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Biomass Mapping for an Improved
Understanding of the Contribution of
Cold-Water Coral Carbonate Mounds
to C and N Cycling

Laurence Helene De Clippele’, Anna-Selma van der Kaaden?, Sandra Rosa Maier?,
Evert de Froe® and J. Murray Roberts’

" Changing Oceans Research Group, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom,
2 Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems (NIOZ-Yerseke), Den Burg,
Netherlands, ° Royal Netherlands Institute for Sea Research, Department of Ocean Systems (NIOZ-Den Burg), Den Burg,
Netherlands

This study used a novel approach combining biological, environmental, and ecosystem
function data of the Logachev cold-water coral carbonate mound province to
predictively map coral framework (bio)mass. A more accurate representation and
quantification of cold-water coral reef ecosystem functions such as Carbon and Nitrogen
stock and turnover were given by accounting for the spatial heterogeneity. Our results
indicate that 45% is covered by dead and only 3% by live coral framework. The
remaining 51%, is covered by fine sediments. It is estimated that 75,034-93,534 tons (T)
of live coral framework is present in the area, of which ~10% (7,747-9,316 T) consists of
Cinorg and ~1% (411-1,061 T) of Corg. A much larger amount of 3,485,828-4,357,435 T
(60:1 dead:live ratio) dead coral framework contained ~11% (418,299-522,892 T)
Cinorg @nd <1% (0-16 T) Corg. The nutrient turnover by dead coral framework is the
largest, contributing 45-51% (2,596-3,626 T) C year~! and 30-62% (290-1,989 T) N
year—! to the total turnover in the area. Live coral framework turns over 1,656-2,828 T
C year— ! and 53-286 T N year—'. Sediments contribute between 1,216-1,512 T C
year—! and 629-919 T N year~ ' to the area’s benthic organic matter mineralization.
However, this amount is likely higher as sediments baffled by coral framework might play
a much more critical role in reefs CN cycling than previously assumed. Our calculations
showed that the area overturns 1-3.4 times the C compared to a soft-sediment area
at a similar depth. With only 5-9% of the primary productivity reaching the corals
via natural deposition, this study indicated that the supply of food largely depends
on local hydrodynamical food supply mechanisms and the reefs ability to retain and
recycle nutrients. Climate-induced changes in primary production, local hydrodynamical
food supply and the dissolution of particle-baffling coral framework could have severe
implications for the survival and functioning of cold-water coral reefs.

Keywords: biomass, ecosystem functions, carbon cycle, nitrogen cycle, predictive mapping, cold-water coral
carbonate mound
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INTRODUCTION

Cold-water coral (CWC) carbonate mounds are important
marine ecosystems (Roberts et al., 2009). They are topographic
seafloor structures that can be several hundreds of meters in
height and have accumulated through successive periods of
reef development, sedimentation and (bio)erosion over glacial-
interglacial periods (Kenyon et al., 2003; Van Weering et al,
2003; Mienis et al., 2007; Roberts et al., 2009). They are hotspots
of biomass and biodiversity and provide essential ecosystem
functions through nutrient [Carbon (C) and Nitrogen (N)]
cycling in a resource-limited deep sea (Henry and Roberts, 2007;
van Oevelen et al, 2009; Armstrong et al., 2012). However,
significant gaps remain in our understanding of the spatial
distribution of their overall biomass and capacity to remineralise
organic matter (OM) (De Clippele et al., 2021).

Cold-water coral reefs depend on OM produced at the ocean’s
surface to support their growth (Duineveld et al., 2004, 2007;
Kiriakoulakis et al., 2005). This OM can be transported to the
reef from surface waters through deposition, tidal downwelling,
nepheloid layers and deep-water advection (Mienis et al., 2007;
Davies et al., 2009; Findlay et al., 2013; Mohn et al., 2014;
Soetaert et al., 2016). In addition, when reefs (tens of meters high)
accumulate over time to form large CWC carbonate mounds
(hundreds of meters high), they can induce a “topographically-
enhanced carbon pump” (Soetaert et al., 2016). The mounds large
size interrupts the currents, which creates downwelling events
bringing OM from surface waters to the mound’s summits and
upper flanks (Guinan et al., 2009; Mohn et al., 2014; Rengstorf
etal,, 2014; Soetaert et al., 2016). Baffling of currents caused by the
coral framework can also locally increase the POM concentration
at the reefs (Soetaert et al., 2016).

The availability of this food is a major determinant controlling
CWCs occurrence and the zonation of macrohabitats on the
mounds (De Clippele et al, 2019; Maier et al., 2021). The
mound bases are covered by sediments (bio- and siliciclastic
sands), pebbles, cobbles and boulders (de Haas et al., 2009).
Dense Lophelia pertusa patches characterize the summits of
the carbonate mounds, while the flanks of the mounds are
covered with patches of coral rubble, dead coral branches and
living corals (Kenyon et al., 2003; Van Weering et al., 2003; de
Haas et al., 2009; De Clippele et al., 2019; Maier et al., 2021).
Dead coral framework is particularly biodiverse as it provides
complex micro- and macrohabitats for diverse communities
(Jonsson et al., 2004; Henry and Roberts, 2007). It is this
living fauna (including e.g., anthozoans, hydroids, ophiuroids,
and sponges) that contributes the most to a reef’s capacity to
mineralize OM (de Froe et al., 2019; Maier et al., 2019, 2020;
De Clippele et al., 2021).

Knowing how much live and dead coral framework biomass
is present on a CWC reef and their contribution toward OM
mineralization is critical information to understand how well
the reef is functioning. It also provides a baseline that can
help us understand the extent of the potential effects of ocean
acidification, warming and decreases in ocean O levels on these
vulnerable ecosystems (Hennige et al., 2014, 2015, 2020; Roberts
and Cairns, 2014; Sweetman et al., 2017). To estimate biomass
and OM mineralization on CWC carbonate mounds, we apply

the novel approach by De Clippele et al. (2021). This approach
uses surface area measurements of the coral L. pertusa, extracted
from high-definition (HD) video frames and combines this with
biomass and respiration data. We hypothesize that this method
allows to map live and dead coral framework at the CWC
Logachev Mound province (LMP) and quantify the ecosystem
function of this area.

METHODOLOGY

Location

The LMP consists of a cluster of CWC carbonate mounds located
on the south-eastern slope of Rockall Bank in the North-East
Atlantic (Kenyon et al., 2003; Figure 1). The CWC carbonate
mounds are between 5 and 360 m tall, up to a few kilometers
long and located between 500 and 1,000 m depth (Kenyon et al.,
2003; de Haas et al.,, 2009). The dominant current direction
in the LMP is in a southwest direction, following from a
clockwise circumventing flow around Rockall bank (Mienis et al.,
2007), while the local diurnal barotropic tide causes cross slope
transport in a northwest-southeast direction (Mienis et al., 2007;
White, 2007).

Data

Biological Data

Eight HD video transects were recorded during the Changing
Oceans 2012 expedition, RRS James Cook cruise 073 (Roberts,
2013), using the Remotely Operated Vehicle (ROV) Holland-
1 (more details in De Clippele et al., 2019; Table 1). Using
the software Photoshop CC 2018, video frames were extracted
every 500th frame. The video frames were used to measure
the surface area of live and dead coral framework (see Section
“Biomass Estimation”). The remaining area (total area minus
[dead + live] coral framework) was referred to as sediment.
However, hard substrates such as pebbles, cobbles, boulders and
lithified substrate can also be present (De Clippele et al., 2019;
Maier et al., 2021). The ROV was equipped with two parallel
pointers, marking a fixed distance of 10 cm on the video frames,
which was used to scale the images.

In addition, data on the dry weight, Cinorg and Corg stock
of the live and dead coral framework, collected with a NIOZ
boxcorer (diameter: 50 cm; height 50 cm; surface area ~0.2 m?)
was used. Six cores were collected during the 2017 R/V Pelagia
research cruise and used to derive ex situ benthic O, and N flux
measurements of the CWC community (see Table 1 in de Froe
et al., 2019). Photographs were taken of the core surface after
sampling and used to calculate the surface area (m?): dry weight
(kg) ratio. The photographs were scaled using the dimensions
of the boxcorer.

Environmental Data

Particulate organic matter (POM) concentrations were obtained
from a POM model with a resolution of 250 m x 250 m
(Soetaert et al., 2016). This model provides values that represent
the concentration of reactive freshly-produced organic matter
available in the water column. These are below the actual
measured values of POM concentration, which additionally
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FIGURE 1 | (A) The location of the high-definition ROV video transects in the Logachev Mound Province, (B) the red square indicating the location of the Logachev
Mound Province on the southeast shelf of Rockall bank, and (C) a zoomed-in map showing the location of the ROV video transects.
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TABLE 1 | Dive number, location [longitude (Lon.) and latitude (Lat.)], depth range (m), and length (m) of ROV video transects.

Dive Start Lon. Start Lat. End Lon. End Lat. Depth range Length
(decimal degrees) (decimal degrees) (decimal degrees) (decimal degrees) (m) (m)
12 —15.65523 55.55799 —15.65557 55.55567 [640;722] 200
16 —15.63350 55.55119 —15.63142 55.54744 [758;872] 240
19 —15.82089 55.49419 —15.80442 55.49478 [659;801] 880
20 —15.76447 55.51220 —15.77232 55.50529 [610;873] 360
23 —15.65630 55.55847 —15.65571 55.55965 [663;584] 40
25 —15.78718 55.57206 —15.78421 55.56013 [647;705] 1,040
26 —15.78795 55.55020 —15.78918 55.54672 [702;768] 360
28 —15.65585 55.56014 —15.65389 55.56674 [675;701] 240

include refractory organic matter (Soetaert et al, 2016). In
addition, terrain variables were extracted from bathymetry data
provided by the Irish National Seabed Survey program (INSS)
at a 20 m x 20 m resolution. The following topographic
terrain variables were derived from the bathymetry data using
the ArcGIS 10.1, ESRI Software and the Benthic Terrain
Modeller (Wright et al., 2005): depth, slope, aspect (eastness
and northness), rugosity (calculated at two spatial scales, using
a square kernel window of, respectively, 3 pixels x 3 pixels
and 9 pixels x 9 pixels) and bathymetric positioning index
(BPL; calculated at two spatial scales using an annulus kernel
window with inner and outer radius of, respectively, 3 x 6 and
6 x 9 cells). More information on these variables is provided in
De Clippele et al., 2019.

Oxygen and Nitrogen Data

O, consumption rates were obtained from ex situ boxcore
incubations by de Froe et al. (2019). For live coral framework,
an O consumption rate of 6.39 £ 0.32 mmol O, kg~ ! dry weight
d~! (L. pertusa, Madrepora oculata, and Desmophyllum dianthus)
was found and for dead coral framework a 0.18 &= 0.01 mmol O,

kg~! dry weight d~! was found. For sediment, an average O
consumption of 2.4 & 0.59 mmol m~2 d~! was used, based on the
depth-based (500-800 m) turnover rates of O, by Glud (2008).
Live coral framework released dissolved inorganic N (DIN)
mostly as ammonium (NH"4) (Khripounoff et al., 2014), while
dead coral framework mostly releases nitrate (NO™3) (Maier
et al., 2021). For live corals we used an NH*, release rate of
0.084 & 0.017 NH4+ mmol kg~! d~! dry weight (Khripounoff
et al., 2014) and for dead coral framework we used an NO ™3
release rate of 0.053 £ 0.037 NO3;~ mmol kg=! d=! (Maier
et al., 2021). Sediments baffled by coral framework in the LMP
release 0.01 & 0.06 NH; ™ mmol m? d~! and 0.64 4 0.37 NO3~
mmol m? d~! while sediments on top of Rockall bank release
0.01 & 0.06 NH4 " mmol m? d~! and 0.52 4 0.16 NO3~ mmol
m? d~! (de Froe et al., 2019). These values are listed in Table 2.

Coral Presence Habitat

Our model area was defined by the habitat suitability model of
CWC presence/absence produced by Rengstorf et al. (2014) and
covers 253 km?. This habitat suitability model was chosen as
particulate organic matter (POM) is used as an environmental
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TABLE 2 | Overview of the O, consumption and N values used in this study.

Functional group Unit

Value Source

Live coral framework O, consumption

Dead coral framework O, consumption
Sediments O, consumption

Live coral framework N (NH*4 release)

Dead coral framework N (NO~ 3 release)
Sediments N (NH*4 release)
Sediments N (NO~ 3 release)

6.39 + 0.32 mmol O, kg~ dry weight d~

0.18 + 0.01 mmol O, kg~ dry weight d~

2.4 4+ 0.59 mmol O, m=2 d~!

0.084 4 0.017 NHz+ mmol kg~ " d~ dry weight
0.053 £ 0.037 mmol NOz~ kg~ dry weight d—'
0.01 + 0.06 mmol NHz* kg=" d~1 dry weight
0.64 + 0.37 mmol NOz~ kg~ dry weight d~

de Froe et al., 2019

de Froe et al., 2019
Glud, 2008
Khripounoff et al., 2014
Maier et al., 2021

de Froe et al., 2019

de Froe et al., 2019

variable to explain the spatial variability in coral biomass. The
POM was calculated by Soetaert et al. (2016) who used the
above mentioned habitat suitability model to study benthic
respiration and the amount of food supplied to the LMP
(Rengstorf et al., 2014). Because the POM model assumed that
OM deposition/uptake was increased by a constant factor in the
presence of corals, we cannot compare coral-presence habitat
with coral-absence habitat (Soetaert et al., 2016).

Biomass Estimation

Biomass is here defined as the live tissue of a specimen.
In this study we therefore refer to “(bio)mass” to indicate
the differentiation between measuring mass and biomass for,
respectively, live and dead coral framework. The approach by
De Clippele et al. (2021), was adapted due to a difference in
coral morphologies, i.e., the presence of coral thickets at the LMP
rather than the globular colonies at the Mingulay Reef (Figure 2).
Here, to convert surface area to (bio)mass, (bio)mass data from
boxcores collected at the LMP were used (de Froe et al., 2019).
The steps are described in detail below and in Figure 3.

Image Analyses

Step 1

The video still frames from the HD videos (see Section “Biological
Data”) (Figure 3A), were imported in Adobe Photoshop. Bad
quality images or images that overlapped were excluded from
analyses. In Photoshop, the laser-scale dots, live and dead coral
framework were labeled each with a unique color aided by
Photoshop’s “quick selection tool” (Figure 3B) (van der Kaaden
and De Clippele, 2021). The benthic surface area covered by dead
and live coral framework was calculated in R. An R-function
(van der Kaaden and De Clippele, 2021) was used to semi-
automatically calculate the percentage cover and image size
from the labeled images, from which the surface area in m?
could be calculated. This faster method is an alternative to the
method proposed in De Clippele et al. (2021) where the open-
source software ImageJ2 (Greene et al., 1999; Rueden et al,
2017) was used.

Predictive Mapping

Step 2

The surface area data points were imported in ArcGIS and
combined in 20 m sub-samples (x-axis). The length of 20 m was
chosen as this length gave the most accurate representation of the
coral framework variability in relation to the multibeam grid cell

size. Then, the ArcGIS Extract Values to Points tool was used
to extract the environmental variables (i.e., depth, BPI, slope,
rugosity, eastness, northness, and POM) (Figure 3C) associated
with each sub-sample data point.

Step 3
The response (i.e., surface area) and explanatory (ie.,
environmental) variables were then used to model a predictive
map using the Random Forest approach (Figure 3D) with the
randomForest package in R (Breiman, 2001). This supervised
classification methodology is referred to as a regression tree
with a number of simple decision trees. Each tree is based on
a bootstrapped sample of the response and explanatory data
set. This group of simple trees vote for the most popular class,
which is capable of predicting a response when presented with
a set of explanatory variables (Cutler et al., 2007; Rogan et al.,
2008). Random Forest modeling is commonly used to produce
predictive maps (Baccini et al., 2008; Wei et al., 2010; Zhang,
2015; Conti et al., 2019; De Clippele et al., 2021) and provides
similar results to approaches using logarithmic regression and
Deep Neural Networks (Conti et al., 2019). Here, the training
dataset contained one-third of the total data points. This
Random Forest model can then be applied to a new set of the
same response variables to create a predictive map of the unseen
data of the whole area. Correlated environmental variables
(<0.5) were removed prior to analyses, using the cor test in R.
The importance of the environmental variables in predicting
surface area was assessed by calculating the Mean Decrease in
Accuracy for each variable to indicate their contribution to the
model performance.

To evaluate the uncertainty of the model outputs, we first used
a bootstrap technique to produce estimates of model uncertainty
(Rowden et al., 2017). This is done by repeating the Random
Forest model one hundred times, with the same model but with a
replacement random sample of the training data each time. This
results in 100 estimates from which the coefficient of variance
(CV) was calculated to examine the models output stability.
This provides a range of how the Random Forest model output
varies and is measured as the standard deviation/mean x 100
(Wei et al., 2010).

Biomass Calculation

Step 4

From the predictive Lophelia reef maps (see step 3), the total
amount of live and dead coral framework surface area for the
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FIGURE 2 | (A) Globular, cauliflower-shaped L. pertusa colonies at the Mingulay Reef Complex sitting on a bed of dead framework and coral rubble, which is
partially covered in white zoanthids. (B) Live pink, orange and white coral thickets of L. pertusa and Madrepora oculata at the Logachev Mound Province. The
brown/beige colored framework is dead. Image credit: JCO73 Changing Oceans Expedition 2012.
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FIGURE 3 | Graphic overview of the approach used in this study. Adapted from Figure 2 in De Clippele et al. (2021).

whole habitat suitability area can be extracted and converted to
bio(mass) in Excel. To convert live and dead coral framework
to (bio)mass, data provided by de Froe et al. (2019) was used
(Figure 3E). de Froe et al. (2019) reports the density (kg dry
weight m~2) of live and dead coral framework per boxcore
sample (Table 3). From the known surface area of the boxcorer
(see Section “Biological Data”), the dry weight of live and dead
coral framework per boxcore sample was calculated (kg dry
weight boxcore™!). The benthic surface area of live and dead
coral framework from boxcore photographs (Supplementary
Materials) was then used to calculate a conversion factor

of live/dead coral framework surface area to live/dead coral
framework dry mass for each boxcore sample. The mean
conversion factor of 8.01 & 5.52 kg m~2 and 33.78 & 6.27 kg
m~2 for live and dead coral framework, respectively, was then
used to convert benthic surface area measurements from the
HD video extracted frames to skeletal dry weight (kg dry
weight) (Figure 3F), i.e., dry weight (kg) = video surface area
(m?) x conversion factor (kg m~2). From this, the biomass
(live tissue mass) was calculated using the linear relationship
between tissue dry weight and tissue and skeletal weight with the
following equation from Hennige et al. (2014): TDW = 0.0415
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TABLE 3 | Table showing the calculation of the average conversion values and standard deviations used in step 4 and step 5.

Live coral framework SHMH1 SHM2 FHM1 FHM2 OrM1 OorM2 Average St. dev
Mass (kg dry weight) 0.0020 0.6800 0.0160 0.0000 0.1980 0.1000

Surface area (m?) 0.0000 0.0489 0.0072 0.0000 0.0435 0.0088

Surface area conv. value (kg m~2) 13.9059 2.2222 4.5517 11.3636 8.0109 5.5217
Corg (kg™ dry weight) 0.0000 0.0046 0.0001 0.0028 0.0014

Corg conv. value (kg m=2) 0.0079 0.0067 0.0050 0.0143 0.0135 0.0095 0.0042
Norg (kg™ dry weight) 0.0000 0.0012 0.0000 0.0007 0.0003

Norg conv. value (kg m~2) 0.0019 0.0017 0.0007 0.0033 0.0019 0.0010
Dead coral framework

Mass (kg dry weight) 1.1700 1.3900 3.9180 17.0000 1.9080 1.0000

Surface area (m?) 0.1895 0.0976 0.2052 0.1787 0.1598 0.0351

Surface area conv. value (kg m~2) 6.1741 14.2418 19.0936 95.1315 11.9399 28.4900 33.7794 6.2651
Corg (kg™ dry weight) 0.0014 0.0026 0.0055 0.0238 0.0027 0.0022

Corg conv. value (kg m~2) 0.0012 0.0019 0.0014 0.0014 0.0014 0.0022 0.0016 0.0004
Norg (kg~" dry weight) 0.0007 0.0011 0.0027 0.0119 0.0011 0.0009

Norg conv. value (kg m=2) 0.0006 0.0008 0.0007 0.0007 0.0006 0.0009 0.0007 0.0001

Surface area calculations based on the boxcore photographs (Supplementary Materials) and the live and dead coral framework mass (kg dry weight) present in the
boxcore. The boxcore has a surface area of 0.2 m?. The mass values were used from Table 3 in de Froe et al. (2019). Summit Haas Mound (SHM), Flank Haas Mound

(FHM), Oreo Mound (OrM).

(TWW + SDW) + 0.0849. With TDW = tissue dry weight
(g) = SDW* 5%; TWW = tissue wet weight (g); SDW = skeletal
dry weight (g) (De Clippele et al., 2021; Hennige et al., 2014).
Sediment were calculated as the remainder (total area minus
[dead + live] coral framework). The above conversion calculation
was also used in the ArcGIS raster calculator tool to convert
the surface area predictive map to a (bio)mass. The standard
deviation of the conversion factors was used to calculate the
absolute minimum, mean and maximum biomass (see the
“Results” section and Supplementary Materials).

Carbon and Nitrogen Turnover and Stock

Step 5

The total biomass and sediment surface area data was used to
calculate the yearly C and N turnover for the area, using O;
consumption data reported in literature (Table 2 and Figure 3G).
Carbon and N turnover are here defined as the conversion of
ingested food into biomass and loss by respiration as CO, and
DIN. The C turnover is calculated from the total O, consumption
assuming a respiratory quotient (C:O; ratio) of 1:1 (Glud, 2008)
(Figure 3H). This does not account for temporal changes in O,
consumption that the coral might experience during its lifetime,
as this data is currently not available. The live and dead coral
framework were multiplied with their respective DIN release
rates. More details on this calculation can be found in Step 3 in De
Clippele et al. (2021).

In Table 3 by de Froe et al. (2019), the percentage of Corg
and N of live and dead coral framework per boxcore sample
are reported. The Corg and Norg stock of live and dead coral
framework per boxcore sample was obtained by multiplying
the percentage Corg and Norg content of live and dead coral
framework with their total dry weight (C or N kg~! dry weight).
These values were used to calculate a mean conversion factor for
the mass calculated in step 3 to Corg and Norg (Table 3). The Cinorg
stock was calculated by multiplying the CaCO3; mass by 0.12
(Windholz et al., 1983; De Clippele et al., 2021). To account for

uncertainties the absolute minimum, mean and maximum CN
turnover and C stock were calculated (see the “Results” section
and Supplementary Materials).

RESULTS

Predictive Maps

Our model predicts live coral framework covering 8 km?
(3%) and dead covering 115 km? (45%) of the CWC habitat
area. The remaining 130 km? (51%) is therefore considered to
consist of sediment.

The environmental variables used in the mean live coral
framework Random Forest model explained 65.54% of the
variation in the data. The environmental variables that
contributed most to explaining the spatial variability in the
amount of live coral framework were BPI (inner cell radius
6 x outer cell radius 9), POM concentration and rugosity
(9 x 9 cells) (Figure 4). The live coral framework biomass map
(Figure 5) illustrated that the highest live coral biomass is located
on the summits of the mounds. The study area contained a total
live coral framework skeletal mass of 64,054 T Cinorg (range:
62,280-77,635 T) and biomass of 13,117 T Corg (range: 12,754~
15,899 T). Our model results showed highest uncertainty at
deeper depths and at the most eastern mounds (Figure 6).

The environmental variables used in the mean dead
coral framework Random Forest model explained 54.21% of
the variation in the data. The environmental variables that
contributed most to explaining the spatial variability in the dead
coral framework were BPI, depth and POM (Figure 4). The
dead coral framework predictive map (Figure 7) showed that
the highest mass is located on the northeast flanks and on the
summits of the mounds, and that it decreases with depth. The
area has a total mean dead framework skeletal mass of 2,875,706 T
Cinorg (range: 3,485,828-4,357,435 T) and variability was also
here higher at depth and the most eastern mounds (Figure 8).
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FIGURE 4 | Mean Decrease in Accuracy plots of the mean live and dead coral
framework Random Forest model indicating what the contribution of each
variable is to the model performance. When the Mean Decrease Accuracy
value is higher for a certain variable, the removal of this variable from the
model will decrease the model’s performance.

Stock and Turnover of Carbon and
Nitrogen

In the live coral framework a mean of 7,686 T Cinorg (range:
7,474-9,316 T), 607 T Corg (range: 330-1,061 T) and 122 T
Norg (range: 119-148 T) is stored. The dead coral framework
stores a mean of 465,085 T Cinorg (range: 418,299-522,892), 6 T
Corg (range: 0-16 T), and 3 T Noyg (range: 2-3 T). On average
0.3 kg m~2 dry weight of live coral framework and 15.3 kg m—2
dead coral framework is present in the area according to the
predictive maps. Largest Cinorg turnover was found for the dead
framework, reaching an annual rate of 3,056 T yr~! (49%) (range:
2,596-3,626 T C yr—!), followed by live coral framework with
1,793 T yr=!' (29%) (range: 1,656-2,828 T C yr—!) (Table 4).
The fine sediment area turned 1,386 T Cinorg yr_1 (22%) (range:
1,512-1,216). The total Cinorg turnover at the LMP is 6,235 T C
year~! (range: 2,596-7,670 T C year~!), corresponding to an O
consumption of 5.64 mmol m~2 d~! (range: 5.21-6.44 mmol O
m~2 d~1). Dead coral framework turned 290-1,989 T, sediments

432-919 T, and live framework 53-286 T Ninorg year . The total
at the LMP was 973-3,194 T Njporg year™ 1

DISCUSSION

This study applied a new methodology to map live and dead coral
framework biomass at the Logachev Mound Province. These
biomass maps were used to estimate region-scale inorganic CN
turnover, as well as the organic and inorganic CN standing stocks.
Even though the reefs at the LMP occur in relatively deep and
under food-limited waters compared to shallower inshore reefs
(De Clippele et al.,, 2021) they contribute significantly to the
global CN turnover and CN stock. This is as CWC mounds in the
LMP, cover a large area and form big mounds due to their ability
to persist over glacial-interglacial time scales. This work advances
our growing knowledge of their significance to remineralise OM,
a criteria used to define Ecologically or Biologically Significant
Areas (EBSAs) (Titschack et al., 2015; Johnson et al., 2018).

Distribution of Dead and Live Coral

Framework

Spatial differences in environmental conditions drive the small
and large scale patterns in biomass observed at the LMP. This
study showed that bathymetric positioning index (BPI) is the
most important environmental predictor of both live and dead
coral framework. This is as coral carbonate mounds form through
periods of successive reef development (Roberts et al., 2009).
When reef growth dominates over erosion, many small reefs will
cover the surface of the mound before they merge and continue
the development cycle (Roberts et al., 2009). These smaller reefs
coincide with positive BPI values across the LMP (De Clippele
et al., 2017). Our predictive biomass map also indicates that
live coral framework is predominantly located on the summits
of the mounds, which can largely be explained by the higher
amount of available POM. In these relative food-limited waters,
the supply of POM, i.e., their food, from surface water to the reefs
is important to support the high metabolic C demand of the live
coral framework (Davies et al., 2009; Roberts et al., 2009). Soetaert
etal. (2016) suggest that the high elevation of the coral carbonate
mounds induces downwelling and hence POM supply from the
ocean surface, a concept described as topographically-enhanced
carbon pump. The baffling created by the coral framework can
locally increase the POM concentration measured on the reefs
(Soetaert et al., 2016). These higher POM concentrations, in
turn, can increase the biomass of the live coral framework. This
positive feedback loop could explain why the prediction of live
coral is strongly driven by POM concentration. The explanatory
power of POM could increase even more if a higher resolution
POM model would be used. Reduced POM supply linked with
bio- and hydrodynamic erosion are the likely causes for the
observed reduction in dead coral cover at greater depths (Roberts
et al.,, 2009). This is also shown by Maier et al. (2021), where
more degraded coral framework is found at deeper depths and
less degraded framework at more shallow depths. Live corals
form complex three-dimensional frameworks, and increase the
local terrain roughness (Jenness, 2002). Rugosity, a measure of
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FIGURE 5 | Modeled amount of the mean biomass (Skeletal weight + live tissue weight) of live coral framework in the coral habitat suitability model area of the
Logachev Mound Province.

16°W 15°30'W

16°W 15°30'W

FIGURE 6 | The Coefficient of Variation for the Random Forest model of the mean biomass for live coral framework in the coral reef habitat area of the Logachev
Mound Province.
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FIGURE 7 | Modeled amount of the mean biomass of dead coral framework in the coral habitat suitability model area of the Logachev Mound Province.
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FIGURE 8 | The Coefficient of Variation for the Random Forest model of the mean biomass for dead coral framework in the coral reef habitat area of the Logachev
Mound Province.
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TABLE 4 | Overview of the minimum, mean and maximum (bio)mass, organic and inorganic carbon (C), organic nitrogen (N) stock masses, together with the mass of C

and N turned over by live and dead coral framework and sediments.

Live coral framework Dead coral framework Sediments Total
SDW TWW SDW

Skeletal dry weight + tissue wet weight (T) Min. 62,280 12,754 3,485,828 NA 3,660,861
Mean 64,054 12,117 3,875,706 NA 3,951,877
Max. 77,635 15,899 4,357,435 NA 4,450,969

Cinorg stock (T C) Min. 7,474 NA 418,299 UN 425,773
Mean 7,686 NA 465,085 UN 472,771
Max. 9,316 NA 522,892 UN 532,208

Corg stock (T C) Min. 411 NA 0 UN 411
Mean 607 NA 6 UN 613
Max. 1,061 NA 16 UN 1,076

Norg stock (T N) Min. 119 NA 2 UN 122
Mean 122 NA 3 UN 125
Max. 148 NA 3 UN 151

C turnover per year (T C year ~ ') Min. 1,656 NA 2,596 1,612 5,763
Mean 1,793 NA 3,056 1,386 6,235
Max. 2,282 NA 3,626 1,216 7,124

N turnover per year (T N year ~) Min. 53 NA 290 629 973
Mean 145 NA 1,046 431 1,623
Max. 286 NA 1,989 919 3,194

Not Applicable (NA), Unknown (UN).

terrain roughness, therefore, represents the third most important
variable explaining the prediction of live coral at the LMP.

Our model predicted more dead than live coral framework in
the Logachev Mound Province, which is supported by previous
studies on CWC reefs (De Clippele et al., 2019, 2021; de Froe
et al., 2019; Maier et al., 2021). De Clippele et al. (2019) and
Maier et al. (2021) calculated the percentage cover from ROV
videos and found that dead coral framework covered 35-93%
and live coral framework covered 3-25% of the transects at the
LMP. This study found that dead coral framework surface area
covered 45%, compared to live coral framework covering 3%
of the area. Here, we report 60 times more dead framework
mass than live coral mass in the area, which is twice as much
as reported by earlier studies (27 times; de Froe et al., 2019).
de Froe et al. (2019) based this difference in dry mass on
collected boxcores, while here, the whole area is accounted
for by means of predictive modeling. Other studies, such as
Conti et al. (2019) have calculated the percentage of dead
and live coral framework using video mosaic segmentation
and classification approaches. They found that the Piddington
Mound has 33-43% dead framework (rubble + dead coral
framework), 2-3% live coral framework and 48-58% sediments
(incl. dropstones) (Conti et al., 2019). While this is similar to
what was found in our area, the Piddington mound has a spatial
extent of approximately 40 m x 60 m and is one of the smaller
mounds found in the Belgica Mound Province. The percentages
of the substrates found will vary depending on the extent and
the spatial heterogeneity of CWC reef area analyzed. The latter
underlines the important contribution of representative sampling
techniques and predictive models to more accurately represent
CWC framework surface area coverage and biomass. Dead coral
framework is important as it facilitates the high biodiversity
typical of CWC reefs (Henry and Roberts, 2007) and contributes

substantially more to reef fauna biomass and benthic fluxes (de
Froe et al., 2019; De Clippele et al., 2021; Maier et al., 2021).
Live corals protect themselves against colonization, for example
by production of mucus (Freiwald, 2002; Wild et al., 2008; Buhl-
Mortensen et al., 2010). In contrast, dead, unprotected coral
framework is more easily colonized and provides the majority of
micro- and macrohabitats in a CWC reef (Mortensen and Fossa,
2006; Buhl-Mortensen et al., 2010).

Oxygen Consumption and Nitrogen

Release

Cold-water coral reefs are hotspots of O, consumption and
N release, i.e., OM mineralization (van Oevelen et al., 2009;
Cathalot et al., 2015; de Froe et al., 2019; De Clippele et al,
2021; Maier et al., 2021). The average C turnover at the LMP,
which we derived from O, consumption measurements, was
1-3.4 times the global average for a soft-sediment area at the
same depth (Glud, 2008). Dead coral framework contributed
49%, live coral framework 29%, and sediments 22% to the
total C turnover of the area. At the same time, the reefs at
the LMP released 1.9 times more DIN compared to adjacent
soft-sediment grounds (de Froe et al., 2019). Here the majority
of the DIN was released in the form of NO™3 by both
dead coral framework (64% of the total N turnover) and
sediments (27% of the total N turnover), while NHT, was
released by live coral framework (9% of the total N turnover).
It should be noted that the partitioning of DIN release in
NH4" and NO; ™~ originates from the model assumption, i.e.,
that live cold-water corals typically release ammonium as
metabolic end product (Khripounoff et al., 2014), while dead
framework and sediment release mostly nitrate, due to the
activity of nitrifying microorganisms (de Froe et al, 2019;
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Maier et al.,, 2021). Tidal induced upwelling of this nutrient-
rich reef water could promote new phytoplankton primary
production in the surface waters, which in turn would increase
OM export to the reef (Davies et al., 2009; Eisele et al., 2011;
Hebbeln et al., 2014; Soetaert et al., 2016). Such a loop has
been suggested for cold-water coral ecosystems at the shallower
Porcupine Bank (White et al., 2005) and could explain how cold-
water coral reefs are sustained in the relative resource-poor deep
sea. If such a loop is also present at the deeper LMP remains
to be determined.

However, it is important to note that the C turnover reported
in this study (5.21-6.44 mmol C m~2d1) is 3-12 times lower
than previously reported respiration measurements (van Oevelen
et al., 2009; de Froe et al.,, 2019) (11-75 mmol C m~2 d~1).
There are three reasons why we might observe this difference.
Firstly, in contrast to previous studies, our study accounted for
the spatial variability in the biomass of the coral framework across
the whole region and revealed that on average 51% is covered
by sediments, 45% by dead coral framework, and 3% by live
coral framework. Respiration measurements collected by Aquatic
Eddy-Correlation (AEC) or boxcore samples are not able to grasp
the spatial heterogeneity of such a large area (de Froe et al., 2019;
De Clippele et al., 2021). Our study therefore provides a more
accurate representation of the total C and N turnover in the area,
as it accounts for the spatial complexity.

Secondly, our calculations might be an underestimation as the
physical structure of the coral framework baffles sediment (de
Haas et al., 2009; de Froe et al., 2019). This type of sediment has a
higher OM concentration and C turnover rate (5.32 £ 0.59 mmol
0, m~2 d7!, de Froe et al, 2019) compared to non-reef
sediments adjacent to the reefs (de Froe et al., 2019; de Haas
et al., 2009). Given that the area that is covered by live and dead
coral framework, it will also contain baffled sediment which could
significantly increase the total OM mineralization capacity of the
area (de Haas et al.,, 2009). To illustrate the potential contribution
of the baffled sediments to the LMP carbon turnover, we assume
the area covered by live and dead coral framework is also
covered by baffled sediments and add this to our calculation.
In this scenario, the result suggests that communities associated
with dead coral branches would contribute a mean of 33%
(3,056 T C year—!), baffled sediments 33% (3,025 T C year™ '),
sediments 15% (1,389 T C year‘l), and live coral framework 19%
(1,793 year‘l) to the total benthic C turnover at the LMP. If we
recalculate the C turnover per square meter for this new scenario,
a total mean of 8.34 mmol C m~2 d™! is found instead of a mean
of 5.64 mmol C m~2 d~!. This indicates that cold-water coral
carbonate mound sediments might play a much more important
role in the C turnover of CWC reefs and carbonate mounds than
previously thought.

Thirdly, our predictive maps indicate that in situ
measurements by de Froe et al. (2019) were deployed in
areas with relatively high coral framework cover (Figure 9).
This might provide an overestimation that does not reflect the
spatial variability of the C turnover in the area. The Oreo Mound,
where we found a particularly high live coral framework cover
(Figure 9A), showed the highest AEC O; flux of 45.3 mmol
m~2 d~! (de Froe et al,, 2019). In contrast, the Haas Mound,

which contained a lower live coral framework coverage near the
AEC deployment site (Figure 9A) showed an O, flux of 11.5-
22.4 mmol m~2 d~! (de Froe et al., 2019). This indicates that
live coral patches are hotspots of metabolic activity within the
reef and highlights the importance of understanding the spatial
distribution of live and dead coral framework and sediments
when planning research equipment deployments.

Similar to the Mingulay Reef, dead coral framework at the
LMP contributes to the majority (49%) of the C turnover
(De Clippele et al, 2021). This is expected as cold-water
coral carbonate mounds consist of predominantly dead coral
framework as discussed above. At the Mingulay Reef, the fauna
associated with dead coral framework contributes ~6 times more
to C turnover compared to live coral framework. This is a larger
difference compared to the LMP where the fauna associated with
dead coral framework contributes only ~1.7 times more. At
Mingulay Reef, a higher biomass of fauna grows on the dead
coral framework, hence turning over more C than the live corals
(Kazanidis et al., 2016; De Clippele et al., 2021). This biomass
difference may be caused by the reefs’ shallower depth and the
higher surface primary production above Mingulay Reef (0.048 g
Corg m~> d™ 1), compared to the LMP (0.0067 g Corg m™> d 1)
(Tyberghein et al., 2012; Assis et al., 2018; De Clippele et al., 2021)
(Table 5). This results in an annual PP over the LMP of 6,194 T
Cyear ! and 294 T C year~! at the Mingulay Reef (Tyberghein
et al,, 2012; Assis et al., 2018; De Clippele et al., 2021).

How Much Organic Matter Is Required to

Sustain the Deep Reefs?

From the annual C and N turnover of the coral presence
habitat in the LMP area, we estimate a minimum annual C
requirement of 5,763-7,124 T C year—! and 973-3,194 T N
year~!. Using the parametrisation by Suess (1980), the amount
of particulate organic carbon reaching the seafloor from the
sea surface (annual primary production: 6,194 T C year™!)
via deposition was estimated to be 511-322 T C year™! for
the shallowest (500 m) and deepest point (800 m) of LMP

TABLE 5 | Overview of key differences between the Mingulay reef (De Clippele
et al., 2021) and the Logachev Mound Province.

Mingulay reef Logachev Mound Province

Area 1.7 km? 253 km?

Depth 120-190 m 500-1,000 m

Annual primary 0.048 g Corg m™23d~"  0.0067 g Corg m~2 d~"
production

Daily C turnover per 3237 mmolCm=2d-!' 837mmolCm-2d-'

square meter

Yearly C turnover for 241 TCyr ! 9,260 TCyr!

the whole area

The reported values of carbon (C) turnover are the mean values. The total C
turnover at the Mingulay Reef is based on data from live Lophelia pertusa, the
sponge Spongosorites coralliophaga and Aquatic Eddy-Correlation (AEC) data of
the dead framework. The AEC measurements capture the oxygen consumption of
the dead framework and baffled sediment community. The results on C turnover
for Logachev include data of live and dead L. pertusa, sediments and baffled
sediments (see Section “Oxygen Consumption and Nitrogen Release”).
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FIGURE 9 | Triangles represent the location of AEC deployment by de Froe et al. (2019) in both the predictive (A) live and (B) dead coral framework map.
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reef habitat area, respectively. This indicates that almost the
entire primary production, ie., 91-95% (5,252-6,802 T C
year~!), would have to be supplied through tidal downwelling,
nepheloid layers, lateral deep-water advection and/or by the
topographically-enhanced carbon pump (Duineveld et al., 2004;
White et al., 2005; Mienis et al., 2007; Soetaert et al., 2016).
Our study suggests that the C requirement of the reef could
be higher than the yearly PP over the area of 6,194 T C
year—! (Tyberghein et al., 2012; Assis et al., 2018) depending
on seasonal PP and/or biomass variability. This could mean
that the PP right above the area might not be sufficient
to sustain the reef and highlights the importance of the
supply of food trough advection from the wider area, bottom
currents together with material retention and recycling of
waste material on the reef, in particular during winter food
limitation (Maier et al, 2020, 2021). For example, studies
have indicated that the reef could benefit from nitrification
(re-utilization) of faunal-produced NHT, (Maier et al., 2020,
2021) and utilization of dissolved OM, which is produced by
the corals as mucus (Wild et al, 2004). The dependence of
the reef’s function on these alternative supply mechanisms
appears greater at the LMP compared to the Mingulay Reef
(De Clippele et al, 2021) (Table 5), and is likely due to
their location at greater depths with comparatively lower food
flux. The supply of food needed to sustain the reef could
be severely impacted by climate-induced changes in primary
production, local hydrodynamical food supply, which could have
severe implications for the survival and functioning of CWC
reefs.

Conclusion

Biomass maps can guide sampling and monitoring expeditions
and our current approach can be applied to other habitats,
to provide large-scale maps of biomass, hotspots of metabolic

activity and nutrient mineralization, in particular in the
understudied, but large deep-sea realm. The predictive power of
this approach can be improved by adding more coral surface
area data, especially where the coeflicient of variation of the
map is higher. Additional local measurements on nutrient
cycling, high resolution multibeam data (De Clippele et al,
2019) or more environmental variables (e.g., hydrodynamics)
and the use of photo mosaics (Bodenmann and Thornton,
2017; Conti et al, 2019; Price et al., 2019) could further
improve our understanding how complex habitats contribute
to nutrient cycling. Biomass maps can also advice on the
most optimal locations to collect AEC respiration data, to
ensure a representative amount of habitat complexity is
captured in the measurements (Rovelli et al, 2015; De
Clippele et al., 2021). Alternatively, AEC deployments could
be used to ground truth the biomass maps. Understanding
how much dead and live coral framework is present in
this area is especially important in deeper reefs such as the
LMP, where ocean acidification threatens to dissolve dead
coral framework (Hennige et al, 2015). If the dead coral
framework dissolves, not only will the habitat of CWC reef
organisms disappear (Kazanidis et al., 2016; Maier et al., 2021),
but C and N demineralization, and sediment baffling will
diminish. This may ultimately reduce primary production in
surface waters, affecting the CO, being extracted from the
atmosphere. Consequently, these effects will negatively impact
the existence of the CWC mounds in the LMP and the overall
functioning of the area.
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Climate-Change Refugia for the
Bubblegum Coral Paragorgia
arborea in the Northwest Atlantic

Shuangqgiang Wang, F. Javier Murillot and Ellen Kenchington *

Department of Fisheries and Oceans, Ocean Ecology Section, Bedford Institute of Oceanography, Dartmouth, NS, Canada

The large, habitat-forming bubblegum coral, Paragorgia arborea, is a vulnerable marine
ecosystem indicator with an antitropical distribution. Dense aggregations of the species
have been protected from bottom-contact fishing in the Scotian Shelf bioregion off Nova
Scotia, Canada in the northwest Atlantic Ocean. Recently, basin-scale habitat suitability
ensemble modeling has projected an alarming loss of 99% of suitable habitat for this
species across the North Atlantic by 2100. Here, a regional reassessment of the predicted
distribution of this species in the bioregion, using both machine learning (random forest)
and generalized additive model (GAM) frameworks, including projection to 2046-2065,
was undertaken. Extrapolation diagnostics were applied to determine the degree to
which the models projected into novel covariate space (i.e., extrapolation) in order to
avoid erroneous inferences. The best predictors of the species’ distribution were a suite
of temporally-invariant terrain variables that identified suitable habitat along the upper
continental slope. Additional predictors, projected to vary with future ocean climatologies,
identified areas of the upper slope in the eastern portion of the study area that will remain
within suitable ranges for P arborea at least through to the mid-century. Additionally, 3-D
Lagrangian particle tracking simulations indicated potential for both connectivity among
known occurrence sites and existing protected areas, and for colonization of unsurveyed
areas predicted to have suitable habitat, from locations of known occurrence. These
results showed that extirpation of this iconic species from the Scotian Shelf bioregion
is unlikely over the next decades. Potential climate refugia were identified and results
presented in the context of protected area network design properties of representativity,
connectivity, adequacy, viability and resilience.

Keywords: climate-change refugia, deep-sea coral, species distribution modeling, model transferability,
lagrangian particle tracking, Paragorgia arborea, protected area design

1 INTRODUCTION

The large, fan-shaped gorgonian octocorals of the genus Paragorgia Milne Edwards, 1857,
known as ‘bubblegum corals’ (Figure 1), form ecologically significant habitats on hard
substrates along the continental margins of eastern North America (Gass, 2002; Metaxas and
Giffin, 2004; Mortensen and Buhl-Mortensen, 2004; Buhl-Mortensen and Mortensen, 2005;
Gass and Willison, 2005; Leverette and Metaxas, 2005; Metaxas and Davis, 2005; Watling and
Auster, 2005; Quattrini et al., 2015; Kenchington et al., 2019a), and elsewhere (Sanchez, 2005;
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polyps open for feeding; (C) Intact colony growing on a boulder.

FIGURE 1| /n situ images of Paragorgia arborea from the Northeast Channel Coral Conservation Area. (A) Intact colony growing on bedrock; (B) Close up of

Herrera et al., 2012; De Clippele et al., 2015; Morato et al,,
2021). Of the 18 accepted species in the genus (Cordeiro et al,,
2021), P. arborea (Linnaeus, 1758) and P. johnsoni Gray, 1862 are
found on the continental slope off Nova Scotia, Canada, with P
arborea being the more frequently recorded (Cogswell et al., 2009;
Strychar et al., 2011). In this region, both Paragorgia species are
long-lived and slow-growing, attaining colony heights of 240 cm,
and forming dense aggregations (Sherwood and Edinger, 2009;
Watanabe et al., 2009). They are considered to be indicators of
vulnerable marine ecosystems (ICES, 2021; NAFO, 2021), and
are thereby linked to international conservation efforts advanced
by the United Nations (FAO, 2016).

Thirteen bioregions, sub-divided into planning areas, have
been delineated in Canadian waters to inform MPA network
development (DFO, 2009; DFO, 2014). These biogeographic
zones were delineated based primarily on a common set of
ecological, oceanographic and bathymetric similarities (DFO,
2009). Among those, Paragorgia spp. are found in the Scotian

Shelf bioregion within which is embedded the “Offshore Scotian
Shelf” planning area, defined as extending from the 12-nautical
mile limit of Canada’s Territorial Sea to the 200-mile limit of
its Exclusive Economic Zone (Figure 2), including parts of the
Scotian Shelf itself, as well as portions of Georges Bank and
the Gulf of Maine (DFO, 2014). A series of canyons incise the
continental slope in that planning area, and provide habitat for
bubblegum corals (Watanabe et al., 2009), some of which is
subject to specific coral-protection measures. In 2002, Fisheries
and Oceans Canada (DFO) established the Northeast Channel
Coral Conservation Area to protect some of the region’s largest
aggregations of octocorals from the impacts of bottom-contact
fishing gears (DFO, 2019). Smaller aggregations of Paragorgia
spp. are similarly protected in the Corsair and Georges Canyons
Conservation Area (Metaxas et al., 2019), in the Gully Marine
Protected Area (Breeze and Fenton, 2007), and the Lophelia
Coral Conservation Area, at the mouth of the Laurentian
Channel (Beazley et al., 2021a).
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Those protection areas were adopted independently, as
aggregations were discovered and described. With the need to
develop a network of protected areas in response to domestic
(Oceans Act Section 35 (2)), and international (UN Convention
on Biological Diversity, UN Sustainable Development Goals)
policies, network properties such as representativity, connectivity,
adequacy and viability must be considered (DFO, 2010; Garcia
et al., 2021). Furthermore, with changing climatic conditions
there is a need to consider climate resiliency in protected area
network design (Brock et al., 2012; Simard et al., 2016).

Predictive models of species distributions, when presented
with associated levels of uncertainty, enable managers to make
informed decisions on the trade-offs implicit in marine spatial
planning (Lester et al., 2013; Grorud-Colvert et al., 2014; Carr,
2019; Metaxas et al., 2019), while insight into the impacts of
climate change on the size and configuration of suitable habitat,
can improve network design (Santos et al., 2020). Meanwhile,
Lagrangian particle tracking (LPT) models are valuable for

assessing connectivity (e.g., Bracco et al, 2019; Kenchington
et al., 2019b; Metaxas et al., 2019; Zeng et al., 2019; Wang et al.,
2020; Wang et al., 2021), and can provide independent support
for the evaluation of species distribution models (Kenchington
etal,, 2019b; Wang et al., 2021). In LPT models, virtual “particles”
are advected by flow fields derived from numerical ocean models.
Vertical behaviours can also be modeled through particle releases
at different depths, and by incorporating vertical velocities into
the tracking algorithms, such that the particles can mimic active
drifters, enabling predictions of biophysical connectivity.
Recently, basin-scale distribution modeling of P arborea
habitat under present-day (1951-2000) and future (2081-2100)
environmental conditions (the latter modeled as Intergovermental
Panel on Climate Change (IPCC) Representative Concentration
Pathway (RCP) 8.5, a “business-as-usual” scenario), projected an
alarming loss of 99% of suitable habitat across the North Atlantic,
including in the Offshore Scotian Shelf planning area (Morato
et al., 2020). Consequently, a review of existing protections for

Frontiers in Marine Science | www.frontiersin.org

21

July 2022 | Volume 9 | Article 863693


https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Wang et al.

Deep-Sea Coral Climate Refugia

this species and of the properties required for a protected area
network is needed, to support effective conservation efforts.
That review must necessarily consider whether the results
of basin-scale modeling of P. arborea habitat can be validly
applied at the scale of the planning area.

Modeling of future ocean climate typically relies on low-
resolution models designed to capture large-scale open-ocean
properties (IPCC, 2013), the resulting products often being
subsequently down-scaled for use in species distribution
modeling. Such low-resolution models are inappropriate
for capturing shelf-scale processes or for regions with sharp
oceanographic boundaries, such as the Canadian Atlantic,
where a higher native resolution is required to simulate ocean
processes accurately, including under future projections
(Stock et al., 2011; Brickman et al., 2016). Modeling over
large spatial scales also increases the likelihood of both spatial
autocorrelations in species-environmental relationships and
the extrapolation of those relationships to non-analogous
environments, which can lead to poorly-specified species
distribution models with limited transferability to generate
predictions for novel, including future, environments (Miller,
2012; Sequeira et al., 2018; Yates et al., 2018; Mannocci et al.,
2020). In some situations, predicted distribution models are
improved when they are calibrated within areas with a similar
climate (Mordn-Ordonez et al., 2017; Qiao et al.,, 2018).
For Paragorgia spp. in particular, heterogeneity in species/
environment relationships over basin scales is indicated by the
differences in relative importance of variables among studies
by Bryan and Metaxas (2007), in the northwest Atlantic, and
Sundahl et al. (2020), in the northeast. There are also regional
differences in genetic composition of P. arborea within the
North Atlantic (Herrera et al.,, 2012), potentially indicating
differing environmental niches.

Metaxas et al. (2019) applied LPT hindcast models
parameterized to the known biological traits of P. arborea and
Primnoa resedaeformis to examine transborder connectivity
among the canyons in the Corsair Canyon region along the
slope of Georges Bank. A Finite-Volume Community Ocean
Model (FVCOM) was used to generate velocity fields built
across the Gulf of Maine. FVCOM models can have poor
model accuracy in areas of steep slope (Feng et al., 2022),
and the canyons in this region were poorly resolved (Metaxas
etal., 2019). Nevertheless, there was evidence for connectivity
to Corsair Canyon from the south, particularly from the
two closest canyons, Georges in Canadian waters, and
Heezen Canyon in US waters. Limited connectivity from the
Northeast Channel Coral Conservation Area was observed
in winter and spring, and it was suggested that future work
should entail forward-tracking modeling to test hypotheses
of dispersal trajectories emanating from Corsair Canyon and
the Northeast Channel, specifically. In this study a similar
approach was taken over a larger spatial extent, building on
the demonstrated utility of applying LPT models to address
issues of connectivity in P. arborea.

Here, a regional reassessment of both present-day and
future distributions of P. arborea habitat in the Offshore
Scotian Shelf planning area was undertaken, integrating

the results of various species distribution and LPT models
to evaluate the properties of representativity, connectivity,
adequacy, viability and resiliency in relation to protected
area network design (Supplementary Table 1). Models of
the present-day distribution filled data gaps and supported
evaluation of representativity. Climate resiliency was
examined with additional models of the distributions of P.
arborea habitat under climate projections for 2046-2065,
assessed against a model built on the same variables but under
1990-2015 reference conditions, to allow examination of
dynamic relationships among sites in time and space. Areas
with projected conditions analogous to those of the reference
period, representing potential climate refugia for long-lived
Paragorgia spp., were identified.

The transferability of the species distribution models
(Sequeira et al., 2018; Yates et al., 2018; Liu et al., 2020) was
evaluated to determine their reliability (Mesgaran et al., 2014).
For areas where suitable habitat was predicted but for which
no presence records were available, the potential for larvae
to colonize the areas from known populations using the LPT
models was evaluated.

2 MATERIALS AND METHODS

2.1 Study Area

The study area, the Scotian Shelf bioregion (Figure 2),
encompasses the marine waters of DFO’s Maritimes Region, an
administrative unit that includes the Bay of Fundy, parts of the
Gulf of Maine, Georges Bank and the Laurentian Channel, plus
the entire Scotian Shelf, the adjacent continental slope, rise and
a portion of the abyssal plain, delimited to the southeast by the
boundary of Canada’s Exclusive Economic Zone. Within that
area, a 5 km buffer drawn around all land was excluded from
the analyses. The study area thus contains the Offshore Scotian
Shelf planning area which informs marine planning exercises
such as MPA network development.

The major current and water mass systems that influence the
area occupied by P. arborea in the Scotian Shelf bioregion have
been well-characterized. The Gulf Stream transports warm,
saline water from the south and contributes to the formation of
a warm and saline water mass, the Warm Slope Water (WSW)
(Figure 2). This water mass extends from the surface to 400 m
depth, bringing high nutrient concentrations below the surface
(Townsend et al., 2015), and flows northeast between the shelf
break and the north wall of the Gulf Stream to round Grand
Bank (Csanady and Hamilton, 1988; Fratantoni and Pickart,
2007). South of Nova Scotia, WSW intermittently floods
the area between two offshore banks, Emerald and LaHave
(Figure 2), filling the depths of Emerald Basin with warm,
saline water (Drinkwater et al., 2003).

The waters of the continental shelf originate in the Gulf of
St. Lawrence, where a very cold, low-salinity Cold Intermediate
Layer and, in summer, a warm surface layer, cross the
shallow banks of the eastern Scotian Shelf (Han and Loder,
2003), flowing southwestwards with the Nova Scotia Current
(Figure 2). These waters over the Scotian Shelf flow into the
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Gulf of Maine, which also receives a deep inflow of WSW
through the Northeast Channel (Townsend et al., 2015). Another
branch of the Gulf of St. Lawrence outflow merges with cold, low
salinity water from the north carried by the Labrador Current
flowing southwestwards along the edge of the Scotian Shelf as
a Shelf-Break Current (Han et al., 1999). This cold, less saline
Labrador Sea Water is carried along the upper continental slope
off Nova Scotia (Figure 2).

2.2 Species Distribution Modeling

Two fundamentally different modeling approaches were
used to predict the probability of occurrence of P. arborea:
random forest (RF), a non-parametric machine learning
technique in which numerous regression or classification
trees are built using random subsets of the data (Breiman,
2001), and generalized additive modeling (GAM), which uses
smoothing functions applied to the input data to estimate
non-linear effects of the covariates on the dependent variables
(Wood, 2006; Conn et al., 2015). RF works well with high-
dimensional data, including situations where the number of
observations is much less than that of predictor variables, and
is relatively insensitive to correlations among those variables
(Diaz-Uriarte and Alvarez de Andrés, 2006; Biau, 2012; Biau
and Scornet, 2016). GAMs are well-suited for capturing
species-environment relationships and detecting trends in
the data, however they are sensitive to nonlinear dependence,
or concurvity, of the predictor variables (Amodio et al,
2014), and hence were used with a smaller number of poorly
correlated predictors.

RF models were built in R version 4.0.4 (R Development
Core Team, 2020) using the ‘randomForest’ package (Liaw and
Wiener, 2002), with default parameter values, and the default
500 trees constructed for each model. The predictors were
assessed using the ‘importance’ function of ‘randomForest,
which calculates the mean decrease in Gini index, or Gini
impurity, for each variable. Probability of occurrence across
environmental gradients was evaluated using functional
response curves (Lopes et al., 2019). The probability of
occurrence and the value of each environmental predictor for
each raster cell were extracted and smoothed, using the loess
method with span = 0.6 applied to each curve.

The GAMs were built with the ‘mgcv’ package (Wood,
2006) in R, and were based on the binomial error distribution.
Model selection followed a backward, stepwise variable-
selection approach. Preliminary analysis showed two
different relationships between the response data and some
environmental variables. The default number of knots (10)
was used to capture this pattern.

2.2.1 Modeling Scenarios

A number of scenarios were modeled to address different
aspects of the study (Supplementary Table 1). RF models,
were constructed using both presence and assumed absence
data, and initially with 47 environmental predictor variables
representing contemporary conditions. The resulting
prediction surfaces presented modeled distributions that

were extrapolated over large areas, as a consequence of
non-analogous conditions in some water-column variables.
Following Mesgaran et al. (2014), those variables were
removed and an alternative RF model was built using only
the top 6 predictors from the first model, all of which were
terrain variables. The outputs from those two models were
used in assessing the representativity of the closures currently
in place.

Examination of changes in the predicted distribution of
P. arborea habitat across time required models constructed
for each of two climate projections for 2046-2065. A subset
of 8 projected predictors was available (see below) and was
used in both RF modeling and GAMs. Models built under
1990-2015 reference conditions were used to project the
future distributions using the same predictors.

2.2.2 Response Variables

Paragorgia spp. presence and absence records were obtained
from various sources: DFO research-vessel bottom-trawl
surveys conducted in the Maritimes Region during 2002-2019,
DFO and Natural Resources Canada optical (camera/video)
benthic surveys in 1967 and during 1997-2019, and a NOAA
Okeanos Explorer ROV survey conducted in 2019 under the
‘Deep Connections 2019: Exploring Atlantic Canyons and
Seamounts of the United States and Canada’ mission. Presence
and assumed absence records (n=11 and 2982, respectively)
were drawn from the trawl surveys, while only presence records
(n=2366) were obtained from the other surveys. The trawl
surveys followed a stratified-random sampling design (Halliday
and Kohler, 1971), with fishing standardized as 30-minute tows
at 3.5 knots using Western II-A bottom trawls (Tremblay et al.,
2007). The starting position of each tow was used as its location,
whereas Paragorgia spp. records from the benthic imagery were
given their individual recorded locations. A 1 x 1 km grid was
placed over the study area and the data reduced to recorded
presence or assumed absence in each cell (3154 cells with data).
In all, 115 of those cells had presence records, for a prevalence
of 0.036 (Figure 3).

The two species of the genus found in the study area can
co-occur (Cogswell et al., 2009), and can be difficult to identify
in imagery. Of the 2377 presence records, 2124 were designated
P. arborea, 11 were P. johnsoni, while the remainder could not
be identified to species. All records identified as P. johnsoni fell
within 2 grid cells, each of which also had P. arborea. Of the
242 records not identified to species, 14 were located in one cell
which also had records of P. arborea. The remainder came from
a single survey and fell within 4 cells, each less than 2 km from
a P arborea record. Therefore, with the dominance of P. arborea
and the apparent overlapping environmental preferences of the
two species, all presence records lacking species identifications
are here treated as P. arborea.

Assessing accuracy and reliability of prediction models
ideally requires data not used in model calibration (Liu et al,,
2020). There are 94 records of P. arborea from the study area
collected prior to 2002 that were not included in the response
data for the models. Some were provided by fishermen
and lacked either an exact location or confirmed species
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identification (Gass, 2002). Others were obtained from the
Ocean Biodiversity Information System (OBIS: Supplementary
Figure 1). Records from each of those sources were judged too
uncertain for use in the modeling, but they were utilized in
post-hoc evaluation of model performance. They documented
presence only.

The presence and pseudo-absence data from the Scotian
Shelf bioregion study area portion of the basin-scale study that
were analyzed by Morato et al. (2020), were provided by Drs. T.
Morato and J.-M. Gonzalez-Irusta, and used in comparisons of
the results of the two studies.

2.2.3 Environmental Predictor Variables

2.2.3.1 Contemporary Data

A suite of 35 environmental variables developed for modeling
the distribution of the glass sponge Vazella pourtalesii, another
deep-sea, sessile, filter-feeding species, on the Scotian Shelf
(Beazley et al., 2018; Beazley et al., 2019; Beazley et al., 2021b;
Beazley et al.,, 2021c) was used in representing contemporary
environments. It included biologically-relevant measures
associated with water masses and currents, food supply and
fishing effort, and was supplemented with 13 additional
terrain variables (Supplementary Table 2). Fishing effort may
have shaped the distribution of P. arborea and could help to
explain the observed patterns in the models, whereas terrain
variables capture aspects of the canyon-channel systems that
indent the Scotian Slope and were expected to have a strong
influence on the distribution of P. arborea. Bathymetric
Position Index (BPI) at fine- and broad-scale, eastness,
northness and ruggedness were calculated using the ArcGIS
Benthic Terrain Modeler (Wright et al., 2012; Walbridge

et al., 2018), whereas SAGA (Conrad et al., 2015) was used
to generate channel network base level, channel network
distance, valley depth, relative slope position, LS-factor,
positive and negative openness and the wind exposition index,
following Kenchington et al. (2019a). (See Supplementary
Text 2.1 for further explanation of those terrain predictors.)
Data on the physical-oceanographic predictors were drawn
from the Bedford Institute of Oceanography North Atlantic
Model (BNAM: Wang et al., 2018), an eddy resolving model of
the North Atlantic based on Nucleus for European Modelling
of the Ocean (NEMO) 2.3, with a nominal resolution of 1/12°
(approximately 6 by 9 km in the study area). BNAM allows for
amaximum of 50 depth layers, while a partial cell is introduced
for the bottom layer, improving its representation. Biological
and physical oceanographic variables (Supplementary
Table 2) were spatially interpolated across the study area using
ordinary kriging in ArcMap 10.2.2 software (ESRI, 2011) to
create continuous data surfaces with a ~1 km grid size (more
details in Beazley et al., 2017).

Biochemical wvariables, such as oxygen or nutrient
concentrations, were not used because of very poor spatial
coverage of the underlying source point data in the study
area (Beazley et al,, 2017). Other variables, such as depth,
were considered but, following the approached of Beazley
et al. (2018), were screened out because of high correlations
with more biologically relevant alternatives. Amongst the
original 35 predictors, bottom temperature range proved to be
highly correlated with channel network base level and hence
was excluded.

Long-term averages were used to reflect conditions across
the lifespan of Paragorgia spp. The reference period for the
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physical-oceanographic predictors was 1990-2015. Data
availability constrained the periods for other variables. For
the biological oceanographic predictors, it was 2002-2012,
except that primary-production data were only available from
2006-2010. The reference period for the fishing-effort predictor
was 2005-2014. It included only effort using mobile, bottom-
tending gears.

The resulting 47 environmental layers were displayed in raster
format with geographic coordinates using a WGS 1984 datum
and had a cell size ~0.012° cell size (approximately equal to 1 km
horizontal resolution). In addition, summary statistics (mean
+ standard deviation) were created for each variable, based on
their value in each of the 115 grid cells with confirmed P. arborea
presence.

2.2.3.2 Data for Climate Change Projections

Modeling of the distribution of P. arborea under alternative
climate scenarios (Supplementary Table 1) was restricted by
data availability to the subset of the dynamic environmental
variables used by Beazley et al. (2021b). These were mean
temperatures, salinities and current speeds for both surface
and seabed, plus mean maximum mixed-layer depth and
seabed slope (data available at Beazley et al., 2021c). Most of
the temporally invariant terrain variables were excluded as
uninformative for projection purposes. Slope (Supplementary
Text 2.1) was retained as it is expected to interact with bottom
currents, has been shown to be very important in explaining the
distribution of Paragorgia (Bryan and Metaxas, 2007; Sundahl
et al., 2020), and as a static variable, it is expected to improve
model predictive ability (Stanton et al., 2012).

Maximum mixed layer depth (MLD), the depth at which
surface vertical mixing dissipates, is a near universal feature of
the open ocean (de Boyer Montégut et al., 2004). Within this
mixed layer, salinity, temperature, or density are nearly uniform,
a phenomenon caused by surface forcing, lateral advection, and
internal wave processes that vary on diurnal, intra-seasonal,
seasonal, and inter-annual scales (de Boyer Montégut et al.,
2004). The depth of this mixed zone can show large spatial
variability, ranging from less than 20 m in the summer, to
more than 500 m in the winter at subpolar latitudes (de Boyer
Montégut et al., 2004). The MLD has a significant influence on
primary production in the surface waters. As MLD increases
it entrains nutrients from deeper waters below, supplying
additional nutrients for primary production (Polovina
et al., 1995; Carstensen et al., 2002). As data for the primary
production variables used in the contemporary analyses were
not available for assessing climate projections, MLD was used
as a proxy variable.

A version of BNAM was developed (Brickman et al., 2016)
to simulate climatology for 2046—2065, under IPCC (2013)
RCP 4.5, an emission-stabilizing scenario, and RCP 8.5, a high-
emission scenario in which radiative forcing increases through
to 2100 (Moss et al., 2010; van Vuuren et al., 2011). Averaged
annual anomalies for each of the dynamic variables noted above,
representing the difference between present-day and future
conditions, were extracted from those BNAM simulations and
applied to the averaged contemporary climatology layers.

2.2.3.3 Environmental Variables Use in

Previously Published Basin-Scale Study

Following collinearity analyses, Morato et al. (2020) used five
variables (slope, BPI, particulate organic carbon (POC) flux
to the seabed, seabed temperature and calcite saturation state)
in their species distribution models for P. arborea at a cell size
resolution of 3 x 3 km. To explore differences between basin-
scale and regional models of P. arborea distribution, the same five
variables were obtained for analyses in this study. Three of their
variables had been made public through the PANGAEA data
publisher portal (https://doi.org/10.1594/PANGAEA.911117),
that is, POC flux, seabed temperature and calcite saturation
state. Basin-scale rasters of BPI and depth were obtained directly
from Drs. T. Morato and J.-M. Gonzdlez-Irusta, and slope was
generated from their depth raster. Variables were available for
both contemporary and 2100 RCP 8.5 climates. The five variables
were subsequently masked to the spatial extent of the study area
and rescaled to match our cell size resolution.

2.2.4 Model Performance
Model performance was assessed through three approaches: 1)
10-fold random cross-validation, 2) 5-fold spatial block cross-
validation (recommended for spatially autocorrelated data:
Roberts et al., 2017), and 3) evaluation of the accuracy of model
predictions using data not used in model calibration (Liu et al.,
2020). The spatial cross-validation was calculated with the
‘spatialBlock’ and ‘spatial AutoRange’ functions in the R package
‘blockCV” (Valavi et al., 2019), with three measures of accuracy:
sensitivity (the proportion of accurately predicted presences),
specificity (the proportion of accurately predicted absences),
and Area under the Receiver Operating Characteristic Curve
(AUC). Sensitivity and specificity were derived by summing the
predicted outcomes across the 2 x 2 confusion matrices generated
for each of the model cross-validation runs, whereas AUC was
calculated for each cross-validation run. The True Skill Statistic
(TSS) was determined from sensitivity and specificity. From
those measures, the overall accuracy of the model prediction in
geographic space was considered to be good when AUC > 0.9
and TSS > 0.6 (Landis and Koch, 1977; Jones et al., 2010).
Because the response dataset for P arborea has a high
number of absences relative to presences, a threshold based on
species prevalence was used to define which class probability
was considered a presence when converting them into binary
predicted outcomes, that were then summarized in the 2 x 2
confusion matrices. That approach has been shown to produce
constant error rates and optimal model accuracy measures
compared to alternatives (Liu etal.,2005; Hanberryand He, 2013).
The AUC is considered threshold-independent (Fawcett, 2006).
For the GAMs, Pearson residuals were plotted against both
the fitted values and each covariate included in the model,
and the spatial autocorrelation of those residuals assessed. The
most parsimonious GAM was selected, following the Akaike
information criterion (AIC).

2.2.5 Identification of Non-Analogous Environments
In common with other tree-based models, the reliability of
predictions from RF modeling rapidly decreases in areas of
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extrapolation outside of the domain of the environmental
predictors (Liu et al., 2020), though the emergence of non-
analogous environments is highly informative, both for
evaluating the reliability of models of present-day distributions
and for interpreting climate projections (Mahony et al., 2017).
The Extrapolation Detection (ExDet) tool, based on Euclidean
and Mahalanobis distances was used, as implemented in the
‘dsmextra’ R package (Bouchet et al., 2020), to characterize both
univariate and combinatorial extrapolation of the environmental
data sets used here (Mesgaran et al., 2014), and also to assess
the transferability of the model projections (Yates et al., 2018).
Cells with non-analogous environments are novel because they
are outside the range of individual covariates (univariate) or they
are within the univariate range but constitute novel combinations
between covariates not found in the reference data set (see
Figure 2 in Mesgaran et al., 2014). Cells that are both outside the
univariate range and forming novel combinations are included in
the former. In univariate extrapolation if more than one variable
lies outside of the range, the covariate that has the greatest
univariate distance is identified as the most influential covariate
for the cell. Identification of covariates contributing most to the
new combinatorial environments is made by quantifying the
covariate that when omitted (while retaining all others) makes
the largest reduction in the Mahalanobis distance to the centroid
of the reference data (Bouchet et al., 2020). The number of cells
and their percentage are tabulated for each type of environment
(analogous, non-analogous (univariate, combinatorial)) and the
most influential covariate in each of the non-analogous classes
identified. Extrapolation diagnostics in the ‘dsmextra’ package
include maps of ‘% Nearby’ (the percentage of data nearby)
which draw on Gower’s distance to calculate the proportion
of reference data lying within a given radius of any prediction
point in the multivariate environmental space (Bouchet et al,,
2020). Following Mannocci et al. (2018) the neighbourhood
for % Nearby was defined as a radius of one geometric mean
Gower’s distance.

These extrapolation diagnostics were applied using two types
of response data for determining environmental envelopes: 1)
presence and absence data (N=3154); 2) presence-only data
(N=115). Presence and absence data were used to identify
areas of extrapolation in the RF and GAM species distribution
models under present-day and future climate conditions
(Supplementary Table 1), and to inform variable elimination in
RF models (Mannocci et al., 2018). The presence-only data was
used to identify climate refugia (see Section 2.2.5.1).

The same diagnostics were applied to the variables used by
Morato et al. (2020) at both the basin- and regional-scales under
present-day and future (2100; RCP 8.5) environmental conditions
to explore the reasons for differences in model outputs between
the basin-scale study and the regional-scale study presented
herein (Supplementary Table 1).

2.2.5.1 Identification of Climate Refugia

The extrapolation diagnostics were also applied to the 8
environmental covariates in the 115 grid cells containing
P. arborea, to conservatively characterize their present-day
environments. The outcome was used to identify which of

those cells are expected to still experience similar conditions
under the RCP 4.5 2046-2065 climate projections and that,
therefore, represent climate refugia for P arborea. Grid cells
having projected future environmental conditions analogous
to those currently experienced in occupied grid cells anywhere
in the study area were identified, but also, and separately, those
expected to have conditions similar to current ones either east or
west of 60°W.

2.3 Lagrangian Particle Tracking
Three-dimensional ~ passive-particle tracking experiments
(Supplementary Tables 1, 3 and 4), extending across the
study area and surrounding region, were prepared using the
Parcels framework version 2.2 (Lange and van Sebille, 2017;
Delandmeter and van Sebille, 2019) with current velocities
extracted from the BNAM ocean model (Wang et al., 2018; see
Supplementary Text 2.2 for the selection of the ocean model).
For the principal experiments, the LPT models were run in
forward-tracking mode.

The spawning season for Paragorgia spp. is unknown (see
literature review of relevant biological traits for LPT modeling
of gorgonian corals in Kenchington et al, 2019b). Hence,
experiments were performed using monthly-averaged currents
within each of: Winter (January, February, March); Spring
(April, May, June); Summer (July, August, September); Autumn
(October, November, December), extending the examination of
seasonality in LPT models for P. arborea reported in Metaxas
etal. (2019) to include the autumn period.

Pelagic larval duration (PLD) is also unknown for Paragorgia
spp. (Kenchington et al., 2019b). Experiments were therefore
run for 2 weeks, 1 month and 3 months (Wang et al., 2020) to
encompass all likely durations. Hilario et al. (2015) report a range
of maximum PLD for five alcyonacean corals, including one
gorgonian species, of 7 to 90 days, consistent with this selection
of time frames. Metaxas et al. (2019) chose an intermediate 60
day PLD for their hindcast LPT models of P. arborea. Modeled
particles were released from the seafloor to mimic natural release
depth. However, as larval vertical migration, buoyancy and
swimming ability are unknown for Paragorgia spp., particles
were also released in mid-water and at the surface, to represent
active vertical ascent from seabed release.

Random horizontal particle movement was modeled by a
horizontal diftusivity constant, K, based on Okubo’s (1971) 4/3
power law relationship:

K,=0.0103/""

where K, and [ are in units of cm? s! and cm, respectively. /, the
scale of diffusion, depends on the spatial resolution of the ocean
model. For BNAM on the Scotian Shelf:

K, =0.0103x600000*” = 521239 cm’s ™" =52.1239 m’s™'

In each experiment, model particles were seeded in 23 ‘source
boxes, each 0.1° x 0.1° in extent, with some of them selected
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within the known or predicted distributions of P. arborea, and
others positioned where needed to examine various connectivity
hypotheses (Figure 3 and Supplementary Table 4). Source
Boxes 1, 3, 4, 10, 11, and 13 and 14, were placed in, respectively,
the Jordan Basin, Corsair and Georges Canyons, and Northeast
Channel Coral Conservation Areas, the Gully MPA, the Lophelia
Coral Conservation Area, and the St. Anns Bank MPA. In each
model day, 121 particles were released in each source box, seeded
uniformly across its area. Each seasonal model had 90 daily
releases for a total of 10,890 particles per source box. Following
Le Corre et al. (2020), the proportion of particles passing over or
terminating in another source box was presented as a connectivity
matrix for each model run. Shading on the major diagonal of the
matrices was separately calculated and indicates the proportion
of particles in the source box at the end of the PLD.

In addition to the principal experiments, potential source
populations outside the eastern boundary of the study area were
investigated through additional simulations, run in hindcast
mode from single particle releases in each of Source Boxes 11, 13
and 14. Those used only monthly-averaged water movements for
the spring season.

To examine inter-annual variability in connectivity, two
individual years were selected, and the modeling repeated for
each, for comparison of outputs with those generated from 1990-
2015 averages (Supplementary Table 3). The selected years,
1993 and 2015, were chosen for their expression of particular
features (Wang et al., 2021): 1993 fell during a period when the
winter North Atlantic Oscillation (NAO) index was high and the
influence of the Atlantic Meridional Overturning Circulation
(AMOC) strong; 2015 saw high values of the winter NAO index,
and the AMOC was weaker than in 1993.

3 RESULTS

3.1 Regional-Scale Modeling of
Contemporary Distributions

3.1.1 Representations of Contemporary
Distribution
All RF models achieved ‘good’ performance by the AUC
and TSS criteria. In the RF model with all 47 environmental
predictors, sensitivity and specificity were 0.99 and 0.95
respectively (TSS = 0.94), and the AUC was 0.99 + 0.02 (SD).
The high sensitivity indicates that the mean values of each of
the 47 predictor variables in the 115 grid cells where P. arborea
presence has been confirmed (Supplementary Table 5)
provide a good description of the species’ habitat within
the study area (Supplementary Figure 2). The seven most
influential of them, in terms of mean decrease in Gini value,
concerned terrain morphology (Supplementary Figures 3,
4). They were followed by maximum surface temperature and
minimum bottom salinity, then an array of lesser variables.
The most important variable in the model was ruggedness,
a measure of bathymetric complexity in a rectangle of
approximately 46 km? around each point for which it was
quantified, the probability of presence of P. arborea increasing

rapidly with even small positive values. Ruggedness was high
in the canyon areas along the continental slope (Supplementary
Text 2.1). It was followed by positive topographic openness,
for which higher probabilities of presence were associated with
values of openness < 1.50, representing upward slopes of at least
15° from the quantified point, hence such topographies as gully
bottoms or walls. The probability of presence was likewise high
where negative topographic openness was < 1.50, meaning where
there were downward slopes of at least 15°, hence on ridges and
steep slopes. Both openness indices indicated very low probability
of presence on extensive horizontal seabeds. Higher probabilities
of presence were also associated with slopes of > 5°, with longer
and steeper gradients, and in valleys with depths (below adjacent
ridges) of > 200 m (Supplementary Text 2.1).

The RF model with 47 predictors produced a high probability
of presence across a broad swath, extrapolated across the
continental rise and abyssal plain (Supplementary Figures 2A,
B). Extrapolation diagnostics showed that the area of univariate
extrapolation was 49.78%, while combinatorial extrapolation was
only 0.01%, indicating that nearly half of the spatial extent fell
outside the range of one of the covariates found in the reference
data. The area of that extrapolation was largest over the deeper
water, and in an area along the coast off southwest Nova Scotia
(Supplementary Figure 2). Channel network base level and the
water column covariates contributed most to the extrapolation
extent, with the first, the most important covariate in 34% of
the cells with non-analogue conditions, followed by maximum
surface temperature in 11%. The alternative RF model (Figure 4),
using only the top 6 environmental prediction layers, reduced
the area of extrapolation to 0.31% of the cells, leaving analogous
conditions over 99.69% of the spatial extent, indicating that
the input data for the RF models sampled the range of terrain
predictors found in the study area. Model performance was only
slightly reduced: sensitivity and specificity were each 0.90 (TSS =
0.80), and the AUC was 0.96 £ 0.02 (SD). The order of importance
of the variables was the same, except for LS-factor taking second
importance over positive topographic openness, which fell to
third position. The elimination of variables contributing to
the extrapolation prior to running the alternative RF models
allowed for reliable predictions in deeper parts of the study area,
revealing extensive unsuitable habitat, likely mischaracterized by
the extrapolation in the model with 47 variables.

3.1.2 Contemporary Distribution for Comparison
With Climate Projections

The RF model for present-day conditions built on the 8
environmental predictors available for the era of projected
climate (Figure 5) had sensitivity and specificity using 10-fold
cross-validation of 0.97 and 0.90 respectively (TSS = 0.88), while
AUC was 0.98 + 0.01 (SD), indicating good model performance.
Similar values were obtained using 5-fold spatial blocking
possibly indicating that either a dependence structure was not
a prominent feature of the data or that the algorithm was able to
cope with that structure (Supplementary Table 6). Slope, mean
surface temperature and mean bottom salinity were the top three
most important variables influencing the model (Supplementary
Figure 5).
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FIGURE 4 | (A) Probability of occurrence of Paragorgia arborea under present-day conditions, based on RF model constructed using 6 terrain predictors;
(B) Predicted distribution of suitable and unsuitable habitat following a prevalence threshold of 0.036, overlain with locations of presence and absence response
data. (Note: the combined shadings indicating extrapolated areas of predicted suitable habitat appear dark red.).

A GAM fit to the same suite of 8 environmental predictors
(Supplementary Figure 6), explained 39% of the variability
in the data (Table 1). The most parsimonious GAM included
only five variables, with slope and mean surface temperature
the most important. Cross-validation using 5-fold spatial
blocking with random assignment of blocks into folds showed
poor sensitivity compared with other accuracy measures
indicating a poorer ability to correctly predict presence records
(Supplementary Table 6). Specificity was high indicating that a
higher proportion of absence records were correctly predicted
but TSS was poor and together with the lower AUC indicated
non-independence of hold-out data from the training data

and suggested that the GAMs were not as reliable as the AUC
indicated. However the spatial blocks appear to have introduced
extrapolated conditions between cross-validation folds, causing
predictions for the hold-out data to be outside the range of data
in the training folds causing the poor sensitivity (Roberts et al.,
2017).

The functional response curves for environmental
variables in the RF and GAM models (Figure 6) show very
similar predictive relationships for the variables they had in
common, explained by the general similarity of their predicted
distributions under present-day conditions (Figure 5A, E). The
bimodal distribution of some of the variables was verified to be
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both presence and absence data.

FIGURE 5 | Probability of occurrence of Paragorgia arborea from RF models (A-D) and GAMs (E-H) under present-day (A, E), RCP 4.5 (C, G) and RCP 8.5
(D, H), as predicted by models constructed using 8 environmental predictors, with model uncertainty for present-day predictions (B, F) generated from the standard
deviation created from 5-fold spatial block cross-validation. Areas of model extrapolation are shown on each map as a transparent overlay and were created using

TABLE 1 | Parametric coefficients and approximate probability of smooth terms in the GAMs.

Parametric terms

Estimate SE Probability
(intercept) -143.070 28.410 4.77x10-7
Bottom salinity mean 3.034 0.770 8.21x10-5
GAM Approximate significance of smooth terms
R? (adj.) = 0.39
edf Probability
s(Bottom current mean) 2.753 3.07x10-5
s(Mixed layer depth) 2.292 0.016
s(Surface temperature mean) 6.004 <2x10-16
s(Slope) 2.695 <2x10-16
SE, standard error; edf, estimated degrees of freedom; adj., adjusted.
. ) - H
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FIGURE 6 | Functional response curves for RF models (A-H) and GAMs (I-M) constructed using 8 environmental predictors, under present-day conditions. (Three
predictors not included in the GAMs are left blank). Shaded regions represent approximate 95% confidence intervals. All curves and confidence intervals were
bounded at zero probability. (MLD, mixed layer depth. Units are as in Supplementary Table 2).

explained by spatial differences in environmental conditions.
RF and GAMs each identified areas of high probability of P.
arborea presence along the Scotian Slope and in the Northeast
Channel, associated with high standard deviations in that
probability (Figure 5A, B, E, F). Analogous environmental

conditions were found over most of these areas (Figure 7A)
and in 51.56% of the full study area (Table 2), associated
with high percentages of proximate data (Figure 7C). In
contrast to the RF model using 47 predictors, the extent
of extrapolation could not be mitigated through variable
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FIGURE 7 | Areas of extrapolation defined by eight input covariates under present-day (A, C, E) and 2046-2065 RCP 4.5 (B, D, F) conditions, using both presence
and absence data. (A, B) Extrapolation quantified by the Extrapolation Detection tool (ExDet); (C, D) Percentage of data nearby (% Nearby), with areas where
predictions are potentially unreliable shaded in dark blue; (E, F) Areas of extrapolation identified by their most influential covariate. (Areas with analogous conditions

elimination, as most of the available predictors were water-
column variables - appropriately so for climate projections -
which if removed would nullify the analysis. Instead we relied
on spatial mapping to identify areas of extrapolation. Binary
classification of habitat predictions based on prevalence
showed that the RF model likely wrongly predicted extensive
areas of suitable habitat in the areas of extrapolation over deep
water (Supplementary Figure 7A), where those predictions
were associated with high standard deviations (Figure 5B),
while the GAM was able to classify most of the deep-water
area as unsuitable (Supplementary Figure 7D), with low
standard deviations in probability of presence (Figure 4F).
In the deep-water extrapolated area, mixed layer depth, and
to the west, mean surface temperature contributed most to
the extrapolation (Table 2). Along the shallow boundary of
the extrapolated area, on the upper continental slope where
predicted presence was high (Figures 5A, D), mean surface

and bottom salinity and mean bottom currents contributed
the most to the extrapolation (Table 2 and Figure 7E).
Interestingly, the predicted distribution of binary-classified
suitable habitat outside areas of extrapolation produced
similar predictions among contemporary models constructed
using the 6 terrain variables (Figure 4) and those constructed
using the 8 environmental predictors that were mostly water
column variables (Supplementary Figure 7). All models
predicted suitable habitat along the upper continental slope.
Their similarity is best explained by the importance of the
slope variable in all of the models, as correlations between
water column and terrain variables were generally low (< 0.50).

3.1.3 Assessment of Model Predictions

Against Independent Response Data

Of the 44 OBIS records, 86% fell within areas of predicted
presence of P. arborea (Supplementary Table 7) in both
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TABLE 2 | Spatial extent (in number of grid cells) of extrapolation for single covariates and combinations of covariates under present-day and future climatologies based

on presence and absence data for Paragorgia arborea.

Count Percentage Count Percentage Count Percentage

This Study Present-Day 2046-2065, RCP 4.5 2046-2065, RCP 8.5

Mixed Layer Depth 112,631 34.51 31,785 9.74 36,718 11.25

Mean Surface Temperature 37,280 11.43 131,776 40.39 131,608 40.34

Mean Surface Salinity 2,962 0.91 405 0.12 418 0.13

Mean Bottom Current 2,506 0.77 25,956 7.96 24,923 7.64

Mean Bottom Salinity 2,424 0.74 6,091 1.87 5,494 1.68

Mean Bottom Temperature 103 0.03 25,394 7.78 36,629 11.23

Slope 74 0.02 58 0.02 56 0.02

Mean Surface Current 41 0.01 7,802 2.39 7,233 2.22
Sub-Total Univariate 158,021 48.43 229,267 70.27 243,079 74.50

Slope 14 0.00 - - - -

Mean Bottom Current 4 0.00 2 0.00061 2 0.00061
Sub-Total Combinatorial 18 0.01 2 0.00061 2 0.00061
Total 158,039 48.44 229,269 70.27 243,081 74.50

Analogue 168,242 51.56 97,012 29.73 83,200 25.50

Variables from Morato et al. (2020) Present-Day 2100, RCP 8.5

BPI 8,218 2.52 6,594 2.02

Calcium saturation 5,037 1.54 15,256 4.68

Bottom temperature 2,129 0.65 152,361 46.70

POC flux 890 0.27 39,413 12.08

Slope 411 0.13 303 0.09
Sub-Total Univariate 16,685 5.1 213,927 65.57

Calcium saturation 12 0.0037 25 0.01

BPI - - 22,939 7.03

Slope - - 651 0.20

Bottom temperature - - 78 0.02
Sub-Total Combinatorial 12 0.0037 23,693 7.26
Total 16,697 5.12 237,620 72.83

Analogue 309,584 94.88 88,661 2717

Analogous conditions are determined from the environments experienced by the response data. Equivalent extents, recalculated for the Scotian Shelf bioregion study area, from the
data used in Morato et al. (2020) are also shown. The Most Influential Covariates contributing to the extrapolations are indicated.

RF and GAM models, which was relatively consistent with
the sensitivity of the RF models (0.99 with all 47 variables,
0.97 with the 8 variables used for the present-day climate
baseline). Some records shared positional information with
others. Removing those reduced the data-set to 23 unique
positions, 19 of which (83%) were found in areas of predicted
presence.

The records extracted from Gass’ (2002) compilation
of historical reports of coral occurrence did not map well
against the areas of suitable habitat identified by either the RF
or GAM models for current environmental conditions, only
24% falling within areas deemed as having suitable habitat
(Supplementary Table 7). Concordance with the predictions
was highest for records from the Scotian Slope. Some eastern
Scotian Shelf records were from locations very close to
small areas of predicted suitable habitat near the Laurentian
Channel (Supplementary Figures 1C, D), such that their
poor concordance may result from imprecise positional
information in original records. Other cases may have arisen

from misidentifications. Therefore the poor match of those

data with areas of predicted presence of P. arborea is not
necessarily indicative of model performance.

3.2 Predicted Distribution Under

Climate Projections

Under projected (2046-2065) environmental conditions, RF
modeling predicted both increased probability of occurrence
and a considerable expansion of the extent of suitable habitat
for P. arborea, especially in the Fundian and Laurentian
Channels, along the slope in general, and even onto
Georges Bank (Figures 5C, D; Supplementary Figures 7B,
C). Although the GAM also predicted some increased
probability of occurrence in both channels (Figures 5G, H;
Supplementary Figures 7E, F), the predicted expansion
in suitable habitat was less than that of the RF models. The
Fundian and Laurentian Channels were each associated with
higher residuals in the GAM, indicating a poorer fit in those
areas (Supplementary Figure 6C).

Extrapolation  diagnostics applied to  prediction
modeling under future environmental conditions, identified
extrapolation areas extending from deep ocean into the
Northeast Channel, Fundian Channel, Jordan Basin, Emerald
and La Have Basins and onto Emerald Bank (Figure 7B).
Those areas occupied 70% (RCP 4.5) and 74.5% (RCP 8.5) of
the spatial extent of the study area (Table 2). RF predictions in
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FIGURE 8 | Areas of analogous and non-analogous conditions under RCP 4.5 climate projections for 2046-2065, defined by eight input covariates, showing the
locations of confirmed records of Paragorgia arborea coded by the projected future status of environmental conditions at those sites and existing conservation areas
(in red outline). Locations of existing records that are projected to retain conditions analogous to those where the species presently occurs on the eastern Scotian
Slope are shown in red. Locations which will retain, or change to, conditions analogous to those under which the species is presently found west of 60°W are
shown in blue. Black dots mark records in areas projected to change to non-analogous conditions.

those areas are unreliable, though the extent of extrapolation
from present-day values varies. In the Northeast Channel
(Figure 7B), where P. arborea occurs under present-day
conditions (Figure 3), univariate extrapolation is near
zero, indicating that the environmental variables creating
the extrapolation (mean bottom temperature and salinity,
Figure 7F) are close to the range found in the reference data.

The relative magnitude of univariate and combinatorial
extrapolation in the future distribution models associated
with different sets of the 8 predictor variables (Table 2),
show that the extent of extrapolation was much larger with
individual variables than with combinations of them. Small
areas of combinatorial extrapolation were found in the Gully
MPA and adjacent Shortland Canyon. Closer examination of
those areas showed that the combination of variables creating
the novel environments (Table 2) was restricted to two grid
cells in the former and one grid cell in the latter, both at the
canyon heads.

In summary, the predicted distributions under projected
climates appear reliable along the upper Scotian Slope and the
wall of the Laurentian Channel (Supplementary Figure 7),
if not necessarily so elsewhere. Within that restricted area,
RF and GAMs produced similar predictions of future
distributions, both suggesting the presence of suitable habitat
in 2046-2065, including potential for habitat expansion.

3.3 Identification of Potential
Climate Refugia

Of the 115 grid cells currently known to contain P. arborea,
39 are expected to retain similar conditions to those seen in
presently-occupied cells (Supplementary Table 8), under
climate projections for 2046—-2065. Most lie along the Scotian
Slope east of 60°W (Supplementary Figure 8 and Figure 8).
There, 23 of 58 grid cells with P. arborea present today will
remain within the range of existing environmental conditions
seen in that sub-region, indicating that those cells may contain
climate refugia for this species over the next decades. Another
16 of those 58 cells are projected to have future environments
similar to present-day conditions in the Northeast Channel,
but with one or more variables outside the ranges experienced
by extant colonies in the eastern sub-region (Figure 8).

The 57 grid cells west of 60°W that are known to have P.
arborea today all lie in areas of univariate extrapolation under
future conditions (Figure 8), meaning that one or more of
the 8 environmental variables is projected to fall outside its
present-day range seen in occupied grid cells in the study
area by 2046-2065 (Supplementary Table 8). That was a
consequence of, primarily, higher projected mean surface
temperatures, which will affect 55 of the cells, making the
predictions in this area unreliable.
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FIGURE 9 | (A-C) Proportions of virtual particles released from each source box, in ensembles of seasonal LPT simulations using long-term averaged currents,
that pass over or terminate in each source box (termed: “Receiving Area”), during 2-week (left column), 1-month (centre column) and 3-months (right column) PLDs.
Shading on the major diagonal indicates particle retention in the source box at the end of the PLD. Red outlines indicate deep-slope source boxes; purple outlines
indicate upper-slope source boxes; green outlines indicate connectivity from upper-slope to deep-slope source boxes. (D-F) Extracts from the above matrices,
showing connectivity among source boxes in conservation areas: 1, Jordan Basin Conservation Area, JB; 3, Corsair and Georges Canyons Conservation Area,
CGC; 4, Northeast Channel Coral Conservation Area, NCC; 10, Gully MPA, GMPA; 11, Lophelia Coral Conservation Area, LC; 13, 14, St. Anns Bank MPA, SAB1,
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Given the large areas of extrapolation shown in both the
contemporary and future predictive models (Section 3.2) this
use of the extrapolation diagnostic tool to identify climate
refugia is more reliable than identification of common habitat
between contemporary and future prediction surfaces.

3.4 Comparison With Results of
Basin-Scale Modeling

Extrapolation diagnostics for the suite of response and predictor
variables used by Morato et al. (2020), applied within the Scotian
Shelf bioregion study area, identified analogous conditions over
most of its spatial extent under present-day conditions (94.88%;
Table 2), except for some areas of univariate extrapolation in
BPI in the canyon areas (Supplementary Figure 9 and Table 2).
Under future climate projections (2100, RCP 8.5), large areas
of the Scotian Shelf and continental rise were projected to lie
in areas of extrapolation, the most important variables being
bottom temperature, POC flux and calcite saturation at the
seafloor (Table 2). New combinatorial areas on the Scotian Slope
were identified, with BPI accounting for most of the extrapolation
there. Only the deep continental slope and upper rise were
projected to retain analogous conditions (Supplementary
Figure 9).

3.5 Regional-Scale Connectivity Patterns

In all seasons and for all particle release depths, connectivity
increased with PLD (Supplementary Figures 10-21), that
trend being particularly pronounced in autumn and winter, at

mid-water and seabed release depths. Connectivity between
source boxes was highly and consistently clustered (Figure 9).
Down-stream connectivity amongst deep-slope source boxes
(Source Boxes 17-23: Figure 3) was observed across all
seasons and particle release depths, being particularly strong
with mid-water and seabed releases and a PLD of 3 months,
which enabled the more distant connections. Similarly, upper-
slope down-stream connectivity (Source Boxes 5, 6, 8-11) was
observed across all seasons and depths to varying degrees,
and was also particularly strong with mid-water and seabed
releases and a 3 month PLD. Source Box 10 in the Gully MPA
emerged as a potential seed source for the largest number of
other Source Boxes, while Source Box 19 showed the greatest
redundancy, receiving particles from the largest number of
other source boxes.

Connectivity among the source boxes on the inner Scotian
Shelf (Source Boxes 7, 13-16) was observed in all seasons and
was less influenced by PLD. Among the source boxes at the
westward end of the study area, the greatest connectivity was
observed between Source Boxes 4 and 3, where connections
were made regardless of PLD, season or release depth.
Connectivity was also high from the Fundian Channel to the
eastern slope of Georges Bank (Source Boxes 1, 2 to 3, 4) with
connections in all seasons, but most commonly in spring at all
release depths and PLD. Source Boxes 3 and 17 were the least
connected to others within the study area, larvae from there
perhaps drifting to Paragorgia habitat in waters of the USA,
although Source Box 17 did connect eastward to Source Box
18 in autumn releases at the surface with a 3-month PLD.
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Connectivity between the clusters of connected source
boxes described above was most prevalent between the upper-
and deep-slope groups (Figure 9), with connections in the
down-slope direction at all release depths in both summer
and autumn, but only with surface and mid-water releases
in winter and spring. The particle drifts were never made
down-slope but rather combined along-slope movements
with entrainment of water from the shelf-break current into
the east-going offshore flow. Connectivity in the up-slope
direction was less common, being observed only in mid-
water releases with longer PLDs in summer, autumn and
winter (Supplementary Figures 17, 20, 11 respectively).
Connections between the source boxes on the inner Scotian
Shelf with those on the continental slope were observed,
primarily with surface releases in the spring, with deep-
slope connections also observed in winter at the surface, and
upper-slope connections in autumn at mid-water and surface
release depths.

Potential upstream source areas for Source Box 11
(located in the Lophelia Coral Conservation Area) that
were identified by hindcast LPT models, included waters
from coastal Newfoundland and the Tail of Grand Bank to
the Cabot Strait (Supplementary Figure 22). OBIS records
(Supplementary Figure 1) showed that Paragorgia spp. do
occur in that area, potentially providing a supply of larvae to
the populations on the Scotian Slope.

Source Boxes 13 and 14 were situated in the St. Anns Bank
MPA, an area where P. arborea has not been observed but is
projected to occur in its deeper extent, along the slope of the
Laurentian Channel (Supplementary Text 2.1), in future.
Hindcast LPT modeling for spring releases (Supplementary
Figure 22) identified potential source areas primarily in the
Cabot Strait and southern Gulf of St. Lawrence.

Consistent with expectations, particle retention within
source boxes decreased with increasing PLD. It was most
common in seabed releases in summer, autumn and winter,
when it was often the predominant outcome (Supplementary
Figures 18, 21, 12). Source Box 3 and to a lesser extent, Source
Box 17, which had poor connectivity, showed more particle
retention. Elsewhere, retention was commonly seen with
PLDs of 2 weeks or 1 month, in all source boxes, and 13 of
them showed some retention even after 3 months (Figure 9).

3.5.1 Inter-Annual Variability in Connectivity Patterns
The LPT simulations using monthly-averaged currents for 1993
and 2015 showed generally less difference in connectivity and
retention than was seen amongst different PLDs or seasons
with the long-term averaged current data, and were consistent
with the connectivity patterns observed in simulations using
those data (Supplementary Figures 10-21). However, some
particular differences were observed. With releases in the
winter at the surface, there was greater connectivity among
upper-slope source boxes in 1993 than in 2015, for example,
whereas mid-water and seabed releases in winter, summer
surface releases, plus surface and seabed releases in autumn,
showed more connectivity in 2015 than 1993.

3.6 Connectivity Between Conservation
Areas in the Offshore Scotian Shelf
Planning Area

Some particles released in the Jordan Basin Conservation
Area (Source Box 1) in all seasons were retained there,
particularly those from seabed and mid-water releases
(Figure 9). With 3-month PLD, that area also has direct,
down-stream connections to the Corsair and Georges Canyons
Conservation Area (Source Box 3) in the spring at all release
depths, and for surface releases only, in summer. P. arborea
has not been confirmed for this area, although another coral
often found with P. arborea, Primnoa resedaeformis occurs
there (Supplementary Table 4) and the conservation area is
identified as having suitable habitat under climate projection
(Supplementary Figure 7).

Source Box 3, in the Corsair and Georges Canyons
Conservation Area, did not have downstream connections to
other Canadian conservation areas in the simulations based
on long-term averaged currents (Figure 9). It was, however,
connected to the Northeast Channel Coral Conservation
Area (Source Box 4) in both 1993 and 2015, for mid-water
releases in summer with PLDs of 1 and 3 months, and in
2015 also in winter under the same conditions. With those
same PLDs, Source Box 3 was additionally connected to
the deep-slope Source Boxes 17, 18, 19 and 23 in individual
years in summer and autumn of 1993 and 2015. There was
also particle retention in Source Box 3 in summer, autumn
and winter with mid-water and seabed release simulations.
The Northeast Channel Coral Conservation Area likewise
had particle retention in those seasons and release depths, as
well as the strong downstream connections to the Corsair and
Georges Canyons Conservation Area noted above.

Totheeast, Source Box 10in the Gully MPA is well-connected
to the deep-slope cluster with 3-month PLD (Figure 9). It also
has downstream connections with the Northeast Channel
Coral Conservation Area and Corsair and Georges Canyons
Conservation Area (Figure 9), both under simulations using
long-term averaged currents and in individual years, and in all
seasons. However, those connections were typically restricted
to mid-water and seabed particle releases. More connections
were seen in 2015 than in 1993. Other particles were retained
within Box 10 in both individual years and under long-term
averaged conditions, particularly with winter releases as well
as those seabed releases in summer and autumn with PLDs of
2 weeks or 1 month. Under those conditions, particle retention
was on the order of 50% (Supplementary Figures 12, 18, 21).
Similarly high retention was seen in 2015 only in the spring
under the same LPT parameters. The Gully MPA also had
connections to the Lophelia Coral Conservation Area (Source
Box 11) with mid-water releases in spring 2015 and a PLD
of 3 months, plus surface and mid-water releases in summer,
regardless of the chosen PLD, and in seabed releases with
PLDs of 1 and 3 months.

The Lophelia Coral Conservation Area (Source Box 11)
also had particle retention in all seasons both under averaged
conditions and in individual years. Retention was more
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common under shorter PLDs (2 weeks, 1 month), and in
releases from the mid-water and seabed depths. This area
was connected to three other downstream conservation
areas, especially the Gully MPA, to which connections were
found in all seasons, both in individual years and under long-
term averaged conditions. In winter and spring, there were
connections at all three release depths, while in the summer
they were restricted to surface and mid-water releases, and
in autumn to mid-water and seabed releases. The Lophelia
Coral Conservation Area was also connected to the Northeast
Channel Coral Conservation Area and Corsair and Georges
Canyons Conservation Area in the autumn, winter and spring
but not the summer. Connections were mostly from mid-
water releases with a PLD of 3 months.

On the Scotian Shelf, Source Box 13 in the St. Anns Bank
MPA, has a very high retention of 50% of particles released at
the seabed in all seasons, with PLDs of 2 weeks or 1 month
(Figure 9). Retentions were also seen with a PLD of 3 months
but with a lower proportion of particles being retained.
There were connections to both the Gully MPA and the
Lophelia Coral Conservation Area, with more connections to
the latter. Those connections were found in all seasons and
predominantly in surface and mid-water releases with 1- and
3-month PLDs. Source Box 14, also in the St. Anns Bank
MPA but further to the west of Source Box 13 (Figure 3), is
the most highly connected with particles reaching nineteen
other source boxes and all protected areas except for the
Lophelia Coral Conservation Area when PLD was set to
3 months (Figure 9). The highest connectivity was with
Source Box 15 to the west just outside the MPA boundary,
but eastward connections to Source Box 13 inside the MPA
were observed with 1- and 3-month PLDs. At 1-month PLD
particles connected westward along the shelf to Source Boxes
15, 16 and 7, connecting only to Source Boxes 15 and 16 with
2-week PLD (Figure 9). As for the Jordan Basin Conservation
Area, the St. Anns Bank MPA includes suitable habitat for
P. arborea under climate projection models to mid-century
(Supplementary Figure 7).

4 DISCUSSION

This study combined regional species distribution models of
the present-day and future distributions of the deep-sea coral
P. arborea with particle tracking models that were used to
evaluate the likelihood of colonization for areas of predicted
habitat and to assess connectivity among areas closed to
protect this and other deep-sea coral species. Extrapolation
diagnostics proved to be a useful tool for reducing the
degree of extrapolation in the species distribution models
and for spatially assessing the reliability of model outputs.
The results have led to the identification of mid-century
climate refugia along the upper slope in the eastern part of
the Scotian Shelf bioregion, contrary to projections inferred
from models performed at a basin-scale across the North
Atlantic. Collectively these results have enabled a first review

of the current set of closed areas with respect to fulfilling the
expected properties of a protected area network.

4.1 Distribution of Paragorgia arborea in
the Study Area

Restricting the RF model from the full complement of 47
predictors to the top six allowed us to reliably exclude large
expanses of extrapolated habitat unsuitable for P. arborea over
the continental rise and abyssal plain, without compromising
model performance. The six were terrain variables which had
not previously been used for predictive habitat modeling of
benthic species in the study region (e.g., Bryan and Metaxas,
2007; Beazley et al., 2018; Beazley et al., 2021b), but to our
knowledge proved to be effective predictors of P. arborea
habitat. They identified steep and rugged areas, suitable for
the species, along the upper continental slope, reflecting
variability in seafloor elevation and steep slopes at scales of
kilometres and tens of square kilometers, as well as vertical
relief of hundreds of metres. The available variables do not
capture micro-relief but rather such geomorphic features as
ridges, gullies and moraines (Sowers et al., 2020).

Within those areas of predicted suitable habitat, P.
arborea will be confined to the hard surfaces it requires for
attachment; surfaces which may be provided by bedrock,
boulders in glacial till, or drop stones (Mortensen and Buhl-
Mortensen, 2004). The upper Scotian Slope is underlain by
till, though at water depths < 300 m that is mostly covered
by mobile fine sand in the east, and coarser sand and gravel
in the west, while ice-berg pits and scours expose underlying
harder substrata (Piper and Campbell, 2002). Low ridges
and patches of boulders, which provide suitable settlement
substrates for P. arborea, are common and contribute to the
ruggedness. Ridges and canyons extend down the Slope.
Apart from The Gully’s, the heads of the canyons are mostly
choked with sand, although some mudstone outcrops emerge
on their walls, creating potential settlement substrate. Hard
surfaces in deeper water are typically coated with a layer of
fine sediment, and so may not support P. arborea settlement,
but the canyon walls have a steep “ridge and gully” topography
(Piper and Campbell, 2002), which may promote water flows
that maintain exposure of bedrock outcrops. Below 1000 m
depth, the continental slope and rise are typically covered
with bioturbated mud, consistent with predictions of low
probabilities of P. arborea occurrence over much of that area.

Particle tracking models showed potential for biophysical
connectivity along that strip of predicted P. arborea habitat
on the upper slope, mediated by the Shelf-Break Current, the
principal water flow on the Scotian Shelf (Han et al., 1999;
Hannah et al., 2001), at all times of year and independent of
larval vertical behaviour — hence a conclusion not constrained
by limited available knowledge of the species’ reproductive
biology. LPT modeling also demonstrated that the areas of
suitable habitat identified at greater depths, where the species
has yet to be found, could receive recruitment from upper-
slope populations and once established, could support other
deep-slope populations through passive larval dispersal.
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Hindcast LPTs showed potential for recruitment to present or
future suitable habitat in the eastern part of the study area
from populations in Newfoundland waters and as far east as
the Tail of Grand Bank.

The greatest uncertainty influencing the degree of
connectivity concerned pelagic larval duration, which will
profoundly affect dispersal. Two broad classes of sexual
reproduction are known in octocorals: either broadcast
spawning, with fertilization and development in the water
column, or fertilization and subsequent brooding of embryos
internally or externally on the maternal colony. Embryos
develop into planula larvae, which are either crawling or
ciliated and the minimum time to settlement competency
is less than 1 week for the few species studied (Simpson,
2006). Even if P. arborea is a broadcast spawner, its PLD is
likely short, two weeks or less (Lacharité and Metaxas, 2013).
LPT models indicate that, with such short durations, most
P. arborea larvae are retained in the immediate environs of
their parent colonies. Ensembled connectivity patterns for
2-week PLD (Figure 9) show retention in all source boxes,
supporting a hypothesis of primarily localized recruitment,
while connections were mostly between adjacent source boxes
(Supplementary Figure 23).

4.2 Predicted Distribution Under Climate
Change Projections

Because of extrapolation uncertainties, the predicted
distributions of P. arborea under climate projections for 2046-
2065 are only reliable for the upper continental slope and
portions of the eastern Scotian Shelf. Within that limitation,
the RF models and GAMs showed very similar predictions
(Figure 5), with common areas of suitable habitat expected
along the upper slope. In contrast, the predicted areas of
suitable habitat in Jordan Basin, on the flanks of Georges
Bank, in parts of the Laurentian Channel, and in some areas
on the continental slope, cannot be reliably confirmed due
to the novel environmental conditions projected to occur
there. Nevertheless, a substantial portion of the present-day
predicted distribution is projected to persist through to 2046-
2065, using models with good performance and reliability.
That limited impact of climate change on P. arborea in the
Scotian Shelf bioregion study area conflicts with conclusions
from basin-scale modeling of the same species (Morato et al.,
2020). Both studies agreed on the existence of suitable habitat
along the continental slope under present-day conditions,
but they differed widely in their future projections, where
the regional models showed an increase in suitable habitat
in contrast to the loss of habitat projected in the basin-scale
models (Morato et al., 2020). Without access to BNAM outputs
for the 2081-2100 period, results directly comparable to those
from the basin-scale analyses were not generated. However,
trends in regional oceanography during the second half of
the century are expected to be similar to those in the first,
with no sharp increases anticipated (Shackell and Loder, 2012;
Brickman et al., 2016). Thus, the limited projected change in

the distribution of suitable habitat for P. arborea through to
2046-2065 should continue until 2100.

The causes of the conflicting results merit closer examination.
Extrapolation diagnostics showed that, in both studies and
despite their different suites of predictors, much of the study
area falls within swaths with non-analogous environmental
conditions (Figure 7 and Supplementary Figure 9), where
habitat predictions are unreliable. With the predictors used
in the basin-scale study applied to the Scotian Shelf bioregion,
the continental slope was included in an area of extrapolation,
whereas in this study much of the predicted suitable future
habitat on the slope had analogous conditions. Hence, the results
presented herein are the more confident.

Differences between the basin-scale study and the regional
study presented here were also a byproduct of the resolution
of the oceanographic models used to create the environmental
predictors. In the study area, ocean-climate variability is
determined by a complex of atmospheric forcing and solar
heating, interactions between the Gulf Stream and Labrador
Current and local factors, including tides, river discharge
and seabed topography (Brickman et al., 2016). The physical
oceanographic variables used in this study came from BNAM, a
basin-scale ocean model that has been rigorously tested against
observational data in the region (Wang et al., 2018; Wang et al,,
2019). In contrast, the basin-scale study (Morato et al., 2020)
used output from the Earth System Grid Federation (ESGF)
Peer-to-Peer System, which was specifically developed for
global-scale studies in support of the IPCC Coupled Model
Intercomparison Project 5 (Cinquini et al, 2012). It is well
known that those models do not well capture details of the study
region (Stock et al., 2011; Saba et al., 2016), and do not resolve
the bathymetry of the Scotian Shelf, nor the spatial structure of
the ocean overlying the shelf. Neither do they properly resolve
the Gulf Stream separation off Cape Hatteras (Saba et al., 2016).
It is, therefore, unsurprising that the two studies differ markedly
in their predictions (Supplementary Figure 24; Supplementary
Text 2.3), while the BNAM-based analysis must be considered
the more realistic for the Scotian Shelf bioregion.

The two studies also used different environmental variables
as predictors. In the basin-scale study, POC flux to the seafloor
and calcite saturation state there, were the most important of five
predictors in RF and Maxent models, whereas calcite saturation
was the most important in a GAM (Morato et al., 2020). In this
study, slope, mean surface temperature and mean bottom salinity
were the three most important variables of eight influencing the
RF model, while the GAM relied most on slope and mean surface
temperature. The only predictor common to both studies was
(temporally invariant) slope (Supplementary Text 2.1).

While all of the variables used by both studies are assumed
to have biological relevance, very little is known about the
threshold limits, tolerance or adaptive capacity of P. arborea
or any other deep-water non-symbiotic gorgonian (Schubert
et al,, 2017; Gugliotti et al., 2019). Without that understanding,
the alternative models are correlative, rather than built on
causal relationships, limiting the interpretations needed to give
preference to one study over the other based on their predictor
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variables. Of the various predictors, biological response
to calcite saturation has received the most attention. The
saturation state of seawater for CaCO, (Q) is a measure of its
potential to corrode the calcitic sclerites found in P. arborea
and other gorgonians. When Q < 1, seawater is corrosive to
calcifying organisms (Azetsu-Scott et al., 2010). Experimental
evidence suggests that gorgonian coral sclerites are somewhat
protected from corrosive environments by their thick, fleshy
coenenchyme tissue (Gabay et al., 2014; Gémez et al., 2015)
and so P. arborea may be able to tolerate the degree of ocean
acidification expected by the end of this century.

4.3 Implications for Conservation

Conservation of the iconic and ecologically significant
bubblegum coral, P. arborea, has been a priority for ocean
management in Atlantic Canada for over two decades (ESSIM
Planning Office, 2006). Indeed, the Northeast Channel Coral
Conservation Area was established in June 2002 with the
purpose of protecting the largest known concentrations of
P. arborea in the region from the harmful effects of bottom-
contact fishing gears. Shortly thereafter, the Gully MPA was
designated under Canada’s Oceans Act in May 2004. The
first such MPA in Canadian Atlantic waters, it was intended
(in part) to protect rich aggregations of cold water corals,
including P. arborea (Breeze and Fenton, 2007). The species is
also found in the Lophelia Coral Conservation Area (Korabik
et al,, 2021). More recently, the Corsair and Georges Canyons
Conservation Area was created in 2016 to protect a wide
variety of coral species living on the canyon walls, including
P. arborea (Metaxas et al., 2019). Those four protection
areas were not originally planned as a network of protected
areas nor have they been collectively evaluated for network
properties such as representativity, connectivity, adequacy,
viability and climate resiliency. The results of this study enable
a first assessment of those areas for the suite of protected area
network properties as they pertain to P. arborea.

The concept of “representativity” in protected area
network design applies to different spatial scales and
biogeographic subdivisions (DFO, 2010). The Northeast
Channel Coral Conservation Area, the Corsair and Georges
Canyons Conservation Area, the Gully MPA and the Lophelia
Coral Conservation Area, together create a protected area
network for P. arborea spanning from east to west along the
upper continental slope within the Offshore Scotian Shelf
planning area. The most reliable species distribution models
(Figure 4) showed that most of the unexplored deep-water
area is unlikely to provide suitable habitat for this species
and so the nominal network currently in place has good
representation and replication of P. arborea habitat. The areas
where predicted suitable habitat extends into deeper waters
identify targets for future exploration to determine whether or
not the species is present. As noted above, the LPT modeling
suggested that those areas have potential for colonization
from areas of known presence. If P. arborea is confirmed in
the deep-slope areas additional closed areas would need to be

established to maintain representativity in the protected area
network.

Amongst the four closed areas within the putative
network where P. arborea has been observed, LPT analyses
demonstrated the potential for connectivity, and extensive
connectivity between the protected areas within that network
with adjacent habitats outside the closures (Figure 9 and
Supplementary Figure 23). The Lophelia Coral Conservation
Area, despite being the smallest of the closures at 15 km?, has
large potential as a seed source to all of the other protected
areas in the network and to adjacent habitats on the Scotian
Slope. Increasing its size would render further protection
to this area which also protects the only known cold-water
coral reef in eastern Canada (Beazley et al., 2021a). Metaxas
et al. (2019) showed connectivity to the Corsair and Georges
Canyons Conservation Area from canyons to the south,
hypotheses not tested in this analysis. Limited connectivity
between the Northeast Channel Coral Conservation Area
and the Corsair and Georges Canyons Conservation Area
was observed in winter and spring using the FVCOM ocean
products (Metaxas et al., 2019). Connectivity between those
two conservation areas was consistently observed in this study
using BNAM ocean products, with connections made under
all PLD scenarios, release depths and seasons using both long-
term averaged currents (Figure 9) and currents extracted for
individual years — the only exceptions being for 2 week PLD
in 1993 in summer mid-water (Supplementary Figure 17) and
autumn seabed releases (Supplementary Figure 21). Different
ocean models are known to produce different connectivity
trajectories (Wang et al, 2019; Supplementary Text 2.2),
and given other differences between the studies (forward vs.
hindcast modeling, particle release numbers, PLD etc.) these
differences are not surprising. Collectively they show that the
nominal protected area network for P. arborea has potential
for strong connectivity between component closed areas either
effected in a single spawning event or through stepping stone
links where colonies occur along the connectivity trajectories.

The Jordan Basin Conservation Area and the St. Anns
Bank MPA at the western and eastern extent of the planning
area respectively, may prove to support P. arborea. Although
neither area was identified as having suitable habitat in our
contemporary models, both were identified as potentially
having suitable habitat in mid-century projections under
RCP 4.5 and RCP 8.5, albeit for Jordan Basin Conservation
Area in areas of extrapolated environmental conditions
(Supplementary Figure 7). Jordan Basin has validated presence
of Primnoa resedaeformis, a species found co-occurring with
P. arborea in the Northeast Channel. LPT modeling indicated
that St. Anns Bank MPA connects with the Lophelia Coral
Conservation Area under some scenarios and to other closed
areas with 3 month larval duration (Figure 9). Assuming that
the current velocities are not strongly altered in future, St. Anns
Bank MPA should connect to the putative network. Should P.
arborea be discovered in the Jordan Basin Conservation Area,
the dependence of that area on larval retention would warrant
an increase in its size which is currently 49 km?
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Adequacy and viability of a protected-area network should
be evaluated relative to the likely effectiveness of each closed
area in achieving its objectives (DFO, 2010). If one objective is
to maintain and enhance populations of P. arborea, the ability
of populations to self-recruit will support effectiveness. All
four closed areas have strong potential for larval retention if,
as expected, PLD is short. However, increasing the size of the
protected areas would improve that potential still further.

Identification of climate refugia is an important element
in marine spatial planning (Johnson and Kenchington,
2019). The Gully MPA, the Lophelia Coral Conservation
Area and other areas along the Scotian Slope east of Sable
Island, some with records of P. arborea presence and others
with predicted presence, have potential as climate refugia,
where environmental conditions important to the species
are projected to remain stable through to 2046-2065 at least
(Figure 8). Priority should be given to reducing cumulative
stressors on gorgonians, including bottom contact fishing, in
those areas. Some other locations along the eastern Scotian
Slope, including Shortland Canyon, will experience conditions
that the species tolerates in the western sub-area (including
the Northeast Channel), but for which the populations further
east may not be adapted. Meanwhile, the dense aggregations
of P. arborea in the Northeast Channel may experience novel
environmental conditions by 2046-2065, indicated in the
analyses primarily by warmer mean surface temperatures.
However, the projected differences from present-day
conditions in that area are not large and colonies already
established there may be able to adapt. Management measures
to reduce cumulative stresses on P. arborea throughout
those areas could support survival in the face of pending
environmental change.
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An ecosystem-based forward-looking vision for the global ocean, encompassing ocean
health and productivity, ecosystem integrity and resilience, incorporating area beyond
national jurisdiction, is fundamental. A vision which is holistic and universally acceptable
to guide future sustainable ocean policies, plans and programmes (PPPs). We argue that
Strategic Environmental Assessment (SEA) is the best available framework to develop
such a vision and its suitability for this purpose should be recognised within the on-going
process to negotiate an International Legally Binding Instrument (ILBI) for the conservation
and sustainable use of Biodiversity Beyond National Jurisdiction (BBNJ Agreement). This
perspective paper justifies why such an ecosystem-based Global Ocean Vision is essential.
It then describes the key characteristics it must integrate and how it can be elaborated in
the framework of a collective SEA within the BBNJ process. We advocate expanding text
in Part | General Provisions of the draft BBNJ Agreement to include development of such
a global ocean vision. We conclude by highlighting the opportunity and timeliness of this
proposal, with the fifth session of the IGC of BBNJ tentatively scheduled for August 2022.

Keywords: ecosystem-based approach, global ocean vision, strategic environmental assessment, UNCLOS,
BBNJ Agreement

INTRODUCTION - THE NEED FOR AN ECOSYSTEM BASED
GLOBAL OCEAN VISION UNDER BBNJ

The ocean is the largest ecosystem on Earth, covering more than two thirds of the planet’s
surface and encompassing 99% of all the habitable space for life on Earth (IPCC, 2019a). We
rely on the continued supply of ecosystem services provided by a healthy ocean (e.g., IPBES,
2019; SCBD, 2020; UN, 2021), whose use must take place within the planetary boundaries of a
sustainable development for humankind (Rockstrém et al., 2009), ensuring ocean ecosystems
remain sufficiently intact and resilient to human disturbance (Rockstrom et al., 2021). However,
that is not our current global trajectory (Steffen et al., 2015). The ocean is changing fast in the
Anthropocene: warming, deoxygenating and acidifying. Eutrophication and other types of
pollution, changing oceanographic conditions, and concomitant effects on biotic communities,
such as species migrations and die-off, are increasingly evident as a direct combined result of
human activities (UN, 2021; United Nations Environment Programme, 2021; IOC-UNESCO,
2022). The growing range of maritime economic sectors with a direct or indirect link to the
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ocean (e.g., Boschen-Rose et al., 2020), is further contributing
to increased and cumulative pressures on the ocean, including
overexploitation of living (and non-living) marine resources,
chemical and physical pollution (including noise), the spread
of invasive alien species, and physical destruction of habitats
(UN, 2021). These combined pressures on the ocean ecosystem,
namely on marine biodiversity, are impairing (and even
threatening) the continued delivery of essential ecosystem
services throughout the water column, all the way down to the
deep sea and ocean floor (e.g., Levin and Le Bris, 2015), making
the need to safeguard marine biodiversity ever more urgent
(Johnson et al., 2019; Johnson et al., 2018).

The United Nations Convention on the Law of the Sea is
the international agreement that establishes a legal framework
for all marine and maritime activities. Conceived in the 1970s
and signed in 1982, Part XII of UNCLOS contains special
provisions for protection of the marine environment. However,
our understanding of the complexity of the biosphere and the
climate-ocean nexus, as well as humanity’s collective ocean
literacy, has evolved. This has raised awareness of important
governance gaps concerning the protection of marine
biodiversity particularly in areas beyond national jurisdiction
(e.g., Druel and Gjerde, 2014; Warner, 2014). In 2017 the UN
General Assembly established an Intergovernmental Conference
to negotiate an International Legally Binding Instrument under
UNCLOS on the conservation and sustainable use of marine
biological diversity of areas beyond national jurisdiction
(BBNJ) (General Assembly resolution 72/249). Negotiations
are ongoing but the latest draft text of an agreement includes a
short General objective in Article 2 stating that “The objective
of this Agreement is to ensure the [long-term] conservation and
sustainable use of marine biological diversity of areas beyond
national jurisdiction through effective implementation of the
relevant provisions of the Convention and further international
cooperation and coordination” (UNGA, 2019).

Our contention is that this negotiation, and an expansion
of the draft General objective specifically, is a golden
opportunity to articulate a global ecosystem-based ocean
vision, to guide any and all human activities in the ocean, as
the common denominator for future policies, strategies, plans
(including those resulting from marine spatial planning (MSP),
programmes and projects, involving maritime activities. It
would enhance their mutual coherence, framing the ‘new
narrative for the ocean’ that the ocean is ‘too big to ignore,
called for by Lubchenko and Gaines (2019), and establishing the
foundation for future ocean stewardship ensuring sustainable
active management of the ocean ecosystem to promote multi-
generational human wellbeing, as proposed by Rockstréom and
co-authors (2021).

PROPOSED TENETS OF AN ECOSYSTEM-
BASED GLOBAL OCEAN VISION

A global ocean vision will be a picture of a desired future
ocean (Lukic et al., 2018; Stuchtey et al., 2020): an image of
what the marine environment should look like to be able to
deliver to humanity the ecosystem services it relies on in a

predefined but dilated timeline. Given that such a holistic and
overarching future vision for the ocean must be capable of
underpinning any and all relevant future global policies, plans
and programmes, it must integrate key considerations such as
global ecosystem scale, dilated time scale, a rapidly changing
environment, globally agreed principles, and ‘strategicness™

- global ecosystem scale (not always captured by framework
conventions or lines on maps): this vision must assume an
ocean basin scale as the only appropriate scale able to cover/
integrate global ocean ecosystem level information (such as
ecological connectivity (Harrison et al., 2018)) and all ocean
uses and governance scales (jurisdictions), ranging from that
of small local MPAs to national marine spaces, to regional
seas and all the way through to ocean basins integrating areas
beyond national jurisdiction (ABNJ), including the high-seas
and the subjacent seafloor, a.k.a., the Area. Global ecosystem
scale is in fact the one at which phenomena such as major
ocean migrations or the global ocean circulation that cross
the whole range of existing jurisdictions and corresponding
borders can be understood and sustainably managed;

- dilated time scales: time scales at stake also span a
wide range, from seasonal or yearly licensing of fisheries
quotas through multidecadal concessions for exploitation
of non-living marine resources or the installation of fixed
infrastructures, e.g., for renewable energies production
(e.g., Ferreira & Andrade, 2021). For these reasons, a useful
vision must be able to see beyond multiple decades (and
correspondingly encompass a transgenerational horizon);

- rapidly changing environment/shifting baselines in
the Anthropocene: a useful future global ocean vision must
integrate current planetary ocean-climate and marine
biodiversity trends (IPBES, 2019; IPCC, 2019b; Sweetman
et al., 2017; Steneck and Pauly, 2019; Paulus, 2021) to be able
to provide a realistic backdrop to the visioning process;

- globally agreed-principles: such as the so called ‘modern
conservation principles, which include the ecosystem approach
and the precautionary approach, integrated and adaptive
management, use of best available scientific information and
application of best practices and technologies, stakeholder
consultation, etc. (Gjerde et al., 2008)!. This is consistent
with the call for a precautionary approach enshrined in many
international instruments [e.g., ITLOS Advisory opinion in
para. 131-135 (ITLOS, 2011) and UN Fish Stocks Agreement
Art. 6 (UNGA, 1995)];

- ‘strategicness’: refers to a holistic, anticipatory, prospective,
all-encompassing integrative approach/framework to address
the planning and management of these global environmental
challenges, and to assess the effectiveness of the measures
adopted (Stoeglehner, 2020). Such a strategic approach
must be capable of guiding all vested interests towards a
sustainable ocean economy; setting a general direction
towards robust ocean health; building and promoting a
culture of sustainability; serving both the short- and the long-
term interests which will likely cover decadal time spans; and
achieving delivery of lasting wellbeing.

" Included in Article 5 of the draft BBNJ Agreement.
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DISCUSSION - BUILDING THE
ECOSYSTEM-BASED GLOBAL OCEAN
VISION UNDER BBNJ - A KEY ROLE
FOR SEA

Strategic Environmental Assessment (SEA), “a process to
facilitate strategic decisions toward sustainability” (Noble
and Nwanekezie, 2017), is an approach for future visions
development and evaluation, and has been considered the best
option for the delivery of lasting wellbeing, building a culture
of sustainability, and serving the long and the short-term
interest (Gibson et al., 2016). It has been mooted as a “modern
conservation tool”, together with other instruments, alongside
MSP or networks of representative MPAs, that apply to human
activities or to their effects in the ocean (Gjerde et al., 2008).
We argue below how an SEA approach could inform the BBNJ
Agreement, specifically its General objective text.

Potential of SEA in BBNJ: From EIA-Based
to Strategy-Based

SEA is still predominantly applied as an Environmental Impact
Assessment (EIA)-based approach to the identification and
evaluation of the environmental consequences of policies,
plans or programmes? (PPP), differing from the traditional
EIA of projects (see Glasson and Therivel, 2019) 3 mainly in
terms of its scope (Noble & Nwanekezie, 2017). Under this
understanding SEA is commonly used as a post-evaluation
procedure whose main aim is to ensure the formal consistency
of the high-level management instrument it applies to with
environmental requirements (ibid.) (Figure 1). As such,
although it may contribute to “greening” such instruments
(CEC, 2009, 10), it is often seen as a ‘necessary evil’ to
be hurdled to enable economic endeavours or “a simple
procedural box-ticking requirement” (EC, 2017, 10). Even
where efforts are being made to introduce SEA at the earliest
stages of planning processes (see European MSP Platform,
2021; UNESCO-IOC/European Commission, 2021), its role
is still limited to addressing “the environmental impacts
of regional planning and sectoral plans as well as planning
alternatives” (ibid., 113). In this ‘EIA-based’ application of
SEA, as a process used to review predefined proposals after
key strategic decisions have been taken, SEA has value but
its contribution to the decision-making process is effectively
limited and relevant opportunities are lost (Gibson et al,,
2016). This EIA-based SEA is the model adopted by the
Convention on Biological Diversity [see COP 6 Decision VI/7
(CBD, 2002)] and is the sense in which it is included in the
current draft of the International Legally Binding Instrument
(ILBI) on BBNJ [see articles 28 and 42 (UNGA, 2019)].

2 In EU member-states, under Directive 2001/42/EC, SEA only applies to plans and
programmes.

S'ElA is a process, a systematic process that examines the environmental
consequences of development actions, in advance.’ (Glasson and Therivel, 2019).

Conversely, adoption of SEA as a strategy-based* or
proactive approach opens up for new opportunities, able to
reconcile multiple ambitions and perspectives. With such an
approach SEA becomes a process for driving the decision-
making process and institutional change. Use of strategy-based
SEA has been advocated in the context of the Convention for
Biodiversity Sustainable Ocean Initiative (CBD/SOI, n.d.)
and within the BBNJ agreement/negotiations, to promote
cooperation and conservation (e.g., Doelle & Sander, 2020;
Hassanali and Mahon, 2022; WWE 2019; Hills, 2020).
WWE (2019) suggested that States should be required to
conduct a ‘collective’ SEA, which would act as a warrant of
environmental oversight and as an “exercise in ‘enhanced
cooperation”, and Hill (2020, p. 27), reporting on the results
of a 2020 EC workshop on EIAs and SEAs in ABNJ, noted
‘the need to harmonise processes to create a cooperative and
integrated approach’ Doelle & Sander (2020) listed the basic
building blocks of next generation environmental assessments
(including SEA) that need to be in place under Hassanali and
Mahon (2022) detailed the components of a proactive process
for conservation of BBN] with an SEA track informing
subsequent region-specific policies and plans (including
MSP).

An obligation for States to undertake SEA of “plans and
programmes relating to activities” is currently given a place
holder (Article 28) in the revised draft text of the BBN]J
Implementing Agreement (A/CONE.232/2020/3) (UN, 2020).
This was considered at the fourth substantive session (IGC4)
of the Intergovernmental Conference held from 7-18 March
2022. During IGC4 there was no consensus on SEA with
mixed opinions regarding its application and some States
continuing to promote voluntary application. However, this
interpretation relates to instruments meeting set criteria (yet
to be agreed), albeit supporting the use of SEA to address
cumulative pressures, instead of addressing/pursuing an
overarching holistic future vision.

Employing a Strategy-Based SEA to
Reach a Global Ocean Vision Within BBNJ
We specifically argue that a strategy-based SEA could inform
the BBNJ Agreement General objective text, framing the
development of an ecosystem-based global ocean vision that
can guide and support the development of any subsequent
(related) instruments and of their corresponding assessments
(Figure 2). Expanding text in Part I General Provisions of
the draft BBNJ Agreement - for example in Article 2 General
Objective, or in a new Article 2 bis, or strengthening Article
5 (General principles and approaches) - could, in succinct
terms, incorporate a vision resulting from a strategy-based
SEA approach. Contributions to a virtual dialogue convened
from 29-31 March 2022 (i.e., shortly after IGC4) by the
STRONG High Seas Project® underlined the benefits of a

4 For an in-depth discussion of the gradient from less to more strategic aspects that
SEA can assume, see Noble and Nwanekezie, 2017.
5 https.//www.prog-ocean.org/our-work/strong-high-seas/.
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FIGURE 1| Traditional, EIA-based (reactive) approach to SEA, where SEA is at best a greening mechanism of a corresponding high-level management instrument.
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FIGURE 2 | Proactive strategy-based SEA positioning within the ILBI.
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Global

common goal or purpose; an overarching set of principles,
and more explicit State obligations to cooperate.

Building, agreeing and ratifying such an all-encompassing
global ocean vision is a complex task, with multiple and
interlinking layers. To use a theatrical analogy, some key elements
need to be considered:

- Selling the concept: understanding and incorporating the
tenets described above as the backdrop (scenario) for develop-
ing the vision;

- Writing the script: a clear, simple, synthetic, consensual mes-
sage that can be used to guide action (the vision);

- Casting: carefully identifying the full range of actors that need
to be won over and involved, across all geographic scales and
sectors of society. This translates into a major challenge in view
of the diversity of interests and of stakeholders at play: from
states, to regional bodies and to international organisations;
from individuals to NGOs, business companies, investors;

- Setting the scenario: ensuring incorporation of the strongly
stated pre-condition of the BBNJ negotiation that it should ‘not

undermine existing relevant legal instruments and frameworks
and relevant global, regional and sectoral bodies’ (UN, 2019)
(see below);

- Connecting with the audience (society and its various ele-
ments) and its needs: well-being, health, prosperity,... and
scope, from humankind (for the High Seas or the Area) to the
individual (e.g., a fisherman).

Various methods could be used to operationalise this
proposal. A conceptual flexible framework for SEA has been laid
out by Partiddrio (2012), with a set of key structural elements to
be combined in the best adapted way, including the identification
of internal and external driving forces, either drivers of change
or inhibitors; establishing priority/determinant environmental
and sustainability issues; identifying government and non-
governmental organizations and institutions; and establishing a
network of relevant stakeholders. Base information to underpin
such an SEA process is now increasingly available as a result
of comprehensive, basin scale research (Cf. Supplementary
Material: North Atlantic case study). Also, an emerging scenario
building methodological framework that could be employed to
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TABLE 1 | Examples of existing Ocean Visions.

Source Vision

Ocean Panel, n.d.

A Vision of Protection, Production and Prosperity: In a sustainable ocean economy, effective

protection, sustainable production and equitable prosperity go hand in hand to create a triple
win for people, nature and the economy.

Gobierno de Chili, 2021

“In search of a healthy ocean as an object of its protection and conservation; benefactor in its

economic and social dimension; safe for the different activities that take place within it; formative
to strengthen its quality of natural laboratory and of academic development; inspiring as a
national cultural heritage; and predictable in terms of the phenomena that affect it, both natural
and anthropogenic” (our translation from Spanish original)

Republic of Fiji, (2020)
of Fiji.”

“A healthy Ocean that sustains the livelihoods and aspirations of current and future generations

New Zealand Government (2021)
of fisheries.

Ensuring the long-term health and resilience of ocean and coastal ecosystems, including the role

Governo de Portugal, (2021)

Promoting healthy ocean in order to maximize sustainable blue development and the well-being

of Portuguese people, setting Portugal as a leader in science-based ocean governance.

DEFRA, (2019)

Clean, healthy, safe, productive and biologically diverse ocean and seas

establish this type of forward-looking vision is the Nature
Futures Framework Approach (NFF), which shifts the
traditional scenario building focus from exploring impacts
of society on nature, to nature-centred visions and pathways
(Pereira et al., 2020).

A major role should be attributed to participatory
approaches in strategic contexts to contribute to the new
consistent narrative underlying construction of the global
ocean vision. Abundant guidance is available on participatory
processes and stakeholder involvement®. In the context of
on-going negotiations, this could be coordinated by any new
BBNJ Scientific and Technical Body perhaps as an Annex to
the Agreement.

Inspiration could be drawn from The Protocol on
Environmental Protection to the Antarctic Treaty’. The
Protocol is a significant, high ambition and long-standing
binding instrument®. Article 3 of the Protocol covers
Environmental Principles relating to human activities.
In effect, this Article takes an SEA stance: prioritizing
protection, placing limitations on activities that could cause
adverse impacts, insisting on informed decision-making and
risk assessment, and establishing monitoring obligations.
Articles 4, 5 and 6 cover context (i.e., relationship with other
components of the Antarctic Treaty System), consistency
with other components (of the Antarctic Treaty System) and
Co-operation.

Opportunity and Timeliness

IGC4 did not conclude negotiations, with States requesting
a fifth negotiating session. Following IGC4, Article 2 of the
draft BBN] Agreement remains unchanged although many
delegations called for streamlining text on international
cooperation and Treaty. Recognition of the ‘not undermining

%e.g., CBD SOl training modules (https.//www.cbd.int/soi/training/soi-training-modules).
7 https://www.ats.aq/e/protocol.html.

8 Until 2048 the Protocol can only be modified by unanimous agreement of all
Consultative Parties to the Antarctic Treaty

principle’. This is further reflected in language pertaining to
international cooperation and coordination of Area-Based
Management Tools stressing the need to recognise their
coherence and complementarity. Several commentators have
also reflected on implications of this principle for institutional
arrangements of the new Agreement (e.g., Clark, 2020; Berry,
2021) and global cooperation (Friedman, 2019). Considerable
discussion was devoted to cross-cutting issues such as the
remit of the Conference of the Parties (COP) and subsidiary
bodies that the COP could establish.

An ‘environment for well-being’ approach (Ntona and
Morgera, 2018) enshrined in a globally shared normative
framework would reflect high-level commitments made in a
range of international policy processes (Pretlove and Blasiak,
2018). Such an approach would explicitly align a BBN]J
instrument with the 2030 Sustainable Development Agenda
and SDG 14 (UNGA, 2015) while maintaining consistency
with the Convention on Biological Diversity (Article 5) and
the United Nations Fish Stocks Agreement and the mandate
of Regional Fisheries Management Organizations.

Our proposal has strong synergy with the ‘New
Action Agenda’ of the Ocean Panel that seeks a vision for
protection, production and prosperity in national waters!?,
and complements national visions, such as those published
by Chili, Fiji, New Zealand, Portugal and the UK (Table 1)
(Gobierno de Chili, 2021; DEFRA, 2019; Republic of Fiji,
2020; Governo de Portugal, 2021; New Zealand Government,
2021). The One Ocean Summit (9-11 February 2022, in
Brest, France) highlighted multiple non-coherent talks taking
place in different sectoral initiatives and called for simpler

9The ‘not undermining’ principle is a key issue and relates to achieving a harmonious
coexistence between the BBNJ Agreement and existing instruments. Article 4, para 3
(as currently drafted) affirms that the ILBI: “...does not undermine existing relevant legal
instruments and frameworks and relevant global, regional and sectoral bodies”.

10 The High-Level Panel for a Sustainable Ocean Economy (The Ocean Panel),
co-chaired by Norway and Palau, have set out a vision for how to build a sustainable
ocean economy (https.//www.oceanpanel.org/).
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governance to involve civil society and preserve global
commons, a notion that has synergy with an overall global ocean
vision.

A global ocean vision as envisaged here is timely as 2022
marks the 40% anniversary of UNCLOS, the legal framework
that, to date, has successfully provided the foundation for
cooperation and consistency in terms of global multilateralism
for all marine and maritime activities!!. A fifth session of the IGC
of BBNJ is tentatively scheduled for August 2022 at which it is
hoped that the implementing agreement will be concluded, so
this critical negotiation can provide a final chance to implement
the suggestion we are promoting here.
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Landscape maps based on multivariate cluster analyses provide an objective
and comprehensive view on the (marine) environment. They can hence
support decision making regarding sustainable ocean resource handling and
protection schemes. Across a large number of scales, input parameters and
classification methods, numerous studies categorize the ocean into seascapes,
hydro-morphological provinces or clusters. Many of them are regional,
however, while only a few are on a basin scale. This study presents an
automated cluster analysis of the entire Atlantic seafloor environment, based
on eight global datasets and their derivatives: Bathymetry, slope, terrain
ruggedness index, topographic position index, sediment thickness, POC flux,
salinity, dissolved oxygen, temperature, current velocity, and phytoplankton
abundance in surface waters along with seasonal variabilities. As a result, we
obtained nine seabed areas (SBAs) that portray the Atlantic seafloor. Some SBAs
have a clear geological and geomorphological nature, while others are defined
by a mixture of terrain and water body characteristics. The majority of the SBAs,
especially those covering the deep ocean areas, are coherent and show little
seasonal and hydrographic variation, whereas other, nearshore SBAs, are
smaller sized and dominated by high seasonal changes. To demonstrate the
potential use of the marine landscape map for marine spatial planning
purposes, we mapped out local SBA diversity using the patch richness index
developed in landscape ecology. It identifies areas of high landscape diversity,
and is a practical way of defining potential areas of interest, e.g. for designation
as protected areas, or for further research. Clustering probabilities are highest
(100%) in the center of SBA patches and decrease towards the edges (< 98%).
On the SBA point cloud which was reduced for probabilities <98%, we ran a
diversity analysis to identify and highlight regions that have a high number of
different SBAs per area, indicating the use of such analyses to automatically find
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potentially delicate areas. We found that some of the highlights are already
within existing EBSAs, but the majority is yet unexplored.

KEYWORDS

marine landscape, unsupervised learning, machine learning (ML), multivariate
analysis, biogeographic provinces, marine protection, marine habitat connectivity,
landscape ecology metrics

1 Introduction: landscape maps and
the need for objectivity

The ocean environment is perceived as vast and seemingly
endlessly variable, and so are its inhabitants. It may be argued
that breaking it down into a handful of distinct classes does not
account for its diversity. However, if we aim to develop
sustainable practices, particularly those grounded in
ecosystem-based management (typically using area-based
management tools, [e.g., TUCN, 2018)], there is a need to
condense this variability into spatially explicit delineations of
biological and environmental entities. As such, there is a need to
classify the marine ecosystem into ‘provinces’, ‘landscapes’, or
‘habitats’ (Roff et al., 2003). Indeed, Kavanaugh et al. (2016)
summarize that, ‘landscapes are conceptual models of systems
shaped by the local geomorphology, environmental conditions
and biological processes.’

Most classifications to date either start from a biological
point of view, based on the knowledge of species distributions
and leading to the delineation of biomes or biogeographic
provinces (e.g., Watling et al., 2013), or from the
physiographic point of view, deploying a classification of the
physical environment as a proxy for species niches and habitats
(e.g., Harris et al,, 2014). Unfortunately, due to the remoteness
and challenging sampling conditions in the deep and open
ocean, our knowledge of species distributions in the marine
realm is still very limited, creating considerable uncertainties in
biogeographic classifications of the ocean (e.g. Tyler et al.,, 2016)
despite the significant progress achieved by large research
programs such as the Census of Marine Life (Snelgrove, 2010).
Predictions of the distribution patterns of species and biomass
are typically made using physical environmental variables as
predicting factors, given the fact that, particularly at broad scales,
the physical environment is one of the main drivers for species
occurrence and community composition, and is commonly
better known or observed than the species themselves (Gille
et al., 2004; Wei et al.,, 2010; Watling et al., 2013; Morato et al.,
2021). This means that the large-scale ecosystem classifications
of the oceans (i.e. the European Nature Information System
(hereafter EUNIS) by Davies et al., 2004, the Global Seascape
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Map by Harris and Whiteway, 2009, the Global Open Ocean and
Deep Seabed (hereafter GOODS) biogeographic classification by
the Intergovernmental Oceanographic Commission (hereafter
I0C), 2009, the Global Seafloor Features Map (hereafter GSFM)
by Harris et al, 2014, and the Environmental Marine Units
(hereafter EMU) by Sayre et al., 2017) typically start with broad
divisions of the physical environment, based on key parameters
that influence species’ physiology, distribution, and behavior
(e.g., depth, temperature, oxygen concentration, and food
availability). They provide a first-level insight into the spatial
structure of ocean ecosystems and serve as a tool to indicate
ecosystem connectivity or patchiness, as well as supporting
marine protected area networks assessments (e.g. McQuaid
et al., 2020, Popova et al, 2019) or other aspects of marine
spatial planning and conservation (Combes et al., 2021).

Since there are already multiple large scale (e.g. Vasquez
et al., 2015, Verfaille et al 2009) or even global ocean
classifications, an important question could be: ‘why do we
need yet another?. The answer to this is neither exhaustive
nor trivial: there is a need for enhanced objectivity when talking
about classifications, as well as for the use of updated and
recent data.

Classifying the ocean environment using thresholds that are
based on human interpretation of what exists on the seafloor
bears the risk of overlooking specific types of marine landscapes
by considering only a few aspects of the environment each time
and may introduce artificial divisions because of the way people
historically looked at ocean maps and biological data (Howell,
2010). In reality, the physical environment is a multivariate
continuum. Ideally, all aspects of its character should, a priori, be
considered simultaneously and equally weighted when
delineating significantly different environmental entities or
landscapes. Multivariate data analysis techniques are capable
of this, and can take marine landscape classification beyond the
initial, manual approach (Kavanaugh et al., 2016). To our
knowledge, only two studies exist that have applied this to the
global marine environment: the Global Seascapes by Harris &
Whiteway (2009) and the Environmental Marine Units (EMU)
by Sayre et al. (2017), which aim to take an objective approach
using unsupervised classification techniques on datasets that
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include hydrographic, morphological, and biological variables
on a global scale. Harris and Whiteway (2009, their Figure 10)
applied an unsupervised isoclass technique, which is comparable
to a stepwise (cascaded) K-Means, on six biophysical variables
(i.e., depth, seabed slope, sediment thickness, primary
production, bottom water dissolved oxygen, and bottom
temperature). Sayre et al. (2017) chose the k-means clustering
algorithm in their work. Within this study, we aim to expand the
range of input variables, including the latest data from recent
and fine-scale ocean models. Using density estimation and
model-based clustering, we try to overcome shortcomings of
the widely used K-Means, or of similar algorithms (e.g. isoclass),
such as their sensitivity to the initial cluster centre placement,
fixed number of clusters, limitation to spherically shaped
clusters, etc. (Press et al., 2007; Sayre et al. 2017).

1.1 Making use of marine
landscape maps

As pressures on the ocean floor from e.g., climate change,
overfishing and mining increase, it is becoming increasingly
urgent to protect key regions by declaring them marine
protected areas (MPA). Less than 10% of the ocean realm is
under any form of protection today (IUCN, 2021) although
there is agreement that protecting 30% of global land and ocean
would be beneficial not only for ecosystem and biodiversity
recovery but also for the financial and non-monetary economic
sector. This has been widely examined in the 30x30 study by
Waldron et al. (2020). And although in 2010, the World Park
Congress recommended a protection of 30% by 2014, it is widely
known that even today this is by far not the case (e.g. O'Leary
et al,, 2016; IUCN, 2021).

Out of the existing MPAs, only 31% (less than 2% of the
entire ocean) enjoy full protection. The remaining 69% are still
open to some extent of fishing activities (Turnbull et al., 2021;
IUCN, 2021), although No-Take areas, regions that are fully
protected, have shown the greatest effectiveness in preserving
marine biodiversity and also a capability of re-establishing the
complexity of marine ecosystems (Sala & Giakoumi, 2017).
Often, a lack of basic knowledge about the deep-sea
ecosystems in a particular region of the deep sea can result in
it not being considered for protection. Landscape maps may be
an aid with this problem, as they highlight, on an ocean basin
scale, both coherent marine areas that may have been unknown
so far (e.g. Magali et al., 2021) and also regions of high landscape
variability. The latter are particularly relevant, because a major
criterion for the designation of MPAs or the definition of EBSAs
(Ecologically or Biologically Significant Areas) is the assessment
of the local environment’s diversity and variability (IUCN, 2018,
CBD 2009). EBSAs are defined by experts, based on seven
parameters (Uniqueness or Rarity, Special importance for life
history stages of species, Importance for threatened, endangered
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or declining species and/or habitats, Vulnerability, Fragility,
Sensitivity, or Slow recovery, Biological Productivity, Biological
Diversity, Naturalness) (CBD 2019). Often, EBSAs can be found
in combination with rough topography, for example along
seamount chains (e.g. Walvis ridge) or large fracture zones (e.g
La Romanche), but also associated to upwelling and open water
regions (Convention on Biological Diversity (CBD), 2009).
Translated to the landscape map, these would be regions with
a high density of different landscapes. We therefore further
demonstrate a prospective use of classifications like this by
running a quantitative landscape analysis over the final cluster
map. It highlights areas of high cluster diversity density and
therewith potential regions of interest for future studies or
candidates for marine protected area designation.

2 Methods — processing steps

With this study, we aim to reduce human subjectivity in
ecosystem classification as far as possible by avoiding setting
thresholds between classes and applying an unsupervised
multivariate statistical approach. Unsupervised in this sense
means that the clustering procedure is an automatic process
that recognizes patterns in an unlabeled dataset. This kind of
multivariate statistical clustering scheme treats all input
variables equally. We believe that this is a more objective way
to describe the ocean environment than weighting
individual variables.

2.1 Data selection

Deciding on the right input parameters is as fundamental as
it is challenging. In an unsupervised cluster analysis, it is this
part which can be influenced by human subjectivity the most,
with incorrect choices at this stage potentially rendering biased
results (Roff et al, 2003; Harris and Whiteway, 2009). We
selected data based on the following: ecological understanding
described in literature and existing classifications (e.g., Harris
and Whiteway, 2009; IOC, 2009; Howell, 2010; Watling et al.,
2013; Harris et al., 2014; Sayre et al. 2017; Morato et al., 2021),
spatial coverage, resolution, data access, and data format to have
a representative sample of ecological determinants and a good
exemplification of the seafloor habitat. In our aim to map hydro-
morphological provinces of the Atlantic seafloor, the spatial
availability of input data is constrained to the Atlantic
geographical boundary and further excluded data from the sea
surface and the water column (except for the bottom water).
Hence in the deep sea, where data presence is scarce (e.g. Clark
et al,, 2016) and the major area to be classified is below 1,000m
water depth, we relied on models and data compilations that are
available in full coverage and not in single scattered sample
points. We chose the Copernicus Mercator model (hereafter

frontiersin.org


https://doi.org/10.3389/fmars.2022.936095
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Schumacher et al.

CMEMS) (EU Copernicus Marine Service, 2021) for
hydrographic variables and the Satellite Radar Topography
Mission version 2 (hereafter SRTM) 15+V2 data (Tozer et al.,
2019a) for geomorphological parameters. Furthermore, also
GlobSed (Updated Total Sediment Thickness in the World’s
Oceans, Straume et al.,, 2019) and Particulate Organic Carbon
(POCQ) flux (Lutz 2007) were chosen as determinant variables.
All data were unprojected and were referenced to World
Geodetic System (WGS) 84.

2.2 Data acquisition and description

2.2.1 CMEMS data products

Global physical and biochemical data from satellite
observations, ocean models, and in-situ samples are combined
and published on a regular basis by CMEMS and provide
information on the physical and biochemical state, dynamics,
and variability of the ocean ecosystem. All data products are
freely available to the public (EU Copernicus Marine
Service, 2021).

The data used for this study are based on numerical models
(NEMO 3.1, ORCA12) and data assimilation techniques
(reduced order Kalman filter) (Lellouche et al., 2018). From
these, we extracted the following parameters:

* Bottom temperature in [°C] (physical), resolution 1/12°
* Salinity in [psu] (physical), resolution 1/12°

* East (uo) and north (vo) components of ocean currents in
[m/s] (physical), resolution 1/12°

* Oxygen in [mmol/m~»3] (biochemical), resolution % °

* Phytoplankton in [mol] (biochemical) expressed as

carbon in sea water, resolution % °

CMEMS provides all hydrographic data products via FTP
server download as global multiband and multi - dimensional
NetCDF files. The dimensions are time, latitude, longitude,
depth (50 layers), and 11 value variables (salinity, oxygen, etc.).

The physical data product (GLOBAL_ANALYSIS_
FORECAST_PHY_001_024_monthly) is based on the PSY4V3
Mercator system of the NEMO 3.1 model and amongst others
contains 3D monthly mean fields for temperature, salinity, and
current velocity. These data have a horizontal resolution of 1/12°
(approximately 8 km at the equator) with 50 depth levels and a
vertical resolution of 1m at the sea surface and 450m at the seafloor
depth level (Lellouche et al, 2018; Tressol et al, 2020; Chune
et al,, 2020).

The biochemical data products (GLOBAL_ANALYSIS_
FORECAST_BIO_001_028) are based on the PISCES-v2
(Pelagic Interactions Scheme for Carbon and Ecosystem
Studies volume 2) model within NEMO 3.6 which simulates
biochemical and lower trophic levels of marine ecosystems, as
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well as carbon and main nutrient cycles (Aumont et al., 2015).
It also contains 3D monthly mean fields for oxygen and
phytoplankton and comes with a horizontal resolution of
1%4° (approximately 24 km at the equator). Similar to the
physical data, it has 50 depth levels at a vertical resolution
of 1m on the sea surface and 450 m at the seafloor depth level
(Paul, 2019).

For our analysis, the selected hydrographic data were
reduced to seafloor level (i.e., taking the CMEMS depth layers
closest to seafloor), averaged over three years (2018 - 2020) and,
additionally, three years” seasonal variability was calculated. We
considered three years a reasonable time scale to capture annual
changes and seasonal variability at the same time. An overview
of all input variables and their main statistics is listed in the
supplementary material. A detailed description of the data
preparation and processing is given in sections 2.3 & 2.4.

2.2.2 SRTM15+ V2

The latest Shuttle Radar Topography Mission (SRTM)
version 2 digital topographic dataset released by NASA in
2015 is the basis to the topography determinants in our
classification. Depending on the satellites’ track spacing,
latitude, and water depth, the resolution of the predicted
bathymetry is approximately 6 km (Tozer et al., 2019a).

The SRTM15+ V2 grid is available via OpenTopography
(https://opentopography.org) as a global NetCDF. It is a data
compilation built by Tozer et al. (2019a) of the SRTM predicted
ocean depth complemented by shipborne MBES bathymetry at
157 (1/240°) resolution. To avoid bias towards higher resolution
data during the classification, the SRTM15+ V2 has been down-
sampled to the CMEMS data product resolution of 1/12°
(Yesson et al,, 2011a, b). The bathymetry grid by Tozer et al.
(2019b) was used. Slope, terrain ruggedness (after Riley et al,
1999) and topographic position index (a landform analysis
where each data point’s altitude is evaluated to its surrounding
neighbors, after Weiss, 2001) were calculated from the
depth grid.

2.2.3 Global sediment layer thickness and
POC flux

The latest compilation for sediment thickness data GlobSed
(Straume et al., 2019) was selected as a further determining
variable as sedimentation is a crucial indicator for ecosystem
types and biodiversity (e.g., Snelgrove, 1999; Zeppilli et al,
2016). It was also used as a proxy for the sedimentation rate
since there is currently no Atlantic-wide full-coverage dataset
that reflects sedimentation rate across the basin. GlobSed is the
most updated version of global sedimentation information and
has been constructed at the same resolution as the CMEMS data
(1/12°). Particulate Organic Carbon (POC) flux (Lutz et al,
2007) has further been chosen as a proxy for food availability at
the seafloor in addition to phytoplankton (from CMEMS) (e.g.
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Kharbush et al., 2020). The original grid of resolution of 1/11°
was rescaled to 1/12°.

2.3 Data pre-processing

The pre-processing was carried out using gdal (GDAL/OGR
2021), Python V3.7 (Van Rossum & Drake, 2009), and GMT
Generic mapping Tools V6.1.1 (Wessel et al., 2019). The results
were visualized with QGIS V3.16 (Hannover) (QGIS
Development Team, 2020). The following pre-processing steps
were made:

1. Apply scale factor and offset to unpack real values from
packed netCDF file format (Chune et al., 2020)

2. Create a seafloor layer, if necessary (from those data
including the entire water column, e.g. salinity).
Resample each input raster at an equal resolution of 1/
12° using the grdsample algorithm within GMT.

3. For bathymetry only: calculate derivatives slope, TPI, TRI

4. For partial current velocity components: Calculate
absolute velocity using:
v = sqrt(uo2 + vo2)
where vo, uo are north and east current velocity
components, respectively

5. For non-static variables: Calculate three-years mean
using: [(Jan18 + Janl9 + Jan20) + (Febl8 +)... +
(Dec20)]/36

6. For non-static variables: Calculate seasonal variability as:
|summer - winter| where: Summer = (June + July +
Aug.)/3 and Winter = (Dec. + Jan. + Feb.)/3

7. ‘Nan out’ landmass: Uniquely fill land areas with NaNs to
indicate a lack of relevant oceanic data here and so
exclude them from the analysis.

2.4 Data clustering

To find and define clusters, we applied a density estimation
and model-based clustering method that is implemented by
(finite) Gaussian mixture models (GMM) in R v4.1 (R Core
Team 2018). This technique reveals latent structures within the
dataset by seeking an optimal number of Gaussian distributions
that sufficiently represent the dataset (Hastie et al., 2001). The
distributions are fitted iteratively with maximum likelihood
implemented by Expectation Maximization (EM) methods.
For each point of the dataset, the probability of it belonging to
a certain cluster of distributions is estimated (expectation, E-
step) using each distribution’s current mean, its covariance
matrix, and a hidden mixing probability coefficient as fitting
parameters. The expectation step is then repeated
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(maximization, M-step) until convergence (stabilization of the
model) occurs (Hastie et al., 2001; Scrucca and Raftery, 2014).
The optimum model (= best number of clusters) is selected by
the Bayesian Information Criterion (BIC) index which is known
to be robust against overfitting (Press et al., 2007). The E-M-step
is somewhat analogous to calculating the distance of each point
to the cluster center for a data point in KMeans. In fact, KMeans
is a special, simplified case of GMM (Press et al., 2007). GMM
however has advantages over KMeans: The number of clusters
does not have to be known a priori; GMM takes clusters of
various shape, volume, and orientation and is not sensitive to the
initial placement of cluster centres, whereas KMeans only
accepts spherically shaped clusters. Given that it is based on
probability, GMM cluster boundaries are not sharp (i.e. either a
point belongs to a cluster or not) but soft, meaning that there is a
certain probability that a data point is part of a cluster.

To assess whether to include or exclude variables as input
parameters, the variable selection algorithm clustvarsel v2.3.4
(Scrucca & Raftery, 2018) is run before the actual clustering. It
examines the differences of BIC indices depending on whether a
variable has clustering properties or not. Based on this, a variable
is accepted or rejected. A large positive BIC difference indicates
high clustering properties (Scrucca and Raftery, 2014). The
algorithm accepted all input variables as input parameters,
hence this step will not be further discussed. The main steps of
the clustering process are listed below.

1. The input parameters were scaled to avoid bias towards
extreme values and obtain zero mean and unit variance.

2. A variable selection algorithm (‘clustvarsel’ v2.3.4)
(Scrucca and Raftery, 2018) was applied on the input
parameters to identify an optimal subset based on their
clustering properties.

3. According to its result, all variables were accepted as
input for the clustering.

4. The Gaussian mixture modelling algorithm ‘mclust’
v 5.4.6. (Fraley & Raftery, 2003; Scrucca et al., 2016)
was applied on the entire input variable dataset.

5. The mclust result was exported as a text file along with
the clustering uncertainties of each point.

6. Boxplots were created using ‘ggplot2’ v3.3.5 (Whickham,
2016) and the ‘ReolourBrewer’ (Brewer, 2013) library.

3 Results: The Atlantic seabed areas

The statistical analysis revealed nine clusters derived from
the input variables. We named the clusters ‘seabed areas (SBAs)’.
In the following the expressions ‘clusters’ and ‘SBA’, will be used
as synonyms, whereas cluster will be used as a technical term,
SBAs will be referred to in an interpretational context. The
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shapefile containing the SBA outlines will be published on the important measure when interpreting boxplots. It shows the
iAtlantic Geonode (geonode.iatlantic.eu/). middle quartile of the data set and, opposite to the mean or
A map showing the nine SBAs found in the analysis is shown average, it is not sensitive to outliers. A mean value (dot inside
in Figure 1. The majority of the SBAs are located in the deep sea the box) that is far away from the median indicates a bias
in Areas beyond national jurisdiction (‘ABNJs’) and only two towards the direction of displacement. The most illustrative
SBAs define coast-adjacent and continental shelf regions. boxplots are presented below (Figure 2). The complete set of
To understand what distinguishes the SBAs and what are boxplots for all input variables can be found in the
the dominating factors, a look at the boxplots below is of use Supplementary Material F1. A summary of the cluster
(Figure 2). They give quantitative information, outlining the statistics is listed in Tables A1, A2 of the supplementary
characteristics of each cluster and indicating which parameter material. A detailed boxplot assessment and boxplots
describes the respective cluster in the first order. The boxes including extreme values are given in the Supplementary
contain 50% of the data. The ‘whiskers’ (straight lines below Material F2, T1.
and above the box) denote minimum and maximum data Although we see from the box-plots that there is seldom a
values, respectively, such that box and whiskers include 95% single environmental variable that describes a particular SBA, we
of the data. The larger the box, the wider is the value span or can make some general statements about their most defining
variation of the respective input variable across a cluster. The characteristics. Table 1 presents a short outline along with the
median (central horizontal line inside the box) is another area covered by each SBA.
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FIGURE 1
Atlantic Seabed Areas as identified by the Gaussian Mixture Model analysis along with cluster probabilities. Areas of saturated colors have a
probability of >98% of being classified correctly. Especially at the cluster boundaries, probability decreases.
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Boxplots outlining the SBA characteristics. The boxes comprise the groups’ interquartile ranges, i.e. between the upper (75%) and lower (25%)
quartiles and contain the central 50% of the data. The ‘whiskers’ (straight lines below and above the box) denote minimum and maximum data
values, and together with the boxes make up 95% of the data set. The remaining 5% are extreme values, which for better visibility are not shown
here. They can be found in boxplots of the supplementary material F2. The colored lines/grey dots inside the boxes indicates the groups’
median/mean, whereas the grey dashed line is the overall data set's median.

3.1 Cluster probability

robust the classification is, we examined the absolute values of the
dominant cluster probability, hereafter referred to as probability.

As the clustering is based on the probability of any one 1/12°x
1/12° cell being classified into one of the nine SBAs, a ‘hard
boundary” - map showing all cells in the colour corresponding to
their most probable cluster could be misleading if many cells had
quite similar probabilities for a number of clusters. To test how

A cumulative curve of the classification probabilities [plotted as
“probability = 1 - uncertainty” as of Fraley & Raftery (2003)] is
shown in Figure 3. On Figure 1, the grey colours illustrate
probabilities of less than 98%, those were excluded. We see
from Figure 3 that more than 85% of the cells are assigned to a

TABLE 1 SBA description summary ordered by area covered (from smallest to largest).

Frontiers

in Marine Science

SBA  Depth (quartile Area Description
range) in [-m] [km2]
2064 - 3063 3,998,145 SBA I: Oxic, mostly flat with regionally thick sedimented coverage current influenced regions with low seasonal change
2 2443 - 4090 11,967,939 SBA II: MAR spreading center including abyssal ridges, trenches, seamounts and continental slopes as well as the Gulf
of Mexico.
4385 - 5135 14,990,027 SBA III: Deep, cold, fresh and oxygen-depleted abyssal plain with increased bottom current velocity
4 300 - 1395 5,216,720  SBA IV: Shallow, warm, nutrient-rich and saline deeper shelf/upper slope zones with thick sediment cover, strong
currents and strong local and seasonal changes
3236 - 4135 6,002,183 SBA V: Small and regional, cold and fresh deep water influenced areas in North and South Atlantic at medium depth,
with locally increased currents and current seasonal change
4473 - 5347 15,508,117 SBA VI: Central deep Atlantic cool, nutrient-depleted area with very weak currents, covering some abyssal elevations
and sinks
4720 - 5268 3,472,998  SBA VII: Small and regional, deep, flat, sedimented oxic region with strong currents and high seasonal current change
3563 - 4640 16,128,258 SBA VIII: Wider region around MAR covering new seafloor, faults and fracture zones, with extremely low sediment
cover, no currents, very low oxygen and temperature
39 - 119 5,945,256  SBA IX: Nutrient-rich, fresh, warm water continental shelf regions with thick sediment cover and strong seasonal

fluctuations
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FIGURE 3

A plot of cumulative frequency of observed probabilities in the classification of individual grid cells into one of the nine SBAs. The lines indicate
the 98% probability threshold that includes 79% of the data. Over 85% of the cells are classified with > 95% certainty.

dominant cluster with a probability of > 95% (uncertainty < 0.05).
Only around 2% of the cells lie in a transition zone of 40-60%
probability. Figure 1 shows that these higher-uncertainty cells
mainly lie at SBA boundaries, presumably reflecting the regions
where environmental variables are in transition between one SBA
and another. The cells which are classified with 0 uncertainty
generally lie in the centre of an SBA patch, classified as belonging
to just one SBA.

3.2 Landscape diversity

To highlight the diversity of the Atlantic sea floor landscape,
we ran a moving window analysis based on landscape ecology
principles (e.g. Swanborn et al., 2022) that automatically
identifies areas where several cluster boundaries meet. Regions
of high diversity are at the same time those with the highest
classification uncertainties. To be confident that our search for
areas of high landscape diversity is not weakened by these
poorly-classified cells, we included only points with
classification probabilities of >= 98% in the analysis. This still
amounted to about 80% of the data but significantly reduced the
data density in cluster boundary regions.

The diversity analysis was executed using the package
‘landscapemetrics’ (Hesselbarth et al., 2019). A major part of it
is based on FRAGSTATS (McGarigal et al., 2012), a program
that automatically quantifies landscape structure and has been
implemented in R by Hesselbarth et al. (2019). In combination
with a moving window, we used patch richness (PR) index, a
simple diversity indicator that counts the number of different
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patch types within a given area (McGarigal et al., 2012). A patch
describes the local area covered by a single SBA: Hence, the more
patches of different SBAs in an area, the higher the PR and local
diversity. As we did not want to fix patch sizes in advance by
defining a search radius, we chose a cell-wise moving window
approach with a window size of 3x3, including only one cell and
its direct neighbours. This approach catches even the smallest
region of high diversity. The PR index expresses the numbers of
different neighbours of a cell, with a minimum to maximum
count of one to four neighbours.

Figure 4 is a heatmap showing the patch richness as a result
of the diversity analysis. Regions of large densities of high SBA
diversity are highlighted as indicated by the red colours. The
highlights must be understood as a count of the different
neighbours per area — the more cells with a high number of
different neighbours in a region, the more intense the yellow/red
colour. The highlighted areas are well spread across the central
Atlantic basin, less in the Northern Atlantic. They correspond in
parts with the latest EBSAs as defined by the Convention of
Biological Diversity (CBD) 2019. Most of them are associated
with and around SBA II, which is the sparsest of all SBAs, hence
with most cluster boundaries. Many of the highlights are found
around small-scaled patches. Only few are in the vicinity of one
large patch of a single SBA, which is why in the region > 55°,
where large patches prevail, there is less patch diversity. We
chose two regions on Figure 5 for a detailed inspection to
highlight what this patch richness means in terms of
landscape variability.

Figure 5 shows the Namibia abyssal plain and Cape Basin, as
well as the southern edge of Walvis ridge, with red outlines
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Patch richness near Walvis ridge. The outlines are the highlighted regions as found by the patch richness analysis. The map also shows EBSAs
(green stripes) as of CBD 2019. For SBA color legend, please refer to Figure 1.

indicating regions of high SBA diversity. SBA III prevails, along
with several patches of SBA VII and seamounts covered by SBA
II. Besides the presence of seamounts, the input data suggest
deep and cold abyssal plain under the influence of strong
currents. The oxygen is slightly higher within the Walvis ridge
EBSA than in the Subtropical Convergence Zone EBSA and the
Namibian abyssal plain in between. Also, currents are locally
stronger, e.g. south of the Walvis ridge line and weaker in the
deeper basin. Here, the highlighted areas along Walvis ridge
correspond to the Walvis Ridge EBSA patch, but not so well to
the Subtropical Convergence Zone EBSA further south.

Figure 6 shows the Falkland escarpment north of the
Falkland plateau and the Tehuelche fracture zone south of the
plateau. At the escarpment, the highlights mainly include SBAs
IT & IIT and some small patches of SBA V. At Tehuelche fracture
zone, these are SBAs II, V and VIIL. The input data indicate
higher current speeds and increased seasonal change north than
south of the plateau and especially along the Falkland
escarpment which can be associated with the influence of the
Malvinas current and the Argentine gyre (Yu et al., 2018).

4 Discussion

4.1 How the SBAs relate to existing data
and publications

The unsupervised clustering of the Atlantic seabed
environment resulted in nine seabed areas, with characteristics
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summarised in Table 1. To interpret the SBAs, we compared
them to published oceanographic patterns such as large currents,
upwelling systems and water-mass formation zones as well as to
predicted seamounts (Yesson et al., 2011a; Yesson et al., 2011b),
and hydrothermal vent locations (Beaulieu and Szafranski,
2020). Many of the SBAs are influenced by currents, water
masses and water formation zones. A striking example for this
is SBA VII which is confined to one region: the major spreading
path of NADW through the North Atlantic deep abyssal plain
(e.g. Gary et al,, 2011). High oxygen concentrations, cold water,
very strong currents and high seasonal change support the
interpretation as a highly ventilated region (Figure 1 in
Rahmstorf, 2006). The partitioning into a Northern and a
Southern compartment of SBA V can be related to the
influence of Labrador Sea Water (LSW) formation taking place
in the deep convection zone of the Labrador basin (Koelling
etal., 2022), which spreads out into the central Atlantic Ocean as
part of the North Atlantic Deep Water (NADW), as well as to
Antarctic Bottom Water (AABW) in the Weddell Sea (Figure 1
in Rahmstorf, 2006). This is underpinned by the expert
knowledge-based GOODS classification whose authors found a
strong division into North and South Atlantic, too
(Supplementary Material Table T4, 10C, 2009; Morato
et al., 2021).

SBA IV encloses the Atlantic’s deeper shelf zones and
regions of strong local (boundary) current systems with a high
seasonal variability, such as the East Greenland current or
overflow areas such as the Greenland-Scotland-ridge complex
(Mauritzen, 1996; Rahmstorf, 2006; Vage et al., 2011; Semper
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et al,, 2020). Similar to this but in shallower regions is SBA I,
strongly influenced by water formation zones in the Labrador
and Greenland Sea as well as by the boundary and overflow
currents. SBAs I, IV and VII show an increased oxygen
concentration, emphasising the influence of mixing processes.
Lower oxygen concentrations in moderate depths (SBA V) may
be attributed to enhanced biological productivity (e.g. (Sigman
and Hain, 2012; Schmidtko et al., 2017), oxygen depletion during
the spreading of water masses, like e.g. the AABW on its way up
North (Menezes et al., 2017) or oxygen minimum or even dead
zones (Diaz et al., 2013; Rabalais, 2021). SBA 1II sticks out as it
seems to be mainly defined by topography, covering areas of
rough terrain and corresponding well with the spreading center
of the MAR. It is the patchiest of all SBAs. In major parts, SBA II
agrees with listed hydrothermal vent fields (Beaulieu &
Szafranski, 2020) and seamounts (Yesson et al., 2011a; Yesson
et al,, 2011b).

4.2 Comments on the seascapes,
GOODS and EMUs

We further compared the SBAs to the seascapes described by
Harris and Whiteway (2009), to the GOODS biogeographic
provinces (IOC, 2009) and to the Ecological Marine Units
(‘EMUS’) found by Sayre et al. (2017). The latter have also
been used by Morato et al. (2021) to assess their suitability for a
species distribution model (SDM). Harris and Whiteway (2009)
used a clustering approach (isoclass) on seafloor data which is
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most similar to ours. Sayre et al. (2017) also used a similar
technique (KMeans), applied in 3D on the water column. Their
EMUs are three-dimensional entities, vertically comprising
water column layers rather than separating the seafloor from
the water body above which makes it difficult to directly
compare to our seafloor-only zones. The same applies to
GOODS, which moreover is purely expert-based and hence
subjective. Table A3 in the supplementary material lists the
SBAs we found against the classes of Harris and Whiteway
(2009), Sayre et al. (2017) and GOODS to give an approximate
conversion. Also, only major matching areas are included; those
that have minor overlap are left out to avoid confusion. In Table
A4, the input parameters and methods of all aforementioned
classifications are listed.

When comparing the SBAs we identified to the seascapes by
Harris & Whiteway (2009), some (esp. SBAs III, V, VII) can be
‘translated’ into one single seascape (10), others (e.g. SBA VIII)
correspond to more than one seascape (5, 7 and 9). This might
be because we used additional non-morphologic parameters like
current speed, POC flux, etc., higher resolution data (1/12° for
SBAs, 1/10° for seascapes), and more recent data. We have not
included primary production in the classification, as it is a
variable mostly determining the ocean surface and the upper
water column until a depth of around -350 m (CMEMS, 2021).
Instead, we used POC flux to the sea floor. On the other hand,
Harris and Whiteway (2009) did not take into account seasonal
variability, a measure we considered crucial for currents, salinity,
temperature, and oxygen concentration. They further excluded
salinity, arguing that its variation at seafloor depths is very low.
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This may be correct in the deeper parts of the Atlantic, but our
results show that salinity values and seasonal variability do play a
role, for example, in the shallower SBA IX region, a region that
was excluded on their seascape map. In addition, the seascapes of
Harris & Whiteway (2009) were defined on a global scale and,
depending on the principal parameters that defined the
respective seascape, those may have varied across the global
ocean compared to the Atlantic basin. Another difference is that
we applied a different clustering technique, one which allows for
cluster shapes other than only spherical.

The other two mentioned classifications GOODS (I0C,
2009) and EMU (Sayre et al. (2017)) follow different
approaches: GOODS is a purely expert-based (subjective)
classification without automated or computer-based process.
EMUs are three-dimensional entities, vertically comprising
water column layers rather than separating the sea floor from
the water body above.

The non - comparability of marine classifications is,
according to Lecours (2017), a significant drawback regarding
their use. Table A3 in the supplementary material shows that,
except for the smaller SBAs I and VTI, all SBAs correspond to
more than one biogeographic region. As both EMUs and the
GOODS areas have a large extent, several of those regions are
almost as large as the entire Atlantic basin. Nevertheless, in
marine spatial planning or MPA network designation processes,
for example, it might be extremely useful to consult more than
one classification to illuminate several aspects of the same area
(e.g. Lecours et al., 2017).

The use of ocean landscape maps with regard to
conservation targeted decision making is pointed out by
Lecours (2017) as being somewhat like the classic problem of
comparing apples and pears: There is a lack of uniformity
concerning input data selection, standardised clustering
techniques and algorithms. Furthermore, quality assessment
widely differs and there is no method yet to combine the
uncertainties and errors that occur during a mapping process
into one ultimate uncertainty estimation. Visualising mapping
results in e.g. interactive GIS is a first step to tackle those
challenges, but in the long run, standardising determining
variables, methods and error estimation might become
inevitable (Lecours 2017).

4.3 Seabed areas and marine life

It is difficult to state whether the environmental clusters
identified here contain distinct species assemblages: in addition
to physical conditions, life-history traits and biological
interactions will influence biogeographic patterns. Even if the
physical environment is similar, species and assemblages
may differ.

While individuals may not be the same, species with similar
traits and functional behaviour could populate areas with
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comparable physical environments (e.g., burrowing fauna in
heavily sedimented areas or filter-feeders in complex, rocky
environments) (e.g. McGill et al, 2006; Zeng et al, 2020).
From a biodiversity management perspective, such spatially
explicit delineation of potential ecosystem functions (and
therefore services) is of high value even if the exact species
occupying the particular environment are not known.
Quantitative metrics like the patch richness index to calculate
diversity can discover those regions automatically
and objectively.

Morato et al. (2021) have made steps towards integrating
biogeographic province maps into environmental niche
modelling (e.g. species distribution models (SDM) or habitat
suitability models (HSM)). In their work, they compare the two
seafloor bioregion models EMU and GOODS to an SDM.
Although their results show only very little to hardly any
agreement of the SDM’s with the bioregions’ boundaries, they
still outline a valuable approach and a possibility of
implementing those kinds of classifications into species
prediction related work. Nevertheless, to effectively predict and
relate species to environmental conditions, classifications and
data at a finer scale must be available (Lim et al.,, 2021). The
combination of high-resolution classifications and SDMs or
HSMs is a very promising task, capable of supporting marine
area-based management and spatial planning work (Lim et al,
2021; Morato et al., 2021).

At the same time, it is crucial to keep in mind that the map
presented here is based on the current environmental
conditions. As a result of climate change, seabed environments
will change (e.g. rising temperatures, reducing oxygen content of
the bottom waters), and so may the SBAs. The SBAs may change
in shape and extent, or in characteristics. A next step may be to
create similar marine landscape maps based on future
predictions of the seafloor environment under different climate
scenarios, in order to provide policy-makers with a forward look
in addition to the comprehensive description of the present-day
situation presented here.

4.4 Automatically finding areas of
interest - interpretation of the patch
richness analysis in relation to EBSAs

The results of such patch richness analyses ought to make it
easier to identify potential areas of interest. Because they are
based on a multivariate cluster analysis, they combine complex
ensembles of multiple influencing parameters, a process which is
challenging for a human brain but simple for machine
algorithms. The highlights shall draw our attention to areas
where special conditions prevail, and which might be worth to
have a closer look at. In the case of the Falkland region
(Figure 6), the Falkland plateau seems to be a barrier between
two areas that are under the influence of different variables as
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shown by the altered composition of neighbouring SBAs. The
highlights in Figure 5 mostly cover seamounts or other subsea
features, which, with regard to the Walvis Ridge where highlights
and EBSA largely correspond, confirms that this is an area
of significance.

From Figures 4-6, we see that landscape diversity hotspots
are often found on and around seamounts or regions of strongly
varying topography. This is perhaps not surprising as they are
the regions where the physico-chemical conditions in the ocean
are known to change significantly over small spatio-temporal
extents. It is for this reason that research has often been
concentrated there (e.g. Clark et al., 2011). Over the Atlantic
basin, the identified regions of high landscape diversity
correspond in parts with the latest EBSAs. As EBSAs need a
certain amount of ground-truth data for their definition, our
landscape diversity map could be useful to concentrate research
in presently unstudied areas which may harbour significant
landscape diversity.

EBSAs are defined on a solid data basis which is why there
may be a bias towards well investigated regions. This may be the
fact in the Walvis ridge region (Figure 5) — with Walvis ridge
itself being significantly more examined than the surrounding
environment. The EBSA patch covers the entire Walvis ridge
and the area around Cape basin but only some of the nearby
seamounts — besides other reasons probably due to insufficient
existing data. It is not easy to find proof for this assumption. A
search in Google scholar in April 2022 however yields over 300
hits for publications containing Walvis Ridge in their title, over
500 containing Cape basin and 25 for Vema seamount, but none
for e.g. Malloy seamount. This could be an indicator for
unbalanced data distribution and research effort between
these areas.

Furthermore, EBSA definition is based on multiple criteria
where (biological) diversity is just one of them. In addition to the
sea floor, the water column is taken into consideration, too. It is
hence obvious, that the EBSAs only partially agree with the
highlights: For example in areas like the Labrador Sea, whose sea
floor is defined by only one SBA, the water column however is
highly dynamic due to deep water convection, making it a
unique spot and EBSA candidate (CBD 2021). On the other
hand, there are numerous highlights that are not within existing
EBSAs or MPAs, like e.g. in the basins of Guiana or
Newfoundland. This might be due to a lack of ground truth
data needed for EBSA designation. It may also be because some
regions we highlighted fail on other EBSA criteria. It has to be
noted, though, that currently, some regions still lack EBSA
expert workshops and do hence not have any EBSAs at all,
like e.g. the Argentine basin. Also, to date, the North-East
Atlantic most recent EBSAs have not been published yet, so
there is a lack of coverage here, too. Nevertheless, the highlights
of diversity in combination with the SBA map pinpoint towards
regions of interest and can help finding and defining new
research areas, e.g. to support cruise proposals or contribute to

Frontiers in Marine Science

62

10.3389/fmars.2022.936095

marine protection-based decision making, regarding location
and extent of potential MPAs or new EBSAs. They may be able
to support entire stages of EBSA identification without
introducing too much subjectivity.

Methodological constraints, potential
errors and data limitation

Despite the fact that multivariate clustering techniques are
more objective than hierarchical methods, unsupervised
analyses can still bear error sources that may not be visible at
first sight but must be considered when using them.

Resolution

Although a density estimation and model-based clustering
approach seems suitable for this kind of high dimensional and
complex data, it is the input data quality that needs to be looked
at. The most prominent quality-reducing factors are differences
in resolution, especially when dealing with multiple data sources.
This holds true for vertical as well as for horizontal resolution. At
depths > 1000 m, CMEMS model data products have a very low
vertical resolution of about 450 m (Lellouche et al., 2019). Hence,
they only give a very rough approximation of the conditions
prevailing in those depths or at the seafloor. Local small-scale
(vertical) variations (e.g., in temperature, caused, for example, by
hydrothermal vent fields) or the few-meters thick bottom
boundary layer will not be resolved. Given that ground truth
seafloor data are scarce in the deep sea, we considered for our
analysis the last depth level as defined by CMEMS to be
representing seafloor conditions. This induces a huge vertical
uncertainty, which cannot be resolved with the present data and
models. Bathymetry, on the other hand, is a seafloor layer by
nature, and can have a much higher vertical resolution. Tozer
et al. (2019a) state +/- 150m for the satellite data, but e.g.
bathymetry acquired from multibeam systems may reach an
order of metres to tens of metres. Hence in places, we are
aligning data from nominally different depths: those directly at
the seafloor (e.g., bathymetry), and the others in a vertical range
between seafloor level and 450 m above it (CMEMS model data).

Horizontal resolution is another constraint and mainly
attributed to limited data availability. For this analysis, we re-
sampled all data layers to the CMEMS physical data product
resolution of 1/12° (around 8 km at the equator (Lellouche et al.,
2019)), which required downscaling the CMEMS biological
product and upscaling the bathymetry data. Another option
would have been to upscale all data to the lowest resolution,
which in this case was %° (of the CMEMS biological product).
However, we dismissed this option, as the information loss
would have been intolerably high considering the fact that
oxygen and phytoplankton are the only data of this low
resolution. Notably, even 1/12° or 8 km, is a very coarse scale
which does not resolve small scale variations or features that
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might be of importance, like e.g. submarine volcanoes or small
oxygen dead zones. Local hydrodynamic and morphologic
conditions are important drivers for food flux and organic
matter transport to the seabed. These processes however
typically operate at the scale of an offshore bank or seamount,
i.e. at a resolution of maximum several hundreds of metres, and
might hence not captured within this study.

Both downscaling from low to high resolution as well as the
reverse can be critical; this is because high-resolution data
naturally inherit more parameter variance that is passed on
when resampled to coarser resolution than data that was
collected at a coarse resolution in the first place, thus affecting
the analysis. To at least partially accommodate this in our
analysis, we scaled the data and chose model-based clustering,
as it is robust towards different variances (e.g., Scrucca
et al,, 2016).

An approach to obviate these deficiencies could be using
nested classifications, running multiple cluster algorithms on the
existing classes as performed in Hogg et al. (2016). This would
refine the original clusters and split them into smaller parts, but
would, of course, not change the initial data resolution. Such
nesting of classifications, on an ocean basin scale, would however
result in complex clusters with multiple hierarchical levels which
would be unwieldy to analyse.

Higher resolution ocean models (e.g. VIKING20X (Biastoch
et al., 2021) or INALT (Schwarzkopf et al.,, 2019)), if available
down to the km-scale on a basin-wide or even global scale, would
significantly improve this kind of seabed clustering. To date,
such models usually have a very fine resolution at the sea surface
which also becomes coarse towards the seafloor. In our approach
we preferred the CMEMS product, even though it has the same
limited vertical resolution at depth. However, because CMEMS
used an assimilation towards observational data (despite the fact
that these are sparse at depth) we aimed at a more realistic
representation of the hydrography.

Variable selection

Another limitation which may influence the classification
result is the predictor variable selection itself. This issue has been
widely discussed (e.g., Harris and Whiteway, 2009; Howell, 2010;
Watling et al., 2013) and several determinants have been agreed
as being good representatives of the ocean environment. In this
study, we focussed on morphological and hydrographical
parameters, largely leaving out biologic measures, as our aim
was to define submarine landscapes (e.g. Pearman et al.,, 2020).
However, the ocean and its inhabitants form a coherent system
and likewise, human impacts (e.g., mining, fishing, etc.) have a
severe influence on these ecosystems. Hence, in the future data
selection will have to be expanded to encompass the full range of
factors that affect the seafloor habitat. A more holistic approach,
also with respect to marine protected area designation, would
not only be to include a larger span of environmental data, but
also information on natural resources abundances, fishing
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grounds, etc., such as bottom-trawling fishing activities that
negatively impact the benthic environment (Eggleton et al,
2018; Ferguson et al., 2020). Visalli et al., 2020 for example
worked out a data-driven spatial planning tool aiming to
highlight priority regions in the ABN]J for protection. For the
whole-Atlantic approach targeted here, the data layers necessary
for this extended type of analysis are, sadly, simply not available
at present.

Conclusion

This work presents a marine landscape map of the Atlantic
seafloor based on an unsupervised, multivariate statistics cluster
analysis. We found nine seabed areas in total, each of them being
unique and differently defined by oceanographic and
morphologic determinants. Unsupervised cluster analyses have
the advantage of providing an objective view on the ocean
environment, stepping away from human-defined hierarchical
categorisations towards an unbiased understanding of seafloor
ecosystem coherence.

Generally, depending on the clustering technique applied
and the selection of input parameters, the results can be very
different, highlighting the complexity and variability of the
ocean. As there is not the one ‘true’ arrangement of marine
bio-physio-chemical-morphologic regimes, verification can only
take place via ground truthing — and even this may not catch the
entire complex diversity. Hence, depending on the purpose, a
combination of several existing models may be more useful than
one single classification. Automated landscape analyses can help
to understand the classifications better, and subsequent
quantitative metrics will help to identify biodiversity hotspots
and vulnerable habitats by pointing out new complex regions of
interest. Studies like this and in combination with other, also
smaller-scaled classifications can be used e.g. for protection-
targeted decision making. Our SBAs for example have been
implemented into the designation process for the new NACES
MPA and acts as one of the knowledge bases to the local
prevailing conditions.

A valuable future task would be to assess whether species
distribution patterns can be further related to the SBAs we
found. Also collating more ground truth data and a detailed
assessment of the diversity highlighted regions shall support
decisions about protection objectives.
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Humpback whales (Megaptera novaeangliae) produce song and non-song
vocalisations, which allows their presence to be detected through passive
acoustic monitoring. To determine the seasonal and diel acoustic presence and
acoustic behaviour of humpback whales at the migratory stopover site off
Bermuda, three hydrophones were deployed between March 2018 and April
2019 on Challenger Bank and the Bermuda platform. Song was the
predominant vocalisation type encountered, with 65% of song recordings
containing whale chorus and a clear seasonal trend of humpback whale
occurrence in the spring and winter months from late December to mid-
May. A strong diel pattern in singing activity was detected. Singing activity
significantly increased at night relative to the daytime (p<0.01), whilst twilight
periods were characterised by intermediate levels of singing. The song
structure encountered in spring 2018 consisted of 18 units, 6 themes and 5
transitional phrases. The high occurrence of whale chorus and the strong
seasonal and diel patterns of male humpback whale singing activity highlights
the importance of Bermuda not just on their northward migration during
spring, as described historically, but also on their southward migration during
winter. Bermuda therefore constitutes a two-way migratory stopover site for
humpback whales. The present study also provides Bermuda’s planning
authorities with better constraints on the duration and intensity of
anthropogenic activities in these waters.

KEYWORDS

North Atlantic humpback whale, Bermuda, song, seasonality, diel pattern, passive
acoustic monitoring, management
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Introduction

Humpback whales (Megaptera novaeangliae) are one of the
large baleen whales best known for their extremely variable vocal
behaviour. “Song of the Humpback Whale”, recorded off
Bermuda in the 1950s by Frank Watlington, was the first
recording of humpback whale song worldwide and initiated an
era of humpback whale research off Bermuda throughout the
1960s and 1970s (Payne and Payne, 1985). While humpback
whales produce unstructured non-song vocalisations year-round
in different behavioural contexts (Silber, 1986; Dunlop et al.,
2007; Rekdahl et al., 2015), humpback whale song is the most
dominant vocal display of the species. Humpback whale song is
displayed exclusively by males (Herman et al, 2013), and is
thought to be a multi-message reproductive display (Murray
et al., 2018) involved in both inter- (Smith et al., 2008) and intra-
sexual interactions (Darling and Berube, 2001; Cholewiak et al.,
2018b). However, the exact function of the song remains
uncertain (Herman, 2017).

Humpback whale songs differ across ocean basins, due to the
geographic isolation of the three recognised humpback whale
subspecies (Baker et al.,, 1990; Bettridge et al., 2015; Cooke,
2018), and to some extent within an ocean basin, but are the
same within a breeding population (Murray et al., 2012; Garland
et al, 2013; Niksic, 2014; Darling et al., 2019). Song is defined as
a repetitive, stereotyped vocal display with a hierarchical
structure (Payne and McVay, 1971; Cholewiak et al., 2013). A
humpback whale “song” or “song cycle” is repeated for the
duration of a “song session”, i.e., the time period an individual
whale sings continuously, which has been shown to last up to 22
hours (Winn and Winn, 1978). A song can be subdivided into a
hierarchical order of several distinct “themes”, each of which
consists of repeated “phrases”, which in turn consist of a
sequence of individual “units” (Payne and McVay, 1971;
Cholewiak et al., 2013). Along with songs produced by
bowhead whales (Balaena mysticetus), humpback whale song
is considered the most complex (Janik, 2009; Stafford et al.,
2018). A population’s song undergoes constant and progressive
changes through time, a phenomenon referred to as song
evolution (or song revolution in the case of sudden changes)
(Winn and Winn, 1978; Payne and Payne, 1985; Noad et al.,
2000; Garland et al., 2011; Garland et al., 2017).

North Atlantic humpback whales undertake extensive
seasonal migrations between high latitude summer feeding
grounds — off northern Norway and Iceland (referred to as
eastern feeding grounds), as well as western Greenland, eastern
Canada and the northeastern United States (referred to as
western feeding grounds) - and low latitude winter breeding
grounds around the West Indies and Cape Verde (Stevick et al.,
2003; Reeves et al., 2004; Wenzel et al., 2009; Ruegg et al., 2013;
Bettridge et al, 2015). However, fluke identification matches
now suggest that the Caribbean breeding ground might be
further subdivided, as humpback whales wintering in the
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southeast Caribbean are behaviourally distinct from those
wintering in the northwest Caribbean, in two ways (Stevick
et al,, 2016). First, humpback whales winter in the northwestern
Caribbean between January-April with peaks between
February-March, while those wintering in the southeastern
Caribbean do so a bit later between March-May with peaks in
April (Charif et al.,, 2001; Stevick et al., 2003; Gandilhon, 2012;
Stevick et al., 2018; Heenehan et al.,, 2019). Second, re-sightings
of individuals revealed a strong tendency for southeastern
Caribbean humpback whales to migrate to eastern North
Atlantic feeding grounds, while whales from northwestern
Caribbean breeding grounds tend to migrate to western
feeding grounds (MacKay, 2015; Stevick et al,, 2018), causing
some genetical differentiation (partly due to feeding ground
destination in humpback whales showing strong maternally-
directed fidelity) (Baker et al, 1990; Palsboll et al., 1995;
Weinrich, 1998). However, some individuals have been
matched between Cape Verde and the southeastern Caribbean,
as well as between the southeastern and northwestern
Caribbean, demonstrating that the population units and
boundaries are not as clear as previously thought (Stevick
et al, 2016; MacKay et al, 2019). While the western North
Atlantic humpback whale population has been increasing in
recent years after the cessation of whaling, the Cape Verde
population is still of considerable concern (Wenzel et al., 2020).

Although historically believed to exclusively occur on
breeding grounds (Winn and Winn, 1978), humpback whale
song has been increasingly recorded on their feeding grounds
during the breeding season, which suggests that some males may
not migrate at all but instead remain year-round in their feeding
grounds (Mattila et al., 1987; Vu et al., 2012; Baumgartner et al.,
2019; Magnusdottir and Lim, 2019; Kowarski et al., 2021; Tyarks
et al, 2021). In the North Atlantic, humpback whales start
singing in early autumn (around September) and continue
singing through winter, stopping in late spring (around June)
(Mattila et al., 1987; Vu et al.,, 2012; Kowarski et al., 2019;
Kowarski et al., 2021). Transitions between song and “non-song”
periods at the start and end of summer are dominated by “song
fragments”, i.e., only a short part of the complete song is sung
(Mattila et al., 1987; Vu et al.,, 2012; Kowarski et al., 2019;
Kowarski et al., 2021). The seasonal singing behaviour displayed
by males is thought to underlie a hormonally triggered
physiological mechanism (Wright and Walsh, 2010; Vu et al,
2012), as the males’ testosterone levels are the lowest during the
summer months and highest during the winter months, i..,
during the breeding season (Cates et al., 2019). Thus, song
fragments could be the result of spring decreases and
autumnal increases in testosterone levels (Cates et al., 2019;
Kowarski et al., 2019).

Notably, most of what is known about North Atlantic
humpback whales and their vocalisations has come from
coastal studies on feeding and breeding grounds. Thus, their
migration routes and mid-ocean behaviours, including
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vocalisations, with the exception of a few studies tracking
individual whales with satellite tags (Kennedy et al., 2014;
Kennedy and Clapham, 2017), remain vastly understudied or
unknown (Reeves et al., 2004; MacKay, 2015; Kowarski et al.,
2018). Bermuda, being an oceanic migratory stopover site for
North Atlantic humpback whales on their northward migration
(Payne and McVay, 1971; Stone et al., 1987; Stevenson and
Stevick, 2009), provides a unique opportunity to study
vocalisations of migrating humpback whales. Individuals
observed off Bermuda have been re-sighted in the
northwestern Caribbean breeding grounds and to a much
lesser extent in the southeastern Caribbean, as well as, in all
major feeding grounds (with the exception of Norway) (Stone
et al., 1987; Beaudette et al., 2009; Stevenson, 2010; MacKay,
2015; Stevenson, unpublished data), but predominantly in
western North Atlantic feeding grounds (Stone et al.,, 1987;
Beaudette et al., 2009; Kennedy et al., 2014). Thus, the waters
around Bermuda most likely represent an oceanic migratory
stopover site between the northwestern Caribbean breeding
grounds and higher latitude western feeding grounds. While in
Bermuda, humpback whales have been observed to linger for
several days whilst aggregating into large groups, accompanied
by male singing (Payne and McVay, 1971; Payne and Payne,
1985; Stevenson, 2011), before continuing their
northward migration.

Recordings of humpback whales oft Bermuda led to the first
formal description and definition of humpback whale song
(Payne and McVay, 1971), which is now fundamental to the
field of humpback whale song research. However, there has been
no acoustic recording or analysis of whale vocalisations in
Bermuda since 1976 (Winn and Winn, 1978; Payne and
Payne, 1985) and these initial studies did not use long-term
Passive Acoustic Monitoring (PAM) deployments that permit
year-round data collection (under all weather conditions and
overnight) of the marine soundscape and therefore year-round
acoustic detection of vocal species like humpback whales
(Johnson et al., 2009; Rafter et al., 2018). Thus, in stark
contrast to a good baseline knowledge of the seasonal
occurrence of humpback whale vocalisations from North
Atlantic feeding and breeding grounds, the acoustic presence
of humpback whales at their stopover site off Bermuda has not
yet been analysed.

Such knowledge on the temporal presence of whales off
Bermuda is urgently needed to address potential threats posed
by increasing human activities. The Government of Bermuda
has enacted some protection for humpback whales under its
Fisheries Act 1972 (Government of Bermuda, 1978) and its
Protected Species Act 2003 (Government of Bermuda, 2003;
Minister of Health Seniors and Environment, 2016) and there
are voluntary whale-watching guidelines (Department of
Environment and Natural Resources, 2017). Bermuda’s
Exclusive Economic Zone (EEZ) is also an important
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migratory corridor and stopover location for various cetacean
species (Klatsky et al., 2007; Hallett, 2011; Hoyt, 2011) and was
designated as a Marine Mammal Sanctuary but this designation
only offers data-sharing opportunities and comes with no
management or protection measures (NOAA and Government
of Bermuda, 2012). With Bermuda becoming popular as a
megafauna “hotspot”, as a cruise destination and sites for
various international sporting events, the tourism industry
including the whale-watching industry (O’Connor et al., 2009)
is anticipated to further develop in line with Bermuda’s six-year
National Tourism Plan 2015-2023 (Bermuda Tourism
Authority, 2019). New legislation under the Superyachts and
Other Vessel (Miscellaneous) Act 2019 now also allows more
large yachts (>24 meters length) to secure cruising and charter
permits. Thus, growth in Bermuda’s tourism industry will
increase vessel traffic of all kinds (cruise liners, freight,
superyachts, whale-watching boats and smaller
recreational craft).

Increased vessel traffic and marine tourism can have various
negative impacts on humpback whales, from behavioural
disturbance, increased stress levels and physical injuries, to
disturbing their crucial auditory sensory system and
communication (Au and Green, 2000; Cholewiak et al., 2018a;
Fiori et al., 2020; Sprogis et al., 2020; Currie et al., 2021).
Humpback whales produce low to mid frequency vocalisations
(ranging from 0.01-28 kHz), but like all baleen whales most
energy is produced in the lower frequencies (below 2 kHz),
which can propagate across an entire ocean basin (Payne and
Webb, 1971; Hannay et al., 2013; Cerchio et al., 2014; Huang
et al., 2016; Cholewiak et al., 2018a; Davis et al., 2020). However,
vessel-generated noise, the most prevalent anthropogenic
underwater noise (Cato, 2014), overlaps in frequency (Clark
et al., 2009; Rolland et al., 2012) and thus interferes with the
acoustic detection of mysticetes non-song and song vocalisations
(“masking”) (Andre, 2018; Dooling and Leek, 2018) and reduces
the distance over which they are able to acoustically
communicate (Clark et al, 2009; Rolland et al., 2012; Cato,
2014; Cholewiak et al., 2018a; Dunlop, 2019). Thus, to mitigate
impacts of increased anthropogenic noise levels on humpback
whales migrating through Bermuda, knowledge of
spatiotemporal patterns of humpback whale presence and
vocalisations needs to be gathered and integrated by ocean
planners and authorities into planning and management
scenarios and decisions for sustainable developments.

The present study is the first long-term PAM study of
humpback whale vocalisations in Bermuda. The aim is to
investigate their seasonal and diel acoustic presence and
acoustic behaviour at this migratory stopover site. To facilitate
future comparisons of song structures across the North Atlantic,
as well as within Bermuda (determining inter-annual song
variation), the song structure encountered in spring 2018 will
be described in detail at the unit, phrase and theme level.
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Materials and methods
Study area and acoustic data collection

Bermuda forms part of a small mid-ocean seamount chain of
volcanic origin rising abruptly from the deep abyssal plain of the
Sargasso Sea (Figure 1) (Stone et al., 1987; Vogt and Jung, 2007).
Besides the topographic highs of the inhabited Bermuda
platform, Bermuda’s EEZ has three large submerged
seamounts, which are known for their high biodiversity:
Bowditch Seamount, Challenger Bank (CB) and Plantagenet
Bank (Figure 1) (Vogt and Jung, 2007; Hallett, 2011). CB and
Sally Tucker (ST; located at the southwest edge of the Bermuda
platform), which are 13 km apart, were chosen as recording sites
for the present study (Figure 1).

Two Autonomous Multichannel Acoustic Recorders
(AMAR G3A; JASCO Applied Sciences) equipped with M36-
V35-100 omnidirectional hydrophones (-165 + 4 dB re 1 V/uPa
sensitivity) (Supplementary Figure 1) were deployed from 31
March to 6 September 2018 on CB at a water depth of 45.7 m at
32.08746, -65.05373 and from 31 March to 10 September 2018
on ST at a water depth of 40.2 m at 32.19605, -64.99133. The
AMARs were programmed to record 30 minutes of every hour.
Another AMAR equipped with M36-V35-900 omnidirectional
hydrophone (-165 + 4 dB re 1 V/uPa sensitivity) was deployed
on CB at a water depth of 47.7 m from 10 September 2018 to 23

65.4°W

32.8°N

32.6°N

FIGURE 1

Bermuda

Platform A
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April 2019 at 32.08725, -65.05386, and programmed to record
30 minutes every 75 minutes. All three hydrophones located on
the seafloor recorded 29 minutes at a sampling rate of 16 kHz
(24 bit resolution) and 1 minute at a sampling rate of 250 kHz
(16 bit resolution). These sampling rates were chosen to detect
the lower frequency vocalisations of baleen whales (Kowarski
et al, 2018), as well as high-frequency clicks and whistles
produced by toothed whale (Edds-Walton, 1997). For the
present study, only the 29-minute recordings were analysed.
Due to technical failure of the recording device, recordings from
20 September 2018 to 1 November 2018 were not usable. The
AMARs were retrieved from anchors using an acoustic release
(Supplementary Figure 1).

Acoustic analysis

All recordings were manually scanned for humpback whale
sounds using spectrograms generated with Raven Pro 1.6 sound
analysis software (fast Fourier transformation [FFT] size: 2048
points, 75% overlap, Hann window, frequency resolution:
7.8 Hz, time resolution: 32 ms) (Center for Conservation
Bioacoustics, 2019). As most humpback whale vocalisations
are detected below 2 kHz (Silber, 1986; Cerchio et al., 2014;
Huang et al., 2016), the 29-minute-long recordings were viewed
zooming into the frequency band of 0-2 kHz.

Bathymetry
in Meters

0 5 10 15 20km
S E— — —

Map of the study area, showing Bermuda (in yellow) and the three seamounts Bowditch Seamount, Challenger Bank and Plantagenet Bank. The
three hydrophones were deployed on Challenger Bank (red rhombus) and Sally Tucker (red circle), which are 13 km apart. The map was created
in QGIS 3.2 software (QGIS Development Team, 2016) using the coordinate reference system WGS 84, EPSG: 4326 and a world (source: Natural
Earth) and bathymetry map (source: Open Digital Elevation Model, 2019).
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Every 29-minute recording was first scanned for humpback
whale song. If no song was detected then the recording was re-
scanned for other humpback whale vocalisations (non-song
vocalisations) to capture the acoustic presence of whales, in
absence of song. Each recording was classified into one of three
whale sound categories: song (song fragments were also
allocated to this category), calls, and no vocalisation.

Second, all recordings allocated to the song category were re-
analysed to assess the minimum number of singing whales
(“singers”) per hour. Spectrograms of song-containing
recordings were scanned for the first 10 minutes (Cerchio
et al, 2014; Cholewiak et al., 2018b) of song detection to
determine the highest number of overlapping singers in that
period. Number of singers was determined by visually counting
(i) overlapping units, (ii) overlapping phrases and (iii)
differences in sound intensity (Cerchio et al., 2014;
Magnusdottir and Lim, 2019) from the spectrogram
(Figure 2). This is because song structures overlapping in time
cannot be produced by the same whale and therefore indicate the
number of simultaneously singing whales at one moment in time
(Magnusdottir and Lim, 2019), while sounds of different
intensities indicate multiple vocalising whales at different
distances from the hydrophone (Cerchio et al., 2014). Up to

10.3389/fmars.2022.941793

five simultaneously singing whales could be differentiated
confidently in the present dataset. Therefore, every recording
was allocated the minimum number of simultaneous singers,
ranging from 0 to 5 (Figure 2). In instances where five or more
singers were detected, they could not be further differentiated
and were allocated the category “5”.

Third, all 29-minute recordings where only one whale was
singing one entire song cycle were graded into low, medium, and
high-quality recordings (Supplementary Figure 2). Only
recordings in the high-quality category were considered for the
detailed 2018 Bermuda song description. To ensure consistency
throughout the acoustic analysis, all recordings were analysed
and categorised into vocalisation type, number of singers and
quality by a single person (the first author).

Analysis of seasonal and diel patterns in
singing activity

Temporal patterns of humpback whale song based on the
numbers of singing whales were statistically analysed in R
version 3.6.2 (R Core Team, 2019), with figures created using
the R-package ggplot2 (Wickham, 2016). To explore diel
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FIGURE 2

Spectrograms of multiple humpback whales signing, showing five different recordings that vary in their number of simultaneously singing
humpback whales. In the lower panel, every singer has been allocated a colour to visualise overlapping units and/or overlapping phrases. Only
the fundamental units were coloured. Differences in sound intensity can be seen in the upper panel by the darkness of a unit. Spectrogram
parameters: fast Fourier transform (FFT) size = 2048 points, overlap = 75%, sample rate = 16000 Hz, frequency resolution = 7.8 Hz and time

resolution = 32 ms.
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patterns, the entire dataset was shifted to Atlantic Standard Time
(UTC -4, Bermudas standard time zone) and every day was split
into four light conditions in accordance with previous studies
(Cholewiak, 2008; Kowarski et al., 2018; Ryan et al., 2019):
nighttime, dawn, daytime and dusk. To accommodate for the
variation in day and night length over the study period, the
corresponding time intervals defined by nautical dawn, sunrise,
sunset and nautical dusk were determined separately for each
day. The four variables were obtained from https://www.
timeanddate.com/ (Time and Date, 2019a) and uniformly
transformed to UTC -4. Then, the 29-minute-long audio files
recorded during the around one-hour long dawn and dusk
periods were allocated to the appropriate light level and the
remaining recordings to the daytime or nighttime category
accordingly. To further explore seasonal patterns, the entire
study period was split into astronomical seasons, i.e., as defined
by equinoxes and solstices (Time and Date, 2019b), giving rise to
four datasets: ST-spring-2018, CB-spring-2018, CB-winter-
2018/19 and CB-spring-2019.

Statistical analysis of diel patterns in singing activity
focussed exclusively on days with song-containing recordings.
As humpback whale songs can be detected over greater distances
than the distance between CB and ST (Cholewiak et al., 2018a),
we cannot exclude that individual whales were recorded
simultaneously during overlapping time frames between the
two sites. Given the unequal sample sizes between the light
categories and seasons, the data not being normally distributed
and the spring 2018 datasets potentially being dependent of each
other, each dataset was analysed individually with a non-
parametric Kruskal-Wallis test to determine if the mean
number of singing whales significantly differed between
different light conditions, to determine any diel variation.
Consequently, Bonferroni post-hoc tests were conducted to
identify specific pairs of conditions that differed.

Humpback whale song description

Phrase and theme allocation in humpback whale song
analysis is most often conducted through the subjective
manual analysis of spectrograms (Cholewiak et al., 2013;
Niksic, 2014; Garland et al., 2017; Magnusdottir, 2017; Hauer-
Jensen, 2018). Thus, it is recommended to base the song
description on the review of multiple song recordings from
different individuals (Cholewiak et al, 2013). Only the CB
recordings from spring 2018 were used for the song
description. By going through every song-containing recording
(n = 777) in detail to determine the number of singers, the
typical song structure became rapidly evident. Seven high-
quality song recordings (Narganes Homfeldt et al., 2022), each
around a week apart from the next, were chosen to describe the
song in more detail. This interval was chosen to minimise the
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chances of describing the vocal display of the same individual
(Kowarski et al., 2019; Magnusdottir and Lim, 2019), given that
some individuals are sighted for eight consecutive days off
Bermuda (Stevenson, 2011). The methodology to describe the
songs generally followed approaches adopted in previous
humpback whale song analyses (Niksic, 2014; Garland et al,
2017; Magnusdottir, 2017; Darling et al., 2019; Kowarski et al.,
2019) and is summarised below.

The seven songs were viewed as spectrograms (FFT size:
2048 points, 75% overlap, Hann window, frequency resolution:
7.8 Hz, time resolution: 32 ms) and each full song cycle was
delineated at the unit and phrase level, based on aural and visual
spectrographic characteristics. Distinct units and phrases were
identified and allocated an alphanumeric code: units (a,b,c);
phrases (1,2,3). As a theme is defined as a repeated sequence of
the same or similar phrases (Payne and McVay, 1971; Cholewiak
etal, 2013; Magnusdottir, 2017), themes were allocated the same
numerical code as the phrase type it contained, e.g., phrase 1 is
repeated within theme 1. The identified characteristic unit
sequences were then grouped into phrases and phrase types
into themes. Any natural variation in the characteristic unit
sequences through addition, deletion or replacement of
individual units within a phrase that would generate imperfect
replicas of a phrase type (Payne and McVay, 1971; Cholewiak
et al., 2013) were considered to be the same phrase type. In
addition, there were “transitional phrases”, which are sometimes
encountered at the transition between two subsequent themes
and contain units from both themes (Payne and Payne, 1985;
Garland et al,, 2017). For example, a transitional phrase between
themes 2 and 3 would be referred to as phrase 2/3. All seven
songs were transcribed into alphanumerical sequences to
facilitate the identification of the songs’ theme order.

Given the subjective nature of the song delineation process,
Cholewiak et al. (2013) advised to support the alphanumerical
classification with exemplar spectrograms to illustrate at least
part of the song structure to the humpback whale song research
field. Thus, in the present study, exemplars of the identified unit,
phrase and theme order were illustrated (see Results).

Results

The present study analysed a total of 347 days of continuous
recording [excluding a 43-day period with no available
recordings (Figure 3)] from 2018 and 2019 across two
locations off Bermuda, scanning a total of 5417 hours of
acoustic data for humpback whale vocalisations. Besides
humpback whale song and non-song vocalisations, an
unusually long, tonal baleen whale vocalisation, lasting for 18-
seconds, was detected in the presence of multiple humpback
whale singers (Supplementary Figure 3). Also, other biotic
sounds emitted by dolphins (and possibly other cetacean
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FIGURE 3

Seasonal occurrence and diel pattern of humpback whale song on Challenger Bank encountered across 55 weeks between 2018 and 2019.
Sunset to sunrise (yellow lines) defines daytime, dusk to dawn (black lines) defines nighttime and the two remaining time intervals define the
twilight periods. Grey shaded fields indicate no available recordings due to technical failure of the recording device.

species), fish and invertebrates, as well as anthropogenic sounds
from vessels and echosounders, were regularly detected
in recordings.

Seasonality of vocalisations and
singing activity

Humpback whale vocalisations were heard in 32% (1733 h)
of recordings. All acoustic detections occurred on 48% (166
days) of recording days, whereby social calls were only detected
on days when song, the predominant vocalisation type (97%),
was present too. Thus, non-song vocalisations were neglected for
determining the seasonality of humpback whale vocalisations.
Humpback whales were exclusively heard between 31 March
(start of study) and 19 May 2018 (across both sites), as well as 26
December 2018 and 23 April 2019 (end of study) (Figure 4).
There was one exception on 31 August 2018 (Figure 3) when a
single song fragment was documented on CB. Overall, acoustic
presences across the three deployments indicated a clear
seasonal trend of humpback whale occurrence off Bermuda in
the spring and winter months, ranging from late December to
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mid-May, hereafter referred to as “whale season” (Figures 3, 4).
Notably, 65% of song recordings contained whale chorus (=
2 singers).

Singing activity, as quantified by the numbers of
simultaneously singing whales, starts in late December and
reaches the daily average across the whale season (1.7 £ 1.5
singers) quite quickly (Figure 4). The daily averages of
simultaneously singing whales recorded at CB during the two
spring seasons (1.921 * 1.385 singers) and the winter season
(1.926 + 1.388 singers) were nearly identical, indicating that the
intra-seasonal variation might be bigger than inter-seasonal
variation. By mid-February to early March, fewer male
humpback whales were recorded singing (Figures 3, 4). The
highest average number of singers was detected in January,
March and early April (in both 2018 and 2019 data) (Figure 4).
In May, consecutive recordings were often characterised by a
single singer and similar intensities, which likely represent a
single male’s song session lasting several hours. Thus, although
still singing for most hours of the day, the acoustic density of
singing males fell below daily average in late April and ceased
entirely by mid-May (Figures 3, 4). Days without song presence
during the whale season only occurred at the start (27
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season (1.73 singers; blue line) is illustrated as a reference.

December 2018) and end of the whale season at both CB (5-7
and 19 May 2018) and ST (5-7, 10, 13, 15, 18 May
2018) (Figure 4).

ST and CB showed broadly similar patterns in singing
activity in spring 2018 (Figure 4). The concentration of singers
was higher at CB, with the last humpback whale song being
recorded on 18 May 2018, whilst singing activity at ST had
already decreased below average by mid-April, with the last
humpback whale song being recorded on 19 May 2018
(Figure 4). Therefore, humpback whale singing activity in
Bermuda showed a strong seasonal pattern in the spring and
winter months but with reduced activity towards the start and
end of the whale season, as well as mid-season from February to
early March.

Diel patterns in singing activity

Throughout the whale season moderate singing activity
was detected during daylight hours and high levels of whale
chorusing during the night (Figure 3). A statistically significant
difference in the mean number of singing whales was detected
between light conditions for all four datasets (Kruskal-Wallis;
ST-spring-2018: x> = 13.9; df = 3; p = 0.003; CB-spring-2018:
x* =27.2; df = 35

p=54x10 % CB-winter-2018/19: %> = 26.7; df = 3; p = 6.7 x
10 % CB-spring-2019: 3> = 55.0;
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df =3;p=69x10 '12), with the number of singers being
significantly lower during daytime than nighttime (ST-spring-
2018: p = 0.0011; CB-spring-2018: p = 3.5 x 10 ~>; CB-winter-
2018/19:

p =7.7x 10 7; CB-spring-2019: p = 2.1 x 10 ') (Figure 5).
At CB, the number of singers across the seasons was also
significantly lower during dawn than nighttime (CB-spring-
2018: p = 0.013; CB-winter-2018/19: p = 0.013; CB-spring-
2019: p = 0.0053) (Figure 5). In both spring seasons at CB
there was a significantly lower number of singers during daytime
than dusk (CB-spring-2018:

p =6.5x 10 % CB-spring-2019: p = 6.5 x 10 °) and in spring
2019 during daytime than dawn

(p = 3.3 x 10 ) (Figure 5). Across all datasets the mean
number of singers during the twilight periods did not differ
significantly from each other (Figure 5). In addition, the single
song fragment encountered in late August was also recorded
during nighttime (Figure 3). Therefore, humpback whale singing
activity in Bermuda showed a diel pattern across spring and
winter months with significantly increased singing at night
relative to the daytime and with twilight periods characterised
by intermediate levels of singing (Figures 3, 5).

Song structure

The detailed analysis of the seven humpback whale songs
that were transcribed at the unit and phrase level contained 14
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Diel patterns of humpback whale singing activity at Sally Tucker in spring 2018 (A) and Challenger Bank in spring 2018 (B), winter 2018/19
(C) and spring 2019 (D). The median number of singers (horizontal black line) varied significantly between daytime and nighttime in all four
datasets. Boxes indicate the interquartile range and the vertical lines indicate the range of daily averages in the number of singers.
Significance levels are illustrated with stars (*p < 0.05; **p < 0.01; ***p < 0.001).

full song cycles (Supplementary Table 1). The coded songs
revealed the stereotypical song structure of the whales
migrating through Bermuda in spring 2018, consisting of: 18
distinctive unit types (Supplementary Figure 4), making up 6
phrase types and consequently 6 themes, and 5 transitional
phrases (Table 1; Figure 6).

Every song cycle, even from the same individual, showed
small unit variations within the same phrase type. These
variations were still considered the same phrase and thus part
of the same theme (Table 1). In particular, units b, ¢, f, p, q
seemed to act as synonyms and be interchangeable to some
extent within various phrase types (Table 1). Also, the amount of
unit repetitions within the same phrase sequence varied
(Supplementary Table 1).
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All seven whales sung the theme order: 1-1/2-2-2/3-3-3/4-4-
4/5-5-5/1-1 (Figure 6), which repeated itself through various
song cycles (Supplementary Table 1). However, in 4 of the 14
analysed song cycles, although the transitional phrases 2/3 and
3/4 occurred, phrase 3 was not sung (Supplementary Table 1).
Every song cycle contained the five transitional phrases once,
while the non-transitional phrase types were repeated to a
varying extent, even within an individual’s song session
(Supplementary Table 1). This variation in phrase repetitions
resulted in a large range of song cycle duration, ranging from
4.05 to 16.15 min for the same theme frequency
(Supplementary Table 1).

Notably, phrase 6, the only phrase containing unit m
(Table 1), was only sung by three of the seven whales (on 27
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TABLE 1 Unit sequences of phrase types.

10.3389/fmars.2022.941793

Phrase Type Characteristic Unit Sequence Derived Unit Sequence (s)
1 acacde ¢ replaced by: be; cb; p; g; cc
-a
+ac
1/2 acacdecg ¢ replaced by: bg; p; cc
-a
+h
2 feglh] fc replaced by: cc; ; f; be
2/3 fegli] [jr] fc replaced by: cc; be
-r
3 [il[jr] -r
3/4 [i][jr][jrk] +/- i3k
4 Ik[jrk] +/-ji 13 k
4/5 1[o] In[o]
5 nfo]
5/1 ncde ¢ replaced by: o; p
+d
6 1[k[m]] -k

Unit sequences derived from the characteristic unit sequences through unit replacement, deletion (-) or addition (+) were still allocated to the same phrase type. Square brackets ([]) indicate
that the unit(s) were repeated multiple times before the following unit, phrase repetition or phrase type occurred. Every distinctive and characteristic unit sequence, represented by an
alphabetical code, was allocated to a different phrase type and a corresponding numerical code. If unit sequences of two phrase types overlapped, the unit sequence was allocated as a

transitional phrase (/).

April, 3 and 18 May), and two of these did not sing phrase 6 in
every song cycle either (Supplementary Table 1). Phrase 6 either
replaced phrase 4 or occurred after phrase 4, and was always
followed by the transitional phrase 4/5 (Figure 6; Supplementary
Table 1). All other phrases remained stable throughout the
whale season.

Discussion

Vocalisations at Challenger Bank and
Sally Tucker's

As all recordings obtained from the fixed AMARs contained
high levels of singing activity throughout the whale season
(Figures 3, 4), CB and ST seem to be an important singing
habitat and stopover site for male humpback whales on their
annual migrations. Seamounts with shallow summits like CB are
generally known as hotspots for aggregations of migratory
megafauna (Morato et al., 2008) and are considered important
offshore habitats for humpback whales worldwide, on their
breeding grounds but also as key sites along their trans-
oceanic migration routes (Garrigue et al,, 2015; MacKay, 2015;
Derville et al., 2020). Garrigue et al. (2015) suggests that
humpback whales visit seamounts on their migration to rest,
to use them as navigational landmarks, and potentially as
opportunistic feeding areas. These habitat uses could all be
applicable to Bermuda (Stevenson, 2011). The Bermuda
platform (ST), which is shallower and has calmer waters than
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CB, represents the typical protected nearshore habitat in which
mother-calf pairs are frequently encountered in other regions
(MacKay, 2015; Indeck et al., 2021). Although ST and CB thus
might form different habitats for humpback whales, both
locations showed a very similar pattern in singing activity in
spring 2018 (Figure 4). However, singing activity was most
prevalent at CB, which might indicate that the more sheltered
waters of ST are visited less by male singers and might in fact be
used more by mothers and calves (Stevenson, unpublished data).

Finally, the present study detected a long tonal vocalisation
of unknown origin on 8 April 2018 within the presence of
humpback whale chorus (Supplementary Figure 3). This type of
vocalisation is not part of humpback whales’ described call
repertoire in either the North Pacific (Fournet, 2018),
Southern Hemisphere (Dunlop et al., 2007; Recalde-Salas
et al,, 2020; Ross-Marsh et al., 2022) or the North Atlantic
(Stimpert et al., 2011). The “long cry” as defined in the repertoire
of humpback whales in Western Australia is typically only 3
seconds long (Recalde-Salas et al., 2020), compared to the 18-
second-long cry documented in this present study
(Supplementary Figure 3). Therefore, if produced by
humpback whales, this very long cry could be a rare
vocalisation (from calves, females and/or males), and may
serve a highly specialised, but rarely required, function.
Alternatively, it could have been emitted by another baleen
species, such as Bryde’s whale (Balaenoptera edeni), who are
known for long moans that are in this range of duration (Rice
et al., 2014) but who have not so far been recorded off Bermuda
(Stevenson, unpublished data).
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FIGURE 6

Humpback whale song type encountered in spring 2018 at Challenger Bank, Bermuda. A representative phrase for each theme and transitional phrase
(/) is shown. The phrases are in cyclical order 5/1-1-1/2-2-2/3-3-3/4-4-6-4/5-5. Phrase 6 did not occur in every analysed song cycle. The vertical blue
lines indicate divisions between phrase types. Spectrogram parameters: fast Fourier transform (FFT) size = 2048 points, overlap = 75%, sample rate =

16000 Hz, frequency resolution = 7.8 Hz and time resolution = 32 ms.

Seasonality and migration pattern

The present study identified a strong seasonal pattern of
humpback whale singing activity, with a moderately high
occurrence of chorusing whales, off Bermuda in the spring and
winter months, ranging from late December to mid-May
(Figure 3). This is in line with boat-based observations from
Whales Bermuda (Stevenson and Stevick, 2009; Stevenson,
2011) and the historic records of humpback whales (Stone
et al,, 1987) and their songs being recorded oft Bermuda in
January, April and May (Payne and McVay, 1971; Payne and
Payne, 1985). Fluctuations in numbers of singers throughout the
spring and winter months (Figure 4) suggest that male
humpback whales migrate through Bermuda in waves and do
not stay for longer periods of time. This theory is supported by
visual boat-based observations made by Whales Bermuda and
studies showing North Atlantic humpback whales lingering for
several days up to two weeks and aggregating around Bermuda
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before continuing their northward migrations in large groups
(Payne and Payne, 1985; Stevenson, 2008; Stevenson and
Stevick, 2009; Stevenson, 2011). Humpback whales
overwintering in the northwestern Caribbean are sighted at
their breeding grounds between January-April with peaks
between February-March, while those wintering in the
southeastern Caribbean do so a bit later between March-May
with peaks in April (Charif et al., 2001; Stevick et al, 2003;
Gandilhon, 2012; Stevick et al., 2018; Heenehan et al., 2019). In
Bermuda, reduced singing activity was observed between mid-
February to early March (Figures 3, 4), which is in line with the
northwestern Caribbean peak. Detecting humpback whale song
from late December onwards and to a lesser extent during the
northwestern Caribbean peak breeding season (Figure 3), as well
as the observed higher intra- than inter-seasonal variation in
average number of singers, suggests that Bermuda, previously
described as a one-way stopover on their northward migration
during the spring months (Payne and McVay, 1971; Stone et al.,
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1987; Stevenson and Stevick, 2009) also acts as a migratory
stopover site on their southward migration during the
winter months.

The humpback whales recorded in the present study could
have migrated to and from either Caribbean breeding ground,
given the temporal overlap in both breeding grounds. However,
as Bermuda’s whale season starts just before the northwestern
Caribbean whale season and the northwestern peak aligns with
reduced singing in Bermuda (Figure 3), it is more likely that
humpback whales migrate to and from the northwestern
Caribbean through Bermuda. Both, satellite-tagging (Kennedy
et al, 2014) and fluke identification matches support this theory
(Stone et al., 1987; Beaudette et al., 2009; MacKay, 2015).
However, in 2017, humpback whales were heard singing until
13 May on the northwestern Caribbean breeding ground and
until 27 May on the southeastern Caribbean breeding ground
(Heenehan et al., 2019). Thus, it is possible, that humpback
whales recorded towards the end of Bermuda’s whale season
(Figure 3) could also be originating from the southeastern
breeding ground.

The single song fragment heard on 31 August 2018
(Figure 3) matches temporarily with song fragments only
starting to become more frequent from late August onwards in
feeding grounds (Vu et al, 2012; Baumgartner et al., 2019).
However, North Atlantic humpback whales are thought to leave
their feeding grounds and start their southward migrations
much later than August, usually in late autumn to early
winter, or, for some whales from the eastern feeding grounds,
even in late winter (Stevick et al., 2018; Heenehan et al., 2019;
Kowarski et al., 2019; Magnusdottir and Lim, 2019). Bermudian
fishermen have reported sightings of humpback whales in
September (Stevenson, unpublished data). This suggests that a
few individuals in some years could start their migration earlier
than previously expected and the present acoustic study
confirms the presence of such an individual at this time in
2018. Although no acoustic presence of humpback whales was
evident in June 2018 (Figure 3), a humpback whale was observed
breaching at CB two years later on 15 June 2020 (Stevenson,
unpublished data). Thus, inter-annual variability of occasional
single individuals migrating through Bermuda seems to occur
off-season, e.g., on 31 August 2018 and 15 June 2020.

Diel pattern in singing activity

The diel singing pattern observed in our study, with peak
singing activity at nighttime (Figure 3; 5), has been observed in
all three humpback whale subspecies on feeding (Magntisdottir
et al, 2014; Huang et al, 2016; Kowarski et al., 2018) and
breeding (Au et al., 2000; Cholewiak, 2008; Cerchio et al., 2014;
Kobayashi et al., 2021) grounds, as well as migration routes
(Ryan et al., 2019; Shabangu and Kowarski, 2022), and is thus
suggested to be a species-wide characteristic (Kowarski et al.,
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2019). Au et al. (2000) suggested that the diel pattern results
from humpback whales relying on visual and acoustic cues
during the day, but solely on acoustic cues during the night.
For the singing whale, this means that nighttime is the most
efficient time to send out the signal and may explain why the diel
trend is observed across different breeding, feeding and
migratory habitats and why even most non-song vocalisations
increase at night (Parks et al., 2014; Huang et al., 2016; Kowarski
et al., 2018). In other baleen species, diel variations in vocal
activity have been linked to diel distribution in their prey: when
prey aggregate, foraging becomes most efficient and whales
vocalise less, unless the vocalisation is directly associated to
foraging (Wiggins et al, 2005; Baumgartner and Fratantoni,
2008; Sirovic et al., 2013). However, this hypothesis would not
explain why humpback whale singing activity also peaks at
nighttime on breeding grounds where they are not exhibiting
any feeding behaviour (Cholewiak, 2008). Thus, reliance on
visual cues during daytime, as suggested by Au et al. (2000) is
currently considered the most plausible explanation for the
observed diel patterns in humpback whale singing activity.

Future anthropogenic noise
mitigation measures

The present study reveals the importance of Bermuda’s
waters for migrating humpback whales throughout the spring
and winter months. However, the high volume of vessel traffic
and underwater noise that accompanies expansion of Bermuda’s
tourism industry could become a key issue (Jones, 2011; Lester
et al, 2016; Bermuda Tourism Authority, 2019). Bermuda’s
lucrative cruise tourism season currently operates from May to
October (Jones, 2011) but could be extended to last from April to
December (Bermuda Tourism Authority, 2019). The presence of
humpback whales, being continuously present from late
December until mid-May (Figure 3), already coincides with
the start of the current cruise season; should the new cruise
season be rolled out, this temporal overlap will increase. Besides
increased risks from ship strikes and behavioural disturbance
from prolonged and more intense whale-watching, cruise and
freight passages through Bermuda, growth in the tourism sector
will further elevate ambient noise levels (e.g., through coastal
infrastructure construction and increased vessel noise) which
reduce humpback whales’ communication space (Au and Green,
2000; Jones, 2011; Micheli et al., 2012; Dunlop, 2016; Lester et al.,
2016; Cholewiak et al., 2018a; Gabriele et al., 2018; Sprogis et al.,
2020; Currie et al., 2021). In response to elevated noise levels
male humpback whales have been shown to cease their song
(Sousa-Lima and Clark, 2008; Risch et al., 2012; Cerchio et al.,
2014; Tsujii et al., 2018), lengthen their song cycle (Miller et al.,
2000) and amplify their vocalisation display, exhibiting the
Lombard effect (Guazzo et al, 2020). Given that the present
study detected humpback whales frequently chorusing, the
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masking of these displays by anthropogenic noise could
negatively impact this behaviour in Bermuda, with currently
unknown consequences on the population.

In light of this, we advocate authorities to consider
precautionary and mitigation measures (Currie et al., 2021;
Pires et al.,, 2021; Risch et al,, 2021) during the whale season
(December-May). The heavy cruise and shipping traffic lanes
operating near CB and the Bermuda platform (ST) could be re-
routed given the authorisation by the International Maritime
Organization (IMO, 2014), similar to the implementation at the
sister Marine Mammal Sanctuary around the Dominican
Republic (Kennedy and Clapham, 2017; Heenehan et al,
2019). Dredging and construction of critical marine
infrastructure to support the shipping and tourism sectors
could be avoided during the night, when humpback whale
vocal activity is at its highest (Figure 5), or during the whale
season entirely. In addition, moving towards more sustainable
noise-reduction vessel designs (Arranz et al., 2021) and
implementing a 10 knot vessel speed limit across Bermuda’s
EEZ for the duration of the whale season could significantly
reduce noise levels and reduce masking for both mysticetes and
odontocetes (IMO, 2014; Pensieri and Bozzano, 2017; Williams
et al., 2019; Aschettino et al., 2020; ZoBell et al., 2021). The latter
measure, would also reduce the risk of vessel collisions and cut
down on the vessel’s carbon emissions (Laist et al., 2001; Lack
and Corbett, 2012).

Although these precautionary measures will reduce
anthropogenic noise for humpback whales when migrating
through Bermuda, year-round implementation of any measure
to reduce cetacean disturbance, collision risk and anthropogenic
noise would benefit other marine species in Bermuda’s EEZ
including the resident bottlenose dolphin (Tursiops truncatus)
population (Klatsky et al., 2007), Cuvier’s beaked whales
(Ziphius cavirostris) and occasional passing sperm whales
(Physeter macrocephalus) (Hallett, 2011; Stevenson,
unpublished data).

Bermuda’s song and future
song comparisons

The present study characterised Bermuda’s humpback
whale song structure, encountered in spring 2018, for the
first time since 1976. As phrase 6 occurred less frequently
than other phrase types and was increasingly present at the end
of the 2018 spring season (Supplementary Table 1), it may
represent a new phrase type that evolved in late April from
phrase 4 and was slowly being introduced into the song
repertoire of the predominant breeding population
(northwestern Caribbean) migrating through Bermuda across
the whale season. Alternatively, phrase 6 could represent the
song repertoire of the southeastern breeding population
migrating through Bermuda later in the spring season.
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Therefore, further research should compare the song type
described in the present study to acoustic recordings
obtained between 2017 and 2019 across the full North
Atlantic humpback whale range including off Cape Verde,
the southeastern and northwestern Caribbean, Bermuda, the
migratory corridor off the British Isles and eastern and western
feeding grounds. Analysing and identifying similarities and
differences in song structure of all the above listed habitats
within the same song season would help elucidate North
Atlantic humpback whales’ population structure (Murray
et al., 2012; Archer et al., 2020), migration paths and the role
of Bermuda as a migratory stopover for both the northwestern
and southeastern breeding population, which is important
information required for the conservation management of
this migratory species.

Conclusion

The present acoustic study represents the first long-term
PAM study of humpback whale vocalisations oft Bermuda. Our
results highlight the importance of Bermuda as a key two-way
migration stopover site for male North Atlantic humpback
whales. They primarily display nocturnal singing activity in
the spring and winter months from late December until mid-
May. The strong seasonal and diel pattern of whale chorus
observed in this study provides new evidence to aid Bermuda’s
planning authorities with sustainable marine development
around Bermuda and the wider Sargasso Sea.
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A decade of humpback whale
abundance estimates at
Bermuda, an oceanic
migratory stopover site
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We constructed annual abundance of a migratory baleen whale at an oceanic
stopover site to elucidate temporal changes in Bermuda, an area with
increasing anthropogenic activity. The annual abundance of North Atlantic
humpback whales visiting Bermuda between 2011 and 2020 was estimated
using photo-identification capture-recapture data for 1,204 whales, collected
between December 2009 and May 2020. Owing to a sparse data set, we
combined a Cormack-Jolly-Seber (CJS) model, fit through maximum
likelihood estimation, with a Horvitz-Thompson estimator to calculate
abundance and used stratified bootstrap resampling to derive 95%
confidence intervals (Cl). We accounted for temporal heterogeneity in
detection and sighting rates via a catch-effort model and, guided by
goodness-of-fit testing, considered models that accounted for transience. A
model incorporating modified sighting effort and time-varying transience was
selected using (corrected) Akaike's Information Criterion (AICc). The survival
probability of non-transient animals was 0.97 (95% CI 0.91-0.98), which is
comparable with other studies. The rate of transience increased gradually from
2011 to 2018, before a large drop in 2019. Abundance varied from 786
individuals (95% CI 593-964) in 2016 to 1,434 (95% Cl 924-1,908) in 2020,
with a non-significant linear increase across the period and interannual
fluctuations. These abundance estimates confirm the importance of
Bermuda for migrating North Atlantic humpback whales and should
encourage a review of cetacean conservation measures in Bermudian
waters, including area-based management tools. Moreover, in line with the
time series presented here, regional abundance estimates should be updated
across the North Atlantic to facilitate population monitoring over the entire
migratory range.

KEYWORDS

baleen whale, humpback whale, Megaptera novaeangliae, abundance, capture-
recapture, migratory stopover
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1 Introduction

Abundance time series are critical to wildlife management as
they can inform conservation status and determine underlying
drivers of observed trends (Lawton, 1993; Taylor and
Gerrodette, 1993; Mace et al., 2008). As a population metric,
abundance is relatively easy to understand and interpret, and
values can be compared across different time periods (Moore
and Barlow, 2011), populations (Barlow et al., 2011), and species
(Vikingsson et al., 2015). Further, variation in abundance may
relate to other population-scale changes (Madon et al., 2013).
For example, temporal trends in baleen whale abundance have
been related to variation in mortality, body condition,
reproductive rates, and species range shifts (Moore, 2005;
Patrician and Kenney, 2010; Ramp et al., 2014; Becker et al,,
2019; Simard et al., 2019; Kiigler et al., 2020). Combined, such
indices allow an integrated assessment of population responses
to environmental change and stressors (Hazen et al., 2019), and
inform local-regional marine management (Gabriele
et al., 2017).

The abundance of baleen whales is frequently estimated
through capture-recapture (CR) methods (Hammond et al.,
2021). Applied to humpback whales (Megaptera novaeangliae
[Borowski 1781]), this typically involves photo-identification of
naturally occurring markings on tail flukes to determine
individual sighting histories over time (e.g., Katona and
Whitehead, 1981; Franklin et al.,, 2020). Values for parameters
including survival, detection and abundance are then estimated.
To minimize bias of abundance estimates, analyses may account
for heterogeneity in survival and detection, including features such
as: transient animals, which are only available within the study
system once across the study period (Pradel et al., 1997; Madon
et al., 2013); temporal heterogeneity due to variable sighting effort
(Marucco et al,, 2009; Monnahan et al., 2019); and individual
detection heterogeneity (IDH), where detection varies as a
function of individual attributes and habitat features
(Hammond, 1990; Cubaynes et al., 2010). CR methods have
been used to construct humpback whale abundance time series
at local, regional, and basin scales (e.g., Barlow et al., 2011; Madon
et al, 2013; Monnahan et al., 2019). These have been used to
inform conservation status for the global and regional populations
(Bettridge et al., 2015; Cooke, 2018) and to inform species
management (International Whaling Commission, 2009).

Abundance estimates for humpback whales rarely incorporate
all parts of a population’s range. Like other mysticetes, humpback
whales are capital breeders, undertaking long-distance
annual migrations between low-latitude winter breeding
grounds and high-latitude summer feeding grounds
(Mackintosh, 1946; Carwardine, 2019). During this migration,
animals may use stopover sites as transitory stops, from days to
weeks, for activities such as feeding, resting, socializing or
information gathering (Linscott and Senner, 2021). Stopover
sites can be coastal, such as Hervey Bay in East Australia
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(Franklin et al., 2021), but are often oceanic, such as the
Kermadec Islands in Oceania (Owen et al., 2019) and the Rio
Grande Rise in the Southwest Atlantic (Horton et al., 2020). To
date, whale abundance time series have been largely derived for
the ‘end points’ of migration - feeding and breeding grounds (e.g.,
Chaloupka et al., 1999; Schleimer et al., 2019). These abundance
estimates are crucial to monitor population size
(Stevick et al., 2003; Punt et al., 2006). In contrast, there are few
abundance estimates or time series for stopover sites, particularly
mid-ocean areas, which may provide more information about
migratory patterns in space and time (Findlay et al., 2011).

In the present study, we investigate humpback whale
abundance around Bermuda, a North Atlantic mid-ocean
stopover site (Figure 1; Payne and McVay, 1971;
Stevenson, 2011). The North Atlantic is considered to be a
discrete population of humpback whales (Cooke, 2018) with
two distinct population segments (DPS), listed as ‘not at risk’ in
the Caribbean breeding area and ‘endangered’ at Cape Verde
(NOAA, 2016). The Caribbean DPS is subdivided into northern
and southeastern Caribbean breeding grounds; and the principal
feeding grounds are the Gulf of Maine, eastern Canada, West
Greenland, Iceland, and north of Norway (Smith et al., 1999;
Reeves et al., 2002; Stevick et al., 2003; Stevick et al., 2018; Wenzel
et al,, 2020), with each feeding ground considered as a separate
management unit (International Whaling Commission, 2002;
Hayes et al., 2019). Long-distance migration routes in the North
Atlantic are not coastal (Stevick et al., 2006; Kennedy et al., 2014)
and there are few mid-ocean migratory stopovers, including
Bermuda and the Azores (Visser et al., 2011;
Cucuzza et al, 2015). Following extensive commercial hunting
in the 19" and 20" centuries (Smith and Reeves, 2010) and a
commercial whaling ban in 1955 (Best, 1993), the population size
of North Atlantic humpback whales steadily increased through
the end of the 20™ century (Punt et al., 2006). From CR analysis,
modeled annual increase ranged from 1.2% to 3.1% in the
principal breeding ground in the northern Caribbean, 1979-
1992 (Stevick et al., 2003; Punt et al, 2006). Rates of annual
increase varied widely across feeding grounds, from 3% in the Gulf
of Maine, 2009-2016, determined by CR (Robbins and Pace,
2018); to ~15% in Icelandic waters, 1987-2001 (Pike et al.,
2005), and a sharp decline in the West Greenland feeding
ground, 2007-2015 (Heide-Jorgensen and Laidre, 2015; Hansen
et al, 2018), determined by line transect sampling. Total
abundance in the North Atlantic is still thought to be far below
pre-exploitation population size (Punt et al.,, 2006; Ruegg et al,
2013), although the carrying capacity may have changed due to
environmental shifts (Tulloch et al., 2019). To our knowledge,
abundance estimates have not been provided for any part of this
population more recently than 2016 (Robbins and Pace, 2018).
Moreover, in 2018, the International Whaling Commission (IWC)
recommended a range-wide, in-depth assessment for North
Atlantic humpback whales, including abundance (International
Whaling Commission, 2019).
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Bermuda has strong migratory connections to other parts of
the North Atlantic, with evidence of stopover behavior. Using
photo-identification, individuals sighted in Bermuda have been
matched to all major feeding grounds, in addition to North
Carolina (USA) and Franz Josef Land (Russia); and both
Caribbean breeding grounds (Katona and Whitehead, 1981;
Stone et al., 1987; A. S., unpublished data; Happywhale'). Re-
sighting rates suggest that Bermuda is primarily a stopover
between the northwest Caribbean and western feeding grounds
(Beaudette et al., 2009). Meanwhile, breeding behavior in the
form of extensive seasonal singing activity has been recorded at
the Bermuda stopover site (Homfeldt et al., 2022), as well as
preliminary evidence of foraging (Stone et al., 1987; Hamilton
et al., 1997; Stevenson, 2011), aggregation and competitive
(Stevenson, pers. comm.) behaviors, during south- and
northbound migration.

Due to Bermuda’s position along the humpback whale
migratory route, the exclusive economic zone was declared a
Marine Mammal Sanctuary in 2012, as part of a ‘Sister Sanctuary
Agreement’ with western North Atlantic feeding and breeding
areas (NOAA and Government of Bermuda, 2012). However,

1 Happywhale, https://www.happewhale.com [last accessed 12

September, 2022]
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this designation confers no additional legal protection to
humpback whales, and the importance of these waters as a
stopover site has not been confirmed through abundance
estimates until the present study. With persistent and
increasing levels of regional human activity, particularly large
vessel traffic (Roberts, 2011; Halpern et al., 2015; Sirovic et al.,
2016), and the announcement of a Blue Economy Strategy for
Bermuda (Bermuda Ocean Prosperity Programme, 2021), such
evidence could underpin future designations that do carry legally
binding management measures, such as Particularly Sensitive
Sea Areas (PSSAs; Kachel, 2008), to mitigate risks to humpback
whales posed by these activities.

Here, we use a CR framework to model the seasonal
abundance of humpback whales around Bermuda from 2011
to 2020 using photo-identification sightings. The data set
exhibits low inter-seasonal resighting rates and the resulting
model framework does not provide an abundance estimate for
the first season of data collection (2010). To reduce bias in our
abundance estimates, we account for temporal heterogeneity in
sighting effort and whale occurrence, and formally test for both
transience and IDH in our data to guide subsequent model
fitting and selection. We discuss the potential of this time series
to inform marine management in Bermudian waters and
establish new baselines to monitor changes through the
migratory range of North Atlantic humpback whales.
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2 Materials and methods
2.1 Data collection

Between December 2009 and May 2020, annual humpback
whale photo-identification surveys were conducted from a small
vessel (6.5-10 m length) in coastal and offshore waters around
Bermuda (Figure 1). Surveys took place between December and
May, the period during which humpback whales typically occur
(A. S., unpublished data), and were daily whenever possible. In
2020, survey effort was limited by Covid-19 restrictions in
Bermuda (Table 1). All surveys were conducted in calm weather
(Beaufort Sea State<3, no precipitation, swell<2 m) with good
visibility, and typically spanned daylight hours. Surveys followed a
haphazard regime to maximize encounters with whales and
focused spatially on the southwestern Bermuda Platform and
the Challenger Bank seamount (Figure 1; Vogt and Jung, 2007),
although survey routes and sighting locations were not
consistently recorded. Surveys were conducted in closing mode;
whales were approached on detection and a focal follow of variable
duration was conducted at each encounter (Altmann, 1974),
which generally lasted 20-30 minutes and up to 2 hours. When
possible, the ventral side of the tail flukes of each encountered
animal was photographed with a digital SLR camera (Nikon D200,
2010-2017; Nikon D700, 2018-2020; 70-300 mm lens).

Images were used for individual photo-identification via scarring
patterns and coloration, following Calambokidis et al. (2001). Briefly,
two trained researchers independently assigned each image a score
of highest quality (1) to lowest quality (5) for five variables against
photographic archetypes: proportion of fluke visible, fluke angle
(relative to the water), lateral angle of the photographer,

10.3389/fmars.2022.971801

sharpness, and lighting. Scores from both researchers were then
compared: where there was a discrepancy, the lowest quality
(highest score) was retained. We adopted a conservative
approach wherein photographs with a score of 24 in any
category were rejected. Photographs were analyzed
independently by two teams and matches detected by only one
team were verified by the other.

Data were processed in two ways. For simplicity, each
December-May season was named according to the January-
May calendar year (e.g., the 2010 season refers to the period
December 2009-May 2010). First, to explore residency and
support existing evidence that Bermuda is used as a stopover
site (a transitory stop, used by whales during long-distance
migration for days to weeks), we determined the number of
animals that were re-sighted within each season. We calculated
the duration (in days) between first and last sightings for each
animal within each season, which can be used to infer the
minimum residence time in Bermuda. Because Bermuda is
thought to encompass south- and north-bound migrations, we
removed any durations greater than 20 days. Second, for capture-
recapture modeling, each animal was recorded as present or
absent for each season, resulting in a summary record of seasonal
sighting histories. This was used to determine the number of
inter-seasonal re-sights each season (from all previous seasons
within the study period) and estimate abundance.

2.2 Model construction

Abundance trends were derived from annual sighting
histories using capture-recapture (CR) methods (for example:

TABLE 1 Survey effort (absolute and standardized), sightings, inter-seasonal re-sights (from all previous years within the period) and intra-seasonal re-
sights for each season (December-May, e.g., the 2010 season corresponds to December 2009-May 2010), determined through photo-identification.

Season  Effort (days)  Standardized effort ~ No. whales  No. inter-seasonal
re-sights Intra-seasonal re-sights
No. whales  Days between sightings

2010 18 435 78 6 1-2
2011 25 7.01 104 4 9 1-7
2012 32 8.60 165 16 21 1-7
2013 33 837 158 27 21 1-8
2014 29 637 103 20 6 1-5
2015 33 8.38 180 26 13 1-6
2016 31 6.81 88 19 10 17
2017 27 7.29 122 28 1 1-1
2018 25 6.59 148 22 17 1-11
2019 38 9.81 218 49 26 1-14
2020 13 3.01 71 20 6 1-14
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King, 2014; McCrea and Morgan, 2015; Seber and Schofield,
2019; Hammond et al., 2021). Annual abundance was defined as
the total number of animals passing through the approximate
search area in a single December-May season. All model
construction and analyses were performed in R (R Core Team,
2020), and outputs were visualized with the ggplot2 package
(Wickham, 2016). CR models were fitted using MARK (White
and Burnham, 1999), accessed through R using the RMark
package (Laake and Rexstad, 2012).

With the majority of whales only sighted in one season
across all survey years, the data set is information-poor,
increasing the risk of over-parameterization and limiting the
complexity of suitable CR frameworks (Lebreton et al., 1992;
Forster, 2000). Therefore, using a two-step approach, we initially
fit a modified Cormack-Jolly-Seber (CJS; Lebreton et al., 1992)
model to the data, and then used the fitted model estimates to
calculate annual abundance (Cubaynes et al., 2010 season). We
also investigated the use of the more complex Jolly-Seber-
Schwarz-Arnason (JSSA; Jolly, 1965; Seber, 1965; Schwarz and
Arnason, 1996) and Pollock’s closed robust design (Pollock,
1982) models. However, for these data, both models led to
identifiability issues in the estimation of model parameters
(associated with boundary estimates) and thus were not
investigated further.

The CJS framework provides estimates of apparent survival
and detection, from which abundance can be subsequently
derived. The model can be modified to account for variable
survey effort, transience, and IDH. We defined each year as a
single capture occasion. CJS conditions on the first sighting of
each animal, so that we are not able to estimate the associated
capture probabilities for the first season of the study, which
consequently means that abundance estimates cannot be
produced for the first capture occasion (i.e., 2010; Cubaynes
etal., 2010). Capture histories were modeled as a function of two
parameters: apparent survival rate, @, and per-animal detection
probability, p. Parameters were linked to covariates with an
inverse logit function and values were estimated from observed
data using a maximum likelihood estimation (MLE) approach.
To estimate total annual abundance, we followed Cubaynes et al.
(2010) and used a Horvitz-Thompson estimator (Borchers et al,
2002; Horvitz and Thompson, 1952; McDonald and Amstrup,
2001) such that:

N n;

N*ZT;
pi

1

where N; denotes the estimated annual total abundance, P
the estimated detection probability and n; the number of sighted
animals at occasion i. A stratified bootstrap approach (1000
replicates) was used to calculate 95% confidence intervals for p,
@ and N (Morgan, 2008; King and McCrea, 2019; Worthington
etal,, 2021). For each bootstrap replicate, the number of animals
first sighted in a given year was set equal to the observed value.
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Core CJS model assumptions include that each animal has
an independent fate; that identifying marks are retained and
recorded correctly; and that all emigration is permanent
(Lebreton et al., 1992). Calves were excluded from the present
study and humpback whales are thought to form only loose,
temporary associations (Valsecchi et al., 2002), suggesting that
individuals behave independently from one another. The long-
term reliability of humpback whale fluke photo-identification
has been exhaustively demonstrated (Katona et al., 1979; Katona
and Whitehead, 1981; Carlson et al., 1990; Stevick et al., 2001;
Franklin et al., 2020). Temporary emigration in this system was
defined as animals that did not visit Bermuda for one or more
seasons (years). Despite limited information, temporary
emigration is thought to occur in humpback whale breeding
grounds (Brown et al., 1995; Madon et al., 2013; Kowarski et al.,
2018) and may occur at the Bermuda stopover site, which would
violate a model assumption and could contribute to a
transience signal.

Within the basic CJS framework, @ and p can be constant or
time dependent. Modifications to this framework were
considered to account for heterogeneous detection and
survival, based on system knowledge and goodness-of-fit
testing, to minimize bias of abundance estimates.

2.2.1 Capture effort

Detection probability p is likely to vary between years as a
function of seasonal survey effort (Marucco et al., 2009;
Monnahan et al., 2019). However, in terms of explaining
detection probabilities, the number of survey days is a coarse
and perhaps naive estimate of effort, given that a) the number of
whales present changes during a season, with a consistent peak
in sightings in March and April across all years; and b) the
temporal distribution of effort varies between seasons (Figure 2).
To account for this, we derived a standardized effort value for
each season i (effort, ;). First, we calculated the mean number of
whales seen per day (WPD) for a given calendar month m over
all seasons (WPD,,)), defined as:

WPD, = sightings,,
days,,

where sightings,, is the total number of sightings (one
sighting is equal to one identifiable whale seen at least once on
one day) and days,, is the total number of effort days, for
calendar month m across all seasons. We then derived an
associated correction factor for each month (cor,,) as:

WPD,,

cor,, = 72’“ WED,

This correction factor is an empirical distribution of the

average WPD across months, and thus takes into account
differences over time relating to whale presence in the area.
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Whales sighted per day (WPD; gray bars, left-hand y-axis) and number of days of survey effort (red lines, right-hand y-axis) for each survey

month and season.

Finally, we defined the standardized effort (effort,) for season i
as:

effort;; = Meffort;,, x cory, ;
m

where effort;,,, denotes the number of days of effort for
month m in season i. In this way, our standardized effort
accounts for intra-seasonal patterns in whale occurrence and
the heterogeneous temporal distribution of effort between
seasons (years). We considered models in which standardized
effort was included as a covariate with p via logistic regression.

2.2.2 Transience

We considered the presence of transients, defined as
animals that visited Bermuda in only one season during the
study period. By definition, transients cannot be observed
again and are unavailable for recapture within the study
(i.e., have zero “survival” probability; Pradel et al, 1997).
Transience has been detected in humpback whale breeding
grounds (Constantine et al., 2012; Madon et al., 2013; Chero
et al., 2020), although the source of the signal is uncertain.
Failure to account for this feature will typically lead to an
overestimation of abundance (Madon et al., 2013; Genovart
and Pradel, 2019), due to an associated underestimation of
capture probability.

We used goodness-of-fit (GoF) testing, implemented
through the R2ucare package (Choquet et al., 2009; Gimenez
et al,, 2018), to investigate the presence of transient animals. A
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significant chi-squared test result (° = 121, df = 44, p< 0.0001)
suggested a poor fit of the basic CJS model to sighting histories.
This test was decomposed to four interpretable components
using contingency tables; the TEST 3.SR (Pradel et al., 2005)
component yielded a significant result (Z = 89, p< 0.0001),
indicating that newly encountered and previously encountered
animals have different probabilities of subsequent re-sighting.
This is typically interpreted as a strong signal for transience and
removing this component improved goodness of fit considerably
O’ = 32, df = 35, p = 0.60). To account for transience, we
followed Pradel et al. (1997) and structured @ into two age
classes (@ ~ transient), 0 and 1+ years, where ‘age’ is the time
elapsed since first capture and not the actual age of the animal.
@, (model age 0) can be interpreted as the combined apparent
survival of ‘transient’ animals (zero survival probability) and
‘resident’ animals, and @;, (model age 1+) as the survival of
residents alone. The proportion of transients among newly
sighted animals, 7, was estimated using:

@,

T=1- —.
q)H

The proportion of transients in the population, T, was then
estimated via,

where E(u;) is the expected number of newly sighted animals
and E(m;) the expected number of re-sighted animals. Following
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Perret et al. (2003), we used observed u; and m; as estimates for
expected values.

We considered models in which @, and ®;, were constant
(single value) or time-varying in an additive way (@ ~ time +
transient). Additionally, to account for the possibility that
temporal variation in @ was driven by variable transience and
not survival, we considered models in which @, varied over time
but @;, was constant by using age class as a dummy variable (@
~ time:transient; Laake and Rexstad, 2012).

2.2.3 Individual detection heterogeneity

Detectability may also vary between animals as a function of
individual attributes, including fluke-up behavior for humpback
whales (Barendse et al., 2011) and habitat features, such that
each animal within the study system has a unique sighting
probability (Cubaynes et al., 2010; Gimenez and Choquet,
2010). Failing to account for individual detection heterogeneity
(IDH) can lead to an underestimation of abundance
(Hammond, 1990; Hwang and Huggins, 2005; Cubaynes et al.,
2010). To test for this feature, following Jeyam et al. (2018), we
applied tests of positive association between previous and future
encounters using Goodman-Kruskal’s gamma. A global version
of the test (all capture occasions pooled) was only marginally
significant (y= 0.47, p = 0.03). From occasion-specific tests, only
2013, 2015 and 2016 were (marginally) significant. Therefore,
modifications of the detection process p to account for IDH were
not included. Of note, in a preliminary analysis, including IDH
had little effect on parameter estimates but did lead to some
additional identifiability issues.

2.2.4 Model selection

In total, we fitted and compared 16 CJS models, constructed
from combinations of the different parameter specifications:
three for p (constant, time, standardized effort) and five for @
(constant, time, transient, time + transient, time:transient).
Selection of the final, best-fitting model was achieved with
Akaike’s Information Criterion corrected for small sample size
(AIC¢; Burnham and Anderson, 2004), where a low score
indicates improved model fit offset against model complexity,
supplemented with visual inspection of parameter values and
associated confidence intervals. The final annual abundance
estimates were linearly regressed against time to detect a
significant temporal trend. The regression was weighted by the
inverse of the variance of each abundance estimate to account
for varying precision (Stevick et al., 2003; Kutner et al., 2005;
Somerford et al., 2022).

3 Results

In total, 304 days of surveys were conducted between
December 2009 and May 2020. Seasonal survey effort ranged
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from 13 days (2020 season) to 38 days (2019 season; Table 1),
with a mean of 27 days (SD = 7.2 days). Seasonal standardized
effort, which accounted for intra-seasonal variation in whale
sighting rates, varied from 3.01 (2020) to 9.81 (2019), with a
mean of 6.96 (SD = 1.95). Out of 2,038 sightings with fluke
images, 1,594 sightings on 276 days had images of sufficient
quality (a score of <3 in all five variables). From these filtered
sightings, 1,204 individual whales were identified (Figure 3). The
number of identifiable whales per season ranged from 71 (2020)
t0 218 (2019; Table 1, Figure 3), with a mean of 130 whales (SD =
47 whales). The majority of whales (1,042, 87%) were sighted in
only one year, with whales sighted in up to seven different
seasons (one whale). The number of animals that were re-sighted
between years ranged from 4 (2011) to 49 (2019; Table 1) for
each year of re-sighting. Between 1 (2017) and 26 (2019) animals
were re-sighted within each season, with a maximum duration of
14 days between first and last sightings (after removing
durations >20 days; Table 1).

Candidate CJS models were compared with AICc values
(Table 2). The top two models represented 95% of the weight of
evidence, had similar AICc values (AAICc = 0.6 for second
model) and both contained detection p linked to standardized
effort and transient @. The only difference in model structure
was the time dependence of @ (apparent survival): in the best-
fitting model, @, was time-varying and @,, was constant (the
apparent survival of non-transient animals did not vary with
time), whereas both were time-varying in an additive way in the
second best-fitting model. In this way, the best-fitting model,
with constant survival following re-sighting, can be regarded as a
simpler version of the second best-fitting model. In both these
models, the CJS model parameters and associated estimates of
abundance are all very similar (Table S1, Figure S1), including
substantially overlapping 95% Cls. Thus, in this case we did not
compute weighted averages (which would be similar).

From the best-fitting CJS model (constant @,,; Figure 4),
detection probabilities, p, ranged from 0.05 (95% CI 0.03-0.08)
in 2020 to 0.20 (95% CI 0.15-0.28) in 2019. The survival of non-
transients, @;,,was 0.97 (95% CI 0.91-0.98) and the proportion
of transients, T, ranged from 0.2 (95% CI 0.04-0.64) in 2019 to
0.8 (95% CI 0.69-0.86) in 2018. The number of transient (N7)
and non-transient (Ng) animals showed differing trends,
particularly towards the end of the period, with non-transients
increasing and transients decreasing considerably from 2018 to
2019 (Figure 4). Total abundance, N, ranged from 786 (95% CI
593-964) in 2016 to 1,434 (95% CI 924-1,908) in 2020, with a
non-significant increasing linear trend across the period
determined by weighted linear regression (R® = 0.28, F = 4.43,
p = 0.07). Full model results are available at Grove et al. (2022).
Abundance estimates from CJS models with alternative
specifications of p (time-varying or linked to unmodified
effort) showed similar trends and overlapping confidence
intervals (Figure S2).
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FIGURE 3
Discovery curve of the cumulative number of photo-identified individuals from 2010 to 2020 (points), with bar plots showing the number of
new and previously identified (re-sighted) individuals seen each year.

4 Discussion migratory stopover site. According to our best-fitting CR model,
up to 1,434 North Atlantic humpback whales (95% CI 924-

Abundance estimates for mysticetes are usually derived for 1,908) visited Bermuda annually between 2011 and 2020, with
feeding and breeding grounds, the endpoints of migration. Here, fluctuations between consecutive years and a slight increase
we provide a ten-year abundance time series at an oceanic, overall. These abundances are comparable with some

TABLE 2 Parameter specification and summary of each candidate CJS model, including AlCc score used for model selection.

Apparent survival (@) Detection (p) Parameters AlCc AAICc Weight Deviance
time:transient effort 13 1855.3 0 0.55 300.3
time + transient effort 13 1855.9 0.6 0.4 300.9
transient effort 4 1861 5.8 0.03 3243
time + transient time 21 1862.3 7.1 0.02 290.9
time:transient constant 12 1884.3 29 0 331.3
time + transient constant 12 1886.5 31.2 0 333.5
transient constant 3 1890.6 354 0 355.9
time:transient time 20 1891.3 36.1 0 322
constant effort 3 1921.5 66.3 0 386.8
constant time 11 1926.1 70.8 0 3752
transient time 11 1931 75.7 0 380.1
time effort 12 1934.1 78.8 0 381.1
time constant 8 1936.5 81.3 0 391.8
time time 20 1938.6 83.3 0 369.3
constant constant 2 1947.7 92.4 0 415

The best-fitting model is in bold. For apparent survival, transient denotes that survival is split into two model age classes to account for transient animals; transient+time denotes that the
two survival values are time-varying; and time:transient denotes that @, is time-varying and @, is constant.
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Annual estimates for detection probability (p), transient rate (T), abundance of non-transients (Ng), abundance of transients (N7), and total
abundance (Ny), with 95% confidence intervals (Cl, shaded regions), for the best-fitting model (effort-dependent p, transient @, time-
dependent @, constant @;,). The weighted linear trend (non-significant) for total abundance is denoted by the dashed red line.

destination feeding grounds and confirm the contemporary
importance of this Marine Mammal Sanctuary as a stopover
site. Given the limited protection afforded to humpback whales
in Bermudian waters, these estimates should encourage the
implementation of area-based management tools to mitigate
risks from increasing human activities such as shipping,
commercial fishing, and marine wildlife tourism in the waters
around Bermuda. Moreover, with Bermuda’s migratory
connections to both feeding and breeding grounds across the
entire North Atlantic, this time series may facilitate population
monitoring at a basin scale.

The capture-recapture data set used here is relatively
information-poor, with only 13% of whales re-sighted between
seasons across the decade. This is unsurprising, given the
challenges of monitoring migratory humpback whales around
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the Bermuda stopover site: inclement weather frequently
prevented survey effort, with the number of survey days per
December-May season ranging from 13 in 2020 to 38 in 2019
(out of 182 days); Challenger Bank, a major geographical focus
of this study, is 15-20 km offshore; and it was often not possible
to survey the entire area of interest within a single day.
Furthermore, satellite tagging (Kennedy et al., 2014) and
historical sightings from whaling ships (Reeves et al,, 2004)
suggest that North Atlantic humpback whales follow diffuse,
poorly defined migration routes from the Caribbean to northern
feeding grounds, over several months. The general migration
route passing Bermuda may, therefore, be a very wide corridor
(hundreds to thousands of kilometers), and the full extent of the
stopover site may be greater than the surveyed area, further
limiting detectability.
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The resulting sparseness of individual sighting histories
limits the complexity (number of parameters) of suitable CR
models (Lebreton et al., 1992). We derived abundance estimates
with a modified CJS model of detection and apparent survival,
and a modified Horvitz-Thompson estimator. Using a
combination of system knowledge, goodness-of-fit testing, and
information criterion, we identified time dependence on
detection probabilities, modeled as a function of modified
survey effort; as well a considerable time-varying proportion of
transients in the population (Figure 4). Strictly, in this study, a
transient animal is only present in the study area (waters around
Bermuda) for one occasion (season). We acknowledge that
sightings data were used twice for model fitting, in terms of
capture-recapture data and applying an availability weighting to
the catch-effort covariate. However, the latter may be considered
a long-term average’ of monthly sighting rates over the duration
of the study period, that is then applied to all years individually.
Sensitivity analyses demonstrated that, in practice, the impact of
this effort modification on abundance estimates was negligible
(Figure S2). Furthermore, a comparable (simple) JSSA model
yielded parameter estimates that are broadly similar to those
derived from the best-fitting CJS model (Table S2, Figure S3),
lending further confidence to our abundance estimates, but the
use of JSSA models for these data was strictly limited as a result
of associated identifiability issues due to the additional model
complexity and parameters to be estimated. Future research
could explore the suitability of other CR modeling approaches,
such as a recently developed integrated stopover model
(Worthington et al., 2019), for this data set.

From the best-fitting CJS model, apparent survival was high
(@;, =097, 95% CI 0.92-0.98), yet comparable with estimates
obtained from other studies, both within and outside the North
Atlantic, with such values ranging from 0.9 to 0.99 (Barlow and
Clapham, 1997; Mizroch et al., 2004; Ramp et al., 2010; Félix
et al., 2011; Hendrix et al,, 2012). The modeled proportion of
transients, T, was also high between 2011 and 2018 (Figure 4);
this was unsurprising, given the high percentage of animals
sighted in only one season (87%). However, T declined steeply to
0.2 (95% CI 0.04-0.64) in 2019, which matches a higher inter-
seasonal re-sighting rate (Table 1, Figure 3). A transience signal,
as defined in this study, has previously been detected at
humpback whale breeding grounds (Chero et al., 2020), but, to
our knowledge, not feeding grounds or migratory stopovers
(Bertulli et al., 2018). Madon et al. (2013) quantified
transience using a similar method at a South Pacific breeding
ground (New Caledonia), using both photographic and genetic
CR. Whilst the values of T were lower from photographic CR
(0.19-0.3), values from genetic CR were similar to our results
(0.39-0.66; Madon et al., 2013).

The cause of this ‘transience’ signal and its temporal
variability have not been determined for humpback whales
(including this study), may not meet the definition of
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biological transients, and are likely to differ between study
systems. The CJS framework is relatively simple and specifies
two parameters, p and @; therefore, it is unable to distinguish
transience from other processes such as temporary emigration.
In addition, transience may be confounded with low re-capture
probabilities (Genovart and Pradel, 2019), but this is considered
unlikely in our model due to the estimation of both low values
for p (0.05-0.2) and high transient rates. Alternatively, the
‘transience’ signal may be driven by several factors. First,
animals may not use the same migration route every year. For
example, animals may switch breeding or feeding ground and
shift migration route in the process (Katona, 1986; Kennedy
et al., 2014). However, this is unlikely to be prevalent because
exchange rates are very low between breeding grounds (Mattila
et al,, 1989; Stevick et al., 1999; Stevick et al., 2016) and feeding
grounds (Palsboll et al., 1995; Stevick et al., 2006), particularly
between the western and eastern Atlantic. Alternatively, animals
may use the same general migration route but be transient in
their localized use of Bermuda. Whilst multidecadal route
fidelity has been demonstrated for Southwest Atlantic
humpback whales (Horton et al., 2020), migratory corridors in
the North Atlantic appear to be wide and diffuse between the
Caribbean and northern feeding grounds (Reeves et al., 2004;
Kennedy et al, 2014). Therefore, animals may follow this
corridor annually but be transient in their use of Bermuda as
a stopover.

Second, animals may faithfully use the migration route, but
not annually. For example, females may take ‘rest years™ after
giving birth, during which they remain in high latitudes and do
not visit breeding grounds (Craig et al., 2003). This is supported
by a large discrepancy between sex ratios in humpback whale
breeding grounds (1.5-2.5 males for every female) and feeding
grounds (near to 1:1) around the world (Brown et al., 1995; Craig
and Herman, 1997; Chero et al, 2020), including the North
Atlantic (Palsboll et al., 1997; Smith et al., 1999). Furthermore,
persistent humpback whale occurrence in North Atlantic feeding
grounds in the winter (Kowarski et al., 2018; Martin et al., 2021)
suggests that possibly not all animals migrate south every year.
This non-annual visitation would constitute temporary
‘emigration’ from the migration route and not true transience.
Temporary emigration can be investigated and characterized
using a robust design framework (Pollock, 1982), which
structures capture occasions into primary and secondary
periods (e.g., Boys et al., 2019). However, this model is more
complex, in terms of additional parameters compared to CJS and
JSSA, and was unsuitable for our data set, given the low intra-
and inter-seasonal re-sighting rates.

To our knowledge, the results presented here provide the
most recent abundance time series (2011-2020) for humpback
whales within the North Atlantic (Robbins and Pace (2018)
provided estimates for the Gulf of Maine up to 2016). From the
best-fitting model, annual abundance showed a weak, non-
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significant, positive linear trend across the decade (Figure 4).
Fluctuations in total abundance were sometimes large between
years, with a 34% decrease from 2015 to 2016, and a 40%
increase from 2018 to 2019 (Figure 4, Table S1). However, our
abundance estimates are imprecise, with largely overlapping
confidence intervals (Figure 4), so true inter-annual changes
may be far smaller. Nevertheless, these fluctuations may have
obscured an underlying temporal trend in abundance (Legendre
& Legendre, 2012), and are far greater than the maximum
plausible rate of increase in population size for humpback
whales (11.8% annually; Zerbini et al., 2010). As such,
abundance trends at Bermuda alone should not be used as a
proxy for variation in the size of the entire North
Atlantic population.

Beyond population size, fluctuations may additionally be
explained by (1) annual changes in the number of animals
undertaking migration (Gabriele et al., 2017; Cartwright et al.,
2019); or (2) annual changes in the migration route itself
(Zerbini et al., 2016). The potential drivers of migratory
changes are unknown for this stopover site but could include
variability in oceanographic conditions and, therefore, habitat
suitability, either at distant feeding grounds or Bermuda itself.
Prey availability at feeding grounds may influence the likelihood
of migration to breeding grounds (Frankel et al., 2022), and there
is evidence of both foraging and breeding behavior at the
Bermuda stopover (Payne and McVay, 1971; Hamilton et al.,
1997; Stevenson, 2011; Homfeldt et al., 2022). Studies in Hawai’i,
the principal North Pacific breeding ground, found interannual
changes of similar magnitude in humpback whale abundance
(Frankel et al., 2022), reproductive rates (Cartwright et al., 2019),
and male singing activity (Kiigler et al., 2020) in response to the
North Pacific Marine Heatwave of 2014-2016. Meanwhile, in
North Atlantic feeding grounds, a sharp decline in baleen whale
abundance in West Greenland was attributed to species range
shifts driven by climate-induced changes in pelagic productivity
(Heide-Jorgensen and Laidre, 2015; Hansen et al., 2018); and
phenological shifts related to increasing water temperature in the
Gulf of Maine (Pendleton et al.,, 2022). In the Azores, a foraging
stopover site in the eastern Atlantic, the seasonal timing of
baleen whale sightings (including humpback whales) during
northbound migration was related to the timing of the
regional spring phytoplankton bloom (Visser et al., 2011).
Future work should relate local and regional variation in
dynamic oceanography to a Bermuda abundance time series,
preferably extended to improve statistical power.

Despite these potential fluctuations, our abundance time
series suggests that up to 1,434 whales (95% CI 924-1,908)
visited the study area each year, with intra-seasonal sightings
demonstrating stopover residency (Table 1). Together, these
results confirm the use and importance of Bermuda as a
migratory stopover for humpback whales. Due to the lack of
recent abundance estimates for North Atlantic feeding and
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breeding grounds (Kennedy and Clapham, 2017), it is
challenging to place these results in the context of the wider
North Atlantic and comparisons with outdated abundance
estimates should be made cautiously. Total abundance in the
primary Caribbean breeding ground was estimated to be 10,752
in 1992-93 (CV = 0.068, Stevick et al., 2003), and it is plausible
that the growth rate of 3% has continued (Punt et al., 2006).
Abundances for Bermuda are smaller than estimates from some
feeding areas, including Iceland (>10,000 during 1995-2007;
Vikingsson et al., 2015), and Norway (4,695 during 1996-2001;
Qien, 2009), but are comparable with other feeding grounds
such as the Gulf of Maine (1,317 in 2016; Robbins and Pace,
2018) and eastern Canada (1,903 in 1982; Katona and Beard,
1990). Therefore, whilst Bermuda is apparently visited by a small
proportion of the total North Atlantic population, the island
may serve as an important migratory stopover site for individual
feeding grounds, particularly in western areas (Beaudette et al,
2009). These feeding grounds are treated as distinct
management units at a basin scale (Hayes et al., 2019). Further
analysis of the migratory connectivity between Bermuda and
other parts of North Atlantic will improve our understanding of
Bermuda’s role within the wider population.

These results are timely, given the recent announcement of a
draft Blue Economy Strategy for Bermuda (Bermuda Ocean
Prosperity Programme, 2021) and the lack of specific protection
afforded to humpback whales in these waters. The declaration of
Bermuda’s exclusive economic zone as a Marine Mammal
Sanctuary in 2012 formed part of a transboundary network of
‘protected areas’ (Wenzel et al., 2019) but provided no
management measures (NOAA and Government of Bermuda,
2012); the inclusion of humpback whales in Bermuda’s
Protected Species Act of 2003 broadly prohibits disturbance,
harassment and injury (Government of Bermuda, 2003;
Government of Bermuda, 2016); and existing whale-watching
guidelines are voluntary (Department of Environment and
Natural Resources, 2017). Moreover, around Bermuda and the
wider Sargasso Sea, anthropogenic activity, particularly large
vessel traffic, has increased in recent years and this growth is
forecast to continue (Roberts, 2011; Halpern et al., 2015; Sirovi¢
etal, 2016). As a result, ocean ambient sound is now dominated
by shipping in Bermudian waters (Sirovi¢ et al., 2016).
Combined with possible increases in commercial fishing
activity and whale-watching tourism (Bermuda Tourism
Authority, 2019), any resulting mortality or disturbance may
impact whales across the North Atlantic, particularly western
feeding grounds and northern Caribbean breeding grounds. Our
time series should encourage consideration of area-based
management tools to mitigate risks from human activities
around Bermuda, such as PSSAs and marine protected areas,
as well as a review of existing whale-watching guidelines
(Department of Environment and Natural Resources, 2017).

Abundance estimates can be combined with current acoustic
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monitoring (Homfeldt et al.,, 2022) and behavioral observation
to provide evidence of spatiotemporal patterns in habitat use to
guide specific policies (Minton et al., 2011; Rossi-Santos, 2015;
Stepanuk et al., 2021). Moreover, such evidence may determine
whether Bermuda constitutes critical habitat, defined as areas
that are regularly used by a population to perform essential tasks
for survival and reproduction (Hoyt, 2011), and may require
special consideration for species conservation (Endangered
Species Act, 1973).

Beyond Bermuda, the large sightings database (1,204 whales)
and ten-year abundance time series may facilitate wider
population monitoring on a basin scale (Moore, 2008; Hazen
et al, 2019), in conjunction with comparable time series in
breeding and feeding grounds (e.g., Robbins and Pace, 2018).
Due to Bermuda’s unique migratory connections (Katona, 1986)
and its role as a stopover site (Payne and McVay, 1971;
Stevenson, 2011), changes in abundance around Bermuda may
reflect shifts in migratory patterns and population dynamics in
distant feeding or breeding grounds across the North Atlantic,
and provide extra information on population-level processes.
Therefore, we encourage the construction of contemporary,
separate abundance time series in other parts of the North
Atlantic (especially feeding and breeding grounds), for
example, by using existing photo-identification databases, e.g.,
Happywhale (https://happywhale.com) and the North Atlantic
Humpback Whale Catalogue (Katona and Beard, 1990). This
aligns with the IWC’s recommendation for a range-wide
assessment of abundance to replace outdated estimates
(International Whaling Commission, 2019). Furthermore,
humpback whales are a cosmopolitan marine predator and
sensitive to ecosystem change (Cartwright et al., 2019). Better
understanding basin-scale population processes, including
migratory patterns over space and time, will facilitate assessing
the response to environmental change, which may be used as a
sentinel for ecosystem monitoring (Simmons et al., 2017;
Miloslavich et al., 2018).

Using a capture-recapture framework, guided by goodness-
of-fit-testing, we provide an abundance time series for a baleen
whale migratory stopover site. Accounting for heterogeneity in
survival and detection, we generate robust abundance estimates
across a decade and demonstrate the importance of Bermuda for
migrating North Atlantic humpback whales. Future marine
spatial planning around Bermuda should consider the
potential impact that growing anthropogenic pressures, such
as vessel traffic and marine wildlife tourism, may have on
thousands of humpback whales within potential critical
habitat. Furthermore, with Bermuda’s migratory connections
to feeding and breeding grounds, this time series may facilitate
monitoring of population-level processes across the North
Atlantic. More generally, we encourage the investigation of
whale abundance across a species’ range as a potential sentinel
for basin-scale ecosystem change. As marine environmental
change accelerates across the North Atlantic, sustained photo-
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identification survey effort in Bermudian waters should be
supported to extend this time series.
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In highly fragmented and relatively stable cold-seep ecosystems, species are
expected to exhibit high migration rates and long-distance dispersal of long-
lived pelagic larvae to maintain genetic integrity over their range. Accordingly,
several species inhabiting cold seeps are widely distributed across the whole
Atlantic Ocean, with low genetic divergence between metapopulations on both
sides of the Atlantic Equatorial Belt (AEB, i.e. Barbados and African/European
margins). Two hypotheses may explain such patterns: (i) the occurrence of
present-day gene flow or (ii) incomplete lineage sorting due to large
population sizes and low mutation rates. Here, we evaluated the first
hypothesis using the cold seep mussels Gigantidas childressi, G. mauritanicus,
Bathymodiolus heckerae and B. boomerang. We combined COI barcoding of
763 individuals with VIKING20X larval dispersal modelling at a large spatial scale
not previously investigated. Population genetics supported the parallel evolution
of Gigantidas and Bathymodiolus genera in the Atlantic Ocean and the
occurrence of a 1-3 Million-year-old vicariance effect that isolated populations
across the Caribbean Sea. Both population genetics and larval dispersal
modelling suggested that contemporary gene flow and larval exchanges are
possible across the AEB and the Caribbean Sea, although probably rare. When
occurring, larval flow was eastward (AEB - only for B. boomerang) or northward
(Caribbean Sea - only for G. mauritanicus). Caution is nevertheless required since
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we focused on only one mitochondrial gene, which may underestimate gene
flow if a genetic barrier exists. Non-negligible genetic differentiation occurred
between Barbados and African populations, so we could not discount the
incomplete lineage sorting hypothesis. Larval dispersal modelling simulations
supported the genetic findings along the American coast with high amounts of
larval flow between the Gulf of Mexico (GoM) and the US Atlantic Margin,
although the Blake Ridge population of B. heckerae appeared genetically
differentiated. Overall, our results suggest that additional studies using nuclear
genetic markers and population genomics approaches are needed to clarify the
evolutionary history of the Atlantic bathymodioline mussels and to distinguish
between ongoing and past processes.

KEYWORDS

COl, population genetics, larval dispersal modelling, long-distance dispersal, cold seep

ecosystems, bathymodiolin mussels, Atlantic

1 Introduction

In marine species with a bentho-pelagic life cycle, the
maintenance of a single panmictic population over the species
range often depends on hydrodynamics, the duration of the
pelagic larval phase, the larval behavior, the energetic investment
in reproduction, the number of larvae produced, and the availability
of suitable habitats (Gaines et al., 2007; Cowen and Sponaugle,
2009). In fragmented and unstable environments, the functioning of
a metapopulation depends primarily on an equilibrium between
migration and local extinction (Lande, 1988; Harrison and
Hastings, 1996) in which the process of habitat recolonization
strongly influences the genetic heterogeneity of the species
(McCauley, 1991, Pannell and Charlesworth, 1999). Indeed, when
local populations become extinct at regular time intervals as may
occur in unstable environments, self-recruitment may be
insufficient to ensure population and species persistence.
Migration then becomes essential, with inward migration
contributing to population replenishment and outward migration
allowing the colonization of new territories or habitats. In marine
environments, such processes are often dependent on the pelagic
larval phase (Scheltema, 1986; Roughgarden et al., 1988; Cowen and
Sponaugle, 2009; Shanks, 2009). Global changes and anthropogenic
impacts have been observed even in the deepest marine ecosystems,
and habitat disturbance through climate change, pollution, mining,
oil and gas extraction, net trawling, etc. can alter larval connectivity
by modifying local hydrodynamics, reducing population sizes and
fragmenting habitats (e.g., Baco et al., 2010; Adams et al., 2012; Van
Dover, 2014; Levin and Le Bris, 2015; Le Bris et al., 2017; Vilela
et al,, 2022). It thus appears crucial to investigate larval dispersal
and population connectivity and to identify the main corridors of
gene flow in order to anticipate the potential impacts of human
activities in deep sea ecosystems.

Using a probabilistic model of migration, Hamilton and May
(1977) showed that it is always favorable for a species to disperse
and establish at a respectable distance from the parental genotypes
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even when the habitat is stable and more or less continuous. It is,
indeed, advantageous for a species to produce a number of migrants
greater than half of its descendants in order to make its own genes
persist, even if the cost of migration is very high (Hamilton and
May, 1977). When the habitat is naturally fragmented and stable,
local dynamics needs to be balanced by migration, or the size of
patches (and thus their carrying capacity) must be sufficient to
support each population: a situation rarely met. As a consequence,
the optimal dispersal distance must be large enough to override the
degree of habitat aggregation (Hamilton and May, 1977; Levin et al.,
1984). Olivieri et al. (1995) pointed out, however, that a predictably
perennial habitat with a very low frequency of occurrence may
rapidly favor the coexistence of highly dispersive and non-
dispersive stages. Indeed, dispersing individuals carrying “high-
migration genotypes” will leave local populations and such
genotypes will thus be rapidly lost in the local populations while
they will be overrepresented in newly colonized sites (Olivieri et al.,
1995). The two dispersal strategies may thus co-exist in a
metapopulation as a result of opposite selective processes within
and between populations. In the specific case of ‘nearly-passive’
dispersal (e.g. larval dispersal by ocean currents), the number of
immigrants is often much smaller than the number of emigrants
because a long-distance’ propagule will have a low probability of
finding a suitable settlement site (Shanks, 2009). In such a case,
highly dispersive larvae are likely to be rapidly counter-selected for
species with low to moderate fecundity living in rare perennial
habitats; this might explain why many island-dwelling species have
lost their ability to disperse (MacArthur and Wilson, 1967, Lejeusne
and Chevaldonne, 2006) and/or have adopted a philopatric
behavior (Maes and Volckaert, 2002).

When a habitat is fragmented and locally transient instead of
persistent, the risk of local extinction may eventually cause the
global extinction of a non-dispersive species. It is then reasonable to
assume that the benefits of massive, long-term dispersal far
outweigh the costs, especially when the rate of habitat turnover is
rapid (McPeek and Holt, 1992). In theory, the migration rate of a
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species appears to be positively correlated with the availability of
habitat and negatively correlated with its persistence (Doebeli and
Ruxton, 1997; Travis and Dytham, 1999) although it is also sensitive
to the geographic arrangement of patches in the landscape
(Moilanen and Hanski, 1998). Species inhabiting frequently
occurring but transient habitats are thus expected to show high
migration rates and high dispersal distances (Travis and Dytham,
1999). Dormancy is also another means of survival for species living
in fragmented and transient habitats (Levin et al., 1984). In plants,
both dispersal and dormancy can confer advantages under different
conditions: dormancy, when conditions are unfavorable and
dispersal when conditions vary in space, but both are conditioned
by natural fluctuations in the environment (Snyder, 2006). In the
marine environment, these two processes can be more closely
associated if the dormancy phase is integrated with the dispersal
phase. An example is the case of the specialized vent worm Alvinella
pompeiana since its larvae arrest their development until
encountering the appropriate thermal conditions for adult
survival (Pradillon et al., 2001). High migration rates and
dispersal distances coupled with delayed metamorphosis may thus
represent one of the most powerful evolutionary strategies for
species persistence (Pechenik, 1990).

Cold seeps constitute a fragmented, more or less stable, reduced
habitat along active and passive continental margins associated with
gas/hydrocarbon or brine resurgence zones in all oceans (Hecker,
1985; Sibuet et al., 1988; MacDonald et al., 1989; Jollivet et al., 1990;
Olu et al,, 1997; Olu-Le Roy et al., 2004; Yao et al., 2022). These sites
are distributed over a wide range of depths from a few hundred to
more than 7300 meters (Fujikura et al., 1999), and are often
separated by large geographic distances. These deep-sea habitats
support a specialized fauna that relies on chemosynthesis with
sulfur-oxidizing and/or methanotrophic bacteria (Fisher et al,
1987; Barry et al, 2002; Cordes et al., 2009; Duperron et al.,
2012). As an adaptation to fragmentation and instability, species
living there are likely to display larval stages favoring long distance
dispersal, for instance, planktotrophic larvae that must ascend to
the surface to feed (Lutz, 1988; Pond et al, 1997; Herring and
Dixon, 1998; Arellano et al., 2014; Yahagi et al., 2017; Kim et al.,
2022) or lecithotrophic larvae with large yolk reserves that can
develop slowly in the deeper portions of the water column where
conditions are oligotrophic and cold (Young, 1994; Chevaldonne
et al,, 1997; Marsh et al., 2001). They are thus good examples of
theoretical predictions promoting long-term dispersal or no
dispersal depending on environmental fluctuations and life-
history traits constraints. Although many species are endemic to a
given geographic area, fine-grained community analysis has shown
that many cold-seep species have a relatively wide distribution (Van
Dover et al., 2002; Olu et al., 2010; Cowart et al., 2013; LaBella et al.,
2017) suggesting putative long-distance dispersal capabilities (Olu-
Le Roy et al., 2007; Young et al., 2012; Teixeira et al., 2013; Arellano
et al., 2014). In accordance, population genetics and molecular
barcoding studies of seep species have suggested the possibility of a
shared history between active margin faunas on both sides of the
North Atlantic Ocean and/or ongoing connectivity (Andersen et al.,
2004; Olu-Le Roy et al., 2007; Cowart et al., 2013; Teixeira et al.,
2013; LaBella et al., 2017). The ecological importance of cold seeps
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as biodiversity hotspots and providers of ecosystem services (Levin
etal., 2016) advocates more research on connectivity at ocean scales
to assess their vulnerability to environmental changes and precisely
define protected areas.

Discriminating between patterns of dispersion and determining
how long and where a larva is able to travel in the water column is,
however, not an easy task. In general, deep-sea larvae cannot be
tracked directly in the field. The inference of dispersal often requires
the coupling of several indirect approaches such as larval dispersal
modelling using biophysical models, larval rearing in the laboratory
and/or the analysis of genetic patterns of populations to estimate
gene flow between them (Gilg and Hilbish, 2003; Young et al., 2012;
Breusing et al., 2016; Mitarai et al., 2016; Handal et al., 2020;
Breusing et al,, 2021). To date, studies have not accurately
determined the relative contribution of the demographic history
of populations and of the contemporary exchanges via larval
dispersal across the Atlantic Ocean to the genetic structure of
species. However, the coupling of present-day population genetic
connectivity with the ‘large-scale’ modelling of larval dispersal at
different depths offers particularly promising prospects (Breusing
et al., 2016; Breusing et al., 2021). While such coupling approach
has been applied along the Mid-Atlantic Ridge (Breusing et al,
2016), no study yet focused on cross-Atlantic exchanges. The
Atlantic Ocean monitoring program, through the H2020 iAtlantic
project, made such a perspective possible. It allowed the use of both
the Parcels v2.0 module (Delandmeter and van Sebille, 2019) of the
VIKING20X ocean circulation model developed to investigate the
evolution of the Atlantic meridional overturning circulation
(AMOQC) in the face of global warming (Hirschi et al., 2020;
Biastoch et al., 2021) and the barcoding of samples from nearly
all the existing collections of cold seep mussels from the American,
African and European active margins. The aim of the present study
was therefore to test the role of present-day long-term larval
migration via surface currents in explaining the amphi-Atlantic
distribution previously pointed out by Olu-Le Roy et al. (2007) for
the two species complexes of seep mussels, namely Gigantidas
childressi/G. mauritanicus (Gustafson et al,, 1998; Genio et al,
2008) and Bathymodioulus boomerang/B. heckerae (Cosel and
Olu, 1998; Gustafson et al., 1998). These species seem to be
specific to cold seeps and have been sampled only once in
seepages located near hydrothermal vents (e.g. Logatchev). They
have never been observed in other reduced habitats such as sunken
wood or whales falls, although the latter are thought to have played
a role in the diversification of bathymodioline mussels creating
intermediate habitats that drove evolution from shallow to deep
ecosystems (Distel et al.,, 2000; Lorion et al., 2013). Here we thus
aimed to locate putative dispersal corridors between the American
and African/European margins and to determine whether long-
term larval dispersal represents a viable strategy for population
persistence. The distributions and genetic relationships of seep
mussels were investigated by molecular barcoding using a portion
of the mitochondrial Cytochrome ¢ oxidase 1 gene (COI). This
genetic structure was then compared to the expected larval dispersal
patterns based on VIKING20X outputs for particles released from
the bottom to the surface at several key seep localities with the
longest possible pelagic larval duration of one year (as estimated by
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Arellano and Young, 2009 for G. childressi). While previous studies
focused on the northern part of the Atlantic Ocean and/or relied on
modelling or genetics only to estimate connectivity (e.g. Cordes
et al., 2007; Olu-Le Roy et al., 2007; Young et al., 2012; McVeigh
et al,, 2017; Gary et al., 2020), we proposed here to combine both
approaches at a spatial scale not yet investigated.

2 Material and methods

2.1 Sample collection, DNA extraction, COI
amplification and sequencing

A unique collection of cold seep mussels was gathered from 14
different seeps on both side of the Atlantic Ocean (see Table 1 and
Figure 1). Samples were collected during several oceanographic
cruises that took place between 2006 and 2020 using remotely
operated underwater vehicles (ROV) or human occupied
underwater vehicles (HOV) (Table 1). Animals were either
dissected on board and preserved in 96-100% ethanol or kept
frozen at -80°C before being sent to the laboratory (Table 1). DNA
was extracted from these frozen or ethanol-preserved tissues of foot,
mantle or gills depending on their preservation state and availability.
These extractions were performed using a 2% CTAB (Cetyl-trimethyl
ammonium bromide)/1% PVP (Poly(n-vinyl-2 pyrolidone) protocol
following the modified method of Doyle and Doyle (1987) proposed
by Jolly et al. (2003). DNA pellets were then dried using a SpeedVac
(ThermoFisher Scientific) and resuspended in 50 to 300puL (according
to the size of the pellet) in 0.1X Tris-EDTA buffer. The quality of
DNA samples was then checked by electrophoresis using a 0.8%
agarose gel.

The COI gene was then amplified using degenerated versions of
original Folmer primers (Folmer et al., 1994) that were designed to
allow a more efficient amplification of deep-sea mussel species:
forward LCO1490Bathspp: 5-GTTCTACRAAYCATAAAGAYAT
TGG-3’ and reverse HCO2198Bathspp: 5-AACYTCTGGRTGV
CCRAAAAACCA-3’. Polymerase chain reactions (PCRs) were
performed in a final volume of 25 uL with 20-30 ng of DNA, 1X
GoTaq® reaction buffer (Promega), 0.05 mg/ml Bovine Serum
Albumin, 2 mM MgCI2, 0.12 mM of each dNTP, 0.6 uM of both
forward and reverse primers and 1 U of GoTaq ® polymerase. The
thermal profile consisted of 3 min of initial denaturation (94°C),
followed by 35 cycles of denaturation (30 s, 94°C), annealing (30 s at
50°C) and extension (1 min, 72°C), with a final extension 10 min at
72°C. PCR products was checked on 1.5% agarose gel and sent for
Sanger sequencing on both DNA strands at the Eurofins Laboratory
(Ebersberg, Germany). For each individual, chromatograms were
checked, edited when necessary (e.g. trimmed) and assembled into
consensus sequences using CodonCode Aligner 3.6.1 (CodonCode,
Dedham, MA, USA). Following this procedure, 248 sequences were
obtained and used in subsequent analyses: 16 identified as B.
heckerae, 30 identified as B. boomerang, 137 identified as G.
childressi and 65 identified as G. mauritanicus (see Table 1;
Supplementary Table S1; Figure 1 for specific locations and
metadata of the samples — see also PANGAEA database, Jollivet
et al, 2023 and European Nucleotide Archive database study
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PRJEB56597). This dataset was enriched with 515 publicly
available sequences from GenBank for subsequent analyses (173
for B. heckerae/B. boomerang, 342 for G. childressi/G. mauritanicus,
Table 1; Supplementary Table SI). All sequences (published and
amplified from new individuals) were aligned within each species
complex using Seaview v.4.7 (Gouy et al., 2010) and the MUSCLE
algorithm (Edgar, 2004), and then trimmed to a final length of 449
bp for G. childressi/G. mauritanicus and 515 bp for B. heckerae/
B. boomerang.

2.2 Species barcoding and population
genetics analyses

First, taxonomic units were determined within each species
complex using the Assemble-Species-by-Automatic-Partitioning
method (ASAP; Puillandre et al, 2021) and the software web
interface’. ASAP relies on the barcode gap detection approach
developed by Puillandre et al. (2012) and uses pairwise distances
from single-locus sequence alignments as well as a hierarchical
clustering algorithm to identify the most probable partition of
individuals in putative species. ASAP analyses were run using
default parameter and pairwise distances calculated under the
K2P substitution model. Then, haplotypes were determined using
DnaSP v.6 (Rozas et al., 2017) and a minimum spanning haplotype
network (Bandelt et al., 1999) was constructed using PopArt v.1.7
(Leigh and Bryant, 2015) to visually represent the relationships
among haplotypes from different geographic locations within each
species complex. DNAsp v.6 was then used to infer haplotype (Hd)
and nucleotide () diversities for each sampled site within each
species complex as well as the number of variable sites (S), the total
number of mutations (Eta), the average number of nucleotide
differences (k, Tajima, 1983) and the net genetic distances Da
(Nei, 1987). Finally, pairwise Fst values from haplotype
frequencies were computed between and within species using
Arlequin 3.5.2.2 (Excoffier and Lischer, 2010). Significance
compared to zero of Fst were assessed using 10 000 permutations.
Exact tests of population differentiation with 10 000
dememorization steps and 100 000 steps in the Markov Chain
were also performed at a threshold of 0.05. The pairwise Fst
matrices were then used to construct heatmaps in R v.4.1.0 (R
Core Team, 2021) to help visualizing genetic relationships
between populations.

2.3 Estimating divergence time
and gene flow

We also used the IMa3 program (Hey et al, 2018) which
implements hierarchical Bayesian, Markov-chain Monte Carlo
simulations of gene genealogies under an Isolation with Migration
model to estimate splitting times, effective population and
migration rates between multiple populations. The reference

1 https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html#
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population topology (Supplementary Figure S1) used was
constructed based on the haplotype networks and ASAP analyses.
Four groups of populations could be distinguished (see Results): (1)
the Gulf of Mexico (GoM), (2) the US Atlantic margin (US), (3) the
African and European margins (Africa-Cadiz) and (4) the
populations located on the Barbados Accretionary prism
(Barbados-KeJ) (see Table 1 to find the name of localities
associated with each group). Because mussels from GoM and US
were geographically closer to each other than were individuals from
Africa-Cadiz and Barbados-KeJ in both species’ complexes, we
hypothesized TO (splitting time between pop 0 and pop 1) to be
more recent than T1 (splitting time between pop 2 and pop 3, see
Supplementary Figure S1).

Analyses were performed on the whole dataset for B. heckerae/B.
boomerang (GoM n = 63, US n = 62, Western African Margin n =73,
Barbados-Ke] n = 21) but, given the heterogeneous sample sizes for
G. childressi/G. mauritanicus (GoM n = 187, US n = 259, Western
African Margin-Cadiz n = 31, Barbados-Ke] n = 67), we subsampled
the GoM and US population groups to n = 64 and n = 66,
respectively. For each Gigantidas subsample, 60 individuals were
randomly chosen and we then purposely added some individuals to
make sure that the frequencies of shared haplotypes remained the
same before and after the resampling. Indeed, since both GoM and
US datasets were subsampled to around half their initial size, we
verified that haplotype frequencies were not shifted after
subsampling. The aim of such procedure was to prevent any
subsampling-induced bias in parameter estimations, especially
migration rates which are directly impacted by the distribution of
haplotypes between populations. The G. childressi — G. mauritanicus
intermediate individual (see results) from New England seep was
however discarded from the analysis as it may represent a potential
hybrid individual with a recombining sequence.

Since our dataset included a single locus, we used one MCMC
chain (as recommended in IMa3 manual) with 10 million of
sampled genealogies (-L 100 000 and -d 100) and 1 million of
burn-in steps (-B). As recommended for mitochondrial loci, we
used the HKY substitution model and an inheritance scalar of 0.25
(-h). The generation time was set to one year, as assumed for deep-
sea bathymodioline mussels (Faure et al., 2009). For other deep-sea
species, the substitution rate was estimated between 0.09% and
0.56% per million years (My) (Chevaldonne et al., 2002; Johnson
et al., 2006; Faure et al., 2009; LaBella et al.,, 2017). We used the
value of 0.4% per My to calculate the mutation rate per gene per
year needed for IMa3 as (0.004*L)/1000000 with L being the length
of the sequences used in IMa3 analyses (i.e. 449 bp for Gigantidas
spp. and 515 bp for Bathymodiolus spp.). Parameter convergence
was assessed by checking plots of parameter trends and marginal
posterior probability distributions of the parameters, by checking
the Effective Sample Size (ESS) and comparing estimates of the first
and second halves of the sampled genealogies. We used the -p 3
option to print a histogram of splitting times divided by the prior
distribution as recommended when there are two or more splitting
times in the model. In order to identify the best uniform prior
distribution of values, we started by running numerous tests with
alternative maximal values (e.g. using hyperpriors or not and
starting with IMa3 manual rules of q=5x, t=2x and m=2/x, with
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x = the nucleotide diversity of each group estimated from the
Watterson’s 6 using the DNAsp v.6 software). Final prior values
used are shown in Table 2.

After fixing prior values, we reran analyses for each species
complex in triplicate using different seeds in order to make sure that
parameter estimations were similar. For each run, parameter
estimates were obtained from the highest posterior probabilities
(HiPt) together with the 95% highest posterior density intervals
(HPD) as confidence intervals. Final values reported in our results
corresponded to the averaged values over the different replicates.
Significance of migration rates was determined through log-
likelihood-ratio tests implemented in IMa3. When migration rates
were significantly different from zero in one run but not another, its
significance level was reported in the results.

2.4 Numerical hydrodynamic
model description

Modelling was performed using VIKING20X, an updated and
expanded version of the VIKING20 ocean general circulation
model aiming at hindcast simulations of Atlantic Ocean
circulation variability on monthly to multi-decadal timescales and
with a spatial resolution sufficient to capture mesoscale processes
into subarctic latitudes (see a detailed description in Biastoch et al.,
2021). VIKING20X is configured on the ORCA family of tripolar
grids. The entire model domain covered the Atlantic Ocean from
33.5°S to ~65°N in latitude and from 100°W to 22°E in longitude
with a horizontal resolution of 0.05°, nested into a global ocean-sea-
ice model at 0.25° resolution and 46 geopotential z-levels along the
depth-axis (Figure 1). The horizontal resolution increased with
latitude from 5 km in tropical areas to 3 km in polar regions. Layer
thickness increased with depth and varied from 6 m at the surface to
250 m in the deepest layers so that it optimizes the representation of
the circulation in surface and subsurface waters at the detriment of
the near-bottom circulation. Forced by the atmospheric dataset
JRA55-do (Tsujino et al., 2018), VIKING20X has been shown to
realistically simulate the large-scale horizontal circulation, the
distribution of the mesoscale, overflow and convective processes,
and the representation of regional current systems, including the
western boundary current systems, in the North and South Atlantic
(see Biastoch et al,, 2021 and references therein). Five-day average
fields of the three-dimensional velocities, potential temperature and
salinity for the period 1980-2019 were provided by the model.

2.5 Larval dispersal modelling

Larval trajectories were modeled with the offline 3D Lagrangian
code Parcels v2.0 (Probably A Really Computationally Efficient
Lagrangian Simulator) based on the 3D velocities provided by the
VIKING20X model (Delandmeter and van Sebille, 2019), a
technique that is well established for physical and
interdisciplinary applications in VIKING20X (e.g., Busch et al,
2021; Schmidt et al., 2021; Fox et al., 2022). Based on the current
knowledge on the distribution of the two species complexes of deep-
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TABLE 1 Number and locations of all sequences used in analyses. The total numbers per site are reported as well as, within brackets, the number of
newly sequenced individuals among this total number.

Site (code . o
( ) . Lat./Lon. Chief-scientist B. . .
for genetic  Location B. boom. G. child.  G. mauri. Total
(depth) (and/or study) heck.
samples)
26921'N AT26-15 2014 C.L. Van Dover, C.M.
Alaminos R - (SEEPC)/RV Young, R He,, D.
M 14° 2
Canyon (AC) Go OH30W Atlantis/HOV Eggleston, S. Arellano, 3 57 (26) 60
(2208 m) i
Alvin (Faure et al., 2015)
N AT26-15 2014 C.L. Van Dover, C.M.
27738N - (SEEPC)/RV Young, R He,, D
AT340 (AT) GoM 88°22°W ) & v 19 19
Atlantis/HOV Eggleston, S. Arellano,
(2174 m) i >
Alvin (Faure et al., 2015)
C.L. Van Dover, C.M.
R AT26-15 2014
27°44'N - Young, R He., D.
Green N (SEEPC)/RV
GoM 91°13’W i Eggleston, S. Arellano, 61 (20) 61
Canyon (GC) Atlantis/HOV »
(563 m) X (Faure et al., 2015; Assié
Alvin
et al,, 2016)
2790N AT26-15 2014 C.L. Van Dover, C.M.
GB647_697 GoM 0292 1'W (SEEITC)/RV Young, R He,, D. 10 10
(GB) (965 m) Atlantis/HOV Eggleston, S. Arellano,
Alvin (Faure et al., 2015)
Mississippi 28°07'N - AT42-24 2020/ CM. Young, R He,, D.
Canyon 853 GoM 89°08'W RV Atlantis/ROV Eggleston, S. Arellano, 49 (23) 49
(MIS) (1071 m) Jason2 (Faure et al., 2015)
N AT26-15 2014 C.L. Van Dover, C.M.
. 27°43’N -
Brine Pool GoM O1°16W (SEEPC)/RV Young, R He,, D. 10 7) 10
0
(NR1) (650 m) Atlantis/HOV Eggleston, S. Arellano,
Alvin (Genio et al., 2008)
21°54N - S dra, direct
Chapopote GoM 93°26'W Meteor M67/2/ subn?i}:i":n r;a lrie; al 2 2
Knoll (Chap) ROV Quest > Rag8 v
(2923 m) 2013)
C.M. Young, R He,, D.
Florida 260N - | AT42-24 2020/ Eggleston, S. Arellano,
R . (Jones et al., 2006; Olu-Le
Escarpment GoM 84°54°'W RV Atlantis/ROV 39(8) 39
(FE) (3284 m) Jason2 Roy et al., 2007; Faure
et al,, 2015, Ball, direct
submission)
AT41 2018/RV
Atlantis/HOV
Alvin//Cruise
) 393N - RBI903 2019/Ry | - Cordes, CM. Young, R
Blake Ridge s He., D. Eggleston, S.
(BR) UsS 76°11’'W Ron Brown/ROV Arellano, (Ball, direct 34(8) 34
(2169 m) Jason2//AT42-24 b’ ssi ’ )
2020/RV submission
Atlantis/ROV
Jason2
37°34°N
AT29-04 2015
Pick-Up -74°16W . / C.L. Van Dover, (Ball,
Sticks (PUS) us (370 RV Adantis/ direct submission) 27 27
s HOV Alvin
410 m)
AT41 2018/RV
36°52N -74° Atlantis/HOV
E. Cordes, (Coykendall
Norfolk Us 29W Alvin//Cruise . IC Ozrof; EF oyken tal 1 85 36
etal, ; Turner et al.,
Canyon (NO) (1485- RB1903 2019/RV 2020)
1600 m) Ron Brown/ROV
Jason2
37°32’N - Cruise 2017/RV C. Ruppel, A.
Chincoteague Us 74°06'W Hugh R. Sharp/ Demopoulos, C.M. 410 4
(CH) (1020- ROV Global Young, R He,, D.
1060 m) Explorer//AT42- Eggleston, S. Arellano,
(Continued)
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TABLE 1 Continued
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Site (code . o
( ) . Lat./Lon. . Chief-scientist B. . .
for genetic  Location Cruise B. boom. G. child.  G. mauri. Total
(dept (and/or study) heck.
samples)
24 2020/RV (Coykendall et al., 2019;
Atlantis/ROV Turner et al., 2020)
Jason2
Cruise 2012/RV
Ron Brown/ROV
38°03N Kraken//Cruise S. Ross, S. Brooke, C.M.
. s 2013/RV Ron Young, R He,, D.
Baltimore 73°49'W
Canyon (BC) UsS (360 Brown/ROV Eggleston, S. Arellano, 60 (1) 1 61
4 Jason2//AT42-24 (Coykendall et al., 2019;
430 m)
2020/RV Turner et al., 2020)
Atlantis/ROV
Jason2
0. ’N
Shallop 3699"5191’W AT29-04 2015/ CL Van D (r
- .L. Van Dover, (Turner
Canyon West UsS (360 RV Atlantis/ t al, 2020) 16 (13) 16
- et al.
W HOV Alvi !
(SW) 400 m) (@) vin
°48°'N
?’699°385’W AT29-04 2015/ CL Van D (T
- .L. Van Dover, (Turner
Veatch (VE) usS (1390-1440 RV Atlantis/ t al, 2020) 28 (23) 28
R HOV Alvin s
m)
°52’N
39% N AT29-04 2015/
New England -69°17W i C.L. Van Dover, (Turner
2 (NE) us (1380-1440 RV Atlantis/ t al, 2020) 28 (23) 28
seep R HOV Alvin s
m)
C.L. Van Dover, C.M.
Milano 11°41°N - AT21-02 2012/ Young, R He,, D.
Barbados 58°33’'W RV Atlantis/ROV Eggleston, S. Arellano, 4 31 (13) 35
volcano (BA)
(1317 m) Jason2 (Olu-Le Roy et al., 2007;
Assié et al., 2016)
11°14'N - NAO054 2014/EV C.L. Van Dover, C.M.
Kick em 58°22'W Nautilus/ROV Young, R He,, D.
Barbad 17(5 10 26 (26 53
Jenny (KeJ) arbados (998 Hercules and Eggleston, S. Arellano, ) (26)
-1630 m) Argos (Ball. Direct submission)
TTR10 2003/RV
35°24'N — Prof. Logatch
Darwin mud i R rof. Logatchev/ M.R. Cunha, (Génio et al.,
olcano (CA) Cadiz 7°1I'W TV_grab//JC10 2008) 22 (18) 22
Ve
(1115 m) 2007/RSS James
Cook/ROV Isis
°53°N — 5°
West African 0 S;S’W >
margin-Ivory WAM (1000 - (Jones et al., 2006) 1 1
AM
(WAM) 1267 m)
TDI-Brooks
International
prospects 2006/
4°59'N - 4° box cores
Nigerian 08’W, (NCB3008-
AM E. Cord 17(17 8 (8 25
(NIG) slope w (1700- GSN0892, ordes an ®
2100 m) NCB2001-
TGSNO0883,
NCB2038-
TGSN0890)
Reeab 5°48’S - 9° WACS 2011/NO K. Olu, (Olu-Le Roy et al.,
egal
(Reg ab) WAM 43’E Pourquoi Pas?/ 2007, Ball, direct 56(8) 56
& (3170 m) ROV Victor6000 submission)
Total 94 125 455 89 763

GoM, Gulf of Mexico; US, US Atlantic Margin; WAM, West African Margin; Barbados, Barbados Prism; Cadiz, Gulf of Cadiz. See Figure 1 for a map and Supplementary Table S1 for accession

numbers.
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FIGURE 1
Geographic locations of seeps involved in the present study. Sites for which only genetic samples are available are in black, spawning areas used
only in larval dispersal modelling are in red, sites used for both genetic and modelling approaches are in purple. Blue polygons represent settlement
regions used in the modelling approach. Site abbreviations correspond to NR1, Brine Pool; LS, Louisiana slope; AC, Alaminos canyon; Bl, Bodie
island; NO, Norfolk canyon; BC, Baltimore canyon; NE, New England seeps; SWIM, SWIM Fault; CA, Gulf of Cadiz; ARG, Arguin bank; CS,
Cadamostro seamount; NIG, Nigerian margin; WAM, West African margin; GUIN, Guiness; SP, Sao Paulo seep 1; SPD, Sao Paulo seep 2; AM, Amazon
fan; TRI, Trinidad prism; KeJ, Kick em Jenny crater; LOG, Logatchev seep and LOST, Atlantis FZ (Lost City). Abbreviations of the zones for
recruitment are: NWAM, North West African margin; NMAR, North Mid-Atlantic Ridge; MMAR, Middle Mid-Atlantic Ridge and SMAR, South Mid-
Atlantic Ridge. Genetic samples were either obtained in the present study or included thanks to already published sequences (see Tables 1, 2;
Supplementary Table S1).

TABLE 2 Priors and estimates values of IMa3 demographic parameters for the two species complex.

Gigantidas Bathymodiolus
Biological . . . .
Parameter meaning Populations HiPt HPD95L  HPD95H | Prior HiPt HPD95L = HPD95H
to GoM and US 2 355 791 237 751 575 167 2 153 236 83 981 422 816
WAM-CA and BA-
t ) 90 576 281 275 612 50 086 303 100 396 440 72 816 48519 417
Divergence KeJ
time between
MRCAs of GoM-US
t and BA-Ke]-WAM 300 584 633 417 595 100 306 236 | 600 1019418 | 436893 | 126 844 660
-CA
Q GoM 800 22438753 11414254 | 41146 993 500 10750 405 = 2457524 | 48391 990
Q Us 1500 23280902 13885022 | 39775891 100 851 537 127 427 12129 854
%® WAM-CA 70 1 407 990 414115 3590 618 300 5867 718 709 951 34 387 136
%G Ne BA-Ke] 70 3663 697 1 856 208 8189 727 2 2063 364 148 180
Q GoM-US MRCA 15 33 408 3132 637 876 5 6574 0 418 386
% BA-Ke] MRCA 70 954 900 0.000 9 739 003 50 308 455 9102 5840 413
Qe MRCA 70 1120 546 0.000 9251 810 1000 424 757 0 121 298 544
(Continued)
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TABLE 2 Continued
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Gigantidas Bathymodiolus
Biological . . (@) . . .
Parameter meaning Populations Prior HiPt HPD95L HPD95H  Prior HiPt HPD95L  HPD95H
Ny, us 100 46414 19.030 85.030 30 11.967* 0.000 178.100
Nm from
IMNomasg WAM-CA 2 0.020 0.000 3.493 1 0.051 0.000 22.690
GoM to
IMNymasg BA-KeJ 2 0.016 0.000 3.645 9 0.003 0.000 1.156
2Nmos, GoM 100 0.070 0.000 37.030 8 7.507+* 0.000 349.000
Nm from US
MNom,., m r:)m WAM-CA 2 0.021 0.000 3.533 1 0.051 0.000 23.760
Nymss, BA-KeJ 2 0.016 0.000 3.530 4 0.002 0.000 0.866
2Nomos» GoM 2 0.071 0.000 8.639 1 0.122 0.000 22.100
IS Non from Af. us 4 0.034 0.000 8.606 2 0.031 0.000 14.930
2Nyms., CAto BA-KeJ 2 0.225 0.000 5.338 20 0.015% 0.000 2.084
INymys GoM-US MRCA 100 0.380 0.000 10.870 4 0.023 0.000 1324
2Nomoss GoM 4 0.038 0.000 9.918 1 0.123 0.000 33.940
N N from Us 4 1375 0.000 11.240 4 0.050 0.000 3.340
Noms BA-Ke] to WAM-CA 2 0.023 0.000 4095 9 63.239"* 0.000 725300
INymy, GoM-US MRCA 4 0.014 0.000 2114 4 0.024 0.000 2.834
INms., WAM-CA 6 0.522 0.000 36.380 4 16.360* 0.000 153.8
Nm GoM-US
Nyma, m&o BA-Ke] 4 0.070 0.000 88510 8 0.014 0.000 2.467
mrca to
Nsms., BA-Ke] MRCA 15 0.262 0.000 366.000 4 0.050 0.000 69.920
Nm from
INm,s BA-KeJ mrca  GoM-US MRCA 15 0.169 0.000 18.720 4 0.005 0.000 3.963
to

@priors for migration rates defined for my.y and not for 2NM parameters.

GoM, Gulf of Mexico; US, US Atlantic Margin; BA, Barbados; Ke], Kick em Jenny; WAM, West African Margin; CA, Gulf of Cadiz. Ne, effective size; Nm, effective number of migrants per
generation; MRCA, most recent common ancestor; HiPt, histogram bin with the highest posterior probability; HPD95L and HPD95H, 95% low and high HPD, respectively. Time parameters are
given in years. As detailed in the main text, HiPt values reported here are mean values over several runs for both species complexes except for qq, qi, 2Nymy.g, 2Nomy.1, 2Nomo.o, 2Nymy.,,

2Nomg.3 and 2N m;.; in Gigantidas for which the best value was used. Asterisks indicate values for which migration rate parameters significantly differed from zero in at least one of the runs
(likelihood ratio tests, Supplementary Table S5). HPD95L and HPD95H values reported are the minimal and maximal values observed across runs, respectively. It is noteworthy that in IMa3

my.y are expressed in the coalescent, so backward in time. When reading forward in time, mx.y represents migration from population Y to population X.

sea mussel populations, 17 spawning areas were defined in the
North Atlantic along the coasts of North and South America,
Europe and Western Africa (Figure 1; Supplementary Table S2).
In these sites, the presence of bathymodioline mussels was
confirmed or suspected in the present study or elsewhere
(Gustafson et al.,, 1998; Cosel, 2002; Olu-Le Roy et al., 2007;
Genio et al., 2008; Faure et al., 2015; Assié et al., 2016; Fujikura
etal., 2017; Ketzer et al., 2018; Coykendall et al., 2019; Ruppel et al.,
2019; Turner et al,, 2020, see Supplementary Table S2 for details).
Four additional sites where cold seeps were reported or could be
present were added: two along the Mid-Atlantic Ridge (Logatchev
and Lost City sites, Gebruk et al.,, 2000; Brazelton et al., 2006;
Proskurowski et al., 2008; LaBella et al., 2017), the Cadamostro
Seamount off the Cape Verde Islands, and the South West Iberian
Margin Fault Zone (SWIM Fault Zone). Since indices of presence of
diffuse hydrothermalism on seamounts were found during
iMirabilis2 iAtlantic cruise (2021), these two last sites could act as
gateway populations.

Frontiers in Marine Science

The number of released particles during each spawning event
needs to be sufficient to properly reproduce distribution of drifting
particles including planktonic larvae at regional scale so that no
significant changes are reported in the mean characteristics of the
dispersal kernel and larval trajectories as the number of particles is
increased (Jones et al., 2016; Van Sebille et al., 2018). Preliminary
simulations were performed with 1000, 2000, 5000 and 10 000
released larvae on a few spawning areas and showed that spreading
of the larval population and maximum larval dispersal distance
were not altered when more than 2000 larvae were released. Then,
conservatively, for each spawning area defined as a polygon of 0.08°
in latitude and longitude, 10 000 larvae were randomly released at
each spawning date in near-bottom waters (i.e. specifically at
approx. 10 m above the bottom of the simulated Ocean, Table 3).
Larvae were released monthly during a unique spawning event that
occurred the 1* day of each month from November to March
during the natural spawning period of G. childressi (Tyler et al.,
2007), from 2014 to 2019 to consider year-to-year variations in
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TABLE 3 Summary of larval characteristics used in the larval dispersal
modelling using VIKING20X.

Number of 10 000

released larvae
Depth of release 10 m above the oceanic floor

1** day of each month from November to March during 5
years (2014-2019)

Spawning dates

Duration of Instantaneous

spawning

Pelagic Larval 365 days

Duration

Velocity Vertical swimming at 0.2 mm.s "' until 200 m of depth
Mortality 100% if temperature > 20°C; if not 0%

Measure of Percentage of larvae that entered in a settlement region
connectivity whatever the vertical position

current patterns. Biological characteristics of larvae in terms of
Pelagic Larval Duration (PLD), behavior and mortality were defined
according to field observations and laboratory experiments
performed on G. childressi in the GoM. After the spawning, the
position of each simulated larva was tracked over one year (i.e. 365
days, Table 3) which corresponds to the maximum PLD of G.
childressi (Arellano and Young, 2009). The choice of a high value of
PLD was made in order to model extreme dispersal events likely to
impact genetic structures and promote trans-Atlantic dispersal.
After release in the near bottom layer, larvae could swim
vertically to reach surface and subsurface waters at a velocity of
0.2 mm.s™ (Table 3), a velocity in agreement with swimming speed
of G. childressi trochophores observed in experimental chambers
(Arellano, 2008). Although no data were available for veligers of G.
childressi or other bathymodioline species, Chia et al. (1984)
reported a mean swimming velocity of 0.2 mm.s for bivalve
larvae. When they reached a depth of 200 m, larvae stopped
swimming. This larval behavior was defined to mimic the vertical
distribution of larvae mainly sampled in the first 100 m in the GoM
and sometimes up to 550 m deep (Arellano et al., 2014). Laboratory
experiments showed that normal larval development occurred
between 7 and 15°C and that survival did not differ significantly
between 7 and 20°C before decreasing at 25°C (Arellano and Young,
2009; Arellano and Young, 2011; Arellano et al., 2014). Accordingly,
we assumed that larvae died when they reached a temperature of 20°
C. No other source of larval mortality was considered (Table 3).
Due to the highly aggregated and localized distribution of cold
seepage environments and the lack of knowledge about the behavior
of bathymodioline mussel larvae during settlement, connectivity
was not assessed among cold seeps locations but among 11 large
settlement regions of 10° km”. These large regions contained one or
more cold seeps locations already documented or are likely to
contain cold seeps along the American, African and European
active margins and along the mid-Atlantic Ridge. They include
the GoM, the US Atlantic margin, the North Eastern Atlantic, the
North West African margin, the Gulf of Guinea, the South and
North Brazil, the Barbados Prism, the North mid-Atlantic ridge, the
Middle mid-Atlantic Ridge and the South mid-Atlantic Ridge
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(Figure 1). The connectivity, that describes the exchange rate
between distant populations, was calculated as the percentage of
larvae released from one spawning area (i.e. source population) that
entered in a settlement region (i.e. sink region) at the end of the
PLD, whatever the vertical position of larvae. The retention rate
corresponded to the percentage of larvae released from one
spawning area that remains in the settlement region to which the
spawning area belongs at the end of the PLD. To analyze
the dispersal patterns resulting from our numerical experiments
at the end of the PLD, two parameters describing the 2D dispersal
kernels, i.e. the density of larvae at a given location normalized by
the number of released particles, were retained following Edwards
etal. (2007): the mean dispersal distance (D) and the isotropy of the
larval population (I). The isotropy depends on the overall inertia
which characterizes the variance of the larval distribution around
the mean geographic position of the larval population. Inertia can
be decomposed into two orthogonal axes representing the
maximum (I,,,) and the minimum (I,;,) parts of the overall
inertia. These parameters were calculated by a principal
component analysis performed on the ending positions of larvae.
Isotropy was then defined as the square root of the ratio between

Inax and I ip.

3 Results

3.1 Haplotype networks and genetic
diversities within groups

Within the Gigantidas species complex, 144 haplotypes (among
which 42 are new) were identified out of 544 barcoded individuals.
Within the Bathymodiolus species complex, only 43 haplotypes
(among which 10 are new) were evidenced for 219 samples. The
number of variable sites (S) was 100 for the former and 38 for the
latter, with a total number of mutations of 112 and 39, respectively.
The average number of nucleotide differences (k) was also higher in
Gigantidas spp. than in Bathymodilus spp. (k = 5.18 and 3.70,
respectively). Accordingly, although haplotype diversity was
comparable between Gigantidas spp. and Bathymodilus spp.,
nucleotide diversity was almost twice as high in Gigantidas spp.
for the whole set of samples (Table 4). The haplotype networks
showed the presence of two distinct geographic lineages within each
species complex (Figures 2, 3). The higher number of nucleotide
differences observed between the two Gigantidas lineages as
compared to the two Bathymodiolus lineages was well illustrated
by haplotype network reconstructions with 7 and 3 fixed
substitutions, respectively (Figures 2, 3). This corresponded to the
net genetic distances (Da) we observed since maximal values
occurred between lineages, and values were higher between G.
childressi/G. mauritanicus (= 0.02) than between B. heckerae/B.
boomerang (= 0.01, Table 5). The divergence between B. heckerae/B.
boomerang from the Barbados-KeJ and the US Atlantic margin was,
however, slightly lower than that between the African margin and
the GoM/US Atlantic margin (Table 5).

Genetic distance within each of the four lineages was low. In the
Gigantidas species complex, a very low genetic distance of 0.00005
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TABLE 4 Variation of COI nucleotides sequences for each species complex and each sampling site.

G. childressi/G. mauritanicus

B. heckerae/B. boomerang

h

GoM AC 57 26 0.902 0.005 3 1 0 0

AT 19 2 0.105 0

MIS 49 22 0.886 0.005

NR1 10 5 0.8 0.005

FE 39 13 0.623 0.002

GB 10 7 0.911 0.004

GC 61 28 0.859 0.005

CHap 2 2 1 0.004
US Atlantic margin CH 41 21 0.896 0.006

NE 28 13 0.825 0.009

PUS 27 5 0.553 0.002

BC 60 (1) 26 0.86 0.005

SW 16 6 0.783 0.004

NO 85 28 0.83 0.004 1 1 0 0

VE 28 16 0.915 0.006

BR 34 11 0.649 0.002
Barbados-KeJ BA (31) 8 0.66 0.003 (4) 2 05 0.001

Ke] 10 (26) 13 0.743 0.003 17) 2 0.515 0.001
Western African Margin -Cadiz 1% (1) 1 0.000 0.000

NIG (8) 3 0.464 0.001 17) 5 0.507 0.002

Regab (56) 13 0.538 0.001

CA (22) 7 0.645 0.002

Overall populations 455 (89) 144 0.900 0.012 125 (94) 43 0.84 0.007

N, number of sequences in each population (G. childressi and B. heckerae without brackets and G. mauritanicus and B. boomerang within brackets); h, number of unique haplotypes; Hd,
haplotype diversity; 7, nucleotide diversity. See Table 1 for population acronyms definition and Figure 1 for a map.

occurred between GoM and the US Atlantic margin while it
increases to 0.00225 between Barbados-KeJ and Africa-Cadiz
groups (i.e. 45 times higher, Table 5). In Bathymodiolus spp.,
divergence was slightly greater between the GoM and the US
Atlantic margin (0.001) due to the slight isolation of the Blake
Ridge population (see Figures 3, 4B; Supplementary Table S4) and
reached 0.004 between Barbados-Ke] and Western African Margin
groups (Table 5). It corresponded to what can be observed in
haplotype networks since, in both species complexes, individuals
from GoM and the US Atlantic margin populations appeared more
genetically similar than individuals from Barbados-Ke] and Africa-
Cadiz populations. Numerous G. childressi haplotypes were, indeed,
shared between the US Atlantic margin canyons and GoM
populations (Figure 2). Bathymodiolus heckerae haplotypes
appeared, nevertheless, more spatially segregated. While few
individuals sampled in the Blake Ridge population harbored
haplotypes also found in the GoM/Florida Escarpment and Pick
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Up Sticks populations, most of Blake Ridge samples showed private
haplotypes (Figure 3). The Pick-Up Sticks population (located
further North on the American margin) exhibited both GoM-
derived and Blake Ridge-derived haplotypes.

Barbados-KeJ and Africa-Cadiz populations, although
genetically close with no fixed differences, also exhibited a
distinguishable geographic structure since haplotypes clustered
from each side of the Atlantic Equatorial Belt. Interestingly, in
Bathymodiolus, haplotypes from Barbados-KeJ] were intermediate
between GoM-US and African ones (Figure 3). Haplotype networks
highlighted peculiar haplotypes. One haplotype from a New
England individual had an intermediate position between G.
childressi and G. mauritanicus lineages (individual (a) on
Figure 2, accession KX159882 from Turner et al., 2020) and may
represent a hybrid individual. Three other ones sampled along the
US Atlantic margin (Baltimore Canyon and New England) had a G.
mauritanicus signature (individuals (b) on Figure 3, accession
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10 samples

1 sample

@ Alaminos Canyon
@ Mississippi Canyon
© NR1 Brine Pool

@ GB647/697

© Green Canyon

@ New England Seep
@ Shallop West

O Veatch

@ Chincoteague

@ Norfolk Canyon

@ Baltimore Canyon
@ Barbados

O Kel

@ Cadiz Gulf

O Nigeria

@ Ivory Coast

GoM

US Atlantic
margin

Haplotype network for the G. childressi/G. mauritanicus species complex. See Table 2 and Supplementary Table S1 for details about sequences
included. Individuals (A, B) are highlighted as being the intermediate haplotype between both sides of the Atlantic Ocean (in New England seep) and
the three G. mauritanicus sampled along the US Atlantic margin (Baltimore Canyon and New England seep), respectively. KeJ: Kick am Jenny, GoM:

Gulf of Mexico.

MG519868 from Coykendall et al., 2019 and New England_1553
and New England_1530 from this study, Supplementary Table S1).
In Bathymodiolus, a unique B. heckerae was sampled in the Norfolk
canyon (accession MG519869 from Coykendall et al., 2019), within
a G. childressi population, and a potential B. boomerang migrant
individual from the Barbados Accretionary Prism was sampled on
the Nigerian slope (individual (a) on Figure 3).

3.2 Barcode gap analyses

For both Gigantidas and Bathymodiolus genera, two distinct
OTUs could be distinguished, but these OTUs were not

Frontiers in Marine Science

geographically delimited, with one lineage potentially sharing
haplotypes across the North Atlantic in both species complexes.
Indeed, in the Gigantidas species complex, the partition receiving
the highest support (lowest ASAP score, Supplementary Figure 52)
indicated the presence of two lineages. In accordance, the
distribution of pairwise differences was clearly bimodal with two
distinct Gaussian distributions with almost no overlap
(Supplementary Figure S2). When looking at individual
assignments, one lineage grouped all samples from Barbados
Accretionary Prism and the African margin plus one individual
from the Baltimore Canyon and two from New England Seep
(identified as (b) on Figure 2). All these samples were previously
identified as G. mauritanicus except for 10 individuals from KeJ and
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FIGURE 3

Haplotype network for the B. heckerae/B. boomerang species complex. See Table 1 and Supplementary Table S1 for details about sequences included.
Individual (A) might represent a migrant from Kick em Jenny (KeJ)/Barbados Accretionary Prism to the Nigerian slope. GoM, Gulf of Mexico.
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two individuals from New England Seep that were previously
affiliated to G. childressi based on morphology (Table 1;
Supplementary Table SI). This first lineage thus corresponded to
G. mauritanicus. The second lineage grouped all samples from GoM
and US Atlantic margin sites and thus represented G. childressi. As
recommended by Puillandre et al. (2021), we also examined
subsequent partitions. The second-best partition delimited 5
lineages of which composition was identical to the two previously
described except that some sequences were isolated in other groups.
One group was composed of the sample from the New England
seep, which had an intermediate signature between G. childressi and
G. mauritanicus haplotypes groups (individual (a) Figure 2,
accession KX159882.1). The two last groups isolated, without
apparent biological explanations, one individual from
Chincoteague (accession KX159907.1) and one individual from
Barbados (DQ513425.1). In the Bathymodiolus species complex,

the partition receiving the highest support (Supplementary Figure
S§3) also indicated the presence of two lineages in the dataset. The
distribution of pairwise differences was less disjunct than for
Gigantidas although two peaks can be distinguished
(Supplementary Figure S3). One lineage grouped all individuals
identified as B. boomerang (from Barbados and the African margin)
while B. heckerae from the GoM and the US Atlantic margin were
grouped together in the other lineage. The second-best partition
delimited 9 lineages from which no biological significance can
be identified.

3.3 Population genetic differentiation

Fst values highlighted a strong to moderate geographic
differentiation between three mussel groups within both species’

TABLE 5 Net genetic distance (Da, below the diagonal) and Fst values (above the diagonal) for Gigantidas sp. and Bathymodiolus sp. calculated
between the four populations defined based on haplotype networks and ASAP analyses (see Table 1 for details).

Gigantidas sp.

Bathymodiolus sp.

BA-KeJ WAM-Cadiz us BA-KeJ
GoM * 0.00062 0.20173 0.22719 * 0.36937 0.86440 0.89363
Us 0.00005 * 0.21178 0.23759 0.00115 * 0.76867 0.84742
BA-Ke] 0.02433 0.02334 * 0.33111 0.00807 0.00738 * 0.76436
WAM-Cadiz 0.02175 0.02075 0.00225 * 0.01133 0.01070 0.00416 *

Bold values represent significantly different from zero Fst values (exact test of population differentiation).

* symbolized an empty cell in the table.
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complexes. These genetic entities corresponded to the populations
from (1) GoM/US Atlantic margin, (2) the Barbados accretionary
Prism, and (3) European/African margin. As expected, genetic
differentiation between B. heckerae and B. boomerang or G. childressi

10.3389/fmars.2023.1122124

and G. mauritanicus was high since nearly all pairwise Fst values
between (1) and (2)/(3) were high and significantly different from zero
(Figure 4; Table 5). G. childressi and G. mauritanicus did not display
higher Fst values than those obtained between B. heckerae and B.

A G. childressi / G. mauritanicus
Cadiz | NIG
Africa | ca
Barbados | BA
Kel KeJ
VE HKoK KKK KKK KKK Fst value
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FIGURE 4
Pairwise Fst heatmaps for G. childressi/G. mauritanicus (A) and B. heckerae/B. boomerang (B). Values are color-scaled and significance levels
compared to zero are indicated using: *for p-value < 0.05, **p-value < 0.01 and ***p-value < 0.001. Absence of asterisks indicates non-significant
values and grey asterisks indicates Fst values for which significance was confirmed using either permutations or exact test of differentiation but not
both. Populations for which less than 10 sequences were available are indicated in blue. Values for West African margin-Ivory (WAM) and Norfolk
populations for G. childressi and B. boomerang, respectively, are not displayed since calculations involved only one sequence (see Table 2 for
number of samples and population acronyms). GoM, Gulf of Mexico. Exact values and p-values are reported in Supplementary Tables S3, S4.
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boomerang (Figure 4; Supplementary Tables S3, S4), as would have
been expected since the two Gigantidas lineages were separated by a
higher number of mutational changes (Figures 2, 3).

Populations of G. childressi were almost homogeneous from the
GoM to the most northern part of the American margin with all
pairwise Fst values between US Atlantic margin and GoM sites
being null or very low and not significantly different from zero
(except two using exact tests, Figure 4A; Supplementary Table S3).
For B. heckerae, however, the Blake Ridge population clearly
differed from those of the GoM and the Florida Escarpment
(Fst = 0.25 to 0.55, Figure 4B; Supplementary Table S4). In G.
mauritanicus and B. boomerang species, high and significant Fst
values were observed, especially between African populations and
Barbados-Ke]J (Figure 4; Supplementary Tables S3, S4). In contrast,
Fst values between African populations and that of the Gulf of
Cadiz were low and not significantly different from zero (Figure 4;
Supplementary Tables S3, S4).

Altogether, pairwise Fst and divergences strongly suggested
high levels of gene flow along the European/African margins and
weak to almost no gene flow between the African margin and the
Barbados Accretionary Prism, but also suggest a strong genetic
break between mussel populations from the Barbados Accretionary
Prism (South American margin) and those situated in the GoM and
further North along the US Atlantic margin.

3.4 Divergence time and gene flow
estimates using IMa3

Based on ASAP and Fst analyses, seep mussel populations were
sub-divided into 4 distinct geographic groups (i.e. GoM, US
Atlantic margin canyons, Barbados accretionary Prism and
European/African margin) in order to examine potential gene
flow between them. For both species complexes, nearly all
replicated runs showed good mixing (plots without trends, large
ESS for T1 (all except two > 14 000) and T2 (all > 400 000), and
good congruence between first and second halves of the sampled
genealogies). For most parameters, marked peaks of posterior
probabilities with fairly narrow ranges were observed
(Supplementary Figures S4-S8), even for TO that showed the
lowest ESS (<30). For Gigantidas spp., we were not able to jointly
estimate qp and q; parameters with my.; and m;j.,. Given the good
mixing observed in each run and the correspondence of the other
estimates (Supplementary Figures S4-56), estimations of qq and q;
(and thus, 2NM parameters involving Ny and N;) were taken from
two different runs. For all other parameters, averaged values
between runs were calculated after ensuring that good mixing and
convergence were obtained for all runs (see Supplementary Figures
$4-56).

The population splitting times separating G. childressi and G.
mauritanicus, on one hand and B. heckerae and B. boomerang, on
the other hand (i.e. T,) were estimated to have occurred around 585
000 years ago and 1 My ago, respectively (Table 2). For both, the
upper boundary of 95% HPD was very large, probably due to the
fact that only one locus has been used. Based on Fst and genetic
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divergence, divergence times between Africa-Cadiz and Barbados-
Ke] populations (T1) was expected to be more ancient than
divergence between GoM and US Atlantic margin populations
(Ty), especially for Gigantidas species complex. Accordingly,
although quite close, T; estimates were 576 281 and 396 440 for
Gigantidas spp. and Bathymodiolus spp., respectively, while T, were
estimated as 355 791 and 153 236, respectively. Effective sizes of
contemporary populations (qo, q1, q» and qs) were largely higher in
Gigantidas spp. than in Bathymodiolus spp. except for the Africa-
Cadiz population which was four time higher in B. boomerang
(Table 2). A similar situation was observed for ancestral populations
that showed higher sizes in Gigantidas spp. although the posterior
probabilities distribution of these parameters (especially qs and qe)
were quite large (Supplementary Figures 54-S8).

Regarding migration rates, most estimates were close to zero
and non-significantly different from it (Table 2). High values
significantly different from zero in at least one run were
nevertheless observed for 2N;m,., for both species complexes
(Gigantidas and Bathymodiolus), suggesting efficient migration
greater than one individual per generation from GoM to the US
Atlantic margin (Table 2). Gene flow in the opposite direction was
non-different from zero for G. childressi but estimated to be around
7 migrants per generation for B. heckerae. It is however noteworthy
that for B. heckerae both 2N ;m,., and 2Nym,.; HPD95% included
zero. Other significantly different from zero values included
2Nsms., for B. boomerang, which represented the number of
trans-Atlantic migrants from Western Africa to Barbados-Ke].
This value was, however, very low (less than one individual per
generation) and the HPD95% included zero. This contrasted with
reverse large and significant Nm values of around 60 migrants per
generation from Barbados-Ke]J to Africa, but also with an ancestral
rate of migration of nearly 20 migrants per generation found in
Bathymodiolus between the American and European/African
margins. In the Gigantidas species complex, only the Nm value
from Barbados to the US Atlantic margin was greater than one, but
this value was not significantly different from zero. This
contemporary flow was confirmed by the sampling of one and
two G. mauritanicus migrants in the Baltimore Canyon and the
New England seep 2, respectively (see (b) in Figure 3).

3.5 Larval dispersal modelling

Despite variations according to the spawning dates (i.e. 5 years
with 5 months each), the overall patterns of larval dispersal were
generally consistent between dates for each spawning area (see
larval simulations in Portanier et al., 2023 and Jollivet et al., 2023)
and are summarized in Figures 5, 6; Table 6 at the scale of the whole
Atlantic. Larvae released in the GoM (i.e. Alaminos Canyon, Brine
Pool, Louisiana Slope) spread throughout the GoM while a
significant number of them traveled through the Florida Strait,
and dispersed northward along the US Atlantic margin and then
eastward off the Mid-Atlantic Bight across the North Atlantic,
following the overall North Atlantic gyre (Figures 5, 6; Table 6).
Average dispersal distances traveled by larvae varied between
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Larval dispersal connectivity map obtained using larval dispersal fluxes simulated by the oceanic circulation model VIKING20X. Mean fluxes were
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spawning areas but were higher for larvae released at Brine Pool
(Figure 7A). For some spawning dates (e.g. January 2019), most
larvae originating from Alaminos Canyon and Louisiana Slope were
retained in the GoM and only a few entered the Gulf Stream and
dispersed along the US Atlantic margin (Supplementary Figure S9).
The average maximal dispersal distance for all spawning dates was
also higher for a larval release at Brine Pool (Figure 7B, with some
larvae arriving offshore of Ireland, see e.g. Supplementary Figures
S10, S11) although extreme distances travelled by some larvae were
reported for a larval release at Alaminos Canyon (~
6500 km, Figure 7B).

Larvae released from the US Atlantic margin (i.e. Bodie Island,
Norfolk Canyon, Baltimore Canyon, New England) dispersed along
the US Atlantic margin to Nova Scotia, and then eastward across the
North Atlantic with low isotropy indices (Figure 6; Table 6, see also
Portanier et al., 2023 and Jollivet et al., 2023). The average dispersal
distance and the average maximal dispersal distance varied little
between sites, between 850 and 1032 km for the former, and
between 2787 and 3857 km for the latter (Figure 7). Extreme
dispersal distances exceeded more than 4850 km for a larval
release at Bodie Island (Figure 7) so that some larvae could reach
European waters, South-Western of Ireland (see Supplementary
Figures S12, S13).
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Larvae originating from the North Eastern Atlantic (i.e. SWIM
Fault and Gulf of Cadiz) were transported in different directions
(high isotropy indices, Table 6). While some larvae entered the
Mediterranean Sea through the Strait of Gibraltar, others were
transported northwards along the Portuguese coast or southwards
along the coast of Morocco (Figures 5, 6, see also Portanier et al.,
2023 and Jollivet et al., 2023). Depending on spawning dates, only a
few larvae were transported to latitudes south of the Canary Islands,
suggesting that very few larvae could reach the North West African
region in the surface layer of the ocean (Table 6). For both sites, the
average dispersal distances were low (around 400 km) even though
extreme dispersal distances exceeded 2700 km for some larvae
entering the Mediterranean Sea (Figure 7, Portanier et al., 2023
and Jollivet et al., 2023).

For a larval release in North West Africa (ie., Arguin, Cadamostro
Seamount), dispersal patterns varied slightly according to the spawning
area. For a release at the Arguin site, larvae spread along the coast of
North West Africa northwards, southwards to the Cape Verde Peninsula
and westwards beyond the Cape Verde archipelago by the Canary and
the North Equatorial Currents. For a larval release at the Cadamostro
Seamount, larvae were transported westward to a longitude of 30°W but
did not reach the Mid-Atlantic Ridge (Table 6; Figures 5, 6, Portanier
etal, 2023 and Jollivet et al., 2023). As for larvae originating from the NE
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FIGURE 6

Representative patterns of simulated larval distribution after one year following a larval release at one of the 21 seep localities and/or putative
stepping stones on the mid-Atlantic Ridge. Release date was January 2017 (see Portanier et al.,, 2023 and Jollivet et al., 2023 for all 25 release dates
simulated). See Figure 1 for spawning areas and settlement regions abbreviation definitions.

Atlantic, the average dispersal distance was low (less than 400 km), and
maximal dispersal distance never exceeded 1200 km (Figure 7, Portanier
et al., 2023 and Jollivet et al., 2023).

While larvae released from the Gulf of Guinea (i.e. Guiness,
Nigeria margin and West African margin) were mainly transported
westward, larval dispersal patterns varied among spawning area.
Larvae from the Nigeria margin were mainly trapped in the Gulf of
Guinea gyre (Figures 5, 6), whereas at some rare spawning dates
(Guinea site on Supplementary Figures S14, S15), larvae were
transported westward across the Atlantic by the Equatorial South
Equatorial Current but did not reach the North Brazil margin
(Figure 6; Table 6). While the average dispersal distance was around
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400 km, the maximum dispersal distance exceeded 1350 km
(Figure 7). Larvae from the West African margin were
transported both eastward by the Gulf of Guinea current and
westward by the Equatorial South Equatorial Current (Figure 6;
Table 6). Larvae from this site reached the North Brazil margin with
a maximal dispersal distance of 2715 km (Figures 5, 6; Table 6;
Supplementary Figures S14, S15). Larval dispersal following a
spawning event from Guiness was highly variable among
spawning dates. While larvae could be mainly transported
southward along the coasts of Congo, they could also be
transported westwards by two branches of the equatorial
circulation: the Guinea Current and the Equatorial South
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TABLE 6 Mean and maximal (in brackets) percentages of larval exchanges observed between spawning areas and the eleven regions for settlement (see Figure 1 for the mapping of these areas) using larval
dispersal simulations of the oceanic circulation model VIKING20X.

Site  US Atlantic GoM Barbados  South Brazil NWAM NE Atlantic =~ Gulf of Guinea NMAR = MMAR SMAR North Brazil | Isotropy

margin
GoM NRI1 0.8 (5.4) 14.6 (18.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.1(2.1) | 00 (0.0) 0.0 (0.0) 0.0 (0.0) 032 +0.13
LS 0.2 (1.6) 15.8 (18.3) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 045 + 0.15
AC 0.4 (6.7) 15.4 (18.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 047 +0.18
US Atlantic margin BI 6.3 (17.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 03 (38) | 0.0(0.0) 0.0 (0.0) 0.0 (0.0) 0.23 +0.07
NO 6.8 (17.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 02 (21) | 00(0.0) 0.0 (0.0) 0.0 (0.0) 0.23 +0.05
BC 9.9 (17.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 02(29) | 00 (0.0) 0.0 (0.0) 0.0 (0.0) 0.22 + 0.06
NE 11.3 (17.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 04 (27) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.24 + 0.09
NE Atlantic SWIM 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 5.2 (17.8) 0.0 (0.0) 0.0 (0.0) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.47 + 0.20
CA 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.002 (0.1) 3.0 (12.2) 0.0 (0.0) 0.0 (0.0) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.35 + 0.14
NWAM ARG 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 12.4 (16.9) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.55 + 0.20
cs 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 12.3 (18.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 049 +0.17
Gulf of NIG 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 6.7 (16.4) 0.0 (0.0) | 0.0 (0.0) 0.01 (0.1) 0.0 (0.0) 0.36 + 0.12
Guinea WAM 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 4.5 (16.6) 0.0 (0.0) | 0.0 (0.0) 1.4 (5.4) 0.01 (0.1) 0.14 + 0.07
GUIN 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 2.3 (9.1) 0.0 (0.0) | 0.0 (0.0) 0.02 (0.2) 0.0 (0.0) 0.46 + 0.20
South Brazil Sp 0.0 (0.0) 0.0 (0.0) 0.06 (1.0) 9.5 (14.7) 0.0 (0.0) 0.0 (0.0) 02 (3.1) 0.0 (0.0) | 0.0 (0.0) 0.3 (5.1) 0.9 (5.8) 0.53 + 0.11
SPD 0.0 (0.0) 0.0 (0.0) 0.02 (0.1) 6.4 (15.6) 0.0 (0.0) 0.0 (0.0) 0.1 (0.3) 0.0 (0.0) | 0.0 (0.0) 0.3 (22) 0.7 (4.8) 041 +0.13
North Brazil AM 0.0 (0.0) 0.0 (0.0) 2.0 (14.8) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 29 (12.1) 0.0 (0.0) | 0.0 (0.0) 0.5 (1.9) 5.2 (15.6) 0.18 + 0.07
Barbados TRI 0.02 (0.4) 0.05 (0.9) 12.5 (17.8) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.006 (0.1) 0.0 (0.0) | 0.0(0.0) | 0.006 (0.1) 0.2 (24) 0.3 +0.10
KeJ 0.0 (0.0) 0.02 (0.2) 11.8 (17.8) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) | 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.29 +0.13
MMAR LOG 0.0 (0.0) 0.0 (0.0) 0.7 (3.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) | 9.4 (17.2) 0.0 (0.0) 0.006 (0.1) 0.36 + 0.14
NMAR LOST 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 02(3.7)  0.1(23) 0.0 (0.0) 0.0 (0.0) 0.53 + 0.13

The 5-years averaged isotropy values are also reported with their standard deviations. Bold values highlight larval retention in each spawning area. Spawning area abbreviations (lines) correspond to NR1, Brine Pool; LS, Louisiana slope; AC, Alaminos canyon; BI, Bodie
island; NO, Norfolk canyon; BC, Baltimore canyon; NE, New England seeps; SWIM, SWIM Fault; CA, Gulf of Cadiz; ARG, Arguin bank; CS, Cadamostro seamount; NIG, Nigerian margin; WAM, West African margin; GUIN, Guiness; SP, Sao Paulo seep 1; SPD, Sao Paulo
seep 2; AM, Amazon fan; TRI, Trinidad prism; KeJ, Kick em Jenny crater; LOG, Logatchev seep and LOST, Atlantis FZ (Lost City). Abbreviations of the regions for settlement are: NWAM, North West African margin; NMAR, North Mid-Atlantic Ridge; MMAR, Middle
Mid-Atlantic Ridge and SMAR, South Mid-Atlantic Ridge. Non-null values have been highlighted.
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Equatorial Current for the northern branch, and the Central South
Equatorial Current for the southern branch (Figure 6; Table 6;
Portanier et al., 2023 and Jollivet et al., 2023).

Larvae originating from the South Brazil margin (i.e. Sao Paulo
1 and Sao Paulo 2) were transported southward by the Brazil
current to the Rio de la Plata and to a greater extent northward
by the highly dynamic North Brazil Under Current and North
Brazil Current so that some larvae reached the Barbados Prism
(Table 6; Figures 5, 6; Supplementary Figure S15). In parallel, some
larvae travelled across the Atlantic Ocean to the Gulf of Guinea by
the South Equatorial Current (Table 6; Figures 5, 6, nearly all larval
simulations in Portanier et al., 2023 and Jollivet et al., 2023). For a
larval release in the North Brazil margin (i.e. Amazon fan), larvae
were transported both to the northwest by the North Brazil Current
to the Barbados Prism and eastwards by the South Equatorial
Current to the Gulf of Guinea (Table 6; Figures 5, 6, nearly all
larval simulations in Portanier et al., 2023 and Jollivet et al., 2023)
with low isotropy indices (Table 6). For some spawning dates, larvae
entered the GoM and traveled through the Florida Strait along the
US Atlantic margin (Table 6; Supplementary Figures S15, S16). The
larvae emitted along the Brazilian coast are those that travel the
greatest distances, with maximum dispersal distances exceeding
5000-6000 km (Figure 7).

Larvae released from the Barbados Prism (i.e. Trinidad and Kick
em Jenny crater) were mainly dispersed in the Caribbean Sea (Figure 6,
Portanier et al., 2023 and Jollivet et al., 2023). As reported for a larval
release in the North Brazil margin, a few larvae reached the entrance of
the GoM, and the Florida Escarpment but most of them were entrained
along the US Atlantic margin for a few spawning dates (Figures 5, 6;
Table 6; Supplementary Figure S9 and larval release from November
2014 to February 2015 in Portanier et al., 2023 and Jollivet et al., 2023).
Such transport was more common with some larval releases at
Trinidad (Table 6, Supplementary Figure S9). In parallel, larvae
released at Trinidad could travel across the Equatorial Atlantic and
reached the Gulf of Guinea (Figure 5; Table 6, see e.g. Supplementary
Figure S9). On average, mean and extreme dispersal distances of larvae
originating from Barbados prism were lower than those of larvae
originating from Brazil (Figure 7).

Finally, larvae released from the mid-Atlantic Ridge (i.e. Lost
City and Logatchev seeps) were dispersed over short distances with
average dispersal distance and maximum dispersal distance of 300-
400 km and 960-1400 km, respectively (Figure 7). As the Lost City
seep is located in the center of the overall subtropical North Atlantic
gyre, outside the main currents, larvae from this site never reached
the US Atlantic or African margins and spread in all directions
(Figure 6) with high isotropy indices (Table 6). Conversely, some
larvae originating from the Logatchev seep could benefit from the
North Equatorial Current and the Equatorial Counter Current to
reach the Barbados Prism and the North Brazil margin (Figure 5;
Table 6, see e.g. Supplementary Figure S9).

In terms of connectivity among the different cold seeps areas in
the North and Equatorial Atlantic, there are strong differences
between the East and the West margins of the ocean as the result
of abrupt differences in the intensity of the general surface
circulation (Figure 5). A high northward larval dispersal and
connectivity from the South Brazil margin to the US Atlantic
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margin was simulated. Conversely, no connectivity was reported
between the cold seep areas along the East Atlantic, from the Gulf of
Cadiz to the Gulf of Guinea (Table 6). Rare and reproducible
bidirectional larval exchanges across the Atlantic occurred only in
the Atlantic Equatorial Belt (Table 6; Figure 5). In temperate waters,
larvae released from the US Atlantic margin travelled across the
Atlantic to reach the southwest Ireland but were not able to colonize
sites in the south of the Iberian Peninsula. Contrary to our
expectations, sites located along the mid-Atlantic Ridge did not
seem to play a major role as stepping stones.

4 Discussion

4.1 A shared mitochondrial history
between Gigantidas and Bathymodiolus

The low level of divergence (< 1%) measured in the present study
between G. childressi and G. mauritanicus or between B. heckerae and
B. boomerang corresponded to previous observation made using
lower sample sizes (Olu-Le Roy et al., 2007; Genio et al., 2008) and
is in the range of differences commonly accepted between
populations of the same species or within the grey zone of
speciation (Roux et al., 2016). It is similar to what was observed
between mussel species that still hybridize (e.g. B. azoricus/B.
puteoserpentis or B. thermophilus/B. antarcticus, Faure et al.,, 2009;
Johnson et al., 2013) and therefore suggests that geographic species
could still exchange genetic material within each genus. Despite a
higher number of mutational changes observed between the two
Gigantidas species when compared with the two Bathymodiolus
species (Figure 2 vs. 3), genetic distances and population
differentiation indices were equivalent in the two species
complexes. This gives credit to a shared mitochondrial history of
the two genera in the North Atlantic. Indeed, it has been suggested
that G. mauritanicus/G. childressi and B. boomerang/B. heckerae
diverged at similar times, between 1.3 Million years ago (Mya) and
3 Mya (Miyazaki et al., 2010; McCowin et al., 2020). While our
estimate of T, (population splitting time between MRCAs of GoM-
US canyons and Barbados-Africa) corresponded for Bathymodiolus
spp., it seemed upward biased for Gigantidas spp., as also suggested
by its proximity with T; (divergence between populations from
Barbados-KeJ and Africa-Gulf of Cadiz). Such concomitant
divergence across the Atlantic and across the Caribbean Sea
appeared unlikely given the genetic break identified in the
Caribbean Sea for both genera, which instead suggested a complete
lineage sorting between G. childressi/G. mauritanicus and B. heckerae/
B. boomerang and a parallel mitochondrial isolation.

Our results thus tended to validate the hypothesis of a vicariant
effect possibly due to an ‘old” (1-3 Mya) hydrologic barrier
predating the Panama Seaway closure (Knowlton and Weigt,
1998) that separated B. boomerang and B. heckerae on one hand,
and G. mauritanicus and G. childressi on the other hand (Olu-Le
Roy et al., 2007). The change of the Caribbean Sea salinity and of the
thermohaline circulation observed around 3 Mya (Haug and
Tiedemann, 1998; Haug et al., 2001), which may be linked to the
closure of the Panama Seaway (but see Montes et al., 2015), may
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have impacted the within-Atlantic Ocean circulation. This could
have led to a reinforced cross-Atlantic circulation between Barbados
and African margins along the Atlantic Equatorial Belt and the
diversification of Bathymodiolus species (Jones et al., 2006; Olu-Le
Roy et al.,, 2007). Such a scenario may explain how individuals from
the same species occur on both sides of the Atlantic and suggest that
previously-isolated populations across the Caribbean Sea are
currently experiencing a possible secondary contact with the
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arrival of rare but regular Barbados migrants in the US Atlantic
margin waters (see below). Vicariant effects leading to concomitant
species divergence at the community scale have also been
documented in other deep-sea ecosystems, such as in the back-
arc-basins of the South West Pacific (Thaler et al., 2011; Thaler
et al., 2014; Lee et al., 2019; Poitrimol et al., 2022; Tran Lu, 2022;
Tran Lu Y et al,, 2022) or along the East Pacific Rise (Plouviez et al.,
2009; Matabos and Jollivet, 2019) in which taxa from several phyla
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(Mollusca, Annelida, Crustacea) simultaneously diverged in
response to geotectonic rearrangements.

4.2 Contemporary and past gene flow
across the Atlantic Equatorial Belt

High faunal similarities between seep communities have been
previously depicted on both sides of the Atlantic Ocean (Olu et al.,
2010) with very low genetic divergence between siblings (e.g.
vestimentiferan tubeworm, Andersen et al., 2004; Cowart et al.,
2013; alvinocarid shrimps, vesicomyid bivalves, Teixeira et al., 2013;
LaBella et al., 2017; Pereira et al., 2020). In Alvinocarididae shrimps,
the level of genetic differentiation was low enough to suggest a high
level of contemporary gene flow (Teixeira et al., 2013; Pereira et al.,
2020). In the present study, IMa3 analysis, in conjunction with the
possible assignment of one Nigerian B. boomerang individual to the
Barbados genetic group (individual (a) Figure 3), may also suggest
the existence of contemporary gene flow across the AEB. For B.
boomerang, a large and significant proportion of migrants was,
indeed, estimated from Barbados to Western African Margin
(2N,m,. 5 = 63.239), although the HPD95% included zero. Despite
the fact that the lower boundary of HPD95% includes zero, gene
flow in the opposite direction was not null (2N3;m;., - 0.015) and
gave support to a bi-directional larval exchange between
populations. It is noteworthy that migration rates estimated in
IMa3 represent migration rates since population divergence.
Calculations based on mitochondrial DNA may thus translate to
past gene flow. But, in conjunction with the detection of the
potential Barbados to Nigeria migrant, the large 2N,m,.; argued
in favor of eastward contemporary gene flow. By contrast, IMa3
results did not provide evidence for trans-Atlantic gene flow for G.
mauritanicus as migration rates were always low (<1) and non-
significantly different from zero. It nevertheless supported ancestral
gene flow between the US Atlantic and European margins.

The presence of contemporary gene flow across the AEB would
assume the existence of teleplanic larvae (or larvae with a long larval
life span exceeding several months) and the existence of marine
corridors ensuring the transport of larvae by marine currents (e.g.
the AMOC, Gary et al, 2020). Such hypothesis is likely for
bathymodioline mussels, especially for G. childressi, in which
larval lifespan is estimated to be more than one year and vertical
migration of larvae that then benefit from surface oceanic
circulation have been documented, although some larvae have
also been collected near the bottom (Arellano and Young, 2009;
Arellano and Young, 2011; Young et al., 2012; Arellano et al., 2014;
Laming et al., 2018). Overall VIKING20X model results showed a
strong larval retention within each geographic region (Table 6) as
already observed elsewhere (Young et al, 2012). The maximum
distance a larva can achieve during one year (Figure 7) nevertheless
suggested that Barbados populations can be directly connected to
Africa, although eastward flows were low (0.1% of larvae exchanged
at maximum during extreme events, Table 6). In addition, the
Amazonian basin (which is geographically close and connected to
Barbados and North Brazil, Figure 5) was able to send up to 10% of
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larvae to Western Africa during extreme events (Table 6). In the
opposite direction, the African populations were only able to send a
low percentage of larvae to the Amazonian basin (0.1% at
maximum during extreme events, Table 6). Although putative
Amazonian populations may send a large proportion of larvae to
Barbados-Ke] (up to 15%, Table 6), the very low flow from Western
Africa to Brazil may prevent, or largely challenge, effective dispersal
from Western Africa to Barbados-Ke]J.

Altogether, these results suggested that contemporary gene flow
across the Atlantic Ocean is possible but rare and occurs most
probably from West to East and in surface waters. Interestingly, in
our study, the eastward flow was only evidenced for B. boomerang
and not for G. mauritanicus. While a sampling bias cannot be
excluded to explain such results, G. mauritanicus and B. boomerang
may also use distinct habitats, making one species able to disperse
farther than the other. Usually, B. boomerang and B. heckerae are
present at deeper sites (Olu-Le Roy et al., 2007; Olu et al., 2010;
Coykendall et al., 2019 and Table 1). In addition, while both G.
mauritanicus and B. boomerang use a dual symbiosis with both
sulfo-oxidizing and methanotrophic bacteria in their gills, G.
mauritanicus shows dominant methanotrophic phylotypes,
suggesting that it requires high methane concentrations and a
hard substratum to settle (Sibuet and Olu, 1998; Rodrigues et al.,
2013a; Rodrigues et al., 2013b) whereas B. boomerang lives buried in
soft sediment and may be able to process both methane and sulfide
at low flow rates, including peripheral hydrothermal sediments (Olu
et al., 1996; Cosel and Olu, 1998; Sibuet and Olu, 1998; Duperron
et al, 2011). As a consequence, this latter species is supposed to be
adapted to a larger range of environmental conditions when
compared to G. mauritanicus, which may favor dispersal.

4.3 Contemporary larval flow across the
Caribbean Sea

Although IMa3 results supported the presence of a strong
genetic break between populations of the Barbados Accretionary
Prism and GoM for both genera (all migration rates estimates close
to zero), the presence of three G. mauritanicus Barbados-Ke]J type
sampled in the Baltimore Canyon and the New England Seep (US
Atlantic margin) (Figure 2) and the IMa3 estimation of 1.4 migrants
per generation (not significant) between Barbados and US Atlantic
margin gives support for low but existing larval exchanges across
the Caribbean Sea. The presence of only a few individuals
nevertheless suggested that such dispersal events are rare. This fits
well with VIKING20X larval dispersal simulations which suggested
low but reproductible larval flows across the Caribbean Sea (max.
0.9% to GoM and 0.4% to the US Atlantic margin during extreme
events, Figure 5; Table 6). These larval flows were however much
lower than those depicted between the South American and the
African margins. In addition, despite no detected larval exchanges
along the African coastline, between the Gulf of Cadiz and the Gulf
of Guinea (Figure 5; Table 6), G. mauritanicus populations in these
areas appeared genetically homogeneous (Figure 3). The lack or low
genetic connectivity observed between the South American and US
Atlantic margins is therefore difficult to explain. The settlement of
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large numbers of G. mauritanicus and B. boomerang in GoM or the
US Atlantic margin canyons might be challenging due to differences
in environmental conditions (e.g. maladaptation of southern
migrants) if the break is due to a well-established genetic barrier
(i.e. strong counter-selection of hybrids and the foreign parental
form) instead of due to a lack of dispersing larvae. In the opposite
direction, both IMa3 estimates and the larval dispersal modelling
simulations were unable to detect GoM or US Atlantic margin
canyon migrants in the Barbados-KeJ sites.

Larval exchanges between Barbados-Ke] and the US Atlantic
margin thus seem to be, as observed between Western Africa and
Barbados-KeJ, rare and are likely to occur northward. Cordes et al.
(2007) hypothesized that a bidirectional connection may exist
between the GoM and Barbados (through the deep Yucatan Strait
and the St. Vincent and Dominica passages) but larval dispersal on
the bottom appears extremely limited and in contradiction with our
genetic data. An indirect way of sending larvae from the US Atlantic
margin canyons to the Barbados Accretionary Prism would
nevertheless be through the mid-Atlantic Ridge. VIKING20X
larval dispersal simulations however weakly support this view but
some larvae released in the US Atlantic margin canyons and Blake
Ridge were theoretically able to reach the putative cold seeps
modelled in NMAR (North Mid-Atlantic Ridge), which were, in
turn connected (with a small value) to the central part of MAR and
Barbados Accretionary Prism (Figure 5; Table 6).

4.4 Contemporary gene flow between
GoM and the US Atlantic margin

As observed elsewhere (Carney et al., 2006; Faure et al., 2015;
Coykendall et al., 2019), the G. childressi and B. heckerae lineages
shared numerous haplotypes between GoM and US Atlantic margin
canyon populations. This validates that these two regions are highly
connected (Figures 2-4). This was especially true for G. childressi
since all Fst values except ones involving the Shallop West
population were close or equal to zero. While also based on COI
data, Faure et al. (2015) suggested the occurrence of restricted gene
flow between some localities within the GoM, however, we saw
evidence of a lack of genetic structure and an apparent panmixia, as
observed by Coykendall et al. (2019). The larger sample sizes
involved in the present study and Coykendall et al. (2019) may
explain this discrepancy. Absence or very low levels of genetic
structure have also been observed for other cold seep species within
the GoM, such as tubeworms (McMullin et al., 2010; Cowart et al.,
2013; Cowart et al., 2014). In accordance with the absence of genetic
differentiation observed in G. childressi, migration rates estimated
with IMa3 between GoM and the US Atlantic margin was not null,
but were significantly different from zero and strongly orientated
from GoM to the US Atlantic margin canyons (2N;m,;., = 46.41,
2Ngmg.; = 0.070). It is nevertheless noteworthy that the
distribution of posterior probabilities of 2Nomy.; exhibited an
alternative peak around 15 migrants per generation
(Supplementary Figure S6). IMa3 also indicated the occurrence of
bidirectional gene flow for B. heckerae since both 2Njm;., and
2NoMy>; were significantly different from zero, although the
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HPD95% included zero, with values around 10 migrants per
generation (Table 2). Accordingly, most Fst values were low and
not significantly different from zero between the US Atlantic margin
canyons, Pick Up Sticks, and the other GoM seeps (including the
Florida Escarpment). However, highly significant genetic
differentiation was also found in B. heckerae populations between
Blake Ridge and the Florida Escarpment, suggesting restricted gene
flow between these two populations. These two latter localities have
been repeatedly described as peculiar as compared to other GoM
and US Atlantic margin canyon seeps and are much deeper (usually
less than 2000 m) than the depth range tolerated by G. childressi. As
a consequence, the distribution of B. heckerae is probably more
fragmented than that of G. childressi (Olu-Le Roy et al., 2007; Olu
et al., 2010; Faure et al., 2015; Turner et al., 2020; DeLeo et al., 2022).
Sampling B. heckerae at the shallower Pick Up Sticks site (400-
450 m) is therefore unexpected. The Fst value between Pick Up
Sticks and Blake Ridge was lower than other Fst values involving
Blake Ridge, so Pick Up Sticks may be also viewed as putatively
receiving migrants from both the Blake Ridge and Florida
Escarpment seeps.

In accordance with the northward flow depicted by IMa3, larval
dispersal simulations evidenced a non-negligible larval transport
from GoM/Florida Escarpment towards the US Atlantic margin (up
to 6% in extreme events, Table 6). In the meantime, population
genetics cannot discard the hypothesis of bidirectional gene flow,
although likelihood ratio tests for migration rates are prone to false
positives when divergence is weak and sample sizes low (Hey et al.,
2015). However, no larvae from the US Atlantic margin canyon
seeps were able to reach the GoM (Figure 5; Table 6). Although our
simulations included a period of several weeks before larvae reach
the surface layers, they fully agreed with previous larval dispersal
studies focusing on surface dispersal done by Young et al. (2012);
McVeigh et al. (2017), and Gary et al. (2020) for G. childressi. By
contrast larval transport onto the seafloor led to very limited
dispersal distances and a lack of population connectivity between
oceanic provinces (results not shown, see also Gary et al., 2020), but
physical models on large-scale oceanic circulation do not take the
seafloor topology into account with accuracy. Accordingly, if some
larvae disperse using bottom currents, these flows may have been
overlooked. Such bottom currents often flow in the opposite
direction and could explain some unexpected gene flow entering
in the GoM (e.g., deep-water current along the Sigsbee Escarpment
in the GoM, Hamilton, 2009). To this extent, Cordes et al. (2007)
suggested that below 1000 m larvae could be transported southward
with the deep western boundary current of the Atlantic, reaching
Blake Ridge and going to the Caribbean through the Anagada or the
Windward Pass. There, the deepest layers of the Loop Current may
take larvae through the Yucatan strait to the GoM. In the GoM, the
cyclonic and boundary currents (Furey et al., 2018) may take larvae
and ensure mixing between the US Atlantic margin and GoM.
Recently, DeLeo et al. (2022) also found evidence of mostly
southward gene flow in G. childressi along the US Atlantic margin
between Baltimore Canyon, Chincoteague and Norfolk Canyon.

The bidirectional gene flow suggested by IMa3 may then result
from this double dispersal strategy, using both surface and bottom
currents. Moreover, the fact that migration rates seem to be more
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balanced for B. heckerae may result from its deeper distribution
(larvae thus released deeper) and the required time needed to reach
the upper layers of the ocean. This could partially explain why B.
heckerae is more spatially structured than G. childressi because,
when dispersing at the bottom, larvae travel shorter distances than
in surface waters (McVeigh et al., 2017; Gary et al, 2020). It is
however noteworthy that such migration routes could result in the
presence of B. heckerae and/or G. childressi in Barbados seeps, while
none have been sampled. Their absence may be explained, for
example, by the fact that larvae could not cross the Caribbean Sea
entirely and may be trapped in the Windward Pass. Alternatively,
the apparent absence of B. heckerae or G. childressi may be
erroneous because of the study of mitochondrial DNA only if a
genetic barrier exists. Indeed, the B. heckerae or G. childressi
mtDNA types may be counter-selected in Barbados seeps while,
actually, hybrids between B. heckerae/B. boomerang or G. childressi/
G. mauritanicus could exist and would be detectable only using
nuclear markers and genomics analyses.

4.5 Incomplete lineage sorting

As discussed above, dispersal events across the AEB and the
Caribbean Sea seem to be rare and may fail to explain the lack of
divergence observed between populations from both sides of the
Atlantic. Indeed, even if occurring, migration seems not efficient
enough to homogenize B. boomerang and G. mauritanicus
populations from the Eastern and Western sides of the North
Atlantic. Despite being from the same species and showing low
divergence, populations of G. mauritanicus and B. boomerang from
Barbados and Western Africa were, indeed, both genetically
differentiated with no shared haplotypes and highly significant Fst
values (= 0.3 and 0.5). Caution must however be taken as rare long-
distance mitochondrial migrants might only be rare because of a
strong counter-selection against hybrids due to the presence of a
genetic barrier, which could be relaxed for neutrally-behaving
markers associated with the nuclear genome. In that specific case,
cross-Atlantic gene flow could be more important than solely
predicted by the mitochondrial genome alone. Nevertheless, in
the absence of efficient gene flow, the lack of fixed differences is
likely to result from incomplete lineage sorting. In species in which
effective size is expected to be very large, the lineage sorting process
is slow and usually achieved in a period of time greater than 6Ne
generations (Rosenberg 2003). In broadcast spawners such as
bathymodioline mussels, high effective sizes are expected (e.g.
Ciona savignyi, Small et al., 2007; Rimicaris exoculata, Teixeira
et al,, 2011). In our study, IMa3 estimates of effective population
sizes were very large (often >1 million ind.) for all populations
(except B. boomerang from Barbados) and 6Ne generations thus
represent very large periods of time that greatly exceed the
estimated population splitting times T, and T, estimated using a
generation time of one year. Moreover, the lack of fixed differences
between Barbados-Ke] and Africa-Cadiz populations in the two
lineages B. boomerang and G. mauritanicus could also be the result
of past gene flow and ‘old’ corridors of colonization. Such a
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hypothesis can be illustrated by the finding of one intermediate
mitochondrial haplotype between G. childressi and G. mauritanicus
sampled at the northernmost US Atlantic margin New England
seepage, providing that it is not a recombining haplotype due to
local hybridization between these two geographic species. Since this
haplotype was closer to Africa-Cadiz haplotypes than to Barbados-
KeJ ones, it may trace back a northern pathway of dispersal of
Gigantidas, possibly relayed by the NMAR/Reykjavik Ridge. This is
in accordance with the study of LaBella et al. (2017) on the deep
vesicomyid clam Abyssogena sp. in which authors detected the
presence of Florida Escarpment-derived haplotypes in the Gulf of
Guinea populations. These two populations nevertheless did not
share haplotypes, suggesting that the genetic signal observed may
result from ancient gene flow from US Atlantic margin to Africa.
Migration rates estimated by IMa3 (without the intermediate
haplotype) however weakly supported this assumption with
estimates derived from the ancestral populations of Gigantidas
being almost null and non-significant. Caution must be taken,
however, in extracting past information from our genetic data
because of the lack of power associated with our single locus
analysis. Multi-locus (e.g. Restriction Site Associated DNA
sequencing) analyses may discriminate past from contemporary
trans-Atlantic gene flow, making it possible to investigate if
hybridization between species occurs, as suggested by the
intermediate New England individual.

5 Conclusion and perspectives

Overall, genetic analyses suggested a parallel isolation of
Gigantidas and Bathymodiolus species complexes in the Atlantic
Ocean and validated the hypothesis of a vicariant effect resulting
from a hydrographic barrier isolating mussel populations across the
Caribbean Sea, with a wider and amphi-Atlantic distribution of the
southern lineages. Contemporary gene flow between western and
eastern margins of the North Atlantic and long-distance larval flow
seemed to be rare (at least for the mitochondrial genome), as
suggested by the presence of a few putative long-distance
migrants (one across the EAB and three across the Caribbean
Sea), and the strong spatial segregation of haplotypes indicative of
low migration rates. The finding of long-distance migrants,
although rare, is however not anecdotic given our sampling sizes
and because foreign mitochondrial haplotypes are likely to be
counter-selected in the recipient populations in the face of a
genetic barrier. When, or if, trans-Atlantic gene flow occurs, it
likely was in an eastward direction in surface waters and only for B.
boomerang. Across the Carribean Sea, from Barbados-Ke]
populations to the US Atlantic margin, gene flow seemed to occur
northward and only for G. mauritanicus. Between the GoM and the
US Atlantic margin, bidirectional gene flow may occur for B.
heckerae but was not detected for G. childressi and was not
evidenced using larval dispersal modeling.

On the one hand, the differences in migrant detection between
species and genera might suggest that Bathymodiolus spp. and
Gigantidas spp. disperse slightly differently. This may be due to
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depth, habitat fragmentation and ecological preferences of the two
genera in accordance with symbionts requirements: mostly
methanotrophic for Gigantidas spp. (Duperron et al, 2007;
Demopoulos et al., 2019; Coykendall et al., 2019; Turner et al.,
2020), while Bathymodiolus spp. harbor a dual symbiosis and relies
more on sulfide-derived carbon (Prouty et al,, 2016; Van Dover
et al,, 2003; DeLeo et al.,, 2022). Contrasted levels of spatial genetic
sub-structuring and contemporary gene flow between species that
went through the same vicariant effects have also been reported in
relation with species-specific life history traits and dispersal abilities
in several other oceanic regions (Plouviez et al., 2009; Thaler et al.,
2014; Poitrimol et al., 2022; Tran Lu Y et al., 2022). In the Atlantic
Ocean, two sympatric cold-water corals Desmophyllum pertusum
and Madrepora oculata showed different post-glacial recolonization
histories, most probably as a response to contrasted dispersal
abilities and ecological requirements (Boavida et al., 2019). It is
nevertheless noteworthy that several non-exclusive hypotheses were
supported by our results and further studies using nuclear DNA and
powerful genomics approaches with larger sample sizes may be
informative. This should allow the clarification of the evolutionary
and colonization histories of bathymodioline mussels in the
Atlantic Ocean and to resolve more precisely the past and current
components of effective migration rates. It would also allow
determining if the observed genetic structure of G. mauritanicus/
B. boomerang between Barbados and Western Africa is the result of
long-term isolation and incomplete lineage sorting or of secondary
contact due to the Panama isthmus closure.

Although several sources of bias and variability may be present
while modelling larval dispersal (e.g. the effects of long-term exposure
to high temperatures on larval survival and development; larval
pelagic phase of one year which may be unrealistic for B. heckerae,
Dixon et al., 2006; the impact of predation on larvae travelling in
zooplankton on the probability of long-distance dispersal, Gary et al.,
2020; larval vertical distribution and behavior), combining larval
dispersal modelling with genetic data highlighted interesting key
points. First, the detection of potential gene flow using genetics
while not detected using dispersal modelling illustrated the
complementarity between these two approaches. The few studies
combining genetics and larval dispersal modelling of the deep fauna
did not either always fully reconcile gene flow estimates with
predicted larval transport (need for ‘phantom’ stepping stones to
explain gene flows, opposite flow directions between the two
approaches, Breusing et al., 2016; Breusing et al., 2021). Second, the
dual genetics-modelling approach highlighted the importance of
“extreme” dispersal events in terms of genetic connectivity.
Considering only mean values of larval exchanges may not be
sufficient to explain the genetic spatial structure of a given species
(e.g. no genetic differentiation observed between the Gulf of Cadiz
and African populations of G. mauritanicus despite less than 0.1%
larval transport between them). Modelling decadal variations in
hydrodynamics due to the North Atlantic Oscillation and/or the El
Nifo Southern Oscillation in future studies may thus provide insights
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into the impact of such hydrodynamic variations on genetic
connectivity at the whole ocean scale. It is nevertheless noteworthy
that if such periodic events caused bursts of migration, it should be
detectable while investigating the spatial genetic structure. Since our
data supported the existence of few migrants and a strong genetic
differentiation between the Barbados and African margins, and
between these and the GoM or US margin populations, it is more
likely that periodic hydrodynamic oscillations only transport a small
number of migrants.

Altogether, our study supports the need to combine genomics
and larval dispersal modelling approaches in other complexes of
species with pan-oceanic or large spatial distribution (Breusing et al.,
2016; Breusing et al., 2021; Boavida et al., 2019; Lee et al., 2019). This
may improve understanding of species biology, dispersal capabilities
and connectivity at whole ocean scales. This is particularly relevant
since dispersal is linked to resilience capabilities of deep-sea
ecosystems and species which are more and more threatened (Van
Dover, 2014; Gross, 2015). Identifying source and sink populations
and precisely describing connectivity for different species is necessary
to define comprehensive conservation measures such as networks of
protected marine areas that will act as refuge zones and genetic
diversity reservoirs connected by corridors identified based on
biological needs of species (Van Dover, 2014; Gross, 2015; Levin
and Le Bris, 2015; Boavida et al., 2019). In the case of conservation
strategies for bathymodioline mussel in the Atlantic Ocean, the
strong geographic structure and the high rate of larval retention
observed in our study suggested that long-distance dispersal is
probably not efficient enough to replenish foreign populations,
although it may enable the colonization of new territories or the
recolonization of territories after local extinction. If larvae disperse
using surface currents, as suggested by the results of our combined
genetics-modelling approach, then there could be climate change
impacts on connectivity and resilience for Gigantidas and
Bathymodiolus species in the Atlantic. Increasing water
temperatures may lead to a decrease in pelagic larval duration and
an increase of larval mortality for bathymodioline mussels (Yorisue
et al., 2013; Arellano and Young, 2009; Arellano and Young, 2011;
Arellano etal., 2014; Yahagi et al,, 2017), combining to further reduce
the apparently low connectivity of these species.
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The study of larval dispersal and connectivity between deep-sea populations is
essential for the effective conservation and management of deep-sea
environments and the design and implementation of Marine Protected Areas.
Dense sponge aggregations, known as “sponge grounds”, are a key component
of marine benthic ecosystems, by increasing the structural complexity of the sea
floor and providing structure and habitat for many other species. These
aggregations are characteristic of the Azores deep-sea environment. These
sessile organisms rely primarily on larval dispersal for their reproduction.
Connectivity between specific Pheronema carpenteri sponge aggregations in
the Azores was studied using a 3-D biophysical dispersal model. Different
biological trait scenarios were analyzed, considering spawning seasonality and
pelagic larval duration. Model results indicate that regional circulation patterns
drive larval dispersion, shaping population connectivity of P. carpenteri sponge
aggregations in the Azores, particularly among aggregations in the Central Group
of Azorean islands. Some areas present high retention rates, receiving larvae from
several sponge aggregations while also being important larval source
aggregations. In contrast, aggregations from the Eastern Group may be
isolated from the others. Larval dispersal and connectivity patterns were
analyzed concerning the current configuration of Marine Protected Areas
(MPAs) in the Azores. The results underscored the importance of maintaining
protection efforts in existing MPAs and identified stepping-stone locations and
specific sites where additional measures could enhance species connectivity in
the Azores.

KEYWORDS
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1 Introduction

Connectivity is a fundamental process driving the persistence of
marine populations and influencing the ecosystems’ structure,
biodiversity, productivity, dynamics and resilience (Kenchington
etal., 2019; Busch et al., 2021). In the deep-sea (the ocean below 200
meters depth), connectivity is a key element for spatial management
and conservation plans including the establishment of Marine
Protected Areas (MPAs) (Lima et al., 2020; Combes et al., 2021).

Many marine organisms rely on the larval phase as the primary
means to colonize new areas, making this process crucial for
individual survival as well as in population dynamics and
persistence (Ross et al,, 2020). Some species possess a pelagic
larval phase, during which their larvae are transported by ocean
currents, facilitating migration between geographically distant
populations (Paris et al., 2013). However, despite the pivotal role
of the planktonic larval stage and larval dispersal in understanding
deep-sea population connectivity, knowledge gaps remain due to
challenges in obtaining in-situ data (Kenchington et al., 2019). This
pelagic larval dispersal phase contributes to (i) population
exchanges that aid in the replenishment of populations,
population connectivity and the maintenance of well-established
communities, and to (ii) the colonization of new territories/habitats,
possibly modifying existing communities and associated
biodiversity (Adams et al., 2012).

Dense sponge aggregations, known as “sponge grounds”, are a
key component of marine benthic ecosystems, enhancing, along
with corals, the local biodiversity, and acting as feeding,
reproductive, nursery and refuge areas for many invertebrates and
fish (Pham et al., 2015; Beazley et al., 2021). Deep-sea sponges are
thought to play an important role in the deep-sea nutrient cycle,
recycling the nutrients, through their capacity of filtering large
quantities of water (Leis, 2020). By converting dissolved organic
matter (DOM) into detritus, sponges are enable to transfer the
energy and nutrients in DOM to higher trophic levels, the so-called
sponge loop pathway (Rix et al., 2018). They also contribute to the
biogeochemical cycling of dissolved nutrients, such as carbon and
nitrogen, and silicate in the case of siliceous sponges like P.
carpenteri, which belongs to the class of Hexactinella (Maldonado
et al., 2016; Ross et al., 2016, 2019; Taranto, 2022).

These deep-sea organisms rely upon a planktonic larval stage
for dispersal; thus, studying the environmental patterns responsible
for their distribution is critical to inform and support the
development of appropriate conservation measures (Maldonado
and Young, 1999; Cowen and Sponaugle, 2009; Xavier et al., 2015;
Wang et al,, 2021).

Deep-sea sponges inhabit multiple areas of the deep-sea,
particularly in the North Atlantic (Samuelsen et al, 2022). The
hexactinellid Pheronema carpenteri forms extensive sponge
aggregations, occurring from south of Iceland and west of Scotland,
across the Porcupine Seabight, Azores, northern Spain, Portugal,
Canary Islands, and off Morocco at 800-1,350 m depth (Maldonado
et al., 2016). Some of them are reported to have persistent spicule
skeletons (Maldonado et al., 2005). These spicule mats created by the
senescence and death of hexactinellid sponges, provide an important
substratum that hosts diverse faunal communities (Bett and Rice,
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1992) forming biodiversity hotspots (Henry and Roberts, 2014), and
may even function as reducers of sediment erosion in the deep-sea
(Black et al., 2003). Sponges are also known for establishing complex
microbial symbioses being a reservoir of exceptional microbial
diversity and major contributors to the total microbial diversity of
the world’s oceans (Thomas et al., 2016).

P. carpenteri forms the most extensive Hexactinellid
aggregations in the North-East Atlantic (Graves et al., 2023), and
is a typical organisms of the deep-sea in the Azores (Pham et al,
2015). P. carpenteri, is a nest-shaped sponge that likely forms the
most extensive sponge aggregations at temperate latitudes, with
abundances up to 6 individuals m? (Maldonado et al., 2016).
P. carpenteri has been recorded in the northeast Atlantic from the
northern Rockall Trough at about 59°37’N north, through the
Porcupine Seabight, Bay of Biscay, Portuguese coast and
Moroccan coast to the Azores, at depths ranging from 650m to
1600 m (Rice et al., 1990; White, 2003; Howell et al., 2016; Creemers
et al., 2019; Colago et al., 2020; Vieira et al., 2020; Somoza et al.,
2021; Taranto, 2022). In the Azores its density can vary between 2 to
rarely 56 individuals per squares meter (Colago pers. observ.).

In the Porcupine Sea Bight, this species occurs in areas with low
currents but close to regions where enhanced bottom tidal currents
are found (White, 2003). This corroborates the hypothesis of Rice
et al. (1990), that these sponges do not tolerate enhanced currents,
but may nevertheless be dependent upon the resuspended or
undeposited organic matter carried to them from regions of
increased tidal energy. In the Azores the same phenomena is
observed, with the sponge grounds being present in areas with
low intensity currents (Viegas, 2022).

The Azores deep-sea benthos includes a high diversity of
sponges and cold-water corals which build rich communities
(Pham et al., 2015; Gomes-Pereira et al., 2017; Creemers et al.,
2019; Colaco et al., 2020; Morato et al., 2021). P. carpenteri is a
common taxon in the Azores bathyal environment, forming large
aggregations (Colaco et al,, 2020) and is considered a vulnerable
marine ecosystem (VME) since it meet several of the vulnerability
criteria, such as fragility, slow growth rate and low recovery
potential (FAO, 2008).

Available data about the biology of hexactinellids sponges
results mainly from studies with shallow-water sponges (Barthel
et al, 1996; Boury-Esnault et al., 1999), also arctic deep-sea
populations (Leys and Lauzon, 1998), and other non-specific glass
sponge’s case studies (Bett and Rice, 1992; Boury-Esnault et al,
1999; Guillas et al., 2019). The reproductive strategy of P. carpenteri
is currently unknown (Graves et al., 2023) but Hexactinellids are
assumed to reproduce both asexually and sexually with
lecithotrophic larvae (Leys and Ereskovsky, 2006; Teixido et al,
2006). During their life cycle, after hatching, pelagic larvae drifts in
the water column for a limited period (Pelagic Larval Duration,
PLD), before settling on the seafloor, in a recruitment area, to
become sessile juvenile sponges, if the environment conditions are
suitable (Maldonado, 2006). Despite their deep-water habitat,
hexactinellids sponges may experience seasonality that perhaps
influences their reproductive period (Leys and Lauzon, 1998). For
the deep-sea species Geodia the reproductive season spans from
spring to Autumn (Koutsouveli et al., 2020).
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The current understanding of deep-sea larval behavior for deep-
sea sponges is extremely limited (Busch et al., 2021), mainly due to
the inherent difficulty of assessing deep-water habitats (Lopes,
2005), and particularly by the difficulty of collecting larvae of
deep-sea organisms. Available data from the shallow-water
sponges indicate that most sponge larvae are anchiplanic, with a
short planktonic larval duration of minutes to a few days (usually< 2
weeks) (Maldonado, 2006; Ross et al., 2019). However, this short
PLD is only reported for shallow-water species and is believed to
not be representative of deep-sea water taxa such as P. carpenteri.
The glass sponge V. pourtalesii has an estimated maximum pelagic
larval duration of 2 weeks (Wang et al., 2021). Hilario et al. (2015)
calculated that the average known PLD of a deep-sea organism is 35
days, which is longer than for their shallow-water counterparts
PLD. Wang et al. (2021) used modelling tools to study the fate of
glass sponge larvae in the Gulf Stream, hypothesizing a 2-week
maximum PLD for deep-sea glass sponge.

Furthermore, it is suggested that sponge larvae may remain in
the water column for longer periods, perhaps months (Boury-
Esnault et al., 1999; Maldonado, 2006). Environmental factors like
seawater temperature can influence the duration of the reproductive
period (Maldonado, 2006). Therefore, two different PLDs were
tested in this study, a PLD of 15 days (similar as was estimated V.
pourtalesii), and a PLD of 30 days (similar as was estimated in other
deep-sea larvae dispersal studies (Hilario et al., 2015; Vic et al,
2018) (Table 1).

In this work, the potential larval dispersal of P. carpenteri deep-
sea sponge aggregations in the Azores, it was modeled, as a proxy
for the potential larval transport around Azores and evaluate the

10.3389/fmars.2024.1393385

probability of the current MPAs to maintaining the connectivity of
these benthic organism populations.

2 Methodology
2.1 Study area

The Azores archipelago is composed of nine islands, spanning
600 km in the Northeast Atlantic, between 23°W and 33°W and 37°
N and 40°N (Figure 1) and divided into three geographical groups.
The Mid Atlantic Ridge (MAR) crosses the archipelago. Two islands
are located west of the MAR, on the American plate, forming the
Western Group (WG), while the other islands are located on the
Eurasian plate with 5 islands positioned in the Central Group (CG)
of the Archipelago and two islands situated further east (Eastern
Group: EG).

2.1.1 Pheronema carpenteri in the Azores

The P. carpenteri sponge aggregations identified in the scope of
the SPONGES Project, due to their frequent observations are the
focus of this study. These P. carpenteri aggregations are located
along the Azores Archipelago (Figure 1), in a bathymetric range
from 630 to 1000 meters depth (Table 2). Specifically, they are
found over the Mid-Atlantic Ridge (MAR) at Cavala Seamount
(L#1) and Gigante Seamount (L#2); in the Central Group (CG), at
the Princesa Alice (L#3), Agores Bank (L#4), in the South of Faial
(L#6), South of Pico (L#7), and North of Pico (L#8); and in the
Eastern Group (EG) L#9 in Mar da Prata, and L#10 in Formigas.

TABLE 1 Literature review for Pelagic larval duration, spawning seasonality, of deep-sea sponges, from different locations and depths, used/obtained

in other studies.

Organism/Taxa PLD Spawning season Organism location Reference
Sponges (generic) <14 days n/a n/a 1)
Sponges (generic) n/a phytoplankton blooms (March/autumn) Several; northwest Atlantic 2)

Demosponge 14 days After spring bloom Cantabrian sea 3)
D
( Geszil::s:;r‘::ti) n/a Spring & autumn/phytoplankton blooms Norwegian fjords, deep continental shelf 4); 5)
Hexactinellida > 24h (<24h for shallow sponge) - North Atlantic 6)
. . Deep-sea (Hydrothermal vents, cold
Deep-: M :10-31
eep-sea species edian: 10-310days seeps, food falls, Seamounts) 7)
Deep-sea (Hydroth 1 vents, cold
Shallow species Median: 0.17-293 days ecp-sea (Hydrothermal vents, co 7)
seeps, food falls, Seamounts)
All d
Hexactinellida n/a year round/ Fiords, British Columbia 2)
phytoplankton blooms
Vazella
.. 2 weeks (value assumed for the 282 to 593 meters depth Eastern coast of
pourtalesii model application) All year round/ North America 8)
(Hexactinellida) pp
Oopsacas
minuta n/a All year round submarine cave, France 2)
(Hexactinellida)
Deep-sea organisms 30-180 days (estimated) n/a n/a 9)

1) Maldonado, 2006; 2) Kenchington et al., 2019; 3) Busch et al., 2021; 4) Spetland et al., 2007; 5) (Leys and Lauzon, 1998); 6) Ross et al., 2019; 7) Hilario et al., 2015; 8) Wang et al., 2021; 9) Vic

et al, 2018; n/a, no information available or not applicable.
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FIGURE 1

Bathymetry of the study area, with the representation of the Mid-Atlantic Ridge (MAR) with a blue dashed line, the 9 islands of the Azores
archipelago in grey, the location of the Pheronema carpenteri sponge aggregations in the study with blue circles; black polygons depicts the groups
in analysis: MAR Group (L#1 Cavala, L#2-Gigante); CG-Central Group (L#3-Princesa Alice, L#4-Acores Bank, L#5-Condor Seamount, L#6-South of
Faial, L#7-South of Pico, L#8); EG- Eastern Group (L#9-Mar da Prata, and L#10-Formigas), and representation of the Azores Marine Park and OSPAR
Marine Protected Areas, and the Western Group (Flores and Corvo islands), Central Group (Faial, Pico, Sdo Jorge Terceira and Graciosa Islands), and

the Eastern Group (Sdo Miguel and Santa Maria islands).

For applying particle-tracking models to study larvae dispersal,
it is essential to include information about their biological traits
such as spawning seasonality, larval behavior, and pelagic larval
duration (Busch et al., 2021). Empirical data about deep-sea
sponges biology is very scarce, and specifically regarding P.
carpenteri it is absent. Previous studies often assume that deep-
sea sponges do not experience spawning seasonality, unlike their

littoral relatives, because they are too deep to be influenced by light
(Barthel et al., 1996). However, further studies pointed out that
despite their deep-sea habitat, sponges experience seasonality,
which influences their growth rate and perhaps reproductive
period, which, in turn, may be regulated by patterns of primary
production in the photic zone of the ocean and subsequent sinking
of the generated production (Leys and Lauzon, 1998). A number of

TABLE 2 Pheronema carpenteri sponge aggregations in the study, their location, depth, source and name/location.

Location Longitude (°W)  Latitude (°N) Depth Source/project
L#1 -30.6701 38.3632 900 Cavala MAR emodnet’
L#2 -29.88809 38.98353 766 Gigante MAR Exp-Fund.Azul ?
L#3 -29.06232 37.9183 900 Princess Alice CG1 Biodiaz *
L#4 -29.02941 38273 825 Agores Bank CG2 Sponges-Observer_2017*
L#5 -28.99877 38.53281 775 Condor Seamount South CG3 IMAR-DOP/UAz
(CoralFish, Corazon,
Condor) °
L#6 -28.59288 38.32531 630 South of Faial CG4 Sponges-observer_2017*
L#7 -28.26657 38.33921 1000 South of Pico CG5 Sponges—Lula2
L#8 -28.1735 38.49624 822 North of Pico CG Exp—Fund.Azul2
L#9 -25.63083 37.14111 780 QOeste West of Sao Miguel EG IMAR-DOP/UAz
(Mar da Prata) (CoralFish, Corazon,
Condor) °
L#10 -24.63 37.205 904 Formigas EG Colecta®

'http://ipt.vliz.be/eurobis/resource?r=imagedop_video_annotations; *Colaco et al., 2020; *Institute of Marine Research (IMAR-Azores), Portugal; *Department of Oceanography and Fisheries
(DOP)-University of the Azores, Portugal, 2017. 5ImageDOP Bentic Video http://www.vliz.be/en/imis?dasid=4492&doiid=304; °DOP/internal unpublished data.
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deep-sea species display potential spawning that is linked to organic
matter input during seasonal phytoplankton blooms (Mercier et al.,
2011; Sun et al., 2011; Mercier et al., 2013; Baillon et al., 2014). In
particular, for deep-sea corals, some gametogenic peaks coincided
with periods marked by high surface productivity, in spring and
autumn (Santos et al., 2013).

The information available regarding deep-sea larval behavior is
scarce. Table 1 summarizes the literature review regarding the deep-
sea larvae biological traits and specifically for deep-sea sponges
larvae. Different scenarios were computed to study the larval
dispersal in the Azores. It was considered a yearly release since
no information on spawning was available, but since some deep-sea
species are believed to experience spawning seasonality, seasonal
scenarios were also performed. For the seasonal scenario, a release
in March was simulated to represent the spring spawning season,
and a release in October to represent the autumn spawning season
(Santos et al,, 2013). All the scenarios ran with different pelagic
larval durations (PLD) of 15 and 30 days (Table 3).

2.1.2 3D Hydrodynamic model using Mohid

The 3-D hydrodynamic modelling system used was MOHID,
developed at MARETEC (IST - University of Lisbon) which solves
the 3D incompressible primitive equations built and developed
using an object-oriented philosophy (IST, 2003; Braunschweig et al.,
2004; Leitdo et al., 2008). MOHID is an open-source model,
available online at https://github.com/Mohid-Water-Modelling-
System/Mohid. It is programmed in ANSI FORTRAN 95,
following an object-oriented approach allowing the integration of
different modules in implicit and explicit ways (IST, 2003). The
hydrodynamic model simulates the currents and density fields,
fundamental for the Lagrangian and Eulerian transports through
advection and/or diffusion processes. The turbulence is solved by
the General Ocean Turbulence Model (GOTM) module (Burchard

TABLE 3 Scenarios considered in this study, with spawning date and
pelagic larval duration and the release length (in days).

Release
length
(days)

PLD

(days) Release date

Scenario

PLD15_March_2017 15 March 2017 31
PLD15_October_2017 15 October 2017 31
PLD30_March_2017 30 March 2017 31
PLD30_October_2017 30 October 2017 31
PLD15_year_2017 15 January- 365
December 2017
PLD30_year_2017 30 January- 365
December 2017
PLD15_March_2018 15 March 2018 31
PLD15_October_2018 15 October 2018 31
PLD30_March_2018 30 March 2018 31
PLD30_October_2018 30 October 2018 31
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et al,, 1999). Model configuration and boundary conditions are
described in Table 4.

The model was implemented for the Azores region from
32.4721°N to 42.91211°N, -21.40775°W to -36.2878°W, for the
years 2017 and 2018. It has a horizontal resolution of 1/16°
horizontal resolution (6 km grid) and a vertical resolution of 50
vertical layers covering the entire water column from the surface to
the sea floor (0 — 5940 meters). The first 10 meters of the water
column are divided into 7 sigma layers, which change their size
based on the tide level evolution. Below these, the water column is
divided into 43 Cartesian layers, which are thinner in the upper
layers (less than 2 meters in length) and larger in the bottom ones.

For the atmospheric forcing, the boundary conditions are
obtained from the Global Forecast System (GFS model), provided
by NOAA- America National Ocean and Atmospheric
Administration, available at https://www.ncdc.noaa.gov/. This
model has hourly fields of surface wind, temperature, relative
humidity, pressure, and solar radiation.

Model validation of the selected parameters is detailed in
Viegas (2022). Comparison between model results and tide
gauge data reveals the capability of the model to accurately
simulate sea water level, in the Azores region. Sea surface
temperature was validated against remote sensing data and
predicted sea water temperature and salinity were compared
with in situ data from ARGOS floats. Model validation against
the ARGO float data for vertical profiles of temperature and
salinity showed Pearson correlation coefficients greater than
0.97, with the majority being 0.99 (Viegas, 2022). The outputs of
the hydrodynamic model (horizontal and vertical components of
the velocity, sea level, temperature, salinity, and density fields)
were used to feed the CMS particle tracking model to simulate the
plume-dispersal processes in offline mode.

TABLE 4 Hydrodynamic model configuration.

Parameter MOHID hydrodynamic model

3D - Baroclinic

Model dimensions

Domain 32.472°N to 42.9121°N, and 21.4078°W to 36.288°W

Bathymetry EMODNET (1/16arc-minutes) ¥

Horizontal solution

Vertical resolution

Tide

At

6km
50 vertical layers: 7 sigma layers + 43 cartesian layers
Tide: FES2014b)

120 seconds

Meteorological forcing

Hydrodynamical
forcing

Global Forecast System model (GFS) 0.25°
resolution c)

CMEMS Global Ocean Circulation Model
(PSY4V3R1)
1/12°resolution?

Model output

3600 seconds

Simulation length

Jan/2017 - Dec/2018

*EMODnet Consortium, 2018; bLyard et al., 2021; “National Centers for Environmental
Prediction, et al., 2015; NOAA, 2015; L ellouche et al,, 2018; n/a, not applicable.
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2.1.3 Particle tracking model

The CMS-Connectivity Modelling System is an open-source
model, freely available online. It was created for the multi-scale
tracking of biotic and abiotic particles in the ocean, based on a
Lagrangian framework to study complex larval migrations (Paris
et al, 2013). This model runs offline, over a 3D hydrodynamic
model, applying its velocity fields (u, v, w) to each particle, using a
4th-order Runge-Kutta numerical discretization method (Garcia-
Martinez and Flores-Tovar, 1999) to differentiate particle positions
through space and time. Modules distributed with the code include
mortality, vertical migration, and a connectivity module designed to
generate a connectivity matrix output from the source to the final
destination of the particles. The model gives a probabilistic estimate
of dispersion and oceanographic connectivity, transport and fate of
Lagrangian phenomena. The model computes the probability of
larval exchange (here in called connectivity), between source and
recruitment areas, by dividing the number of larvae that reached
each site by the total number of larvae release; mortality, and
behavior; providing results over time including particles’ location
(x, y and depth), water properties, particle status (moving, dead, out
of the domain or settled) and also the particles settlement location.
For the purpose of the model, there is an assumption that the larvae
that reach the recruitment site will settle. However, the successful
development of the settled larvae into a new organism, depending
on behavioral components and the suitable conditions (e.g.,
hydrodynamic, environmental conditions, biological and physical
processes, competency or predation) (Pineda et al., 2010), is not
estimated by the model.

The model can simulate particles settlement in defined
recruitment locations (in this case the sponge aggregations in the
study). These recruitment locations are defined by a polygon
(longitude, latitude and depth). Particle settlement starts after the
defined PLD.

In this study, each aggregation is defined by a polygon of 6x6
km (the model resolution). The initial positions for the drift
trajectories of each population were the centroids of each one of
these areas. Each population is defined by a release location, and
Lagrangian tracers represent larvae. A position (longitude, latitude
and depth), the number of particles released, the release frequency,
and the date characterize each release location. Since there is no
information about the fecundity, frequency and seasonality of larval
emissions, a hypothetical number was defined (Cowen and
Sponaugle, 2009). To standardize this approach, the same number
of particles for all the locations was considered, assigning the same
hypothetical relevance to all the release points, with the same release
size and frequency. The model simulates a release of a total of
150,000 particles per month, in a time step of 1.5 hours, during the
entire release period, for all the scenarios. In this study, all the
aggregations are simulated with the same number of particles, not
reflecting population abundances, size or reproduction rate. Larvae
were simulated as passive particles, without any active swimming
behavior, being just advected by the hydrodynamics. Model
configurations are described in Table 5.

The number of particles was calibrated to provide accurate
larvae dispersion results, considering the computational efficiency.
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TABLE 5 Biophysical model configuration.

Model parameter Parameter description

Hydrodynamic 6x6km

model resolution

Model time step 720 seconds

Number of release points 10
Release depth Sea bottom
Number of larvae per release 150000/month/release
Release time step 1.5 hours

Behaviour Passive (Ross et al., 2019)
Mortality Half-life (North et al., 2009)
Strata 600 to 1000m (P.Carpenteri
bathymetric range)
Scenarios Several considering PLD and seasonality

Simulation length Jan/2017 - Dec/2018

This calibration was performed using two different methodologies
(Viegas, 2022), the Particle Density Distribution, and the evaluation
of the fraction of unexplained variation (Simons et al., 2013), and by
the analysis of the dispersal pathlength distances saturation
(Kough et al., 2013).

The model simulates the larvae dispersal, and larvae settlement
after the precompetence period (the PLD). For connectivity studies the
model allows defining suitable settlement locations, defined by a
polygon (longitude, latitude and depth). In this case, to study
connectivity between the sponge aggregations, each sponge
aggregation is also a source location and a recruitment area, defined
by a polygon of 6x6km (model resolution), and depth (700 to 1000
meters depth). The larvae exchange between different locations will
represent connectivity between different sponge aggregations.

Alternatively, to study potential settlement location throughout
the Azores region, another methodology was applied, assuming that
larvae were able to settle at any location between 700 and 1000
meters depth.

Due to the many uncertainties about deep-sea larval biology,
different scenarios were considered, with different pelagic larval
durations (PLD), and seasonal scenarios to encompass different
potential situations. This is one advantage of using modelling tools,
allowing the study of different hypotheses and scenarios (Swearer
et al., 2019; Wang and Qiao, 2020).

2.1.4 Data analysis

Larvae were represented by particles, and the model results were
analyzed through dispersal maps, larvae positions and larvae exchange
between different source and recruitment locations. Connectivity
between the sponge aggregations in the study was represented by
connectivity matrices, representing the percentage of particles that
reach each site, which allows for the analysis of sink and source
aggregations. In this study, each particle represents one larva. When
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referring to settling particles, it means a particle has reached another  tracers in the entire water column. In contrast, in the particle dispersal
location, representing a larva that has settled in a new location and ~ maps, particles are not integrated into the water column, and all the
potentially will develop successfully. Connectivity matrices also  particles in each cell are graphed. Some particles can “mask” others, by
represent the percentage-recruitment levels. Connectivity between  overlapping. Travel distances were analyzed by the Shapiro-Wilk
two locations was assumed when, at least, one modelled particle =~ Normality Test (using Rstudio 2022.02.3), to test if they are normally
released from one location (source node) reach (also referred as  distributed; and by using histograms to analyze potential travel
settled in) another location (receiving node), after the PLD. When  distances from all the different release points for the different
settling in the same location, it is considered self-recruitment. Source ~ scenarios. These distances were calculated from individual particle
locations are represented as rows (j), and recruitment areas (receiving  trajectories as the sum of straight-line distances between each time
node) as columns (i), with self-recruitment in each location  step. Additionally, histograms of particle depths were used to analyze
represented in the matrix diagonal. Colors represent the percentage ~ how particles are distributed along the water column.
of particles that reach each locations, calculated by dividing the total
number of settled larvae from each source population that settled, at
the end of the PLD, in each receiving population, by the total number of 3 Results
larvae released from the source population. Besides the connectivity
analysis, the larvae settlement positions throughout the studyareawere 3.1 Passive particle drift trajectories
analyzed, to identify other potential larvae settlement positions.

The particle density distribution (PDD) is represented in 2-D Larvae were simulated as passive particles, being advected by
vertically integrated maps, where all particles are represented,and each ~ the hydrodynamic currents. The particle density distribution (PDD)
domain grid cell (6km x 6km) correspond to the integrated number of ~ illustrates the larval dispersal along the study area, (Figure 2),
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FIGURE 2

Particle density distribution for the annual release with a PLD of 30 days, for 31st January (A): 28th February (B); 31st March (C); 30th April (D); 31st
May (E); 30th June (F); 31st July (G); 31st August (H); 30th September (I); 31st October (J); 30th November (K); 31st December (L). Black polygons

represent the different location groups: MAR Group (L#1-Cavala, L#2-Gigante); Central Group (L#3-Princesa Alice, L#4-Acores Bank, L#5-Condor
Seamount, L#6-South of Faial, L#7- South of Pico, L#8); Eastern Group (L#9)-Mar da Prata, and L#10-Formigas).
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indicating the potential particle exchange between different
locations. The results reveal a heterogeneous distribution
depending on the spawning seasonality. Larvae from the MAR
group can reach the Central Group (CG) only during the winter and
autumn months (January, February, September, October,
November and December). Larval dispersal plumes from the
MAR can also reach the Western Group (WG), surrounding
Flores and Corvo islands, during March, April, May and June
months. Larvae exchange between CG and WG only occurs
during July, November and December. However, the low PDD
between these groups (Figure 2) indicates a low probability of
particle exchange.

10.3389/fmars.2024.1393385

In March an eddy is formed between the Western Group and the
MAR (Figure 3A), contributing to particle retention in this area. Larvae
from the CG mostly remain around the islands. Nevertheless, the low
current velocity, (Figure 3),is not sufficient to transport larvae from CG
to the EG populations, given the PLD used in these scenarios.

Larvae from the Central Group populations, reach various
sponge aggregations. Between the Central and Eastern Group, the
hydrodynamic patterns go mainly in the eastward direction during
March, Figure 3A, while in October there is a dominant current
coming from the east and going westward (Figure 3B). In the
northwest part of the study area, currents are stronger during
October (Figure 3B) than during March (Figure 3A), and the
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FIGURE 3

Particles density distribution integrated into the entire water column, like presented in Figure 2, with the representation of the velocity vectors at 750
meters depth, for 31 March 2017 (top), and 31 October 2017 (bottom). The PDD is represented with a color scale from blue to red, where 0 is white),
vectors represent the monthly average of velocity modulus and direction at 750 meters depth.
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major hydrodynamic fields present another pattern, where the
higher velocity (>0.1m/s) matches the absence or reduced particle
density, and the higher particle density occurs in locations with
lower currents magnitude.

3.2 Particles travel distance

Larvae can travel from a few kilometers to a maximum
travelling distance of over 400km (Table 6). Travel distances are
highly non-normal, confirmed by the Shapiro-Wilk Normality Test
(using Rstudio 2022.02.3). Therefore, rather than considering the
average values, the median and the 95th percentile are used for this
analysis (Phelps, 2015). Maximum total travel distances are an
order of magnitude larger than median distances. Across all March
and October scenarios, the longer PLD causes higher travel
distances. Median total travel distances for a PLD of 30 days are
double the distances with a PLD of 15 days (Table 6). Larval travel
distances vary both seasonally and spatially. During March, larvae
from the MAR locations: L#1, and L#2, have higher travel distances
than those from other locations (with a 95th percentile of 207 and
220 km respectively).

In the Central Group (CG, locations L#3 to L#8), the overall
median particle distance in all tested scenarios is lower than in other
groups, ranging from 8 to 20 km, which may contribute to higher
self-recruitment levels. This lower travel distance is due to the lower
current velocities in the region (Figure 3), in contrast to the MAR
populations, which are situated in areas with stronger currents.

3.3 Particles depth

Simulated larvae mainly remain close to the bottom at the
released bathymetry (Figures 4, 5), despite some travelling through
different bathymetric ranges. Histograms of particles’ depth along

TABLE 6 Particle travel distances for the different scenarios.

Travel

PLD_15_March

PLD_30_March

10.3389/fmars.2024.1393385

their trajectory are represented in Figure 4 for the March release and
in Figure 5 for the October release. In all the locations, larvae
remain mostly within the bathymetric range of the release (>40%).
A longer PLD contributes to a wider distribution of particles along
the water column. The results show no significant difference in
particle depth between the March and October releases. This
demersal larval dispersal can also lead to higher levels of particle
retention at their source locations.

3.4 Connectivity between populations

Results show variation in the level of population connectivity
depending on the PLD of 15 or 30 days. Connectivity between the
different populations in the study is illustrated by connectivity
matrices, and also by connectivity arrows represented on the
maps (Figure 6). The matrices depict the percentage of larvae
exchanged between different populations, indicating connectivity,
or in the case of self-recruitment, the percentage of larvae that
settled in the source population after the PLD. A PLD of 30 days
enables more connectivity between the different sponge
aggregations than a PLD of 15 days (Figure 6). Conversely, a
shorter PLD, results in higher self-recruitment levels. There is no
connectivity between the EG and the CG or WG, in both PLD
scenarios. In the WG, connectivity between Formigas (L#10) and
Mar da Prata Seamount (L#9) is unidirectional, with a PLD of 15
days, and bidirectional with a PLD of 30 days. Between the CG and
the EG, the larvae exchange is minimal, with no significant larvae
exchange among the different populations, as is represented in the
connectivity matrices.

This yearly release allows for the analysis of different spawning
and hydrodynamic scenarios. The hypothesis of a seasonal spawning
release was studied, considering releases of one month in March and
one month in October to cover spring and fall scenarios, respectively.
The results indicate different connectivity patterns in terms of

distances (kilometres)

PLD_15_0October PLD_30_October

max med P95 max med P95 max med P95 max med P95
Cavala #1 221 14 126 375 43 207 152 16 73 325 33 138
Gigante #2 285 18 107 462 44 220 179 15 77 334 32 195
Princesa Alice #3 75 8 36 146 16 58 97 7 34 192 15 51
Agores B.#4 83 8 39 186 15 53 132 10 43 314 18 71
Condor B.#5 128 10 55 326 19 80 158 10 61 359 26 168
South Faial #6 205 10 50 436 21 132 196 14 61 385 26 128
South Pico #7 127 9 40 254 20 87 108 9 42 341 20 98
North Pico #8 69 8 38 270 15 55 85 7 39 286 16 63
Mar da Prata #9 118 10 47 264 22 97 176 27 86 406 50 148
Formigas#10 113 11 59 218 24 9% 168 11 55 345 23 162

Maximum distance (max); median distance (med) and percentile 951,
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FIGURE 4

Histogram of particles’ depth along their trajectory, for each location, for PLD15 and PLD30 days for March 2017 release. The depth of the respective

release is detailed at the top of each graph.

seasonality. The October release (Figure 7), generates lower larvae
exchange between the different sponge aggregations. Population
connectivity between MAR and CG only occurs in the
March_PLD_30_2018 scenario, namely between the Azores Bank
(L#4) and the Cavala (L#1) and Gigante (L#2) Seamounts. In the
other scenarios, there is no connectivity between the different groups.
In the CG, the connectivity between different sponge aggregations
reveals seasonality, with a higher number of connectivity relations in
the March scenarios. The percentage of self-recruitment
(Supplementary Tables A3-A6 in the Supplementary Material) is
different from March to October, with the releases from CG revealing
the highest self-recruitment percentage in October. In different
situations, there is neither self-recruitment, nor connectivity

10.3389/fmars.2024.1393385

between Gigante Seamount (L#2) and any other populations. The
same occurs in the Mar da Prata Seamount (L#9), which shows no
self-recruitment in October_PLD30_2017.

3.5 Larvae settlement locations

Besides the sponge aggregations in the study, larvae can also
settle in other regions of the domain. This study was performed
within the defined bathymetric range of 600 to 1000 meters depth.
Seasonal dynamics can induce different settlement positions. The
yearly release considers all the monthly scenarios, and consequently
more settled larvae along the Azores region (Figure 8). Considering
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FIGURE 5

Histogram of the particles’ depth along their trajectory, for each location, for PLD15 days and a PLD30 for the October 2017 release. The depth of

each respective release is detailed at the top of each graph.
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Map of connectivity relations, and respective connectivity matrix, for a yearly release (2017) with a PLD of 15 days (top), and PLD of 30 days (bottom),
connectivity arrows and auto-recruitment circle colours represent the percentage of settled particles.

the bathymetric range from 600m to 1000m, larvae can settle
around all the islands except Terceira island. Larvae settle along
the MAR and on seamounts situated on its western and eastern
flanks but also at different locations of the CG region’. The Central
Group is an important recruitment area. This result highlights the
potential connectivity between the populations in the Central
Group. Major results show that during the yearly release, larvae
from Cavala and Gigante seamounts, settle along the MAR, around
Flores and Corvo islands, and along the west slope of the Central
Group, but they hardly reach the East part of the Central Group.
Gigante Seamount can receive larvae from different locations
(Cavala (L#1), Gigante(L#2), Acores Bank (L#4), Condor (L#5),
and South of Faial (L#6)), contrasting with the seasonal releases
where larvae exchange occurs only during the October scenario,
between Gigante (L#2) and Cavala (L#1) seamounts. The larvae
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from South of Faial (L#6) are the ones with a wider range of
settling locations; they can settle along MAR, in the WG, in the CG,
in Jodo de Castro bank, and in the EG, in the North of Sio
Miguel (Figure 9F).

4 Discussion

This study aims to use specific sponge aggregations to study the
dispersal of their larvae, and the potential connectivity among these
different sponge grounds, considering spring and autumn spawning
scenarios, and a yearly release, as a first approach to studying the
dispersal of deep-sea larvae in the Azores. Given the many
knowledge gaps in the reproductive and larval biology of deep-sea
sponges, the use of models offers an advantage by allowing the study
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Connectivity matrices for the March_PLD15, March_PLD30, October_PLD15 and October_PLD30 for 2017 on top and 2018 on the bottom,
connectivity and auto-recruitment colours represent the percentage of settled particles.

of different scenarios. P. carpenteri larvae were modelled as passive
tracers, similar to other deep-sea sponge larval dispersal modelling
studies (Kenchington et al., 2019; Swearer et al., 2019). The few
studies of connectivity of sponge grounds in the deep sea in the
Northeast Atlantic do not cover the Azores area, but they showed
genetically a strong panmixia, and that the observed patterns were
very well correlated with the physical drivers and the prevailing
currents and topography (Taboada et al., 2023). In the Cantabrian
sea, the same pattern emerged from the deep sea fan shaped
sponges, where genetically a panmixia was present. However,
when applying a virtual particle tracking model to assess
oceanographic connectivity it showed a strong retention of larvae
in the study area and a variable inter-annual connectivity highly
correlated with the current regime (Busch et al., 2021).

Model results show that the hydrodynamic patterns have a
strong influence on larval dispersal, causing different distribution
patterns depending on the season. Larvae can be advected from a
few kilometers to hundreds of kilometers, depending on the PLD
and the hydrodynamic currents. The water-mass circulation in the
Azores region is highly dynamic, and the influence of the different
currents has seasonal effects on larval dispersal. The strong presence
of hydrodynamic eddies (Caldeira and Reis, 2017) can contribute to
particle retention in different areas, as is the case in March when an
eddy forms between the Western Group and the MAR. These
results show the importance of studying different spawning
season scenarios for larval dispersal. Consequently, due to
knowledge gaps in sponge reproductive traits, different seasonal
scenarios and PLD were tested. Multiple connectivity relationships
exist between the sponge aggregations in the CG, showing a
redundancy in connectivity networks is a positive feature as it
helps to mitigate recruitment failures by providing alternative
connectivity pathways. These multiple connectivity relationships
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may result from the proximity between these sponge aggregations,
but also from the local hydrodynamic patterns characterized by
lower velocities. This is in contrast to the strong hydrodynamic
patterns that occur between the WG and the MAR in March, and
between CG and EG in October.

A significant limitation of this and other deep-sea dispersal
models is the lack of information on deep-sea species biological
traits (Arellano et al., 2014; Hilario et al., 2015; Graves
et al., 2023).

4.1 Connectivity between sponge
aggregations and self-recruitment

There are no connectivity studies of benthic organisms in the
Azores region. A retention particle study between 0 and 150 meters
showed the potential of the different island groups of the Azores to
retain particles, and their dependence on the current regime and
topography (Sala et al., 2013). Close to the Azores a study of the
physical connectivity between the NE Atlantic Seamounts showed
self-recruitment abilities and great retention of particles on the
seamounts (Lima et al., 2020).

This study shows larval dispersal between different sponge
aggregations in the Azores, (Figure 9A-]) namely between the
different sponge aggregations located in the same group (MAR, CG
and EG), as well as between aggregations located in the MAR and the
CG. However, there is no particle exchange between the CG and the
EG. Moreover, these Eastern Group sponge aggregations do not
exchange larvae with the other populations, and are the most isolated.
Therefore, these populations may be spatially fragmented, similar to
what was identified in other larval dispersal model studies for deep-
sea populations (Hilario et al., 2015).
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The results show that the local ocean currents shape the larval
dispersal and connectivity, creating sub-regions not connected,
given the studied scenarios. These kind of hydrodynamic barriers
were also identified in other modelling approaches for deep-sea
larval sponge dispersal on the east coast of North America (Wang
etal, 2021). Moreover, this modelling approach also shows that the
local eddies can supply and induce local retention of larvae,
promoting connectivity and self-recruitment (Wang et al., 2021),
as occurs in this case study in the Azores, namely between the WG
and the MAR populations. A retention particle study in the Azores
at 150 meters also showed the Eastern group isolation and the large
capacity of the central area in the Azores to retain particles (Sala
et al., 2016), which is coherent with the observed pattern in
this study.

4.2 Larval dispersal patterns and
connectivity for P. carpenteri in the Azores
Marine Park

Connectivity among different benthic populations promotes the
increase of their genetic diversity (Busch et al., 2021; Wang et al,, 2021)
and the resilience of the species (Bracco et al., 2019). It is an essential
aspect in the development of management and conservation plans for
marine ecosystems (Combes et al., 2021). Detailed knowledge of the
hydrodynamic patterns and biological interactions that drive
the transport of planktonic phases is crucial for improving the
effectiveness of the MPAs (Stratoudakis et al., 2019). The model
results of larval dispersal and larvae settlement positions for this
target species in the Azores were analyzed considering the MPAs
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from the Azores Marine Park. When MPAs are isolated from each
other, they are more vulnerable to local extinction as they cannot be
replenished by organisms or larvae from other locations (Stratoudakis
et al,, 2019). This is especially true for sessile organisms such as deep-
sea sponges, which rely on larval dispersal to colonize new habitats
(Metaxas and Saunders, 2009), and to support remote populations
(Gary et al, 2020). Networks of marine protected areas arranged
considering the larval dispersal patterns are considered ideal for the
protection of marine species (Steneck et al., 2009). Therefore, studying
larval dispersal patterns and identifying the main larval source and
sink locations can contribute to the better implementation and
management of conservation plans (Combes et al., 2021).

The study of larval dispersal and connectivity of these P. carpenteri
aggregations serves as a pilot study for the connectivity of deep-sea
benthic organisms in the Azores. The current regime and topography
have been shown in other studies to be the main drivers of physical
connectivity, explaining the genetic connectivity patterns (Busch et al.,
2021; Taboada et al., 2023). Using P. Carpenteri as a proxy, we can
discuss how effective the network of MPA from the Azores Marine
Park is from the physical connectivity point of view. Among the 10
deep-sea sponge aggregations in the study, two are located in MPAs:
Condor and Formigas populations. The Princesa Alice aggregation is
located on the southern slope of the Princesa Alice Seamount, outside
but adjacent to the MPA delimitation. Larval dispersal and
connectivity results, indicate that Condor is an important source
population, exchanging larvae with 8 of the 10 aggregations in the
study (Figure 6). In addition, its larvae can achieve different locations
in the Central Group, in the Western Group (around the islands of
Flores and Corvo), and along the MAR: in the north, at 40.3°N
(seamount south of the Kurchatov Fracture Zone); at 39°N in the

frontiersin.org


https://doi.org/10.3389/fmars.2024.1393385
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Viegas et al.

10.3389/fmars.2024.1393385

Larvae origin:
® Cavala {

Larvae origin
@ South Pico

Larvae orgn Depth (m)
® North Pico 1

00
600

1000
1400
1800
2200
2600
3000
3400
13800
4200

FIGURE 9

Location of settled particles, in the entire domain, in the bathymetric range from 600 to 1000m depth, for the yearly release of 2017 with a PLD of
30 days, for each origin. Different colours represent different releases: (A) Cavala; (B) Gigante; (C) Princesa Alice; (D) Acores Bank; (E) Condor
Seamount; (F) South Faial; (G) South Pico; (H) North Pico, (I) Mar da Prata, (J) Formigas. Bathymetry is represented in a grey colour scale.

Gigante Seamount; and in the Voador Seamount at 37.5°N
(Figure 9E). The MPAs of Princesa Alice and Condor may act as
sink locations, once that larvae from different aggregations in the study
achieve these locations. These results demonstrate the potential
connectivity that sponge populations from Condor may have with
different populations in the Azores region.

Frontiers in Marine Science

The Princesa Alice sponge aggregation in the study, adjacent to
the limits of the MPA, demonstrates the importance of extending
the limits of this MPA as it has the potential to retain larvae from
multiple locations in the study: Cavala (Figure 9A), Gigante (Figure
9B) and Condor (Figure 9E) seamounts, and South of Faial (Figure
9F), aggregations.
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The main results show a lack of larvae exchange between the EG
and the other aggregations in the study (Figures 91, ]), mainly due to its
distance from the remaining sponge grounds, but also as a consequence
of the hydrodynamic patterns between the CG and the EG, impeding
the larvae advection in the westward direction. No larvae exchange was
identified between EG and the remaining sponge grounds. Therefore,
the protection of an area in Mar da Prata will favor the maintenance of
the sponge aggregations on the plateau south of Sdo Miguel island, and
both Mar da Prata and Formigas populations, which can be isolated
from the remaining archipelago, due to their distance, but also
restricted by the hydrodynamic patterns. The vulnerability of
Formigas sponge grounds, which face several scenarios with no
larvae exchange and the absence of self-recruitment, also reinforces
the need to maintain the MPA of Formigas.

The Jodo de Castro Bank MPA can receive larvae from the CG and
from the Mar da Prata (in the EG) being an steppingstone location
between the Central and the Eastern parts of the archipelago.
Therefore, this site is very important for the longer-term protection
of these aggregations, by promoting the establishment of a linkage
between the CG and the EG. The Gigante Seamount, in the MAR, is a
recruitment area for deep-sea sponges, retaining larvae from different
sources from the CG (Condor, A¢ores Bank and South of Faial), as well
as from Cavala and Gigante Seamount. The results of larval dispersal
also show that larvae from the Gigante seamount can achieve the MAR
region, up to seamounts located South of the Kurchatov Fracture Zone
(north of the study area), and in seamounts west of the MAR like the
Buchanon Seamount. On the other hand, larvae from aggregations of
Voador Seamount will favor resilience along the MAR, and South of
the Azores EEZ.

This study does not take into account the density of these
sponge aggregations. Research by Graves et al. (2023) on the drivers
of P. carpenteri density suggests that the available environmental
data, combined with the scarcity of long-term time series for deep-
sea environmental data, do not capture the key factors influencing
this species’ density. This limitation restricts the ability to model
and identify areas where aggregations are likely to occur,
particularly those with dense aggregations that could be
considered VMEs. Increasing to a multi-year analysis would
provide the opportunity to examine variability over the years and
test other hypotheses, such as the average temperature variability,
which has been identified as an important driver of P. carpenteri
distribution (Graves et al., 2023).

The application of biological larvae traits and their
parameterization in biophysical models presents a challenge (Hilario
et al,, 2015) even in well studied shallow-water systems (Metaxas and
Saunders, 2009). When regarding these biophysical models for deep-
sea dispersal, the application of biological traits is even more
challenging due to the scarcity of data, and difficulty data collection,
observation and model validation (Adams et al., 2012; Ross et al., 2016).
So, these mode results can be used as a first approach to study the
potential larval dispersal in the Azores, but always considering the
associated uncertainties. However, models are always a simplification
of the reality and despite all the uncertainty regarding the biological
parameters (Simons et al., 2013), the validation of the physical
circulation model used in this case study (Viegas, 2022) provides us
with the guarantee of the correct physical model component, providing
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a baseline to study different scenarios, and also to be used to study
climate change scenarios hypothesis.

Furthermore, this modelling approach could be used in
combination with the species distribution models (Beazley et al.,
2021) to construct explicit spatial hypotheses for deep-sea
populations connectivity following a seascape framework
approach (Kenchington et al., 2006; Kavanaugh et al,, 2014; Zeng
etal,, 2020; Swanborn et al., 2022), in this case for the Azores region.
In the future, the possibility of collecting physical samples and
performing a population genetic study, will contribute to a deeper
knowledge of these populations connectivity (Kool et al., 2011;
Selkoe and Toonen, 2011; Antonio Baeza et al., 2019; Wang et al.,
2021), and will help to validate our hypothesis.

5 Conclusions and final remarks

The physical connectivity among different deep-sea P. carpenteri
sponge aggregations in the Azores region was studied using a
biophysical particle-tracking model. P. carpenteri larvae were
modeled as passive tracers (Kenchington et al., 2019; Swearer et al.,
2019) under pelagic larval duration (PLD) scenarios of 15 and 30 days
and seasonal spawning, based on other deep-sea sponge studies
(Kenchington et al., 2019; Ross et al, 2020; Wang et al,, 2020,
2021). Model results indicate that PLD and spawning seasonality
are crucial for larval dispersal and population connectivity in the
Azores. Seasonal effects are mainly driven by the region’s dynamic
oceanographic conditions. Local hydrodynamic vortices can lead to
larval retention, while stronger currents (exceeding 0.1 m/s) between
the Western and Central Groups in spring, and between the Central
and Western Groups in autumn, hinder larval exchange. Therefore,
more information on the species’ biological traits, including spawning
seasonality, is crucial for understanding effective connectivity across
the archipelago.

A PLD of 30 days would enhance population persistence and
recovery after disturbances (Cowen and Sponaugle, 2009), whereas
a shorter PLD of 15 days could increase population fragmentation.
Connectivity and larval dispersal results were analyzed in relation to
the current design of the Azores MPAs, demonstrating their
effectiveness in promoting connectivity across the archipelago by
protecting key sink and source locations. Stepping-stone sites, such
as the Jodo de Castro Bank, were identified as critical links between
isolated populations of the Eastern Group and the central
archipelago. Other locations along the Mid-Atlantic Ridge
(MAR), including Gigante, Cavala, Ferradura, and Voador
seamounts, also facilitate connectivity, serving as potential sink
locations. These locations should be the target of greater protection
measures in the design and implementation of protection plans.

This study also identifies potential areas for future exploration,
such as Jodo de Castro, Voador, Ferradura, and Buchanan banks,
where larvae are predicted to settle. These locations are promising
for studying not only P. carpenteri but also other deep-sea species
cohabitating in these habitats.

This type of investigation highlights the utility of larval
dispersal models in designing Marine Protected Areas (MPAs)
(Lima et al., 2020), specifically their role in identifying source and
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sink locations. It allows the identification of major larval dispersal
and connectivity patterns among sponge aggregations in the
Azores, providing a framework that can be extended to other
deep-sea sponge and coral habitats.

Future studies should include more detailed biological and larval
behavior data for deep-sea sponges. Integrating genetic connectivity
studies will offer valuable insights into the behavioral dynamics and
resilience mechanisms of these organisms within the Azores.
Additionally, considering aggregation density and population size
in models will provide a more precise quantification of recruitment
efficiency. Novel insights into the biology, size, and density of sponge
aggregations will be invaluable for understanding the dynamics of
this species within the Azorean ecosystem.

Regardless of the lack of information about P. carpenteri
biological traits, this dispersal modelling approach can provide an
overall understanding of deep-sea larval transport in the Azores
region, considering the studied PLD scenarios. Moreover, this
modelling methodology can therefore be replicated for other
species considering these or any other biological traits scenarios,
or to study other hypothesis. These results can therefore be used to
long-term conservation plans for deep-sea species, and support
protection actions for local populations in the Azores.
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the scenario: March PLD30 2017.
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The structural complexity of cold-water corals is threatened by ocean
acidification. Increased porosity and thinning in structurally critical parts of the
reef framework may lead to rapid physical collapse on an ecosystem scale,
reducing their potential for biodiversity support. Understanding the structural-
mechanical relationships of reef-forming corals is important to enable the use of
in silico mechanical models as predictive tools that allow us to determine risk and
timescales of reef collapse. Here, we analyze morphological variations of the
branching architecture of the cold-water coral species Lophelia pertusa to
advance mechanical in silico models based on their skeletal structure. We
identified a critical size of five interbranch lengths that allows using
homogenized finite element models to analyze mechanical competence. At
smaller length scales, mechanical surrogate models need to explicitly account
for the statistical morphological differences in the skeletal structure. We showed
large morphological variations between fragments of L. pertusa colonies and
branches, as well as dead and live skeletal fragments which are driven by growth
and adaptation to environmental stressors, with no clear branching-specific
patterns. Future in silico mechanical models should statistically model these
variations to be used as monitoring tools for predicting risk of cold-water coral
reefs crumbling.

KEYWORDS

cold-water corals, Lophelia pertusa, ocean acidification, mechanical modelling,
3D morphology
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1 Introduction

Cold-water coral (CWC) reefs are important ecosystem
engineers, since they support high local biodiversity through the
three-dimensionally (3D) complex habitat they make (Roberts et al.,
2009, 2006). This structural complexity is at risk from climate-
driven shifts, particularly ocean acidification. While live coral can
continue to calcify under projected temperature and ocean
acidification conditions (Bischer et al., 2022; Hennige et al,
2015), the dead coral skeletal framework (i.e., erected skeleton no
longer covered by soft tissue and exposed to seawater) is prone to
dissolution either through direct passive chemical dissolution
(Hennige et al,, 2015) or increasing rates of bioerosion (Biischer
et al., 2022). Dissolution of the dead framework is of particular
concern, as the majority of CWC habitat is typically dead coral that
sits above sediment/rubble (Barnhill et al., 2023; Vad et al., 2017).
Ocean acidification induced dissolution may lead to loss of material
and increased porosity in structurally critical parts of the dead
skeletal framework, which can lead to structural weakening and
rapid physical habitat collapse on an ecosystem scale (Hennige
et al., 2020; Wolfram et al,, 2022), reducing the potential for
biodiversity support (Barnhill et al., 2023; Kline et al., 2019).

Wolfram et al. (2022) showed that the mechanical mechanisms
explaining the collapse of CWCs due to ocean acidification can be
described using mathematical and computational models. There,
the coral skeleton was modelled as a multiscale, polycrystalline
material and the impact of ocean acidification was incorporated as
an increase of porosity and a reduction in skeletal thickness (loss of
material). With this model, the authors illustrated how changes due
to ocean acidification led to a decrease in the loadbearing capacity of
the skeleton using image-based finite element (FE) analysis. These
high-fidelity image-based models of coral structures represent a
powerful tool to assess the risk of collapse in a future ocean and,
potentially, to estimate timepoints that are critical to reef-crumbling
based on the time they are exposed to acidified water (Hennige
et al., 2020). However, the computational cost of this approach
together with the reduced availability of 3D image data of these
corals and their reef structures restricts its use to small coral
colonies and limited timepoints. The development of fast and
efficient in silico models of real reef structures therefore remains
essential. In combination with projections of seawater chemistry
changes, such models may allow us to investigate timescales of
loadbearing capacity changes as well as the impact of these changes
on CWC reefs overall.

Existing models of tropical coral reefs use cantilever beam
theory to evaluate the mechanical vulnerability of coral colonies
(Madin and Connolly, 2006; Storlazzi et al., 2005). These models on
tropical corals consider the skeletal structure uniformly throughout
the entire coral colony. While the assumption of a uniform skeletal
structure may hold for some tropical coral species and
growthforms, it fails to account for the morphological complexity,
structural heterogeneities, and skeletal density of branching corals
(Chamberlain and Graus, 1975; Graus et al., 1977; Vosburgh, 1982),
and in particular CWC branching corals like the cosmopolitan
scleractinian species Lophelia pertusa, also referred to as
Desmophyllum pertusum (Addamo et al., 2016). To model future
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impacts of ocean acidification on L. pertusa’s skeletal integrity, it is
important to understand its material architecture (Figure 1) and the
structural-mechanical relationships across length scales. Whilst the
mechanical properties at the microscale have been previously
studied (Hennige et al., 2020; Pasquini et al., 2015; Wolfram
et al.,, 2022), little is known about the influence of the corallite
branching arrangement on the mechanical behavior of coral
colonies. The branching architecture and morphological
variations of L. pertusa skeletons have important implications not
only on their loadbearing capacity but also on their ability to
interact with the environment and the organisms they provide
shelter for (Caley and St John 1996; Paulay 1997; Cole et al., 2008).
Unlike their tropical counterparts, the difficulties in accessing CWC
colonies has restricted quantitative analysis of their morphological
variations to linear measurements of small coral fragments that
have been collected from their environment through ROVs for
example, or two-dimensional measurements extracted from video
data (Addamo et al, 2015; De Clippele et al., 2018; Gass and
Roberts, 2011; Quattrini et al., 2017; Sanna and Freiwald, 2021).
Recently, Sanna et al. (2023) demonstrated high structural
variations in the shape of dead L. pertusa skeletal fragments
collected across the mid-Norwegian continental shelf using X-ray
computed tomography (CT). However, their analysis was restricted
to volume compactness and surface complexity and did not include
the shape and size of individual coral branches. To identify critical
branch sizes that, in turn, allow us to formulate appropriate
surrogate models to capture the mechanical weakening and
structural impacts of ocean acidification on exposed CWCs, an
analysis of the 3D structural variations of coral skeletons across
scales is needed. More importantly, morphological differences in
dead and live skeletons need to be investigated as material loss due
to dissolution was observed in skeletons no longer covered by soft
tissue (i.e., dead coral) (Hennige et al., 2020).

A potential path towards upscaling the mechanical behavior
from the structural to reef length scale levels (Figure 1) relies on
homogenized FE models (Hollister et al., 1994; Dirrenberger et al.,
2019). However, homogenization procedures are only applicable in
the case of statistically uniform materials. Therefore, they rely on
the existence of a representative volume element (RVE), or at least a
close approximation of it, whose analysis yields the effective
material properties. As such, the effective mechanical properties
of coral colonies can be captured as mean values of apparent
properties of RVEs of the underlying skeletal branching structure
(Harrigan et al., 1988; Pfeiffer et al., 1997). These in silico models
require low computational resources and overcome previous
assumptions of a uniform homogeneous structure on tropical
corals (Madin and Connolly, 2006; Storlazzi et al., 2005).
However, whether local effective properties can be defined within
L. pertusa colonies to account for the heterogeneity of their
skeletons depends on the critical size of such RVE. Here, we
hypothesize that a critical size of a RVE for L. pertusa skeletal
structures exists, where for coral colonies larger than such critical
size, a homogenized FE approach can be used to investigate the risk
of CWC reef collapse. Conversely, for coral colonies smaller than
such critical size, the underlying skeletal structure needs to be
explicitly modelled. For both approaches, it is important to
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FIGURE 1

The material architecture of the branching cold-water coral (CWC) L. pertusa ranges from reef framework to aragonite crystal needles. L. pertusa
reefs (> 1 m) extend up to 33 m high and several kilometers in diameter (Mortensen et al.,, 2001; Roberts et al., 2009, 2006). These reefs are formed
by coral colonies (< 5 cm) that results from the concurrent growth of multiple coral branches at the structural level (Sanna and Freiwald, 2021),
where branches are an assembly of corallites arranged in a fractal-like fashion at the mesoscale (~ 1 cm). The basic structural unit of the corallite’s
skeletal wall (> 100 um) is made of aragonite crystals at the material level (~ 5 um) that protrude from rapid accretion deposits (RADs) forming

thickening bands between centers of calcifications (Von Euw et al., 2017).

determine the morphological variations of the underlying skeletal
structure as either branch density, arrangements, or morphological
features of the branches themselves must be represented.

In this study, we investigate the morphological variations of
dead and live L. pertusa skeletal fragments to advance in silico
mechanical models of their complex architecture. To achieve this
aim, we (i) investigate the critical size of L. pertusa skeletal structure
that allow us to use a mechanical homogenization approach to
investigate crumbling and collapse of whole reef structures; (ii)
analyze the morphology of L. pertusa skeletal fragments from coral
colonies that were alive when collected, and dead erect coral
framework to explain how corals occupy continuous space; and
(iii) characterize the branching morphology of L. pertusa skeletons
to describe size and shapes of individual corallites.

2 Materials and methods
2.1 Cold-water coral specimens

We investigated morphological variations of L. pertusa specimens
collected by Biischer et al. (2019) from two Norwegian reef sites (Sula
Reef Complex at 64°06.32’N, 8°07.1’E and 303 m depth, and Leksa
Reefat 63°36.46'N, 9°22.76’E, 157 m depth and 63°36.43’'N, 9°22.45’E,
152 m depth). The offshore Sula Reef location consisted of a relatively
stable habitat (e.g., constant temperature, pH, and currents), whereas
the inshore Leksa Reef location is subjected to strong tidal and
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currents, leading to a highly variable environment (Biischer et al,
2019; Biischer et al., 2024). Live coral colony fragments as well as dead
erect coral framework fragments were sampled from both sites to
provide a better representation of the environmental variability L.
pertusa corals are found.

To investigate the critical size of a RVE for CWC skeletal
structure, we examined two L. pertusa specimens collected from
Rockall Bank (57°54.9°N, 13°52.296’'W, unknown depth) and West
Shetland (60°43.188'N, 2°55.788°W, unknown depth), which
provided a larger representation of the skeletal structure (Table 1).

2.2 Image acquisition and processing

Computed tomography (CT) images from Biischer et al. (2019)
of dried coral fragments from Norwegian reefs were acquired with a
Toshiba Aquilion 64 clinical CT (120 kV, 600 mA, 0.351 mm in-
plane pixel size, 0.5 mm slice thickness, 0.3 mm slice spacing). Images
were reconstructed with a voxel size of 0.351x0.351x0.3 mm’. For the
large specimens, we performed CT with a Siemens Somatom clinical
CT (120 kV 80 mA, 0.6 mm slice thickness, 0.35 mm slice spacing).
The CT images had an in-plane pixel size of 0.662 mm for the Rockall
Bank and 0.445 mm for the West Shetland specimen.

We used Python 3.8 libraries SimpleITK and scikit-image for
image post processing. First, we resampled the images to an isotropic
voxel size of 0.351 mm? for the Norwegian specimens, 0.662 mm?> for
the Rockall Bank specimen, and 0.445 mm?® for the West of Shetland
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TABLE 1 Summary of size characteristics of the analyzed L.
pertusa specimens.

Volume Surface area
in cm> in cm?

Rockall 535.0 6495.5 1296.0
Bank (n=1) ’ i ’

West 440.8 4880.1 1214.0
Shetland (n=1) ’ : ’

Sula dead 1134 1461.9 135.5
framework (1n=6) [90.8, 121.8] [1138.1, 1586.3] [93.5, 150.4]
Leksa dead 145.5 1728.7 201.5
framework (n=13) [118.0, 160.2] [1482.0, 1902.7] [141.7, 226.9]
Sula live 114 164.7 223
corals (n=8) [6.9, 18.8] [93.9, 269.7] [13.6, 36.1]
Leksa live 332 485.5 68.1
corals (n=14) [12.6, 47.3] [213.2, 634.8] [22.7, 96.3]

Volume, surface area, and dry weight are reported as median [minimum, maximum)].

specimen. We reduced noise using a recursive Gaussian filter with a
filter width of o = 0.3. Thereafter, we segmented coral skeletons and
cavities individually. We segmented the coral skeletons using a
maximum entropy algorithm and we used a connected component
analysis to remove isolated regions that were not attached to the
skeleton (Figure 2A, D). We then segmented cavities within the
skeleton in three steps. First, we applied a 3D morphological closing
filter with a kernel radius of 6 pixels followed by a 3D binary dilation
with a kernel radius of two pixels to the segmented coral skeleton to
create a coarse mask contour image of the combined coral skeleton
and cavities. This mask was then refined using an iterative 3D
geodesic active contour (3D-GAC) algorithm (Ohs et al.,, 2021),
which allowed us to identify the external contour of the skeleton
(Figure 2B, E). We obtained a binary image containing only the
cavities by subtracting the binary coral skeleton from the contour
mask image. We labelled individual corallite calices using a
hierarchical watershed on the 3D distance map (Figure 2C, F).

To quantify the local size of both the coral skeleton and
corallites, we computed the 3D thickness maps (Hildebrand et al.,
1999) of the contour and cavities mask images, respectively
(Figure 2G, H). We assessed the local shape of the coral skeleton
by measuring the 3D ellipsoid factor maps (Doube, 2015) on the
contour mask image (Figure 2I). Finally, we computed the mean
spacing between skeletal branches (i.e., interbranch lengths) from
the 3D spacing maps of the contour images. Thickness (Br.Th),
spacing (Br.Sp), and ellipsoid factor (Br.Ef) were computed using
Bone] (Doube et al., 2010) plugin in Fiji (Schindelin et al., 2012).

2.3 Critical size of representative volume
element of cold-water corals

A RVE can be defined as the smallest volume element of a

heterogeneous structure for which a macroscopic constitutive
representation is sufficiently accurate to model the mean
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constitutive response (Drugan and Willis, 1996). Therefore, an
appropriate size of a RVE of the skeletal structure should be
found that consider: (i) a large enough number of heterogeneities
to be statistically representative of their structure; (ii) a size small
enough so that it can still be considered as a material point from a
macroscopic point of view. The RVE domain shall comply with the
Hill condition (Hill, 1963), which states the necessary and sufficient
conditions for equivalence between energetically and mechanically
defined properties of elastic materials:

(o:¢)=(0):(¢g) (1)

This means that the average of the product of the stress ¢ and
strain € tensors (microscale) equals the product of their averages.
Similar to trabecular bone (Pahr and Zysset, 2008), we do not strive
to find a RVE where (1) is exactly fulfilled but where we can obtain a
usable approximation.

Numerical techniques, such as the FE method, can be used to
approximate the critical size for a RVE by analyzing the size
dependence of the elastic symmetries and properties of the
structure (Kanit et al., 2003). These properties can be estimated
from the stiffness tensor, S, using a direct mechanics approach
through an optimization procedure where the best orthotropic
representation of S may be found (van Rietbergen et al, 1995).
Here, we approximate the critical size of a RVE for L. pertusa
skeletal structures by analyzing the convergence of the
orthotropy assumption.

2.3.1 Finite element modelling

We virtually extracted a cuboid volume element with edge
lengths of 1142 mm x 58.9 mm x 114.2 mm in X, y, and z
direction, respectively, which corresponded to the largest cuboid
fully occupied by the structure, from the CT reconstruction of the
Rockall Bank and West of Shetland L. pertusa specimens (Figure 3).
From this, we generated 64 cuboids for each specimen with edge
lengths varying from 114.5 mm to 34 mm in the x and z direction
while keeping the y direction constant. We created FE models by
direct conversion of image voxels into isotropic linear hexahedral
elements using previously implemented methods (Peiia Fernandez
et al,, 2022). Additionally, we generated a second type of model to
investigate larger skeleton sizes than the ones physically available
for scanning. We mirrored the original cuboid volume element
along x, y, and z axis (Figure 3C) which resulted in a 225 mm
cubical volume element. From this cuboid, we generated 217 cuboid
volume elements and associated FE models with edge lengths
varying from 225 mm to 45 mm.

All models were analyzed using kinematic uniform boundary
conditions, where six independent load cases (three uniform
longitudinal compressive strains and three uniform shear strains)
were applied (Pahr and Zysset, 2008). The tissue material is
assumed to be isotropic with a Young’s modulus of E = 65.7GPa
and Poisson’s ratio of v = 0.29 for all models (Wolfram et al., 2022).
The apparent stiffness tensor, S, of each model was derived from the
FE analysis via the apparent stresses and strains as in (Pahr and
Zysset, 2008).
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Segmentation of skeleton and cavities for an exemplary CWC specimen of the Leksa Reef. A representative CT cross-section and 3D render of the
specimen are shown. (A, D) Coral skeleton was segmented. (B, E) A mask contour image was created by filling the cavities within the skeleton. (C, F)
Cavities were segmented subtracting the skeleton from the masked contour and individually labelled. (G, H) The local diameter of the skeleton and
branch thickness were computed from the mask contour image and the cavities image. (I) The shape of the coral branches was computed using the
ellipsoid factor, where a value of -1 indicates a highly oblate shape and a value of 1 a highly prolate shape

2.3.2 Determination of orthotropic assumption
We calculated the orientation of the closest orthotropic stiffness
tensor by minimizing the objective function defined by:

Obj = %f with ij=1,..,6 @)

i i

Frontiers in Marine Science

Where c;; represents the nonorthotropic terms of the stiffness tensor
and e;; the orthotropic terms of the transformed stiffness tensor (van
Rietbergen et al,, 1995). The orientation of the transformed stiffness
tensor was obtained through a series of rotations, as defined by the Euler
angles, about the coordinate axes x, y, and z. The optimization approach
then yielded to the best possible orthotropic representation of the
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Mirrored

Volume element

volume element

FIGURE 3

Representative volume element of large cold-water coral specimens from Rockall Bank and West Shetland. 3D renders of (A) Rockall Bank and (D)
West Shetland cold-water coral specimens used for finite element analysis. (B), (E) 2D cross-sections (top) and 3D volume elements (bottom) with
114.2 mm edge length in x and z axis and (C) mirrored model with 225 mm edge length.

ST 'We defined an orthotropic approximation of ST

stiffness tensor,
by setting the nonorthotropic components to zero. The accuracy of the
orthotropic assumption was quantified using the error of the

orthotropic approximation (Pahr and Zysset, 2008), defined as:

(SOPT*SORT) . (SUPT*SORT)
SOPT zjsoPT

Err = 3

We analyzed the convergence of the error with respect to the
size of the volume elements expressed as edge length of the volume
element and number of interbranch lengths, i.e., edge length over

Frontiers in Marine Science

the mean spacing between skeletal branches, Br.Sp. Both ST and

SORT were checked to confirm they were positive definite.

2.4 Morphology of L. pertusa
colony fragments

We introduce six shape variables to quantify the morphology of the
L. pertusa skeletal fragments at the colony level. We calculated these
based on the segmented coral skeleton images (Figures 2A, D) in
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Python 3.8.5. We quantified shape through the sphericity and sparsity
(capturing volume compactness) and the surface area to volume ratio
and fractal dimension (capturing surface complexity) as:

i. Sphericity (S,;) is an invariant measurement of the compactness
of an object’s volume. S, is defined as the ratio between the surface
area of a sphere with the same skeletal volume (V) as the coral colony
and the surface area of the coral skeleton (SA).

1 2
_ m3(6Vy)3
SPh T sA

4

ii. Sparsity (S) is an invariant measurement of the degree to
which there is space between different regions of the coral structure.
S is defined as the ratio between the volume of an ellipsoid (V)
fitting the coral colony and the skeletal volume (V) of the coral.

Ve
S=+ (5)

iii. Surface area to volume ratio (SA : Vol) refers to the amount
of surface area (SA) per unit volume of the skeletal volume (Vs) of
the coral colony.

SA: Vol =3 (6)

iv. Fractal dimension (Fp) captures how the surface of the coral
skeletal structure fills space, and it is an estimate of the spatial
complexity. Fp is computed as the slope of the number of boxes at a
size s that contains part of the coral skeletal structure (N¥) and the
size of the boxes (s).

_ Alog(N)
FD ~ Alog(s)

™

2.5 Morphology of L. pertusa
skeletal branches

To quantify morphological variations of the coral specimens at
the branch level (i.e., size and shape of the individual and/or group
of corallites), we first performed a skeletonization (Kruszynski et al.,
2007) of the mask image contour (Figures 3B, E) via a 3D thinning

A B
124 °

P

)
0. # é$*lﬁ 9., b

10.3389/fmars.2024.1456505

algorithm and we converted the skeletonized image into a graph
object (Supplementary Figure S1) using the NetworkX package
(Hagberg et al., 2008).

Initially, we assigned a 3D spatial coordinate to each node based
on the image coordinates and we then inspected the resulting
graphs and manually selected the root (i.e., base) of each skeleton
based on the morphology, from where a newly oriented graph was
created via a depth-first-search algorithm (Cormen et al., 2001). We
added the mean coral branch thickness (Br.Th), length (Br.Len),
area (Br.Ar), volume (Br.Vol), taper rate (Br.Tr), and ellipsoid
factor (Br.Ef) as nodal attributes to account for the size and shape
of each individual branch.

We then introduced four topological descriptors that represent
morphological features of the branching coral structure (Khalil
et al.,, 2022). These descriptors associate a function to a given coral
skeleton whose independent variable is either the path, &, or radial,
r, distance from the skeletal root (Supplementary Figure S1D).

i. Branching pattern (Bp) quantifies the skeletal complexity of
the coral specimens and the distribution of the branches. Bp is
related to skeletal growth and spatial arrangement and it can be
defined as a function of the radial distance from the root, r, as:

Bp(r;) = #{degnl > 3}1’,- <r}- #{deg,,, = 1|ri <r} (8)

Where # represents the cardinality of each set and r; the radial
distance of i-th node, n;, to the root.

ii. Terminal branch index (Tj;) counts the number of end
points that can be reached from a given node. Ty, quantifies the
hierarchical branching growth of CWC skeletons and it is defined as
a function of the path distance, 8, from the root along the branches
as:

Tp(6;) = #{dEgni = 1|5i > 6} )

Where §; represents the path distance from the i-th node to
the root.

iii. Tortuosity (7) is defined as the ratio of the path distance, J,
by the Euclidean distance, &, between a node and the root. 7 is
related to the branch growth mechanism, and it is defined as a

124 e Rockall Bank
e West Shetland
e Mirrored
8-
”l pite
N 'y

5 10 15 20
Edge length in cm

FIGURE 4

123 456 7 8 9
Edge length in cm / Br.Sp

Error of orthotropic approximation. Boxplots of the errors for the analyzed volume elements of the Rockall Bank, West Shetland and mirrored
models as a function of the (A) edge length of the cuboid volume elements and (B) number of interbranch spacings, i.e., edge length over mean

branch spacing (Br.Sp).
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function of the radial distance from the root, r, as:

() =% (10)

8!

Where ¢; represents the Euclidean distance from the i-th node
to the root.

iv. Volume distribution (V,) gives a measure of how the
volumetric mass of the branches are distributed relative to the
root. For a given coral skeleton, we consider all its nodes as cloud
points in 3D space, n;(x;, y;, 2;), each of them carrying a weight equal
to the volume of the branch, v;. This volume affects the space
around them such that each node contributes to a field, V;, which is
normalized to have length v; and which is of the form:

Vi, y,2) = v, B e 25 (11)

sl

By superimposition, the node configuration of the skeleton
gives rise to a vector field,V, whose magnitude is used as V,;, and
it is defined as a function of the radial distance to the root, r, as:

2 2 2
wu»=(2wx;%> <wa;éﬁ (2”x;%> (12)

To reduce the dimensionality of the proposed descriptors as well as
the coral branch attributes (i.e., Br.Th, Br.Len, Br.Ar, Br.Vol, Br.Tr and
Br.Ef) we combined those measurements into a vector, Vi, by

considering the area under the curve defined by each descriptor, ¢, as:

1
am=£¢mﬂ (13)

Where x is the normalized path, &;, or radial, r;, distance from the
skeletal root. The corresponding vector for each coral skeleton, Vi, is:

Ve = <a(Bp),a(TBI),a(Vd),a(Br. Vol), a(Br . Ar), a(Br . Len), >
a(Br. Tr),a(Br . Th), a(Br . Ef), a(7)

This vectorization allows us to optimize classification of the data
(Khalil et al., 2022).

2.6 Analysis of morphological parameters

We compared morphological differences between dead and live
skeletal fragments as well as Sula and Leksa locations at both colony
and branch level. For each specimen a distribution of branch
morphological parameter was obtained and statistical information
calculated. Thereafter, statistical analysis was based on the median
values of such parameters.

Statistical analyses of morphological parameters coral skeletons
were conducted in RStudio (Version 1.1.456). We used quantile-
quantile plots and Shapiro-Wilk post-hoc tests to test normal
distribution of data. If normality was given, we compared groups
using Student’s t-tests. Where data were non-normal, we used
Wilcoxon rank sum tests. We assumed a significance level of p = 0.05.

We used principal component analysis (PCA) to visualize
patterns of morphological variations at the colony and branch
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level. We standardized variables with a mean of zero and unit
variance to reduce the influence of variable scale on the projection.
We used score plots to visualize the projection of each coral
specimen onto the span of the two first principal components and
how each group relates to each other. We used confidence ellipsoids
around the main points of dead/live classes to illustrate data points
lying within the multivariate distributions. A 95% confidence level
defined the size of the ellipsoids, whereas the shape was determined
by the covariance matrix. Finally, we investigated the relationships
between the first two principal components and the original
morphological variables using loading plots.

3 Results

3.1 Critical size of representative volume
element L. pertusa

The error of the orthotropic approximation of the stiffness
tensor decreases with increasing specimen size (Figure 4A). The
error decreased significantly after 6 cm edge length and converged
to less than 3% at ~9 cm edge length. Considering that the mean
Br.Sp was 2.57 cm for the Rockall Bank coral specimen and 1.75 cm
for the West Shetland specimen, the error converged at four to five
Br.Sp (Figure 4B). The size of the volume element influenced the
Young’s and shear modulus but had minimal influence in the
Poisson’s ratio (Supplementary Figure S2). Overall, the Rockall
Bank specimen displayed lower elastic and shear modulus
compared to the West Shetland specimen as a result of its lower
skeletal volume fraction, ' /v, (Supplementary Figure S3). The
underlaying structure had little influence on the error of the
orthotropic approximation, with Err < 3% observed for Vs /.
ranging between 5% to 20%, and a wide range of branching and
terminal nodes (Supplementary Figure S3). Similar convergence
was observed for the mirrored models (Err < 3% at ~9 cm edge
length, ~4 Br.Sp). The imposed orthotropic structure in those
models resulted in Err < 1.5% and lower standard deviation for
extracted volume elements >13 cm. Therefore, a critical size of ~13
cm (five to seven Br.Sp), should provide sufficiently averaged
continuum quantities, thus, allowing for a mechanical
homogenization approach for L. pertusa skeletal structures.

3.2 Morphology of L. pertusa
colony fragments

Live coral fragments exhibited significantly greater SA: Vol
(Figure 5A), while dead fragments displayed a less compact
structure (i.e., lower sphericity and sparsity) (Figures 5C, D). Both
sphericity and sparsity were significantly larger for live Sula
fragments (Figures 5C, D). The complexity of the dead coral
framework was demonstrated through the higher fractal
dimension (Figure 5B). Live coral specimens showed larger
variability of the shape parameters and greater differences
between specimens from Leksa and Sula reef.
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3.3 Morphology of L. pertusa
skeletal branches

Live corals contained significantly larger branches compared to
the dead coral fragments (Figure 6B), yet median branch areas and
volume were not significantly different (Figures 6A, D). Dead coral
framework branches were significantly thicker than those from live
specimens (Figure 6E). The larger values of the ellipsoid factor and
taper rate for live corals indicate a more prolate shape and wider
opening of their branches (Figures 6C, F). Median branch length
and thickness of live corals from Leksa reef were significantly lower
than those from Sula reef (Figures 6B, E). Overall, skeletal branch
morphology was highly variable within each specimen (Figure 7;
Supplementary Tables S1-53), as demonstrated when pooling all
analyzed branches (Supplementary Figure S4).

Skeletonization of the coral structure demonstrated no
significant differences in the number of branches and nodes per
unit of skeletal volume between live and dead skeletal fragments
(Figures 6G-I). Live fragments from Leksa reef had significantly
more branches and branching nodes per unit of skeletal volume
compared to those specimens from Sula Reef, however, the number
of terminal nodes per unit of skeletal volume was not
significantly different.

3.4 Topological descriptors

Bp decreased with increasing radial distance (Figure 8A). Such a
decrease was faster for the dead fragments. This illustrates that for
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the live specimens, newer polyps appear further from the initial
base. Similarly, the distribution of Tp; (Figure 8B) showed a faster
decrease for live coral fragments, that is, the path to reach the end
points of the structure is more direct than for the dead fragments.
The higher complexity of the skeletal structure of dead fragments
results in increased 7 (Figure 8C), as well as a larger V;; (Figure 8D),
which decreased for the more distant branches, as a consequence of
the dense packing of the structure (Figure 5).

3.5 Principal component analysis

At the colony fragment length scale, the first principal component
(PC1) of the PCA explained 47.3% of variation (Figures 9A, B). The
projection of live coral fragments from Leksa reef in the score plots was
largely aligned in the direction of PC1 (Figure 9A), which was primarily
contributed by the branching descriptors (i.e., number of branches,
branching nodes, and terminal nodes per unit of volume) (Figure 9B).
The second principal component (PC2) explained 34.5% of variation,
with a major contribution of the fractal dimension and sparsity. A clear
positive correlation between the branching parameters, as well as a
negative correlation between fractal dimension and sparsity, sphericity
and SA: Vol. SA: Vol had the lowest contribution on both PCs. At the
skeletal branch level, PC1 explained 76.1% of the variation, whereas the
PC2 explained only 11.1% of the variation (Figures 9C, D). Bp and
Br.Tr were positively correlated and largely aligned with PCI, while
showing a negative correlation with Br.Th, Br.Len, Br.Ar, Tp; and 7.
The confidence ellipsoids demonstrate that dead specimens showed the
lowest variance of the morphometric parameters at the colony
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Morphological parameters of L. pertusa coral colonies. Boxplots of (A) surface area to volume ratio (SA: Vol), (B) fractal dimension, (C) sphericity and
(D) sparsity for dead and live coral fragments are shown in grey and pink colors, respectively. ‘@ and ‘A’ symbols correspond to specimens from
Leksa and Sula reef, respectively. Significance levels between dead and live fragments are indicated at the top of each boxplot and those between
Leksa and Sula at the bottom. ns: non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Morphological parameters of L. pertusa coral branches. Boxplots of (A) median branch volume (Br.Vol), (B) area (Br.Ar), (C) length (Br.Len), (D)
thickness (Br.Th), (E) ellipsoid factor (Br.Ef), (F) taper rate (Br.Tr), (G) number of branches per unit volume, (H) terminal nodes per unit volume, and (I)
branching nodes per unit volume for dead and live coral fragments are shown in grey and pink colors, respectively. ‘'@ and ‘A’ symbols correspond
to specimensfrom Leksa and Sula reef, respectively. Significance levels between dead and live fragments are indicated at the top of each boxplot
and those between Leksa and Sula at the bottom. ns: non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Local morphometry of L. pertusa skeletal branches. 3D graphical representation of branch thickness (Br.Th), length (Br.Len), and area (Br.Ar) of the
individual branches for three representative L. pertusa specimens with increasing levels of complexity; (A) Live coral fragment from Leksa reef,
(B) Live coral fragment from Sula reef, and (C) dead coral fragment from Sula reef. Please note the fusion of multiple coral origins in the dead coral

fragment (C). "X’ symbols correspond to the defined skeletal root (base).

fragment level (Figure 9A), but highest variance at the skeletal branch
level (Figure 9C).

4 Discussion

4.1 Critical size for Lophelia
pertusa skeletons

We performed a preliminary investigation on the critical size of L.
pertusa skeletal structure that allows us to use a mechanical
homogenization approach to study the mechanical vulnerability of
CWCs to ocean acidification. We built upon concepts developed for
porous structures such as trabecular bone, where similar challenges are
present (e.g,, trabecular thickness and connectivity depending on age/
disease and their influence on bone fracture). We showed that the
orthotropic approximation of the stiffness tensor for the coral skeletal
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structure converges at ~13 cm edge length, which reflects the RVE size
for the estimation of macroscopic properties of L. pertusa skeletons at
the structural level. This critical size corresponds to five to seven times
the mean spacing between skeletal branches (i.e., interbranch length)
and over 20 times the mean thickness of the branches. Thus, averaging
the mechanical properties over less than five interbranch lengths does
not provide sufficient continuum quantities, and the homogenization
approach must be replaced by statistical models of the underlaying
structure. Similar results are seen in other material architectures, such as
trabecular bone, in which average mechanical properties are sufficient
when considering volume elements over five intertrabecular lengths
(Harrigan et al., 1988) or carbon reinforce polymers, where RVEs larger
than 15-16 times the heterogeneity size (i.e., fiber thickness) fulfil the
Hill criteria (Khisaeva and Ostoja-Starzewski, 2006; Trias et al., 2006).
Here, we limited our investigation to two specimens from different
locations due to the unavailability of 3D data on large coral colonies.
While this low number of specimens is likely insufficient to provide a
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Topological descriptors for L. pertusa fragments. (A) Branching pattern (Bp), (B) terminal branch index (Tg), (C) tortuosity (z), and (D) volume
distribution (V,) as a function of the radial, r, or path distance, §, from the skeletal root. Solid lines indicate the mean values, while shaded areas
show the mean + standard deviation for dead and live coral fragments in grey and pink colors, respectively. ‘'@ and ‘A’ symbols correspond to

mean values for specimens from Leksa and Sula reef, respectively.

representation of the elastic properties of L. pertusa skeletal structure
across many locations, it illustrates the variability which can be found in
skeletal structure from specimens from relatively close sites. Indeed, we
observe that the lower skeletal density of the Rockall Bank specimen led
to lower elastic and shear modulus compared to the West Shetland
specimen, yet the error of the orthotropic assumption was not
dependent on such skeletal density or the branch distribution
(Supplementary Figure S3). While larger number of specimens will be
needed to derive the relationships between the effective elastic properties
at the macroscale and underlying structure, our convergence study
demonstrates that the determined critical sizes are robust and applicable
to other coral skeletal fragments. In addition to this, we demonstrate the
applicability of the methodology so that our results can be easily
confirmed as larger samples become accessible.

4.2 Morphological variability of L. pertusa
skeletal structure

The structural complexity of L. pertusa reefs makes it difficult to
standardize the sampling, which resulted in a large range of specimen
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sizes and aspect ratios (Table 1; Supplementary Figure S5), with dead
coral fragments bigger than live ones. For this reason, a comparison
of size morphometric variables of the colonies, such as volume or
area, is not legitimate. Therefore, we used four shape variables to
describe how L. pertusa colonies occupy the space. Variations in
volume compactness capture a gradient from dead to live coral
specimens (Figure 9). This is indicative of the open branching
structure of live colonies, which is optimized for food particle
capture, opposite to the dense structure of the dead framework
resulting from the packing and fusion of several branches as they
thicken when aging. Moreover, the ability for building reef
frameworks increases for colonies with high compactness (Rasser
and Riegl, 2002). However, compactness constrained surface
complexity, as previously shown by Zawada et al. (2019b). Thus,
live colonies with higher levels of compactness tended to be smooth
(i.e., higher SA: Vol and lower fractal dimension). The increased SA:
Vol of live colonies also implies increased exposure to the
environment. Indeed, variation in surface complexity relates to
competition and resource use (Zawada et al., 2019a), where
colonies with higher structural complexity have less access to those
resources (e.g., nutrients), but can have more polyps packed within a
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(C, D) skeletal branch level. Points in (A, C) represent the projection of the analyzed dead and live coral fragments in grey and pink color,
respectively. ‘'@ and ‘A’ symbols in (A, C) correspond to specimens from Leksa and Sula reef, respectively. Confidence ellipsoids centered at the
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ratio; Fp, fractal dimension; Br/Vol, number of branches; B, /Vol, branching nodes; E, /Vol, ending nodes; Bp, branching pattern; Tg, terminal branch
index; V4, volume distribution; 7, tortuosity; Br. Vol, branch volume; Br.Ar, branch area; Br.Len, branch length; Br.Th, branch thickness; Br . Ef,

branch ellipsoid factor; Br. Tr: branch taper rate.

given space (Wangpraseurt et al,, 2012). From a mechanical
perspective, the highly packed structure of the dead framework
serves to support living colonies by sustaining external loads.

When comparing these shape variables between specimens from
Leksa and Sula Reef we observed higher surface complexity (i.e., fractal
dimension) in dead and live fragments from Leksa Reef, which agrees
with data from Sanna et al. (2023) in dead skeletal framework of L.
pertusa. However, in contrast to Sanna et al. (2023), we obtained higher
compactness values (ie., sphericity and sparsity) in colony fragments
from Sula Reef. These differences were especially significant for live
coral fragments (Figure 6), and may be driven by current flows (Sanna
et al, 2023). This would also explain the higher diversity pattern
observed by Mortensen and Fossa (2006) in mid-Norwegian inshore
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reefs (including Leksa) compared to reefs at Sula, as increased surface
complexity and reduced compactness creates niches for other
associated organisms (Zawada et al., 2019b).

We quantified the morphology of L. pertusa skeletal branches
based on a skeletonization of 3D CT images, as first proposed by
Kruszynski et al. (2007) for the tropical scleractinian coral Madracis
mirabilis. While the authors focused on branch diameters and spacings,
which are controlled by a combination of hydrodynamics and genetics
(Sebens et al., 1997), we extended the analysis to other parameters that
may influence the load-bearing capacity of L. pertusa reefs, such as wall
thickness, branch length, cross-sectional area, and volume. Some of
these parameters (e.g., thickness and length) have only been quantified
using linear measurements from small coral fragments (Gass and
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Roberts, 2011; Sanna and Freiwald, 2021), consequently, restricting the
analysis to a small number of corallites. However, L. pertusa colonies
are made up of hundreds to thousands of corallites. Thus, the method
we present here provides an efficient tool to assess intraspecific
morphological variations in coral skeletal branches. In line with Gass
and Roberts (2011) and Sanna and Freiwald (2021), we showed a large
variation in size and shape for the analyzed branches (Supplementary
Figure S4). These local architectural variations both within the same
coral fragment and in between fragments may reflect an adaptive
response of L. pertusa to environmental stressors, where the size and
shape of branches adapt to minimize mechanical stresses on the coral
skeletons while optimizing food capture. Live fragments from the Sula
Reef Complex displayed significantly shorter branches, yet more
branches per unit of volume. This confirms findings from Biischer
et al. (2019) who hypothesized such difference may reflect the more
stable environment in this offshore location, which allows L. pertusa
skeletal branches to grow longer without risk of fracture. An aspect that
was unresolved here was the growth time before death of the dead
skeletal material, and hence time for the older polyps to radially thicken
while alive. Interestingly, dead skeletal fragments from Leksa reef
displayed significantly higher median thickness compared to
fragments from Sula reef, which may be due to higher bioerosion
rates found in the Sula reef (Biischer et al., 2019).

An additional unknown variable that remains a challenge for live
coral research is the ability to store and transfer nutrients within and
between individual coral polyps (Georgoulas et al., 2023). We assume
that energetic reserves are maintained within each coral polyp unit -
while this is assured if connective tissue is lost between polyps, where
connective tissue is retained, are energetic reserves partly mobile? To
compound this challenging point further, as coral branches come into
contact, there is fusion of tissue and skeletal material (Figure 8C) -
complete with regards to individual and closely genetically related
(sibling) colonies (Hennige et al., 2014). From a mechanical
perspective, the fusion of skeletal branches likely contributes to the
stiffness of the coral structure. Indeed, other studies have shown that
increased connectivity of network-like structures such as fibrous
networks or trabecular bone led to higher elastic modulus (Davoodi
Kermani et al, 2021; Maquer et al, 2015). While our methodological
approach does not allow us to determine the occurrence of such
fusions, we evaluated the density of branching nodes as a surrogate of
connectivity (Figure 6I). Those branching nodes account not only for
the fused branches but also the “split” of branches as they grow.

The measured mean taper rate (i.e., difference in diameter between
top and bottom of the corallite) and areas aligns well with previous
studies (Farber et al, 2016; Gass and Roberts, 2011; Sanna and
Freiwald, 2021), highlighting that our CT image-based approach is
able to capture slight variations of branch morphology. However, we
reported thicker wall values, which may be explained by differences in
the employed methodology, where we consider the mean thickness of
the entire branch based on the CT data as opposite to the linear
measurement of the thinner wall at the top of the corallites in Gass and
Roberts, 2011 and Sanna and Freiwald, 2021. Accurate measurements
of the wall thickness in CWC skeletons is important as ocean
acidification induces dissolution of the skeletal wall material,
decreasing the load bearing capacity of the entire structure (Hennige
et al., 2020, 2015; Wolfram et al., 2022).
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In addition to the skeletal branch size and shape, we analyzed four
topological descriptors that describe the branching characteristics of L.
pertusa structures and their distribution in the 3D space. These
descriptors confirmed the higher complexity of the dead framework,
as seen in the increased tortuosity and volume distribution, which may
be a consequence of dense packing of several colony fragments.
Although the increased volume distributions (i.e., higher mass
density) may represent an advantage of the dead framework to
support living colonies under mechanical stressors, the bare dead
coral skeleton, which lacks protection by organic tissue or defense
mechanisms (Beuck et al., 2010), is more vulnerable to dissolution
(Hennige et al,, 2020) and bioerosion (Biischer et al,, 2019; Wisshak
et al,, 2012), and consequently, mechanical damage (Vad et al,, 2017).
Therefore, degradation of skeletal branches in the dead framework may
compromise the stability of the entire colony, leading to a rapid
collapse and, consequently, loss of biodiversity support (Hennige
et al, 2020). The environmental conditions of the analyzed location
are reflected in these descriptors, where lower complexity (i.e.,
branching pattern, tortuosity) is seen for live fragments from the
Sula Reef complex (relatively stable currents) compared to fragments
from Leksa. Similarly, the higher volume distribution of dead fragments
in Leksa reflect the higher compactness of the inshore corals to
withstand stronger currents.

Our principal component analysis did not point to clear branching
pattern-specific differences in branch morphology between dead and
live skeletal fragments (Figure 9). This suggests that we cannot simply
skip morphological features when developing in silico mechanical
models. Nevertheless, reduced morphological variation was observed
for live coral specimens compared to dead framework at the skeletal
branch level.

4.3 Towards reef-scale modelling of
cold-water corals

The investigation of timescales for reef crumbling relies on the
development of computational tools that are able to provide
accurate and efficient predictions of the mechanical behavior
based on the time L. pertusa coral reefs are exposed to acidified
waters (Hennige et al., 2020; Wolfram et al., 2022). These tools are
currently non-existent, partially due to the lack of information on
the structure-function relationships of corals at the structural level
(Figure 1). Here, we showed that homogenized FE models of coral
colonies may be used to estimate the risk of crumbling of coral reefs
when these surpass the identified critical size of five interbranch
lengths. Similarly to previous studies in other multiscale structures
such as bone (Cowin, 1986, 1985; Pahr and Zysset, 2009), the
stiffness and strength of the individual finite elements can account
for the skeletal volume fraction and architectural information
(Figure 10A). This approach outperforms current models that
considered a uniform homogeneous coral skeletal structure
(Madin and Connolly, 2006; Storlazzi et al., 2005), thus, missing
the influence of L. pertusa branching structure and composition
(i.e., live or dead skeleton) on the mechanical response. However,
CWC reefs comprise hundreds to thousands of colonies of varying
sizes and shapes which are mostly related to variations in the
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FIGURE 10

Area in mm?

20 mm
E— U
0

30

Realms of in silico models for L. pertusa skeletal structure. (A) Large coral colonies (> 13 cm, 5 interbranch lengths or 800 branches) may be
modelled using homogenized finite element models based on density (i.e., skeletal volume fraction, Vs/V+) and/or fabric information. (B) The
morphology of the skeletal branches needs to be considered modelling smaller coral colonies, using, for example, nonlinear beams.

substrate and local hydrodynamics (De Clippele et al, 2018),
meaning they are subjected to diverse loading conditions. As the
size of some of those colonies may be smaller than the critical size
we determined (e.g. on Tisler Reef (Norway) almost 60% of colonies
have sizes smaller than 30 cm (De Clippele et al., 2018)),
homogenized FE models would be unsuitable and must be
replaced by explicit models of the branching structure of
L. pertusa skeletons.

The 3D graph representation we presented here may serve to
define in silico mechanical models of these smaller colonies
consisting of nonlinear beams (Figure 10B). Beam FE models
have demonstrated to predict the mechanical properties of
complex structures in an accurate and computational efficient
manner (Pothuaud et al., 2004; Stauber et al., 2004). Since at
small length scales L. pertusa skeletal structure is not random, the
properties of each beam (i.e., skeletal branch) may account for the
statistical information of the morphological analysis we introduce
here. Future analyses would need to validate the use of such
specimen-specific beam FE models against image-based FE
models to confirm its applicability for predictions of the risk of
crumbling of L. pertusa skeletal structures.

The expected reduced computational cost of the models we
identified here can ease the translation from the mechanical
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response at the structural level to entire reefs, facilitating in silico
models at the reef scale to investigate the mechanical vulnerability
of CWC reefs to ocean acidification. Most importantly, we could
model the increased dissolution in the dead framework observed
from increasing aragonite concentration (Hennige et al., 2020) as a
decrease in the skeletal volume fraction in our homogenized models
or a reduced branch thickness in our beam models.

Our study points to some important gaps in knowledge.
Although we provide a detailed morphological evaluation of a
large number of L. pertusa skeletal fragments, these only
represent a fraction of the colony from two unique sites in
Norway. While these two locations represent different
environmental conditions, future analysis should focus on the
characterization of morphological variations of skeletal fragments
collected from other regions to better understand the impact of local
environmental stressors on L. pertusa structure. To date,
monitoring reef corals largely relies on 2D measurements of
colony size or colony cover (De Clippele et al.,, 2018; Vad et al,
2017), thus lacking high-resolution volumetric information. To
investigate the risk of crumbling of larger colonies we need to
investigate new techniques that allow us to infer 3D volumetric
information from planar data (House et al., 2018). The most crucial
gap is potentially the lack of information on time estimates for
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morphological changes due to exposure to ocean acidification and
consequent increasing rates of bioerosion (Biischer et al., 2022).
This will require extension of previous mesocosm experiments
(Hennige et al, 2020) to different acidification conditions over
long time-scales and complementary in situ measurements of
seawater chemistry to establish an exposure trajectory of
aragonite concentrations and the relationships with ocean
acidification induced dissolution. This data would allow us to use
the proposed surrogate models as predictive tools to investigate
timescales of loadbearing capacity changes as well as the impact of
those changes based on the time CWCs are exposed to acidified
waters, and if combined with models detailing where corals of the
future may be (Cordes et al., 2023), we can also start to assess the
habitat quality of these reefs into the future.

5 Conclusion

We here investigated the critical size of a representative volume
element of L. pertusa skeletons based on morphological variations to
evaluate mechanical surrogate models of their skeletal structure. We
proposed a size limit of five interbranch lengths that allows the
determination of the type of model to be used based on the
characteristic material architecture of coral skeletons. Our
morphological analyses point to large variations between L. pertusa
skeletal fragments and branches, as well as dead and live skeletal
structures which are driven by growth and adaptation to
environmental stressors. Spatially large colonies may be modelled
using homogenized FE models by averaging the mechanical
properties over five interbranch lengths, whereas small colonies may
be modelled using specimen-specific beam-like FE models. Both
approaches may allow us to efficiently scale up the analysis to entire
reef systems to investigate reef crumbling due to the time they are
exposed to acidified waters. Ultimately, this will support future
conservation and management efforts by indicating which marine
ecosystems are at greatest risk, when they will be at risk, and how
much of an impact this will have on the biodiversity they support.
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Hybrid machine learning
algorithms accurately predict
marine ecological communities
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Simone Brito de Jesus?, Thais Navajas Corbisier*
and Gustavo Fonseca®
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Federal de Sdo Paulo, Santos, Brazil

Predicting ecological communities is highly challenging but necessary to
establish effective conservation and monitoring programs. This study aims to
predict the spatial distribution of nematode associations from 25 m to 2500 m
water depth over an area of 350,000 km? and understand the major
oceanographic processes influencing them. The study considered data from
245 nematode genera and 44 environmental parameters from 100 stations. Data
was analyzed by means of a hybrid machine learning (ML) approach, which
combines unsupervised and supervised methods. The unsupervised phase
detected that the nematodes were geographically structured in six
associations, each with representative genera. In the supervised stage, these
associations were modeled as a function of the environmental features by five
supervised algorithms (Support Vector Machine, Random Forest, k-Nearest
Neighbors, Naive Bayes, and Stochastic Gradient Boosting), using 80% of the
samples for training, leaving the remaining for testing. Among them, the random
forest was the best model with an accuracy of 86.4% in the test portion. The
Random Forest (RF) model recognized 8 environmental features as significant in
predicting the associations. Depth, the concentration of dissolved oxygen in the
water near the bottom, the quality and quantity of phytodetritus, the proportion
of coarse sand and carbonate, the sediment skewness, pH, and redox potential
were the most important features structuring them. The inference of each
association across the whole study area was based on the modeling results of
the 8 significant environmental features. This model still correctly classified 90%
of test data. Such findings demonstrated that it is possible to infer the spatial
distribution of the nematode associations using only a small set of environmental
features. The recommendation is thus to permanently monitor these
environmental variables and run the ML models. Implementing ML approaches
in monitoring programs of benthic systems will increase our prediction capacity,
reduce monitoring costs, and, ultimately, support the conservation of
marine systems.

KEYWORDS

nematodes, marine environment, artificial intelligence, supervised learning,
unsupervised learning, baseline, environmental monitoring
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1 Introduction

Monitoring and predicting the state of marine ecosystems are
essential for baseline studies, management actions, and
conservation programs (Nichols and Williams, 2006). Assessing
the state of ecosystems requires knowing the biological
communities, their variability in space and time, and their
response to environmental changes. Nevertheless, modeling the
species composition of communities is still a challenge. It has been
traditionally done based on classical statistical methods, such as
canonical and redundancy analysis, which frequently return a low
proportion of the explained variance (Makarenkov and Legendre,
2002; Vieira et al., 2019) and whose predictions are rarely explored.
Part of this limitation is related to model assumptions and the
nature of the data, such as a large number of zeros, unbalanced
designs, multi-normal distribution, and missing data (Xu and
Jackson, 2019). Machine learning (ML) modeling handles some of
these limitations (Olden et al., 2008; Fonseca and Vieira, 2023).
Furthermore, the principle of ML is to evaluate the model’s
predictive performance, a desirable aspect in the context of
monitoring programs to anticipate undesirable environmental
changes (Schuwirth et al., 2019).

There are various ML techniques with different degrees of
learning complexity (Joshi, 2020). Each approach must be used
considering the nature of the data and the problem itself (Zhou,
2012; Stupariu et al., 2022). In some specific tasks, to enhance model
performance, a combination of complementary ML algorithms is
performed in a sequence of analytical steps, commonly termed
hybrid models (Ippolito et al., 2020; Bastille-Rousseau and
Wittemyer, 2021; Kruk et al., 2022; He et al, 2023). A common
approach among them is to reduce the dimensionality of a
multivariate dataset based on an unsupervised learning method
and then use the obtained groups as the response variable in a
supervised learning method (Krueger et al,, 2020; Carcillo et al,
2021; Pinto et al,, 2021). In community ecology, such a two-phase
hybrid approach could be useful. The first phase would consist of
detecting distinct taxonomic groups, a common practice among
ecologists (Clarke et al., 2014), followed by a supervised learning
phase where the environmental data are used to predict the
occurrence of the groups.

For oceanographic studies, ML holds promise (Rubbens et al.,
2023). Environmental data like bathymetry, temperature, and
surface primary productivity are obtained in high spatial-
temporal resolution with sonars and satellite images, while
biodiversity data are sparse and logistically challenging to obtain
(Balmford and Gaston, 1999; Heink and Kowarik, 2010),
particularly oftshore. Accurate inferences of biodiversity based on
environmental data are crucial for marine ecosystem monitoring
and conservation (Guisan and Zimmermann, 2000; Guisan and
Thuiller, 2005; Holon et al., 2018). One challenge of modeling
marine biodiversity is that oceanographic processes are dynamic,
differ in spatial extent, and interact with each other (Sonnewald
etal, 2021). As such, while accurate predictions are needed, it is also
important to extract the model features and the interactions within
environmental data (Murdoch et al.,, 2019). It is based on the
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response of biological data and interactions between
environmental variables that the major oceanographic processes
can be understood and monitored.

The objective of this study is to predict, through a hybrid model,
the spatial distribution of nematode associations from 25 m to 2500
m water depth over an area of approximately 350,000 km? along the
Brazilian continental margin and understand the major
oceanographic processes influencing them. Free-living marine
nematodes are microscopic organisms mostly smaller than 0.5
mm that belong to the meiofauna (Giere, 2009). In marine
sediments, nematodes are usually the most abundant component
of the meiofauna. They are known as one of the best ecological
indicators due to their ubiquitous presence in diverse ecosystems,
with high abundance, diversity, and sensitivity to multiple
environmental changes (Ridall and Ingels, 2021).

2 Methods
2.1 Study area and sampling design

The Santos Basin (SB) is located in the southeastern region of
the Brazilian margin between the Campos Basin and Pelotas Basin.
It is limited to the north by Cabo Frio High (22°S) and to the south
by Florianopolis High (28.5°S). The basin occupies an area of
approximately 350,000 km?, bordering four Brazilian states along
271 km of the southeast coast and reaching down to 3000 m water
depth in the Sdo Paulo Plateau. The continental shelf is narrower
(70 km) in the Cabo Frio region (Rio de Janeiro state, RJ) and wider
off Santos city (230 km), in Sdo Paulo state (SP), with declivity
ranging from 1:600 to 1:1300 and shelf break depth varying from
120 m to 180 m (Mahiques et al., 2010).

Environmental and nematode assemblage data were obtained
from sediment samples of the Santos Project — Santos Basin
Environmental Characterization - by PETROBRAS/CENPES
(Moreira et al, 2023). A total of 100 sampling stations were
distributed in eight transects perpendicular to the coast and at 11
isobaths (25 m, 50 m, 75 m, 100 m, 150 m, 400 m, 700 m, 1000 m,
1300 m, 1900 m, and 2400 m). Twelve additional stations were
sampled within the Sao Paulo Plateau region, between 1900 m and
2400 m, where most of the oil and gas production takes place.
Sampling cruises were conducted in July 2019 at the continental
slope and plateau (isobaths from 400 m to 2400 m) and in
November 2019 at the continental shelf (from 25 m to 150 m).

2.2 Sampling and sample processing

Sediment samples were taken in three replicates with a spade-
type box corer (0.25 m” surface area) or a modified Van Veen grab
(231 L, 0.75 m?® surface area), depending on the grain size of the
sediment. Sampling was incomplete in stations P1 and B5, with only
2 successful replicates; in A7, H4, and G9, with only one successful
replicate; and in G11 with no successful sampling. The nematode
samples were taken from the larger samplers with a cylindrical corer
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(5 cm diameter, 10 cm high, 19.63 cm” area), and were stored and
fixed with 10% buffered formalin. Samples for 38 environmental
variables were obtained from the same box corer or Van Veen. The
variables were related to the content of phytopigments, organic
matter, and carbonates, and the granulometry of the sediment and
were analyzed by other research parties. Details of the variables such
abbreviation, name, analytical method, and the reference for more
information are provided in the Supplementary Table SI.
Additionally, six variables related to bottom water’s
physicochemical properties and topographic characteristics were
measured at each sampling station, totaling 44 environmental
variables. More details about sampling and methodological
analyses of the environmental variables are available in Moreira
et al. (2023).

In the laboratory, nematodes were extracted from the sediment
by density flotation technique (Somerfield et al., 2005) with Ludox
TM 50 (Sigma-Aldrich) adjusted to the specific gravity of 1.18 g/
cm’, repeated 3x with each sample. Organisms were then
transferred to 10% formalin and stained with Rose Bengal.
Nematodes were counted in a Dollfus plate and abundances were
adjusted to no. individuals/10 cm?. For the genus identification, 200

10.3389/fmars.2025.1458014

specimens were randomly separated to be mounted on glass slides
for identification, after a diafanization process with glycerol 5%
(Seinhorst, 1962; De Grisse, 1965). After mounting, nematodes were
identified to genus level or family level, in case the genus could not
be identified, using the Nemys database (Nemys Eds, 2023) and
pertinent nematode taxonomic literature. The nematode slides were
deposited in the Biological Collection “Prof. Edmundo F. Nonato”
(ColBIO-IOUSP, 2023). Identification counts were adjusted to
sample abundance. The abundance, Shannon evenness, and
relative dominance (abundance of the most abundant genus
divided by the total number of individuals) were calculated per
station. After sample processing, the mean abundance data of 261
Nematoda genera from 99 samples were used for analysis.

2.3 Data preprocessing

The proposed hybrid model combined unsupervised and
supervised machine learning methods (Fonseca and Vieira, 2023).
A total of 27 analytical steps, which were separated into five phases,
were performed in this pipeline (Figure 1). The first phase consisted
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FIGURE 1

— Training flow

—— Unsupervised flow — Up-scaling flow

---------- » Up-scaling test flow

---------- » Test flow

Analytical workflow highlighting the hybrid modeling approach implemented for the nematode assemblage data and the main outcomes. The
analytical scheme is represented in five phases: Data collection, Unsupervised, Supervised-Training, Supervised Up-scaling, and Supervised-Test.
Geometric forms represent the analytical processes and outputs, while the arrows represent the sequence of analytical steps. Depth, bathymetric
data; Env, environmental data; Fauna, nematode genera data; Coord, coordinates data; SOM, Self Organizing Map analysis; HC, Hierarchical

Clustering analysis; Assoc, taxonomic association data; ML, Classification Machine Learning training model; Fl, Feature Importance analysis; Envgg,
significant environmental features data; ML egres, regression Machine Learning training model; Envgig_crig, Significant environmental features modeled
in a higher resolution grid data; Assoc~Envq, the trained model of the associations as function of the significant environmental features; AssOCpreq_+,
Associations predicted using the Envres; (+est) OF the Envsig_grig (+aria) as predictors; SeleCtyest_points: S€lection of the gridded data to the points of the
Test dataset.
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of the data collection (yellow contour color in Figure 1) and the pre-
processing steps (light blue rectangle in Figure 1). At this stage,
imputation was used to fill in missing environmental data using a
bagged tree model for each variable (as a function of all the others;
Fonseca and Vieira, 2023). Also, highly correlated environmental
variables were removed (cut off = 0.75), considering the largest
mean absolute values of pairwise Spearman correlations (Kuhn,
2008; Supplementary Figure S1). After removing those variables, 24
features remained in the environmental data (Supplementary
Figure S2). Hereafter, they are referred to as features since they
have become input variables in the model. For the nematode data, a
logarithm (log;o) transformation was applied.

2.4 Unsupervised phase

The second phase concerns the unsupervised analysis (light
purple contour color in Figure 1), which involved a self-organizing
map followed by a hierarchical clustering analysis (process box SOM
+ HC in Figure 1), to access and reduce the multivariate structure of
the fauna into clusters (Assoc parallelogram in Figure 1). The self-
organizing map (SOM) analysis is an unsupervised neural network
method (Kohonen, 2001) used to aggregate similar samples into
neurons, also termed map units (Best-Matching units - BMU). Here,
we employed a SOM version with multiple layers (Wehrens and
Buydens, 2007; Wehrens and Kruisselbrink, 2018). The dimensions
of the grid was 7 x 10 neurons, with a hexagonal topology and a non-
toroidal grid. The neighborhood function used was the Gaussian. The
first layer was the nematode genera data with a weight of 0.95 and
based on the Bray-curtis similarity index. The second layer was their
respective coordinates, with a weight of 0.05 and based on the
Euclidean distance. The second layer was implemented to account
for potential spatial correlation between samples. For training, the
complete dataset was presented 500 times to the network. Each
neuron of the final map is composed of a weighted list of species
termed codebook, meaning that all samples within a neuron will
share the same codebook. Using the codebook provided by the SOM
analysis, a hierarchical clustering (based on the Ward method with
squared differences, “Ward2”) was applied to group similar BMUs
and their respective samples. To choose the number of groups formed
by the clustering analysis a split moving window analysis was
performed to detect a discontinuity in the relation between the
number of groups and the within-cluster sum of squares (WSS).
The groups of neurons are referred to hereafter as taxonomic
associations (Assoc, Figure 1) and used as a descriptor of the fauna.
The abundance, evenness, and relative dominance of each association
were compared among the associations through analysis of variance
(ANOVA). The ANOVA tests were performed in R language.

2.5 Supervised training
Following the unsupervised step of the hybrid model, each

taxonomic association (Assoc, Figure 1) was further used as a
response variable in the Supervised Training phase (black contour
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color in Figure 1). This phase aims to use the best set of
environmental features to model and predict those clusters
through machine-learning classification algorithms. First, samples
were split for validation purposes in a way that ensured a balanced
partition among the associations. The training dataset (80% of the
data) was used for model fitting and the test dataset (20%) for
further evaluation. Then, multiple machine learning classification
algorithms were performed and compared: Naive Bayes (NB),
Support Vector Machine (SVM) Learning (linear and radial), K-
nearest neighbor (knn), Random Forest (RF), and Stochastic
Gradient Boosting Regression Trees (sgboost). Before running the
SVM and knn algorithm, the environmental features were scaled by
the root mean square. All the algorithms were performed using a
cross-validation method with 5 folds and 10 repetitions, and a
maximum of 10 tuning combinations were chosen, except for the
sgboost. For each algorithm, the highest accuracy value was used to
select the optimal model among the tuning combinations. The RF
models were based on 500 trees. For the sgboost models, parameter
shrinkage (or learning rate) was set at 0.1 and 0.05, the minimal
number of observations in the terminal nodes of the trees was 10,
the number of trees was 250 and 500 and the interaction depth was
performed with 1 and 2. The model with the highest accuracy and
Kappa metrics was selected to be used in the following steps
(process box ML, in Figure 1).

The significant environmental features (Envy;, parallelogram in
Figure 1) from the most accurate model were retrieved using a
feature importance analysis (box FI in Figure 1). Except for the RF
algorithm, the importance of each feature of the environmental
model was obtained by random permutation of the feature/variable
while the others were kept unchanged (Breiman, 2001). This
process disrupts the relationship between the feature and the
target variable (Assoc). Permutations were repeated 100 times,
corresponding to the null normally distributed population, and
the observed metric (non-permuted model) was compared to it. The
statistical significance (p-value) was obtained by retrieving the
proportion of extreme permuted values higher than the observed
one. For the RF algorithm, the significant environmental features
were obtained using the randomForestExplainer package (Jiang
et al, 2020). To get a more efficient model (Assoc~Envgg in
Figure 1), only the significant environmental features (Envyg)
data were then used to train the model of the associations
(AsSOCiraining Parallelogram in Figure 1) using the same ML
algorithm selected before. Additionally, boxplots of the
environmental features were performed to understand the
differences in the environmental conditions among the associations.

2.6 Supervised upscaling

Once the model Assoc~Envg, had been trained, the next step
was to predict the taxonomic associations in a 2 km x 2 km grid
(orange contour color in Figure 1). To achieve this, we first modeled
each significant environmental feature (Envy,) obtained from the
feature importance analysis (FI) as a function of water depth and
geographical coordinates. The most accurate regression ML
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algorithms among the SVM Learning (linear and radial), knn, RF,
and sgboost were used to build each model. The hyperparameters of
the algorithms used in this phase were the same as those used in the
Supervised Training phase. After running all the models, we
obtained 100,555 data points for each significant environmental
feature (Envgg Gria parallelogram in Figure 1). This newly created
dataset was then used as predictors for the Assoc~Envg, model
(orange dotted arrows in Figure 1) to obtain the predictions of the
taxonomic associations in a 2 km x 2 km grid (Assocpred Gria
parallelogram in Figure 1).

2.7 Supervised test

To evaluate the performance of our predictions (blue contour color
in Figure 1), the observed associations separated for test (AssoCreg
Figure 1) were compared to those inferred from the environmental
features from the test dataset (ASSOCpyed_rest Parallelogram in Figure 1)
and those inferred from the environmental features modeled in the
upscaling phase (AssoCpreq Gria parallelogram in Figure 1). Both
comparisons were made based on a confusion matrix, performance
metrics (accuracy and Kappa coefficient), and individual predictions at
each sampling station. Based on these outcomes, it is possible to
determine how much information is lost, or not, when inferring the
community associations solely based on the inferences from the
environmental models.

2.8 Software

All the analytical steps and outputs were done in the iMESc - An
Interactive Machine Learning App for Environmental Science,
which is an open-source application built on R language (Vieira
et al., 2025) that can be downloaded at https://zenodo.org/record/
7278042. A user guide to the application is available at https://
danilocvieira.github.io/iMESc_help/#introduction. The dataset and
the analysis are accessible by downloading the Savepoints at https://
github.com/DaniloCVieira/imesc_savepoints and restoring them
following the guide “Savepoint” at the help page of the iMESc.
The selection of points from the gridded data to the points of the
test data (box Selectres; points in Figure 1) and the calculation of
metrics between the predictions of the Test data and the gridded
data (box Models evaluation in Figure 1) were made using R
language. The code script can also be download at the provided
link for the Savepoints. More information about the iMESc
application is available in Vieira et al. (2025).

3 Results
3.1 Unsupervised phase of the hybrid model
3.1.1 Nematode associations

A total of 245 nematode genera were identified. The most

abundant genera were Sabatieria, Halalaimus, Acantholaimus, and
Microlaimus, representing 14.1%, 5.3%, 4.2%, and 4.2% of all
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individuals, respectively. The SOM analysis stabilized after a
learning rate of around 0.045 for the nematode data and 0.06 for
the coordinate data. The SOM network explained 75.65% of the data
variance with a mean topographic error of 0.41 (Table 1). The
hierarchical clustering analysis revealed that the optimal number of
taxonomic associations (Assoc) was 6, with association number 6
being the most different (Figure 2A) and with more samples
(Figure 2B). The spatial distribution of the associations followed a
depth pattern throughout the basin and a north-south pattern on the
continental shelf, where each association showed a distinct spatial
extent (Figure 2D). Association 1 occurred in the shallowest region
along the basin, Associations 3 and 4 occurred in the northern region
of the continental shelf, while Association 2 occurred in the southern.
Associations 5 and 6 were respectively restricted to the slope and
plateau regions along the whole basin. The most abundant genus,
Sabatieria, was dominant in Associations 2, 3, 4, and 5 (Table 2).
Association 1 was characterized by higher abundances of
Chomadorina, Microlaimus, Daptonema, and Sabatieria. In
Association 6, Monhystrella and Acantholaimus predominated.

3.1.2 Univariate descriptors of the
nematode associations

Abundance per station varied from 40 to 1,758 individual/10
cm” (mean = 511 + 392 individual/10 cm®), genus richness from 43
to 105 genera, evenness from 0.64 to 0.88 (mean value = 0.80 +
0.04), and relative dominance from 0.07 to 0.43 (mean value = 0.18
+ 0.06). All measures varied significantly among the associations
(Supplementary Table S2). Abundance was higher in Association 3,
followed by Associations 1, 2, and 5, and lower in Associations 4
and 6 (Figure 2C). Associations 1 and 5 showed higher richness
than Associations 2 and 6. Association 2 differed from Associations
1, 3, 5, and 6 by showing lower evenness, and Association 1 showed
higher evenness than Associations 2 and 4. The relative dominance
of Associations 2 and 4 was significantly higher than that of
Associations 1, 5, and 6.

3.2 Nematoda associations model

The accuracy of the training models of the six ML algorithms
varied from 0.80 to 0.88 and the kappa index from 0.69 to 0.83
(Table 3). The Random Forest (RF) algorithm was the most

TABLE 1 Quality measures of the nematode and coordinate layer and
the mean value of the trained SOM.

Nematoda Coordinates Mean

Quantization error 50.89 0.77 25.83
Percentage of

. X 66.87 84.42 75.65
explained variance
Topographic error 0.01 0.82 0.41
Kaski-Lagus error 11.85 3.06 7.46
Neuron Utilization error 0.24
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FIGURE 2

Nematode associations from the unsupervised phase of the hybrid model. (A) Dendrogram obtained by the hierarchical clustering of the neurons
from the Self Organizing Map (SOM); (B) SOM with neurons grouped by the respective clusters; (C) box-plot of Richness, Abundance, Evenness, and
Relative Dominance of each association, with the whiskers representing the minimum and maximum, the box the 25% and 75% quartiles, the line the
median value and the dots the outliers; (D) map of the associations at each sampling station at the Santos Basin.
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TABLE 2 Mean abundance, standard deviation (+ SD) and relative abundance (%) of the most abundant genera (mean relative abundance >2% in at
least one association) by each association.

Sabatieria 36.2 £29.2 4.6 1279 £60.1 209 2492 +£89.2 18.8  47.1 £ 37 24 132.7 + 54.3 16.7 19525 7.1
Monbhystrella 03038 0 07+18 0.1 1.1 +£1.6 0.1 15+ 1.1 0.8 22.6+225 2.8 334 +23.6 12.1
Acantholaimus 6.9 15 09 17+31 0.3 1+1.6 0.1 48 +3.1 24 34247 4.3 329 +£21.9 12
Microlaimus 42.3 + 41 54 57.5+663 9.4 50.2 £39.3 3.8 37+39 1.9 122+92 1.5 4.8 £ 4.9 1.7
Halalaimus 15.4 + 10.5 2 14.7 £ 8.5 24 52.8 £21.2 4 112+ 63 5.7 502 +159 6.3 254 +18.7 9.3
Richtersia 299 +41.2 3.8 233+325 3.8 49.1 + 14.5 3.7 14.2 + 19.1 7.2  91%137 1.1 0£0.1 0
Cervonema 1.1+2 01 44+34 0.7 233+99 1.8 1.1+0.38 0.5 481 +283 6 9.4 + 122 3.4
Chromadorina 432 + 42 55 05+1.1 0.1 7477 0.6 14+12 07 1934 0.2 04+12 0.1
Terschellingia 7.4 +10.8 09 314 +67.1 5.1 21 +£17.8 1.6 04+04 02 4+34 0.5 04+ 05 0.2
Daptonema 36.4 + 63.4 4.6 151 %147 2.5 352 +294 2.7 4.7 + 3.6 24 17959 22 53+73 1.9
(Continued)
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TABLE 2 Continued

10.3389/fmars.2025.1458014

Desmoscolex 91+73 12 12+18 0.2 28.6 + 185 22 79+1 4 17 £ 13.1 2.1 58 5.1 2.1
Molgolaimus 11.6 £ 11.6 15 | 235+359 3.8 31.7 £ 184 2.4 1.6 £0.5 0.8 194 +232 2.4 14+18 0.5
Neotonchus 4.2 + 64 05 106 +83 1.7 44.2 + 36.9 33 25+ 46 1.3 73+£89 0.9 0.1+03 0
Pseudometachromadora = 0.8 + 1.4 01  47+77 0.8 424 + 46.5 32 24 +46 12 52+£93 0.7 0£02 0
Metasphaerolaimus 03 0.7 0 12+13 0.2 18 £ 19.1 14 0.3 +04 02 127 +10.8 1.6 79 + 84 29
Comesoma 22.6 £ 32.7 29 11+47 0.2 63+ 114 0.5 0.1 +0.2 01 26+64 0.3 0+0 0
Thalassomonhystera 1.6 £3.7 02  03+06 0 0.7 £13 0.1 12+14 06 9.6+98 1.2 74 +56 2.7
Pselionema 72+438 09 | 135+123 22 32.6 £25.1 25 1.5+15 08 89+53 1.1 28+27 1
Paramonohystera 8.4 + 144 1.1 | 143 +£ 147 2.3 19.7 £ 13.9 1.5 04 +05 02 64+38 0.8 22+24 0.8
Rhynchonema 18 £ 13.8 23 09+33 0.1 0£0 0 0.1 +0.2 0 0.1+0.4 0 0+0 0
Paramphimonhystrella 0£0 0 5675 0.9 11.2 £ 20 0.8 21+22 1.1 181 £ 142 2.3 38+45 1.4
Odontophora 56+42 07  82+123 13 29.6 + 24.6 22 0£0 0 05+ 1.7 0.1 0£0.1 0
Echinodesmodora 17.1 +15.2 22 06+16 0.1 13+£23 0.1 35+51 1.8  13+44 0.2 0£0.1 0
Leptolaimus 57+79 0.7 131 +10.7 2.1 14.1 £ 18.6 1.1 27+11 14 168+ 121 2.1 59+47 2.1
Amphimonhystrella 0.1+03 0 1.7 +24 0.3 7.3 +132 0.6 15+12 0.7 11.8+152 1.5 57 +68 2.1
Syringolaimus 0+0 0 0.1+03 0 0£0 0 26 +27 13 7+63 0.9 57 +6.2 2.1
Campylaimus 37+53 05 12615 2.1 244 + 155 1.8 0.7 + 0.6 03 4827 0.6 12+ 1.1 0.4

The relative abundance of the four or five most abundant genera in each association are highlighted in bold. Number of observations in Associations 1 to 6 was 8, 18, 7, 5, 12, and 49, respectively.

accurate and the radial Support Vector Machine (SVM radial) was
the least accurate. Considering the test part of the data, the Random
Forest (RF) showed the best performance, with an accuracy of 0.91
and a Kappa index of 0.88 (Table 3), and was selected as the best
model (ML) to be used in the following steps of the analytical
workflow. Among the 24 environmental features, eight were
significant (significance level = 0.05; Figure 3A) selected by the

RF model. Among them, water column depth (Depth) was the most
important feature with a mean minimal depth of 1.29, followed in
decreasing order by the Chlorophyll-a/Phaeopigments ratio
(Chloa_Phaeo), sediment redox potential (Redox), content of
carbonates (Carbonates), angle of the slope, content of coarse
sand (CSand), sediment pH, and concentration of phaeopigments
(Phaeo) in the sediment. Recalculating the model based solely on

TABLE 3 Accuracy and Kappa index of the six models for the training and test sets.

Training Test

Accuracy Kappa Accuracy SD Kappa SD Accuracy
RF 0.884 0.825 0.059 0.094 0.909 0.875
sgboost 0.844 0.763 0.071 0.108 0.818 0.740
SVM* linear 0.814 0.725 0.090 0.140 0.818 0.743
SVM* radial 0.798 0.688 0.070 0.110 0.682 0.543
knn* 0.798 0.690 0.081 0.133 0.773 0.677
NB 0.823 0.737 0.077 0.115 0.864 0.809

SD, standard deviation; NB, Naive Bayes; SVM, Support Vector Machine; knn, K-nearest neighbor; RF, Random Forest; sgboost, Stochastic Gradient Boosting Trees. *environmental features data

was scaled by the root mean square. Training set: 77 samples; Test set: 22 samples.
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The Minimal Depth distribution (A) of the eight significant environmental features and (B) the confusion matrix from the training of the Random
Forest model based on the significant environmental features. Depth: water column depth (m); Chloa_Phaeo: chlorophyll-a/phaeopigments ratio;
Redox: sediment redox potential (mV); Carbonates: sediment content of carbonate; Slope: angle of the slope (°); CSand, sediment content of coarse
sand; pH, sediment pH; Phaeo, sediment concentration of phaeopigments (ug/g).

those significant environmental features, the accuracy slightly raised
to 0.89 (+ 0.06) and the kappa index to 0.83 (+ 0.09). Association 3
showed the highest error (0.45), misclassifying part of the samples
as Association 1 or 2 (Figure 3B).

3.3 Simulated environmental features

The accuracy of the RF models (ML;eges) of the significant
environmental features (Envg,) as a function of the depth, latitude,
and longitude varied from 0.45 for coarse sand to 0.74 for carbonate
(Table 4). The spatial distribution of the environmental features
showed that the ocean floor of the basin was heterogeneous

Frontiers in Marine Science

(Figure 4). The sediment in the northern region of the continental
shelf showed a higher content of coarse sand (Figure 4F). In this region,
samples were classified as Associations 1 and 3 (Figure 2D) and were
characterized by coarser sediment (Supplementary Figure S3D). The
concentration of phaeopigments was higher on the continental shelf,
with maximum values around the isobaths of 75 m and 100 m
(Figure 4H). Samples of those isobaths were classified as Association
2 in the south and Association 3 in the north (Figure 2D), and
presented the highest concentration of phaeopigments in the
sediment (Supplementary Figure S3F). However, values were slightly
higher in the shelf southern region, reflecting a lower proportion of
fresh phytopigments, compared to the north, the slope, and the plateau
(Figure 4B, Supplementary Figure S3A). The carbonate content was
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TABLE 4 Results of the regression RF models of the significant environmental features (Env;g) in predicting the nematode associations.

Training Test
Variable

RMSE RMSE SD MAE SD RMSE R?
Chloa_Phaeo | 0.07 0.64 0.06 0.01 0.13 0.01 0.06 0.84 0.04
Redox 101.58 051 7127 17.65 0.15 12.56 64.77 075 48.61
Carbonates 0.11 0.74 0.08 0.02 0.10 0.02 0.08 0.78 0.06
Slope 0.76 0.60 0.49 0.17 0.15 0.11 1.48 0.24 0.98
CSand 0.08 045 0.06 0.02 0.26 0.01 0.07 0.28 0.05
pH 0.18 0.70 0.13 0.05 0.13 0.03 0.18 0.66 0.13
Phaeo 2.96 0.68 1.83 0.96 0.17 0.46 2.44 0.80 145

RMSE, root mean square error; R, percentage of variance explained; MAE, mean absolute error; SD, standard deviation. Chloa_Phaeo, chlorophyll-a/phaeopigments ratio; Redox, sediment

redox potential (mV); Carbonates, sediment content of carbonate; Slope, angle of the slope (°); CSand, sediment content of coarse sand; pH, sediment pH; Phaeo, sediment concentration of

phaeopigments (ug/g).

lower near the coast and increased towards the deep, though marked by
a high peak around the 150 m isobath (Figure 4D). This peak matches
the location of samples from Association 4 (Figure 2D), which
exhibited a high carbonate content in the sediment (Supplementary
Figure S3C). Both the redox potential and the pH of the sediment
revealed an evident difference between the continental shelf and the
slope and plateau, with lower values in the first region (Figures 4C, H).

3.4 Association predictions and
model validations

The results of the model of the associations (Assoc~Envyg)
using the simulated significant environmental features in the 2 km x
2 km resolution grid (Envg, gria) evidenced the depth-related
arrangement of the taxonomic associations (Figure 5A) and the
difference along the continental shelf between the South and North.
Association 1 occupied the shallowest region, restricted by the 25 m
isobath, along the entire basin. The continental shelf was occupied
by Association 2 in the southern region and Associations 3 and 4 in
the northern region. Association 5 occurred along the whole basin
in a narrow band on the upper slope, around the 400 m isobath.
Finally, Association 6 occupied the deeper region of the basin, from
the middle slope to the plateau.

Comparing the observed association of the test dataset
(Assocres in Figure 1) with the predictions of the supervised
model based on the unseen environmental features (ASSOCped Test
in Figure 1) and the simulated significant environmental features
(AsSOCpred_arigs Figure 1) showed that both models classified all the
associations of the test samples equally (Figure 5B). The total
accuracy was 0.91 and the kappa index was 0.87. Specifically,
both models misclassified only two of the 22 samples (Figure 5B).

4 Discussion

The proposed hybrid model predicted with 91% accuracy the
spatial distribution of nematode associations as a function of a small
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set of important environmental features. From a theoretical
standpoint, the reduction of dimensionality of the nematode data
into associations, along with accurate predictions, suggests that the
Basin is formed by distinct local communities, constituting a
metacommunity (Wilson, 1992; Leibold et al., 2004). As shown
by the feature importance analysis, these local communities are
probably structured by depth, supply of potential food sources, such
as Chlorophyll-a and Phaeopigments, topography, and the
properties of the sediments, as well as other environmental
variables that were highly correlated with them (Supplementary
Figure S1).

Although depth is a key variable in predicting nematode
associations, it is not, per se, an environmental driver of
community structure; instead, it is a geographical variable that
reflects a strong environmental gradient. Towards the deep, as we
move away from the continental sources of sediments and
organic matter and into less energetic environments, the
granulometric characteristics of the sediment change, as well as
its physicochemical properties and food availability (Suess, 1980;
Mahiques et al.,, 1999; Restreppo et al.,, 2020). Along the Santos
Basin, this was not different. On the continental shelf, sediment was
coarser, with lower redox and pH values, and a higher contribution
of fresher organic matter (Carreira et al., 2023; Figueiredo Jr. et al.,
2023). On the other hand, muddy sediments extended over the
slope and plateau, where the organic matter was scarcer and less
fresh (Carreira et al., 2023; Figueiredo et al., 2023). The contrasting
environmental conditions between the continental shelf and slope
were also reflected in the fauna. The food-rich conditions of the
continental shelf supported higher abundances of nematodes, as
observed for Associations 1, 2, and 3 in contrast to Associations 4
and 6. The differences are also present in the taxonomic
composition. For instance, Associations 1, 2, and 3 showed a
greater abundance of typical genera from continental shelves
worldwide, like Sabatiera, Microlaimus, and Daptonema
(Muthumbi et al., 2004; Vanreusel et al., 2010; Muthumbi et al.,
2011). In contrast, Association 6 was dominated by Acantholaimus,
Monhystrella, and Halalaimus, common genera from slopes and
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FIGURE 4

Spatial distribution maps of the significant environmental features (Envgg) in predicting the nematode associations. Values plotted in the maps are the
predictions of the random forest models of the environmental features as a function of depth and geographical coordinates in a 2 km x 2 km grid. (A)
Depth: water column depth (m); (B) Chlorophyll-a/Phaeopigments ratio; (C) Redox: sediment redox potential (mV); (D) Carbonates: sediment content of
carbonate; (E) Slope: angle of the slope (°);(F) Coarse Sand: sediment content of coarse sand grain fraction; (G) pH: sediment pH; (H) Phaeopigments:
sediment concentration of phaeopigments (bg/g).

deep-sea habitats (Vanreusel et al., 2010; Macheriotou et al., 2021;  sedimentation zones related to different oceanographic processes
Armenteros et al., 2022, 2024). (Mahiques et al., 1999). The south receives low-salinity and cold

In the continental shelf, the north-south pattern was evidenced  nutrient-rich waters from the Sub-Antarctic Argentinian shelf, the
by Association 2 in the south and Associations 3 and 4 in the north. ~ La Plata River runoff, and the Patos Lagoon (Piola et al., 2000; de
Such a pattern results from the boundary between two  Souza and Robinson, 2004; Brandini et al., 2018). The interaction of
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FIGURE 5

(A) Predicted spatial distribution map of the nematode associations of the hybrid model: values plotted in the maps are the predictions of the six
associations as a function of the simulated environmental features on a bathymetric grid of 2 km x 2 km (AssOCpeq_arig in Figure 1); (B) Observed
(Test) and predicted (Pred_test, Pred_gig) associations of the test samples: Pred_test Was predicted using the environmental features from the test
dataset as predictors and Pred_giq Using the simulated environmental features in a 2 km x 2 km grid.

those waters with the meandering of the Brazil Current and the
morphology of the shelf increases the productivity and
sedimentation rates, resulting in the predominance of finer and
homogeneous sediments with an accumulation of organic matter
(Carreira et al., 2023; Mahiques et al., 2010). High organic matter
inputs in sediments stimulate bacterial activity, which leads to a
reduced environment (Li et al., 2022). Genera like Sabatieria,
Microlaimus, and Terschellingia, which were the most abundant
of Association 2, are known to dominate sediments under such
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conditions (Van Gaever et al., 2009; Vanreusel et al., 2010). In the
northern portion of the basin, high productivity events also occur
here due to the onshore motion in the mid-shelf and the coastal
upwelling of the South Atlantic Central Water (SACW). It
promotes the deposition of higher-quality organic matter to the
bottom (Brandini et al., 2018), impacting the benthic systems
(Sumida et al., 2005; De Léo and Pires-Vanin, 2006). However,
sediments are coarser and more heterogeneous in this region due to
the complex hydrodynamics associated with the coastline shape and
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narrower shelf (Mahiques et al., 1999, 2010; Figueiredo et al., 2023).
Though genera like Sabatieira and Microlaimus remained abundant
in Associations 3 and 4, typical genera of coarser sediment, like
Richtersia, and deeper areas, like Halalaimus, become more
abundant. Particularly for Association 4, characterized by
carbonates from bioconstruction fields (Figueiredo et al., 2023),
the abundance of Desmoscolex increased. This taxon is known for its
affinity to habitats with carbonated structures (Vanreusel et al,
2010). As we go deeper, towards the slope and plateau,
environments with muddy sediments and scarce organic matter
dominate (Carreira et al., 2023). While Association 5 showed a
transition in taxa composition between the shelf and the deeper
stations, Association 6 was typical from deep seas worldwide, with
low abundances and dominance of typical deep-sea genera
(Vanreusel et al., 2010; Lins et al., 2017).

The results of this study improve our understanding of the
spatial structure of the benthic community of the Basin. Our study
provided a comprehensive analysis of the entire Santos Basin,
different from studies with macrofaunal and foraminiferal
communities in the same basin which were restricted to the shelf
or slope and plateau areas (Aratjo et al., 2023; Moura et al., 2023).
As suggested by meiofauna higher taxa data, the upwelling of the
South Atlantic Central Water (SACW) and the intrusion of waters
from the south with the contribution of the La Plata River are the
main processes structuring the benthos in the continental shelf
(Gallucci et al,, 2023; Moura et al, 2023). Compared with the
patterns observed for the meiofauna, the present study analytically
confirmed the existence of 6 benthic zones in the Basin. Both studies
recognized the Lower Slope and Plateau, the Upper and Mid-Slope,
and the Upwelling as unique zones. Nonetheless, while the
meiofauna study separated the southern portion of the
continental shelf in two, observing a tradeoff in the abundances of
kinorhynch, polychaete, and copepods associated with the
concentrations of phytodetritus (Gallucci et al., 2023), the
nematode genera data separated a coastal area (Association 1)
from the rest of the southern portion of the continental shelf
(Association 2). It is suggestive that copepods, kinorhynchs, and
polychaetes are more sensitive to changes in phytodetritus
deposition (Landers et al., 2020; Pruski et al., 2021), while
nematodes to changes in granulometric properties of the
sediment. The differences in responses between nematodes and
other meiofauna taxa have already been reported (e.g. Stark et al.,
2020). Such findings demonstrate the importance of monitoring
multiple ecological indicators since each may respond differently to
environmental changes.

Compared to traditional analytical tools commonly applied in
community ecology, our hybrid approach offers at least three
advantages. The first is the possibility of making accurate
predictions; the second is the selection of the essential
environmental variables to make the predictions, and the third is
the possibility of continuous learning with the increment of new
data. Accurate predictions are essential in regions with limited data,
especially regarding biodiversity data. Since human activities are
constantly pressuring the systems, knowing ahead of the
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biodiversity of an unsampled location gives us better support for
management decisions. As some data are less laborious and
expensive to obtain than others, such as granulometry versus
biodiversity data, selecting a set of predictors by the hybrid model
permits optimizing sampling strategies, data processing, and
ultimately, the efficiency of monitoring programs. Particularly for
the Santos Basin, it is crucial now to include additional variability,
such as temporal variation or data from unsampled regions, to
validate the model’s performance and enhance our understanding
of the system. This can be done continually, allowing the model
to improve with each new income (Fonseca and Vieira, 2023). The
hybrid model approach can be applied to any scenario involving the
simultaneous analysis of multiple species along with a set of
environmental variables. By employing such a methodology, we
move from the traditional hypothesis testing approach commonly
applied to community ecology to a predictive modeling approach.
Comprehensive baseline studies coupled with robust predictive
models are the first steps toward implementing effective
monitoring programs (Lindenmayer and Likens, 2010; Fonseca
and Vieira, 2023). Based on them it is possible to predict the
response of multiple ecological indicators to environmental
changes and therefore build a roadmap for the validation of
monitoring programs. This is a significant step towards the

conservation of natural ecosystems.
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