy of
DA to a certain extent (Figure 3A). Statistical analysis of the
mean fluorescence intensity of EB extravasation in the cerebral
infarction area of the five mice groups showed that EB’s
mean fluorescence intensity was reduced in the DA-treated
group compared with the vehicle control group (Figure 3B).
Brain sections obtained after EB injection in mice were
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FIGURE 2 | Diprotin A TFA reduces cerebral ischemic damage. (A) A simple diagram of the experimental process time of using mice from intraperitoneal injection of
drugs to make a model to perfusing the brain or extracting protein. (B) A Nissl-stained image of a brain slice, with a section thickness of 40 wm, and the area
surrounded by red lines in the upper right part of the brain slice is the infarct area. (C) The Nissl staining of five groups of mice after 3 days of photothrombotic cerebral
infarction model, The slice thickness is 40 um. (D) Statistical analysis of the cerebral infarction areas of the five groups of mice showed that the cerebral infarction
volume of the group injected with DA mice was reduced compared with the vehicle control group. n = 3 per group. Data are represented as mean with SEM. *p <

observed under a fluorescence microscope, and EB presented
red fluorescence only in the cortical infarct area, with red
granules as leaky EB (Zhao et al., 2020). Taken together, the
above results demonstrated that DA improved BBB permeability
(Figure 3C).

DA Reduces the Degree of Vascular Injury

Around Cerebral Infarction

It is well-established that Diprotin A attenuates hypoxia-induced
VE-cadherin destruction by inhibiting p-catenin cleavage in
HUVEC (Hashimoto et al., 2017). VE-cadherin is an essential
cadherin in VE cells and plays a crucial role in vascular
permeability (Dejana et al, 2008). Given that Diprotin A
attenuates VE-cadherin destruction after hypoxia, we speculated

that DA is essential for the VE structure’s integrity. After ischemic
brain injury, the vascular density of the surrounding tissue
in the cerebral infarction group was reduced compared with
the sham group, which was caused by vascular injury after
stroke. Accordingly, we explored whether DA induces vascular
changes after a cerebral ischemic injury. After conducting
immunofluorescence staining for CD31, we found that the
vascular density increased in the DA-treated group compared
with the vehicle control group (Figure 4A). Statistical analysis
of staining images in the five groups showed that vascular area
and length were increased in the DA-treated group compared
with the control group, but decreased in the group that received
both DA and XAV-939, indicating that DA did affect the
peripheral vessels of the cerebral infarct, thereby reducing the
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FIGURE 3 | Diprotin A TFA improves the permeability of the BBB after cerebral ischemic injury. (A) To inject 2% EB into the tail vein of five groups of mice to observe
the extravasation of EB. (B) The mean fluorescence intensity of EB extravasation in the cerebral infarction area of the five groups of mice was statistically analyzed.
n = 3 per group. Data are represented as mean with SEM. *p < 0.05. (C) Mice were injected with 2% EB into the tail vein, and the brains were perfused to obtain
brain sections for immunofluorescence analysis. The slice thickness is 40 um. Bar = 200 um [(C), upper], bar = 100 u m [(C), bottom]. BBB, blood-brain barrier; EB,

degree of vascular injury and improving vascular remodeling
(Figures 4B,C).

DA Increases Vascular-Pericyte and
Endothelial Basement Membrane

Coverage in Peri-Infarct Cortex

Substantial evidence suggests that the structural integrity of the
BBB is mainly composed of endothelial cells, tight junctions,
pericytes, astrocyte foot processes, and basement membrane
(Kadry et al., 2020). Accordingly, we investigated whether DA
could affect BBB integrity. Therefore, brain slices from three

groups of mice were subjected to immunofluorescence co-
staining for CD31, desmin (labeled pericytes) (Xu et al., 2017),
and collagen IV (labeled basement membrane) (Figures 5A,B)
(Yao et al., 2020). The results showed that the pericyte
coverage of stained vessels in the peri-infarct cortex increased
in the DA-treated group compared with the control group
and decreased in the DA- and XAV-939-treated group,
indicating that DA improved BBB integrity after ischemic stroke
(Figure 5C). The statistical analysis results of VE basement
membrane coverage were consistent with pericyte coverage,
indicating that DA improves BBB integrity after ischemic stroke
(Figure 5D).
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FIGURE 4 | Diprotin A TFA reduces the degree of vascular injury around cerebral infarction. (A) There are immunofluorescent staining images of CD31 (red)
(antiplatelet endothelial cell adhesion molecule-1), which labels blood vessels. The slice thickness is 40 wm. Bar = 50 um. (B) The statistical plot of vascular area. (C)
The statistical plot of vascular length. The DA group had a statistically significant increase in the area and length of stained vessels relative to the vehicle control group.

n = 3 per group. Data are represented as mean with SEM. “*p < 0.01, **p < 0.001.

DA Regulates the Expression of Tight

Junction Protein at the BBB and Pericyte

Tight junctions and pericytes are reportedly affected when the
BBB is damaged (Castro Dias et al., 2019). We subsequently
analyzed the expression levels of the associated proteins.
Western blotting analysis of BBB-associated tight junction
protein (occludin, ZO-1) and pericyte (PDGFR-B) (Bell et al.,
2010) was conducted in penumbra tissues of five groups with

cerebral ischemic injury (Figure 6A). Statistical analysis showed
that occludin and ZO-1 expression levels were increased in the
peri-infarct cortex in the DA-treated group compared with the
control group, whereas the DA- and XAV-939-treated group
exhibited lower levels than in the DA-treated group, and PDGFR-
B expression was comparable (Figures 6B-D). These results
indicate that DA can upregulate BBB tight junction proteins
and pericytes, and can maintain BBB integrity after ischemic
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FIGURE 5 | Diprotin A TFA increases vascular-pericyte and endothelial basement membrane coverage in peri-infarct cortex. (A) Immunofluorescent staining images of
CD31 (red) and desmin (green) (desmin, labeled pericytes) co-staining. The slice thickness is 40 um. Bar = 50 pm. (B) Immunofluorescent staining images of CD31
(red) and collagen IV (green) (type IV collagen, labeled basement membrane) co-staining, with a section thickness of 40 um. Bar = 50 um. (C) A statistical plot of
vascular pericyte coverage. (D) A statistical plot of vascular endothelial basement membrane coverage. Compared with the vehicle control group, it can be seen that
the coverage rate of stained vascular pericytes in the DA injection group was increased compared with the vehicle control group. Vascular endothelial basement
membrane coverage results were the same as above. n = 3 per group. Data are represented as mean with SEM. **p < 0.01, **p < 0.001.
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FIGURE 6 | Diprotin A TFA regulates the expression of tight junction protein at the BBB and pericyte. (A) Western blot images of BBB-associated tight junction protein
(occludin, ZO-1) and pericyte (PDGFR-B) in the penumbra tissue of five groups of mice with cerebral ischemic injury. (B=D) The results showed that the expression
levels of occludin, ZO-1, and PDGFR-B were upregulated in the group injected with DA compared with the vehicle control group, whereas the expression levels were
downregulated in the group injected with DA and B-catenin inhibitor. n = 3 per group. Data are represented as mean with SEM. “p < 0.05, *p < 0.01, **p < 0.001.

stroke. Meanwhile, XAV-939 can downregulate DA and inhibit
p-catenin cleavage, attenuating the vasoprotective mechanism of
VE-cadherin disruption in the DA- and XAV-939-treated group,
thereby downregulating BBB tight junction protein levels and
increasing BBB permeability.

DISCUSSION

In this study, we aimed to explore the effect of DA on the
neurovasculature during cerebral ischemia. Importantly, we
found that vascular pericytes and the BBB tight junctions were
altered following cerebral ischemia. Then, Nissl staining was used

to evaluate the cerebral infarction volume, and EB extravasation
to assess the BBB structural integrity, vascular area and length,
and the pericyte and basement membrane coverage in blood
vessels. Findings of this study indicate that DA reduces vascular
injury around cerebral infarction, improves BBB integrity and
permeability, contributes to vascular remodeling, and is essential
for ischemic brain repair.

In recent years, DPP-4 inhibitors have been widely used to
treat diabetes (Sun et al., 2020). Interestingly, DPP-4 inhibition
improves cardiac function and reduces myocardial ischemia
through SDF-1a/CXCR4-mediated STAT3 signaling (Kubota
et al., 2016) and exerts an antiapoptotic effect on HUVEC under
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hypoxic conditions (Nagamine et al., 2017). Accordingly, we
hypothesized that DPP-4 inhibitors yield a beneficial effect on
cardiovascular and cerebrovascular diseases.

AJs in endothelial cells are mainly composed of VE-cadherin,
connected to the AJ proteins p120, B-catenin, and plakoglobin
through its cytoplasmic tail (Weis and Nelson, 2006). The
importance of VE-cadherin has been emphasized in adult
mice for maintaining vascular integrity, given that anti-VE-
cadherin antibody administration leads to a dramatic increase
in permeability, vascular fragility, and hemorrhage (Corada
et al,, 1999). Another study that assessed the effect of B-catenin
on specific gene inactivation in mouse embryonic endothelial
cells suggested its role in vascular permeability and integrity
(Cattelino et al., 2003). VE-cadherin and p-catenin are known to
play key roles in regulating vascular permeability and integrity
irrespective of the mechanism of action (Guo et al., 2008; Rho
et al., 2017). Intriguingly, it has been documented that Diprotin
A can improve the staining pattern of serrated VE-cadherin
by attenuating the increase in cleaved B-catenin levels during
hypoxia, thus indicating that Diprotin A protects endothelial AJ
from hypoxia (Hashimoto et al.,, 2017). Therefore, we speculate
that Diprotin A exerts a protective effect on the VE barrier
during ischemia-hypoxia.

Herein, DA (chemical structural similarity of Diprotin A and
DPP-4 inhibitor; Lee et al., 2016) was used to establish a mice
model of cerebral ischemia to observe the changes in various
parameters. Meanwhile, mice were treated with XAV-939 (B-
catenin inhibitor, which can stimulate B-catenin degradation;
Huang et al., 2009) and DA to assess the effect of XAV-
939 on the pharmacological efficacy of DA. Interestingly, we
found that the cerebral infarction volume was significantly
reduced in the DA injection group and increased in the
DA- and XAV-939-treated group, indicating that DA could
improve cerebral ischemic injury, and XAV-939 suppressed the
efficacy of DA. Next, immunofluorescence staining using CD31
(Lertkiatmongkol et al., 2016) showed that DA-treated mice had
increased vascular area and length in the peri-infarct cortex
compared with the control group, and DA alleviated the degree
of vascular injury around the cerebral infarction. As shown
in Figure 4, vascular density was increased in the DA-treated
group compared with the vehicle control group. This effect
was induced by vascular injury after an ischemic stroke. It
should be borne in mind that the increase in vascular density
may be independent of angiogenesis, given that ample evidence
substantiates that microvessels on the infarcted side begin to
grow 1-2 days after cerebral infarction and peak on day 7
(Morris et al., 2003). However, the optimal experimental time
point selected was day 3 after cerebral infarction. The increased
vascular density observed in the DA injection group compared
with the DMSO injection group (Figure4) may be attributed
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Ischemic stroke (IS) is characterized by high recurrence and disability; however, its
therapies are very limited. As one of the effective methods of treating acute attacks of
IS, intravenous thrombolysis has a clear time window. Quercetin, a flavonoid widely found
in vegetables and fruits, inhibits immune cells from secreting inflammatory cytokines,
thereby reducing platelet aggregation and limiting inflammatory thrombosis. In pre-clinical
studies, it has been shown to exhibit neuroprotective effects in patients with ischemic brain
injury. However, its specific mechanism of action remains unknown. Therefore, this review
aims to use published data to elucidate the potential value of quercetin in patients with
ischemic brain injury. This article also reviews the plant sources, pharmacological effects,
and metabolic processes of quercetin in vivo, thus focusing on its mechanism in inhibiting
immune cell activation and inflammatory thrombosis as well as promoting neuroprotection
against ischemic brain injury.

Keywords: quercetin, ischemic stroke, inflammatory thrombus, neuroprotection, immune cell activation,
mechanism

1 INTRODUCTION

Quercetin, which is present in many plants, has become a nutraceutical because of its significant
antioxidant and anti-inflammatory activities (Shen et al., 2021; Zou et al., 2021), especially with its
ability to scavenge free radicals (Anand David et al., 2016). Clinical studies have shown that quercetin
has certain therapeutic effects on cardiovascular diseases (Dehghani et al., 2021), metabolic
syndrome (Leyva-Soto et al., 2021), COVID-19 (Di Pierro et al., 2021), and central nervous
system diseases.

Ischemic stroke (IS) is caused by hypoxic necrosis of brain tissue due to impaired blood supply to
the brain, thereby leading to ischemia. It is the third leading cause of death worldwide (GBD, 2021).
In 2017, there were 80.5 (UI78.9-82.6) deaths per 100,000 people, of which 45% were related to IS
(Avan et al., 2019); IS accounted for 62.4% of stroke events in 2019 (GBD, 2021). Various risk factors,
such as hypertension, diabetes, high body mass index, and smoking, determine the prevalence of IS
and its complications; the antioxidant and inflammatory balance mechanisms in the body are
severely damaged, thus causing an increase in neuronal reactive oxygen species (ROS), dysfunction,
calcium excess, and oxidative stress (Lo et al., 2003).

Vitamins, carotenoids, and quercetin, which are natural antioxidants, are effectively used to
prevent IS. Their mechanism may be related to the synergistic effects of vitamins and antioxidants
(Ratnam et al., 2006). The molecular structure of quercetin is C15H1007 (Magar and Sohng, 2020),
which means that there is one -OH at each of the 3, 3/, 5, 7, and 4’ positions (Rice-Evans et al., 1997),
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Quercetin for Ischemic Stroke

FIGURE 1 | Natural sources and structures of quercetin: (A) Lettuce Rootstock; (B) Mango fruit; (C) Arnica flowering plants; (D) Dried ripe fruit of burdock; (E)
Chemical structure of quercetin; (F) 3D structure of quercetin (Visualized by DiscoveryStudio 2016).

and is present in a variety of plants and fruits (Figure 1).
Quercetin is a polyphenol belonging to the flavonoid family
(Brill et al, 2015). Inflammatory thrombus formation
exacerbates nerve damage in IS (De Meyer et al, 2022).
Clinical studies have found that oral quercetin can reduce
collagen-stimulated platelet tyrosine phosphorylation and thus
inhibit platelet aggregation (Hubbard et al., 2004). Quercetin pre-
treatment also reduces lipopolysaccharide-induced neutrophil
IL-6 secretion (Liu J. et al, 2005). This process slows the
formation of inflammatory thrombi, thus reducing the
occurrence of IS.

Recent studies have demonstrated the neuroprotective
properties of quercetin in in vivo and in vitro IS models (Yang
et al., 2021). Therefore, this article is the first to describe the
source and physicochemical properties of quercetin as well as the
pathogenesis of ischemic brain injury. The therapeutic potential
of quercetin in ischemic brain injury has been highlighted,
including its role in limiting the secretion of inflammatory
factors by various immune cells, thereby inhibiting
inflammatory thrombosis, oxidative stress, apoptosis, autophagy.

2 SOURCE AND PHYSICOCHEMICAL
PROPERTIES OF QUERCETIN

The term, “quercetin,” has been used since the mid-18th century
and is derived from the Latin word, “quercetum” (Jaimand et al.,
2012). Quercetin is highly lipophilic and has poor water
solubility, rapid metabolism, short half-life, and low
bioavailability =~ (Mukhopadhyay —and  Prajapati,  2015).
Meanwhile, it is a unique polyphenol found in large quantities
in various leafy vegetables, fruits, and herbs, such as apples,
berries, long-leaf berry cilantro, cumin, lingonberry,
lingonberry, wild grapes, and onions (Yang D. et al, 2020;
Sharifi-Rad et al, 2021). According to previous research,
quercetin has more than seven biological features, including

neuroprotection, anti-allergy, anti-oxidation, anti-
inflammation, immune regulation, anti-microbial, and anti-
tumor properties (Bjeldanes and Chang, 1977; Dajas, 2012;
Oboh et al., 2016; Darband et al., 2018; Dhiman et al., 2019;
Huang et al., 2020; Shabbir et al., 2021). However, some studies
have indicated that quercetin can induce mutations and promote
mutagenesis (Bjeldanes and Chang, 1977). Conversely, Sumi et al.
(2013) found that quercetin glucoside promoted angiogenesis
after ischemia, but did not promote tumor growth.

In addition, the effectiveness of quercetin depends mainly on
the plant source, dose, and chemical properties after processing
(Najda et al., 2019). It can also be combined with salivary proteins
to form soluble protein-quercetin binary aggregates. It is
generated in the small intestines and is directly absorbed by
the sodium-dependent glucose transporter-1 in the cecum and
colon (Manach et al, 2004). Quercetin is also absorbed by
intestinal epithelial cells, thus entering the liver through
lipophilic dispersion and undergoing metabolism (Shen et al.,
2021). In humans, quercetin has very low bioavailability and is
highly unstable (0-50%), with a half-life of 1-2 h in the body after
ingesting quercetin-rich foods or supplements (Graefe et al,
1999). Furthermore, quercetin poorly crosses the blood-brain
barrier (BBB) (Oliveira et al., 2021). After dietary absorption,
quercetin is digested and metabolized extremely quickly;
therefore, its pharmacological effects are concentrated on
in vitro studies rather than in vivo (Williams et al., 2004;
Barnes et al., 2011). Therefore, various approaches have been
attempted to improve the bioavailability of quercetin in the brain,
such as enzyme modification or nano-encapsulation (Pateiro
et al, 2021). Simultaneously, nanotechnology and targeted
vectors are solutions to overcome the shortcomings of
quercetin, such as low bioavailability and poor BBB passage
(Naseri et al, 2015). The bioavailability of quercetin is
50 times higher than that of standard quercetin products after
being packaged into nanocapsules (Riva et al, 2019).
Alternatively, it changes the basic structure of quercetin to
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TABLE 1 | Sources of quercetin.

Scientific Name Walnut Active Portions Family References
Davidia involucrata Bail Dove tree Fruits and seeds Nyssaceae Girardelo et al. (2020)
Mangifera indica L. Mango Fruits and Kernels Anacardiaceae Mwaurah et al. (2020)
Arctium lappa L. Great Burdock Achene Fruits and roots Asteraceae Moro and T P S Clerici, (2021)
Punica granatum L. Pomegranate Leaves and fruits Lythraceae Rojas-Garbanzo et al. (2021)
Theobroma speciosum Theobroma Shells and beans Sterculiaceae Mar et al. (2021)

Allium cepa L. Onion Bulbs Liliaceae Fredotovic et al. (2021)
Capsicum annuum L Sweet Pepper fruits Solanaceae Guevara et al. (2021)

Syringa vulgaris L. Lilac Flowers and leaves Oleaceae Hanganu et al. (2021)

Sorbus aucuparia L. mountain-ash Fruits Rosaceae Rutkowska et al. (2021)
Gracilaria Seaweed Fruits Gracilariaceae Pourakbar et al. (2021)

Musa nana Lour Banana Skins and fruits Musaceae Bashmil et al. (2021)

Lactuca sativa L. Lettuce Leaves Asteraceae Assefa et al. (2021)

Abies alba Mill Silver fir Leaves Pinaceae Vek et al. (2021)

Juglans regia L. Walnut Nuts Juglandaceae Kalogiouri and Samanidou, (2021)
Malus pumila Mill apple Peels and fruits Rosaceae Yousefi-Manesh et al. (2021)
Arnica montana L. A. Montana Flowers and roots Asteraceae Nieto-Truijillo et al. (2021)
Paronychia argentea L P. argentea Leaves and Herbs Caryophyllaceae Abdelkhalek et al. (2021)

Quercetin for Ischemic Stroke

improve its pharmacokinetic and neuroprotective abilities (Chen
et al.,, 2005). Table 1 summarises the sources of quercetin.

3 PATHOGENESIS OF ISCHEMIC STROKE

3.1 Inflammatory Thrombus

In the pathophysiological process of IS, inflammatory thrombi
lead to cerebral vascular occlusion, inflammatory response, and
severe nerve damage after ischemic events (De Meyer et al., 2022).
Early platelet adhesion and activation are key factors for the
development of IS inflammatory thrombosis. The main receptors
that mediate platelet adhesion are glycoprotein (GP) VI and
integrin a2f1, both of which bind to the GPIba subunit of
collagen and the GPIB-IX-V complex, which interact with the
von Willebrand factor (VWEF) (Poulter et al, 2017;
Constantinescu-Bercu et al., 2022; Feitsma et al., 2022). After
endothelial injury, vWF interacts with GPIba, thus causing
platelets to decelerate on the fixed vWF (Constantinescu-Bercu
et al., 2022; Kanaji et al, 2022) and thereby contributing to
platelet aggregation. The use of GPIba-vWF inhibitors restores
vascular patency by specifically breaking down the outer layer of
the occlusive thrombus (Le Behot et al, 2014). Subsequently,
platelet activation induces a conformational change in the GPIIb/
IITa surface receptor and its affinity to fibrinogen and vWF, thus
promoting platelet aggregation (O’Brien and Salmon, 1990).

In addition, vWF was found in different samples of thrombus
extracted from IS patients; the thrombus contained 20.3% + 10.1%
vWF on average (Denorme et al., 2016). In a middle cerebral artery
occlusion (MCAO) rat model, cerebral infarct size and fibrinogen
deposition were significantly increased in platelet-only vWF
chimeric rats (Verhenne et al.,, 2015). Interestingly, vWF can be
cleaved by metalloprotease ADAMTS13, a disintegrin and
metalloproteinase with a thrombospondin type 1 motif member
13. ADAMTS13 effectively dissolves anti-tissue-plasminogen
activator (t-PA) thrombus within 5-60 min of MCAQ occlusion
(Denorme et al, 2016). Furthermore, caADAMTSI3, a

ADAMTSI13 variant, significantly reduced residual vWF, fibrin,
and platelet aggregation as well as neutrophil recruitment in the
middle cerebral artery (MCA) (South et al., 2022).

However, thrombosis not only involves simple platelet
aggregation, but also includes leukocyte-platelet complexation (Li
et al., 2015; Pircher et al., 2019; Schrottmaier et al., 2020). This may
be because basic diseases, such as hyperlipidemia and hyperglycemia,
stimulate hematopoietic cells in the bone marrow to produce a large
number of white blood cells in the circulating blood (Stumvoll et al,
2005; Zhou et al., 2016; Vekic et al., 2019). Neutrophils are closely
related to thrombosis in IS patients with COVID-19 (Genchi et al.,
2022). Neutrophils account for the majority of leukocytes in IS
thrombi, followed by macrophages and T cells (Heo et al., 2020).
This difference is partly due to their proportion in the circulating
blood under physiological conditions; however, IS is also related to
the level of activation of various white blood cells. Thrombus
formation is a series of complex events that occur sequentially in
the vascular system, including endothelial activation, neutrophil
extracellular trap (NET) formation, vVWF secretion, blood cell
adhesion, aggregation, and activation (Yang J]. et al, 2020).
Genetic deletion of PKM2 in bone marrow hematopoietic cells
reduces NET after cerebral ischemia/reperfusion, which further
reduces fibrinogen, platelet deposition, and inflammatory
cytokines in the brain (Dhanesha et al, 2022). Similarly, rats
lacking CD84 on their platelets or T cells showed reduced
cerebral thrombosis and milder nerve damage after MCAO
(Schuhmann et al, 2020). In contrast, endothelial CD69
deficiency increases fibrinogen and vWF levels in ischemic tissue
and exacerbates nerve injury (Brait et al., 2019). Thus, inhibition of
inflammatory thrombi formation is one of the goals of IS prevention.

3.2 Immune Activation

Activation of immune cells, including neutrophils, T cells, and
microglia, is involved in brain tissue repair after IS (Ma et al,
2017). Subsequently, neutrophils are attracted along a
concentration gradient of chemokines in areas of ischemia to
release pro-inflammatory factors, ROS, proteases, and matrix
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metalloproteinases (MMPs) (Wang et al., 2007), thus leading to
the disruption of the BBB and exacerbation of neurological
damage (Rosell et al., 2008). Similarly, in the acute phase of
IS, Thl and Th17 cells degrade tight junction proteins (TJ) by
secreting IFN-vy, IL-17, and IL-21, thereby further disrupting the
integrity of the BBB (Gelderblom et al., 2012; Clarkson et al.,
2014). T cells and their isoforms have also been associated with
repair and functional improvement in late brain injury (Liesz
et al, 2009). During ongoing inflammation, activated M1
microglia phagocytose astrocyte ends and disrupt the integrity
of the BBB by secreting various vascular proteins (Wang et al.,
2018; Haruwaka et al., 2019).

3.3 Oxidative Stress

Oxidative stress and mitochondrial dysfunction are important
factors for the development of cerebral ischemic injury (Lo et al.,
2003). Mitochondria are central to ROS production and cell death
(Lo et al., 2003). Cerebral ischemia induces a cascade of excessive
ROS production. Excess ROS leads to lipid peroxidation (LPO),
exacerbates oxidative damage to proteins and nucleic acids, and
contributes to neuronal apoptosis and BBB destruction (Allen
and Bayraktutan, 2009; Kleinschnitz et al., 2010; Casas et al., 2017;
Sun et al., 2018). Immune activation and oxidative stress also
contribute to programmed neuronal death in the ischemic zone.

3.4 Procedural Death

Both hypoxia and ischemia induce autophagy. Shortly thereafter,
autophagic vesicles accumulate extensively in the brain tissue
(Tuo et al., 2021). Mitochondrial autophagy facilitates the
maintenance of cellular homeostasis under mild ischemia or
hypoxia. In contrast, sustained ischemia-reperfusion (I/R)
results in prolonged autophagy, thus promoting neuronal cell
damage or even death (Zhang et al., 2013). Similarly, neuronal
apoptosis is the main mechanism through which I/R injury
induces cell death. The balance between anti-apoptotic Bcl-2
and pro-apoptotic Bax protein expression is critical for the
regulation of apoptosis (Culmsee and Plesnila, 2006). ROS
production and mitochondria-dependent apoptosis play an
important role in neuronal death following I/R injury (Jordan
et al,, 2011; Wang et al., 2014). After IS, a series of molecular
events induced by oxidative stress overlap with iron sagging/
oxidation processes; these have common molecular targets, such
as LPO and glutathione (GSH) depletion (Seiler et al., 2008; Choi
et al, 2013; Yang et al, 2014). Iron death is dependent on
excessive iron accumulation, with the core process being LPO
(Cao and Dixon, 2016). In a rat model of MCAO, GSH inhibited
iron death by driving glutathione peroxidase 4 (GPx4)
expression, thereby protecting neurons and reducing core
ischemic areas (Karuppagounder et al., 2016; Alim et al., 2019).

4 PHARMACOLOGICAL EFFECTS OF
QUERCETIN ON ISCHEMIC STROKE

4.1 Inhibition of Immune Cell Recruitment
The activation of peripheral immune cells promotes platelet
aggregation. Pre-treatment of activated T cells with quercetin

Quercetin for Ischemic Stroke

blocks IL-12-induced JAK-STAT tyrosine phosphorylation,
thereby reducing T cell proliferation and Thl differentiation
(Muthian and Bright, 2004). Quercetin has a similar effect on
neutrophils. NETs are closely associated with inflammatory
thromboses. Quercetin does not directly affect NET formation,
but inhibits it in peripheral blood polykaryotic cells by
downregulating TNF-a production in lipopolysaccharide (LPS)
peripheral blood monocytes (Yuan et al., 20205 Jo et al., 2021).
During inflammation, LPS delays the spontaneous apoptosis of
neutrophils, while quercetin accelerates this process (Liu J. J. et al.,,
2005; Yuan et al., 2020). This is associated with a reduction in the
expression of inflammatory cytokines, activation of PKCa, and
enhancement of CD95-mediated apoptosis in neutrophils (Russo
et al., 2003). Quercetin effectively protects LDL from neutrophil-
mediated modification at physiological concentrations (1 puM)
and inhibits myeloperoxidase (MPO) oxidative damage (Loke
et al,, 2008) (Figure 2). Subsequently, quercetin downregulates
the TLR-NF-«B signaling pathway, reduces the activities of COX,
5-LOx, NOS, MPO, and CRP, inhibits ldL-induced adhesion
molecule expression, and ameliorates endothelial dysfunction
in atherosclerosis (Bhaskar et al., 2016). Quercetin also reduces
the activity of neutrophil MPO and inhibits the production of
HOCI, a powerful oxidant, to protect endothelial cells from
oxidative damage (Lu et al, 2018). In contrast, Suri et al.
(2008) found that quercetin did not exert excessive influence
on neutrophils, but only reduced the calcium response induced
by N-formyl-methionyl-leucyl-phenylalanine (fMLP).

4.2 Inhibition of Thrombosis

The key factor for the occurrence of IS is the formation of an
inflammatory thrombus; thrombolysis significantly alleviates
brain injury. Quercetin, a natural flavonol compound, can
significantly reduce diabetes-induced platelet aggregation
(Mosawy et al., 2014), which may be related to the inhibition
of compact platelet granule exocytosis (Mosawy et al., 2013b).
Similarly, quercetin inhibits agonists (ADP, collagen, and
thrombin) as well as induces platelet aggregation and granule
secretion (Liang et al., 2015). Quercetin also binds to the GPIIb/
IIIa platelet receptor, thus inhibiting the aggregation-promoting
properties of calcium ion carriers and avoiding an increase in
platelet-derived  particles; these improve hemorheology
(Zaragoza et al, 2021) and reduce thrombosis after carotid
artery injury induced by FeCl3 in C57BL/6 rats (Mosawy
et al,, 2013a). Quercetin also effectively blocked in vivo FeCl3-
induced arterial thrombosis and reduced IS infarct volume by
inhibiting glycoprotein VI (GPVI)-mediated platelet signal
transduction (Oh et al., 2021).

The binding of collagen to GPVIleads to receptor aggregation,
which stimulates tyrosine phosphorylation and thus causes
platelet aggregation (Gibbins et al., 1996; Poole et al., 1997).
Quercetin inhibits platelet activation by inhibiting various
components of the GPVI signaling pathway (e.g., collagenous
tyrosine phosphorylation) (Hubbard et al., 2003; Hubbard et al,,
2006; Wright et al, 2010), which may be a key factor for
improving nerve injury in IS. In clinical trials, platelet
aggregation was inhibited 30 and 120 min after oral quercetin
administration, with a corresponding reduction in collagen-
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FIGURE 2 | Summarized the mechanism of quercetin inhibiting inflammatory thrombosis. Abbreviations: T, increase; |, decrease; ADP, Adenosine diphosphate;
PDI, Protein disulfide isomerase; NET, neutrophil extracellular trap; LPO, lipid peroxidation; MPO, myeloperoxidase; t-PA, anti-tissue-plasminogen activator; MAPK,
mitogen-activated protein kinase; LPS, lipopolysaccharide; GPVI, glycoprotein VI; IL, interleukin; TNF-a, tumor necrosis factor-alfa.
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stimulated platelet tyrosine phosphorylation (Hubbard et al.,
2004). Quercetin also inhibited platelet aggregation when
collagen was stimulated at concentrations between 0.5 and
1.0 pg/ml, with IC50 values below 3uM (Hubbard et al,
2003). Thus, these results support the clinical transformation
of quercetin.

In contrast, Lee et al. (2013) found that quercetin did not
reduce PT, aPTT, or platelet aggregation in experimental rats.
They revealed that its downregulation of mitogen-activated
protein kinase (MAPK) activation restricted tissue factor
expression, thereby prolonging the time for atherothrombosis
development. In endothelial cells, quercetin transcription induces
the human t-PA gene by requiring a specific Spl (b) element
within the proximal promoter region, which is mediated by the
P38 MAPK-dependent signaling pathway (Pan et al., 2008).

Protein disulfide isomerase (PDI), a thiol isomerase secreted
by vascular cells, is required for thrombosis. Quercetin-3-
rutinoside prevents thrombosis in a PDI-dependent manner in
experimental rats (Jasuja et al, 2012). Oral administration of
1,000 mg isoquercetin can reduce the plasma concentration of
D-dimer by 21.9% and inhibit the activity of PDI in the plasma,
thereby exerting an antithrombotic effect (Zwicker et al., 2019).
This was related to the reduction of platelet-dependent thrombin
content by blocking the production of platelet factor Va (Stopa
etal., 2017). Intravenous administration of quercetin significantly
attenuated TNF-a levels and prothrombin activity in a rabbit
model of LPS-induced DIC (Yu et al, 2013) (Figure 2).
Nonetheless, oral quercetin did not prevent thrombo-embolic
stroke in an earlier Dutch cohort study (Knekt et al., 2000). This

finding may be related to the use of dietary quercetin content as
an intervening factor. Table 2 summarizes the role of quercetin
and its derivatives in limiting thrombosis.

4.3 The Role of Histomorphology

In an in vitro ischemia model, quercetin-treated cells showed
improved tolerance to oxygen-glucose deprivation (OGD) or
oxygen glucose recovery (ROG) (Lee et al., 2016). Quercetin
administration reduced the corrected total infarct volume and
edema percentage by 43.6% and 48.5%, respectively, along with a
significant behavioral recovery effect (Lee et al., 2015). Quercetin
and Kolaviron pre-treatment significantly improved the
I/R-induced changes in brain water content. Significant
remission of cerebral infarction was observed in the Kolaviron
and quercetin treatment groups (Akinmoladun et al, 2015),
which might be linked to the role of quercetin in the Sirtl/
nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme
oxygenase-1 (HO-1) signaling cascade (Yang et al, 2021).
Compared to free quercetin or quercetin-carrying exosome
(quercetin-EXO) therapy, treatment with quercetin/mAb
gAP43-EXO dramatically reduced infarct size and improved
neurological recovery in MCAO reperfusion-induced rats (Guo
et al,, 2021) (Figure 3). Simultaneously, quercetin improved the
IS-associated motor and sensory deficits in the dorsal striatum,
which may be related to the upregulation of MC4R-mRNA
expression (Ulya et al, 2021). More intuitively, quercetin
showed 6.79 2 + 0.41 right turn in rats in the permanent
MCAO model and 9.31 + 0.33 right turn in the control group.
Most rats in the treatment group showed mild to moderate
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TABLE 2 | Anti-platelet aggregation effect of quercetin.

Quercetin for Ischemic Stroke

Ingredient Dose Experimental Model Mechanism References
quercetin 6 mg/kg C57BL/6 mice; FeCl3-induced carotid artery injury 1GPIIb/llla activation; |platelet granule Mosawy et al.
exocytosis; Inhibits platelet aggregation (2013a)
quercetin-3- 0.5 mg/kg C57BL/6J mice; Laser-induced injury/FeCI3 injury Inhibit fibrin production; |Expression of PDI; Jasuja et al.
rutinoside Inhibits platelet aggregation and thrombosis (2012)
isoquercetin 500 mg or Healthy cohort (a-e) abstaining from quercetin-rich foods | PDI activity; |platelet factor Va; |platelet- Stopa et al.
1,000 mg 72 h before intervention, excluding those with oral dependent thrombin (2017)
anticoagulants or antiplatelet drugs
quercetin 2mgor 10 mg SD rats, FeClI3-induced carotid artery injury |blood triglyceride, |glucose levels; |tissue Brill et al. (2015)
factor, |MAPK activation
quercetin _ Healthy non-smokers with normal coagulation function,  Blocks GPIIb/llla receptors; |Platelet activation — Zaragoza et al.
not using immunologics, antiplatelet, NSAIDsetc. and aggregation (2021)
quercetin 0.5 mg/kg, Adult male New Zealand white rabbits, DIC experimental ~ TProtein C and ATIIl; |APTT, [PT, |TNF-a; Anti-  Yu et al. (2013)
1 mg/kg, 2 mg/kg  models inflammatory and anticoagulant
quercetin 50 mg/kg, Wild-type (WT, C57BL/6 strain, 6-8 weeks old, 18-22 g |granule secre, |ROS; |platelet aggregation; Oh et al. (2021)
100 mg/kg BW) male mice, FeCI3-induced in vivo thrombosis tionInhibition of allbf3 integrin and GPVI
signaling;
quercetin 1uM Quercetin pretreated human umbilical vein endothelial T t-PA gene expression; activate p38MAPK Pan et al. (2008)
cells for 0-24 h
quercetin 6 mg/kg Diabetes C57BL/6 mice; FeCl3-induced carotid artery lgranule exocytosis; Inhibits platelet Mosawy et al.
injury hyperaggregation and thrombosis (2014)
quercetin 5 mg or 69 mg A two-treatment, randomized, double-blind, crossover  |Syk tyrosine phosphorylation; Inhibits collagen  Hubbard et al.
study stimulated platelet aggregation (2006)
quercetin-4¢-O-b- 150 mg or 300 mg  Those who did not take aspirin and a low quercetin diet | Syk tyrosine phosphorylation; Inhibition of GPVI  Hubbard et al.
D-glucoside 14 days before the study signal transduction (2004)
Isoquercetin 500 mg or Patients with advanced cancer; A multicenter, multidose, | D-dimer, |platelet dependent thrombin; Zwicker et al.
1000 mg open-label phase Il clinical trial Inhibition of PDI activity (2019)

neuromotor deficits (p < 0.0001) (Ahn and Jeon, 2015). In
addition, the infarct volume of rats in the control and
treatment groups was 26.35 * 2.25% and 14.87 £ 1.75%,
respectively (Park et al, 2020). Quercetin can improve
cognitive function in rats with ischemic injury. In the Morris
water maze (MWM) test, quercetin therapy restored spatial
learning deficits by increasing the time and amount of access
to the central region (Le et al., 2020). By boosting the number of
new Olig2+ oligodendrocyte progenitors in the subventricular
zone, quercetin alleviated hypoxia/ischemia (HI)-induced
cognitive impairment (Qu et al., 2014). Compared with the
control group, I/R rats pre-treated with quercetin (20 mg/kg)
for 7 days showed a significant reduction in cognitive impairment
as well as improvement in motor capacity, cerebral edema, and
infarct volume (p < 0.001) (Viswanatha et al., 2018; Viswanatha
et al., 2019). Table 3 summarizes the neuroprotective effects of
quercetin on IS.

4.4 Prevention of Oxidative Stress

4.4.1 Quercetin

The mitochondria are the main source of oxidative stress.
Quercetin can activate mitochondrial large-conductance Ca*t
to regulate potassium (mitoBKCa) channels, participate in
mitochondrial depolarization, and protect brain tissue from HI
damage (Kampa et al., 2021). Quercetin synergistically enhances
mitochondrial ~ spare  respiration, maintains neuronal
mitochondrial function, and increases the expression of CREB
target genes (PGC-1a), which promote neuronal survival and
mitochondrial biogenesis in an OGD model (Nichols et al., 2015).
Furthermore, quercetin can control the Sirtl/Nrf2/HO-1

pathway, thus drastically reducing ROS formation following IS
(Yang et al, 2021). In several IS models, quercetin revealed a
dose-dependent reversal of OGD-induced declines in superoxide
dismutase-1 (SOD1), SOD2, glutathione peroxidase-1 (GPX-1),
and catalase (CAT) levels (Le et al., 2020), which may be achieved
by its LPO-reducing capability (Shalavadi et al., 2020). Another
study pointed out that quercetin also regulates the expression of
oxidase and other antioxidant enzyme genes, thereby preventing
IS-associated oxidative stress (Yamagata, 2019). Further studies
showed that quercetin induced the expression of Nrf2 in
erythrocytes, thus strongly inhibiting the production of
adhesion molecules; this action may be related to the
antioxidant effect of HO-1 (Li C. et al., 2016). Lee et al. (2016)
discovered that quercetin increased the expression of Nrf2, HO-1,
and nitric oxide synthase 1 (NOS1) in SHSY5Y cells, thus
indicating its antioxidative stress impact.

4.4.2 Quercetin and Other Herbs

Quercetin and other herbal pre-treatments inhibit I/R-induced
decreases in catalase and SOD enzyme activity, prevent LPO
production, and increase GSH levels (Viswanatha et al., 2018;
Viswanatha et al, 2019). Additionally, reduced NO and
hippocampal lactate dehydrogenase (LDH) levels
observed in the cortex, striatum, and hippocampus of I/R rats
(Ojo et al., 2019). Furthermore, intragastric injection of quercetin
and rutin 10 min before reperfusion significantly reduced
malondialdehyde (MDA) and myeloperoxidase (MPO) levels,
increased endogenous antioxidant enzyme SOD and CAT
levels, and improved I/R-induced inflammatory response
(Annapurna et al,, 2013).
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4.4.3 Optimization of Quercetin

Optimization of quercetin can significantly improve its efficiency
and pharmacological effects across the BBB. Quercetin liposome
preparations slow down the decline of GSH levels in the
ipsilateral striatum and cortex after ischemia; it also maintains
GSH levels in the ischemic areas and increases GSH
concentration in neuronal and glial cells (Rivera et al., 2008).
During cerebral I/R, intracellular GSH levels significantly
increased in young and old rats receiving nano-quercetin
(27 mg/kg) (Ghosh et al, 2013). Quercetin/mAb GAP43-Exo
targets neurons by mediating mAb GAP43, thus enhancing
the accumulation of quercetin in the ischemic areas as well as
inhibiting ROS production by activating the Nrf2/HO-1 pathway
to increase LDH levels (Guo et al., 2021). Quercetin/mAb
GAP43-Exo decreased oxidative stress-induced I/R damage by
boosting the nuclear translocation of Nrf2 and upregulating the
transcription of NAD(P)H dehydrogenase quinone-1 (NQO-1),
HO-1, SOD1 and GPx1 (Guo et al.,, 2021) (Figure 3).

4.5 Protection of Hippocampal Neurons

IS significantly induced endogenous neurogenesis in the dentate
gyrus of the hippocampus. However, newborn neurons are
difficult to differentiate into mature neurons (Arvidsson et al.,
2002; Doeppner et al, 2011). Quercetin maintains isocitrate
dehydrogenase levels in MCAO animal models and helps to
preserve neuronal cell energy production, thereby reducing IS-

induced neuronal cell damage (Shah et al., 2018). Moreover,
quercetin attenuates the decrease in PP2A subunit B expression
caused by glutamate treatment, thus further reducing neuronal
cell death (Park et al, 2019). Through the Sirtl/Nrf2/HO-1
signaling pathway, quercetin restores the normal structure of
hippocampal neurons in I/R mice with severe neuronal injury
(Yang et al, 2021). Quercetin also reduces the activity and
pathophysiology of the following processes: protein tyrosine

and serine/threonine phosphatase in rat cortical tissue,
oxygen-glucose  deprivation/reoxygenation (OGD/R) in
hippocampal  slices and  neuronal/glial  cell lines,

phosphorylation of ERK and Akt, and I/R-induced hindbrain
damage (Wang et al., 2020). Quercetin treatment can also
significantly increase the activity of SHSY5Y cells and E18
mouse cortical neurons (Lee et al, 2016), enhance the
expression of synaptophysin in PC12 cells in the OGD model,
and promote neurite growth in PC12 cells (Orban-Gyapai et al.,
2014). Three days after reperfusion, oral administration of nano-
encapsulated quercetin reduced the activity of iINOS and caspase-
3, expanded the number of neurons in the hippocampus, and
prevented neuronal cell damage (Ghosh et al., 2013) (Figure 3).

4.6 Promotion of Autophagy

The mechanism of quercetin-induced autophagy in cell survival is
complex because of the large number of biomolecules involved in
this process. Based on the scope of the damage caused by HI,
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TABLE 3 | Neuroprotective effects of quercetin in different IS models.

Ischemic stroke In vitro/In Dose Effective Molecular Mechanism References
vivo
MCAO in vitro/in 10 mg/kg | PP2A subunit B; inhibition of glutamate toxicity Park et al. (2019)
vivo
MCAO/R in vitro/in 3.4 mg/ml TNQO-1, THO-1, 1SOD1, 1GPx1; |ROS activation of Nrf2/HO-1 pathway; Guo et al. (2021)
vivo reduce I/R damage;
OGD in vitro 10 uM Tsynaptophysin; promote the growth of neurites Orban-Gyapai et al.
(2014)
MCAO/R in vivo 30mg/kg  1GPx, 1SOD, 1CAT; |PARP, |caspase-3, |p53, |LPO; protection of Na,K,.  Ahmad et al. (2011)
ATPase Activity
MCAO in vivo 30 mg/kg  |caspase-3, |PARP; inhibit the apoptosis pathway; reduce neuronal defects Park et al. (2018)
and neuronal degeneration
Focal cortical ischemia in vivo 25 ymol’kg  |MMP-9; reduce the damage of BBB Lee et al. (2011)
pMCAO/Glutamate in vitro/in 10 mg/kg  1Bcl2; |caspase-3, |Bax; reduce calcium overload of intracellular and Park et al. (2020)
vivo hippocampal neurons
HIBI/OGD in vitro/in 50 mg/kg 1IL-1B, [IL-6, |TNF-o; TSOD1,7 SOD2, 1GPX-1, TCAT; increase cell viability;  Le et al. (2020)
vivo Inhibit TLR4/NF-kB signaling pathway; improve dyskinesia and cognitive
impairment
pMCAO in vivo 30 mg/kg T GSH; protect neurons and glial cells Rivera et al. (2008)
MCAO in vivo 10mg/kg  T[NAD+], Tadenosine homocysteinase, Tpyruvate kinase, Tcarboxy terminal Shah et al. (2018)
hydrolase L1; |[HSP60, |HSP2
MCAO/HUMSCs in vivo 25 mol/kg  |caspase-3, |IL-6, [IL-1b; TIL-4, TIL-10, Ttransforming growth factor-b1; Zhang et al. (2016)
promote nerve function recovery
MCAO in vivo 10 mg/kg  reduce infarct size and edema; antioxidant and neuroprotective activity Lee et al. (2015)
MCAO/OGDR in vitro/in 25 mg/kg  anti-oxidative, anti-inflammatory, and antiapoptotic effects; reduces changes in  Wang et al. (2020)
vivo ERK/Akt phosphorylation and protein phosphatase activity
common carotid artery occlusion  in vivo 2.7mg/kg  JINOS,| caspase-3, |[ROS; T HO-1, 1SOD1, 1GSH; protect the mitochondrial ~ Ghosh et al. (2013)

and reperfusion

autophagy is used as a pro-apoptotic signal, wherein quercetin
can be used as its inducer (Costa et al., 2016). In models of
oxidative damage and ischemia, studies have revealed that the
protective impact of quercetin is directly linked to the induction
of autophagy (Wu et al., 2017). As a result, autophagy is linked to
the pro-survival mechanism of quercetin in IS-induced brain
injury and other related events (Wang et al., 2011; Zhi et al., 2016;
Granato et al., 2017; Liu et al., 2017) (Figure 3). Quercetin has a
protective effect against MCAO-induced neuronal cell apoptosis
and likewise induces autophagy-mediated neuronal PC12 cell
survival (Ahn and Jeon, 2015; Park et al., 2018). In IS, if myeloid
cells lack an autophagy response, inflammatory glial cells would
thus play a significant role in neuronal cell apoptosis by
increasing ischemia; this happens in compensation for the
reduced activity of myeloid cells (Kotoda et al.,, 2018). In this
case, autophagy protected the neurons from ischemia-induced
cell death. Surprisingly, quercetin, like many other polyphenols,
induces autophagy (Pallauf and Rimbach, 2013). Quercetin plays
arole in cellular survival by activating autophagy in brain myeloid
cells (Chang et al., 2017). Furthermore, in MCAO-induced
ischemia, quercetin altered the apoptosis/autophagy interaction
and its linkage with the nuclear factor kappa B (NF-«B) signaling
pathway by upregulating ubiquitin carboxy-terminal hydrolase
L1, which is a related gene enzyme, at almost double the rate
(Chirumbolo et al., 2019).

4.7 Inhibition of Apoptosis
Quercetin upregulates the intracellular Ca®* concentration in
the cerebral cortical and hippocampal neurons of MCAO rats.

membrane; protect mitochondrial membranes and neuronal cells

It also regulates the gene expression of Bcl-2, Bax, and
caspase-3, thereby preventing apoptosis (Park et al., 2020).
Another study found that quercetin reduced HI-induced
cortical cell death by blocking the neuro-inflammatory
response mediated by the toll-like receptor 4 (TLR4)/
nuclear factor-kappa B (NF-kB) signaling pathway (Wu
et al, 2019). The anti-apoptotic activity of quercetin may
be due to its ability to suppress inflammatory genes in BV2
microglia (Mrvova et al., 2015). In addition, quercetin has also
been reported to improve I/R-induced cognitive deficits as
well as inhibit neuronal apoptosis by increasing p-Akt and
decreasing p-ASK1, P-JNK3, cleaved caspase-3, and FADD
protein expressions (Pei et al., 2016). Furthermore, quercetin
not only inhibits acid toxicity mediated by acid-sensing ion
channels, but also improves neuronal apoptosis in focal
cerebral ischemia by reducing caspase-3 and PARP
expression through the PI3K/Akt pathway (Park et al,
2018). After local cerebral ischemia, human umbilical cord
mesenchymal stem cells (HUMSCs) transplanted with
quercetin can reduce pro-inflammatory cytokines IL-1B
and IL-6, increase anti-inflammatory cytokines IL-4 and
IL-10, inhibit the expression of apoptosis factor caspase-3,
and promote the recovery of nerve function (Zhang et al,,
2016). Furthermore, isorhamnetin (30-methoxy-3,40,5, 7-
tetrahydroxy flavanone), a quercetin metabolite, has been
demonstrated to lower blood pressure and endothelial
dysfunction in spontaneously hypertensive rats (Sinchez
et al,, 2006; Sanchez et al., 2007). In the methylglyoxal-
binding OGD model, isorhamnetin inhibited caspase 8
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activation and decreased Fas and FasL expression, thereby
lowering the activation and ability of NF-«kB to perform an
anti-mitochondrial-dependent apoptotic role (Li W. et al,
2016) (Figure 3).

5 CONCLUSION AND PERSPECTIVES

Quercetin has a unique chemical structure and is widely found
in our daily diet (e.g., vegetables and fruits), thus making it
easy to obtain. Quercetin has showed respectable therapeutic
effects on IS-induced models. It inhibits inflammatory
thrombosis, reduces cerebral edema, infarct size, and
oxidative stress, promotes autophagy and anti-apoptosis,
and can be used as an adjuvant agent in the treatment of
IS. Importantly, quercetin has been found to inhibit platelet
activation and limit inflammatory thrombosis in both animal
and clinical studies. The anti-inflammatory properties of
quercetin are mediated by the regulation of the expression
of various inflammatory factors. It also prevents neuronal
death by stimulating the NF-kB signaling pathway, which
suppresses caspase-3 and Bax, and promotes Bcl-2 expression.
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Celastrol plays a significant role in cerebral ischemia-reperfusion injury. Although
previous studies have confirmed that celastrol post-treatment has a protective effect on
ischemic stroke, the therapeutic effect of celastrol on ischemic stroke and the underlying
molecular mechanism remain unclear. In the present study, focal transient cerebral
ischemia was induced by transient middle cerebral artery occlusion (tMCAQ) in mice and
celastrol was administered immediately after reperfusion. We performed IncRNA and
MRNA analysis in the ischemic hemisphere of adult mice with celastrol post-treatment
through RNA-Sequencing (RNA-Seq). A total of 50 differentially expressed IncRNAs (DE
INcRNAs) and 696 differentially expressed mRNAs (DE mRNAs) were identified between
the sham and tMCAQ group, and a total of 544 DE IncRNAs and 324 DE mRNAs were
identified between the tMCAO and tMCAQ + celastrol group. Bioinformatic analysis was
done on the identified deregulated genes through gene ontology (GO) analysis, KEGG
pathway analysis and network analysis. Pathway analysis indicated that inflammation-
related signaling pathways played vital roles in the treatment of ischemic stroke by
celastrol. Four DE IncRNAs and 5 DE mRNAs were selected for further validation by
gRT-PCR in brain tissue, primary neurons, primary astrocytes, and BV2 cells. The results
of gRT-PCR suggested that most of selected differentially expressed genes showed the
same fold change patterns as those in RNA-Seq results. Our study suggests celastrol
treatment can effectively reduce cerebral ischemia-reperfusion injury. The bioinformatics
analysis of INnRNAs and mRNAs profiles in the ischemic hemisphere of adult mice
provides a new perspective in the neuroprotective effects of celastrol, particularly with
regards to ischemic stroke.
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Frontiers in Neuroscience | www.frontiersin.org 208

May 2022 | Volume 16 | Article 889292


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.889292
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.889292
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.889292&domain=pdf&date_stamp=2022-05-23
https://www.frontiersin.org/articles/10.3389/fnins.2022.889292/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al.

Celastrol Treatment in Ischemic Stroke

INTRODUCTION

Ischemic stroke is one of the most common cerebrovascular
diseases and is a leading cause of disability and death worldwide
(Feigin et al., 2014). In China, the prevalence and incidence
of ischemic stroke have been increasing over the past decade
(Wu et al., 2019). Traditional treatments for ischemic stroke
include endovascular thrombectomy and systemic thrombolysis,
but ischemia-reperfusion (I/R) injury is inevitable while restoring
blood flow to the brain. Numerous drugs were developed but
also failed to show benefit in the therapy of acute ischemic stroke
(Chamorro et al., 2016). Hence, there is an urgent need to develop
effective neuroprotective drugs for the treatment of cerebral I/R
injury. Neuroinflammation and oxidative stress play pivotal roles
in the pathophysiological of cerebral I/R injury, which could be
an attractive therapy strategy for stroke (Maida et al., 2020).

Celastrol is a pentacyclic triterpene isolated from the
traditional Chinese herb “Thunder of God Vine” (Tripterygium
wilfordii Hook F.) (Salminen et al., 2010), which exhibits diverse
pharmacological activities including anti-inflammatory, anti-
oxidative and neuroprotective effects (Chen T. et al, 2017).
Many studies have demonstrated that celastrol exerted beneficial
effects in the treatment of cancer, inflammatory diseases,
neurodegenerative diseases, obesity, and diabetes (Lu et al., 2021;
Xu et al, 2021). In recent years, the effect of celastrol on the
central nervous system has attracted close attention. Celastrol
plays a neuroprotective role in a variety of neurological disorders,
including neurodegenerative diseases (Paris et al,, 2010; Lin
et al., 2019), traumatic brain injury (Eroglu et al., 2014) and
ischemic brain injury (Li Y. et al., 2012). Increasing evidence
suggests that neuroprotective effect of celastrol in cerebral
ischemic injury is associated with antioxidant activity and anti-
inflammation property. A previous study illustrated that celastrol
dramatically relieved permanent cerebral ischemia injury in rats
by downregulating the expression of p-JNK, p-c-Jun and NF-kB
(LiY.etal,2012). Another study also demonstrated that celastrol
ameliorated acute ischemic stroke induced brain injury through
promoting IL-33/ST2 axis-mediated microglia/macrophage M2
polarization (Jiang et al., 2018). More recently, celastrol has been
reported to exhibit anti-inflammatory and antioxidant actions
in rats by targeting HSP70 and NF-«kB p65 and directly binding
to high mobility group box 1 (HMGB1) in cerebral I/R injury
(Zhang et al., 2020; Liu D. D. et al., 2021). These results suggested
that celastrol may be a promising therapeutic agent for the
treatment of ischemic stroke. However, little is known regarding
the neuroprotective effect and the underlying mechanism of
celastrol in ischemic stroke.

Long non-coding RNAs (IncRNAs) are the largest class
of RNA molecules more than 200 bp in length without
protein coding ability (Wang C. et al, 2017). Recently,
studies have found that the mechanisms of IncRNA function
involve both transcriptional and post-transcriptional regulation
(Bao et al, 2018). In the post-transcriptional level, IncRNAs
regulate the gene expression either by directly influencing the
RNA splicing and RNA degradation, or negatively regulating
the functions of miRNA as miRNA sponge (Ebert et al,
2007). Many studies demonstrated that IncRNAs participate

in many crucial physiological processes and play significant
roles in the occurrence and development of various diseases,
including various types of tumors, cardiovascular disorders
and cerebrovascular diseases (Chen et al., 2021). Previous
research has uncovered that IncRNAs play critical roles in the
pathogenesis of ischemic stroke (Bhattarai et al., 2017; Bao et al.,
2018). Recent study indicated that IncRNA AK005401 plays an
important role in the protective effect of celastrol on ischemia-
induced hippocampal damage (Wang et al., 2021). However, the
function and mechanism of IncRNAs in ischemic stroke need
further research.

In the present study, we established the transient cerebral
ischemia model in mice and evaluated the effect of celastrol on
infarction volume and neurological function. Then we analyzed
the different expression profiles of IncRNAs and mRNAs in
the ipsilateral hemisphere after celastrol treatment by RNA-
Seq. Through bioinformatics analysis of the different expression
genes, we uncover the potential role of celastrol in ischemic stroke
and provide a new direction on the functions and mechanisms of
IncRNAs in ischemic stroke.

MATERIALS AND METHODS

Experimental Animals

Male C57BL/6 mice (8-10 weeks old, 22-25 g) were purchased
from the Experimental Animals Center of Southern Medical
University. The mice were kept in a temperature-controlled
animal facility under normal light/dark cycle with free access
to food and water. All animals adapted to the environment
for 7 days before experiments. All animal experiments were
approved by the Southern Medical University Administrative
Panel on Laboratory Animal Care and conducted in accordance
with the guidelines of Animal Use and Care of Southern
Medical University.

Transient Middle Cerebral Artery

Occlusion Model

To induce cerebral I/R injury, a transient middle cerebral
artery occlusion (tMCAO) model was performed on the mice
as previously described (Luo et al., 2017).Briefly, mice were
anesthetized with sevoflurane (5% for induction and 2-3%
for maintenance). Following a midline cervical incision, the
right common carotid artery (CCA), external carotid artery
(ECA), and internal carotid artery (ICA) were carefully exposed
under an operating microscope. Thereafter, a silicone rubber-
coated nylon monofilament (Yushun Biological Technology Co.
Ltd., Pingdingshan, China) was inserted into the ECA, and
advanced to occlude the middle cerebral artery for 90 min.
After 90 min occlusion, the monofilament was gently pulled
out for reperfusion and the incision was sutured. Mice in
sham group adopted a same surgery except the middle cerebral
artery occlusion.

Drug Administration
Adult mice were randomized into three groups (sham group,
tMCAO group and tMCAO + celastrol group; #n = 18 in each
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group). Celastrol (Selleckchem, Houston, TX, United States) was
dissolved in 1% dimethylsulfoxide (DMSO) (Sigma-Aldrich, St.
Louis, MO, United States) at the concentration of 4.5 mg/kg and
injected intraperitoneally at the onset of reperfusion. The mice in
sham and tMCAO groups without drug treatment were injected
with the same volume of DMSO. Mice were re-anesthetized and
sacrificed 24 h after tMCAO. The concentration of celastrol used
in the experiment was based on the concentration reported in
previous study (Chen et al., 2022).

Infarct Size Measurements

The 2,3,5-triphenyltetrazolium chloride (T'TC) (Sigma-Aldrich,
St. Louis, MO, United States) staining was used to determine
cerebral infarction volume. After 90 min of MCAO and 24 h
of reperfusion, the mice were anesthetized with 5% sevoflurane,
and their brains (n = 5/group) were rapidly removed and
coronally cut into six slices at a thickness of 2 mm using
a rodent brain matrix. The brain slices were stained with
2% TTC at 37°C for 15 min and subsequently fixed in 4%
paraformaldehyde at 4°C overnight. After TTC staining, the
red area indicated no infarction while the white area indicated
infarction. The brain slices were scanned and the infarct
size was analyzed using Image ] software (National Institutes
of Health, Bethesda, MD, United States) by researchers who
were blinded to the study group. In order to exclude the
effect of cerebral edema, the following calculation formula was
used: (contralateral hemisphere area-ipsilateral non-ischemic
hemisphere area)/contralateral hemisphere area x 100% (Liu M.
etal., 2021). Five male mice were used in each group.

Neurological Deficit Score

The neurological deficit scores of the mice were evaluated at
24 h after tMCAO by researchers who were blinded to the
experimental groups. According to the modified Bederson score,
the neurological grading scores range from 0 to 5 (0, no deficit;
1, forelimb flexion; 2, as for 1, plus decreased resistance to
lateral push; 3, unidirectional circling; 4, longitudinal spinning
or seizure activity; and 5, no movement) (Jin et al.,, 2015). Seven
male mice were used in each group.

Rotarod Test

Motor performance was accessed by accelerating rotarod test
after evaluating the neurological deficit scores. The mice were
trained to remain on the rotarod at a starting rotation of 5 r/min
which was accelerated to 40 r/min over 60 s before the model
establishment (Du et al., 2020). The mice were tested under the
same accelerated conditions after 24 h of reperfusion. The entire
test lasted 300 s and was performed three times for each mouse
at 10-min intervals. The latency of falling off of the rod were
recorded and averaged.

Primary Cortical Neurons Cultures

Primary cortical neurons were obtained from embryonic day
C57BL/6 mice and cultured as previously described (Luo et al.,
2017). Briefly, pregnant mice were euthanized and the cerebral
cortices of the embryos were dissected and dissociated by mild

trypsinization, followed by trituration in DNAase I (Sigma-
Aldrich, St. Louis, MO, United States). The cells were suspended
in neurobasal medium supplemented with 2% B-27 (Gibco,
Grand Island, NY, United States) and 0.5 mM Glutamax (Gibco,
Grand Island, NY, United States). The single cell suspension
was plated in 6-well plates precoated with poly-L-lysine, and the
cell culture was kept in a humidified atmosphere of 5% CO,
at 37°C. Half of the culture medium was replaced every 3 days
and neurons were cultured for 9 days for use in subsequent
experiments.

Primary Astrocytes Cultures

Primary cultures of astrocytes were prepared from cortices of
C57BL/6 newborn mice (P1-P3). Briefly, the bilateral cortices
were dissected in a sterile environment and digested with
0.25% trypsin and DNAase I for 10 min at 37°C. Subsequently,
cortical fragments were suspended in Dulbecco’s Modified
Eagle’s medium (DMEM)/F12 (Gibco, Grand Island, NY, United
States) with 10% fetal bovine serum (Gibco, Grand Island,
NY, United States). Single cell suspensions were made by
repeated pipetting and the cells were incubated at 37°C in a
humidified 5% CO, chamber for 7 days. The culture medium was
replaced twice a day.

BV2 Microglial Cell Cultures

BV2 microglial cells, which were bought from Shanghai Gaining
Biological Technology Co. Ltd., were cultured in DMEM (Gibco,
Grand Island, NY, United States) with 10% fetal bovine serum at
37°C in COy/air (5/95%) mixture.

Oxygen-Glucose Deprivation and Drug

Treatment

To simulate ischemia-reperfusion injury in vitro, primary cortical
neurons, primary astrocytes and BV2 microglial cells were
subjected to oxygen and glucose deprivation (OGD) followed by
reoxygenation. Primary astrocytes and BV2 microglial cells were
incubated with glucose-free DMEM and placed within a hypoxic
chamber which was continuously maintained with 95% N3, 5%
CO3, 1% O, at 37°C for 5 h, while primary cortical neurons for
4 h. OGD was terminated by replacing the glucose-free DMEM
to their normal culture medium in the normoxic incubator with
95% air and 5% CO; for 24 h. Cells incubated in normal culture
medium under a normoxic incubator were used as the normoxic
control. At the same time, celastrol was applied in the culture
medium with the final concentration of 0.5 WM for 24 h. In
contrast, the same volume of DMSO was applied in the culture
medium in the control group cells. All experiments were at least
duplicated three times biologically.

RNA Extraction

The total RNA from the ischemic hemisphere or cells was isolated
with the TRIzol Reagent (Invitrogen, Carlsbad, CA, United
States) according to the manufacturer’s instructions. RNA purity
and concentration were evaluated by using the Nanodrop ND-
2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, United States). RNA Integrity Number (RIN) was analyzed
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by Bioanalyzer 2100 (Agilent, Palo Alto, CA, United States).
If the RIN number is >7, it can be used for high-throughput
transcriptome sequencing.

RNA-Sequencing

A total of 5 pg RNA from ischemic hemisphere was utilized for
each RNA sample. Firstly, ribosomal RNA (rRNA) was depleted
by Ribo-Zero Gold rRNA Removal Kit (Illumina, San Diego, CA,
United States). Secondly, the left RNAs were fragmented into
short fragments using divalent cations (NEBNext® Magnesium
RNA Fragmentation Module, NEB, Ipswich, MA, United States)
under high temperature. The complementary DNA (cDNA) was
synthesized and purified. Finally, the average insert size for the
final ¢cDNA library was 300 £ 50 bp. 2 x 150 bp paired-end
sequencing was performed on Illumina Novaseq'™6000 (LC-
Bio Technology Co. Ltd., Hangzhou, China) according to the
recommended protocol.

Quality Control

Clean reads were obtained by removing reads containing adapter,
reads containing ploy-N and low-quality reads from raw data by
Cutadapt (Love et al., 2014). Then sequence quality was verified
using FastQC (Babraham Bioinformatics, Babraham Institute,
Cambridge, United Kingdom), including the Q20, Q30, and GC-
content of the clean data. The downstream analysis was done on
high-quality clean data.

Differential Expression Analysis

Cuftdiff (v2.1.1) was used to calculate fragments per kilobase
million (FPKMs) of both IncRNAs and mRNAs. The differentially
expressed IncRNAs and mRNAs were selected with fold change
> 2 or fold change < 0.5 and P-value < 0.05 by DESeq2. To
outline the characteristics of gene expression profiles, heatmaps
and volcano plots were generated by using the R package.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment

Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of differentially
expressed genes (DEGs) was implemented with DAVID.! GO
analysis includes the categories biological processes (BP), cellular
components (CC), and molecular functions (MF). GO terms with
P < 0.05 were defined as significantly enriched GO terms in
DEGs. Pathways with P < 0.05 were considered as significantly
enriched pathways in DEGs.

Soft Cluster Analysis

The soft clustering Mfuzz function is based on the fuzzy c-means
algorithm of the 1071 package. The R/Bioconductor package was
used for soft clustering of genes, and Mfuzz-specific clusters were
selected based on gene expression trends (Yang et al., 2020). The
genes were determined by default parameters and the number of
clusters were 12.

Uhttp://david.ncifcrf.gov/

Construction of ceRNA Network

According to the competitive endogenous RNA (ceRNA)
mechanism, miRNA can lead to gene silencing by binding
mRNA, while ceRNA can regulate mRNA expression by
competitively binding miRNA. In this study, DE IncRNAs and
DE mRNAs were constructed for ccRNA network. DE mRNA was
put into Starbase database (Starbase V3.0) to predict upstream
miRNAs, and DE IncRNA was put into miRcode to determine the
targeted miRNAs. Finally, the IncRNA-miRNA-mRNA ceRNA
network formed by the intersection of the two groups of predicted
miRNAs. The ceRNA network was visualized by Cytoscape
(Lietal, 2014).

Quantitative Real-Time PCR

Total RNA (1 pg) was used to synthesize cDNA using a ReverTra
Ace qPCR RT Master Mix with gDNA Remover (TOYOBO,
Tokyo, Japan). Quantitative real-time PCR was performed on
the ABI QuantStudio 6 flex (Applied Biosystems, Carlsbad, CA,
United States) using SYBR Green Realtime PCR Master Mix
(TOYOBO, Tokyo, Japan). GAPDH was used as a reference gene
for quantification. Each experimental group was performed in
triplicate to obtain the cycle time (CT) mean and the results of the
analyses were calculated using the 2- A ACT equation. The primer
sequences were shown in the Supplementary Table 1.

Statistical Analysis

Data are expressed as mean + SEM. Differences were evaluated
by one-way analysis of variance (ANOVA; three or more
groups). P < 0.05 was considered statistical significance.
Statistical analyses were performed using SPSS 20.0 Statistics
(IBM SPSS Statistics for Version 20.0, IBM Corp, Armonk,
NY United States).

RESULTS

Celastrol Reduced Infarction, and
Improved Neurological Scores and Motor
Function After Transient Middle Cerebral
Artery Occlusion

We examined whether celastrol improve infarct volume and
neurological behavior after tMCAO. After 90 min occlusion,
celastrol was immediately injected at a concentration of 4.5 mg/kg
at the beginning of reperfusion. Infarct volume was measured
with TTC staining after 24 h of reperfusion. The results show
that the infarct volume was apparently larger in the tMCAO
group (48.87 =+ 2.86%) compared with sham group (0%),
whereas celastrol treatment significantly reduced I/R-induced
infarct volume to 35.89 & 2.10% (Figures 1A,B). Similarly, the
neurological deficit scores of mice in the tMCAO group were
significantly increased to 2.85 % 0.34, but celastrol treatment
decreased neurological outcomes to 1.71 £ 0.28 (Figure 1C).
Subsequently, the mice were subjected to the Rotarod fatigue
test. The results showed that the time spent on the rotarod
of mice in tMCAO group was 52.21 =+ 5.60 s, while celastrol
treatment significantly increased the time spent on the rotarod
to 113.40 = 6.40 s (Figure 1D).
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RNA-Seq Analysis of Ischemic
Hemisphere After Celastrol
Post-treatment in Transient Middle
Cerebral Artery Occlusion

To explore the mechanism underlying the neuroprotective
function of celastrol in tMCAO, RNA-sequencing analysis
was performed. Gene expression profiles for sham, tMCAO
and tMCAO + celastrol groups were visualized as heatmap
(Figure 2A). The fold change (FC) > 2 or FC < 0.5 and
P < 0.05 were used as the threshold to identify the DEGs between
each two groups. A total of 50 DE IncRNAs (Supplementary
Table 2) and 696 DE mRNAs (Supplementary Table 3) were
identified between the sham and tMCAO group. And a total of
544 DE IncRNAs (Supplementary Table 4) and 324 DE mRNAs
(Supplementary Table 5) were identified between tMCAOQO and
tMCAO + celastrol group. The mRNA profiles were further
analyzed, and the distribution of mRNA was displayed by volcano
plots. 612 upregulated DE mRNAs and 84 downregulated DE

mRNAs were found between the sham and tMCAO group
(Figure 2B). However, 168 upregulated DE mRNAs and 156
downregulated DE mRNAs were found between the tMCAO
and tMCAO + celastrol group (Figure 2C). The distribution of
mRNA in sham and tMCAO + celastrol group was also shown in
Figure 2D.

The Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
Enrichment Analysis of Differentially
Expressed mRNAs

Gene Ontology and KEGG enrichment analysis were performed
with DE mRNAs between sham and tMCAO groups. The
top 10 results of GO analysis in the biological process on
mRNA are shown in Figure 2E, including neutrophil migration,
granulocyte migration, myeloid leukocyte migration, leukocyte
chemotaxis, leukocyte migration, cell chemotaxis, cytokine-
mediated signaling pathway, positive regulation of response to
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external stimulus, adaptive immune response, and regulation
of immune effect or process. The top 10 results of the KEGG
analysis of DE mRNAs also appeared in Figure 2F, including
viral protein interaction with cytokine and cytokine receptor,

malaria, complement, and coagulation cascades, rheumatoid
arthritis, IL-17 signaling, cytokine-cytokine receptor interaction,
TNF signaling pathway, lipid and atherosclerosis, NOD-like
receptor signaling and chemokine signaling pathway. The results
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above indicated the potential connection between these pathways
and the effects of celastrol. The results above indicated that the
neuroprotective effects of celastrol are potentially related to these
biological processes and metabolic pathways.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genome Pathway Analysis
of Two Typical mRNA Clusters

The soft clustering method was used to assign genes to several
clusters based on expression patterns. For mRNA, a total of six
clusters were obtained by Mfuzz analysis in the three groups
(Figure 3A). These six clusters could be classified into two
large classes. One type of clusters showed upregulation of
gene expression between the tMCAO and tMCAO + celastrol
group (including cluster 1, 2, and 3), while another showed the
downregulation. According to the experimental design, cluster 2
and cluster 4 were selected for further analysis. In order to gain
insight into the biological function, GO and KEGG enrichment
analysis were performed in these two clusters. The top 10 results
of GO analysis in the biological process on cluster 2 and cluster
4 are shown in Figures 3B,E respectively. The results showed
that genes in these two clusters were associated with different
biological processes. Genes in Cluster 2 were mainly associated
with neuro-related processes, such as synapse organization,
axonogenesis and neuron differentiation. Genes in Cluster 4 were
mainly associated with immune and inflammation. The top 5
results of the KEGG analysis also appeared in Figures 3C,F
respectively. In addition, the expression of mRNA in cluster 2 and
cluster 4 were shown in the heatmap respectively (Figures 3D,G).
The DE mRNAs from mRNA cluster 2 and cluster 4 were
respectively listed in Supplementary Tables 6, 7.

Two Typical LncRNA Clusters via Mfuzz
Analysis

For IncRNA, a total of six clusters were obtained by Mfuzz
analysis in the three groups (Figure 4A). These six clusters also
could be classified into two large classes. One type of clusters
showed downregulation of gene expression between the tMCAO
and tMCAO + celastrol group (including cluster 1, 2, and
3), while another showed the upregulation. The expression of
IncRNA in cluster 3 and cluster 5&6 were shown in the heatmap
respectively (Figures 4B,C). The DE IncRNAs from IncRNA
cluster 3 and cluster 5&6 were listed in Supplementary Table 8.

Construction of LncRNA-MiRNA-mRNA
ceRNA Network

Based on differential analyses and interaction prediction, the
IncRNA-miRNA-mRNA ceRNA network were established. The
ceRNA networks included both positive and negative regulation
(Figure 5). DE mRNAs in Mfuzz Cluster 2 (up-regulated) and
DE IncRNAs in IncRNA Mfuzz Cluster 5&6 (up-regulated) were
both used to predict the bound miRNAs, then the intersection of
these two groups of miRNAs were formed into ceRNA network.
Finally, six up-regulated IncRNAs, nine down-regulated miRNAs,
and 16 up-regulated mRNAs were constructed into IncRNA-
miRNA-mRNA ceRNA networks (Figure 5A). Similarly, DE
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FIGURE 4 | (A) Six clusters of INcRNAs among the three groups by Mfuzz
analysis. (B) The heatmap of down-regulated genes in INcRNA cluster 3.
(C) The heatmap of up-regulated genes in INcCRNA cluster 5 and 6.

mRNAs in Mfuzz Cluster 4 (down-regulated) and DE IncRNAs
in IncRNA Mfuzz Cluster 3 (down-regulated) were used to
predict the bound miRNAs, then the ceRNA network formed
by intersection of these two groups of mirnas. Finally, ceRNA
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networks were constructed by 4 up-regulated IncRNAs, 16 down-
regulated miRNAs and 36 up-regulated mRNAs (Figure 5B). The
network consists of IncRNAs (rectangles), miRNAs (triangles),
and mRNAs (circles). The red pots represent up-regulated RNAs
and the green pots represent down-regulated RNAs. Above of
all indicated potential critical RNA interactions involved in
celastrol treatment.

LncRNA-mRNA Interaction Network

The relationship between IncRNAs and mRNAs was based on
the Cis and Trans function. Figure 6A shows the interaction
network of differentially expressed up-regulated IncRNAs with

DE mRNAs which is also the target genes of IncRNAs. Similarly,
Figure 6B shows the interaction network of differentially
expressed down-regulated IncRNAs with their differentially
expressed target mRNAs. The Triangle node and the round
node respectively represent IncRNAs and mRNAs. The red
color reveals that the IncRNAs or mRNAs are significantly up-
regulated, otherwise indicated with a green color.

Validation of the Selected Differentially

Expressed Genes
Based on the above bioinformatic analysis, we selected several
DE IncRNAs and DE mRNAs for qRT-PCR validation.
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down-regulated genes. (A) The interaction network between up-regulated DE IncRNAs and DE mRNAs. (B) The interaction network between down-regulated DE

INcRNAs and DE mRNAs.

5830444B04Rik-Elavl4, C030005K06Rik-Sh3bp4, and
4930413F20Rik- HIF-lo were selected from the ceRNA
network, and Gm15444-Ascl2/Acodl was selected from the DE
IncRNA-DE mRNA interaction network. They were selected
for further validation in the brain tissue, primary neurons,
primary astrocytes, and BV2 cells by qRT-PCR. In the brain
tissue, 5830444B04Rik, C030005K06Rik, Elavl4, Sh3bp4, HIF-1a,

Ascl2, and Acodl showed the same fold change patterns as
those in the RNA-Seq results (Figure 7A). The expression of
4930413F20Rik and Gm15444 were consistent with IncRNA
cluster 3, and Ascl2, and Acodl were also consistent with
mRNA cluster 4 in three types of cells. The expression of
HIF-la was consistent with mRNA cluster 4 both in the
primary astrocyte and BV2 cells and the expression of Sh3bp4
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FIGURE 7 | Differentially expressed INcRNAs and mRNAs confirmation by gRT-PCR. (A) Validation of DE IncRNAs and DE mRNAs in brain tissue. (B) Validation of
DE IncRNAs and DE mRNAs in primary neuron. (C) Validation of DE IncRNAs and DE mRNAs in primary astrocyte. (D) Validation of DE IncRNAs and DE mRNAs in
BV2 cells. *P < 0.05, **P < 0.01, **P < 0.001,n = 3.

was consistent with mRNA cluster 2 in the primary astrocyte DISCUSSION

(Figures 7B-D). But some of them did not reach statistical

significance. The validation of the other DEGs were shown in the In present study, we found that celastrol reduced the cerebral
Supplementary Figure 1. infarction volume in mice, improved the neurological and motor
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function. These results are consistent with the previous studies,
which demonstrated that celastrol post-treatment reduces
ischemic stroke-induced brain damage in rats (Li Y. et al., 2012;
Jiang et al., 2018; Liu D. D. et al., 2021). Biological process
of GO and KEGG pathway analysis of DE mRNAs suggested
that inflammation and immunity response play important roles
in the ischemia stroke. Neuroinflammation is involved in the
pathophysiological process of ischemia reperfusion injury and
anti-inflammatory is an important target for the development
of neuroprotective drugs (Maida et al., 2020). Four IncRNAs
and five mRNAs were selected from the IncRNA-miRNA-mRNA
ceRNA network and IncRNA-mRNA co-expression network for
further validation by qRT-PCR and most of them showed the
same fold change patterns in brain tissue as those in the RNA-
Seq results. Taken together, these results suggest that DEGs may
play a complicated role in the neuroprotective effect of celastrol
in ischemic stroke, and the potential function of them required
further validation and annotation.

The potential mechanism of celastrol in neuroprotective effect
deserves further investigation. Celastrol is the most abundant
compound extracted from the root of Tripterygium wilfordii
(Salminen et al., 2010), which has exhibited preclinical and
clinical efficacy in a broad range of diseases such as cancer,
rheumatoid arthritis (Tao et al., 1989), ulcerative colitis (Gao
etal., 2020), and central nervous system disease (Schiavone et al.,
2021) due to its different pharmacological properties. Celastrol
was demonstrated to exert anticancer effects in many types of
tumors such as breast cancer (Yang et al., 2011), retinoblastoma
(LiZ. etal., 2012), gastric cancer (Sha et al., 2015), and melanoma
(Abbas et al., 2007) by suppressing tumor migration, invasion
and angiogenesis as well as promoting autophagy and apoptosis.
Hsp90, NF-«kB, HIF-1a/VEGE PTEN/PI3K/Akt, Akt/mTOR,
and ROS/JNK signaling pathways were identified as relevant
anticancer targets and underlying mechanisms of celastrol (Lu
et al., 2021). In the past several decades, the anti-inflammatory
effects and mechanisms of celastrol also became clearer. Several
studies showed that celastrol can alleviate rheumatoid arthritis
by inhibiting inflammatory cytokines and oxidative stress as
well as regulating the calcium homeostasis (Cascio et al., 2012;
Li et al., 2013; Wong et al.,, 2019). Furthermore, Shaker et al.
demonstrated celastrol can ameliorate inflammatory symptoms
in mice colitis model, and the relevant mechanism involved the
inhibition of the NOD-like receptor protein 3 inflammasome
(NLRP3-inflammasome), reduction of the levels of IL- 23
and IL-17A as well as the up-regulated expression of IL-10
and TNF-a (Shaker et al, 2014). As a potent inhibitor of
inflammation and oxidative stress, celastrol was confirmed to
have a potential neuroprotective effect in central nervous system
disease, such as neurodegenerative diseases (Konieczny et al.,
2014), neuropsychiatric disorders (Zhu et al., 2021) and ischemic
stroke (Li Y. etal., 2012). Inflammatory insult and oxidative stress
have been implicated in the pathogenesis of ischemic stroke.
Recently, increasing studies demonstrated neuroprotective effects
of celastrol in permanent and transient ischemic stroke in rodents
(Jiang et al., 2018; Zhang et al., 2020). However, owing to the
complexity of the underlying signaling pathways, further effort
is needed to further illustrate the neuroprotection mechanism

of celastrol in ischemic stroke. In this study, we found “INF
signaling pathway” and “NOD-like receptor signaling pathway,’
the two signaling pathways are both significantly enriched in the
ischemic stroke and celastrol post-treatment process. And the
immune response such as “negative regulation of immune system
process” and “response to interferon-gamma and interferon
beta” also contribute to the transcription profile change of
celastrol. These results suggests that anti-inflammatory effect and
immune response of celastrol may be the main factor of reducing
cerebral ischemia-reperfusion injury, which is consistent with
previous studies. What's interesting, the KEGG pathway analysis
also suggested that lipid metabolism may play a potential role
in neuroprotection of celastrol. More recently, a study found
lipid metabolism partially regulated the neuroprotection of
celastrol on cerebral I/R injury through the lipidomic analysis
(Liu M. et al, 2021), but the underlying mechanism need
further investigation.

It is essential to explore the potential targets of celastrol
in ischemia stroke. Although previous study has found that
the neuroprotective action of celastrol was partly due to its
inhibition of neuroinflammation through directly binding with
HMGBI protein (Liu D. D. et al, 2021), it remains essential
to explore more direct targets of celastrol. In this study, we
selected five DE mRNAs from the ceRNA network or IncRNA-
mRNA interaction network for the further validation by qRT-
PCR, including Elavl4, Sh3bp4, HIF-1a, Ascl2, and Acodl. In
the brain tissue, almost all of them showed the same fold change
patterns as those in the RNA-Seq results. Among them, HIF-1a,
Acodl, and Elavl4 attracted our great attention. First, hypoxia
inducible factor-1 alpha (HIF-1a) is the main subunit of hypoxia-
inducible factor, which is an oxygen-dependent transcriptional
activator (Lee etal., 2004). Accumulating evidence elucidated that
HIF-1a plays an important role in suppressing oxidative stress
and inflammation in stroke (Baranova et al., 2007; Amin et al.,
2021). In this study, we found that the expression of HIF-1a was
consistent with mRNA cluster 4 in mice brain tissue, primary
astrocyte and BV2 cells. Combined with previous studies, how
celastrol alleviates cerebral ischemia-reperfusion injury via HIF-
la need further study. Secondly, aconitate decarboxylase 1
(ACODI, also known as immune-responsive gene 1 [IRG1]),
has attracted much attention as a multifunctional regulator of
immunometabolism in inflammation and infection (Michelucci
et al., 2013; Cordes et al., 2016). ACODI plays important roles
in many diseases by regulating itaconate production, oxidative
stress, and inflammation (Wu et al., 2020). ACODI1-mediated
itaconate has been demonstrated to play an anti-inflammatory
role in macrophages. Recently, ACOD1 has been proved to have
an association with neurotoxic microglial activation and chronic
neuroinflammation (Lampropoulou et al., 2016). More recently,
a study demonstrated that Acodl KO mice presented significant
increase in cerebral lesion volume compared to control mice and
illustrated that ACOD1 suppressed cerebral ischemia-reperfusion
injury by oxidative stress regulation (Lampropoulou et al., 2016).
In present study, we found the expression of ACOD1 presented
up-regulation both in the tMCAO mice and three types of
cells with OGD/R, which was reversed by celastrol. The role
of ACODI in cerebral ischemic stroke and how does celastrol
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regulate ACOD1 have attracted much attention. Thirdly, ELAVL4
(also known as HuD), an RNA-binding protein, is mainly
expressed in neuronal systems and regulates the metabolism
of target mRNAs (McKee and Silver, 2007; Singh et al., 2015).
ELAVL4 plays important roles in neuronal processes, including
neuronal development, differentiation, dendritic maturation, and
neural plasticity (Akamatsu et al., 2005; Bronicki and Jasmin,
2013). Several studies have shown that ELAVL4 involved in the
pathogenesis of neurodegenerative diseases, such as Alzheimer’s
disease (Kang et al., 2014), Parkinson’s disease (Noureddine et al.,
2005), and amyotrophic lateral sclerosis (Dell’Orco et al., 2021).
However, whether ELAVL4 is involved in the pathogenesis of
ischemic stroke remains unclear. In the brain tissue, ELAVL4
showed the same fold change patterns as those in the RNA-Seq
results. These results suggested that celastrol may participate in
the regulation of ischemic stroke, but the underling mechanism
and whether celastrol can play a neuroprotective role through
ELAVLA4 need further study.

Further studies on IncRNAs are beneficial to reveal the
underlying mechanism of celastrol in cerebral I/R injury.
LncRNAs play important roles in brain development, neuron
function, neuronal proliferation and apoptosis (Briggs et al.,
2015). Numerous studies have demonstrated that IncRNAs
are engaged in the occurrence and development of various
central nervous system diseases, such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease (HD),
and ischemic stroke (Bao et al, 2018; Vangoor et al., 2021).
Increasingly evidence has elucidated that IncRNAs play critical
role in the pathogenesis of ischemic stroke. A bulk of aberrantly
expressed IncRNAs have been reported in ischemic stroke
patients (Dykstra-Aiello et al,, 2016), rodent stroke models
(Wang J. et al., 2017) or oxygen-glucose deprived (OGD) cells
(Zhang et al., 2016) by RNA-seq and microarrays. Notably, Yin
at al. confirmed that Malatl was involved in the protection
of cerebral microvasculature and parenchyma after cerebral
ischemic insults through inhibiting endothelial cell apoptosis
and inflammation. Moreover, Malatl KO mice appeared larger
cerebral infarct size, worsened neurological deficit, and weaken
sensorimotor functions (Zhang et al., 2016, 2017). Other
IncRNAs, such as ANRIL (Bai et al., 2014), SNHG14 (Qi et al,,
2017), TUG1 (Chen S. et al, 2017), and MEG3 (Yan et al,
2016), were also found to affect neuronal apoptosis, inflammation
and angiogenesis during ischemic stroke. More recently, Zhang
at al. indicated celastrol can reduce I/R-mediated hippocampal
injury by downregulating AK005401/MAP3K12 signaling, and
its neuroprotection was alleviated by AK005401 overexpression
(Wang et al, 2021). However, the above IncRNAs was not
found to be the DE IncRNAs in this study, we suggested that
the different species and different cerebral ischemic models
can explain this problem. In current study, 5830444B04Rik,
C030005K06Rik, and 4930413F20Rik from ceRNA network and
Gm15444 from IncRNA-mRNA co-expression network were
selected for further validation by qRT-PCR in brain tissue
and three types of cells. Most of them showed the same fold
change patterns as those in the RNA-Seq results, while others
showed different fold change patterns probably because of the
methodological or statistical differences. In order to elucidate the

functions and mechanisms of celastrol on I/R-mediated neuronal
injury, further study on these IncRNA is needed.

Undoubtedly, this study has several limitations. First, the
RNA-seq tested the expression profile of mRNAs and IncRNAs,
but without miRNAs. Second, differences in gene expression
detected by RNA-seq and qPCR may be due to methodological
or statistical differences. Third, the validated mRNAs and
IncRNAs by qRT-PCR and bioinformatic analysis still need
deliberately designed experiment to further undermine the
regulating mechanism.

In conclusion, the present study demonstrated that celastrol
treatment can effectively reduce cerebral ischemia-reperfusion
injury. Celastrol can influence the expression of IncRNAs and
mRNAs in ischemia stroke, and bioinformatics analysis have
identified that inflammation related biological processes and
KEGG pathways associated with celastrol treatment. Several
IncRNAs or mRNAs of potential therapeutic targets were selected
for further validation. Our results provide a framework for
further investigation of the role of IncRNAs and their target
mRNAs in the neuroprotective effects of celastrol, especially in
ischemic stroke.
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Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only
a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs
(miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing
complex either degrade or prevent target messenger RNAs from being translated
and thus, can modulate the synthesis of target proteins. In the neurological field,
miRNAs have been evaluated as potential regulators in brain development processes
and pathological events. Following ischemic hypoxic stress, the cellular and molecular
events initiated dysregulate different miRNAs, responsible for long-terming progression
and extension of neuronal damage. Because of their ability to regulate the synthesis
of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the
neuronal damage following a cerebral ischemic event. This review aims to summarize the
recent literature evidence of the miRNAs involved in signaling and modulating cerebral
ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage
and repair mechanisms. An in-depth overview of the molecular pathways involved in
ischemia reperfusion injury and the involvement of specific miBRNAs, could provide future
perspectives in the development of neuroprotective agents targeting these specific
miRNAs.

Keywords: miRNAs, ischemia reperfusion, cell death, inflammation, oxidative stress

INTRODUCTION

Stroke represents the third leading cause of death and a major debilitating medical condition. It
is responsible for permanent disabilities in approximately 80% of post-stroke patients (Moskowitz
et al., 2010; Lallukka et al., 2018). Metabolic disruption of neurons activates immune responses,
resulting in a complex chain of molecular events, which further promote progressive cellular
damage and irretrievable neuronal death (Moskowitz et al., 2010; Khoshnam et al., 2017).

The ischemic/reperfusion (I/R) injury is caused by a sudden restriction of blood supply
and oxygen, followed by subsequent restoration of blood flow and reoxygenation, contributing
supplementary to the global oxidative stress (Eltzschig and Eckle, 2011). The I/R injury is the main
actor in the neuroinflammatory repertoire, triggering different cell death provoking events, which
include apoptosis, blood-brain barrier (BBB) disruption and mitochondrial dysfunction (Eltzschig
and Eckle, 2011; Khoshnam et al., 2017).

The neuroprotective agents under current research address either the ischemic core, or the
viable penumbra region, with the aim of reestablishing the collateral blow flow and ameliorating

Frontiers in Neuroscience | www.frontiersin.org 223

June 2022 | Volume 16 | Article 901360


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.901360
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.901360
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.901360&domain=pdf&date_stamp=2022-06-10
https://www.frontiersin.org/articles/10.3389/fnins.2022.901360/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Neag et al.

miRNAs in Cerebral Ischemia-Reperfusion

the microenvironment damaged tissue (Eltzschig and Eckle,
2011; He et al, 2021). The standard therapeutic strategy
for ischemic stroke remains thrombolytic reperfusion therapy
provided by intravenous tissue plasminogen activator that is,
however, limited by a short therapeutic window of 3-4,5 hours
(Del Zoppo et al., 2009; IST-3 collaborative group et al., 2012;
Fonarow et al., 2014).

Preclinical translation of neuroprotective drugs into clinical
settings is failing. Even with advancing experimental studies on
animal models, with excellent human reproducibility provided by
thromboembolic stroke models, i.e., reproducible infarct size, and
penumbra zone, there are still many promising neuroprotective
agents in preclinical studies that fail to show a significant effect
on patients (Dirnagl, 2006; Canazza et al,, 2014; Luo et al,
2019). Dirnag et al. attributed this limited clinical potential of
experimental drugs to statistical errors, lack of blinding and
randomization of the animals, and negative publication bias
(Dirnagl, 2006). Unexplored impediments steam from the limited
ability of drugs to penetrate the BBB and target the ischemic
neuronal tissue, resulting in decreased efficient concentration
of the neuroprotective agents (Saugstad, 2010; Ponnusamy and
Yip, 2019). In this context, selective drug delivery systems such
as stroke tissue-related homing peptides and nanoparticles-
mediated agents are emerging (Hong et al., 2008; He et al,
2021).

Micro RNAs (miRNAs) are small, non-coding RNA molecules,
containing around 18-25 nucleotides, which pose a post-
transcriptional regulatory role by down-regulating messenger
RNAs (mRNAs) (Jonas and Izaurralde, 2015). Binding to the
target mRNAs by base pairing, miRNAs negatively regulate
gene expression of mRNAs via cleavage of mRNA, translation
repression or destabilization of mRNA structure (Bartel, 2009;
MacFarlane and Murphy, 2010).

The first pathological condition described, related to miRNAs
was chronic lymphocytic leukemia (Calin et al., 2004). Since
then, multiple studies outline the potential of miRNAs to mediate
several pathological mechanisms of human diseases—i.e., cancer,
neurological disorders, immune system disorders, acting as
signaling molecules and mediators of cell-cell communication in
different cellular processes such as proliferation, differentiation,
and apoptosis (Smirnova et al, 2005; Garofalo et al., 2010;
Tiifekei et al, 2014). MicroRNAs are key master regulators
of gene expression in the brain, in processes related to brain
development and its normal functioning, i.e., synaptogenesis,
myelination, cerebral vasculogenesis and angiogenesis, but also
in different brain disorders: ischemic stroke, neurodegenerative
disease, traumatic brain injury, spinal cord injury, hypoxic-
ischemic encephalopathy (Saugstad, 2010; Ponnusamy and Yip,
2019).

MicroRNAs also play a pivotal role in I/R injury, the main
contributor to reactive oxygen species (ROS) production, cellular
metabolic disfunctions associated with/underlying ischemic
stroke (Ouyang et al., 2015; Cao et al., 2021). Recent studies have
shown that I/R-related miRNAs alter the mitochondrial response
and mediate multiple pathways that further promote neuronal
survival and apoptosis (Jeyaseelan et al., 2008; Di et al., 2014; Hu
etal,, 2015; Ouyang et al., 2015). Min et al. highlighted the altered

expression profile of miRNAs in brain I/R injury, which consisted
of 15 miRNAs upregulated and 44 miRNAs downregulated (Min
et al., 2015). MiRNAs modulate critical signaling pathways in
I/R injury, associated with fibrosis, neoangiogenesis, necrosis,
apoptosis and inflammation (Ghafouri-Fard et al., 2020).

However, miRNAs have also been reported in promoting
the pathogenesis of ischemic stroke—i.e., atherosclerosis,
hypertension, hyperlipidemia, plaque rupture, bidirectionally
influencing the pathological chain of ischemic events, both
pathogenesis and pathways (Rink and Khanna, 2011). In
this direction, advancing the knowledge in gene functions
using agomirs or antagomirs—double stranded miRNA
agents, chemically modified at antisense strand that act as
miRNA mimickers or inhibitors—could provide potential
neuroprotective effects in modulating pathological processes in
ischemic injuries (Kadir et al., 2020).

Neuroscience confronts limited therapeutic strategies aimed
at protecting ischemic tissue, for which there is a critical and
urgent need for advancing our knowledge. A depth overview of
the molecular pathways involved in ischemic stroke, which are
targeted by specific miRNAs, could provide future perspectives
in the development of neuroprotective miRNA agents. This
review aims to summarize the recent literature evidence of the
miRNAs involved in signaling and modulating cerebral ischemia-
reperfusion injuries, thus pointing their potential in limiting
neuronal damage and repair mechanisms.

miRNAs IN NEUROLOGICAL DISEASES

Development of the adult brain and its functions are a highly
studied subject in today’s literature. Normal brain development
proceeds via complex multistep processes, which involves
early embryonic stage- neurogenesis, consisting in proliferation
and differentiation of precursor neuronal cells, continuing to
myelination and synaptogenesis in the childhood and adulthood
period, which contributes to synaptic plasticity and memory
(Semple et al., 2013). MiRNAs play essential roles in controlling
neurodevelopment processes and normal brain functions, and
dysregulation of miRNA expression profiling has been related
to perinatal brain injury (Cho et al., 2019). Ponnusamy and
Yip (2019) deciphered the role of miRNA involved in normal
brain development’ processes under normoxic and hypoxic
conditions, consisting in myelination, axonal outgrowth, dendric
outgrowth, synaptogenesis, neuronal differentiation, neuronal
migration, angiogenesis.

Neurodegenerative diseases, which are mainly characterized
by intracellular or extracellular protein aggregate formation,
resulting to neuron dysfunction in certain brain areas, includes
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease and multiple sclerosis (MS) (Quinlan et al., 2017).

Mounting evidence suggested the role of miRNAs-based
therapeutics in modulating the prognosis of neurodegenerative
diseases, emerging new miRNAs biomarkers for a better disease
control (Quinlan et al., 2017). Thus, Juzwik et al. (2019) in a
systematic review of 12 neurodegenerative disease identified
10 miRNAs frequently dysregulated, including miR-9-5p,
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miR-21-5p, miR-29a-3p, miR-29b-3p, miR-29¢-3p, miR-124-
3p, miR-132-3p, miR146a-5p, miR-155-5p, and miR-223-3p.
Notably, a different expression level of miRNAs, miR-9-5p,
miR-21-5p, the miR-29, miR-124-3p, and miR-132-3p have been
revealed, suggesting the mixed expression levels of miRNAs.

PD is characterized by dopaminergic neuron loss from the
substantia nigra, with dysregulated level of miRNAs expression
in the striatal brain areas and dopaminergic neurons (Nies et al.,
2021). Prefrontal cortex of post-mortem PD patients exhibited
125 dysregulated miRNAs, of which miR-10b-5p levels being
associated with clinical onset in both PD and Huntington’s
Disease (Hoss et al., 2016). The pathogenesis of PD related to
miRNAs have been explained by modulation of PD-associated
genes and protein expression related to a-synuclein-induced
neuroinflammation, and degeneration of dopaminergic neurons
(Nies etal., 2021). Down regulation of miR-425 in MPTP injected
mouse PD model contributes to necroptosis and apoptosis
activation, disintegration of mitochondrial membrane, ultimately
leading to neuron loss and dopamine depletion. Moreover, miR-
103a-3p, miR-30b-5p, and miR-29a-3p exhibited high levels of
expression after Levodopa treatment, suggesting the role of
miRNAs as disease modifier agents in PD (Serafin et al., 2015).
Recent studies have shown that suppressing miR-34a can improve
neuronal loss related to PD (Chua and Tang, 2019).

Sun et al. (2021) using bioinformatic analysis, reviewed the
dysregulated miRNAs expression profiling in tissues of AD
patients’ brain, blood and CSF, correlated with pathological
processes. Therefore, 27 dysregulated miRNAs identified
have been related to neuroinflammation, amyloidogenesis,
tau phosphorylation, synaptogenesis, apoptosis, and neuron
degradation (Sun et al,, 2021).

Multiple in vivo and in vitro animal models revealed the
potential of miRNAs to counteracting beta-amyloid or tau
reduction, inhibiting of apoptosis, and synaptic protection. In
APP/PS1 transgenic mice, miR-137 exhibited reduced levels
in the cerebral cortex, hippocampus, and serum, suggesting
the neuroprotective potential of miR-137 to suppress p-tau
overexpression (Jiang et al., 2018b). Moreover, inhibition of miR-
98 in N2a/APP cells suppressed A production by upregulating
insulin-like growth factor 1 pathway (Hu et al., 2013, 1).

Neuroinflammation plays critical roles in MS pathogenesis
consisting in dysregulation of inflammatory cell events in
the brain, resulting in BBB disruption, damage of myelin
and oligodendrocytes, neuro-axonal damage and inflammation
(Haase and Linker, 2021).

MiR-155 which exhibited upregulated levels in MS, poses
important role in BBB disruption under inflammatory
conditions, which drives to demyelination processes, i.e.,
microglial activation, polarization of astrocyte. In 58 MS patients
with adult onset, miR-320a, miR-125a-5p, miR-652-3p, miR-
185-5p, miR-942-5p, miR-25-3p were significantly upregulated
in peripheral blood samples, controlling transcription factors of
SP1, NF-«B, TP53, HDACI, and STAT3 (Nuzziello et al., 2018).

Unbalance of inflammatory reactions including dysfunction
of memory T-cells and Treg cells contributed to continuous and
progression inflammatory demyelinating of CNS. For instance,
in MS patients, miR-19a, miR-19b, miR-25, and miR-106 elicited

significantly upregulated levels in Treg cells compared with
healthy controls (Gao et al, 2021). Targeting dysregulated
miRNAs represents a therapeutic strategy. Thus, inhibiting let-7e
decrease the differentiation of Thl and Th17 cells, reducing the
severity of MS in experimental autoimmune encephalomyelitis
(Angelou et al, 2019). Increasing evidence ascertained the
involvement of miRNAs in the initiation and progression of
multifold types of cancer. Petrescu et al. (2019) reviewed the main
dysregulated miRNAs related to brain tumors pathogenesis in
glioma, meningioma, pituitary adenoma, and astrocytoma.

Multiple pathological processes associated with gliomagenesis
were controlled by miRNAs. From disrupting BBB by targeting
junctional proteins, zonula occludens-1 (ZO-1), occludin and
pB-catenin, to angiogenic, infiltration and migration of glioma
cells by downregulating MMP2, MMP9, VEGE all these
tumor promoting processes are modulated by several miRNAs
(Petrescu et al., 2019).

MiRNAs could be also used as clinical prognosis biomarkers.
In 90 serum astrocytoma patients, miR-15b-5p, -16-5p, -19a-3p,
-19b-3, 20a-5p, 106a-5p, 130a-3p, 181b-5p and 208a-3p exhibited
upregulation levels, with miR-19a-3p, -106a-5p, and -181b-5p
being associated with lower survival rate (Zhi et al., 2015).

CEREBRAL ISCHEMIA/REPERFUSION
INJURIES

Histopathological Findings in
Hypoxic/lschemic Brain Injury

Hypoxic or ischemic brain injury give rise to a heterogeneity
of histological findings, in which the neurons, the glial cells,
the neuropile and the brain microvasculature are affected. These
alterations in brain histological structures occur in chronological
order and depends on the magnitude and duration of ischemia,
and the extension of tissue damage. Two areas are examined:
the “ischemic core” or the irreversibly damaged area, and
the “ischemic penumbra,” the hypoperfused area, which still
contains viable cells.

Neurons and Glial Cells Modifications

The earliest change which occurs in the ischemic core is
represented by neuronal swelling, because of the cytotoxic edema
caused by ion alteration. The damaged neurons are large, with
pale staining cytoplasm and pyknotic nucleus in hematoxylin
and eosin (H&E) staining. After hours, in the ischemic core
appear the red, eosinophilic, or ischemic neurons, characterized
on routine histological sections by cell shrinkage, a pyknotic
nucleus without nucleolus, and a highly eosinophilic cytoplasm,
devoided of Nissle bodies. These neurons may be found also in
the penumbra area for 1 or 2 days. Another aspect of advanced
neuronal degeneration is represented by ‘ghost neurons, found
in the ischemic core and in the ischemic penumbra zone, which
exhibits an irregular and very ill-defined cell border, pale staining
cytoplasm in H&E staining and pyknotic, dark nucleus. The
disintegration of dead neurons leads to parenchymal necrosis
and release of cellular debris, which later will be engulfed by
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macrophages (Margaritescu et al., 2009; Rahaman and Del Bigio,
2018).

Activation and proliferation of microglia, the resident
macrophages in the central nervous system, occurs in the
ischemic core in the first hours after ischemic injury, being
involved in removing the necrotic tissue. During activation,
microglia undergo morphological changes, with increase in cell
body size and retraction of cytoplasmatic processes, acquiring
an amoeboid phenotype in the ischemic core. In the ischemic
penumbra and in the marginal zone we can find numerous highly
ramified microglia (reactive microglia), which can migrate to
the ischemic core, suggesting the fact that microglia may exhibit
different morphological patterns, according to degree of ischemia
and the time interval after ischemia (Zhang, 2019). After about
3 days, a lot of bone marrow-derived macrophages infiltrated
the ischemic core and the ischemic penumbra (mostly), where
they phagocytose the cellular and myelin debris, having a foamy
appearance on histological sections. Activated microglia express
high levels of immunomarker Ibal +, while bone marrow-
derived macrophages are highly positive for CD45 (Margiritescu
et al., 2009; Li et al., 2014b; Magaki et al., 2018; Washida et al,,
2019; Zhang, 2019).

In the ischemic core, swelling or edematous astrocytes may
be found in the early phase, with a pale staining cytoplasm and
disrupted cytoplasmatic processes; eventually, these cells will die.
In the ischemic penumbra, the surviving astrocyte proliferate
and undergo hypertrophy (reactive astrogliosis), expressing high
amounts of glial fibrillary acidic protein. In routine histological
sections, reactive astrocytes are large, star-shaped cells, having
a coarse nuclear chromatin, glassy eosinophilic cytoplasm and
long, branching cytoplasmatic processes; they are also called
gemistocytic astrocytes. Astrogliosis represents a hallmark of
nervous tissue injury after ischemia, and always follows the
microglial activation and blood-derived macrophages invasion.
After several days, the astrocytes and microglial cells from the
ischemic penumbra surround the ischemic core and the cells will
fill the necrotic areas, forming the glial scar tissue, an eosinophilic
zone in H&E staining, with neuron loss and numerous glial cells,
mainly reactive astrocytes (Margdritescu et al., 2009; Li et al,
2014b; Magaki et al., 2018).

In the first hours after ischemic injury, oligodendrocytes
damage may cause axonal degeneration and demyelination,
leading to rarefaction of the white matter (Margdritescu et al.,
2009; Washida et al., 2019).

Microvascular Changes

In the ischemic core, structural changes of the small blood vessels
are observed, such as: endothelial cell (ECs) swelling, pericyte and
ECs detachment from the basement membrane, narrowing of the
lumen, hyalinization and vascular wall thickening and sclerosis,
with increase amount of collagen fibers and disintegration of
vascular smooth muscle cells. These vascular modifications, in
addition to morphological changes of astrocyte foot processes,
lead to alteration of the BBB, which cause the vasogenic
edema in the neuropil. Disruption of BBB or disintegration
of capillaries in the necrotic areas, induce the appearance of
microhemorrhages, extravasated and lysed erythrocytes releasing

hemosiderin pigment, which is phagocytized by macrophages
(siderophages) (Mairgdritescu et al., 2009; Rahaman and Del
Bigio, 2018; Liu et al., 2019a).

The ischemic penumbra contains congested blood
vessels, surrounded by perivascular edema. After 3 days,
neovascularization occurs within the ischemic penumbra, but the
newly formed blood vessels are abnormal, thin, highly permeable,
thus increasing the pre-existing brain edema (Rahaman and Del
Bigio, 2018; Liu et al., 2019a).

Inflammatory Reaction

Polymorphonuclear leukocytes (PMNs) and macrophages play
a key role in early inflammatory reaction after brain ischemia,
while lymphocytes (mostly T lymphocytes), are involved in the
delayed phases of ischemia. An acute inflammatory reaction
appears within the first 4-6 hours after ischemic injury, with
PMN:ss infiltration in the necrotic tissue. Within the first 3 days,
activated microglia and blood-derived macrophages invade the
necrotic area, engulfing the cellular and myelin debris (lipid-
laden macrophages) (Kawabori and Yenari, 2015; Anrather and
Tadecola, 2016).

General Mechanisms of Cerebral

Ischemia/reperfusion Injury

Neuronal damage after recanalization has long been known to
occur following ischemic stroke through a unique type of injury
that is not expressed during the hypoxic period (S.M. Humphrey
etal., 1973; Baird et al., 1994). As ischemic events are responsible
for stroke in almost 80% of cases, even with the achievement
of reperfusion via thrombolysis, stent retrievers or spontaneous
reperfusion, I/R injuries have been shown to have deleterious
and noteworthy effects of brain function and ischemic area after
artery occlusion (Zhang et al., 1994). Animal studies have shown
that the area damaged by the initial ischemic event can increase
in size after repermeabilization of the affected artery, compared to
continuous occlusion (Zhang et al., 1994). As pathophysiological
mechanism may be possible targets for therapy and prevention
of reperfusion injury, altering the BBB has been thought as
the main mechanism involved. New evidence suggests multiple
damage mechanism that can alter neuronal function in I/R injury
such as the activation of the complement system (inhibition of
which may yield less ischemia-reperfusion cardiac injury), the
increase in leukocyte taxis to the affected area (the depletion of
which can be a target in limiting reperfusion damage), cellular
component damage, the stress caused by ROS and the activation
of platelets can cause reperfusion damage and cerebral edema
(Lin et al., 2016; Wu et al., 2018). Another molecular mechanism
for brain damage after I/R concerns matrix metalloproteinases
(MMPs) and their ability to interrupt endothelial junctions after
restoration of blood flow (Candelario-Jalil et al., 2009). The
vasogenic edema is caused by a biphasic “opening” of the BBB,
with the early phase occurring several hours after reperfusion
and being related to the activation of gelatinase A (MMP-2) and
the second, 1 to 2 days after restoration of blood flow, associated
with the expression and activation of gelatinase B (MMP-9) and
stromelysin-1 (MMP3) (Rosenberg and Yang, 2007).
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ROS are responsible for the damage to cellular components,
such as mitochondria, nucleic acids and proteins (Brieger
et al., 2012). Their role in reperfusion injury has long been
presumed and recent data confirm that superoxide molecules
can be produced after reperfusion following brain ischemia and
molecules such as NADPH oxidase (NOX) can be involved in I/R
injury in the brain and altering the BBB through their ability to
transfer electrons to molecular oxygen (Kim et al., 2017b; Yang,
2019). The latter can be considered a way through which the
mechanisms involved in I/R injury link to each other, especially
when referring to the first phase of I/R brain injury related to the
BBB in case of ischemic brain injury.

An important pathway that can lead to aggravating I/R injury
is related to cellular component damage. ROS are causing damage
to nucleic acids and macromolecules, as stated above, but also to
mitochondria leading to ATP depletion, anaerobic metabolism
and malfunctioning of ion pumps (Sanderson et al., 2013). The
ischemia-reperfusion model in mitochondrial injury consists of
calcium overload due to the altered function of the endoplasmic
reticulum, which can generate ROS that may hyperpolarize the
mitochondria membrane and surpass the antioxidants present
in the cell (Wu et al., 2018). Excess reactive oxygen may escape
from the electron transport chain and activate mechanisms
that interfere with apoptosis and necrosis, while mitochondrial
disfunction regarding fission and fusion becomes impaired
during IR injury (Turrens, 2003; Andreyev et al., 2005). Besides
an excess in ROS, reperfusion-induced inflammation also causes
the release of cytokines, causing cytokine storm that ultimately
injures the surrounding tissue (Eltzschig and Eckle, 2011).

Oxidative stress during I/R injury is thought to be caused
by three different systems: xanthine oxidase system, NADPH
oxidase (NOX) system and nitric oxide synthase (NOS) system
(Cantu-Medellin and Kelley, 2013; Ma et al., 2017b). NOX-
derived free oxygen radicals are known to cause the increase
in local inflammatory cell presence and may lead to impaired
perfusion of multiple organs (Sedeek et al., 2009; Meza et al.,
2019). Even though the NOS system has a well-established role in
providing nitric oxide as an antioxidant protective agent against
I/R injury, it is also known that this type of injury can transform
NOS into a superoxide generating system, with a resulting
decrease in cellular NO and increase in ROS (Forstermann
and Munzel, 2006). The free oxygen radicals can promote
inflammation in the affected cells and can lead to cellular death
(Lisa and Bernardi, 2006).

Inflammation represents a mechanism that has important
implications in determining the amount of damage during
reperfusion injury. This mechanism can yield effects through
the cytokines, and molecules produced by the endothelium and
parenchymal cells during I/R injury, but also by the number
of leukocytes attracted to the damaged area. Oxidative stress,
as mentioned above, can also be a means of aggravating ROS
induced inflammation by increasing the expression of pro-
inflammatory factors such as TNF-a and interleukin (IL)-1f
(Turovsky et al., 2021). The adhesion of white blood cells to
the endothelium, slow-rolling and trans-endothelial migration
are augmented by flow restoration after ischemia, together with
increased oxygen content. As more free oxygen radicals are

produced, and leukocyte activation is ongoing due to danger
signals, NADPH oxidase produces more ROS, neutrophils are
able to release different cell damaging hydrolytic enzymes and
generate hypochlorous acid via the activity of myeloperoxidase,
pore-forming molecules being produced in the detriment of
the vascular and parenchymal cells (Granger et al, 1993;
Frangogiannis, 2015). Oxidative stress and NO depletion are
also responsible for triggering humoral response to I/R injury as
molecules such as TNF-a, IL-1, ANG II, LTB4 and PAF (linking
the activation of platelets to neutrophil I/R damage) (Garcia-
Culebras et al., 2019). In addition to inflammation, complement
system activation (C’) has been associated to I/R injury, both by
increasing chemotaxis and activation in damage area leukocytes
and activating the membrane attack complex to induce cellular
damage (Gorsuch et al., 2012). Inhibiting the C5a fragment
has also been shown to decrease neutrophile tissue infiltration
(Wood et al, 2020). As inflammation is strongly linked to
multiple types of cell death, nuclear factors that stimulate the
expression of genes related to inflammation have been seen as
a mechanism and also as a potential target during I/R injury.
Different studies have supported this view, as strategies such as
ulinastatin administration to mice undergoing temporary middle
cerebral artery occlusion, which downregulates TLR4 and NF-
kB expression, sodium butyrate administered during I/R injury
of the lung and inhibiting NF-kB and JAK2/STAT3 signaling
pathways or combination of octreotide and melatonin to alleviate
the inflammasome-induced pyroptosis through the inhibition of
TLR4-NF-kB-NLRP3 pathway in liver I/R injury, have clearly
showed that NF-kB plays an important role in reperfusion injury
(Li et al., 2017b; El-Sisi et al., 2021; Ying et al., 2021).

Neutrophils can adhere to the endothelial wall where necrosis
factors expressed by injured cells are exhibited on the luminal
surface and contact the leukocytes (such as P-selectin). After
flow reestablishment, the cells are able to cytoskeletal shape-shift
and adapt to linear flow, moving through an inter-endothelial
pattern and eventually localizing points of entry by mechanism
of actin polymerization and matrix metalloproteinase activity
and gaps between pericytes (Nourshargh and Alon, 2014). Other
immune cells such as lymphocytes, thrombocytes, mast cells or
macrophages are also believed to play a role in I/R injury by
increasing the presence of tissue neutrophils (Rodrigues and
Granger, 2010). Platelets are also involved in attracting leukocytes
and inducing I/R damage by their activation in the presence of
inflammatory cytokines including PAE, due to the damage of
endothelial cells, lack of NO, prostacyclin, and abundance of ROS
(Esch et al., 2010; Franks et al., 2010).

In response to brain hypoxia/ischemia, miRNAs modulate
a complex network of gene expression, for which they were
proposed as potential and reproducible biomarkers in ischemic
stroke due to a consistent correlation with neuropathological
changes and prognosis of stroke (Vijayan and Reddy, 2016;
Condrat et al., 2020). Several types of hypoxia/ischemia-sensitive
miRNAs, whose blood levels are correlated with their brain
circulating levels, were identified as potential clinical biomarkers
in stroke: miR-210, miR-125a-5p, miR-125b-5p, and miR-143-
3p (Zeng et al, 2011; Tiedt et al, 2017). MiRNAs influence
gene expression in response to hypoxic/ischemic injury, and in
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