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Editorial on the Research Topic

Technological advances for measuring planktonic components of the
pelagic ecosystem: An integrated approach to data collection and analysis
The traditional collection of plankton samples, often using nets followed by visual sorting

and taxonomic analysis is a labour intensive, time-consuming, and ultimately expensive

process. The increasing demand for pelagic data combined with ever reducing budgets for

monitoring and the general problem of the taxonomic impediment have driven the

development of new tools and techniques for the sampling and analysis of this key

ecosystem component.

Technological advances have allowed monitoring of the pelagic environment to evolve

towards a more integrated approach to data collection at a finer scale. Nowadays, there is a

plethora of methods including for example molecular, optical, remote sensing, and

automated techniques that help further our understanding of biodiversity and species

interactions within the pelagic ecosystem. Yet, there is still a need for morphological

identification of species to enable the verification of the new sensor modalities.

Ongoing and new challenges need to be addressed, for example those associated with

taxonomic resolution from image analysis methods; or where the rate of collecting data

exceeds that of processing it, a situation arising from collection of huge amounts of fine-

resolution data. Furthermore, there is a large variety of data formats including for example,

images, acoustics, taxonomy, remote sensing etc… collected at different spatial and temporal

scales. There is therefore a need to: (1) improve on how these emerging technologies,
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collecting multi-modal data, work together; (2) develop new methods

embedding technological advances in data collection and data

analytics, for a fully integrated understanding of pelagic processes;

and (3) utilise open access databases that can handle diverse data sets.

Articles presented in this topic have a strong focus on:
Fron
(1) imaging instruments both for collected samples (e.g.,

PlanktoScope (Mériguet et al.; Pollina et al.), FlowCam

(Mériguet et al.), and in-situ deployment (e.g., Underwater

Vision Profiler (Barth and Stone; Drago et al.), Plankton

Imager (PI) (Giering et al.), In Situ Ichthyoplankton Imaging

System (ISIIS) (Panaïotis et al.), Scripps Plankton Camera

(SPC) (Le et al.), Imaging FlowCytobot (Kraft et al.); Video

Plankton Recorder (VPR) (Plonus et al.) and the use of

machine learning tools to automatically classify the

collected images (e.g., Weldrick).

(2) molecular tools (DNA barcoding (de Vargas et al.), COI

metabarcoding (Bucklin et al.) to explore the taxonomic and

ecological diversity.
These tools have their own characteristics, with molecular based

techniques focussing on taxonomic resolution and imaging

instruments on quantifying plankton abundance, biomass, and

morphology, but at a lower taxonomic resolution. Both have played

an increasing role in the collection of plankton information, and the

articles in this collection suggest that this will continue to be the case

as technologies are refined and become more affordable. As

affordability and ease of use in technologies increases, along with

the advances and reliability of machine learning algorithms, it will

become possible to move towards consistent and long-term

measurements of plankton abundance/biomass and diversity.

Globally, plankton time-series have provided essential

information about how planktonic assemblages and constituent

taxa respond to climate change. However, more data are needed to

inform these powerful tools. Ships of opportunity and citizen science

have an increasing role to play, by deploying easy to use instruments

and offering an opportunity to collect cost-effective plankton data on

a global scale (Pollina et al.; de Vargas et al.).

Imaging systems and traditional nets collect data on scales and

from within volumes that are very different. Consequently,

comparisons of data collected from imaging systems and traditional

methods need further attention if we are to inter-calibrate their

measurements (Le et al.). Further improvements to the

performance of automated image analysis for taxonomic

identification are also needed. This will help to reconcile findings

with traditional net-based methods (Barth and Stone), their

complementary use, and build trust in Artificial Intelligence (AI)

based taxonomy (Giering et al.).

All the methods using novel technologies described in this

collection of papers allow for plankton information to be collected

at a much higher rate than previously possible using traditional

deployment of nets followed by microscopic analysis. The

increasing use of digital imaging and molecular tools will enable

plankton abundances and biomass distributions, as well as

community composition and taxonomic diversity to be mapped at

global scales in a much shorter time frame (Drago et al.). Used in
tiers in Marine Science 026
combination, they offer new opportunities to monitor and study

plankton ecosystems at levels of detail never possible before.

A key element of an ever-increasing amount of data is the

development of automated and efficient data processing techniques

for seamless data flow. Ship time remains an expensive commodity

and it is important to be able to capitalise on information collected at

sea in real-time. Analysing continuous streams of high-frequency data

calls for development and deployment of novel computer vision and

machine learning systems (Panaïotis et al.; Le et al.), while cloud

platform and high-performance computing are needed for processing

the huge datasets collected. Together they can open new horizons for

testing core hypotheses on plankton communities in aquatic

ecosystems. Seamless data pipeline and emerging data analytics

based on AI further offer the opportunity to move towards real

time monitoring of plankton ecosystems (Kraft et al.).

Cost-effective global monitoring will enable us to obtain a

complete picture of plankton composition, biogeography and

biogeochemistry, opening the way to a plankton observatory

network on a planetary scale (Mériguet et al.; Pollina et al.; Drago

et al.; de Vargas et al.).
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Automatic Segregation of Pelagic
Habitats
Rene-Marcel Plonus1* , Stefanie Vogl2 and Jens Floeter1

1 Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany, 2 Department
of Informatics and Mathematics, Hochschule für Angewandte Wissenschaften München, Munich, Germany

It remains difficult to segregate pelagic habitats since structuring processes are dynamic
on a wide range of scales and clear boundaries in the open ocean are non-existent.
However, to improve our knowledge about existing ecological niches and the processes
shaping the enormous diversity of marine plankton, we need a better understanding
of the driving forces behind plankton patchiness. Here we describe a new machine-
learning method to detect and quantify pelagic habitats based on hydrographic
measurements. An Autoencoder learns two-dimensional, meaningful representations of
higher-dimensional micro-habitats, which are characterized by a variety of biotic and
abiotic measurements from a high-speed ROTV. Subsequently, we apply a density-
based clustering algorithm to group similar micro-habitats into associated pelagic
macro-habitats in the German Bight of the North Sea. Three distinct macro-habitats,
a “surface mixed layer,” a “bottom layer,” and an exceptionally “productive layer” are
consistently identified, each with its distinct plankton community. We provide evidence
that the model detects relevant features like the doming of the thermocline within an
Offshore Wind Farm or the presence of a tidal mixing front.

Keywords: machine learning, North Sea, submesoscale, pelagic habitats, plankton patchiness

INTRODUCTION

Submesoscale features like eddies, fronts or filaments structure the pelagic realm at spatial scales of
order (1–10 km) (Lévy et al., 2012; Shulman et al., 2015; Buckingham et al., 2016) and temporal
scales that range from several hours to a few days (Baschek and Maarten Molemaker, 2010;
Thompson et al., 2016). Associated processes determine nutrient fluxes (Omand et al., 2015;
Thompson et al., 2016) as well as plankton patchiness (Levy and Martin, 2013; Shulman et al.,
2015; Lévy et al., 2018) and thereby even shape the seascape for top predators like sea birds
(Bertrand et al., 2014).

Recent advances in marine remote sensing technology (Wedding et al., 2011) enabled scientists
to separate benthic structures into mosaic-like patterns of different habitat classes (Hinchey et al.,
2008; Pittman et al., 2011) following the role model of terrestrial ecosystems. However, what is
well known and trivial in landscape ecology can be quite challenging in seascape ecology. While
it remains difficult to segregate pelagic habitats, which exhibit no clear boundaries (Hinchey et al.,
2008; Pittman et al., 2011; Wedding et al., 2011) and can be quite dynamic on a wide range of
scales, benthic habitat maps can give an impression of physically distinct areas that consistently
occur together with particular species communities (Harris and Baker, 2012). Some effort has been
undertaken to characterize fish habitats (e.g., Bellido et al., 2008; Giannoulaki et al., 2011; Tugores
et al., 2011; Laman et al., 2017; Amorim et al., 2018; Friedland et al., 2020; Funk et al., 2020),
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but fewer studies focused on zooplankton (e.g., Labat et al.,
2009; Alvarez-Berastegui et al., 2014; Espinasse et al., 2014).
Thus, mechanisms contributing to the enormous diversity of
plankton, a fundamental component of pelagic food webs,
are still not fully understood (Sano et al., 2013; North
et al., 2016). Understanding the processes shaping plankton
communities is essential to improve our knowledge of existing
ecological niches (Houliez et al., 2021). Despite the growing
awareness of the importance of spatial structure for ecology
and management (Pittman et al., 2011; Wedding et al., 2011),
there is still a lack of concepts and techniques applicable to
characterize the spatial structure of the seascape in pelagic
environments (Alvarez-Berastegui et al., 2014). Mainly, because
traditional oceanographic methods are inadequate for observing
the submesoscale (Baschek and Maarten Molemaker, 2010) due
to insufficient resolution and range (Marmorino et al., 2018).
Recent advances in instrumentation partially closed this gap, but
there still is a need for novel analysis methods to take advantage
of the existing data (North et al., 2016). Some machine learning
techniques are specifically designed to identify and characterize
features in a “sea of data,” which makes it very promising to apply
them also in this challenging field of research.

Autoencoders (AE) are a common tool in the machine
learning community which consist of an encoding and a decoding
part (Hinton, 2006). Initially devised to reduce (Encoder) and
recover (Decoder) the dimensionality of their inputs (Hinton,
2006), they have been soon applied to a wide range of tasks like
denoising (e.g., Vincent et al., 2010) or anomaly detection (e.g.,
Zhao et al., 2017; Chen et al., 2018).

Autoencoders do not classify or detect specific elements or
objects in their inputs, but learn meaningful low dimensional
representations, i.e., relevant high-level abstractions, of their
inputs (Bengio et al., 2006) so that the original data can be
reconstructed as similar as possible by the decoder part. The
input data don’t need any pre-processing, e.g., labeling of subsets,
by humans, since the target the network aims to reconstruct is
basically the original input. The compressed representations of
the encoder can also be used as input for subsequent modeling,
e.g., in a Convolutional Neural Network (CNN) application. In
that case the unsupervised pre-training of a CNN embedded in
an AE can help to capture more intricate dependencies (Erhan
et al., 2009) and better initialize the weights of the extended
model (Bengio et al., 2006). Thus, the (local) minimum in the
loss surface of the AE corresponds to a good transformation of
a high dimensional input to a lower dimensional intermediate
output (output of the Encoder-part) (Bengio et al., 2006), which
would become the input for the classifier in a CNN. In this setting,
the final output of the AE, the reconstructions, are secondary.
However, a low reconstruction error of the AE ensures that the
compressed signal incorporates the important features of the
original high dimensional input data.

In this study we take advantage of this specific application of
AEs. Instead of substituting the decoder part with a classification
or regression network we use the compressed signal of the
encoder as input for a subsequent clustering algorithm. We use a
fully connected AE to reduce a high dimensional input consisting
of a variety of abiotic and biotic oceanographic measurements

to a lower dimensional meaningful representation (intermediate
output), skip the decoding part after the training is completed and
cluster the encoded features to macro-habitats. Similar micro-
habitats lead to similar representations and therefore regions
with different characteristics are segregated as different macro-
habitats. These macro-habitats correspond to distinct pelagic
habitats in the southern North Sea, whose plankton communities
are compared and analyzed.

MATERIALS AND PROCEDURES

Data Acquisition and Preparation
Physical and biological oceanographic measurements were
recorded on a North Sea summer cruise with the RV Heincke
(HE429, July 19–24, 2014) with a MacArtney TRIAXUS Remotely
Operated Towed Vehicle (ROTV). For a detailed description of
the device see Plonus et al. (2021). The ROTV transects were
located in the direct vicinity of two Offshore Wind Farms (OWF)
BARD Offshore 1 (BARD) and Global Tech I (GTI; Figure 1).
The map was generated using QGIS v3.18 (QGIS, 2021) with
bathymetric metadata and Digital Terrain Model data products
from the EMODnet Bathymetry portal (15.7.21)1. The ROTV
was towed at a speed of 8 knots (4.1 m s−1) with a three-degree
lateral offset to lessen any disturbance from the vessels wake.
During most transects the ROTV was undulating with a vertical
speed of 0.1 m s−1 from ∼ 4 m below the sea surface to ∼
8 m above the sea floor. The horizontal resolution between two
surface peaks was ∼ 560 m, while the vertical resolution was ∼
0.3 m. The ROTV measured water temperature, salinity, oxygen,
and chlorophyll-a at a frequency of 1 Hz and was equipped with
a Video Plankton Recorder (VPR, Seascan Inc., Falmouth, MA,
United States) which provided zoo- and phytoplankton densities
on the taxonomic family-, and sometimes even genus-level. For a
detailed description of the VPR plankton image classification see
Floeter et al. (2017). We used a similar summer cruise with the RV
Heincke 5 years later (HE534, June 16–21, 2019) as a test data set.
For our analyses we selected the following variables: temperature
(◦C), salinity (PSU), oxygen (µmol l−1), density (kg×m−1), and
chlorophyll-a (RFU). For each of the variables, we calculated the
horizontal (grid cell to the left, i.e.,∼ 25 m) and vertical (grid cell
above, i.e., 1 m) gradient. Furthermore, we had sufficient density
data (N l−1) available for the taxa “Appendicularia,” “Copepoda,”
“Dinoflagellates,” “Gastropoda,” “Jelly,” “Marine snow,” “Nauplii,”
“Ophiuroida,” “Pilidium,” “Pluteus,” and “Polychaeta.”

Transect diagrams were generated using Ocean Data View
(ODV, Schlitzer, 2020) with the embedded spatial interpolation
software DIVA (Troupin et al., 2012) and exported as grids
with a resolution of ∼ 25 m length × 1 m depth. Abiotic
measurements as well as density values were normalized and
rescaled to range from −1 to 1. This was necessary since deep
learning models generally perform better with homogeneous,
small values (Bishop, 1995).

To check for multicollinearity between our variables
we calculated the variance inflation factor (VIF) in R

1http://www.emodnet-bathymetry.eu
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FIGURE 1 | Sampling transects from HE429 (black) and HE534 (blue) in the German Bight of the North Sea. Green dots: Wind turbines. Depth ranges from 10 m
(red) to 50 m (yellow). The red box marks the location of the bigger map.

(R Core Team, 2020) using functions provided by Zuur et al.
(2009). A threshold of VIF > 3 was applied to identify highly
collinear variables and exclude them from further analyses (Zuur
et al., 2010). The exported grids for each selected parameter
were stacked and transformed into feature-vectors where each
grid cell became one vector with four features (1 parameter = 1
feature). In our definition, a pelagic micro-habitat with a
spatial extent of ∼25 m × 1 m corresponds to one of those
feature-vectors (Figure 2).

Based on these feature-vectors the AE was trained to
reconstruct the original micro-habitats and thereby learn relevant
abstractions that represent important patterns in the pelagic
environment. We used a GPU supported TensorFlow backend
(Abadi et al., 2015) for Keras (Chollet, 2015) under Python 3.7
(Van Rossum and Drake, 2009) to build and train our AE.

Model Description
The AE consisted of two fully connected layers in the Encoder
and Decoder, respectively. The Decoder used the transposed
weights of the Encoder in reversed order, e.g., the weights of
the first Encoder-Layer were shared with the last Decoder-Layer.
The first layer of the Encoder inflated the 4-dimensional feature-
vector to a 100-dimensional feature-vector, which was reduced to
a 2-dimensional feature-vector by the second layer (4 – 100 – 2).
The Decoder did the same in reverse (2 – 100 – 4). The batch
size (number of inputs that are processed simultaneously) was
set to 38 and the learning rate followed a sawtooth-like scheme,
initialized at 5e−8. Each input feature-vector corresponds to one

micro-habitat and includes 1 measurement of each parameter
selected for the analyses. The model was trained using the data
from HE429 exclusively. Approximately ∼ 13% of the data was
separated to validate the training process based on the remaining
87%. Data from HE534 was used as a final test set. As an AE
is a gradient-based method, the chosen starting point may be
crucial for the final fit of the model (Hinton, 2006), and one
way of assessing and reducing the effect of start conditions are
multi-start approaches (Subbey, 2018). Therefore, we trained
multiple models and selected the one with the smallest final
validation RMSE.

Habitat Segregation
By applying the trained Encoder only, we projected all micro-
habitats into a xy-coordinate system using the 2-dimensional
intermediate output. We will refer to the encoded outputs
as “Encoded Components” in the following. Micro-habitats
with similar characteristics were projected closer to each other
than micro-habitats with different characteristics. We used the
Euclidean distance to calculate the dissimilarity matrix for the
Encoded Components of the micro-habitats, which was clustered
by the HDBSCAN algorithm (McInnes et al., 2017). HDBSCAN
uses a density-based linkage function, defining clusters by the
size of the area in which a certain number of neighbors
is found. Micro-habitats in “sufficiently dense” regions were
assigned to a macro-habitat. Obviously, the parameters “size
of the neighborhood” (Epsilon) and the “critical number of
neighbors” (min_samples) are determining the resulting clusters
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FIGURE 2 | Schematic data processing from measurements to feature-vector. Step 1: original measurements; Step 2: gridded parameter table; Step 3: stacked
grids; Step 4: feature-vector for 1 of the 91 grid-cells.

(dense areas) with HDBSCAN. Thus, we checked the resulting
macro-habitats for multiple different combinations of these
two parameters as well as “min_cluster_size.” The parameter
“min_cluster_size” is the threshold that separates “sufficiently
dense” regions (clusters) from the random background noise.
All micro-habitats that were not assigned to a specific macro-
habitat by HDBSCAN got the label “−1.” Homogeneous regions
in the transect produced more dense regions in the 2-dimensional
surface that were more likely to trespass the “min_cluster_size”
threshold and were separated from other homogeneous water
masses by less dense regions. We used the silhouette method
(Rousseeuw, 1987) to select the best segregation of micro-
habitats. The silhouette score ranges from “−1” to “1” and
indicates how well each point fits into the assigned cluster
(macro-habitat) and is one of the best performing indices
available (Arbelaitz et al., 2013). “−1” is probably wrong labeled,
“0” is close to the decision boundary of two clusters and “1”
means this specific point is far away from points of other
clusters. The silhouette scores were calculated using the scikit-
learn module (Pedregosa et al., 2011) for python.

Analyses
We used ODV to add a transect plot of the identified
macro-habitats to the original measurements and plankton
densities. Isolines of selected parameter measurements were
overlayed on the macro-habitat plots to investigate which feature
characteristics contributed to the segregation and to assess the
associated plankton communities.

We furthermore described the macro-habitat plankton
communities by modified Species-Abundance-Plots (SAP). We
calculated the relative number of micro-habitats by plankton
density and taxonomic group for each cluster. As is common for
SAPs we used a log2 scale for density. That way we visualized the
shift in specific species densities between the macro-habitats of
different segregations of the same ROTV survey transect.

Pelagic submesoscale features often are highly productive
areas and aggregate particles (Levy and Martin, 2013; Lévy
et al., 2018). Therefore, we calculated Lloyd’s mean crowding
(Lloyd’s MC) and Lloyd’s index of patchiness (Lloyd’s IP) with
the R-function “agg_index” from the “epiphy” package (Gigot,
2018) and compared the results for different segregations of the
same transects. Lloyd’s index is >1 if species were aggregated, 1
if the distribution is random and <1 indicates an overdispersed

distribution compared to a homogeneous distribution. The Index
of aggregation proposed by Bez (2000) (Bez’s IoA) was calculated
in addition to Lloyd’s IP.

Data handling was done with R (R Core Team, 2020) and some
tidyverse packages (Wickham et al., 2019), namely purrr, tibble,
dplyr, ggplot2, and tidyr.

RESULTS

In the initial VIF analysis with the full dataset a couple of
parameters had VIF > 3. After removing “density” which had
the highest score, no further parameter exceeded this threshold
(Supplementary Table 1). After a detailed analysis of model
sensitivities and reconstruction quality we decided to limit the
final parameter selection to (1) vertical temperature difference to
the grid cell above, (2) salinity, (3) oxygen, and (4) chlorophyll-
a concentration.

Model Training
The root mean squared error (RMSE) after the first epoch ranged
roughly between 0.7 and 1.0. Each training epoch took 10–15 s
using a graphic card with 768 gpu-cores and we trained each
model for 15 epochs until a plateau was reached (Supplementary
Figure 1). The final training and validation RMSE of our selected
model were RMSETr ∼ 0.33 and RMSEVal ∼ 0.35 (Figure 3).

FIGURE 3 | History of model training. Black: validation, blue: training, gray:
learning rate (sec. axis).
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Clustering
Depending on the HDBSCAN parameter selection, micro-
habitats were grouped into 2–20 macro-habitats that ranged
in size from <0.1 to 97% of all micro-habitats in a transect.
We present exemplary the results for the segregation of T3
into different numbers of macro-habitats. Different parameter
combinations could lead to an identical number of segregations.
We chose an inverse size-cluster-relationship in the figure
since more macro-habitats were usually ecologically less
plausible (Figure 4). Mostly, “epsilon” had a great impact on
the segregation with specific combinations of “min_cluster_size”
and “min_samples” but less influence with other tested
combinations of those two parameters, indicating that
segregations changed discontinuously with slopes and plateaus
(Supplementary Figure 2).

Even though the label “−1” is used by HDBSCAN to
indicate the lack of belonging to a specific cluster, we observed
a close relationship between micro-habitats labeled “−1” and
exceptionally strong chlorophyll-peaks throughout all transects.
Therefore, we decided to treat “−1” as a macro-habitat of its own
instead of unclassified micro-habitats. Micro-habitats labeled as
“−1” were also frequently located between the BL and the SL.

Projections
While cluster-labeling was not consistent in that cluster “0”
always referred to, e.g., the “surface mixed layer,” the projections
of the “surface mixed layer” micro-habitats were always located
in a similar position throughout all projection plots. Thus, while
the cluster denotations related to a macro-habitat were not
consistent, the position indicated the affiliation to a specific
macro-habitat (Figure 5).

Silhouette Method
The segregation into three macro-habitats gave the highest
average silhouette-scores in most cases: notably high chlorophyll-
peaks were merged into one macro-habitat (1) and two further
macro-habitats were separated at around 17◦C in an upper
surface mixed layer (2) and a lower bottom layer (3). There
was only one exception from this rule in T1 where in the

northern, deeper area the bottom layer (3) was replaced with
the layer including the chlorophyll-peaks (1). Another anomaly
occurred in T2, where one of the basic macro-habitats was further
separated into two “sublayers” so that a total of four macro-
habitats were segregated. The highest silhouette-scores ranged
from 0.35 (T1) to 0.59 (T5) (Table 1).

In the following we will use abbreviations for the three main
layers and their sublayers, namely “PL” for the productive layer
with the high chlorophyll values, “BL” for the bottom layer and
“SL” for the surface mixed layer. A segregation into more than
one layer is indicated using numbers, e.g., “SL1”/“SL2” instead
of “SL.”

Habitat Maps
We present T2 exemplarily for all transects of HE429 (Figure 6).
Segregating the output of the Encoder into 3 macro-habitats, we
got the typical scheme of a SL with temperatures above 17◦C, a
macro-habitat which was strongly associated with extraordinary
high chlorophyll-peaks (PL) and a BL as a third macro-habitat.
The average silhouette-score for the entire transect was 0.54
(Table 1). However, this clustering did not account, e.g., for the
intrusion of marine snow particles into the SL in the eastern
half of the transect. When accepting 4 different macro-habitats,
the BL and PL macro-habitats were mostly unaffected, while
the SL was further separated into 2 different macro-habitats.
One corresponded to the area where marine snow particles were
predominant while the second macro-habitat corresponded to
the area where pluteus larvae were observed in high densities.
Segregating characteristics of the two macro-habitats were a
salinity difference of 0.2 and a shallowing of the thermocline
from 10 m to 5 m water depth. Notably, this change around
section distance 18–20 km was located at the entry point of the
transect into the Offshore Wind Farm BARD. This segregation
increased the average silhouette-score for the entire transect to
0.56 (Table 1).

Species Abundance Plots
The segregation into four macro-habitats was further supported
by the modified SAPs. The relative amounts of PL and

FIGURE 4 | Number of segregated macro-habitats. The Figure was produced with Epsilon = 0.32. Yellow cross: selected segregation.
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FIGURE 5 | Projections for different segregations of all transects from HE429. The number of segregated macro-habitats is indicated by the last digit in the panel
header. BL, Bottom layer (blue); SL, Surface mixed layer (yellow-red); TC, Thermocline Layer; PL, Productive layer (black). Numbers were used to indicate that, e.g.,
more than 1 “Bottom layer” was segregated (e.g., B1/B2 instead of BL).

BL did not change much between 3 and 4 macro-habitats.
However, SL1 included all micro-habitats with copepod densities
>8 N l−1 and basically all micro-habitats where pluteus
larvae occurred. SL2 instead included micro-habitats with

TABLE 1 | Silhouette method to select the best clustering.

Transect Silhouette score Segregation

HE429 T1 0.35 14583_21220_22015

HE429 T1 0.11 24657_21940_1949_9272

HE429 T1 0.07 12983_596_682_589_21028_21940

HE429 T2 0.54 5221_24912_12213

HE429 T2 0.56 6548_25232_5138_5428

HE429 T3 0.44 18748_21014_56730

HE429 T3 0.34 21660_56167_1371_15859_1435

HE429 T4 0.46 2054_5928_8107

HE429 T4 0.39 3202_5928_605_6354

HE429 T5 0.59 1729_4823_9331

HE429 T5 0.39 4582_5148_990_5163

HE429 T6 0.45 5558_14792_12965

HE429 T6 0.18 14589_12789_1229_4708

HE534 T1 0.40 7488_15344_53469

HE534 T2 0.26 21737_15535_123541

HE534 T2 −0.08 22248_4062_2099_132404

HE534 T2 −0.04 24788_15535_4115_1977_113215_1183

HE534 T3 −0.08 18944_2382_1156_1597_7140_9128

The numbers in “Segregation” give the number of micro-habitats by macro-habitat,
e.g., X_Y_Z indicates 3 macro-habitats with X, Y, and Z micro-habitats, respectively.

copepod densities <8 N l−1 and generally less chlorophyll,
but most micro-habitats where Appendicularia occurred. Thus,
the SL1 and SL2 plankton communities were clearly distinct
(Figure 7).

Lloyd
Lloyd’s mean crowding underpinned the SAP results. Patchiness
in PL and BL did not change for “marine snow” and “pluteus” but
differed clearly between SL1 and SL2, indicating a higher pluteus
aggregation in SL1 and a higher aggregation of marine snow in
SL2 (Table 2).

Test Dataset HE534
The temperature maximum during HE534 was around 15◦C,
i.e., 2◦C lower than the threshold that separated SL and BL
in HE429. Consequently, no thermal stratification was detected
by the Encoder trained with HE429 measurements. However,
this model segregated an oxygen-rich layer that, based on the
projections of the Encoder, resembled a similar habitat as the SL
in HE429. This oxygen driven stratifications were not consistent
over the entire range of a transect and in some areas the macro-
habitat with projections similar to BL in HE429 comprised the
entire water column, indicating a mixed water column closer
toward the coast. Notably, plankton aggregations were commonly
located at the border between oxygen-stratified and mixed water
columns (Figure 8). The highest average silhouette-scores were
reached with three segregated macro-habitats. However, the
scores were much lower compared to HE429 with a maximum
between 0.26 and 0.40.
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FIGURE 6 | HabitatMap of T2 (HE429) with marine snow density (A,B) and pluteus density (C,D) as isolines. The OWF BARD is located between the vertical red
lines. (A,C) 3 segregated macro-habitats, (B,D) 4 segregated macro-habitats. Different colors represent different macro-habitats. Different numbers are the
respective densities indicated by the isolines.

FIGURE 7 | Relative count of density by macro-habitat for selected species on transect T2 (HE429). (A) 3 macro-habitats, (B) 4 macro-habitats. App,
Appendicularia (N l−1); Chl-a, chlorophyll-a (RFU); Cop, Copepoda (N l−1); Mar snow, marine snow (N l−1); Plu, pluteus (N l−1).
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TABLE 2 | Lloyd’s mean crowding and Bez’s Index of aggregation for 3 and 4
segregated macro-habitats for transect T2 (HE429).

Number of
macro-habitats

Macro-
habitat

Plankton
group

Lloyd’s
MC

Presence Index of
aggregation

3 PL ms 0.79 0.37 5.61e-04

3 BL ms 2.35 0.78 6.72e-05

3 SL ms 0.43 0.25 2.67e-04

4 PL ms 0.65 0.34 4.50e-04

4 BL ms 2.35 0.77 6.66e-05

4 SL1 ms 0.23 0.07 1.02e-03

4 SL2 ms 0.43 0.41 4.14e-04

3 PL plu 2.19 0.14 2.10e-03

3 BL plu 0.00 0.01 6.75e-04

3 SL plu 3.56 0.36 3.78e-04

4 PL plu 3.39 0.20 1.51e-03

4 BL plu 0.00 0.01 6.58e-04

4 SL1 plu 3.56 0.67 4.63e-04

4 SL2 plu 0.36 0.06 1.57e-03

Presence gives the relative number of micro-habitats with density >0. ms, marine
snow; plu, pluteus.

DISCUSSION

Selection of Parameters
When training the model, we got the best results with a limited
selection of parameters compared to the entire set of available
data. The selected parameters are, however, in accordance with
previous findings that physical properties contribute most to
differences in habitat utilization by plankton organisms (Schulz
et al., 2012; Friedland et al., 2020). In contrast to Alvarez-
Berastegui et al. (2014), we did not benefit from the combination
of gradients with the original measurements. However, a prior
wavelet analysis as in North et al. (2016) could help to identify
relevant spatial scales for the derivation of gradients. It is also
possible, that the architecture of the model limited the amount
of compressed information accessible to the clustering algorithm.
In convolutional AEs, the size of the bottleneck (intermediate
output) limits the generalization of the model (Manakov et al.,
2019). This is also true for the fully connected AE architecture
of this model and might limit the potential of including more
variables like species densities and environmental gradients.

Reconstruction Loss
The loss for the optimization of an AE is based on the
difference between the reconstruction and the original input.
However, driving forces behind habitat partitioning vary with
study region and season and specific parameters have a higher
contribution than others (Schulz et al., 2012; Espinasse et al.,
2014; Friedland et al., 2020). Thus, we deemed it more important
to accurately reconstruct specific features (parameters) compared
to entire vectors (micro-habitats). Accordingly, we calculated
the sum of the batchwise RMSE between the specific feature-
values (e.g., temperature) of each input and the corresponding
feature-values of the reconstructions and not the RMSE of
an entire feature-vector (micro-habitat) and its reconstruction.
This forced the AE to learn all parameters individually and
furthermore made it possible to give specific parameters a higher
priority if appropriate.

Aggregation
Lloyd’s IP is an area-related quality measure for Lloyd’s MC and
thus sensitive to zeros. As can be seen in our example (Table 2),
the “spillover” from a crowded to an empty macro-habitat in
the area of the decision boundary leads to misleadingly high
Lloyd’s IP, and to a lesser degree, misleadingly high Bez’s IoA,
even though this Index is supposedly insensitive to zeros. In
accordance with the recommendation by Bez (2000) we therefore
suggest Lloyd’s MC as a measure of aggregation within a macro-
habitat. Lloyd’s IP and Bez’s IoA might still be informative if the
overall colonialization of the macro-habitat is considered.

Pelagic Habitats
The model segregated three (four) distinct pelagic habitats in
HE429: (1) a SL (SL1/SL2) mainly characterized by temperatures
>17◦C, (2) a BL on the other side of that threshold, and (3) a
PL dominated by high chlorophyll concentrations. In contrast
to SL and BL, PL was not a true cluster by the definition of
HDBSCAN, which indicates a great variability within the micro-
habitats belonging to PL. That makes them “special” or at least
“different” from common micro-habitats in SL and BL. Micro-
habitats of PL were usually located around the 17◦C isoline and
at the occurrence of exceptionally strong chlorophyll-peaks.

In the North Sea, peaks of primary production following
the spring bloom were observed in subsurface layers

FIGURE 8 | Habitat maps for T1 and T2 from HE534. The isolines give the densities (N l−1) of pluteus for T1. Isolines in the figure of T2 include pluteus, marine
snow, and dinoflagellates (all in N l−1). (A) T1 and (B) T2. Different colors represent different macro-habitats. Different numbers are the respective densities indicated
by the isolines.
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(Richardson et al., 1998, 2000). The PL most likely resembles
such areas of subsurface productivity.

Furthermore, the model detected an upward doming of the
thermocline within an OWF, probably caused by enhanced
vertical mixing (Segtnan and Christakos, 2015; Floeter et al., 2017;
Schultze et al., 2020). The upward doming and the resulting
temperature differences are comparable to those observed within
cyclonic eddies (Dong and McWilliams, 2007; Marmorino et al.,
2018), indicating that OWF’s can influence the pelagic realm
in the same order of magnitude as natural (sub-) mesoscale
processes like eddies. The doming of colder, nutrient-rich water
can produce chlorophyll peaks (Munk et al., 1999), indicating the
potential for an enhanced primary production in this area.

Cumulative effects of single foundations might lead to a
blocking effect around OWF’s, similar as observed for islands
(Simpson et al., 1982), which has the potential to produce
submesoscale eddies (Dong and McWilliams, 2007) in addition to
local upwelling fronts (Floeter et al., 2017). Common properties
that are used to describe hydrographic eddies and fronts include
water velocity, vorticity and the Rossby number (e.g., Lévy et al.,
2012; Marmorino et al., 2018), all of which were not available to
us, which makes it less likely to detect such features.

The situation during HE534 was fundamentally different
from HE429, most likely due to the weather conditions prior
to the cruise that dispersed a thermal stratification. However,
the projections indicated that similar SL and BL as in HE429
were detected. In case of HE534, segregations occurred along an
oxygen isoline (>235 µmol l−1) instead of temperature (>17◦C)
as during HE429. This is in accordance with findings of Friedland
et al. (2020) and references within that the predictive power of
variables might change. This variable nature inherently present
in pelagic data (Hinchey et al., 2008; Thompson et al., 2016)
makes it so challenging to accurately predict pelagic habitats. The
temperature isolines in T1 and T2 (Supplementary Figure 3)
clearly indicate the presence of a tidal mixing front (see Hill et al.,
1993). A convergence slick, which is typically associated with
such tidal mixing fronts (Hill et al., 1993), would also explain the
observed aggregation of plankton particles at the intersection of
the two macro-habitats (Figure 8).

There exists plenty of evidence that physical properties
also structure the marine plankton communities (e.g.,
Swalethorp et al., 2015; Van Leeuwen et al., 2015; Lindegren
et al., 2020). However, the generated habitat maps have only
limited explanatory power considering the observed plankton
communities. This is not unexpected since physical properties
are merely incomplete predictors for the community structure
which is most likely further shaped by niche-based processes and
interactions (Houliez et al., 2021).

Top predators aggregate in areas with the highest prey-
patch densities (not to be confused with the area of highest
prey densities!) (Benoit-Bird et al., 2013) and peak abundances
of zooplankton and fish larvae are frequently observed in
the direct vicinity of frontal convergence zones (Munk et al.,
1995, 2002; Höffle et al., 2013; Munk, 2014; Swalethorp et al.,
2015). In addition to the horizontal agglomerations, thermo-,
and haloclines can produce further vertical structuring (Höffle
et al., 2013; Lindegren et al., 2020). Thereby, more pronounced
differences lead to a stronger niche separation and less overlap

between different species (Lindegren et al., 2020). Changes in
nitrate (Scharfe and Wiltshire, 2019) and silicate (Wiltshire et al.,
2015) availability produce a temporal succession of different
dominant taxa in the tidal advected phytoplankton community.
Especially the plankton community is thus shaped by complex
spatio-temporal dynamics and local prey patches have the
potential to shape the distribution of higher trophic levels (Pope
et al., 1994; Burkhard et al., 2011; Benoit-Bird et al., 2013; Defriez
et al., 2016), even though this might be of less importance for
ecosystem services in a highly diverse and partly functionally
redundant plankton communities like that of the North Sea
(Atkinson et al., 2015).

COMMENTS AND RECOMMENDATIONS

Future work should aim to include species densities and water
current related measurements in order to accurately predict not
only physical habitats but also realized ecological niches and
hopefully improve our understanding of the complex dynamics
shaping the pelagic realm.

Our approach offers beneficial properties to solve this
challenge: the AE is a highly non-linear tool to reduce the
dimensionality of a nearly unlimited amount of data that can
be extended as needed. Additionally, HDBSCAN is a cluster
algorithm that makes as few assumptions as possible, i.e.,
regarding number or shape of clusters. HDBSCAN can also
handle outliers on it’s own in opposite to, e.g., k-means, and even
enables to treat them in our case as an own macro-habitat. While
machine learning might not give insight into the underlying
mechanistic, it can give a starting point from which to begin
future investigations (Friedland et al., 2020).
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With recent advances in Machine Learning techniques based on Deep Neural Networks
(DNNs), automated plankton image classification is becoming increasingly popular within
the marine ecological sciences. Yet, while the most advanced methods can achieve
human-level performance on the classification of everyday images, plankton image data
possess properties that frequently require a final manual validation step. On the one hand,
this is due to morphological properties manifesting in high intra-class and low inter-class
variability, and, on the other hand is due to spatial-temporal changes in the composition
and structure of the plankton community. Composition changes enforce a frequent
updating of the classifier model via training with new user-generated training datasets.
Here, we present a Dynamic Optimization Cycle (DOC), a processing pipeline that
systematizes and streamlines the model adaptation process via an automatic updating
of the training dataset based on manual-validation results. We find that frequent
adaptation using the DOC pipeline yields strong maintenance of performance with
respect to precision, recall and prediction of community composition, compared to
more limited adaptation schemes. The DOC is therefore particularly useful when
analyzing plankton at novel locations or time periods, where community differences are
likely to occur. In order to enable an easy implementation of the DOC pipeline, we provide
an end-to-end application with graphical user interface, as well as an initial dataset of
training images. The DOC pipeline thus allows for high-throughput plankton classification
and quick and systematized model adaptation, thus providing the means for highly-
accelerated plankton analysis.

Keywords: machine learning, deep neural networks, plankton community, classification, model adaptation
INTRODUCTION

Plankton is a diverse group of organisms with a key role in marine food-webs and biogeochemical
cycles (e.g. Castellani and Edwards, 2017). It is furthermore responsible for about 50% of the global
primary production, and they serve as prey for upper trophic levels and as recyclers of organic
matter. Changes in their abundance, biogeography or size structure can thus lead to large changes at
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the ecosystem level (e.g. Frederiksen et al., 2006; Capuzzo et al.,
2017). Climate change in particular can cause major changes in
plankton community characteristics. The range of specific
research on plankton in the ecological context is wide,
covering issues such as the effect of ocean acidification on
calcifying organisms (e.g. Stern et al., 2017), migrations of
plankton taxa in response to ocean warming (Beaugrand,
2012), or the determination of available food biomass to larval
fish at changing hatching times (Asch et al., 2019; Durant et al.,
2019). Ultimately, however, many of these address – directly or
indirectly – the effects of environmental change on the
abundance of commercially exploited marine fish species,
which are dependent on plankton either as food for their early
life-stages, or as food of their prey. As plankton forms the base of
any marine food web, climate effects are propagated to higher
trophic levels via the response of the plankton community to
climate change (Winder and Sommer, 2012; Nagelkerken et al.,
2017). Monitoring its composition and abundance is hence of
great importance to understanding the effects of climate change
on the entire marine ecosystem and services it provides
to humanity.

The study of plankton in an environmental context is both
quantitative and qualitative in nature. While certain plankton
estimates (e.g. phytoplankton biomass) can be inferred from
analysis of satellite imagery, most studies require abundance
indices of specific taxa that can only be derived from sampling
plankton in situ and determining its composition. Depending on
the research subject, the taxonomic, life-stage and size
composition of plankton can e.g. indicate the presence of a
community specific to a certain water mass/current (Russell,
1939; Beaugrand et al., 2002), an abundance shift of potentially
climate-sensitive species, or the abundance of planktonic food
suitable to a particular predator of interest (Dam and
Baumann, 2017).

Traditionally, plankton samples have been analyzed by
humans with optical devices like microscopes (Wiebe et al.,
2017). The accuracy of taxonomic classification was usually
high when done by experienced personnel, but it could
decrease significantly in complex tasks, such as the
differentiation between morphologically similar taxa
(Culverhouse et al., 2003). Additionally, sample processing rate
is limiting the total number of samples that could be processed
using traditional microscopy. The introduction of plankton-
image recorders for both in situ (e.g. Video Plankton Recorder,
VPR, (Davis et al., 1992)) and/or fixed samples (e.g. Flow
Cytometer and Microscope [FlowCAM®; Sieracki et al., 1998)],
together with the development of image-classification
algorithms, has led to great advances in the processing of
plankton samples over the last two-to-three decades (e.g.
Kraberg et al., 2017; Lombard et al., 2019; Goodwin et al.,
2022). Image recording enables the temporally unlimited
storage of visual information even for samples that cannot
withstand fixing agents for a long time. Furthermore, given
that the photographs are stored on disk, all visual information
is kept permanently, and is available for discussion, unlike the
memories of an expert. However, one of the challenges of these
Frontiers in Marine Science | www.frontiersin.org 219
plankton image-recording devices (like VPR or FlowCam) is the
large number of images that need to be classified (e.g. > 52
million in Briseño-Avena et al., 2020). So far, classification
models are intended to greatly increase classification speed, be
it via an entire replacement of expert classification with model
predictions (Briseño-Avena et al., 2020), or by yielding a rough
pre-sorting that alleviates expert validation (Álvarez et al., 2014).

Image classification models were introduced in the late 1980s,
first in the form of Neural Networks (NN), which were famously
employed for the classification of handwritten digits by the US
postal service (LeCun et al., 1989). In the mid-1990s, these were
temporally superseded by Support-Vector Machines (SVMs),
and for the first time applied for plankton classification in
1998 by Tang et al. (1998). Neural Networks were, at that
time, relatively simple in design and could only be applied for
simple classification tasks, e.g. discriminating between the
clearly-shaped digits. While theory allowed the design of larger
NNs for more complex targets like plankton images, constraints
in computational power put a temporary constraint on this (e.g.
Gu et al., 2018).

SVMs became the tool of choice for plankton classification in
the 2000s and early 2010s due to relatively strong performance
(e.g. Álvarez et al., 2012). However, they were limited in
capability and convenience-of-use by the need for human-
defined features for class-discrimination (a limitation not
present in NNs). Such “feature-engineering” was required to
reduce the enormous amount of information contained in an
image (a data point in Rn-dimensional space, n being the number
of pixels) to details required to automatically tell classes apart
(Scholkopf and Smola, 2002). Many publications of that time
concerned the engineering of new features for better class
separation, and the problem of the redundancy of devised
features (e.g. Tang et al., 1998; Tang et al., 2006; Li et al.,
2014). Even then, unique difficulties posed by plankton images
became apparent, including the transparent nature of many
plankton taxa and morphological similarities between classes.

Computational power increased strongly in parallel to SVMs
reaching their peak of popularity, and NNs eventually regained
strong popularity (e.g. Chollet, 2017). In 2012, Krizhevsky et al.
won the ImageNet contest with a so –called Deep Convolutional
Neural Net (CNN), beating the peak performance achieved in the
years prior by a before-unachieved margin. The advances in
classification accuracy led to massive investments into the design
and application of Deep Neural Nets (the “parent class” of
CNNs) in research and economy (Chollet, 2017).

Plankton classification eventually followed suite in this
general trend (e.g. Orenstein et al., 2015; Al-Barazanchi et al.,
2018), due to the capability of “deep” CNNs to devise and select
features themselves; a process colloquially termed “Artificial
Intelligence” (AI). CNNs are essentially a complex extension of
multinomial regression, whereby the model input, the image, is
an array of pixel values, and the output a quasi-”one-hot”-
encoded class vector. The vector dimension with maximum
value is taken as the predicted class index. Different from
simple regression, several “layers” of neurons” – essentially
arrays or vectors, lie in-between the model input and output.
April 2022 | Volume 9 | Article 868420
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These contain abstracted information from the image, with
parameters between any element of two adjacent arrays or
vectors determining the flow of information (i.e., the filtering-
out of information) from lower- to higher-order input
representation (LeCun et al., 2010). During model fitting, the
backpropagation algorithm transmits classification loss to each
parameter using differential calculus, allowing for gradient-based
optimization of the complex NN (Rumelhart et al., 1986).
Backpropagation essentially allows the model to “learn” to
filter information “wisely” by optimizing its parameter values
over multiple iterations of fitting (e.g. Goodfellow et al., 2016).

Today, CNN classification models can reach accuracies of well
over 95% (e.g. Al-Barazanchi et al., 2018), making automatic
plankton classification appearing like a “solved task” at first sight.
However, these accuracy values are usually derived from
performance on test data originating from the same statistical
population as the training data. Thus, these outcomes are only
“snapshots” of the range of performances that will occur when a
static model is applied to plankton samples that lie outside the
“population”, where the training data originate from. More
precisely, the plankton community tends to vary strongly in time
and space, and this variability is precisely what most plankton
researchers are interested in. As new taxa appear in a specific
location or as formerly less-frequently encountered taxa increase in
abundance, a classification model trained on a plankton
community, or a pool of communities, from different geographic
Frontiers in Marine Science | www.frontiersin.org 320
or temporal origin will likely perform poorly on the respective new
samples (dataset shift; Moreno-Torres et al., 2012). González et al.
(2016) noted the variability in model performance on samples of
different origins and recommended to focus the development of
applications robust to various distances between training set and
field samples. Also, the non-homogeneous distribution of plankton
taxa in the field means that training datasets are often strongly non-
homogeneous in distribution of images over classes, as well. This
poses a constraint to the successful training of a CNN, since the
resulting model will perform well on the dominating classes, but
poorly on lower-abundant ones. Note that this is not necessarily
reflected in the general accuracy metric, which only accounts for the
total number of correctly classified images pooled over all classes.

One further difficulty in automated plankton classification lies in
the sometimes high inter-class similarity (e.g. bivalves and some
dinoflagellate taxa) (Figure 1A) and high intra-class variability in
appearance (which is founded in the existence of sub-taxa, different
life-stages or different appearances resulting from different imaging
angles) (Figure 1B) of plankton organisms. Thus, if the intra-class
variability is not homogeneously reflected in the training set, the
ability of the CNN to discriminate between classes may be limited to
only a fraction of the existing sub-classes.

In summary, the current constraints on successful training
and application of models for automatic plankton classification
are the often limited quality of training sets, and the high spatio-
temporal dynamics of the plankton community. Under these
A

B

FIGURE 1 | Examples of strong inter-class similarity (A) and high intra-class dissimilarity (B). (A) A dinoflagellate of the genus Protoperidinium spp. (left), and a
juvenile bivalve (right). (B) Two dinoflagellates: Ceratium fusus (left) and Ceratium tripos (right).
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circumstances, manual validation and correction of the model
results is recommended (Gorsky et al., 2010), as is the adaptation
of the model to avoid a decrease in classification performance.
The latter usually requires the availability of machine-learning
expertise, a commodity often lacking in the marine sciences
(Malde et al., 2020). Research and development should thus be
focused on reducing the time required for the validation task and
on improving operability of classifier models by non-AI-experts.

Here, we follow González et al.’s (2016) suggestion and propose
a pipeline for alleviating the task of model adaptation to a changing
plankton community, and thus for reducing the time for manual
validation: A “dynamic optimization cycle” (DOC) for iterative use
accessible by non-AI-experts. By making applied use of a trained
model on field samples, correcting the classification and evaluating
model performance through expert knowledge, and updating
the model training set and the model itself (through training on
the updated image set), the classifier model adapts to spatial and/or
temporal changes in the plankton community. It thus maintains
high classification performance, ensuring that validation workload
remains relatively constant. The systematization of this procedure,
and the implementation of the DOC as an end-to-end application
with graphical user interface, removes the requirement for expertise
in designing and coding CNNs. The DOC was designed for the
classification of FlowCam images and the workflow related to
studies using the FlowCam, but is likely applicable for other types
of plankton images and different types of workflow, as well.
MATERIALS & EQUIPMENT

Hardware and Software Requirements
Training of NNs was performed with a Nvidia® (Santa Clara/
California/US) Quadro P2000 GPU with 4 GiB RAM (driver
version 410.79) on a Dell® (Round Rock/Texas/US) Precision
5530 notebook with 32 GiB RAM. CUDA® (Nvidia, Santa Clara/
California/US) version 10.0.130 was used for enabling the GPU
to be used for general purpose processing. Programming was
performed in Python 3.6.8 (van Rossum, 1995) using the Spyder
Integrated Developer Environment (Raybaut, 2017) with
Ipython version 7.2.0 (Perez and Granger, 2007). Packages
used for analyzing classification outputs included NumPy
(Oliphant, 2006), pandas (McKinney, 2010) and Dplython
(Riederer, 2016). Packages used for image pre-processing
included Matplotlib (Hunter, 2007), PIL (Lundh and Ellis,
2019) and Scipy (Oliphant, 2007). Tensorflow 1.12.0 (Abadi
et al., 2015) and Keras 2.2.4 (Chollet, 2015) (with Tensorflow
backend) Advanced Programming Interfaces were used for
building, training and application of the classifier models.
METHODS

Model Design and Training
A convolutional neural net (CNN) was built based on the
publicly available “VGG16” network architecture (Simonyan
and Zisserman, 2015). This architecture consists of 13
Frontiers in Marine Science | www.frontiersin.org 421
convolutional layers, i.e. 13 intermediate data representations
in the form of a stack of matrices that account for positional
relationships between pixels of the input image. These layers are
arranged in five “blocks” of two-to-three layers each, which are
connected via non-parameterized information-pooling layers.
The sixth block consisting of so-called “dense” layers was
removed – as is usually done when applying a pre-defined
architecture – and replaced with custom layers: one
convolutional layer and two dense layers. The design of this
custom “block” of layers - i.e. the number and type of layers, and
the number of neurons (i.e. representation dimensions) of each –
was the result of a try-and-error approach for achieving
satisfying classification performance on training and validation
images (Conradt, 2020). Details on the custom layers can be
obtained from tab. SI V/2.

Model parameters were initialized with the values provided
together with the VGG16 architecture trained on ImageNet data
(Deng et al., 2009) for the respective part of the model, and with
values drawn randomly from a Glorot uniform distribution
(Glorot and Bengio, 2010) for the custom layers, as per default
in the Keras software. Model training (i.e. fitting) was started
with the custom layers and the final block of convolutional layers
of the VGG16 “base” set to trainable. Training was performed by
feeding all training images in a sequence of batches of 20
randomly chosen images to the model. All other hyper-
parameter settings (e.g. optimizer and learning rate for
gradient-based fitting) can be obtained from Tab. SI IV/1. The
choice of hyper-parameter settings was based on a series of trial
runs for different hyper-parameter set-ups (Conradt, 2020).

The entire set of training images was fed eight times (so-called
“epochs”) to the model, with an increasing number of the layers
of the VGG16 base being set to trainable (“unfrozen”) each
epoch (Tab. SI V/1). “Unfreezing” is a common procedure
applied to ensure that learned features are gradually adapted
towards our plankton dataset (VGG16 was originally trained on
the ImageNet set of everyday-object images). The chosen
number of epochs and the “unfreezing” schedule resulted from
optimization through trial-and-error experimentation, as well
(Conradt, 2020).They resulted in a steady increase of validation
accuracy from approx. 88% to approx. 94% (Figure SI VIII/1 B)
and a decrease of validation loss from approx. 0.34 to approx.
0.29 when trained on the baseline training set, though validation
loss did increase slightly from a minimum value of approx. 0.26
at the third epoch (Figure SI VIII/1 A). Validation accuracy was
surpassed by training accuracy by the second epoch, which is
usually a sign of an onset of over-fitting (e.g. Chollet, 2017);
however, the fact that validation accuracy also still increased over
the eight epochs was taken as a sign of a robust training schedule.

We did not utilize data augmentation, a technique in which
artificial transformations are randomly applied to the training
data to reduce model over-fitting and thus improve its
generalizability (e.g. Chollet, 2017). While the approach is
frequently applied in various image-classification tasks (e.g.
Luo et al., 2018; Plonus et al., 2021), previous work had shown
that data augmentation did not markedly improve the
classification when applied to a partly identical data set of
April 2022 | Volume 9 | Article 868420

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Conradt et al. Plankton Classification Cycle
FlowCam images (Conradt, 2020). This observation has also
been made in another instance on an independent plankton data
set (Lumini and Nanni, 2019).

While both the set-up of the CNN and the training scheme
may not represent an optimal configuration (for example, over-
fitting occurred in our experiments), we found the configurations
to yield consistently robust results that were sufficient to support
routine plankton analysis work. Given the relatively high
validation accuracy, our goal was not to further optimize
model design or –training, but instead to maintain this
satisfactory performance level over changes in the composition
of plankton samples.

Image Characteristics
Input image size was set to 120 x 120 x 3 pixels. A size of 256 x
256 x 3 pixels is more commonly used for plankton images (e.g.
Orenstein and Beijbom, 2017; Al-Barazanchi et al., 2018; Cui
et al., 2018), however preparatory work for the present study had
shown that the chosen image size yielded better performance
than a larger size, and leads to a faster processing due to the lower
data dimensionality (Conradt, 2020). The use of a common
square image shape leads to an altered visual appearance of
plankton organisms if the original image had a height-length
ratio very different from 1. This would increase intra-class
variability, an undesirable trait as described above. Therefore,
within the DOC pipeline, images are pre-processed via padding,
i.e. by adding pixels in background color (the mode pixel value of
the outermost pixel row for each color layer) to the sides or top
and bottom to achieve square format, a common procedure in
plankton-image classification (see e.g. Plonus et al., 2021).

Characteristics of the Baseline
Training Set
The baseline image dataset, which is updated as part of the
adaptive procedures of the DOC pipeline, consists of 27900 RGB
FlowCam images of plankton samples gathered from various
North Sea surveys over several years. Images in the dataset were
sorted into 15 classes, including 13 taxonomic groups as well as a
detritus class and a “clumps” class that contains aggregates of
plankton organisms and/or detritus. The distribution of images
over classes was designed to reflect general, though not
empirically determined, patterns of natural relative abundance.
However, the very abundant detritus class was reduced in relative
proportion in order to avoid the learning of a quasi-binary
classification scheme (detritus/non-detritus) by the classifier
model. A random 80% of images of each class were used as
training images for the baseline model, while 10% each were
reserved for validation and testing purposes (see above). The
characteristics of the baseline data set are given in Tab. SI VI/1.

Classification Thresholds
Within the DOC pipeline, the model classification is compared with
expert validation. For each class, the relative amount of correct
predictions is calculated and used as a threshold value against which
the maximum probability value of the CNN output vector (the
Frontiers in Marine Science | www.frontiersin.org
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index of which is the class prediction) is compared. Probability
values above the threshold lead to acceptance of the classification, as
the model classification is deemed “certain”. Probability values
below the threshold lead to rejection of the model classification,
the image is then assigned to an “uncertain-classifications” category.
Initially, thresholds were set to 60% for all classes, as the difference
between the properties of the baseline training set (on which the
baseline model was trained) and the properties of the first station to
be classified was deemed to be larger than that between subsequent
modified training sets and stations.

This procedure was intended to speed up manual validation
by implementing a sort out of images based on probability of
miss-classification, which can then be checked more easily than if
they were not separated from images with high probability of
correct classification.

DOC Pipeline Procedures
The following describes the working steps for applying the DOC
onto any given set of plankton samples (see also Figure 2). A
more thorough user instruction with technical notes of
importance is provided in the appendix (SI 1).

1. Classification (Figure 2A): The DOC pipeline is typically
started by applying the provided classifier model directly on
the classification of plankton samples, thus allowing for
potentially large initial classification error. However, it is
also possible to directly train a custom classifier model if the
user has already generated a training set from manually
labeled images, and perform the classification with this
custom model (for details see SI 1).

2. Validation (Figure 2B): Following the classification of two to
three plankton samples, the model classification is validated
by a plankton expert (by moving images between class folders
into which the images were copied by the DOC application).
The number of samples required before continuing with the
adaptation steps is likely case-specific and might require
some initial trial-and-error experimentation. In our case
studies, we classified two samples at a time. The validated
classification is used as the final classification for further
ecological studies. Model classification and expert validation
are automatically compared and the correct-classification
rate determined for each class.

3. Training-set update and threshold reduction (Figure 2C):
After expert validation, the original model training set is
stocked up with images that were miss-classified by the
model. To this end, first the complement of the correct-
classification rates is normalized via division by the
maximum miss-classification rate over all classes (eq. 1,
top). These values are then multiplied by the number of
miss-classified images of each class to determine the number
of images to be added to the training set (eq. 1, bottom). Not
selecting all miss-classified images reduces the over-
proportionality of naturally-abundant, but well-classified
classes, e.g. detritus, in the image supplement, putting more
emphasis on poorly-classified classes. The images added are
selected randomly.
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pi =
1− 

Ci
Ni

max(1− 
Cj
Nj
  for j ∈ fclass 1…class ng)

A = Fipi

Eq. 1: Calculation of the proportion of miss-classified images to
be added to the updated training dataset (top) and calculation of
the number of images to be added to the training set (bottom). i =
index for classes, p = proportion, C = number of correctly
classified images in a given class, N = number of images
assigned by expert to that class, A = number of images to be
added to the training set, F = number of miss-classified images

The class-specific training-set update is the first part of the
adaptation procedure. A marked increase in the abundance of a
class that was underrepresented in the previous training set will
lead to that class being better represented in the adapted version.
As a second adaptation step, the previous threshold values for
automatic culling of likely miss-classified images (see
Classification Thresholds) are multiplied with the correct-
classification rates. This reduces the threshold percentage above
which a classification will be deemed correct for classes that receive
an increase in training images in the first adaptation step. It is
assumed that large threshold values reduce classification
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performance by the assignment of many in fact correctly-
classified images to the “uncertain-classifications” category. By
decreasing the classification threshold, the number of images
correctly assigned to the predicted classes can theoretically be
increased, leading to higher correct-classification rates.

4. Model training (Figure 2D): The model is then trained on
the updated training set according to the training schedule
described above. It should be noted that a completely new
model instance is generated and trained. This is done to avoid
an over-adaptation of the model on the training data, since
re-training would mean training the existing model for an
additional set of epochs on a still partly identical training set
(no original training images are dropped during training-
set updates).

After training is completed, the new model can be applied on
the next batch of plankton samples, and the adaptation cycle
continues anew. The DOC was devised on the notion that
plankton communities change on a spatial and/or temporal
gradient. It therefore makes sense to process the plankton
samples in the same order as they were taken by the research
vessel (or along hydrographic gradients).

Further notes on the DOC procedures can be found in SI VII.
FIGURE 2 | Sequence of main procedures in the DOC pipeline: After the automatic classification (A) and expert validation of a set of plankton samples (B), the
original model training set is stocked up with a selection of miss-classified images, based on class-specific miss-classification rate. This constrained update reduces
the dominance of naturally-abundant classes in the add-on set. Also, classification thresholds used in automatic pre-classification are reduced based on miss-
classification rates (C). A new classifier model is trained on this updated training set. The new model is used to classify the next set of plankton samples (D).
Further details are given in the text.
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User Application
A user application with graphical user interface was designed to
aid in the implementation of the DOC pipeline. For practical
purposes, it is intended that the DOC pipeline be implemented
by a broad user group not necessarily familiar in the use of
programming languages and/or Machine-Learning techniques.
The DOC application was therefore designed to enable an end-
to-end implementation of all pipeline steps described above. It
consists of a series of executable, partially nested, Python scripts,
one executable Bash (GNU Project, 2007) script that accesses the
Python scripts and a comprehensive instruction guide describing
the implementation of all DOC-pipeline steps in the application
context (SI 1). None of the scripts is protected, which allows
users familiar with the Python programming language to edit
and change scripts in order to make custom changes to the
pipeline processes, if desired.

The DOC application was written in the Python programming
language, making extensive use of the TkInter package for
graphical-user-interface design (Lundh, 2019) and of the os
package for file-system access. One script utilized to start the
application was written in the Bash command language.

The DOC application was designed for use on Linux (The
Linux Foundation, San Francisco/CA) operating systems (tested
on Ubuntu 18 and Linux Mint 19). It requires hardware and
drivers enabling the training and application of Deep Neural
Networks for image classification. For the application
development and for conducting the case studies, a Nvidia®

Quadro P2000 graphics-processing unit (GPU) was utilized.
Further system details are given in SI II. The DOC application
requires the installation of Python 3 (was tested under Python 3.6)
via the Anaconda (Anaconda Software Distribution, 2020)
distribution, and the creation of a dedicated Python
environment containing i.a. the packages Tensorflow (Abadi
et al., 2015) and Keras (Chollet, 2015). Full details on the
environment setup are given in SI III.
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The DOC application is started via the Bash script,
whereupon each of the DOC processes can be started. The
single processes can be executed in the order described above
and suggested in the instruction manual, but can also be executed
singularly, e.g. when only image classification, but not the
implementation of the full DOC pipeline is desired.

The DOC user application, including the baseline training set,
is available on zenodo.org (doi: 10.5281/zenodo.6303679).

Case Studies – North Sea Surveys
The DOC pipeline was applied to samples taken on two plankton
surveys in order to test the performance of the approach.

The surveys were conducted in autumn and winter 2019 in
the Western North Sea. The first survey, undertaken in
September 2019, started offshore the East Coast of Scotland at
approx. 57.5°N/0°E, and moved gradually closer to the British
coast in a zig-zag trajectory between approx. 56.2°N and 57.5°N
(Figure 3A). Samples were taken at these two latitudes and at
approx. 57.9°N. The second survey was conducted in December
2019 in the English Channel, starting at the eastern entrance of
the Channel at approx. 51.6°N/2°E, continuing south-westwards
until approx. 50.25°N/-1°E, and changing direction north-east-
wards, for a route parallel to but closer to the French coast than
the initial trajectory (Figure 3B). Plankton samples were taken
with a PUP net (mesh size: 55 μm) attached to a GULF VII
sampler (HYDRO-BIOS Apparatebau GmbH), which was towed
in double-oblique hauls.

Plankton samples were stored in 4-%-formaldehyde-seawater
solution. Once in the laboratory, samples were processed using a
FlowCam, following the FlowCam® Manual V 3.0 (Fluid
Imaging Technologies, 2011). The FlowCam flow chamber had
a depth of 300 μm, which was also the maximum size of plankton
particles processed by the apparatus (the minimum particle size
was determined by the PUP net mesh size of 55 μm). Flow rate
was set to 1.7 mL min-1, in order to achieve high image quality at
A B

FIGURE 3 | Survey transects and location of the sampling stations from the September (A) and December (B) surveys.
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an acceptable processing speed. Using the AutoImage mode of
the FlowCam’s Visual Spreadsheet software, images were saved
for later processing.

For both surveys, the DOC pipeline was implemented for the
classification of 18 samples, with the samples being processed in
the sequence they were taken at sea (one sample was taken at
each station). The processing sequence equals a spatial and
temporal trajectory through plankton habitat. The adaptation
procedure was implemented every second station, pooling the
images for both stations in order to calculate the misclassification
rate and to supply the information for the update of the training
set. Classification performance was then calculated for each pair
of stations (see below), which in the end yielded a performance
trajectory over the survey samples and adaptation steps. Each
mark on the trajectory thus constituted the performance of one
specific model (trained on one specific version of the training set)
applied to one specific set of images. In the Machine-Learning
context, this information yielded the test performance of the
models at the different adaptation steps, i.e. and indicator of their
performance on non-training images under constant field
conditions (e.g. Chollet, 2017).

In order to assess the importance of the continuous
adaptation, a set of reference runs was performed: After each
adaptation step, the current model was saved, and all subsequent
samples were classified with this model (previous samples were
not classified, as images contained in these were introduced into
the training set during previous adaptation cycles). This way, we
generated a set of reference classification trajectories in which
adaptation is stopped after various numbers of samples
processed (and thus on different points of the survey
trajectory). This set was used to assess the value of continuous
adaptation of the training set and the training of new models
thereon: By comparing the performance of an adapted model to a
non-adapted or less-adapted model at a specific mark on the
classification trajectory, the value of adaptation could be
determined for a specific sample or point on the survey
trajectory. Integrated over all samples, this allowed evaluating
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the performance of DOC-based adaptation over the survey-/
adaptation trajectory, with respect to overall advantage and
potent ia l temporal dynamics in the magnitude of
adaptation advantage.

With eight adaptation steps, nine different classification
trajectories resulted in total: The fully-adaptive pathway (with
one adaptation cycle and the usage of a new model every second
station), and eight pathways in which adaptation was stopped at
a specific station (Figure 4).

We implemented the adaptation pathway twice for each
survey to account for random effects in the adaptation
procedure, generating two replicates each. These primarily
include the parameter initialization before training of every
model (i.e., at every adaptation step) except the base model
(which was always identical) and the selection of miss-classified
images for the updating of the training dataset.

We calculated recall and precision to analyze classification
performance on overall- and class level, as well as cross-entropy
to assess the ability to predict the plankton-community
composition (see Box 1 for details). We compared cross-
entropy with class-specific differences between true and
predicted relative abundance to analyze the driving factors
behind changes in cross-entropy. Means and standard
deviations weighted by class abundance of recall and precision
were calculated for each pair of stations and each adaptation
trajectory. Recall and precision values for “detritus”, “clumps”
and “uncertain predictions” classes were not included in the
calculations of averages in order to focus on the living
components of the plankton (which are the target of plankton
research). More specifically, miss-classification of detritus is of
little concern in research focusing on living biomass, and clumps
are miss-classifications per se, since a researcher would need to
analyze clumps compositions manually nevertheless. The three
classes were excluded from calculation of average precision, as
the direct aim of achieving high precision is to reduce the effort
of removing miss-classified images from a given class folder.
Since detritus, clumps and uncertain classifications are not
FIGURE 4 | Model-adaptation/station-classification schedule for performance analyses. The diagonal row (marked with stars) represents the fully-adaptive
implementation of the DOC pipeline, where an adaptation is implemented every second station. All colored rows show reference runs where samples are classified
with an existing model and without further adaptation.
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directly of interest in plankton research, the desire to achieve
“clean” folders for these classes is comparatively low. These
classes were also excluded from calculating cross entropy due
to them not representing biological taxa.

Analyses and visualization were performed in R version 3.6.3
(R Core Team, 2020), partially using the packages “tidyverse”
(Wickham et al., 2019), “viridis” (Garnier, 2018) and
“radiant.data” (Nijs, 2020).
RESULTS

Overall performance in the fully-adaptive mode of the DOC was
relatively high with regard to recall, with weighted means
ranging between approx. 82 and 92% over all survey-station
pairs. Precision was lower, with weighted means ranging between
approx. 50-75% for the September survey, and approx. 60-80%
(with one very low value of 30% at start) for December.
Performance was sufficiently large to enable successful usage of
the DOC application in the context of experimental research
work, which benefitted from the time-savings through semi-
automatic classification and model adaptation (Börner,
unpubl. data).

Altogether, a fully-adaptive implementation (adaptation cycle
implemented every second station) of the DOC frequently
achieved comparatively high or top level mean performance in
recall and precision metrics, though absolute and comparative
performance varied between both survey month, and, more
strongly, between classes (for details see below). Performance
gains were often largest in the first one to two adaptation cycles,
i.e. after the first adaptation of the baseline training set.
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Recall
Overall, there were no clear trends in mean recall development
over stations for the larger part of the classification trajectory,
neither in the fully-adaptive nor in the less-adaptive
implementations (Figure 5): In the September trajectory, mean
recall for the fully-adaptive mode decreased from approx. 90% by
approx.10% after the third station pair (stations 5 and 6), and
increased again somewhat after stations 11 and 12 in both
replicates (Figures 5A, B). Mean recall at stations 17/18 was
approx. 91%. In the December trajectory, mean recall for the
same mode increased strongly between stations 3/4 and stations
5/6, from approx. 20% to slightly over 90% in both replicates
(Figures 5C, D). Recall remained at a relatively high, though
slightly decreasing level, having a final value of approx. 85% at
stations 17/18.

Relative performance to less adaptive DOC implementations
differed initially strongly between the two surveys, but became
more similar thereafter. While in the September samples no large
performance difference was visible between the adapted and the
baseline model at stations 2/3 (Figures 5A, B), recall for the
more adaptive model strongly outperformed that of the less
adaptive one in the December samples, as a value of over 90%
was achieved with the former, while no marked performance
difference to the first station (approx. 20% mean recall) was
detected in the latter (Figures 5C, D). With the exception of the
baseline model used for the December samples, which remained
at low-level performance of approx. 40% mean over the
trajectory, recall of the fully-adaptive mode was not markedly
superior or even somewhat inferior (in the December samples) to
that of less adaptive approaches, depending on the replicate.
Performance of all adaptive modes converged to a relatively
similar value (approx. 91%) in the final September sample (see
BOX 1 | METRICS FOR THE ANALYSIS OF CLASSIFICATION PERFORMANCE

Recall: Recall is the class-specific ratio of correctly-classified images (true positive classifications) to the total number of images (true positive plus false negative
classifications), where the total number is defined by the expert classification (eq. B1, top). This metric indicates the expert effort required to find miss-classified images in
all other class folders.

Precision: Precision is the class-specific ratio of correctly-classified images (true positive classifications) to the sum of correctly-classified images (true positive
classifications) and miss-classified images (false positive classifications), where the total number is defined by the expert classification (eq. B1, bottom). This metric
indicates the expert effort required to find all images that were mistakenly assigned to a specific class folder

recall =
n true positiveð Þ

n true positiveð Þ + n false negativeð Þ

precision =
n true positiveð Þ

n true positiveð Þ + n false positiveð Þ
Eq. B1: Definitions of recall and precision (class-specific metrics)
Categorical cross entropy: Categorical cross entropy (hereafter referred to simply as “cross-entropy”) measures the loss between a true and a predicted distribution

(eq. B2). This metric is calculated from the true (derived from expert classification) and the predicted (derived from model classification) relative class abundances. Cross-
entropy measures the goodness of predicting the quantitative plankton-community composition. In the present study, for classes with a predicted relative number of zero,
this value was set to one divided by the total number of images in a given sample (the cross-entropy is not defined for data including zero-values; hence, one correct
classification is introduced, which we assume to be a plausible stochastic error given numbers of images per sample of usually more than ten-thousand).

gi = −o
Nc

i=1

ailogbai

Eq. B2: Categorical cross entropy (g). a = true relative abundance, â = predicted relative abundance, Nc = number of classes
Cross-entropy represents information loss between true and predicted distributions, which makes it difficult to interpret single values. Therefore, the metric is used

exclusively for comparative purposes (e.g. for comparing different models) in the present study.
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also Figure SI XI/1). Convergence was not present in the
December samples.

Recall trajectories differed strongly between classes, and
showed stronger fluctuations between station pairs than the
weighted mean trajectory over all classes, with values of zero
and 100% being reached occasionally (Figures 6, SI XI/2).
Trajectories for the fully-adaptive implementation of the DOC
were relatively similar between replicates, though (compare
Figure 6A vs B, and Figure 6C vs D). For many classes, a
recall of markedly over 90% was achieved at least occasionally in
fully adaptive mode, although the identity of these classes differed
between September (Figures 6A, B) and December surveys
(Figures 6C, D). Classes for which a relatively high recall was
frequently achieved (though not necessarily consistently over all
Frontiers in Marine Science | www.frontiersin.org 1027
stations) included Ceratium spp., Protoperidinium spp.
(September survey only), copepods, detritus and diatoms. All
other classes showed relatively high performance at least once in
the recall trajectory; thus it is not possible to name classes for
which recall was particularly poor. The comparative performance
of the fully-adaptive implementation of the DOC varied strongly
between classes, as well. Furthermore, performance also varied
between surveys, and to a smaller extent between replicates. For
some classes, such as bivalves (September), detritus (both
surveys), diatoms (both surveys), dinoflagellates (September),
foraminiferans (September), unknown taxa A, B and C (only
present in September), as well as copepods (December), the fully-
adaptive implementation yielded near- or top-level performance
over the larger part of the stations trajectory. For other classes,
A B

C D

FIGURE 5 | Recall trajectories for different modes of adaptation using the DOC. Solid black line represents weighted mean of the fully-adaptive implementation, grey
area denotes the corresponding weighted standard deviation. Colored solid and dashed lines represent weighted mean and weighted standard deviation of less-
adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second replicate; (C):
December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates and random
parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in Figure SI XI/1.
Note that weighted standard deviation for the fully-adaptive implementation in the December survey is very small compared to that in the September survey.
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including copepods (September) and Dinophysis spp.
(September), comparative performance was relatively constantly
poor. It should be noted that performance differences between
different modes of adaptation were of various magnitudes
between classes. In most classes, the recall trajectory of the
fully-adaptive implementation followed the general trend
shown by all modes of adaptation.

Precision
In general, mean precision increased in both survey trajectories
slightly, in all but the two least adaptive implementations of the
DOC after a more variable initial phase (first two station pairs)
(Figure 7). Mean precision increased from approx. 60% at
stations 5/6 to approx. 75% at stations 15/16 in the September
survey in both replicates (Figures 7A, B), and from approx. 65%
to approx. 80% in the December survey in both replicates
(Figures 7C, D). Mean precision then decreased again from
stations 15/16 to station 17/18, from the mentioned values to
approx. 63% in the September survey, and to approx. 70% in the
December survey. Altogether, the trajectory of mean precision
was smoother for the December survey, i.e. there was little
fluctuation between adjacent station pairs.

Different from the recall trajectories, mean precision of the
fully-adaptive mode of the DOC was frequently at top level
Frontiers in Marine Science | www.frontiersin.org 1128
compared to less-adaptive modes, in both the September and the
December survey (for almost every station in the latter;
Figures 7C, D) (see also Figure SI XI/3). The zero-adaptive
implementation (use of the baseline model for all classifications)
showed markedly lower performance than all other
implementations over the full trajectory in the December
samples, while lowest performance was achieved by the one-
time-adapted model in the September samples. In the latter case,
the performance difference was not as pronounced as in the
September samples, though. While mean precision for the
weakest-performing mode was relatively constant to slightly
decreasing in the September survey (approx. 55% at stations 5/
6 to approx. 50% at stations 17/18), it did temporarily increase
from stations 7/8 to a peak at stations 13/14 (from approx. 20%
to approx. 75% to approx. 25% at stations 17/18) in the
December survey.

Precision trajectories differed strongly between classes and
surveys (Figures 8, SI XI/4), but were mostly consistent between
replicates (compare Figures 8A vs B and Figures 8C vs D), both
with regard to the fully-adaptive implementation of the DOC
and to its comparison with less-adaptive implementations. For
most classes, precision varied strongly between adjacent stations,
and did not bear a clearly increasing or decreasing trend. For
many classes in the September survey (Figures 8A, B), the fully-
A B

C D

FIGURE 6 | Class-specific recall trajectories. Black line represents fully adaptive DOC implementation (training-set update every second station); colored lines
represent less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second
replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates
and random parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in
Figure SI XI/2.
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adaptive implementation achieved near- or top-level
performance over the larger part of samples; exceptions
include the “clumps” class, copepod egg clumps, detritus,
dinoflagellates and the two unknown taxa “A” and “B”.
However, unlike in the case of class-specific recall, a
comparatively poor or very poor performance was observed for
none of these exceptions. In the December survey (Figures 8C, D),
the fully-adaptive implementation achieved average performance
for the larger number of classes. Exceptions with near- or top-level
performance over the larger part of the trajectory include bivalves,
Dinophysis spp., foraminiferans and Protoperidinium spp.; for few
additional classes, top-level performance was achieved in only one
of the two replicates. Very poor performance was also noted for a
few classes (appendicularians, copepod egg clumps, gastropods), but
again only in one of the two replicates. As with class-specific recall,
performance differences between differently-adaptive modes were of
different magnitudes for different classes, and the precision
Frontiers in Marine Science | www.frontiersin.org 1229
trajectories of the fully-adaptive mode in general followed the
trend of all other modes of adaptation.

Cross-Entropy
Cross-entropy in general decreased over the stations trajectory,
representing an increasing similarity between true (as defined by
classification expert) and predicted distributions of relative
abundances of plankton classes (Figures 9, SI XI/5). By the
end of the trajectory (stations 17/18), cross-entropy of the fully-
adaptive implementation was decreased to approx. 90% and 40%
of its value at the start of the trajectory for the September and
December surveys, respectively. The cross-entropy trajectories
were markedly smoother for the December survey (Figures 9C, D)
than that for the September survey (Figures 9A, B), which featured
an oscillatory pattern from stations five/six onwards. In the
September survey, the deviation between true and predicted
distributions was driven by a variety of classes, including the
A B

C D

FIGURE 7 | Precision trajectories for different modes of adaptation using the DOC. Solid black line represents weighted mean of the fully-adaptive implementation,
grey area denotes the corresponding weighted standard deviation. Colored solid and dashed lines represent weighted mean and weighted standard deviation of
less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second replicate;
(C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates and random
parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in Figure SI XI/3.
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constantly strongly abundant diatoms and Protoperidinium spp.
classes, as well as the occasionally strongly abundant Ceratium spp.
class and the little-abundant unknown taxa “B” and “C”
(Figures 10A, B). The cross-entropy decrease was primarily
driven by lowered differences between predicted and true relative
abundances of the diatoms class and of the two unknown taxa.
Differences were not lowered by a large amount; however, the
magnitude of absolute differences was not large (<< 10% at
maximum). In the December survey, the deviation was almost
exclusively driven by the strongly-abundant diatoms class and the
little-abundant Protoperidinium spp. class (Figures 10C, D). Cross-
entropy decrease was notably driven by a decrease in the difference
between predicted and true relative abundance for both classes.
Differences decreased by a large magnitude, from more than 50%
absolute to markedly less than 20%. Cross-entropy trajectories and
deviations between true and predicted abundances were very similar
between replicates (compare Figure 9/10A vs B and Figure 9/10
C vs D).

Cross-entropy was lowest over all stations compared to all
other adaptation modes, in the fully-adaptive implementation of
the DOC (see also Figure SI XI/5). It was markedly higher in the
two least-adaptive implementations in the September survey,
and in the none-adaptive implementation in the December
survey, compared to all other implementations. Relative cross-
Frontiers in Marine Science | www.frontiersin.org 1330
entropy dynamics over time were similar among all
adaptation modes.
DISCUSSION

Our results show that adapting a classifier model to changes in the
plankton community is vital for ensuring continuously high
classification performance. As the comparison between the fully-
adaptive and less-adaptive performance trajectories demonstrates,
the standardized procedure implemented in the DOC pipeline
generates suitable adaptation steps via training-set stock-up and
reduction of classification thresholds, making the DOC an
appropriate tool for implementing model adaptation

Our results confirm that continuous adaptation via the DOC
pipeline clearly improves classification performance compared to
more limited or no adaptation. The fact that performance of the
classifier model improved over adaptation steps – primarily in
comparison to less-adaptive scenarios, but to some extent also over
survey stations, with regard to precision and cross-entropy – shows
that the DOC is indeed able to cope with and actively learn from a
difficult classification task. However, it is worth noting that
improvement was not existing or continuous for all metrics and
taxa, with e.g. mean recall not showing clear signs of improvement
A B

C D

FIGURE 8 | Class-specific precision trajectories. Black line represents fully adaptive DOC implementation (training-set update every second station); colored lines
represent less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second
replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates
and random parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in
Figure SI XI/4.
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over stations. Given that neural networks generally require large
amounts of data for training (Goodfellow et al., 2016), a larger initial
training set and processing of larger samples might have yielded a
clearer, more universal performance improvement. Still, in the
context of field research, where image data from a new region
and/or time period may initially be sparse, the DOC pipeline makes
effective use of the incoming data such that best possible
performance is frequently achieved.

With regard to precision and cross-entropy metrics, the
highest possible performance is achieved for almost every
sample by the fully-adaptive implementation of the DOC,
while recall performance is often at very high comparative
levels. The same is true for a number of single taxa that are of
Frontiers in Marine Science | www.frontiersin.org 1431
strong importance in the study of the ecological function of
marine plankton, e.g. in the determination of planktonic biomass
available as food to commercially-harvested fish (e.g. Peck et al.,
2012). Thus, fully continuous adaptation yields the best
performance possible per sample when integrating over all
three performance metrics.

It should be noted that the DOC was not designed with the
intention of advancing classification performance in terms of
improving accuracy on artificially created validation datasets.
Rather, the aim was to design a procedure that achieves
acceptably good performance for applied research work that
focusses on abundant and broad taxonomic plankton groups,
and in particular maintains that level of performance even as the
A B

C D

FIGURE 9 | Cross-entropy trajectories for different modes of adaptation using the DOC. Solid black line represents weighted mean of the fully-adaptive
implementation, grey area denotes the corresponding weighted standard deviation. Colored solid and dashed lines represent weighted mean and weighted standard
deviation of less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second
replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates
and random parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in
Figure SI XI/5.
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classifier model is confronted with changes in the plankton
community. Still, with weighted mean recall ranging from 80
to over 90%, the classification performance of our model is
comparable to the current state of the art, which ranges
approximately between 80 and 95% (Dai et al., 2016; Luo et al.,
2018; Briseno-Avena et al., 2020). Although some studies have
reported very high accuracies of over 95% (Al-Barazanchi et al.,
2018; Cui et al., 2018), this performance metric appears to
depend strongly on the diversity of samples and on the classes
chosen to report accuracy on (Luo et al., 2018; Briseno-Avena
et al., 2020), which makes model comparisons difficult.
Compared to recall, precision of our approach is somewhat
low at 60 to 80%, but still similar to the 84% reported by Luo
et al. (2018).

Given that speed and easiness of adaptation was also deemed
critical for applied usage of the model, the DOC omits a
thorough sample-specific model optimization (by means of re-
designing the architecture of the Deep Neural Network or
changing the training scheme), which might have yielded
stronger performance. However, trading in performance
optimization for performance reliability and easiness of
adaptation did not affect the usefulness of the procedure in the
Frontiers in Marine Science | www.frontiersin.org 1532
particular research application it was designed for (Börner,
unpubl. data) and in routine classification work.

Performance trajectories varied strongly between the two
surveys, but to a lesser extent between replicates, both with
regard to weighted-mean and to class-specific performance in
most classes. This demonstrates that the DOC is affected by
natural variability in the plankton community rather than by
technical random factors (e.g. the sampling of additional training
images during the adaptation procedure). In particular,
performance appears to be affected by the complexity of the
plankton community, as expressed via the degree of
homogeneity of relative abundances of the plankton taxa: In
the September survey, taxa that made up a very minor part of the
total number of plankton organisms of the December samples
(e.g. Ceratium spp.) were comparatively increased in relative
abundance, yielding a more heterogeneous plankton community.
Furthermore, the increase varied between survey stations, creating
an additional spatial level of heterogeneity. Consequently, the
capacity to correctly predict the distribution pattern over classes,
as measured by cross-entropy, became lower, as did the capacity to
improve that performance by applying the DOC over several
stations. As a result, mean precision was also lower for the
A B

C D

FIGURE 10 | Deviation between true and predicted (via non-validated automatic classification) relative class abundances, for the fully-adaptive DOC implementation
and for classification of all samples with the baseline model (no adaptation). Circle size indicates true relative abundance. (A): September survey, first replicate,
(B) September survey, second replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of
images for training-set updates and random parameter initializations of models before training (see Case Studies – North Sea Surveys).
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September samples, as the increased abundance of non-major
classes (for which fewer training images were available) likely led
to more miss-classifications that reduced the purity of the model-
generated class folders. Given that precision for the September
samples increased slightly over stations, and markedly over the
number of adaptation steps employed, it becomes visible that the
DOC still led to adaptation even in this more difficult
classification situation.

The fact that high recall was achieved for the diatom, copepod
and some dinoflagellate classes, and that poor precision only
occurred in some rather minor classes, makes the DOC useful for
research questions addressing abundant plankton taxa. These
can include analyses on the amount of potential plankton food
available to larval fish, which combine classification with length
measurements on the plankton items to calculate taxon-specific
biomass estimates (e.g. Menden-Deuer and Lessard, 2000;
Kiørboe, 2013). A high classification success on abundant
classes thus enables a rapid estimation of the larger part of
planktonic biomass, while low classification success on more rare
classes does not influence biomass estimation particularly
strongly. The distribution of classification performance over
classes thus also shows that the DOC is particularly useful for
broad quantitative analyses on the plankton community. It is not
particularly well suited for qualitative surveys e.g. intended to
assess the biodiversity of a certain marine area, which naturally
require a classification with higher taxonomic resolution. Still,
the DOC can in theory also facilitate expert-based high-level
classification, as a performance improvement on a broad
taxonomic scale will help the expert to better focus on the
finer-scale classification of the taxon of interest. However, this
would require the usage of different imaging devices, since
FlowCam image resolution only allows for broad taxonomic
classification even by experts (sensu Álvarez et al., 2014).

It should be pointed out that the viability of our DOC over
longer series of survey samples might not necessarily follow the
trends observed on the classification trajectories presented here.
While the fact that performance improvements were observed in
both the September and December transects indicates stability of
the DOC pipeline under various ecological conditions, it remains
to be seen how its performance behaves beyond the 18 stations per
survey covered here. It is possible that at some point, a manual re-
design of the training set might be necessary due to very drastic
changes in the plankton community (note that the DOC approach
does not discard training images during adaptation, leading to an
increase in complexity of the training dataset over samples). Also,
the continued decreasing of classification thresholds might at
some point prove detrimental to classification precision due to
many wrong classifications appearing in class folders instead of the
“uncertain-classifications” folder. Some indications of
deteriorating performance in the final survey samples (precision
in September samples, recall in December samples) were observed
in our case study, which might be an indication of the effects
mentioned. For applied usage, we suggest to monitor the
performance trajectory of the DOC in order to determine
whether manual adjustments are advisable. Additionally,
depending on the performance level found acceptable and the
Frontiers in Marine Science | www.frontiersin.org 1633
perceived chance of strong community changes, it may not be
necessary to implement the DOC adaptation scheme after each
processed sampled. It is up to the user to decide on a good trade-
off between the performance improvement achieved through
model adaptation and the time saved by not implementing the
DOC adaptation steps.

The DOC pipeline proposed by us is not the first attempt at
continually maintaining or improving model performance as
new plankton samples are classified and validated in applied use:
Gorsky et al. (2010) initially made use of a plankton training set
not specifically built for their study, and obtained improved
classification results once adding validated images from their
samples and training a model on this. They continued this
procedure until further improvements became marginal. Li
et al. (2022) systematized a scheme of human-model
interaction, where validated images are added to the training
set during applied usage of the classifier. However, neither study
has explicitly quantified performance decay nor the effect of
training-set updates over a spatial trajectory as presented here.
Also, both used expert validation to grow the training set in a
rather non-systematized manner, and classification thresholds
(to accept or discard a model classification as “uncertain”) were
not adapted. While a non-systematized growing of the training
set achieved marked performance improvements in both studies,
our work shows that careful systematized training-set updates
and adaptation of classification thresholds initially improve and
then maintain classification performance without the need for
continuously adding all validated images, which would lead to
increased training durations.

Our DOC application joins a growing number of pipelines
and applications designed to facilitate the embedding of
machine-learning models into the workflow of plankton
classification. These include the Prince William Sound
Plankton Camera (Campbell et al., 2020), the Scripps Plankton
Camera system (Orenstein et al., 2020) and the MorphoCluster
clustering workflow (Schröder et al., 2020). All of these
applications incorporate a step of manual validation in the
workflow; however, none of them incorporate a dedicated
standardized scheme for dynamic adaptation, as proposed by
our study. The MorphoCluster is an exception to the super-vised
classification schemes presented in most other applications, since
it makes use of an unsupervised clustering algorithm that groups
the plankton images in a data-driven manner. It therefore
appears not to require a dedicated dynamic adaptation;
however, the interpretation of the resulting clusters may be less
straight-forward than the expert check of a machine
classification. While the MorphoCluster appears particularly
useful for in-situ monitoring studies that focus on fine-
resolution taxon recognition, we assume that our DOC may be
of more convenient use in quantitative studies that primarily
address a fixed set of broad taxonomic groups.

Compared to other applications that often present an end-to-
end system from field sampling to classification, and related
hardware, our DOC covers a relatively small part of the overall
workflow. Future extensions of our application would primarily
address a more direct coupling to size measurements on the
April 2022 | Volume 9 | Article 868420

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Conradt et al. Plankton Classification Cycle
plankton images (used, together with a class-specific conversion
factor, to calculate the biomass of every plankton item (e.g.
Menden-Deuer and Lessard, 2000; Kiørboe, 2013), as well as to
the preceding photography in the FlowCam. Further extensions
could include the incorporation of automatic performance
monitoring in order to give advice to the user of when a
manual re-design of the training set or a manual adaptation of
classification thresholds might be necessary.
CONCLUSIONS

Our DOC proves to be a capable tool for adapting a classifier
model on a plankton community changing over the spatial and
temporal dimension. Our method continually delivers high or
highest performance compared to non- or less-adaptive
approaches, especially for abundant classes, though is subject
to sample-specific variability in the difficulty of classification.
Combined with the streamlining of the adaptation process and
the availability of an easy-to-operate user interface, the DOC
serves as an aide for quantitative plankton analysis on a broad
taxonomic level that performs reliably under changing
community patterns.
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Álvarez, E., López-Urrutia, Á., and Nogueira, E. (2012). Improvement of Plankton
Biovolume Estimates Derived From Image-Based Automatic Sampling
Devices: Application to FlowCam. J. Plankton Res. 34, 454–469.
doi: 10.1093/plankt/fbs017
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Marine zooplankton are rapid-responders and useful indicators of environmental variability
and climate change impacts on pelagic ecosystems on time scales ranging from seasons
to years to decades. The systematic complexity and taxonomic diversity of the
zooplankton assemblage has presented significant challenges for routine morphological
(microscopic) identification of species in samples collected during ecosystem monitoring
and fisheries management surveys. Metabarcoding using the mitochondrial Cytochrome
Oxidase I (COI) gene region has shown promise for detecting and identifying species of
some – but not all – taxonomic groups in samples of marine zooplankton. This study
examined species diversity of zooplankton on the Northwest Atlantic Continental Shelf
using 27 samples collected in 2002-2012 from the Gulf of Maine, Georges Bank, and Mid-
Atlantic Bight during Ecosystem Monitoring (EcoMon) Surveys by the NOAA NMFS
Northeast Fisheries Science Center. COI metabarcodes were identified using the
MetaZooGene Barcode Atlas and Database (https://metazoogene.org/MZGdb) specific
to the North Atlantic Ocean. A total of 181 species across 23 taxonomic groups were
detected, including a number of sibling and cryptic species that were not discriminated by
morphological taxonomic analysis of EcoMon samples. In all, 67 species of 15 taxonomic
groups had ≥ 50 COI sequences; 23 species had >1,000 COI sequences. Comparative
analysis of molecular and morphological data showed significant correlations between
COI sequence numbers and microscopic counts for 5 of 6 taxonomic groups and for 5 of
7 species with >1,000 COI sequences for which both types of data were available.
Multivariate statistical analysis showed clustering of samples within each region based on
both COI sequence numbers and EcoMon counts, although differences among the three
regions were not statistically significant. The results demonstrate the power and potential
of COI metabarcoding for identification of species of metazoan zooplankton in the context
of ecosystem monitoring.
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INTRODUCTION

Metabarcoding of Zooplankton Diversity
Patterns of species diversity of the many taxonomic groups of
marine zooplankton are key characteristics of ocean ecosystems,
determining their function, sustainability, and responses to
environmental variation and anthropogenic impacts, including
climate change (Sherman et al., 2002; Friedland et al., 2020).
Pelagic ecosystems of the NW Atlantic Ocean have been
monitored and studied over many decades, providing an
invaluable time-series record of zooplankton diversity and
abundance (Wiebe et al., 2012; O’Brien et al., 2013).

DNA metabarcoding of zooplankton samples has been used
in association with ecosystem monitoring and management in
recent years (Mohrbeck et al., 2015; Deagle et al., 2017; Djurhuus
et al., 2018; Blanco-Bercial, 2020; Matthews et al., 2021). These
efforts have used different molecular protocols and
bioinformatics pipelines (Bucklin et al., 2021a). A subset of the
studies have focused on discrimination and identification of
species diversity across the zooplankton assemblage based on
metabarcoding analysis using portions of the mitochondrial
cytochrome oxidase I (COI) gene (reviewed by Bucklin et al.,
2021b), which has been widely used to identify species of marine
organisms (Bucklin et al., 2011).

The potential of COI metabarcoding has been examined from
many perspectives, including accuracy of species-level resolution
of biodiversity (Brown et al., 2015; Leray and Knowlton, 2017;
Schroeder et al., 2021), availability of reference sequence
databases resulting from DNA barcoding efforts (Andújar
et al., 2018; Porter and Hajibabaei, 2018; Bucklin et al., 2021b;
Singh et al., 2021), and prospects for quantitative analysis related
to species abundance and/or biomass (Lamb et al., 2018;
Matthews et al., 2021). Challenges and disadvantages of COI as
a metabarcode include lack of universal primers and missing
groups due to primer-mismatch (Deagle et al., 2014; Clarke et al.,
2017; Hajibabaei et al., 2019). A number of studies have
evaluated the results using COI metabarcodes based on parallel
analysis using multiple metabarcode gene regions, including
hypervariable regions of 18S rRNA (Djurhuus et al., 2018;
Steffani et al., 2018; Giebner et al., 2020; Pitz et al., 2020;
Brandão et al., 2021; Pappalardo et al., 2021; Questel et al.,
2021; Zhao et al., 2021).

An important consideration for species identification based
on COI metabarcoding is the availability of COI barcode
sequences for identified specimens (Andújar et al., 2018; Porter
and Hajibabaei, 2018; Steinke et al., 2021). The goal of
taxonomically-complete COI reference databases for marine
zooplankton, with search capacities for targeted taxonomic
groups and geographic regions (Bucklin et al., 2021b), is a
priority for an international collaborative effort sponsored by
the Scientific Committee for Oceanic Research (SCOR),
MetaZooGene (WG157; see https://metazoogene.org/).

There is broad interest and considerable enthusiasm for
potential applications of metabarcoding for ecosystem
assessment and fisheries management (Bourlat et al., 2013; Ji
et al., 2013; Kelly et al., 2014; Kelly, 2016; Goodwin et al., 2017;
Aylagas et al., 2018). A particular focus is the importance of
Frontiers in Marine Science | www.frontiersin.org 238
rapid, accurate, and reliable species-level characterization of
time-space variability of the taxonomically-complex pelagic
assemblage (Andújar et al., 2018).

Monitoring the NW Atlantic
Continental Shelf
Time-series monitoring of the NWAtlantic continental shelf was
established by the Northeast Fisheries Science Center (NEFSC)
of the National Marine Fisheries Service (NMFS) in 1977 and
continues into the present (Cox and Wiebe, 1979; Hare and
Kane, 2012). Surveys are scheduled to sample six times each year
throughout four regions (Figure 1), with collection of
environmental (hydrographic) data and samples at a stratified-
random selection of standard station locations (see https://www.
fisheries.noaa.gov/new-england-mid-atlantic/ecosystems/
monitoring-ecosystem-northeast). Morphological microscopic
examination of zooplankton samples from NEFSC surveys has
allowed analysis and interpretation of temporal and spatial
patterns of variability across the region (Kane, 2007; Kane,
2011; O’Brien et al., 2013). The time-series records have
provided clear evidence that the region is experiencing rapid
climate change (O’Brien et al., 2013; Friedland et al., 2020).
Regime shifts (i.e., persistent changes in the structure and
function of ecosystems) have been documented during the
1990s and 2000s in pelagic community structure (Pershing
et al., 2005; Walsh et al., 2015; Morse et al., 2017), including
zooplankton diversity (Head and Sameoto, 2007; Record et al.,
2010; Johnson et al., 2011; Bi et al., 2014). NEFSC time-series
records revealed a marked increase in zooplankton displacement
volume on Georges Bank (GB) and the Gulf of Maine (GoM) in
~1990 (O’Brien et al., 2013; Figure 2). Another regime shift was
evident in ~2000, when the earlier changes were partially
reversed. In the Gulf of Maine (GoM), zooplankton diversity
increased markedly during the early 1990s and decreased rapidly
about 2000 (Record et al., 2010; Johnson et al., 2011).

Monitoring efforts in North Atlantic pelagic ecosystems
(Wiebe et al., 2012; O’Brien et al., 2013) have provided an
essential foundation for recognizing and understanding regime
shifts (Borja, 2014; Conversi et al., 2015; Morse et al., 2017; Stern
et al., 2018). Regular, standardized, and sustained analysis of
zooplankton diversity and abundance based on morphological
microscopic examination of zooplankton samples has also
provided opportunities for evaluating the accuracy, reliability,
and power of rapidly-developing approaches to molecular
analysis of zooplankton biodiversity, including DNA
metabarcoding (Bucklin et al., 2016; Bucklin et al., 2019).

Integrative Morphological – Molecular
Analysis of Zooplankton Diversity
The EcoMon zooplankton database includes records from
morphological (microscopic) taxonomic counts reported as
numbers per 10m2 for zooplankton taxa, which are identified
to species when possible (Kane, 2007; Kane, 2011). A total of 186
zooplankton species of 14 taxonomic groups of metazoan
zooplankton have been detected in net samples collected
during surveys of the NW Atlantic continental shelf since
1977; of these, 43 species of 9 taxonomic groups have been
April 2022 | Volume 9 | Article 867893
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recorded at >1% frequency of occurrence among all samples
(David Richardson, pers. comm.). An additional 237 taxa,
including groups of congeneric species, genera, and higher
taxonomic groups, are are listed in the EcoMon database,
https://www.ncei.noaa.gov/archive/accession/0187513; accessed
May 23, 2021 (NMFS/NEFSC, 2019).
Frontiers in Marine Science | www.frontiersin.org 339
Molecular analysis of EcoMon samples has been carried out
since 2000, first in partnership with the international project,
ZooGene (http://www.zoogene.org/), and from 2004 to 2010
with the Census of Marine Zooplankton (CMarZ; http://www.
cmarz.org/), an ocean realm field project of the Census of Marine
Life (CoML; Bucklin et al., 2010). The partnership, with
A

B

FIGURE 1 | Maps showing regions (A) and sample collection locations (B) for Northeast Fisheries Science Center (NEFSC) Ecosystem Monitoring Surveys
(EcoMon). Stations are identified by number (see Table 1). Modified from Bucklin et al. (2019).
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collection and preservation of samples for molecular analysis,
continues today in association with another international
program, MetaZooGene (https://metazoogene.org/) Working
Group 157 of the Scientific Committee for Oceanic
Research (SCOR).

Bucklin et al. (2019) analyzed 27 EcoMon samples collected
from 2002 – 2012 using DNA metabarcoding of the V9
hypervariable region of 18S rRNA, with sequences classified
into 28 taxonomic groups of zooplankton. The conserved
nature of the 18S rRNA gene allows detection of taxa across
the spectrum of marine zooplankton, but does not accurately
resolve or identify species (Blanco-Bercial, 2020; Govindarajan
et al., 2021; Questel et al., 2021). Bucklin et al. (2019) reported
significant positive correlations between V9 18S rRNA sequence
numbers and microscopic counts for 7 taxonomic groups for
which both types of data were available, with significant
regressions for three groups: Calanoida, Gastropoda, and
Chaetognatha. These results provided promising evidence that
DNA metabarcoding using V9 18S rRNA can provide accurate
classification and relative quantification for targeted zooplankton
groups, which are important goals for applications for ecosystem
monitoring (Lamb et al., 2018; Matthews et al., 2021).
MATERIALS AND METHODS

Collection and Selection of Samples
for Analysis
Zooplankton samples for this study were collected by the NOAA
Northeast Fisheries Science Center (NEFSC) Oceans and Climate
Frontiers in Marine Science | www.frontiersin.org 440
Branch during surveys by the Ecosystem Monitoring Program
(EcoMon) of the NW Atlantic continental shelf (Kane, 2007;
Kane, 2011; Hare and Kane, 2012; Bucklin et al., 2019). Surveys
are designed to sample four regions of the shelf ecosystem
(Figure 1). Samples for morphological taxonomic analysis were
collected following a standard protocol (Richardson et al., 2010),
with both day and night sampling using a 61-cm bongo net fitted
with a 333-mmmesh net; oblique towswere aminimumof 5-min in
duration and sampled from the surface to within 5 m of the seabed
or to a maximum depth of 200 m. A mechanical flowmeter was
fitted in the mouth of each net to record the volume sampled.
Samples were preserved in 5% formalin and archived at theNEFSC.

Zooplankton samples for genetic analysis were collected during
EcoMon survey cruises at 5 randomly-selected locations in each
region. Sampling was done using a 20-cm bongo net with 165-mm
mesh nets, which was attached to the same cable and deployed with
the 61-cm bongo nets. Differences in the opening diameter and
mesh size of the nets used for collection of samples for genetic
analysis may have resulted in differences between the sets of
samples, but the methods were unchanged across all years,
regions, and stations, and the resulting time-series patterns of
variability were evaluated with this caveat. Samples were
preserved immediately in 95% undenatured ethanol, which was
changed 24 hr after collection. Samples were transported to and
archived at theUniversity ofConnecticut,with long-term storage in
walk-in freezers (-20°C)

Morphological Taxonomic Analysis
Sample sorting and identification was done at the Morski
Instytut Rybacki Plankton Sorting and Identification Center
FIGURE 2 | Time-series data for total displacement volume of zooplankton from EcoMon regions: Mid-Atlantic Bight (MAB), Georges Bank (GB), and Gulf of Maine
(GoM). Graphs show anomalies based on average values from 1977 to 2010. Positive anomalies are red; negative anomalies are blue. The lines represent the linear
regression of the annual anomalies versus year; colors of the lines indicate the statistical significance of the relationship: dashed green (p < 0.05); grey (non-significant).
Figure modified from O’Brien et al. (2013).
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(Szczecin, Poland). Zooplankton samples were split to an aliquot
containing approximately 500 specimens; individuals were
sorted, counted, and identified to the lowest possible taxon
(Kane, 2007; Kane, 2011). Data recorded include abundance
measured by area (conc/10m2) and volume (conc/100m3) for
selected taxononomic groups and species of zooplankton, including
fish larvae. The morphological species count data were downloaded
from: https://www.ncei.noaa.gov/archive/accession/0187513,
accessed May 23, 2021 (NMFS/NEFSC, 2019).

Metabarcoding Analysis
A total of 27 samples was selected for metabarcoding analysis,
including one sample collected in each of three regions, Georges
Bank (GB), Gulf of Maine (GoM), and Mid-Atlantic Bight
(MAB), during May/June of 2002 – 2012 (Figure 1; Table 1).
The samples are the same ones analyzed by metabarcoding using
the V9 hypervariable region of 18S rRNA by Bucklin et al.
(2019). There were a number of sampling gaps due to
cancelled cruises, bad weather, and other causes: no samples
were analyzed for MAB in 2003 or GoM in 2006; no samples
were analysed for 2008; and only a single GB sample was
analysed for 2012; COI metabarcoding data are missing for
DE1105-25; EcoMon count data are missing for DE0305-38
and DE1105-127 (Table 1). The collection site of one sample
(AL0605-53 #13) is correctly shown on GB, although was listed
within the EcoMon region of Southern New England (SNE).

Extraction and Quantification of
Genomic DNA
Samples were quantitatively sub-divided using a box splitter
(Motoda, 1959) to reduce zooplankton volume to ~25 mL. The
sample was then washed with distilled water; inserted into a 50
mL Falcon tube above 35 µm Nitex mesh, which served to
suspend the material and dry the pellet; and centrifuged at
3500 g for 4 min. The pellet was moved to a new 50 mL
Falcon tube, and SDS buffer (Tris-HCl, 10 mM; EDTA, pH
8.0, 100mM; NaCl, 200mM; SDS 1%) 3 mL or equal to pellet
volume, whichever was smaller) was added. The sample was
homogenized using a hand-held homogenizer (D1000, Thomas
Scientific) with saw tooth blade for 4 min at level 5. Proteinase K
(MP Biomedicals) was added (0.2 mg/mL of sample) and tubes
were incubated overnight in a water bath at 55-56°C. After
centrifugation (3500 g for 15 min), 400 uL of the supernatant
was transferred to individual sterile 2 mL Eppendorf tubes for
storage as necessary at -20 or -80°C. Total genomic DNA was
extracted using the E.Z.N.A Mollusc DNA kit (Omega Bio-tek)
following manufacturer instructions. All samples yielded DNA of
sufficient quantify and quality for metabarcoding analysis. Total
genomic DNA was quantified on a Thermo-Fisher NanoDrop
2000 and normalized to a final concentration of 5 ng/µl.

PCR Amplification, Library Preparation,
and Sequencing
Purified DNA was used to amplify a 313 base-pair (bp) region of
mitochondrial cytochrome oxidase I (COI) using the primers:
mlCOIintF and jgHCO2198 (Geller et al., 2013; Leray et al.,
Frontiers in Marine Science | www.frontiersin.org 541
2013). Forward and reverse primers were altered for multiplexed
sequencing by adding 5’ adapters (Illumina, Inc., San Diego, CA).
The PCR reaction used 20ng of DNA, with Platinum Taq
reagents, 4µL buffer, 2.4µL MgCl, 0.8 µL dNTPs, 0.2µL HiFi
Taq Polymerase, and 0.8µL of each primer (10µM), with the
following protocol: one denaturation cycle at 94°C for 60 sec; 38
cycles of 94°C for 30 sec, 46°C for 30 sec, 72°C for 90 sec; a single
extension cycle of 72°C for 5 min; and an infinite hold at 4°C.
COI amplicons were checked for successful amplification by
running in a 2% agarose gel with a 50 bp marker.

Library preparation entailed adding index primers in a second
PCR amplification of the purified amplicons using a master mix
composed of (per sample): 5.0 µl purified PCR product; 5 µl
Nextera XT Index 1 Primer; 5 µl Nextera XT Index 2 Primer; 25
µl 2x KAPA HiFi HotStart ReadyMix; 10 µl PCR-grade water; for
a total volume of 50 µl. The PCR protocol was: 95°C for 3 min; 8
cycles of: 95°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec; and 1
cycle of 72°C for 5 min. The indexed PCR product was purified
using AMPure XP beads, with a final elution volume of 25 µL.
Successful library attachment was verified using an TapeStation
4200 D1000 High Sensitivity assay (Agilent Technologies).
Libraries were quantified using a Qubit 3.0 fluorometer,
normalized according to amplicon size, pooled, and denatured
with 0.2 N NaOH. Bi-directional sequencing was carried out at
the University of Connecticut Center for Genomic Innovation
(CGI; https://cgi.uconn.edu/) using an Illumina MiSeq sequencer
using the MiSeq Reagent Nano Kit Ver.2 (500 cycles; 1 million
clusters) spiked with a minimum of 20% PhiX (Illumina, Inc.).
All samples were analyzed in a single MiSeq run, including
negative controls and replicate samples, to allow full
intercomparison of samples (e.g., sequencing depth).

Sequence Quality Assessment
and Bioinformatics
Demultiplexed reads for the COI region were processed using a
custom script for the Mothur pipeline (Ver. 1.44.3; Schloss et al.,
2009) and run on the Xanadu computing cluster of the UConn
Computational Biology Core (CBC; https://bioinformatics.
uconn.edu/). Contiguous sequences (contigs) were assembled
from forward and reverse Illumina MiSeq reads and trimmed to
the overlapping section. Sequences were trimmed to a uniform
length by removing the beginning and terminal ends of
sequences that extended beyond the targeted COI gene region.
Sequences containing ambiguous bases, quality Phred scores <
30, and with lengths shorter than 150 bp were removed from
analysis. Concerns that PCR error may contribute to errors in
biodiversity assessment (Kelly et al., 2019) were addressed by
using the UNOISE method (Edgar and Flyvbjerg, 2015) within
Mothur (Ver. 1.44.3) to de-noise aligned sequences. Sequences
were screened for chimeras using the VSEARCH command
(Rognes et al., 2016); sequences with chimeras were removed
from analysis.

Among the 27 samples used for COI metabarcoding, 12 were
selected at random for sequencing in the same MiSeq run, using
a second aliquot from the PCR product for the target COI
metabarcode region. The results from these samples were
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treated as technical replicates and examined using the Wilcoxon
rank sum test carried out in MatLab (Ver. 2020B), which
indicated no statistical differences among the replicates. In all
cases, data from only one of each pair technical replicates were
used for definitive statistical analysis.
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Taxonomic Assignment to Zooplankton
Groups and Species
Taxonomic identification of COI metabarcode sequences was
determined using a naïve Bayesian classifier algorithm in Mothur
(Ver. 1.44.3). Taxonomic assignments for species-level
TABLE 1 | Collection locations and dates for EcoMon Survey samples analyzed.

Sequential
Stn No.

Region Cruise Station Latitude
(N)

Longitude
(W)

Collection
Date

Time
(UTC)

Temp
Surface
(oC)

Salinity
Surface
(ppt)

Temp max
depth (oC)

Salinity max
depth (ppt)

Water
column

depth (m)

Day /
Night

1 MAB AL0206 11 37.582 74.498 24-MAY-
2002

03:20 15.14 33.79 11.19 34.37 69 N

2 MAB AL0405 14 36.987 75.107 26-MAY-
2004

02:00 21.32 29.41 6.69 33.37 39 N

3 MAB AL0505 24 37.857 74.582 26-MAY-
2005

10:22 10.21 31.88 8.99 31.97 52 D

4 MAB AL0605 14 39.017 73.572 02-JUN-
2006

10:51 15.59 31.92 13.34 34.60 51 D

5 MAB DE0706 15 37.857 74.645 24-MAY-
2007

01:00 13.90 33.30 9.90 33.46 44 N

6 MAB DE0905 35 37.727 74.913 31-MAY-
2009

09:06 18.30 32.38 9.80 33.08 32 N

7 MAB DE1004 25 38.188 74.608 26-MAY-
2010

09:48 15.39 31.24 7.16 32.35 43 D

8 MAB DE1105 25 37.563 74.997 05-JUN-
2011

07:23 23.14 27.33 9.00 32.65 31 N

9 MAB HB1202 33 36.100 75.170 3-Jun-2012 14:40 20.00 32.50 14.60 33.20 38 D
10 GB AL0206 75 41.023 67.373 31-MAY-

2002
08:33 12.02 32.64 7.76 32.68 68 N

11 GB DE0305 15 41.008 67.023 26-MAY-
2003

03:18 7.65 32.71 9.01 33.45 69 N

12 GB AL0405 53 40.682 67.612 03-JUN-
2004

01:38 8.63 32.89 5.95 33.27 150 N

13 GB AL0505 70 40.900 67.650 02-JUN-
2005

10:22 9.39 32.01 6.21 32.27 205 D

14 GB AL0605 53 40.100 69.790 06-JUN-
2006

11:50 15.57 32.49 13.65 35.68 106 D

15 GB DE0706 76 41.193 67.575 30-MAY-
2007

10:04 10.28 33.13 9.61 33.13 41 D

16 GB DE0905 73 41.437 67.678 05-JUN-
2009

02:47 10.20 32.68 10.20 32.76 36 N

17 GB DE1004 73 40.895 68.443 03-JUN-
2010

02:50 10.71 32.45 10.71 32.45 54 N

18 GB DE1105 83 40.688 67.745 10-JUN-
2011

08:22 13.97 32.21 7.65 32.77 78 N

19 GB HB1202 71 40.933 67.550 11-JUN-
2012

11:10 12.00 32.90 9.20 33.00 73 D

20 GoM AL0206 108 43.015 67.382 04-JUN-
2002

01:00 9.47 32.33 8.66 34.69 224 N

21 GoM DE0305 38 43.700 67.425 29-MAY-
2003

02:00 7.07 32.50 7.36 34.09 210 N

22 GoM AL0405 117 43.067 70.110 07-JUN-
2004

12:42 10.90 31.52 3.11 32.76 133 D

23 GoM AL0505 111 43.945 67.360 06-JUN-
2005

12:34 8.54 31.81 6.90 33.95 218 D

24 GoM DE0706 112 43.650 67.683 03-JUN-
2007

10:43 9.71 32.36 7.04 34.20 232 D

25 GoM DE0905 112 43.187 68.343 09-JUN-
2009

08:38 10.50 31.84 6.60 33.99 192 N

26 GoM DE1004 129 42.688 68.330 08-JUN-
2010

05:51 12.98 31.83 9.12 34.57 204 N

27 GoM DE1105 127 43.848 67.315 14-JUN-
2011

05:44 8.46 31.79 8.29 34.21 197 N
Ap
ril 2022 | Volu
me 9 | Article 8
Region names are abbreviated: Mid-Atlantic Bight (MAB), Georges Bank (GB), Gulf of Maine (GoM).
EcoMon station numbers indicated for each cruise are based on sampling carried out at a subset of stations, which are assigned sequential station numbers.
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identifications used bootstrap values ≥ 97% after 100 iterations.
Before performing zooplankton community analyses, sequences
with abundances < 2 (i.e., global singletons) across the entire
dataset were removed. Taxonomic classification and species
identification were based upon the MetaZooGene Barcode
Atlas and Database (MZGdb; https://metazoogene.org/
MZGdb), which includes publicly available COI barcode
sequences downloaded from GenBank and BOLD (Bucklin
et al., 2021b). The results reported in this study used the North
Atlantic Atlas and Database (https://metazoogene.org/MZGdb-
NATL), (which includes barcodes for al l holo- or
mesozooplankton species reported from the region. To ensure
completeness of the regional database, DNA barcodes are
included in the North Atlantic MZGdb, even if the specimen
used for DNA sequencing was obtained from a different
ocean region.

The MZGdb allows targeted searches by taxonomic groups
and geographic regions of interest and provides the capacity to
map and visualize the geographical distribution of species
observations and collection locations of specimens used for
DNA sequencing on global to regional scales. The MZGdb is a
collaboratively-developed product of MetaZoogene (SCOR
WG157; https://scor-int.org/group/157/) and the Coastal &
Oceanic Plankton Ecology, Production, & Observation
Database (COPEPOD, https://www.st.nmfs.noaa.gov/copepod/).
The MZGdb builds upon a taxonomically-arranged database of
zooplankton observations, biometric traits, photographs, and DNA
barcode data in COPEPEDIA (https://copepedia.org/), which stores
and compiles information at multiple taxonomic levels, including
species and taxonomic groups.

Analysis of COI Sequence Numbers and
EcoMon Counts
COI sequence numbers are reported for species of the same 17
taxonomic categories used to classify metabarcoding results for
V9 18S rRNA by (Bucklin et al. 2019) (Supplementary Table
S1). Morphological (microscopic) abundance counts per 10m2

were recorded for these same taxonomic groups (Supplementary
Table S2). Results were further analyzed for six taxonomic
groups (Calanoida, Cyclopoida, Eucarida, Chaetognatha,
Hydrozoa, and Gastropoda) for which both metabarcoding
results and microscopic taxonomic counts were available for
most samples; groups with zeros or missing data for many of the
samples were not included in the analyses. All data were
transformed (Log10+1) prior to analysis.

Numbers of COI sequences and abundance counts from
morphological taxonomic analysis reported in the EcoMon
database were statistically compared for the six groups using
functional regression analysis (Ricker, 1973). Multivariate
statistical analyses of COI sequence numbers for the six
zooplankton groups were carried out to examine patterns of
variation between regions and years using MatLab (Ver. 2020B).
One distance measure used was Bray-Curtis dissimilarity
coefficient (Bray and Curtis, 1957; McCune et al., 2002), with
results displayed by cluster diagrams. Differentiation among the
3 regions was evaluated by Non-Metric Multidimensional
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Scaling (NMDS) and by Nonparametric (Permutation-based)
MANOVA using the FATHOM Toolbox for MatLab (Jones,
2017; https://www.usf.edu/marine-science/research/matlab-
resources/index.aspx/). The Shannon (H) and Simpson (D)
Diversity Indices (Pielou, 1977) were calculated using COI
sequence numbers for the 6 taxonomic groups for each sample.
Regression analysis of values for the two indices showed no
difference in all cases and results are reported for the Shannon
Index (H).

COI metabarcodes identified a total of 181 species across 23
taxonomic groups of metazoan zooplankton listed in the
summary file (Wang et al., 2007) generated by Mothur (Ver.
1.44.3; Schloss et al., 2009). Many of these species showed very
low sequence numbers including many zeros (Supplementary
Table S3), which prevented statistical analysis. Multivariate
statistical analysis was carried out for 23 species with total COI
sequence numbers >1,000 across all samples (Table 2). All data
were transformed (Log10+1) for analysis. Patterns of variation in
COI sequence numbers for the 23 species were statistically
evaluated between regions and years in MatLab (Ver. 2020B),
using the same tests as for the group comparisons, including
NMDS and Nonparametric (Permutation-based) MANOVA
(Jones, 2017; https://www.usf.edu/marine-science/research/
matlab-resources/index.aspx/), Bray-Curtis dissimilarity
coefficient (Bray and Curtis, 1957; McCune et al., 2002), and
Shannon Diversity Index (H; Pielou, 1977).

Morphological counts are available in the EcoMon database
for 7 of the 23 species with >1,000 COI sequences; the remaining
16 species were either grouped at a higher taxonomic level or
were not listed among species to be identified (NMFS/NEFSC,
2019; https://www.ncei.noaa.gov/archive/accession/0187513).
Numbers of COI sequences and miscroscopic counts were
statistically compared for these species using functional
regression analysis (Ricker, 1973).
RESULTS

Comparative Molecular - Morphological
Analysis of Zooplankton Groups
Metabarcoding using a portion of the COI barcode region was
carried out for 27 samples collected from three EcoMon Survey
regions (GB, GoM, MAB) during 2002-2012 (Table 1). The
taxonomic groups selected were used in a previous
metabarcoding study by Bucklin et al. (2019) that analyzed the
V9 hypervariable region of 18S rRNA for the same EcoMon
samples. Metabarcoding yielded a total of 4,992,468 COI
sequences and 1,404,242 Amplified Sequence Variants (ASVs).
Considering all samples together, numbers of COI sequences and
ASVs for species with >50 sequences (Supplementary Tables S3,
S4) were highly significantly correlated across all taxonomic
groups (r = 0.978, p = 6.102 e-11). The definitive analysis used
COI sequence numbers.

Statistical analysis focused on 6 taxonomic groups (Calanoida,
Cyclopoida, Eucarida, Gastropoda, Hydrozoa, Chaetognatha) for
which sufficient numbers of observations (non-zero) were
April 2022 | Volume 9 | Article 867893
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available for both molecular (metabarcoding) and morphological
(counts) data. These groups were the same ones analyzed for V9
18S rRNA metabarcodes by Bucklin et al. (2019) for these same
samples; a seventh group (Peracarida) could not be analyzed due
to many zero values for COI sequence numbers (Supplementary
Table S1). Functional regression analysis (Ricker, 1973) of COI
sequence numbers versus morphological counts was statistically
significant for five of the six taxonomic groups; the exception was
the Hydrozoa (Figure 3).

Interannual and regional patterns of diversity of the 6
taxonomic groups based on COI sequence numbers and
morphological counts analyzed by NMDS (Jones, 2017)
revealed similar patterns, with considerable overlap among the
3 EcoMon regions, but some evidence of distinctive samples in
some regions and years for both molecular and morphological
analysis (Figure 4). Based on Nonparametric (Permutation-
based) MANOVA (Jones, 2017) analysis, the 6 groups showed
different patterns of variation among regions and years (p <
0.001), but samples did not differ statistically significant among
regions (p = 0.772). Cluster diagrams based on the Bray-Curtis
dissimilarity coefficient (Bray and Curtis, 1957; McCune et al.,
2002) based on both COI sequence numbers and morphological
counts showed clear differentiation of MAB samples, with some
overlap between GB and GoM (Figure 5). There are two groups
of GB stations based on both COI sequence numbers and
Frontiers in Marine Science | www.frontiersin.org 844
EcoMon counts (Figure 5), although the two GB clusters
grouped together for EcoMon counts (Figure 5B), while GB
#10-14 grouped with MAB and GB #15-19 grouped with GoM
for COI sequence numbers (Figure 5A).

The Shannon Diversity Index (H; Pielou, 1977) showed lower
levels for GoM during 2002-2005, based on both COI sequence
numbers and morphological counts, with more variation among
the 3 regions based on COI sequence numbers for 2007, 2009,
2010 and 2011 (Figure 6). The Simpson Index was also
calculated from the same data, with results that were
statistically nearly identical to the Shannon Index based on
regression analysis (COI sequences: r = 0.965, p = 2.138 e-15;
EcoMon counts: r = 0.982, p = 2.636 e-17).

COI Metabarcoding of Species Diversity
COI metabarcodes identified 181 species across 23 groups at
varying taxonomic levels; 67 species of 15 groups had > 50
COI sequences; 23 species had >1,000 COI sequences
(Supplementary Table S3). Classification and identification of
species based on COI sequences used the North Atlantic regional
MetaZooGene Atlas and Database (MZGdb), which includes
75,976 barcodes for 12,985 zooplankton species reported to
occur in the region (https://metazoogene.org/mzgdb-natl,
accessed March 13, 2022). Selection of species for the MZGdb
is based upon the COPEPOD database (https://www.st.nmfs.
noaa.gov/copepod/) and is designed to ensure an accurate,
reliable, and taxonomically-complete reference sequence
database with appropriate geographic coverage (Bucklin
et al., 2021b).

Multivariate statistical analysis of metabarcoding results
focused on 23 species with COI sequence numbers >1000
across all samples (Table 2). Two-dimensional NMDS results
for the 23 species showed grouping of samples for each EcoMon
region, with a distinct cluster of GoM samples and overlap
between MAB and GB samples, with the notable exception of
the 2010 MAB sample (Figure 7), which was dominated by the
siphonophore, Nanomia cara (Supplementary Table S3). The
23 species showed some variation among regions and years (p =
0.038) based on Nonparametric (Permutation-based) MANOVA
(Jones, 2017) analysis, but did not differ statistically significant
among regions (p = 0.359). The Bray-Curtis similarity index
cluster diagram based on COI sequence numbers for 23 species
also showed clear regional patterns, except for the 2002 GB
sample, which clustered with MAB (Figure 8).

The pattern of variation of the Shannon Diversity Index (H)
based on COI sequence numbers for 23 species showed similar
patterns of year-to-year variation in each of the 3 EcoMon
regions, with marked differences between 2002-2005 versus
2007-2011 (Figure 9), similar to the interannual variation of H
based on COI sequence numbers for the 6 groups (Figure 6).

Functional regression analysis of COI sequence numbers
versus morphological counts from the EcoMon database were
done for 7 species for which both types of data were available for
most stations. Of these, 5 species showed significant regression
relationships: Calanus finmarchicus, Centropages hamatus, C.
typicus, Pseudocalanus spp., and Temora longicornis (Figure 10);
regressions were not significant for two species (not shown):
TABLE 2 | Abundant species with >1000 COI sequences totaled across 27
samples from EcoMon Surveys 2002-2012.

Taxonomic Group & Species COI Seqs

Annelida
Paramphinome jeffreysii 8,481
Polygordius jouinae 1,008
Calanoida

* Calanus finmarchicus 1,153,889
Calanus hyperboreus 313,176

* Nannocalanus minor 2,177
* Centropages hamatus 361,230

Clausocalanus pergens 1,015
Microcalanus pusillus 5,483

* Pseudocalanus moultoni 21,437
* Pseudocalanus newmani 90,847
* Temora longicornis 9,735

Eucarida
* Meganyctiphanes norvegica 249,717
* Thysanoessa longicaudata 1,465

Peracarida
Gammarus annulatus 1,077

* Evadne nordmanni 18,206
Teleostei
Hygophum hygomii 1,076
Hydrozoa
Obelia geniculata 35,278
Melicertum octocostatum 1,370
Siphonophorae
Nanomia cara 208,667
Gastropoda

* Limacina retroversa 2,614
* Clione limacina 1,628
Data for these species were used for multivariate statistical analysis of patterns of
zooplankton diversity among years and EcoMon regions. Asterisks (*) indicate species
that are counted by morphological (microscopic) analysis in EcoMon Survey samples.
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Acartia longiremis (r = 0.607, p = 0.277) and Nannocalanus
minor (r = 0.439, p = 0.711). In all cases, the species showing
significant regressions had higher numbers of COI sequences,
higher counts, and had data of both types for more stations; the
species with insignificant regressions had more missing
observations and recorded zeroes.
DISCUSSION

The NW Atlantic Continental Shelf
The NW Atlantic continental shelf was designated as a Large
Marine Ecosystem (LME) based on the importance of the region
for commercial harvesting and the need for conservation
measures (Sherman et al., 2002). Despite many challenges over
recent decades, including rapid warming from climate change
(Friedland et al., 2020), the region has remained an important
and productive region for commercial harvesting of numerous
species. The importance of the pelagic community, and the
zooplankton assemblage in particular, in ecosystem function
and services has been acknowledged and examined for many
decades (Sherman and Duda, 1999; Walsh et al., 2015; Friedland
et al., 2019). Marked differences have been observed among the
regions of the NW Atlantic continental shelf ecosystem
(Figure 1) in temporal patterns of variation in ecosystem
dynamics, including zooplankton diversity and biomass
(O’Brien et al., 2013; Figure 2).

The importance of biodiversity in the functioning of marine
ecosystems is well established (Gamfeldt et al., 2015). A number
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of studies have examined the more specific question of the role of
species diversity of zooplankton in sustaining ecosystem services,
including commercial fisheries (Byron and Link, 2010; Bi et al.,
2014; Morse et al., 2017). Analysis of the taxonomic composition,
diversity, abundance, and biomass of the zooplankton
assemblage can serve as an early indicator of climate impacts
and regime shifts in the region (Johnson et al., 2011; Borja, 2014;
Stern et al., 2018).

A number of previous studies have established the
importance of identifying and discriminating zooplankton
species, even closely-related and morphologically-cryptic
species, to allow understanding of ecosystem function and
prediction of impacts of environmental variation and climate
change (Johnson et al., 2011; Hare and Kane, 2012; O’Brien et al.,
2013), and also to guide fisheries assessment and management
(Kelly, 2016; Goodwin et al., 2017; Aylagas et al., 2018). The
increasing evidence that COI metabarcoding can provide
accurate and reliable species-level identification across the
zooplankton assemblage is especially relevant and important
for these applications (Andújar et al., 2018).

Integrative Molecular (Metabarcoding) and
Morphological (Microscopic) Analysis
This study reports the results of comparative molecular (COI
metabarcode sequence numbers) and mophological (EcoMon
database records for microscopic counts) analysis of six
taxonomic groups of marine zooplankton for which both types
of data are available (Supplementary Tables S1, S2). Five of the 6
groups showed significant correlations between COI sequence
FIGURE 3 | Functional regression analysis of COI sequence numbers versus morphological microscopic counts per 10m2 for selected taxonomic groups of
zooplankton. Symbols indicate regions for sample collections: Mid-Atlantic Bight (MAB), Georges Bank (GB), Gulf of Maine (GoM). Numbers are Log10+1
conversions; regression equation coefficient (r) and statistical significance (p) are indicated for each group.
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numbers and morphological counts: Calanoida, Cyclopoida,
Eucarida, Gastropoda, and Chaetognatha, but not Hydrozoa
(Figure 3). These results provide further evidence of accurate
quantitative measurements for some – but not all – taxonomic
groups of zooplankton in some – but likely not all – circumstances.

The Shannon Diversity Index (H) based on COI
metabarcoding revealed interannual variation for each region,
including changes between 2002-2005 and 2007-2011 in the
GoM for H index values for 6 taxonomic groups (Figure 6)
and 23 species (Figure 9). The changes in some cases were
consistent with variation of H index values based on EcoMon
morphological counts (Figure 6) and with time-series records of
total zooplankton displacement volume in the GoM (O’Brien
et al., 2013; Figure 2). This finding provides further support for
the potential value of COI metabarcoding for revealing and
analyzing time-series variation of the zooplankton assemblage
and monitoring of ocean ecosystems.
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Another positive result, in terms of potential applications of
metabarcoding formonitoringofpelagic ecosystems, is thepowerof
COI metabarcoding for detection of species across a number of
diverse taxonomic groups of the marine zooplankton assemblage.
In this study, a total of 181 species across 23 taxonomic groupswere
identified based on comparison with the MetaZooGene Database
(https://metazoogene.org/MZGdb; Supplementary Table S3).
These numbers are similar to the numbers of species in EcoMon
Survey records, which list 186 zooplankton species across 14
taxonomic groups of metazoan zooplankton detected in NEFSC
records since 1977 (NMFS/NEFSC, 2019). However, there is
marked lack of overlap in the species detected: only 53 species
were found in common between the lists for COI sequences and
EcoMon counts. A total of 24 species were detected by both
metabarcoding and morphology, considering only species with
more frequent observations (including 67 species of 15 groups
A

B

FIGURE 4 | Two-dimensional Nonmetric Multidimensional Scaling (NMDS) analysis of regional variation based on (A) COI sequence numbers and (B) EcoMon
morphological counts for 6 taxonomic groups: Calanoida, Cyclopoida, Eucarida, Gastropoda, Hydrozoa, Chaetognatha. The plot indicates the year of sample
collection; colors indicate regions: MAB (red), GB (green), GoM (blue).
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with > 50 COI sequences and 43 species of 9 groups with >1%
frequency of occurrence in EcoMon Survey samples since 1977).

Additional analysis and intercomparison of results from
metabarcoding and microscopic counts of the same samples are
needed to evaluate and understand both the similarities in total
numbers and limited overlap in species identified. One concern is
the significant challenges of accurate identification of congeneric
and closely-related species of zooplankton based onmorphological
characters. The discrimination and identification of
morphologically cryptic species is a particular power of COI
barcoding and metabarcoding (Bucklin et al., 2016; Leray and
Knowlton, 2017). In this study, COI metabarcodes detected
multiple species of several taxonomically-challenging copepod
Frontiers in Marine Science | www.frontiersin.org 1147
genera for which species are frequently over-looked or ignored –
and rarely counted – in morphological taxonomic analysis,
including EcoMon Survey data (NMFS/NEFSC, 2019). Four
species of Calanus were detected: C. finmarchicus and C.
hyperboreus predominated (Table 2); a few sequences were
identified to C. helgolandicus in the 2012 GB sample and to C.
glacialis in the 2002 GB and 2005 GoM samples. Seven species of
Clausocalanuswere detected:C. pergenswasmost abundant, butC.
furcatus, C. jobei, C. lividus, C. mastigophorus, C. parapergens, and
C. paululus were detected with small numbers of sequences in
several stations; also noteworthywas the detection offour species of
Pseudocalanus, including P. acuspes and P. minutus, as well as the
cryptic species,P.moultoni andP.newmani (SupplementaryTable
A

B

FIGURE 5 | Bray Curtis similarity cluster diagram showing analysis of regional variation based on (A) COI sequence numbers and (B) EcoMon microscopic counts
for 6 taxonomic groups. Numbers are EcoMon sample numbers; see Table 1 for collection information. The three regions are indicated as Mid-Atlantic Bight (MAB),
Georges Bank (GB), and Gulf of Maine (GoM).
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S3). COI sequence totals across all four Pseudocalanus species were
significantly correlated to morphological counts for Pseudocalanus
spp. in EcoMon records (Figure 10). Congeneric, sibling, and
cryptic species of these copepod genera can be difficult to
discriminate morphologically (Hill et al., 2001; Bucklin et al.,
2003; Bucklin and Frost, 2009; Crouch et al., 2020), yet species-
specific patterns of distribution and abundance are important
Frontiers in Marine Science | www.frontiersin.org 1248
indicators of seasonal-to-decadal patterns of environmental
variation, climate change, and regime shifts (Johnson et al., 2011;
Greene et al., 2013; Conversi et al., 2015; Morse et al., 2017).

Further evidence of the usefulness of COI metabarcoding for
monitoring of ocean ecosystems is the finding of significant
correlations between COI sequence numbers and EcoMon
microscopic counts for abundant species for which both types
A

B

FIGURE 6 | Shannon Diversity Index (H; Pielou, 1977) based on (A) COI sequence numbers and (B) EcoMon morphological counts for 6 taxonomic groups.
Legend indicates symbols for the three regions: Mid-Atlantic Bight (MAB), Georges Bank (GB), Gulf of Maine (GoM).
FIGURE 7 | Two-dimensional Nonmetric Multidimensional Scaling (NMDS) analysis of regional variation based on COI sequence numbers for 23 species with total
sequence numbers >1000. See Table 2 for list of species. The plot indicates the year of sample collection; colors indicate regions: MAB (red), GB (green), GoM
(blue). Note that the MAB 2010 sample is not included within the circle defining the MAB region.
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of data are available (Figure 10). The accuracy and reliability of
metabarcoding for (semi)quantitative analysis, including
abundance or biomass, of zooplankton has been evaluated in
previous studies (Elbrecht and Leese, 2015; Thomas et al., 2016;
Bucklin et al., 2019). A consistent finding has been that
quantitative estimates are more accurate for highly abundant
taxonomic groups or species (e.g., Matthews et al., 2021).

An acknowledged limitation of COI metabarcoding of
zooplankton diversity is the uneven detection of species across
the broad span of taxonomic groups in the pelagic assemblage
(Deagle et al., 2014; Clarke et al., 2017; Hajibabaei et al., 2019).
Various solutions have been proposed, including using multiple
COI sub-regions, with specially-designed primers for target groups
(Leray et al., 2013; Corell and Rodrıǵuez-Ezpeleta, 2014; Elbrecht
and Leese, 2017; Elbrecht et al., 2019) and integrative multi-region
Frontiers in Marine Science | www.frontiersin.org 1349
sequence analysis and bioinformatics (Antich et al., 2021; Creedy
et al., 2021). Most importantly, classification and identification of
species based on COI metabarcodes requires a taxonomically-
complete and geographically-appropriate reference sequence
database (Leray and Knowlton, 2017; Singh et al., 2021).
Continued effort is needed to allow and ensure progress toward
inclusion of COI barcode sequences for all zooplankton species,
including sibling and cryptic species, recorded from regions
throughout the global ocean (Bucklin et al., 2021b).

Comparative Assessment of
Metabarcoding Using COI versus
V9 18S rRNA
Marine zooplankton diversity and distribution have been examined
using metabarcoding based on a number of different gene regions
FIGURE 8 | Bray-Curtis similarity index cluster diagram for zooplankton samples collected throughout EcoMon regions based COI sequence numbers for 23 identified
species with totals >1000 COI sequence numbers (see Table 2). Regions are indicated as Mid-Atlantic Bight (MAB), Georges Bank (GB), Gulf of Maine (GoM).
FIGURE 9 | Shannon Diversity Index (H) for the three regions based on COI sequence numbers for 23 abundant species with total sequence numbers >1000. See
Table 2 for list of species. Values of the Shannon Index (H) shown here were significantly correlated with Simpson Index values (r = 0.953, p = 6.657 e-14). Regions
are: Mid-Atlantic Bight (MAB), Georges Bank (GB), Gulf of Maine (GoM).
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(Bucklin et al., 2016). A previous study (Bucklin et al., 2019) analyzed
theV9 hypervariable region of 18S r RNA for the same set of samples
from the NEFSC EcoMon Surveys, providing an opportunity to
compare and contrast the results and conclusions based on the two
marker gene regions. The 18S r RNA “tree of life” gene occurs in all
living organisms on Earth; the gene sequence is both universal and
highly conserved, ensuring detection across all major groups of
metazoan zooplankton (Amaral-Zettler et al., 2009).

A total of 21 taxonomic groups of zooplankton, ranging from
phylum to order, were detected and classified based on V9
metabarcoding of EcoMon samples (Bucklin et al., 2019;
Supplementary Table S1). Statistical comparison of sequence
numbers and abundance counts for these same groups revealed
similar patterns of temporal (among years) and spatial (among
regions) variation based on 27 samples collected during EcoMon
Surveys from 2002-2012. Functional regression analysis for 7
taxonomic groups revealed positive correlations between V9
sequence numbers and abundance counts, with significant
correlations (p < 0.05) for 3 groups: Calanoida, Chaetognatha, and
Gastropoda. Comparison between the results from V9 and COI
metabarcoding analysis of the same set of EcoMon samples
demonstrates the power and accuracy of species-level identifications
of marine zooplankton.
CONCLUSIONS

Zooplankton are key components of ocean ecosystems that
provide early indicators of the impacts of seasonal-to-decadal
Frontiers in Marine Science | www.frontiersin.org 1450
patterns of environmental variation, including climate-driven
regime shifts. Ecosystem monitoring and fisheries assessment
programs provide invaluable time-series records of biodiversity
of the zooplankton assemblage, based primarily on
morphological taxonomic examination of plankton net
samples. Analysis of these samples by DNA metabarcoding
using a short region of the cytochrome oxidase I (COI)
barcode gene allowed rapid and cost-effective characterization
of biodiversity, including discrimination and identification of the
100s of species across numerous taxonomic groups that
comprises the zooplankton assemblage. This study used COI
metabarcoding of zooplankton diversity in samples collected
from three regions (Mid-Atlantic Bight, Georges Bank, and
Gulf of Maine) of the NW Atlantic continental shelf during
2002 – 2012 by the NOAANMFS NEFSC EcosystemMonitoring
Program. Results show significant correlation between
metabarcoding (COI sequence numbers) and morphological
(microscopic counts) for abundant taxonomic groups and
species, confirming the power of metabarcoding for (semi)
quantitative measurements. COI metabarcoding also identified
a number of sibling and cryptic species of copepods that were not
discriminated in morphological counts. Limitations of the
approach included failure to detect species within all
taxonomic groups of zooplankton. Future development of COI
metabarcoding for ecosystem monitoring of zooplankton
diversity will require continued improvements in molecular
protocols (e.g., COI primer design), completion of COI
reference databases for species identification, and training of
morphological taxonomic experts for marine zooplankton.
FIGURE 10 | Functional regression analysis of COI sequence numbers and EcoMon microscopic counts per 10 m2 for abundant copepods that were detected by
COI metabarcoding and also counted by EcoMon microscopic analysis (Supplementary Tables S1, S2). COI sequences for all Pseudocalanus species detected
were added for comparison with Pseudocalanus spp. counts from the EcoMon database. Species were selected based on availability of molecular and
morphological data for sufficient numbers of samples to allow regression analysis. Numbers are Log 10 + 1 conversions.
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A Promising Approach to Quantifying
Pteropod Eggs Using Image Analysis
and Machine Learning
Christine K. Weldrick*

Australian Antarctic Program Partnership, Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, TAS, Australia

A newly developed protocol to semi-automate egg counting in Southern Ocean shelled
(thecosome) pteropods using image analysis software and machine learning algorithms
was developed and tested for accuracy. Preserved thecosome pteropod (Limacina
helicina antarctica) egg masses collected from two austral summer research voyages in
East Antarctica were digitally photographed to develop a streamlined approach to
enumerate eggs within egg masses using Fiji/ImageJ and the associated machine
learning plugin known as Trainable Weka Segmentation. Results from this semi-
automated approach were then used to compare with manual egg counts from eggs
dissected from egg masses under stereomicroscope. A statistically significant correlation
was observed between manual and semi-automated approaches (R2 = 0.92, p < 0.05).
There was no significant difference between manual and automated protocols when egg
counts were divided by the egg mass areas (mm2) (t(29.6) = 1.98, p = 0.06). However, the
average time to conduct semi-automated counts (M = 7.4, SD = 1.2) was significantly less
than that for the manual enumeration technique (M = 35.9, SD = 5.7; t(30) = 2.042, p <
0.05). This new approach is promising and, unlike manual enumeration, could allow
specimens to remain intact for use in live culturing experiments. Despite some limitations
that are discussed, this user-friendly and simplistic protocol can provide the basis for
further future development, including the addition of macro scripts to improve
reproducibility and through the association with other imaging platforms to enhance
interoperability. Furthermore, egg counting using this technique may lead to a relatively
unexplored monitoring tool to better understand the responses of a species highly
sensitive to multiple stressors connected to climate change.

Keywords: egg counting, egg masses, image analysis, machine learning, pteropods, Southern Ocean,
thecosomes, zooplankton
INTRODUCTION

It is now widely recognized that a multitude of concurrent biological, chemical and physical
stressors caused by human activities are posing significant threats to global marine ecosystems and
their components (IPCC, 2022). In polar regions, research has shown that changes to the
development and reproduction of many marine organisms, including zooplankton, are
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Weldrick Pteropod Eggs and Image Analysis
particularly vulnerable to warming and ocean acidification
(Johnston et al., 2022). Some zooplanktonic groups, such as
gastropod molluscs known as thecosome (shelled) pteropods, are
regarded as early responders to climate change (Bednarsěk et al.,
2016), as they produce fragile, aragonite shells that are highly
susceptible to dissolution linked to high CO2 partial pressures
(pCO2) due to increasing ocean acidification (Riebesell et al.,
2000; Orr et al., 2005; Kroeker et al., 2013). Whilst recent studies
have shown a relatively higher capacity to withstand such effects
than previously assumed (Peck et al., 2018), it is the early
developmental stages of thecosome pteropods that are at
greatest risk to changing ocean chemistry (Gardner et al., 2018).
These risks will undoubtedly present wider consequences
throughout marine ecosystems as, like many zooplankton taxa,
thecosome pteropods provide a key energetic link between basal
and higher trophic levels as well as an important contributor to the
global export of carbon and carbonate to the deep sea through the
fluxing of fast-sinking fecal pellets and shells post-mortem
(Manno et al., 2010; Manno et al., 2018).

Shell dissolution in thecosome pteropods has often been
studied using the common species Limacina helicina from the
Northern Hemisphere (Comeau et al., 2010; Lischka et al., 2011;
Comeau et al., 2012b; Bednarsěk et al., 2014), and its Southern
Ocean congener species, Limacina helicina antarctica (Manno
et al., 2007; Seibel et al., 2012; Johnson and Hofmann, 2017;
Gardner et al., 2018). Whilst one study by Bednarsěk et al. (2012)
revealed in situ shell dissolution of juvenile L. h. antarctica from
the Scotia Sea, situated in the Atlantic sector of the Southern
Ocean, much of the effects of climate change on early life
development of thecosome pteropods have been observed
through laboratory-based manipulation experiments. Examined
under predicted levels of ocean acidification and warming,
incubated thecosome pteropods have shown a range of adverse
responses, including degradation, reduction in and/or lack of
shell development (Lischka et al., 2011; Comeau et al., 2012a;
Gardner et al., 2018), increased larval mortality (Lischka et al.,
2011; Thabet et al., 2015; Gardner et al., 2018), and a decrease in
the proportion of eggs developing to advanced embryogenetic
stages (Manno et al., 2016). These responses are bound to have
wider ecological and long-term ramifications related to
population stability and recruitment.

Thecosome pteropods are holoplanktonic with unique life
history strategies. Most species begin life as males until they
reach a particular size (e.g., shell diameter of ~4 mm for L.
helicina) then subsequently develop female organs and mature
into females whilst their male organs are resorbed (Lalli andWells,
1978; Lalli and Gilmer, 1989), which characterizes them as
protandrous hermaphrodites. Females spawn tens of thousands
of transparent eggs during their lifespan which are embedded into
ribbons within gel matrix egg masses. Embryogenetic
development occurs within these clutches, and hatching
generally occurs at the trochophore larval stage (Lalli and
Gilmer, 1989; Thabet et al., 2015; Wakabayashi, 2017). Optimal
clutch size theory posits that mature females will spawn variable
numbers of eggs to maximize the offspring fitness as it relates to
resource availability, intraspecific competition, and mortality
Frontiers in Marine Science | www.frontiersin.org 255
(Godfray et al., 1991). Different forms of parental care exist in
marine gastropods, but for many species, females control the
number of eggs contained within egg masses in an effort to
manage their fecundity under changing conditions (Spight and
Emlen, 1976; Perron, 1981).

Challenges related to estimating fecundity in thecosome
pteropods can be attributed to the high number of microscopic
eggs embedded within each egg mass. Manually counting them
can be time consuming and using abundance of mature-aged
adults is a relatively inaccurate alternative given the range of egg
masses released by each pteropod adult. Manually counting
thecosome eggs has previously involved dissecting the egg
ribbons from the egg mass, which may introduce stress,
particularly if eggs are being placed in live culture for
subsequent observational studies (Manno et al., 2016). One
study by Lalli and Wells (1978) used a conversion factor of 35
eggs mm-2 for L. helicina egg masses collected from Eastern
Canada which is derived from estimating the number of eggs per
area of egg mass measured, however this average value was based
on complete measurements taken from only five egg masses.
These challenges may be minimized with the use of image
analyses platforms.

Autonomous image analysis techniques have previously been
tested in plankton research involving the counting and
measuring of round objects in aqueous solution, including the
use of images and on-board, large-volume samples (Gorsky et al.,
1989; Colas et al., 2018). Several studies have employed software
platforms to automatically enumerate microscopic eggs of
invertebrates from images with high degrees of success (Collin,
2010; Rosati et al., 2015; da Silva Júnior et al., 2018). The purpose
of this study is to develop and validate a workflow that uses a
combination of image segmentation and a supervised machine
learning algorithmic approach to perform semi-automatic
detection of thecosome pteropod eggs embedded within egg
masses. This study aims to efficiently and accurately enumerate
thecosome pteropod eggs embedded in their egg masses using
the workflow developed in this study, and statistically compare
this method to manual egg enumeration, which involves
dissection under stereomicroscope. Reliably predicting the
number of eggs within thecosome pteropod egg masses
through non-destructive data imaging techniques can be
beneficial to monitoring the health of marine ecosystems
particularly prone to rapid chemical change.
MATERIALS AND WORKFLOW
CONSTRUCTION

Study Area and Sampling
Plankton sampling was conducted along the East Atlantic region
of the Southern Ocean during two separate research voyages
(Figure 1). The first was aboard the RV Aurora Australis as part
of the Kerguelen Axis (K-Axis) program (January-February
2016) within the southern extent of the Kerguelen Plateau.
Sampling for K-Axis spanned a region from 62.7°E to 93.5°E,
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and 57.6°S to 65.2°S. The second was aboard the TRV Umitaka-
maru as part of the 20th Kaiyodai Antarctic Research Expedition
(KARE20) program (January 2017) which covered a repeat
transect southward along the 110°E longitudinal line.

Mesozooplankton samples from K-Axis were obtained
using a Rectangular Midwater Trawl (RMT 1 + 8) net with a
mouth area of 8 m2 and a mesh size of 4.5 mm that tapered to a
mesh size of 1.5 mm in the last 1.8 m of net [see Hosie et al.
(2000) for more details]. Undamaged specimens collected with
the RMT1 net, with a mesh size of 315 mm and a mouth area of
1 m2, were measured for this study. Samples from KARE20
were obtained using an Ocean Research Institute (ORI) net
with a mouth diameter of 160 cm and a mesh size of 500 mm
[see Sakurai et al. (2018); Sakurai et al. (2020) for more details].
Both zooplankton collection methods sampled from a
maximum depth of 200 m. All samples were preserved in 5%
buffered formaldehyde and seawater solution and transported
back to the Institute for Marine and Antarctic Studies in
Hobart, Tasmania.

Pteropod egg masses (Figure 2) selected for this study were
obtained from two sampling sites determined to have the highest
number of intact egg masses, one from each voyage. The
sampling site selected from K-Axis was located at -62.318°S
and 91.531°E, and the site selected from KARE20 was located 453
nm away at -63.491°S and 107.958°E (Figure 1).
Frontiers in Marine Science | www.frontiersin.org 356
Manual Counting, Image Capturing,
Pre-Processing, Calibration
and Threshold Setting
A workflow for image pre-processing, segmenting images and
enumerating eggs within thecosome pteropod egg masses is
shown in Figure 3. Separated pteropod egg masses (n = 20) were
rinsed in filtered seawater and transferred to glass petri dishes in
preparation for imaging. Sharpened metal needles were used to
gently remove any debris that may affect the segmentation process.
Photographs of egg masses were taken with a Canon EOS Mark II
5D camera mounted on a Leica M165 C stereoscopic microscope
and using EOS Utility software (Canon USA), while taking note of
magnification. For converting measurements from pixels to mm,
photographs were also taken of a micrometer slide at the same
magnification used for the egg mass images. A selection of images
(n = 16) was chosen to include all variations of typically
encountered characteristics (e.g., eggs, matrix, phytoplankton
cells), and the egg ribbons from the egg masses featured in these
images were then carefully dissected under the microscope using a
sharpened needle. The eggs from each ribbon were then
enumerated to ground truth counts estimated from the
automated technique image analysis.

Each digital image was opened in the Fiji/ImageJ software
(RRID : SCR_002285) v. 2.3.1 (Schindelin et al., 2012) and a
Wacom Intuos drawing tablet and pen (CTL-6100WL) was
FIGURE 1 | Map of two sampling stations representing two separate research voyages aboard the TRV Umitaka-maru (KARE20) and the RV Aurora Australis
(KAXIS), surveyed during the 2017 and 2016 austral summer, respectively.
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FIGURE 2 | Newly hatched egg mass consisting of hundreds of oval-shaped eggs arranged in a ribbon and embedded within an outer gelatinous matrix.
FIGURE 3 | Workflow procedures detailing steps beginning at image capturing, followed by data image pre-processing, segmentation and egg enumeration. See
Supplementary Figure 1 for a more detailed version of the workflow procedure.
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used for accurate digital drawing on images. To exclude
material around the egg masses, the “Polygon selection” or
“Freehand selection” tools from the toolbar were used to draw
an overlap around the perimeter of the egg masses (Figure 4A).
The “Clear outside” function, located under the Edit drop-
down menu, was selected and each image was then saved. To
calibrate measurements for each egg mass image, the
micrometer slide images were opened first, and the “Straight
line” tool from the toolbar was superimposed over the
micrometer slide ruler using the “Analyze>Set Scale…”
function. A value in pixels was then linked to a known
distance value of 1 mm from the line drawn over the slide
ruler in the image (spatial calibration value = 1224.06 pixels/
mm at 3.2x magnification). A threshold cell size needed to be
set due to both the large concentration of non-egg material
(e.g., phytoplankton cells) and egg overlapping within the egg
masses. To estimate this, the areas (mm2) of a random subset of
20 eggs from four egg mass images were individually measured
using the “Polygon selections” tool to draw around the
perimeter of each egg and determined to be an average of 10
mm2 from the values in the results table using the
“Analyze>Measure” function. Egg mass lengths and areas
were also determined using Fiji/ImageJ, using the “Straight
line” and “Freehand selection” tools, respectively.

Segmentation and Egg Enumeration
For Fiji/ImageJ to perform semi-automated enumeration, the
eggs need to be differentiated from the backgrounds within each
data image by a process known as segmentation. Built into Fiji/
ImageJ is the Trainable Weka Segmentation (TWS; RRID:
Frontiers in Marine Science | www.frontiersin.org 558
SCR_001214) plugin (http://imagej.net/Trainable_Weka_
Segmentation) which is a tool that leans on machine learning
and user-directed guidance to partition digital images into
multiple segments, or classifiers, and subsequently perform
automatic quantitative segmentation (Arganda-Carreras et al.,
2017). Once both the image and TWS (version 3.3.2 was used in
this study) are opened, classes were defined and renamed as
“eggs” and “not eggs” (Figure 4B; Supplementary Figure 1).
Training feature settings will generally depend on the quality of
the image. For images taken for this study, Gaussian blur,
Hessian, Membrane projections, Sobel filter, Difference of
gaussians, Variance, and Structure were selected; Membrane
thickness, Membrane patch size and Minimum sigma were
kept at default settings, and Maximum sigma was changed to
32.0. The “Freehand” tool from the toolbar was used to mark the
regions of each image under each class. For accuracy, a minimum
of 10 marks per class was defined, before classifier training began.
Training was repeated depending on the quality of the image.
The image results from this segmentation workflow were saved
and used for the final steps for counting eggs, detailed in the
next section.

The binary result images generated from the TWS plugin
were opened in Fiji/ImageJ (Figure 4C). Many eggs appeared
fused due to the overlapping in regions and the watershed
operator was applied to correct for this. The minimum size
threshold was set to the previously determined 10 mm2

under Analyze>Analyze Particles … and egg counts were
determined from the display results window (Figure 4D). A
stopwatch was used to time both manual and semi-automated
counting techniques.
FIGURE 4 | Workflow steps leading to egg enumeration using supervised machine learning. (A) Selection of the area surrounding all eggs by using the “freehand”
tool. (B) Supervised training in the TWS graphical user interface corresponding to eggs (default red) and non-egg (default green) regions. (C) Segmentation is first
achieved by using a binary image (which is generated by the TWS plugin) prior to employing the watershed function. (D) Selecting “Analyse > Analyse Particles…”

gives a results table (not shown) and this image window showing estimations of egg each numbered in red.
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Statistical Analyses
All statistical analyses were performed using RStudio (RRID :
SCR_000432) version 2021.09.0 (Team, R.C. 2014). A linear
regression was performed from a correlation calculated
between manual and semi-automated counts; the latter
performed through Fiji/ImageJ. Two-sample t-tests were used
to statistically compare manual with automated estimations of
egg per mass area (mm2) and duration of technique (minutes).
WORKFLOW ASSESSMENT RESULTS

Comparing Egg Enumeration Methods
Lengths and areas of pteropod egg masses measured digitally in
this study varied between 2.9 mm and 12.2 mm and 4.1 mm2 and
21.4 mm2, respectively (Table 1). The averages calculated for the
number of eggs per egg mass lengths were 48.4 eggs mm-2 (± 9.0
SD) for the manual enumeration technique and 41.7 eggs mm-2

(± 10.1 SD) for the semi-automated counting technique with
Fiji/ImageJ.

The comparison of egg counting techniques showed a
statistically significant correlation between manual and semi-
automated egg counts (R2 = 0.92, p < 0.05; Figure 5). In all but
two of the totals, the manual counting technique produced higher
egg counts as compared to those conducted digitally. When egg
counts were divided by the egg mass areas (mm2), these values were
compared between the manual and semi-automated methods and
there was no significant difference [t(29.6) = 1.98, p = 0.06; Figure 5
inset plot]. The semi-automated counting technique averaged 7.4
minutes (± 1.2 SD) in duration, which took statistically significantly
less time than manual egg counting, which averaged 35.9 minutes
(± 5.7 SD) to complete (t(30) = 2.042, p < 0.05).

Limitations and Suggested Improvements
Before discussing the ecological implications associated with the
egg counting outputs originating from the Fiji/ImageJ platform, it
Frontiers in Marine Science | www.frontiersin.org 659
is critical to determine the reliability of these results. Many of the
images depicted egg mass samples surrounded by non-egg
particles, such as phytoplankton cells, that would likely also be
counted by the software platform. The inability of the platform to
distinguish eggs from other materials, identify egg and egg mass
abnormalities or differentiate between eggs within close proximity
are all limitations of this technique. Precision is enhanced through
pre-analysis image preparation, involving setting size threshold
limits, and drawing regions of interest (ROIs) encompassing high
concentrations of intendedmaterials. Despite these limitations, the
statistically significant similarity obtained between manual and
automated techniques validate the latter as a suitable solution for
developing future studies that estimate fecundity.

Suggested improvements to these limitations should focus on
the pre-processing of the egg mass samples prior to imaging. This
could be through staining the sample with an agent that would
enable the saturation value of eggs to be detected easily from non-
egg materials, a step that is often used in medical imaging and
histological studies. This was demonstrated by Malhan et al.
(2018) who used various stains to distinguish, by color, various
elements of connective tissue, including mineralized bone,
cartilage, elastic fibers and muscles. Future studies are
encouraged require the identification of constituents within and
typically adjacent (e.g., phytoplankton, marine snow) to
thecosome eggs and egg masses to select the appropriate stain
used to separate these constituents by color or other identifier in
preparation for pixel-based segmentation. Pre-process staining
may eliminate the early workflow steps that focus on manually
selecting ROIs and size threshold limits from images as well as
decrease machine learning supervision while improving the overall
speed and reproducibility of this methodology. Staining, though
an extra step in the pre-processing stage, may effectively reduce the
inclusion of background noise while also enabling fully automated
batch processing of multiple images through scripts.

Other potential improvements to semi-automated egg
enumeration involve advanced machine learning strategies, such
TABLE 1 | Length (mm), area (mm2) and count data of randomly selected pteropod egg masses from manual and semi-automatic techniques.

Sample image ID Egg mass length
(mm)

Egg mass area
(mm2)

Manual egg count ImageJ egg count* Manual count per area
(eggs mm-2)

ImageJ count per area
(eggs mm-2)

1 12.2 21.4 781 (43) 764 (8) 36.4 35.6
2 7.5 11.4 721 (44) 633 (9) 63.4 55.7
3 9.1 12.0 548 (39) 695 (7) 45.6 57.8
4 7.7 10.3 565 (41) 432 (8) 54.8 41.9
5 9.1 15.9 575 (42) 460 (9) 36.2 29.0
6 9.4 13.7 667 (44) 490 (7) 48.6 35.7
7 7.5 13.6 569 (37) 416 (9) 44.7 39.5
8 7.0 10.6 522 (32) 497 (7) 49.4 47.1
9 7.0 8.2 480 (30) 401 (7) 58.3 48.7
10 5.4 7.6 292 (29) 222 (9) 38.2 29.1
11 7.3 8.3 448 (32) 419 (7) 53.8 50.3
12 4.3 5.5 350 (31) 245 (5) 63.2 44.3
13 2.9 4.1 161 (27) 90 (8) 39.0 21.8
14 6.5 11.1 483 (35) 386 (7) 43.4 34.7
15 7.8 9.1 398 (32) 446 (6) 43.8 49.1
16 7.1 9.8 542 (36) 458 (6) 55.5 46.9
April 2022 | V
*Duration of technique (in brackets) starts from pre-processing of images to enumeration, but does not include steps necessary to conduct once, including calibration and scale setting.
Approximate duration, in minutes, is recorded in brackets for each egg count and technique.
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as deep learning-based methods with a particular focus on the
segmentation of nucleus-like shapes and overlapping objects of
interest. Deep learning methods have become increasingly popular
in recent years, with many applications used in medical research
(Hesamian et al., 2019). Emerging deep learning image analysis
tools have been developed to address these issues, including the
Fiji plugin StarDist, for cell and nuclei detection from images that
detects star-convex shaped objects (Weigert et al., 2020), and
Cellpose, which is a segmentation algorithm designed to efficiently
segment cells stained for a variety of markers (Stringer et al., 2021).
Future studies would benefit from testing deep learning algorithms
in zooplankton research.

Anticipated Results Using
Semi-Automated Egg Enumeration
Measuring the efficiency of a newly constructed, semi-automated
egg enumeration technique is difficult when the eggs are
microscopic in size, numerous, and the gel matrices in which
they are embedded have other particles present, which creates
noise, and consequently, potential for error. Therefore, using
data retrieved from manual egg enumeration to compare
techniques can enable an appropriate assessment of the
effectiveness of the semi-automated technique described here.
Pteropod egg counts determined accurately and efficiently can
then be used to model drivers of both spatial and temporal
patterns of early life development and fecundity throughout a
rapidly changing Southern Ocean. Egg count data may thus lead
Frontiers in Marine Science | www.frontiersin.org 760
to fruitful gains in assembling monitoring programs used to
forecast how spatial, ecological and environmental cues affect
variability in egg production of a sentinel species in response to
increased ocean acidification, deoxygenation and temperatures
(Bednarsěk et al., 2016; Manno et al., 2017).
DISCUSSION

Shelled pteropods perform essential ecological roles in polar
regions and serve as sentinels of climate change, though much
work is yet to be done to better understand how these changes
affect their early life development. This study constructed a
framework to perform automatic, albeit supervised, enumeration
of microscopic eggs from thecosome pteropod egg masses using
image analysis and machine learning algorithms. Prior to this
study, egg counting from thecosome pteropod egg masses had
been performed manually under stereomicroscope either through
counting eggs along ribbons dissected from each clutch or through
estimating the number of eggs over a known area (mm2) then
extrapolating this value over the entire length of the egg mass.
While the former is more accurate, this method is far more
invasive and destructive, whereas the latter method does not
account for high variability in egg density present along the
length of the egg masses. The purpose of this study was to
determine if a digital protocol for egg counting could be as
accurate and efficient as the more invasive manual counting
FIGURE 5 | Estimated counts of eggs within L. h. antarctica egg masses (n=16). Linear regression from the correlation calculated between manual and semi-
automated counts obtained through Fiji/ImageJ is y = 0.9787x – 55.9883, where y is the predicted number of eggs estimated through automation, and x is manual
count variable; R2 = 0.9217, p <0.05. Dashed line is 1:1 reference. Inset plot: Results of L. h. antarctica egg counts mm-2 conducted by automation and manually.
Median values of egg counts per egg mass area are depicted by horizontal lines within the 50% interquartiles (boxes). Upper and lower vertical lines, or “whiskers”
refer to maximum and minimum dependent values, respectively. No significant difference was observed between methods, p > 0.05.
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method and results here reveal no statistically significant difference
between methods. There was a strong correlation found between
semi-automatic and manual counting methods.

There are very few published data focused on thecosome
pteropod egg numbers and morphology, and how these
attributes change over time and under future predicted climate
scenarios, though spatio-temporal studies on manually
enumerated eggs have been conducted in other marine
gastropod species for decades (Berry, 1987; Mandal et al., 2010).
However, very few studies have examined gastropod egg number
variation along a gradient of environmental factors (Przeslawski,
2014). An accurate egg enumeration workflow has the potential to
answer questions pertaining to early life responses of shelled
pteropods to climate change, and the application of machine
learning within these studies allows for the automation and
simplified analyses of large-sized datasets. While only a few
studies have counted thecosome eggs for various research
purposes, at the time of this study, no other studies have closely
analyzed different enumeration techniques for pteropod eggs nor
developed an image processing technique incorporating
supervised or unsupervised machine learning algorithms. This is
the first study to develop and propose a framework to analyze
thecosome pteropod eggs digitally using open-source image
analysis software and machine learning algorithms.

Digital egg enumeration has advantages over manual
counting. Namely, it does not impose damage and potential
stress to the individual eggs, thus allowing the eggs and egg
masses to be maintained in live cultures for further ontogenetic
studies. Images can be captured while the live egg masses are
placed in petri dishes or well slides under stereomicroscope, and
subsequently available to use for ontogenetic experiments. This
can facilitate more research into understanding uncertainties
related to early life development of species sensitive to ocean
acidification and ocean sea surface temperature change.

There is capacity for improving detection accuracy and speed
of operation on the workflow presented here. Firstly, the discovery
of a stain that would easily differentiate eggs from non-egg
materials would be a fruitful next step. This would require a
deeper understanding of the constituents that make up organic
and inorganic materials within and adjacent to the egg masses and
result in more accurate segmentation by the TWS plugin.
Secondly, there are additional Fiji/ImageJ-based plugins and
tools that have shown promising results in pre- and
postprocessing cell enumeration, including cell staining followed
by the in-built Fiji/ImageJ Color Deconvolution plugin for color
segmentation (Ruifrok and Johnston, 2001). This research
included a single observer, an assessment of variability in results
between multiple observers would be recommended to test user-
induced bias and standardize steps, beginning with settings (e.g.,
magnification) and equipment (e.g., microscope and camera make
andmodel) related to the acquisition of digital images. And finally,
through the development of new macros with customizable
parameters (based on egg roundness, area, diameter, etc.) that
would enable batch processing of multiple image files, rendering
the process more automatic. The workflow described here can
serve as a baseline for future development with new functionality.
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In conclusion, the semi-automatic machine learning approach
to analyzing pteropod egg mass images developed here is a
promising user-friendly, non-destructive, and highly practical
methodology for enumerating eggs within their gel matrices. This
study outlines a simple, stepwise workflow necessary to accomplish
accurate pixel-based segmentation of pteropod egg mass images
using the image analysis software, Fiji/ImageJ, and the in-build
TWS plugin. The effectiveness of this workflow was shown through
a comparative analysis with manual counting requiring dissection
of egg ribbons embedded within the egg mass gel matrix under a
stereomicroscope that revealed high correlation.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS

The author confirms all responsibility for study conception and
design, sample and data collection, analyses and interpretation of
results, and manuscript preparation.
FUNDING

This study was financially supported through a grant provided by
the Holsworth Wildlife Research Endowment (grant #109804) of
the Ecological Society of Australia, as well as funding from the
Australian Government as part of the Antarctic Science
Collaboration Initiative program (grant # ASCI000002). The
Australian Antarctic Program Partnership is led by the
University of Tasmania, and includes the Australian Antarctic
Division, CSIRO Oceans and Atmosphere, Geoscience Australia,
the Bureau of Meteorology, the Tasmanian State Government
and Australia’s Integrated Marine Observing System.
ACKNOWLEDGMENTS

This research was made possible through the assistance of those
involved in plankton sampling, including the master, crew,
scientists and technical support teams aboard both the RV
Aurora Australis and TRV Umitaka-maru. I am grateful to the
anonymous reviewers who provided constructive feedback that
significantly improved the quality of this manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmars.2022.
869252/full#supplementary-material
April 2022 | Volume 9 | Article 869252

https://www.frontiersin.org/articles/10.3389/fmars.2022.869252/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.869252/full#supplementary-material
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Weldrick Pteropod Eggs and Image Analysis
REFERENCES

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J.,
Cardona, A., et al. (2017). Trainable Weka Segmentation: A Machine
Learning Tool for Microscopy Pixel Classification. Bioinformatics 33, 2424–
2426. doi: 10.1093/bioinformatics/btx180
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As the basis of oceanic food webs and a key component of the biological carbon pump,
planktonic organisms play major roles in the oceans. Their study benefited from the
development of in situ imaging instruments, which provide higher spatio-temporal
resolution than previous tools. But these instruments collect huge quantities of images, the
vast majority of which are of marine snow particles or imaging artifacts. Among them, the In
Situ Ichthyoplankton Imaging System (ISIIS) samples the largest water volumes (> 100 L s-1)
and thus produces particularly large datasets. To extract manageable amounts of ecological
information from in situ images, we propose to focus on planktonic organisms early in the data
processing pipeline: at the segmentation stage. We compared three segmentation methods,
particularly for smaller targets, in which plankton represents less than 1% of the objects: (i) a
traditional thresholding over the background, (ii) an object detector based on maximally stable
extremal regions (MSER), and (iii) a content-aware object detector, based on a Convolutional
Neural Network (CNN). These methods were assessed on a subset of ISIIS data collected in
the Mediterranean Sea, from which a ground truth dataset of > 3,000 manually delineated
organisms is extracted. The naive thresholding method captured 97.3% of those but
produced ~340,000 segments, 99.1% of which were therefore not plankton (i.e. recall =
97.3%, precision = 0.9%). Combining thresholding with a CNNmissed a fewmore planktonic
organisms (recall = 91.8%) but the number of segments decreased 18-fold (precision
increased to 16.3%). The MSER detector produced four times fewer segments than
thresholding (precision = 3.5%), missed more organisms (recall = 85.4%), but was
considerably faster. Because naive thresholding produces ~525,000 objects from 1 minute
of ISIIS deployment, the more advanced segmentation methods significantly improve ISIIS
data handling and ease the subsequent taxonomic classification of segmented objects.
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The cost in terms of recall is limited, particularly for the CNN object detector. These
approaches are now standard in computer vision and could be applicable to other
plankton imaging devices, the majority of which pose a data management problem.
Keywords: plankton images, ISIIS, image processing, image segmentation, object detection, convolutional neural
network, computer vision
1 INTRODUCTION
1.1. Plankton Imaging Enables
Fine Scale Studies
Planktonic organisms play crucial roles in the ocean:
photosynthetic phytoplankton is responsible for about half of
the primary production of the biosphere (Field et al., 1998) and is
the basis of oceanic food webs (Falkowski, 2012); zooplankton
acts as a trophic link between phytoplankton and higher trophic
levels (Ware and Thomson, 2005; Frederiksen et al., 2006) and is
a key component of the biological carbon pump, sequestering
organic carbon at depth (Longhurst and Glen Harrison, 1989).
Plankton comprises organisms from very diverse taxonomic
groups (de Vargas et al., 2015) that span from micrometer
scale picoplankton to meter-long Cnidarians (Lombard et al.,
2019). Given this very wide size range, plankton sampling
instruments cannot tackle all organisms at once and typically
target a reduced size range instead (Lombard et al., 2019).

The power law underlying plankton or marine snow particle
size spectra means that concentration drastically increases when
size decreases: the relationship is linear in log-log form (Sheldon
and Parsons, 1967; Sheldon et al., 1972; Stemmann and Boss,
2012; Lombard et al., 2019). The larger organisms, which each
contribute significantly to biomass, are rare but easy to detect.
Yet, it is critical to also focus on the smaller objects, to avoid
artificially cutting the effective size range of any instrument, thus
potentially discarding the most numerous objects in the sample
(Lombard et al., 2019). Moreover, as marine snow particles
cannot grow past a few centimeters because of disaggregation
(Alldredge and Silver, 1988; Alldredge et al., 1990), the ratio of
particles to plankton also decreases with increasing size.
Therefore, while targeting small planktonic organisms is
desirable, it comes with the difficulty of separating them from
the largely dominant particles within the same size range.

While large scale plankton distribution patterns are resolved
to a certain extent (Rutherford et al., 1999; Rombouts et al., 2009;
Tittensor et al., 2010; Ibarbalz et al., 2019; Brandão et al., 2021),
much remains to be discovered regarding fine scale distribution,
in particular for zooplankton. For phytoplankton, submesoscale
dynamics are known to influence their distribution and
concentration: vertical currents may affect nutrient and cell
distribution relative to the euphotic zone, thus affecting growth
rate, horizontal currents can stir patches into filaments. These
changes are expected to propagate to higher trophic levels
(zooplankton, fish, etc.) (Lévy et al., 2018). Indeed, the trophic
and reproductive interactions of zooplankton occur at the scale
of organisms (μm to cm). Therefore, a local concentration of
in.org 265
phytoplankton, in a thin layer for example, has more immediate
consequences on the survival and development of zooplanktonic
grazers than the average chlorophyll a concentration in the
region. Thus, studying zooplankton distribution at fine scales,
in relation with submesoscale dynamics, becomes relevant to
understand the processes driving its distribution at
regional scale.

Our lack of knowledge regarding the fine scale distribution of
plankton partly stems from the difficulty to adequately sample it
at such a small scale. Traditional plankton collection methods
such as pumps, nets, and bottles typically integrate organisms
over some vertical and/or horizontal distance and make it
difficult to associate organism concentrations with their
immediate environmental context (Remsen et al, 2004;
Benfield et al., 2007; Lombard et al., 2019). Moreover, most
damage fragile organisms and fail to sample some of them
properly (Remsen et al., 2004).

As an alternative, in situ pelagic imaging instruments such as
the Imaging FlowCytoBot (IFCB) (Olson and Sosik, 2007), the In
Situ Ichthyoplankton Imaging System (ISIIS) (Cowen and
Guigand, 2008), the Underwater Vision Profiler (UVP)
(Picheral et al., 2010), and the Scripps Plankton Camera (SPC)
(Orenstein et al., 2020) (see Lombard et al. (2019) for a detailed
list) allow studying plankton distribution at all scales: from the
fine ones they resolve in each sample to long time scales and
global spatial coverage through the accumulation of individual
samples (Stemmann et al., 2008; Forest et al., 2012; Robinson
et al., 2021; Irisson et al., 2022). As a non-destructive sampling
approach, these instruments allow investigating fragile
planktonic objects, such as Rhizaria (Dennett et al., 2002; Biard
et al., 2016; Biard and Ohman, 2020), Cnidaria and Ctenophora
(Luo et al., 2014), or marine snow aggregates (Guidi et al., 2008;
Guidi et al., 2015). Still, in situ imaging systems typically sample
smaller volumes than plankton nets (Lombard et al., 2019),
limiting their quantitative application to abundant taxa. To
quantify rarer planktonic groups, sampling effort has to be
increased to improve the chances of detection. For example,
the ISIIS was initially developed with a very high sampling
volume to study the very sparsely distributed fish larvae.
Because of this, all in situ imaging instruments collect vast
amounts of data, although the acquisition rate varies from one
instrument to the next. ISIIS, for instance, collects up to 11
million objects per hour of sampling, while IFCB collects images
at a rate of ~10,000 per hour (Sosik and Olson, 2007). Thus all
these systems need efficient and automated data processing
approaches, albeit with different stringency.

In addition, high resolution sampling is required to tackle
questions that used to be out of reach, such as fine-scale plankton
June 2022 | Volume 9 | Article 870005
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distribution in relation with environmental conditions
(McClatchie et al., 2012; Greer et al., 2015; Briseño-Avena
et al., 2020), plankton patch structure (Robinson et al., 2021),
interactions between zooplankton and phytoplankton fine layers
(Greer et al., 2013; Greer et al., 2020a; Schmid and Fortiers, 2019)
or co-occurrences revealing biological interactions such as
predation (Greer et al., 2014; Schmid et al., 2020; Swieca et al.,
2020; Greer et al., 2021).

1.2. Objects Need to be Extracted
Automatically From Pelagic Images
The first data processing step is separating relevant organisms
and particles from the background in raw images, i.e. image
segmentation. Various segmentation methods have been applied
for images collected by commonly used in situ imaging devices:
the UVP relies on a fixed gray level threshold (Picheral et al.,
2010), the IFCB uses an algorithm based on edge detection
(Olson and Sosik, 2007), the SPC (Orenstein et al., 2020) runs
a canny edge detector to initialize the segmentation of its dark-
field microscopy images. To segment images generated by the
Zooglider, a glider equipped with a shadowgraph, Ohman et al.
(2019) also applied a canny edge detector. Finally, to segment
shadowgrams from the ISIIS, Tsechpenakis et al. (2007) and Iyer,
(2012) used statistical modeling of the background of the image
and identified anomalies over this background as objects
of interest.

The ISIIS is deployed in an undulating manner, between the
surface and a given depth (Cowen and Guigand, 2008). It targets
organisms in the range 250 μm - 10 cm. Together with grayscale
images, it continually records environmental variables
(temperature, salinity, fluorescence, dissolved oxygen and
irradiance). The use of shadowgraphy combined with a specific
lens and lighting system provide a large depth of field and allow a
high sampling rate (28 kHz line scan camera). Therefore, the
ISIIS is capable of sampling volumes of waters larger than all
other in situ imaging instruments [> 100 L s-1; Lombard et al.
(2019)]. This optical design also ensures that the organism’s size
is not affected by its position within the depth of field.
Shadowgraphs are also able to detect heterogeneities in the
medium that is traversed by the light, which makes them
excellent to image transparent organisms such as plankton,
gelatinous organisms in particular. But it also makes them
sensitive to other sources of heterogeneity, such as suspended
particles or water density changes. ISIIS may thus generate noisy
images when deployed in turbid waters (Luo et al., 2018; Greer
et al., 2018) or across strong density gradients (Figures 1D–F)
(Faillettaz et al., 2016). Furthermore, the use of a line scan
camera means that marks or dust on the lens cause continuous
streaks in the generated images (the line continuously scans the
same speckle; Figures 1A, D). Those can be partially removed by
applying a flat-fielding procedure, whereby the average gray
value computed per row over a few thousand scanned lines is
subtracted from the incoming new values (Figures 1B, E)
(Faillettaz et al., 2016; Luo et al., 2018; Greer et al., 2018).

The very characteristics that give the ISIIS its qualities as a
plankton imager (large sampling volume, high speed, ability to
Frontiers in Marine Science | www.frontiersin.org 366
detect transparent objects) also mean that it creates a huge
amount of images, the background of which is often non-
uniform. This makes segmentation of planktonic objects from
raw images far from trivial. To perform this segmentation, the
processing pipeline was initially based on anomalies from a
gaussian mixture model of the background gray levels without
flat-fielding (Tsechpenakis et al., 2007) and later on k-harmonic
means clustering on flat-fielded images (Iyer, 2012). This latter
method was used in several studies (Luo et al., 2018; Greer et al.,
2018; Schmid et al., 2020) and the full pipeline was open sourced
in order to make plankton imaging more accessible and lower
entry barriers (Schmid et al., 2021). Other studies relied on flat-
fielding followed by segmentation above a fixed gray level
(Faillettaz et al., 2016; Greer et al., 2020a; Greer et al., 2020b).
However, most of these studies focused on the larger end of size
range targeted by the ISIIS, by considering only objects above a
given size threshold (Table 1), often because those were desirable
targets, not noise. Similarly, for their canny edge detector applied
to ZooGlider images, Ohman et al. (2019) considered objects
larger than 100 pixels (Equivalent Spherical Diameter, or ESD of
0.45 mm). However, the algorithm failed when too many
particles were present and had to fall back to a less sensitive
(i.e. higher) gray threshold. As shown above, both planktonic
organisms and particles are much more abundant towards the
smaller end of the spectrum, meaning that such methods had to
ignore a non-negligible part of planktonic organisms and marine
snow in order to discard the background noise.

1.3. Marine Snow and Imaging Artifacts
Dominate In Situ Images and Complicate
Plankton Detection
Marine snow particles are much more abundant than plankton in
the ocean (Lombard et al., 2019), which means that the vast
majority (often > 85%) of images captured by in situ plankton
imaging instruments are actually of various marine snow items
(fecal pellets, large aggregates, small organism pieces, etc.;
(Stemmann et al., 2000; Picheral et al., 2010; Stemmann and
Boss, 2012)). Therefore, for plankton ecology studies, the
bottleneck has often become the processing and filtering of
collected images (Irisson et al., 2022). To reduce the proportion
of detrital particles and focus on photosynthetic plankton, the
IFCB and the FlowCam can use fluorescence image triggering,
hence imaging only items that contain chlorophyll (Sieracki et al.,
1998; Sosik and Olson, 2007). This is not possible over the large
volumes and for the non-photosynthetic organisms that ISIIS or
other zooplankton imagers target. Furthermore, density anomalies
lead to the characteristically noisy shadowgrams presented above
(Figures 1D–F), from which numerous artifactual “particles” are
detected by the usual image processing pipelines. Those artifacts or
noise, together with marine snow, can constitute 99% of the
objects detected. Such an extreme class imbalance makes the
automatic classification of these objects through machine
learning a very arduous task (Lee et al., 2016).

Even for a trained human operator, the differentiation of
some planktonic classes from the proteiform marine snow
aggregates and noise, as well as distinction between marine
June 2022 | Volume 9 | Article 870005
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snow and noise themselves, can be very challenging. Towards the
smaller end of the size spectrum it becomes virtually impossible.
Indeed, once these small objects are segmented out, the low pixel
count combined with the lack of information regarding their
context in the image makes their identification very difficult, for
humans and computers alike (Parikh et al., 2012). Hence, one
solution could be to focus solely on planktonic organisms from
the segmentation step already and try to avoid segmenting non-
planktonic objects, thanks to their broader context in the image,
still accessible at this step. This should result in a much more
manageable amount of data to classify and a lesser class
imbalance. This approach requires the development of specific
and “intelligent” segmentation methods that target specific
objects only. The purpose of this work was (i) to develop such
“intelligent” segmentation approaches and (ii) to compare them
with classic methods to test whether they significantly improve
the data processing pipeline. With this in mind, we benchmarked
three segmentation methods against a ground-truth human
segmentation using a dataset collected by the ISIIS in the
North-Western Mediterranean Sea.
2 MATERIALS AND METHODS

2.1. Image Segmentation Methods
2.1.1. Threshold-Based Segmentation
The simplest segmentation method is to threshold pixels below a
given gray level: adjoining pixels darker than the threshold are
considered as segments. This threshold can be a value fixed a priori
or dynamically computed from the properties of each image. For
example, the classic method of Otsu (1979) is to examine the
histogram of intensity levels and define the threshold so that it
separates pixels into two relatively homogeneous intensity classes.
Here either a fixed threshold was set or the threshold was defined
based on a quantile of the histogram of gray levels. This quantile-
based approach resulted in a darker segmentation threshold on
noisy images, such as those captured around the strong density
gradient induced by the thermocline (Figures 1D–F), which were
richer in dark pixels. It was well adapted to limit the number of
artifact segments generated from these images. Moreover, the first
quartile is barely affected by the presence of relatively large dark
objects such as jellyfish tentacles, making the segmentation
threshold robust to these natural occurrences. After thresholding,
segments defined by connected components were dilated by 3 pixels
Frontiers in Marine Science | www.frontiersin.org 568
and eroded by 2 pixels to fill potential holes in transparent
organisms and reconnect thin appendages to the organisms
bodies. Finally, only segments larger than 50 pixels (400 μm in
ESD) were retained, because it was the minimum size at which
taxonomists could recognise organisms.

2.1.2. Threshold-MSER (T-MSER) Segmentation
This approach uses a signal-to-noise ratio (SNR) cutoff,
calculated on images after flat-fielding, to determine whether
the frame should be segmented using a Maximally Stable
Extremal Region approach (MSER, Matas et al. (2004)), or if
areas of high noise should first be filtered out using a naive
thresholding approach before applying MSER. MSER was
successfully applied to the segmentation of ZOOVIS imagery
(Bi et al., 2015; Cheng et al., 2019). SNR can be used to determine
the relative noise level in an image and was computed as

SNR = 20� log 
S
N

� �
(1)

where S is the signal, defined as the mean of the input data, and N is
the noise, computed as the standard deviation around that mean.
Here, flat-fielded frames with low SNR (i.e. high noise) were
binarized using a fixed thresholding in order to extract
continuous regions of interest with darker pixel values. The
regions identified in this way were then extracted using a mask
and subsequently re-segmented using the MSER approach. MSER
detects stable connected regions in images, which are areas that stay
nearly unchanged over a wide range of grayscale thresholds. MSER
can be tuned to allow for varying degrees of stable region area and
the range of pixel gray values tested in the dynamic thresholding.
High SNR frames are directly segmented using the MSER approach
(Figure 2 skip from step B to step D). Going from a pure MSER
approach to the threshold+MSER (T-MSER) on low SNR (< 50)
frames increased the recall on the test data from 65% to 85%, while
also substantially increasing precision. This SNR andMSERmethod
is written in C++17. The OpenCV and OpenMP Python packages
were used for general computer vision and parallel processing for
high processing efficiency, respectively.

2.1.3. Threshold-CNN (T-CNN) Segmentation
Another solution is to use Convolutional Neural Networks to either
detect (i.e. define bounding boxes around) or segment (i.e. define a
pixel mask of) objects of interest. Such approaches open the
possibility to focus the detection on some types of objects (here,
plankton) and ignore others (here, marine snow and artifacts); this
is also called content-aware object detection or segmentation.
However, CNNs tend to underperform at detecting objects across
a large size range, especially for objects starting from a few dozen
pixels (Cai et al., 2016). They work best when the target objects are
of the same size as the receptive field of the model (Eggert et al.,
2016). Thus, the development of detectors implementing receptive
fields of various sizes constituted a major improvement, as they
allowed detecting objects across a larger size range (Cai et al., 2016).
In particular, we chose the Detectron2 library (Wu et al., 2019)
developed by Facebook AI Research, which provides state-of-the-art
object detection and segmentation algorithms, as well as pre-trained
models for such tasks. Detectron2 includes a feature pyramid
TABLE 1 | Threshold in object area (number of pixels considered as part of the
object) in studies exploiting ISIIS data.

Reference Area threshold (px) ESD (mm)

Schmid et al. (2020) 7 0.2
Luo et al. (2018) 50 0.53
Faillettaz et al. (2016) 250 0.92
Greet er al. (2020b) 400 0.95
Greer et al. (2020a) 900 1.4
Greer et al. (2021) 2000 3.0
Greer et al. (2018) 5000 5.4
aThe conversion factor from area (px) to Equivalent Spherical Diameter (ESD, mm)
depends on the ISIIS configuration.
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network (Lin et al., 2017) backbone that extracts featuremaps across
multiple scales to enable the detection of objects of various sizes,
which was critical in our application to plankton images. Yet, this
was not enough to cover the very large size range of organisms
imaged by the ISIIS (from 50 to hundreds of thousands of pixels
in area).

As explained above, marine snow particles and density-
induced imaging artifacts are especially dominant compared to
plankton in the smaller size classes. Therefore, our CNN pipeline
was set up to segment the smaller objects, from 50 to 400 pixels in
area, where the ability to specifically segment plankton makes the
most difference. Above 400 pixels, the quantile-based threshold
approach, with dilation and erosion, was used because it was
simple and did not generate too many non-plankton segments.

In Detectron2, we used Mask R-CNN (He et al., 2017), which
allows simultaneous bounding box detection and instance
segmentation. The model was initialized with weights trained
on the COCO reference dataset1 but, for it to detect planktonic
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-
stanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml/
1

In
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organisms on ISIIS images, it has to be fine-tuned on a dataset of
ground truth bounding boxes and masks of such organisms. This
dataset was generated by manually delineating all recognizable
planktonic organisms in a set of ISIIS images, using a digital pen
on a tablet computer. This produced 23,197 ground truth masks,
from which bounding boxes were computed. Among those,
10,878 object were in the 50-400 pixels area range and usable.
A 524×524 pixels crop was generated around every ground truth
object (pushing the crop back inside the image when it crossed
the edges). The choice of this particular size is a tradeoff between
the maximum size of planktonic organisms that can be detected
and the memory available on the graphics card. Moreover, it is in
the line with common input sizes for segmentation models and
was convenient to generate a tiling on ISIIS images. Several
objects could be present in a crop. The crops were then split into
70% for training, 15% for validation, and 15% for testing. This
split was stratified by the average gray level of the crop to ensure
that both noisy (darker) and clean (lighter) images were present
in each split, so that the model was presented with all kinds of
images during training. Indeed, a model trained on clean images
only would have performed poorly on noisy ones.
A B

DC

FIGURE 2 | Example MSER segmentation of a noisy raw frame (with low SNR). (A) Raw output; (B) after flat-fielding; (C) regions of interest created through naive
thresholding; (D) regions of interest and their bounding boxes created by applying MSER to (C). In a low SNR frame such as the one above the processing steps
are (A–D), while in a high SNR frame the processing steps are (A, B, D). In panel (A), the scale bar represents 1 cm and is applicable to other panels.
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Detectron2 can perform multiclass object detection or
segmentation, meaning that objects are both detected/segmented
and classified in a single step. However, it requires sufficient
examples in each class for training. This condition could not be
satisfied here, given how time-consuming it was to obtain pixel-
level masks for every object and because plankton samples are
usually dominated by a few abundant taxa while most others are
very rare (Ser-Giacomi et al., 2018). Since the focus of this study is
on segmentation, we decided to perform one-class object detection/
segmentation, thus training the model to recognize planktonic
organisms of any taxon. This implies that classification needs to be
done after segmentation. Once an object is detected, this sequential,
rather than concurrent, approach does not affect the result of the
classification, since the same information is available to the
subsequent classifier as to the concurrent one. Furthermore,
focusing on segmentation only is also more comparable with the
two other methods described above.

The model was trained for 30,000 iterations, and evaluation
was run on the validation set every 1,000 iterations to ensure that
the validation loss reached a plateau. The learning rate was set to
0.0005 initially and decreased 10 fold after 10,000 and 20,000
iterations. To increase the generality of the detector, data
augmentation was used in the form of random resizing of the
524 pixels crops (to 640, 672, 704, 736, 768 or 800 pixels) and
random horizontal flipping. The test set was used to assess
theoretical performance after training and guide the choice of
model settings; the actual performance was assessed on a
separate, real-world dataset (presented below).

To apply the trained model to new images, a tiling of 524×524
pixels crops (the size used during model training) was generated
over each input image, resulting in an overlap of 143 pixels
vertically and 135 pixels horizontally. The overlap ensured that
detectable objects spread over two crops were not missed. Crops
were upscaled to 900×900 pixels to improve detection of small
objects (Eggert et al., 2016). For each crop, the model predicted
the bounding boxes of objects and their masks. We only
considered the boxes, resolved overlaps in detections caused by
overlapping crops, and submitted each box to exactly the same
quantile-based thresholding as what was used above 400 pixels.
This was preferred over using Detectron’s mask proposals
because their outline was not as detailed or replicable as the
threshold-based ones. Furthermore, it also ensured that
morphometric measurements performed on the masks (area in
particular) were exactly comparable between the objects that
went through the CNN and those above 400 pixels that were
defined by simple thresholding. For each bounding box proposal,
the model computes a confidence score. We retained all boxes
with a score over 0.1, which is a quite low confidence threshold
designed to increase the chance of detecting all objects of interest
(i.e. favor recall) at the cost of some false positive detections (i.e.
lower precision). Those false positives (i.e. segmented objects
that are not plankton) will have the opportunity to be eliminated
later, when segments are classified taxonomically.

The CNN was coded in Python with PyTorch, the original
implementation library for Detectron2. Training was conducted
on an Nvidia Quadro RTX 8000 GPU and the code is available at
Frontiers in Marine Science | www.frontiersin.org 770
https://github.com/ThelmaPana/Detectron2_plankton_training.
The combined CNN and threshold segmentation pipeline is
implemented in https://github.com/jiho/apeep and this was run
in several Linux-based environments, using various
Nvidia GPUs.

2.2. Application to ISIIS Data from
VISUFRONT Campaign
We evaluated these segmentation methods on ISIIS data from
the VISUFRONT campaign, which sampled the Ligurian current
front (North Western Mediterranean Sea), in the 0-100 m depth
range, during summer 2013. Towed at a speed of 2 m s-1 (4kts)
and set for a 28 kHz scanning rate, the ISIIS sampled 108 L per
second. The 2048 pixels high continuous image strip created by
the line scan camera moving in the water was cut in 2048×2048
pixels frames for storage. The ISIIS captured marked volutes
caused by water density variations (Figures 1D–F), mostly
driven by temperature changes around the thermocline,
previously described by Faillettaz et al. (2016).

The continuous image strip was reassembled from the stored
2048×2048 pixels frames. Each line of pixels was flat-fielded by
subtracting the row-wise average over a 8000 pixels moving
window, hence removing streaks (Figures 1A, B, D, E). The
cleaned image was cut into 10,240 pixels long images (5 frames,
instead of 1) to reduce the probability of cutting objects across
images while keeping the memory footprint of each image
manageable. Finally, the image was contrasted by stretching
the intensity range between percentiles 0 and 40 (Figures 1B,
C, E, F). These values were chosen by iteration, through
discussions with the taxonomist in charge of delineating
planktonic organisms from raw images, as to achieve the
highest distinguishability for those.

A ground truth dataset was generated by manually
delineating all planktonic organisms (using a digital pen and
tablet) in 106 10,240×2048 pixels images, regularly spread across
a full transect, hence representative of different environments.
This resulted in 3,356 objects that were later taxonomically
sorted into 24 taxa (Figure 3), in the Ecotaxa web application
(Picheral et al., 2017). This dataset was completely independent
from the one that was used to train, validate and test the
Detectron2 model. Some images were checked by two
independent operators to check their consistency; when this
was done, no differences were found.

Segments from each of the three automated methods were
matched with ground truth segments of the same image. A
bounding box intersection over union (IoU) score higher than
10% was considered as a match between segments. This
threshold was set after manually inspecting a set of potential
matches with various IoU values and was found to be the best
value to discriminate between true and false matches. In case a
ground truth segment matched multiple automatic segments,
only one match was retained, to avoid inflating artificially the
number of matches from the automated pipelines. In case an
automatic segment matched multiple ground truth segments, the
match was not counted either because it corresponded to a large
segment that encompassed several organisms likely belonging to
June 2022 | Volume 9 | Article 870005

https://github.com/ThelmaPana/Detectron2_plankton_training
https://github.com/jiho/apeep
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Panaïotis et al. Content-Aware Segmentation of Plankton Images
different taxa, which would make it unexploitable ecologically.
Both choices made the match metrics conservative.

From these matches, global precision and recall were
computed to summarize performance. Precision was computed
as the proportion of automatic segments that matched ground
truth segments. A 100% precision means that the algorithm only
extracted ground truth segments. Recall was computed as the
proportion of ground truth segments detected by the automated
segmentation algorithm. A 100% recall means the algorithm did
segment every manually delineated organism. Precision and
recall scores were also computed per size class, where size was
Frontiers in Marine Science | www.frontiersin.org 871
defined as the length of the diagonal of the bounding box; size
classes were defined as intervals of 10 pixels, from 10 to 100
pixels, plus a class > 100 pixels. These size classes do not aim at
reflecting any ecological groups but were designed to split
segments into roughly balanced classes. Recall was also
computed for each taxonomic group defined in the ground
truth segments. Precision does not make sense for taxonomic
groups since it would only reflect the performance of the
classification, not of the segmentation. The particle matching
and metric computation code is available at https://github.com/
ThelmaPana/segmentation_benchmark.
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FIGURE 3 | Examples of planktonic organisms imaged by the ISIIS. (A) Acantharea; (B) Actinopterygii; (C) Annelida; (D) Appendicularia; (E) Appendicularia (house only);
(F) Appendicularia (body only); (G) Aulacanthidae; (H) Bacillariophyceae; (I) Chaetognatha; (J) solitary Collodaria; (K) Hydrozoa; (L) Cnidaria (other than Hydrozoa); (M)
Crustacea (other than Harpacticoida, Copepoda and Eumalacostraca); (N) Harpacticoida; (O) Copepoda (other than Harpacticoida); (P) Eumalacostraca; (Q) Echinodermata
(pluteus larva); (R) colonial Collodaria; (S) Ctenophora; (T) Doliolida; (U) Mollusca; (V) Pyrocystis; (W) Rhizaria (other than Acantharea; Aulacanthidae and Collodaria); (X)
Siphonophorae.
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3 RESULTS

3.1. Number and Size Distribution
of Segments
On the 106 images of the segmentation benchmark dataset, 3,356
organisms were manually segmented, whereas the automated
pipelines generated many more segments, especially the
threshold-based one (Table 2).

The normalized abundance size spectra (NASS) (Figure 4)
display the expected linear decrease of abundance with size in
log-log scale. For the ground truth segments, the curve dips
below this linear relationship for objects of 25 pixels in diagonal
and smaller (dotted vertical line on Figure 4). Since this dataset
specifically targeted recognisable planktonic organisms, this dip
highlights that not all organisms below this size could be detected
by a human taxonomist upon detailed examination of the images
(Lombard et al., 2019). The discontinuity is towards smaller
diagonal sizes in the automated pipelines, but likely because
many of the small segments are of non-plankton objects.

All automated pipelines have NASS curves above the ground
truth, which highlights the fact that they segmented non-
Frontiers in Marine Science | www.frontiersin.org 972
plankton objects. This was true over the entire size range but
was particularly pronounced for the smaller size classes. Above
10 mm/200 pixels in diagonal, the T-MSER pipeline produced a
number of segments comparable to the ground truth, which is
satisfying, although it does not guarantee that those are of the
same objects (it might have missed some plankton and
segmented marine snow/artifacts in the same size range; see
precision and recall performances for the largest size class in
Figure 5 below). From the maximal size down to ~70 pixels in
diagonal, the T and T-CNN pipelines produced the same
segments. This coincides with the critical size of 400 pixels in
area at which the segmentation method switched from
threshold-based to content-aware. Indeed, the conversion from
area to bounding box diagonal is not linear because it depends on
the shape of the objects. For an object of 400 pixels in area, the
bounding box diagonal is between 30 and 70 pixels. This shows
that the T-CNN pipeline was effective in reducing the number of
segments compared to naive thresholding, because the NASS
diverges below that size.

A linear regression performed on the linear portion of the NASS
(diagonal values between 30 and 500 pixels) followed by an analysis
FIGURE 4 | Normalized abundance size spectra (NASS) of all segments generated by the benchmarked pipelines and ground truth segmentation. To compute the NASS,
segments were grouped into size classes on a log2 scale, each class size being two times wider than the previous one. Normalized abundance was computed by dividing the
number of segments in each class by the size class width, resulting in an adimensional quantity (number of segments) divided by a length (mm here). The double x-axis is the
length of the diagonal bounding box displayed both in pixels and after conversion in mm. The dotted vertical line highlights the slope discontinuity in the size spectrum of
ground truth segments. Note that both axes use log10 scaling. T, threshold-based; T-MSER, threshold-MSER; T-CNN, threshold-CNN.
TABLE 2 | Number of segments generated by each pipeline on the 106 benchmark images and estimation of the amount of segments they would produce on one
minute of ISIIS data.

Segmentation pipeline Number of segments on benchmark images Average number of segments per minute of ISIIS deployment

Ground truth 3,356 ~5,000
Threshold 339,907 ~525,000
Threshold-MSER 82,731 ~130,000
Threshold-CNN 19,048 ~30,000
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of covariance demonstrated significant difference in slopes between
the segmentation methods: F(3,105) = 133.07; p < 0.001 (Table S1).
Post hoc analysis showed a significant difference between all
segmentation methods (p < 0.001 for all pairs) (Table S2).

3.2. Global Performance Statistics
Overall, the three pipelines demonstrate good recall: when
looking at the total number of segments, they all captured
over 85% of the ground truth organisms. The T-CNN pipeline
largely outperformed both the threshold-based and T-MSER
pipelines in terms of precision (Table 3). In other words,
although it segmented almost all planktonic objects, the
threshold-based pipeline generated mostly non-plankton
segments (~99%), composed of both marine snow and
density volutes artifacts. The T-CNN pipeline also produced
non-planktonic segments but they “only” represented 84% of
segments, while still segmenting a good proportion of
planktonic objects. The T-MSER performed somewhere in
between those two extremes.

3.3. Performances Per Size Class
Because the behavior of the pipelines seems to vary with size
(Figure 4), it seems relevant to break down the matching
statistics per size class. With the threshold-based pipeline,
precision decreased with size: smaller segments included a
lower proportion of planktonic organisms than larger ones
(Figure 5A). The T-CNN pipeline had better precision than
the others for small segments while T-MSER had a better
Frontiers in Marine Science | www.frontiersin.org 1073
precision for larger segments. In terms of recall, the threshold-
based pipeline always performed better than the others,
regardless of size class (Figure 5B). The T-MSER pipeline
performed as well as the T-CNN pipeline on middle size
classes, but achieved a lower recall for both very small and
very large segments.

3.4. Performances Per Taxonomic Group
In the ground truth dataset, half of the 24 detected taxa were
represented by fewer than 18 individuals (median is 18.5), hence
inducing little resolution and large variance in the performance
statistics of segmentation pipelines. Among the other half of the
taxa, the recall of the T-CNN pipeline was lower than that of the
threshold pipeline by more than 10% for only two taxa
(Bacillaryophycea and Doliolida) and for only four in the case
of the T-MSER pipeline (Bacillariophyceae, Ctenophora,
Acantharea, and other Rhizaria; Figure 6). The lowest recall
values were reached for Bacillariophyceae and Ctenophora, for
all pipelines. In concordance with the consistent recall
performance across size classes, taxa-wise recall performance of
TABLE 3 | Precision and recall values of the automated pipelines evaluated
against the 3,356 ground truth organisms.

Pipeline Precision Recall

Threshold 0.9% 97.3%
Threshold-MSER 3.5% 85.4%
Threshold-CNN 16.3% 91.9%
June 2022 | Volume 9 | Article 8
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FIGURE 5 | Precision (A) and recall (B) scores per size class. In (B), n indicates the number of segments per size class for the ground truth dataset. T, threshold-
based; T-MSER, threshold-MSER; T-CNN, threshold-CNN.
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the T-CNN pipeline do not seem linked to organism size: small
organisms (e.g. Acantharea, Pyrocystis) were accurately detected.
4 DISCUSSION

4.1. Summary of Results
The threshold-based pipeline performed an exhaustive
segmentation: planktonic organisms were almost all properly
detected, yet they were drowned in the overwhelming majority of
Frontiers in Marine Science | www.frontiersin.org 1174
non-planktonic objects (Table 2). The T-CNN pipeline reduced
this problem, significantly increasing precision (Table 3 and
Figure 5A) while still achieving a very good detection of
plankton across the entire size range targeted by ISIIS. The T-
MSER pipeline also reduced the segmentation of non-planktonic
objects, especially at the top-end of the size range, but detected
fewer planktonic organisms than the other pipelines (Figure 5B).
Despite the large decrease in number of segmented objects, for
most taxa, the MSER or CNN pipelines reduced recall by less
than 10% (Figure 6). One explanation for these differences is that
naive thresholding captured a lot of noise (i.e. density volutes)
and, additionally, broke it into many small segments. The use of
either MSER or a CNN allowed ignoring these noise segments
and/or not breaking them apart, hence producing much fewer
non-planktonic segments. The decrease in abundance below the
expected slope at the smaller end of the size spectrum of ground
truth segments (Figure 4) suggests that identification of
planktonic organisms becomes non-exhaustive below 25 pixels
in bounding box diagonal. Below this size, which amounts to 600
μm in ESD on average, some organisms can still be detected. This
means that relative concentrations between locations/times can
likely be exploited within a taxon but that further filtering and
corrections are needed to reach absolute concentrations.

The statistical difference between NASS slopes (Figure 4)
indicates that they segment different kinds and amounts of non-
planktonic objects, compared to the all-plankton ground truth.
This implies that the output of different segmentation
approaches should not be directly compared in terms of size
distribution. Segmentation methods were already shown to have
an impact on the definition of particle size and shape, which
propagates to subsequent analyses such as particle flux estimates
(Giering et al., 2020). This slope discrepancy as well as the vastly
larger intercept of the NASS of automated pipelines compared to
the ground truth means that the computation of an appropriate
plankton size spectrum requires a classification step that would
exclude non-planktonic objects.

4.2. Targeted Organisms
Some taxa were systematically less often detected than others.
Some of the not detected Bacillariophyceae were large, blurry,
and too translucent (Figure 3H) to be caught by the threshold-
based branch of the T-CNN pipeline or by the T-MSER method.
The other, smaller, ones that were missed by the content-aware
branch of T-CNN were not detected because they were quite
different from the ones used during training (blurrier).
Integrating more representative examples of Bacillariophyceae
for CNN training could have improved performance on this
taxon. Similarly, doliolids (Figure 3T), that were often large,
should have been segmented by the threshold-based branch of T-
CNN as well as by T-MSER. The ones missed, mostly by T-CNN,
were also blurry and too translucent for intensity-based
thresholding with a single threshold. Ctenophores (likely of the
Mertensiidae family, Figure 3S) displayed thin, translucent
tentacles that were often missed by threshold-based methods.
Therefore, only the body was segmented, which resulted in a
bounding box IoU value < 0.1, too low to be considered a match
with the ground truth segment that included the tentacles. Still, a
FIGURE 6 | Recall scores per taxon. n is the number of individuals from
each taxon in the 106 benchmark images and taxa are sorted in decreasing
order of abundance. T, threshold-based; T-MSER, threshold-MSER; T-CNN,
threshold-CNN.
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later CNN classifier should be able to correctly identify even such
portions of organisms, as CNNs were shown to mostly rely on
local shape and texture features instead of on the global shape
(Baker et al., 2018; Baker et al., 2020). Finally, the T-MSER
pipeline resulted in a lower recall for Acantharea and other
Rhizaria (Figures 3A, W). This seems to stem from a too
aggressive thresholding step in low SNR high noise frames, the
pre-processing step before MSER is applied. Further fine-tuning
would likely allow it to retain more or all Acantharea and other
Rhizaria images.

In the present study, we aimed at performing an exhaustive
detection of every planktonic organism across the size range
targeted by the ISIIS. However, in general, the segmentation
algorithm should be chosen according to the target organisms.
For example, to focus on organisms towards the larger end of the
ISIIS size range (e.g. > 10 mm), where particles—mostly marine
snow aggregates — are much less abundant, a simple gray-level
threshold seems sufficient.
4.3. Processing Time and Cost
The quantile-based thresholding pipeline ran on a single CPU core
at a rate of 30 minutes of processing for 1 minute of ISIIS data
(0.03x), on an Intel Xeon E5-2643 v3 (3.40 GHz). Its memory
requirements were limited so it was easy to run simultaneous
processing of multiple batches of data on a multi-core/multi-
processor machine, but the treatment of ISIIS data as a
continuous stream for flat-fielding prevented automatic
multithreading. The T-CNN pipeline required a GPU with
sufficient memory (48 GB, on aNvidia Quadro RTX 8000 in our
case) to efficiently train the CNN portion and to fit ISIIS images in
at evaluation time. It processed data at the same rate as the
threshold-based pipeline (30 min processing for 1 min of data, or
0.03x). The T-MSER pipeline was optimized for speed and utilized
the 8 cores of an AMD Ryzen 3700, processing one minute of ISIIS
data in 50 seconds (1.2x), or 6 min 40 s of processing for 1 min of
ISIIS data (0.15x) when considering running on one core.

The MSER implementation followed Matas et al. (2004)
closely. The optimization of the T-MSER approach stems from
adding the SNR switch, which leads to the pre-processing of
high-noise images with naive thresholding, while going straight
to the MSER-based detection in low noise images. Adding these
changes increased segmentation recall from 65% to 85%. Further
optimization included making the code multi-thread ready for
deployment on High Performance Computing infrastructures.
Using the specialized CPUs of these infrastructures, such as the
AMD EPYC 7742 (64 cores, 128 threads) performance could
improve well above 1.2x. At current data collection rates of 75-
100 h of ISIIS data per scientific cruise, a real time or faster than real
time segmentation approach constitutes a substantial benefit.

At first glance, the T-CNN pipeline seems expensive in terms
of set up and architecture: it requires a GPU with sufficient
memory to operate, implies the use of relatively new deep
learning coding frameworks and the preparation of a training
set with manual delineation of thousands of planktonic
organisms. But these costs are offset by the time gained not
processing a multitude of particles in each image, resulting in a
Frontiers in Marine Science | www.frontiersin.org 1275
processing rate comparable to that of the pure threshold-based
pipeline, as stated above. Furthermore, the fact that T-CNN
produced 20 times fewer segments will also considerably reduce
the classification time (often CNN based too). Finally, since recall
barely decreased, the objects ignored were mostly the dominant
non-plankton objects, as per design; this will diminish the
imbalance among classes that classifiers are sensitive too,
further improving the classification step. Moreover, both the
Detectron2 library and the baseline model on which the T-CNN
pipeline relies are easily downloadable and well documented2.
With GPU resources becoming increasingly available for
scientific research and the associated frameworks becoming
easier to use, such tools are poised to become more powerful
and accessible.

4.4. Detection of Small Objects by
CNN Models
The detection of objects measuring just a few pixels is still a
research problem in its own right in computer sciences (Eggert
et al., 2017), coined very low resolution recognition problems
(Wang et al., 2016). They are characterized by targets smaller
than 16×16 pixels, which can be challenging even for the
perceptual abilities of human experts. They target applications
for company logo detection (Eggert et al., 2016; Eggert et al.,
2017), face recognition from video surveillance, or text
recognition (Wang et al., 2016). The receptive fields of
common object detection architectures match the target object
size and range from 50×50 to 450×450 pixels which is much
larger than the small objects targeted in low resolution studies
(Eggert et al., 2017). Here, the smallest organisms targeted had an
area of 50 pixels, which corresponded to a bounding box
diagonal of 12 pixels, or an 8x8 pixels square. Thus the
exhaustive detection of plankton organisms in ISIIS images,
including the smaller ones, clearly falls in the domain of very
low resolution recognition. A common solution is image
upscaling, as highlighted by Eggert et al. (2016), which we
implemented in the present work. The 524×524 pixels crops
were upscaled to 900×900 pixels before evaluation in the
Detectron2 model. The 900 pixels size is a compromise
between detection accuracy, usage of the GPU memory, and
processing time. Other approaches for multi-scale object
detection are described by (Cai et al., 2016) and include
magnification of regions susceptible to contain small objects
(Eggert et al., 2016) or the integration of contextual information
outside of regions of interest (Bell et al., 2016).

No automated segmentation method is perfect; depending
on their settings, they either avoid objects other than their
targets but miss some objects of interest (high precision, low
recall) or detect most objects of interest but also many others
(high recall, low precision). If the segmentation or object
detection task is followed by a classification step, which is
always the case for plankton imaging, we advocate in favor of
recall over precision during segmentation, provided that the
amount of data remains manageable. Hence, a maximum
number of planktonic objects have the opportunity to be
classified. The precision can be improved after classification,
by filtering out low confidence, usually error prone, predictions
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based on the score given by the classifier (Faillettaz et al., 2016;
Luo et al., 2018).

To extract planktonic organisms of various taxa from ISIIS
images, full instance segmentation would have been the most
elegant approach, outputting classified mask instances in a
single step (Dai et al., 2016). Several obstacles still lay ahead
for this approach to be applicable. First, training an instance
segmentation model to recognize each taxonomic group would
require hundreds to thousands of ground truth (i.e. human-
produced) masks of all taxa. Given the long tailed distribution
of taxa concentrations in the planktonic world, with many rare
taxa, in particular the largest ones, this would require a
considerable amount of searching and labeling effort. Indeed,
assembling enough examples to train classifications models is
already challenging (Irisson et al., 2022) and manual
delineation of each organism is much more time consuming
than manual classification. A second obstacle is the size range
of organisms imaged by ISIIS. Although Detectron2 does
produce multi-scale feature maps through a Feature Pyramid
Network in order to apply receptive fields of multiple size, the
ratio between the largest and the smallest feature maps is only
16. Here, the ratio between the smallest and largest bounding
box diagonals of manually segmented organisms is 65 and can
reach > 180 in more exhaustive ISIIS datasets. To tackle this
span, one could theoretically set up an ensemble of detectors,
fed with crops of different sizes, each one targeting a restricted
size range. Yet, this would be a particularly computationally
demanding and complex set up, for a gain yet to be determined
since, for larger sizes, the proportion of non-plankton objects,
and therefore the advantage of a CNN-based segmentation,
diminishes. Finally, masks generated by instance segmentation
models currently lack both precision (their outline is smoothed,
not matching the fine appendages of plankton) and
reproducibility (because of the randomness included during
training to avoid overfitting, two models trained on the same
data will output different masks). These drawbacks are
particularly critical for plankton application, where the size of
the organisms, computed from their masks, is often of interest.
5 CONCLUSION AND PERSPECTIVES

We developed combined segmentation pipelines able to detect
planktonic organisms spanning a broad size range. The fact that
all methods comprised a deterministic, threshold-based
segmentation ensured that particle shapes and measurement
were consistent over the whole size range. Still, the
segmentation method affected the shape of the size spectrum
and additional processing steps (including classification) are
needed to extract the correct size structure of living organisms.
The MSER method limited over-segmentation of background
noise objects and extracted more consistent segments, at a very
high processing rate. This speed opens the possibility for near-
real time processing, which is particularly relevant for adaptive
sampling during a cruise or an early warning system in a time
series context. Although at the lower limit of the detection
capabilities of CNNs, our content-aware approach was able to
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detect planktonic organisms among an overwhelming number of
marine snow and noise images, exhibiting the best recall of the
three methods. Therefore, the ideal segmentation approach
depends on the study objectives and operational constraints.

These approaches seem relevant for imaging studies focused
on living planktonic organisms, since they reduce the number of
objects from non-plankton classes that are extracted. In turn, this
dampens the imbalance towards these classes, laying the
foundations for easier, faster, and more accurate subsequent
object classification by (i) reducing the amount of work needed
to generate a training set with similar class distribution, which is
essential to avoid the caveat of dataset shift (Moreno-Torres
et al., 2012); (ii) decreasing the computation time because there
are fewer objects; and (iii) limiting the contamination of the rare
planktonic classes by the dominant, non-plankton, ones.

Although CNN-based object detection may seem
overwhelming at first, both in terms of set up and processing
time, it actually is fast enough and within the reach of marine
ecologists, particularly now that artificial intelligence frameworks
and GPU computing are being made more accessible. This work
constitutes a step towards the “intelligent” segmentation of
ecological images, even at low resolution, which could find even
wider applications such as the automated separation of objects
overlapping onto each other on an image for more accurate species
counts, the detection and classification in a single step for more
automated surveys, or the extraction of individual-level traits to
track e.g., reproductive organs development, for a richer
exploitation of ecological images (Orenstein et al., 2021). Such
tasks are in no way limited to plankton images and are common in
data collected by trawl cameras, benthic observations or surveying
cameras, vessel monitoring cameras, etc.

In this era of data-driven oceanography, the volume of data
collected is increasing sharply, thanks to technological advances
such as high frequency imagery, autonomous instruments (e.g.
floats, gliders), satellite-based methods as well as environmental
-omics approaches permitted by high throughput sequencing. In
this context of abundant data, the development of automated
and efficient data processing techniques becomes a key element
in drawing a holistic understanding of oceanic ecosystems; it is
needed to provide an extensive description of biodiversity,
including species distributions as well as estimates of biomass
and abundance.
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To understand ocean health, it is crucial to monitor photosynthetic marine plankton – the
microorganisms that form the base of the marine food web and are responsible for the
uptake of atmospheric carbon. With the recent development of in situ microscopes that
can acquire vast numbers of images of these organisms, the use of deep learning
methods to taxonomically identify them has come to the forefront. Given this, two
questions arise: 1) How well do deep learning methods such as Convolutional Neural
Networks (CNNs) identify these marine organisms using data from in situ microscopes?
2) How well do CNN-derived estimates of abundance agree with established net and
bottle-based sampling? Here, using images collected by the in situ Scripps Plankton
Camera (SPC) system, we trained a CNN to recognize 9 species of phytoplankton, some
of which are associated with Harmful Algal Blooms (HABs). The CNNs evaluated on 26
independent natural samples collected at Scripps Pier achieved an averaged accuracy of
92%, with 7 of 10 target categories above 85%. To compare abundance estimates, we fit
a linear model between the number of organisms of each species counted in a known
volume in the lab, with the number of organisms collected by the in situ microscope
sampling at the same time. The linear fit between lab and in situ counts of several of the
most abundant key HAB species suggests that, in the case of dinoflagellates, there is
good correspondence between the two methods. As one advantage of our method, given
the excellent correlation between lab counts and in situ microscope counts for key
species, the methodology proposed here provides a way to estimate an equivalent
volume in which the employed microscope can identify in-focus organisms and obtain
statistically robust estimates of abundance.

Keywords: underwater imaging, microscopy, harmful algal blooms, convolutional neural network, deep learning,
automated image analysis, underwater microscopy
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1 INTRODUCTION

Small plankton are an extremely diverse group of single-celled
underwater organisms with profound effects on ocean health
(Field et al., 1998): they form the foundation of the food web,
contribute to the early developmental stages of commercially
harvestable species, and their abundance and composition are
tightly related to hydro-climatic change (Lombard et al., 2019).
Planktonic organisms can also adversely affect the marine
ecosystem by forming dense blooms, known as Harmful Algal
Blooms (HABs), that can sicken or kill both marine organisms
and humans via a variety of mechanisms. The appearance and
composition of these HAB taxa is a topic of intense research
since they have deleterious effects on human health, negatively
affect fish stocks, and are linked to eutrophication that is likely to
increase in the coming years (Sinha et al., 2017). These biological
impacts have serious economic ramifications and there is urgent
interest in developing inexpensive, automated ways to detect
HABs and quantify their abundance (Lefebvre et al., 1999;
Scholin et al., 2000; Kim et al., 2009; Smith et al., 2018). The
main goal of this study is to examine the potential for in situ
imaging microscopy, supported by automated deep learning
algorithms, for providing reliable estimates of a variety of
plankton including HAB species.

Most HAB monitoring programs use traditional plankton
sampling techniques, such as net tows and bottle sampling
(Castellani, 2010) to estimate in situ abundance. These
approaches require physically collecting the samples, chemically
preserving the organisms, andmanually enumerating specieswith a
lab microscope. This laborious process is severely limited by a
number of factors: net tows can damage delicate organisms during
collection (Hamner et al., 1975; Omori and Hamner, 1982); certain
organismsmaydissolve in the preservation solutionwithout proper
treatment (Beers and Stewart, 1970); and critically, physical
collection and subsequent analysis of the samples is expensive in
terms of cost and human labor, resulting in less frequent sampling
than is desirable.

Due to these factors, there is increasing interest in the use of
imaging systems to monitor plankton populations. These systems
have the capability to quantify organisms at very local spatial and
fine temporal resolution, therefore providing a more scalable
solution for long-term analysis (Olson and Sosik, 2007; Iyer,
2012; Cowen et al., 2013; Culverhouse et al., 2014; Lombard
et al., 2019). Currently, underwater microscopes either
continuously take images of plankton as they freely flow
through the camera’s view (Picheral et al., 2010; Orenstein et al.,
2020a; Picheral et al., 2021) or are sampled discretely via
microfluidic systems (Olson and Sosik, 2007). These systems do
not require manual collection or concentration of water, chemical
treatment of samples, or the use of counting chambers. An
additional benefit of in situ imaging is that the digital archives
can be easily preserved for future re-analyses and wide scale
dissemination. However, the major bottleneck for using in situ
imaging instruments for monitoring is the sheer volume of data
they collect. To speed up analysis, scientists have begun using
automated classification methods, such as Support Vector
Frontiers in Marine Science | www.frontiersin.org 281
Machines and Convolutional Neural Networks (CNNs) that are
capable of processing these large imaging libraries (Sosik and
Olson, 2007; LeCun et al., 2015; Orenstein and Beijbom, 2017; Luo
et al., 2018; Ellen et al., 2019). The results indicate that CNNs can
successfully identify a variety of marine organisms such as
zooplankton, phytoplankton, coral, and fish (Orenstein et al.,
2015; Salman et al., 2016; González et al., 2019). A recent review
highlights the use of these methods, specifically, for plankton
(Irisson et al., 2022).

Although the utilization of automated imaging and recognition
systems for estimating plankton abundance promises to expand in
situ observational capacity, the methodology has yet to be widely
adopted for both scientific studies and monitoring programs.
Several recent studies have been dedicated to comparing
submerged instruments against traditional lab counting methods,
but an important difference in those vs our study is that their image
data wasmanually – not automatically – classified.Whitmore et al.
(2019) explicitly compared the Zooglider’s abundance estimates
against MOCNESS net tows and acoustic data. Likewise, Sosik and
Olson (2007) compared manual counts from the IFCB images to
manual bench top counts.

Conversely, other related studies focused on validating the
automated estimation of plankton abundance but did not seek to
compare the results to traditional methods. Wang et al. (2017)
suggested that an automated classifier’s performance can be
improved by attempting to match the training set class
distribution to the eventual target population. González et al.
(2019) proposed a number of automated quantification
algorithms to improve plankton abundance estimates.
Orenstein et al. (2020b) proposed similar methods to reduce
human annotators’ validation labor while reliably reproducing
plankton distributions. However, the comparison of automated
workflows that employ imaging paired with trained CNN
classifiers with plankton population estimates that use the
more traditional lab counting methods remains an interesting
research question that has not been addressed.

Here, we quantify the relationship between plankton
population estimates derived from an in situ imaging system,
the Scripps Plankton Camera (SPC), with those obtained from
concurrent bottle-based samples manually enumerated by a
trained taxonomist. The SPC system, located at the Scripps
Pier, consists of two underwater microscopes that image
undisturbed volumes of water that can freely flow between a
light source and a camera system. It has been operating nearly
continuously for 6 years, resulting in the collection of more than
a billion images of ROIs that includes plankton, detritus, sand, as
well a host of other suspended microscopic inhabitants. Using
data from the SPC microscopes, CNNs have been trained to sort
the resulting data and speed up ecological analyses (Orenstein
and Beijbom, 2017; Kenitz et al., 2020; Orenstein et al., 2020a;
Orenstein et al., 2020b). The Scripps Pier is also a sampling
location for the on-going Southern California Coastal Ocean
Observing System (SCCOOS) HABMAP monitoring program
(Kim et al., 2020) that has been enumerating HAB taxa from
weekly water samples since 2008. The methodology employs
hand-acquired water samples and a modern variant of the
June 2022 | Volume 9 | Article 869088

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Le et al. Benchmarking and Automating Plankton Recognition
Utermöhl method to count a variety of plankton and estimate the
abundance of HAB formers (Utermöhl, 1931; Utermöhl, 1958;
Karlson et al., 2010). Here, we reference those lab-based
abundance estimates as the most widely accepted and
traditional method that provides a baseline for comparing our
automated methods that are based on automatically classified
SPC data. If successful, the automated analysis workflow would
provide an efficient, continuous monitoring system to detect and
monitor phytoplankton and provide real-time, detailed, and
reliable HAB warnings. The detection performance of both the
imaging system itself and automated classification is evaluated in
this study.

In this study, we compare the automated workflow for
plankton count estimates obtained via CNN classification of
the SPC images (SPC+CNN-Pier) to those derived by a plankton
taxonomist counting hand-acquired, preserved samples under a
microscope in the lab (Lab-micro). As a bridge between the two
methods, a subsample of the hand-acquired bottle sample was
imaged by a benchtop version of the SPC (SPC-Lab) and
classified with an identically trained CNN (SPC+CNN-Lab).
The complimentary analyses of images collected by SPC-Pier
with the (Lab-micro) images allowed us to quantify the
“effective” imaging volume of the SPC Lab and Pier systems.
The complication arises as they employ a dark field method of
illumination (Orenstein et al., 2020a) that we have found to
produce optimal contrast to aid in identification. This leads to
some ambiguities in the sampling volume. Another factor is that
the orientation dependence of plankton may provide views that
are hard to assign to a specific organism.
2 MATERIALS AND METHODS

Data for this study were obtained from three methods: (i) lab-based
manual enumeration of collected water samples (Lab-micro), (ii)
lab-based imagery of collected water samples (SPC-Lab), and (iii)
imagery of plankton communities in situ (SPC-Pier). Water
samples for lab-based analyses were collected from the Ellen
Browning Scripps Memorial Pier in La Jolla, CA (32°52.02´N,
117°15.300´W) twice a week in the morning from May through
October 2019. Five 2-liter bucket samples (total 10L) were collected
from the surface at a depth of approximately 0.5 m. 2 L were then
allocated for enumeration using traditional microscopy with the
remaining 8 L imaged by the benchtop version of the SPC.

2.1 Traditional Microscopy Analysis:
Lab-Micro
Plankton were enumerated using the Utermöhl method for
quantitative phytoplankton analysis via the routine monitoring
program carried out by SCCOOS, referred to as “Lab-micro”
throughout this paper. Seawater was concentrated in sedimentation
chambers after being fixed in a 4% formaldehyde solution prior to
manual counting. Once the sample settles, the upper chamber is
removed and replaced with a glass cover slip that is placed under an
inverted microscope. Cells are then classified to the lowest possible
taxonomic level at 200x magnification and counted by a human
expert (Utermöhl, 1931; Utermöhl, 1958; Karlson et al., 2010).
Frontiers in Marine Science | www.frontiersin.org 382
SCCOOS technicians typically examine the organisms from settling
10 or 50 mL of seawater. However, the sample volume enumerated
here, ranged from 1.25 mL to 2.68 mL based on the abundance of
phytoplankton. To account for the variation in settling volumes, we
normalized the counts as the fraction of organisms that would have
beenobserved if thevolumewas1.76mLvolume.AlthoughSCCOOS
monitors a variety of species, here, we focus on the following 9 taxa:
Akashiwo sanguinea, Ceratium falcatiforme and fusus, Ceratium
furca, Chattonella spp., Cochlodinium spp., Gyrodinium spp.,
Lingulodinium polyedra, Prorocentrum micans, and Pseudo-
nitzschia spp. as reported in absolute counts from the observed
sample volume thatwas rescaled, if needed, to 1.76ml.The inputdata
fromtheLab-micro systemwas therefore thenumberof counts of the
organisms in the equivalent volume as a function of identified taxa
and the date of collection.

2.2 Automated Imaging Systems: SPC-Pier
and SPC-Lab
The SPC system is a set of two in situ underwater microscopes
(Orenstein et al., 2020a). An onboard embedded computer
identifies and segments out suspected plankton as Regions of
Interest (ROIs). Here, two versions of the SPC-SPCP2 were used:
(i) the SPC-Pier system, installed in situ at the Scripps Pier; and
(ii) the SPC-Lab system – a lab-based version for benchtop
imaging. The microscope uses a 5x objective to image a 2.5 mm x
2.5 mm field of view using dark field illumination that yields 40%
contrast transmittance at 5.0 µm resolution with an image plane
pixel size of 0.74 µm. Using both systems, ROIs (Regions of
Interest) were selected that ranged between 40 µm and 120 µm in
the maximal size dimension of the organism.

The SPC-Pier system was moored at a tidally dependent
average depth of 3 meters (Figure 1A) and collected images at
a rate of 8 frames per second throughout the study period, with a
brief pause in September due to heavy biofouling. To enumerate
“counts” an arbitrary temporal window of +/- 1000 seconds,
yielding 16,000 images, was chosen for evaluation that was
centered around the exact time of the hand-acquired sample.

The SPC-Lab is a reconfigured benchtop version of the SPC-
Pier. To support the imaging of hand drawn samples, it was
augmented with a gravity flow water system so that each 8L water
sample passed through a clear acrylic chamber positioned in the
field of viewof the system (Figure 1B). The samplewas put through
the system at a constant flow rate by routinely replenishing the
elevated water bucket with more seawater to maintain a minimum
of 2 L of fluid. The flow system was flushed with filtered seawater
between samples to prevent cross-contamination.

2.3 Species Selection and
Manual Classification
To form a data set for comparing the observed image counts
from the two SPC systems with those of the Lab-micro, a team of
3 taxonomists sorted all images collected by both SPCs into 10
classification categories, or classes: 9 taxonomy-based categories
that captured each of the target organisms (Figure 2) in the 30
µm and 60 µm size range, and a category ‘other’ that included
images of remaining organisms and particles imaged by the
system. The ‘other’ class is necessary to give both the taxonomists
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and the automated classifiers a place to put ambiguous objects
and avoid high false-positive rates (Dhamija et al., 2018).

2.4 Sample Selection
Over the course of 5 months, 43 independent plankton samples
were acquired via Lab-micro, SPC-Lab, and SPC-Pier. After a
preliminary data analysis, a subset of 26 days were deemed
suitable for analysis as there were complementary Lab-micro
samples with suitable abundances. We note that these
abundances were suitable if, at least, tens of organisms were
sampled on a fraction of the days. Using the data from the 26
days, a data set consisting of themeasurement of plankton “counts”
using 5 methods (Figure 3) was assembled: (i) traditional
microscopy counts provided by SCCOOS (Lab-micro), (ii)
manual classification of (SPC-Lab), (iii) automated classification,
using a CNN, of images collected by the SPC-lab system (SPC
+CNN-Lab), and, similarly for images collected by the in situ SPC
Frontiers in Marine Science | www.frontiersin.org 483
system, (iv) manual (SPC-Pier) and (v) automated (SPC+CNN-
Pier) classification of images collected by the SPC-Pier.

2.5 Automated Imaging Classification
Using Convolutional Neural Networks
To test the accuracy of automated image classification, we trained
a collection of convolutional neural networks (SPC+CNN-Lab and
SPC+CNN-Pier) and tested them on SPC-Lab and SPC-Pier
images. The details of the implementation of the convolutional
neural network methods are described below.

In training the Neural Networks we use the Residual Neural
Network (He et al., 2015) architecture with 18 layers (ResNet-18).
The relatively shallow network design is quick to train and less
likely to overfit to the relatively small training sets we collected
(Tetko et al., 1995). Network training followed standard practices
in the machine learning literature, namely using stages of training,
cross-validation, and testing (Table 1).
A B

FIGURE 1 | The Imaging Systems. (A) SPC-Pier, SPC-MICRO Underwater Camera. (B) SPC-Lab, Benched laboratory configuration of SPC-MICRO.
A B D E F G I*HC

FIGURE 2 | Images of 9 taxa from the SPC-Pier, SPC-Lab systems. (A–I) Akashiwo sanguinea, Ceratium furca, Chattonella spp., Cochlodinium spp., Gyrodinium
spp., Lingulodinium polyedra, Prorocentrum micans, and Pseudo-nitzschia spp. (I)* Is a lab microscopy photo of Pseudo-nitzschia sp. as the SPC imaging systems
produced unsuitable images.
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In all experiments, images were subject to random affine
transformations – rotations and translations. This type of data
augmentation enables the creation of additional training
examples. Prior to the random affine transformations, images
are padded into a square image and resized into 224 x 224
pixels. All networks were trained with the cross-entropy loss for
50 epochs. However, throughout each phase of the training
procedure, the loss was weighted inversely proportionally to the
class distribution of the corresponding training dataset, to
mitigate potential class imbalance problems (Wang et al.,
2017). Note this also includes recomputing the weight of the
loss of each during cross-validation. Model weights that
achieved the lowest loss on the validation set during training
the 50 epochs were utilized.
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The SPC+CNN for both lab and pier was trained in two fine
tuning stages: (i) We fine-tuned a ResNet-18 pre-trained on the
ImageNet database (Deng et al., 2009) with SPC phytoplankton
images. (ii) The resulting network was again fine-tuned on just
the ten classes of interest using images collected by either SPC-
Pier or SPC-Lab. Fine tuning repurposes the parameters of a
network trained for a particular task to a different target. The
procedure reduces training time and improves accuracy when
training with small datasets (Yosinski et al., 2014). Double fine
tuning further adapts each network to subtle differences between
the SPC-Pier and SPC-Lab data after learning more general
representations of plankton (Orenstein and Beijbom, 2017).

The first fine-tuning step uses a labeled phytoplankton training
set from the SPC-Pier system that comprised of 37,147 images
TABLE 1 | Overview of training, validation, and test datasets to train the SPC+CNN.

Dataset Fine-tuning Stage Data # Classes # Images

Phytoplankton-Train 1 Train 30 29,196
Phytoplankton-Val 1 Validation 30 19,773
SPC-Pier (n=25 dates) 2 Train 10 avg ~19,000
SPC-Pier (n=1 date) 2 Test 10 778
SPC-Lab (n=1 date) 2 Test 10 745
June 2022 | Volume 9 | A
FIGURE 3 | A diagram that compares the sampling methods and the 5 resultant data sets: Lab-micro, SPC-Lab, SPC+CNN-Lab, SPC-Pier and SPC+CNN-Pier.
rticle 869088

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Le et al. Benchmarking and Automating Plankton Recognition
spanning 51 classes (Kenitz et al., 2022). This dataset was
produced by 15 expert taxonomists and 5 non-taxonomists from
the US West Coast during a two-day workshop whose main goal
was to collect images for training the CNNs. This workshop
dataset came from an earlier portion of the SPC-Pier time series
and has no temporal overlap with the images acquired in our
experiment. Experts sorted the annotated images into 44
taxonomic classes and 7 noise categories, which included the 9
species of interest. The workshop dataset was adjusted by
combining categories of the same species tagged with semantic
descriptors such as the number of cells (e.g., Ceratium furca pair
vs. single) and eliminating categories with fewer than 300 images.
This resulted in a total of 30 classes, 24 identifiable species and 6
noise categories. 80% of the 36,496 images were then randomly
chosen for training (Phytoplankton-Train) and the remaining
20% used for validation (Phytoplankton-Val) (Table 1).

The second fine-tuning step had two objectives: (i) force the
network to recognize only the 9 species of interest and the
background class ‘other’ of our study; and (ii) account for
dataset shift, the well-known property of classifiers to be
sensitive to changes in the input data, both the appearance of
the images and the relative distribution of the classes between
training and testing (Moreno-Torres et al., 2012; He et al., 2015;
González et al., 2019; Orenstein et al., 2020b). In this step, the
classifier is fine-tuned to the collected SPC-Pier dataset, which
was partitioned in a leave one-out cross-validation manner for
training and testing. Specifically, the model is trained on data
from all dates from the SPC-Pier except for one, which is used as
a held-out test set (Table 1). The same procedure is repeated
several times with each sampled date being used as a held-out set
once, and performance metrics are averaged across all 26 days.
The training sets for each cross-validation iteration contain
approximately 39,000 images, and test sets respectively holding
out 745 and 778 for the SPC-Pier and SPC-Lab.

In implementing the first stage, the base ResNet-18 model
pretrained on ImageNet was fine-tuned for 50 epochs on the 30-
class phytoplankton taxonomy workshop dataset. Model weights
that achieved the lowest loss on the validation set during the 50
epochs were utilized. In this stage, themodel achieved an accuracy
of 95.5% on the Phytoplankton-Train set and accuracy of 95.2%
on the Phytoplankton-Val set. The second stage was initialized
with the model weights learned in the first stage, where the final
layer was replaced with a layer of 10 outputs (9 categories of
interest plus Other). Fine-tuning to the leave-one-out cross-
validation training datasets was performed for an additional 50
epochs with model weight selection corresponding to the lowest
training loss. This resulted in a collection of 26 trained models,
where eachmodel is tested on an independent date from the SPC-
Pier and SPC-Lab dataset.

All models were trained with an initial learning rate of 0.001
and a batch size of 16 using the Adam optimizer (Kingma and
Ba, 2014). Models were trained on an NVIDIA Titan Xp GPU.
Python code used to train and evaluate the models is available at
https://github.com/hab-spc/hab-ml.

There are several examples of dataset shift between our
training sets, notably the slight variations in illumination
between images captured by the SPC-Pier and SPC-Lab
Frontiers in Marine Science | www.frontiersin.org 685
systems (Figure 2). The restriction of fine-tuning to only the
SPC-Pier image dataset is specifically designed to examine the
potential effects of dataset shift when the classifier is deployed on
a new target domain, in our case the SPC-Lab. Training on SPC-
Pier and testing on SPC-Lab data is a proxy for the more general
transfer of a classifier trained on an in-situ imaging system to an
in vitro imaging system.

2.6 Analyses of the Three
Sampling Methods
To compare the three sampling methods, we used the total number
(counts) of organism identification for each of the 10 categories
collected on each of the 26 independent days. Given the species-
specific counts, we performed 1) an assessment of the classifier
performance and 2) a comparison between the Lab-micro counts
andSPC+CNNcounts.Acomparisonbetween theLab-micro counts
and manually enumerated SPC counts is also included to establish a
baseline unaffected by CNN classifier errors. Although relative
abundance is a widely used measure of plankton distributions, we
use the number of counts of each species as a function of date, for two
reasons: (1) Comparisons of relative abundance are sensitive to
numerical instability caused by frequent counts of 0 or 1. (2) The
effective interrogation volume of the SPC systems varies from species
to species, due to both the focus dependent darkfield imaging as well
as the effects of randomorientations. As such, an important aspect of
our work is the estimation of an “effective sampling volume” for each
species as elaborated below.

2.6.1 Volume Computation Analyses
In all experiments, the volume VLab-micro of water used by lab
procedure was standardized to 1.76 mL, while the counts of the
SPC-Pier systemwere integratedover 2000 seconds of images taken
at 8 Hz, resulting in 16,000 images. Under the assumption that the
concentration of species counted by each method is the same,

CSPC+CNN

VSPC+CNN
=
CLab−micro

VLab−Micro
, Equation 1

where VSPC-CNN is the effective volume imaged by the SPC
system and C denotes counts. Now, defining the ratio a
between the two volumes as

VSPC+CNN = aVLab−micro Equation 2

leads to the linear relationship

CSPC+CNN = aCLab−micro, Equation 3

between SPC+CNN and Lab-micro raw counts. This was the
model used to relate the SPC+CNN counts of both the Pier and
lab implementations to Lab-micro counts in our study. The
scaling factor a was estimated by computing a linear regression
between each pair of counting methods.

2.6.2 Counting Analyses
Counts are compared across the 3 sampling methods, for both
manually enumerated SPC and automated SPC+CNN counts. A
separate model is fit for each of the 9 species using the linear
regression model of (3) across all 3 pairs: SPC+CNN-Lab vs. Lab-
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micro; SPC+CNN-Pier vs. Lab-micro; and SPC+CNN-Pier vs.
SPC+CNN-Lab. The model of (3) was fit with a linear-linear least
squares estimator, assuming zero intercept. However, for display
purposes, the data was transformed to a log scale. Given the
computed linear regression between each pair of counting
methods, quantitative comparisons are obtained by computing
the Pearson correlation coefficient, a measure of linear
correlation between two variables, and the percentage R2of the
variance explained by the model relative to the total variance. In
conjunction with the factor a, these measurements express how
related the counting methods are.

2.6.3 Classification Analyses
Our collection of double fine-tuned classifiers is applied to the 26
daily test sets from which 21,211 images were extracted from the
SPC-Lab and 20,148 images from the SPC-Pier that were then
manually classified into the 10categories.CNNPerformance results
are then averaged across the test sets. Classification performance is
assessedby1) accuracy (ACC), the fractionof correctpredictions, 2)
mean class accuracy (MCA), the average correct predictions over
each individual class, and 3) the F1 score, a commonly used metric
for scoring class-imbalanced problems. Together, these metrics
capture both model generalization ability and bias towards highly
populated classes – ACC characterizes the overall classifier
performance while MCA and F1 scores assess how well the
system does on a per-class basis. Significant differences between
the three metrics indicate that a method favors common classes
while underperforming for rare ones.
3 RESULTS

Given the 26 independent samples, the datasets were largely
dominated by the ‘other’ category (83% of the SPC-Pier total and
Frontiers in Marine Science | www.frontiersin.org 786
92% of the SPC-Lab total). The resulting manual counts are
denoted as SPC counts. CNN-produced counts on the same
dataset are denoted SPC+CNN counts. Lab-micro counts were
produced by a biologist, using traditional microscopy.

3.1 Analysis of the Neural Net Results
In general, Lab-micro collected more total counts of the 9 target
species, over the set of images, than the SPC systems (Figure 4A).
Averaged over all 26 independent samples, Lab-micro count data
was predominantly composed of 3 common species: Pseudo-
nitzschia spp., Lingulodinium polyedra, and Prorocentrum
micans (Figure 4B). The latter two also dominated SPC-Lab
and SPC-Pier counts. However, in the case of the SPCs, the
Pseudo-nitzschia spp. counts were notably fewer. Although there
is some uncertainty in the inability of the SPCs to reliably detect
the Pseudo-nitzschia spp., we suspect that it is likely because the
thickness of this pennate diatom is close to the resolution limit of
the system as well as the fact that a needle like structure, when
subject to a uniformly random 2-dimensional view will be
difficult to see in many of its orientations. The remaining taxa
of interest, namely Akashiwo sanguinea, Ceratium falcatiforme
or C. fusus, Ceratium furca, Chattonella spp., Cochlodinium spp.,
and Gyrodinium spp., were more often observed by the SPCs
than the Lab-micro suggesting that the methodology has some
taxonomic dependence.

Inspection of the confusion matrices for the CNN
performance of SPC-Pier versus SPC-Lab (Figure 5A)
confirmed that the CNN performed significantly better on the
SPC-Pier than on the SPC-Lab data, as expected from the MCA
and F1 score difference shown in Table 2. For half of the tested
species (Akashiwo sanguinea, Ceratium furca, Cochlodinium
spp., Lingulodinium polyedra, Prorocentrum micans) the
accuracy dropped more than 10% from SPC -Pier to SPC-Lab,
especially Lingulodinium polyedra (Figure 5B). This is a
A

B

FIGURE 4 | Enumerated plankton taxa. (A) Time series of total counts as obtained by traditional methods (LAB-micro) and manual image classification of lab
samples (SPC-Lab) and in situ (SPC-Pier). (B) Average count per day per species collected by each method.
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manifestation of the domain shift between the SPC-Pier and
SPC-Lab imaging methods: the lab flow-through system
appeared to result in more out-of-focus images that rendered
the species differentiation more difficult. This was not
unexpected, given that the model is only trained on SPC-Pier
data, however, it does illustrate that deployment of the same
imaging system can vary, likely due to difference in lighting and
any orientation effects that are due to flow.

3.2 Classification Performance and
Comparison of the Lab Micro vs
SPC+CNN
Results indicate that the CNN achieved averaged test accuracies
of 92% on both the SPC-Lab and SPC-Pier data (Table 2). The
averaged ACC, MCA, and F1 Score performance was measured
for a CNN tested on independent samples from the 26 SPC-Pier
and SPC-Lab image datasets. The MCAs were lower (68 and
74%) suggesting an unbalanced performance across classes. This
discrepancy between the metrics is originated by class population
imbalance, due to the fact that some species were observed
TABLE 2 | Average classification results of a double fined-tuned model tested on inde

Dataset ACC

SPC-Lab 0.92
SPC-Pier 0.92

Evaluation metrics used are accuracy (ACC), mean class accuracy (MCA), F1 Score.
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relatively rarely under the SPC setting (e.g. Ceratium
falcatiforme or C. fusus, Chattonella spp., and Pseudo-nitzschia
spp.). This results in less training data to effectively learn the
species’ morphology. The F1 scores were the lowest of the three
(.47 and.64), due to the CNNs’ frequent overestimation of the
count of HAB species, which is penalized in the F1 score for poor
precision. These results show that the CNN performs with high
accuracy for the classes that are relatively abundant in the
training data. Class imbalance in the training dataset can have
a large effect on the learned model and is a well-established
feature of training CNNs on natural populations.

The Pearson correlation analysis on the intermediary
comparison of the Lab-micro and manually enumerated SPC
counts (Figure 6) reveals high-to-very high correlations between
the sampling methods on 4 out of the 9 species – Akashiwo
sanguinea, Cochlodinium spp., Lingulodinium polyedra, and
Prorocentrum micans – representing a mix of abundant and
rare organisms (Figure 6A). The comparison for Ceratium furca
revealed moderate correlations between both SPC methods and
the Lab-micro (0.58 and 0.70). The other 4 species, Ceratium
A

B

FIGURE 5 | Quantification of the classification accuracy for SPC test sets. (A) Confusion Matrix. (B) Diagonal class accuracies of confusion matrix sorted in a
descending fashion from left to right.
pendent held out samples collected by the SPC-Pier and SPC-Lab.

MCA F1 Score

0.68 0.47
0.74 0.64
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falcatiforme or C. fusus, Chattonella spp., Gyrodinium spp., and
Pseudo-nitzschia spp., demonstrated a pattern of low correlation
scores scoring correlation scores for two out of the three pairs.

In general, the SPC+CNN vs. Lab-micro correlations
produced similar results to the baseline correlation values
between the manually enumerated SPC vs. Lab-micro counts
(Figure 6B). The same 4 species that previously produced high-
to-very high correlations were consistent when using SPC+CNN
counts, with correlation value differences up to 10%. The
correlation differences were due to the previously mentioned
unbalanced performances across the classes from the SPC+CNN,
that arises from using imbalanced training data. In the case of the
SPC+CNN-Lab vs. Lab-micro, we observed that many
correlation scores dropped, which can be attributed to the
domain-shift problem.

Figures 7, 8 display the linear fit between the enumerated
counts for each of the sampling methods across the various taxa as
computed by the regression model across the 3 possible data
sources (Lab-micro, SPC+CNN-Lab and SPC+CNN-Pier). As can
be seen, the proportionality approximation conveys that the SPC
+CNN-Pier’s sampling of an aggregate volume over the 2000
seconds recorded nearly twice the number of images of the SPC
+CNN-Lab. In addition, a majority of the five species showed non-
existing-to-poor linear relationships between the Lab-micro and
SPC+CNN counts. The linear fit for the Pseudo-nitzschia spp.
showed little ability to model the relationship between the SPC
+CNN and Lab-micro, as the SPCs detected the species poorly.
Frontiers in Marine Science | www.frontiersin.org 988
Gyrodinium spp. were mostly absent from the Lab-micro,
preventing a comparison via linear regression between the
sampling methods. Species that had previously demonstrated
low classification performance resulted in poorer relationships
when computing the linear regression for the CNN-based pairs of
counting methods. Compared to the manually enumerated-based
linear regressions, Ceratium falcatiforme or C. fusus, and
Chattonella spp. showed small R2 values and fit to the slopes
across all 3 possible pairs, suggesting that, possibly, poor
classification performance negatively impacted the linearly
modeled relationships. Ceratium furca also showed some
fluctuations when comparing automated vs manual regressions,
but generally showed only a lack of a linear relationship between
the two data generation methods (Figure 7). Figure 8 shows the
other 4 species where, we note, Akashiwo sanguinea and
Cochlodinium spp. demonstrated a poor fit to the linear
correlation while the L. polyedra and the P. micans were quite
good with R2 scores of (0.97, 0.89). We note that these two species
had the highest number of counts across all three sampling
methods and, conjecturally, the highest concentrations.

As shown in Figure 8, in a manner like the results of the
Pearson correlation analysis for the pair of SPC+CNN-Pier vs.
Lab-micro, we found high R2 values for two of the less-abundant
species (Akashiwo sanguinea, Cochlodinium spp.), and two of the
more-abundant species (Lingulodinium polyedra, Prorocentrum
micans). We also observed that the sizes of the prediction and
confidence bands were related to the frequency of occurrence of
A

B

FIGURE 6 | Pearson Corrélation Coefficient Matrices. Each row compares two of the resultant data and/or CNN estimation of taxonomic presence. Each column is
a corresponding species. Coefficient values are color coded with respect to the species correlation value of the compared setting, in an ascending fashion. (A)
Correlation of Lab-micro vs. manually enumerated SPC counts. (B) Correlation of Lab-micro vs. SPC+CNN counts.
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the species. The two abundant species showed much narrower
prediction and confidence bands, in contrast to the two rare
species, which exhibited wider bands. Discrepancy of the size of
the bands could be due to the low cell counts of the relatively
rare species.

3.3 Volume Computation
An important feature of this work is the computation of the
“effective sampling volume” for the SPC+CNN results. This then
permits the estimate of abundance. Considering the most
abundant and highly correlated species (Lingulodinium
polyedra and Prorocentrum micans) equation (3) can be used
to compute this volume using the slope of the fit as shown in
Figure 7. Given that this slope is (0.39, 2.02) for (L. polyedra, P.
micans) and that the reported Lab-micro samples a 1.76 mL
volume, our cumulative sampling volume for 2000 seconds of
Frontiers in Marine Science | www.frontiersin.org 1089
images at 8 Hz is (0.69, 3.56) mL. Then, the “effective sampling
volume” per image is estimated as (0.043, 0.22) mL after dividing
by the 16000 frames. We note that the R2 values for the other 4
categories were too low to be considered and are therefore
not reported.

3.3 Continuous Observation Data
One major advantage of in situ microscopes like the SPC-Pier
system is that they can observe plankton continuously in time.
This permits post processing with a variable integration time to
compute species dependent total counts. In this study, we used a
2000 second integration window that provided 16,000 image
samples (at 8 Hz) that occurred over the period from the end of
May until October 2019 (Figure 9). Here, the continuous grey
line indicates counts of the 4 species that were most confidently
estimated from the SPC+CNN-Pier during both the lab sampling
FIGURE 7 | Relationships between counts of Lab-micro and SPC+CNN methods (less abundant species). Columns highlight pairs of counting methods, rows
demarcate species. The solid line indicates a linear regression model that is coupled with multiple shaded areas indicating the 95% prediction (dark shade) and
confidence interval (light shade). The slope and R2 of the model fit are indicated.
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occurrences as well as other times where there were no manually
collected samples. We note that there was an increase in the
Akashiwo sanguinea and Cochlodinium spp. during and in-
between the lab samples as well as the absence of increased
abundance for the Lingulodinium poleydra as well as the
Prorocentrum micans that were not observed by the Lab-micro
sampling as it was less frequent. The results highlight the
advantages of continuous sampling that is facilitated by an in
situ instrument. Moreover, the agreement when both the Lab-
micro and the SPC+CNN-Pier data were available provides
support to interpret the SPC+CNN-Pier system as valid, with,
naturally, some error bound.
4 DISCUSSION

In recounting the goals of the work reported here, we first sought
to explore the ability of CNNs to correctly classify the images that
were recorded from the SPC systems. Although lab-based
identification of the phytoplankton species is well established,
the correspondence between the traditional methods and our
dark-field microscopes had not been established. In examining
the potential differences between the two methods, Lab-micro vs.
Frontiers in Marine Science | www.frontiersin.org 1190
SPC+CNN, there are several factors to consider: the samples
observed by the SPC microscopes experience range-dependent
defocus that is a necessary consequence of the dark-field
illumination. In addition, since the SPC microscopes image
organisms that are freely drifting in the field of view of the
system, a natural assumption is that their orientation, relative to
the viewpoint of the camera, is uniformly distributed. In contrast
to larger zooplankton, such as copepods, our organisms of
interest have fewer morphological differences that are also
confounded by the aspect-dependent views acquired. This
makes the identification more difficult for automated systems
as well as taxonomists viewing the resultant SPC images.

In considering the success of the CNNs to classify the species
present in the images, we found that the imbalanced nature of
datasets significantly influenced the performance of the system.
Class imbalance is a well-studied problem that exists in many
real-world ocean ecosystem datasets (e.g. WHOI-plankton:
(Orenstein et al., 2015), EILAT and RAMAS coral dataset
(Shihavuddin, 2017) in which rare species have far fewer
images than abundant species). To combat this problem, we
applied transfer learning from a less-imbalanced and filtered
dataset to a more-imbalanced and unfiltered one. We also
applied cost-sensitive learning, one of the techniques
FIGURE 8 | Relationships between counts of Lab-micro and SPC+CNN methods. Columns highlight pairs of counting methods, rows demarcate species. The solid
line indicates a linear regression model that is coupled with multiple shaded areas indicating the 95% prediction (dark shade) and confidence interval (light shade).
The slope and R2 of the model fit are indicated. Note that data is displayed logarithmically but was fit linearly.
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commonly used to improve the performance of class imbalanced
classification (Wang et al., 2017). However, the comparatively
low performance on rare classes suggests a limited capability of
our techniques to mitigate the class imbalance problem. For
model improvement, it would be worth experimenting with
other methods, such as an ensemble of CNN models (Lumini
and Nanni, 2019) or applying transfer learning by pre-training
with class-normalized data (Lee et al., 2016). Class imbalance can
also be addressed by collecting data over an extended period,
especially days with significant presence of the organisms from
the classes under-populated in our training set. This is left for
future studies.

Compared to the class imbalance problem of the SPC+CNN,
domain shift is less discussed in deep learning applications in the
ecological literature. However, our results suggest that this problem
deserves critical considerationwhendeep learning systems are to be
deployed in an environment different from that used for training.
Many zooplankton detection systems, such as ZooplanktoNet (Dai
et al., 2016) andZooglider (Whitmore et al., 2019), did not explicitly
address and investigate their deep learning models’ capability to
transfer across domains. When trained purely on SPC-Pier image
data, ourmodelwas not able to replicate its high performance to the
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SPC-Lab data, showing noticeably lower-class accuracies (for
example for Prorocentrum micans or Lingulodinium polyedra)
relative to the SPC-Pier. In future research, experimenting with
other domain adaptation techniques, such as similarity learning
(Pinheiro, 2018), or image-to-image translation (Murez et al.,
2018), can help further improve our model. Solving the domain
shift problem is essential to ensuring the reliability of deep learning
automated systems in different environments.

Considering the nine species, or classification categories,
investigated here, the significant correlation between the Lab-
micro counts and the SPC+CNN-Pier data for Prorocentrum
micans and Lingulodinium polyedra indicates that, under the
environmental and lab identification procedures developed here,
the in situ system counts can be transformed into estimates of
concentration that are consistent with traditional microscopy
observations. These correlations were also consistent when using
the manually enumerated SPC counts instead of the SPC+CNN.
The use of the multiplicative scaling factor a in our volume
computation analysis mitigates these effects.

Both the SPC+CNN methods and Lab-micro show gaps in
their ability to detect certain species. Firstly, Lab-micro only
detected Gyrodinium spp. on one day, while both SPC methods
FIGURE 9 | A time series of species presence via “counts” or number of observations by the SPC-pier and the SCCOOS monitoring program during 2019.
Automated image classification was used to produce counts on continuous periods. Most of which were not sampled by the SCCOOS program. Plots are shown for
only the highly correlated abundant and rare species.
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detected it on more than 20 of the 26 days. This is, presumably,
due to the formaldehyde treatment that leads to dissolution and
subsequent misidentification of “naked” species like Gyrodinium
spp. (Costas et al., 1995). On the other hand, the SPC methods
have problems detecting Pseudo-nitzschia spp. Whether this is
due to the inefficiency of the darkfield imaging technique or,
rather, effects related to their chain-like structure when viewed in
3D is unknown. We do note, however, that there may be some
advantages to observing settled samples.

The other major goal of this research was to estimate the
“effective sampling volumes” so that abundance could be
estimated from the SPC+CNN-Pier data. Here, we note that, as
reported on the web site, (spc.ucsd.edu) the SPC2 camera used
here has a “high-resolution image volume” of 0.1 mL and a “Blob
detection volume” of 10 mL. The sample volumes reported in
Table 3 of 0.043 mL and 0.22 mL for Lingulodinium polyedra and
Prorocentrum micans, respectively, for the SPC+CNN-Pier are
not inconsistent, likely due to the system’s single view angle
resulting in ambiguities that prevent the unique identification of
the species. We also note that in comparing the SPC+CNN-Lab
values vs Lab-micro, the proportionalities indicate that the lab
system detected approximately half of those detected by the SPC
+CNN-Pier. The discrepancy may be because the SPC-Lab
samples were taken from the near-surface of the ocean (~
0.5 m), whereas the SPC-Pier samples from a tidally dependent
depth of 3 m. The differences may also arise from orientation-
dependent effects that result from the water flowing past the
SPC-Lab, or differences in the two optical systems, such as
illumination intensity. Less-abundant species (e.g., Akashiwo
sanguinea and Cochlodinium spp.) had reasonable fits between
the SPC-Pier and the Lab-micro, with the SPC-Pier having a
larger slope and hence, a larger estimated sampling volume.
However, the uncertainty of these values is higher due to the
small number of samples.

A distinguishing feature of this analysis is that the “effective
sampling volumes” as computed via comparison with the Lab-
micro calibrations are different for each species (e.g.,
Lingulodinium polyedra and Prorocentrum micans). These
differences in estimated sampling volumes were not entirely
unanticipated, as our dark-field illumination setup acquires an
orientation-dependent image of these organisms, causing CNNs
and expert taxonomists to be less capable of determining the
exact identity of each species. Consequently, our linear fit for
each of the species has a different slope, leading to different
effective sampling volumes that are species dependent.

An important aspect of in situ sampling is that it is capable of
detecting organisms on a 24/7 basis: the in situ microscope can
provide continuous, real-time sampling during periods when
there was no manual data collection (Figure 9). The period from
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May to October 2019 provided roughly 128k images via the
automated sampling. The values obtained for Lingulodinium
polyedra and Prorocentrum micans study showed realistic
abundance increases and decreases of both, that occurred
before and after a detected bloom. Rarer taxa, such as
Akashiwo sanguinea and Cochlodinium spp., showed similar
trends, but increases in abundance recorded by the imaging
system were missed by the manual sample collection. Although a
more detailed analysis would be needed to estimate the
confidence in these observations, it seems that these transient
changes in abundance were simply undetected because of the less
frequent sampling by the Lab-micro. This, in turn, highlights the
need for real-time continuous monitoring with less human effort.
Furthermore, the low counts generated by the SPC systems
between July and October indicated that there were no
significant blooms during that time. Given the continuous
nature of the SPC data stream, a set of algorithms could be
implemented to deploy adaptive sampling that would improve
the dynamic range of lab quantification.

One advantage of systems like SPC+CNN that produce real-
time data is their potential for use as an early detection system.
Data-driven insights would then inform decision making in
monitoring programs, such as SCCOOS, for which shore
station leaders have limited information on the daily
abundance level of the HAB species. For example, previous
studies show that it can be advantageous to know the initial
and final periods of a bloom (Stroming et al., 2020). Stroming
et al. (2020) showed the socioeconomic benefit of early HAB
detection and estimated a saving of $370,000 following the early
warning of a 2017 cyanoHAB event in Utah Lake. Given the
statistically robust signals found in the present study for
estimating HAB abundances, the recommended next steps
would be to explore the use of the SPC for supporting
decision-making in such settings.
5 COMMENTS AND RECOMMENDATIONS

The SPC+CNN workflow has shown its capability to
provide real-time, high accuracy detection of certain HABs
species, such as Akashiwo sanguinea Cochlodinium spp.,
Lingulodiniumpolyedra and Prorocentrum micans. Although its
performance is species-dependent, it has shown a high
correlation with the Lab-micro counts in certain cases.
Moreover, this automated workflow can detect rare species
more frequently than the manual method. It also minimizes
manual labor and can provide continuous sampling at a high
spatial and temporal resolution. All of these benefits make the
TABLE 3 | Calibrated SPC+CNN-Pier Sampling Volume Per Image.

Species Proportionality (a) Volume In-Focus (mL)

Lingulodinium polyedra 0.39 4.29 x 10-5

Prorocentrum micans 2.02 2.22 x 10-4
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SPC+CNN a potentially important tool with the capability to
advance the study of imaging, recognition, and monitoring of
HAB-related phytoplankton. The results suggest that image-
based monitoring systems, supported by high-throughput
automated classifiers, can be a reliable alternative to time-
consuming manual sampling campaigns. Moreover, our
experimental techniques and analyses provide a framework for
future intercalibration studies of innovative new plankton
sampling modalities.
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In the past several years, the capabilities of optical tools and in situ imaging devices have
greatly expanded and are now revolutionizing the field of plankton research. These tools
have facilitated the discovery of new plankton and enhanced the understanding of
populations of fragile and gelatinous zooplankton. Imaging devices are becoming more
accessible and regularly deployed on oceanographic studies and monitoring efforts.
However, despite the increasing use of these tools, there are few studies which offer direct
comparisons between in situ imaging devices and traditional-net based methods,
especially in open-ocean, oligotrophic systems where plankton are sparser and less
intensively sampled. This study compares estimates of mesozooplankton abundance
calculated by net-tows and an Underwater Vision Profiler 5 (UVP5HD-DEEP) imaging
system. Net tows were conducted with a Multiple Opening and Closing Nets with
Environmental Sensing System (MOCNESS) device equipped with 153µm mesh. In
total, four tows, each sampling eight distinct depth bins, were conducted aboard two
cruises in the Sargasso Sea. Along each cruise, in situ images were collected using an
Underwater Vison Profiler 5 (UVP5HD-DEEP). Using these methods, we estimated
abundance of different mesozooplankton groups (>0.5 mm). Using established
biovolume-biomass conversions, we also estimated the dry mass of certain
zooplankton taxa. Furthermore, we address two methods for calculating density and
biomass concentration from UVP data. Estimates of mesozooplankton abundance and
biomass concentration were generally higher from MOCNESS methods than the UVP
estimates across all taxa. It was found that there is not a reliable relationship between UVP
estimates and MOCNESS estimates when directly comparing similar depth bins.
Nonetheless, when integrating density and biomass concentrations throughout the
water column, estimates are not significantly different between the methodology. This
study addresses several important considerations for using in situ imaging tools and how
to reconcile findings with traditional net-based methods.
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1 INTRODUCTION

To understand ocean ecosystems, it is necessary to understand
zooplankton community structure. Zooplankton have a wide
range of complex life history strategies, body types, and feeding
strategies (Kiørboe et al., 2011). Trophic interactions and
behavior of zooplankton can have large impacts on the
biological carbon pump, and thus the global carbon cycle
(Steinberg and Landry 2017). However, zooplankton
communities are extremely dynamic, and populations of
different plankton can fluctuate largely over fine temporal and
spatial scales. Therefore, studying zooplankton populations and
communities can be a great challenge.

Historically, zooplankton have been collected using net-based
approaches. Mesh nets allow for the concentration of large
volumes of water to sample zooplankton and accurately
estimate their abundance. Over the past several decades,
advances in net technology includes opening and closing net
systems, such as the MOCNESS and MultiNet, which allow for
the study of zooplankton communities’ vertical structure (Wiebe
and Benfield, 2003). However, there are limitations to net-based
study of plankton. Specifically, nets can be destructive and do not
adequately sample gelatinous or fragile bodied zooplankton.
Additionally, even with open-closing net systems, nets do not
offer fine enough scales of vertical resolution to study
zooplankton which can occur in dense, thin layers (Holliday
et al., 2003).

Recently, developments in imaging technology have offered a
new way to study zooplankton. In situ imaging tools offer a large
advantage over nets because they can sample a plankter’s exact
position in the water column. The frequency of image collection
can be fairly close to the frequency of data collection for physical
parameters. This information allows for the study of plankton in
context with small-scale changes in physical features of the water
column (Ohman, 2019) and ecological interactions such as thin
layers. Furthermore, in situ imaging allows for the characterization
of plankton’s natural state and traits, while nets can disturb and
damage plankton. In the past several years, plankton ecologists are
increasingly utilizing a trait-based approach to characterize
zooplankton communities (Litchman et al., 2013; Kiørboe et al.,
2018). Recently, there has been advances in combining in situ
imaging and trait-based methodology to study zooplankton
(Ohman, 2019; Vilgrain et al., 2021; Orenstein et al., 2021).
Studying plankton in situ is particularly important for the study
of fragile and gelatinous organisms. In situ plankton imaging
devices have recently shed light on some of the major
community roles that previously under-described taxa have in
ocean ecosystems (Biard et al., 2016; Christiansen et al., 2018;
Hoving et al., 2019; Stukel et al., 2019).

There are a wide range of tools which facilitate the study of
zooplankton in situ. Examples of this technology include the
zooglider (Ohman et al., 2018), ISIIS (Cowen and Guiginad,
2008), LOKI (Schulz et al., 2010), LOPC (Herman et al., 2004),
PELAGIOS (Hoving et al., 2019), VPR (Davis et al., 1992), and
UVP (Picheral et al., 2010; Picheral et al., 2022) (see Lombard
et al., 2019 for a complete review of optical tools). Although these
Frontiers in Marine Science | www.frontiersin.org 296
tools accomplish a similar goal, they have vastly different
approaches and outcomes. Some devices are independently
towed (Cowen and Guiginad 2008; Hoving et al., 2019), while
others are designed to be incorporated with oceanographic
instrument rosettes (Picheral et al., 2010; Picheral et al., 2022).
Illumination and imaging technology also varies between
devices. Plankton cameras can include white-light (Hoving
et al., 2019), single beam and two-beam red-light (Picheral
et al., 2010; Picheral et al., 2022), shadowgraphy (Cowen and
Guiginad 2008; Ohman et al., 2018), holography (Nayak et al.,
2021), dark-field microscopy (Orenstein et al., 2020), and more.
Additionally, these devices range in the quality of image taken,
frequency of data collection, and volume sampled in a given
profile (Lombard et al., 2019). In this paper, we focus on the
Underwater Vision Profiler 5 (UVP5; Picheral et al., 2010). The
UVP5 has been commercially available for several years and is a
popular tool due to its ability to study both particles and
zooplankton. Additionally, the UVP is designed to be able to
integrate into CTD-rosette instrument packages and collect data
semi-autonomously. This allows for collection of data alongside
with standard oceanographic research and no additional wire-
time. To date, there have been several studies utilizing UVPs to
study particles (Forest et al., 2013; Puig et al., 2013; Martin et al.,
2013; Jouandet et al., 2014; Miquel et al., 2015; Waite et al., 2016;
Turner et al., 2017; Hoving et al., 2020); zooplankton (Forest
et al., 2012; Biard et al., 2016; Hauss et al., 2016; Donoso et al.,
2017; Christiansen et al., 2018; Vilgrain et al., 2021), and
cyanobacteria (Guidi et al., 2012; Sandel et al., 2015). Studies
utilizing the UVP have been conducted in a wide range of
environments including the Mediterranean (Donoso et al.,
2017; Durrieu de Madron et al., 2017; Severin et al., 2017),
Equatorial (Kiko et al., 2017), Atlantic (Thomsen et al., 2019;
Christiansen et al., 2018), Pacific (Turner et al., 2017; Stukel et al.,
2019), Artic (Miquel et al., 2015; Vilgrain et al., 2021) and
Antarctic (Martin et al., 2013). However, there are few studies
in oligotrophic regions (Sandel et al., 2015).

One challenge of sampling zooplankton in oligotrophic
systems is that zooplankton densities are very low. Thus, large
volumes of water are required to adequately study their
populations. Some studies with the UVP observed that the
volume sampled was too low to adequately describe
zooplankton populations (Donoso et al., 2017). However,
Forest et al. (2012) found that in a copepod dominated system,
the UVP can yield similar density estimate to net-based systems.
This suggests the need for regional analyses to assess how
effective the UVP measurements are compared to net-based
systems. Additionally, recent developments in the UVP have
made it available with much higher sampling frequencies,
facilitating a larger sampling volume. This can increase the
reliability of UVP data collection. However, high sampling
frequencies also introduce new challenges like double imaging
of individual particles.

Overall, the UVP is an attractive choice for studying
zooplankton due to its ability to both study organisms in situ
as well as the ease of incorporating it into standard sampling
programs. However, there is a clear need to assess how UVP
June 2022 | Volume 9 | Article 898057
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estimates of zooplankton populations compare to net-based
systems. In the present study, we offer a comparison of
zooplankton abundance and biomass calculations using an in
situ imaging device (UVP5-HD) and a depth-specific net
system (MOCNESS). This study addresses particular challenges
working with high-frequency imaging systems and systems with
low-organism density. Finally, we describe the reliability of
sampling different devices with both devices.
2 MATERIALS AND METHODS

2.1 Sample Collection
Data were collected onboard the R/V Atlantic Explorer during 5-
day cruises as part of the Bermuda Atlantic Time-series Study
(BATS; Steinberg et al., 2001), which conducts monthly long-
term monitoring sampling ~80 km southeast of Bermuda. This
study utilizes data collected during the June and July BATS
cruises of 2019 (AE1912 and AE1917 respectively).

2.1.1 In Situ Imaging of Plankton
An Underwater Vision Profiler (UVP5-HD, sn:209, Hydroptic,
Picheral et al., 2010) was attached to the CTD Rosette aboard the
R/V Atlantic Explorer. This model of the UVP5-HD has a 4.2-
megapixel camera which images a 3.11cm x 18.8 cm x 18.8cm
(H xW x L) field of view (1.1L). The pixel size is 92mm. The UVP
is designed to measure both particle abundances and collect in
situzooplankton imagery. Under mixed acquisition mode, the
UVP automatically segments and measures all particles larger
than 125mm according to equivalent spherical diameter (ESD).
All particles larger than 500mm ESD were recorded and stored as
individual images (vignettes). Images are collected at a rate of
approximately 15Hz.

The UVP was attached to the CTD rosette on all cruises and
configured for automatic acquisition of data for all profiles
during each cruise (~18 casts per cruise). On average, a UVP
cast sampled 9.31m3 in the epipelagic (0-250m) and 14.38m3 in
the mesopelagic (250m-1000m) (Table 1; Supplemental
Figure 1; Supporting Information). Images are collected
during down casts only, then the UVP is programmed to turn
off once it has ascended more than 30m. Data are downloaded
from the UVP onboard then processed in Zooprocess and
trimmed to remove any data collected during the rinse cycle or
the first 30m of the upcast. UVP data are then uploaded to the
EcoPart web application (Picheral et al., 2017; https://ecopart.
obs-vlfr.fr/), which applies a descent filter to account for
variation in the data from ship rock or variable CTD descent
speeds. The descent filter excludes any images which were taken
at a shallower depth than the preceding image. However, UVP
images can still overlap if the UVP is descending at a slow
enough rate (<0.622ms-1; Supplemental Figure 1). The average
UVP descent rate in the epipelagic was 0.653ms-1 and 1.099ms-1

in the mesopelagic. We did find that at the bottom 50m of each
profile, the slowing of the CTD rosette could lead to the high
potential of re-imaging particles (Supplemental Figure 1). To
account for this, we removed data collected from the bottom 50m
Frontiers in Marine Science | www.frontiersin.org 397
of each profile. The typical UVP cast descended to 1200m,
although several descended to approximately 500m.
Consequently, the removal of the bottom 50m has minimal
impact on the data available for this analysis.

2.1.2 Net-Based Plankton Collection
Plankton were collected using a Multiple Opening and Closing
Net with Environmental Sensing System (MOCNESS; Wiebe
et al., 1976, Wiebe et al., 1985). The MOCNESS has a 1m-2

opening and was equipped with 153μm mesh and was deployed
on oblique tows. The MOCNESS was used to sample plankton at
discrete depth-bins following an adaptive profiling method to
sample ecologically relevant regions of the water column.
Specifically, bins were targeted to capture variation around the
deep chlorophyll-a maximum (DCM) which was determined
prior to each tow using a CTD cast with an attached fluorometer
(Chelsea Instruments). It should be noted that tows between the
two cruises did have different maximum depths (Table 2).
During the June cruise (AE1912), one night tow (AE1912m1)
was conducted to a maximum depth of 1000m. During the July
cruise (AE1917), three tows were conducted. Two day-time tows
(AE1915m14 & AE1917m15) with bottom depths to 270m &
260m respectively, and a night-time tow (AE1917m16) to 260m.
Due to the difference in maximum depth between the tows, when
warranted by analyses, we distinguish the June night tow into an
epipelagic section and a mesopelagic section, defined by above or
below 250m. Once on-board the plankton samples were split,
and half were fixed in buffered 4% formalin to be used in the
present study.

2.2 Laboratory Processing of Net Samples
Fixed samples of plankton were transported back to the lab
where they were measured using a ZooScan (Hydroptic; Gorsky
et al., 2010). Samples collected from the June cruise (AE1912)
were scanned at the University of South Carolina at 2400dpi.
Samples from the July cruise (AE1917) were scanned at the
Bermuda Institute of Oceanography at 4800dpi. To optimize
segmentation (extracting vignettes of individual particle images
from scanned samples), samples were size fractioned and split so
that there were not too many particles in any given scan. Samples
from the June cruise were split into two size fractions using a
1500mm sieve. Samples from the July cruise were split into three
size fractions; all individual organisms larger than 2mm were
removed by hand and imaged, then the samples were split using
a 1000mm sieve. For all samples, the larger size fractions were
split using a Motoda splitter (Motoda, 1959). All splits from the
larger size fractions were scanned. For the smallest size fraction,
it was important that there were not too many organisms in any
single scan because this can impact the extraction of individuals.
Samples from the June cruise were diluted while those from the
July cruise were split to reduce concentrations in individual scan.
For both approaches, enough scans were done so that there were
at least 1500 objects scanned from each net. Scans were then
processed using Zooprocess (Gorsky et al., 2010) to extract
vignettes of individual objects. The default setting of the
ZooScan extracts all objects larger than 300mm, a size much
smaller than what is characterized by the UVP. For direct
June 2022 | Volume 9 | Article 898057
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comparisons to the UVP dataset, the MOCNESS data was
trimmed to only include plankton which were equal to or
larger than the smallest identified plankton from UVP data.
This size cutoff was determined to be 934mm.

2.3 Classification of Images
and Morphology
The Ecotaxa web application was used to sort vignettes from
both instruments (UVP and Zooscan) using a random forest
classifier (Picheral et al., 2017; https://ecotaxa.obs-vlfr.fr/). All
predicted identification were subsequently verified or reclassified
by the same trained annotator. Generally, images collected by the
UVP cannot be reliably classified to the same taxonomic
resolution as images collected by the MOCNESS/ZooScan due
to lower image resolution. As a result, many taxa were grouped
into broad categories for comparison. Most notably, all
Copepoda (Class: Hexanauplia, Subclass Copepoda) taxa were
grouped to “copepod”, Decapods (Class: Malacostraca,
Superorder: Eucardia, Order: Decapoda) and Euphausiids
(Class : Malacostraca, Superorder: Eucardia , Order:
Euphausiacea) were grouped to “shrimp-like crustaceans”, and
Frontiers in Marine Science | www.frontiersin.org 498
ostracods (Class: Ostracoda) and cladocerans (Class:
Brachiopoda, Subclass: Phyllopoda, Superorder: Diplostraca)
were grouped to “Ostracod/Cladoceran”. Morphologically
relevant metrics for each particle (major axis, minor axis, grey
level, etc.) are computed in Zooprocess.

2.3.1 Management of ZooScan Vignettes With
Multiple Organisms in a Single Vignette
Processing samples with the ZooScan requires manual separation
of particles to facilitate the segmentation algorithm in
zooprocess. However, it is inevitable that a few individual
objects will not be separated during segmentation. Zooprocess
allows for the post-processing of unseparated individuals.
However, this can result in straight-lines and alter the accuracy
of computed morphometrics. Additionally, there is a small
portion of organisms which cannot be separated, even in post-
processing if they are entangled or overlapping in a scan. To
manage this challenge, we manually flagged all vignettes with
multiple individuals during Ecotaxa classification. These
vignettes were then re-examined, and individuals were counted
after Ecotaxa classification. Because the morphometrics
TABLE 1 | Metadata for UVP casts.

Cast Group UVP Casts Deployment Time (UTC - 3) Latitude Longitude Comparable Depth Range [m] Total Volume Sampled [m3]

June Night gf360c11 Jun 08 2019, 23:18 31.66 N 64.17 W 0-250 9.537
250-500 4.788

gf360c17 Jun 09 2019, 00:55 32.15 N 64.02 W 0-250 9.139
25-1000 16.805

gf360c5 Jun 06 2019, 03:21 31.97 N 64.38 W 0-250 8.888
250-1000 16.94

gf360c9 Jun 07 2019, 03:07 31.17 N 64.32 W 0-250 9.217
25-1000 17.375

June Day-A bats361_ctd1 Jul 14 2019, 10:10 32.337 N 64.59 W 0-253 10.537
bats361_ctd12 Jul 15 2019, 18:20 31.17 N 64.32 W 0-270 9.285
bats361_ctd14 Jul 16 2019, 12:39 31.67 N 64.15 W 0-270 8.845
bats361_ctd15 Jul 16 2019, 17:16 31.49 N 64.53 W 0-270 10.659
bats361_ctd19 Jul 17 2019, 19:13 31.74 N 64.22 W 0-270 8.544
bats361_ctd2 Jul 14 2019, 10:56 32.30 N 64.57 W 0-270 10.413
bats361_ctd23 Jul 18 2019, 09:35 32.02 N 63.44 W 0-270 10.13
bats361_ctd24 Jul 18 2019, 13:00 32.33 N 63.65 W 0-270 9.928
bats361_ctd25 Jul 18 2019, 17:10 32.05 N 64.15 W 0-270 9.55
bats361_ctd3 Jul 17 2019, 12:17 32.26 N 64.55 W 0-270 7.977

July Day-B bats361_ctd1 Jul 14 2019, 10:10 32.337 N 64.59 W 0-253 10.537
bats361_ctd12 Jul 15 2019, 18:20 31.17 N 64.32 W 0-260 9.062
bats361_ctd14 Jul 16 2019, 12:39 31.67 N 64.15 W 0-260 8.625
bats361_ctd15 Jul 16 2019, 17:16 31.49 N 64.53 W 0-260 10.418
bats361_ctd19 Jul 17 2019, 19:13 31.74 N 64.22 W 0-260 8.329
bats361_ctd2 Jul 14 2019, 10:56 32.30 N 64.57 W 0-260 10.167
bats361_ctd23 Jul 18 2019, 09:35 32.02 N 63.44 W 0-260 9.892
bats361_ctd24 Jul 18 2019, 13:00 32.33 N 63.65 W 0-260 9.695
bats361_ctd25 Jul 18 2019, 17:10 32.05 N 64.15 W 0-260 9.301
bats361_ctd3 Jul 17 2019, 12:17 32.26 N 64.55 W 0-260 7.74

July Night bats361_ctd16 Jul 17 2019, 22:09 31.76 N 63.99 W 0-260 11.057
bats361_ctd17 Jul 17 2019, 00:21 31.67 N 64.17 W 0-260 10.018
bats361_ctd20 Jul 17 2019, 23:19 31.66 N 64.17 W 0-260 10.055
bats361_ctd21 Jul 18 2019, 01:04 31.54 N 63.60 W 0-260 10.121
bats361_ctd26 Jul 18 2019, 23:39 31.66 N 64.02 W 0-260 9.871
bats361_ctd27 Jul 19 2019, 01:39 32.16 N 64.02 W 0-260 9.489
bats361_ctd7 Jul 14 2019, 22:32 31.75 N 63.99 W 0-260 10.57
bats361_ctd8 Jul 15 2019, 01:06 31.84 N 63.80 W 0-260 8.082
June 202
Cast group indicates which casts were aggregated to compare to MOCNESS tows.
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associated with these vignettes are inaccurate, we assigned each
individual a set of randomly selected morphometric values from
like taxa. Using this method assumes that the morphology of an
organism does not influence the likelihood of it being caught in a
multiple vignette, which for our dataset appeared to be a reliable
assumption. This only affected 3% of our total MOCNESS data
(Supplemental Information).

2.3.2 Assessing the Impact of Twice-Imaged
Organisms in UVP Images
During validation of UVP vignettes, we noticed that there were
cases where the same individual organism was imaged multiple
times (Supplemental Figure 2). This can occur when the UVP is
descending at a rate slower than the rate required to avoid
overlap of images. It appears to be a concern primarily with
larger, darker organisms. To assess the impact of multiple
recordings of individuals, for all casts aboard AE1912, we
sorted vignettes which clearly were multiple recordings into a
distinct category. Estimates of those specific taxa’s density were
then estimated for each profile in 20-m bins following two
methods. In the first method, multiple-imaged organisms were
treated as standard observations and counted, then divided by
the total volume sampled in that 20-m bin. In the second
method, multiple-imaged organisms had all but one vignette
removed, then to account for this removal, the recorded volume
Frontiers in Marine Science | www.frontiersin.org 599
in a 20-m bin was reduced to the maximum possible volume for
non-overlapping UVP images in a 20-m stack (0.643m3).
2.4 Data Processing
To compare data collected from UVP casts to MOCNESS tows,
UVP casts were categorized as either day or night for each month
(Table 1). Sunrise and sunset times were calculated using the
NOAA ESRL Solar Calculator (https://gml.noaa.gov/grad/
solcalc/). To account for any potential diel vertical migration,
casts which occurred within an hour before or after
sunrise/sunset were marked as twilight and not included.
There were no MOCNESS tows conducted near twilight hours.

First the instruments were compared on their scope of
sampling to assess which taxa can be compared between the
two devices. While the UVP was set to record all particles above
500 mm, larger sizes were required to reliably identify objects as
living organisms. The smallest living organism recorded by the
UVP was 0.934 mm. Because of this, MOCNESS-collected
plankton which were smaller than 0.934 mm were excluded
from all analyses. Then the relative contribution of different
taxonomic groups were compared between the instruments.
Finally, Annelids, Copepods, Chaetognaths, Shrimp-like
crustaceans, and Ostracod/Cladocerans were selected for
direct comparison.
TABLE 2 | MOCNESS metadata for the four tows.

MOCNESS TOW Location Times (UTC-3) Depth Bins [m] Volume Filtered [m3]

June Night Deployed:
31.65N 64.15W
Retrieved:
31.6N 64.1W

Deployed: Jun 06 2019, 21:21
Retrieved: Jun 07 2019, 00:59

791.6-995.7 980.4
590.4-791.6 1762.4
348.3-590.4 2257.7
253.7-348.3 941.1
150.5-253.7 643.8
48.0-150.5 656.5
5.1-48.0 535.7

July Day A Deployed:
31.65N 64.15W
Retrieved:
31.62N 64.15W

Deployed: Jul 16 2019, 16:24

Retrieved: Jul 16 2019, 18:07

219.7-270.4 620.7
168.7-219.7 387.4
140.1-168.7 242.8
111.1-140.1 448.1
80.6-111.1 471.7
50.7-80.6 362.7
20-50.7 378.7
0.8-20 233.1

July Day B Deployed:
31.72N 64.18W
Retrieved:
31.72N 64.22W

Deployed: Jul 17 2019, 17:12
Retrieved: Jul 17 2019, 18:45

221.4-260.5 299.6
180.9-221.4 355.7
150.6-180.9 236.9
119.4-150.6 265.8
89.0-119.4 198.2
59.0-89.0 180.1
30.7-59.0 277.1
0-30.7 233.5

July Night Deployed:
31.67N 64.17W
Retrieved:
31.68N 64.17W

Deployed: Jul 19 2019, 01:21
Retrieved: Jul 19 2019, 03:07

220.7-259.8 323.5
180.8-220.7 713.5
151.0-180.8 271.9
120.8-151.0 370.0
89.1-120.8 731.1
59.7-89.1 300.9
30.4-56.7 510.7
0-30.4 338.1
June 2022 | Volu
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2.4.1 UVP Cast Binning and Aggregating
UVP casts were binned into distinct depth bins in which
concentration could be calculated. For depth specific bin
comparison, the UVP bins were set to match the MOCNESS
depth bins. However, a benefit of the UVP is the ability to resolve
finer-scale patterns in mesozooplankton. Thus, for visualization
and depth-integration, UVP bins were independently set. To
select the independent bin size, depth integrated abundance was
calculated for different taxa in individual UVP casts using
trapezoidal integration across a range bin sizes. The smallest
bin size which still yielded stable estimates was found to be 20-m
(Supplemental Figure 4; Supplemental Information).

There were twomethods utilized to aggregate the several UVP
casts which correspond to a single MOCNESS tow. The first
method is a pooled-cast approach. In this method, all similar
casts are pooled into one representative profile. Then the
concentration of observations (either counts or summed
biomass) were calculated for each depth bin (Equation 1). This
approach is common in UVP studies as it can increase the
volume sampled in an individual depth bin.

oN
I Observationi

oN
i Vol − Sampledi

Equation 1:
Pooled-cast calculation for a UVP depth bin concentration of

i observations (counts or biomass) for all N casts in a depth bin.
The other method was an average-cast approach. This

calculated concentration in a depth bin in each individual cast,
then took the mean of all similar casts (Equation ). This approach
allows for the characterization of mean and standard deviation
between similar casts.

oN
i

Observation
Volume   Sampledi

N

Equation 2.
Average-cast method for a UVP depth bin. The concentration

of i observations summed across all N casts then divided by the
number of casts.

2.5 Taxa-Specific Comparison of Density
To assess patterns of density throughout the water column, the
concentrations of each comparable taxa were plotted using
independent UVP bins with both pooled-cast and average-cast
methods overlayed on MOCNESS data. Then, to quantify the
difference in depth specific density estimates between the two
sampling methods, linear regressions were conducted between
the estimated concentration of each comparable taxa. For this
analysis, the concentration of organisms was calculated in each
depth-bin as determined by the MOCNESS tows. Regressions
were done between pooled-cast UVP data versus MOCNESS
data and average-cast UVP versus MOCNESS. For the average-
cast approach, the mean concentration was used.

Then, the depth integrated abundance was calculated for all
UVP and MOCNESS profiles. Due to the difference in sampling
Frontiers in Marine Science | www.frontiersin.org 6100
methodology, the June cruise was split into an epipelagic zone
and mesopelagic zone. This provided two split integrations from
data collected at the same location. Depth integration used
trapezoidal integration with linear approximation between the
mid-points of each depth bin (Supplemental Information;
github.com/thealexbarth/EcotaxaTools). UVP casts used
independent bin sizes for this integration. For the pooled-cast
method, one integration was done over the whole pooled-cast.
For the average-cast methods, integrations were done on each
individual UVP cast, then the mean depth integrated abundance
was found for similar casts. Paired Wilcox signed rank tests were
used to compare depth integrated abundance between the
different methods for each taxa.

2.6 Taxa-Specific Comparison of Biomass
For all comparable taxa, the volume of each individual vignette was
calculated following assuming an ellipsoidal shape (Equation 3).
This required the conversion of pixels tomm,which was a different
conversion for each device (Supplemental Information).

Biovolume   =  
4
3
p major   axisð Þ minor   axisð Þ2

Equation 3.
Biovolume estimation for an individual plankton vignette

assuming an ellipsoidal shape.
Then, dry mass was calculated for each individual using

biovolume to mass conversions described in Maas et al. (2021).
Because the UVP does not facilitate high taxonomic specificity, we
assigned all copepods the conversion factor for Calanoida, and all
shrimp-like crustacean the conversion factor for Decapoda.
Annelids were excluded from this analysis because there was not
an available conversion factor. Thebiomass concentration (mgm-3)
was calculated for each depth bin by summing the biomass of all
individuals of a given taxa then dividing by the total volume
sampled in that depth bin. This was done using both the pooled-
cash approach and average-cast approach for the UVP. Again,
linear regressions were used to compare the direct calculations of
biomass concentration between the MOCNESS and the two UVP
approaches. Then the depth integrated biomass was calculated
following the same steps as for the abundance. Paired Wilcox
signed rank tests were used to compare depth integrated biomass
between the different methods for each taxon.

All data were processed using R ver. 4.0 (R Core Team). Data
were processed largely using the EcotaxaTools package
(github.com/TheAlexBarth/EcotaxaTools). All data and code
are available in Supplemental Information 1.
3 RESULTS

3.1 Scope of Instruments
Images of the MOCNESS-collected plankton acquired by the
ZooScan are generally much higher resolution than the in situ
images acquired by the UVP (Figure 1). Although the UVP does
acquire images which are capable of identifying several taxa
June 2022 | Volume 9 | Article 898057
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in situ, the MOCNESS facilitates identification to a higher
taxonomic resolution than the UVP. Notably, copepods
sampled by the MOCNESS/ZooScan can be separated into at
least the order level, and at times the family level. While some
larger Calanoid copepods can easily be identified from UVP
images, smaller copepods cannot be reliably identified to higher
taxonomic resolution (Figure 1). From the MOCNESS tows, it
appears that the majority of copepods sampled in this system are
Calanoids or Cyclopoids, with a smaller percentage of
Harpacticoids. The UVP can detect both decapods and
euphausiids, although these cannot be reliably distinguished in
most vignettes, so they were grouped to Eumalacostraca (referred
to as shrimp-like crustacean). The MOCNESS/ZooScan images
can be consistently distinguished as euphausiids or decapods,
although for comparison to the UVP, we combined these as
shrimp-like crustaceans. Additionally, the MOCNESS is able to
sample meroplankton, larval forms, and fish (Figure 1). A few
fish were sampled by the UVP, although these were often while
in motion (Figure 1).

Recording multiples of an individual did not have a clear
effect on the UVP density estimates. After visually investigating
the difference between taxon-specific density estimates for all
June UVP casts when including multiple-recorded individuals
and excluding them, we found no observable pattern
(Supplemental Figure 3). This issue was most noticeable in
select rhizaria and Trichodesmium images and inclusion of
multiples would slightly increase density estimates.
Alternatively, the exclusion method of multiple images also at
times increased density estimates (Supplemental Figure 3).
Thus, we determined it would be best to include multiples,
particularly because the exclusion requires alteration of the
Frontiers in Marine Science | www.frontiersin.org 7101
volume sampled measurement, which can then decrease the
accuracy of concentration estimate for all other taxa.

As expected, the MOCNESS sampled a much larger size range
than the UVP. The ZooScan is set to record all individual particles
larger than 300mm ESD while the UVP is set to record all
individual particles larger than 500mm ESD. However, the
images collected by the UVP could only be reliably identified for
much larger particles. Thus, the smallest living organism collected
by the UVP identified was 934mm. For comparison, all
MOCNESS-collected plankton below this size were excluded.
This exclusion removes a large portion of the plankton collected
by the MOCNESS (Supplemental Figure 5). Notably, 91.2% and
96.7% of copepods and ostracods/cladocerans respectively,
sampled by the MOCNESS were smaller than 934mm. For other
MOCNESS-collected plankton, 30% of annelids were below this
size cut-off while only 11% of chaetognaths and 6.98% of Shrimp-
like crustaceans. With the size trimmed MOCNESS data, there
was a considerable overlap with the UVP in the size distribution of
all plankton (Figure 2). The median MOCNESS size was 1.87mm.
The median UVP size was 1.56mm. For specific taxa, the
MOCNESS generally sampled across sizes more evenly than the
UVP, which had its size distributions more concentrated
(Figure 2). There was a large size overlap for copepods although
the MOCNESS median (1.51mm) was slightly larger than the
UVPmedian (1.31mm) (Figure 2C; Supplemental Information).
Interestingly, the MOCNESS seemingly sampled larger
chaetognaths and shrimp-like crustaceans better than the UVP.
The MOCNESS size distribution for those taxa had secondary
peaks between 3-3.75mm, where there were very few UVP-imaged
plankton at those sizes (Figures 2B, E). Alternatively, the UVP
size distributions for annelids and ostracods/cladocerans were
FIGURE 1 | Example images from (A–I) the UVP and (J–Q) MOCNESS. UVP images have 4mm scale bar in bottom left. MOCNESS images use 2mm scale bar in
bottom right. UVP images are (A) Annelida, (B) Shrimp-like Crustacea, (C) Chaetognatha, (D) Rhizaria, (E) Actinopterygii, (F) Mollusca, (G) Ostracoda, (H) Trichodesmium,
(I) Copepoda. MOCNESS images are (J) Annelida, (K) Shrimp-like Crustacea, (L) Copepoda, (M) Chaetognatha, (N) Mollusca, (O) Acantharea, (P) Ostracoda,
(Q) Actinopterygii.
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shifted upwards and had little overlap with the MOCNESS
distributions (Figures 2C, F).

Even with the size trimmed data, the MOCNESS tow
recorded a much larger diversity of taxa than the UVP
(Figure 3). Across all MOCNESS tows, copepods were
proportionally the most abundant organisms, representing a
Frontiers in Marine Science | www.frontiersin.org 8102
third of all recorded organisms (Figure 3). The proportion of
copepods observed by the UVP was slightly smaller, at 27% of all
living organisms across all casts (Figure 3; Supplemental
Information). Of all recorded particles from UVP casts,
approximately 84.5% were detritus or unidentifiable particles.
Among living organisms, Rhizaria and Trichodesmium made up
FIGURE 3 | Relative contribution of different zooplankton groups to the total living abundance from each profile from (A) the MOCNESS/ZooScan plankton above
the 934mm size cut-off and (B) the UVP.
FIGURE 2 | Size distribution compared between MOCNESS-collected plankton (excluding those smaller than 934mm) and UVP-imaged plankton for (A) All living
organisms, (B) chaetognaths, (C) annelids, (D) copepods, (E) shrimp-like crustaceans, (F) ostracods/cladocerans. For all living organisms, those larger than 10mm
ESD were excluded to allow for visualization. Notes that between each panel y and x axis differ.
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39.4% and 17.5% of all UVPs observations respectively.
Interestingly, Trichodesmium abundance was greatly varied
between the two cruises (Figure 3). The MOCNESS tows did
not record any Trichodesmium while it did record a few rhizaria
cells. Typically, rhizaria cells sampled by the MOCNESS were
small acanthareans or foraminiferans. While both these taxa are
sampled by the UVP, in situ vignettes collected by the UVP
reveal a much larger diversity of Rhizaria, including many large
phaeodarians and radiolarians. Mollusca, generally pteropods,
were a sizeable portion of MOCNESS sampled organisms
however they were not sampled adequately by the UVP
(Figure 3). Organisms which were sampled by both
instruments in sizeable numbers were copepods, shrimp-like
crustaceans, chaetognaths, ostracods/cladocerans, and annelids.
It should be noted that in UVP casts, shrimp-like crustacean and
chaetognath proportions were roughly equivalent (3.2% and
3.4% respectively) (Figure 3). However, in MOCNESS samples,
Frontiers in Marine Science | www.frontiersin.org 9103
the chaetognath proportion was generally over double shrimp-
like crustacean (Figure 3).

3.2 Comparison of Density Estimates
Between Sampling Methods
In general, the UVP had much lower estimates of abundance
across all five investigated taxa (Figure 4 and Supplemental
Figure 6). However, the average-cast approach revealed that
there was large variation between individual casts. Generally, the
pooled-cast approach and average cast approach led to the
similar estimates. For taxa which had higher concentrations of
individuals (copepods, chaetognaths, and shrimp-like
crustaceans), the UVP was able to partially capture vertical
patterns (Figures 4A–C) . However, this result was
inconsistent, particularly for chaetognaths and shrimp-like
crustaceans for which the UVP had much more variation
between casts and did not follow MOCNESS patterns.
FIGURE 4 | Selected profiles of taxa density estimates by the MOCNESS, pooled-cast UVP, and average-cast UVP calculations. Pooled-cast UVP is shown as bars
while average-cast UVP is shown mean points with standard deviation. MOCNESS depth-bins are determined by net deployment while UVP bins are 20m Profiles
are selected to show (A–C) cases where the vertical pattern of plankton shown by the MOCNESS is captured by the UVP, (D–F) cases where the UVP does not
emulate the MOCNESS, and (G–I) cases of annelids and ostracod/cladocerans. (A) Copepod density estimates from June night. (B) Shrimp-like density estimates
from July Day-B. (C) Chaetognath density estimates from July Night. (D) Copepod from July Day-B. (E) Shrimp-like density estimates from June night. (F)
Chaetognath density estimates from July Day-A. (G) Annelid density estimates from July Day-A. (H) Ostracod/Cladoceran density estimates from July Day-A. (I)
Annelid density estimates from July night. All profiles are available in Supplemental Figure 6.
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(Figures 4D–F). For the taxa with lower concentrations
(ostracods/cladocerans and annelids), the UVP did not capture
the vertical structure of those populations. Interestingly however,
the UVP did detect both annelids and ostracods in regions of the
water column where the MOCNESS did not (Figures 4G–I).
Although variation in the average-cast approach for these taxa
was very large.

UVP concentrations calculated in matching depth bins to the
MOCNESS were analyzed with linear regressions to quantify if
there was a predictable pattern of under/over sampling. For
shrimp-like crustaceans, there was a significant relationship
between the pooled-cast UVP estimates and MOCNESS
estimates (b1 = 0.073, p-value = 0.01, r2 = 0.21) (Figure 5I)
and a significant relationship between average-cast UVP
estimates and MOCNESS estimates (b1 = 0.094, p = 0.007, r2 =
0.23) (Figure 5J). However, this relationship appears to be
spurious as there is high heteroskedasticity around the
regression line, with only a few, influential observations at
higher concentrations. For all other taxa, no significant
relationships were found between either the pooled-cast UVP
Frontiers in Marine Science | www.frontiersin.org 10104
or the average-cast UVP and the MOCNESS (Supporting
Information). In general, UVP estimates fell below the 1:1 line
with MOCNESS estimates (Figure 5). However, annelids and
ostracods/cladocerans had more observations closer to the 1:1
line. Yet, for both those taxa, there were more observations where
only one instrument measured any individuals, and the other did
not (Figure 5).

Once integrating abundance throughout the water column,
the taxon-specific estimates were closer between the different
methods. For all taxa, the MOCNESS depth integrated
abundance was generally larger than the both the pooled-cast
and average-cast UVP depth integrated abundances (Figure 6).
However, this trend was not a statistically significant difference
for any taxa (Paired Wilcox sign rank test, p > 0.05; Supporting
Information). Interestingly, in the UVP integrated abundance
estimates in the mesopelagic were much closer, and in cases,
higher than the MOCNESS estimates (Figure 6). Additionally, it
was found for all taxa that there was no significant differences
between the pooled-cast and average-cast UVP approach (Paired
Wilcox sign rank test, p>0.05; Supporting Information).
FIGURE 5 | Comparison of MOCNESS density estimates and (A, C, E, G, I) pooled-cast UVP density. Comparison of MOCNESS density estimates and (B, D, F,
H, J) average-cast UVP density estimates. Points show density estimates in matching depth bins for (A, B) Annelids, (C, D) chaetognaths, (E, F) copepods, (G, H)
shrimp-like crustacean, and (I, J) ostracod/cladocerans. Points are colored by corresponding profile. Dotted line represents the 1:1 line between the two estimates.
Solid line shows the line of best fit identified through least squares regression.
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3.3 Comparison of Biomass Calculation
Between Sampling Methods
Biomass concentration (mg m-3) was then estimated for annelids,
chaetognaths, copepods, and shrimp-like crustaceans. Similar to
the abundance profiles, the MOCNESS generally had larger
biomass concentrations than both UVP methods in comparable
areas of the water column (Figure 7). The biomass concentration
for shrimp-like crustacean and chaetognaths were extremely
variable between UVP casts (Figures 7B, C). There was no
significant relationship of chaetognath biomass concentration
estimates between the pooled-cast UVP and MOCNESS nor
between the average-cast UVP and MOCNESS (Figures 8A, B;
Supporting Information). However, there were significant
relationships between both the UVP methods and the
MOCNESS estimates for biomass concentrations of shrimp-like
crustaceans, copepods, and ostracod/cladocerans (Figures 8C–H;
Supporting Information). This finding is particularly surprising,
given that there was not a meaningful relationship between the
abundance estimates between the two devices. It is likely that the
regression slopes between the UVP and MOCNESS are not
meaningful despite their statistical significance.

Finally, depth integrated biomass concentration estimates
calculated by the UVP methods were close, yet lower than
those calculated by the MOCNESS (Figure 9). This trend was
Frontiers in Marine Science | www.frontiersin.org 11105
not significantly different for any of the taxa for both the pooled-
cast versus MOCNESS nor the average-cast versus MOCNESS
(Paired Wilcox signed-rank test, p-value > 0.05, Supporting
Information). Additionally, there was no significant difference
in depth integrated biomass concentration estimates between
either of the UVP methods, for all taxa (Paired Wilcox signed-
rank test, p-value > 0.05, Supporting Information).
4 DISCUSSION

4.1 Scope of Instruments
Generally, the MOCNESS/ZooScan produces higher quality
images allowing for superior taxonomic resolution compared
to the UVP. Use of the MOCNESS is necessary to sample a large
portion of the copepod and ostracod community in the
oligotrophic ocean which are not able to be sampled by the
UVP due to their small size. Once looking at comparable size
ranges however, the UVP and MOCNESS had copepods
represent a similar proportion of the total sampled organisms.
However, aside from copepods, the relative abundance of taxa
varied between the devices. The, MOCNESS’s next largest
categories of sampled plankton were chaetognaths and shrimp-
FIGURE 6 | Depth integrated abundance for each specific taxon comparing MOCNESS estimates to (A) pooled-cast UVP and (B) average-cast UVP calculations.
For average-cast calculations, error bars indicate standard deviation between depth integrated abundance of similar UVP profiles. Colors indicate the corresponding
integrated profile/tow. Note that the June night tow was integrated as an epipelagic region (0-250) and a mesopelagic region (250-1000). There were no significant
differences in integrated abundance for taxon-specific comparisons between the MOCNESS vs pooled-cast UVP; MOCNESS vs average-cast UVP; nor the pooled-
cast vs average-cast calculation (Paired Wilcox sign rank test, p > 0.05).
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like crustaceans. The UVP’s other common organisms by
abundance were Rhizaria and Trichodesmium. Fragile taxa
such as these are likely destroyed in the MOCNESS and
formalin preservation process and thus under sampled by net-
based methods. MOCNESS destruction or fragmentation of
Frontiers in Marine Science | www.frontiersin.org 12106
annelids could also explain why the UVP sampled a seemingly
larger size distribution of that taxa. The effectiveness of the UVP
for sampling such fragile taxa have been demonstrated in
previous studies (Biard et al., 2016; Stukel et al., 2019).
Additionally, while in the present study, all rhizaria taxa were
FIGURE 7 | Select profiles of taxa biomass concentration calculated from MOCNESS, pooled-cast UVP approach, and average-cast UVP approach. Profiles are
selected to show examples for (A) copepods, (B) chaetognaths, (C) shrimp-like crustaceans, and (D) ostracod/cladocerans. All profiles can be seen in
Supplemental Figure 7.
FIGURE 8 | Comparison of biomass concentration estimates between MOCNESS to (A, C, E, G) pooled-cast UVP method and between MOCNESS to (B, D, F,
H) average-cast UVP method. Taxon-specific regressions are for (A, B) chaetognaths, (C, D) copepods, (E, F) ostracods/cladocerans, and (G, H) shrimp-like
crustaceans. Dotted grey line indicates 1:1 relationship while the solid grey line identifies the line of best fit determined by ordinary least squares regression.
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grouped broadly, it is possible to use UVP images to categorize
rhizaria into families (Figure 1; Biard et al., 2016). Interestingly,
in our study we found rhizaria to be a higher proportion of all
mesozooplankton by abundance compared to previous studies in
the region (Biard et al., 2016), indicating that there is likely large
variation in rhizaria abundance across some time scales.

The MOCNESS/ZooScan also sampled a much larger size
range than the UVP did. This was an unsurprising finding given
that the ZooScan can record particles above 300mmwhile the UVP
is set to only save vignettes of particles larger than 500mm.
However, the UVP vignettes at the smaller sizes (500mm –
1000mm) were too coarse to identify as living organisms.
Additionally, another consideration for the size estimates of
UVP organisms is that plankton can be oriented in any
direction during imaging. Thus, if a plankter is positioned
orthogonally to the UVP’s camera its true size might be
underestimated. Additionally small plankton in such
orientations might be difficult to identify. As a result, the
smallest UVP-imaged particles identified to be a living organism
were at least 934mm and for some taxa, they were over a
millimeter. Forest et al. (2012) also observed that the UVP did
not sample copepods well below a 1mm. In oligotrophic systems
like the Sargasso Sea, there are a large portion of the zooplankton
community which is not sampled by the UVP because they are
smaller than 900mm (Supplemental Figure 5). Certainly, there is a
Frontiers in Marine Science | www.frontiersin.org 13107
portion of the particles recorded by the UVP which are truly living
organisms, yet the images of them are too coarse to distinguish as
living organisms. It is likely that the upward shift in the UVP
ostracod size distribution was caused by the difficulty of
distinguishing smaller ostracods and cladocerans from particles.
While the particle data do not allow for taxon-specific density or
biomass estimation, this information can be used to characterize
communities based on particle size spectra (Sprules and Barth,
2016; Lombard et al., 2019).

While the majority of the taxa sampled by the MOCNESS
were smaller than those sampled by the UVP, there were a few
taxa which had larger size classes that the UVP did not sample
either. This was most notable with the chaetognaths. A sizable
portion of the chaetognaths measured by the MOCNESS were
3mm to 7.5mm ESD. The UVP hardly imaged any chaetognaths
in this size range. It is likely that larger organisms are able to
avoid the CTD-rosette. Many of the chaetognaths which were
imaged by the UVP were actively in motion (Figure 1).
Additionally, many fish and shrimp-like crustaceans measured
by the UVP were also in motion. Other in situ imaging devices
have documented krill showing an escape response when
encountered with the device (Hoving et al., 2019). However,
Hoving et al. (2019) used a white-light system. For imaging
devices to minimize zooplankton response, the device must be
designed specifically to reduce disturbance (Ohman et al., 2018).
FIGURE 9 | Depth integrated biomass for each specific taxon comparing estimates from MOCNESS to (A) pooled-cast UVP calculations and to (B) average-cast
UVP calculations. Average-cast UVP calculations show standard deviation between similar UVP casts. There were no significant differences in the taxon-specific
estimated depth integrated biomass between MOCNESS to pooled-cast UVP, MOCNESS to average-cast UVP, nor pooled-cast to average-cast UVP.
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The UVP5 is equipped with red LED lights, intending to reduce
escape response by zooplankton. The cause of plankton
disturbance in this study is unclear. The UVP was positioned
inside a large CTD rosette, thus it could have been the physical
turbulence caused by the large frame initiating the escape
response and not the light. Chaetognaths in particular have
long been known to rely on tactile rather than visual cues to
initiate movement (Horridge and Boulton 1967). Avoidance is
also a challenge for net-based systems; however, our results
indicate that avoidance is also a potential large issue for
studying certain taxa with the UVP.

4.2 Density Estimates and
Biomass Calculations
Generally, the UVP underestimated density across all compared
taxa. For annelids and ostracods/cladocerans, there are likely too
few organisms for the UVP to adequately sample. This is clearly
observed in the depth profiles for these taxa which show small,
infrequent peaks and high variation in the average-cast UVP
profiles (Figure 4 and Supplemental Figure 5). The UVP
sampling volume, even with pooled casts, is still too low to
adequately sample these sparser zooplankton. Increasing the
imaged volume is a critical step for in situ optical tools (Cowen
and Guigand, 2008; Lombard et al., 2019). Chaetognath, shrimp-
like crustaceans, and copepods were all well sampled by the UVP,
however the density estimates were still much lower than the
MOCNESS. Other studies have used a “relative index” for large
copepods sampled by the UVP (Donoso et al., 2017), however our
results did not support a clear relationship for estimates of any
taxa from the UVP to the MOCNESS. A contributing factor to
the under sampling of some of these organisms is likely the
mobility of these plankton and their avoidance of the CTD
rosette as it descends through the water column. Copepods are
decently sampled by the UVP, yet because the UVP only
sampled large copepods, it is missing a sizable portion of the
oligotrophic copepod community. Large copepods are
inherently less abundant and thus require larger volumes
filtered to adequately study. Our study did find a reliable
relationship between UVP and MOCNESS estimates of
biomass concentration for three of the four investigated taxa.
However, because we know the UVP is estimating a different
number of organisms than the MOCNESS, the biomass
concentrations are likely faulty. This indicates that existing
biovolume to dry mass relationships for net collected plankton
may not be reliable for in situ imaged organisms.

Depth integration for both abundance and biomass
concentration led to UVP estimates more similar to those of
MOCNESS estimates. While estimates in matching depth bins
were not similar, the similarity of depth integrated estimates can
be explained by a few possibilities. First, depth integration
effectively increases the volume filtered by combining several
depth bins. Secondly, plankton are patchily distributed
throughout the water column so populations of plankton may
be a few meters deeper or shallower between nearby profiles.
Finally, although our study did not find a significant difference in
depth integrated estimates between MOCNESS and either UVP
Frontiers in Marine Science | www.frontiersin.org 14108
method, this could be a result of the low statistical power from
the small sample size. There was a notable trend of lower UVP
estimates in paired MOCNESS integrations.

4.3 Conclusion and Recommendations for
In Situ Imaging
It is clear that the UVP under samples many categories of
zooplankton compared to a MOCNESS. In more eutrophic
systems, or areas where average body sizes are larger, the in
situ imaging like will be more effective at estimating zooplankton
abundance (Forest et al., 2012; Vilgrain et al., 2021). The mobility
and escape response of zooplankton also need to be considered
when attempting to characterize large zooplankton populations.
In situ imaging studies should consider both the light and
turbulence disruption caused by the sampling device.

This study identifies several methodological considerations for in
situ imaging studies. Previous UVP studies have pooled similar casts,
however this study shows that there is no significant improvement to
pool casts rather than average them. We argue that averaging casts
provides more information because the variation between casts is
clearly represented. While some variation between casts may be due
to the small sampling volume, patchiness can also be characterized
for more abundant taxa. Selection of depth bin width to study
plankton is also an important consideration. While increasing bin
width does increase the volume sampled in a depth region, it
sacrifices ecologically relevant information about plankton
distributions. However, using too small of bin sizes can be
misrepresentative. We encourage authors using in situ imaging
tools to investigate the smallest reliable bin size to use in their
systems (Supplemental Figure 4). Finally in our system, estimates of
density and biomass were not affected by multiple individuals being
imaged twice. However, this finding may not hold true in other
systems or if the rate of descent for the UVP is decreased.
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World ocean plankton quantitative biodiversity data are still severely limited due to the 
high cost and logistical constraints associated to oceanographic vessels and collection/
analytic devices. Here, we report the first use of an affordable and open-source plankton 
collection and imaging kit designed for citizen biological oceanography, composed of 
a high-speed surface plankton net, the Coryphaena, together with a portable in-flux 
automated imaging device, the PlanktoScope. We deployed this kit in December 2020 
along a latitudinal transect across the Atlantic Ocean on board the schooner Tara, 
during the first Leg of her ‘Mission Microbiomes’. The citizen-science instruments were 
benchmarked and compared at sea to state-of-the-art protocols applied in previous 
Tara expeditions, i.e. on-board water pumping and filtration system and the FlowCam to 
respectively sample and image total micro-plankton. Results show that the Coryphaena 
can collect pristine micro-plankton at speed up to 11 knots, generating quantitative 
imaging data comparable to those obtained from total, on-board filtered water, and that 
the PlanktoScope and FlowCam provide comparable data. Overall, the new citizen tools 
provided a complete picture of surface micro-plankton composition, biogeography and 
biogeochemistry, opening the way toward a global, cooperative, and frugal plankton 
observatory network at planetary scale.

Keywords: citizen sciences, microplankton, Tara Mission microbiomes, Coryphaena net, PlanktoScope, global ecology

1 INTRODUCTION

The oceans are home to a large diversity of planktonic organisms. The sensitivity of these organisms to 
their environment makes them exceptional sentinels of environmental changes, such as temperature 
rise (Beaugrand, 2005), or variation in currentology (Borkman and Smayda, 2009). Due to the non-
linear response of plankton to environmental changes, plankton reaction to subtle environmental 
variations can be amplified, making plankton a potentially better indicator of environmental 
change than the environmental variables themselves (Taylor et al., 2002). Response of plankton to 
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environmental changes is also rapid, due to the relatively short 
life cycle of phytoplankton (order of days) when compared with 
terrestrial plants (order of years to decades). For these reasons, 
plankton are often referred to as essential oceanic variables (EOV) 
and essential climate variables (ECV; Global Ocean Observing 
System; Global Climate Observing System; Bax et al., 2019). Sub-
surface (<5m depth) planktonic communities are particularly 
sensitive to climate change (Bopp et  al., 2013), while also 
being critical actors of biogeochemical cycles (Falkowski et al., 
2008). Indeed, these communities face different environmental 
constraints than plankton thriving in deeper layers, notably in 
tropical oceans where water column stratification (thermocline/
pycnocline) generates a barrier to nutrients upflow from the 
deep sea, and will increase in our warming world (IPCC 2022). 
Consequently, sub-surface plankton are more dependent on land 
or atmospheric inputs (e.g. aerosols, diazotrophy), and serve as 
a gateway to various nutrient inputs essential to the structuring 
of epipelagic planktonic ecosystems. Ocean surface layers are 
also a place of increased environmental stress for plankton such 
as waves, winds, and solar radiations. Therefore, the processes 
controlling the abundance and diversity of surface plankton may 
be significantly different from those observed for biota living in 
deeper layers (Ibarbalz et al., 2019).

Monitoring (sub)surface plankton in a global change context 
would require repeated, systematic, large-scale and high-
resolution observations, a task that is hardly achievable with 
oceanographic vessels, which are too expensive to be used for 
this purpose (the operational cost of an ocean research vessel 
reaches typically >US$30,000 per day, excluding the cost of 
scientists, engineers, and the research itself; Lauro et al., 2014). 
On the other hand, thousands of sailing boats and larger vessels 
are permanently crossing the oceans, and could be used to this 
end. Brewin et al. (2017) demonstrated the potential for increased 
oceanographic data by exploiting these other vessels. A first 
example of this approach is the Continuous Plankton Recorder, 
which has generated a successful network of observations 
through cargo boats over the last 81 years (Batten et al., 2019). 
A complementary approach consists in engaging citizen sailors 
in the collection of planetary plankton, such as the ones engaged 
in the Indian Ocean (Lauro et  al., 2014) or more globally at 
planetary scale in the ‘Plankton Planet’ initiative (de Vargas et al., 
2020). Citizen science strategies require frugal, affordable, and 
scientifically-sound instruments, sufficiently agile and robust to 
be used by non-scientists.

We achieved a proof-of-principle for citizen oceanography 
in 2015/16, collaborating with 20 citizen sailors who performed 
plankton biomass sampling at more than 250 sites spanning the 
planetary oceans. The dried plankton samples were simply mailed 
by the sailors to a single laboratory, generating the first global-
scale, high-quality DNA metabarcoding overview of plankton 
(>20µm) populations for a fraction of the putative cost associated 
to similar spatio-temporal sampling realized by a standard 
oceanographic vessel (de Vargas et al., 2020). The results of this 
first experiment were very promising but highlighted two main 
limitations. Firstly, sailors were asked to slow their boats down 
to less than two knots in order to deploy classical plankton nets 
without breaking the mesh. This requests uncomfortable sailing 

operations impacting the cruising speed, and it was identified as 
the primary limiting factor for denser sampling. Secondly, sailors 
expressed frustration for not being able to observe plankton 
while realizing the biomass-concentration protocol. Indeed, 
plankton imaging, which provides critical and complementary, 
quantitative and morphological information (Lombard et  al., 
2019), was not implemented due to prohibitive costs and 
complexity of existing instruments. To address these issues and 
promote large scale collection and monitoring of plankton in the 
20-200µm range by sailors, we developed two new frugal tools 
for citizen oceanography: the ‘Coryphaena’, a high-speed net 
to collect plankton at cruising speeds, and the ‘PlanktoScope’, a 
frugal, microfluidic, quantitative imaging microscope (Pollina 
et al., 2020).

In this study, we tested the efficiency of both the Coryphaena 
and the PlanktoScope against established standards. Along a 
transect from Lorient (France) to Punta Arenas (Chile) carried 
out by the schooner Tara in December 2020, we compared the 
Coryphaena net to the Decknet system (DN; Gorsky et al., 2010), 
a suspended, on-board net that filters surface seawater collected 
by a high flow pump, and the PlanktoScope to the FlowCam 
(Sieracki et  al., 1998), a standard flow-imaging system used in 
plankton research. The abundance, taxonomic and morphological 
diversity data from surface micro-plankton (20-200µm; analysis 
were performed in the 50-150μm size range) communities 
were used to assess the efficiency of each combination of 
instruments, and demonstrate the power of our new frugal 
tools for global-scale plankton ecology.

2 MATERIALS AND METHODS

2.1 Sampling Methods
During the trans-Atlantic journey of the schooner Tara from 
Lorient (15/12/2020; France) to Punta Arenas (04/02/2021; Chile), 
35 sampling stations were carried out daily (Figure 2). On board, 
two nets allowing sub-surface plankton sampling were deployed: 
the Coryphaena high speed net deployable up to 11 knots, and 
the Decknet (DN), suspended on the boat’s deck and coupled to 
a high-flow pumping system, validated and used during various 
previous Tara campaigns (Pesant et al., 2015; Gorsky et al., 2019). 
The DN filters the entire amount of water pumped on board by 
using a water inlet called the ‘Dolphin’ (Gorsky et  al., 2019). 
The seawater is pre-filtered through a 2mm metal screen and 
subsequently concentrated through the DN suspended on the 
deck (Figure 1C). The volume of water concentrated in the DN 
was measured using a flow meter, ranging from 0.5 to 8 m3 (see 
Supplementary Table II), depending on local plankton density. 
The newly designed Coryphaena (Figure  1A), inspired from 
the Small Plankton Sampler (Glover 1953; Wiebe and Benfield, 
2003), aims at collecting plankton >50µm at cruising speed (i.e. 
1 to 11 knots; see Supplementary Table II). The Coryphaena has 
a mouth opening of 4 cm, a length of 80 cm, and a lead weight 
of 750 grams. Preliminary tests had shown that the Coryphaena 
is stable underwater at speeds below 11 knots while collecting 
seemingly pristine plankton. Higher speeds make it lift out of 
the water. The design of the Coryphaena is based on the use of 
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(i) a 3D printed head that provides good aerodynamics while 
reducing the flow water into the net, in order to preserve both 
the net and plankton at high speed collection, (ii) a 50µm mesh 
supported externally by a 200µm mesh providing greater strength 
(Figure  1B), and (iii) an impermeable outside skirt increasing 
the filtration through the mesh by Venturi effect. Due to its 
small dimension, the placement of a flowmeter in the net was 
not possible. We therefore calculated the volume filtered, as its 
theoretical maximum in the absence of backflow, using the initial 
and final deployment coordinates and the net mouth opening. 
Wherever possible, two samples (on board DN and in situ 
Coryphaena) were acquired at the same station simultaneously. 
For practical comparison purposes, it was initially decided to use 
a DN with a 50µm mesh in contrast to previous Tara campaigns 
(Gorsky et  al., 2019). However, as shown by results from the 
first 10 stations, this configuration led to over-efficient filtration 
damaging fragile organisms by abrasion on the drained silk. DN 
results from stations 1 to 10 were thus disregarded. A 20µm DN 
was thus used for the subsequent stations 11 to 35 while only 
considering organisms >40µm in the imaging results. A complete 
replacement of the Coryphaena net was carried out at station 21 
following its destruction by, presumably, a swordfish.

2.2 Image Acquisition
After collection, plankton from both Coryphaena and DN samples 
were filtered through a 200µm mesh to remove larger organisms 
which may clog the fluidic system of both the FlowCam and the 
PlanktoScope. The PlanktoScope (Figure  1D) is a cost-effective 
microscope (<800€ of hardware parts) allowing quantitative 
imaging of microplankton (in the 20-200μm size range). Full 
description and prior quality test are available in a companion 
article (Pollina et  al., this issue). Initial tests generated data 

of a quality comparable to that produced by the FlowCam, 
an automated commercial microscope taking digital image 
of microscopic particles flowing through a capillary imaging 
chamber (Sieracki et  al., 1998). The reliability of medium/high 
throughput imaging instruments for quantitative analysis of 
marine plankton is evidenced by a growing number of studies in 
the scientific community using these methods (Irisson et al., 2022). 
Notably FlowCam data have been compared and validated against 
microscopy analyses as regard to organismal size (Sieracki et al., 
1998; Buskey and Hyatt, 2006; Ide et al., 2007; Álvarez et al., 2014; 
Le Bourg et al., 2015) and biovolume (Hrycik et al., 2019).

The four configurations, (1) Coryphaena - FlowCam, 
(2) Coryphaena - PlanktoScope, (3) DN - FlowCam and (4) 
DN  - PlanktoScope, were tested in parallel whenever possible 
(Figure 2A). Images generated by the FlowCam were processed 
using the ZooProcess software (Gorsky et al., 2010), and images 
generated by the PlanktoScope were processed using a custom-
made equivalent script in Matlab, a prototype of the segmentation 
script currently encoded into the PlanktoScope computer (see 
https://github.com/PlanktoScope/PlanktoScope). This allows 
similar extraction of the segmented objects as vignettes, together 
with a series of morphometric measurements that are then 
imported into the EcoTaxa web platform (http://ecotaxa.obs-
vlfr.fr) for taxonomic classification. The taxonomic categories 
predicted by image recognition algorithms were validated or 
corrected by a trained taxonomist. Overall, 398, 466 vignettes 
(88, 465 for DN – FlowCam, 66, 243 for Coryphaena – FlowCam, 
132, 322 for DN – PlanktoScope, 111, 436 for Coryphaena – 
PlanktoScope) were classified into 179 taxa (list Supplementary 
Table I; 34% of taxonomic categories correspond to the genus 
level, 23% to the species levels and the 43% to the other levels 
such as class, order or phylum). Examples of images from the 

B

C D

A

FIGURE 1 |   (A) The ‘Coryphaena’ high speed net, able to collect plankton >50µm at speed up to 11 knots. (B) The 50µm mesh in the Coryphaena is supported 
and protected externally by a 200µm mesh allowing for greater strength, as well as an impermeable skirt (gray) improving the flow of water into the net by Venturi 
effect. (C) The Decknet (DN) pumping and filtration system installed on board Tara. (D) The PlanktoScope allowing quantitative imaging of micro-plankton.
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PlanktoScope and FlowCam can be explored and compared 
in the supplementary material (Supplementary Figure 2) as 
well as on the EcoTaxa web platform (see project link in Data 
Availability Statement).

2.3 Environmental Data
On board Tara, surface seawater was continuously pumped 
through a hull inlet located 1.5m below the waterline and 
distributed to various instruments such as a ThermoSalinoGraph 
(TSG; SeaBird Electronics SBE45/SBE38) and a multispectral 
spectrophotometer (ACS; WETLabs), as performed during the 
Tara Pacific expedition (Gorsky et al., 2019). The ACS measures 
hyperspectral attenuation and absorption (resolution ~4nm) 
in the visible and near infrared, allowing notably to derive 
estimates of chlorophyll-a concentrations. The TSG measures 
surface temperature and conductivity at a sampling rate of 0.1 Hz. 
Additional environmental data were extracted from satellite data 
and/or the copernicus-mercator model (https://marine.copernicus.
eu/fr). Satellite data were extracted via NASA ocean color (8-day 
average 4km/pixel) and 12 pixels (50km) around the sampling 
position and at the date of sampling were averaged to provide a 
single mean. The environmental data for the mercator model 
are extracted from marine Copernicus (GLOBAL_ANALYSIS_
FORECAST_PHY_001_024-TDS and GLOBAL_ANALYSIS_
FORECAST_BIO_001_028-TDS). A single, homogeneous 
environmental database was created from these multiple sources; 
missing TSG and ACS data were replaced by satellite data first, 

then by mercator model data. This database contains: sea surface 
temperature (SST; °C), salinity (psu), chlorophyll a (Chl; mg.m-3), 
O2 (mmg.m-3), NO3 (mmg.m-3), PO4 (mmg.m-3), Si (mmg.m-3), Fe 
(mmol.m-3), particulate inorganic carbon (PIC; mol.m-3) and pH, 
and is available with the associated sources of each environmental 
value (Supplementary Table IV).

2.4 Numerical and Statistical Analysis
For each database, we calculated organismal abundance (ind.m-3) 
and biovolume (mm3.m-3) for each taxa and functional group living 
versus non-living (see Supplementary Table I), taking into account 
the volumes of water filtered by the plankton collecting devices. 
Major and minor axes of the best ellipsoidal approximation are 
used to estimate the biovolume (mm3.m-3) of each object following 
Vandromme (Vandromme et  al., 2012). Size is expressed as 
equivalent spherical diameter (ESD, μm). The individual biovolumes 
of the organisms are arranged in Normalized Biomass Size Spectra 
(NBSS) as described by Platt (1978) along an harmonic range of 
biovolume such as minimal and maximal biovolume of each class 
are linked such as:

Bv Bvmax min== ××20 25.

The NBSS is obtained by dividing the total biovolume of each 
size class by its biovolume interval:

BA

FIGURE 2 | (A) Map of the Tara Mission Microbiomes Atlantic transect. The colored dot (see legend) indicates instruments’ configuration deployed at each of the 
35 daily stations (gray dots). (B) Examples of Normalized Biovolume Size Spectra (NBSS) displaying the number of live organisms per size class (in mm3 mm-3 m-3) 
sampled by each net (DN - Decknet; Cor. - Coryphaena), at stations 2, 13 and 28. The comparison of the number of live organisms sampled between the two nets 
is shown for both FlowCam and PlanktoScope (Pscope) analyses at stations 13 and 28.
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Bv Bv Bvrange max min== −−

The NBSS (mm3.mm-3.m-3) is directly proportional to the 
number of organisms per size class. Biovolume analyses were only 
performed in the 50-150μm size range due to underestimation of 
the number of living organisms <50μm induced by undersampling 
of nets and/or difficulty in taxonomic identification, and mis-
representation of organisms >150μm which were too rare beyond 
this size (Tranter and Smith, 1968; Pollina et al., 2020). First, we 
performed a quality control of the instruments to detect putative 
misfunctioning along the Tara transect, using NBSS which can 
reveal over or under sampling of one net and/or one imaging 
instrument compared to another. NBSS were also used to establish 
whether difference of sampling between the two nets affected 
all size classes similarly. We then used the various observations 
collected by the different combination of instruments to produce 
a homogeneous – intercalibrated global overview of plankton 
at the scale of the Atlantic Ocean. For this, we determined a 
correction coefficient using NBSS of living organisms in the 50 
to 150μm size range. Using the DN-20μm - FlowCam dataset as a 
reference, we produced a correction coefficient (cross-size classes 
average correction coefficient) for each station, and further 
averaged across stations (after checking that no significant effect 
was visible across stations). After correcting for this sampling 
efficiency, we further inspected if some residual effect was visible 
on the species composition. For this a principal component 
analysis (PCA) was performed on a database that separates the 4 
instrumental configurations adjusted with these coefficients. This 
PCA was performed both using abundance (log+1 transformed) 
or composition (Hellinger transformed) data. For these analyses, 
imaging data were clustered both taxonomically (179 taxa 
identified) and functionally (9 functional groups).

Finally, we used the various correction factors to produce 
a single cross-calibrated database providing microplankton 
average abundance and biovolume between the 4 instrumental 
configurations per station. This synthetic database was used to 
analyze the global structure of micro-plankton populations at 
the scale of the Atlantic Ocean. Diversity was calculated with the 
Shannon index (H) taking into account the 179 taxa identified. 
Hierarchical clustering analyses (using descriptive complete link 
method, and Hellinger distance) were performed using the 9 
functional groups. Environmental data were integrated into the 
PCA to assess their impact on taxonomic composition at each 
station. Spearman correlation tests were performed between 
different variables (alpha risk set at 0.05%).

A morphological analysis partly based on plankton colors was 
performed on the vignettes from samples collected with the two 
nets and imaged with the PlanktoScope (the FlowCam model used 
generates black and white images). As this analysis focuses on the 
morphological properties of the objects and not their quantity, the 
difference in sampling between the 2 nets does not induce biases. 
Only vignettes corresponding to living organisms were considered, 
while detritus and optical artifacts were discarded. Following 
previous methodology (Trudnowska et al., 2021; Vilgrain et al., 
2021), the data from 15 morphometric measurements were 
normalized by a non-linear Yeo-Johnson transformation prior 

to a PCA analysis. Station averages of the morphological values 
of the PCA axes were then calculated allowing the extraction of 
morphological metrics at the station scale.

3 RESULTS

3.1 Quality Control and Comparison  
of the Instruments
3.1.1 Instruments’ Quality Control
While Tara was cruising southward through the Atlantic Ocean, 
we used the Normalized Biomass Size Spectra (NBSS, roughly 
equivalent to organismal abundances per size class) produced by 
the different plankton collection tools, i.e. the Coryphaena and 
the Decknet, to check and compare their efficiency (Figure 2). 
We first observed a severe under-sampling of the DN-50μm 
as compared to the Coryphaena-20μm from stations 1 to 10. 
The Coryphaena samples were on average 10.21 ( ± 7.42) more 
abundant than the DN-50μm samples, regardless of the imaging 
instrument, Figure  2A). Starting from station 11 (Figure  2A), 
we therefore replaced the DN-50μm with a DN-20μm. Between 
stations 11 and 20, the NBSS from both the DN-20μm and the 
Coryphaena displayed about the same order of magnitudes of 
abundances (e.g. station 13, Figure  2B, see also next section: 
Coryphaena and PlanktoScope characterization). Between 
station 20 and 21 the initial Coryphaena was lost, and the 
new Coryphaena used from station 21 displayed strong under 
sampling with Coryphaena/DN sampling coefficients averaging 
0.35 ( ± 0.76) between stations 21 to 31, regardless of the imaging 
instrument (e.g. station 28, Figure  2B). The Coryphaena data 
were thus not used after station  21. We then compared the 
results obtained with the PlanktoScope versus the FlowCam. 
Samples imaged with the PlanktoScope displayed slightly higher 
abundances of living organisms than those imaged with the 
FlowCam (e.g. station 13, Figure 2B, and see next section). Data 
generated from both imaging instruments were used. All values 
of NBSS spectra per station (station 1 to 35) can be found in 
Supplementary Table III.

3.1.2 Coryphaena and PlanktoScope Characterization
We compared the 4 quality-controlled and filtered databases 
from the 4 configurations to determine a cross-size classes 
average correction coefficient between the instruments based 
on the NBSS biovolumes of living organisms from 50 to 150μm. 
The correction coefficient between the two nets is equal to 0.35 
(standard deviation of 0.34) meaning that the Coryphaena under-
samples live organisms by about one third compared to the DN. 
The correction coefficient between the two imaging devices is 1.86 
(standard deviation of 1.17), indicating that more live organisms 
(+86%, ± 17%) were observed in the PlanktoScope compared to 
the FlowCam. The correction factors were applied to the different 
datasets, and a PCA was used to reveal putative residual effects of 
the sampling method. The first 3 axes of the PCA were considered 
and color-coded in RGB to visually inspect coherence between 
the plankton collection and imaging devices (Figure  3A). Per 
station, the symbols share a similar color (Figure 3B) therefore 
exhibiting similar plankton taxo-functional composition 
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regardless of instrumental configuration (Figures  3A, B). No 
significant effect of the different modes of sampling/imaging 
is observed, the variance resulting mainly from geographical 
difference in taxo-functional composition. Similar PCA analyses 
based on the 179 identified taxa (dot color corresponds to 
instrumental configuration; Figure  3C) revealed a difference 
between the two nets, with the Coryphaena samples enriched in 
robust plankton (e.g. Neoceratium spp. or Rhabdonella spp.) as 
opposed to fragile ones (e.g. diatoms like Hemiaulus or Eucampia 
spp.). However, these differences are only visible in the second 
axis of the PCA (13% variance explained), suggesting that this 
bias is essentially concentrated on specific taxa. Even at the scale 
of 179 taxa, we observed a good agreement between the two 
imaging instruments (good overlap between PlanktoScope and 
FlowCam points on Figure 3C).

3.2 Surface Microplankton Communities in 
Relation to Environmental Characteristics
By combining the different datasets with the correction 
factors, we obtained a single homogenized dataset for micro-
plankton along the Tara Mission Microbiomes Atlantic transect 
minimizing biases due the heterogeneous sampling and imaging. 

Microplankton absolute abundance values vary from a minimum 
of ca. 2K ind.m-3 at station 9 to a 200 times higher maximum 
of ca. 4Mio ind.m-3 at station 23, of which 3.5 Mio ind.m-3 (or 
3500 cells/L) are diatoms of the genus Hemiaulus (Figure 4B). 
The Shannon H indices range from 3.32 (station 19) to 0.54 
(station 23) along the Tara track (Figure  4C) and display a 
significant inverse correlation (p = 0.0008<0.05; R2 = -0.59) 
to absolute abundance. We performed a clustering analysis 
(descriptive complete link method, Hellinger distance) based 
on the relative abundances of the 9 plankton taxo-functional 
groups. Eight clusters of stations emerged based mainly on 
differences in their diatoms, cyanobacteria, and dinoflagellates 
composition (Figure  5A). These clusters correlate to specific 
environmental (Figure 5A) and biogeographic (Figures 4, 5B) 
features. The oligotrophic zone (stations 9 to 14) is characterized 
by microplankton communities dominated by cyanobacteria 
and associated to high sea surface temperatures (SST) and iron 
(Fe) concentrations. Conversely, coastal and temperate zones 
plankton are dominated by diatoms associated with high NO3 
concentrations (stations 2 to 8, 16, 23, 25 to 32 and 35). PO4-rich 
areas deprived of iron (stations 15, 17 to 21 and 33) are associated 
with microplankton communities rich in dinoflagellates.

B

C

A

FIGURE 3 | (A) PCA performed on microplankton functional composition (Hellinger transformed data, 9 taxo-functional groups). The 4 instrumental configurations 
(sampling-imaging devices couples) are represented by the 4 different shapes. Colors are derived from the position of the points on the first 3 axes of the PCA. 
(B) Geographic projection of each point along the Tara Atlantic transect (exact position of the stations: diamond shape Cor. FlowCam). The empty shapes 
represent the instrumental configurations deployed but not selected in our analysis (see Figure 2 and section: Instrument’s Quality Control). (C) PCA performed 
on microplankton taxonomic composition (Hellinger transformed data; 179 taxa). The 4 instrumental configurations are represented by the 4 different colors. Only 
taxa with a contribution greater than 0.23 to the PCA axes are shown for ease of reading. Plankton images taken as examples are from FlowCam; the image close 
to ‘Diatoma’ corresponds to a diatom of the genus Hemiaulus, the image close to ‘Rhabdonella’ corresponds to a ciliate of the genus Rhabdonella and the image 
close to ‘Neoceratium tripos’ corresponds to a dinoflagellate of the species Neoceratium tripos.
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3.3 Morphological Analysis of  
Surface Microplankton
The PCA analysis performed on 15 morphological variables 
(Figure 6A) defined a typical morphometric space on the first 
axis (40% of variance explained) with small round organisms 

on one end, and larger, elongated organisms on the other end 
(positive values; Figure  6B). The second PCA axis (23% of 
variance explained) corresponds to a color space, with green 
and red colored organisms for positive values and transparent, 
lightly blue-colored organisms for negative values. At the 

B CA

FIGURE 4 | (A) Relative abundance of the nine microplanktonic taxo-functional groups per station. (B) Absolute microplankton abundance values in individuals m-3 
along the Tara Mission Microbiomes Atlantic transect. (C) Microplankton diversity (Shannon index H) at each station. H-index values are determined from the 179 taxa.

BA

FIGURE 5 | (A) PCA performed on the taxonomic composition at the functional scale (9 taxo-functional groups, Hellinger transformed data) and including key 
environmental variables. The colors correspond to the 8 characteristic clusters determined via an independent hierarchical analysis based on Euclidean distance. (B) 
The taxo-functional clusters are projected on the Mission Microbiomes Atlantic transect with corresponding station numbers.
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station level across the Tara Mission Microbiomes Atlantic 
transect (Figure 6B), a trend in the size and shape of organisms 
(axis 1; Figure  6B) is observed. Microplankton communities 
are dominated by relatively large, elongated organisms at the 
beginning of the transect (stations 1 to 12), and communities 
characterized by increasingly small and round organisms south 
of the equator in the more coastal stations 16 to 35. Stations 11 
and 12 displaying very low diversity in the North Atlantic showed 
clear morphological signals corresponding to communities 
dominated by Trichodesmium cyanobacteria (>60% that are 
large, elongated and poorly colored cells; see Figure 4A).

4 DISCUSSION

4.1 Characterization of our New Citizen 
Plankton Sampling and Imaging Gears
The concurrent deployment of validated and novel plankton 
sampling devices allowed quality check of our new frugal tools. 
Comparison of the two nets (DN and Coryphaena) first revealed 
a significant under-sampling of the DN-50µm, hypothetically 
explained by a too large mesh size (Heron, 1968) and the resulting 
abrasion of planktonic organisms flowing onto the dry silk leading 
to strong degradation. On the other hand, the silk of the DN-20µm 
stays immersed in water due to the slower filtration process, 
leading to better plankton preservation and good-quality samples 
that could be used as standard for further comparison with the 

Coryphaena. Such comparison allowed us to identify significant 
under-sampling of the second Coryphaena, when it was replaced 
due to the loss of the original net. The new Coryphaena net 
probably had a manufacturing defect such as hole(s) in the 
collector mesh; future versions will need to integrate solutions to 
quality-check the material before deployment in the field.

4.1.1 Coryphaena
The Coryphaena net was deployed while Tara was cruising at 
speeds between 4 and 11 knots. A reduction of the flow due to 
filtration resistance through the mesh (Tranter and Smith, 1968) 
is thus expected, in opposition to the DN where all the water 
collected is filtered through the system (Gorsky et  al., 2019). 
Consistently, the Coryphaena sampled less than the DN-20µm 
net (correction factor=0.35). Comparatively, replicate water 
collections using the same type of net display 17% variability 
on average on plankton biomass, and between 20% and 50% 
variability between two different nets types (Skjoldal et al., 2013). 
The variability between the 2 plankton collection gears observed 
herein (~35%) can therefore be considered as relatively low, and 
thus validates the sampling efficiency of the Coryphaena. Such 
discrepancies between sampling gears have been shown in many 
past studies (e.g., Herdman, 1921; Barnes and Marshall, 1951; 
Anraku, 1956 and Wiebe and Wiebe, 1968), and are typically due 
to net avoidance, mesh extrusion, escapement, and especially to 
non-random distribution of plankton (local plankton patchiness; 
Robinson et  al., 2021). Indeed, unlike laboratory experiments 

B

C

A

FIGURE  6 | (A) PCA performed on morphological variables characterizing the size, shape and color of microplankton (Euclidean distance). (B) Morphological 
characteristics of microplankton along the Tara Mission Microbiomes Atlantic transect, represented by morphometric (left side, PCA axis 1 values, average per station) 
and color (right side, PCA axis 2 values, average per station) features. (C) Representation of the PCA space by characteristic PlanktoScope vignettes.

118

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Mériguet et al.

9Frontiers in Marine Science  | www.frontiersin.org July 2022  |  Volume 9  |  Article 916025

Microplankton With Affordable Imaging Device 

where all variables are isolated and controlled, field trials to 
validate technologies such as the Coryphaena and DN, induce 
variability dependent on local conditions. Part of the variability 
observed between instruments could therefore result from 
plankton heterogeneity in the ocean (Robinson et  al., 2021). 
Notably, although performed in the same area, the Coryphaena 
sampling took on average 25 min (maximum 55 min), while the 
DN needed between 1-2 hours to filter ca. equivalent volumes 
of surface sea-waters (0.5 to 4 cubic meters; see Supplementary 
Table II). However, the correction factors between the two nets 
(0.35) allowed us to adjust their quantitative biases toward a 
global, surface plankton analysis. The Coryphaena adjusted data 
display minor differences as compared to the DN data, with 
notable under-sampling of certain taxa. This slight difference is 
likely due to the relatively high sampling speed that generates 
increasing pressure across the mesh (Keen, 2013) and damage 
some organisms. This explains our results showing higher 
sampling of fragile taxa, such as Diatoma and Eucampia, by the 
DN when compared to the Coryphaena (Figure 3C). This adds 
up to putative ‘mesh selection’ effect (Heron, 1968; Vannucci, 
1968) related to the elongated shapes of certain fragile plankton 
(see the FlowCam image of the taxa Diatoma on Figure 3C), i.e. 
these can get stuck in the 50µm-mesh of the Coryphaena net and/
or be more prone to escape through the mesh and thus not be 
analyzed by quantitative imaging.

4.1.2 PlanktoScope
The PlanktoScope and the FlowCam were previously compared 
on a single plankton sample collected offshore the Mediterranean 
marine laboratory of Villefranche/Mer (Pollina et al., this issue) 
showing a higher abundances of living organisms data collected 
by the PlanktoScope for equivalent volume of water analyzed 
(correction factor=2.24). Here, we carried out an extensive 
characterization of the PlanktoScope performances over an 
Atlantic transect on board Tara. This comparison reinforces 
the higher abundances of living organisms data collected by 
the PlanktoScope with respect to the FlowCam (correction 
factor=1.86). This difference could be explained by the FlowCam 
operating protocol involving a better homogenization of the 
sample in the syringe injecting plankton into the system. Indeed, 
low plankton mixing favors sedimentation at the bottom of the 
admission syringe of the PlanktoScope, putatively driving larger 
and biased concentrations into the system. Tests confirming such 
sedimentation bias within the PlanktoScope have been performed 
lately, allowing adjustments of the hardware and protocol to 
avoid this shortcoming in future PlanktoScope deployments.

4.2 Accurate and Underway, Citizen-Tools 
Based Assessment of Microplankton at 
Basin-Scale
4.2.1 Microplankton Taxonomic Composition Across 
the Atlantic Ocean
Overall, our study has allowed consistent description of surface 
micro-plankton taxonomic composition in direct relation to 
environmental constraints and biogeography. The correlations 
we found between taxo-functional groups and environmental 

features (Figures  4, 5) are consistent with the plankton-
environment associations summarized in Margalef ’s revisited 
mandala (Glibert, 2016), and highlight the central role of various 
nutrient limitations in the structure of surface microplankton 
composition and their abundance as described by Moore et al. 
(2013). These consistencies thus show the power of our new 
frugal tools to assess plankton ecology on a global scale.

In our dataset diatoms correlate with high NO3 concentrations 
and are found in eutrophic and cold areas (Figure 5), which is 
consistent with the physiological appetence of diatoms to nitrate 
absorption and storage (Glibert et  al., 2016). Trichodesmium 
cyanobacteria negatively correlated with macronutrients (NO3 
and PO4) and dominated warm oligotrophic zones, which is 
consistent with their diazotrophy allowing them to fix dissolved 
N2. Since ca. 99% of ocean nitrogen is in the form of dissolved 
N2 (Gruber and Galloway, 2008), diazotrophic cyanobacteria 
have a major ecological advantage in oligotrophic areas, however 
they require 2.5 to 100 times more iron than non-diazotrophic 
organisms (Zehr, 2011), which explains their positive association 
with iron in our results (Figure 5). The geographic distribution 
of Trichodesmium cyanobacteria in our study (stations 9 to 14; 
Figures 4A, 5) is otherwise broadly consistent with that observed 
across 8 Atlantic Meridional Transect (AMT) cruises (Tyrrell, 
2003), demonstrating predominance in the region between 0 
and ~15°N, with an average filament concentration in the surface 
layer of 300 ± 101 filaments l-1 and a maximum of >600 filaments 
l-1. The observed correlation between PO4 and dinoflagellates 
is also found in Margalef ’s revisited mandala (Glibert, 2016). 
However, (bio)chemicals factors such as nutrients limitations are 
incomplete predictors of plankton community structure (Lima-
Mendez et al., 2015). Plankton symbiotic relationships must be 
considered, especially in the oligotrophic water masses at tropical 
and subtropical latitudes where mutualistic species interactions 
are prevalent (Massana, 2015). Of note, our absolute abundance 
data point to a bloom of the colonial diatom Hemiaulus 
hauckii at station 23 (Figure 4), an area where such bloom was 
previously reported (Carpenter et al., 1999). This diatom bloom 
occurs in NO3-poor waters, which is explained by the presence 
of the endosymbiontic diazotrophic cyanobacterium Richelia 
in Hemiaulus cells, providing to the diatom host the nitrogen 
needed to thrive in these otherwise oligotrophic waters (Villareal, 
1992; Carpenter et al., 1999). Images from the PlanktoScope allow 
direct confirmation of this biotic interaction in the sampled 
populations (Supplementary Figure 1). Station 24, characterized 
by an even stronger nitrate limitation but with higher iron 
concentrations, was dominated by cyanobacteria (Figures 4, 5). 
We thus detected a shift from diazotrophic symbiotic diatoms 
to diazotrophic cyanobacteria, likely due to different levels of 
nitrogen versus iron limitation between two consecutive stations 
separated by 372 km.

4.2.2 Exploring the Morphometric and Color Spaces 
of Surface Atlantic Microplankton
The relatively large image dataset collected here (370 175 images) 
by the Coryphaena/PlanktoScope frugal kit allows exploration of 
the morphological traits of surface-water microplankton across 
large environmental and geographic scales, independently of the 
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tedious semi-automated taxonomic annotation of all vignette 
individually. Our results (Figure  6) show only a very weak 
morphological signal (mean PCA value close to 0; Figures 6C, 
D). This high variability highlights the extreme diversity of 
plankton morphological characteristics (size, shape, and color) 
previously described in the literature (e.g. recently, Ibarbalz et al., 
2019; Ryabov et al., 2021). Only a few stations with low Shannon 
diversity (but high dominance of a single taxon, e.g. station 11 
an 12; Figures 5, 6) display distinct morphological components 
that match the morphological traits of the dominant organism. 
The majority of the variance (first axis 40% of variance; Figure 6) 
is explained by a typical morphological space opposing different 
shapes and sizes. This morphometric space is echoed in a study 
by Ryabov et  al. (2021) where cell elongation and cell volume 
together explained up to 92% of the total variance. Indeed, it is 
known that environmental conditions, such as nutrients, light or 
temperature, affect the shape and size distributions of plankton 
(Naselli-Flores et al., 2007; Stanca et al., 2013; Ryabov et al., 2021) 
confirming that both size and shape are crucial determinants of 
fitness. Given that our study focused on surface plankton, we 
would expect a predominance of round shapes while elongated 
shapes are mostly found in deep waters as they would optimize 
chloroplast aggregation along the cell surface and increase light 
harvesting (O’Farrell et al., 2007). However, a predominance of 
round shapes is not clearly visible in our results, and is highly 
counteracted by the large presence of Trichodesmium filaments. 
The fact that including color information gathers 26% variance 
in our dataset (Figure  6), further shows that coloration is an 
important plankton trait (Martini et  al., 2021) that previous 
morphologic studies conducted only on shape and size have 
deeply ignored because of technological constraints. The onset 
of a new generation of instruments with color capabilities, 
like the PlanktoScope, will allow us to tackle such unexplored 
plankton traits.

These morphological methods are very promising for large 
datasets, and will prove valuable for the work we propose in the 
context of large-scale citizen science observations. For in-depth 
analyses of plankton morphological traits, beyond the addition 
of color information, improvements can still be made, such as 
analyses on more precise taxonomic groups like in Ryabov 
et  al. (2021) which showed distinct and different diversities 
within each taxonomic group or a clustering method on PCA 
coordinates in order to distinguish distinct morphotypes as done 
by Ibarbalz et  al. (2019) on plankton or by Trudnowska et  al. 
(2021) on marine snow.

5 CONCLUSION

This study demonstrates that frugal and affordable tools for 
biological oceanography can match the quality of validated 
scientific instruments. The PlanktoScope, a simple imaging 
system, yielded results comparable to that of the Flowcam, a state-
of-the-art scientific instrument. The Coryphaena, a 3D-printed 
net allowing collection of micro-plankton at speeds up to 11 

knots, recovered plankton communities matching the ones 
sampled by a validated concentration system. Improvements 
can certainly be made to these instruments, notably to increase 
their robustness; however, these represent great perspectives for 
cooperative plankton studies over unique spatio-temporal scales 
by citizen sailors. Furthermore, we have also shown how our new 
frugal tools enabled low-cost collection of consistent plankton 
data at basin scale allowing taxonomic and morphological 
assessment and analysis of surface plankton over a 6 months 
time frame from plankton sampling to statistical analysis of the 
data. Our results are in agreement with previous observations, 
showing that the taxonomic and morphological compositions of 
surface plankton are essentially controlled by different nutrient 
limitations selecting specific phytoplanktonic functional groups 
and symbiotic associations. Overall, this shows that long-term 
collaborative plankton monitoring at planetary scale is not 
anymore a dream, and such endeavor would provide the ‘essential 
oceanic and climatic variable’ (Bax et al., 2019) critically needed 
to model oceanic ecosystems facing global changes.
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The oceans represent 97% of all water on Earth and contain microscopic, drifting life, 
plankton, which drives global biogeochemical cycles. A major hurdle in assessing 
marine plankton is the planetary scale of the oceans and the logistical and economic 
constraints associated with their sampling. This difficulty is reflected in the limited amount 
of scientifically equipped fleets and affordable equipment. Here we present a modular 
hardware/software open-source strategy for building a versatile, re-configurable imaging 
platform - the PlanktoScope - that can be adapted to a number of applications in aquatic 
biology and ecology. We demonstrate high-throughput quantitative imaging of laboratory 
and field plankton samples while enabling rapid device reconfiguration to match the 
evolving needs of the sampler. The presented versions of PlanktoScope are capable 
of autonomously imaging 1.7  ml per minute with a 2.8 µm/px resolution and can be 
controlled from any WiFi-enabled device. The PlanktoScope’s small size, ease of use, 
and low cost - under $1000 in parts - enable its deployment for customizable monitoring 
of laboratory cultures or natural micro-plankton communities. This also paves the way 
toward consistent and long-term measurement of plankton diversity by an international 
fleet of citizen vessels at the planetary scale.

Keywords: PlanktoScope, microplankton, frugal microscopy, quantitative imaging, open source modularity

1 INTRODUCTION

Life drifting in water - plankton - forms the foundation of ecological networks and biodiversity in 
aquatic ecosystems (Fenchel, 1988). It is a major driver of global geochemical processes, by generating 
nearly half of the planet’s oxygen (Field, 1998) and maintaining a flux of photosynthetically fixed 
carbon to deeper layers of the ocean and its floor (Field, 1998, Henson et al., 2012). However, we still 
know little about the ecological and evolutionary dynamics of planktonic communities or the extent 
of the anthropogenic impact on these communities. Unlocked by the revolution in environmental 
DNA sequencing, our knowledge about plankton diversity has dramatically improved over 
the last two decades, notably through global-scale expeditions led by biologists, including the 
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Global Ocean Sampling (Venter et  al., 2004), Tara Oceans 
(Karsenti et al., 2011; Duarte, 2015). In particular, Tara Oceans  
(2009 - 2013) has applied a standardized, eco-systems biology 
strategy to explore plankton diversity from genes to communities, 
from viruses to animals, and across coarse but planetary spatial 
and seasonal scales (Sunagawa et  al., 2020). The combination 
of global ocean DNA metabarcoding, metagenomic, and 
metatranscriptomic datasets [e.g. (de Vargas et  al., 2015) 
(Sunagawa et al., 2015) Carradec et al. (2018)] has unveiled the 
basic structures of open ocean plankton taxonomic diversity 
and generated hypotheses about its interactions (Chaffron et al., 
2021), biogeography (Ruuskanen et al.,  2021), and roles in critical 
ocean processes such as the carbon pump Guidi et al., 2016.

However, understanding the eco-evolutionary dynamics 
of plankton will require far more information across the four 
dimensions of the world ocean. In addition, if the molecular 
‘omics’ data bring a wealth of taxonomic and metabolic 
knowledge, they convey relatively poor information about the 
phenotypes, abundances, interactions, and behaviors at the 
organismal level, which are driving a large extent of plankton 
ecology and function (Martini et al., 2021). Today, it is critical 
to complement the ocean ‘omics’ layer of information with 
quantitative imaging data as it is classically performed in cell 
biology, and this should be done across relevant Spatio-temporal 
scales of the ocean system, from micro- to meso-, to planetary 
scales. Quantitative imaging methods allow monitoring of 
both the quantity and morphological diversity of plankton 
communities between a few μm to and a few mm in size Lombard 
et al., 2019, together with measures of the many environmental 
or anthropogenic factors Kautsky et al., 2016 shaping them. The 
few existing high-throughput, automated imaging instruments, 
such as the FlowCam (Sieracki et al., 1998) or the IFCB (Sosik 
and Olson, 2007), are expensive, bulky, and not suitable for large-
scale community deployment. In the ‘Plankton Planet’ initiative 
(de Vargas et  al., 2022), we propose to harness the creativity 
of researchers, mariners, and makers, to co-develop a suite of 
user-friendly and cost-effective tools for a cooperative, global, 
and long-term measure of microbial aquatic life. Frugal yet 
scientifically sound tools shared with a large community become 
an effective way to tackle the problem of the cost associated with 
classical oceanographic instruments and vessels. For example, 
the Foldscope (Cybulski et  al., 2014), with over two million 
copies distributed in 164 countries around the world, has enabled 
a community of citizen microscopists to share their data and 
discoveries at a planetary scale (http://microcosmos.foldscope.
com/). Plankton ecology would greatly benefit from a low-cost 
portable quantitative microscope that can be used directly at sea 
or on the shore by the vast community of mariners enjoying and/
or living from the ocean.

Here, we used modularity - a natural way to make complexity 
manageable and accommodate uncertainty in the evolution 
of design (Efatmaneshnik and Ryan, 2016) - to construct the 
PlanktoScope, a miniaturized modular open-source imaging 
platform for quantitative imaging of micro-plankton that matches 
the quality of much larger and more expensive commercial 
instruments, for costs that are affordable for personal assembly 

and use. Even though we develop the canonical versions of the 
PlanktoScope for a global homogenous measure of plankton life, 
every module encapsulates a simple function allowing scientists 
and makers to adopt the platform for their needs. This strategy 
enables the device to be easily upgraded instead of replaced as a 
whole, providing a way to take on unforeseen future applications. 
We demonstrate the efficiency of the PlanktoScope in obtaining 
high-throughput imaging from both laboratory and field samples 
while enabling rapid reconfiguration to match the evolving needs 
of aquatic ecology. Since sharing PlanktoScope with community 
researchers, we have recorded more than 30+ replications of 
the instrument worldwide - demonstrating the replicability and 
scale-up of our approach driven by an organic community built 
on the collaboration of professional and amateur scientists.

2 MATERIALS AND EQUIPMENT

2.1 Designs of Two  
PlanktoScope Prototypes
To design the modular version of the PlanktoScope (v.1) made of 
six units that can be stacked on top of each other (Figures 1A–D), 
we used Autodesk Fusion 360 (v2.0.5688) to create a parametric 
design optimizing the physical interface common to all modules. 
Different parameters define the interface’s areas, such as the 
electronic connection area, the magnetic linkage, and the optical 
path. The thickness of the material and the outer dimensions 
of all the electronics used inside the instrument were critical to 
characterizing the interface. The shareable online 3D environment 
provided by Fusion 360 contains the main 3D model, together 
with other models that form the electronic and optical parts. 
Most of these models have been generated by measuring existing 
objects but some have been downloaded from the online 
GrabCad library (https://grabcad.com/). Once the different 
iterations of the 3D model were ready to be machined, the 
sketches were extracted as DXF files from Fusion 360 and nested 
in Adobe Illustrator CC (version 22.1) to fit the dimensions of the 
sheets of used material. The parts were then machined on a 3 mm 
thick acrylic sheet by a laser cutter machine (RS-1610L) with an 
optimal resolution of 25 μm, at the UBO Open Factory in Brest, 
France. These laser cutter instruments are common at universities 
as well as a growing worldwide network of maker/fabrication 
spaces. Such spaces often provide user access to machines after 
proper training, though work can often be commissioned for 
a few hundred dollars. All that is required is sharing of the file 
found on the PlanktoScope website. The assembly of v.1 was 
performed manually and took c.a. 8 hours. On the other hand, 
the monolithic version of the PlanktoScope (v.2) (Figure 1E) has 
been designed for fluidic-based, quantitative observations, and 
thus employs a much simpler assembly process. Its form factor 
and robustness allow it to be carried in a backpack for field trips 
without risking damage. Modularity remains in the objective 
lens that can be swapped magnetically as well as the Ibidi Luer 
Slide holder, while other components such as focus stages and 
electronics remain fixed. The PlanktoScope v.2 can be assembled 
in less than 4 hours.
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2.2 Content of the Modules
The bill of materials (BOM) to assemble a single PlanktoScope 
v.1 is about $200. The BOM for PlanktoScope v.2 is about $500 
(Supplementary Material Table 1).

2.2.1 Flow-through Strategies
PlanktoScope v.1 is equipped with a peristaltic pump module 
(Figure  1A6) composed of a stack of 5 acrylic layers forming 
a closed chamber inside which 3 “rollers’’ can spin around the 
motor axis compressing a tube along the internal wall. The speed 
of the motor and the diameter of the compressed tube determine 

the flow rate which is about 3 ml/min at maximum speed. The 
compact PlanktoScope v.2 uses off-the-shelf peristaltic pumps for 
flow. Many are available in a 10mm x10mm form factor. Common 
12V versions provide reliable flow rates of several ml/min. Several 
models can be easily incorporated by small modifications to the 
laser cut mount on the 3D model and connected to the other port 
of the Adafruit Stepper Motor HAT controlling the stage. In both 
designs, a continuous flow mode and a stop-flow mode can be 
used. In continuous mode, the peristaltic pump is continuously 
rotating at a low flow rate while the camera is taking images at a 
given frame rate. Since Pi Cameras are based on a rolling shutter, 

A B

D

E F

C

FIGURE 1 |   Comparison of the modular (v.1) and monolithic (v.2) PlanktoScope designs. (A) Modular stackable flow-through microscope design (bottom to top): 
Computational/imaging sensor (1), tube lens (2), objective lens (3), delta stage for sample manipulation and focus including flow cell mount (4), illumination (5), pump 
(6). The platform can be re-assembled and is held together by the alignment of fixed magnets. (B) The PlanktoScope v.1 can be used in vertical configuration for 
static imaging or (C) horizontal configuration for flow through imaging. (D) Deployment of the PlanktoScope v.1 on board a traditional fishing boat in lake Chilika 
(Orissa, India), operating autonomously on a 12V car battery. (E) Monolithic portable PlanktoScope v.2 with fixed flow-through configuration. (F) PlanktoScope is 
controlled via smartphone or laptop allowing real-time feedback during data collection and processing.
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the imaged objects undergo a morphological deformation when 
imaged under continuous flow. In addition, peristaltic pumps 
have a pulsed flow which is difficult to characterize, making 
post-acquisition correction difficult. Planktoscope uses stop-
flow, where rotation of the pump is stopped when each image 
is taken. The objects are thus stationary when imaged, canceling 
any morphological deformation due to flow or motion blur, thus 
allowing quantitative analysis. This enables a longer exposure, 
increasing the resolution and reducing the need for powerful 
illumination. This lower frame-rate strategy enables the capture 
of the full camera sensor for a larger field of view than via the 
continuous mode while maintaining high throughput. However, 
as the cost of high quality cameras continues to fall, we envision 
modifications with global shutter sensors or strobed illumination 
to further improve image acquisition.

2.2.2 Stage and Focus
The PlanktoScope v.1 includes a module combining the focusing 
and exploring functions (Figure 1A4). This linear delta design, 

used in some 3D printers, uses 3 vertical independent linear 
stepper motors that hold a platform, each with 2 arms. Each 
stepper is driven by an A4988 driver powered with 9V and 
controlled by a common Arduino mini pro present in the module. 
To control the location of the sample maintained by the platform, 
an inverse kinematic is necessary to transform an X/Y/Z desired 
displacement in a delta motion. Here, the code embedded in the 
Arduino was simplified to control the focus by moving the three 
stepper motors simultaneously. This Arduino has a defined I2C 
address allowing the Raspberry Pi to iteratively set a new focal 
position. The platform made of two separable magnetic bodies 
can host a broad range of sample holders: a slide, a petri dish, 
an optical chamber, or a flow cell. Focusing is made possible by 
controlling 3 independent drivers wired to simultaneously move 
the stepper motors up or down. The travel distance of the platform 
measures about 3.2cm with a step size of 0.15μm. This allows fine 
control of movement to accurately track and image micron-sized 
objects. For the price of about $30, this represents an affordable 
way to construct a motorized XYZ stage. In PlanktoScope v.2, 

A

B

DC

FIGURE 2 | Image processing pipeline for fluidic analysis. (A) Workflow used to segment the objects imaged in a single frame and extract features. From the raw 
images (1) acquired in fluidic mode, MorphoCut applies a running median to approximate the background image (2) based on 5 frames; using OpenCV, a Canny 
Edge Detection is performed, followed by dilation, closing, and erosion functions (3); from the binary image, MorphoCut extracts the vignette/ROI for each object (4), 
together with a suite of mathematical image descriptors. (B) The Raw images and segments from MorphoCut along with the objects and a table containing all the 
measured features/metadata can then be directly uploaded on EcoTaxa for classification. (C) and (D) Non-destructive continuous monitoring of lab cultures using 
a PlanktoScope allows for cell morphology to be observed at single-cell resolution. (C) Coscinodiscus wailesii cultures were monitored over a period of 6 hours. 
Simple montages allow the user to easily quantify living or dead cells at different time points. (D) Pyrocystis noctiluca cultures were monitored over a period of 6 
hours during their night-to-day transition. Dividing cells are easily identifiable.
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the stage is actuated by two parallel synchronized Allegro 
linear stepper motors on only the Z-axis for changing focus.  
Both stepper motors are connected to the same port on the 
Adafruit Stepper Motor HAT. The flow-cell can be actuated for 
fine focus using 2 synchronous linear stepper motors offering a 
step size of 0.15μm on a travel distance measuring about 2.5cm 
on a single axis.

2.2.3 Illumination
In the PlanktoScope v.1, the illumination module is built of 5 
concentric rings composed of 1, 6, 12, 24, and 32 white ultra-
bright LEDs having a narrow-angle of 17°. The light intensity 
of each ring can be tuned separately to offer a broad range of 
illumination modes. Two main modes are (i) pure dark-field 
where the two external rings are used (Supplementary Material 
Figure  5A) and (ii) pure bright-field where the most central 
LEDs are used (Supplementary Material Figure  5B). In the 
following results, we opted to use the maximum light intensity 
of the central LED to maximize the depth of field in the flow cell. 
The compact PlanktoScope uses a single ultra-bright LED at a 
constant intensity with a narrow angle of 15° enabling bright-field 
illumination and providing a nearly collimated light source. This 
achieves a large depth of field for imaging plankton communities 
with a large size variance. This single white LED (5 mm LTW2S - 
17000 mcd) is connected to the stepper board and can be toggled 
in the user interface.

2.2.4 Optical Modules
The optical train is defined by two inverted S-mount lenses 
(M12 lenses) that are both encapsulated in different detachable 
modules. The two modules have been designed to enable a rapid 
change of each M12 lens used as a couple. The alignment is set 
by the insertion holes cut and positioned by the laser cutter 
machine. The distances of the M12 lenses to each other and the 
sensor are defined by rotating the M12 lenses in the holes tapped 
using an M12x0.5 hand thread tap from Thorlabs. This optical 
train remains the same on both versions of the PlanktoScope.

2.2.5 Power, Computational, and Sensor Modules
The PlanktoScope v.1 is directly powered through one multi-
functional module dedicated to the computation and sensor 
(Figure  1A1). It receives 12V either by a regular AC power 
adapter for lab experiments or a battery for field deployment. 
A custom BUS made of 6 electronic wires dedicated to power 
the other modules provide 12V, 5V, and Ground wires. The three 
other wires consist of the I2C, SDA, SCL, and a dedicated Ground 
enabling the exchange of data between the different modules. The 
camera sensor is a Pi Camera v2.1 embedded in the module. It 
is positioned facing up to collect the image coming from above. 
Under this module the user on one side of the PlanktoScope are 
3 suction cups allowing the user to fix the instrument on flat 
surfaces and improve its vertical and horizontal stability for field 
experiments (e.g., inside a boat). The PlanktoScope v.2 utilizes 
the USB-C connector of the Raspberry Pi 4 to power itself, and 
the Pi HAT (Yahboom Cooling Fan HAT) is mounted on top of 
it to cool the Raspberry Pi and provide operational feedback to 
the user via 3 RGB LEDs. A ribbon cable connects the Raspberry 

Pi/Fan HAT to two other HATs, an Adafruit Stepper Motor 
HAT and the Adafruit Ultimate GPS HAT. The Stepper Motor 
HAT is powered via a DC Power Jack Socket to 12V 1A power. 
The GPS HAT uses an antenna allowing for a better GPS signal 
when in the field. Note that in this design, the entire GPIO of 
the Raspberry becomes the BUS and connects the Raspberry 
Pi to other physical modules that can be changed, replaced, or 
upgraded.

2.3 User/machine Interface and  
Software Architecture
By utilizing the headless configuration for the Raspberry Pi, we 
removed the need for a dedicated monitor, mouse, and keyboard, 
enabling control of the instrument from any device able to 
access a web browser over a WiFi connection (Figure 1F). This 
strategy enables any user to immediately interact with the device 
without OS or software compatibility issues. The user can then 
access a browser-based dashboard powered by Node-RED for 
remote control of the system; acquisition settings, interactive 
collection of the metadata, as well as rapid state modification of 
the actuators.

The software architecture (Supplementary Material Figure 3) 
is based on existing programs and python libraries, such as Node-
RED (https://nodered.org/) for the Graphical User Interface 
and the first layer of the programming interface, MorphoCut 
(https://github.com/morphocut/morphocut) for handling the 
image processing from the raw images to the online platform, 
and EcoTaxa (https://ecotaxa.obs-vlfr.fr/) for plankton images 
classification and annotation.

The back-end of the GUI is also based on Node-RED, a 
flow-based development tool for visual programming which is 
provided by default on any Raspberry Pi software suite. Node-
RED provides a web browser-based flow editor, which can 
be used to create JavaScript-based applications. Elements of 
applications can be saved or shared for re-use. The strategy makes 
it more accessible to those with limited experience in scripting. 
This visually modifiable program can easily be shared through a 
JavaScript Object Notation (.json) text file.

3 METHODS

3.1 Image Workflow and Image Processing

3.1.1 Image Workflow Performed with  
the PlanktoScope V.1
For the first batch of acquisitions (Figures  4.1–4.6, 5, and 
Supplementary Material Figures  5A, B, 6), the optical 
configuration was a 16  mm focal length for the tube lens and 
a 12  mm focal length for the objective lens. The sensor mode 
was set to 1080p and the field of view (FOV) was then measured 
at 2,880 μm wide and 1,620 μm high. The flow cell used was a 
rectangle-shaped borosilicate glass capillary (VitroTubes), 5000 
µm wide, 500 μm deep internally, and 5  cm long. The volume 
imaged in one frame is about 2.3 μL. Since the capillary width 
is larger than the FOV width, the whole volume passed in the 
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capillary is about 4 μL per imaged frame (= FOV height * Cell 
width * Cell depth). The acquisition was done using a frame-
rate set at 8 frames/second, which corresponds to a volume of 
1.12 ml imaged per minute. We took 2000 frames per sample, at 
5 minutes total, the volume imaged was 5.6 mL per sample. The 
image processing workflow for this batch was a custom pipeline. 
Using Numpy, we realized for each frame an average image from 
20 frames around the considered frame (10 frames before and 10 
frames after) and we subtracted this average image to the current 
frame using OpenCV. The cleaned frames are then processed 
with basic Dilation/Closing/Erosion operations in OpenCV. The 
binary image obtained served to detect the objects in each frame 
and extract the region of interest along with simple measured 
features provided by OpenCV such as equivalent diameter, 
Euler number, extent, area, filled area, major axis length, minor 
axis length, orientation, perimeter, and solidity. From all the 
segmented objects, we manually selected the objects most likely 
to correspond to living organisms to avoid terrigenous sediment 
abundant in the explored coastal sites. The current segmentation 
pipeline performed on the instrument is broad pertaining to 
objects of interest, though parameters for segmentation can be 
modified in the code depending on the needs of the user. Raw 
images can also be easily transferred and processed with any 
custom pipeline off the machine.

3.1.2 Image Workflow Performed with the 
PlanktoScope V.2
For the second batch of acquisitions (Figures  2, 3, 4.7 
and Supplementary Material Figures  5C–E), the optical 
configuration was made using 25mm for the tube lens and 
16  mm for the objective lens. The sensor mode was set to full 
sensor (3280 × 2464 pixels) and the field of view measured 2 
300 μm wide and 1 730 μm high. In the v.2 version, the sensor 
is rotated 90° in comparison to the version v.1. For the camera 
sensor reference, the direction of the flow is from right to left 
rather than top to bottom. For this optical configuration and a 
flow cell with a channel height of 200 μm, the volume imaged 
in one frame is about 0.8 μL (= FOV width * FOV height * 
FlowCell depth). The acquisition for both versions was done 
using a stop flow method which consists of stopping the pump 
flow and then the flow when acquiring an image. The frame 
rate is about 1 frame/second, which corresponds to a volume of 
~48 μL imaged per minute. The sample was passed through a 
filter (Überstrainer, PluriSelect inc.) to remove large objects that 
can clog the capillaries. The image processing workflow for this 
batch was done using MorphoCut and Ecotaxa as described in 
3.1.3 below. For the acquisition shown in Figure 3, the extracted 
vignettes uploaded into Ecotaxa can be consulted with all their 
associated metadata @: https://ecotaxa.obs-vlfr.fr/prj/2748.

3.1.3 Image Processing
The raw images are stored on the Pi after collection and can be 
automatically processed on the Planktoscope by MorphoCut, a 
python-based library designed to handle large volumes of imaging 
data (https://github.com/morphocut/morphocut). Several 
operations are applied to the raw images (Figure 2A1) acquired 
in fluidic mode. MorphoCut first applies a running median to 

approximate the background image (Figure  2A2) based on 
5 frames, a Canny Edge Detection via OpenCV is performed, 
followed by dilation, closing, and erosion functions (Figure 2A3) 
also from OpenCV. From the binary image, MorphoCut extracts 
the region of interest (ROI) for each present object (Figure 2A4). 
MorphoCut then extracts, using Scikit-image (van der Walt 
et al., 2014) 32 keys mathematical image descriptors. Each ROI 
is then stored, along with contextual metadata defined by the 
user on the Graphical User Interface (GUI). This way, large data 
sets can be compressed at sea by storing only relevant ROIs and 
data tables. Finally, all data outputs are zipped in a compressed 
file and formatted for being imported to the EcoTaxa server 
(Figure  2B). Ecotaxa is a web-interfaced database, which 
combines supervised machine learning with collaborative visual 
inspections/classification by taxonomy experts to classify and 
assign taxonomy to plankton from environmental plankton 
image datasets. This creates a uniform data format already 
utilized by plankton researchers worldwide.

3.2 Optical Characterization
Since the optical configuration is made of two reversed M12 
lenses, serving respectively as objective lens and tube lens, 
we choose five different M12 lenses (Table  1) based on their 
compatibility with the chosen camera sensor (Pi Camera v2.1, 
Sony IMX219, 8MP, sensor area 3.68x2.76mm imaging area, 
pixel size 1.12x1.12um). As changing the focal length of each 
lens changes the effective magnification of the image projected 
on the sensor, we wished to see how each combination enables 
exploration of objects spanning different size ranges. Pairing 
and characterization of lens pairs with different effective focal 
lengths (f) were performed to establish the actual resolution 
experimentally. We tested the optical performance of each 25 
possible configurations by imaging the USAF 1951 resolution 
test chart. The illumination was set to use only the central LED 
which represents an illumination existing in both versions. The 
PiCamera was set to take a picture with 1080p corresponding to 
a 1920 x 1080px frame. For each optical configuration, a ruler 
was imaged to calculate, via FiJi which is a “batteries-included” 
distribution of ImageJ (Broeke et al., 2015), the actual size of the 
field of view from which we can deduce the optical magnification 
for each pair of M12 lenses. The lateral resolution of each optical 
configuration was then calculated from the size of the field of view 
and the width in pixels of the image. The pixel size was deduced 
from the optical magnification. We found the combination of 
tube lens with f25mm, and objective lens f16mm provides a large 
field of view, good depth of focus, and ability to resolve a wide 
range of planktonic organisms.

To calculate resolution with a 1951 USAF Resolution Target, 
we found the smallest separable groups and elements for each 
image of the Resolution Target taken under all the 25 optical 
configurations. To document the optical characteristics, we 
calculated the resolution in lp/mm using the following equation 
(“Edmund Optic” n.d.):

	
Resolution lp

mm

GroupNumber ElementNumber





=

+
−








2
1

6 	 (1)
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To convert lp/mm to microns (μm), simply take the reciprocal 
of the lp/mm resolution value and multiply by 1000:

	

Resolution m

m
mm

Resolution lp
mm

µ

µ

 = 



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1000

	 (2)

3.2.1 PlanktoScope Benchmarking
We benchmarked the PlanktoScope by comparing it to the 
FlowCam (Sieracki et al., 1998) using identical plankton 
samples. Microplankton samples were collected from subsurface 
coastal waters in January 2020 in Villefranche Sur Mer, France, 
by towing a 20µm mesh size plankton net from a kayak. The 
samples were immediately brought back to the laboratory, split 
into equal parts after gentle mixing, and imaged alive on both 
the PlanktoScope v.2 and a Flowcam configured with similar 
magnification (Figures  3A, B). For Flowcam acquisition, a 
model Benchtop B2 Series equipped with a 4X lens was used. 
Prior to image acquisition, the sample was passed through a 
200µm filter (Überstrainer, PluriSelect inc.) to remove large 
objects that can clog the capillaries. Samples were imaged on 
auto-trigger mode (no fluorescence trigger) by passing the 
sample through a 300µm width glass capillary. Raw images 
were recorded and processed through ZooProcess according 
to standardized procedures (Gorsky et  al., 2010). Manuals for 
Flowcam use, including the methodology used, Zooprocess, 
and Ecotaxa are available at https://sites.google.com/view/piqv. 
The extracted vignettes were uploaded to ecotaxa and can be 
consulted with all their associated metadata @: https://ecotaxa.
obs-vlfr.fr/prj/2740. For both instruments, the total abundance 
of organisms, as well as normalized biovolume size, Normalized 
Biomass Size Spectra (NB-SS) (Platt and Denman 1977) were 
calculated to evaluate their respective capacity to count and 
size plankton biodiversity. Both instruments provided enough 
resolution to allow quantitative taxonomic classification of 
plankton samples down to the genus, and often species level 
(Figure 3C). Furthermore, the similar NB-SS spectra generated 
(Figure 3E) indicate comparable capacities to measure and count 
planktonic populations.

3.2.2 Plankton Sampling
The v.1 has been deployed at seven locations representing 
different ecosystems throughout the planet. The same sampling 
protocol (except for the Comau Fjord and Palo Alto Baylands 

Nature Preserve, see below) was performed using a 20 μm mesh 
plankton net with a diameter of 30 cm, and a 10-minute surface 
tow at 2 knots. The samples were filtered with a 500 μm mesh 
sieve to remove larger particles. In Comau Fjord we used a 
horizontal water sampler from LaMotte (CODE 1087) to sample 
the vertical distribution of micro-plankton from 0-10 meters 
below the water’s surface. From the 1,200 mL samples collected 
for every depth, we conserved 15ml and imaged 5.6ml via 2000 
frames. The salinity at every depth was measured using a hand 
refractometer from Atago. For the Palo Alto Baylands Nature 
Preserve, since the site is shallow and quite turbid, the sample was 
collected directly using a 50mL falcon tube from the subsurface 
and also filtered using the 500 μm mesh sieve. All samples were 
collected during the daytime.

The v.2 was first used in a lab context to realize testing on 
morphological diversity of cultured Pyrocystis noctiluca (LB 
2504) and Coscinodiscus wailesii (CCMP2513) strains (Figure 2). 
Samples were passed directly in the instrument without 
preliminary concentration. To remove aggregated cells, we 
placed a mesh filter (Überstrainer, PluriSelect inc.) in between 
the culture and the field of view. For Pyrocystis noctiluca, we 
used a mesh filter of 200 μm and a µ-Slide I Luer with a channel 
height of 200 μm. For Coscinodiscus wailesii, we used a mesh 
filter of 500 μm and a µ-Slide I Luer with a channel height of 600 
μm. We further tested the v.2 at Villefranche-sur-Mer, France, 
using plankton samples collected in front of the marine station 
by towing a 20 μm mesh, 30  cm diameter plankton net for 10 
minutes from a kayak.

4 RESULT

4.1 An Open, Modular, and Miniaturized 
Imaging Platform for Plankton Ecology
The PlanktoScope was developed in two configurations: v.1, a 
modular, compartmentalized configuration maximizing multi-
functionality and adaptability, and v.2, a compact version 
designed for rapid assembly, portability, and standardization. 
Both versions achieve an optical magnification of 1.3X and a 
pixel size of 0.9μm/px. The travel distance of the specimen stage 
is about 3.2cm with a step size of 0.15μm to comply with a large 
range of lens working distances and sample mounting strategies. 
For a framerate of 8 frames per second and a 500μm thick flow 
cell, we can image a volume at 0.1ml/min. The components are 
off-the-shelf and readily accessible from numerous vendors at a 
low cost to enable replication. The corresponding open-software 

TABLE 1 |  M12 Lens matrix.

Size of the field of view width x height (mm) f-number of the objective lens

6 8 12 16 25

f-number of the tube lens 6 6.36 x 3.58 4.79 x 2.69 3.25 x 1.83 2.50 x 1.41 1.56 x 0.88
8 8.31 x 4.68 6.44 x 3.62 4.27 x 2.40 3.32 x 1.87 2.06 x 1.16

12 12.25 x 6.89 9.37 x 5.27 6.36 x 3.58 4.92 x 2.77 3.07 x 1.73
16 15.62 x 8.79 11.69 x 6.58 7.90 x 4.44 6.19 x 3.48 3.90 x 2.19
25 25.00 x 14.06 18.68 x 10.51 14.41 x 6.98 9.80 x 5.51 6.09 x 3.43
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strategy utilizes existing libraries for image processing and 
a flow-based visual programming platform to allow users to 
rapidly customize acquisition and processing steps. Image 
segmentation can be toggled for automatic processing after an 

acquisition sequence, allowing the user to efficiently inspect 
objects extracted from large volumes, even at low abundance.

The fully modular PlanktoScope v.1 is based on six triangular 
units (Figure  1A), each being a separate functional layer that 

A B

D E

C

FIGURE 3 | One-to-one comparison of PlanktoScope with the Flowcam. (A) Ultra-portable configuration of the PlanktoScope operated on a cell phone charger 
and controlled through a user interface on a smartphone. (B) Typical setup of a FlowCam on a laboratory bench. (C) One-to-one comparison of the same sample 
(plankton tow, Villefranche/Mer, France) passed through a PlanktoScope and Flowcam (version Benchtop B2 Series). Representative images were chosen from 
the two data sets (monochromatic images, Flowcam; color images, PlanktoScope) - first row from left to right: Ceratium spp., Dinophysis caudata, Peridiniales 
spp., Ceratium furca, Codonaria spp., Dictyocysta spp., Codonellopsis spp., Undellidae spp. Second row from left to right: Guinardia spp., Licmophora spp., 
Asterionellopsis spp., Coscinodiscophyceae spp., Chaetoceros spp., Acantharea, unknown sp. (D) Table comparing efficiencies for both trigger-based optical 
image collection (Flowcam) and flow-stop based wide field of view imaging and computational segmentation (PlanktoScope). When normalized for the total number 
of objects detected, PlanktoScope performed equally well compared to FlowCam. (E) Comparison of total planktonic organisms (objects) sampled with different 
collection methods and analyzed with different optical/imaging methods as a function of the size of organisms (expressed as equivalent spherical diameter; ESD). 
Total organism biovolume per size class was expressed as Normalized Biovolume Size Spectra (NBSS) by dividing the total biovolume within a size class by the 
biovolume interval of the considered size class. NBSS is representative of the number of organisms within a size class. The same plankton net sample was run 
through a Flowcam and a PlanktoScope v.2. All data are raw counts and converted to biovolume using ellipsoidal calculations. The low count at the smaller size 
range of each observation corresponds to an underestimation of an object’s number due to both the limited capabilities of each imaging device for small objects and 
net under sampling for small objects utilizing the plankton tow.

130

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Pollina et al.

9Frontiers in Marine Science  | www.frontiersin.org July 2022  |  Volume 9  |  Article 949428

Frugal Plankton Quantitative Imaging

couple together through shared optical and electronic paths: 1) 
a single board computer coupled to its camera sensor, 2-3) two 
reversed M12 lenses (an objective lens and a tube lens) separated 

in two modules, 4) a motorized stage and focus delta platform 
for sample manipulations, 5) independent programmable rings 
of LEDs for sample illumination, and 6) a peristaltic pump. 

A B

FIGURE 4 | Testing of PlanktoScope at seven field sites around the world (A), with sampling and imaging done directly in the field (B) for most samples. Composite 
montages were made to display the objects identified with the highest frequency in each ecosystem, creating a visual representation of local biodiversity. (1) Palo 
Alto Baylands Nature Preserve (USA) - 1: Tracheloraphis, 2: Tracheloraphis, 3, 6, 9, 10, 18–23: Ciliate, 4: Unidentified, 5: Pennate diatom, 7: Pyrocystis sp., 8: 
Gyrosigma sp., 11: Pennate diatom, 12: Unidentified, 13: Pennate diatom, 14: Navicula sp., 15: Unidentified, 16: Amphiprora gigantea, 17: Enchelyodon. (2)
Monterey Bay (USA) – 1–9: Unidentified, 10–12: Pennate diatom, 13: Centric diatom, 14–17, 20–22: Odontella longicruris, 18, 19, 23: Unidentified diatom, 24–26: 
Armored dinoflagellate (Protoperidinium)?, 27, 28: Unidentified Dinoflagellate, 29: Ornithocercus. (3) Isla Secas (Panama) - 1: Nitzschia longissima, 2, 3, 5, 8: 
Unidentified, 4: Centric diatom, 6: Copepod fecal pellet, 7: Ciliate, 9: Copepod, 10: Crustacean larvae, 11: Calanoid copepod. (4) Comau Fjord (Chile) – 1–6: 
Unidentified, 7: Unarmored dinoflagellate, 8, 9: Unidentified Dinoflagellate (resting cyst), 10: Prorocentrum compressum, 11: Dinophysis sp., 12: Protoperidinium 
sp., 13, 14: Ditylum brightwellii, 15: Detonula pumila, 16–21: Ciliate, 22–24: Lepidodinium chlorophorum, 25–30: Gyrodinium sp. (5) Isla Magueyes (Puerto-
Rico) - 1: Copepod larva, 2: Nauplius larva, 3, 8: Chaetoceros sp., 4, 10, 17: Oscillatoria sp., 5, 7: Eucampia zodiacus, 6: Coscinodiscus sp., 9: Unidentified, 
11: Calanoid copepod, 12: Ceratium furca, 13: Ceratium sp., 14: Ceratium lineatum, 15: Pyrocystis sp., 16: Unidentified, 18: Proboscia alata. (6) Chilika Lake 
(India) – 1–10, 13-24: Unidentified, 11: Crustacean larva, 12: Nauplius larva, 25: Ciliate. (7) Villefranche/Mer (France) - 1: Trichodesmium, 2: Copepoda, 3: Nauplii, 
4: Egg, 5: Rhabdonella, 6: Cyttarocylis, 7: Undellidae, 8: Codonaria, 9: Ciliophora, 10: Codonellopsis, 11: Dictyocysta, 12: Chaetoceros, 13: Asterionellopsis, 
14: Bacteriastrum, 15: Pennate chain, 16, 17: Licmophora, 18: Striatella, 19: Rhizosolenia, 20: Coscinodiscophyceae, 21: Bacillariophyceae, 22: Guinardia, 23: 
Dictyochophyceae, 24: Acantharea, 25, 26: Rhizaria, 27, 28: Acantharea, 29: Foraminifera, 30: Peridinales, 31: Pyrocystis, 32, 34: Neoceratium, 33: Neoceratium 
ranipes, 35: Neoceratium fusus, 36: Neoceratium furca, 37: Dinophyceae, 38: Neoceratium pentagonum, 39, 40: Protoperidinium, 41: Dinophysis caudata, 42: 
Ornithocercus quadratus, 43: Ceratocorys.
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The modules are connected mechanically, electronically, and 
optically, enabling simple re-configuration (Figure  1B). The 
instrument can be used either in the lab (Figure 1C) or in the 
field (Figure 1D). The compact Planktoscope v.2 (Figure 1E) is a 
simplification of the platform focusing on robust, flow-through 
plankton image acquisition in potentially rough field conditions, 
e.g., sailing boats. A single-board computer controlling a focus 
actuator holding the flow cell, a single LED for bright-field 
illumination, a peristaltic pump, and a GPS are all connected 
through stable electrical wiring.

Both designs use a laser-cut framework and are parametric, 
enabling the use of different thicknesses of the chosen material. 
These range from acrylic and recycled plastic, to wood, metal, or 
fiberboard. This machining strategy allows rapid design iteration 
and enables a precise yet flexible low-cost method for aligning 
and spacing optical components.

In the modular PlanktoScope v.1, three magnets are 
incorporated into the corners of the interface between modules 
(Figure 1A) enabling both proper alignment of the six units and 
quick reconfiguration. The microscope can be used in vertical 
or horizontal configurations, placed upright or inverted, 
depending on the need or constraints of the experimenter. 
For example, a vertical mode enables manual exploration of 
a static sample that can be placed on a glass slide, flow-cell, 
petri dish, or optical chambers (Figure  1B). The delta stage 
enables tracking of an organism with high precision or a quick 
survey of the sample holder area. A horizontal mode allows 
automated, continuous imaging of liquid samples passing 
through the flow cell at a predefined rate (Figure 1C). On the 
other hand, the compact, flow-through PlanktoScope v.2 uses 
a minimal structure to position and align the components, 
to increase robustness and stability for field deployment or 
in-situ installation. Modularity is still maintained by allowing 
the lenses and flow-cell to be quickly interchanged. While the 
modular version requires 10  h for the machining, soldering, 
and assembly, the compact version drastically reduces the build 
complexity enabling a complete machining/assembly in less 
than 4 h.

Both prototypes are based on a Raspberry Pi single-
board computer that controls the electronics, acquires 
and processes the images, and serves as the user/machine 
interface (Figure  1F). The magnetic coupling of the modular 
PlanktoScope enables electronic connectivity through the 
contact of copper ribbons that connect each module at their 
interface to form a custom BUS for Inter-Integrated Circuit 
(I2C) connection and power. The different independent 
microcontrollers, here Arduinos, receive queries as actuators 
and send logs as sensors back to the Raspberry Pi. The compact 
version utilizes Pi HATs (Hardware Attached on Top) for both 
assembling and deploying code. The Pi HATs enable the rapid 
addition of numerous off-the-shelf specialized boards. Three 
HATs are utilized to serve different functions: one for cooling 
the CPU of the Raspberry Pi and providing visual feedback, one 
for controlling the focus stage and the pump, and a third HAT 
supporting a GPS for geolocalization of the images. Thanks to 
the massive community built around Raspberry Pi, hundreds 

of other possibilities exist for new modules and more functions 
built on top of this platform. Both instruments can be powered 
through either standard wall Alternative Current (AC) power 
or from battery cells for field deployment (Figure 5A). For an 
acquisition frequency of 0.5  Hz and a standard Lithium-ion 
or polymer battery of 20,000 mAh, the compact version can 
collect continuously for more than 8 hours.

Both versions of the PlanktoScope utilize a Raspberry Pi 
camera sensor. The Pi Camera V2.1 uses a Sony sensor with 
a still resolution of 8Mp, and a sensor imaging area of 3.68 x 
2.76mm for $25. The $40 HQ Pi camera with an imaging area 
of 6.287mm x 4.712 mm and a 12Mp resolution can easily be 
incorporated. We used the high-performance and frugal lenses 
in a compact form factor ‘M12’ (corresponding to the metric 
tapping dimension) for magnification, building upon existing 
successful strategies for constructing low-cost microscopes 
(Switz et al., 2014). Two M12 lenses were conjugated to 
construct a reconfigurable solution to project the image of a 
microscopic object to a camera sensor. By using different focal 
lengths for both lenses, measuring the size of the field of view, 
and calculating the resolution of each combination, we obtained 
a comparative matrix of 25 different optical configurations 
from low (0.3X) to high (4X) magnification (Supplementary 
Material Figure  5C). These offer a pixel size from 4.5µm to 
0.3µm (Supplementary Material Figure 5D) and a measured 
resolution from 15.6µm to 1.9µm (Supplementary Material 
Figure  5E). Since each version allows magnetic swapping of 
both lenses, all the described optical configurations are readily 
interchangeable.

4.2 Proof of Concept in Both Laboratory 
and Field Conditions

4.2.1 Monitoring and Phenotyping Lab Cultures
The PlanktoScope is designed with rapid adaptability in mind, 
so it can be transported quickly from designated use in the 
field to controlled data collection in a laboratory setting. We 
used the continuous flow mode to image monocultures of 
unicellular eukaryotes and benchmark the PlanktoScope’s 
ability to function as a lab culture monitoring system. First, a 
culture of the diatom Coscinodiscus wailesii was passed through 
the system to monitor viability over time. Processed images 
provided straightforward classification and quantification of 
dead and living cells (Figure 2C). Second, the large transparent 
dinoflagellate Pyrocystis noctiluca, an organism that exhibits 
morphological changes linked to circadian cycles (Seo and 
Lawrence, 2000), was imaged in flow mode across the day-to-
night transition. We could observe various cell morphologies 
(Figure  2D), including cell-cycle states, and built a diagram 
of temporal phenotypes. As circadian clocks function as 
major drivers of behavior in most marine life (Seo and Fritz, 
2001), such controlled continuous monitoring is a source of 
informative, non-invasive, and easily accessible information 
on any cultured strain, providing valuable morphological, 
physiological, and behavioral data to improve culture and 
experimental conditions.
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4.2.2 Field Plankton Ecology
The PlanktoScope platform has been primarily designed for 
field deployment by both experienced and citizen scientists. It 
is ultra-portable and battery-powered (Figure  3A), able to be 
transported and used for the duration of a cruise or deployed 
in the field with the use of a dedicated power supply. We tested 
the PlanktoScope’s robustness, simplicity of use, and capability 
to acquire high-quality and reproducible data during seven field 
trips worldwide (Figure 4A). By generating panels of the most 
frequently extracted objects (Figures 4.1–4.7), we show how the 

instrument can rapidly provide qualitative plankton biodiversity 
surveys of any water body.

We next leveraged the PlanktoScope’s portability combined 
with a quantitative sampling strategy to tackle an ecological 
question in a Patagonian fjord. The Comau Fjord in southern 
Chile receives 5  m of rain per year per square meter, with 
numerous freshwater rivers and streams feeding into the 
saltwater bay. This provokes a vertical salinity gradient that 
evolves seasonally with sporadic weather led events such 
as wind and rain (Buskey and Hyatt, 2006; León-Muñoz et 

A

B

C

FIGURE 5 | PlanktoScope assessment of micro-plankton biodiversity along a vertical gradient in a Chilean fjord. (A) The extreme salinity gradient was measured 
in the Patagonian Comau fjord. Using sampling at discrete depths and the PlanktoScope, we attempted to describe correlations between salinity and plankton 
abundance/morphology across depths. Samples were collected with a Niskin bottle at different depths and imaged under a PlanktoScope. The plot depicts a 
vertical snapshot of an ecosystem from 0m (surface water) to 10m (depth) with the number of identified objects and equivalent diameter (10 to 76 μm) as a function 
of depth (0 to 10m). The measurement of the elongation per equivalent diameter is based on 94,262 objects detected in total. Color bar represents the aspect ratio 
from purple (small aspect ratio) to green (large aspect ratio). (B) Display of distribution of objects with a mean size of 54 μm as a function of aspect ratio, equivalent 
diameter, and depths (0 to 10m). (C) Illustration of objects with a gradual aspect ratio from 1.2 to 6.4 marked in (B).
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al., 2018). In April 2019, a typical vertical stratified salinity 
gradient was visible, with the salinity gradually increasing from 
25‰ at the surface to a plateau of 32‰ below the pycnocline 
at a 5-meter depth (Figure  5A). The PlanktoScope was used 
to investigate whether this salinity gradient corresponded to 
stratified planktonic communities. We observed a > 10-fold 
increase in the number of images in the meter of saline 
water immediately beneath the pycnocline. This number falls 
off around 9  m below the surface, or around 4 meters below 
the pycnocline (Figure  5A). We then attempted to extract 
geometrical characteristics from that dataset that could be 
ecologically informative. By measuring the ratio between the 
maximal and minimal length of detected objects (i.e., the aspect 
ratio, quantifying elongation) across plankton size fractions 
and depth (Figure  5A), we observed a relation between the 
increasing number of detected objects and their aspect ratio. 
Most of the detected objects collected below the pycnocline 
and with an equivalent diameter between 36μm and 64μm 
had an aspect ratio of around 4, indicating the presence of a 
large population of elongated objects. By further exploring the 
vertical stratification of objects within the size fraction 53μm to 
55μm, where the aspect ratio is on average about 5.9 at 6 meters, 
we found many elongated plankton (Figures  5B, C). This is 
consistent with previous observations that organisms living 
at depth in higher nutrient concentrations favor elongated 
morphologies with a higher aspect ratio [(Colin) Reynolds, 
1988; Bauer et  al., 2013; Ryabov et al., 2020]. Mining visual 
data and combining morphological attributes such as these 
with geochemical measurements can help better describe the 
regional microbial ecology.

5 CONCLUSION AND PERSPECTIVE
The basis of the largest ecosystem on Earth, the Ocean, lies 
within the planktonic organisms invisible to the naked eye. 
Today, we need to magnify not only this hidden world but 
also our approach. An unfortunate but common reality that 
limits long-term surveys of planktonic communities is the 
high cost and erratic funding situations associated with marine 
research. The significant resources involved in maintaining 
oceanographic vessels and instruments often cripple the ability 
to fund studies through time, and even more in low to middle-
income countries. As 40% of the world’s population lives along 
coastlines, monitoring these ecosystems remains incredibly 
important. There are still relatively few long-term time or 
spatial series that visually document planktonic ecosystems, 
and a clear tendency to quantify biodiversity and associated 
ecosystem services using costly and complex protocols 
based on high-throughput DNA sequencing. These same 
metagenomic studies have unveiled the massive biodiversity of 
micro-eukaryotes (de Vargas et al., 2015) with mostly unknown 
functions Carradec et al., 2018 in planktonic ecosystems. These 
organisms, essentially protists, are often more complex than 
metazoans in terms of cell structures, symbiotic interactions, 
and behavior Gavelis et  al., 2015, (Vincent et  al., 2018), 
properties that cannot readily be inferred from genomic data 

Keeling, 2019. To quantify and understand the role of micro-
eukaryotic complexity in ecosystem functions, it is critical to 
develop instruments allowing their high-throughput imaging 
worldwide.

The PlanktoScope is a low cost, versatile, and high-resolution 
digital microscope designed to enable professional and citizen 
scientists to perform large scale surveys of planktonic life. We 
have demonstrated here its capacity to monitor morphology 
and physiology of eukaryotic cells in culture, or to quantify 
fundamental features of micro-plankton communities in a coastal 
water column directly in the field in Chile, a country where single 
blooms have created losses of over 800 million dollars locally, 
leading to major public health crisis (Mardones et  al., 2021). 
Further demonstration of the PlanktoScope v.2’s efficiency for 
quantitative imaging is presented in the same issue (Mériguet 
et al., this issue), showing how the PlanktoScope and Flowcam 
provided comparable data while sampling along a basin-scale 
transect of the Tara schooner from Lorient (Britanny, France) to 
Punta Arenas (Chile). The current version of the PlanktoScope 
is limited in the plankton size range (50-200µm) it can recognize 
and quantify, however its fundamental modularity and relative 
simplicity make it possible to implement future new modules to 
analyze smaller or larger plankton.

The foundation of PlanktoScope lies in the principles of 
open-source hardware and software, combined with an open 
yet cohesive community of engineers, makers, researchers, and 
citizens in daily contact with sea-water (i.e., seatizen of the 
‘Plankton Planet’ initiative, see de Vargas et al., 2022). Current 
trends in affordable electronics and distributed manufacturing, 
together with computer vision and automated image processing, 
make it possible to put instruments’ manufacturing and data 
collection in the hands of thousands of users across the planet. 
Therefore, we have also launched web tools to share, develop, and 
replicate the PlanktoScope globally. Instructions to order and/
or manufacture the different components and assemble them 
into a functional instrument are available @ www.planktoscope.
org. The PlanktoScope community shares experiences, technical 
advice, and ideas for new developments @Slack (https://www.
planktoscope.org/join). Between May 2020 and Dec 2021, over 
286 individuals representing a large spectrum of activities from 
28 countries (Figure 6C) have engaged in this community. While 
the canonical version(s) of the PlanktoScope are being and will be 
developed and deployed for global standard measures plankton 
life by the Plankton Planet team (see de Vargas et  al. 2022), 
we know of at least 32 functional instruments replicated, and 
sometimes modified, by colleagues around the world (Figure 6).

Deploying a high-throughput frugal microscope platform 
on a global scale will bring light to the habitats under-surveyed 
by the large and more infrequent research cruises. Connecting 
these platforms with a network of climate researchers, ecologists, 
citizen scientists, and many others across the planet will bring 
further relevance to each individual measurement and build 
global capacity to explore our microscopic world. Since cost 
remains one of the key barriers to engagement in science, we 
intend to use “frugal science” to greatly enhance affordable 
approaches to scientific inquiry.
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A

B

C

FIGURE 6 | Documenting community replication of the Planktoscope. (A) Images of Planktoscopes built and implemented by the community from 2020-2021. 
First row (left to right), built by: Salima Rafai, Laboratoire Interdisciplinaire de Physique, CNRS - Université Grenoble Alpes; Guillaume Le Guen. Konk Ar Lab, Le 
Temps des Sciences and Saint Brieuc Factory; Ana Fernandez Carrera, Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW); 
Dyche Mullins, Mullins Lab, University of California - Second row (left to right): Andrian Gajigan, School of Ocean and Earth Science and Technology, the University 
of Hawaii at Manoa; Bronwyn Lira Dyson, Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB); Guillaume Bourdin, School 
of Marine Sciences, University of Maine; PlanktoSquad, Dalhousie University - Third row (left to right): Stewart Plaistow, Institute of Integrative Biology, University of 
Liverpool; Alex Barth, Department of Biological Sciences, University of South Carolina; Macci Wigginton, Ocean & Earth Sciences, Old Dominion University; Yefim 
Radomyselskiy, Department of Physics, City University of New York - Queens College. (B) Field deployments of the Planktoscope by community members. From left 
to right: v.2 on a NSF science-cruise in 2021; v.2 by a river bed in Northwest France; v.2.5 onboard Tara during a cross Atlantic cruise (see Mériguet et al. this issue); 
v2.5 on a small sailboat off the coast of Southeast France. (C) Planktoscope community across the world as of December 2021.
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7 Department Ocean Ecosystems Biology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 8 School of
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Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and
provides major ecosystem services as a main driver of the biological carbon pump and in
sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to
its changes. To better understand the importance of zooplankton, and to inform
prognostic models that try to represent them, spatially-resolved biomass estimates of
key plankton taxa are desirable. In this study we predict, for the first time, the global
biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter)
using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging
instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-
500 m) obtained between 2008 and 2019 throughout the globe, we estimated their
individual biovolumes and converted them to biomass using taxa-specific conversion
factors. We then associated these biomass estimates with climatologies of environmental
variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted
regression trees. The results reveal maximal zooplankton biomass values around 60°N
and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton
biomass is also predicted for the equator. Global integrated biomass (0-500 m) was
estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar
regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical
convergence zone). The machine learning approach used here is sensitive to the size of
the training set and generates reliable predictions for abundant groups such as Copepoda
(R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study
in.org August 2022 | Volume 9 | Article 8943721138
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offers a first protocol to estimate global, spatially resolved zooplankton biomass and
community composition from in situ imaging observations of individual organisms. The
underlying dataset covers a period of 10 years while approaches that rely on net samples
utilized datasets gathered since the 1960s. Increased use of digital imaging approaches
should enable us to obtain zooplankton biomass distribution estimates at basin to global
scales in shorter time frames in the future.
Keywords: global zooplankton, in situ imaging, biomass, machine learning, underwater vision profiler (UVP), spatial
distribution, boosted regression trees (BRT), habitat modeling
1 INTRODUCTION

1.1 Zooplankton
Present in all the oceans of the globe, zooplankton corresponds to
organisms adrift in the water. They represent a great taxonomic
diversity and sizes, ranging from a few micrometers to several
meters (de Vargas et al., 2015; Karsenti et al., 2011; Stemmann and
Boss, 2012). Zooplankton play a central role in the carbon cycle as
they contribute to the biological pump that drives the export of
photosynthetically fixed organic carbon from the surface to the
intermediate and deep oceans (Longhurst and Glen Harrison, 1989;
Turner, 2002; Turner, 2015; Steinberg and Landry, 2017). As a
major link between primary producers and higher trophic levels
(Ikeda, 1985), zooplankton have central ecological and
biogeochemical roles, with associated socio-economic interests.
This socio-economic impact of plankton can be positive, such as
their role as food source for fish (Lehodey et al., 2006; van der
Lingen et al., 2006) or as an indicator of water quality (Suthers et al.,
2019). It can also be negative, as e.g. jellyfish blooms that can impact
various human activities such as aquaculture and fishing
(Richardson et al., 2009).

1.2 Spatial Distribution of Zooplankton and
Its Biomass
Zooplankton organisms are sensitive to environmental conditions
and are thus considered sentinels of ocean changes. Their
distribution is finely governed by the interactions between
physical [i.e., temperature (Steinberg and Landry, 2017),
currents, light (Hays et al., 2005), pressure] and chemical
constraints [nutrients, oxygen (Steinberg and Landry, 2017)],
but also by biological interactions (e.g. predator-prey, symbiosis,
parasitism and commensalism). The dependence of zooplankton
on environmental variables leads to very clear global scale patterns
even at coarse taxonomic levels (Lucas et al., 2014; Biard et al.,
2016). On a global scale, zooplankton diversity is higher at the
equator and decreases towards the poles (Rombouts et al., 2009;
Ibarbalz et al., 2019). Conversely, zooplankton biomass tends to be
low in the tropics and increase with latitude with large seasonal
fluctuations in temperate and polar regions (Ikeda, 1985; Moriarty
et al., 2012; Soviadan et al., 2022). Although a global quantitative
assessment of zooplankton biomass and functional groups is
needed (e.g. to be incorporated in biogeochemical and ecological
models), it is often hampered by the heterogeneity of sampling
methods and the uneven distribution of observations, causing high
in.org 2139
uncertainty in biomass estimates (Moriarty et al., 2012; Moriarty
and O’Brien, 2013; Le Quéré et al., 2016).

1.3 The Study of Zooplankton and
Its Difficulties
Assessments of the global distribution of zooplankton organisms
are often based on regional datasets, obtained with heterogeneous
sampling tools traditionally biased towards non-gelatinous taxa
(Lucas et al., 2014), and combined using different standardization
procedures (Moriarty et al., 2012; Moriarty and O’Brien, 2013;
Buitenhuis et al., 2013). Consequently, the global distribution of
only a few zooplankton groups that generally can be well sampled
using plankton nets, e.g. crustaceans, have been well studied
(Rombouts et al., 2009; Buitenhuis et al., 2013). Indeed, some
zooplankton taxa are known to be fragile (cnidarians, ctenophores,
rhizarians, etc.) and their destruction by plankton nets as well as
their poor preservation in fixatives (Beers and Stewart, 1970)
resulted in an underestimation of their biomass and their
ecological role in marine ecosystems (Lucas et al., 2014; Biard
et al., 2016). In this context, non-intrusive in situ methods using
imaging (Remsen et al., 2004; Cowen and Guigand, 2008; Sun et al.,
2008; Stemmann et al., 2008; Schulz et al., 2010; Picheral et al.,
2010; Grossmann et al., 2015) and video (Davis et al., 1992; Davis
et al., 2005; Hoving et al., 2019) instruments have been developed
(Lombard et al., 2019). Among the different systems, only the
Underwater Vision Profiler (UVP) version 4 and 5 have been
widely used for plankton on a global scale which allowed
comparisons of abundance patterns with the Longhurst (1995)
provinces of the ocean (Stemmann et al., 2008; Biard et al., 2016).
Since 2008, the creation and expansion of such a global dataset
could be executed with the UVP5 thanks to numerous participating
teams around the world and the wide commercialization of this in
situ imaging tool. In this study, we used data from the UVP5, an in
situ imaging system designed to detect, measure and quantify the
distribution of zooplankton organisms and marine particles
(Picheral et al., 2010). This instrument, designed for the study of
particle size spectra in the ocean (Stemmann et al., 2002; Guidi
et al., 2009) was also previously used to obtain plankton data at a
high spatial resolution (Forest et al., 2012) and to study fragile
organisms (Biard et al., 2016; Stukel et al., 2018; Christiansen et al.,
2018; Biard and Ohman, 2020). However, even with the
progressive increase in the spatio-temporal density of
observations allowed by the use of imaging instruments, the
unevenness in the distribution of observations remains,
August 2022 | Volume 9 | Article 894372
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preventing large scale biomass estimations. Such global
observations could nevertheless serve as the basis for large scale
estimations through the use of interpolation or extrapolation
methods, including statistical habitat models.

1.4 Statistical Habitat Models
Habitat modeling is a machine learning tool to estimate the
abundance of a taxon at a location where an observation is missing:
instead of interpolating between nearby observation points based on
geographical distance, the environmental conditions (i.e. the habitat)
are used to inform the estimation. Statistically, a regression analysis
can be used to define the relationship between the abundance (or
presence) of a taxon at observation sites and the environmental
variables at those sites (Guisan and Zimmermann, 2000; Elith and
Leathwick, 2009). Then, continuous maps of those environmental
variables can be used to predict continuous maps of the taxon’s
abundance (or presence), by applying the regression.

The objective of this work was the development of a method
to estimate zooplankton biomass on a global scale and to study
the spatial distribution of zooplankton in relation to its habitat.
To obtain such a global view we used global data from the UVP5
in situ imaging system. In most cases, it is difficult to identify the
imaged organisms to species level. We therefore applied the
habitat modeling approach to broader taxonomic groups. We
first estimated the individual biovolume and biomass of
organisms classified in 25 broad taxonomic groups, within a
global in situ imaging dataset. We then applied the habitat model
methodology to each taxonomic group and built models using
different regional and vertical partitions of the data. We
separated data of the epipelagic (0-200 m depth layer) from
the upper mesopelagic (200 to 500 m depth layer). We also used a
global partitioning to separate data from low latitudes (40°S to
40°N) from the remaining high latitude data. We hypothesize
that these partitions should allow us to separate subgroups
Frontiers in Marine Science | www.frontiersin.org 3140
within those broad taxa, which occupy different horizontal
and/or vertical habitats. Finally, we used the models’ output to
estimate the global marine zooplankton biomass distribution in
the top 500 m of the water column.

In situ imaging observations with UVP5 have been widely used
during the past decade to study zooplankton in the global ocean.
Biard et al. (2016) used 694 stations from the UVP5 dataset to reveal
that Rhizaria were strongly underestimated in previous studies.
Here, we use an updated version of this dataset, now including 3,549
stations to study the biomass distribution of Copepoda, Rhizaria
and several other groups of planktonic organisms in the 1.02-50
mm size range. We hypothesize that the total biomass of
zooplankton is distributed according to regional production
characteristics, associated with climatic and hydrological patterns,
showing overall a high biomass in high latitudes and lower values in
the subtropical gyres (Ikeda, 1985; Moriarty et al., 2012).
2 MATERIALS AND METHODS

2.1 Plankton Data Collection and
Processing
2.1.1 Global Plankton Imaging With the UVP5
UVP5 data (Figure 1) were compiled from all oceans, covering a 10
year period (2008-2018). A detailed description of the operation of
the UVP5 is given in Picheral et al. (2010). All particles large than ≈
100 mm in Equivalent Spherical Diameter (ESD) weremeasured and
counted, but only images of particles (zooplankton and aggregates)
larger than ≈ 600 mm ESD were kept by the UVP5 for further
processing because smaller objects contained too few pixels to be
identifiable. Acquisition of metadata (geographic location, date, etc.)
and processing of all 8.46 million images (95% being detritus) were
carried out by the ZooProcess software which provided information
on 42 morphological features associated with each object (area,
FIGURE 1 | Map of the UVP5 dataset used in this study. Transparency was used to illustrate the density of points on the map.
August 2022 | Volume 9 | Article 894372
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major andminor axis, etc.). The results were imported into EcoTaxa
(Picheral et al., 2017), an application which allows a taxonomic
classification of images via supervised learning algorithms, followed
by manual validation (Irisson et al., 2022). As 61% of the profiles
have a maximum depth ≤500 m, only images of organisms between
0-500 m were kept and the overall estimates of biomass were
restricted to this depth range. To ensure that profiles were
representative, a filter was also applied to only keep profiles that
covered at least 80% of the layer of interest.

2.1.2 Image Classification and Size Range Covered
Living organisms were separated from detritus (aggregates, fibers,
fecal pellets) as well as artifacts (e.g. bubbles) and classified
according to their taxonomic identity. Recognition and sorting of
organisms can be a source of bias depending on the levels of
perception and experience of the people who perform them. Several
cognitive factors biases such as boredom, fatigue or a classification
biased towards the most used groups have been presented by
Culverhouse (2007) and Culverhouse et al. (2014). To reduce the
risk of poor identification, a shared UVP5 taxonomic guide was
used to homogenize image sorting into 119 taxonomic groups. The
image data were thereafter grouped into 25 broader taxonomic
groups (Table S1), and a subset of the resulting dataset was checked
for homogeneity of sorting within these groups. A minimum of 51
images and a maximum of 10% of all images were extracted from
each group and were independently checked after the assembly of
the final data set. The maximum error or uncertainty rate per taxon
was 9.8% and a vast majority of taxa were under 2.5%. We checked
the classification and if accuracy was <95%, we rechecked the
categories to assure proper sorting. In addition, only fully
validated profiles were used for this analysis. The resulting global
data set consisted of 466,872 images from 3,549 stations. Under-
sampled groups with less than 500 images in the dataset which
could not be used for a global study were not included in
the analysis.

We computed the organisms’ size spectrum to detect the size
range within which the UVP5 can be used to properly quantify their
distribution. The concentration of objects in the ocean is expected to
decrease with size; when this is computed as a normalized size
spectrum, the relationship is expected to be linear (Forest et al.,
2012). A peak in the size spectrum at the lower size range generally
reflects the minimum size of efficient detection by in situ imaging
while high variability in the large size range reflects the poor ability
to detect rare large objects (Stemmann and Boss, 2012).With that in
mind, the spectrum was linear for the size range 1.02-50 mm and
organisms outside this range were not included in the analysis since
large mobile fauna (including large crustaceans) are likely to be
undersampled and small zooplankton organisms close to the
UVP5’s threshold of detection are difficult to identify. This size
range selection ensures that the data used in this study was properly
quantified by the UVP5.

2.1.3 Individual Biomass Estimation
To avoid errors due to incorrect ellipse fits (around appendages
of organisms rather than their body, ellipse fitted to non-
ellipsoidal organisms, etc.), we chose the spheroid method: it is
Frontiers in Marine Science | www.frontiersin.org 4141
based on the area (Table 1), which is more consistently measured
by the image analysis performed in ZooProcess.

For Rhizaria, biovolume (mm3) to carbon (mgC) conversions
were done using factors from the literature (Figure S1 and Table
S2). For other groups, the conversion from individual volume to
individual wet weight assumed a density of 1 g cm-3 (Kiørboe,
2013). Then the conversion from individual wet weight to
individual biomass in carbon units (mgC) was calculated using
taxon-specific linear conversion factors from McConville et al.
(2016); when several conversion factors were available for a
taxon, their median was used for each group. To take into
account differences in density of some parts of the organisms,
the Appendicu lar ia group was actua l ly sp l i t in to
Appendicularia_body and Appendicularia_house, whereby the
“body” group contains images with only the animal and the
“house” group contains the house and the animal. For the images
labeled Appendicularia_house, we used the relationship of house
diameter (major axis) to Appendicularia trunk length from
Lombard and Kiørboe (2010). We then converted this body
size equivalent into carbon weight using the corresponding
relationship from Lombard et al. (2009). For the images
labeled Appendicularia_body, we converted the biovolume of
the organism into carbon weight using the corresponding
relationship from Lombard et al. (2009). Two groups also have
been created to separate the Collodaria into solitary Collodaria
and colonial Collodaria. This choice was done based on the fact
that solitary Collodaria are smaller than colonial ones and have a
different vertical distribution (Faillettaz et al., 2016). For solitary
collodarians with a dark central capsule (subgroup of solitary
Collodaria) described in Biard et al. (2016), the estimation of
carbon (0.189 mgC mm-3) by Mansour et al., (2021) was done on
the capsule of the organisms. As Zooprocess measures the area of
the whole organism, we determined the ratio area  whole   organism

area   central   capsule =
0:713 and applied this factor to avoid overestimation of carbon
biomass for this group. For the rest of the collodarians, the
estimation of Mansour et al., (2021) was directly applied.

2.2 Environmental Data Collection
and Processing
In order to develop relationships between regional characteristics
of the environment (Figures S2–4) and observed biomass,
climatologies from the World Ocean Atlas (WOA) (Garcia et al.,
2019) were used for temperature (in °C), salinity, oxygen (converted
from mmol kg-1 to kPa for better physiological interpretation),
and macronutrients (nitrate, phosphate and silicate in mmol kg-1).
We selected the data sets defined on a 1° horizontal grid, over the 0-
500 m depth range, and with a monthly temporal resolution.
TABLE 1 | Methods of calculating individual biovolume with area (mm2); ESD,
the equivalent spherical diameter equivalent (mm); major, the major axis (mm) of
the best fit ellipse; minor, the minor axis (mm) of the most suitable ellipse.

Method Formula

Spheroid 4
3
� p � (

ESD
2

)3 with ESD = 2�
ffiffiffiffiffiffiffiffiffiffiffi
Area
p

r

Ellipsoid 4
3
� p � major

2
� (

minor
2
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A
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Temporal coverage was from 2005 to 2017 for salinity and
temperature and 1955 to 2017 for the other variables. We also
usedmonthly averaged surface chlorophyll-a data (Chl a in mgm-3)
resolved to 1/24° from 2005 to 2017 from the Copernicus database
(OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS
_009_082) as well as bathymetry data from NOAA (Amante and
Eakins, 2009) with a spatial resolution of 10 minutes; both were re-
gridded to a 1° grid. Finally, distance to coast was computed by
calculating the distance of all 1°×1° cells to the closest cell associated
to land using the raster package (Hijmans, 2021). To obtain annual
climatologies, when relevant, each monthly variable was averaged
over its time period of coverage.

This environmental data was then matched to the UVP5 data
on the 1°×1° grid. Since the 1°x1° grid used by WOA does not
necessarily follow the contour line of the coast perfectly, some
UVP5 profiles could not be directly matched to the
environmental grids. This is mostly the case where e.g. the
coast is situated in a 45 degree angle to latitude or longitude,
thereby creating triangle shaped areas that are not covered by the
rectangular grid. For profiles that lie in such corners of the grid,
we used the environmental values of the closest neighboring
1°×1° WOA cell. In the epipelagic world model, 3,002 points did
have a direct match while 156 points did not have a direct match.
Frontiers in Marine Science | www.frontiersin.org 5142
Out of these 156 points, 14 were not in a neighboring 1°×1°
WOA cell and were removed from the model input. For the
mesopelagic, 2,172 did have a direct match, while 104 points had
a match in a neighboring grid cell and 2 points did not and were
removed from the model input. Maps that show the close vicinity
of non-matching points to adjacent WOA cells are shown in
Supplementary Figure 5.

To assess whether we are able to describe various
environmental conditions with the UVP5 samples, we
compared the distributions of each variable in the worldwide
WOA dataset and in the subset matched to UVP5 profiles
(Figures S6, S7). Although the geographical coverage is not
homogeneous (Figure 1), the coverage of environmental
conditions is good and warrants the use of habitat models.

2.3 Habitat Modeling
The steps of this process are summarized in Figure 2.

2.3.1 Modeling Tools
In this work we used boosted regression trees (BRTs) to predict
the biomass of different zooplankton groups as they show
different advantages over other commonly used machine
FIGURE 2 | Methodology followed from data selection to prediction of global biomass.
August 2022 | Volume 9 | Article 894372
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learning approaches for the nature of our dataset and intended
application (Elith and Graham, 2009). This ensemble method
uses regression trees, models that link a response (here biomass)
to predictors (environmental variables) by successive
dichotomous separations (Breiman et al., 1984; Hastie et al.,
2001). Regression trees automatically select the relevant
explanatory variables, can deal with categorical or continuous
inputs, are not sensitive to the distribution of the continuous
ones, can represent relations of arbitrary form and naturally
include interactions among explanatory variables (Elith et al.,
2006). With so-called surrogate splits, they can also deal with
missing values in the explanatory variables. They are therefore
very convenient to use, but their predictive power is often limited
and they have difficulties to capture smooth relationships.
Boosting is a way to overcome these drawbacks (Schapire,
2003). It is based on the fact that it is easier to find many
rough rules of thumb than to find a single, highly accurate
prediction rule (Schapire, 2003). BRTs combine many short
regression trees in succession, each new tree being adjusted to
consider the observations poorly predicted by the previous ones
(Elith et al., 2006; Leathwick et al., 2006; Elith et al., 2008). This
improves predictive performance and the smoothness of the
prediction (Leathwick et al., 2006). In addition, only a random
subset of the input data is used to fit each tree and this stochastic
component reduces the variance of the final model ensemble
(Friedman, 2002).

Boosted regression trees (BRTs) have an ability to handle a
large number of variables and - other than Generalised Linear
Models (GLMs, Nelder and Wedderburn (1972)) or Generalised
Additive Models (GAMs, Hastie and Tibshirani (1986); De’ath
(2007); Elith et al. (2008)) - do not seek to fit one single model
portraying the relationship of the response variable (here
biomass) and its predictors (environmental variables). Various
recent studies (González Carman et al., 2019; Chen et al., 2020;
Hu et al., 2021) have compared BRTs results to other modeling
tools such as GAMs, GLMs, Random Forests (RFs), Maximum
Entropy modeling (Phillips et al., 2006; Elith and Graham, 2009)
or neural networks and have obtained better predictive
performance with BRTs. Other studies (Zhang et al., 2018; Son
et al., 2018) used complementary GAMs and BRTs to study the
effects of explanatory variables. However, BRTs could be slower
than RFs (Chen et al., 2020) and training parameters need to be
chosen carefully to avoid overfitting (Leathwick et al., 2006; Elith
and Graham, 2009). BRTs were chosen over RFs because of their
capacity to reduce both the bias and the variance of model results
(Hastie et al., 2001). BRTs are also less sensitive to the effect of
extreme outliers and the inclusion of irrelevant predictors
(Leathwick et al., 2006). This makes them suitable for plankton
datasets, as sometimes very high plankton biomass values do
occur during blooms (Brodeur et al., 2018; Pettitt-Wade et al.,
2020). BRTs also have the ability to handle sharp discontinuities
which is not the case of the GAMs (Elith et al., 2008). This is
important when modeling taxa which can have a narrow habitat.

In addition, in regression trees, the loss function, used to
determine which dichotomous split to perform, can be changed
to be adapted to the distribution of residuals. Here we explored
Frontiers in Marine Science | www.frontiersin.org 6143
the classic mean squared error, which assumed a somewhat
normal distribution of the residuals, as well as a Tweedie loss
adapted to zero-inflated data (Zhou et al., 2019), and a
Poissonian loss, which considered data as discrete counts, also
including many zeros. To use the Poisson loss, the biomass was
scaled so that the value of the 1% quantile was ≥ 1 and then
rounded to the nearest integer; the inverse scaling was performed
after prediction. This later approach proved to produce the best
fits and more robust models in a few test taxa and all models were
therefore fitted with Poisson loss. The models and statistics were
computed using the xgboost package (Chen et al., 2021) in R
version 4.1.2 (R Core Team, 2021).

2.3.2 Spatial Partitioning of the Data
Individual biomass values derived from UVP5 images and
environmental data measured at various layers were both
averaged over a depth range of interest and matched
geographically, on the 1°×1° grid. Biomass values matched to
the same 1° pixel, and therefore associated to exactly the same
environmental data, were averaged.

We hypothesized that an association between biomass and
environment investigated at a fine scale could be more efficiently
learned by the model because is contains less noise, so we divided
the data vertically between the epipelagic (0-200 m) and
mesopelagic (200-500 m) zones and also tried a finer partition,
into 100 m depth bins between 0 and 500 m. Evaluating separate
models for each layer could allow to focus on finer subgroups
within our quite coarse taxonomic units (some species being
mostly present in one of the layers) and therefore define
biomass-habitat relationships at a finer, more relevant
biological level.

For the same reason, we also built models on subsets of data
partitioned geographically. Indeed, polar copepods have a
different thermal niche compared to tropical ones (Rombouts
et al., 2009; McGinty et al., 2021). So, in addition to a model fitted
on the global dataset (world), we trained models on data from the
region between 40°S and 40°N (low latitude) and from the data
collected outside of this latitudinal band (high latitude). Out of
the 3,549 profiles composing the UVP5 dataset, 2,837 are located
between 40°S and 40°N and 712 were done outside of this
latitudinal band.

2.3.3 Data Splits for Model Training, Assessment
and Evaluation
For each taxon in each spatial partition, the data was split to
distribute 80% of it in a training and validation sets, on which the
model was fitted and assessed, and 20% to a test set, on which
predictive performance was evaluated. This split was stratified
according to the deciles of biomass in the data, to ensure that
both the learning and test sets contained low and high
biomass points.

To choose model hyperparameters (i.e. parameters of the
model adjustment algorithm) and to evaluate the variability in
the prediction due to the constitution of the training set, each
80% portion set was resampled through five-fold cross validation
repeated 20 times [i.e. 100 resamples; (Hastie et al., 2001)]. For
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each cross-validation fold, the model was actually trained on four
folds and validated on the last one. The splits into the five folds
were also stratified according to the deciles of biomass, for the
same reason invoked above.

2.3.4 Selection of Hyperparameters and
Model Evaluation
To extract as much information from the data, while avoiding
overfitting, various combinations of hyperparameters were tested
for each model (Elith et al., 2006). They included: 1) the learning
rate per tree determining the contribution of each tree to the
ensemble model (0.05, 0.08 and 0.1 were tested); 2)
the maximum depth of a tree (2, 4 and 8 were tested); 3) the
minimum number of elements per leaf (which also limits the
depth of the trees; 1, 3 and 5 were used); 4) the number of trees
used for the prediction (values up to 600 were tested). For each
combination, the model was fitted to the training set and
evaluated on the validation set of each of the 100 resamples;
the loss was then averaged over the 100 resamples. The best set of
hyperparameters is usually the one for which this average loss is
minimal. The differences around that minimum are often small
and not always meaningful; to be sure to avoid overfitting, we
applied an early stopping criterion whereby the increase in the
number of trees was stopped when the error did not decrease by
more than 1% after adding 10 trees.

Once the best set of hyperparameters had been chosen, the
relevance of the corresponding model was quantified by the
Pearson correlation between the observed biomass data in
the test set and the predicted biomass, where prediction is the
average of the predictions of the 100 models fitted to the
resamples. This metric captures the model’s ability to correctly
represent general trends and patterns in the data set and is one
way to compute the R2. The significance of this correlation can
also be tested and quantified with a p-value. These metrics can be
readily compared across the various spatial partitions of the data
because they represent the skill of the models on an independent
data set, not the quality of the fit to the training data (like the way
the R2 is usually computed). To compare the worldwide and
regional approaches fairly, it is important to focus on the same
regional subset. To this effect, two additional R2 were computed
for the global model: on the test data located inside the 40°S-40°
N latitudinal band and on those outside of it (world low latitude
and world high latitude).

2.3.5 Effect of Environmental Variables
To identify which environmental variables drive the change of
biomass in each specific model, the percentage of variance
explained by each variable was calculated as the sum of the
effects of the variable at each node of each tree where it was used.
To describe the shape of the effect of each variable, univariate
partial dependence plots were computed as the average ±
standard deviation marginal effect of the variable in the 100
resamples. Practically, the variable of interest was set at a given
value at all training points, the other variables were left at their
original values, the average biomass predicted over all points was
computed, for each resample; then the mean and standard
deviation of those averages were computed across resamples.
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Finally, the variable was set to another value and so on. To
describe the full range of each variable, the partial dependence
was estimated at 10% quantile.

2.3.6 Extrapolation to the Globe
To obtain global maps of predicted biomass, the regression
between UVP5 biomass data and environmental variables was
applied to all points in the corresponding partition of the world,
in depth and space. Because 100 models were fitted to the
resamples of the training data, the standard deviation of
biomass among the 100 predictions (sb) can be computed in
addition to the mean (mb), and the coefficient of variation (CV),
defined as CV = sb

mb
, then gives an indication of the uncertainty of

the model predictions.
To get a robust estimate of global zooplankton biomass in the

1.02 mm to 50 mm size range, we chose to be conservative (i.e. ad
minima): only the taxonomic groups in the global partition for
which the correlation between predicted and observed biomass
was significant were used. The surface area of each 1°×1° cell was
computed using the following formula:

A =
P
180

� R2 � sin latSð Þ − sin latNð Þð Þ � 106

with the area A in m2, the south and north latitudinal limits of
the cell in radians and R, the earth radius (6,378.137 km). For
each group used, the biomass was integrated over the relevant
layer in each 1°×1° cell by the following calculation

b̂ t = b̂ � A� l

where b̂ is the estimated biomass in mgC.m-3, A in m2 is defined
above, l is the layer thickness in m and therefore b̂ t is the total
biomass in mgC. Finally, the global ad minima zooplankton
biomass estimate was computed by adding up the biomass for all
selected groups and the 0-200 and 200-500 m depth layer.
3 RESULTS

3.1 Model Comparison
We estimated model performance on the worldwide UVP5
dataset and on a spatial partition of the dataset in low (inside
40°N and 40°S) and high latitudes (outside of the 40°N-40°S
latitudinal band) as well as on different depth layers. We
hypothesized that a finer data selection might enable the
respective model to learn the regional or depth specific habitat
more appropriately. Yet, this also meant fitting models to fewer
data points. In the end, we find that no clear trend emerges from
the relevant comparisons (Figure 3): global models are better in
13 comparisons and partitioned models are better in 14
comparisons, whereas for 11 comparisons no clear decision
can be made. Comparisons can only be made within a given
depth layer between the same regional partitions (e.g. world low
latitude only containing the data predicted by the global model
between 40°N-40°S vs low latitude; world high latitude only
containing data north of 40°N and south of 40°S from the global
model vs high latitude).
August 2022 | Volume 9 | Article 894372

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Drago et al. Global Zooplankton Biomass Distribution
For some groups such as Annelida and some Mollusca, the
high latitude model could not be computed (symbolized by a
grey cell) either because they were considered as rare (< 500
images in the layer modeled) or because the model could not
learn the link between biomass and environment for this group.
However, for other taxa such as Copepoda, solitary Collodaria or
Frontiers in Marine Science | www.frontiersin.org 8145
Phaeodaria, high and low latitude models are generally better
than the world model, as indicated by a higher R2 value
(Figure 3). In the epipelagic layer, for Copepoda, the R2 of
world low latitude is 0.26 vs 0.37 in the low latitude model. For
the mesopelagic, low latitude has an R2 of 0.07, lower than the
one for world low latitude (0.62). For Appendicularia in the
FIGURE 3 | Heatmap of the models’ R2 between observed and predicted biomass for all zooplankton groups arranged from the most important in terms of
biomass (Copepoda) to the least important (Limacinidae) in the different depth layers. The regions correspond to: W for world (model run on all data); WL for world
low (data between 40°N and 40°S from the world model); L for low latitude (model run between 40°N and 40°S); WH for world high (data outside of 40N and 40S
from the world model); H for high latitude (model run outside of 40°N and 40°S). The stars indicate significant results (p-value < 0.05) obtained with the Pearson
correlation test.
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epipelagic layer, the best R2 values are obtained in the world low
latitude (0.41) and world high latitude (0.24) models respectively
compared to low latitude (0.01) and high latitude (0.19).

As for the vertical 100 m-bin layers partition, we obtained the
best results overall with the global model. The finer vertical
definition also gives better results for multiple other groups such
as Appendicularia, Phaeodaria and Ostracoda between 0 and 300
m. In most cases, only the top 100 m layer model worked for this
100 m vertical partition. Overall, the most consistently good
choice, when considering all taxa, is a worldwide model fitted
separately to the epipelagic (0-200 m) and mesopelagic (200-500
m) layers. This is therefore the configuration retained for the
total, global biomass estimate. In Figure 3, taxa are arranged in
decreasing order of global biomass in the epipelagic layer. For the
top five taxa [Copepoda (R2 = 0.66), Eumalacostraca (R2 = 0.31),
solitary Collodaria (R2 = 0.10), Appendicularia (R2 = 0.26) and
other Crustacea (R2 = 0.15)], the correlation between true and
predicted biomass is significant (p-value < 0.05) in the epipelagic
worldwide model. In the mesopelagic layer, the correlations for
all five groups are also significant (p-value < 0.05 with respective
R2 of 0.22, 0.10, 0.09, 0.30 and 0.72).

3.2 Group-Wise Contribution to Global
Zooplankton Biomass
Figure 4 shows the biomass per group predicted for the three
spatial partitions and divided into the epi- (0-200 m) and
mesopelagic (200-500 m) layers. For the worldwide model, the
dominant groups in terms of biomass in the epipelagic were
Copepoda (0.083 ± 0.020 PgC), Eumalacostraca (0.058 ± 0.017
PgC) and solitary Collodaria (0.038 ± 0.008 PgC) (Figure 4).
Among the groups displaying a significant correlation (p-value <
0.05) between true and predicted biomass (and therefore
retained for the global estimate), crustaceans (Copepoda,
Eumalacostraca, other Crustacea and Ostracoda) represented
68.4% (0.157 PgC) of the biomass in this layer; Rhizaria
(solitary Collodaria, Foraminifera, Phaeodaria, other Rhizaria
and Acantharea) made up 20.6% (0.047 PgC); but the Cnidaria
(other Cnidaria and other Hydrozoa) represented only 0.56% of
the global zooplankton biomass (0.0013 PgC). In other words,
Crustacea and Rhizaria together made up ~89.1% of the biomass
predicted in the epipelagic layer. In the deeper mesopelagic layer,
Copepoda (0.061 ± 0.016 PgC) were still the dominant group in
terms of biomass, followed by Eumalacostraca (0.049 ± 0.014
PgC) and other Crustaceans (0.017 ± 0.001 PgC) combined.
Crustacea (Copepoda, Eumalacostaca, other Crustacea and
Ostracoda) represented 0.129 PgC, equivalent to 74.4% of this
layer’s biomass, while Rhizaria (Foraminifera, solitary
Collodaria, other Rhizaria and Acantharea) totaled 0.014 PgC,
representing 10.1%, equivalent to most of the remaining biomass
in the layer. When combining the results from these two layers,
Copepoda represented 44.4% of the global integrated biomass,
followed by Eumalacostraca (15.6%), solitary Collodaria (13.1%)
and other Crustacea (11.2%). More broadly, Crustacea
(Copepoda, Eumalacostraca, other Crustacea and Ostracoda)
represented 0.222 PgC or 71.3% of the biomass predicted over
0-500 m, while Rhizaria (Foraminifera, solitary Collodaria, other
Frontiers in Marine Science | www.frontiersin.org 9146
Rhizaria and Acantharea) made up 0.019 PgC or 10.8%
of biomass.

Copepoda were particularly dominant in high latitudes,
especially in the epipelagic layer. In the low latitude model,
solitary Collodaria contributed most in the epipelagic, followed by
Eumalacostraca, Copepoda and Foraminifera. Eumalacostraca
dominated biomass in the mesopelagic layer in low latitudes
followed by Copepoda and Foraminifera.

3.3 Spatial Distribution Patterns and
Occupied Habitat
Presenting the global distribution patterns of all zooplankton
groups is beyond the scope of this paper. Instead, we focus on the
results for the three groups contributing most to the total global
biomass (Copepoda, Eumalacostraca and Solitary Collodaria) as
well as on Phaeodaria and Acantharea, Rhizarians that were
shown to be important contributors to zooplankton biomass that
are underestimated by net-based sampling (Biard et al., 2016).
The predicted fields for all modeled groups will be made available
in the GitHub repository linked in the data availability statement
upon publication of the article.

3.3.1 Copepoda
Copepoda is one of the best predicted groups in the epipelagic (R2

= 0.66), likely because it is the most abundant. The structuring
environmental variables were different for the epi- (Figures S8A,
B) and mesopelagic layers (Figures S8C, D): temperature (33%)
and oxygen (19%) for the former and temperature (29%),
bathymetry (19%) and chlorophyll a (15%) for the latter. The
highest copepod biomass in the top 200m was found in high
latitudes (Figure 5A), where water temperature is low and oxygen
concentrations are relatively high. In the mesopelagic layer
(Figure 5B), high copepod biomass was associated with shallow
coastal and cold water masses. The patterns of distribution
predicted by the global models were similar in both layers
(Figures 5A, B), with the highest predicted biomass values in
the Baffin Bay, Labrador Sea and Greenland Sea as well as at the
Southern Ocean polar front region. The lowest predicted biomass
was predicted at oceanic gyres and in the Arctic, north of 80°N.
For both layers, the highest values of the coefficient of variation
(Figure 5C) were found north of Canada and Greenland, as well as
south of 60°S, especially for the epipelagic layer. These high values
depict disagreement among the 100 models fitted to the data
resamples and therefore inform on the uncertainty of the model in
these zones. Caution is therefore advised regarding the
interpretation of the very low values of biomass predicted in
those regions. In the northern hemisphere, except for the Arctic
ocean, the values of the coefficient of variation were rather low at
locations where either low or high biomass values were predicted.
In the southern hemisphere, model predictions varied relatively
strongly at the level of the Antarctic polar front (Figures 5C, D).

3.3.2 Eumalacostraca
Eumalacostraca contains mostly vignettes of euphausiids,
amphipods and decapods. They were predicted globally with
an R2 of 0.31 for the epi- and 0.1 for the mesopelagic layer, both
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with significant p-values (p-value < 0.05; Figure 3). In the
epipelagic, high biomass of these organisms was associated
with high concentrations of phosphate (22%) and low
concentrations of silicate (17%) (Figures S9A, B). In the
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mesopelagic layer, the distribution of this group was associated
with low concentrations of silicate (16%), bathymetry (15%) and
high chlorophyll a (15%) (Figures S9C, D). In terms of spatial
distribution, high biomass is predicted in eastern boundary
A B

FIGURE 4 | Barplots showing the mean biomass predicted in PgC at 0-200 m (A) and 200-500 m (B) depth for each group ranked from highest to lowest biomass
in 3 types of models: world, outside 40°N-40°S and inside 40°N-40°S. Error bars correspond to upper interval of the biomass estimation’s standard deviation. The
stars indicate a significant result (p-value < 0.05) obtained with the Pearson correlation test.
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C D

FIGURE 6 | Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by the model on 0-200 m (A) 200-500 m data (B) as well
as the coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for
Figures 5–9.
A B

C D

FIGURE 5 | Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by the model on 0-200 m (A) 200-500 m data (B) as well
as the coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for
Figures 5–9.
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currents, especially in the Peruvian and Californian upwelling
systems. Low biomass is predicted in high latitudes and in the
oceanic gyres, especially in the North Atlantic. Similar patterns
were predicted in the mesopelagic layer, but with lower biomass
values. The model uncertainties are highest in the zones of low
biomass (high latitudes and oceanic gyres).

3.3.3 Solitary Collodaria
Solitary Collodaria were predicted globally with an R2 of 0.1 for the
epi- and 0.09 for the mesopelagic layer, both with significant p-
values (p-value < 0.05; Figure 3). In the epipelagic, the distribution
of solitary Collodaria were mainly associated with low salinity (21%,
between 35 and 37) and bathymetry (14%) (Figures S10A, B). In
the mesopelagic, high abundances of this group were associated
with distance to shore (18%) and high chlorophyll a (17%)(Figures
S10C, D). In this layer, 65% of the biomass was predicted at less
than 1,000 km from the coast. Solitary collodaria were mainly
located between 50°N and 50°S, in a rather diffuse manner
(Figure 7) with maximum biomass predicted at the equator. In
the intertropical region, the highest biomass was found in the
epipelagic zones of productive areas such as the upwelling regions
off the western coast of Africa (Cape Verde and Angola) and of the
eastern boundary of the Pacific Ocean (Peru and California). The
model also predicted high biomass in the Mediterranean Sea.
The importance of the environmental variable “distance to coast”
in the learning process created unusual patterns in the prediction
map such as a hexagonal shape in the Pacific Ocean. North of 50°N
and south of 50°S, environments that are typically characterized by
water masses with low salinity (1st most structuring variable in the
epipelagic) and high nitrate (4th variable), the predicted biomass was
rather low especially in the epipelagic layer.
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3.3.4 Phaeodaria
For this group, the worldwide epipelagic model was statistically
significant (p-value < 0.05; Figure 8) with an R2 of 0.27, but the
mesopelagic model was not (p-value > 0.05; Figure 3). Therefore,
only the 0-200 m layer is displayed (Figure 8). In this layer,
Phaeodaria was one of the best predicted groups (Figure 3)
especially in the upper 200m. The predicted epipelagic
distribution of Phaeodaria is associated with low values of
salinity (38%) followed by bathymetry (11%), surface
chlorophyll a (10%), oxygen and temperature (8% each)
(Figures S11A, B). This is visualised on the map of global
prediction (Figure 8A) on which high biomass was mainly
predicted in the Californian upwelling (characterized by low
salinity, cold and coastal waters), with lower biomass north of the
upwelling up to the Gulf of Alaska. High biomass values were
also predicted in the Bay of Bengal and Adaman Sea. The
coefficient of variation in zones of high biomass is very low,
providing strong confidence in this pattern. The lowest predicted
biomass for this group are found in oceanic gyres and high
latitudes of the northern hemisphere.

3.3.5 Acantharea
The group Acantharea was predicted with low total biomass
(Figure 4). This group was well predicted in the world model
fitted with the epi- (R2 = 0.26) and mesopelagic (R2 = 0.63) layers
(Figure 9). In the epipelagic layer, nitrate (18%), salinity (15%)
and phosphate (12%) were the main driving variables (Figures
S12A, B). In the mesopelagic layer, the link between biomass and
environment (Figure 9B) was defined by the influence of several
variables: silicate (19%), phosphate (12%) followed by
chlorophyll a (12%) (Figures S12C, D). The highest epipelagic
A B

C D

FIGURE 7 | Map of the mean biomass (color scale is log-transformed) of solitary Collodaria as predicted by themodel on 0-200 m (A) 200-500 m data (B) as well
as the coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for Figures 5–9.
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biomass (Figure 9A) was predicted in the intertropical range, in
productive areas such as the upwellings off the West coast of
Africa (Cape Verde, Angola) and America (Peru and
California). These high biomass patches are associated with a
salinity around 35 as the 2nd most structuring variable, as well
as with high nitrate and phosphate concentrations (respectively
1st and 3rd). Intermediate biomass values were predicted mostly
between 50°N and 50°S in a diffuse way, except in the oceanic
gyres where the predicted biomass was lowest. The largest
uncertainty was present in the Southern and Artic Oceans,
Bering Sea and Gulf of Alaska where low biomass values were
predicted (Figure 9C). In the mesopelagic layer, biomass was
predicted to be 16.7-times lower overall (Figure 9B), with
highest values found in the Gulf of Alaska and the Bering
Sea. Intermediate biomass values were predicted for the
upwelling regions and the Southern Ocean. In this layer, the
high biomass estimates correspond with low coefficient of
variation values (Figure 9D).
3.4 In Situ Imaging Compared to Net
Based Sampling
The latitudinal biomass distribution of Copepoda and Rhizaria
obtained by combining the predictions of global models for the
epi- and mesopelagic is shown in Figure 10. It is compared
against data (interpolated on 0-500 m) from the Tara Oceans
mission (Pesant et al., 2015; Soviadan et al., 2022) acquired using
300 mm multinet samples and ZooScan (Gorsky et al., 2010). To
make the comparison meaningful, we only selected organisms in
the ZooScan samples with an ESD >1 mm. For Copepoda, the
values observed by the UVP5 and the nets reveal a similar
latitudinal pattern between 70°N and 60°S. The trend
computed on the output of the models shows lower biomass
between 40°N and 40°S compared to Tara observations. For
Rhizaria, the highest biomass was found in the UVP5
observations and models around the equator. Generally, almost
no Rhizaria were observed in nets whereas they were consistently
observed with the UVP5.
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3.5 Global Zooplankton Biomass
Distribution
The biomass integrated over 0-500 m was predicted to be maximal
at around 60°N and 55°S, with values decreasing both north and
south of these two latitudes (Figure 11). The lowest values of
biomass were predicted north of 80°N and in the Weddell Sea as
well as in the oceanic gyres (especially in the southern hemisphere).
We also observed an increase of the predicted biomass around the
equator. The highest biomass values were predicted between 50 and
80°N, in coastal waters of the Labrador Sea and Baffin Bay, as well as
in the Greenland Sea. Relatively high biomass was predicted around
these locations as well as in the Gulf of Alaska, Bering Sea and Sea
of Okhotsk. A band of high biomass was predicted between 40 and
50°S, a region associated with the Arctic polar front.

Finally, by summing only the predictions that significantly
correlated with observations, we can get to a first robust,
conservative, global biomass estimate of zooplankton biomass
based on UVP5 in situ imaging. As not all groups could be
included in this computation, we refer to the following numbers
as biomass ad minima. With that in mind, the zooplankton biomass
estimated by the models was 0.229 PgC for the epipelagic, and 0.173
PgC for the mesopelagic. Thus, the estimated biomass for the upper
500m of the ocean is to 0.403 PgC.
4 DISCUSSION

4.1 Sensitivity of Model Prediction to
Partitioning
In this study, we explored whether a partitioning approach
would improve model performance through the use of
different horizontal and vertical divisions of our dataset. The
aim of using partitioned models was to test if we could model
local taxa that otherwise would be mixed within the coarse
taxonomic definition imposed by the dataset. The R2

computed on the models’ output show a high variability across
groups, layers and regional combinations. Overall, when
A B

FIGURE 8 | Map of the mean biomass (color scale is log-transformed) of Phaeodaria as predicted by the model on 0-200 m (A), as well as the coefficient of
variation for the 0-200 m model (B). In the map of predicted biomass, 12 cells in the California upwelling presented a value between 3 and 6 mgC m-3 and were
represented here in yellow to observe the distribution of this group on a global scale. The color scale for the coefficient of variation has the same range for
Figures 5–9.
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A B

FIGURE 10 | Comparison of the latitudinal distribution of biomass mgC m-2) integrated over 0-500m depth between our models’ estimation and the results from the
Tara Ocean multinet (300 mm mesh size), for Copepoda (A) and Rhizaria (B). Trends were obtained by using Loess regression on: BRT models (blue line) using the
global model outputs for Copepoda or Rhizaria (summed across 0-200 m and 200-500 m depth); UVP5 data (green line) using the biomass as seen by the UVP5
between 0-500m; TARA Ocean net data (red line) using the sampling points between 0-500m. The Shaded areas represent the 95% confidence interval of the Loess fit.
B

C D

A

FIGURE 9 | Map of the mean biomass (color scale is log-transformed) of Acantharea as predicted by the model on 0-200 m (A), 200-500 m data (B), as well as the
coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for Figures 5–9.
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comparing each partitioned model to the same zone in the global
model, the global and the partitioned models had similar
performance. The reduction in dataset size might be the
explanation why in many cases global models perform better
than the smaller partitioned models. The high latitude dataset
contains 712 UVP5 profiles, the low latitude 2,837 and the world
3,549 data points. Another drawback of the partitioned models
could be that some groups might have an environmental habitat
associated with regions on both sides of the limits of the two
models (here 40°N or 40°S). A vertical resolution that consists of
two layers (0-200 and 200-500m) provided the best results
(Figure 3) compared to a finer depth separation. The
reduction of data per model with a finer depth layer resolution
probably made it impossible for some models to learn the
association between a group’s biomass distribution and the
associated habitat properties, either because the model could
not learn this association or because the group was considered
rare (< 500 images). If enough data are available, however, a finer
vertical model might perform better, because it better delimits
the vertical habitat structure. This seems to be the case for the
Phaeodaria for which models with 100 m resolution obtained
higher R2 results, especially for those between 0 and 300 m depth.

4.2 Group-Wise Contribution to Global
Zooplankton Biomass
Globally, in the 1.02 - 50 mm size range, we observed up to four
zooplankton groups dominating each region and layer
(Figure 4), mainly Crustacea (Copepoda, Eumalacostraca,
other Crustacea) and Rhizaria (solitary Collodaria, Phaeodaria,
Foraminifera). The dominance by copepods was expected: they
are known to be a central trophic link in marine ecosystems
(Steinberg and Landry, 2017) and their dominance was already
shown in several studies (Turner, 2004; Forest et al., 2012; Dai
et al., 2016). Rhizaria were also presented as substantial
participants in the global zooplankton biomass by Biard et al.
Frontiers in Marine Science | www.frontiersin.org 15152
(2016) with Phaeodaria and Collodaria being the most important
contributors to rhizarian biomass. In addition, Rhizaria were
previously shown to play an important role in the biological
carbon pump by intercepting (Stukel et al., 2018; Stukel et al.,
2019) but also generating particle flux (Lampitt et al., 2009). In
contrast, gelatinous predators such as Chaetognatha and other
Cnidaria (other Cnidaria, other Hydrozoa, Siphonophorae) can
be well predicted but their predicted biomass is low. This might
be due to different reasons, ranging from their low carbon
content (McConville et al., 2016), their size range which can
exceed the specific range of the UVP5 (1.02 - 50 mm), their lower
abundance reducing the probability of observation in the rather
small volume of the UVP5 and the reduced capacity of the UVP5
to image them due to their transparency. Other instruments,
such as the pelagic in situ observation system (PELAGIOS,
Hoving et al. (2019)), the Zooglider (Ohman, 2019) or the In
Situ Ichthyoplankton Imaging System (ISIIS, Cowen and
Guigand (2008)) might be more adapted to study these
organisms, thanks to their larger sampling volumes or different
image approach.

4.3 Distribution Patterns and Occupied
Habitats
4.3.1 Copepoda
Copepoda biomass was predicted to be highest in high latitudes
in both epi- and mesopelagic layers of the global models. The
lowest values were predicted at the gyres and an increase of
biomass was observed centered at the equator. In the global
models, temperature always appeared within the top three
environmental factors explaining the distribution of copepods
(except for 0-100 m model where it appeared 4th), which is in
agreement with previous work suggesting that surface
temperature and thermal tolerance of marine ectotherms,
including copepods, are important constraints for their
distribution and abundance (Beaugrand et al., 2009; Sunday
FIGURE 11 | Distribution map of the predicted minimum global biomass between 0 and 500m using taxa which obtained a significant result (p-value < 0.05) in
Pearson test between the predicted biomass and the biomass calculated from UVP5 data.
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et al., 2012). We also predict significant Copepoda biomass
centered at 50°S in the Southern Ocean, at the location of the
strongest horizontal gradient of temperature within the
epipelagic layer. This geographic pattern is in agreement with
earlier observations of high Copepoda occurrence along the
Polar front (Pinkerton et al., 2020). Hence, despite a low
number of UVP5 profiles in this latitudinal band, the model is
able to retrieve this fundamental pattern. Higher values of the
coefficient of variation (Figure 5C) are found in the Arctic
Ocean, as well as south of 60°S. More data from these regions
could help to further reduce the uncertainty of our models.

4.3.2 Eumalacostraca
The distribution of the predicted Eumalacostraca biomass
showed high values in coastal areas mainly on the eastern
boundary currents of the Atlantic and Pacific Oceans and low
values at high latitudes and at the locations of the oceanic gyres.
Due to the low image resolution, a finer taxonomic resolution
than Eumalacostraca (mostly euphausiids, decapods and
amphipods) is not possible for UVP5 vignettes. Euphausiids
are well known for their ability to escape standard oceanographic
plankton nets (Brinton, 1967; Wiebe et al., 1982; Sameoto et al.,
1993) and even low noise gliders (Guihen et al. 2022). This
behavior might also be dependent on the species and stage
development while the UVP5 mostly detects small
Eumalacostraca (≤ 50 mm) for which taxonomic identification
is not possible. Nevertheless, as Euphausiids are the second most
abundant crustacean taxon after copepods (Castellanos et al.,
2009), they may compose a large fraction of the biomass in this
group. They are described as widely distributed in high numbers
in the world ocean between 0-300 m with the exception of the
eastern Canadian Arctic and the Arctic Ocean (Castellanos et al.,
2009). This is consistent with our predictions of higher biomass
in the epipelagic zone (0.058 PgC) compared to the mesopelagic
(0.049 PgC), and low values predicted for the Arctic Ocean. The
high Eumalacostraca biomass predicted in the North Atlantic
also consistent with other observations that reported high
abundances of krill in this region (Edwards et al., 2021).
Euphausia superba and Euphausia mucronata have been
respectively described as keystone species of the Antarctic and
the Humboldt Current System (Antezana, 2010). The
comparatively low values of biomass predicted in the Antarctic
in the epipelagic layer (Figure 6A) might be too low, as
Euphausia superba is known to show a patchy distribution
(Siegel, 2005; Siegel, 2016). Since we only have very few
samples from the Antarctic Ocean, we probably under-sampled
this region and specifically krill. The high coefficient of variation
in this region seems to reflect this problem. Overall, our
observations and models likely underestimate the abundances
of Euphausiids and of Eumalacostraca, due to their escape
behaviors, the comparatively small sampling volume of the
system and the low sample size in the Southern Ocean.

4.3.3 Solitary Collodaria
Global models in epi- and mesopelagic layers predicted a
widespread distribution of solitary Collodarians between 50°N
and 50°S, from oligotrophic to eutrophic zones. Their
Frontiers in Marine Science | www.frontiersin.org 16153
distribution can be explained by the selective advantage of
their mixotrophy, since all collodarian species live in symbiosis
with photosynthetic microalgae (Suzuki and Not, 2015; Biard
et al., 2016). Consistently with the models’ prediction of solitary
Collodaria as the third most important group in terms of global
biomass in 0-200 m, it has been shown by Biard et al. (2016) that
Collodaria contribute most to the biomass of the Rhizaria
between 0-100 m.

4.3.4 Phaeodaria
The distribution of Phaeodaria shows a latitudinal pattern with
three peaks in biomass, at 50°N (with high biomass values at the
level of the subarctic gyres), at 5°N and at 60°S. These three peaks
were not observed by Biard et al. (2016). The highest values being
predicted in the subarctic gyre are consistent with Steinberg et al.
(2008) who estimated their mean biomass there as 5.5% (range
2.7–13%) of the metazoan biomass sampled using a MOCNESS
(Wiebe et al., 1985). The distribution of this group in the
epipelagic (high biomass in coastal regions especially around
the Californian upwelling and low biomass in the gyres
conditions) could be related to food availability which might
not be abundant enough in the open ocean. In the models’
output, this group only accounted for to ~ 1.2% of the global
biomass in the epipelagic. This is consistent with previous work
describing these organisms as being distributed in water below
150-200 m (Stemmann et al., 2008; Nakamura and Suzuki, 2015;
Boltovskoy et al., 2017; Biard and Ohman, 2020). The high (R2 =
0.50) and low latitude (R2 = 0.39) models for the mesopelagic
layer reveal similar patterns as the ones shown for the epipelagic
layer in Figure 8. This pattern of high biomass predicted in the
North Pacific can be put in perspective with a previous study
(Ikenoue et al., 2019) which highlighted Phaeodaria in the
Western North Pacific as one of the major carriers of carbon
in the twilight zone (200-1000 m (Buesseler and Boyd, 2009)),
with an organic carbon standing stock reaching its highest value
at depths between 200-500 m. A maximum in abundance of
Phaeodaria was observed in the lower epipelagic or mesopelagic
zone in the Sea of Japan by Nakamura et al. (2013) as well as in
the Antarctic beneath the sea ice with similar abundances as the
North Atlantic and Pacific (Morley and Stepien, 1984). In the
regional mesopelagic predictions, the mean biomass in the Sea of
Japan is not particularly high, but it reached higher values in the
Southern Ocean.

4.3.5 Acantharea
Here, we present results on large Acantharea only, but it should
be kept in mind that most species are smaller than 600 mm (Biard
et al., 2016). Most Acantharea species are associated with
symbiotic algae (Michaels, 1991) which could explain the rapid
observed biomass decline with depth. Indeed, the biomass
predicted is 16.7-times lower in the mesopelagic (1.36 10-5

PgC) compared to the epipelagic layer (2.27 10-4 PgC). These
mixotrophs are present throughout the world oceans (Suzuki
and Not, 2015) and commonly distributed in intertropical
latitudes (Bottazzi and Andreoli, 1982) mostly in the surface
with an abundance rapidly declining below 20-50 m depth
(Michaels, 1988). The model confirmed this biomass
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diminution in the epi- and mesopelagic layers (Figure 9). We
also observed latitudinal patterns with the highest biomass in
intertropical areas consistent with these previous studies. The
highest biomass of Acantharea predicted by the mesopelagic
global model in the Gulf of Alaska coincides with a large number
of organisms imaged by the UVP5. This is surprising knowing
the above described distribution patterns. More observations
from this region are required to clarify whether this was a
temporally limited occurrence or whether it represents a region
of permanent abundance maxima. The predicted biomass in
Antarctic waters in this depth layer is also surprising. Acantharea
are marine planktonic unicellular eukaryotes in the Rhizaria
group and produce a mineral skeleton made of strontium sulfate
(Michaels, 1991; Decelle and Not, 2015). The surprisingly high
abundance at high latitudes might be important for studies done
on the strontium biogeochemical cycle (Bernstein et al., 1987;
Decelle et al., 2013).

4.4 Comparison Between Net Sampling
and In Situ Imaging
The integrated global predicted biomass is dominated by
Copepoda (35.7%), Eumalacostraca (26.6%) and Rhizaria
(16.4%). Because of their important contribution to the
predicted global biomass, the distribution map of total biomass
ad minima (Figure 11) reflects in part the major distribution
patterns of these three groups: polar waters are dominated by
Copepoda and intertropical waters are dominated by
mixotrophic Rhizaria. Eumalacostraca follows the predicted
distribution of zooplankton with 3 peaks of biomass at 60°N
(55°N for zooplankton), at the equator and at 45°S (55°S for
zooplankton). The comparison of the models’ output with data
from the Tara Ocean expedition, obtained with a 300 mm mesh
size multinet (Pesant et al., 2015; Soviadan et al., 2022) shows a
good agreement for the latitudinal patterns of Copepod biomass.
Net data is estimated to be higher than biomass estimated from
UVP5 data in the intertropical latitude range for this group.
Results in the high latitudes regions with strong seasonality and
sea ice cover should be taken with caution as no data was
available in the UVP5 dataset in winter for these latitudes. For
Rhizaria, we observe that at most locations the biomass estimated
by the nets is zero, while the UVP5 images suggest a considerable
biomass in this group (Figure 10). In the TARA Ocean multinet
samples, only Acantharea, Foraminifera and Phaeodaria are
sometimes detected, while Collodaria are consistently absent
from these samples. Indeed, Collodaria and Acantharea are
Frontiers in Marine Science | www.frontiersin.org 17154
poorly sampled by nets and are not well preserved in plankton
samples fixed with regular fixatives such as formaldehyde
(Suzuki and Not, 2015). Yet, solitary Collodaria are predicted
as the 3rd most important group in terms of biomass in the upper
200 m of the global model. Our results show that in situ imaging
is far more suitable for the study of this group and all other
fragile plankton groups. As described above, several important
zooplankton groups are generally well modeled, allowing us to
combine the taxon-specific models to yield a global estimate of
zooplankton biomass in the 1.02 to 50 mm size range. Previous
studies (Table 2) have computed such global zooplankton
biomass obtained largely (Hatton et al., 2021) or completely
(Moriarty et al., 2012; Moriarty and O’Brien, 2013; Buitenhuis
et al., 2013) from net collected organisms. These studies also used
a proportionality method for estimating the global biomass
presented in Table 2 by multiplying the median value of
biomass with the surface of the ocean and the studied depth.
Our predictions are within the same order of magnitude — but at
the lower limit— of these compilations if one combines theirmeso-
andmacrozooplankton biomass estimates.We refrain from amore
detailed comparisondue to the difference in size studied (here 1.02 -
50 mm ESD — equivalent to 765 mm to 37.5 mm meshsize
according to Nichols and Thompson (1991)’s 3/4 law of mesh
selection — compared to ≥ 200 mm for the cited meso- and
macrozooplankton studies), sampling methods and depth
covered (Buitenhuis et al., 2013). Contrary to the complementary
use of nets and Zooscan, such as with the TARA dataset, these
previous studies arebasedondataobtained throughmethodswhich
do not allow to split the organisms based on fixed criteria (size, area
of the organism or taxonomy). One would expect a large
contribution to biomass in the 200 to 765 mm mesh size range
(Gallienne, 2001; Hwang et al., 2007).

4.5 Global Zooplankton Biomass
Distribution
The distribution of the global integrated biomass (0-500 m) ad
minima follows the patterns described by Ikeda (1985), Moriarty
et al. (2012) and Hatton et al. (2021) which correspond to a
latitudinal distribution of the biomass with high values north of
55°N and south of 55°S. Relatively higher values of biomass are
predicted around the equator (15°N-15°S). The benefit of our
work and of compiled datasets such as the ones used in Moriarty
et al. (2012); Moriarty and O’Brien (2013), Buitenhuis et al.
(2013) and Hatton et al. (2021) is that they bring together
numerous single transects and allow to have an integrated view
TABLE 2 | Comparison of global biomass estimates in the literature.

Study Size range (mesh size) Depth Global estimates (PgC)

Moriarty et al., 2012 ≥2 mm 0-350 m 0.02
Moriarty and O’Brien, 2013 ≥200 mm 0-200 0.19
Buitenhuis et al., 2013 ≥200 mm Integrated 0.33-0.59
Buitenhuis et al., 2013 ≥2 mm 0-500 m 0.22-1.52
Hatton et al., 2021 ≥200 mm 0-200 m 0.53-31.57
Hatton et al., 2021 ≥2 mm 0-200 m 0.02-2.64
This study ≥765 mm - 37.5 mm 0-200 m 0.229
August 2022 | V
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of global zooplankton distribution. The results depicted in
Figure 11 in the Southern Ocean are consistent with a recent
study done with BRTs (Pinkerton et al., 2020) showing that the
highest environmental suitability for zooplankton was located
between the Subantarctic Front and the southern limit of the
Antarctic Circumpolar Current with a lower suitability north
and south of this band. The spatial distribution of plankton
biomass thus shows the importance of oceanographic
hydrodynamics leading to oligotrophy in central gyres and
mesotrophy in areas of high latitudes and equatorial and
coastal upwellings. Zooplankton plays a crucial role in fisheries
e.g. in the Humboldt Current System which harbors the largest
fishery in the world and most economically important fish
species, supported by the upwelling of Peru (Chavez et al.,
2008). Peruvian anchovies and sardines obtain most of their
energy from zooplankton (van der Lingen et al., 2009).

4.6 Conclusions and Outlook
In summary, our results show, for the first time, that spatial
patterns and global biomass of key zooplankton groups can be
calculated using a machine learning method (BRT) to extrapolate
individual zooplankton biomass estimates from sparse UVP5
observation. They also highlight the important contribution of
Rhizaria (predicted mainly in the intertropical range) and
Copepoda (predicted mainly in high latitudes) to the global
estimate of zooplankton biomass. Within the size range covered,
Copepoda contributes 35.7%, Eumalacostraca 26.6% and
Rhizaria 16.4% to global zooplankton biomass. This suggests
that it is especially crucial to extend work on the fragile Rhizaria,
which are comparatively little studied. As a biogeographical
study, our aim was not to represent proximal mechanisms that
drive the distribution of zooplankton, or to describe seasonal or
transient (e.g. mesoscale) features, but rather to represent the
global distribution patterns of biomass according to general
properties of the water masses. This method worked well in
general as seen in Figure 3 for at least 3 of the combinations of
regions and depths. It made it possible to model 19 groups of
zooplankton and obtain corresponding maps with the relative
importance of the environmental variables used for the model.
The WOA climatologies used in this study compile data of
salinity and temperature (2005-2017) and other variables
(1955-2017). The temporal coverage of the latter being much
coarser, we hope to use more constrained nutrient datasets in our
future work as they become available.

The zooplankton biomass predictions based on UVP5 datasets
presentedhere are important for globalbiogeochemicalmodelingof
pelagic ecosystems because they usually lack zooplankton
observations to constrain their development (Stemmann and
Boss, 2012; Buitenhuis et al., 2013; Séférian et al., 2020). A current
trend is to add a more realistic representation of plankton in
ecosystem models to better predict future ecosystem states and
ocean conditions and to inform sustainable management strategies
for climate mitigation at global scale (Séférian et al., 2020). The
UVP5, the newly developed UVP6 (Picheral et al., 2021) and other
commercialized in situ systems, provided that they are inter-
calibrated (Lombard et al., 2019), will continue to be used in the
foreseeable future, increasing data availability. Still, the bottleneck
Frontiers in Marine Science | www.frontiersin.org 18155
lies in the classification of the massive amount of images which still
require human validation, but new algorithms to recognise
plankton types and traits are expected (Irisson et al., 2022). The
further anticipated expansion of image datasets will enable the
quantitative assessment of rare groups that were not well predicted
here. In addition, the deployment of the UVP6 on autonomous
platforms will also help to sample certain areas that are difficult to
access at certain times of the year such as polar regions in winter.
The large dataset used in this study spans 10 years of data collection
and can be compared to the COPEPOD database collected since
about 1960. The possibilities given by imaging systems could hence
help to reach a useful amount of data in amuch smaller time frame.
It would be interesting to use other imaging system’s data sets such
as the ones presented by Lombard et al. (2019) to reconstruct the
wider size spectrum of these groups in terms of biomass. To have a
better understanding of the vertical habitat of zooplanktonic
groups, we highly recommend that UVP5 and 6 profiles should
bedone toat least 1,000mwhen thebathymetryallows it. Long term
inter annual data acquisition is also highly recommended. This will
enable us to monitor global zooplankton biomass changes at pace
with the speed of global change.
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In every liter of seawater there are between 10 and 100 billion life forms, mostly

invisible, called marine plankton or marine microbiome, which form the largest

and most dynamic ecosystem on our planet, at the heart of global ecological

and economic processes. While physical and chemical parameters of

planktonic ecosystems are fairly well measured and modeled at the planetary

scale, biological data are still scarce due to the extreme cost and relative

inflexibility of the classical vessels and instruments used to explore marine

biodiversity. Here we introduce ‘Plankton Planet’, an initiative whose goal is to

engage the curiosity and creativity of researchers, makers, and mariners to (i)

co-develop a new generation of cost-effective (frugal) universal scientific

instrumentation to measure the genetic and morphological diversity of

marine microbiomes in context, (ii) organize their systematic deployment
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through coastal or open ocean communities of sea-users/farers, to generate

uniform plankton data across global and long-term spatio-temporal scales,

and (iii) setup tools to flow the data without embargo into public and explorable

databases. As proof-of-concept, we show how 20 crews of sailors were able to

sample plankton biomass from the world surface ocean in a single year,

generating the first seatizen-based, planetary dataset of marine plankton

biodiversity based on DNA barcodes. The quality of this dataset is

comparable to that generated by Tara Oceans and is not biased by the

multiplication of samplers. The data unveil significant genetic novelty and

can be used to explore the taxonomic and ecological diversity of plankton at

both regional and global scales. This pilot project paves the way for

construction of a miniaturized, modular, evolvable, affordable and open-

source citizen field-platform that will allow systematic assessment of the

eco/morpho/genetic variation of aquatic ecosystems and microbiomes

across the dimensions of the Earth system.
KEYWORDS

planetary biology, citizen oceanography, DNA metabarcoding, plankton, seatizens,
sailors, frugal science
Introduction

The need for global, long-term surveys
of plankton life

The ocean contains 97% of all water on our planet. In every

liter of seawater there are between 10 and 100 billion, mostly

invisible planktonic life forms. These form a continuous global

ecosystem that generates approximately half of planetary

oxygen, sustains the large majority of marine life, and

regulates atmospheric CO2 and climate. Understanding and

modeling the structure, dynamics, and evolution of global

plankton populations is critical for predicting the future of our

biosphere and learning how to live in symbiosis with our

spaceship, the Earth.

Plankton populations comprise, like in terrestrial biomes,

organisms from across the tree of life (viruses, bacteria, archaea,

protists, and animals) which interact in complex networks

(Lima-mendez et al., 2015; Guidi et al., 2016) that are also

shaped by ocean currents and associated physico-chemical

environmental parameters (Richter et al., 2019; Logares et al.,

2020) – i.e. the seascape (Pittman, 2018). But in contrast to

terrestrial ecosystems, there are no plants and trees in the

plankton - primary production is driven by a large and

ancient diversity of photosynthetic bacteria and protists (called

phytoplankton) - and the pelagic ecosystem is much more

dynamic in terms of both organism life cycle and strategies

(e.g. mixotrophy) (Falkowski, 2012) and transport (advection

and mixing). The self-organization of local plankton biota into
02
161
complex ecosystems (Follows et al., 2007) determines their

impact on the carbon cycle. For instance, in some regions and

seasons, blooms of relatively large cells with mineral

components lead to a vigorous sinking flux of organic carbon

into the deep sea (Decelle et al., 2013; Durkin et al., 2016).

Overall, these fundamental properties of the plankton ecosystem

make it arguably the most reactive and proactive compartment

of the biosphere to climate change and pollution. Changes in

plankton communities can have dramatic effects on global

biogeochemical cycles (e.g. Falkowski et al., 2008), climate (e.g.

Kwon et al., 2009; Buesseler et al., 2020), and major human

societal and economic activities (i.e. fisheries, aquaculture,

tourism, etc. Beaugrand and Kirby, 2010; Morgan et al., 2010).

Current models aimed at predicting global ocean ecological

changes (e.g. Follows and Dutkiewicz, 2011; Ward et al., 2014)

are fairly well constrained in terms of physics and chemistry, but

are by comparison heavily oversimplified and unrealistic in

terms of biology. In fact, they simply lack good quality, high

resolution data on the nature and dynamics of oceanic plankton

biodiversity at a planetary scale. While quantitative global data

on ocean physics and biogeochemistry are abundantly available

by satellites (e.g. Stanley Wilson et al., 2019), in situ floats (e.g.

Roemmich et al., 2019; Claustre et al., 2020) sail drones

(Vazquez-Cuervo et al., 2019), as well as research (e.g. Sloyan

et al., 2019) and citizen (e.g. (Simoniello et al., 2019) vessels,

standardized biological data are still scarce due to the challenge

of sampling and assessing complex communities of fragile

plankton in a harmonized and comparable manner (Lombard

et al., 2019). Despite the availability of a century’s worth of
frontiersin.org
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recorded data on oceanic plankton (Richardson et al., 2006;

Buitenhuis et al., 2013, and see for instance https://www.st.nmfs.

noaa.gov/copepod/), some areas of the ocean (including much of

the south and tropical Pacific Ocean) are almost devoid of any

biological observations and we do not yet have a consistent and

informed vision of the global distribution and variation of

plankton communities.

The largest and longest homogenous survey of plankton life

has been conducted using the Continuous Plankton Recorder

(CPR), a visionary plankton-scroll instrument created by Sir

Alister Hardy in 1931 (Reid et al., 2003), and towed since then

behind ferries and cargo ships, particularly in the North Atlantic,

North Pacific, and Southern Ocean south of Australia (Batten

et al., 2019). The CPR database is currently the only basin-wide

standardized historical record of ocean plankton life, and it has

given rise to keystone studies describing and modeling basin-

scale dynamics of plankton community over time and global

climate change (e.g. Beaugrand et al., 2002; Beaugrand and

Kirby, 2010; Chivers et al., 2017). However, CPR data also has

drawbacks: (i) the instrument mainly recovers zooplankton

>300µm, thus missing most marine microbiome diversity (see

below), (ii) it is rather destructive for soft or gelatinous taxa, (iii)

data analyses rely on taxonomic experts identifying and

counting a restricted number of morpho-taxa, (iv) the

formalin preservation of the silk severely limits subsequent

light microscopy observations for some groups and analysis of

nucleic acids in general, and (v) data come from ships navigating

over a restricted number of (mostly northern) commercial

routes. CPR data are therefore semi-quantitative and

taxonomically and geographically limited.

Over the past 20 years, the revolution in environmental

DNA/RNA sequencing has stimulated a new era of global-scale

ocean cruises led by molecular and cellular biologists, notably

the ‘Global Ocean Sampling’ (GOS - Venter et al., 2004), Tara

Oceans (Karsenti et al., 2011), and Malaspina (Duarte, 2015)

expeditions. Interestingly, the first two expeditions were private

or semi-private enterprises undertaken by sailing boats. The

Tara Oceans sailing expedition (2009 – 2013) was the longest

and most comprehensive: its team developed an eco-systems

biology strategy to explore plankton diversity from genes to

communities, from viruses to animals, and across coarse but

planetary spatial and seasonal scales (Sunagawa et al., 2020). The

combination of standardized DNA metabarcoding (De Vargas

et al., 2015; Ibarbalz et al., 2019), metagenomic (Sunagawa et al.,

2015; Gregory et al., 2019; Zayed et al., 2022) and

metatranscriptomic (Carradec et al., 2018; Salazar et al., 2019)

datasets is unveiling the basic structure of plankton taxonomic

and metabolic diversity (Bork et al., 2015; Sunagawa et al., 2020),

generating hypotheses about its interactions (Chaffron et al.,

2021), dynamics in the seascape (Richter et al., 2019), and role in

emerging ecosystem functions such as the carbon pump (Guidi

et al., 2016; Caputi et al., 2019). Notably, the Tara Oceans team
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discovered that the great majority of plankton biodiversity is

found in organismal size fractions <100µm, and above all in

eukaryotes rather than viruses or prokaryotes (De Vargas et al.,

2015; Carradec et al., 2018).

Given the massive local (e.g. plastics, pollutants, Tornero

and Hanke, 2016; Jacquin et al., 2019) and global (e.g.

deoxygenation, warming, acidification, freshening, ocean

circulation changes (Hays et al., 2005; Pörtner et al., 2019)

anthropogenic pressures on our ocean, we urgently need

global plankton surveys that merge the spatio-temporal

sampling power of the CPR with the systems-biology approach

of Tara Oceans. Only application of a comprehensive and

homogenous measure of plankton life from micro- to meso- to

global ocean scales (Follows et al., 2007; Lévy et al., 2018;

Lombard et al., 2019) will provide the data necessary not only

to unveil fundamental principles of ecology and evolution of

marine life at the ecosystem level of organization, but also to feed

mathematical models of the ocean system that integrate physical,

chemical, and biological processes
‘Seatizen’ oceanography to change scale

A long-term measure of the ocean microbiome across

planetary scales is hindered by the extreme cost and limited

logistical flexibility of classical oceanographic research vessels

and instruments, together with the current impossibility to use

autonomous samplers (e.g. floats) to sample the biocomplexity

of plankton and generate high-quality data from it. In this

context, the thousands of citizen sailing boats (Lauro et al.,

2014), professional sailing yachts, the >50,000 cargo ships

(https://www.ics-shipping.org/shipping-facts/shipping-and-

world-trade) and about the same number of global fishing

vessels (https://globalfishingwatch.org/datasets-and-code/

vessel-identity/) which are navigating the world ocean every

day represent an outstanding opportunity.

With the miniaturization of sequencing (e.g. Urban et al.,

2020) and imaging (Cybulski et al., 2014) devices, the power of

cloud computing and artificial intelligence, and the possibilities

offered by a participative science engaging actors and volunteers

across disciplines and societal/economic activities (Garcia-Soto

et al., 2017; Simoniello et al., 2019), six years ago we - a team of

researchers, engineers, makers and sailors from France, the US,

and New Zealand - started to develop a frugal approach and

effective protocols to sample the world ocean plankton for the

production of high quality eco/morpho/genetic data in

collaboration with recreational and professional mariners. We

created ‘Plankton Planet’ (P2, https://planktonplanet.org), an

international initiative that develops a cooperative, frugal, and

sustainable global measure of plankton to assess the biodiversity

and health of the world’s open and coastal oceans (see P2 vision

& mission, Box 1).
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We strongly believe that mariners, makers, and researchers

share a passionate curiosity and will to explore and discover their

environment, such that assembling these communities will

generate the necessary synergies to achieve our objectives. Our

practical goal is to co-construct a new generation of frugal and

open-source yet robust scientific instruments and protocols,

which will allow all interested sea-users and sea-farers to

collect comparable eco-morpho-genetic data on plankton

diversity and abundance at a planetary scale.

In this paper, we present the first steps of this cost-effective,

eco-friendly, agile, and society-engaging approach. We show how

20 pioneer crews of citizen sailors – the ‘planktonauts’-, equipped

with a simple kit to sample plankton for DNA-metabarcoding,

were able to help generate a scientifically sound, planetary dataset

of plankton biodiversity in less than a year. We finally discuss

recent developments (see also Pollina et al., 2022), as well as the

‘Plankton Planet’ perspectives toward planetary-scale deployment

of integrated, affordable and portable ‘field-AquaScopes’ for long-

term assessment of aquatic life and ecosystems at an

unprecedented level of sensitivity.

Materials and methods

Between November 2014 and January 2016, with a total

budget of $70,000, we provided proof-of-concept for the P2

vision and mission. Our primary goal was to demonstrate that,

with the goodwill of mariners, we can sample ocean waters from

the entire planet and obtain high quality plankton DNA data for

global ecological analyses. We designed a general functional

strategy (Supplementary Figure 1) based on robust methods

linking affordable and user-friendly instruments for on-board

citizen plankton sampling to cutting-edge DNA sequencing and

bioinformatic pipelines developed previously in Tara Oceans

(De Vargas et al., 2015).
Frugal and global plankton sampling by
citizen-sailors (‘planktonauts’)

The P2 PlanktoKit
We first assembled a simple plankton sampling kit including a

small net to collect plankton (>20mm) and a manual pumping
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system to rapidly transfer the freshly collected planktononto afilter

membrane (Figure 1). Of note, this sampling protocol does not rely

on toxic chemicals or electricity, which are typically required in a

regular laboratory. In order to avoid the need for high-energy

storage of the filter membranes (plankton samples) in freezers on

board, as well as complex frozen-shipping to the lab, the

planktonauts were asked to place the filter on a clean aluminum

cove and carefully heat-dry the filter membranes in a pan on the

boat gas-cooker, store the dried plankton samples in labeled zip-

lock bags with granular desiccants, and send them to the lab via

standard postal services (Figure 2, Supplementary Material).

Heat-dried plankton DNA preservation
The protocol for plankton DNA preservation by heating and

desiccation was first tested during two field campaigns along the

French Atlantic coast and compared with gold-standard cryo-

fixation and preservation. Six citizen crews sampled plankton at

different locations (Supplementary Figure 2A) using the P2 protocol

(Figures 1, 2). The concentrated plankton samples were equally

divided into two subsamples: one was flash-frozen in liquid nitrogen

as classically performed on oceanographic vessels for genetics

analyses, while the other was heat-dried as implemented in P2

(Figure 2). On land, samples were preserved in a -80°C freezer

(flash-frozen samples) and at room temperature (heat-dried

samples) for a couple of months before total DNA extraction and

sequencingof1.3±0.07millionV9SSUrDNAampliconsper sample

(see Sup. Mat. for details). Bioinformatic clustering of the plankton

communities (definedby types andabundanceof rDNAOperational

TaxonomicUnits (OTUs, see Sup.Mat.) using different dissimilarity

indices indicated that the sub-samples preserved by desiccation and

flash-freezing systematically clustered together (Supplementary

Figures 2B, C). Plankton communities segregated then first by

sampling location, then by their distance to fresh-water input

within each bay, irrespective of preservation method. These results

proved that the heat drying and subsequent desiccation preservation

method do not alter the community composition as measured by

DNAmetabarcoding and can be applied globally.

Empowering pioneer planktonauts to sample
the world oceans.

With modest seed-funding, we were able to assemble a first

set of 20 PlanktoKits, and our primary strategy was to maximize
BOX 1 Plankton Planet Vision & Mission.

Vision: To harness the creativity of mariners, makers, and researchers for a cooperative, long-term and global
measure of aquatic invisible life, toward understanding of our blue planet’s biodiversity, evolution, and health
for sustainable living in a symbiophere.

Mission: To co-develop a suite of user-friendly and cost-effective tools to collect, measure, and share consistent samples
and data from the aquatic microbiome at a planetary scale, providing critical new knowledge on plankton morphology,
genetics, and ecology, that will be universally accessible.
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geographic coverage and sampling conditions. We promoted the

idea amongst the French sailing community and encountered

great enthusiasm to participate. The antique proverb –’There are

three sorts of people: the living, the dead, and those who sail the

sea’ is profound: mariners are natural engineers, explorers, and

planet-lovers. Word of mouth is powerful in their close-knit

community and, limited by the low number of sampling kits

available, we soon had to start declining requests. The 27 selected

pioneer yacht crews, who we call ‘planktonauts’ (Figure 3A, and
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https://planktonplanet.org/the-planktonauts/) represented a

wide variety of boats and sailing modes, from multi-year

expeditions around the world (e.g. Race4Water, Taravana,

Folligou), to family cruises (e.g. Manevai, Nika, or Zigomar -

see kidsforsea.over-blog.com/), recreation sailing in the same

zone over the year (e.g. Suhail), explorers of the poles (e.g.

Vagabond or Podorange), or participants in a New Zealand

yachting rally across the South Pacific Islands (Figure 3B,

bottom-right insert).
FIGURE 1

The original Plankton Planet sampling kit. Picture on the left: the P2 plankton net (25cm diameter, 20mm mesh size) with a 2kg weight and a
small float to maintain it at a maximum depth of 3m. Picture on the right: the manual vacuum pumping system used to transfer plankton from
the cod-end of the net onto a 10mm filter membrane. The total cost for one kit approximates $700 but will be largely reduced through tinkering
of home-made parts for mass production.
FIGURE 2

Pictures illustrating various steps of the sampling protocol for planktonauts at sea. 1. Training of a group of planktonauts in Auckland with Dr.
Pochon. 2. After 15-20min of towing at a maximum speed of 2 knots, the plankton net is recovered on board, here onboard Tethys. 3.
Recording of contextual parameters, here ocean color using the Hydrocolor App on board Zigomar. Note that 3 families participated in the pilot
project, showing that even kids can realize parts of the protocol (see for instance: https://vimeo.com/219660346); 4. Pouring of the
concentrated plankton from the net cod-end into the manual vacuum-pump, onboard Taravana. 5. Manual recovery of the 10mm filter
membrane full of plankton biomass. 6. Gentle drying of the filter membrane in a pan on the boat (Taravana) gas cooker. 7. Storage and labeling
of dried plankton samples into zip lock plastic bags before shipping to the laboratory by regular mail.
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The planktonauts were trained to perform the P2 protocol

(Figure 2), individually or in small groups, and regular internet

dialogues were established with them during their voyage to

answer their questions and follow their progress. They regularly

sent movies (e.g. https://vimeo.com/219660346, https://vimeo.

com/164511514) and pictures (Figure 3A) of their actions at sea,

allowing us to improve our training protocols and outreach.

Their feedback on all steps of the protocol at sea (Figure 2) have

been key to identify the bottlenecks and challenges to overcome

for the implementation stage of the scientific program (see

Discussion section).

After 15-20 min of net towing at a speed of ~2 knots

(Supplementary Figure 1C), 500mL of concentrated seawater

were split and manually filtered onto two replicate 10µm

polycarbonate filter-membranes (diameter 47mm), dried at 70°

C for 5 min in a pan (on the boat gas-cooker), and then stored at

room temperature in a hermetic Ziploc bag with granular

desiccants. Upon arrival in a port, samples were shipped to the

Roscoff Marine Laboratory (Brittany, France) in a simple

envelope via regular mail. In the laboratory, the samples were

stored at -80°C and information related to samples was archived

in a database together with contextual data.
Frontiers in Marine Science 06
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Samples processing, DNA data
generation and analyses

Total plankton DNA extraction and rDNA
metabarcoding

DNA extraction was performed using a protocol modified

from the NucleoSpin Plant Midi kit (Macherey-Nagel). One

replicate filter of each sample was cut in small pieces and

incubated for 2h at 56°C with 3.6mL of the lysis buffer PL1

and 250µL of proteinase K. The lysate was transferred to a large

capacity NucleoSpin Filter (DNA Midi kit) and centrifuged for

10 min at 1,500 g. The eluate was transferred to a new tube and 1

volume of PC buffer was added. The mixture was loaded into the

appropriate spin column and washed 3 times with the DNA

wash solution. Total DNA was finally eluted twice with 150 µl of

DNA elution buffer, and stored in sterile microtubes at -20°C.

The amount of recovered DNA was quantified by dsDNA-

specific fluorimetry using a Qubit 2.0 Fluorometer with Qubit

dsDNA Broad Range and High Sensi t iv i ty Assays

(ThermoFisher Scientific, Waltham, MA). The DNA quality

was double-checked in a subset of samples by running 1 µl on

1.2% agarose gel for 45 min at 120V.
A

B

FIGURE 3

Planktonauts and their routes across the world ocean. (A) Examples of pictures sent by the planktonauts illustrating their actions at sea: towing
and recovering the P2 plankton net, filtering, drying, and storing plankton samples, recording contextual data and observing plankton through a
microscope. From left to right columns: N. Fabry and family on board Zigomar; M. and A. Hardy on board Taravana; J-M. and B. Viant on board
Dame Jane; I. Autissier and crew on board Ada2; C. and D. Beaumont on board Folligou; C. McIntyre and family on board Nika. (B) Routes of
the main 20 (of 27) pioneer planktonaut crews recruited during the pilot phase of the project, selected to maximize the geographic coverage
and oceanographic and sampling conditions. Note the 5 boats from New Zealand who participated to a rally (May to November 2015) organized
in collaboration with the ‘Island Cruising Association (http://www.islandcruising.co.nz).
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To address general questions of eukaryotic biodiversity over

extensive taxonomic and ecological scales, the hyper-variable

loop V9 of the Small Sub-Unit (SSU) ribosomal (r) RNA gene

was targeted for the generation of amplicons by Polymerase

Chain Reaction (PCR). This barcode presents a combination of

advantages: (i) it is universally conserved in length and simple in

secondary structure, thus allowing relatively unbiased PCR

amplification across eukaryotic lineages followed by Illuminas

sequencing, (ii) it includes both stable and highly-variable

nucleotide positions over evolutionary time frames, allowing

discrimination of taxa over a significant phylogenetic depth, (iii)

it is extensively represented in public reference databases across

the eukaryotic tree of life, allowing taxonomic assignment

amongst all known lineages.

The first 184 DNA extracts were processed at the Roscoff

Marine Laboratory. PCR amplification of the V9 region was

performed using 28-bases tagged PCR primers 1389f 5’-CT

TTCCCTACACGACGCTCTTCCGATCTTTGTACACAC

CGCCC -3 ’ and 1510r 5 ’-GGAGTTCAGACGTGTGC

TCTTCCGATCTCCTTCYGCAGGTTCACCTAC -3’. The PCR

mixture (25µL final volume) contained 10ng of template with

0.35µM final concentrations of each primer, 3% of DMSO and

2X of GC buffer Phusion Master Mix (Finnzymes).

Amplifications were conducted following the PCR program:

initial denaturation step at 98°C for 30 sec, followed by 25

cycles of 10sec at 98°C, 30sec at 57°C, 30sec at 72°C, and a final

elongation step at 72°C for 10 min. Each sample was amplified in

triplicate to get enough amounts of amplicons. Results from

amplification were checked by running 1 µl of PCR product on a

1.2% agarose gel for 45 min at 120V. All replicates from each

sample were then pooled and sent to the GeT Genotoul

sequencing platform (Toulouse, France) for library

preparation, and loading on 1 lane of Illumina sequencing

HiSeq3000 per PCR product. 32 additional DNA extracts were

PCR amplified and sequenced by the CEA Genoscope (Evry,

France). Amplifications of the V9 from SSU rDNA were

conducted with Phusion® High-Fidelity DNA Polymerase

( F i nn z yme s ) u s i n g t h e PCR p r ime r s 1 3 89 f 5 ’ -

T T G T A C A C A C C G C C C - 3 ’ a n d 1 5 1 0 r 5 ’ -

CCTTCYGCAGGTTCACCTAC -3’. The PCR mixture (25µL

final volume) contained 10ng of template with 0.35µM final

concentrations of each primer, 3% of DMSO and 2X of GC

buffer Phusion Master Mix (Finnzymes). Amplifications were

conducted following the PCR program: initial denaturation step

at 98°C for 30 sec, followed by 25 cycles of 10sec at 98°C, 30sec at

57°C, 30sec at 72°C, and a final elongation step at 72°C for

10 min. Each sample was amplified in triplicate to get enough

amounts of amplicons. PCR products were pooled after

amplification and cleaned using AMPure XP beads using a

DNA/beads ratio adapted to the length of the amplicon (1,8

Vol). Amplicon lengths were verified using a high-throughput

LabChip GX microfluidic capillary electrophoresis system
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(Perkin Elmer, Waltham, MA, USA), and quantified with a

Fluoroskan instrument. A negative control was included in each

PCR experiment, as well as a positive control specific to the

targeted gene marker. All libraries were prepared using the

NEBNext DNA Modules Products and NextFlex DNA

barcodes with 100 ng of purified PCR product as input. PCR

products were end-repaired, A-tailed at the 3’end, and ligated to

Illumina-compatible adaptors using the NEBNext DNA

Modules and NextFlex DNA barcodes using a Biomek FX

Laboratory Automation Workstation liquid handler (Beckman

Coulter Genomics, Danvers, MA, USA), able to perform up to 96

reactions in parallel. After a 1x AMPure XP clean up, the ligated

products were amplified using the Kapa Hifi HotStart NGS

library Amplification kit, followed by 1x AMPure XP

purification. All libraries prepared using the Biomek FX

Laboratory Automation Workstation were quantified first by

PicoGreen in 96-well plates. Library profiles were assessed using

a high throughput microfluidic capillary electrophoresis

LabChip GX system (Perkin Elmer, Waltham, MA, USA) and

qPCR with the KAPA Library Quantification Kit for Illumina

Libraries on an MXPro instrument. Libraries were loaded on 1

lane of Illumina sequencing HiSeq4000 with 20% of PhiX DNA

spike-ins (to minimize the impact on the run quality of the low

nucleotide diversity at the beginning of the reads, due to the

presence of the primer sequences used for amplification), in

order to obtain between 3 and 12 millions of paired-end reads

2x150 bp per sample.

Bioinformatic data processing
In order to compare P2 DNA metabarcoding data to the

primary Tara Oceans (TO) eukaryotic metabarcoding dataset

(De Vargas et al., 2015), we first merged raw reads from both

datasets and applied the following bioinformatics steps. Paired

Illumina™ MiSeq reads from the 214 P2 samples and the 883

samples from Tara Oceans (2009-2012) were assembled with

vsearch v2.7.1 (Rognes et al., 2016) using the command

fastq_mergepairs and the option fastq_allowmergestagger.

Demultiplexing and primer clipping were performed with

cutadapt v1.9 (Martin, 2011) enforcing a full-length match for

sample tags and allowing a 2/3-length partial match for forward

and reverse primers. Only reads containing both primers were

retained. For each trimmed read, the expected error was

estimated with vsearch’s command fastq_filter and the option

eeout. Each sample was then dereplicated, i.e. strictly identical

reads were merged, using vsearch’s command derep_fulllength,

and converted to FASTA format. To prepare for clustering,

samples were pooled and submitted to another round of

dereplication with vsearch. Files containing expected error

estimations were also dereplicated to retain only the lowest

expected error for each unique sequence. Clustering was

performed with Swarm v2.2.2 (Mahé et al., 2015), using a local

threshold of one difference and the fastidious option. The
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representative sequences of each molecular operational taxonomic

unit (OTU) were then searched for chimeras with the vsearch’s

commanduchime_denovo (Edgar et al., 2011). Inparallel, theOTU

representative sequences were pairwise compared to a custom

version (https://doi.org/10.5281/zenodo.3768951) of the Protist

Ribosomal Reference database PR2 (Guillou et al., 2013), using a

global pairwise alignment approach (usearch_global vsearch’s

command), and taxonomically assigned to their best hit (https://

github.com/frederic-mahe/stampa/). In case of ties, the sequence is

assigned to the last common ancestor of the references. OTUswith

a score below 80% similarity were considered as unassigned. This

custom reference database is an update of the V9_PR2 reference

database used for the taxonomic assignation of the Tara Oceans

metabarcodes (De Vargas et al., 2015). A schematic representation

of the bioinformatic pipeline used herein togetherwith quantitative

details is available in the Figure 6 of the Supplementary Material.

Clustering results, expected error values, taxonomic

assignments and chimera detection results were used to build a

raw OTU table. Up to that point, reads that could not be merged,

readswithout tagsorprimers, reads shorter than32nucleotides and

reads with uncalled bases (“N”) were eliminated. To create the

“cleaned”OTU table, additional filters were applied to retain only:

non-chimeric OTUs, OTUs with an expected error per nucleotide

below 0.0002, and OTUs containingmore than 3 reads or seen in 2

samples. The final OTU table, analyzed in this study, integrated the

214 P2 samples together with the 386 Tara Oceans samples

collected in surface waters for 4 organismal size fractions (0.8-5,

5-20, 20-180, 180-2000 µm). This table, with no taxonomic

filtration, was subsampled (rarefied) at the minimum number of

readsobserved for a sample (313,539 reads) for comparisonofOTU

richness between samples. Based on the rarefied OTU table, an

OTU is considered as unique to P2 if it is present in at least one P2

sample and not present in any of the 386 Tara Oceans surface

samples. Only OTUs assigned to Eukaryota withmore than 80% of

similarity were considered for ecological analyses (e.g. alpha and

beta diversity, taxonomic composition). The plankton samples

from ‘Objectif Plancton’ used to compare the preservation

methods were processed independently using the same

bioinformatic pipeline. Raw data were deposited at the European

Nucleotide Archive (ENA) under the project ids PRJEB53961 and

PRJEB53911, andOTU tables alongwith corresponding contextual

data were also made available in Zenodo @: https://doi.org/10.

5281/zenodo.6778240.
Results

Geographical coverage and cost of
P2-pilot samples

Despite the relatively low number of samples recovered per

boat (2 to 18), the widespread routes of many planktonauts

(Figure 3B) yielded plankton samples from 258 sites across the
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world surface ocean in less than 1 year (Figure 4B). This is

remarkable compared to the few tens of spatio-temporally

relatively restricted stations usually sampled during classical

oceanographic cruises, or even to the 147 sites sampled by the

schooner Tara in 3 years during her first circumglobal

expedition (Bork et al., 2015) (Figure 4B). Furthermore, the

total cost of ~200 US$ per sample (including the price of the kit,

training, sampling, shipping, and DNA extractions), which

could be significantly reduced with increasing sampling

frequency and decreasing sampling gears’ costs, is one to

several orders of magnitude lower than sample cost on

oceanographic vessels. The running budget of an open

oceanographic research vessel is on the order of 30,000 US

$/day. Therefore, a single research vessel traveling at 10 knots

and stopping for one hour at each sampling station would have

taken 8.6 months - and thus a minimum cost of 7.9 million US$ -

to cover 56% of the total P2 sites sampled in slightly more than a

year by the planktonauts (Supplementary Figure 3). Note that

the average cost to equip and run a sailing boat for a

transoceanic route is ~25,000 US$; all together, volunteer

planktonauts thus offered ~90% of the cost of field work in

sailing charges. This being said, we acknowledge that

planktonauts are logistically constrained and will never be able

to gather the sort of comprehensive bathymetric, oceanographic

and physico-chemical data that oceanographic vessels routinely

collect. P2 is not a substitute, but an invaluable complement to

the intensive research cruise manned by experts.
High-quality data for global plankton
biodiversity and ecology

18 months after the launch of P2, we had extracted total

DNA from 214 plankton samples collected by 27 boats, PCR

amplified rDNA metabarcodes from each sample, and generated

a total of 453 million rDNA reads to assess the diversity of

eukaryotic plankton (>20 µm) in the explored surface water

masses. The methods used for DNA extraction, sequencing, and

analyses were essentially developed in Tara Oceans (De Vargas

et al., 2015; Alberti et al., 2017); the metabarcode used (V9 SSU

rDNA) has proven successful to measure the ecological diversity

of total eukaryotic plankton (De Vargas et al., 2015), focus eco-

evolutionary analyses on specific groups (Malviya et al., 2015;

Cabello et al., 2016; Flegontova et al., 2016; Mordret et al., 2016),

reconstruct plankton ecological networks (Lima-mendez et al.,

2015), or revisit plankton macro-ecological patterns (Ser-

Giacomi et al., 2018; Ibarbalz et al., 2019), or biogeochemical

processes (Guidi et al., 2016).

Integration of P2 data into Tara Oceans data
Tara Oceans (TO) data are today a gold standard for ocean

plankton ecology, and we first merged the P2 data into the global

TO metabarcoding dataset for quality checks and comparison of
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content. As P2 samples were collected by different sailors,

sometimes in harsh conditions, we first checked for the

presence of obvious biases, such as the sequencing of bacterial

contaminants. After taxonomic assignment of the rDNA reads,

we found that 1.9% of Plankton Planet reads were assigned to

prokaryotes whereas prokaryotes represented 0.5% of Tara

Oceans reads. This difference is explained by the presence of

few outlier samples in P2, typically explained by on-board major

processing errors (see Supplementary Figure 4). The median

percentages of prokaryotic reads, 0.17% and 0.11% for TO and

P2 samples respectively, are, however, comparable (and expected

given the very large taxonomic spectrum of the eukaryotic PCR

primers used that also amplify prokaryotic genes).

We then compared plankton community composition

between P2 and TO samples. Principal component analysis

confirmed the primary influence of organism size on

community structuring (De Vargas et al., 2015), with the pico-

nanoplankton (0.8-5 µm) displaying stronger cohesiveness than
Frontiers in Marine Science 09
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micro- (20-180 µm) and meso- (180-2000 µm) planktonic

communities (Figure 4A). P2 samples clearly fell within the

range of variability of TO micro- and meso-plankton samples,

reflecting the P2 protocol that uses a 20µm mesh-size net and

does not apply any pre-filtration. P2 and TO micro/meso-

plankton size fractions samples spread together along the

second axis of the PCA whose variance (7%) is the result of

multiple physico-chemical (dispersal and mixing, variations in

temperature, light, nutrients, etc) and biological (species

i n t e r a c t i on s , l i f e cy c l e s , b ehav io r , a c c l ima t i on /

adaptation) processes.

Despite the overall similarity between P2 and TO micro/

meso-plankton samples (Figure 4A), the P2 sampling effort did

unveil significant novelty in global plankton diversity. All P2

samples produced rDNA OTUs that had not been reported in

the TO world ocean survey (Figure 4B), and the number of

discovered OTUs clearly increased with sampling effort, both per

area (Figure 4B) and per boat (Figure 4C). Each planktonaut
A B

D
C

FIGURE 4

The extent, novelty, and community composition of P2 metabarcoding data. (A) Grouping of P2 (black dots) and TO (colored triangles) plankton
communities from surface water according to taxonomic compositional similarity (PCA of Hellinger standardized abundances). Colors
correspond to the different plankton size-fractions sampled in TO. (B) Geographic distribution and novelty of P2 sequenced samples as
compared to TO samples. Sampled sites are aggregated in pre-defined geographic area (hexagons) for readability. Hexagons containing P2
samples are filled with a color gradient corresponding to the number of rDNA OTUs that were not detected in TO (see colored scale). Number
inside the colored hexagons indicate the number of samples collected in the area. Empty hexagons are area with only TO samples. Hexagons
with red-line borders are area with both P2 and TO samples. Horizontal dotted red lines indicate the Northern and Southern 60 Degree
latitudes; only samples comprised between these lines were kept for ecological comparative analyses between P2 and TO data. (C) Novel
plankton diversity (rDNA OTU) uncovered by each boat. Each dot represents a boat, with its position along the X and Y axes corresponding,
respectively, to the number of samples collected, and the number of OTUs recovered by the boat that were not detected in TO. The color-
gradient indicates the % of novel P2 OTUs that are unique to the particular boat. Note the higher values for the New Zealander crews (blue
characters). (D) UpSetR plot displaying the taxonomic richness, divided by eukaryotic super-groups, shared between P2 (>20mm) and TO size-
fractionated samples. The horizontal bars show each individual complete dataset, while vertical bars correspond to the number of OTUs shared
between particular datasets (intersections given by the dots under the vertical bars). The tree map shows the taxonomic composition of the
18,430 unique Opisthokonta OTU unveiled in P2, with a dominance (46%) of copepods.
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crew unveiled between 62 and 3,907 unique OTUs, unseen by

either Tara or any other P2 boats, with a discovery rate partly

explained by the eccentricity of the sampled areas relative to TO

sampling sites. Note for instance the high percentage of boat-

specific OTUs (>75%) in the New Zealand area (Figure 4C).

We further dug into the composition of plankton diversity

unveiled by P2 versus TO samples. P2 samples yielded a total of

57,994 OTUs, as compared to 158,716 for TO surface ocean

samples. Phylogenetic breakdown of the rDNA data (Figure 5)

shows the overall taxonomic similarity, in both abundance and

richness, between data from P2 and the TO micro- and meso-

planktonic size fractions. While 8,220 OTUs (mostly metazoans

and alveolates) were shared exclusively between P2 and the TO

larger (>20 µm) organismal size fractions, only 1,981 were

common with the smaller (<20 µm) TO plankton size

fractions (Figure 4D). This emphasizes the consistency of the

organisms harvested by P2 and TO in comparable plankton size-

fractions, and provides organismal data support for our

principal component analysis (Figure 4A). Remarkably,

however, more than half of all P2 OTUs (37,163) were actually

not seen in any plankton size fractions of the TO circumglobal

dataset (Figure 4D). These correspond mostly (~78%) to

Alveolata and Opisthokonta, with an overwhelming majority

(98%) of relatively large metazoans (copepods, other arthropods,

mollusks, see insert in Figure 4D). This major difference is most

likely explained by the fact that the P2 sampling protocol does

not involve an upper-size filtration while the TO larger size-

fraction was constrained by a sieving at 2mm (micro-plankton:
Frontiers in Marine Science 10
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180-2000 µm), resulting in a more complete survey of larger

plankton in P2.

In order to check the value of P2 data at finer-grained

taxonomic resolution, we explored the phylogenetic and

organismal size-fraction distribution of P2 and TO OTUs

assigned to a well-known phytoplankton group, the

dinoflagellate order Peridiniales (Figure 6). Most Peridiniales

OTUs observed in TO were also found in P2, except a few taxa

particularly abundant in the piconano- and nano- size fractions

(<20 µm). The relatively large, microplanktonic taxa from the

genus Protoperidinium were particularly well represented in the

P2 dataset, with four OTUs unseen in the TO dataset. Note also

the presence of many Blastodinium and Brandtodinium OTUs,

which are well-known parasites (Skovgaard et al., 2012) and

photosymbionts (Probert et al., 2014) of respectively copepods

and radiolarians, and are thus part of the meso- and macro-

plankton in their symbiotic stage. Overall, these analyses

confirm the quality of the P2 data to assess plankton diversity

from the OTU to the community level.

Insights into multiscale plankton ecology using
P2 data

We finally used P2 metabarcoding data to explore the

consistency of macroecological patterns at both global and

local scales, across the data collected by the different boats and

planktonauts who sampled plankton independently. At the

world ocean scale, the P2 data displayed an increase in alpha

diversity (Shannon index) from both poles to the tropics
FIGURE 5

Phylogenetic breakdown of the Tara Oceans and Plankton Planet global ocean metabarcoding datasets at the eukaryotic supergroup and
‘taxogroup’ levels. All V9 rDNA reads and OTUs with genetic similarity to a eukaryotic reference sequence ≥80% were retained and
taxonomically assigned. The tree-maps display the relative abundance (upper part) and richness (lower part) of the different taxonomic groups in
TO plankton size fractions and P2. The category ‘Orphans’ contains the known but phylogenetically uncertain deep-branching lineages (i.e.
Haptophyta, Telonemida, Picomonadida, Katablepharidida, Cryptophyta, Centrohelida and Apusozoan); ‘Unknown’ corresponds to OTUs
assigned to two different supergroups.
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(Figure 7A). On a more regional scale, the five planktonaut crews

from New Zealand collected enough samples to highlight a

biogeographical pattern in this area, with no apparent bias

linked to the multiplication of samplers. Clustering of the

plankton communities based on their OTU composition into

three groups fitted with the three legs of the navigation loop:

New Zealand - Fiji; Fiji - New Caledonia, New Caledonia - New

Zealand (Figure 7B).

Contextual environmental data
Given the importance of the abiotic environment in

structuring planktonic ecosystems (Richter et al., 2019; Logares

et al., 2020), we also included the measure of basic

environmental parameters at each P2 sampling site. Besides

UTC date/time for each sampling event, the planktonauts were

asked to record surface water temperature using the water

temperature sensor of their boat and/or mercury thermometer

(Figure 7A), and broad-band spectral water reflectance using the

Hydrocolor App (Leeuw and Boss, 2018). In situ temperature

data were compared with those from the NASA’s MODIS-Aqua

satellite, and a good match – on average better than 1°C – was

observed. We also developed automated procedures to extract

remote sensing ocean color data at each sampling site (https://

github.com/OceanOptics/getOC), providing bulk information

on chlorophyll-a concentration, as well as suspended dissolved

and particulate materials in the target water. In the future, these

can not only assist planning of sampling stations at sea in near-

real time, but also allow analyses linking ocean color to

phytoplankton funct ional type measured by DNA

metabarcoding and the PlanktoScope (see below and Pollina
Frontiers in Marine Science 11
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et al., 2022). On the other hand, the Hydrocolor App has been

compared to commercial instrumentation and found to correlate

well (Yang et al., 2018); it is hoped it will help relate water

reflectance to in-situ plankton communities, increasing further

the utility of remote sensed ocean color.
Discussion

Operational PlanktoKit integrating eco/
morpho/genetic data

In the pilot stage of ‘Plankton Planet’ described herein, we

have witnessed the enormous desire of sailors to sample ocean

life during their voyages around the globe. We have also

generated what is, to our knowledge, the first citizen-based

consistent planetary dataset to explore plankton biodiversity

and ecology. The DNA metabarcoding data generated from

the samples collected by the 27 crews of planktonauts (i)

displayed a quality comparable to that of the Tara Ocean

metabarcoding dataset, (ii) unveiled significant genetic novelty

in zooplankton, and (iii) uncovered consistent plankton

ecological patterns at both global and local scales. At the world

ocean scale, the full dataset displayed a Latitudinal Diversity

Gradient that is well known from terrestrial and marine

ecosystems (Willig et al., 2003), and has been previously

recorded in more restricted planktonic groups (e.g. (Fuhrman

et al., 2008; Dolan et al., 2016; Boltovskoy and Correa, 2017) and

across plankton kingdoms (Ibarbalz et al., 2019). In the New-

Zealand area, the metabarcoding data clustered into three ‘eco-
FIGURE 6

Phylogenetic and plankton size fraction distribution of the most abundant OTUs assigned to Peridiniales dinoflagellates in both the P2 and TO
metabarcoding datasets. The 100 most abundant Peridiniales OTUs in TO and the 50 most abundant in P2 were selected, together representing
119 unique OTUs. Colored bars indicate the proportion of mean relative abundance of each OTU amongst the four TO plankton size fractions.
Black bars indicate the mean abundance (log transformed and scaled to 1) of each OTU amongst all P2 samples. Flag and red crosses symbols
indicate OTUs observed respectively only in P2 and only in TO.
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FIGURE 7

P2 insights into plankton ecology. (A) Global ocean latitudinal diversity gradient. Scatter plot showing the evolution of the Shannon index (alpha
diversity) of all P2 samples (colored dots) along latitudes. The color gradient is related to the sea surface temperature measured by the
planktonauts during plankton sampling. LOESS regression curve42 fitting the data. (B–D) Plankton biogeography at the scale of a navigation loop
(the ‘kiwi loop’, around New Zealand, Fiji and New Caledonia, Figure 2B). (B) The samples from this loop (colored dots) were clustered into three
groups based on their OTU composition (Jaccard distance) using the Partitioning Around Medoids (PAM) algorithm 43. See Sup. Figure 5 for
details. Two samples from the Nika boat, considered as outliers (and collected very close to the coast), were excluded from the analysis.
Squared numbers close to each sample site correspond to the sampling boat (1: Astral Express; 2: Celine; 3: Nika; 4: On the Double; 5:
Windflower); the colors represent the genetic clusters. C, D Relative abundances of the two most abundant taxonomic groups, the collodarians
(C) and the copepods (D). The color gradient and the size of the circles both correspond to the relative abundance.
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genetic’ regions along the navigation loop: (i) a first portion

characterized by high abundances of copepods (Figure 7D) and

important richness of indicator OTUs (Dufrene and Legendre,

1997) amongst Marine Alveolates (MALV), Acantharia,

Dinophyceae and also copepods (Supplementary Figure 5A);

(ii) a second portion from Fiji to New Caledonia with lower

diversity of indicator OTUs and lower genetic homogeneity

(Supplementary Figure 5B), which may be due to the

variability of habitats characterizing this region full of islands;

(iii) a third portion (genetic cluster 3, Figure 7B) characterized

by low abundances of copepods and high abundances of

collodarians (Figure 7C), with indicator OTUs belonging to

collodarians and spumellarians, diatoms (Bacillariophyta),

copepods and choanoflagellates. All boats have sampled

plankton in at least two different eco-genetic regions,

reinforcing both the robustness of the protocol and the

accuracy of the emerging plankton biogeography.

However, along the way, we also identified critical challenges

to overcome.

Sampling total plankton at sailing-speed
In the P2 pilot project, the planktonauts were asked to

maneuver their boats at a speed of less than 2 knots when

towing the 20mm-mesh size plankton net. This requests

uncomfortable sailing operations impacting the cruising speed,

and it was identified as the primary limiting factor for denser

sampling. We have therefore been working on the design of

new miniaturized high-speed nets (von Ammon et al., 2020;

Mériguet et al., 2022), inspired by our successful experience

during the Tara Pacific expedition (Gorsky et al., 2019), as well

as simple manual pumping system allowing aspiration of

seawater at cruising speed, followed by filtration through a

small net system installed on board. The latter device has the

advantage of being able to collect pristine water that can also be

used to extract DNA/RNA from the smaller plankton size

fractions enriched in bacteria, archaea and viruses. Indeed,

long-term monitoring of marine plankton systems will

ultimately require a sampling protocol covering the 8 orders of

plankton organismal size-magnitude, from viruses to animals

(Lombard et al., 2019; Sunagawa et al., 2020), in order to assess

both top-down and bottom-up ecological mechanisms shaping

the ecosystem.
Collecting morphological and behavioral
plankton data at sea

The revolution in environmental DNA/RNA sequencing

provides the power to comprehensively assess plankton

taxonomic and metabolic diversity (Sunagawa et al., 2020).

However, meta-omics data convey relatively poor information

on the shapes, structures and behaviors of organelles, cells and

organisms, which may well be the primary drivers for the self-

organization of contemporary ecosystems and their emergent
Frontiers in Marine Science 13
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functions (Karsenti, 2012). Fundamental phenotypic

mechanisms such as symbioses sensu lato, selective feeding,

vertical motions and migrations (Krishnamurthy et al., 2019),

and many other unknown complex cellular and organismal

behaviors, need to be identified and quantified in the context

of the seascape if we ever want to reach a mechanistic pheno-

genomic understanding of ecosystem patterning and

functioning in the ocean.

Over the last few years, we have thus developed the

PlanktoScope (see companion papers by Pollina et al., 2022 and

Mériguet et al., 2022), an affordable, miniaturized, modular and

evolvable, open source imaging platform for citizen oceanography.

For a cost of less than 1000 US$ in parts, the PlanktoScope allows

both quantitative imaging of microplankton communities

through a fluidic module before their storage for total DNA/

RNA extraction and genetic analyses in the lab, and high-quality

imaging/filming of individual cells or organisms under different

types of illumination. Planktonic organisms are notably fragile,

versatile, and ephemeral, and the scarcity of live images and

movies of plankton at sea constitutes arguably the major

knowledge-gap in oceanography, today’s oceanographers

spending most of their time behind their office computer

screens or analyzing in the lab fixed and thus highly-altered

plankton samples. Beyond generating quantitative phenotypic

data complementary to DNA metabarcoding, the PlanktoScope

can trigger an emotional shock in each planktonaut discovering

the beauty of the marine microbiome, changing their view of the

ocean forever and further driving their will to explore and

preserve the invisible life thriving under their boat.
Toward seatizen field-Aquascopes for
perennial cooperative monitoring of the
global aquatic microbiome

Today we have developed all parts to assemble a stable P2

PlanktoKit 1.0 allowing any engaged seatizen to generate

consistent plankton eco/morpho/genetic data directly in the

field. The PlanktoKit 1.0, which costs less than $3,000 in parts,

consists of a cruising-speed plankton collection system (von

Ammon et al., 2020), a PlanktoScope (Pollina et al., 2022), a

new cost-effective plankton DNA collection-kit we call the

‘Lamprey’, and a tablet computer to drive the PlanktoScope,

record all contextual and meta-data, and visualize and record

plankton images and movies. We have shown that these frugal

tools deployed from sailing boats can generate consistent,

planetary scale genetic (this paper) and morphological

(Mériguet et al., 2022) data, paving the way for the Plankton

Planet vision (Box 1). Deployment of the first kits on key

navigation loops and routes will start in 2023 in the Atlantic

oceans as part of the European research program AtlantEco. We

believe that implementation of a perennial and self-sustainable

survey of the world ocean surface plankton could happen by
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2030, depending on our capacity to organize the synergies

between seatizens (crews of all kinds of boats - pleasure and

racing yachts, commercial, fishing, and defense vessels -

fishermen and aquaculturists, managers), makers and

engineers, and reseachers. This would bring critical new

knowledge and outputs for human societies sharing the blue

planet (Box 2).

At the core of our long-term vision, the principles applied to

development of the PlanktoScope (Pollina et al., 2022) should be

extended to co-construct a field-AquaScope for seatizen

exploration of aquatic eco-systems, and the concept could be

easily applied for the exploration of other planetary biomes. We

foresee the field-AquaScope as a miniaturized platform that can

host modules and sensors to measure the critical biological, but

also (bio)chemical, and physical parameters of any aquatic eco-

system. Each module (including the PlanktoScope) is co-

developed by small international and interdisciplinary teams of

(i) researchers who define the scientific specifications to address

fundamental question in global ecology, (ii) mariners and citizen

samplers who assess practical user-constraints linked to specific

field conditions (e.g. on-board sailing boats or cargo-ships), and

(iii) makers and engineers who design and construct the frugal

modules to measure given parameters. The Plankton Planet

ecosystem will provide overall coordination to ensure that all

modules can be fully integrated into the miniaturized field-

laboratory and generate good-quality homogenous data that are

shared in public databases.
Frontiers in Marine Science 14
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Over the last century, societies have spent phenomenal

amounts of money to discover the properties of the infinitely

small (atoms and cells) and the infinitely large (weather, planets

and stars, and the universe). But it is in between these extremes

that we find arguably the most complex object in the known

universe: eco-systems, i.e. self-organized and evolving life

networks that interact with physico-chemical processes at

micro- to planetary scales. Ecosystems have shaped the Earth

atmosphere and biogeochemical cycles, they currently buffer

climate change while providing sources of food and medicine,

they will determine the future habitability of our planet and the

fate of humanity. Due to their extreme complexity, integrating

biology, chemistry, and physics, ecosystems have long escaped

holistic quantitative assessment. Today the tools and methods

exist, in particular automated sequencing and imaging, as well as

artificial intelligence and massive computing to collect and

integrate the layers of big data needed to understand eco-

systems. The major challenge is to develop the new generation

of affordable tools that can be deployed in a systematic manner

across the spatio-temporal dimension of the Earth system.

Plankton Planet proposes a coherent and frugal approach to

overcome this challenge, at the interface of science and society,

using one of the simplest biomes – marine waters- as a case

study. Clearly being at the onset of planetary biology, we hope

that Plankton Planet will contribute to reaching a profound

understanding of our habitat in the decades to come, and to

learning how to live in synergy with the biosphere.
BOX 2 Perspective outputs of Plankton Planet.

Oceanography 3.0 ecosystem

• An international fleet of planktonauts to act as sentinels and the collective consciousness of the biological health of our oceans.
• An evolvable toolkit of affordable, scientifically relevant instruments for seatizen-based assessment of aquatic (marine and freshwater) biodiversity and

ecosystems.
• An ever-growing cryo-bank of global ocean DNA samples, archiving the memory of our changing oceans for future generations and technologies.
• A continuous flow of standardized ocean microbiome imaging and genetic data at the planetary scale, available for fundamental and applied science, policy-

makers, and education.
Blue-sky science

• Unique long-term monitoring of the distribution and evolution of global plankton biodiversity in our fast-changing ocean; including analysis of the impacts
of warming, acidification, and de-oxygenation.

• Novel understanding of abundance, structures, functions, and behaviors of plankton life via the billions of images and movies of planktonic organisms
generated at sea using PlanktoScopes.

• Incorporation of high-resolution global-scale biological data into efforts to model the dynamics of ocean ecosystems and ocean-climate interactions.
Applied science & policies

• Detection of invasive, toxic, or economically relevant species at the planetary scale.
• Evaluation of the health of oceanic regions based on species content, species richness, and trends in time.
• Assessment of ocean biogeographic zones (“seascapes”) for optimal design of marine protected areas in the high seas (e.g. ecosystems with high capacity for

carbon pumping).
• Linking of data on plankton communities (including fish gametes and larvae, and eDNA) to fish-catch data for robust prediction of fish stocks.
Education through ‘Plankton & Arts’

• Collective awareness of the ocean microbiomes and their planetary impact, both directly (through the PlanktoScope) and indirectly via the shared images,
movies, and 3D prints of plankton. Educational tools will notably be distributed by planktonauts in remote countries and islands whose communities interact
with and depend on the marine ecosystem.
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Towards operational
phytoplankton recognition
with automated high-
throughput imaging, near-real-
time data processing, and
convolutional neural networks

Kaisa Kraft1*, Otso Velhonoja1, Tuomas Eerola2,
Sanna Suikkanen1, Timo Tamminen1, Lumi Haraguchi1,
Pasi Ylöstalo1, Sami Kielosto1, Milla Johansson3, Lasse Lensu2,
Heikki Kälviäinen2, Heikki Haario2 and Jukka Seppälä1

1Finnish Environment Institute, Marine Research Centre, Helsinki, Finland, 2Computer Vision and
Pattern Recognition Laboratory, School of Engineering Science, Lappeenranta-Lahti University of
Technology LUT, Lappeenranta, Finland, 3Finnish Meteorological Institute, Helsinki, Finland
Plankton communities form the basis of aquatic ecosystems and elucidating

their role in increasingly important environmental issues is a persistent research

question. Recent technological advances in automated microscopic imaging,

together with cloud platforms for high-performance computing, have created

possibilities for collecting and processing detailed high-frequency data on

planktonic communities, opening new horizons for testing core hypotheses in

aquatic ecosystems. Analyzing continuous streams of big data calls for

development and deployment of novel computer vision and machine

learning systems. The implementation of these analysis systems is not always

straightforward with regards to operationality, and issues regarding data flows,

computing and data treatment need to be considered. We created a data

pipeline for automated near-real-time classification of phytoplankton during

remote deployment of imaging flow cytometer (Imaging FlowCytobot, IFCB).

Convolutional neural network (CNN) is used to classify continuous imaging

data with probability thresholds used to filter out images not belonging to our

existing classes. The automated data flow and classification system were used

to monitor dominating species of filamentous cyanobacteria on the coast of

Finland during summer 2021. We demonstrate that good phytoplankton

recognition can be achieved with transfer learning utilizing a relatively

shallow, publicly available, pre-trained CNN model and fine-tuning it with

community-specific phytoplankton images (overall F1-score of 0.95 for test set

of our labeled image data complemented with a 50% unclassifiable image

portion). This enables both fast training and low computing resource

requirements for model deployment making it easy to modify and applicable

in wide range of situations. The system performed well when used to classify a

natural phytoplankton community over different seasons (overall F1-score 0.82
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for our evaluation data set). Furthermore, we address the key challenges of

image classification for varying planktonic communities and analyze the

practical implications of confused classes. We published our labeled image

data set of Baltic Sea phytoplankton community for the training of image

recognition models (~63000 images in 50 classes) to accelerate

implementation of imaging systems for other brackish and freshwater

communities. Our evaluation data set, 59 fully annotated samples of natural

communities throughout an annual cycle, is also available for model testing

purposes (~150000 images).
KEYWORDS

IFCB, near-real-time classification, phytoplankton imaging, automated data
processing, imaging flow cytometry (IFC), convolutional neural network, CNN,
operational observations
1 Introduction
The role of oceans and coastal seas in the global climate is

well recognized, with phytoplankton playing a key role in

organic carbon fluxes (Moigne 2019). At the same time,

changes in the marine environment related to climate change

affect the abundance and diversity of phytoplankton (Hutchins

and Fu, 2017; Righetti et al., 2019), which is also likely to affect

ecosystem functioning. Phytoplankton communities consist of

hundreds of species of microorganisms with generation times in

the order of hours (Reynolds, 2006). As phytoplankton

community dynamics reflect changes in environmental

forcing, growth traits of competing species and multiple food

web interactions, a high-frequency characterization of those

communities is required to improve both ecological studies

and monitoring.

To follow and understand these changes at appropriate

spatial and temporal scales, and to provide data for ecosystem

modeling in predicting future responses, sustained observations

of phytoplankton diversity are required. Traditional methods of

phytoplankton community research using light microscopy

results in a bottleneck, due to the constraints of acquiring

community composition information on these small

organisms, which require laborious sample preparation and

microscopic identification. Recent frameworks for Essential

Ocean Variables and Essential Biodiversity Variables underline

the need to develop and improve automated observing

technologies for phytoplankton, combined with open solutions

for data handling (Miloslavich et al., 2018; Muller-Karger

et al., 2018).

Recent technological advances have led to the emergence of

automated and semi-automated imaging instruments for

plankton studies, with steadily improving image resolution and
02
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output rates. One of the most promising methods for observing

nano to mesoscale aquatic organisms is imaging flow cytometry.

The Imaging FlowCytobot (IFCB) (Olson and Sosik, 2007) is

among the most frequently used imaging flow cytometers for

phytoplankton (covering a size range of approximately 10 to 150

µm Equivalent Spherical Diameter, or ESD) and its usefulness in

phytoplankton ecology has been demonstrated by several studies

(e.g. Laney and Sosik, 2014; Harred and Campbell, 2014; Anglès

et al., 2019; Fischer et al., 2020). It has also been popular in

Harmful Algal Bloom (HAB) studies or as an early warning

detection of rare but toxic species (Campbell et al., 2010; 2013,

Harred and Campbell, 2014; Henrichs et al., 2021; Kraft et al.,

2021). The IFCB can produce up to tens of thousands of images

per hour (Olson and Sosik, 2007), yielding real-time big data.

The use of this type of new instrument opens new horizons for

exploring planktonic systems (Lombard et al., 2019).

However, this creates a new bottleneck as it is impossible for

a human to screen millions of images. Analyzing this big data

calls for computer vision and machine learning methods capable

of producing interoperable data across platforms and systems.

As reviewed by Irisson et al. (2022) automatic plankton image

classification traditionally starts with the extraction of manually

engineered image features which are then used to train a

classifier, typically either a Support Vector Machine (SVM)

(Cortes and Vapnik, 1995) or a Random Forest (RF)

(Breiman, 2001). The main problem with this approach is in

finding image features which are both general and provide good

delineation between the classes. Recent progress in both

computer vision techniques and computing resources has

made it possible to learn relevant image features directly from

the images themselves, through deep learning (LeCun et al.,

2015). Recent papers using deep learning techniques for

plankton identification, especially Convolutional Neural

Networks (CNNs), have shown them to be an attractive choice
frontiersin.org
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for automation of the process (e.g. Luo et al., 2018; Dunker et al.,

2018; Lumini and Nanni, 2019; Kerr et al., 2020; Lumini et al.,

2020; Guo et al., 2021; Henrichs et al., 2021).

Transfer learning i.e., pre-training the model with a large

data set of generic images and fine-tuning it to the target data set,

is a common method used with CNNs. Thus, multiple platforms

distribute pre-trained generic CNN models. Consequently,

choices for CNN architectures and training procedures are

numerous (Lumini and Nanni, 2019). However, applying

CNN techniques to plankton image recognition is not

straightforward due to the differing distribution of the training

and target data and the multitude of CNN architectures to

choose from. In addition, CNN-based methods are usually

trained using data sets with hundreds, or even thousands of

example images per class, which is often difficult to obtain in

practice, especially in new locations (Dai et al., 2017).

Furthermore, “data set shift” (i.e. the change in distribution of

data across classes between the training data set and reality) is an

important issue when deploying machine learning models

(Moreno-Torres et al., 2012). Data set shift is highly relevant

to plankton applications due to factors such as seasonal changes

in community composition. This underlines the importance of

assembling a diverse training data set, over time and space

(González et al., 2017). Additionally, the size of CNN models

becomes an important fac tor in moving towards

automated/semi-automated plankton classification for

real-time observations, determining the computational

capacity needed.

High-throughput imaging coupled with efficient deep

learning techniques will be one of the key game changers in

the ecological research of phytoplankton. As with other branches

of science using big data, the key challenges in plankton imaging

are validation of data quality, integration of different data

sources, defining common vocabularies of metadata and

sharing of data and technology solutions to create reliable,

acceptable and timely products (Muller-Karger et al., 2018;

Lombard et al., 2019). In their review, Lombard et al. (2019)

list a set of challenges and priorities for emerging phytoplankton

detection technologies. One of their main recommendations is

collaboration between experts and exchange with other

disciplines, such as modeling. Phytoplankton imaging is also

recognized as one of the main emerging technologies of coastal

observation research systems for the provision of data to various

stakeholders (Farcy et al., 2019). This study helps solve some of

these technological challenges and improve the applicability of

phytoplankton image recognition systems.

Our aim in this study is to address some of the fundamental

challenges in the implementation of automated/semi-automated

phytoplankton classification for real-time plankton image

observations, using the Baltic Sea phytoplankton community

as an example. This environment is one of Earth’s largest

brackish water habitats, with an especially challenging mix of

phytoplankton species of both freshwater and marine origins,
Frontiers in Marine Science 03
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including many small-sized species (Olli et al., 2019). Such a data

set, collected from a completely new type of habitat, has a

different species composition to those from previous studies

on plankton image classification. This poses a challenge to the

implementation of automated recognition systems.

We created a data pipeline that allows near-real-time

automated classification of individual plankton organisms

using a CNN, throughout a remote deployment of an IFCB.

We demonstrate its operationality by monitoring the

filamentous cyanobacteria of the Baltic Sea, which are an

important phytoplankton group due to their harmful summer

blooms. We used a relatively shallow, openly available, pre-

trained CNN model and fine-tuned it to plankton images from

brackish waters. We demonstrate that, through this simple

transfer-learning approach, one can achieve good classification

accuracy. This makes our approach applicable to a wide range of

users with low resources for model deployment. We further

address the practical implications of the classifier performance

by discussing the highest confusions among the classes.
2 Materials and methods

2.1 Sampling system

The IFCB (McLane Research Laboratories, Inc., U.S.) is an in

situ automated submersible imaging-in-flow cytometer

developed to image planktonic organisms (Olson and Sosik,

2007). The instrument can be used with either scatter or

chlorophyll a fluorescence as a trigger, the latter being used

more often for phytoplankton detection. Sheath fluid is used to

force the particles to flow through the middle of the flow cell,

improving the focus of the images and enabling excellent quality.

The instrument has an image resolution of roughly 3.5 pixels per

µm. According to the manufacturer, it captures images of

suspended particles in the range of 10 to 150 µm (ESD), but in

practice particles ranging from ~5 µm ESD to filaments ~300 µm

in length have been captured (Kraft et al., 2021). The limiting

factors are camera resolution, to get identifiable images, on the

lower end and a 150-µm mesh at the instrument inlet that

prevents it from clogging, together with the size of the field of

view. However, the size range needed for quantitative

observations is likely restricted to 10 to 80 µm (ESD)

(Lombard et al., 2019). The IFCB processes a 5-mL sample

every ~20 minutes, collecting up to ~30 000 images per hour.

The Marine Research Centre of the Finnish Environment

Institute (SYKE) has had an IFCB deployed at the Utö

Atmospheric and Marine Research Station (59°46.84’ N, 21°

22.13’ E) sporadically since 2017, now deployed continuously

since early 2020 (see the detailed description of the station in

Laakso et al., 2018 and the deployment setup in Kraft et al.,

2021). Water is pumped continuously for the station’s flow-

through measurements, from 250 m offshore, with an
frontiersin.org
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underwater pump (Grundfos SP3A-9N) through a 50-mm black

PE tube lying at the sea bottom, at a depth of 23 m. The inlet for

water sampling is located at a depth of ~5 m, representing the

near-surface layer. The time it takes for the water to reach the

cabin is approximately 5-6 minutes. Water is distributed

through several flow-through sensors (including the IFCB),

after reaching the inside of the station building (Laakso et al.,

2018). The IFCB is currently operated with a chlorophyll a

trigger to prevent the imaging of detritus and other non-

living material.
2.2 Labeled image data sets

2.2.1 Image data set for model training
and testing

To implement an automated image recognition system for

Baltic Sea phytoplankton, a labeled image data set is required for

training a classifier and testing its performance. Our labeled

image data set, referred to as SYKE-plankton_IFCB_2022,

consists of approximately 63 000 images belonging to 50

different phytoplankton taxa, defined, identified and verified

by expert taxonomists (Figure 1). Due to differences in the

features of the organisms visible in the images, which form the

basis of the identification, some classes have been determined to

the species level while others have been determined at a higher

taxonomic level. The 50 classes represent the most common

phytoplankton species/groups present in the Gulf of Finland and

the Northern Baltic Proper. The taxonomy follows the Checklist

of Baltic Sea Phytoplankton Species (Hällfors, 2004) and the

nomenclature of the World Register of Marine Species (WoRMS

Editorial Board, 2021). The data set SYKE-plankton_IFCB_2022

is publicly available at: http://doi.org/10.23728/b2share.

abf913e5a6ad47e6baa273ae0ed6617a.

The SYKE-plankton_IFCB_2022 data set was collected in

the Baltic Sea on different occasions, to cover spatio-temporal

variations in plankton communities. In 2016 and 2019 water

samples (n=52) were collected using the Alg@line ferrybox

systems of M/S Finnmaid and Silja Serenade (Ruokanen et al.,

2003; Kaitala et al., 2014) and analyzed in the laboratory with the

IFCB. In 2017 and 2018 data were collected at the Utö station

over the deployment periods, with the continuous set up of the

IFCB, followed by the sporadic selection and labeling of a set of

samples (n=62) (Figure 2).

Images of natural phytoplankton communities reflect their

wide morphological diversity, resulting in large variations in size

and aspect ratios of the images, with images ranging from tens to

hundreds of pixels vertically and tens to more than one thousand

pixels horizontally. The samples were labeled using a tool created

by Sosik et al. (https://github.com/hsosik/ifcb-analysis/wiki/

Instructions-for-manual-annotation-of-images). Some samples

were labeled so that all identifiable regions of interest (ROIs)
Frontiers in Marine Science 04
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were assigned to a class and some samples were labeled only

partially, to expand the labeled sets of some classes. The data set,

therefore, does not represent real-life proportions among classes,

however, the number of images per class still reflects, to some

extent, their prevalence in natural populations.

The IFCB produces a non-negligible amount of images that

are difficult or even impossible to identify with certainty. To

train a CNN model, only images that can be reliably labeled

should be used, to avoid mislabeled images which would

negatively affect the training process. However, for testing the

performance of the model, the unidentifiable part of the samples

should be considered for calculating realistic performance

metrics. The SYKE-plankton_IFCB_2022 data set was divided

using stratified sampling, into training, validation and test sets

(60%, 20% and 20% respectively). The training set, referred to

here as Training Data, was used exclusively for training the

model. The validation set had two purposes. First, it was used to

monitor the model’s accuracy during training, which is what it is

usually used for, and in this sense is referred to as a validation

set. After the model training was complete, the validation set was

complemented with an equal number of unclassifiable images

(50-50%) to make it more representative of image data from

natural phytoplankton communities (including detritus and

other unidentifiable images). The validation set complemented

by the unidentifiable images (Validation Data) was used to

determine class-specific thresholds which will be explained in

section 2.3.1 Probability filtering of unclassifiable images using

thresholds. For the same reason as with the Validation Data, the

test set was similarly complemented with equal numbers of

unclassifiable images (50-50%). The test set with unclassifiable

images (Test Data) was used to calculate the final, unbiased

estimation of the model’s performance. The difference between

dominant and rare taxa in the SYKE-plankton_IFCB_2022 data

set manifests itself as a large imbalance in the number of images

per class: it varies from 19 (Amylax triacantha) to 12 280

(Dolichospermum sp./Anabaenopsis sp.).
2.2.2 Image data set for performance
evaluation

As previously explained, correct evaluation of model

performance in classifying natural samples requires test data to

contain difficult-to-classify images. That is, their features fit several

different classes (so-called borderline images), as is the case with

multiple images in natural samples. For this purpose, 59 samples

were selected from 2021 when the IFCB was continuously deployed

in Utö; first as one per week throughout the year complemented

with samples from specific seasons to target specific classes. All

samples were manually labeled in their entirety so that each image

was assigned to one of the 50 classes or as “unclassified” (unable to

be assigned to any of the existing classes). The image labeling was

done with a custom graphical tool in a Jupyter Notebook, utilizing
frontiersin.org
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the model's predictions to speed up the process. This data set,

SYKE-plankton_IFCB_Utö_2021 (Evaluation Data), is publicly

available at http://doi.org/10.23728/b2share.7c273b6f40

9c47e98a868d6517be3ae3.
Frontiers in Marine Science 05
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2.3 The CNN model

The neural network model used in this study is based on a

pre-trained ResNet-18 (He et al., 2016) and fine-tuned with the
FIGURE 1

Example images representing the classes. 1) Aphanizomenon flosaquae, 2) Dolichospermum sp./Anabaenopsis sp. coiled, 3) Nodularia
spumigena, 4) Dolichospermum sp./Anabaenopsis sp., 5) Snowella sp./Woronichinia sp., 6) Chroococcales, 7) Merismopedia sp., 8)
Oscillatoriales, 9) Aphanothece paralleliformis, 10) Chroococcus sp., 11) Eutreptiella sp., 12) Euglenophyceae, 13) Cryptomonadales, 14)
Cryptophyceae/Teleaulax sp., 15) Katablepharis remigera, 16) Pseudopedinella sp., 17) Pyramimonas sp., 18) Ceratoneis closterium, 19)
Uroglenopsis sp., 20) Cymbomonas tetramitiformis, 21) Chlorococcales, 22) Monoraphidium contortum, 23) Oocystis sp., 24) Pennales thin, 25)
Pennales thick, 26) Centrales, 27) Thalassiosira levanderi, 28) Cyclotella choctawhatcheeana, 29) Chaetoceros sp. single, 30) Melosira arctica, 31)
Skeletonema marinoi, 32) Nitzschia paleacea, 33) Licmophora sp., 34) Chaetoceros sp., 35) Pauliella taeniata, 36) Peridiniella catenata chain, 37)
Peridiniella catenata single, 38) Gymnodiniales, 39) Gymnodinium like cells, 40) Heterocapsa triquetra, 41) Heterocapsa rotundata, 42)
Prorocentrum cordatum, 43) Gonyaulax verior, 44) Amylax triacantha, 45) Dinophyceae, 46) Dinophysis acuminata, 47) Mesodinium rubrum, 48)
Ciliata, 49) Beads, 50) Heterocyte.
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SYKE-plankton_IFCB_2022 Baltic Sea phytoplankton image

data set, described above. The pre-trained model was obtained

from TorchVision, which is part of the PyTorch project (Paszke

et al., 2019). TorchVision models are pre-trained on the

ImageNet data set (Deng et al., 2009), which consists of RGB

images of 1000 classes, such as fire truck and Golden Retriever.

The head of the pre-trained ResNet-18, i.e., the last fully

connected linear layer, was replaced with three new linear

layers, while the rest of the network layers were only fine-

tuned. The new layers were initialized with the default

PyTorch initialization for linear layers, which was in more

detail a uniform distribution between -√k and √k, where k =

1/in_features.

To improve the performance of unseen images (not present

in the Training Data), avoid overfitting and reduce class

imbalance, first, random oversampling was done for the
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smaller classes in the Training Data so that each class

contained a minimum of 100 training images. Secondly, some

simple image augmentations were used for all classes in the

Training Data (including the resampled images): horizontal and

vertical flip, translation, zoom and brightness change. However,

all augmentations were done sparingly since images generated

by the IFCB are quite homogeneous. More specifically,

translation was done only on the shorter side of the original

image and none of the original pixels were clipped, the zoom

range was 0.6 to 1.4, the rotation range was -10 to 10 degrees,

and the range of brightness change was 0.95 to 1.1. Another

approach to address class imbalance would be to provide class-

specific weights to the optimizer (see e.g. cost-sensitive learning,

Thai-Nghe et al., 2010). However, to avoid reducing the

generalizability of the model to data sets with different class

proportions, this method was not used.
FIGURE 2

Map showing the location of Utö Atmospheric and Marine Research Station, and the points along the Alg@line routes of M/S Finnmaid and M/S
Silja Serenade, from where the manually annotated samples were collected.
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Images were resized to 180×180 pixels since 180 is the mean

width of the training images. To preserve the original image

aspect ratio, the mode (i.e., most frequent) pixel value of each

image was used as padding in its resized form. Pixel values were

scaled between 0 and 1 for each image, a process known as min-

max normalization, to avoid any training overhead caused by

unnecessarily large integer values. Although the IFCB images are

grayscale, because the original ResNet was trained with RGB

images, three color channels were used.

A categorical cross-entropy loss was used with Adam as the

optimizer function (Kingma and Ba, 2014). To further improve

model training, a custom learning rate schedule was used. This

schedule consisted of three steps. At each step, the number of

trainable layers was increased, and the learning rate was

decreased. Step 1 lasted for 5 epochs, where only the last linear

layers were trained with a learning rate of 0.01. Step 2 lasted for

the next 10 epochs, where the training of the last convolutional

layer was started with a learning rate of 0.001, and the learning

rate of the linear layers was decreased to 0.005. Step 3 lasted from

epoch 16 onward, where the rest of the base layers were trained

with a 0.0001 learning rate, the last base layer was trained with

0.001, and the head layers were trained with 0.0025. The training

was stopped when the loss value on the validation set did not

decrease for 12 epochs. The average training time was one hour

on a single NVIDIA Tesla P100 GPU.

Class-specific recall, precision and F1-score were calculated

for the classification results to describe the class-specific

performance of the model. The weighted average F1-score was

calculated to describe the entire model performance since global

accuracy is a flawed metric for class-imbalanced data (Hossin

and Sulaiman, 2015). Weighted average F1-score was chosen

since we were evaluating the classification model from an

operational point of view, in which case, the common classes

and therefore more abundant ones should be given more weight.

The computation involves True positive (TP), False positive (FP)

and False negative (FN) numbers. Recall quantifies how well

classes are identified and is computed as the proportion of

successful identifications in a class. Precision quantifies how

well other classes are rejected and is computed as the proportion

of positive identifications that were correct. F1-score expresses

the balance between recall and precision.

Recall = TP= TP + FNð Þð Þ

Precision = TP= TP + FPð Þð Þ

F1 − score = 2* precision*recallð Þ= precision + recallð Þð Þð Þ
2.3.1 Probability filtering of unclassifiable
images using thresholds

As explained before, not all images captured by IFCB are

classifiable due to a lack of characteristic features for example.
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We chose not to create classes for those. Therefore, a filtering

method was needed to remove those images when the CNN was

deployed. For each image, a classifier produces prediction scores

for all classes in the training data. Prediction scores can be

considered the probability of correctly classifying an image and

the highest prediction score represents the winning class. By

assigning a threshold, which the prediction score must exceed,

they can then be used to filter out images with low classification

probabilities. The threshold is not universal but class-specific.

Therefore a unique probability threshold was estimated for each

class, and only images with at least one class probability above

any assigned thresholds were assigned to a class. Filtering the

data is a proven method to treat low probability classifications

(Faillettaz et al., 2016; Luo et al., 2018).

The final layer in our CNN model uses a softmax activation

function, which outputs a normalized probability distribution

over the classes. Since the probability distribution coming from a

softmax can be quite extreme, i.e., one class has most of the

probability mass, the outputs from the layer before the softmax

were scaled down. Scaling was done by multiplication by the

natural logarithm of 1.3. This has the same effect as changing the

base of the exponents in the softmax function from e to 1.3,

however, it is easier to scale the outputs rather than modify the

softmax itself. The value of 1.3 was determined by manually

testing different values. In short, the conversion is: softmax

(out×ln(1.3)), where out = the outputs of the layer before

softmax. This conversion introduced more smoothness in the

class probabilities while maintaining their order (and therefore

the classification). Smoothness made it easier to set class

probability thresholds. A figure illustrating the effect of scaling

on selected ROIs can be found in the supplementary material

(Supplementary 3).

Ideally, thresholds would be assigned with a data set

representing a species distribution similar to that of a natural

community. However, the community composition changes

with the seasons and species dynamics differ from year to year.

Therefore, acquiring an ideal data set for threshold

determination, which represents natural distribution covering

all common species, is laborious. To start the implementation of

the classifier we used the Validation Data to determine

thresholds. The Validation Data was run through the classifier

and precision, recall and F1-score were calculated. The threshold

was varied and the value yielding the highest F1-score was

chosen for a given class. The chosen thresholds were tested by

running the Test Data through the classifier, and precision, recall

and F1-score were calculated. Images below the thresholds were

still considered when calculating performance metrics: correct

images of a class which reached the assigned threshold limit were

considered as TP and incorrect images FP; correct images below

the threshold limit were considered as FN and incorrect

images TN.

The code implementing the model described above can be

found at https://github.com/veot/syke-pic.
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2.4 Data transfer and services

First, the IFCB data is stored on the instrument’s hard drive.

Then the IFCB is connected to the Utö station’s inner network,

through which the data flows to the Finnish Meteorological

Institute (FMI) file server via optical fibre, where it is

temporarily stored. From there onwards it is transferred to a

cloud object storage service Allas, provided by the Finnish IT

Center for Science (CSC). Allas is based on CEPH object storage

technology, allowing to easily share data to other services within

the CSC’s computing platform - much like Amazon S3 in AWS.

The subsequent data analysis (described below) is done on a

Linux virtual machine with 6 vCPUs and 16 GB of memory (the

number of resources required for computing also image

biovolumes, described below), also provided by CSC.

Significantly fewer resources are needed when running the

CNN-classifier alone.
2.5 Near-real-time data analysis

To use the generated IFCB images and the CNN classifier for

near-real-time phytoplankton monitoring, a basic data pipeline

was established. The near-real-time data pipeline and

classification system were taken into use at the beginning of

summer 2021. The entire data transfer pipeline results in a total

delay of about two hours from the image capture to the point

when the image is classified. The classification is performed

automatically via the above-described CNN model as soon as a

new batch of IFCB data is updated to Allas, on an hourly schedule,

and the data is classified into the 50 classes. In addition to image

classification also image-specific biovolumes are computed. A

method developed by Moberg and Sosik (2012) is used for

computing the biovolumes of the objects (phytoplankton) in the

images taken with IFCB. More detailed descriptions of available

MATLAB-based tools and open access codes can be found at

https://github.com/hsosik/ifcb-analysis. For comparison of the

biovolume estimates with those obtained via traditional

phytoplankton monitoring methods of the Baltic Sea area

(HELCOM, 2017), the biovolumes are converted to biomass (µg

L-1) assuming a plasma density of 1 g cm-3 (CEN, 2015). Finally,

the biovolume/biomass information is combined with the

classifications resulting in a usable form of class-specific

biovolume/biomass per L in a sample and the hourly mean

is calculated.
2.6 Evaluation of the near-real-time
classifier system

To assess how well the model classified natural samples

using the thresholds determined using the Validation Data, a
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total of 59 samples (a total of approx. 20 hours of data) were

selected from data collected with IFCB between January to

December 2021 (the Evaluation Data). First the selection

targeted one sample per week, but due to the scarcity of some

classes additional samples were selected from expected seasons

to find images of the scarce classes. As proposed by González

et al. (2017) for proper performance validation a set of samples

should have sufficient variability. We attempted to ensure this by

selecting samples from different seasons which also covered

transition phases. Selected samples were manually inspected:

all classifications were assessed (confirmed or corrected) and all

identifiable images which fell below the thresholds were labeled.

The unidentifiable images left without an assigned class were

considered unclassified. Unclassified images are still accounted

for in the total community biomass with the assumption that

when chlorophyll a is used as a trigger the majority of imaged

particles should be living material. The TP, FP and FN were

counted and consequently precision, recall and F1-score were

calculated for each class. Class-specific metrics were calculated

based on the thresholds determined using the Validation Data,

so images below the thresholds were still taken into account:

correct images within a class to reach the assigned threshold

were considered TP and incorrect images FP; correct images

below the threshold were considered FN and incorrect

images TN.
3 Results

3.1 CNN classifier performance

The first step in implementing a near-real-time analysis of

plankton communities is to establish a suitable recognition

model. Overall classification performance of the Test Data

using CNN was high (F1-score 0.95), and the network was

able to identify many common species of the Baltic Sea

phytoplankton community. The class-specific precision, recall

and F1-score were between 0.85 and 1 in over half of the classes,

but some of the classes had much lower values (0.4-

0.6) (Table 1).

With classes having the largest training sets (> 1000 images),

all the metrics (precision, recall and F1-score) were between 0.94 -

1. With some classes such as Euglenophyceae, Dinophysis

acuminata, Peridiniella catenata chain, Ceratoneis closterium,

Nitzschia paleacea, Monoraphidium contortum and

Cymbomonas tetramitiformis all the metrics were > 0.9,

although the Training Data contained < 200 images. Classes

with the poorest performance (all metrics < 0.7) were

Aphanothece paralleliformis, Pseudopedinella sp., Pyramimonas

sp., Chlorococcales and Beads (calibration). These all contained

low numbers of training images (17 – 227, discounting data

augmentation) except for Pyramimonas sp. (734 images). The

largest differences between precision and recall were found with
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TABLE 1 The table represents the class-specific classification metrics for the Test Data and for the Evaluation Data (Pr, precision; Re, Recall;
F1, F1-score; N, number of images).

Class/taxonomic group Training Data Validation set Test Data Evaluation Data

N Threshold N Pr Re F1 N Pr Re F1

Cyanophyceae (0.94)

Dolichospermum sp./Anabaenopsis sp. 7368 0.38 2456 0.98 0.99 0.98 790 0.88 0.96 0.92

Aphanizomenon flosaquae 4193 0.24 1398 0.97 1.00 0.98 1849 0.87 0.98 0.92

Oscillatoriales 2664 0.31 888 0.99 1.00 0.99 3893 0.98 0.98 0.98

Snowella sp./Woronichinia sp. 1770 0.63 590 0.99 0.97 0.98 42 0.64 0.69 0.67

Dolichospermum sp./Anabaenopsis sp. coiled 1502 0.41 501 0.93 0.96 0.95 70 0.74 0.99 0.85

Chroococcus sp. 496 0.61 166 0.90 0.94 0.92 2 ND ND ND

Nodularia spumigena 101 0.32 34 0.80 0.94 0.86 62 0.80 0.84 0.82

Chroococcales 85 0.73 29 0.75 0.93 0.83 793 1.00 0.51 0.68

Merismopedia sp. 59 0.63 19 0.79 0.79 0.79 2 ND ND ND

Aphanothece paralleliformis 17 0.80 6 0.57 0.67 0.62 9 ND ND ND

Cryptophyceae (0.89)

Cryptophyceae/Teleaulax sp. 4098 0.53 1366 0.96 0.97 0.96 16952 0.97 0.90 0.93

Cryptomonadales 428 0.37 142 0.79 0.82 0.81 525 0.65 0.58 0.61

Euglenophyceae (0.76)

Eutreptiella sp. 1348 0.43 450 0.95 0.94 0.94 1678 0.90 0.76 0.83

Euglenophyceae 61 0.24 21 0.90 0.90 0.90 18 0.28 0.39 0.33

Dinophyceae (0.75)

Heterocapsa triquetra 1966 0.39 655 0.98 0.97 0.97 2267 0.91 0.95 0.93

Dinophyceae 860 0.40 286 0.88 0.94 0.91 1562 0.83 0.45 0.59

Peridiniella catenata single 539 0.52 180 0.89 0.97 0.93 222 0.75 0.81 0.78

Heterocapsa rotundata 368 0.56 123 0.84 0.90 0.87 2609 0.85 0.74 0.79

Prorocentrum cordatum 166 0.47 55 0.87 0.82 0.84 0 ND ND ND

Dinophysis acuminata 130 0.68 44 0.98 0.91 0.94 17 0.79 0.65 0.71

Peridiniella catenata chain 116 0.70 38 0.97 1.00 0.99 89 0.99 0.87 0.92

Gymnodinium like cells 95 0.44 31 0.76 0.52 0.62 102 0.59 0.25 0.36

Gymnodiniales 41 0.29 14 0.92 0.86 0.89 38 0.78 0.74 0.76

Gonyaulax verior 13 0.32 5 0.57 0.80 0.67 1 ND ND ND

Amylax triacantha 11 0.34 4 0.60 0.75 0.67 3 ND ND ND

Bacillariophyceae (0.86)

Skeletonema marinoi 2477 0.46 825 1.00 0.99 0.99 7402 0.99 0.94 0.97

Thalassiosira levanderi 1522 0.63 508 0.95 0.95 0.95 2008 0.87 0.68 0.77

Chaetoceros sp. chain 829 0.51 277 0.93 0.95 0.94 693 0.76 0.77 0.76

Pennales thin 469 0.29 156 0.96 0.99 0.97 334 0.61 0.84 0.71

Centrales 288 0.51 96 0.98 0.89 0.93 92 0.77 0.68 0.72

Chaetoceros sp. single 128 0.12 42 0.85 0.98 0.91 571 0.75 0.60 0.67

Pennales thick 126 0.37 42 0.93 0.88 0.90 1088 0.72 0.85 0.78

Pauliella taeniata 71 0.62 24 1.00 0.96 0.98 56 0.96 0.86 0.91

Cyclotella choctawhatcheeana 61 0.47 21 0.89 0.81 0.85 199 0.92 0.57 0.71

Licmophora sp. 44 0.43 15 1.00 0.80 0.89 78 0.88 0.77 0.81

Nitzschia paleacea 39 0.40 13 0.92 0.92 0.92 4 ND ND ND

Ceratoneis closterium 27 0.41 9 1.00 1.00 1.00 75 0.68 0.91 0.78

Melosira arctica 26 0.30 8 0.73 1.00 0.84 58 0.85 0.91 0.88

Chrysophyceae (0.51)

Uroglenopsis sp. 310 0.88 103 0.89 0.83 0.86 134 0.50 0.66 0.57

Pseudopedinella sp. 227 0.76 76 0.69 0.67 0.68 579 0.81 0.46 0.59

(Continued)
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the classes, Gymnodinium like cells (0.76, 0.52), Gonyaulax verior

(0.57, 0.8),Melosira arctica (0.73, 1),Katablepharis remigera (0.83,

0.45) and Beads (0.44, 0.64). With Gymnodinium like cells and

Katablepharis remigera precision was higher than recall, meaning

rejection of images not belonging to the class was higher than

recognition of images which did belong to the class. For the classes

Gonyaulax verior, Melosira arctica and Beads, there was no issue

in recognizing the images belonging to the class, however, there

was the problem of a high proportion of false positives. Metrics for

classes of filamentous cyanobacteria (an important group in the

Baltic Sea) were all ≥ 0.93 except for the class, Nodularia

spumigena, which had the poorest performance (0.8 – 0.94). It

is important to note that Nodularia spumigena’s training set had a

considerably smaller number of images (only 101, compared to

Aphanizomenon flosaquae: 4193, Dolichospermum sp./

Anabaenopsis sp.: 7368, Dolichospermum sp./Anabaenopsis sp.

coiled: 1502) (Table 1).

When applying the classification system (the Evaluation

Data) overall performance dropped, but remained fairly high

for natural samples (F1-score 0.82). All class-specific

classification metrics are presented in Table 1. For the classes

with > 1000 images in the Training Data, the change in F1-score

was ≤ 0.1 except for the classes, Snowella sp./Woronichinia sp.,

Eutreptiella sp. and Thalassiosira levanderi. For classes with <

200 images in the Training Data score decreased ≤ 0.1 for

Nodularia spumigena, Peridiniella catenata chain, Pauliella

taeniata, Licmophora sp., Melosira arctica and Monoraphidium

contortum. The F1-score of Melosira arctica increased along
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with a larger number of images, on which the evaluation was

based (8 in the Test Data and 58 in the Evaluation Data). The

results for classes with < 10 images in their Evaluation Data will

not be presented as these rare occurrences would not help in

analyzing the model performance. However, classes with < 10

images in their Test Data were presented, as some classes had

much higher number of images in the Evaluation Data (Melosira

arctica and Ceratoneis Closterium). Other classes with > 10

images in the Evaluation Data, the poorest performance

(metrics < 0.7) was found for classes Snowella sp./

Woronichinia sp., Cryptomonadales, Gymnodinium like cells,

Uroglenopsis sp. and Heterocyte. The recall and F1-score (0.29 –

0.59) were low for the classes Pseudopedinella sp., Pyramimonas

sp. and Chlorococcales but precision was relatively high

indicating a poor function in class recognition and that class-

specific thresholds should be adjusted. Class recognition

performance of filamentous cyanobacteria (Aphanizomenon

flosaquae , Dol i chospermum sp . /Anabaenops i s sp . ,

Dolichospermum sp./Anabaenopsis sp. coiled, Nodularia

spumigena) was relatively high. This was also true for natural

samples (F1-scores 0.82 – 0.92) (Table 1).

The majority of classification problems, of course, occurred

between classes which resembled one another and were typically

from closely related taxa. The highest confusion amongst CNN

model results, when probability filtering thresholds were not

used, were within different classes of dinoflagellates and between

species-level classes and higher taxonomic-level classes

belonging to the same order (Table 2). Gymnodinium like cells
TABLE 1 Continued

Class/taxonomic group Training Data Validation set Test Data Evaluation Data

N Threshold N Pr Re F1 N Pr Re F1

Chlorophyta (0.34)

Pyramimonas sp. 734 0.95 245 0.57 0.41 0.48 8422 0.88 0.32 0.47

Oocystis sp. 505 0.50 169 0.88 0.93 0.90 161 0.91 0.89 0.90

Monoraphidium contortum 196 0.69 66 0.98 0.98 0.98 439 0.99 0.96 0.97

Cymbomonas tetramitiformis 119 0.44 40 0.90 0.90 0.90 4 ND ND ND

Chlorococcales 57 0.48 19 0.43 0.47 0.45 45 0.81 0.29 0.43

Other

Katablepharis remigera 32 0.36 11 0.83 0.45 0.59 4 ND ND ND

Ciliophora (0.76)

Mesodinium rubrum 679 0.44 227 0.96 0.95 0.96 560 0.91 0.86 0.88

Ciliata 146 0.39 48 0.89 0.88 0.88 288 0.93 0.49 0.64

Additional classes

Heterocyte 158 0.88 52 0.76 0.75 0.76 318 0.72 0.51 0.60

Beads 75 0.90 25 0.44 0.64 0.52 0 ND ND ND

Unclassifiable 12600 94028
fro
ntiersin
Classes are organized by the size of the training set to different taxonomic groups. N is the number of images per class in the Training Data, Test Data and Evaluation Data. Threshold is the
class-specific threshold used for the classification, determined with the Validation Data. ND in the Evaluation Data means “Not Determined”, the metrics were not calculated for classes with
< 10 images. The group level results are presented in brackets after each taxonomic group (the percentage of how big portion of the images belonging to that group were correctly classified to
the group).
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TABLE 2 Class pairs with the highest number of inter-class classification errors.

Group Actual label A A -> B (%) Predicted label B Group
Dinophyceae Dino

Peridiniella catenata single Dino

Peridiniella catenata single DIno

Eutreptiella sp. Eugleno

Cryptomonadales Crypto

Oocystis sp. Chloro

Snowella sp. / Woronichinia sp. Cyano

Eutreptiella sp. Eugleno

Eutreptiella sp. Eugleno

Thalassiosira levanderi Diatom

Chaetoceros sp. chain Diatom

Pennales thin Diatom

Chaetoceros sp. chain Diatom

Aphanizomenon flosaquae Cyano

Cryptomonadales Crypto

Dinophyceae Dino

(Continued)
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11
Dino Gymnodinium like
cells

35
8

Dino Amylax triacantha* 25
33

Dino Gonyaulax verior* 20

Dino Gymnodiniales 7

Dino Gymnodiniales 7

Chloro Chlorococcales 26

Chloro Chlorococcales 11

Crypto Cryptomonadales 10

Eugleno Euglenophyceae 10

Diatom Cyclotella
choctawhatcheeana

14

Diatom Cyclotella
choctawhatcheeana

5

Diatom Pennales thick 5

Diatom Chaetoceros sp.
single

7

Cyano Nodularia spumigena 6

Other Katablepharis remigera 9

Other Katablepharis remigera 9

187

https://doi.org/10.3389/fmars.2022.867695
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


TABLE 2 Continued

Group Actual label A A -> B (%) Predicted label B Group
Other Katablepharis remigera 9 Heterocapsa triquetra Dino

Heterocapsa triquetra Dino

Cryptophyceae/ Teleaulax sp. Crypto

Cryptophyceae/ Teleaulax sp. Crypto

Heterocapsa triquetra Dino

Aphanizomenon flosaquae Cyano

Chaetoceros sp. chain Diatom

Chaetoceros sp. single Diatom

Pennales thin Diatom

Aphanizomenon flosaquae Cyano

Mesodinium rubrum Ciliata

Chaetoceros sp. chain Diatom

d label B). The middle column contains the portions of images in class A that were incorrectly classified to class B. The results
esholds) and the rest of the results are for the Evaluation Data. The cells with two confusion values are: top: the test set, below:
yanophyceae; Eugleno, Euglenophyceae; Dino, Dinophyceae; Diatom, Bacillariophyceae; Ciliata, Ciliophora. The example
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Dino Gymnodiniales 5

Crypto Cryptomonadales 5

Eugleno Euglenophyceae 6

Eugleno Euglenophyceae 6

Diatom Pennales thin 8

Diatom Nitzschia paleacea* 25

Diatom Nitzschia paleacea* 25

Diatom Ceratoneis closterium 7

Cyano Aphanothece paralelliformis* 22

Ciliata Ciliata 5

Ciliata Ciliata 6

The table contains each class (Actual label A) with higher than 5% confusion to another class, as well as the terminal classes (Predict
highlighted in blue are for the test set of SYKE-plankton_IFCB_2022 (without unclassifiable images and probability filtering with th
the Evaluation Data. The abbreviations of the phytoplankton groups are: Chloro, Chlorophyta; Crypto, Cryptophyceae; Cyano,
images were randomly selected and not necessarily misclassified. Classes with * included <10 images.
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were confused (35%) for Dinophyceae and placed within a

higher taxonomic branch, Amylax triacantha and Gonyaulax

verior (with 4 and 5 images in the Test Data respectively) were

confused (25% and 20% respectively) for Peridiniella catenata

single (539 training images). Chlorococcales was also

considerably confused for Oocystis sp. (26%). From

filamentous cyanobacteria, only 6% of Nodularia spumigena

was confused with Aphanizomenon flosaquae (Table 2). A

confusion matrix with all confused classes is provided as

supplementary material (Supplementary 1).

Confusion was lower among classes in the Evaluation Data

when probability filtering with thresholds was applied. However,

several images were left unclassified, as a delicate balance

between TP and FN must be achieved for threshold

assignation. A class-specific confusion matrix for the

Evaluation Data, including those left unclassified, is provided

as supplementary material (Supplementary 2). Similar, to the

Test Data without filtering, the highest confusion among classes

in the Evaluation Data was mainly between classes of close

taxonomic relation. The highest confusion occurred (> 15%)

between classes with < 10 images of data. Therefore, drawing any

conclusion should be done very scarcely. What can be said

reliably, is that classes with a small amount of training data are

easily confused with classes similar in morphological

appearance. Otherwise, the confusion rates were very

moderate (5 – 8%) (Table 2).

When looking at confusion at the level of broader taxonomic

groups there was practically no confusion between different

groups (Figure 3). However, the proportion of images left

unclassified due to probability filtering with thresholds varied

greatly. Groups with the best identification rates, and with the

least unclassified images, were Cyanophyceae, Cryptophyceae

and Bacillariophyceae (6%, 11% and 13% respectively). For the

classes, Euglenophyceae, Dinophyceae and Ciliophora, a

reasonable proportion of images were left unclassified (22%,

24% and 19% respectively). Chrysophyceae and Chlorophyta

had the highest proportion of unclassified images (49% and 65%

respectively) (Figure 3).
3.2 Implementation of a near-real-
time phytoplankton community
information system

The operability and utility of the near-real-time data

processing pipeline were used in the summer of 2021, as a

demo, for up-to-date information on the abundance of the three

bloom-forming cyanobacteria taxa of the Baltic Sea (with

approx. 2h delay between sampling and online publication of

classified results) (Figure 4). A simple visualization of the

cyanobacteria situation was created and published online

(“Cyanobacteria biomass” in https://swell.fmi.fi/hab-info/) to

ensure public accessibility of the prevailing situation. The
Frontiers in Marine Science 13
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visualization shows a continuously updated graph containing

information on the biomass of three main bloom-forming

cyanobacteria taxa. This biomass graph was used, as an

indicator of the predominant taxa off the coast of Finland, in

SYKE’s weekly cyanobacterial reports in summer 2021 (https://

www.syke.fi/en-US/Current/Algal_reviews).

Dolichospermum sp./Anabaenopsis sp. started to bloom in

late June, quickly achieving high biomass (peak in ~500 µg L-1

on July 2) followed by a quick drop within a few days. While

Dolichospermum sp./Anabaenopsis sp. biomass was on the

decline, Aphanizomenon flosaquae biomass started to increase,

reaching its peak (~400 µg L-1) within approximately five days

(on July 5). A. flosaquae achieved a lower biomass peak but was

spread over a longer period than that of Dolichospermum sp./

Anabaenopsis sp. A secondary and smaller peak (~150 µg L-1)

appeared later in July (19th/20th) and was caused by both

Dolichospermum sp./Anabaenopsis sp. and A. flosaquae. A.

flosaquae formed a third peak at the end of July reaching a

biomass of ~400 - 500 µg L-1.Nodularia spumigena was detected,

sporadically more abundant in some samples but did not exhibit

a consistent biomass increase (Figure 5A). Although it was the

cyanobacterial bloom season, the total fi lamentous

cyanobacteria biomass constituted only approx. a third of the

total phytoplankton community biomass. Simultaneously to the

decline of the first cyanobacteria peak, the phytoplankton

community’s total biomass increased (Figure 5B). The third

cyanobacteria peak achieved a similar magnitude as the second

peak, but with differing community composition, demonstrating

the importance of obtaining more detailed, higher-resolution

information on community composition (Figures 5A, B).
4 Discussion

Recently plankton imaging systems have become numerous,

diverse and widely used (Lombard et al., 2019). The classification

of plankton images has become popular resulting in multiple

publications and classification algorithms, often focusing on

CNN applications (see e.g. Dunker et al., 2018; Luo et al.,

2018; Lumini and Nanni, 2019; Kerr et al., 2020; Lumini et al.,

2020; Guo et al., 2021; Henrichs et al., 2021; and the references

therein). This popularity is due to the great need for efficient

solutions for automated analysis and data flows of the vast

amounts of image data produced, and underlines the

importance of the quality of the data products (Muller-Karger

et al., 2018).

However, papers on plankton classification often report only

the classification performance and do not account for its

practical implications on aquatic research, such as the effect of

confused classes and classification processes from an operational

point of view (e.g. Orenstein and Beijbom, 2017; Bures ̌ et al.,
2021). In transitioning to more frequent use of these new

instruments it is important to focus on the steps needed for
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operationality and reference them with traditional light

microscopy (Haraguchi et al., 2017; Kraft et al., 2021) as well

as combining the two methods, as different methods confer

different advantages. Between-sensor studies are scarce,

nevertheless, in future, they will be sorely needed.

We demonstrated in this paper the functionality of CNN in

classifying IFCB images from the Baltic Sea. Furthermore, we
Frontiers in Marine Science 14
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developed a framework for near-real-time image classification,

which is sorely needed in HAB observations and also supports

the future development of operational modelling and remote

sensing applications. We provided a practical example with

near-real-time observations of the summer cyanobacteria

blooms, a reoccurring nuisance for users of the Baltic Sea. The

species composition, timing and magnitude of the blooms are
FIGURE 3

Confusion matrix of the Evaluation Data aggregated on broader taxonomic group level.
FIGURE 4

Scheme of the automated data flow and the subsequent data processing pipeline.
frontiersin.org

https://doi.org/10.3389/fmars.2022.867695
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kraft et al. 10.3389/fmars.2022.867695
difficult to predict as controlling factors are still something of a

puzzle (Kahru and Elmgren, 2014; Kownacka et al., 2018; Kahru

et al., 2020). The summer of 2021, for example, was atypical

(Figure 5) and the highest biomass peaks were only half that of

the peaks recorded during an intensive bloom in 2018 (Kraft

et al., 2021). The three major bloom-forming taxa in the Baltic

Sea are Nodularia spumigena, Aphanizomenon flosaquae and

Dolichospermum spp. (Niemistö et al., 1989; Stal et al., 2003;

Olofsson et al., 2020), of which only A. flosaquae is not known to

be toxic. Therefore, the separation of these three taxa in the

Baltic Sea environment is highly important, which was already

achieved (Table 1, Supplementary 2).

Though this paper is not about the study of ecological

phenomena, two observations highlighting its future potential

are worth mentioning. First, even during the filamentous

cyanobacteria bloom peaks, their biomass was a third of the

total phytoplankton biomass (Figure 5B). Second, while the total

cyanobacteria biomass was of the same order of magnitude

during the second and third peaks, the species composition

differed, with the second peak consisting of approximately equal

parts of two taxa, Dolichospermum sp./Anabaenopsis sp. and

Aphanizomenon flosaquae, and the third peak almost solely of

the latter. These observations, as well as the variability of the

overall phytoplankton species composition, will be considered in
Frontiers in Marine Science 15
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a more ecologically focused follow-up study. However, it

demonstrates that the utilization of new automated methods,

such as imaging flow cytometry, plays a key role in deepening

our understanding of these bloom processes (Kraft et al., 2021).

Yet, these measurements must be made in conjunction with

physical and biogeochemical observations, using the same

observation platforms, such as the one at Utö (Laakso et al.,

2018; Honkanen et al., 2021; Kraft et al., 2021).

Before digging into the ecology behind these phenomena,

there are still a few practical aspects to be considered from an

operational point of view. First is the classification model

performance. The level of performance must be adequate to

enable utilization of the results and verification of these results

needs to be done for natural samples to ensure adequate

performance during operational use. Second is the

implications of confused classes. Some confusion doesn’t mean

the results are unusable, but a proper aggregation level needs to

be selected, otherwise, the results of only certain classes that

meet the user’s criteria should be used. Third, some practical

decisions on how to deal with the large number of difficult-to-

assign images should be made. There is a lot of work to be done

before the plankton classification problem is solved and data

collected during the meantime needs to be harnessed while

development continues.
A

B

FIGURE 5

The biomasses of the three bloom forming filamentous cyanobacteria taxa of the Baltic Sea in summer 2021, black = Aphanizomenon
flosaquae, orange = Dolichospermum sp./Anabaenopsis sp., green = Nodularia spumigena (A). The total phytoplankton community biomass
(grey) and the total filamentous cyanobacteria biomass (green) from the same period (B). The data was classified with the automated CNN
model in near-real time.
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4.1 Classification model performance

Overall, the CNN model used for classification in this study

performed very well, although there was some class-specific

variation in the classification scores (Table 1). The overall F1-

score for the Test Data was 0.95. This can be considered highly

accurate and is on par with the results obtained in recent

phytoplankton studies (Lumini and Nanni, 2019; Lumini et al.,

2020; Walker and Orenstein, 2021). There was a drop in

performance when using the classifier in operational mode

(the overall F1-score for the Evaluation Data was 0.82). Recht

et al. (2019) found that the accuracy of models tends to drop

even when tested with data created to match the training data’s

distribution profile. This is due to human labeling subjectivity

which makes it impossible to produce the same distribution.

They concluded that the models are insufficient for

generalization to more difficult images e.g. absence or

deficiency of necessary features in the image. In our case, this

drop may partly be due to the different distribution of training

images compared to the target data and is partly explained by the

inferior performance of some classes. Similar to the conclusions

of Recht et al. (2019), the drop in our case is probably largely due

to the large number of so-called borderline cases in natural

samples, which make them difficult to classify. This makes the

decision on where to draw the line difficult and leads to a high

number of both FP and FN.

The drop, when applying the classifier during operational

use, was in either precision or recall, or both. In many cases, the

drop was larger with precision than recall meaning that the

thresholds applied to those classes should be adjusted

downward. Also, in many cases, the drop in recall was higher

than that of precision meaning that thresholds for those classes

should be adjusted upward. This proves the importance of

threshold selection and although our results indicate that

Validation Data is adequate for setting initial threshold values,

it does not provide optimal thresholds as the borderline images

are missing from the Validation Data. However, threshold

adjustment is done cumulatively based on operational data

such as is collected at Utö and they need to be adjusted and

refined as data and information is accumulated. After adjusting

the threshold values, it is not a heavy task to compute the

previous time series using the new threshold values since the

predictions have already been done.

In our study, we included some classes with only ~20-70

images per class and still reached relatively high classification

metrics with the Test Data for some of those classes (Table 1).

This is partly explained by the efficient data augmentation

methods, as supported by the results of e.g. Correa et al.

(2017) and partly by the unique morphology/appearance

compared to other classes (Figure 1). However, those classes

(except Pauliella taeniata and Melosira arctica) experienced a

noticeable drop or didn’t contain sufficient occurrences for the
Frontiers in Marine Science 16
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proper estimation of performance when classifying the

Evaluation Data (Table 1). In the case of Ceratoneis closterium,

Licmophora sp. and perhaps Cyclotella choctawhatcheeana this

may also be a need for adjusting the class-specific thresholds

since there was a relatively high difference between their

precision and recall. Although it is possible to increase the

training set of classes with low numbers of images using data

augmentation, the classification results cannot be considered

reliable when they are based on only few images e.g.< 10 images.

The classification score improved when more images were

available in the Training Data, with a greater improvement for

classes containing > 2000 images. All classes with large training

sets had an F1-score > 0.9 for both the Test Data and the

Evaluation Data. Although more images in the training set seem

to be advantageous, there were also several classes (Nodularia

spumigena, Peridiniella catenata chain, Pauliella taeniata,

Licmophora sp., Melosira arctica and Monoraphidium

contortum) with relatively good F1-scores (> 0.8) even with<

200 images in the training set. This would imply that

distinguishable features (e.g. a specific shape) strongly

influence the successful identification of specific classes

amongst those with less labeled images (Figure 1, Table 1).
4.2 Class-specific confusion and its
practical implications

Characteristic features of an organism tend to lead to a more

accurate classification of images, however, many common Baltic

Sea phytoplankton species, such as dinoflagellates, do not have

obvious distinguishable features in their IFCB images which could

be used to differentiate them. Consequently, those cases which

were most confused were among classes of dinoflagellates

(Table 2). Confusion within classes closely related taxonomically,

such as classes on a higher and lower level of the same taxonomic

hierarchy or different species belonging to the same order (Oocystis

sp. and Chlorococcales, Eutreptiella and Euglenophyceae,

Mesodinium rubrum and Ciliata, Cyclotella choctawhatcheeana

and Thalassiosira levanderi, Nodularia spumigena and

Aphanizomenon flosaquae) were usually due to those classes

being very similar in appearance (Table 2). The same holds for

other types of flagellates, e.g., classes Cryptomonadales and

Euglenophyceae. Similar results have also been found by Sosik

and Olson (2007), but it is difficult to compare our findings to the

literature as class-specific confusion is usually not presented, let

alone discussed. Inmany cases of confusion, the class differentiated

with fewer training images was confused with a class differentiated

by a large training image set with a close morphological

resemblance. This emphasizes the power of larger training sets

(Table 1, Table 2). This is a common problem with imbalanced

data sets as the trained classifiers tend to be biased towards more

numerous classes (Johnson and Khoshgoftaar, 2019).
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Confusion of classes does not always create a major problem.

In some cases, it is sufficient to simply achieve group-level

identification. However, this must be carefully evaluated for

research topics which require species discrimination. If the focus

is on the identification of phytoplankton functional groups, it

may be sufficient to determine which groups of plankton, e.g.

dinoflagellates or diatoms, dominate the community. However,

group-level differentiation is insufficient if we are interested in

determining the biodiversity or whether toxic species are

present. Group-level identification means that the results of

classes closely related taxonomically, such as the Eutreptiella

sp. and Euglenophyceae, can be united without having a

practical impact. Looking at our classification results on a

broader taxonomic group level it is evident that the results are

reliable, at least for some groups. For the groups, Cyanophyceae,

Cryptophyceae, and Bacillariophyceae 86 – 94% of the images

were correctly classified, and for Euglenophyceae, Dinophyceae

and Ciliophora 75 – 76% were correctly classified. For

Cryptophyceae and Chlorophyta, less than 50% of the images

were correctly identified and there was high uncertainty limiting

the ability to make conclusions about their presence and

abundance (Table 1, Figure 3). Confusion between groups was

minor and incorrectly classified images were usually assigned to

the unclassified group due to thresholding (Figure 3). It is always

best to determine community composition down to the lowest

taxonomical level possible. This is also desirable when using

automated classification systems, especially when it is possible to

identify them visually.
4.3 Towards operationality

Though often considered superior to other methods, CNNs

are still not widely utilized for classifying and analyzing natural

phytoplankton data sets. While the deep feature extraction

outperforms handcrafted features, the latter performs well for

several phytoplankton groups originally classified with both

SVM and RF-based classifiers (Sosik and Olson, 2007; Laney

and Sosik, 2014; Anglès et al., 2015; Bueno et al., 2017; Anglès

et al., 2019; Fischer et al., 2020; Kraft et al., 2021). Currently,

most ecological studies using phytoplankton data sets collected

with an IFCB base their classification on the features and method

developed by Sosik and Olson (2007) using RF instead of SVM.

One reason for this is that CNNs typically require a long training

time, high computing power and many training images,

requiring more time and effort to establish an operational

classification system. Additionally, publicly available codes and

workflow are accessible for the RF-based classifier system, thus

making it easier for biologically oriented groups to begin

establishing new classifier systems (https://github.com/hsosik/

ifcb-analysis).

CNNs require a notable amount of computational

resources especially if they are trained from scratch. We
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showed that even relatively shallow CNN model requiring

only a quite basic level of computing power with a small

number of training data (26 classes out of 50 contained less

than 300 training images) performs well. Previous studies

support these findings (Bures ̌ et al. , 2021). During

operational mode (the Evaluation Data), classification

performance dropped drastically for many of the classes with

few training images. However, 12 of those also achieved an F1-

score of 0.7-0.97. This suggests not all classes require extremely

large training sets, speeding up the process.

Creating the training sets in and of itself is laborious. It is

therefore impractical to create classes for images of all small

objects of similar shapes, such as different types of detritus and

other types of difficult-to-assign objects. The creation of classes

for such images will lead to too many variations in appearance.

This will result in the matching of such images to other classes

with similar features causing confusion. Hence we chose not to

classify such images, but used thresholds instead. However, there

is some benefit to creating classes for certain types of detritus as

it allows them to be filtered out from the total community

biomass. On the other hand, this leads to questions such as when

should a phytoplankton cell be considered detritus, considering

that all images have been triggered by a certain level of

chlorophyll a. Therefore, all the collected images cannot be

assigned to a specific class, but need to be filtered out.

A common approach in filtering of difficult-to-assign images

is to apply thresholding to the class probabilities. Unfortunately,

this approach is impractical, since thresholds need to be tailored

to each class (see e.g. Luo et al., 2018). However, using thresholds

is presently one of the most common methods when classifying

natural samples (Sosik and Olson, 2007; Laney and Sosik, 2014;

Anglès et al., 2015; Bueno et al., 2017; Anglès et al., 2019; Fischer

et al., 2020; Kraft et al., 2021). In addition, the use of probability

thresholds with CNNs is not straightforward due to the softmax

function in the network architecture which converts neuron

activations into class probabilities. This forces the network to

assign a high probability to a specific class from the training set

even when the input image is from a novel class. This makes it

impossible to spot images which do not belong to existing classes

because they are assigned to the wrong class creating false

positives with high probabilities. We solved this problem by

smoothing out the probability distribution making it easier to

use this approach.

Classifier systems also tend to struggle with open-class

problems, i.e., when it is applied to novel data whose classes

are not featured in the training data (e.g. new species). It is

impossible to make training sets for all possible new classes in

advance and they would need to be distinguished from the

classification results. Therefore, as has been noted in other

studies, there is a need to solve this open-class problem.

Exploration of different solutions such as anomaly detection

(Pu et al., 2021), metric learning (Teigen et al., 2020), and hard

negative mining (Walker and Orenstein, 2021) are ongoing.
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4.4 Future perspectives

Utilizing new instruments which provide high-frequency

information on plankton communities, combined with data

analysis using CNNs are powerful tools for the investigation of

plankton community dynamics. However, these methods

require an entirely new way of both transferring and

managing the data, as well as ensuring data quality. The

possibilities provided by these new methods are only fully

exploited when setting up a real-time data flow and analysis.

The data pipeline we created would have been more difficult

to build without a proper service provider. We use an existing

optical fibre infra for part of the data transfer but in most cases, a

powerful cloud service is the most convenient solution. Here, the

importance of the accessibility of these services with regards to

both data transfer and storage for different fields of science along

with technical developments is highlighted. The next step is to

connect the different data pipelines to national and global level

data repositories, broadening the accessibility and findability of

different data, bearing in mind all the FAIR-data principles

(Wilkinson et al., 2016). This also includes sharing large

manually labeled image data sets, making it possible to adapt

the new methods more quickly to a broader range of users.

Additionally, data sets used to assess model performance should

be more widely shared for testing purposes of new machine

learning methods. However, validation of different image data

sets is important as manual labeling is prone to human error.

Additionally, it is often the more inexperienced taxonomists who

carry out the manual image labeling tasks even if expert

taxonomists would have been involved in the creation of the

classes and identification of example images (Irisson et al., 2022).

Sharing labeled data sets is fundamental to the rapid

development and implementation of classifier systems as this

is the most laborious part of their set-up. The creation of a model

library with pre-trained CNN models of different plankton

communities could also aid the more widespread adoption of

these new methods. According to Orenstein and Beijbom (2017)

the best classification performance was achieved with a model

originally trained with a general image repository and fine-tuned

for plankton images. Models, already fine-tuned for different

plankton communities, could be adopted into use for

communities with similar species compositions and further

fine-tuned to the target data with only a moderate amount of

training data and computing resources. This would be useful

because of the lack of machine learning expertise and the lack of

availability of computational resources among plankton

researchers as well as reducing the amount of training data

needed in the final stage. It would also make it easier to test

previously developed methods on different data and to find the

most suitable solutions for different types of data sets. To get

towards this the EcoTaxa (Picheral et al., 2017) has been created.

However, it is a tool for storing, browsing and classifying slightly
Frontiers in Marine Science 18
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smaller data sets and is not targeted to large data sets (e.g.

minimum of tens of millions of images per year as at Utö)

produced by operational use (Irisson et al., 2022).
5 Conclusions

Novel automated microscopic imaging solutions, like

imaging flow cytometry, combined with automated data flow

and analysis systems take us a step towards real-time plankton

community information. This is especially important for

harmful algal bloom observations, such as the filamentous

cyanobacteria in the Baltic Sea. Nevertheless, high-frequency

community information will also be important in model

development and remote sensing data validation. Thus, the

development of these systems underlines the importance of

data flow and analysis infrastructure as well as principles of

open science. Collecting large, annotated image data sets

requires a lot of work and creating efficient and functioning

data pipelines and classification systems requires a substantial

amount of coding. Sharing image data sets and classification

models vastly ease the implementation of these systems and

would accelerate the exploration of the vast number of plankton

data sets already collected within a multitude of monitoring

programs and research projects around the world.

Multiple studies have shown that CNNs function well in the

classification of plankton. We also achieved high classification

accuracy with transfer learning and relatively shallow CNN

architecture. Moreover, our method was able to adequately

classify natural samples making our approach suitable for

operational use. Some issues in the utilization of automatic

classification methods, such as CNNs, remain due to them

struggling with the open-class problem. During the search for

more sophisticated solutions, the use of probability thresholds can

enable the filtering of images not belonging to those classes.

However, this does not solve the problem of detecting and

identifying new species. Although the use of thresholds is quite

tedious and time-consuming, at the moment it is still the most

commonly used solution. Some of the workload can be reduced

with the use of validation and test sets of the labeled image data set

to set proper thresholds and evaluate their suitability. However,

the ideal method of setting thresholds would be by use of a data set

consisting of images from different seasons and locations as well as

multiple years. This can be achieved by gradually fine-tuned the

thresholds while compiling data. High classification confusion is

often related to close taxonomic affiliations, which is not an issue if

the goal is to determine the dynamics of larger functional

groups rather than the determination of species-specific

dynamics. Our study represents a step forward in the

development of automated, fully operational, near-real-time

classification system which can ultimately help to uncover novel

insights in plankton ecology.
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Are plankton nets a thing of
the past? An assessment of
in situ imaging of zooplankton
for large-scale ecosystem
assessment and policy
decision-making

Sarah L. C. Giering 1*, Phil F. Culverhouse 2,
David G. Johns3, Abigail McQuatters-Gollop 4

and Sophie G. Pitois 5

1Ocean BioGeoscience, National Oceanography Centre, Southampton, United Kingdom, 2Plankton
Analytics Ltd., Plymouth, United Kingdom, 3Marine Biological Association, Plymouth, United Kingdom,
4School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom,
5Centre for Environment Fisheries and Aquatic Sciences (Cefas), Lowestoft, United Kingdom
Zooplankton are fundamental to aquatic ecosystem services such as carbon

and nutrient cycling. Therefore, a robust evidence base of how zooplankton

respond to changes in anthropogenic pressures, such as climate change and

nutrient loading, is key to implementing effective policy-making and

management measures. Currently, the data on which to base this evidence,

such as long time-series and large-scale datasets of zooplankton distribution

and community composition, are too sparse owing to practical limitations in

traditional collection and analysis methods. The advance of in situ imaging

technologies that can be deployed at large scales on autonomous platforms,

coupled with artificial intelligence and machine learning (AI/ML) for image

analysis, promises a solution. However, whether imaging could reasonably

replace physical samples, and whether AI/ML can achieve a taxonomic

resolution that scientists trust, is currently unclear. We here develop a

roadmap for imaging and AI/ML for future zooplankton monitoring and

research based on community consensus. To do so, we determined current

perceptions of the zooplankton community with a focus on their experience

and trust in the new technologies. Our survey revealed a clear consensus that

traditional net sampling and taxonomy must be retained, yet imaging will play

an important part in the future of zooplankton monitoring and research. A

period of overlapping use of imaging and physical sampling systems is needed

before imaging can reasonably replace physical sampling for widespread time-

series zooplankton monitoring. In addition, comprehensive improvements in

AI/ML and close collaboration between zooplankton researchers and AI

developers are needed for AI-based taxonomy to be trusted and fully

adopted. Encouragingly, the adoption of cutting-edge technologies for

zooplankton research may provide a solution to maintaining the critical
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taxonomic and ecological knowledge needed for future zooplankton

monitoring and robust evidence-based policy decision-making.
KEYWORDS

in situ imaging, artificial intelligence/machine learning, taxonomy, digital samples,
ecosystem assessment, long-term monitoring, zooplankton
Introduction

Zooplankton biodiversity contributes to multiple ecosystem

services such as carbon and nutrient cycling, as well as the role of

plankton in the marine food web. Understanding how plankton

communities respond to changes in anthropogenic pressures,

such as climate change and nutrient loading, is key to

implementing effective management measures. The new

generation of policy initiatives explicitly recognises the role

that plankton biodiversity plays in delivering a variety of

ecosystem services. These legislations, such as the United

Nations Sustainable Development Goals (UN General

Assembly, 2015), the Convention on Biological Diversity Aichi

Targets (Convention on Biological Diversity, 2011), and the

upcoming Post-2020 Global Biodiversity Framework

(Convention on Biological Diversity, 2021), focus on a holistic

view of biodiversity including the value of zooplankton. In

Europe, for example, the Marine Strategy Framework Directive

(Directive (EC) 2008/56, 2008) aims to achieve Good

Environmental Status of marine waters, with plankton

representing pelagic habitats in the legislation and

implementation (European Commission, 2008; OSPAR, 2017;

Bedford et al., 2018; McQuatters-Gollop et al., 2019;

McQuatters-Gollop et al., 2022). European Union Member

States are therefore required to monitor and assess the state of

plankton, and, if needed, to implement management measures

to achieve Good Environmental Status for pelagic habitats.

Consequently, a comprehensive understanding of plankton

communities is critically needed to inform a robust evidence

base for supporting decision-making for marine management.

Establishing a robust understanding of the relationships between

anthropogenic pressures and zooplankton, however, depends on

consistent time-series datasets, which are limited in number and

spatial scale (McQuatters-Gollop et al., 2015; Zingone et al.,

2015; McQuatters-Gollop et al., 2017). These gaps mean that

policymakers have limited evidence on which to base decisions

about enacting management measures related to plankton and

the ecosystem services they provide.

Even though plankton in European waters are better

sampled than those in many other parts of the world (O’Brien

et al., 2017), gaps in this evidence base exist due to both lack of

sampling and lack of knowledge of plankton dynamics and
02
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pressure-state relationships (McQuatters-Gollop et al., 2022).

Zooplankton sampling is historically more limited than

phytoplankton sampling, resulting in more numerous

knowledge gaps around changes in zooplankton communities

and the consequent effects on the marine food web and

ecosystem services (McQuatters-Gollop et al., 2015). The UK’s

fixed-point monitoring programme, for example, has 11

phytoplankton sampling stations but only four of these also

sample zooplankton; these stations are supplemented by

phytoplankton sampling by the Environment Agency, but to

date there has been virtually no inshore zooplankton sampling

(Bedford et al., 2020). For larger spatial coverage, the

Continuous Plankton Recorder [CPR, a towed net system

(Batten et al., 2003)] provides a wealth of taxonomic data for

both zooplankton and phytoplankton, particularly in UK and

northern European waters, as well as parts of the North Atlantic,

Pacific basins, Southern Ocean, and Australian waters (Figure 1).

Yet, coverage for zooplankton data is still highly inconsistent,

and wide expanses of coastlines and oceans are not covered at

all (Figure 1).

A promising way to fill these gaps in spatial coverage is

through the rapid advance of automated sampling systems and

plankton imaging capabilities. Numerous commercial and

custom-built plankton imaging systems are available (see

reviews by Lombard et al., 2019; Giering et al., 2020a), and

global roll-outs of zooplankton imaging platforms to match the

Argo float global network for physical ocean parameters are

starting (Lombard et al., 2019; Picheral et al., 2021).

While the technical abilities now exist to collect data

continuously and at fine resolution (Lombard et al., 2019), a major

bottleneck is - besides image storage and access - the processing and

interpretation, specifically the taxonomic classification of

zooplankton images (MacLeod et al., 2010; Orenstein et al., 2022).

Anobvious avenue to tackle the growingnumber of plankton images

is the use of artificial intelligence (AI) and machine learning tools

(ML) for the taxonomicclassificationofplankton.Todate,AI/MLfor

plankton has been used primarily to aid human-based classification

by presorting the images, because their ‘predicted’ taxonomic

classifications can be highly variable (Gorsky et al., 2010). Tools

available to the community that facilitate such AI/ML-augmented

manual classificationexist, suchasEcoTaxa (Picheral et al., 2017) and

MorphoCluster (Schröder et al., 2020). Yet, the reliance on human
frontiersin.org
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verification limits the speedwithwhich plankton images can be used

for science.

The move to a global plankton-monitoring network hence

heavily depends on the automation of taxonomic classification.

But challenges with the needed fully-automated taxonomy

(because of the large amounts of data) exist, such as questions

about whether AI/ML can achieve a taxonomic resolution that

scientists trust. We here develop a roadmap for future

zooplankton monitoring for policy and management,

specifically for the role of imaging and AI/ML, based on

community consensus. To do so, we determined current

perceptions by the zooplankton research and monitoring

community about the use of imaging and AI/ML for

zooplankton monitoring, with particular focus on their

experience and trust in imaging and AI/ML to produce

reliable taxonomic data. Specifically, we assessed the questions:
Fron
• Do zooplankton scientists think that images can ever

replace physical samples to generate monitoring data?

• Do zooplankton scientists think that an AI can ever

replace a human taxonomist in the role of identifying

zooplankton?
We recommend the next steps for obtaining robust

zooplankton data for large-scale ecosystem assessment and

policy decision-making.

We use the term artificial intelligence (AI) to mean the use of

computer algorithms to make decisions. In context, AI typically

performs data analysis tasks done by humans such as identifying

organisms from images. Machine learning (ML) denotes the

method of training AI whereby the algorithm improves (‘learns’)

based on experience and use of data. In context, MLmay be carried

out on images already labelled by humans (‘training data’).
tiers in Marine Science 03
200
Community survey on future of
zooplankton monitoring

To obtain a broad sample of responses, we developed a

questionnaire in English using JotForm (Supplementary Material).

The survey was distributed between November 2021 and January

2022 using social media and through the authors’ professional and

personal networks, resulting in 179 complete responses. The final

survey used a mixed-methods approach of 34 closed-answer

questions. The first part of the survey used classification questions

designed to provide an overview of the respondents’ background

(age, gender identity, location, education). The remainder of the

questionnaire was designed to profile respondents’ experience with

zooplankton taxonomy, plankton imaging and AI/ML

(qualifications, training, level of expertise, etc.), and their

perceptions and trust in plankton imaging and AI/ML for

zooplankton taxonomy. The latter was assessed using a series of 5-

point Likert scale questions.

All respondents completed the survey themselves and gave their

permission to use the results. Individuals were not identifiable from

the data provided. All participants were 18 years of age or older. The

survey described in this paper was reviewed and approved by the

Ethics Committee of the National Oceanography Centre, UK.
Survey analysis

Quantitativedatawere analysed inRv4.0.2 (RCoreTeam,2018).

The level of expertise for zooplankton taxonomy, zooplankton

imaging, and AI/ML was calculated as the sum of three questions

(years of experience, skill level self-assessment, and frequency of

training). Likert data were analysed using the ‘Likert’ function from

the Likert package in R. Correlations were explored using simple
FIGURE 1

World map overlaid with fixed net sampling stations and Continuous Plankton Recorder tracks (adapted from source: MBA CPR map 1958-2020
(Batten et al., 2019), with data from NOAA Copepod database (O’Brian and Oakes, 2020), Australian IMOS database 1993-2021 (Re3Data.org,
2021) and South African CPR 2005-2021 (Huggett, pers. comm.).
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linear regression. The general bias towards or against imaging and

AI/ML was calculated as follows. Each question was scored from 1

(‘stronglydisagree’) to5 (‘strongly agree’)onpositivequestions, and1

(‘strongly agree’) to 5 (‘strongly disagree’) on reverse questions. If a

participantwasneutral, theywouldhave scored18 for imagingorAI/

ML (6 questions all answeredwith neutral = 3). Consequently, a trust

score of >18 indicates a favourable disposition towards the

technology, while a score of < 18 indicates a negative disposition.

Participant demographic

We collected 179 complete responses. The participant gender

distribution showed a near-equal gender balance in the field (55%

male and 43% female) with themajority of respondents between 30-

39 and 40-49 years old (31 and 26%, respectively) (Figure 2A).

Globally, the survey reached participants working in 42 countries.

The highest number of participants were from the UK and United

States (33 and 25 participants, respectively), followed by Japan (11),

Australia (10), Germany (9) and Canada (8) (Figure 2C). This

distribution likely reflects funding support and activities in

zooplankton monitoring and research as well as network

connections both within the community and with the authors, and

the use of language (English only).

The participants’ expertise in zooplankton taxonomy was well

spreadwith a slight bias towards intermediate andadvanced (median
Frontiers in Marine Science 04
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of 3.2 on a scale from 1-Novice to 5-Expert) (Figure 2B). Overall, the

participants had less expertise in zooplankton imaging (median 2.3),

and least experience in AI/ML (median 1.8) with the majority

identifying themselves as novices in this field (Figure 2B). This

spread of expertise likely reflects that the field of AI/ML for

zooplankton monitoring and research is relatively young and

emerging compared to the field of zooplankton taxonomy.

Community consensus

Imaging for zooplankton monitoring and
research

When asked about their perceptions on the use of imaging

for zooplankton monitoring and research, the participants

showed strong consensus that images can provide meaningful

information (80%) and have clear advantages over net samples

(68%) (Figure 3A). Conversely, participants agreed that images

cannot provide the same level of information as physical samples

(70%) and physical samples will always be required (72%)

(Figure 3). No clear consensus emerged on whether physical

samples are preferable (39% neither agreed nor disagreed).

Finally, the survey suggested a consensus that time series can

be continued with image samples once the technology has

evolved sufficiently (62%) (Figure 3A). Overall, the majority of
frontiersin.org
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participants was optimistic about the use of images for plankton

monitoring: 53% of participants responded positively towards

images (with 12% being neutral and 35% having a negative

disposition) (Figure 4A).
AI/ML for zooplankton taxonomy

When questioned about the potential of AI/ML for

zooplankton taxonomy, respondents showed a strong

consensus that AI/ML can help to analyse zooplankton data

faster than current methods (79%; Figure 5A). However, a strong

consensus that AI/ML is limited in its abilities and will always

require human guidance and quality control was also evident

(83%). When asked whether AI/ML will ever be as good as

human taxonomists, which we assessed using both a positive and

a reverse statement, no clear consensus was evident. Participants

disagreed with the statement that AI/ML would be unbiased and

more reliable than humans in identifying images (41%;

Figure 5A). Finally, the participants strongly disagreed with

the statement that human taxonomists will not be required in

future once AI/ML has been trained sufficiently (84%). Indeed,

the consensus on this statement was strongest when compared

across all 12 questions. Overall, trust in AI/ML for correct

taxonomic classification was low: 50% of the participants

responded negatively towards AI/ML (with 13% being neutral

and 37% having a positive disposition) (Figure 4B).
Perceived trustworthiness of AI for
zooplankton taxonomy

A scientist’s perception is likely influenced by their

experience, and we observed clear patterns of this dependency

in our survey results: The more respondents were experienced in

zooplankton taxonomy, the less they trusted the use of

zooplankton images and AI/ML for accurate taxonomy

(Figures 6A, D); a significant negative trend was evident

between taxonomy expertise and trust in images (p < 0.001,

R2 = 0.10, n = 179) and AI/ML (p < 0.001, R2 = 0.10, n = 179).

The expertise level in zooplankton imaging had no significant

influence on perception of imaging and AI/ML for zooplankton

monitoring (for both: p > 0.13, R2 < 0.1, n = 179). Across all

imaging expertise levels, respondents were marginally positive

towards imaging (median trust scores ≥ 18; Figure 6B).

Conversely, the participants were marginally negative towards

AI/ML (median trust scores ≤ 18; Figure 6C). Finally, very few of

the survey participants were experienced in AI/ML (Figures 6C,

D). While novices in this field were undecided on the usefulness

of images and AI/ML, the experts tended to be optimistic about

the use of zooplankton images (Figure 6C) though less optimistic

about the use of AI/ML (Figure 6F). These trends were heavily
Frontiers in Marine Science 05
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influenced by single opinions because of the small number of

participants who identified as advanced and expert users in the

field of AI/ML for zooplankton research.

The survey participants perceived humans to be good

taxonomists with 70% of the participants judging humans to

identify >80% of the zooplankton specimens accurately. Sixty-six

percent of the participants who rated both AI/ML and human

accuracy in identifying zooplankton (103 out of 159) rated AI/

ML skill lower than human skill. Only 21% of the participants

thought they were similar, and 13% thought that AI/ML was

more accurate than humans (Figure 7). Overall, the accuracy of

humans was perceived to be significantly better (average rating

of 80-90%) than that of AI/ML (average rating 70-80%; paired

Wilcoxon test: p < 0.001, n = 156).

The participants believed that AI/ML could reasonably

identify a copepod to family (28% of participants) or genus

level (33% of participants) Figure 8A. For gelatinous

zooplankton, the consensus appeared to be that AI/ML could

reasonably identify gelatinous zooplankton to family level (33%

of participants) (Figure 8B). For both questions (identifying

copepods and gelatinous zooplankton), we also asked the

participants whether their opinion was mostly influenced by

their understanding of the image quality, the capability of AI/

ML, or both in equal measures. The participants based their

predictions primarily on their understanding of image quality

alone or equally both on their understanding of image quality

and AI/ML.
Towards a road map

Are images the future?

Our survey results indicated a strong community consensus

that images (i.e. digital samples) are a valuable tool for plankton

monitoring with clear advantages over physical net samples

(Figure 3A), likely reflecting the financial and logistical

constraints associated with net sampling. Traditional nets

require human-centric, platform-based deployments (usually

off a ship) and are hence very limited in their spatiotemporal

resolution. The physical samples are stored, often in hazardous

chemical preservatives, and shipped to a laboratory for analysis,

leading to logistical challenges and considerable delays between

sample collection and data availability. Image samples, in

contrast, are stored digitally, which offers - amongst other

advantages - the ability to share images easily for, e.g., quality

control and additional taxonomic classifications by other

researchers. Our survey supports the notion that moving

towards automated routine image-based sampling combined

with image analysis is key to increasing the quantity of

zooplankton data to obtain the spatiotemporal coverage

required for robust decision-making.
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Yet, the survey results also revealed a strong community

consensus that, despite the logistical constraints of collecting

physical samples, physical samples cannot be replaced by images

entirely and will always be required (Figure 3). The reason for

the ongoing need for physical samples is likely twofold. First,

deeper taxonomic analyses still require physical samples as, at

this stage, microscopes offer the often required higher resolution

and, importantly, allow the user to investigate each specimen in

multiple dimensions and with different exposures. For example,

species of the same genus may be morphologically almost

indistinguishable bar minute differences in body structures

(Fleminger and Hulsemann, 1977; Frost, 1989; Wilson et al.,

2015). Considering current technology, such detailed taxonomic

information is unlikely from in situ images in the foreseeable

future. This notion is also reflected in our survey, where

participants revealed low confidence that image quality is

sufficient to resolve copepod and gelatinous zooplankton at

the species level (Figure 8). Second, physical samples are

required for information that cannot be obtained from images,

such as biochemical and molecular analyses, which have the

potential to greatly advance our understanding of zooplankton

biodiversity, ecology and connectivity (Lenz et al., 2021).

While both types of samples (physical and digital) have their

advantages, the biggest gain can likely be made when both are

used strategically in conjunction (Figure 9). We could leverage

the existing monitoring strategies and enhance these through

imaging. Ships Of Opportunity have been used by the CPR

survey since 1931 to collect physical plankton samples (Batten

et al., 2003). Initiatives are now in progress to fit CPRs with
Frontiers in Marine Science 06
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holographic camera systems, allowing the simultaneous match-

up of in situ imaging data with CPR physical samples (Johns,

pers. comm.). In addition, when the physical CPR samples are

analysed under the microscope in the laboratory, taxonomists

are asked to take an image of each specimen (Johns, pers.

comm.). For physical samples, specimens can be imaged

before being analysed, e.g., for biochemical composition

(Giering et al., 2019). Bench-top instruments for net sample

imaging include ZooScan (Grosjean et al., 2004; Picheral et al.,

2010) and FlowCam (Detmer et al., 2019). Hence, all physical

samples could also be imaged, potentially providing high-quality

taxonomic training datasets and additional information on how

to translate images into biochemical parameters.

On a broader scale, an extension of the current imaging

network is the next logical step, and international initiatives to

facilitate such networks have commenced (Lombard et al., 2019;

de Vargas et al., 2022). Coverage of CPR lines, ideally coupled

with imaging, should be expanded to regions with currently poor

coverage such as the South Atlantic and Central and South

Pacific (Figure 1). As the CPR instrument has to be lowered into

the sea and towed behind, it is not suitable for use on all ships.

An alternative method is the FerryBox concept, which uses the

ship’s pumped water supply (Petersen and Colijn, 2017). While

some imaging systems have already been integrated into

FerryBoxes (Gannon, 1975), major problems remain with their

operation, reliability, size range (too small for large

zooplankton), and the development of efficient image

processing and classification [https://www.ferrybox.org/]. The

Plankton Imager (Pitois et al., 2018; Pitois et al., 2021; Scott et al.,
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FIGURE 3

Likert plot for image sufficiency. (A) Darker green shows consensus favours replacement of physical samples with images. Darker brown means
a preference for keeping the system as it is. An equal spread likely indicates no clear consensus. (B) Reverse as for (A).
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2021) can use the same water source as FerryBox, allowing

images of the mesozooplankton to be collected at high speed and

moderate volume (34 L min-1) offering similar sampling volume

to the CPR (300 L [nautical mile]-1) (John et al., 2002). For

research vessels, camera systems such as the Underwater Vision

Profiler (Picheral et al., 2010) could be integrated with water
Frontiers in Marine Science 07
204
sampling rosettes as standard to improve vertically resolved

information on zooplankton. Finally, miniaturised camera

systems can be fitted on autonomous vehicles, such as floats

and gliders (Picheral et al., 2021).

Zooplankton cover a wide range of diversity of organisms in

terms of size, shape, and behaviour. As a result, no plankton
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FIGURE 4

Overall trust in (A) imaging for zooplankton taxonomy and (B) AI/ML for zooplankton taxonomy. A score of 18 indicates a neutral stance towards
imaging or AI/ML. A trust score of >18 (green) indicates a favourable disposition towards the technology, while a score of < 18 (red) indicates a
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FIGURE 5

Likert plot for taxonomy sufficiency. (A) More green means consensus favours the replacement of human taxonomists with AI. More brown
means a preference for keeping the system as it is. An equal spread likely indicates no clear consensus. (B) Reverse as for a.
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sampling system - whether collecting digital or physical samples

- can estimate the abundance for all components of the plankton

at any given time, and any system will likely be biased towards a

specific component of the plankton (Owens et al., 2013).

Combining datasets from different plankton sampling systems

is hence non-trivial. The selection of a sampler and associated

sampling design will determine sampling efficiency and

selectivity (Pitois et al., 2016; Pitois et al., 2018). Practical

issues associated with the collection of physical zooplankton

samples (Sameoto et al., 2000) include: active and passive

avoidance of the net (Fleminger and Clutter, 1965; Clutter and

Anraku, 1968), net clogging, and plankton patchiness (Wiebe

and Benfield, 2003; Skjoldal et al., 2013). Imaging devices will

not have to cater for all issues associated with nets, but their

efficiency will also be dependent on system avoidance, potential

damage to fragile organisms particularly when a pumped system

is used (albeit typically less problematic compared to net

sampling), and camera performance (Pitois et al., 2018).

Comparisons between imaging systems and net samples

indicated that sampling caveats affect nets and imaging

systems in similar proportions (e.g. (Finlay and Roff, 2004;

Nogueira et al., 2004; Basedow et al., 2013; Pitois et al., 2018)).

In addition, different image processing routines (Giering et al.,

2020b) specific to each instrument can result in images that are

not directly comparable. A very important step going forward is

hence the inter-calibration of all instruments so that all datasets

can be combined (Lombard et al., 2019).

Our survey revealed a consensus that time series can be

continued with image samples once the technology has evolved
Frontiers in Marine Science 08
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sufficiently, indicating a general optimism about the future of

imaging for zooplankton monitoring. As we did not investigate

what the participants deemed as ‘sufficient’, two aspects need to

be considered when evaluating this statement: (1) scientific

sufficiency of state-of-the-art technologies, and (2) perceived

sufficiency. While recent reviews suggest that further

technological and methodological developments are needed to

meet the scientific needs (e.g. Lombard et al., 2019; Giering et al.,

2020), this survey suggests that the zooplankton research

community is generally willing to adopt these technologies and

methodologies. Yet, a period of overlapping use of imaging

systems and physical sampling systems, as well as thorough

intercalibration between technologies [e.g. (Lombard et al., 2019;

Giering et al., 2020a)], will be needed to establish a statistical

correlation between the methods before imaging can reasonably

replace physical sampling.
Are future taxonomists human?

Our survey results indicated that the community is less

favourable towards AI/ML for zooplankton research than

towards imaging (Figure 4), likely reflecting the challenges that

accurate zooplankton taxonomy poses. Taxonomists learn from

concepts, examples and experience, and apply context metadata

knowledge to each classification task. Zooplankton taxonomy

has a well-established framework with an extensive base of

taxonomic literature, most of which is text-based with hand

drawings of the organisms’ key features. Reference sheets (for
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example, the ICES leaflets for marine zooplankton) hold expert

keys and drawings that are both distillations and translations of

the physical properties of organisms as seen under visual

examination (Figure 10). The expert will perform the visual

mapping from the hand-drawn “type specimen” to interpret the

taxonomic features of the collected specimen, and supplement

these using the textual notes on taxonomic descriptions and

context metadata (such as size, species distribution, and life

history). Together, these information constrain the identification

of the collected specimen. The desired confidence in

classification often requires a serial search through such

taxonomic guides and the call for a second expert opinion. If a

taxonomist is not confident in their classification, the specimen

is assigned the highest taxonomic level the expert is confident in,

or the most probable identification (Choquet et al., 2018). As

such, accurate classification of zooplankton is a complex task.

This complexity likely explains why researchers with more

expertise in zooplankton taxonomy mistrust the use of AI/ML

for zooplankton research (Figures 6A, D).

Currently, AI is typically trained on image training datasets

produced specifically for the target study, including region and

instrument, annotated by the study’s primary researchers. With

image quality sometimes low (Lombard et al., 2019; Giering

et al., 2020a) and identification frequently carried out by non-

specialists (Irisson et al., 2022), confidence in human-led

annotation can be low. Sixty percent of the survey participants

(that answered the question with a rating) have only a moderate

level of trust in current zooplankton training datasets. As ML
Frontiers in Marine Science 09
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relies on training data quality (‘garbage in, garbage out’), low-

confidence training datasets pose a problem. Hence, we propose

that a sufficiently rigorous process, including consensus of

training data classification by multiple experts (akin to ‘quality

in, quality out’), is needed to facilitate reliable automated

classifications that are trusted by the scientific community.

One option is to programme AI to use the same cross-

referencing and matching through both visual and textual

descriptions as the taxonomy texts (Figure 10). Multimodal

approaches, which use both text and image, are now widely

applied across a variety of tasks [see reviews by (Baltrusǎitis

et al., 2019; Chen et al., 2021; Uppal et al., 2022)]. In addition, AI

could apply context metadata knowledge to each classification

task in a similar way as humans do. For seafloor mapping, for

example, the assumption that images captured close to each

other are more similar than those taken further apart improves

image classification by a factor of two (Yamada et al., 2021). For

zooplankton images, the inclusion of context metadata

(geometric, hydrographic and geo-temporal information)

significantly improves classification accuracy (Ellen et al., 2019).

The survey participants did not agreewith the statement thatAI/

ML is unbiased andmore reliable than humans in identifying images

(41%), suggesting that human taxonomists are considered

reasonably reliable. Yet, expert cognitive biases can contribute to

inconsistent performance when manually labelling physical

specimens, with inconsistencies in both counting and classification

(Culverhouse et al., 2014). For example, repeat analyses of physical

net samples, by the same analyst, using microscopy revealed that
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FIGURE 9

Future zooplankton sampling network. The biggest leverage can be made when both physical sampling, such as vertical and towed net systems,
and imaging (highlighted by yellow backgrounds) are used strategically in conjunction. Imaging systems fitted to autonomous and moored
platforms allow global coverage with reduced reliance on ships.
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human-generated repeat counts differed on average by 8%, and

taxonomic classification consistency (into 10 broad categories) was

on average 75% (Culverhouse et al., 2014). Moreover, differences in

counts varied asmuch as an order ofmagnitude for the same sample

whenanalysedbydifferent taxonomists, likelyowing topsychological

factors suchasboredom, fatigue andprior expectations (Culverhouse

et al., 2014). As such, human-led taxonomy results in non-repeatable

outputs, where the same taxonomist at the same location using the

same methodology is unlikely to arrive at the same result when

repeating sample analysis. Machine learning, in contrast, allows

repeatability of analysis results as long as the pre-trained model

and weights are used [though the implementation of repeatability

needs to be checkedprior tomodel deployment, particularly for deep

learningmodels (Alahmari et al., 2020)]. Yet, self-consistency (i.e. the

same person coming to the same conclusion every time) and peer-

consistency (i.e. several experts arrive at the same conclusion)

(Culverhouse et al., 2003) have received relatively little attention in

AI/ML for zooplankton research (Culverhouse et al., 2014).

As current AI-based classifications may be too inaccurate to be

used directly formany zooplankton research questions (Irisson et al.,

2022), a common practice is to use AI/ML to presort images into

classes and then manually verify each AI-based classification; and

several commercial and open-source platforms have been designed

specifically for this purpose, such as EcoTaxa (Picheral et al., 2017).

Alternative strategies are being developed, where unsupervised and

supervised classifications alternate to reduce the number of images

that a human has to manually verify (e.g. Schröder et al., 2020). The

benefit of such workflows is widely accepted by the community, as

indicated by our survey results (79% of survey participants agreed

that AI/ML can help to analyse images faster; Figure 5A).

AI/ML is still in its infancy and formalised assessment of bias

is largely unexplored, which partly explains our survey results

that the community is currently undecided whether AI/ML can

be as or more accurate as humans for the classification of

plankton images (Figures 5, 6D–F). Even if AI will someday be

as accurate as human taxonomists, our survey shows a strong

community consensus that taxonomists will still be needed in

future (84% of participants; Figure 5). While we did not ask

specifically why this is the case, several reasons for this

judgement are possible. First, the purpose of AI-led

classification is to help researchers address scientific questions.

Thus, an aspect of scientific quality control will always be

required, where a taxonomically literate researcher may

perform spot checks and affirm the overall classification as

appropriate for the scientific endeavour on hand. Taxonomic

experts may further oversee the expansion of current

classification algorithms to include newly discovered species or

similar amendments to reflect the current scientific knowledge

accurately. Second, zooplankton research extends far beyond

simply identifying images. Hence, physical samples will continue

to play a major role in environmental research (e.g. for

biogeochemical analysis or experimental work) and their

handling will require expert human taxonomists.
Frontiers in Marine Science 11
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Building human trust in AI/ML for
zooplankton research

The survey showed an overall mistrust in the use of AI/ML

for zooplankton research, which agrees with reported general

attitudes towards AI (Schepman and Rodway, 2020). In their

study, Schepman and Rodway (2020) found that participants

were positive towards AI and felt comfortable with its use when

the application helped humans carry out tasks but did not

replace humans or gain autonomy. Conversely, negative

feelings were associated with AI applications that involved

aspects of human judgement, skill, social understanding or

empathy (Schepman and Rodway, 2020). These conclusions

can explain some of the trends we observed in our survey,

suggesting that researchers consider accurate taxonomy as a

difficult skill often relying on judgement based on abstraction

and context understanding. While the survey participants felt

comfortable with using AI/ML to aid taxonomy (e.g. by

presorting images), the replacement of humans with AI was

met with scepticism even though research has documented the

inaccuracies in human-based taxonomy (Culverhouse

et al., 2014).

The reason for the apparent negative perception of AI/ML

for zooplankton research is likely founded on a combination of

aspects. For those who have not had successful experiences with

AI-based classifications and required further taxonomic

verification by human taxonomists, trust in automated

classification may be weak. Such experiences could explain

why 66% of the survey participants that answered the question

thought that humans can achieve higher levels of taxonomic

accuracy than AI/ML (Figure 7). Yet, ring trials using

microscopy on physical samples (community-driven

comparison of taxonomic classification across different

zooplankton laboratories) show that even highly trained

professional zooplankton taxonomists often achieve an

identification accuracy of only ~80%, with the identification of

copepods to species level posing the biggest challenge (Wootton

and Johns, 2019). In contrast, plankton classifiers with an

accuracy of >90% have already been developed (Dai et al.,

2016; Wang et al., 2018; Ellen et al., 2019; Kerr et al., 2020);

though it is seldomly reported whether these classifiers

successfully identify key and indicator species, which may be

rare (Xue et al., 2018). Another aspect that will influence the

trust in AI/ML is previous experience with this technology. Even

though we tried to distribute our survey widely, 62% of the

participants rated themselves as ‘novice’ in AI/ML for

zooplankton image identification and only 9% rated

themselves as ‘advanced’ or ‘expert’, reflecting that AI/ML is

young in this field and has had limited uptake by

the community.

Trust, experience and expertise in AI within the zooplankton

research community need to increase for AI-based taxonomy to

become fully adopted. Trust is influenced by both the perception of
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the technology’s competence and emotional factors, and actions to

facilitate theadoptionofnewcomplex technology, suchasAI,need to

address both (Hoff and Bashir, 2015; Glikson and Woolley, 2020).

Experiments suggested that interaction with AI can significantly

increase trust in the observed AI and in future uses (Ullman and

Malle, 2017). A visual presence of the AI (rather than an embedded,

‘black box’ feature) also builds trust (Glikson and Woolley, 2020).

Visual presence could include visual interfaces as well as visual

representations of the results, such as group collages that can be

exploredby the researcher. Inaddition, generating theperceptionof a

‘persona’, the use of human-like behaviour, and personalization to

the user’s needs and preferences can help to build emotional trust

(Glikson and Woolley, 2020).

In addition, investing in a good reputation and transparency

of how the algorithm works also increases trust in the AI’s

competence (Glikson and Woolley, 2020). A key step in this

process is an increased effort in the development of explainable

AI (often referred to as XAI), which provides explanations for

the algorithm’s decisions and outputs that are understandable

for non-AI experts (in this case, a zooplankton researcher).

Keystones for explainability include (1) transparency of how the

algorithm works, (2) explanation of the underlying rules for the

decision (‘causality’), (3) quantification of bias that could have

originated from shortcomings of the training data or choice in

algorithm, and (4) confidence in the reliability of the predictions

(Hagras, 2018). XAI has gained attention only in the past decade

(Carvalho et al., 2019) but is now considered critical for the

widespread adoption of AI (e.g. UK Parliament, 2017). However,

how exactly XAI for plankton classification could be

implemented to maximize trust and confidence by

zooplankton researchers is yet unclear, and an appropriate

framework needs to be developed through close collaboration

between zooplankton taxonomists and researchers (‘users’) and

AI developers. Finally, matching users’ expectations and AI

performance by providing clear explanations about the AI’s

functionality both in terms of how the algorithms work and

why they should be used (compared to alternatives) is important.

Possible avenues to build cognitive trust thus include

demonstration and quantification of reliability of the AI,

development of XAI, and close collaboration and dedicated

workshops for zooplankton researchers and AI developers.
A new face for zooplankton taxonomy

The exciting developments in cutting-edge information

technology for zooplankton research further offer the

opportunity of a ‘face-lift’ for the field of taxonomy. The

number of taxonomists has declined worldwide (MacLeod

et al., 2010; Culverhouse, 2015; McQuatters-Gollop et al.,

2017), and fewer trained taxonomists and plankton analysts

are recruited each year to replace the previous generation as it

retires (McQuatters-Gollop et al., 2017). One solution to this
Frontiers in Marine Science 12
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‘brain drain’ in plankton taxonomy could be to engage

traditional taxonomists in training in AL/ML. Such

engagement would build trust in the new techniques and also

enhance the field of taxonomy with innovative, cutting-edge

engineering and informatics technologies. The added

interdisciplinary flavour could increase interest in the field of

plankton taxonomy because the skills used to collect and analyse

in situ imaging data are globally in demand and widely

transferable across many non-scientific sectors such as

business, economics, and computing. A starting point for

merging taxonomy with engineering and computer sciences

could be the development of courses that teach the combined

skills of AI/imaging/plankton taxonomy at universities. By

teaching these skills together, students may start to recognise

the links between taxonomy and technology, helping to rebrand

zooplankton taxonomy as ‘exciting and relevant’ rather than a

career ‘dead end’. This ‘new face’ for zooplankton taxonomy and

research may provide a solution to securing, into the future,

critical taxonomic and ecological knowledge needed for future

zooplankton monitoring and robust evidence-based decision-

making and policy.
Robust evidence base for
decision-making

To enable policymakers to best make informed decisions

about enacting management measures, we require a robust

evidence base founded on consistent time-series datasets and

broad global coverage. Currently, understanding of plankton

dynamics, particularly in response to climate change and direct

anthropogenic pressures, is limited due to gaps in data coverage

or taxonomic mismatches between time-series with different

methodologies. The result is a lack of confidence in the evidence

base underpinning decision making (McQuatters-Gollop et al.,

2015; McQuatters-Gollop et al., 2017). A big challenge here is

how to combine different datasets of varying taxonomic levels.

An example of how merged datasets can work is the UK’s and

OSPAR’s approach to assessing pelagic habitats in the Northeast

Atlantic and the North Sea, which uses flexible indicators that

work with a variety of plankton datasets, regardless of differences

in sampling method or taxonomic resolution (McQuatters-

Gollop et al., 2017; Rombouts et al., 2019; Bedford et al., 2020;

McQuatters-Gollop et al., 2022). For example, the “Change in

Plankton Communities” indicator applies a plankton lifeform

indicator approach that uses functional traits to group plankton

taxa into ecologically-relevant lifeform pairs where changes in

relative abundance indicate an alteration in ecosystem

functioning (McQuatters-Gollop et al., 2019; McQuatters-

Gollop et al., 2022). This approach uses taxonomic

phytoplankton and zooplankton data that do not need to be

refined to the species level. Rather, because of the aggregative

nature of lifeforms, data at the order, family, and genus levels can
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still inform the indicator. Similarly, the “Change in Plankton

Biomass and Abundance” indicator is partially informed by data

on copepod abundance (OSPAR, 2017). For these indicators,

sufficient information is hence broad zooplankton lifeforms

identification (e.g. large and small copepods, meroplankton)

and abundance. Zooplankton image data therefore has great

potential to contribute to these indicators as our survey results

indicated a community consensus that images can reasonably

inform on the family and genus level (Figure 8).

To retrieve such information from the growing amount of

image data swiftly, however, we will have to come up with a

strategy to extract relevant taxonomic and abundance

information from the images in an automated way. In the

foreseeable future, AI will likely be able to classify and count

from image datasets with limited input from human

taxonomists. Image data could hence be used at a coarse

taxonomic level to provide information on lifeforms, or other

easily identifiable zooplankton groups, over large spatial scales,

akin to Argo data (Roemmich et al., 2019). Thus, the combined

use of imaging and automated classification will likely be

appropriate to answer questions that require taxonomic

resolution that is consistent with the accuracy of the available

AI/ML. With AI automation, data can be analysed on-board, for

example on the ship during a survey or on a platform, and sent

via satellite to provide near-real-time information.

Clear guidelines on quality assurance are required for such a

workflow. Algorithms have to follow the FAIR principles

(Findability, Accessibility, Interoperability, Reusability) (Hartley

and Olsson, 2020). Taxonomic classifications need to link image

labels to machine-readable taxonomic trees, such as WoRMS. Data

should contain all sources and contributors, including information
Frontiers in Marine Science 13
210
on both the human and AI who carried out the classifications (i.e. a

‘taxonomist ID’). Finally, the accuracy and certainty of all

classifications should be clearly documented (e.g. how sure is the

algorithm/human about the identification).
Conclusion and roadmap

The ultimate goal is a cost-effective global zooplankton

monitoring programme with comprehensive spatiotemporal

coverage that can answer scientific questions and contribute to

the robust evidence base required to inform decision making for

environmental management. Our survey revealed a clear

community consensus that net sampling and traditional

taxonomy must be retained in future, yet imaging will play an

increasingly important part in the future of zooplankton

monitoring and research. For imaging, challenges to address

will include, besides technical hurdles such as the transfer of

large data and image processing speed, the integration of the

outputs from both physical and digital sampling methods. A

period of overlapping use of imaging systems and physical

sampling systems will be needed before imaging can

reasonably replace physical sampling for widespread time-

series zooplankton monitoring. In addition, improvements in

AI/ML are needed for these to be trusted and fully adopted by

zooplankton researchers, particularly taxonomists. The key step

forward is parallel programmes that complement each other,

while efforts are focussed on bringing imaging technologies on

par with traditional taxonomy. This long-term goal will no

doubt mean overcoming several challenges, and only then can

nets for routine monitoring become a thing of the past.
A B

FIGURE 10

Multimodal learning uses both image and text data. (A) Image of Calanus hyperboreus (Source: Hopcroft at arcodiv.org). (B) Taxonomic
description of Calanus hyperboreus (Rose, 1933).
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Based on our discussion above, we recommend the

following roadmap:
Fron
1. Evidence-based science for decision-making: Use all

available plankton datasets to form a robust evidence

base for decision-making. Collated and curated datasets

will offer unprecedented opportunities to explore

differences between collecting instruments. Moreover,

large-scale intercomparable datasets can already be used

to explore important ecological questions.

2. Technical validation: Enable long-term overlap of

imaging and traditional techniques to secure

continuity and quality control for high-quality

continuous zooplankton monitoring and research.

3. Quality assurance:High-quality robust sciencedemandshigh

levels of self-consistency and peer-consistency. Routines to

ensure consistency by humans and AI/ML need to be

developed, and the adoption of XAI is required.

4. Interdisciplinary expertise: Invest in training in modern

techniques for traditional taxonomists. Support workshops

and collaboration between AI/ML and human taxonomists

to offer (1) a way of exposing taxonomic experts to AI/ML

data and (2) feedback from zooplankton researchers to

instrument and AI/ML developers.

5. Capacity building: Invest in retaining taxonomists in the

scientific community. Teach combined imaging/AI/

taxonomy in university (currently taught independently

and traditionally).
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