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AI, sensors and robotics in plant phenotyping and precision agriculture
Introduction

Plants and their production play an important role in retaining the sustainability for

the natural ecosystem and human beings’ food security. With the increasing global

population, rapid urbanization and climate change, how to improve plant protection

levels, increase plant breeding speed and make sure the agricultural planting in a

sustainable and low-carbon dioxide manner becomes challenging. One way to address

this issue is to develop the technology of plant phenotyping and precision agriculture

(Costa et al.). Plant phenotyping and precision agriculture as information- and

technology-based approaches, could evaluate a large amount of plants and provide

effective information to production management. Plant phenotyping assesses complex

plant traits such as plant morphology, plant stress, crop yield, plant physiological,

anatomical traits, and genotype performance under distinct environmental conditions.

Precision agriculture is aimed at examining spatial heterogeneities within crop stands

based on the spatial and temporal variability in crop and soil factors within a field

(Stafford, 2000 and Patrıćio and Rieder, 2018). High-throughput phenotyping in

precision agriculture is helpful to improve management practices, and efficient

phenotyping in the field also reduces the invested resources (e.g., fertilizer,

water, pesticide).
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In recent years, cutting-edge technologies for plant

phenotyping and precision agriculture are fundamental to

improve the productivity and sustainability of plant

production systems (Narvaez et al., 2017). Especially, the

development of Artificial Intelligence (AI), smart sensors and

robotics provides a non-invasive manner for assessing complex

traits in plants (as shown in Figure 1), measuring plant-

physiological parameters, diagnosing plant diseases, predicting

the yield and performance of plants at various organizational

scales (Purcell and Neubauer, 2023).

The comprehensive plant phenotyping emerges from the

dynamic and local interaction of phenotypes with the spatially

and temporally dynamic environment above and below ground,

while assessing complex plant traits such as growth, tolerance,

resistance, physiology, ecology, plant stress and yield, which

benefits the farmers and plant breeders to identify phenotyping

parameters and select desirable genotypes that provide effective

information to make informed agricultural production

management decisions (Li et al., 2014). By assessing complex

plant traits (e.g., growth, development, resistance, physiology,

ecology), high yielding and stress-tolerance crop varieties adapt

to future climate conditions and resistant to pests and diseases,

produce enough food, feed, fiber, and fine chemicals in next

century to meet the needs of a growing population worldwide

(Abbasi et al., 2022).
Plant phenotyping

Plant monitoring and phenotyping can reflect many valuable

parameters and effective information for optimizing agricultural
Frontiers in Plant Science
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production management in smart farming. Traditional manual

based methods rely on experienced farmers, which is of low-

accuracy and poor efficiency. Nowadays, a range of sensors

(various RGB, multi-and hyperspectral cameras, 3D-sensors,

etc.) and platforms have been used to realize real-time, rapid,

and efficient plant phenotyping. According to different

perception principles, these sensors mainly have ground

feature spectrometers, spectral imaging sensors, and other

imaging spectrometers.

Qin et al. proposed a real-time and low-cost Ag-YOLO

model for crop monitoring and crop spraying, which achieved

0.92 F1-score with a speed of 36.5 frames per second (fps) on

Intel Neural Compute Stick 2 (NCS2). Liu et al. proposed a

portable wild phenotyping system based on segmentation results

from DeepLabV3+ model to obtain 45 traits, including 15 plant

traits, 25 leaf traits and 5 stem traits. The proposed system

provides a solution for maize phenotyping in the field and

benefit crop breeding. Lu et al. proposed a soybean yield in-

field prediction method based on bean pods and leaves image

recognition using a deep learning algorithm combined with a

generalized regression neural network (GRNN). According to

the experiments, the soybean yield of each planter was obtained

by accumulating the weight of all soybean pod types and the

average accuracy was up to 97.43%.

In addition, an identification model YOLO-VOLO-LS was

constructed for hydroponic lettuce grown in a greenhouse under

the conditions of different growth periods (Zhang and Li). By

combining the respective advantages of the target detection

mechanism and the classification mechanism, a nearly 100%

of the lettuce classification effect in the growth stages of days 1, 6,

12, 18, 24, and 30 were achieved. Wang et al. proposed a
FIGURE 1

AI, sensors and robotics in plant phenotyping and precision agriculture.
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lightweight model based on the improved You Only Look Once

version 4 (YOLOv4) to detect dense plums in orchards, which

achieved 86.34% detection accuracy.

For obtaining image-based phenotypic information of wheat

traits for spike morphology analysis and yield estimation, Zhang

et al. collectedwheat images fromfields and proposed an optimized

hybrid task cascade model for automatic dense wheat spike

segmentation. Experimental results showed that they achieved an

average precision (AP) of 90.7%, and an accuracy of 99.29%.for

wheat spike counting. Qiu et al. processed the color images of the

spike in YCbCr color space and then utilized Faster R-CNN to

detect the spikelets. Testing results showed that the root mean

squared errors between the automatic and manual counted

spikelets for four wheat lines were 0.62. Qi et al. proposed a novel

tea chrysanthemum–generative adversarial network (TC-GAN)

for tea chrysanthemum detection, which achieved an optimal

average precision (AP) of 90.09%.

Nitrate nitrogen plays an important role during crop growth,

and the operation of Increasing N fertilizer dosage and

application is usually one of the essential ways to boost crop

productivity. Su et al. proposed an ISE system combined with a

temperature sensor and a pH electrode to automatically measure

the concentrations of Nitrate nitrogen.

As sugar being the energy source of plants and plays an

important role in plant growth and development, Liu et al.

developed an enzyme-free electrochemical sensor for in situ

detection of reducing sugar, which demonstrated that the

COOH-GR–COOH-MWNT–AuNP-modified electrode

exhibited a good catalysis behavior. To investigate the study effect

of vegetation distribution on mean flow velocity and turbulence

characteristics in a channel,Wang et al. constructed a flow velocity

distributionmodel to study themicroscopicmechanismof the flow

velocity distribution in the upper layer of vegetation, which

provides a solution forflowmeasurement in the ecological channel.

Hyperspectral imaging is advantageous in delivering reliable

and comprehensive analysis of characteristics or properties of

plant materials, which is a powerful modality for measuring

spectral and spatial information of samples simultaneously (Lu

et al., 2020). Lu et al. classified industrial hemp cultivars, growth

stages, and plant organs (leaves vs. flowers) using hyperspectral

imaging technology. Based on regularized linear discriminant

analysis, an accuracy of up to 99.6% was achieved in

differentiating the five hemp cultivars. Liu et al. designed a

near-infrared (NIR) phenotypic sensor for predicting wheat

gain quality, and the R2 of the relative diffuse reflectance

(RDR) of all four wavelengths of the phenotypic sensor and

the reflectance of the diffusion fabrics were higher than 0.99.
Plant diseases detection

Diseases are the main causal factors affecting crop growth

and yield. Reliable and timely plant disease detection is
Frontiers in Plant Science
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important for plant protection activities, field crop growth and

plant breeding. AI and computer vision based diagnosis and

detection of plant diseases must consider that the occurrence of

plant disease depends on specific environmental factors and

diseases often exhibit a heterogeneous distribution in fields

(Mahlein, 2016).

Wang et al. proposed a YOLOv3-tiny-IRB algorithm to

improve the detection accuracy of tomato diseases and pests

under conditions of occlusion and overlapping in real natural

environment, which achieved the mean average precision (mAP)

of 98.3, 92.1, and 90.2%, respectively under three conditions: (a)

deep separation, (b) debris occlusion, and (c) leaves overlapping.

Zhang et al. proposed YOLOv5-CA based GDM detection

approach for grape downy mildew disease detection, and the

experimental results show that the proposed YOLOv5-CA

achieved a detection precision of 85.59%, a recall of 83.70%,

and a mAP@0.5 of 89.55%, which are superior to the popular

methods, including Faster R-CNN, YOLOv3, and YOLOv5.

Chen et al. proposed 2D histogram Otsu based approach for

segmenting maize foliar disease images, the experimental results

indicated that the method effectively improved the segmentation

of the three maize disease spot images and could obtain more

apparent disease spot areas. Zhang et al. extracted handcrafted

and deep features from the color image and color-infrared (CIR)

image, and the DFs coupled with parallel feature fusion resulted

in diagnosis accuracies of over 70%.
Robotics and UAVs in smart farming

Robotics and UAVs have shown great efficiency and

effectiveness in the agriculture field. In recent years, many

agricultural related robotics and UAVs have been designed

and developed to manage crops, plants, livestock and fishes

(Qiao et al., 2019; Su et al., 2021; Li et al., 2022 and Du et al.,

2022). Based on the Simultaneous Localization and Mapping

(SLAM), place recognition and autonomous navigation, robots

or UAVs can autonomously drive and perform actions such as

harvesting, picking and trimming.

In robotic precision spray of vegetables, accurate and reliable

detection and tracking of every vegetable is of utmost

importance. Hu et al. proposed LettuceMOT, a multiple object

tracking (MOT) method to correlate these re-appeared

vegetables with their previous identities. The experimental

results show that LettuceMOT outperformed existing state-of-

the-art MOT methods (e.g., ByteTrack, FairMOT, TraDeS

and SORT).

To achieve the rapid harvesting of table grapes planted with

a standard trellis in the grape industry, Jiang et al. carried out a

dual-arm high-speed grape-harvesting robot to improve low

picking efficiency. Robotic arm and camera view analysis of

the workspace harvesting process was performed using

MATLAB, and it can be concluded that the structural design
frontiersin.org
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of this robot meets the grape harvesting requirements with a

standard trellis. The field performance test verifies that the

average harvesting cycle of the robot with both arms reached 9

s/bunch, and the success rate of bunch identification and

harvesting success rate reached 88% and 83%, respectively,

which were significantly better than those of existing

harvesting robots worldwide.

In terms of agricultural navigation technologies, Xie et al.

proposed the miniaturization scheme of zooming detection arc

based on variable central angle and established the adjustment

equation of the detection distance of photoelectric switches at

each position, a small integrated photoelectric arc array

navigation sensor with a cost of about $65 is developed using

an embedded microcontroller. However, there is still a problem

of external noise and other factors causing the failure of the

navigation system. To solve this problem, Lv et al. proposed an

agricultural scene-based multi-sensor fusion method via a

loosely coupled extended Kalman filter algorithm to reduce

interference from external environment. Specifically, the

proposed method fuses inertial measurement unit (IMU),

robot odometer (ODOM), global navigation and positioning

system (GPS), and visual inertial odometry (VIO), and uses

visualization tools to simulate and analyze the robot trajectory

and error. In experiments, the high accuracy and the robustness

of the proposed algorithm were verified when sensors fail. The

experimental results show that the proposed algorithm has

better accuracy and robustness on the agricultural dataset than

other algorithms.

For phenotypic feature detection in the study of automatic

trimming, Tang et al. optimized and designed a long-belt finger-

clip precision seed metering device, which includes a diffuse

reflection photoelectric sensor and rectangular optical fiber

sensor to monitor the number of corn seeds in the seeding

process. To automatically trim hedges, Zhang et al. proposed a

binocular vision-based shape reconstruction and measurement

system, based on stereo correcting algorithm and an improved

semi-global block matching (SGBM) algorithm The center

coordinate and radius of the spherical hedges can be

measured. The outdoor test shows that the average error and

average relative error of spherical hedges radius by the proposed

system are 4.02 mm and 0.44%, respectively. The average

location deviation of the center coordinate of spherical hedges

is 18.29 mm.

Fu et al. quantified the forces on the stalks caused by root

anchorage in corn harvesting, and a root force measurement

system was designed and applied in this study. The bending

moment and torsional moment on the upright and lodged corn

stalks were measured in corn harvesting. By analyzing the

bending moment curves on the lodged corn stalks, it was

proposed that for the harvesting of corn lodged in the

forward, reverse, and lateral direction, the corresponding

harvester header improvement suggestions are enlarging the
Frontiers in Plant Science
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size of pins on the gathering chains, reducing the speed of

gathering chains, and lengthening the snouts with a sleeker

surface, respectively. This study provides base data for the root

anchorage effect on lodged corn and provides references for the

improved design of the corn harvester header.

On the other hand, UAV based platform are also popular in

the precision agriculture and plant phenotyping applications

because their large cover range and higher data scanning speed.

In addition, UAVs can fly automatically with less human

intervention during data collection. Zhaosheng et al. improved

wheat ears identification performance in a field environment

using improved YOLOX-m model. To develop a data processing

pipeline for performing fast and accurate pre-harvest yield

predictions of cotton breeding fields using aerial image,

Rodriguez-Sanchez et al. used a Support Vector Machine

(SVM) classifier with four selected features to identify the

cotton pixels present in each plot image, which achieved an

accuracy of 89%, a precision of 86%, a recall of 75%, and an F1-

score of 80% at recognizing cotton pixels. This study

demonstrates that aerial imagery with machine learning

techniques can be a reliable, efficient, and effective tool for

pre-harvest cotton yield prediction. Krul et al., 2021 studied

the feasibility to apply UAV for indoor farming monitoring and

control. The performance of different state-of-the-art visual

simultaneous localization and mapping (VSLAM) algorithms

with a small and low-cost UAV was assessed. The authors found

that ORB-SLAM was the algorithm that perform best in such an

environment. Tests in the farming facilities where performed

and different maps were generated.

Finally, agricultural management could also benefit from the

collaboration between aerial and ground robotic systems. The

aerial robotics could survey a field using different types of

sensors and payloads. Moreover, it could provide the ground

robot a detailed map with specific positions where the ground

robot need to inspect further or perform some action with an

actuator. Conesa-Muñoz et al., 2016 proposed a multi-robot

system to reduce the amount of herbicide during site-specific

treatments. The combination of aerial-ground robotics systems

allows to reach a 97% spray accuracy and a mean deviation lower

than 7cm. Zhang et al., 2022 investigated the spatial-variability

of orchards flower blossom from an aerial and ground

perspective. Several point clouds where acquired in a

commercial orchard (Elstar) field using a UAV and a ground

vehicles. The feasibility of combing data from both platforms to

assess flowering intensity at the tree-level, was demonstrated,

yielded R2>0.7 and RMSE lower than 20.
Conclusions

Plant phenotyping and precision agriculture is becoming a

very important topic for future agriculture. The increasing
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population and climate change push us to take actions to plant

crops against pests, diseases, and harsh environments (e.g. lack

of nutrients, water, fertilizers or light). The new technologies

such as AI, sensors and robotics enables farmers to take a data-

driven approach to collect and analyze data to monitor the real-

time status of the plans and crops to improve production yield

quality. For precision agriculture, the grand challenges lie in

identification of cheap, robust, easy-to-use, rapid and automated

phenotyping methods that can feed into Decision Support

System. In addition, the field environment will provide

challenges in sometimes rapidly varying light conditions, wind

and temperature, as well as combinations of multiple stresses.

Despite all these challenges, automated and systematic stress

detection by field-phenotyping holds great promise to accelerate

Integrated pest management where on-farm live monitoring of

stress and disease are key factors to reduce the reliance

on pesticides.

In the future, the integration of automated data collection

and analysis, AI algorithms, robotics and decision support

systems will bring unmanned farming to our lives. Moreover,

the ground-level or aerial-level robotic systems will also have a

major role in plant phenotyping and precision agriculture, for

monitoring, disease control and harvesting.
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Patrıćio, D. I., and Rieder, R. (2018). Computer vision and artificial intelligence
in precision agriculture for grain crops: A systematic review. Comput. Electron.
Agric. 153, 69–81. doi: 10.1016/j.compag.2018.08.001

Purcell, W., and Neubauer, T. (2023). Digital twins in agriculture: A state-of-the-
art review. Smart. Agric. Technol. 3, 100094. doi: 10.1016/j.atech.2022.100094

Qiao, Y., Truman, M., and Sukkarieh, S. (2019). Cattle segmentation and
contour extraction based on mask r-CNN for precision livestock farming.
Comput. Electron. Agric. 165, 104958. doi: 10.1016/j.compag.2019.104958

Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. J.
Agric. Eng. Res. 76 (3), 267–275. doi: 10.1006/jaer.2000.0577

Su, D., Qiao, Y., Kong, H., and Sukkarieh, S. (2021). Real time detection of inter-
row ryegrass in wheat farms using deep learning. Biosyst. Eng. 204, 198–211. doi:
10.1016/j.biosystemseng.2021.01.019

Zhang, C., Mouton, C., Valente, J., Kooistra, L., van Ooteghem, R., de Hoog, D., et al.
(2022). Automatic flower cluster estimation in apple orchards using aerial and ground
based point clouds. Biosyst. Eng. 221, 164–180. doi: 10.1016/j.biosystemseng.2022.05.004
frontiersin.org

https://doi.org/10.1016/j.atech.2022.100042
https://doi.org/10.3390/s16081269
https://doi.org/10.1016/j.compag.2022.107404
https://doi.org/10.3390/drones5020041
https://doi.org/10.1016/j.compag.2022.107345
https://doi.org/10.3390/s141120078
https://doi.org/10.1094/PDIS-03-15-0340-FE
https://doi.org/10.1109/TMECH.2017.2760866
https://doi.org/10.1109/TMECH.2017.2760866
https://doi.org/10.1016/j.compag.2018.08.001
https://doi.org/10.1016/j.atech.2022.100094
https://doi.org/10.1016/j.compag.2019.104958
https://doi.org/10.1006/jaer.2000.0577
https://doi.org/10.1016/j.biosystemseng.2021.01.019
https://doi.org/10.1016/j.biosystemseng.2022.05.004
https://doi.org/10.3389/fpls.2022.1064219
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


fpls-12-753613 November 16, 2021 Time: 15:21 # 1

ORIGINAL RESEARCH
published: 22 November 2021

doi: 10.3389/fpls.2021.753613

Edited by:
Dongjian He,

Northwest A&F University, China

Reviewed by:
Muthusamy Ramakrishnan,

Nanjing Forestry University, China
Soumen Maji,

Central Institute of Technology
Kokrajhar, India

*Correspondence:
Yu Han

Yhan@cau.edu.cn

Specialty section:
This article was submitted to

Sustainable and Intelligent
Phytoprotection,

a section of the journal
Frontiers in Plant Science

Received: 05 August 2021
Accepted: 19 October 2021

Published: 22 November 2021

Citation:
Wang S, Zhou Y, Li T, Li S,

Zhang M and Han Y (2021) Study on
Flow Velocity Distribution in Open
Channel With Flexible Vegetation.

Front. Plant Sci. 12:753613.
doi: 10.3389/fpls.2021.753613

Study on Flow Velocity Distribution in
Open Channel With Flexible
Vegetation
Shiyu Wang1, Yi Zhou1, Tongshu Li1, Song Li1, Mingwu Zhang2 and Yu Han1*

1 College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China, 2 Yellow River Institute
of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, China

Ecological management of river channels is a hot topic for current sustainable
development and flow measurement of ecological river is an important part. In this
article, a flow velocity distribution model of the channel containing flexible vegetation
is constructed from the vegetation riverbed theory and the bursting phenomenon to
reveal the microscopic mechanism of the flow velocity distribution in the upper layer of
vegetation. In the vegetation riverbed law, the effect of flexible vegetation is evaluated
by the mixed length formula. The bursting phenomenon law considers the influence of
the channel sidewalls on the flow and a two-dimensional velocity model is established
by introducing the concept of average turbulence structure. The mechanism of the
downward shift of the maximum flow velocity point on the channel sidewall is explained.
The verification of the calculated velocity profiles is carried out based on data obtained
in laboratory experiments. The results show that the combination of the two models can
well describe the velocity distribution of the whole channel. At the end, the phenomenon
of flow velocity zoning in open channel is discussed, which provides a solution for flow
measurement in ecological channel.

Keywords: flexible vegetation, velocity distribution, open channel, bursting phenomenon, mixing length

INTRODUCTION

Sustainable development is an important issue in the world. The presence of vegetation in river
systems contributes to the sustainability of rivers and enhances the self-cleaning capacity of water
(Lozanovska et al., 2020). However, the existence of vegetation will change the channel resistance
and raise the water level (Rivaes et al., 2017). Ecological discharge is an important parameter in
the ecological channel. The existence of vegetation causes some interference on the flow field and
flow monitoring. Therefore, it is necessary to study the velocity distribution of the channel with
flexible vegetation.

The effect of vegetation distribution on mean flow velocity and turbulence characteristics in
a channel is generally studied by model experiments. Järvelä (2002) used natural aquatic grass,
sedge, and willows as test material to study the influence of plants on flow velocity distribution by
introducing plant parameters that characterize the flexibility and morphology of plants in flow.
Bennett et al. (2002) analyzed the influence of vegetation belts arranged at intervals between
two sides of water channel on flow characteristics by model test. It was found that vegetation
belts carried flow to the other side and the intensity of flow were related to the density of
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vegetation. Wilson et al. (2005) developed a three-dimensional
numerical model and compared it with a standard turbulent
flow model to analyze the effect of willows on flow, pointing
out that determining the degree of plant bending in flow is
important for the study of the interaction mechanisms between
vegetation and flow. Bouma et al. (2005) analyzed the influence
of vegetation belt with specific shape on flow rate and turbulence
and proposed that the distribution of flow rate is closely related
to the spacing of vegetation belt. Neumeier (2005) measured the
flow velocity and turbulence characteristics of the wake after
it crossed the marsh vegetation and inferred that the larger
vertical flow velocity and higher turbulence in front of the
vegetation could reduce sediment deposition. Helmiö (2002)
developed a one-dimensional model to solve the problem of
composite channels with vegetation, in which the effect of flow
distribution caused by vegetation was considered and the model
was validated by using data from the Rhine river. He pointing
out that vegetation density and the width of the diffuse zone
have a large effect on the transport capacity of the main channel
and significantly reduce the flood flow capacity of the channel.
Leu et al. (2008) established a two-dimensional model to study
the velocity distribution of five different submerged plants in
different water depths, pointing out that the submerged plants
can reduce the velocity and can meet the requirements of flood
control. Zong and Nepf (2009) carried out model tests on flow
in semi-covered vegetated river and discussed the changes of
flow velocity and turbulence characteristics in vegetation and
non-vegetation areas and found that flow can be divided into
adjustment areas and fully developed areas. Siniscalchi et al.
(2012) measured the flow characteristics of submerged flexible
vegetation by flow channel experiment. It was found that the
turbulence intensity corresponding to the front of vegetation
and the top of vegetation increased and a negative Reynolds
stress appeared in the vegetation layer, reflecting the influence of
vegetation morphology on the flow velocity and turbulent flux.
Wang et al. (2015) proposed a method to calculate the analytical
solution of the vertical distribution of the mean flow velocity
in the flow direction of an open channel containing flexible
vegetation when a large bend occurs and derived a formula for the
mean flow velocity of the linear flow resistance in the momentum
equation. Okamoto et al. (2016) study how plant motions were
coupled to strong oscillations in flow velocity associated with
the “monami” phenomenon and its vertical extent in an open
channel with flexible vegetation. Wang et al. (2016) simulated the
water flow due to wind action on the water surface in a shallow
lake through experiments. The effects of different densities of
aquatic flexible vegetation on the hydrodynamic characteristics at
different wind speeds were investigated. By analyzing the changes
of vegetation drag (Cd) and friction (Cf ) coefficient with flow and
vegetation conditions under different test conditions, Pu et al.
(2019) obtained a model of velocity distribution in open channel
with flexible vegetation.

Although there are many studies on the hydrodynamic
characteristics of flow with flexible vegetation, most of them are
still limited to the corresponding hydrodynamic characteristics
of specific vegetation. The characteristics of the flow field in the
upper layer of vegetation have not been recognized after the flows

through the vegetation and most of the current studies focused
on the hydrodynamic characteristics of the flow in the center of
the open channel. In fact, the hydrodynamic characteristics of the
channel center and the open channel sidewalls are not the same.
There are fewer studies on the phenomenon of downward shift
of the maximum flow velocity point for the channel sidewall. The
division of velocity zoning of channel section is not clear. The
research results are not universal, so the research needs to be
further strengthened.

This article studies on the velocity distribution law of
ecological river with vegetation. Based on the vegetation riverbed
theory and bursting phenomenon, the velocity distribution law
of the whole section of the flow is established. Combined with
the physical model test of ecological channel, the correctness
of velocity distribution law is verified. Meanwhile, the flow
velocity zoning phenomenon of the ecological open channel is
discussed with the test results. It provides a solution for the flow
measurement of ecological river.

MODELING THE VELOCITY
DISTRIBUTION IN CHANNEL WITH
FLEXIBLE VEGETATION

Velocity Distribution Based on the
Vegetation Riverbed Theory
Righetti and Armanini (2002) proposed that the vegetation layer
can be regarded as a large-scale roughness and it is considered as
a part of the riverbed. It is called the vegetation riverbed theory
and the non-vegetation layer flows on this vegetation riverbed
(Huai et al., 2009).

In this article, we focus on the velocity distribution of the
non-vegetation layer and the initial velocity of the non-vegetation
layer is the velocity of the top layer of vegetation. Therefore, it is
necessary to know the velocity of the vegetation top layer. For the
vegetation layer, the corrected gravity term of the water volume
occupied by the flexible vegetation can be ignored. For a given
water volume, plant-induced resistance per fluid mass can be
described as (Kubrak et al., 2008):

F =
1
2
ρCdmAu2

ud (1)

Where, ρ is the density of water, m is the number of grass per
unit area, A is the upstream area of vegetation, uud is the flow
velocity at the top of the vegetation, and Cd is the drag force
coefficient of the vegetation. For the drag coefficient of vegetation,
the variation in vegetation layer from 1 to 1.5 was estimated from
Kubrak et al. (2008) and Yang and Choi (2009) test data. It is
found that Klopstra et al. (1997) proposed that it can be better
applied to cylindrical vegetation. Therefore, this experiment is
adopted Cd =1.4.

The shear stress of uniform flow in open channel can be
expressed as:

τ = ρu2
∗ (2)
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Where, τ is the shear stress, u∗ is the friction velocity and it
can be expressed as (Tracy and Lester, 1961):

u∗ =
√
gHS (3)

Where, H is the depth of water and S is the slope of the
channel. Since the vegetation layer is not a uniform flow, it is
necessary to multiply a correction factor before Eq. (2), and
combined with Eq. (1) can be obtained that:

αρu2
∗ =

1
2
ρCdmAu2

ud (4)

Where, α is the correction coefficient and different correction
coefficients can be got for different flexible vegetation. In this
experiment, we can take α = 7× hv

H , where hv is the height
of deflected vegetation. Eq. (4) can be simplified to get the
expression of the top flow velocity of vegetation.

uud = α

√
2u2
∗

CdmA
(5)

For the non-vegetated layer, the equation of the flow under
constant uniform flow conditions according to the force balance
principle is:

∂τ

∂y
+ ρgS = 0 (6)

Neglecting the viscous stress and integrating Eq. (6), the
distribution relation of the tangential stress is obtained as:

τ = ρgS
(
H − y

)
(7)

Prandtl (1925) assumes that the distance displaced by the
momentum of the fluid mass before it is changed by the
new environment is l. This is Prandtl’s mixing-length theory.
According to Prandtl’s mixing-length theory, there are:

τ

ρ
= l2

(
∂u
∂y

)2
(8)

According to the vegetation riverbed theory, the original
channel is partly occupied by vegetation and the flow seems to
be “compressed” and the expression of the mixing length should
reflect this “compression” (Huai et al., 2009). A new mixed length
expression is assumed as follows:

l =
(
H-hv
H

)
κy
√

τ

τmax
(9)

According to Eq. (7), we get:

τmax = ρgSH (10)

Combining Eqs. (8–10), it is obtained that:

du =
1
κ

H
H-hv

√
gSH

1
y
dy (11)

The integral is organized to obtain:

u
u∗
=

1
κ

H
(H-hv)

ln
(

y
hv

)
+

uud
u∗

(12)

Equation (12) is the theoretical model of flow distribution
in open channels containing vegetation based on the vegetation
riverbed theory. This velocity equation is named as the vegetation
riverbed law (VRL).

Velocity Distribution Based on the
Bursting Phenomenon
As also mentioned earlier it can be proposed that the vegetation
layer can be considered as a kind of rough object with a
large scale, we can assume that the flexible vegetation is a
special kind of boundary layer where turbulence can lead to the
emergence of coherent structures. Nezu et al. (1993) introduced
the concept of bursting phenomenon. The bursting phenomenon
refers to the phenomenon that the boundary layer will suddenly
rupture locally at a certain location in space when there is a strong
interaction between the inner and outer regions of the boundary
layer. In other words, the upthrow phenomenon of low-speed
fluid and the down sweep phenomenon of high-speed fluid in
wall turbulence are called bursting phenomenon. In fact, vortices
originating from the wall region can be observed in the turbulent
core and even at the free surface. This vortex is also intermittent
and it is randomly distributed in size and direction (Yang, 2010).

For turbulent flows, the expressions for the mean Reynolds
Navier–Stokes equations and the continuum equations are as
follows:

u
(
∂u
∂x

)
+ v

(
∂u
∂y

)
+ w

(
∂u
∂z

)
= gS+

∂

∂x

(
−u′u′

)
+
∂

∂y

(
−u′v′

)
+
∂

∂z

(
−u′w′

)
+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(13)

∂u
∂x
+
∂v
∂y
+
∂w
∂z
= 0 (14)

Where, u, v, and w represent the flow velocity along the
flow direction x, y, and z. ν is the kinematic viscosity, −u′u′,
−u′v′, −u′w′ is the turbulent shear stress. For uniform flow, the
variation in x direction can be disregarded and Eq. (13) can be
written as:

v
(
∂u
∂y

)
+ w

(
∂u
∂z

)
= gS+

∂

∂y

(
–u′v′

)
+
∂

∂z

(
–u′w′

)
+µ

(
∂2u
∂y2 +

∂2u
∂z2

)
(15)

In 1883, Reynolds decomposed the instantaneous velocities
into two contributions—mean velocities and velocity
fluctuations. Equation (15) can be further written as:

∂
(

uv− τxy
ρ

)
∂y

+

∂
(

uv− τxz
ρ

)
∂z

= gS (16)

Where, τxy = η
∂u
∂y − ρu′v′, τxz = η

∂u
∂z − ρu′w′, and η is the

kinetic viscosity.
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In the two-dimensional flow, the first term on the left side of
the equation in Eq. (16) should dominate and the second term
has little effect and can be neglected. Eq. (16) can be simplified
and integrated to obtain:

µ
du
dy
− uv − u′v′ = −gSy + C (17)

Substituting the boundary conditions, Eq. (17) can be obtained
as follows:

du+

dy+
− u+v+ −

u′v′

u2
∗

= 1−
y
H

(18)

Where, u+ = u
/

u∗, y+ = yu∗
/
µ, and v+ = v

/
u∗.

A method for calculating the average turbulence structure is
proposed here, where the probability of bursting phenomena r
is first determined based on the direction of the vertical flow
velocity. If the instantaneous velocity is greater than the average
velocity, the subscript is recorded as u; otherwise, it is recorded as
d. Where r is defined as:

ru =
∑Tu

0 1tu
T

(19)

rd =
∑Td

0 1td
T

(20)

Equation (19, 20) can be rewritten as:

ruvu + rdvd = 0 (21)

The two-dimensional velocity affected by vegetation bursting
can be defined as follows:

uu =
1
Tu
∫
Tu
0 ũudt (22)

ud =
1
Td
∫
Td
0 ũddt (23)

vu =
1
Tu
∫
Tu
0 ṽudt (24)

vd =
1
Td
∫
Td
0 ṽddt (25)

Where, ũ is the instantaneous velocity. In Eq. (18), the
formula of Reynolds shear force can be obtained by introducing
the bursting phenomenon.

du+u
dy+
−

u′uv
′

u
u2
∗u
=

(
1−

y
H

)
+ u+u v

+
u (26)

du+d
dy+
−

u′dv
′

d
u2
∗d
=

(
1−

y
H

)
+ u+d v

+

d (27)

Where, u′u = u− uu, u′d = ũ− ud, v′u = ṽ− vu, and v′d = ṽ−
vd are the average turbulent structure; here u+u = uu

/
u∗uand

u+d = ud
/

u∗d, u∗u and u∗d are the local frictional flow
velocity in the case of upward turbulence and downward
turbulence of the flow.

According to Yalin (1977), the viscosity of vortices in water can
be expressed as follows:

νT

u∗
= κξ (1− ξ) (28)

Where, νt is the vortex viscosity, which can be approximated
to be equal to µ, ξ = y

/
H, and κ is the Carmen constant. At y =

0, due to the non-slip boundary condition (uu = 0 and vu = 0),
the influence of additional momentum flux uuvu on the velocity
profile is negligible in the near-wall region. Substituting Eq. (28)
into Eq. (26) and the non-slip boundary condition and simplify
it:

du+u
dξ
=

(1− ξ)
κξ (1− ξ)

+
u+u v+u

κξ (1− ξ)
(29)

Similarly, it can be obtained:

du+d
dξ
=

(1− ξ)
κξ (1− ξ)

+
u+d v
+

d
κξ (1− ξ)

(30)

Equation (21) can be rewritten as:

v+ = ruv+u u∗u + rdv+d u∗d = 0 (31)

The vegetation influence is stochastic, so the average velocity
gradient based on the probability of bursting phenomenon r can
be expressed as:

u+ =
u
u∗
=

ruuu + rdud
u∗

= ruu+u
u∗u
u∗
+ rdu+d

u∗d
u∗

(32)

FIGURE 1 | Experimental platform for physical model of ecological channel.
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FIGURE 2 | Vegetation arrangement diagram.

So,
du+

dξ
= ru

u∗u
u∗

du+u
dξ
+ rd

u∗d
u∗

du+d
dξ

(33)

By associating Eq. (33) with Eq. (29) and Eq. (30), the
following results can be obtained:

du+

dξ
=

1
κξ
+

A
κξ (1− ξ)

(34)

Where,
A = ru

u∗u
u∗

(
u+u v
+
u − u+d v

+
u
)

(35)

Integrating Eq. (35) and simplifying it gives:

u
u∗
=

1
κ

ln
y
hv
+

A
κ

ln
y
hv
−

A
κ

ln
(
H − hv
H − y

)
+

uud
u∗

(36)

Equation (36) is the theoretical model of flow velocity
distribution in open channels with flexible vegetation based on
the bursting phenomenon. This velocity equation is named as the
bursting phenomenon law (BPL).

EXPERIMENT

The model experiment was carried out on the open channel
device in the hydraulic public test hall of the China Agricultural

TABLE 1 | Experiment conditions.

Case Stem
spacing

(m)

Vegetation
density (flexible

stems/m2)

Flow Q
(m3/h)

Depth H
(m)

Height of
deflected stem

hv (m)

1 0.06 272 90 0.159 0.0551

2 0.06 272 100 0.170 0.0541

3 0.06 272 110 0.181 0.0533

4 0.06 272 120 0.191 0.0522

University. The rectangular channel is 6 m long, 0.8 m wide,
0.6 m high, and the slope is 5h (Figure 1). In order to ensure
that the flow at the water inlet is as uniform as possible, the
water inlet tank is aligned with the center line of the channel
and a turbulent honeycomb is arranged at the water inlet of the
tank. This experiment controls the water depth in the channel by
controlling the valve system on the return water pipeline, so that
the flow in the whole channel section can easily reach the uniform
flow state in the open channel.

In this experiment, the flexible vegetation was simulated by
plastic water plants; every plant was 0.06 m high, 0.03 m in
diameter, and the total length of the vegetation section was 4 m.
The vegetation is glued to the prefabricated perforated plastic
plate, which is laid at the bottom of the sink. The vegetation strip
was a single row of vegetation and equidistant (Figure 2); then,
the position of the vegetation above the vegetation was measured
with the plant as the reference.

The three-dimensional ultrasonic acoustic Doppler
velocimetry (ADV) is used in this experiment to measure
the velocity and ADV can measure the three-dimensional flow
field information. The velocity range of ADV is from 0.001 to
4.5 m/s, the resolution can reach 0.0001 m/s, and the relative
error is<1% of the measured velocity. To minimize the influence
of ADV noise, the sample size of each measurement point in
this experiment is about 2,000 times and the experiment time is
200 s. The downstream position is selected to ensure the stability
of vegetation flow conditions.

The section of rectangular channel is symmetrical and the
velocity distribution of the section is also symmetrical, so only
half of the test data with the vertical line as the boundary line in
the open channel need to be measured. Each measuring point is
a predivided grid node. It is proposed to arrange one measuring
line from the center vertical line to the right at every 0.04 m and

FIGURE 3 | Open channel mesh measuring.
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FIGURE 4 | Flow field contour. (A) 90 m3/h, (B) 100 m3/h, (C) 110 m3/h, (D) 120 m3/h.

one measuring point at every 0.01 m and to encrypt appropriately
when close to vegetation (Figure 3), so as to ensure that the
measured data can accurately reflect the actual flow field. Four
flow conditions are set in the test. The specific test conditions are
shown in Table 1.

RESULTS

The experiment is completed based on the experimental platform
in section “Experiment” and the measured data under different
flow conditions are drawn into the contour (Figure 4). It can
be seen from Figure 4 that the shape of the velocity curve is
similar under each condition. The velocity distribution near the
vertical line in the open channel generally decreases more evenly
from the water surface to the vegetation as shown in Figure 4A;
in other words, the maximum velocity point appears near the
water surface. In the region near the sidewall, for the same
z-coordinate of the velocimetric plumb line, it can be found that
the velocity near the water surface is not the maximum and
the maximum velocity point moves downward. There is also an
appeal phenomenon in Figures 4B–D. It shows that it is not
well considered to use a velocity formula to describe the velocity
distribution of the whole section (Yang et al., 2004). Based on the

antecedent analysis of contour, we use the experimental data to
verify the theoretical formula derived in section “Modeling the
Velocity Distribution in Channel With Flexible Vegetation.”

Velocity Distribution in Channel
Centerline
To explain the above phenomenon, the velocity distribution near
the channel center line is discussed first. The velocity and depth
are dimensionless, since they vary in size in each data series.
By substituting the corresponding parameters into the VRL, the
theoretical values of the flow velocity can be calculated. The
theoretical values are plotted as straight lines, while the scatter
points of the measured values are plotted in Figure 5. The
scattered points are uniformly distributed around the straight
line, indicating that the vegetated streambed flow distribution
model is accurate in predicting the vertical distribution of flow
near the center of the open channel containing flexible vegetation.

To prove the generalizability of the VRL, the velocity
distribution measured by Yang and Choi (2009) is redrawn in
Figure 6. Yang measured the velocity distribution in the center of
the channel under the condition of uniform flow. Two different
typical flow conditions (27 m3/h and 37.8 m3/h) are selected.
The blue and red scattered points in Figure 6 represent the
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FIGURE 5 | Flow velocity distribution of different velocity measurement plumb lines in vegetated open channel cross sections. (A) 90 m3/h, (B) 110 m3/h.

dimensionless flow velocity under the two conditions and the
red and blue lines represent the theoretical values calculated by
applying the VRL under the corresponding conditions. Figure 6
clearly shows that the theoretical values are in good agreement
with the measured data, indicating that the VRL is generally
applicable in the channel near the center of the channel is
generally applicable.

However, in Figure 5, it is noticed that the velocity near
the water surface deviates from the straight line in the near
sidewall area. The velocity near the measured point changes
from an upward trend to a downward trend, which is consistent
with that shown in the flow field contour. It means that
the VRL cannot be applied in this region. Next, the velocity
distribution in this region is discussed by using the formula of
bursting phenomenon.

Velocity Distribution of Channel Sidewall
This subsection focuses on the velocity distribution near
the water surface.

In the experiment, it is found that the maximum point of
velocity begins to move down from 0.1 m away from the sidewall
and the VRL cannot well describe the velocity distribution in
this area. It shows that the influence of vertical velocity should
be considered. Therefore, the velocity distribution in this region
should be calculated by the BPL.

The four-flow measurement vertical lines with the more
obvious trend of decreasing flow velocity in the near sidewall
area were selected for analysis under each operating condition.
The theoretical value of velocity far from the water surface is
calculated by the VRL and the BPL is used to calculate the area
near the water surface. The theoretical values are plotted as black
lines and the scattered points are the dimensionless velocities
under each working condition, which are plotted in Figure 7. It
is clear from Figure 7 that the trend of the scatter is consistent
with the curve. The average error between the theoretical and
experimental values under different working conditions is below

4%. Take Figure 7B as an example, where the minimum error
between the theoretical and experimental values is 0.1% and the
maximum error is 9.2%. It shows that the model is more accurate
to predict the velocity distribution near the water surface.

After the above analysis, it is shown that the flow velocity
distribution of the whole section can be well described by using
the VRL and the BPL in different areas.

DISCUSSION

In fact, it is because the flexible vegetation is inverted with the
flow, which is equivalent to forming a “vegetation riverbed” with

FIGURE 6 | Comparison of the velocity distribution of open channel with
vegetation measured by Yang and the velocity distribution model of vegetation
layer theory.
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FIGURE 7 | Comparison of flow velocity analysis in the near sidewall area. (A) 90 m3/h, (B) 120 m3/h.

flexible vegetation as the bottom wall, so the flow in most non-
vegetated areas still conforms to the logarithmic law. The biggest
difference between the logarithmic velocity distribution formula
of vegetated channel and smooth channel is the difference of
“riverbed,” which is also reflected in the VRL. In the VRL,
it is obvious that the denominator of logarithmic term is
the height of deflected vegetation (hv), while the denominator
of logarithmic term of traditional velocity distribution is the
boundary layer separation point (Nikuradse, 1930). It shows
that the height of deflected vegetation (hv) is the characteristic
length of open channel with vegetation. The characteristic length
has also been mentioned in the study by Ghisalberti and Nepf
(2002) and they believe that it can be expressed by using the
momentum thickness. The momentum thickness needs to be
obtained from the flow velocity calculations at the upper and
lower boundaries of the mixed layer. In contrast, the calculation
of the VRL is simpler.

Similarly, the VRL and the BPL have some similarities. The
first term of the two equations is the same; it shows that the
BPL also reflects the influence of flexible vegetation on flow. The
difference appears in the following expressions. In the VRL, only
one-dimensional mainstream velocity is used for calculation. The
experimental results show that the flow near the center of the
channel is closer to uniform flow and only the influence of the
main flow direction can be considered. Most of the flow velocity

equations proposed by researchers nowadays only consider the
effect of flow velocity in the mainstream direction. For example,
the flow velocity equation proposed by Nepf (2011) is partitioned
for the vertical direction, but not for the cross-sectional flow
velocity of the channel. However, there is a significant downward
shift of the maximum velocity point in the region close to the
sidewall. It is usually considered that the flow is influenced by
the sidewall and produces a secondary flow. The manifestation
of secondary flow is that there is a vortex near the water surface,
which has a strong horizontal flow pointing to the center. This is
the main reason for the location of the maximum flow velocity
below the free surface (Nezu and Rodi, 1986). So, the vertical
velocity should be included in the calculation. The BPL has a
coefficient A, which includes the influence of mainstream velocity
and vertical velocity.

Through the above analysis, it can be found that the flow
velocity of open channel has obvious zoning phenomenon in
the cross section. Take the maximum velocity point on the
velocity measuring vertical line as the dividing point, next
connect the dividing points on each vertical line and draw the
red dividing line in Figure 8. The region above the dividing
line is the region affected by the sidewall and the velocity in
this region can be calculated by the BPL. The velocity in the
area below the dividing line can be calculated by the VRL. The
form of the theoretical partition line proposed by Daido (1992)
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FIGURE 8 | Velocity dividing line of open channel with flexible vegetation. (A) 90 m3/h, (B) 100 m3/h, (C) 110 m3/h, (D) 120 m3/h.

and Yang and Lim (1997), who considered that the form of the
dividing line is related to the roughness ratio of the sidewall to
the sidewall and is plotted in their proposed theoretical dividing
line in the figure (blue and brown lines). Figure 8 shows that
there is a gap between the theoretical dividing line and the actual
dividing line clearly. The theoretical dividing line is a straight line
near the sidewall, while the actual dividing line is a curve. Taking
Figure 8A as an example, the dividing line in the near sidewall
region has two particularly obvious inflection points, which is the
same as that in Figures 8B–D. It shows that the split line is not a
simple primary function form, but has a more complex function
form, which will be discussed in depth in future studies.

CONCLUSION

This article studies the flow velocity distribution law with flexible
vegetation theoretically and verifies the vegetation riverbed
theory and the bursting phenomenon theory based on specific
experimental data. The similarities and differences between the
VRL and the BPL are also discussed. Based on the section dividing
theory, the velocity dividing line of open channel with flexible
vegetation is discussed. The main conclusions can be summarized
as follows:

(1) Based on the vegetation riverbed theory, the velocity
distribution formula of open channel with vegetation near
the channel center can be derived. The equation shows that
the vegetation in the open channel can be regarded as a
“vegetation riverbed” and the flow in the upper layer of
vegetation flows over the riverbed. The experimental data
also confirm this hypothesis.

(2) The equation of flow velocity distribution in maximum
velocity point drop was derived by using the bursting

phenomenon theory. The BPL shows that the flow in the
near sidewall area will be affected by secondary flow and
the influence of the vertical flow velocity of the water needs
to be considered. There are some similarities between the
VRL and the BPL. Compared with the functional form
of the VRL, the BPL has one more wake function. The
correctness of the BPL is proved by the test data.

(3) There is an obvious zoning phenomenon in the flow
velocity of the cross section of the open channel with
flexible vegetation. The open channel velocity dividing
partition line was found by the maximum velocity
point of different velocity measurement plumb lines.
Compared with the smooth open channel dividing line, the
partition line with flexible vegetation has a more complex
functional form. It provides a theoretical basis for the flow
measurement of ecological open channel.
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A low-cost portable wild phenotyping system is useful for breeders to obtain detailed
phenotypic characterization to identify promising wild species. However, compared with
the larger, faster, and more advanced in-laboratory phenotyping systems developed
in recent years, the progress for smaller phenotyping systems, which provide fast
deployment and potential for wide usage in rural and wild areas, is quite limited. In
this study, we developed a portable whole-plant on-device phenotyping smartphone
application running on Android that can measure up to 45 traits, including 15 plant
traits, 25 leaf traits and 5 stem traits, based on images. To avoid the influence of
outdoor environments, we trained a DeepLabV3+ model for segmentation. In addition,
an angle calibration algorithm was also designed to reduce the error introduced by the
different imaging angles. The average execution time for the analysis of a 20-million-
pixel image is within 2,500 ms. The application is a portable on-device fast phenotyping
platform providing methods for real-time trait measurement, which will facilitate maize
phenotyping in field and benefit crop breeding in future.

Keywords: smartphone, application, plant phenotyping, deep learning, maize plants

INTRODUCTION

Maize (Zea mays L) is one of the essential crops cultivated primarily for food, animal feed, and
biofuel, and a more significant amount of maize by weight is produced each year than any other
grain (Ritchie and Roser, 2020). Maize plant traits, such as plant architecture, plant biomass, plant
projected area, and plant height, are essential factors in the study of maize biology, growth analysis,
and yield estimation (Golzarian et al., 2011). Leaves are the primary photosynthetic organs and
fundamental importance to maize, acting as transporters, carrying essential materials and energy
from the environment, and eliminating waste products (Efroni et al., 2010). Thus, leaf traits, such
as leaf area, leaf shape, and leaf number, are also of great significance in maize breeding (Yang et al.,
2013). Moreover, the traits of each individual leaf at different heights contribute differently to the
final yield prediction (Zhang et al., 2017).
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Wild species related to agricultural crops (CWR, crop wild
relatives) represent a large pool of genetic diversity, providing
new allelic variation for yield improvements, disease resistance,
farming practices, and market demands (Dempewolf et al.,
2017). The advent of next-generation sequencing technology has
resulted in a significant improvement in genomics (Koboldt et al.,
2013) and implemented high-throughput genome sequencing for
CWR. However, there are substantial gaps in accessible CWR
in gene banks, and available evidence indicates that the crop
diversity present in farmers’ fields has declined, leading to the
rareness or even disappearance of many farmers’ varieties and
landraces (FAO, 2010; Pilling et al., 2020). Among the most
critical crops across the global food supply, such as wheat, rice,
and soybean, maize wild relatives gain the highest priority for
further collection to improve their representation in gene banks
(Castañeda-Álvarez et al., 2016). When breeders collect CWR
resources, a portable device that can provide detailed phenotypic
characterization on device in wild conditions is urgently needed.

Over the past few decades, many versatile and high-
throughput phenotyping platforms have been developed (Yang
et al., 2020). Compared with other phenotyping trait collection
methods, image-based phenotyping is noninvasive, scalable, and
easy to automate (Das Choudhury et al., 2016). Granier et al.
(2006) developed one of the first automated visible-light imaging
systems called PHENOPSIS for detecting Arabidopsis responses
to water deficit in 2003. Walter applied soil-filled rhizoboxes to
make the root visible and established GROWSCREEN for both
aboveground and belowground phenotyping in 2007 (Walter
et al., 2007). Later, a chlorophyll fluorescence imaging system
was attached to the platform, and GROWSCREEN was updated
into GROWSCREEN FLUORO, allowing the phenotyping of
leaf growth and chlorophyll (Jansen et al., 2009). In the next
few years, larger-scale phenotyping platforms in the laboratory,
such as Phenoscope (Tisné et al., 2013) and Phenovator (Awlia
et al., 2016), were designed for potted plants. These platforms
combined the rotating imaging table for multiangle imaging,
a high-speed x–y rail system for camera movement (camera
to plant) or plant movement (plant to camera), and a dark
acclimation chamber for a more stable imaging environment.
In general, phenotyping systems in the laboratory are rapidly
developing and contain more advanced sensors for additional
traits unable to be acquired before. However, indoor phenotyping
platforms are costly, time-consuming, immovable, and require
skilled engineers for maintenance. To provide phenotyping
measurements in the field, a portable, simple-to-operate, and
cost-effective phenotyping platform is needed.

Taking advantage of advances in sensors and chip
computation power, modern smartphones have become a
new solution that combines sensors, platforms, and processing,
and a few methodologies for phenotyping with smartphones
have been developed (Araus and Kefauver, 2018). The fractional
vegetation cover can be estimated from simple calculations
with traditional RGB images taken above crop canopies using
the smartphone’s own processing capacities (Patrignani and
Ochsner, 2015; Chung et al., 2017). PocketPlant3D uses the
device accelerator and magnetometer to measure the leaf
insertion angle and the leaf angles from the insertion to the

tip (Confalonieri et al., 2017). PocketLAI acquires real-time
images from below the plant canopy. It uses the smartphone
accelerator to obtain the smartphone’s current depression angle
and detect sky pixels when the angle between the vertical
and the normal to the screen reaches 57◦ to estimate plant
LAI (Orlando et al., 2016). PocketN estimates plant nitrogen
content from digital images (Confalonieri et al., 2015). The
iPad application “Estimate” takes images of a single expanded
leaf and uses standard area diagrams (SADs) to estimate the
severity of Cercospora leaf spot (Pethybridge and Nelson, 2018).
Some researchers develop applications to acquire images and
send them to a server for advanced data processing to transfer
machine learning approaches to smartphone applications (Singh
et al., 2018). This client-server architecture fills the smartphone
computation capacity gap by transmitting image data to an in-
house server for advanced image processing to detect Cercospora
leaf spots on sugar beet (Hallau et al., 2018). A cloud-based
system that can send the images taken from the greenhouse
to the cloud is developed for water stress prediction using
window-based support vector regression (multimodal SW-SVR)
(Kaneda et al., 2017). These applications revealed the potential of
mobile devices in plant phenotyping.

In previous work, our phenotyping team developed a high-
throughput indoor phenotyping facility called HRPF to extract
rice phenotypic traits (Yang et al., 2014), and more novel imaging
techniques were renewed and applied in more crops, such as
multiangle RGB imaging for 3D reconstruction of wheat plants
(Fang et al., 2016), hyperspectral imaging for rice plant biomass
(Feng et al., 2013) and rice leaf chlorophyll (Feng et al., 2013),
and micro-CT for rice tiller traits (Wu et al., 2019). In the present
work, we developed a portable on-device phenotyping system
running on Android to nondestructively extract 15 plant traits,
25 leaf traits and 5 stem traits with high efficiency (up to 3 s
per plant), which provides a real-time quantitative maize trait
analysis for breeders.

MATERIALS AND METHODS

Material and Experimental Design
The study area was located at Huazhong Agricultural
University, Wuhan, Hubei Province, China (30.5N, 114.3E)
at an average elevation of 16 m. The maize variety of JinZhongYu
(YT0213/YT0235) was sown and germinated during the summer
of 2015. Ninety maize plants were planted in a plastic pot and
in the field. The pots were 23.5 cm in diameter and 35 cm in
height with approximately 6 l of experimental soil (pH 5.45,
total nitrogen 0.241 g kg−1, total potassium 7.20 g kg−1, total
phosphorus 0.74 g kg−1, alkali-hydrolysable nitrogen 144.06 mg
kg−1, available potassium 188.64 mg kg−1, available phosphorus
16.81 mg kg−1, organic matter 46.55 g kg−1).

The measurement started 30 days after sprouting. Every
3 days, nine plants in the pots and nine plants in the field were
randomly picked and photographed outdoors via an application
(PocketMaize) running on an ANDROID smartphone (MEIZU,
MX4). A portable black backdrop is placed behind the plant as
background, and a marker object is placed next to the plant to
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calculate the resolution between image pixels and the real world.
Four images with pitch angles of approximately 0◦ (front view),
10◦, 15◦, and 20◦ were taken for each plant with arbitrary distance
from camera to the plant and imaging height. Images were stored
in JPG format with a resolution of 3,936 × 5,248 pixels. The
app stores the pictures and records the current spatial angle,
time, and date when a picture is taken. Other necessary pieces
of information, such as plant ID, can also be manually input.

After imaging, plant height was manually measured with a
ruler vertically placed against the plastic pot’s edge or the field
ground on top of the soil surface. The shoot part of the maize
plant was then cropped down for destructive measurements. The
fresh leaf biomass and stem biomass were estimated separately.
The individual leaves of each plant were cut, and the leaf area was
measured using high-throughput leaf scoring (HLS) (Yang et al.,
2015). Then, the plants were sealed and oven-dried for further
dry-weight determination.

The Image Process Procedure
In this study, we developed an application running on Android
smartphones (called PocketMaize) for image acquisition, image
processing, and plant traits extraction combined (Figure 1).
Image processing’s key steps include image calibration, angle
calibration, image segmentation, skeletonization, stem and leaf
extraction, and phenotypic traits calculation.

The first step, camera distortion calibration using an OpenCV
calibration function (Zhang, 2000), is optional. A black and white
calibration pattern pasted on a plastic plate was used to obtain
20–25 images. Furthermore, the imaging angles between each
image should have apparent differences to ensure accuracy.

The second step is to calibrate the rotation angle and
depression angle. As shown in Figures 2A,B, the depression
angle α is the angle between the normal n to the plane on
which the device’s screen lays and the horizontal plane, while
the rotation angle γ is the angle between the y-axis of the
screen and the zenith.

An ideal image for trait extraction should be perpendicular
to the ground and have the same object-pixel resolution for the
whole image. One of the best options is orthographic projection
imaging. For most of the other image-based phenotyping
systems, camera lens distortion calibration is sufficient because
in these systems, the cameras are fixed to obtain a stable imaging
angle. However, in our application, the position and direction
of the camera are continuously changing, making it essential to
calibrate ordinary images with different rotation and depression
angles to an approximate orthographic projection image by
image transformation.

Gravity sensors in the smartphone provide live data of
the rotation angle and depression angle, and these two
angles are calibrated separately. Figure 1A shows an original
image obtained from camera calibration whose rotation angle
and depression angle need to be calibrated. Usually, the
perpendicularity is satisfied by simply rotating the image
clockwise or anticlockwise using the rotation angle obtained
from the accelerometer to match the gravity direction while a
perspective transform was applied to adjust the depression angle.

Figures 1B,C display the results of the rotation angle calibration
and depression angle calibration, respectively.

The perspective transform is used in depression angle
calibration, which is a nonlinear geometric transformation that
can change an image from one viewpoint to another viewpoint or,
in other words, change the position of the image plane. It is widely
used in image processing, including length calculation, marking
recognition in images (Liu et al., 2012) and vision guidance
for vehicles (Torii, 2000). Perspective transform can transform
the ordinary images taken in this experiment with different
imaging angles to an approximate orthographic projection image.
It needs the coordinates of four sets of points, four given points
on the original image plane and their corresponding points on
the target image plane, to calculate the perspective transform
matrix. Placing four markers on to the background can reduce
obstacles in image processing. The markers might be obscured by
leaves, and it is troublesome to determine the relative positions
in the wild. Therefore, a camera calibration method without
markers was developed.

Examine a 2W × 2H rectangle with four symmetric corner
points LT, RT, LB, RB on the target image plane (object
plane) and their corresponding points LT

′

, RT
′

, LB
′

, RB
′

on the origin image plane. Figure 2C shows the position
of these eight points, and point C is the origin point of
the coordinate system on both the object plane and image
plane. The coordinates of these eight points are LT(−W,H),
RT(W,H), LB(−W,−H), and RB(W,H) on the target image
plane and LT

′
(
−W

′

upper,H
′

upper

)
, RT

′
(
W
′

upper,H
′

upper

)
,

LB
′
(
−W

′

lower,H
′

lower

)
, and RB

′
(
W
′

lower,H
′

lower

)
on the origin

image plane. Figure 2D is the longitudinal section at the center,
while T and T

′

are the center of LT, RT and LT
′

, RT
′

and B and
B
′

are the center of LB, RB and LB
′

, RB
′

. First, for the upper part
of the image, let’s mark{

Lupper = OT
L
′

upper = OT ′
(1)

Then, we have
W
′

upper
W =

L
′

upper
Lupper

(2)

Let β be the actual viewing angle of the point and D be the
distance between the camera and the plant; then, we have:

H
′

upper = D tan β (3)

H
′

max = D tan βmax (4)

β = tan−1
(

H
′

tan βmax
H′max

)
(5)

where βmax is the half vertical field of view (VFOV) of the camera
and H

′

max is the half y resolution of the camera.
The trigonometric relationship in the upper half of the image

can be described as follows:

D = L
′

upper cos β (6)
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FIGURE 1 | The image analysis pipeline showing (A) original image; (B) rotated image to calibrate rotation angle; (C) depression angle calibration using perspective
transform; (D) color adjustment; (E) the resulting image of preprocessing; (F) segmentation using DeepLabV3+; (G) segmentation result image; (H) skeletonization
using our distance transform-based algorithm; (I) stem axis recognition by finding the overlaid route; (J) pixel extraction for each individual leaf; (K) result image.

Hupper
sin β

=
D

sin[π−β−( π
2 −α)] (7)

Lupper
sin( π

2 −α)
=

D
sin[π−β−( π

2 −α)] (8)

At last, we have

L
′

upper =
cos(α−β)
cos α cos β

Lupper (9)

and
H
′

upper =
cos(α−β)

cos β
Hupper (10)

Similarly, for the lower half of the image, we have

Hlower
sin[π−α−( π

2 −α−β)] =
H
′

lower
sin( π

2 −α−β)
(11)

L
′

lower =
H
′

lower
sin β

(12)
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FIGURE 2 | The calibration of rotation angle and depression angle showing (A) explanation of depression angle; (B) explanation of rotation angle; (C) schematic
diagram for depression angle; (D) longitudinal section for depression angle.

FIGURE 3 | The model structure of DeepLabV3+ with the MobuleNetV2 backbone.

Llower
sin( π

2 +α)
=

Hlower
sin β (13)

Hence, the final proportion is given by

H
′

lower =
cos(α+β)

cos β
Hlower (14)

L
′

lower =
cos(α+β)
cos α cos β

Llower (15)

From formulas (9), (10), (14), and (15), for any given point
on the original image plane, we can calculate the coordinates
of the corresponding points on the target image plane and
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FIGURE 4 | Schematic workflow for the skeletonization procedure showing (A) origin segmented image; (B) all points in S2; (C) all points in S3; (D) final result for
skeletonization with the points from S2 marked in blue and the points from S3 marked in red.

FIGURE 5 | The procedure of leaf pixel segmentation showing (A) the original segmented image and skeletonized image; (B–E) the segmentation result of two, four,
six and all leaves with each leaf marked in different colors and the stem marked in red.

vice versa. Then, we can calculate the eight points needed to
transform the ordinary image to an approximate orthographic
projection image.

The color enhancement in this manuscript aims to standardize
the image color according to the main color of the target
object and enlarge the color difference between the plant part
and background. The purpose of color enhancement here is to
improve the segmentation result of DeepLabV3+ under different
surrounding weather and illumination conditions.

Use DeeplabV3+ With the MobileNet
Backbone for Segmentation
Segmentation of the plant image is the critical step for the
image process. We introduced the DeepLabV3+ model with a
MobileNet backbone to obtain segmented results of images with
different lightness conditions and backgrounds. DeepLabV3+ is

a convolutional neural network model designed for pixel-based
semantic image segmentation that has three improved versions
(Chen et al., 2018).

Convolutional neural networks use several layers of filters
convolved with the input data to greatly reduce the dimension
of input data and extract features of the image. These features
from each layer are combined into feature maps that can
then be used to make the output prediction. Compared with
other convolutional neural networks, DeepLabV1 (Chen et al.,
2016) introduced a dilated convolution to increase the receptive
field to regain the data lost in the pooling layer and used
the conditional random field (CRF) to improve boundary
recognition. DeepLabV2 (Chen et al., 2017) established the model
with atrous spatial pyramid pooling (ASPP) to handle images
of similar objects with different scales. DeepLabV3 (Chen et al.,
2018) adds a batch normalization layer into the ASPP, and
DeepLabV3+ uses a simple decoder module to further upgrade
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TABLE 1 | Trait classification and abbreviation.

Trait classification Trait Trait abbreviation

Plant traits Maximum plant height in side view MPH

Vertical plant height in side view VPH

Plant width in side view PW

Total projected area TPA

Green projected area/total projected area in side view GPAR

Total projected area/bounding rectangle area ratio in side view TBR

Plant perimeter in side view PP

Perimeter/projected area ratio in side view PAR

Plant compactness in side view PC

Fractal dimension in side view FD

Height to width ratio of minimum circumscribed box in side view HWR

The area of convex hull ACH

The perimeter of convex hull PCH

Plant area/convex hull area PCHAR

Total dry weight TDW

Leaf traits Total leaf dry weight LDW

Total leaf area TLA

Total leaf projection area TLPA

Total leaf length per plant TLL

Leaf number per plant LN

Standard deviation of straightened leaf length per plant SDSLL

Average distance between the leaf tip and node per plant LNL

Standard deviation of the distance between the leaf tip and node per plant SDLNL

Average leaf curvature per plant LC

Standard deviation of leaf curvature per plant SDLC

Average leaf tangency angle per plant LTA

Standard deviation of leaf tangency angle per plant SDLTA

Average leaf straight angle per plant LSA

Standard deviation of leaf straight angle per plant SDLSA

Average straightened leaf length in lower half of plant SLL_below

Average distance between the leaf tip and node in lower half of plant LNL_below

Average leaf curvature in lower half of plant LC_below

Average of leaf tangency angle in lower half of plant LTA_below

Average of leaf straight angle in lower half of plant LSA_below

Average straightened leaf length in upper half of plant SLL_above

Average distance between the leaf tip and node in upper half of plant LNL_above

Average leaf curvature in upper half of plant LC_above

Average of leaf tangency angle in upper half of plant LTA_above

Average of leaf straight angle in upper half of plant LSA_above

Total leaf dry weight TLDW

Stem traits Stem height SH

Stem projection area SPA

Average stem width SW

Stem volume SV

Stem dry weight SDW

boundary recognition. The DeepLabV3 Plus model is a deep
convolutional neural network with atrous convolution that can
increase the receptive field without increasing the number of
parameters or reducing the dimension of space.

Several kinds of backbones can be used in DeepLab,
including ResNet (He et al., 2015), Xception (Chollet,
2017) and MobileNet (Howard et al., 2017). All these

models have good performance in maize segmentation,
especially Xception. However, to transfer the model to mobile
devices, we decided to train our DeepLab model with the
most lightweighted MobileNet. The structure of the whole
DeepLabV3+ model with the MobileNetV2 backbone is shown
in Figure 3. These modules are implemented in TensorFlow
(Abadi et al., 2016).
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FIGURE 6 | The user interface of PocketMaize showing (A) menu; (B) image capturing page; (C) segmentation result page; (D) leaf extraction result page; (E) traits
extraction result page.

Our own dataset included 720 images in the training set and
80 images in the validation set. A horizontal flip is applied to
each image to produce a final training set of 1,440 training and
190 validation images. The transfer training was started with an
initialized model pre-trained on the VOC 2012 dataset. The loss
weight of the loss function is modified according to the total pixel
size of background and the plant. The logit layer and the last layer
are excluded to train on our own dataset.

Thinning Algorithm
The media axis of the segmented image is essential for stem
and leaf recognition and the calculation of traits such as
stem height and leaf length. Thinning/peeling-based methods
such as Zhang’s thinning algorithm (Zhang and Suen, 1984)
will produce numerous spurs and are time-consuming, and
Voronoi diagram-based methods will have difficulty deciding
whether a skeletal branch should be pruned. Since the plant’s
binary images in this study are relatively large (originally up
to 20 million pixels and will become even larger after angle
calibration in this manuscript and might be larger for more
advanced smartphones) and the boundary of the plant is usually
very complicated and meandering, a proper way is to use
distance transform-based methods. We developed a two-step
skeletonization algorithm (Figure 4) based on the distance
transform algorithm (Felzenszwalb and Huttenlocher, 2004).
First, a distance transform algorithm was applied to the binary
image. Define St to be the point set of the target skeleton we
needed and Sn to be the point set containing all the points
whose value in the distance transformed image is larger than
at least n points in its eight neighbors. Figure 4A displays
the original segmented image, and Figures 4B,C show the
points in S2 and S3. We have approximately S2 ⊆ St ⊆ S3.
In the second step, we designed a path finding algorithm to
find a way to connect the points in S2 with the points in
S3. Figure 4D is the result of our algorithm with the origin
points in S2 marks in blue and the connected pixels from
S3 marks in red.

Stem and Leaf Extraction
The stem was extracted by finding the shared route connecting
the upper part and the plant root, and Figure 5 presents the
practical steps. First, all the endpoints of the skeleton image
are detected. Figure 5A is the image of the mid axis and all
the endpoints. Then, the shortest routes between the lowest
endpoint and each of the other endpoints are traced and summed.
Figures 5B–E shows this tracing procedure from lower leaves to
higher leaves, where each individual leaf is marked in different
colors and the overlaid route is marked in red.

Leaf apexes were located at the endpoints of the skeleton
image. The leaf direction can be traced by finding the shortest
route between leaf apexes and plant stems along the skeleton.
Figure 5E displays the segmented plant stem and individual
leaves painted in different colors. The leaf insertion angle and the
leaf angles from the insertion to the tip can be directly measured
from the leaf mid axis. With the stem area removed, the leaves in
the lower half were naturally separated.

Traits Extraction
Finally, from the segmented images and skeletonized images, we
calculated 45 traits (Table 1), which included 15 plant traits, 25
leaf traits and 5 stem traits. We can also extract each individual
leaf and analyze the difference between leaves at the upper part of
the plant and the lower part.

RESULTS

Development of a Smartphone
Application: PocketMaize
In this study, equipped with an Android smartphone (Meizu
MX4, MediaTek6595, CPU A17 2.2 GHz × 4 + A7 1.7 GHz × 4,
GPU PowerVR G6200), the application was developed with two
sensors: an RGB camera and a 3-axis accelerometer. In the image
taking mode, an indicator displaying the current depression angle
and rotation angle allows users to adjust phone orientation to

Frontiers in Plant Science | www.frontiersin.org 8 November 2021 | Volume 12 | Article 77021728

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-770217 November 23, 2021 Time: 14:19 # 9

Liu et al. Smartphone Application for Maize Plant Phenotyping

FIGURE 7 | Comparison of manual ground truth and the segmentation result of DeepLabV3+. The left three columns (A–C) are the results of three potted samples,
and the right three columns (D–F) are the results of three in-field samples. The first row (A,D) shows samples taken in sunny mornings with even illumination. The
second row (B,E) shows two samples taken at dawn when the images have a heavy yellow color deviation. The last row (C,F) is taken at midday with high
brightness.

obtain the appropriate angles. Images were stored in JPG format
with a resolution of 3,936 × 5,248 pixels. The camera was
autofocused; ISO, shutter speed, and light balance were autofixed.
Other necessary information, such as time, date, and plant ID,
could also be manually input.

Image processing, processed images and extracted traits can
be displayed and saved on the device. The final traits of the maize
are stored in a CSV file. Figure 6 shows the user interface of the
application, which includes the main menu (A), the image taking
page (B), the result of segmentation and stem and leaf recognition
(C,D), and the traits displaying page (E).

Performance Evaluation of DeepLabV3+
Segmentation
In this study, after 1,440 images of maize were used to train the
DeepLabV3+ model, another 190 images, including 95 images
of potted samples and 95 in-field samples, were selected to
test the DeepLabV3+ model. To evaluate the performance, four
indicators, including precision, recall, F1-measure and IoU, are
adopted. Figure 7 shows the results of six samples under different
conditions. The left three columns (A–C) are the results of three
potted samples, and the right three columns (D–F) are the results
of three in-field samples. The first row (A,D) shows samples taken
in sunny mornings with even illumination. The second row (B,E)
shows two samples taken at dawn when the images have a heavy
yellow color deviation. The last row (C,F) is taken at midday

with high brightness. In general, the DeepLabV3+ model works
well in different color temperatures, different light intensities
and mild wind or mild rainy days. However, a sun halo might
influence the segmentation result. Although heavy wind will not
affect the segmentation stage, it will decrease the accuracy in later
stem and leaf recognition stage since the structure of the plant
may greatly change.

For the DeepLabV3+ model, the mean values of the Precision,
Recall, F1-measure and IoU are 97.31, 74.85, 86.10, and
79.91%, respectively.

Accuracy Evaluation of Plant Height
Measurement
Plant height is the vertical distance from the bottom of the
stem at soil surface to the top position of the while plant.
To evaluate the measurement accuracy of plant height, all
the plants were manually measured. The plant height was
measured after the images were captured, and automatic
plant height measurement was used to calculate the actual
distance between the bottom position of the stem and the
top of the whole plant. Figure 8 shows the plant height
results of manual observation versus automatic observation
in all four depression degrees for all plants. The MAPE
values were 3.556% for potted samples and 4.594% for
field samples, and the R2 coefficients were 0.928 and 0.958,
respectively. The results show that smartphone applications
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FIGURE 8 | The result of automatic plant height measurement versus manual plant height measurement.

FIGURE 9 | The modeling result of (A) automatic leaf area measurement versus measurement using high-throughput leaf scoring (HLS) and (B) automatic leaf dry
height measurement versus manual leaf dry height measurement.
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FIGURE 10 | The modeling result for automatic stem dry weight measurement and manual stem dry weight measurement.

can correctly detect stems and have good potential for
accurate measurement.

Accuracy Evaluation of Leaf Area and
Leaf Dry Weight
Figure 9 shows the results of leaf area estimation (A) and
leaf dry weight estimation (B). The MAPE values were 7.46%
for potted leaf area, 18.85% for in-field leaf area, 15.35% for
potted leaf dry weight and 20.97% for in-field leaf dry weight
estimation. The squares of the correlation coefficients (R2)
were 0.61, 0.79, 0.46, and 0.77. The detailed model summaries
for stepwise regression analysis for leaf area estimation and
leaf dry weight estimation are shown in Supplementary
Tables 1, 2.

Accuracy Evaluation of Stem Dry Weight
Since maize stems and maize leaves have a significant difference
in organ structure and density, it is natural to evaluate the
stem dry weight and leaf dry weight separately. In particular,
the plant stem can be approximately seen as a cylinder, so the
plant stem’s dry weight can be estimated with the volume of
a cylinder fitted to the stem together with other traits such
as stem projected area, stem height and average stem width.

Figure 10 shows the result of stem biomass measurement.
The MAPE values were 16.68 and 23.85% for potted and
field samples, respectively. The squares of the correlation
coefficients (R2) were 0.64 and 0.88, respectively. The detailed
model summaries for stepwise regression analysis for leaf
area estimation and leaf dry weight estimation are shown in
Supplementary Table 3.

DISCUSSION

Comparison of Trait Extraction
With/Without Depression Angle
Calibration
Since the difference in the depression angle can greatly change
the original image, a depression angle calibration is essential
before advanced image processing. Figure 11 shows an example
of eight images of one potted sample and one in-field sample
with different depression angles and rotation angles. The actual
depression angles/rotation angles are −2.1◦/4.9◦, 8.4◦/5.7◦,
15.2◦/4.5◦, and 22.7◦/3.8◦ for the potted sample shown in A and
4.4◦/3.68◦, 12.1◦/3.5◦, 16.6◦/2.89◦, and 18.4◦/3.6◦ for the field
sample shown in B. The calibrated images show that our angle
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FIGURE 11 | Comparison of the images taken with different depression angles and their angle calibrated results showing (A) a potted sample and (B) an in-field
sample.

calibration algorithm can vastly reduce the influence caused by
different rotation and depression angles and transform the plant
to an approximate front view.

Figure 12 shows the plant height, leaf area, leaf dry biomass
and stem dry biomass with and without depression angle
calibration. The results indicate that for plant height, leaf area
and leaf dry weight, the result is still meaningful without
depression calibration, with R2 values up to 0.73, 0.65, and 0.57
for in-field samples (Figures 12B,D,F). However, a depression
angle calibration can increase the measurement accuracy as

R2 increases to 0.99, 0.79, and 0.68 (Figures 12A,C,E).
Stem dry weight can only be measured with depression
angle calibration.

Comparison of Four Skeletonization
Methods
The skeleton algorithm we developed is based on the distance
transform algorithm. Several existing skeleton algorithms were
tested during our application development, and some were
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FIGURE 12 | The comparison of the modeling results for leaf area, leaf dry weight and stem dry weight measurements with and without angle calibration showing
(A) plant height measurements with depression angle calibration, (B) plant height measurements without depression angle calibration, (C) leaf area measurements
with calibration, (D) leaf area measurements without calibration, (E) leaf dry weight measurements with calibration, (F) leaf dry weight measurements without
calibration, (G) stem dry weight measurements with calibration and (H) stem dry weight measurements without calibration.
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FIGURE 13 | Comparison of the skeletonization results of the four methods showing (A) the segmented image. (B) Result image of our algorithm. (C) Results image
of Zhang’s thinning algorithm with branch pruning. (D) Result image of Scikit-image’s skeletonization. (E) Results image of heat equation-based skeletonization.

FIGURE 14 | Display of individual leaf traits at different heights of the plant showing (A) the whole plant and (B) traits of a specific leaf.

modified to match the situation better. It turned out that our
algorithm has a good result both for correctness and calculation
speed compared with the other algorithms. Our algorithm
requires a shorter calculation time to find a maize plant’s skeleton,
yields fewer unexpected branches and burrs, and the skeleton is
located closer to the center axis. In Figure 13, we present our
algorithm’s results compared with several other skeletonization
algorithms. These candidate algorithms include Zhang’s thinning
algorithm (Zhang and Suen, 1984), the media axis algorithm

provided by scikit-image (van der Walt et al., 2014), and 2D
skeleton extraction based on the heat equation (Gao et al., 2018).
Figure 13A is the original segmentation image, and Figure 13B
is the result of our skeleton algorithm. Figures 13C–E are the
skeletonization results of Zhang’s thinning algorithm with branch
pruning, the scikit-image’s media axis algorithm, and the heat
equation 2D skeleton extraction, respectively.

The details of these skeleton images show that our method’s
result has fewer unexpected branches, and the skeleton lies closer
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to the center axis. Although our method does not have the best
result among these four methods, it has the highest efficiency.
Supplementary Table 4 shows the calculation time consumption
and memory use of our method and other methods. Our method
is the fastest among these algorithms but consumes the largest
amount of memory. With the development of smartphone chips,
the processing memory of smartphones has become significantly
larger. Therefore, our approach is a better choice for the
skeletonization process on the smartphone platform.

Efficiency of the Image Process
Procedure
In general, the average execution time for a single plant
image of 20 million pixels is 2,482 ms operating on an
Android smartphone (Meizu MX4, MediaTek6595,CPU A17
2.2 GHz × 4 + A7 1.7 GHz × 4,GPU PowerVR G6200) All
image process-related algorithms were developed using C++
language combined with the OpenCV library and compiled into
a Java library for Android. The image processing procedure
contains three major parts: segmentation, skeletonization and
trait calculation. The average computational times are 1,050,
641, and 791 ms for segmentation, skeletonization and trait
calculation, respectively. The total computation time for the
whole procedure varied from 700 to 4,000 ms depending on
the complexity of the plant structure and cleanliness of the
background. Moreover, a faster segmentation algorithm that can
reduce the process time to less than 100 ms is provided in the
application for clean backgrounds with stable environments.

Individual Leaf Traits Extraction
PocketMaize provides an algorithm to extract all individual leaves
from one maize plant and to obtain the traits of each leaf. It
provides data for evaluating the difference between leaves at
higher places and lower places. As shown in Figure 14, traits of
individual leaves can be examined and stored for further analysis
for canopy research and to investigate leaf overlap and sunlight
absorption at different layers of the plant.

Potential Application and Outlooks
Although the main object of this manuscript is to obtain
single plant traits with high accuracy, the application can also
calculate traits of several plants with minor overlapping, but the
segmentation and traits calculation accuracy will decrease for
severe overlapping. Moreover, the current work mainly focus on
maize stem traits and leaf traits, the application to extract tassel
traits and cob traits in reproductive stage will be improved in the
future work. With training of enough images containing maize
cobs and tassels, new segmentation model will be developed
to obtain cobs traits during reproductive stage and estimate
the final yield.

CONCLUSION

In conclusion, we developed PocketMaize, an android
smartphone application for maize plant phenotyping. The
application is capable of field and potted maize phenotyping
without many additional devices used. A total of 45 traits, which
included 15 plant traits, 25 leaf traits and 5 stem traits, were
nondestructively extracted. The average execution time for a
single plant image of 20 million pixels was within 3,500 ms.
In the future, with more trained images, a portable and cost-
effective phenotyping solution could be extended to maize
functional genomics studies, maize breeding, and disease and
insect pest detection.
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Background: In view of the existence of light shadow, branches occlusion, and leaves
overlapping conditions in the real natural environment, problems such as slow detection
speed, low detection accuracy, high missed detection rate, and poor robustness in plant
diseases and pests detection technology arise.

Results: Based on YOLOv3-tiny network architecture, to reduce layer-by-layer loss
of information during network transmission, and to learn from the idea of inverse-
residual block, this study proposes a YOLOv3-tiny-IRB algorithm to optimize its
feature extraction network, improve the gradient disappearance phenomenon during
network deepening, avoid feature information loss, and realize network multilayer feature
multiplexing and fusion. The network is trained by the methods of expanding datasets
and multiscale strategies to obtain the optimal weight model.

Conclusion: The experimental results show that when the method is tested on the self-
built tomato diseases and pests dataset, and while ensuring the detection speed (206
frame rate per second), the mean Average precision (mAP) under three conditions: (a)
deep separation, (b) debris occlusion, and (c) leaves overlapping are 98.3, 92.1, and
90.2%, respectively. Compared with the current mainstream object detection methods,
the proposed method improves the detection accuracy of tomato diseases and pests
under conditions of occlusion and overlapping in real natural environment.

Keywords: YOLOv3-tiny, inverse-residual block, field images, multi-scale, occlusion and overlapping, robust

INTRODUCTION

Tomato is one of the most popular crops planted in China, and it has an irreplaceable position in
vegetables, fruits, medicinal, and other aspects, with a huge planting volume and demand (Li, 2012).
Taking Shouguang City, Shandong Province as an example, Shouguang City’s tomatoes are mainly
produced in Luocheng Street, with about 12,000 household greenhouse planters and 20,000 winter-
warm greenhouses, with an annual trading volume of 360 million kilograms, and an annual trading
volume of 730 million yuan. The products are exported to Russia, North Korea, Myanmar, and
other countries. This town is an important tomato production and sales base in Shandong Province
and enjoys the reputation of “small town with tomato characteristics.” According to statistics, a
common 100-m greenhouse has a revenue of at least RMB 100,000, and vegetable farmers have
realized the “income-increasing dream” through tomatoes.

Frontiers in Plant Science | www.frontiersin.org 1 December 2021 | Volume 12 | Article 79224438

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.792244
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.792244
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.792244&domain=pdf&date_stamp=2021-12-10
https://www.frontiersin.org/articles/10.3389/fpls.2021.792244/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-792244 December 4, 2021 Time: 15:30 # 2

Wang et al. Diseases Detection of Tomato Leaves

Traditionally speaking, tomatoes belong to seasonal fruits and
vegetables, but the market has a great demand for tomatoes in
each season. To meet the market demand and improve economic
benefits, most farmers use greenhouse planting to overcome
the influence of season, temperature, and other environmental
factors, and achieve tomato planting and production for more
than three seasons in 1 year. From the previous field research
and feedback from farmers, we know that the whole growth cycle
of tomatoes has strict requirements on the growth environment,
planting methods, pest control, and other aspects, and the
requirements on the external environment of tomatoes at all
growth stages of the whole growth cycle are also of high standards
and are different. In recent years, the impact of diseases and pests
on tomato cultivation has been aggravated. The main reason is
that the optimized planting structure and complete water and
fertilizer supply conditions are not only conducive for tomato
growth, but also provide convenience for the occurrence of
diseases and pests. At the same time, the unscientific and non-
standard use of pesticides also cause the increasing resistance of
pathogens. Also, the differences of tomato varieties and cross-
hazards are the causes of the growing severity of tomato diseases
and pests (Wang et al., 2018). Therefore, the cost, time, and labor
consumption of high-quality tomato cultivation are relatively
high. However, most of the peasant households have not received
professional knowledge, and they do not know the symptoms of
diseases, pests, and other causative factors.

During tomato planting, the information of diseases and
pests, the demand of crop growth environment, and the control
measures mostly depend on the communication between peasant
households and the previous planting experience. It is difficult
to grasp the diseases and pests that may occur in a certain
planting stage under certain conditions. It is also difficult to
accurately determine the types of diseases and pests and their
control methods. These practical problems have a great impact
on tomato production.

The investigation revealed that the major diseases of tomato
included 34 infestation diseases and 39 physiological diseases,
and the disease characteristics were mainly focused on the color
and morphology of the lesions. To make the research typical and
better feasible, in this work, 12 common diseases including early
blight, late blight, yellow leaf curl virus, gray leaf, coal pollution,
gray mold, leaf mold, navel rot, leaf curl disease, mosaic, leaf
miner, and greenhouse whitefly were selected for research.

The traditional method of identifying tomato diseases and
pests is usually manual identification, that is, growers make
subjective judgment based on planting experience or text
data, or image comparison through the network, books, etc.,
or ask pathologists to analyze and identify tomato diseases
and pests. Traditional manual diseases and pests identification
takes a lot of time and effort, and is often accompanied by
very high subjectivity. Subjective evaluation is susceptible to
personal factors and external factors (such as light, occlusion,
and overlapping). It is inefficient and has large errors,
which can easily lead to the wrong diagnosis and wrong
medication of tomato diseases and pests. Severe conditions
can also cause pollution to water sources, soil, and so on.
In addition, due to the scattered agricultural production in

China and the lack of relevant agricultural experts, there
are some limitations in the support provided by tomato
pathologists in the professional pathological analysis and decision
methods. Therefore, the manual identification of diseases and
pests cannot meet the requirements of high-efficiency tomato
production in the development of modern agriculture, an so the
automatic and accurate detection of tomato diseases and pests is
urgently needed.

Traditional plant disease detection relies on a large amount
of manual design, where the model generalization performance
is poor and the detection accuracy cannot meet the practical
demand. Thanks to the rapid development of deep learning,
Girshick et al. (2013) proposed that Region-CNN (R-CNN)
and the precision of detection was substantially improved.
Subsequent researchers have made improvements from a number
of perspectives based on R-CNN. Fast R-CNN (Girshick, 2015)
was proposed, and the detection efficiency is improved by sharing
the multitask loss function and convolution weights. Faster
R-CNN (Ren et al., 2017) integrates region nominations with
convolutional neural networks and truly implements an end-
to-end target detection framework. Mask R-CNN (He et al.,
2017) introduced region of interest (ROI) align to replace
ROI pooling and enable segmentation and detection of images.
Region-based Fully Convolutional Networks (R-FCN) (Dai et al.,
2016) introduced fully convolutional operation and the detection
effect is improved greatly. FPN (Lin et al., 2017) and CascadeR-
CNN (Cai and Vasconcelos, 2017) have achieved an extremely
high detection accuracy and approximate the resolving power
of humans. The above detection framework all contain both
regional nominations and detection networks, and they are called
two-stage methods. Other researchers have proposed region free
nomination stage that unifies classification and detection tasks,
and they are called one-stage methods. For example, YOLO
(Redmon et al., 2016), RetinaNet (Lin et al., 2018), RefineDet
(Zhang et al., 2017) are typical one-stage methods, and the
real-time performance is greatly improved.

With the deep integration of modern information technology
such as Internet of Things, Cloud Computing, and Artificial
Intelligence with agriculture, smart agriculture has become
a major trend in the development of modern agriculture
in the world through the implementation of whole industry
supply chain with real-time information perception, quantitative
decision-making, intelligent production control, and precise
personality management, and has made important progress in
the field of crop harvesting (Xu et al., 2020). In the field of
crop diseases and pests identification, Intelligent Agriculture
relies on the Internet of Things system built by fixed monitoring
cameras, mobile equipment, robots, smartphones, and other
terminals. The classification and detection of network based
on deep learning method is studied on the basis of real-time
collection and acquisition of a large number of high-quality
image dataset of crop diseases and pests, which can provide
accurate, low-cost, high-efficiency, reliable, and real-time results
for broad agricultural producers. It has gradually become the
focus of research at home and abroad. Computer vision provides
a very effective means for automatic detection of crop diseases
and pests, and some progress has been made (Ouhami et al.,
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2020). Under natural scenes, the tomato diseases and pest objects
are often covered by light and shade, and the branches and
leaves are covered or in an overlapping state. The identification
and localization of the tomato diseases and pests objects under
the influence of shading and overlapping is a difficult problem
that must be solved.

With the rapid development of smart agriculture, the
technology of using cameras to determine whether plants appear
in images are infected with diseases and pests has been applied
in the field of smart agriculture, which plays an increasingly
important role in plant protection. This technique of using
computer vision and machine learning to determine whether a
particular plant in a camera is affected by diseases or pests is called
plant diseases and pests identification, as shown in Figure 1.

Plant diseases and pests identification not only has a very
urgent application need, but also has a very important research
value. In recent years, plant diseases and pest identification has
attracted wide attention from academia and agriculture, and
become a research hotspot in the field of computer vision. After
more than 10 years of development, a large number of plant
diseases and pests identification models have been proposed at
home and abroad, and very high accuracy has been achieved
under the limited simulation conditions (Singh et al., 2018;
Geetharamani and Arun Pandian, 2019; Shekhawat and Sinha,
2020), and even surpasses the ability of human vision.

In recent years, some progress has been made in the
research of plant diseases and pest identification under natural
scenes. Fuentes et al. (2019) proposed an improved Faster
R-CNN algorithm, which can effectively detect and locate plant
abnormalities. The average accuracy of 92.5% was achieved in
the built tomato plant abnormality description dataset. However,
the real-time performance of the algorithm was not strong.
Anagnostis et al. (2020) took images of walnut anthrax in
orchards under various light conditions. A total of 4,491 images
of leaves with and without anthrax were collected. The images
of leaves infected with anthrax reached 2,356, slightly more than
the images of healthy leaves. The classification accuracy of walnut
anthrax was as high as 98.719% using convolutional neural
network. Prabhakar et al. (2020) used ResNet101 to measure
the severity of early blight of tomato leaves and the accuracy
reached 94.6%. But their methods can only judge whether the
disease was infected or not and cannot locate the disease. They
mainly aim at the target recognition of a small number of images
taken in close range, which is difficult to apply in practice. Zhao
and Qu (2019a,b) used YOLOv2 algorithm to detect healthy and
diseased tomatoes, and the mean Average precision (mAP) was
as high as 91%. However, the method did not take into account
the small and dense multiobject occlusion and overlap problem
in natural environment. Liu and Wang (2020a,b) proposed an
improved YOLO V3 algorithm for tomato diseases and pests
detection with high accuracy and speed, but this method can only
effectively detect tomato diseases and pests targets in the case of
slight leaf overlap, and there is no satisfactory detection result
in the case of large area occlusion. There are often uncertainty
issues such as posture, background, and occlusion of leaves in
the detection of plant diseases, which can greatly affect the
detection accuracy. So, increasing the object detection accuracy

has always been paid great attention to Liu et al. (2020) proposed
an improved tomato detection model based on YOLOv3 aiming
at complex environmental conditions, such as light change,
branching, leaf blockage, and tomato overlap, which integrated
a dense architecture for feature reuse, but the model was only
used for tomato fruit positioning and could not be used for
tomato diseases and pests detection. All the above literatures
utilize the excellent learning ability, flexibility, and adaptability
of convolutional neural network to solve the problems of time-
consuming, laborious, and low accuracy in plant diseases and
pests detection under complex background. However, in the
above studies, the leaves of plant diseases and pests are mostly
sparse and complete, and the characteristics of diseases and pests
are obvious. In this work, the images of tomato diseases and pests
are collected under different light conditions in the real natural
environment, and there are even sunlight shadows or sundries,
such as branches and trunks, or the leaves overlap densely. These
factors are obstacles in the detection of tomato diseases and pests.
To effectively carry out real-time detection for multiple objects,
an improved object detection model based on YOLOv3 needs to
be proposed for issues such as small objects and occluded objects
prone to being missed or inaccurate detection frame positioning.

In the real natural environment, the study of plant diseases and
pests identification has its particularity. In the real agricultural
Internet of Things video monitoring, there are various shooting
equipments, the image quality of plant diseases and pests objects
is poor, the resolution is low, and there are also obvious
changes in perspective and light (Barbedo, 2018). Therefore,
compared with general image recognition, plant diseases and
pests identification still faces the following problems: (1) In
different monitoring and shooting equipment, the distance
between plants and shooting equipment is different, resulting
in different resolution, light, and perspective of plant diseases
and pests image under different shooting equipment horizons,
and different visual characteristics of the same plant diseases
and pests image will produce obvious changes; (2) Different
degree of occlusion caused by background and other factors
leads to a large number of occlusion problems, which lead
to poor identification of plant diseases and pests; (3) Due to
the changes of leaf posture and shooting equipment angle, the
differences of visual characteristics between different images of
plant diseases and pests may be small in different shooting
devices. In addition, some specific problems have not been paid
enough attention to. For example, large-scale and fast retrieval
problems, insufficient data problems, complex and crossmodal
problems of plant diseases and pests occurrence in the actual
agricultural environment, make the problem of plant diseases
and pests identification more difficult than the general case-based
image retrieval.

Investigation on the field environment of tomato greenhouse
base showed that tomato plants grew densely, and light
shading, branch and leaf occlusion, and overlap accounted
for about 21.2%. Thus, tomato diseases and pests detection
under conditions of occlusion and overlapping become the
key and difficult point of the research. To solve the problem
of rapid and high-precision detection of tomato diseases and
pests in real natural environment, this work proposes a method
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FIGURE 1 | An example illustrating plant diseases and pests identification.

to enhance the learning of foreground region features by
occluding overlapping object foreground region samples, chooses
YOLOv3-Tiny model based on regression method, and proposes
a YOLOv3-tiny-IRB network structure with inverse residual
blocks. Depth-wise convolution is used to reduce the model
parameters, and an inverse residual module is constructed
to extract high-dimensional features, and a linear activation
function is used to reduce the loss of information caused by
the channel combination process. The improved object detection
network is trained by fusing data amplification and multiscale
training strategies. The detection effect of the method in this
study is significantly improved under two kinds of interference
scenarios, i.e., sundries occlusion and blade overlap.

EXPERIMENTAL DATA

Dataset Acquisition
The experimental tomato planting base is located in Shouguang
City, Shandong Province. By Using smartphone, digital camera,
and other monitoring equipment with various resolutions, 15,000
images of early tomato diseases and pests during the growth and
development period were collected. The weather during image
acquisition includes sunny and cloudy days, and the acquisition
period is 8:00-18:00, which covers possible lighting conditions
such as sunshine, backlight, and sidelight. Greenhouse tomato
leaves are photographed in multiple orientations so that the main
features of the diseases and pests can be shot, such as texture,
color, shape, etc. Each image is formatted as JPG. Images were
cropped to 224× 224 pixel size.

Five thousand images containing the following three
representative scenarios were screened from 15,000 tomato
diseases and pests images.

(a) Leaves sparse and complete. The objects are relatively
clear and easy to identify.

(b) Branches or sunlight shade or other debris occlusion.
It is possible that there are situations in which diseases

TABLE 1 | The number of each species of diseases and pests.

Species Number

Early blight 401

Late blight 416

Gray leaf spot 425

Brown spot 431

Coal pollution 408

Gray mold 421

Leaf mold 419

Powdery mildew 402

Leaf curl 418

Mosaic 413

Leaf miner 411

Greenhouse whitefly 435

Total 5000

and pests are too small, adherent, mutually obscured,
or obscured by the shoot and leaves, increasing the
difficulty of detection.

(c) Leaves overlapping densely. Overlapping bounding
boxes may be erroneously discarded, leading to missed
observations with a larger probability.

The number of each species of diseases and pests is shown in
Table 1.

From 5,000 representative tomato diseases and pests images,
3,500 were randomly selected as original training images
(containing 21,038 tomato diseases and pests objects), and the
remaining 1,500 were selected as test images (containing 9,067
tomato diseases and pests objects).

Image Enhancement
The image enhancement of training samples can improve the
quality and diversity of samples, which is conducive to the
improvement of CNN detection accuracy (Ding and Taylor,
2016). Under natural light of greenhouse planting base, especially

Frontiers in Plant Science | www.frontiersin.org 4 December 2021 | Volume 12 | Article 79224441

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-792244 December 4, 2021 Time: 15:30 # 5

Wang et al. Diseases Detection of Tomato Leaves

Bounding box information and 

edge information of the leaves 

were read by using Matlab

Edge closure curves of 

overlapping leaves 

annotation by using  

Photoshop

Bounding box

annotation by using 

LabelImg

Foreground 

region

annotation

FIGURE 2 | The process of sample labeling.

Sample labeling

Image 

enhancement

Foreground 

region annotation

Bounding box

annotationDataset 

Acquisition

Data amplification

Rotation

Horizontal 

mirror inversion Dataset 

Preparation

FIGURE 3 | The process of dataset preparation.

TABLE 2 | Datasets and sample size.

Datasets Data processing
method

Sample
size

Number of annotation

Bounding box
annotation

Foreground
area annotation

A No 3500 21038 2987

B Image enhancement 3500 21038 2987

C Data amplification 29016 173304 24158

when the light is very strong, due to the mutual occlusion of
tomato plant leaves or backlight photography, the leaf surface
produces shadows, which makes the image characteristics of
tomato diseases and pests very different from those under normal
light. Especially, some relatively small objects are not obvious
in the image, affecting the quality of tomato diseases and pests
image. The quality of training samples can affect the detection
effect of the model, and so the contrast of the image needs to be
adjusted to improve the detection effect of the detection model.
In this study, adaptive histogram equalization (Algorithms, 2015)
was used to enhance tomato diseases and pests images, improve
the gray dynamic range of images, effectively improve the
contrast of images, and enrich the details of images, which is
equivalent to adjusting the image brightness and reducing the
impact of light on image quality.

Sample Labeling
To improve the detection accuracy of tomato diseases and
pests, various appearances and shapes of the objects were fully
considered in the sample labeling process in this study. Manual
labeling, interactive labeling, and Matlab programming were used
for labeling. The process of sample labeling is shown in Figure 2.

(1) LabelImg, an open source annotation tool, was used to
annotate the bounding boxes of 21,038 tomato diseases and pests
objects in 3,500 original training images (no annotation was made

when the object was covered by more than 70% of the area). Using
this software, images in the dataset can be annotated as ∗.xml and
∗.txt files. The annotated file saves information such as class, size,
and location of each object in the image. Also, LabelImg (TzuTa,
2017) was used to annotate 9,067 tomato diseases and pests object
bounding box in 1,500 test images (no annotation was made
when the object was covered by more than 70%). Considering
that the test dataset is used to evaluate the detection accuracy
of the model, the test dataset does not need to mark the object
foreground area.

(2) The edge closure curves of overlapping leaves were
automatically generated by using the quick selection tool of
Photoshop software. However, for leaves with uneven surface
color and illumination, it is difficult to automatically generate
accurate edges, and the edge contours of leaves need to be
manually marked.

(3) Using Matlab programming, the bounding box
information and edge information of the leaves were read,
and the pixels of the area outside the edge contour curve in the
bounding box of the object were set to 0.

(4) In view of the difficulties caused by occlusion or overlap
in tomato diseases and pests detection, a method of enhancing
the learning of convolutional features of tomato diseases and
pests foreground regions by annotating the foreground regions
of training samples is proposed. Firstly, by manual annotation
method, the pixels of the object background area were set to
zero to obtain the object foreground area samples, and the
object foreground area samples were trained to reduce the
interference of non-foreground features in the bounding box, so
as to enhance the learning of foreground features by the network
and obtain the tomato diseases and pests detection network.
When labeling samples, the pixels of the object background
area in the labeling bounding box were set to 0, whereas the
pixels of the foreground area remain unchanged. Thus, when
convolution feature extraction is performed, the influence of
unrelated information features on the feature extraction of
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tomato diseases and pests can be reduced. At the same time,
to retain the color, shape, and texture of the edge of tomato
diseases and pests, the object foreground area in the bounding
box included a certain area (5–10 pixels) around the object
contour to enhance the model’s learning of the characteristics of
the foreground area including, the object edge.

Data Amplification
The training sample was expanded in this study. Considering
that most of the tomato diseases and pests on the leaves of the
tomato plant are naturally suspended, while some of them are
inclined at multiple angles due to the occlusion of branches or
other leaves, this study conducted horizontal mirror inversion
and rotation operations on the training samples. The rotated
image is intercepted in the center. After rotating, the object near
the edge in the image will be discarded if it is incomplete or
completely lost.

Dataset Preparation
The process of dataset preparation is shown in Figure 3.

Datasets and sample size are shown is Table 2. In datasets
A and B, the number of bounding boxes for tomato diseases
and pests was 21,038, and the target foreground area (2,987) was
marked for occlusion and overlapping tomato diseases and pests
leaves. In dataset C, the number of annotations for the bounding
box of tomato diseases and pests was 1,73,304, and the number of
annotations for the foreground area was 24,158.

Considering that the test set is used to evaluate the detection
accuracy of the model, the original image annotated by the
bounding box is used as the test set.

METHOD OF IMPROVING YOLOv3-TINY

Principle of YOLOv3-Tiny
YOLO detection (Redmon et al., 2015) has developed three
generations, and many networks for specific scenes have been
derived. YOLO first uses the idea of regression to classify
image objects, and the detection speed reaches 45 frames/s. The
disadvantage is that the detection accuracy of small objects is
not high. YOLOv2 (Redmon and Farhadi, 2017) have optimized
the model structure of YOLO and improved the detection speed,
but the detection accuracy was not improved. YOLOv3 (Redmon
and Farhadi, 2018) uses deep residual network to extract image
features, as the minimum feature map for feature extraction is
too large, the detection speed is reduced and the detection effect
for medium or large size objects is not good.

YOLOv3-tiny (Redmon, 2018) compresses the original
network version without residual layer, and only two YOLO
output layers with different scales are used, which improves the
detection speed and accuracy of small object detection. Since
tomato diseases and pests image objects are mostly small objects,
and the detection speed requirements are high, it is suitable for
the basic network of this detection. It uses end-to-end object
detection, while ensuring accuracy, and it can greatly improve the
detection speed.

Input

Point Conv 1×1, 

BN, ReLU

Depthwise 3×3, 

BN, ReLU

Point Conv 1×1, 

BN

Add

FIGURE 4 | The structure of the inverse-residual block.

TABLE 3 | Inverse-residual block parameters.

Input Operation Output

h×w× k 1 × 1 point conv, ReLU h×w× 2k

h×w× 2k 3 × 3/s depthwise conv, ReLU h/s×w/s× 2k

h/s×w/s× 2k 1 × 1 point conv, Linear h/s×w/s× 2k

Existing Problems of YOLOv3-Tiny
In the feature extraction process of YOLOv3-Tiny model, the
number of network layers in the backbone network is small, the
extracted feature information is less effective, and the extraction
effect is poor. Therefore, each region in the extracted feature map
should be given different weights to better perform classification
task. In addition, the original model cannot make full use of the
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IRB 416×416×16/2

YOLOv3-tiny-IRB Detection

Conv 13×13×24

Conv 416×416×16 Input 416×416×3

IRB 208×208×32

IRB 208×208×32/2

IRB 104×104×64

IRB 104×104×64/2

IRB 52×52×128

IRB 52×52×128/2

IRB 26×26×256

IRB 26×26×256/2

IRB 13×13×512

IRB 13×13×512/2

IRB 13×13×1024

Conv 26×26×24 Conv 52×52×24

Conv 13×13×256 Conv 13×13×512

Conv 13×13×128

Conv 26×26×128

Upsampling

Conv 26×26×384

Fusion

Conv 26×26×256

Conv 26×26×128

Conv 26×26×64

Conv 52×52×64

Upsampling

Conv 52×52×192

Fusion

Conv 52×52×64 Conv 52×52×128 Scale1

Scale2

Scale3

FIGURE 5 | The improved YOLOv3-tiny network model (YOLOv3-tiny-IRB).

TABLE 4 | Size and computation amount of different network models.

Network models Model size/M Floating point calculation
amount/GFLOPs

YOLOv3 246.5 65.7

YOLOv3-tiny 34.7 5.56

YOLOv3-tiny-IRB 35.2 5.80

feature information output from the shallow layer of the network,
resulting in poor fine-grained detection ability of the model.

The Improved YOLOv3-Tiny Network
(YOLOv3-Tiny-IRB)
In view of the above problems, this work improves the original
network and optimizes YOLOv3-Tiny to make it more suitable
for tomato diseases and pests object detection task based on field
images with multiscale occlusion. In order to solve the problem
that the storage and computation of conventional convolution
parameters multiply with the deepening of network layers,
resulting in the increase of model size and difficult application
in hardware platforms with limited computing resources, this
work introduces the idea of residual blocks in Resnet (He et al.,
2016). Instead of conventional convolution, depth-wise separable

FIGURE 6 | Bounding box prediction.

convolution is applied to construct inverse-residual block,
which transforms the “spatial cross-channel” features learning
process into two parts: spatial feature learning and channel
combination. Specifically, one is that depth-wise separable
convolution performs spatial convolution independently on each
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TABLE 5 | Experimental hardware environment configuration.

Hardware name Model Number

Main board ASUS WS X299 SAGE 1

CPU INTEL I7-9800X 1

Memory Kingston 16G DDR4 2

Graphics card GEFORCE GTX1080Ti 2

Solid-state hard disk Kingston 256G 1

Hard Disk Western Number 1T 1

input channel; the other is that point where convolution maps
the output results of depth-wise separable convolution to a new
channel space. The structure of the inverse-residual block is
shown in Figure 4.

According to Figure 4, firstly, the input step size Stride = 1, the
number of channels is adjusted by 1 × 1 convolution kernel, and
the results are obtained by batch normalization (BN) algorithm
and rectified linear unit (ReLU) activation function in turn;
secondly, the network features are extracted by 3× 3 convolution
kernel, and pass through the ReLU function of BN algorithm;
thirdly, the number of channels is adjusted by 1 × 1 convolution
kernel to get the output through BN algorithm. Finally the
output is added to the input before entering the structure. The
structure of inverse-residual block is different from the residual
in ResNet. ResNet first reduces dimension, then convolutes,
and finally increases dimension, whereas inverse-residual block
first increases dimension, then convolutes, and finally reduces
dimension. The 1 × 1 convolution dimension enhancement is
used to increase the expressive ability of the model. When the
channel information is processed with the ReLU function, the
channel will inevitably lose information. When there are enough
channels, the lost information of one channel may still remain
in other channels, so it is necessary to increase the dimension
of the features first. The input of the inverse-residual block
structure already contains all of the necessary information, so
the ReLU activation layer is not added after the final 1 × 1
convolution to prevent information loss. After the dimension is
increased, the information is more abundant. At this time, the
ReLU function is added to increase the sparsity of the network.
After dimension reduction, the necessary information can be
maintained without loss.

The calculation of inverse-residual block in this study is shown
in Table 3.

In Table 3, h and w are the height and width of the feature
map, respectively, k is the number of channels of the feature map,
t is the multiple of the number of expanded channels, and s is
the step size. According to Table 2, both point convolution and
depth-wise convolution of the extended channel in the inverse-
residual structure of this study apply ReLU non-linear activation
function. When the point convolution layer for the number of
combined channels uses ReLU activation function, the negative
values will be changed to 0, thus losing part of the information,
and the linear activation function is used to solve the information
loss problem in the process of combined channels.

The improved YOLOv3-tiny network is denoted as YOLOv3-
tiny-IRB, and the network structure is shown in Figure 5, where

the IRB (Sandler et al., 2018) is an Inverse Residual Block and the
dotted box is the part of network feature extraction.

According to Figure 5, in the feature extraction network,
the feature extraction quantity is improved by increasing the
convolution layer, and the convolution with step size of 2 is used
to replace the maximum pooling layer in the original network
for downsampling. The inverse residual block constructed by
depth-wise separable convolution is used instead of traditional
convolution. The improved network is composed of 12 inverse-
residual blocks, which extract high-dimensional features through
inverse-residual blocks, expand feature map channels, and then
carry out channel dimension reduction to obtain feature maps
to make up for the deficiency of the algorithm in occlusion
object detection and improve the accuracy of the algorithm.
While increasing feature extraction, the model size and parameter
calculation amount are effectively reduced. At the same time,
there is downward transmission among scales, and the scale
diversity caused by different degree of occlusion and depth
of visual field decides to add an upper sampling layer on
the basis of the two-scale prediction objects of the original
network, which forms a three-scale prediction of 52 × 52,
26 × 26, 13 × 13. Fusion of different size features is
conducive to the different object sizes in occlusion scenarios,
preventing overfitting and further improving the accuracy of
object detection.

Table 4 lists the size and computation amount required to
process an image of YOLOv3, YOLOv3-tiny, and the network
model improved in this work. It can be seen that the network
model improved in this study is only 0.5M larger than YOLOv3-
tiny, and the amount of computation required to process an
image increases by 0.24GFLOPs, which is much smaller than
that of YOLOv3 model. It has great advantages in model
size and calculation amount. It meets the real-time detection
requirements of the embedded system.

Anchor Parameter Optimization
When studying object detection, appropriate anchor value can
improve the detection accuracy and speed. The anchor value in
the original YOLO algorithm is calculated by K-means clustering
method, which is more accurate than manual calculation.
However, for the dataset of tomato diseases and pests in this
work, the anchor value obtained by the original algorithm using
COCO and VOC datasets with too large instance size is too
large, so it is necessary to recalculate the appropriate anchor
value according to the actual data. In tomato diseases and pests
detection, clustering is to maximize the IOU value of the ratio
of anchor box to ground truth, so IOU is used as the objective
function to determine the distance, and its formula is as follows:

d(box, centroid) = 1− IOUbox
centroid (1)

Therefore, we set the center of centroid as the cluster center in
each instance label, and BOX as the bounding box. The smaller
the IOU, the larger the distance.

According to the label information of all the examples in the
study, new anchor values are obtained, which are: (10, 12), (22,
24), (30, 32), (69, 86), (83, 105), (119, 192), (168, 264), (223, 296),
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FIGURE 7 | Training flow of tomato diseases and pests object detection network.

TABLE 6 | The pseudocode of training YOLOv3-tiny-IRB.

Input: Training data

Initialize: W,b

for each batch sample X do
for l← 1 to L do
if l = Convolutional Layer then
∼l
Z ← BN(Z l)

Al
← σ

(
∼l
Z +b

)
else if l = Pooling Layer then
Al
← pool(A1−1)

end if
end for

J← 1
m
∑m

i=1 L(yi,
∼ i
y )

for l← L to 1 do
θl
← {wl,bl, γl, βl

}

V l
dθ
← λ · V l

dθ
+ (1− λ) ∂J

∂θl

θl
← θl

− α · V l
dθ

end for

end for

Return W,b, γ, β

(311, 358). Three groups of smaller anchor boxes are assigned to
larger size feature maps for predictive use; three groups of middle
size anchor boxes are assigned to medium size feature maps for
predictive use. In addition, three groups of anchor boxes with
larger area are allocated to smaller size feature map prediction.

Each grid uses the method of directly predicting relative
position to calculate three prediction boxes, as shown in Figure 6.

The relevant formulas in Figure 6 are as follows:

bx = σ (tx)+ cx (2)

by = σ
(
ty
)
+ cy (3)

bw = pwetw (4)

bh = pheth (5)

In the above-mentioned formulas, cx and cy represents the
upper-left coordinates of each grid. Here, pw and ph represent the

width and height of mapping from the anchor to the feature map,
respectively, and tx, ty, tw, th are the goals of model learning.

NETWORK TRAINING

Experimental Running Environment
The experimental hardware environment of this study is shown
in Table 5. On this basis, the software environment is built:
Ubuntu 16.04, Python, OPPENCV, CUDA, etc. The framework
uses Caffe and darknet-53 framework.

Model Training Process
The training process of tomato diseases and pests object
detection network is shown in Figure 7. After the original
image in the training set is equalized by adaptive histogram, the
training samples are manually annotated, including bounding
box annotation and foreground area annotation; the annotated
samples are expanded; and the multiscale training strategy is
used for training.

The pseudocode of training YOLOv3-tiny-IRB is shown in
Table 6. The number of network layers is L, the weight of the
network is W,b. BN represents batch normalization operation.
Also γ and β are the parameters, and they should be updated
iteratively in the back propagation process, and λ and α represent
momentum value and learning rate, respectively.

In the training phase, an asynchronous random gradient with
a momentum term of 0.9 was used, the initial learning rate
of the weights was 0.001, and the attenuation coefficient was
set to 0.0005. In view of the differences in object scales of
tomato diseases and pests in complex natural scenarios, and since
individual object scales are of small size, the network training
mainly adopts two strategies. One is to increase the input scale
and fine-tune the network at 512 × 512 resolution to adapt to
higher input resolution in detection. This strategy can improve
the detection accuracy, but also reduce the detection speed. The
second strategy is multiscale training. In the training iteration,
the network runs every 10 batches from the set multiscale set
{384, 416...672} and continue training by replacing one scale
randomly again. This strategy makes the model have better
detection effect at different input resolution to adapt to multiscale
object detection of tomato diseases and pests. The loss descent
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FIGURE 8 | The loss and accuracy curve during training process.

TABLE 7 | Detection results of different algorithms.

Model name mAP (%) F1 score Detection speed (FPS)

DPM 73.2 0.792 0.3

Faster R-CNN 86.6 0.881 4

Mask R-CNN 87.1 0.889 3.6

SSD 85.3 0.862 55

YOLOv3 88.8 0.897 62

YOLOv3-tiny 88.1 0.893 220

YOLOv3-tiny-IRB 93.1 0.922 206

TABLE 8 | Detection results on different training sets.

Training set mAP (%) F1 score

A 90.3 0.901

B 92.6 0.913

C 93.1 0.922

curve versus the prediction accuracy curve of training set during
training process is shown in Figure 8.

According to Figure 8, the accuracy curve is rising steadily
whereas the loss curve is decreasing. The accuracy curve
gradually, leveled off after 80,000 iterations, and the model at
1,00,000 iterations were selected for this study.

EXPERIMENTAL RESULTS AND
COMPARATIVE ANALYSIS

The object detection network of tomato pests and diseases was
trained with training sets A, B, and C (see Table 1), respectively,
and the performance of object detection of tomato diseases and
pests in the scene of occlusion and leaf overlap was analyzed, and

TABLE 9 | Detection results by training set with foreground region.

Group Sample
numbers

Annotation numbers mAP (%) F1 score

Bounding
box

Foreground
region

a 3500 21038 0 88.6 0.899

b 3500 18051 2987 91.7 0.908

c 29016 173304 0 92.8 0.912

d 29016 149116 24158 94.2 0.936

compared with the performance of the detection models such as
Faster RCNN (Ren et al., 2017), YOLO and Adaboost. Around
1,500 images (9,067 tomato diseases and pests objects) were input
into the trained network for location regression. When the IOU
(intersection and convergence ratio) of the object bounding box
predicted by the model and the manually labeled bounding box is
more than 0.7, the detection is considered correct, otherwise it is
wrong and the test results are obtained.

Precision (P), recall (R), F1 value, and detection speed were
selected as evaluation criteria. Sample S is divided into four types
according to the combination of the true category of sample S and
the predicted category of model: True positive (TP) represents the
number of correctly classified positive samples, FP represents the
number of incorrectly classified positive samples, false negative
(FN) represents the number of incorrectly classified negative
samples (FN), and true negative (TN) represents the number of
correctly classified negative samples.

Precision (P) represents the proportion of samples that are
truly positive in all samples that are predicted to be positive, and
the formula is

P =
TP

TP + FP
(6)
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FIGURE 9 | The detection effect diagram of YOLOv3-tiny-IRB [(A) deep separation; (B) debris occlusion; (C) leaves overlapping].

Recall R© represents the proportion of samples that are
predicted to be positive of the truly positive samples. The formula
is

R =
FP

FP + TN
(7)

The F1 value is a measure function of balancing precision P
and recall R, and the calculation formula is

F1 =
2PR
P + R

(8)

In object detection, in each category the P–R curve can
be drawn according to precision P and recall R. The average
accuracy AP value of single category detection is the area between
P–R curve and coordinate axis, and the calculation formula is as
follows:

AP =
∫ 1

0
P(R)dR (9)

The average of AP values of all categories is mAP, and the
formula is

mAP =
1
c

∑
AP (10)

In the above-mentioned formula C is the number of categories
contained in the dataset.

Frame rate per second (FPS) is a common indicator of speed,
which is the number of images that can be processed per second.

Performance Comparison of Several
Different Algorithms
The dataset after data processing was used as training set.
Deformable Parts Model (DPM) (Sun et al., 2014), Faster R-CNN,
Mask R-CNN, single shot multibox detector (SSD) (Liu et al.,
2016), YOLOv3, YOLOv3-tiny and YOLOv3-tiny-IRB are taken
as a basic network for training and testing respectively.

The test results of different algorithms on the test set are shown
in Table 7.

It can be seen that the detection accuracy of YOLOv3-tiny-IRB
in this work is much higher than other models. The accuracies
of Faster R-CNN, Mask R-CNN, SSD, YOLOv3, YOLOv3-
tiny, and YOLOv3-tiny-IRB, which use CNN for convolution

feature extraction, are significantly higher than that of DPM
algorithm using HOG feature. Traditional object detection
algorithm relies on manual designed features, which uses sliding
window to select candidate boxes, resulting in severe window
redundancy problem and poor generalization performance of
feature extraction methods. As a result, the detection accuracy
is low and the algorithm steps are numerous, which leads
to the slow detection speed and poor real-time performance.
Since CNN can simultaneously extract color, texture and shape
features, it is superior to traditional methods, and so the
performance of CNN detection method is superior.

According to Table 6, the detection speed of DPM
detection method in the traditional mainstream machine learning
algorithm is the slowest. Faster R-CNN and Mask R-CNN
algorithm generates more than 2,000 object candidate region
by region, generating a network in the detection process, and
then classifies candidate regions by CNN, whereas YOLO series
algorithms directly process the whole image by CNN, which
reduces the computational complexity, so the detection speed is
faster than Faster R-CNN and Mask R-CNN. YOLOv3-tiny is
faster than YOLOv3 detection, but there are only two levels of
detection and no fusion of small objects, so there is no way to
identify objects of different scales well.

Compared with the original YOLOv3 and YOLOv3-tiny, the
mAP improved by 4.3 and 5.0%, respectively. The introduction
of the inverse-residual module improved the ability of network to
extract features and increased the participation of finer feature
maps in location regression and classification, thus facilitating
the improvement of the detection accuracy of YOLOv3-tiny-
IRB. Meanwhile, the inverse-residual block had little effect on the
detection speed, and the speed reached 206 frames/s. Therefore,
it maintains a good real-time performance while improving the
detection accuracy. Overall, YOLOv3-tiny-IRB can achieve trade-
off of accuracy and speed, so that the model can be deployed on a
large scale in hardware platforms such as embedded devices and
mobile terminals to meet the actual needs.

Detection Results of Amplified Datasets
Based on YOLOv3-tiny-IRB network, the comparison test
before and after data amplification was carried out. As can be
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TABLE 10 | Detection result comparison.

Object detection scenarios mAP (%) F1

(a) Deep separation 98.3 0.971

(b) Debris occlusion 92.1 0.915

(c) Leaves overlapping 90.2 0.901

seen from Table 8, compared with the original image dataset
(Training set A), the mAP and F1 score of the model of the
enhanced dataset (Training set B) were increased by 2.3 and
0.012%, respectively. After data amplification (Training set C),
The mAP and F1 score of the model were improved by 2.8
and 0.021%, respectively compared with the preamplification
(Training set A). The results showed that image enhancement,
mirror, rotation, and other processing methods could further
improve the detection accuracy.

Detection Results Using Object
Foreground Training Samples
To verify the effect of foreground region training samples on
detection accuracy, a comparative experiment was conducted.
The 3,500 training samples in the original image were
divided into two groups: group A training set contained only
21,038 bounding box annotations for all samples, group B
contained 2,987 foreground region annotations for occluding
and overlapping samples, and 18,051 bounding box annotations
for uncovered samples. The training set of group C contains
1,73,304 bounding box annotations, and group D contains
24,158 foreground region annotations, and 1,49,146 bounding
box annotations. YOLOv3-tiny-IRB is trained with these four
training sets, and the test results on the test set are shown in
Table 9. It can be seen that the object foreground region of
the tomato diseases and pests training sample is annotated with
YOLOv3-tiny-IRB network training. The detection accuracy is
obviously improved and the difficulty of occlusion and overlap
detection is overcome by reducing the interference of the
features of the non-foreground region in the boundary frame.
After data amplification, the detection accuracy of the model
obtained by using the training set marked by the foreground
region is significantly improved compared with the model
without foreground region labeling, and the mAP and F1
score of all objects in the test set are improved by 1.4% and
0.024, respectively.

Detection Results Under Conditions of
Occlusion and Overlapping
Under the different object detection scenarios of (a) deep
separation, (b) debris occlusion, and (c) leaves overlapping,
YOLOv3-tiny-IRB trained with dataset C can achieve good
detection performance, as shown in Figure 9 and Table 10. It can
be seen that the network model designed in this work can detect
tomato diseases and pests under a certain degree of occlusion
interference and dense overlap of leaves. For the detection
of leaves overlapping scenario, YOLOv3-tiny-IRB still reaches

TABLE 11 | Detection results of each species of diseases and pests.

Species Precision (%) Recall (%) F1 score

Early blight 93.9 86.5 0.922

Late blight 92.4 85.8 0.901

Gray leaf spot 93.5 86.4 0.912

Brown spot 92.7 84.2 0.910

Coal pollution 93.9 86.1 0.926

Gray mold 94.5 86.9 0.928

Leaf mold 94.8 87.1 0.925

Powdery mildew 92.8 84.3 0.917

Leaf curl 93.2 87.2 0.919

Mosaic 91.1 82.6 0.920

Leaf miner 90.2 82.7 0.904

Greenhouse whitefly 90.1 83.3 0.903

Total 93.9 86.5 0.922

90.2% of mAP, but its detection accuracy is significantly lower
than that under deep separation and debris occlusion scenarios.

Detection Results of Each Species of
Diseases and Pests
To discuss detection results of each species of diseases and pests,
this study compared the performance of 12 tomato diseases and
pests using the improved model. In the original data, there are
certain similar symptoms of the disease with similar colors. Pests
are easy to discern but are densely distributed, making it more
difficult to be fully detected. The detection results of each species
of diseases and pests are shown in Table 11.

The results showed that the improved model performed
excellent in detection accuracy. Detection of twelve different
types of diseases and pests all achieved good results, with all
F1 scores reaching more than 0.9, and the detection time also
reached the requirement of real-time performance. Therefore, the
improved model has good generalization ability and can adapt
to the needs of rapid detection of tomato pest and disease under
natural environmental conditions.

CONCLUSION AND FUTURE
DIRECTIONS

The experimental results show that the proposed YOLOv3-
tiny-IRB algorithm takes into account the simultaneous
improvement of detection accuracy and speed, and improves
the real-time detection of multiscale objects of occlusion or
overlapping tomato diseases and pests in complex natural
environment. The research of real-time detection algorithm
in complex scenarios can better serve the needs of early
warning of plant diseases and pests in smart agriculture.
This work not only improves the performance of YOLOv3-
tiny network in occlusion or overlapping tomato diseases
and pests, but also provides a new method for other object
detection, such as fruit harvesting robot, field rabbit, and field
bird recognition.
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At present, there are many kinds of plant diseases and pests.
How to identify more kinds of plant diseases and pests through
feature extraction and network structure adjustment and improve
the accuracy and efficiency of identification is the direction of
follow-up research.
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Maize is a major global food crop and as one of the most productive grain crops, it can be

eaten; it is also a good feed for the development of animal husbandry and essential raw

material for light industry, chemical industry, medicine, and health. Diseases are the main

factor limiting the high and stable yield of maize. Scientific and practical identification is

a vital link to reduce the damage of diseases and accurate segmentation of disease

spots is one of the fundamental techniques for disease identification. However, one

single method cannot achieve a good segmentation effect to meet the diversity and

complexity of disease spots. In order to solve the shortcomings of noise interference

and oversegmentation in the Otsu segmentation method, a non-local mean filtered

two-dimensional histogram was used to remove the noise in disease images and a new

elite strategy improved comprehensive particle swarm optimization (PSO) method was

used to find the optimal segmentation threshold of the objective function in this study.

The experimental results of segmenting three kinds of maize foliar disease images show

that the segmentation effect of this method is better than other similar algorithms and it

has better convergence and stability.

Keywords: non-local mean filtering, enhanced comprehensive learning particle optimizer, Otsu, multi-threshold

image segmentation, maize disease image

HIGHLIGHTS

- The Otsu is combined with an elite comprehensive particle swarm algorithm for
image segmentation.

- A non-local mean filtered 2D histogram is combined to remove noise.
- The GCLPSO is the first time applied to the segmentation of a variety of diseases of maize.
- The GCLPSO performs better than other similar algorithms under multi-

threshold segmentation.
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INTRODUCTION

Diseases often occur during maize cultivation and failure to

prevent and control them in time can decrease corn yield and

quality, making a loss of economic benefits for the grower.

According to the data reported by the Food and Agriculture
Organization (FAO) of the United Nations, the annual natural

loss rate caused by agricultural pests and diseases is more than
37% and agricultural pest and disease identification and control
are of great importance to improve agricultural production
(Dhami et al., 2015). Traditional manual identification methods
rely on experience, high labor costs, subjective factors, and lack
of accuracy (Gao and Lin, 2019). In recent years, computer
vision and image processing methods have gradually developed;
the method is more objective and supports the real-time online
diagnosis, bringing new opportunities to solve agricultural
disease diagnosis, reduce economic losses, and improve crop
yields (Wang et al., 2019).

Diseases are the main causal factors affecting crop growth
and in order to improve the quality and yield of crops, targeted
screening and diagnosis are needed during the growth process.
Crop disease recognition technology based on machine vision
image processing usually includes disease image preprocessing,
image segmentation, feature extraction, image recognition, and
interpretation (Iqbal et al., 2018). The higher the accuracy of
image segmentation, the higher the accuracy of feature extraction
and image recognition. Therefore, higher accuracy segmentation
methods are the main research direction for scholars in disease
identification and diagnosis. The mainstream agricultural disease
image segmentation techniques are mainly based on clustering
methods (Wang et al., 2018), region growth methods (Jothiaruna
and Sundar, 2020), edge detection methods (Shaikh et al., 2017),
threshold segmentation methods (Wang et al., 2013), heuristic
algorithm methods (Zhou et al., 2018), machine learning, and
deep learning methods (Ale et al., 2019). Although there are
many novel and effective image segmentation methods in recent
literature (Elaziz et al., 2020; Rodriguez-Esparza et al., 2020; Zhao
et al., 2020a,b, 2021), there is not yet a general robustness well-
adapted segmentation method that can be applied to multiple
scenes due to the interference of many crop species, complex
background information, diverse and disorderly disease spot
morphological texture colors, multiple disease spot interference,
blurred leaf surface texture, and disease spot boundaries. The
currently available segmentation methods and their advantages
and disadvantages are shown in following Table 1.

Threshold-based segmentation methods are computationally
efficient, straightforward, and widely used in multiple fields
and crop image recognition. Subramani et al. (2019) presented
a method that combines non-local median filter and double
line clustering to analyze the anthracnose, blight disease in
grapes, tomato, and cucumber. Xiong et al. (2020) proposed an
automatic image segmentation algorithm (AISA) based on the
GrabCut algorithm that automatically removes the background
information of the images while retaining the disease spots.
Kumari et al. (2019) presented a novel approach based on the
simple linear iterative clustering segmentation method to detect
disease in plant leaves. Yan et al. (2018) proposed that extract the
H channel information in the HSI, more common, components

hue (H), saturation (S), brightness(I) and use each pixel and its
local average value to form a two-dimensional (2D) histogram,
then segment color space the image by the optimal threshold
of the Otsu algorithm in the polar diameter information to
improve the segmentation accuracy of rice blast images. Zhang
et al. (2019) presented a novel hybrid clustering segmentation
method of plant disease leaf image. Hu et al. (2017) proposed
an improved Chan–Vese (C-V) model for wheat leaf lesion
segmentation. Gao and Lin (2019) proposed a fully automatic
segmentation method using leaf images of medicinal plants in
complex backgrounds with vein enhancement and extraction in
the images. Among the threshold image segmentation methods,
the Otsu (Merzban and Elbayoumi, 2019) segmentation method
is one of the classical threshold segmentation methods, which
has obvious disadvantages ofmisclassification and computational
complexity using grayscale histograms and cannot be well-
adapted to complex and diverse crop disease images. Mittal
and Saraswat (2018) proposed a 2D histogram with non-local
mean filtering, which can effectively reduce the loss of image
details. However, the Otsu method finds the optimal threshold
using the exhaustive method, the complexity grows exponentially
with the increase of the number of thresholds, and there are
obvious shortcomings in the computational performance. The
application of swarm intelligence algorithm is a bionic approach
to solve optimization problems with intelligence, parallelism, and
robustness, which is widely used in thresholding optimization
problems. Jia et al. (2019a) used improved moth flame
optimization (MFO) for multistage thresholding segmentation of
color images. Jia et al. (2019b) proposed an improved multilevel
optimization algorithm based on Lévy flight for multi-threshold
color image segmentation. Kotte et al. (2018) proposed a fast
multi-thresholding method for gray image segmentation based
on a differential evolution algorithm. Bao et al. (2019) proposed
a novel hybrid Harris Hawks optimization method for multilevel
threshold segmentation of color images.

In this study, non-local mean filtering of 2D histogram Otsu
was used to segmentation for multi-threshold image processing
and enhanced comprehensive learning particle swarm optimizer
with elite-based dominance scheme (GCLPSO) (Chen et al.,
2020) was used to find the optimal threshold, which was used
to achieve higher convergence speed and accuracy, can quickly
achieve convergence to the optimal value, and improve the
efficiency of image segmentation. The methods were applied to
maize leaf disease images in the Plant Village1 public database.
The experimental results indicated that the method effectively
improved the segmentation of the three maize disease spot
images and could obtain more apparent disease spot areas.
To verify the experimental validity, the used GCLPSO was
compared with the original CLPSO (Liang et al., 2006) and
two of improved algorithms such as Sine Cosine Algorithm and
Differential Evolution (SCADE) (Nenavath and Jatoth, 2018),
modified sine cosine algorithm (m_SCA) (Qu et al., 2018)
and three original algorithms such as salp swarm algorithm
(SSA) (Aljarah et al., 2018; Faris et al., 2018; Abbassi et al.,
2019), SCA (Oliva et al., 2018; Qu et al., 2018; Kuo et al.,

1Available online at: https://github.com/Tmcsn/AI-Challenger-2018-

CropDisease.
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TABLE 1 | Existing segmentation methods and their advantages and disadvantages.

Segmentation method Advantages Disadvantages

Edge detection Fast search detection and good detection of edges Cannot get a better regional structure; The conflict between noise

immunity and detection accuracy during edge detection

Region growth Effectively overcome the disadvantage of small continuous image

segmentation space existing; Better regional characteristics

Easy to cause excessive segmentation of images, complex and

computationally intensive

Clustering High sensitivity to initial settings, and sometimes it needs human

decisions within initialization

No consideration of spatial information, sensitive to noise and gray

scale inhomogeneity

Threshold Direct use of the grayscale characteristics of the image, so the

calculation is simple, efficient, and fast

Sensitive to noise, not obvious to grayscale differences and

different target grayscale values have overlapping segmentation is

not obvious, need to find a suitable threshold with other methods

Mathematical morphology Good positioning effect, high segmentation accuracy, good

anti-noise performance

High requirement for accuracy of pre-processed images;

otherwise, the speed of calculation is reduced

Deep learning Resolve noise and unevenness in images Requires a large amount of data, very slow, complex structure,

segmentation accuracy is related to the amount of data

FIGURE 1 | Flowchart of multi-threshold image segmentation of maize diseases using GCLPSO + Otsu.

2020), and Slime mould algorithm (SMA) (Abbassi et al.,
2019), respectively. The segmentation experiments with multiple
thresholds were also performed separately. In addition, the
feature similarity (FSIM) index (Zhang et al., 2011), peak signal-
to-noise ratio (PSNR) (Setiadi, 2020), and structural similarity
(SSIM) index (Wang et al., 2004) were used to compare the image
segmentation results for evaluation and the mean, variance,
and the Wilcoxon signed-rank (Garcia et al., 2010) tests were
used to analyze the evaluation results. Through a series of
analyses and comparisons of experimental results, GCLPSO for
non-local mean filtering of 2D histogram Otsu multi-threshold

image processing outperforms other algorithms in terms of
overall performance and can effectively segment corn leaf disease
images. Figure 1 shows the steps of image segmentation based on
this method.

The rest of this study is organized as follows. Chapter 2
introduces the multi-threshold Otsu segmentation. Chapter 3
introduces the non-local mean filtered 2D histogram. Chapter 4
introduces GCLPSO. Chapter 5 conducts a series of comparison
experiments between GCLPSO and other optimal thresholding
methods, and chapter 6 summarizes the whole paper and the
direction of future work.
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MULTI-THRESHOLD OTSU
SEGMENTATION

Crop disease image segmentation is mainly concerned with
separating the disease spots of a crop from the leaves
or other backgrounds containing the leaves. Multi-threshold
segmentation is an integral part of digital agricultural image
processing. It mainly refers to marking out the targets of interest
in an image by setting multiple thresholds. The selection of
thresholds is critical and related to the good or bad results
after segmentation. Otsu method is a more common and perfect
method in multi-threshold image segmentation (MTIS), which
was proposed by Japanese scholar Otsu in 1979 and it is
also called the maximum interclass variance method and its
principle is that the interclass variance between foreground
and background images is maximum after image binarization
segmentation according to the thresholds obtained by the Otsu
method (Merzban and Elbayoumi, 2019).

For an M × N image I, x is the row coordinates of image
pixel points, y is the column coordinates of image pixel points,
where 0 ≤ x < m, 0 ≤ y < n. The image gray level is S =

{0, 1, . . . , L− 1} , (L = 256) and the number of all the image pixel
points is denoted as: m × n. G is the corresponding averaged
image; then pixel gray level in G can be defined as follows:

G
(

x, y
)

=

x+ k−1
2

∑

x̃=x−
(

k− 1
2

)

y+ k−1
2

∑

ỹ=x−
(

k− 1
2

)

I
(

x̃, ỹ
)

(1)

where I
(

x, y
)

and G
(

x, y
)

represent the gray level of the pixel
at x, y in I and G, respectively. k represents the size of the filter
and the value of k is set to be 3 in this study. Let i, j be pixel gray
level of original image and averaged image; then i, j is a gray level
pair representing that the pixel gray level in image I is i and the
gray level of the corresponding pixel at the same location in the
averaged image G is j. Suppose fij is the pixel number of i, j, then
the 2D probability function can be defined as:

Pij =
fij

m× n
(2)

where i,jǫ (0, L – 1) and
∑

i

∑

j Pij = 1. The average vector of the

2D histogram is as follows:

µT =
(

µTi,µTj

)T
=





L−1
∑

i=0

L−1
∑

j=0

iPij,

L−1
∑

i=0

L−1
∑

j=0

jPij





T

(3)

A given threshold pair (s, t), pixels can be partitioned into two
sets, C0 and C1 (background and foreground) and the class
occurrence probabilities can be expressed as:

ω0 = P (C0) =

s
∑

i=0

t
∑

j= 0

Pij,

ω1 = P (C1) =

L−1
∑

i=s+1

L−1
∑

j=t+1

Pij . (4)

The corresponding mean vectors of C0 and C1 are:
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=
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
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∑
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.(5)

If we ignore the diagonal data far away from the 2D histogram in
the image, we can get the following formula can be obtained:

ω0 + ω1
∼= 1, µT = ω0µ0 + ω1µ1 (6)

The expression between classes in the 2D Otsu algorithm is
as follows:

tr (σB) = tr(

1
∑

K=0

ωK[(µK − µT)(µK − µT)
T]) (7)

Then, we calculate the maximum value in Equation (8) to get the
best threshold pair (s∗, t∗):

(

s∗, t∗
)

= argmax0<s<L,0<t<L[tr (σB)] (8)

The larger the interclass variance, the closer the threshold
to the correct image segmentation. The essence of threshold
segmentation can be seen as an optimization problem of
classifying image pixels according to multiple pixel gray
levels, translating into a mathematical model problem of
solving the objective function with the best quality. The Otsu
thresholding segmentation uses an iterative approach to find
the threshold that maximizes the between-class variance for the
final desired threshold, so the complexity of algorithm grows
exponentially as the number of thresholds and dimensions
increases. In agricultural disease diagnosis applications, it could
not meet the requirements of rapid diagnosis. Swarm intelligence
optimization algorithm can quickly improve computational
efficiency; many scholars at home and abroad carry out much
evolutionary research.

NON-LOCAL MEAN FILTERED 2D
HISTOGRAM

In reality, the occurrence of crop diseases is not a single event,
but may be accompanied by damage caused by insects, multiple
diseases or weather, and other disasters; in the image capture
process, the different angles of shooting disease spots, sunlight,
and room light cause uncertainty for segmentation; the irregular
diversity of disease spots themselves is also the main noise that
causes the inability to extract disease spots accurately. The noise
can bring great difficulties to solve the threshold processing. A
common approach that requires noise reduction at the source to
enhance performance is to smooth the image in priority. Non-
local means filtering (NL-means) is a novel denoising technique
proposed in recent years. This method makes full use of the
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FIGURE 2 | Color images and three-dimensional (3D) views of two-dimensional (2D) histograms for maize leaf spot disease and maize gray spot disease in the Plant

Village.

redundant information in the image and can maintain the
maximum detail features of the image while denoising. A brief
algorithm with superior performance characterizes the method.
The basic idea is that the estimate of the current pixel is obtained
by a weighted average of pixels in the image that has a similar
neighborhood structure to it. It can effectively removemost of the
noise on crop leaves for other reasons and is an effective method
for removing crop disease image noise.

In image I, the grayscale values of p and q corresponding pixels
are I

(

p
)

and I
(

q
)

, respectively, then the non-local mean value of
the image is calculated as follows:

O
(

p
)

=

∑

q∈I I
(

q
)

ω
(

p, q
)

∑

q∈I ω
(

p, q
) (9)

ω
(

p, q
)

= exp
−
|µ(p)−µ(q)|2

σ2 (10)

µ
(

p
)

=
1

m×m

∑

i∈L(p)

I (i) (11)

µ
(

q
)

=
1

m×m

∑

i∈L(q)

I (i) (12)

O
(

p
)

is the non-local mean filtered value of pixel p, ω
(

p, q
)

is the
weight of p pixels and q pixels, σ is the SD, µ

(

p
)

and µ
(

q
)

are
the local means of p and q, L

(

p
)

is the m × m domain window
around p pixels, and L

(

q
)

is them×m domain window around q
pixels. I

(

x, y
)

is the grayscale value, g
(

x, y
)

is the non-local mean
filtered values, then i in the new histogram horizontal and vertical
coordinates (i, j) denotes the grayscale values, and j denotes the
non-local mean filtered value. Meanwhile, the size of the original
image and the size of the generated non-local mean filtered image
are kept the same; therefore, the corresponding non-local mean
filtered 2D histogram can be generated from the non-local mean
image and the grayscale image. Furthermore, by normalization
process, the following equation shows:

Pij =
h

(

i, j
)

M × N
(13)

The final 2D histogram can be formed. Figure 2 shows the three-
dimensional (3D) views of 2D histograms formed by normalizing
it with Equation (11).
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FIGURE 3 | Flowchart of GCLPSO.

ENHANCED COMPREHENSIVE LEARNING
PARTICLE SWARM OPTIMIZER

There have been many studies on swarm intelligence
optimization methods for finding optimal thresholds of images.
In this study, we refer to a recently improved comprehensive
particle swarm algorithm, GCLPSO, which improves the
exploration and detection capability of CLPSO and improves
the ability to find the optimal threshold and this study presents
this algorithm.

Comprehensive Learning Particle Swarm
Optimizer

The CLPSO algorithm was proposed by Liang et al. (2006). It
uses a new comprehensive learning strategy (CLS) to update
the velocity of particles using the personal best position pbest
of other particles. CLS can maintain the diversity of the
population and prevent premature maturation. The velocity and
position update formula in the CLPSO algorithm is shown
as follows:
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FIGURE 4 | Original images of maize leaf spot disease color images 1–5, maize gray spot disease color images 6–10, and maize rust disease color images 11–15 in

the Plant Village.

vid = w∗vid + c∗rid

(

pbestfi(d),d − xid

)

(14)

xid = xid + vid (15)

where fi
(

d
)

denotes the dimension value of the dth dimension
in a particle pbest, fi = [fi (1) , fi (2) , . . . , fi (D)] denotes
the learning sample vector defined for particle i,pbestfi(d),d
denotes the best position of the particle among all the particles
pbest corresponding dimensional value. The dimension of
which particle is learned depends on the parameter learning
probability Pc. For each dimension of a particle, we generate
a random number. If this random number is greater than Pc,
the corresponding dimension will be learned from its own
pbest. Otherwise, it will be learned in the other particle pbest.
The algorithm selects learning particles from other particles
as follows:

(1) First, select two particles from the population at random,
excluding the velocity update particles.

(2) Then, compare the fitness values of the pbest of these two
particles and choose the better one. In this study, the fitness
value is the minimum solution of the function, which means
that the smaller the function value is, the better when solving
the minimization problem.

The CLPSO first assigns the learning probability Pc to each
particle using the following equation:

Pci = a+ b∗
exp

(

10∗(i−1)
N−1

)

exp (10) − 1
(16)

where a and b are two parameters used to identify the maximum
and minimum learning probabilities and N is the total number
of particles.
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In addition to avoid wasting time in undesirable directions
when the particle learns the best position of the particle
individual from the sample, a particle learning count threshold
m is defined and if the adaptation value of the particle does
not improve after m consecutive moves, a random particle is
generated again instead of the particle.

Gray Wolf Optimizer
Mirjalili et al. (2014) proposed the metaheuristic algorithm grey
wolf optimization (GWO) in 2014, a variant of the PSO with a
metaphor, as proven in the recent works (Villalón et al., 2020).
Similar to other metaheuristic approaches (Ala et al., 2020; Seifi
et al., 2020; Moayedi and Mosavi, 2021a,b), the algorithm is
inspired by the social hierarchy and hunting strategies of gray
wildlife wolves and it has been applied to various problems due to
its simple idea (Heidari and Pahlavani, 2017; Aljarah et al., 2019;
Heidari et al., 2019; Tang et al., 2020). Regardless of its defect,
we still can see some performance features in this method (Niu
et al., 2019; Hu et al., 2021). In this class of methods, an initial set
of agents needs to be evolved to increase the capacity to explore
trends of the method within the searching process (Moayedi and
Mosavi, 2021c). The best agents should be considered as alpha
(α), beta (β), and delta (δ) to help other agents omega (ω) to
explore more favorable areas of solution space.

In GWO, agents can identify the location of their prey and
surround them. To mathematically model this behavior, the
equation is as follows:

−→
D =

∣

∣

∣

−→
C ∗

−→
X p (t) −

−→
X (t)

∣

∣

∣
(17)

−→
X (t + 1) =

−→
X p (t) −

−→
A ∗

−→
D (18)

where t is the number of iterations,
−→
A and

−→
C are the coefficient

vectors,
−→
X p is the position vector of the prey, and

−→
X is the

position vector of the gray wolf.
−→
A and

−→
C are calculated as shown below:

−→
A = 2−→a ∗−→r 1 −

−→a (19)
−→
C = 2−→r 2 (20)

where −→a is decreasing from 2 to 0 with increasing number of
iterations,−→r 1和

−→r 2 are random numbers between 0 and 1.
Alpha (α) agents usually lead the hunting process. So, the

behavior is described by the following equation (Chantar et al.,
2020):

−→
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∣

∣

∣
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∣
(21)

−→
D β =

∣

∣

∣

−→
C 2∗

−→
X β −

−→
X

∣

∣

∣
(22)
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−→
X δ −
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X
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∣
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−→
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D α

)
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(25)

−→
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X δ −
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(
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D δ

)

(26)

−→
X (t + 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
(27)

Enhanced CLPSO
The CLPSO is a well-known variant of the PSO (Fan et al.,
2022), which updates the velocity of the particles by the
pbest of all the particles, which prevents the algorithm from
falling into a local optimum prematurely and prevents the
algorithm from performing a local search near the global
optimum. The improved algorithm GCLPSO first selects the
optimal three solutions of the CLPSO algorithm, as the
gray wolf algorithm alpha (α), beta (β), and delta (δ). The
optimal solution of each iteration in the CLPSO algorithm is
searched nearby by the GWO idea, while the searched optimal
solution is substituted for the optimal solution in the CLPSO
algorithm. The specific procedures of the algorithm are described
as follows:

(1) First, initialize the particles and parameters and calculate the
fitness value of each particle

(2) Update each particle using the CLPSO algorithm
(3) The three optimal solutions in the CLPSO algorithm are

selected as the gray wolf algorithm alpha (α), beta (β),
delta (δ), and their optimal solutions are searched locally
using the GWO algorithm nearby. If the optimal solution
search is better than the optimal solution in the CLPSO
algorithm, the optimal solution in the CLPSO algorithm will
be replaced.

(4) Keep looping (2), (3) steps until the termination condition
is satisfied.

The flowchart of the GCLPSO algorithm is shown in Figure 3.
In the GCLPSO algorithm, n is the size of the population, d

is the dimensionality, g is the maximum number of iterations,
the population initialization is O (n), the gray wolf population
initialization is O (n), the update search particle position is O (n
× d × g), the update local search of all the gray wolf positions is
O (n × d × g), and the sorted population fitness value is O (n ×

log n × g). Therefore, the final time complexity of the GCLPSO
algorithm is 2O (n× d × g + n)+ O (n× log n× g).

EXPERIMENTS AND RESULTS

Image and Parameter Settings
The experiments in this study were conducted through the
maize disease image library in the Plant Village public dataset,
containing images of three kinds of maize diseases: maize leaf
spot, maize gray spot, and maize rust diseases and five images
of each disease were taken separately, with an image size of
256 × 512 pixels. They are shown separately in Figure 4 below
in (a) maize leaf spot, (b) maize gray spot, and (c) maize
rust diseases.

All the experiments were conducted on a computer with
a 3.40 GHz Intel R© Core i7 processor and 16 GB of Random
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TABLE 2 | Results of the feature similarity FSIM comparison by the Wilcoxon signed-rank test at each threshold level of maize leaf spot disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 1/0/4 1/0/4 3/0/2 5/0/0 5/0/0 5/0/0

Mean 1.2 2 3 5.2 8.2 9.8 7.8

Rank 1 2 3 5 6 7 5

3 +/-/= ∼ 1/0/4 2/1/2 5/0/0 5/0/0 5/0/0 5/0/0

Mean 1.6 2.6 3.4 5.8 8.8 9.6 8.4

Rank 1 2 3 4 6 7 5

4 +/-/= ∼ 0/0/5 1/0/4 3/0/2 4/0/1 5/0/0 2/0/3

Mean 2.2 5.2 4.6 5.8 9.2 9.8 7

Rank 1 3 2 4 6 7 5

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

TABLE 3 | Results of the peak signal-to-noise ratio (PSNR) comparison by the Wilcoxon signed-rank test at each threshold level of maize leaf spot disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/0/5 1/0/4 3/0/2 4/0/1 5/0/0 3/0/2

Mean 1.4 2 2.6 5.6 8.6 8.4 7.2

Rank 1 2 3 4 7 6 5

3 +/-/= ∼ 1/0/4 1/0/4 4/0/1 5/0/0 5/0/0 5/0/0

Mean 1.8 2.8 3.4 5.2 8.8 8.6 8.4

Rank 1 2 3 4 7 6 5

4 +/-/= ∼ 1/0/4 1/0/4 3/0/2 4/0/1 5/0/0 3/0/2

Mean 2.4 4.4 5.6 6 9 9.4 7

Rank 1 2 3 4 6 7 5

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

TABLE 4 | Results of the structural similarity (SSIM) comparison by the Wilcoxon signed-rank test at each threshold level of maize leaf spot disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/0/5 2/0/3 3/0/2 4/0/1 5/0/0 3/0/2

Mean 1.2 2 3 5.2 8.8 7.8 7

Rank 1 2 3 4 8 7 5

3 +/-/= ∼ 0/0/5 1/0/4 4/0/1 5/0/0 5/0/0 5/0/0

Mean 1.8 3.2 3.2 4.8 8.2 8.6 7.8

Rank 1 2 2 3 5 6 4

4 +/-/= ∼ 1/0/4 1/0/4 2/0/3 4/0/1 5/0/0 2/0/3

Mean 2.6 5.6 4.4 5.2 9 9.4 6.8

Rank 1 4 2 3 6 7 5

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

Access Memory (RAM) and programming was performed using
MATLAB 2018b.

In this section of experiments, GCLPSO will be used
for the practical application of multi-threshold maize disease
image segmentation. To verify the effectiveness of GCLPSO
on multi-threshold image segmentation, GCLPSO will be
compared with CLPSO, two improved algorithms SCADE
and m_SCA, and three original algorithms SSA, SCA, and
SMA, respectively. To ensure the validity and fairness of

the experiments (Chen et al., 2021; Moayedi and Mosavi,
2021d; Nosratabadi et al., 2021; Yang et al., 2021), all the
algorithms involved in the comparisons were conducted under
the same experimental conditions. Such a setting is one of
the most crucial rules in the artificial intelligence community
(Song et al., 2020; Thaher et al., 2020; Mousavi et al.,
2021; Tavoosi et al., 2021). The population size was set
to 20, the maximum number of evaluations MaxFEs was
uniformly set to 100, and all the algorithms were tested
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TABLE 5 | Results of the FSIM comparison by the Wilcoxon signed-rank test at each threshold level of maize gray spot disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/0/5 1/0/4 4/0/1 5/0/0 5/0/0 5/0/0

Mean 1.4 2 3.2 5.6 6.4 10 9

Rank 1 2 3 4 5 7 6

3 +/-/= ∼ 1/0/4 1/0/4 2/0/3 5/0/0 5/0/0 5/0/0

Mean 2.2 3.4 2.2 6 9.4 9.2 7.6

Rank 1 2 1 3 6 5 4

4 +/-/= ∼ 1/0/4 1/0/4 2/0/3 5/0/0 5/0/0 3/0/2

Mean 3 5.4 4 6.8 9.2 9.8 6.8

Rank 1 3 2 4 5 6 4

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

TABLE 6 | Results of the PSNR comparison by the Wilcoxon signed-rank test at each threshold level of maize gray spot disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/0/5 1/0/4 3/0/2 3/0/2 5/0/0 5/0/0

Mean 1.4 2.4 3.4 5.2 6.8 9.4 9.2

Rank 1 2 3 4 5 7 6

3 +/-/= ∼ 1/0/4 2/0/3 2/0/3 4/0/1 3/0/2 3/0/2

Mean 2.6 3 3.6 5.6 9.6 8.6 7.2

Rank 1 2 3 4 8 7 5

4 +/-/= ∼ 1/0/4 1/0/4 1/0/4 3/0/2 2/0/3 2/0/3

Mean 3.4 3.8 4.8 5.8 9.4 9 6.6

Rank 1 2 3 4 7 6 5

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

TABLE 7 | Results of the SSIM comparison by the Wilcoxon signed-rank test at each threshold level of maize gray spot disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/0/5 1/0/4 4/0/1 4/0/1 5/0/0 5/0/0

Mean 1.8 2.6 2.8 5.2 7.2 9.4 9.2

Rank 1 2 3 4 5 7 6

3 +/-/= ∼ 1/0/4 2/0/3 2/0/3 4/0/1 5/0/0 4/0/1

Mean 2.4 3.2 3 5.4 9.6 8.8 7.4

Rank 1 3 2 4 7 6 5

4 +/-/= ∼ 0/0/5 1/0/4 1/0/4 4/0/1 3/0/2 2/0/3

Mean 3.6 4 4.4 6.4 9.4 9.4 6.4

Rank 1 2 3 4 5 5 4

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

30 times independently to reduce the influence of random
conditions. The thresholds of the experiments were set to 2,
3, and 4 thresholds, respectively. Meanwhile, the segmentation
results were evaluated FSIM, PSNR, and SSIM to compare
the image segmentation results, respectively. Also, we further
analyzed the evaluation results of FSIM, PSNR, and SSIM
using mean, variance, and the Wilcoxon signed-rank test
(Liu et al., 2021a).

Evaluation Indicators
The PSNR, SSIM index, and FSIM index is applied to further
evaluate image segmentation quality (Liu et al., 2021b; Shi et al.,
2021; Zhang et al., 2021).

The FSIM represents the FSIM between the original image and
the segmented image. FSIM is composed of high phase composite
(PC) and gradient amplitude (GM) to evaluate local structure and
provide contrast information. Its value range is between 0 and
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TABLE 8 | Results of the FSIM comparison by the Wilcoxon signed-rank test at each threshold level of maize rust disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/1/4 1/0/4 1/0/4 1/0/4 4/0/1 4/0/1

Mean 3.6 3.8 4.2 5.6 5.8 9.2 9

Rank 1 2 3 4 5 7 6

3 +/-/= ∼ 2/0/3 4/0/1 3/0/2 5/0/0 5/0/0 5/0/0

Mean 1 3.2 6.4 4.4 8.6 9.2 8.6

Rank 1 2 4 3 5 6 5

4 +/-/= ∼ 1/0/4 2/0/3 2/0/3 4/0/1 5/0/0 4/0/1

Mean 2 5.6 6.8 3.8 8.4 9.4 7.8

Rank 1 3 4 2 6 7 5

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

TABLE 9 | Results of the PSNR comparison by the Wilcoxon signed-rank test at each threshold level of maize rust disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/1/4 1/1/3 1/0/4 1/0/4 4/0/1 4/0/1

Mean 4.4 4.4 3.6 5.6 5.6 9.6 8.8

Rank 1 1 1 3 3 5 4

3 +/-/= ∼ 1/0/4 4/0/1 3/0/2 5/0/0 5/0/0 5/0/0

Mean 1.2 3.2 6.6 4.8 8.6 9.2 8.6

Rank 1 2 4 3 5 6 5

4 +/-/= ∼ 1/0/4 2/0/3 2/0/3 4/0/1 5/0/0 5/0/0

Mean 1.6 6 6.2 4.2 7.8 9.4 8

Rank 1 3 4 2 5 7 6

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

TABLE 10 | Results of the SSIM comparison by the Wilcoxon signed-rank test at each threshold level of maize rust disease.

Thresholds GCLPSO CLPSO SCADE m_SCA SSA SCA SMA

2 +/-/= ∼ 0/1/4 1/0/4 1/0/4 1/0/4 5/0/0 4/0/1

Mean 4.4 4.4 4.8 5.2 5.6 9.6 8.8

Rank 1 1 2 3 4 6 5

3 +/-/= ∼ 1/0/4 4/0/1 3/0/2 5/0/0 5/0/0 5/0/0

Mean 1.2 3 6.4 5 8.4 9.2 8.6

Rank 1 2 4 3 5 7 6

4 +/-/= ∼ 2/0/3 2/0/3 2/0/3 4/0/1 5/0/0 4/0/1

Mean 1.6 6.2 6.2 4 8 9.4 8

Rank 1 3 3 2 4 5 4

Mean, means the mean value of the ranking of the SSIM evaluation results obtained by the algorithm after segmentation of each image at the 2 threshold level, Rank, means the overall

ranking.

1, where the closer to 1, the better the segmentation effect. The
detailed expression is as follows:

FSIM =

∑

I∈� SL (X)PCm (X)
∑

I∈� PCm (X)
(28)

SL (X) = SPC (X) SG (X) (29)

SPC (X) =
2PC1 (X) PC2 (X) + T1

PC2
1 (X) PC2

2 (X) + T1
(30)

SG (X) =
2G1 (X)G2 (X) + T2

G2
1 (X)G2

2 (X) + T2
(31)

G =
√

G2
x + G2

y (32)
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FIGURE 5 | Original images, non-local mean filtered normalized 2D histogram, non-local mean filtered grayscale image results, and four-threshold color image

segmentation results of all the algorithms of maize leaf spot disease color images 1–5.

PC (X) =
E (X)

(

ε +
∑

m An (X)
) (33)

The � denotes all the pixel domains of the original image. S(X)
denotes the similarity score. PC(x) means the phase consistency
measure, T1 and T2 are constants, G is the gradient descent

method, E(X) response vector size position X and scale n,
furthermore, ε is a small quantity and An(X) is a local scale

size n.

The PSNR indicates the difference between the segmented

image and the original image. The larger the value,

the better.
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FIGURE 6 | Original images, non-local mean filtered normalized 2D histogram, non-local mean filtered grayscale image results, and three-threshold color image

segmentation results of all the algorithms of maize gray spot disease color images 6–10.

It is defined as shown in Equation (34).

PSNR = 20 ·

(

255

RMSE

)

(34)

The SSIM represents a measure of the similarity of two images.
The greater its value, the more effective is the segmentation of

the threshold. Its definition is illustrated by Equation (35).

SSIM =

(

2µIµSeg + c1
) (

2σI,Seg + c2
)

(

µI
2 + µSeg

2 + c1
) (

σI
2 + σSeg

2 + c2
) (35)

µI, µs, σI, and σs are the mean values and SD of the original
and segmented images, respectively, Seg is the covariance of
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FIGURE 7 | Original images, non-local mean filtered 2D histogram, non-local mean filtered grayscale image results, and two-threshold color image segmentation

results of all the algorithms of maize rust disease color images 11–15.

the basic image and the image segmentation, and c1 and c2
represent constants.

Experimental Results and Analysis
In this study, in order to evaluate the image segmentation effect
of GCLPSO at a multi-threshold, the comparison algorithms
involved are CLPSO, SCADE, m_ SCA, SSA, SCA, and SMA. The
segmentation results are evaluated using the PSNR, SSIM, and
FSIM and the results are evaluated by the ways of mean, variance,

and the Wilcoxon signed-rank test. Tables 2–4 show the results
of the FSIM, PSNR, and SSIM comparison by the Wilcoxon
signed-rank test at each threshold level of maize leaf spot disease;
Tables 5–7 exhibit the results of the FSIM, PSNR, and SSIM
comparison by the Wilcoxon signed-rank test at each threshold
level of maize gray spot disease; Tables 8–10 show the results
of the FSIM, PSNR, and SSIM comparison by the Wilcoxon
signed-rank test at each threshold level of maize rust disease.
Furthermore, mean means average ranking, rank means ranking
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FIGURE 8 | Convergence curves of 2D-Otsu at threshold 2.

order, “+” means that the performance of GCLPSO is better than
the comparison algorithm, “=” means that the performance of
GCLPSO is equal to the comparison algorithm, and “-” means
that the performance of GCLPSO is worse than the comparison
algorithm. It can be seen that GCLPSO ranks first overall and has
the best performance.

In the experience on MTIS, images 1–5 are maize leaf spot
disease, images 6–10 are maize gray spot disease, and images
11–15 are maize rust disease. The image size was set to 256
× 512 pixels. Figure 5 shows that the first row presents the

original images of five randomly selected color images of corn
leaf spot disease in the Plant village public dataset; the second
row presents the grayscale and non-mean filtered normalized 3D
histogram of the corresponding image, with the X-axis as the
gray value of the grayscale image, the Y-axis as the gray value of
the non-mean filtered image and the Z-axis as the normalized
result of the combination of the gray value of the grayscale
image and the non-mean filtered image; the third row is the
non-local mean filtered grayscale image of the corresponding
image; the remaining rows are the color segmentation results
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FIGURE 9 | Segmentation threshold line of GCLPSO-2D-Otsu at threshold 2.

Frontiers in Plant Science | www.frontiersin.org 16 December 2021 | Volume 12 | Article 78991167

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. Multi-Threshold Maize Disease Image Segmentation

of the GCLPSO algorithm combined with the non-local
mean filter and the contrast algorithm to optimize the Otsu
segmentation with four-threshold, respectively. Figure 6 denotes
the original images; non-local mean filtered normalized 2D
histogram, non-local mean filtered grayscale image results,
and three-threshold color image segmentation results of all
the maize gray spot disease algorithms—color images 6–10.
Figure 7 is similar to Figures 5, 6 for the two-threshold color
segmentation results of all the corn rust spot disease algorithms—
color images 11–15. We can see that the segmentation effect
under the GCLPSO algorithm is significantly better than other
similar algorithms.

According to Figure 8, the local features of the image acquired
by GCLPSO are obviously better than those of other algorithms.
It is easy to conclude that GCLPSO surpasses other competing
algorithms at the threshold level of 2.

Conclusion
Figures 5–7 show the segmentation results under different
algorithms; from the segmentation results, the local features of
the images retained by GCLPSO are better than those retained
by other algorithms. From the data, Tables 2–10 show the
comparison of mean and SD of FSIM index, PSNR, and SSIM
index for all the algorithms segmentation of maize leaf spot,
gray spot, and rust images.Appendix Tables 1–9 show the results
of FSIM index, PSNR, and SSIM index comparison by the
Wilcoxon signed-rank test at each threshold level for maize leaf
spot, gray spot, and rust images. The comparison results showed
that the feature similarity index outperformed other algorithms
at thresholds 2, 3, and 4 for all the disease images and also
performed significantly better than other algorithms at other
thresholds. Figure 8 shows the convergence curves of images 1,
4, 5, 6, 9, and 12 when the image segmentation experiments
were performed at a threshold level of 2, 3, and 4. Based on
the convergence curves, it can be seen that GCLPSO is better at
finding the maximum value of the maximum interclass variance
and it has higher convergence accuracy than other algorithms.
Therefore, based on the above comparison and experimental
analysis, GCLPSO outperformed the other algorithms at the level
of multiple thresholds for maize with multiple disease spots.
The threshold values and segmentation threshold lines selected
by GCLPSO for the 2-threshold segmentation of maize disease
image (01)(04)(06)(09)(10)(12) can be seen in Figure 9 above,
and it can be seen that the threshold values were selected
more reasonably.

SUMMARY AND FUTURE WORK

According to the multi-threshold image segmentation
experiments on three maize disease images, the used GCLPSO
was compared with CLPSO and two other improved algorithms
and three original algorithms, respectively, and the multi-
threshold segmentation comparison experiments were compared
with each other at the same time. In addition, the PSNR, SSIM,
and FSIM were used to compare the image segmentation
results for evaluation and the evaluation results were analyzed
using the mean, variance, and the Wilcoxon signed-rank tests.

It can be seen from the experiments in this study that the
GCLPSO algorithm can be used as an optimization tool for the
Otsu segmentation of maize disease images in multi-threshold
level segmentation results by non-local average filtered 2D
histogram using an improved swarm intelligent optimization
algorithm since GCLPSO can obtain the best selection of
thresholds and has ideal stability in the segmentation process.
Therefore, it can be effectively used in maize leaf disease image
segmentation.

In future research work, the GCLPSO can be combined with
other optimizationmethods for image segmentation ofmulticrop
diseases to improve the identification and intelligent diagnosis of
disease deficiency in maize and other crops and effectively reduce
the economic losses caused by crop diseases.

(a) Maize leaf spot disease
Maize leaf spot disease, also known as stripe disease, coal

stripe disease, leaf blight disease, and large spot disease, is a
major foliar disease of maize, which occurs throughout China
and causes heavy damage. It mainly affects the leaves, the leaf
sheaths, and bracts in severe cases. Generally, from the bottom
of the leaf first, it gradually expands upward, when serious spots
can spread throughout the plant, but there are also from the
upper leaves of the case. Infected leaves form large nucleate spots,
which are initially water-stained greenish-gray or grayish-green
spots in the field and then expand into large diamond-shaped or
long fusiform spots with dark brown margins and light brown or
gray centers, generally 5–10 cm long, with a distinct black-brown
mold layer on the spots when wet, and in severe cases, the spots
combine to split longitudinally, and the leaves die.

(b) Maize gray spot disease
Maize gray spot disease, also known as tail spore leaf spot

disease and corn mold spot disease, is one of the diseases that
have been rising rapidly and causing more serious damage in
the recent years. It mainly affects the leaves. At first, on the leaf
surface to form no obvious edge of the oval, moment round gray
to light brown spots, later turned brown. The spots are mostly
limited to between the parallel leaf veins, size 4–20 × 2–5 (mm).
When the humidity is high, the back of the spot produces gray
moldy material, i.e., the conidiophore and conidia of the disease.
Sometimes, it causes the fruiting spike to rot or droop and the
seeds to blacken.

(c) Maize rust spot disease
Maize rust mainly affects the leaves, but it can also occur

on the cob bracts and male flowers in severe cases. The upper
and middle leaves of the plant are heavily affected, initially
with inconspicuous yellowish dots scattered or clustered on the
adaxial surface of the leaves, later protruding and expanding
into a round to oblong, yellowish brown or brown, with the
surrounding epidermis turning up and scattering rust-colored
powder (summer spores of the pathogenic fungus). Later on,
the spot grows round black protrusions, rupture to reveal black-
brown powder (winter spores of the pathogenic fungus). The
disease is caused by the fungus, the field leaf disease, the disease
produced by the summer spores spread by airflow, reinfestation,
spread, and expansion. Production of early maturing varieties
is susceptible to the disease, heavy incidence of biased nitrogen
fertilization, high temperature, humidity, rain, foggy days, and
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insufficient light facilitate the prevalence of maize rust (Lv et al.,
2020).

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. This data can be found here: https://github.com/
Tmcsn/AI-Challenger-2018-CropDisease.

AUTHOR CONTRIBUTIONS

CC and AH: writing—original draft, writing—review and
editing, software, visualization, and investigation. XW, HC,
and HY: conceptualization, methodology, formal analysis,

investigation, writing—review and editing, funding acquisition,
and supervision. All authors contributed to the article and
approved the submitted version.

FUNDING

This research was supported by Science and Technology
Development Project of Jilin Province (20190301024NY).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
789911/full#supplementary-material

REFERENCES

Abbassi, R., Abbassi, A., Heidari, A. A., and Mirjalili, S. (2019). An

efficient salp swarm-inspired algorithm for parameters identification

of photovoltaic cell models. Energy Conver. Manage. 179, 362–372.

doi: 10.1016/j.enconman.2018.10.069

Ala, M., A.-Z., Heidari, A. A., Habib, M., Faris, H., Aljarah, I., et al. (2020). “Salp

chain-based optimization of support vector machines and feature weighting

for medical diagnostic information systems,” in Evolutionary Machine Learning

Techniques (Amman, Jordan, Springer). doi: 10.1007/978-981-32-9990-0_2

Ale, L., Sheta, A., Li, L.,Wang, Y., and Zhang, N. (2019). “Deep learning based plant

disease detection for smart agriculture,” in 2019 Ieee Globecom Workshops.

(Waikoloa, HI, USA, IEEE). doi: 10.1109/GCWkshps45667.2019.9024439

Aljarah, I., Mafarja, M., Heidari, A. A., Faris, H., andMirjalili, S. (2019). Clustering

analysis using a novel locality-informed grey wolf-inspired clustering approach.

Knowl. Inf. Syst. 62, 507–539. doi: 10.1007/s10115-019-01358-x

Aljarah, I., Mafarja, M., Heidari, A. A., Faris, H., Zhang, Y., andMirjalili, S. (2018).

Asynchronous accelerating multi-leader salp chains for feature selection. Appl.

Soft Comput. 71, 964–979. doi: 10.1016/j.asoc.2018.07.040

Bao, X. L., Jia, H. M., and Lang, C. B. (2019). A novel hybrid harris hawks

optimization for color image multilevel thresholding segmentation. Ieee Access.

7, 76529–76546. doi: 10.1109/ACCESS.2019.2921545

Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A. A., Aljarah, I., and Faris,

H. (2020). Feature selection using binary grey wolf optimizer with elite-based

crossover for Arabic text classification. Neural Comput. App. 32, 12201–12220.

doi: 10.1007/s00521-019-04368-6

Chen, C. C., Wang, X. C., Yu, H. L., Zhao, N. N., Wang, M. J., and

Chen, H. L. (2020). An enhanced comprehensive learning particle swarm

optimizer with the elite-based dominance scheme. Complexity. 2020:4968063.

doi: 10.1155/2020/4968063

Chen, Y., Chen,W., Chandra Pal, S., Saha, A., Chowdhuri, I., Adeli, B., et al. (2021).

Evaluation efficiency of hybrid deep learning algorithms with neural network

decision tree and boosting methods for predicting groundwater potential.

Geocarto Int. 2021, 1–21. doi: 10.1080/10106049.2021.1920635

Dhami, N. B., Kim, S. K., Paudel, A., Shrestha, J., and Rijal, T. R. (2015). A review

on threat of gray leaf spot disease of maize in Asia. J. Maize Res. Dev. 1, 71–85.

doi: 10.3126/jmrd.v1i1.14245

Elaziz, M. A., Heidari, A. A., Fujita, H., and Moayedi, H. (2020). A

competitive chain-based Harris Hawks Optimizer for global optimization and

multi-level image thresholding problems. Appl. Soft Comput. 2020:106347.

doi: 10.1016/j.asoc.2020.106347

Fan, Y., Wang, P., Heidari, A. A., Chen, H., and Mafarja, M. (2022). Random

reselection particle swarm optimization for optimal design of solar photovoltaic

modules. Energy 239:121865. doi: 10.1016/j.energy.2021.121865

Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Al-Zoubi, A. M., Mirjalili,

S., et al. (2018). An efficient binary Salp Swarm Algorithm with crossover

scheme for feature selection problems. Knowledge-Based Syst. 154, 43–67.

doi: 10.1016/j.knosys.2018.05.009

Gao, L., and Lin, X. (2019). Fully automatic segmentation method for medicinal

plant leaf images in complex background. Comp. Electr. Agri. 164:104924.

doi: 10.1016/j.compag.2019.104924

Garcia, S., Fernandez, A., Luengo, J., and Herrera, F. (2010). Advanced

nonparametric tests for multiple comparisons in the design of experiments in

computational intelligence and data mining: Experimental analysis of power.

Inf. Sci. 180, 2044–2064. doi: 10.1016/j.ins.2009.12.010

Heidari, A. A., Abbaspour, R. A., and Chen, H. (2019). Efficient boosted grey wolf

optimizers for global search and kernel extreme learning machine training.

Appl. Soft Comput. 81:105521. doi: 10.1016/j.asoc.2019.105521

Heidari, A. A., and Pahlavani, P. (2017). An efficient modified grey wolf optimizer

with Lévy flight for optimization tasks. Appl. Soft Comput. 60, 115–134.

doi: 10.1016/j.asoc.2017.06.044

Hu, J., Chen, H., Heidari, A. A., Wang, M., Zhang, X., Chen, Y., et al.

(2021). Orthogonal learning covariance matrix for defects of grey wolf

optimizer: Insights, balance, diversity, feature selection. Knowledge-Based Syst.

213:106684. doi: 10.1016/j.knosys.2020.106684

Hu, Q.-X., Tian, J., and He, D.-J. (2017). Wheat leaf lesion color image

segmentation with improved multichannel selection based on the Chan-Vese

model. Comp. Electr. Agri. 135, 260–268. doi: 10.1016/j.compag.2017.01.016

Iqbal, Z., Khan, M. A., Sharif, M., Shah, J. H., Rehman, M. H. U., and Javed,

K. (2018). An automated detection and classification of citrus plant diseases

using image processing techniques: A review. Comp. Electr. Agri. 153, 12–32.

doi: 10.1016/j.compag.2018.07.032

Jia, H., Ma, J., and Song, W. (2019a). Multilevel thresholding segmentation

for color image using modified moth-flame optimization. IEEE Access. 7,

44097–44134. doi: 10.1109/ACCESS.2019.2908718

Jia, H., Peng, X., Song, W., Lang, C., Xing, Z., and Sun, K. (2019b).

Multiverse optimization algorithm based on lévy flight improvement for

multithreshold color image segmentation. IEEE Access. 7, 32805–32844.

doi: 10.1109/ACCESS.2019.2903345

Jothiaruna, N., and Sundar, K. J. A. (2020). “A segmentation method for

comprehensive color feature with color-to-grayscale conversion using SVD

and Region-Growing Method,” in First International Conference on Sustainable

Technologies for Computational Intelligence, Luhach AK, et al. Editors.

(Thanjavur, India, Springer). doi: 10.1007/978-981-15-0029-9_24

Kotte, S., Rajesh Kumar, P., and Injeti, S. K. (2018). An efficient approach

for optimal multilevel thresholding selection for gray scale images based

on improved differential search algorithm. Ain Shams Eng. J. 9, 1043–1067.

doi: 10.1016/j.asej.2016.06.007

Kumari, C. U., Prasad, S. J., Mounika, G., and Ieee, A. (2019). “Leaf disease

detection: feature extraction with K-means clustering and classification

with ANN,” in Proceedings of the 2019 3rd International Conference

on Computing Methodologies and Communication. (Erode, India, IEEE).

doi: 10.1109/ICCMC.2019.8819750

Kuo, R. J., Lin, J. Y., and Nguyen, T. P. Q. (2020). An application of sine

cosine algorithm-based fuzzy possibilistic c-orderedmeans algorithm to cluster

analysis. Soft Comput. 25, 3469–3484. doi: 10.1007/s00500-020-05380-y

Frontiers in Plant Science | www.frontiersin.org 18 December 2021 | Volume 12 | Article 78991169

https://github.com/Tmcsn/AI-Challenger-2018-CropDisease
https://github.com/Tmcsn/AI-Challenger-2018-CropDisease
https://www.frontiersin.org/articles/10.3389/fpls.2021.789911/full#supplementary-material
https://doi.org/10.1016/j.enconman.2018.10.069
https://doi.org/10.1007/978-981-32-9990-0_2
https://doi.org/10.1109/GCWkshps45667.2019.9024439
https://doi.org/10.1007/s10115-019-01358-x
https://doi.org/10.1016/j.asoc.2018.07.040
https://doi.org/10.1109/ACCESS.2019.2921545
https://doi.org/10.1007/s00521-019-04368-6
https://doi.org/10.1155/2020/4968063
https://doi.org/10.1080/10106049.2021.1920635
https://doi.org/10.3126/jmrd.v1i1.14245
https://doi.org/10.1016/j.asoc.2020.106347
https://doi.org/10.1016/j.energy.2021.121865
https://doi.org/10.1016/j.knosys.2018.05.009
https://doi.org/10.1016/j.compag.2019.104924
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1016/j.asoc.2019.105521
https://doi.org/10.1016/j.asoc.2017.06.044
https://doi.org/10.1016/j.knosys.2020.106684
https://doi.org/10.1016/j.compag.2017.01.016
https://doi.org/10.1016/j.compag.2018.07.032
https://doi.org/10.1109/ACCESS.2019.2908718
https://doi.org/10.1109/ACCESS.2019.2903345
https://doi.org/10.1007/978-981-15-0029-9_24
https://doi.org/10.1016/j.asej.2016.06.007
https://doi.org/10.1109/ICCMC.2019.8819750
https://doi.org/10.1007/s00500-020-05380-y
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. Multi-Threshold Maize Disease Image Segmentation

Liang, J. J., Qin, A. K., Suganthan, P. N., and Baskar, S. (2006).

Comprehensive learning particle swarm optimizer for global optimization

of multimodal functions. Ieee Transact. Evolut. Comput. 10, 281–295.

doi: 10.1109/TEVC.2005.857610

Liu, L., Zhao, D., Yu, F., Heidari, A. A., Li, C., Ouyang, J., et al. (2021a). Ant

colony optimization with Cauchy and greedy Levy mutations for multilevel

COVID 19 X-ray image segmentation. Comput. Biol. Med. 136:104609.

doi: 10.1016/j.compbiomed.2021.104609

Liu, L., Zhao, D., Yu, F., Heidari, A. A., Ru, J., Chen, H., et al. (2021b). Performance

optimization of differential evolution with slime mould algorithm for

multilevel breast cancer image segmentation. Comput. Biol. Med. 138:104910.

doi: 10.1016/j.compbiomed.2021.104910

Lv, M., Zhou, G., He, M., Chen, A., Zhang, W., and Hu, Y. (2020). Maize leaf

disease identification based on feature enhancement and dms-robust alexnet.

IEEE Access 8, 57952–57966. doi: 10.1109/ACCESS.2020.2982443

Merzban, M. H., and Elbayoumi, M. (2019). Efficient solution of Otsu multilevel

image thresholding: A comparative study. Expert Syst. Appl. 116, 299–309.

doi: 10.1016/j.eswa.2018.09.008

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng.

Softw. 69, 46–61. doi: 10.1016/j.advengsoft.2013.12.007

Mittal, H., and Saraswat, M. (2018). An optimum multi-level image thresholding

segmentation using non-local means 2D histogram and exponential

Kbest gravitational search algorithm. Eng. Appl. Artif. Intell. 71, 226–235.

doi: 10.1016/j.engappai.2018.03.001

Moayedi, H., and Mosavi, A. (2021a). Suggesting a stochastic fractal search

paradigm in combination with artificial neural network for early prediction of

cooling load in residential buildings. Energies 14:1649. doi: 10.3390/en14061649

Moayedi, H., and Mosavi, A. (2021b). An innovative metaheuristic strategy for

solar energy management through a neural networks framework. Energies

14:1196. doi: 10.3390/en14041196

Moayedi, H., and Mosavi, A. (2021c). Electrical power prediction through

a combination of multilayer perceptron with water cycle ant lion

and satin bowerbird searching optimizers. Sustainability 13:2336.

doi: 10.3390/su13042336

Moayedi, H., and Mosavi, A. (2021d). Synthesizing multi-layer perceptron

network with ant lion biogeography-based dragonfly algorithm evolutionary

strategy invasive weed and league champion optimization hybrid algorithms

in predicting heating load in residential buildings. Sustainability 13:3198.

doi: 10.3390/su13063198

Mousavi, S. M., Ghasemi,M., DehghanManshadi, M., andMosavi, A. (2021). Deep

learning for wave energy converter modeling using long short-term memory.

Mathematics 9:871. doi: 10.3390/math9080871

Nenavath, H., and Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with

differential evolution for global optimization and object tracking. Appl. Soft

Comput. 62, 1019–1043. doi: 10.1016/j.asoc.2017.09.039

Niu, P., Niu, S., and Chang, L. (2019). The defect of the Grey Wolf optimization

algorithm and its verification method. Knowledge-Based Syst. 171, 37–43.

doi: 10.1016/j.knosys.2019.01.018

Nosratabadi, S., Ardabili, S., Lakner, Z., Mako, C., and Mosavi, A. (2021).

Prediction of food production using machine learning algorithms

of multilayer perceptron and agriculture ANFIS. Agriculture. 11:408.

doi: 10.3390/agriculture11050408

Oliva, D., Hinojosa, S., Elaziz,M. A., andOrtega-Sánchez, N. (2018). Context based

image segmentation using antlion optimization and sine cosine algorithm.

Multimed. Tools Appl. 77, 25761–25797. doi: 10.1007/s11042-018-5815-x

Qu, C. W., Zeng, Z. L., Dai, J., Yi, Z. J., and He, W. (2018). A modified sine-cosine

algorithm based on neighborhood search and greedy levy mutation. Comput.

Intell. Neurosci. 2018:4231647. doi: 10.1155/2018/4231647

Rodriguez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., Heidari, A. A.,

Zaldivar, D., Pérez-Cisneros, M., et al. (2020). An efficient Harris hawks-

inspired image segmentation method. Expert Syst. Appl. 155:113428.

doi: 10.1016/j.eswa.2020.113428

Seifi, A., Ehteram, M., Singh, V. P., and Mosavi, A. (2020). Modeling

and uncertainty analysis of groundwater level using six evolutionary

optimization algorithms hybridized with ANFIS, SVM, and Sustainability

ANN. Sustainability 12:4023. doi: 10.3390/su12104023

Setiadi, D. I. M. (2020). PSNR vs SSIM: imperceptibility quality assessment

for image steganography. Multimed. Tools Appl. 80, 8423–8444.

doi: 10.1007/s11042-020-10035-z

Shaikh, R. P., Dhole, S., and Ieee, A. (2017). “Citrus leaf unhealthy region

detection by using image processing technique,” 2017 International Conference

of Electronics, Communication and Aerospace Technology. (Coimbatore, India,

IEEE). doi: 10.1109/ICECA.2017.8203719

Shi, B., Ye, H., Zheng, L., Lyu, J., Chen, C., Heidari, A. A., et al. (2021).

Evolutionary warning system for COVID-19 severity: Colony predation

algorithm enhanced extreme learningmachine.Comput. Biol. Med. 136:104698.

doi: 10.1016/j.compbiomed.2021.104698

Song, S., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., et al. (2020).

Dimension decided Harris hawks optimization with Gaussian mutation:

Balance analysis and diversity patterns. Knowledge-Based Syst. 2020:106425.

doi: 10.1016/j.knosys.2020.106425

Subramani, K., Periyasamy, S., and Theagarajan, P. (2019). Double line clustering

based colour image segmentation technique for plant disease detection. Curr.

Med. Imaging 15, 769–776. doi: 10.2174/1573405614666180322130242

Tang, H., Xu, Y., Lin, A., Heidari, A. A., Wang, M., Chen, H., et al. (2020).

Predicting green consumption behaviors of students using efficient firefly

grey wolf-assisted k-nearest neighbor classifiers. IEEE Access. 8, 35546–35562.

doi: 10.1109/ACCESS.2020.2973763

Tavoosi, J., Zhang, C., Mohammadzadeh, A., Mobayen, S., and Mosavi, A.

H. (2021). Medical image interpolation using recurrent type-2 fuzzy neural

network. Front. Neuroinform. 15:e667375. doi: 10.3389/fninf.2021.667375

Thaher, T., Heidari, A. A., Mafarja, M., Dong, J. S., and Mirjalili, S. (2020).

“Binary Harris Hawks optimizer for high-dimensional, low sample size feature

selection,” in Evolutionary Machine Learning Techniques (Nablus, Palestine,

Springer). doi: 10.1007/978-981-32-9990-0_12

Villalón, C. L. C., Stützle, T., and Dorigo, M. (2020). “Grey wolf, firefly

and bat algorithms: three widespread algorithms that do not contain

any novelty,” in International Conference on Swarm Intelligence (Springer).

doi: 10.1007/978-3-030-60376-2_10

Wang, A., Zhang, W., and Wei, X. (2019). A review on weed detection using

ground-based machine vision and image processing techniques. Comp. Electr.

Agri. 158, 226–240. doi: 10.1016/j.compag.2019.02.005

Wang, J., He, J., Han, Y., Ouyang, C., and Li, D. (2013). An Adaptive

Thresholding algorithm of field leaf image. Comp. Electr. Agri. 96, 23–39.

doi: 10.1016/j.compag.2013.04.014

Wang, Z., Bovik, A. C., and Sheikh, H. R. (2004). Simoncelli EImage quality

assessment: From error visibility to structural similarity. Ieee Transact. Image

Process. 13, 600–612. doi: 10.1109/TIP.2003.819861

Wang, Z., Wang, K., Pan, S., and Han, Y. (2018). Segmentation of crop disease

images with an improved K-means clustering algorithm. Appl. Eng. Agric. 34,

277–289. doi: 10.13031/aea.12205

Xiong, Y., Liang, L., Wang, L., She, J., and Wu, M. (2020). Identification

of cash crop diseases using automatic image segmentation algorithm and

deep learning with expanded dataset. Comp. Electr. Agri. 177:105712.

doi: 10.1016/j.compag.2020.105712

Yan, L., Zhang, J., and Ieee, A. (2018). “Image segmentation of rice blast disease

based On two - dimensional histogram in HSI space,” in 2018 13th World

Congress on Intelligent Control and Automation. (Changsha, China, IEEE).

doi: 10.1109/WCICA.2018.8630477

Yang, F., Moayedi, H., and Mosavi, A. (2021). Predicting the degree of dissolved

oxygen using three types of multi-layer perceptron-based artificial neural

networks. Sustainability 13:9898. doi: 10.3390/su13179898

Zhang, L., Zhang, L., Mou, X. Q., and Zhang, D. (2011). FSIM: a feature similarity

index for image quality assessment. Ieee Transact. Image Process. 20, 2378–2386.

doi: 10.1109/TIP.2011.2109730

Zhang, Q., Wang, Z., Heidari, A. A., Gui, W., Shao, Q., Chen, H., et al. (2021).

Gaussian Barebone Salp Swarm Algorithm with Stochastic Fractal Search for

medical image segmentation: A COVID-19 case study. Comp. Biol. Med.

139:104941. doi: 10.1016/j.compbiomed.2021.104941

Zhang, S., You, Z., and Wu, X. (2019). Plant disease leaf image segmentation

based on superpixel clustering and EM algorithm. Neural Comput. Appl. 31,

1225–1232. doi: 10.1007/s00521-017-3067-8

Frontiers in Plant Science | www.frontiersin.org 19 December 2021 | Volume 12 | Article 78991170

https://doi.org/10.1109/TEVC.2005.857610
https://doi.org/10.1016/j.compbiomed.2021.104609
https://doi.org/10.1016/j.compbiomed.2021.104910
https://doi.org/10.1109/ACCESS.2020.2982443
https://doi.org/10.1016/j.eswa.2018.09.008
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.engappai.2018.03.001
https://doi.org/10.3390/en14061649
https://doi.org/10.3390/en14041196
https://doi.org/10.3390/su13042336
https://doi.org/10.3390/su13063198
https://doi.org/10.3390/math9080871
https://doi.org/10.1016/j.asoc.2017.09.039
https://doi.org/10.1016/j.knosys.2019.01.018
https://doi.org/10.3390/agriculture11050408
https://doi.org/10.1007/s11042-018-5815-x
https://doi.org/10.1155/2018/4231647
https://doi.org/10.1016/j.eswa.2020.113428
https://doi.org/10.3390/su12104023
https://doi.org/10.1007/s11042-020-10035-z
https://doi.org/10.1109/ICECA.2017.8203719
https://doi.org/10.1016/j.compbiomed.2021.104698
https://doi.org/10.1016/j.knosys.2020.106425
https://doi.org/10.2174/1573405614666180322130242
https://doi.org/10.1109/ACCESS.2020.2973763
https://doi.org/10.3389/fninf.2021.667375
https://doi.org/10.1007/978-981-32-9990-0_12
https://doi.org/10.1007/978-3-030-60376-2_10
https://doi.org/10.1016/j.compag.2019.02.005
https://doi.org/10.1016/j.compag.2013.04.014
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.13031/aea.12205
https://doi.org/10.1016/j.compag.2020.105712
https://doi.org/10.1109/WCICA.2018.8630477
https://doi.org/10.3390/su13179898
https://doi.org/10.1109/TIP.2011.2109730
https://doi.org/10.1016/j.compbiomed.2021.104941
https://doi.org/10.1007/s00521-017-3067-8
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. Multi-Threshold Maize Disease Image Segmentation

Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Liang, G., et al. (2020b).

Chaotic random spare ant colony optimization for multi-threshold image

segmentation of 2D Kapur entropy. Knowledge-Based Syst. 2020:106510.

doi: 10.1016/j.knosys.2020.106510

Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Oliva, D., et al. (2020a). Ant

colony optimization with horizontal and vertical crossover search: fundamental

visions for multi-threshold image segmentation. Expert Syst. App. 167:114122.

doi: 10.1016/j.eswa.2020.114122

Zhao, S., Wang, P., Heidari, A. A., Chen, H., Turabieh, H., Mafarja,

M., et al. (2021). Multilevel threshold image segmentation with

diffusion association slime mould algorithm and renyi’s entropy for

chronic obstructive pulmonary disease. Comp. Biol. Med. 2021:104427.

doi: 10.1016/j.compbiomed.2021.104427

Zhou, Y., Yang, X., Ling, Y., and Zhang, J. (2018). Meta-heuristic moth

swarm algorithm for multilevel thresholding image segmentation.

Multimed. Tools Appl. 77, 23699–23727. doi: 10.1007/s11042-018-

5637-x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Chen, Wang, Heidari, Yu and Chen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Plant Science | www.frontiersin.org 20 December 2021 | Volume 12 | Article 78991171

https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1016/j.eswa.2020.114122
https://doi.org/10.1016/j.compbiomed.2021.104427
https://doi.org/10.1007/s11042-018-5637-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


ORIGINAL RESEARCH
published: 24 December 2021
doi: 10.3389/fpls.2021.753603

Frontiers in Plant Science | www.frontiersin.org 1 December 2021 | Volume 12 | Article 753603

Edited by:

Dongjian He,

Northwest A&F University, China

Reviewed by:

Jun Liu,

Weifang University of Science and

Technology, China

Baofeng Su,

Northwest A&F University, China

*Correspondence:

Wensheng Wang

wangwensheng@caas.cn

Leifeng Guo

guoleifeng@caas.cn

Specialty section:

This article was submitted to

Sustainable and Intelligent

Phytoprotection,

a section of the journal

Frontiers in Plant Science

Received: 05 August 2021

Accepted: 23 November 2021

Published: 24 December 2021

Citation:

Qin Z, Wang W, Dammer K-H, Guo L

and Cao Z (2021) Ag-YOLO: A

Real-Time Low-Cost Detector for

Precise Spraying With Case Study of

Palms. Front. Plant Sci. 12:753603.

doi: 10.3389/fpls.2021.753603

Ag-YOLO: A Real-Time Low-Cost
Detector for Precise Spraying With
Case Study of Palms
Zhenwang Qin 1, Wensheng Wang 1*, Karl-Heinz Dammer 2, Leifeng Guo 1* and Zhen Cao 1

1 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China, 2 Leibniz Institute for Agricultural

Engineering and Bioeconomy, Department Engineering for Crop Production, Potsdam, Germany

To date, unmanned aerial vehicles (UAVs), commonly known as drones, have been widely

used in precision agriculture (PA) for crop monitoring and crop spraying, allowing farmers

to increase the efficiency of the farming process, meanwhile reducing environmental

impact. However, to spray pesticides effectively and safely to the trees in small fields

or rugged environments, such as mountain areas, is still an open question. To bridge this

gap, in this study, an onboard computer vision (CV) component for UAVs is developed.

The system is low-cost, flexible, and energy-effective. It consists of two parts, the

hardware part is an Intel Neural Compute Stick 2 (NCS2), and the software part is an

object detection algorithm named the Ag-YOLO. The NCS2 is 18 grams in weight, 1.5

watts in energy consumption, and costs about $66. The proposed model Ag-YOLO is

inspired by You Only Look Once (YOLO), trained and tested with aerial images of areca

plantations, and shows high accuracy (F1 score = 0.9205) and high speed [36.5 frames

per second (fps)] on the target hardware. Compared to YOLOv3-Tiny, Ag-YOLO is 2×

faster while using 12× fewer parameters. Based on this study, crop monitoring and crop

spraying can be synchronized into one process, so that smart and precise spraying can

be performed.

Keywords: object detection, precise spraying, embedded AI, YOLO, NCS2

1. INTRODUCTION

1.1. Motivation and Background
Areca catechu L. is also known as betel palm. It is cultivated mainly in tropical areas as South East
Asia, India, South Pacific, and some African and Caribbean regions (Heatubun et al., 2012). The
seed (areca nut) harvested is chewed in most cases because of the stimulating effect of its alkaloids.
In a word, it is an importantly high-value crop. In the Hainan Island of China, this crop provides
a livelihood to more than 2 million people in rural areas. Unfortunately, this cultivar has been
suffering from the yellow leaf disease (YLD) that may lead to the decay and wilt of the palms. Luo
et al. (2001) employed various methods to prove that the areca YLD in Hainan is an infectious
disease caused by phytoplasma, including electron microscope observation, tetracycline antibiotic
injection diagnosis, Polymerase Chain Reaction (PCR) technology. According to the studies, pests
play a vital role in the spreading of viruses and phytoplasma. Therefore, spraying pesticides on the
palms constantly is an effective way to prevent YLD from spreading.
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With the advent of the Internet of Things (IoT), especially
the rapid evolution of the UAV technology, combined with
image data analytics, PA technologies have been developed, to
increase productivity and at the same time reduce environmental
impact. The PA technology focuses on about 20 relevant
applications (Radoglou-Grammatikis et al., 2020), among which
aerial monitoring and crop spraying are the most common.
Spraying UAVs carry different types of equipment developed
(Xiongkui et al., 2017; Lan and Chen, 2018; Yang et al., 2018)
to spray pesticides to the crops in small fields or rugged
environments, such as mountain areas. However, since an aerial
crop monitoring process has not been synchronized with the
spraying platform, today’s UAVs spray the entire area uniformly
with pesticides. Safe and effective spraying must be performed in
areca protection due to the fact that: 1) In areca plantations, there
is a certain distance from one palm to another; 2) Pesticides can
have several side effects on the biotic and abiotic environment
and bear a risk to harm human health (Horrigan et al., 2002); 3)
Palms are irregular, especially in height, which increases the risk
of UAV crashes.

For this purpose, this study develops an onboard CV
component for spraying UAVs. The system takes RGB data
acquired by the low-cost onboard camera as input, inferences
and then sends instructions to the flightmanagement unit (FMU)
of the UAV in a real-time manner. As a result, pesticides can be
applied on a per-plant basis, with a variable dosage subject to the
severity of plant diseases. To be specific, the key feature of this
system is to perform object detection in real-time.

In object detection tasks, deep learning (DL) methods
significantly outperform other existing approaches due to
their robustness to the diversity of targets. Nevertheless,
the powerful performance of DL often comes with a high
computation complexity and intensive memory demand,
mainly required by the convolutional layers in convolutional
neural network (CNN). For a high-end Graphics Processing
Unit (GPU), this is not a problem. However, UAVs are
tight constraints in computational power, memory size, and
energy consumption. We solve the issue by extending the
computing capacity with embedded hardware, then developing
a new algorithm to fit. Embedded AI computing options
are investigated, including graphics processing units, vision
processing units, and field-programmable gate arrays. Today,
commercial products are on the market, such as NVIDIA
(https://www.nvidia.com/), Intel (https://www.intel.com), and
MYiR (http://www.myir-tech.com/). As listed in Table 1, Intel
NCS2 has both the least weight and power consumption.
Besides, for a battery-powered device, those features are of great
advantage.

1.2. Scope and Contribution
The overall goal of this study is to develop an object detection
algorithm, which can run on NCS2 in real-time. We study the
efficient object detection algorithms optimized for resources-
constraint hardware and propose a novel model, as it is derived
from the famous YOLO (Redmon et al., 2016), and used for
agricultural purposes. Hence, we call it Ag-YOLO. Specifically,

the summary of the contributions presented in this study is
the following:

- We provide a thorough, complete description of the design,
deployment, and assessment of an intelligent real-time
agricultural object detection system based on embedded AI.

- By proposing the Ag-YOLO object detection algorithm and
testing it on the NCS2, we demonstrate that a DL-based
CV algorithm can be implemented on resource-constraint
hardware, to deal with real-life PA challenges. On the most
cost-efficient embedded AI device, the NCS2, our Ag-YOLO
can achieve 36.5 fps with satisfying accuracy. The accuracy
of Ag-YOLO is always higher than YOLOv3-Tiny in different
input dimensions, and the highest accuracy of Ag-YOLO
is 0.7655.

- We demonstrate a whole process to build an efficient object
detector for palms. This method is easy to propagate to other
cash crops such as pitaya, citrus.

- We developed a tool that is used for data training and
transforming PC models to the NCS2 platform.

- We propose the "channel reorganization" block to adapt the
ShuffleNet-v2 (Ma et al., 2018) backbone to NCS2, which
shows the best speed performance.

1.3. Article Structure
The remainder of the study is organized as follows: Section 2
reviews related works on smart UAVs and Embedding AI. The
proposed Ag-YOLO in this study is presented in Section 3. The
experimental results, as well as a comparison to the baseline
categorization and discussion, are presented in Section 4. Finally,
Section 5 provides a summary of the study.

2. RELATED WORK

In this section, we review vision-based smart UAV applications.
Furthermore, efficient embedded object detection algorithms
are then discussed. Finally, works based on improved YOLO
are presented.

2.1. Vision-Based Smart UAV Applications
In recent studies of UAVs, Intel NCS2 (https://www.intel.
com/content/www/us/en/developer/tools/neural-compute-
stick/overview.html), NVIDIA Jetson Nano (https://developer.
nvidia.com/embedded/jetson-nano), NVIDIA Jetson TX2
(https://developer.nvidia.com/embedded/jetson-tx2) are used as
companion computers in vision-based smart UAV applications
to process aerial imagery. Then the output result is used to
control the UAV’s FMU. Dobrea and Dobrea (2020) places
two embedded companion computers, a Raspberry Pi (RPi)
and a Jetson Nano, on a HoverGames quadcopter to follow a
pre-programmed flight route and simultaneously detect humans
as well as of warning the system operator to reinforce the
quarantine zones for epidemic prevention purposes. In the field
of early fire detection and alarm, Nguyen et al. (2021) implements
a real-time fire detection solution for vast area surveillance using
the UAV with an integrated visual detection and alarm system.
The system includes a low-cost camera, a lightweight companion
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TABLE 1 | Main specifications of the candidate platforms in this study.

Intel NCS2 nVidia Jetson Nano MYiR ZU3EG

Features size 73 × 36 mm 70 × 45 mm 100 × 70 mm

HW accelerator Myriad X VPU 128-core nVidia Maxcell GPU Xilinx ultraScale

CPU N./A. Arm A57 MPSoC XCZU3EG (4-core Arm A53)

Peak performance 150 GFLOPs 472 GFLOPs 1.2 TFLOPs

Data precision FP16 FP16/FP32 FP32

Nominal power 1.5 W 10 W 10 W

Weight 18 g* 140 g 150 g

*Weight of NCS2 is not including the outer shell.

computer, a flight controller, and localization-and-telemetry
modules. A Jetson Nano is used to support real-time detection,
achieving a speed of 26 fps. In Afifi et al. (2019), the authors
built a robust, real-time pedestrian detection system on Jetson
TX2 for monitoring pedestrians by a UAV. Barisic et al. (2019)
built a vision-based system for real-time detection and following
of UAVs. The system achieves a real-time performance of 20
fps. Earlier, in Rabah et al. (2018), a small CPU RPi is used. In
Alsalam et al. (2017), the authors developed an autonomous UAV
using an Odroid U3+ and ROS to fulfill vision-based onboard
decision making for remote sensing (RS) and PA.

2.2. Efficient Object Detection Algorithms
To detect objects in real-time with an embedded device,
an efficient algorithm is required. DL-based object detection
technology, which has rapidly developed since the mid-2000s,
has overcome the limitations of the performance of other existing
technologies, and their capabilities are similar to those of humans
or sometimes exceed human abilities.

Among all the DL-based object detection frameworks, the
YOLO-series (Redmon et al., 2016; Redmon and Farhadi,
2017; Farhadi and Redmon, 2018; Bochkovskiy et al.,
2020) are widely used in various applications based on
object detection in recent years due to their outstanding
performance in terms of latency. In addition, the YOLO
series algorithms also provide a trade-off between speed
and accuracy, which allows researchers to apply them in
different scenarios.

Although YOLOv4 (Bochkovskiy et al., 2020) has been
released recently, YOLOv4 does not make any revolutionary
improvement in architecture aspect to its forefather. YOLOv3
is still one of the most widely used detectors in the industry
due to the limited computation resources and the insufficient
software support in various practical applications. Hence, we
choose YOLOv3 (Farhadi and Redmon, 2018) as our starting
point and adopt some “Bag of freebies” strategies from YOLOv4.
Specifically, the model we choose is the “lighter” version of
YOLOv3, called Tiny-YOLOv3, which was designed with speed
in mind and is generally reported as one of the better performing
models in the aspect of speed and accuracy trade-off.

A YOLO-family detector is composed of backbone, neck, and
head. The backbone is responsible for feature extraction, the neck
synthesizes the features from backbone, and the head classifies

the objects and labels the bounding boxes. As for the backbone
part, there have been rising interests in improving it to achieve
better speed in embedded devices, such as Howard et al. (2017),
Ma et al. (2018), Wang et al. (2018), and Zhang et al. (2018). We
investigate the effect by replacing them in YOLOv3-Tiny in the
next section.

2.3. Improved Work Based on YOLO
Huang et al. (2018) proposed YOLO-Lite for bringing object
detection to non-GPU computers. YOLO-Lite achieved 21 fps on
a non-GPU computer and 10 fps after being implemented onto a
website with only 7 layers and 482 million FLOPS. This speed
is 3.8× faster than SSD Mobilenetv1, the fastest state-of-the-
art model at that time. However, performances on embedding
systems were not investigated.

Kim et al. (2020) investigated the performance degradation
of spiking neural networks (SNNs) and presented the first
spiked-based object detection model, called Spiking-YOLO.
Spiking-YOLO achieves remarkable results that are comparable
(up to 98%) to those of Tiny-YOLO on non-trivial datasets,
PASCAL VOC, and MS COCO. Furthermore, Spiking-YOLO
on a neuromorphic chip consumes approximately 280 times less
energy than Tiny-YOLO and converges 2.3–4 times faster than
previous SNN conversion methods.

Wong et al. (2019) introduced YOLO Nano, a highly compact
deep CNN for embedded object detection designed using a
human-machine collaborative design strategy, running on a
Jetson AGXXavier embeddedmodule at different power budgets.
At 15 and 30 W power budgets, YOLO Nano achieved inference
speeds of ∼ 26.9 and ∼ 48.2 fps, respectively. The model size
of YOLO Nano was 4.0 MB, which is 15.1× smaller than Tiny
YOLOv2 and 8.3× smaller than Tiny YOLOv3. Despite being
much smaller in model size, it achieved an mAP of 69.1% on
the VOC 2007 test dataset, which is ∼ 12 and ∼ 10.7% higher
than that of Tiny YOLOv2 and Tiny YOLOv3, respectively.
Jetson AGX Xavier is a high-end embedded device, which is not
considered in this study.

xYOLO is proposed in Barry et al. (2019) to detect balls and
goal posts at ∼ 10 fps, on a piece of low-end hardware, the RPi
3 B, in a RoboCup Humanoid Soccer competition, compared to
Tiny-YOLO which achieved 0.14 fps.

Hurtik et al. (2020) presented Poly-YOLO, which improves
YOLOv3 in three aspects. It is more precise, faster, and able

Frontiers in Plant Science | www.frontiersin.org 3 December 2021 | Volume 12 | Article 75360374

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Qin et al. Ag-YOLO

to realize instance segmentation. Poly-YOLO has only 60% of
parameters of the YOLOv3 but improves the accuracy by a
relative 40%.

In Pham et al. (2020), Minh-Tan Pham et. al, designed
YOLO-fine which is based on the state-of-the-art YOLOv3
with the main purpose of increasing the detection accuracy
for small objects while being light and fast to enable real-time
prediction within further operational contexts, providing the best
compromise between detection accuracy (highest mAP), network
size (smallest weight size), and prediction time (able to perform
real-time prediction). No latency data are provided in this study.

3. MATERIALS AND METHODS

To the best of our knowledge, there is no public datasets for palms
available, so we build one for this study.

3.1. Dataset
Four experimental sites in Sanya (18◦15′10”N 109◦30′42” E)1

were selected to collect aerial images. In the experimental
sites, areca palms of different ages were grown (from 2 years
old to more than 20 years old). In addition, their spatial
distance from palm to palm varies too. Some plantations were
also heterogeneous in terms of the individual trunk volume.
Therefore, a high object variation was guaranteed. Sanya is a
city on the Hainan Island of China. The images were collected
by using a DJI Phantom 4,2 of which the camera resolution was
5,472 × 3,078, and the aperture was F 1/2.8. This UAV hovered
above the palms at a height ranging from 2 to 10 m to take photos
so that images could be in different scales. The angle of view
of the camera was between 45 and 90◦. An example image is
shown in Figure 1 (For better illustration, this image was taken
from a much higher altitude for readers who have no idea of
what an areca plantation is like). More than 1,000 aerial images
were taken at different times on August 2, August 3, October 5,
and November 4, 2018. The collecting time ranges from early
morning, midday to sunset to get different sunlight conditions.
Among them, 400 images were picked and then resized to a
smaller dimension (themaximum length was set to 1,500 to speed
up the processing time), which were labeled with an open-source
software named labelImg.3 After that, 300 images were randomly
selected and saved into the “Training” dataset and the rest 100
images were saved into the “Testing” dataset.

It is worth noting, there are two reasons we did not use all
1,000 images. First, it took a lot of manually repetitive labor
to label images; Second, with “Data Augmentation” and “Hard
Negative Mining” technologies, for a small model which only
detects objects of one class, 400 images are enough.

During training, we used the “Data Augmentation” method
to expand the training dataset. A labeled image was cropped
randomly and resized to the dimension of the network (e.g., 416
× 416). Then, it was transformed into the HSV (Hue, Saturation,
and Value) color space, so that any of the H, S, and V values could

1https://en.wikipedia.org/wiki/Sanya
2https://www.dji.com/cn/phantom-4-rtk?site=brandsite&from=nav
3https://github.com/tzutalin/labelImg or https://pypi.org/project/labelImg/

FIGURE 1 | Areca palm plantation at the experimental site labeled with red

quadrates. The blue semitransparent box covers a coconut palm (part of

the background).

be adjusted randomly for the simulation of illumination changes,
or color changes. For example, reducing the H value by 1 or 2 to
simulate a little less illumination intensity. After that, the image
was transformed back to RGB (Red, Greed, and Blue) color space.
This was implemented by using the tool RQNet, and the default
parameter values for “Data Augmentation” are used.

3.2. Data Training
All frameworks were trained on an end-to-end basis in a single
T1060 GPU optimized by Adam (Kingma and Ba, 2014) at the
initial learning rate of 0.001. Each mini-batch has 10 images.
Therefore, one epoch includes 15 mini-batches. This study
resized the input dimension to (352, 352), (384, 384), (416, 416),
(448, 448), (480, 480), (512, 512), (544, 544), and (576, 576) for
every epoch randomly.

For every model, the parameters were initialized by the Xavier
method. After using strong data augmentation, we found that
ImageNet pre-training is no more beneficial, we, thus, train all
the following models from scratch. By adopting Leaky ReLU as
an activation function and using Gaussian distribution initialized
parameter, all the models were easily converged in hundreds
of thousands of iterations, taking 2 ∼ 4 days on an ASUS
TUF Gaming FX86FM laptop. The value of Gaussian parameters
µ = 0, σ = (16n)−0.5 where n refers to the number of
weight elements.

3.2.1. L2-Norm Regularization and NCS2 Deployment
Regularization has been introduced into DL for a long time,
which brings in additional information for the prevention
of over-fitting. The L2-norm regularization can be expressed
as follows:

L =
∑

(x,y)

l(f (x,W), y)+ λ
∑

w

w2 (1)

where λ refers to the super parameter, and in YOLO articles, it is
referred to as “decay” or “weight decay,” and set to 0.0005. The
x and y denote the coordinate value of the feature map, and w
denotes the parameters of the model.
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FIGURE 2 | Network training and deployment on Neural Compute Stick 2 (NCS2).

In this study, the model was trained on a PC, and tested and
used on NCS2, as described in Figure 2. The well-trained model
on a PC is composed of a large number of parameters in FP32
format. They need to be parsed and converted to FP16 format
and organized in a form that the NCS2 driver can understand.

Two pieces of C++ tools have been developed for data
training and model testing on NCS2, the RQNet, and the
OpenVINOMyriad (refer to https://github.com/rossqin/). The
RQNet was used for data training and model evaluation under
the Windows operating system, which was also used to convert
models used by the OpenVINOMyriad to run on NCS2. During
the training phase, the CUDA 11.1 and cuDNN 8.0 libraries
were used, and all the parameters were in standard 32-bit float
point values (FP32). However, NCS2 only supports 16-bit “half
precision” float point values (FP16), which can express values
within the range±65,504 with the minimum value above 1 being
1 + 1/1024. To minimize the accuracy loss while the parameters
are being quantified from FP32 to FP16, the parameters should
be small enough. However, in the case that λ starts with a small
value, a model with a bunch of huge value parameters beyond
FP16 might be obtained, especially in the first layer. To avoid this
case, λ was set to 0.01 during the first 100 k iterations and then
set to 0.001.

3.2.2. Loss
A YOLOv3 (Farhadi and Redmon, 2018) object detector predicts
bounding boxes using dimension clusters as prior boxes. For each
bounding box, there are 4 corresponding predicted values, i.e.,
tx, ty, tw, and th. When the center of the object is in the cell
offset from the top left corner of the image by (cx, cy), and the
prior box has the dimension o (pw, ph), then the prediction values
correspond to

bx = σ (tx)+ cx (2a)

by = σ (ty)+ cy (2b)

bw = pw · etw (2c)

bh = ph · e
th (2d)

As in Figure 3:
For YOLOv3, a prediction loss comprises 3 parts, i.e., the

object loss Lobj, the classification loss: Lcls, and the coordinate

FIGURE 3 | Bounding boxes with dimension priors and location prediction

for YOLOv3.

loss Lbox.

Loss = Lobj + Lcls + Lbox (3)

Where

Lobj = λnoobj

S2
∑

i

B
∑

j

1
noobj
i,j (ci − ĉi)

2 + λobj

S2
∑

i

B
∑

j

1
obj
i,j (ci − ĉi)

2

(4a)

Lcls = λcls

S2
∑

i

B
∑

j

1
obj
i,j

∑

c∈classes

pi(c)log
(

p̂i(c)
)

(4b)

Lbox = λbox

S2
∑

i

B
∑

j

1
obj
i,j

(

2− wi × hi
)

(4c)

×
[

(xi − x̂i)
2 + (yi − ŷi)

2 + (wi − ŵi)
2 + (hi − ĥi)

2
]

(4d)

where S denotes the size of the feature map to be predicted, B

represents the prior boxes count, 1
obj
i,j refers to the fact that the i-

th cell and the j-th prior box are responsible for one ground truth,

and 1
noobj
i,j refers to the opposite.

In this study, only palms need to be detected, therefore, it is
always assumed that Lcls = 0. Moreover, Focal Loss (Lin et al.,
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2017) is used in Lobj to increase the recall rate R and suppress the
erroneous recall rate FP :

Lobj = −λobj

S2
∑

i

B
∑

j

1
obj
i,j α (1− ci)

γ log(ci) (5)

where the parameters of α and γ were set to 0.5 and 0.2,
respectively. Focal Loss accelerates convergence during the
training process because it gives much higher penalty weights
to poor predictions. If a prediction value is close to the ground
truth value, then it’s much less important to keep minimizing the
gap. As a result, the training process can pay more attention to
poor predictions.

In terms of Lbox, CIOU Loss proposed in Zheng et al. (2020) is
used just as Bochkovskiy et al. (2020) do, express as follows,

Lbox = λbox

S2
∑

i

B
∑

j

1
obj
i,j

(

1− IoUi +
(xi − x̂i)

2 + (yi − ŷi)
2

c2i
+

v2i
(1− IoUi)+ vi

)

(6)

Where c2i is the area of the minimum box containing the
prediction box and ground truth box.

vi =
4

π

(

arctan
ŵi

ĥi
− arctan

wi

hi

)

(7)

The values of λobj and λbox are set to 1 and 0.2, respectively,
but when the model is hard to converge, λbox can be adjusted
according to the condition.

3.2.3. Network Slimming
Studies demonstrated that accuracy can be improved by
increasing the layers (deeper layers) (Simonyan and Zisserman,
2014) or the channels in layers (wider layers) (Howard et al.,
2017). In this study, an initial network architecture wider and
deeper enough was used, and the network was made to learn
its structural sparsity. Besides, network slimming was used as
well, which was introduced in the previous section. The slimming
was performed on a well-trained network when the importance
of the γ parameters in the BN layers was further learned. In
addition, no regularization was imposed on the parameters in the
convolutional layers, and the model was re-trained after pruning.

The training scheme in network slimming was similar to
that of normal training, specifically, λ (the weight_decay value)
started from 0.01 and then 0.001 after 100 k iterations.

3.2.4. Background Training
As shown in Figure 1, in most areca plantations, the contrast
between foreground and background was not very obvious.
Almost all the images were green with the variation from light
to dark green, except for some yellowish-brown spots which were
the YLD diseased palm individuals.

All the palms in the dataset were labeled, and to increase
the accuracy, the predictor was trained so that the background
will not be predicted as objects. Those prior boxes not
overlapped with any of the ground truths were defined
as “background boxes.” During the training phase, in the
case that a background box was predicted as an object, in
another word, the confidence value was larger than the
threshold value (e.g., 0.5), the predictor was punished.
This extra work strengthened the predictor’s ability to
distinguish objects from the background, and decreased
false-positive predictions.

3.3. Prior Boxes
Some studies involved the in-depth investigation of prior box
selection in the YOLO model. It is empirically believed that
some losses of accuracy were originated from the unequal
distribution of the ground truth by anchors, in another word,
one specific prior box in a cell response predicted more than
the ground truth, so that during the training process, there
is no way to learn all the ground truth. One solution to this
problem is to avoid this conflict. For example, to use better
designed prior boxes array or a bigger prior box collection. It
is unnecessary to use more predictors for a light model (e.g.,
in Mazzia et al., 2020) if the backbone network has enough
representational power, which is because that more predictors
bring more computation complexity. In the study, the k-means
was used to pick prior boxes for our model over the dataset,
for example, in YOLOv3-Tiny, at first, k = 6 was set to get
a box array of (23,23), (35,36), (48,49), (64,66), (90,91), and
(147,157), which was referred to as "def-anchors" in the later
section, with all the images normalized to (416,416). Since the
smallest box is bigger than a high-resolution cell grid (16,16)
in both width and height, another box array of (10,14), (27,23),
(37,58), (75,64), (93,104), and (187,163) was used, which was
referred to as “cust-anchors” to see what happens if there is
one smaller prior box than the smaller cell grid. This study
also used k = 8 to get another box array of (19,19), (27,29),
(37,36), (43,48), (58,57), (71,75), (99,101), (158,169), referred to
as “8-anchors.”

3.4. The Structure of YOLOv3-Tiny and
Some Related Components
The basic YOLOv3-Tiny architecture is shown in Figure 4. As
the one-stage object detector, it comprises a backbone network,
one or more prediction heads, and corresponding necks. The
backbone network of YOLOv3-Tiny is named Darknet18, which
is framed by a red box. The YOLOv3-Tiny has 2 prediction heads
in different scales and corresponding necks, which synthesizes
and organizes high-level features of the input images.

The YOLOv3-Tiny uses an intuitive neck structure, which
takes quite a lot of computation overhead. The ResBlock
component proposed in PeleeNet (Wang et al., 2018), as in
Figure 5, was used to compare with the original neck.

Some efficient backbone networks were evaluated, and
it was found that the backbone networks proposed by
MobileNet v2 and those proposed by ShuffleNet v2 showed time
performance. In this study, they were also adapted for better
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FIGURE 4 | The YOLOv3-Tiny framework, s: stride, c: channel.

FIGURE 5 | The ResBlock in PeeleNet.

performance. Figure 6 shows a compact version of MobileNet
v2’s backbone, and the bottleneck module is as defined in the
original study.

FIGURE 6 | The compact MobileNet v2 backbone.

ShuffleNet v2 building blocks were used to build our backbone
except for some small modifications. There were two reasons, the
first is that theChannel Shuffle operation (as shown in Figure 7A)
was not supported by the NCS2 hardware, therefore, Channel
Reorganization was used to achieve the same or similar effect,
(as shown in Figure 7B); Second, in this study, we found that
in MobileNet v2 (as shown in Figures 8A,C), an activation layer
followed a 3× 3 depth-wise convolutional layer instead of a 1× 1
one, and it showed higher accuracy (as shown in Figures 8B,D).
This study compared the three cases as follows, 1) A 3× 3 depth-
wise convolutional layer followed by an activation layer without
activation layer for the 1× 1 convolutional layer; 2) No activation
layer for 3 × 3 depth-wise convolutional layers, and a 1 × 1
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FIGURE 7 | (A) The standard channel shuffle operation in ShuffleNet;

(B) channel reorganization operation in our study.

convolutional layer is followed by an activation layer; 3) Both
convolutional layers are followed by activation layers, with the
details described in Section 4.

Figure 9 shows our backbone architecture.

3.5. Evaluation Metrics
The inference time on NCS2, Parameters Size (of the model),
Billion FLoatingOperations (BFLOPs), F1 score, and Intersection
of Union (IoU) were applied to evaluate the detection
performance. Inference time denotes the duration of detecting
objects from one image which is a speed metric, BFLOPs which
is a computational complexity metric, F1 score combines the
performance evaluation of the recall and the precision of the
detection, therefore, it is widely applied as the evaluation index
in many previous studies of object detection when there is only
one object category. The expression of the precision, recall, and
F1 is expressed as follow:

P =
TP

TP + FP
(8a)

R =
TP

TP + FN
(8b)

F1 =
2× P × R

P + R
(8c)

where P denotes the precision, R refers to the recall, TP
represents the true positives, FP is the false positives, and FN
denotes the false negatives. The definition of IoU is shown
in Figure 10, which measures the intersection area of the
predicted object boundary box and the ground truth, thereby
evaluating the location accuracy of the predicted boundary box
of the prediction.

4. RESULTS

In this section, a performance comparison was made among
the vanilla YOLOv3-Tiny, the YOLOv3-Tiny with training

FIGURE 8 | Building Blocks of ShuffleNet v2 and this study. (A) the basic

ShuffleNet v2 unit; (B) the ShuffleNet v2 unit for spatial down sampling (2×);

(C) our basic unit; (D) our unit for spatial down sampling (2×).

improvement skills, the algorithm comprised of the Darknet18
backbone and the ResBlock neck, the algorithm comprised of
efficient backbone and the ResBlock neck.
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Based on the resulted data, we obtained Ag-YOLO.

4.1. Improving YOLOv3-Tiny Without
Change to Structure
The Darknet18 backbone is very simple, which can be deemed
as the simplest structure according to the principle proposed
by VGG16. It is also a very good structure to inspect the
performance data for NCS2. In this section, the impact of
different prior boxes and background training was investigated.

Table 2 shows the accuracy incremental improvement
obtained by background training and prior boxes selection.

FIGURE 9 | The ShuffleNet v2 backbone. Each line describes a sequence of

one or more identical (modulo stride) layers, repeating for n times. All layers in

the same sequence have the same number c of output channels. The first

layer of each sequence has a stride s and all others use stride 1. All spatial

convolutions use 3 × 3 kernels.

FIGURE 10 | Definition of Intersection of Union (IoU).

By training background and using more prior boxes, the
accuracy was improved with a very small computational
overhead, which was not reflected in the inference time on NCS2.
The reason is that the hand-selected prior boxes failed to bring
notable accuracy changes due to the fact that there were not
enough small objects in the trained or tested images. What has to
be pointed out is that the "Inference Time on NCS2" refers to the
net computation time spent on the device, excluding the image
decoding and data transfer.

4.2. Using the ResBlock Neck
The ResBlock component is proposed in PeleeNet (Wang et al.,
2018). As shown in Figure 5.

Table 3 shows the performance improvement brought by the
ResBlock neck. In this comparison, 8 prior boxes are used in
predictors (4 by each).

The F1 score in both IoU0.5 and IoU0.75 markedly improved
at a cost of a slight drop in average IoU, which was acceptable.
Moreover, the parameters were reduced from 8.668 million to
6.848 million, and BFLOPs were reduced from 5.449 to 4.109
billion, leading to an inference time shrink of more than 10 ms,
i.e., about 27% of the original value.

4.3. Network Slimming
In the darknet source code,4 L2-norm regularization was
imposed on the weights with λ = 0.0005. This value was too
small, which leads to big parameters beyond FP16. Starting from
λ = 0.01, this study found that in some channels, all the
parameters tended to be zero, therefore, those channels were
removed to reduce computation. However, by imposing L1-norm
regularization on the γ parameters in batch normalization layers,
a better result was achieved. This study pruned all the channels
with |γ | < 0.5, and the pruned results were shown in Table 4.

Network slimming failed to bring notable performance
improvement in terms of inference time, on the contrary, it
induced a little degradation to IoU and F1 scores in this
experiment. However, in some architectures, it generated a
smaller model.

4.4. Using Efficient Backbones
4.4.1. SqueezeNet
Table 5 shows the performance variation while Darknet18
was replaced by SqueezeNet. SqueezeNet achieved better

4https://pjreddie.com/darknet/

TABLE 2 | Accuracy incremental improvement.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

Default-anchors-bg 0.8202 0.9250 0.7503 8.634 M 5.436 37.75 ms

Custom-anchors-bg 0.8170 0.9278 0.7422 8.634 M 5.436 37.75 ms

8-anchors-bg 0.8266 0.9300 0.7685 8.668 M 5.449 37.75 ms

Bold values indicate the best performance.
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TABLE 3 | Accuracy improvement by ResBlock.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

YOLOv3-Tiny built-in 0.8266 0.9300 0.7685 8.668 M 5.449 37.75 ms

ResBlock 0.8247 0.9432 0.7777 6.848 M 4.109 27.42 ms

Bold values indicate the best performance.

TABLE 4 | Performance data by pruning.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

ResBlock 0.8247 0.9432 0.7777 6.848 M 4.109 27.42 ms

Pruned 0.8237 0.9433 0.7625 6.548 M 3.949 27.33 ms

TABLE 5 | Performance data of SqueezeNet.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

SqueezeNet 0.8346 0.9304 0.7860 1.186 M 5.176 56.67 ms

TABLE 6 | Performance data of MobileNet v2.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

MobileNet v2 0.8443 0.9592 0.8240 1.082 M 2.095 65.32 ms

TABLE 7 | Performance data of ShuffleNet v2.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

ShuffleNet v2(1) 0.8349 0.9448 0.7893 813 K 1.033 26.23 ms

ShuffleNet v2(2) 0.8278 0.9513 0.7668 711 K 0.985 25.96 ms

ShuffleNet v2(3) 0.8178 0.9404 0.7394 878 K 1.071 27.60 ms

Bold values indicate the best performance.

performance, e.g., better IoU and fewer parameters. However,
it doubled computation complexity and increased the
inference time.

Table 6 shows its performance. With the bottleneck
microstructure, improvements were made in terms of IoU,
F1 score, and BFLOP. However, the inference time was much
shorter (about 2.5 times that by Darknet18).

Table 7 shows the results. The second one has the best
performance, and for the third one, more non-linearity
leads to worse performance. Combined with a modified
version of ShuffleNet-v2 backbone, a ResBlock neck, and a
YOLOv3 head, a new YOLO framework were proposed. We

temporarily named it Ag-YOLO because it could be used for
agricultural purposes.

4.5. Models Tested on NCS2
All models were converted to OpenVINO-version and tested on
an NCS2 device. The host was a Windows 10 laptop and the
data was transferred via USB3 protocol also supported by the
RPi 4 computer. Due to the data precision loss, performance
degradation occurred for all models. As seen from Table 8,
the Ag-YOLO improved the original YOLOv3-Tiny version
significantly in terms of both speed (about 6 frames more in a
second) and accuracy (about 0.2 increase in F1 score). The model
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TABLE 8 | Models tested on NCS2.

Model
Features

Backbone fps F1 Score IoU
CIoU Loss BG ResBlock Pruned

1 (YOLOv3-Tiny) Darknet18 20.7 0.9160 0.6959

2 X Darknet18 20.7 0.9276 0.7148

3 X X Darknet18 20.7 0.9302 0.7253

4 X X X Darknet18 26.2 0.9223 0.7209

5 X X X X Darknet18 26.3 0.9209 0.7108

6 X X X X PeleeNet 14.6 0.9211 0.7352

7 X X X X Compact MobileNet v2 13.0 0.9364 0.7410

8 (Ag-YOLO) X X X X ShuffleNet v2 derived 26.9 0.9361 0.7395

IoU = 0.5, input dimensions: 416 × 416, confidence threshold = 0.4, and non-maximum-supress threshold = 0.5. Bold value indicates the best performance.

FIGURE 11 | Ag-YOLO vs. YOLOv3-Tiny under different input dimensions.

using a compact MobileNet v2 backbone surpassed our model a
little in terms of F1 score and IoU, however, it takes double times
to run.

When the input dimension was set to 352 × 352, Ag-YOLO
achieved the speed of 36.5 fps with an F1 score of 0.9205 and
IoU of 0.708 on NCS2, while YOLOv3-Tiny achieved similar
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FIGURE 12 | Ag-YOLO run on NCS2 (Input dimension: 416 × 416). Images were taken by a UAV, different colors of the predicted square imply different confidence

values, blue is low, and red is high. (A) R:92%, P:100%, F1:0.9583, IoU:0.7199. (B) R:92.86%, P:96.30%, F1:0.9455, IoU:0.7345.

accuracy at the speed of 18.1 fps with an input dimension of
448×448. Based on these data, Ag-YOLO is two times faster than
YOLOv3-Tiny.

Different input dimensions: Performance of a model is also
affected by the input dimension. As in the training phase, the
input dimensions had been changed to 352 × 352, 384 × 384,
416 × 416, 448 × 448, 480 × 480, 512 × 512, 544 × 544,
576 × 576. Figure 11 shows performance trends of Ag-YOLO
and YOLOv3-Tiny. Figure 12 is an example of the NCS2 output.

5. DISCUSSION

Abdulridha et al. (2019) applied a hyperspectral camera for the
detection of citrus canker disease in citrus plantations. Modica
et al. (2020) used UAV multi-spectral imagery to monitor the
vigor in heterogeneous citrus and olive orchards. Ye et al.
(2020) identified Fusarium wilt in bananas using supervised
classification algorithms with UAV-based multi-spectral imagery.
Those camera systems are characterized by expensiveness,
difficulty in operation, relatively large size, and susceptibility to
crash situations compared with RGB cameras.

The developed software, presented in this study, is
specially adapted for use in embedded RGB-camera systems.
With the increasing availability of UAVs that can spray
pesticides, the algorithm can contribute to performing
selective spraying. Therefore, the pesticides could be
saved, thereby reducing the environmental impact and
the economical costs of the farmer. In particular, cheap
technology is necessary for the wide use of target-orientated
selective spraying. Additionally, a cheap RGB-camera-
controlled UAV spraying should also be affordable for
small farmers.

The source code of this study is available at https://github.
com/rossqin/RQNet, which can be used as a reference for the
beginning researchers to develop their real-life AI applications
instead of pursuing higher performance with new algorithms
and the ever-increasing demand for higher computational power
and memory requirements. In a specific agricultural CV task, for
instance, object detection, the object category is usually one or
few, therefore, it is possible to use a small and efficient DNN-
based model to achieve a good result. This is proved in this study
by exploring the YOLOv3-Tiny architecture and replacing the
neck and backbone with different state-of-art efficient DNNs,
such as SqueezeNet, MobileNet v2, and ShuffleNet v2. This
study also uses network slimming to compress the models to
obtain smaller models. In the meantime, this study trained all
the models on a laptop and tested them on a low-cost hardware
accelerator, i.e, the Intel NCS2. Our architecture, the Ag-YOLO,
is comprised of a ShuffleNet v2-derived backbone, a ResBlock
neck, and a YOLOv3 head, with only 813k parameters and 1.033
billion FLOPs, which is only 9.4 and 19% of the Darknet18
version, respectively. However, it brings better accuracy and
inference time performance on the resource-constraint hardware
NCS2, achieving a speed of 36.5 fps. Because a camera usually
takes video at the frame rate of 24 fps, this is a REAL-TIME
object detector. On the other hand, a compact version of the
MobileNet v2 backbone leads to a better accuracy performance,
although it takes more than twice BFLOPs and inference time.
In a UAV or UGV auto-pilot use case, the host usually moves
quite slow, and there is no need to process each frame from
the onboard camera. For the tasks that emphasize accuracy, the
compact version of the MobileNet v2 backbone presents a better
option for Ag-YOLO. To obtain better accuracy, redundant
information between successive frames can be utilized, as shown
in Bozek et al. (2018).
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6. CONCLUSION

This study decomposes the “YOLOv3-Tiny” into a backbone
network, one or more necks, and corresponding heads. The
backbone network extracts the features from an image, the necks
synthesize the features that backbone network outputs, and the
heads decode the information as required. This work improves
YOLOv3-Tiny by replacing a more efficient backbone and better
neck, in addition, we adopt some “Freebies” and “Back-of-
Specials” such as CIOU Loss and more prior boxes in heads.
Our work demonstrates that, a DNN-based CV algorithm can
be implemented on resource-constraint device to deal with real-
life PA challenge, even with the most costefficient embedded AI
device, e.g., the NCS2. In addition, our Ag-YOLO can achieve
36.5 fps with satisfying accuracy. The accuracy of Ag-YOLO
is always higher than that of YOLOv3-Tiny in different input
dimensions, and the highest accuracy of Ag-YOLO reaches
0.7655. This experiment also demonstrated that a MobileNetv2-
derived backbone showed better representational power, and a
ShuffleNetv2-like backbone runs faster at the cost of a little
accuracy degradation. Besides, both of them are superior in
terms of computation intensity and memory usage. With this
work, including the open-source toolset, it should be very easy
to make their legacy agricultural machinery intelligent by using
an onboard camera and an edge computing device.

7. FUTURE WORK

The proposed model Ag-YOLO has been proved to be competent
in extending a UAV with little overhead, from cost to energy.

The CV will be integrated into a practical spraying UAV

via the Mavlink protocol to deal with the challenges in
areca protection.
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Nitrate nitrogen (NO−3 -N) in the soil is one of the important nutrients for growing crops.
During the period of precipitation or irrigation, an excessive NO−3 -N readily causes its
leaching or runoff from the soil surface to rivers due to inaccurate fertilization and water
management, leading to non-point source pollution. In general, the measurement of the
NO−3 -N relies upon the laboratory-based absorbance, which is often time-consuming,
therefore not suitable for the rapid measurements in the field directly. Ion-selective
electrodes (ISEs) support the possibility of NO−3 -N measurement by measuring the
nitrate (NO−3 ) ions in soil quickly and accurately due to the high water solubility and
mobility of NO−3 ions. However, such a method suffers from a complicated calibration
to remove the influences caused by both temperature and other ions in the measured
solution, thus limiting field use. In this study, a kind of all-solid ISE system combined
with a temperature sensor and a pH electrode is proposed to automatically measure
the concentrations of the NO−3 -N. In this study, a soil water content calibration function
was established, which significantly reduces a relative error (RE) by 13.09%. The
experimental results showed that the stabilization time of this electrode system was less
than 15 s with a slope of −51.63 mV/decade in the linear range of 10−5–10−2.2 mol/L.
Both the limit of detection of 0.5 ppm of the NO−3 -N and a relative SD of less than
3% were obtained together with the recovery rate of 90–110%. Compared with the
UV-Vis spectroscopy method, a correlation coefficient (R2) of 0.9952 was obtained.
The performances of this all-solid ISE system are satisfied for measuring the NO−3 -N in
the field.

Keywords: nitrate nitrogen, all-solid nitrate ion-selective electrodes, water content calibration function, non-point
source pollution, recovery rate
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HIGHLIGHTS

– A cooperative ISEs system is proposed to measure soil
nitrate nitrogen.

– The detection limit, RSD and the recovery rate meet
practical level.

– Guide inaccurate fertilization and irrigation resulting in non-
point source pollution.

– A water content calibration function is applied to improve
the measurement precision.

– This ISEs system is validated with samples from the planting
zones in central China.

INTRODUCTION

Nitrate nitrogen (NO−3 -N) is an important inorganic nutrient
in soil that crops can absorb and use directly (Gebbers and
Adamchuk, 2010). The fundamental criterion for determining
the nitrogen (N) fertilizer utilization rate during crop growth
is confirmed by its concentration in the soil (Burton et al.,
2018; Nyameasem et al., 2020). Increasing N fertilizer dosage
and application is usually one of the essential ways to boost
crop productivity (Van Groenigen et al., 2015; Zhang and Yao,
2017). Both N fertilizer and animal dung contain a significant
amount of NO−3 -N (Pennino et al., 2017). However, an excess of
NO−3 -N is leached from the soil surface and then transported to
rivers, lakes, and groundwater during precipitation or irrigation
(Sadler et al., 2016; Velusamy et al., 2021). Thus, the improper
management of N fertilizer leads to a large amount of NO−3 -N
leaching and causes non-point source pollution (Cui et al., 2020;
Mahmud et al., 2020). NO−3 -N leaching leads to the loss of crop
nutrients (Sun et al., 2020). In contrast, it also damages both
human and animal health, showing colorectal cancer and Non-
Hodgkin lymphoma due to the excessive NO−3 -N concentration
in drinking water (Szpak, 2014; Mary et al., 2018). Therefore, it is
important to normalize the measurement of NO−3 -N in soil (Cho
et al., 2018; Richa et al., 2021). Considering the concentrations of
NO−3 -N in soil is readily influenced by environmental factors and
changes rapidly, it is necessary to perform in situ measurement
to evaluate the non-point source pollution (Wang et al., 2015;
Ma et al., 2019b).

There are many traditional methods used to measure soil
NO−3 -N, but they are not convenient for use in the field. For
example, the UV-Vis spectrophotometry is currently used in
laboratories to quantify NO−3 -N (Burton et al., 2020). Also, the
method is professional in operation, and the related chemical
reagents bring secondary pollution (Rogovska et al., 2018).
Differently, the electrochemical methods exhibit fastness and
effectiveness on measuring the concentrations of NO−3 -N in
the soil, which is expected to achieve the in situ measurement
(Ma et al., 2019a). Adamchuk et al. (2005) created a direct
soil testing system that used ISEs to analyze soil nutrients
and tracked the spatial variability in nutrient distribution,
although the R2 of NO−3 -N is only 0.41–0.51 in comparison with
laboratory testing. Kim et al. (2007) built a sensor array consisting
of N, phosphorus, and potassium-selective electrodes and an

argentic/argentic chloride (Ag/AgCl) electrode as reference for
the detection of NO−3 -N in soil with the R2 value of only 0.89.
Moreover, ISEs have also been applied to construct a soil nutrient
mapping device, which can generally be mounted on agricultural
machinery to map soil conditions over the farm terrain (Sibley
et al., 2008). In further measurement of NO−3 -N, the R2 value
was reached to 0.96 by an improved ISE (Tully and Weil,
2014). Although the abovementioned methods have achieved
great progress on NO−3 -N measurement, there are still many
challenges associated with environmental factors and such cannot
be used in the field. Temperature, salinity, and soil water content
influence should be eliminated to improve precision results.
In this study, an automatic cooperative measurement system
for detecting the NO−3 -N in soil was developed. Specifically,
this system consists of an all-solid-state ISE, a temperature
electrode, and a pH electrode to accurately measure the NO−3 -
N. Moreover, the developed cooperative system is expected to
realize the in situ measurement of soil NO−3 -N and providing
scientific soil fertilization recommendations at the grassroots
level, thus reducing the non-point source pollution. In this
system, a peristaltic pump was utilized to control this system
working automatically through the microcontroller unit. To
lessen the impacts from soil water content, a correction function
was introduced to increase the accuracy of on-site measurements
toward soil NO−3 -N. The signals from the cooperative ISE system
are transferred to an upper computer in real time.

MATERIALS AND METHODS

Study Area and Soil Sampling
Field experiments were carried out in the wheat-maize rotation
zones, including Xuchang City (113◦47′08′′E, 34◦09′35′′N),
Henan Agricultural University, China (Figure 1a), and the rice
growth field in Qianjiang City (112◦39′07′′E, 30◦18′23′′N), Hubei
Province (Figure 1b). In this experiment, the field area of 300 m2

was totally divided into four plots. The different fertilization
modes were arranged in each plot of 50.0 m2 (2.5 m × 20 m).
Each plot has six rows of planted crops and a 1-m ridge erected
between them. Figure 1c depicts the zones for soil sampling,
including (1) control (no fertilization); (2) normal fertilization,
i.e., the compound fertilizer of 50 kg/66.7 m2 (the urea containing
46% N, calcium superphosphate containing 16% phosphorus
pentoxide, and potassium sulfate containing 50% potassium
oxide, at a ratio of 14:6:9), (3) under-fertilization (0.5 times),
and (4) overfertilization (1.5 times). Other field management
practices were identical in each plot. Five soil samples at the
depth of 0–20 cm were collected from each plot by the plum
blossom pattern method. Notably, 21 soil samples were randomly
chosen from two zones, and each soil sample was repeatedly
measured six times.

Cooperative Ion-Selective Electrode
System
All-solid-state ISEs (cooperative ISEs) with small volume and
fast responses were used to determine the ion concentration
(activity) of NO−3 -N from the membrane potentials in the
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FIGURE 1 | Field experiment. The selected experiment place in (a) Xuchang (113◦47′08′′E, 34◦09′35′′N) and (b) Qianjiang (112◦39′07′′E, 30◦18′23′′N). (c) Field
fertilization modes in the experiment place and “×” indicates the soil sampling locations.

solution. The dissolved NO−3 ions diffuse through the polyvinyl
chloride membrane in the ISEs when the electrode was immersed
into the solution to test the NO−3 ions. When the concentrations
on both sides of the membrane reach equilibrium, the membrane
potential difference becomes steady. Then, the logarithm of the
NO−3 concentrations in the external solution is proportional to
measured electrode potential, as Eq. 1,

E = E2
−

2.303RT
nF

log
[
NO−3

]
(1)

Where E is the electrode potential, E2 is standard
apparent electrode potential, including potential difference
of membrane/external solution, membrane/internal solution
potential, and special interface/internal solution, R is a constant
called the universal gas constant (8.314 J K−1 mol−1), T

is the absolute temperature (K), F is the Faraday constant
(96,485 C/mol), and n = 1 is the charge transfer number for the
reduction in NO−3 .

Figure 2 depicts the cooperative ISE system for the
determination of the NO−3 -N concentrations. The measurement
procedure involved: first, placing a soil sample in the
pretreatment unit followed by pressing the software button
on the LCD touch screen or using the APP in a phone to start
the measurement. The soil weight is measured automatically and
stored in the microcontroller unit. The peristaltic pump then
draws both the deionized water and 2% (V/V) ionic strength
adjustment buffer of 2M ammonium sulfate to the sample cell. In
the sample cell, a microcontroller-controlled stepper motor alters
the height of the water content sensor. Stirring of the sample
solution is then achieved via an agitator for 3 min. Thereafter,
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FIGURE 2 | Scheme and profile of the cooperative measurement system: (1) Combination electrode array, (2) Filter, (3) Stirrer, (4) Soil water content sensor, (5)
Stepper motor, (6) Peristaltic pump, (7) Sample cell, (8) Electronic scale, and (9) LCD touch screen.

the peristaltic pump draws the supernatant to the detecting
unit. In the measurement unit, the ISE system consisting of an
NO−3 -N electrode, a pH electrode, and a temperature sensor then
detects the soil NO−3 -N concentrations, pH, and temperature,
respectively. The signal processing circuit transfers the potential
difference generated by the electrode array to the microprocessor,
and then, the concentration of NO−3 -N, which is calculated after
the compensation, has been done with soil water content. The
collected data are then stored in the microcontroller unit and
transmitted to the APP in a phone through the Raspberry Pi’s
Bluetooth interface. Once the measurement is completed, the
peristaltic pump launches again to automatically clean these
electrodes with deionized water.

Ab initio Calculation
The geometries of NO−2 , NO−3 , and SO2−

4 were optimized
at the M06-2X/6-311+G(2d,p) level of theory. The frequency
calculation was performed at the same level of theory to ensure
that the optimized configurations are located at the minimum of
the potential surface. According to the benchmark of Zhao and
Truhlar (2007), the UV-Vis spectrophotometer was calculated at
the M06-2X/6-311+G(2d,p) level of theory with the assistance
of time-dependent density functional theory (Li et al., 2020),
and the solvation model density (Marenich et al., 2009) was
used to represent the water solution situation. All the above ab
initio calculations were performed by ORCA 5.0.1 programmer
(Neese, 2011). The UV-Vis spectrophotometer (Feller Instrument

limited business, Nanjing) was used to check the absorption
peak positions of each interfering ion. The site of the maximum
absorption peak of NO−3 was obviously identified to be at a
wavelength of 203 nm (Figure 3A). Thus, the standard curves
for the UV-Vis spectra method can be obtained (Figure 3B).
To confirm the maximum absorption peak of NO−3 in UV-
Vis absorbance spectra, the ab initio calculation is accurately
performed first. Later, we can manage these experiments to
establish the standard curve at the maximum absorption peak
of NO−3 The value of the maximum absorption peak seriously
influences the correlation coefficient (R2) obtained from both the
ISE system and UV-Vis absorbance spectra.

RESULTS AND DISCUSSION

Water Content Calibration Function
Normally, the soil water contents in the field change from 5
to 20%. The soil with a water content of less than 5% is too
dry for crop growth, and NO−3 -N is easily leached out away
when the water content exceeds 25%. Notably, 35 measured
samples with various water content (2, 5, 10, 15, 20, 25, and
30%) were obtained by adding deionized water into the five dried
soil samples (marked as S1, S2, S3, S4, and S5). The influence of
soil water content on the NO−3 -N concentration measured from
this ISE system is shown in Figure 4. Obviously, the influence
of soil water content on ISE determination results cannot be
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FIGURE 3 | (A) Absorbance of several ions in water from UV-Vis
spectrophotometry. (B) Standard curves were made by UV-Vis
spectrophotometry.

ignored. It was observed that the relative error (RE) of NO−3 -N
grew up to 25% rapidly when the water content increases. Even
if the soil water content is less than 2%, the RE is found to be
greater than 3%. In addition, the RE toward soil water content is
a slight difference, which may be caused by their distinguishing
intrinsic properties.

As a result, it is necessary to provide a calibration function to
remove the impact of inaccuracy caused by soil water content
on concentration measurement uncertainty. The relationship is
expressed as follows:

CW =

[
C
m
×

(
1+

ω

100

)
+

ω

ρω × 100

]
× β (2)

Where CW denotes the calibrated NO−3 -N concentration
(mg/kg), C denotes the volume of extraction solution (ml), m
denotes the weight of the fresh soil sample (g), ω represents
the soil water content (%),ρω represents the density of water
at the room temperature (1.00 g/cm3), and β denotes the
mass fraction of soil NO−3 -N that is calculated from the
measured curve (mg/kg).

FIGURE 4 | Effects of soil water content on detection accuracy.

Table 1 displays the results from 10 soil samples with water
contents ranging from 0 to 30%. The results of the ISE system
were compared with the UV-Vis spectrophotometry. The RE was
fluctuated up to −24.02% before the measurement findings were
calibrated by the calibration function. However, after the water
content function was added, it dropped to −10.93%. The RE was
effectively reduced to 13.09%.

Performance Analysis
To evaluate this cooperative all-solid-state ISE system, the
response time, which is defined as the time interval of electrode
potential reaching 95% of the initial potential, was investigated.
Figure 5A illustrates the change of the response time at the
various logarithm of (NO−3 ). It can be observed that the steady
potentials can be obtained within less than 15 s, which is
comparable with the previous report. Notably, the response time
shortens with increasing the (NO−3 ), implying that the higher
(NO−3 ) accelerates the diffusion from the external solution to the
internal solution driven by concentration difference and makes
the electrode potential steady more quickly. In addition, we
studied the linear response interval of electrode potential toward
the logarithm of (NO−3 ). As shown in Figure 5B, the linear range
of (NO−3 ) can be directly determined as 10−5–10−2.2 mol/L.
Subsequently, we further studied the rationality of the measured
electrode potential in the linear range via linear fitting by the
Nernst equation of Eq. 2, as shown in Figure 5C. The slope
is −51.63 mV/decade which is laid in the rational range of
(−54± 5) mV/decade. The vertical intercept is 156.68 mV, which
is related to E0, pH, and T. Notably, recovery rates were also
analyzed on all standard samples used in the above experiments,
and the results were in an acceptable range of 90–110% (Table 2).

We explored the reliability of the cooperative all-solid-state
ISE system toward UV-Vis spectrophotometer with an R2 of
0.9952, as shown in Figure 5D. The fitted slope is 1.04, indicating
the measured results from our ISE system almost reach to that of
the UV-Vis spectrophotometer. Nevertheless, the fitted vertical
intercept is −15.96 mg/kg, suggesting the existence of hysteresis
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TABLE 1 | NO−3 -N concentrations in soil with different soil water contents.

Sample No. Water content/% NO−

3 -N ISE system/(mg/kg) NO−

3 -N UV-Vis spectrophotometry/(mg/kg) RE/%

Uncalibrated Calibrated Uncalibrated Calibrated

1 0 45.37 45.37 49.35 −8.07 −8.07

2 3.72 50.59 52.85 52.24 −3.16 1.17

3 6.82 29.24 31.63 33.83 −13.59 −6.51

4 8.26 16.45 18.08 19.30 −14.77 −6.32

5 12.88 12.40 14.32 13.55 −8.50 5.64

6 16.62 11.05 13.26 12.82 −13.78 3.42

7 18.67 27.28 33.39 30.86 −11.60 8.20

8 22.91 6.55 7.68 8.62 −24.02 −10.93

9 27.38 30.65 40.72 37.11 −17.39 9.75

10 30.32 40.35 55.03 49.94 −19.21 10.19

FIGURE 5 | Validation analyses of the ion-selective electrode (ISE) system. (A) Response time; (B) Linear range; (C) Response potential; and (D) Correlation
between the results from ISE system and UV-Vis spectrophotometry. The (NO−3 ) used in (A–C) is derived from standard solution. The (NO−3 -N) used in (D) is derived
from the soil sample solution.

effect resulting from the residual (NO−3 ) in each measurement.
Each measurement was repeated six times with both methods,
respectively. The relative SDs (RSDs) were calculated to verify the
precision. From Table 3, the RSD of the cooperative ISE system

is within 3%, higher than 1% of the UV-Vis spectrophotometry.
In comparison with the non-contacting UV-Vis method, the
contacting measurement of the ISE system inevitably causes
liquid junction, wetting, and clean problem, which leads to
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TABLE 2 | Recovery rate of the ion-selective electrode (ISE) system on detecting
NO−3 -N.

Initial sample
concentrationα

mg/kg

Added standard
solution

concentrationγ

mg/kg

Total
concentration
after adding

standard solution
mg/kg

Recovery
rate/(%)

5 3 3.90 93.33%

5 10 7.96 109.20%

25 15 20.59 107.87%

25 50 36.72 96.88%

50 100 76.95 103.90%

100 200 147.64 97.64%

200 400 305.81 102.91%

αThe sample volume is 20 ml.
γThe added standard solution volume is 20 ml.

the fluctuation of measured potentials and increases the RSD.
Thus, such measurement repeatability of our ISE system is
acceptable for use in the field. To further verify whether there
is a significant difference in the precision of both methods, the
F-test was conducted in ANOVA. As shown in Table 4, there
was no statistically significant difference (P < 0.05) between the
all-solid-state ISE system and UV-Vis spectrophotometry. This
proves that the electrode system can achieve comparable and
relatively accurate results that meet the requirements of NO−3 -N
measurement in the field.

Furthermore, compared with other ISE detection methods
previously reported (Table 5), the detection of NO−3 -N using
ISEs had a wider linear range and a relatively low limit of
detection (LOD), the linear range was wider than that of UV-Vis

TABLE 3 | Contrast analysis between the cooperative ISE system and UV-Vis
spectrophotometry.

Sample No. Cooperative ISE system UV-Vis spectrophotometry

NO−

3 -N mg/kg RSD (%) NO−

3 -N mg/kg RSD (%)

1 166.97 2.06 154.32 1.02

2 186.53 1.94 169.16 0.77

3 165.56 2.08 132.72 1.03

4 264.25 1.77 261.20 0.49

5 112.80 1.60 96.50 0.71

6 15.88 3.79 11.19 1.40

7 23.64 3.93 26.53 0.78

8 6.83 3.96 5.84 0.15

9 48.15 2.87 43.10 0.77

10 83.68 2.03 58.39 1.05

11 44.23 2.71 35.76 1.54

12 68.48 2.47 51.78 0.58

13 71.59 2.39 67.77 1.52

14 65.52 2.82 44.52 0.77

15 64.10 2.20 44.10 0.61

16 45.19 2.85 33.13 0.91

17 135.45 1.46 124.86 0.34

18 203.61 2.17 185.53 0.66

19 270.89 1.81 249.71 0.61

20 626.64 0.78 643.20 0.32

21 453.72 1.19 471.55 0.59

Average 2.33 0.79

spectrophotometry detection of NO−3 -N, and the detection speed
was faster. The detection method is simple to operate and does
not require the participation of professionals, which is providing

TABLE 4 | F-test of significance in the regression analysis of the experiment results.

Project Statistic Project Statistic Project Statistic

Regression
equation

y = 1.039x−15.956 Coefficient a test a = 1.039 Intercept b test b = −15.956

SSR 509777.523 v = 1 t-value (a) 62.713 t-value (b) −4.560

SSE 2462.746 v = 19 P-value (a) 0.000 P-value (b) 0.000

F-value 3932.916 S(a) 0.017 S(b) 3.500

P-value 0.000 95% CI 1.004∼1.074 95% CI −23.281∼−8.632

Test result P < 0.05, refuse H0, accept H1, indicating that there is a significant
linear relationship between the two detection methods

P > 0.05, accept H0, indicating that there is no
significant difference between intercept and 0

value

TABLE 5 | Performance comparison on NO−3 -N measurement with different techniques.

Detection methods and principle Measurement ranges Sensitivity/response times Limit of detection (LOD) R2 References

DSMa
− −58.2 mV/decade − 0.41−0.51 Adamchuk et al., 2005

ISE (PVC+Hitachi) 0.11−109.8 mg/L − − 0.89 Kim et al., 2007

SNMSb
− 6 s − 0.93 Sibley et al., 2008

ISE (Horiba B-342) 6.8−68 mg/L − 2 mg/L 0.96 Tully and Weil, 2014

Cooperative ISEs 10−5
−10−2.2 mol/L <15 s 10−5.23 mol/L 0.99 This work

aA method of direct soil measurement (DSM) using ISEs.
bSoil nitrate mapping system.
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rational suggestions for relieving the leaching of NO−3 -N during
fertilization and irrigation.

CONCLUSION

To detect NO−3 -N in the field, an electrode system consisting
of all-solid-state NO−3 ISEs, temperature electrode, and pH
electrode was built. A microprocessor-controlled peristaltic
pump extracted the measured sample solution automatically in
the sample cell. The NO−3 -N concentration measured by the
ISE system was quantitatively calibrated by adding soil water
content calibration formula. The RE is effectively reduced to
13.09%. Four different fertilization treatments were carried out
in experimental fields of crop growing areas in Henan and
Hubei provinces, each area used a plum-shaped cloth point
approach, and the cloth point was measured using the ISE
system. In the measurement range of 10−5–10−2.2 mol/L, the
ISE system has a response time of less than 15 s with a
slope laid in the rational range of (−54 ± 5) mV/decade.
The recovery rate of 90–110% has been confirmed from
the ISE system for soil NO−3 -N. Both the RSDs of 3%
of the soil NO−3 -N were obtained from this ISE system.
Compared to the classical UV-Vis spectrophotometer, an R2

of 0.9952 has been obtained. The linear regression F-test
has been carried out, and there was a significant linear
relationship between the measurement results of the two
detection systems. We believe that this system can be further
optimized and generalized in agriculture, providing rational
suggestions for relieving the leaching of NO−3 -N during
fertilization and irrigation.
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Soybean yield is a highly complex trait determined by multiple factors such as genotype,

environment, and their interactions. The earlier the prediction during the growing season

the better. Accurate soybean yield prediction is important for germplasm innovation

and planting environment factor improvement. But until now, soybean yield has been

determined by weight measurement manually after soybean plant harvest which is

time-consuming, has high cost and low precision. This paper proposed a soybean

yield in-field prediction method based on bean pods and leaves image recognition

using a deep learning algorithm combined with a generalized regression neural network

(GRNN). A faster region-convolutional neural network (Faster R-CNN), feature pyramid

network (FPN), single shot multibox detector (SSD), and You Only Look Once (YOLOv3)

were employed for bean pods recognition in which recognition precision and speed

were 86.2, 89.8, 80.1, 87.4%, and 13 frames per second (FPS), 7 FPS, 24 FPS, and

39 FPS, respectively. Therefore, YOLOv3 was selected considering both recognition

precision and speed. For enhancing detection performance, YOLOv3 was improved by

changing IoU loss function, using the anchor frame clustering algorithm, and utilizing the

partial neural network structure with which recognition precision increased to 90.3%. In

order to improve soybean yield prediction precision, leaves were identified and counted,

moreover, pods were further classified as single, double, treble, four, and five seeds

types by improved YOLOv3 because each type seed weight varies. In addition, soybean

seed number prediction models of each soybean planter were built using PLSR, BP,

and GRNN with the input of different type pod numbers and leaf numbers with which

prediction results were 96.24, 96.97, and 97.5%, respectively. Finally, the soybean yield

of each planter was obtained by accumulating the weight of all soybean pod types

and the average accuracy was up to 97.43%. The results show that it is feasible to
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predict the soybean yield of plants in situ with high precision by fusing the number of

leaves and different type soybean pods recognized by a deep neural network combined

with GRNN which can speed up germplasm innovation and planting environmental

factor optimization.

Keywords: yield prediction, phenotyping, germplasm innovation, soybean, in situ

INTRODUCTION

Soybean is an important source of high quality protein and oil
in the world, which contains about 42% protein, 20% oil, and

33% carbohydrate (Zhang et al., 2001). Soybean protein can
enhance the body’s immune function and play an important

nutritional role in human tissues and cells. Soybean production
for 2020 totaled 4.14 billion bushels, up 16% from 2019

in America due to a higher average soybean yield (Alsajri
et al., 2020). Soybean yield prediction is of great importance

to global food production, which is a highly complex trait

determined by multiple factors such as genotype, environment,
and their interactions. Accurate soybean yield prediction is

important for germplasm innovation and planting environment
factor improvement. Many researchers have tried to clarify the
phenotype (such as yield) as an explicit function of the genotype
(G), environment (E), and their interactions (G×E). In fact, the
selection of individuals with good genotypic effect can further
improve the yield of existing soybean varieties, which is also of
great significance for high-yield soybean breeding. So, the earlier
the prediction during the growing season the better. But until
now, soybean yield has been popularly determined by manual
weight measurement after soybean plant harvest which is time-
consuming, expensive, and imprecise.

In recent years, digital image processing combined with
machine learning technology has been applied for crop yield
prediction in literature. The relationship between grain area and
weight was studied using an image processing method (Zhao
et al., 2019). A citrus fruit crop prediction algorithm based
on color difference of citrus fruit and leaves was studied in
citrus trees (Dorj et al., 2017). A region growing algorithm
was proposed to segment cotton bolls into color images and
count them and predict yield (Sun et al., 2019). Algorithms
that rely on feature extraction (SVM, NN, RF) and algorithms
that do not need feature extraction (GoogLeNet, VGG-16) were
compared. The study found that the VGG-16 algorithm could
effectively distinguish corn and soybean (Flores et al., 2020). In
addition, a multi-rotor UAV system was developed to obtain
high-resolution images and information related to geographical
location, shooting angle, and environmental illumination, so as
to carry out effective agricultural detection (Zhu et al., 2019).

More recently, deep neural networks have been employed
in crop yield prediction, including the convolutional neural
network (CNN), faster region-convolutional neural network
(Faster R-CNN), single shot multibox detector (SSD), and You
Only Look Once (YOLO), etc. The features of hyperspectral and
color images was used to classify corn and estimate corn yield by
CNN (Yang et al., 2021). Faster R-CNN has been modified for

detection and yield estimation of fruits (mangoes, pomegranates,
tomatoes, apples, and oranges) (Behera et al., 2021), which has
also been used in prediction of melon yield (Zhao et al., 2017).
Comparation of Faster R-CNN and SSD in citrus counting
and yield prediction has been carried out (Qin et al., 2021). A
convolutional neural network combined with linear regression
was used in sorghum spike identification and weight prediction
(Zannou and Houndji, 2019). Lightweight YOLO was applied to
predict the yield of oil palm fruit based on images collected by
UAV (Junos et al., 2021). The traditional rectangular bounding
box in YOLOv3 was replaced as a circular rectangular box
for better positioning of tomatoes (Liu et al., 2020). A deep
neural network was designed to study the influence of genotype,
environment, and their interaction on yield prediction (Khaki
and Wang, 2019). There are also studies using satellite images to
predict small yield using machine learning methods such as the
Gaussian process regression algorithm (Sharifi, 2021).

Existing deep learning detection targets such as strawberries
(Yu et al., 2019), tomatoes (Hu et al., 2019), apple (Tian et al.,
2019), pepper (Hespeler et al., 2021), etc. are obviously different
from the background leaves and branches of plants, which
brings convenience for fruit identification due to remarkable
color difference. Although the color of cucumbers (Mao et al.,
2020) and corn (Jin et al., 2018) ears are similar to the
leaves and vines, they have large size, small number, and low
density, which also reduces the difficulty of identification. In
the yield prediction of wheat (Yang et al., 2019) and rice
(Crisóstomo de Castro Filho et al., 2020), the dense clustering
of wheat and rice grains increases the difficulty of detection,
but fortunately, the leaves shield the ears of wheat and rice
slightly. A mature soybean phenotype measurement algorithm
called soybean phenotype measure-instance segmentation was
proposed to calculate pod length, pod width, stem length, seed
length, and seed width based on PCA combined with CNN (Li
et al., 2021). For soybean yield detection, leaves and pods have
similar color, pods are blocked by numerous leaves, moreover
the pods are clustered together, which creates a huge challenge
for soybean yield forecast. Moreover, the types of pods must also
be identified at the same time to predict soybean production
accurately because the number of grains in different types of pods
are different.

Deep neural networks, unlike early shallow neural networks
with a single hidden layer, have multiple hidden layers which
can effectively reveal the underlying unknown and highly non-
linear relationship between the input data and output variables
(LeCun et al., 2015), which have been widely employed in
face recognition, automatic driving, etc., but they also require
more hardware and time consumption. Generally, more neural
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network layers and nodes means the network is more powerful
and paradoxically needs more time and hardware to run.

After comparing several mainstream deep neural networks,
the YOLOv3 algorithm was chosen to recognize soybean pods
and leaves in this paper. Moreover, in order to further improve
the detection performance of the neural network, structure
improvements were made to YOLOv3 to achieve accurate
recognition of large leaves and small pods simultaneously. In
addition, a generalized regression neural network (GRNN)model
was established for prediction of seed number in a soybean
plant by using the cumulative results of leaves and different type
pods of four images taken at 90-degree intervals from different
directions. Finally, soybean plant production was calculated
based on the average grain weights of different type pods, which
provided a new method and solution for soybean phenotype
detection and germplasm innovation acceleration.

The remainder of this paper is organized as follows. Section
Materials and Methods describes the materials and data used in
this research and offers a detailed description of our improved
deep neural network for soybean pods and leaves prediction, and
yield modeling as well. Section Results and Discussion presents
the results of our algorithm and models. Finally, the conclusion
is given in section Conclusion.

MATERIALS AND METHODS

In this paper, the soybean yield prediction method included
three steps as shown in Figure 1. First, the original imaging
data of soybean plants collected were preprocessed by filtering
and enhancement. Then the improved YOLOv3 model was used
to identify and count leaves and different type soybean pods
including one bean pods, two bean pods, three bean pods, four
bean pods, and five bean pods. Finally, a GRNN model for
predicting soybean yield was established based on the numbers
of leaves and all categories of pods as inputs.

Materials and Image Sampling
In this study, soybean plants were grown in pots in Wanjiang
Experimental Station of Nanjing Agricultural University
where the latitude and longitude are 118.62◦E and 31.54◦N,

respectively. Each pot had four soybean plants which were
evenly distributed in the pot. There were 90 pots, 360 plants,
and 24 varieties in total (Xudou-18, Heidou-2, Erzaohuang,
Qiyuehuang-1, Bayuehuang-4, Qingyuanxiaoqingdou,
Fengdudahuangdou, Enwangheidou, Kaijiangdongdou,
Huazhouhuangdou, Ganyulianmaoshao, Liyangmaojiajia,
Andingxiaoheidou, Nannong1606, P06, P12, P23, P25, P53,
P59, P65, GS171761, GS71244, GS71411) used for the study.
All potted soybean plants were at the pod-setting stage during
image sampling.

A camera (model: Intel RealSense D435 manufactured by
Intel) was employed to capture soybean plant images at three
different time periods (6:00–7:00, 13:00–14:00, 17:00–18:00) in
order to realize the completeness of images in different light
intensity environments. The camera was 1.2m above the ground
and 1.5m horizontally from the target while image capturing.
Each pot of soybean plants was photographed in four different
directions at intervals of 90 degrees, so a total of 360 images
were collected.

Data processing was performed on a computer with a Win10
operating system, Intel(R) Core(TM) i7-8750H processor, 8GB
memory, and a NVIDIA GeForce GTX 1050 Ti display adapter.
The open source deep learning framework Tensorflow2.0 was
used to establish models.

Soybean Pods and Leaves Recognition
Image Processing
In order to extract clear soybean plant images, denoising and
enhancement treatments were carried out on soybean plant
pictures due to the light environment and haze which blurred
the pictures. First, guide filter was selected for denoising images
after comparing them with the bilateral filter (Yu et al., 2020) and
DWT (Rai et al., 2012) algorithms. Then, the gamma algorithm
was chosen for image enhancement by contrast with laplus
(Bhairannawar et al., 2017) and log (Maini and Aggarwal, 2010)
algorithms. The pseudocode is shown in Figure 2.

Since deep neural networks require a certain number of
training sets to improve the accuracy of the model, a data
augmentation method, a common technique in deep learning
research, was employed to increase the number of existing

FIGURE 1 | Flowchart of the soybean yield prediction method.
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FIGURE 2 | The pseudocode of denoising and enhancement algorithms.

photos to 1,800 images by rotation, scaling, mirroring, random
brightness increases/decreases, and other methods. The 1,800
images were randomly divided into the training set and test
set according to the ratio of 4:1, which were then used as the
dataset of target detection models. The image processing process
is shown in Figure 3.

Soybean Leaves, Pods, and Types Recognition
With the rapid improvement of the computing power of
computers, deep learning has made tremendous progress, and a
lot of target detection algorithms based on deep learning have
been proposed. Popular deep learning algorithms such as Faster
R-CNN (Ren et al., 2016), feature pyramid network (FPN, Lin
et al., 2017a), SSD (Liu et al., 2016), and YOLO (Redmon et al.,
2016) have been applied in different areas and show very superior
performance. So, these algorithms were utilized in soybean pod
and type recognition in the paper.

The detection of Faster R-CNN includes two steps, the first
step is region proposal network (RPN). Features of a picture are
extracted by a VGG-16 (Simonyan and Zisserman, 2014) neural
network, followed by foreground background classification and
first prediction of the coordinate of the generated anchor. In the
second step, candidate boxes with higher confidence are selected
and sent to the back of the network for the second prediction

FIGURE 3 | Image processing flowchart.

Frontiers in Plant Science | www.frontiersin.org 4 January 2022 | Volume 12 | Article 79125698

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lu et al. Soybean Yield in situ Prediction

of category and coordinate values, so as to predict the specific
category. Faster R-CNN has extremely high prediction accuracy
but is time-consuming for training (Benjdira et al., 2019).

The feature pyramid network (FPN) is proposed to alleviate
the problems of multi-scale and small target detection which
selects ResNet50 (He et al., 2016) as the feature network,
and fuses the high-level features with the low-level features
through the up-sampling process. Moreover, layers of the same
class have horizontal connections and each layer is predicted
independently. Therefore, the network has more abundant
features. In addition, the idea of multi-scale detection is
introduced into the RPN, and the anchor frame can be generated
in different scales to cover different sized objects. FPN has good
accuracy and precision but again, is more time-consuming.

In the single shot multibox detector (SSD) model, there is only
one detection process step. The model uses VGG as the feature
extraction network, and uses multiple feature layers to predict the
target. As a result, the whole model is more lightweight with both
good detection accuracy and speed.

The design concept of YOLO and SSD is similar, both are one
stage target detection algorithms for reaching fast performance.
In YOLOv3 (Redmon and Farhadi, 2018), a 28M DarkNet-
53 is employed in which its parameters are only half that of
ResNet101 (Lin et al., 2017b), but the performance is close to
it. Pre-clustering of YOLOv2 (Redmon and Farhadi, 2017) is
inherited in YOLOv3 on the anchor frame for targets clustering
in the data using nine anchor frame scales that mostly fit the
targets. Moreover, the feature processing is carried out in three
different levels by introducing the multi-scale concept of FPN.
And multiple binary classifiers are used in the calculation of
classification loss to avoid competition within the class.

There are some problems such as error detection and missing
detection by using YOLOv3 for soybean leaves and pods
recognition because the color of the pods is similar to the leaves
and the detection performance of YOLOv3 for small target like
pods is not ideal. According to the above problems, an improved
approach of YOLOv3 was proposed by changing the network
structure and changing the clustering algorithm for increasing
prediction without sacrificing toomuch speed. Firstly, the feature

map after one down-sampling session is superimposed to the
input of the second and third residual blocks so as to increase
the detail information in the deep feature map for detection. The
improved network of YOLOv3 is shown in Figure 4. DBL stands
for Darknetconv2D_BN_Leaky, and resn stands for the number
of Res_units contained in the Res_block.

In the target detection algorithm, the anchor frame can help
the model to fit the coordinate points of the target, so that the
positioning task can be transformed from finding the position of
the target in the image to learning the coordinate offset of the
anchor frame relative to the target. In consideration of the fact
that the traditional K-means algorithm is easy to implement, but
the initial clustering center needs to be set artificially, in addition,
different centers have great influence on the clustering results,
the K-means++ algorithm (Arthur and Vassilvitskii, 2006) was
selected to cluster the length and width of the anchor frame to
make it fit the soybean pod and leaves better. The clustering used
Euclidean distance as a metric and set k from 6 to 11 step by step.
Because a large value of k reduced the convergence rate of the
model, k was set to 9 in this study after several attempts. The
clustering centers obtained after the convergence of the model
were: (23,31), (27,21), (41,52), (64,42), (78,90), (76,103), (91,94),
(106,97), and (113,107).

In terms of loss function, traditional YOLOv3 uses IoU Loss,
which is composed of coordinate regression loss, confidence loss,
and classification loss, and its calculation formula is shown in
Equation 1.

LIoU = 1− IoU (1)

IoU Loss has the characteristics of scale invariance. Although IoU
Loss is more advantageous than mean square error, when the
relationship of the prediction box and the real box is contained
and being contained, IoU Loss will be a fixed value, which has
great influence on the detection effect. When the two do not
intersect, the value of IoU Loss is 0, which cannot be optimized.
According to the above problems, DIoU Loss (Distance IoU
Loss) was used to replace IoU Loss in traditional YOLOv3, which

FIGURE 4 | Improved YOLOv3 for soybean leaves, pod, and type identification.
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FIGURE 5 | Schematic diagram of DIoU.

made the regression of the target box more stable. The schematic
diagram is shown in Figure 5.

DIoU is defined as,

DIoU = IoU −
ρ2

(

b, bgt
)

c2
(2)

where b is the central coordinate of the prediction box, bgt is the
center coordinate of the real box, ρ is the Euclidean distance
of the two center points, and c is the diagonal length of the
minimum outer rectangle of the two target bounding boxes.

The final definition of the loss function DIoU Loss is shown in
Equation 3.

LDIoU = 1− DIoU (3)

In this paper, the improved YOLOv3 model was used to train the
enhanced dataset. The size of network input was 416∗416∗3. The
batch size was 64, the value of subbatch was 16, themomentum of
dynamic parameter was 0.9, the maximum number of iterations
was 14,000, the learning rate strategy was step decreasing,
the initial value was 0.001, the scale parameter was 0.1, and
the two step values of learning rate change were 11,200 and
12,600, respectively.

Soybean Yield Prediction
In the soybean yield prediction task based on plant images,
the counting accuracy of pods was affected because some pods
were occluded by leaves, and the density of leaves was positively
correlated with the number of occluded pods. In addition, pods
were divided into several types due to the difference number
of seeds in them. The improved YOLOv3 model was used to
identify the number of leaves and different types of pods, then
PLSR (Geladi and Kowalski, 1986), BPNN (Hecht-Nielsen, 1992),
and GRNN (Specht, 1991) models were established respectively
to predict the amount of seeds. Among them, GRNN proposed
by Specht has a strong non-linear mapping ability and learning
speed which is an improved technique in neural networks based
on non-parametric regression. It can even obtain good prediction

accuracy but only requires a small number of datasets (Izonin
et al., 2021). Moreover, the network can also handle unstable data
in the inputs, which is suitable for soybean yield prediction. The
architecture of GRNN is shown in Figure 6.

The mathematical representation is as below,

Y (x) =

∑N
k=1 ykK(x, xk)

∑N
k=1 K(x, xk)

(4)

where input x includes the numbers of soybean leaves and
different type pods, Y(x) is the predicted value of soybean yield,
yk is the activation weight for the pattern layer neuron at k, and
K(x, xk) is the radial basis function kernel (Gaussian kernel) as
formulated below.

K (x, xk) = e−dk/2σ
2

(5)

dk = (x− xk)
T (x− xk) (6)

where dk is the squared Euclidean distance between the training
samples xk and the input x.

Evaluation Indices
To evaluate the performance and stability of the proposed model,
parameters such as prediction precision, recall, and degree of
integration (IoU) were defined. Evaluation of the performance
of the detection and recognition model is an essential stage.
The detection accuracy and complexity are the key performance
indexes in the evaluation. The basic evaluation indexes of the
target detection model are accuracy rate (P) and recall rate (R).
The definitions of the two indicators are shown in Equations 7, 8.
Accuracy rate represents the ratio that the detected target really
belongs to this class, which is used to describe the credibility of
the target. Recall rate represents the ratio of the detected target to
the actual total amount of the target, which is used to describe the
degree of the target being found completely.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

TP–The number of correctly predicted targets
FP–The number of wrongly predicted targets
FN–The number of missed predicted targets

Mean average precision is used to measure the overall
effect of multi-classification detection by averaging the detection
precision of all categories. Its definition is shown in Formula 3.

MAP =

∑N
k=1 P(k)

N
(9)

Intersection over Union (IoU) is introduced to measure the
similarity between the prediction box and real box according
to the characteristics of the target detection task. Its definition
is shown in Formula 4. When the prediction box is exactly
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FIGURE 6 | Architecture of soybean yield prediction model of GRNN.

consistent with the real box, IoU is 1. Generally, the target is
considered successfully detected when IoU is >0.5.

IoU =
SA ∩ SB

SA ∪ SB
(10)

Soybean detection and recognition is a dichotomous problem,
which only involves foreground soybean and background
soybean. Therefore, F1 was introduced to evaluate the model
accuracy comprehensively. The value of F1 depends on the
accuracy and recall. Its definition is shown in Equation 11.

F1 =
2PR

P + R
(11)

The running speed of the detection and recognition algorithm is
also an important basis for model evaluation. FPS was adopted as
the evaluation standard in this experiment. Its definition is shown
in Equation 12. In Equation 12, N represents the total number of
samples and T represents the running time.

FPS =
N

T
(12)

RESULTS AND DISCUSSION

Soybean Leaves and Pod Types
Recognition Results
The performance of popular existing algorithms such as Faster R-
CNN, FPN, SSD, and YOLOv3 in soybean pod detection tasks is
shown in Table 1.

TABLE 1 | Soybean pod detection performance of different models.

Model Accuracy P Recall R F1 value Speed

Existing Faster R-CNN 86.2% 80.5% 83.3% 13FPS

algorithms FPN 89.8% 82.7% 86.1% 7FPS

SSD 80.1% 74.2% 77.0% 24FPS

YOLOv3 87.4% 81.6% 84.4% 39FPS

Improved YOLOv3 90.3% 87.6% 88.9% 36FPS

The bold values are the best results.

The table indicates that FPN showed obvious advantages
over the existing popular algorithms in prediction accuracy and
F1 index up to 89.8% and 86.1% due to its relatively large
structure, followed by YOLOv3, Faster R-CNN, and SSD with
87.4, 86.2, and 80.1% in accuracy and 84.4%, 83.3, and 77.0
in F1, respectively. YOLOv3 had the fastest speed at 39 FPS,
followed by SSD, Faster R-CNN, and FPN with 24 FPS, 13 FPS,
and 7 FPS, respectively. Among them, the speed of YOLOv3 was
more than five times that of FPN, but the accuracy was 2.4%
lower. Therefore, YOLOv3 was the best algorithm considering
the prediction accuracy and speed comprehensively.

The accuracy of the improved YOLOv3 algorithm was 3.32%
higher than that of YOLOv3, reaching 90.3%, and also better
than that of FPN, SSD, and Faster R-CNN. The speed was second
only to YOLOv3, but significantly faster than SSD, Faster R-
CNN, and FPN, reaching 36 FPS, which can meet the demand
of real-time recognition.

Moreover, considering that the number of seeds in different
pods varied greatly, the pods were further classified into single
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FIGURE 7 | Soybean leaves and different type pods counting process.

seed pods, double seeds pods, treble seeds pods, four seeds pods,
and five seeds pods according to the number of internal seeds
using the above proposed YOLOv3 model.

In order to accurately identify the pod type, pod type labeling
and training were carried out on the recognized pod output
anchor frame, and an accurate pod type recognition model was
obtained. Soybean leaves and different type pods recognition and
the counting process is shown in Figure 7.

Soybean Plant Yield Prediction Results
In the prediction of soybean yield, taking the non-uniform
characteristics of leaves growth into account, four pictures were
taken from four directions of soybean plants at 90 degrees apart,
and the total number of leaves and the total number of different
types of pods of the four images were extracted by the above
mentioned improved YOLOv3 algorithm, and then the seed
number prediction models of PLSR, BPNN, and GRNN were
established with the input of leaf number and different type
pods number, of which the results shown in Table 2 indicate that
the GRNN model had the highest prediction accuracy. Figure 8
shows the comparison between the actual yield of soybean per
pot and the predicted yield when the GRNN model was used for
yield prediction. After the model was run three times, the average
accuracy of the GRNNmodel was up to 97.31%.

As shown in Equation 13, yi and y
′

i represent the actual
value and predicted value of soybean seeds respectively, and
n stands for the number of pots of all soybeans. ACC is the
accuracy calculated according to the deviation degree between

TABLE 2 | Prediction accuracy of different models.

Model ACC1 ACC2 ACC3 ACC

PLSR 95.57% 96.24% 95.76% 95.84%

BPNN 96.57% 96.97% 96.59% 96.71%

GRNN 97.24% 97.50% 97.20% 97.31%

The bold values are the best results.

the predicted value and the actual value of soybean seed number,
which can reflect the performance of the prediction models.

ACC =

∑n
i=1 (yi −

∣

∣

∣
yi − y

′

i

∣

∣

∣
)/yi

n
(13)

To further measure the weight of soybean grains produced by
plants, the average weight of 100 soybean seeds (wa = 0.203 g)
and the average weight of 100 soybean seeds for each pod type 5
to 10 days after soybean harvesting from random sampling were
measured. Among them, the average weight of soybean grains in
single seed podsw1, double grains podsw2, treble grains podsw3,
four grains pods w4, and five grains pods w5 were 0.242 g, 0.207 g,
0.196 g, 0.189 g, and 0.186 g, respectively. Based on the numbers
of different type pods predicted by the improved YOLOv3, the
total weight of soybean grains produced was given, as shown in
Table 3.

The accuracy of soybean yield predicted by GRNNwas 95.14%
with the average weight of 100 grains, while the accuracy of
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FIGURE 8 | Soybean seeds number prediction results of different plants.

TABLE 3 | Weight of single soybean grain of different pod types and total yield prediction results.

Pod type Single (w1) Double (w2) Treble (w3) Four (w4) Five (w5) All types of pods (wa)

Average weight per grain (g) 0.242 0.207 0.196 0.189 0.186 0.203

Total weight (g) 2668.670 2605.911

Accuracy 97.43% 95.14%

The bold values are the best results.

soybean yield predicted by GRNN with average weights of five
different pods (w1, w2, w3, w4, and w5) increased to 97.43%. The
results show that it is more accurate to predict soybean yield by
identifying and classifying soybean pods combined with GRNN.

CONCLUSION

Most of the existing crop yield prediction methods studied the
impact of environmental changes on yield, but paid no attention
to the actual yield prediction. Therefore, the most used field yield
measurement method is still the traditional manual sampling
process for statistical calculation, which is inefficient with low
precision. Due to the high cost, time-consuming, and low
accuracy of the traditional manual soybean yield measurement
approach, this paper proposed a soybean yield in situ prediction
method based on bean pods and leaves image recognition using a
deep learning algorithm combined with a generalized regression
neural network (GRNN). YOLOv3 is generally superior to Faster
R-CNN, FPN, and SSD in terms of prediction accuracy and
speed. Moreover, YOLOv3 was improved by changing the IoU
loss function, using the anchor frame clustering algorithm,
and utilizing the partial neural network structure in which
recognition precision increased by 2.9% up to 90.3% at 36 FPS.

In this paper, we proposed to take four images of soybean
plants at 90◦ intervals, and extract the total numbers of leaves and
different type pods from the four images by improved YOLOv3.
Then we established the prediction model of different type pods
quantity of each plant using GRNN with inputs of the total
numbers of leaves and different type pods recognized, in which

the average accuracy increased to 97.31%, which was better than
PLSR and BPNN. Furthermore, the soybean grain yield was
calculated using the number and average weight of each type
of pod. The prediction accuracy of the yield weight was up to
97.43%, which was better than the prediction accuracy based on
the total number of grains and the average weight of different type
pod grains.

This study shows that the improved YOLOv3 algorithm can
be used to identify the number of leaves and different type
pods and, moreover, can achieve accurate soybean yield in situ
prediction 30–40 days in advance combined with the average
weight of different soybean pods, which provides a new solution
for accelerating soybean germplasm innovation and phenotypic
detection of other crops.
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Experiment for a Long-Belt
Finger-Clip Precision Corn Seed
Metering Device
Han Tang†, Changsu Xu†, Ziming Wang, Qi Wang and Jinwu Wang*

College of Engineering, Northeast Agricultural University, Harbin, China

To solve multiple problems, such as the poor seeding process stability in the
conventional finger-clip precision corn seed metering device and the inability to
monitor the seeding effect, a long-belt finger-clip precision seed metering device was
optimized and designed. The overall structure and working principle were described,
and the mechanism of smooth transport and delivery was analyzed. A diffuse reflection
photoelectric sensor and rectangular optical fiber sensor were used to monitor the
number of corn seeds in the seeding process, and the states of multiple and miss
seeding were calculated. A corn seeding quality monitoring system was designed. In
this study, the seed metering performance of the long-belt finger-clip precision seed
metering device was compared to that of the conventional finger-clip precision corn
seed metering device. It was shown that the reseeding index, the miss-seeding index
and the coefficient of variation can be effectively reduced with increasing seed metering
tray speed. At the maximum speed of 65r/min, the qualified index increased from 75.75
to 84.70%, the reseeding index decreased from 13.66 to 8.49%, the miss-seeding
index decreased from 10.59 to 6.81%, and the coefficient of variation decreased from
20.69 to 6.83%. The variations of these four evaluation parameters with the seed
metering tray rotating speed were analyzed. Furthermore, the effects of the seeding
frequency and seeding speed on the four evaluation parameters were studied through
single factor and variance analyses. The results showed that the relative errors of the
qualified index, the reseeding index, the miss-seeding index and the seeding amount
increased gradually with the increase in the seed metering tray rotating speed, and
the monitoring accuracy of the sensor decreased gradually. The accuracy of sensor
monitoring decreased with increasing seeding frequency and seeding speed. This study
provides an optimized scheme for the smooth delivery and movement of conventional
seed metering devices and provides a technical reference for the development and
design of monitoring systems with multiple index and the miss-seeding index of seed
metering devices.
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INTRODUCTION

Precision seeding has the advantages of conserving seeds,
reducing labor intensity and improving operation efficiency,
comprising one of the important trends for agricultural
development in the future (Yazgi and Degirmencioglu, 2014;
Xing et al., 2020). As the core working component, precision
seed metering devices are mainly divided into mechanical and
pneumatic types (Navid et al., 2011; Miller et al., 2012). The
pneumatic seed metering device has the characteristics of good
universality and high working speed, but it needs additional air
source, has complex structure and high failure rate. In addition,
seeds need to be strictly graded. Compared with pneumatic
seed metering device, mechanical seed metering device is widely
used because of its simple structure, convenient maintenance,
low cost, no pressure air source and no sealing. At present,
the common mechanical seed metering devices mainly include
socket-wheel type, disk type, spoon type and finger-clip type.
In the process of corn sowing, finger-clip seed metering device
has the characteristics of low damage rate and good adaptability.
It is the most widely used among the types of mechanical
seed metering device (Hossen et al., 2014; Haque et al., 2016;
Soyoye, 2020). The research on finger clip precision corn seed
metering device is of great significance to popularize precision
sowing technology. However, the problem of poor stability in
the transportation and delivery process, caused by the violent
vibration of working components, is a common problem in
mechanical precision seed metering devices (Zhao et al., 2020).
At the same time, the seed metering device process is closed,
so it is impossible to directly observe the effect of seeding. If
such problems in seed metering devices are not found in time
during a large-scale seeder operation process, periodic large-area
multiple seeding and miss seeding will occur because of the fast
working speed and the wide seeding range (Wang et al., 2020).
Therefore, it is necessary to monitor the working quality of the
seed metering device to ensure reliability and stability in the
process of precision seeding.

The monitoring of the seeding quality is the basis for not
only the automation and intelligence of the seeding link but
also the reliable guarantee of signal feedback and equipment
research along with the development of the follow-up seeding
link. A large number of scholars have devoted themselves to
seeding quality monitoring research, which includes high-speed
photography, piezoelectric sensing, and photoelectric monitoring
(Zhao and Jian, 2005; Chen et al., 2009; Li et al., 2010). Among
these methods, the high-speed photography method has the
advantage of high monitoring accuracy. Karayel et al. (2006)
used high-speed camera and image processing technologies to
obtain the seed distance and seed distribution uniformity, then
judged the qualification of the seed metering device based on
the seed distance and uniformity. However, this method involves
a large amount of image data and expensive equipment, so
it is difficult to popularize and apply in the actual working
process. The piezoelectric sensing method identifies the seeding
amount by monitoring the change in pulse voltage produced
by the seed hitting a piezoelectric film or piezoelectric ceramic
(Zhang et al., 2011). Wang et al. (2019) developed an impact
seeding amount monitoring sensor for rice hill direct seeding;

this sensor can effectively identify the seeding amount of
rice seeds hitting the piezoelectric film. Ding et al. (2017)
developed a small seed size seeding amount sensor based on
the piezoelectric impact principle; this sensor realized the real-
time monitoring of the seed metering frequency and total seed
metering amount. Huang et al. (2013) developed a precision
corn seeding monitoring system based on a polyvinylidene
fluoride piezoelectric film, and the monitoring accuracy of miss-
seeding rate was 96%. The technical difficulty of the piezoelectric
sensing method is related to the selection of appropriate sensitive
materials according to the physical characteristics of different
seeds, where the installation positions of sensitive materials
have higher requirements. Compared with the high-speed
photography method and the piezoelectric sensor method, the
photoelectric monitoring method has the advantages of a simple
sensor structure, fast response speed, and easy development and
configuration; therefore, this method has gradually become the
focus of research (Al-Mallahi and Kataoka, 2016; Besharati et al.,
2019). Karimi et al. (2017, 2019) built a seeding monitoring
device and a seeding monitoring system with infrared laser
diode array sensors and realized the measurement of seed flow.
However, the array can monitor only the seed information in
a single direction, easily producing monitoring errors. Kumar
and Raheman (2018) arranged an infrared light-emitting diode
(LED) as a ring. Such infrared light covered the whole section of
the seeding tube, effectively improving the monitoring accuracy
and overall accuracy. Due to the different delivery and transport
modes of different seed metering devices, a diversity in the seed
falling posture often appears in the seeding process (Liu et al.,
2018). One of the most common situations is the overlap in the
process of seed falling, which will lead to the sensor unable to
effectively monitor the number of seeds and the problem of low
monitoring accuracy.

Limited by the characteristics and performance of the sensor,
the use of a single sensor can meet only the seeding conditions
of small flow and low speed. With the increase in the speed
of the seed metering tray, a single sensor cannot achieve
accurate and effective monitoring. Zhang et al. (2013) installed
LEDs and photosensitive resistors in the seed guide tube of
a soybean seeder to detect the seeding condition based on
the blocked light when the seeds fell. Lan et al. (1999) used
an LED with a diameter of 3 mm and a phototransistor
photosensor to measure the spacing of small seeds from the
seed metering device. Qiu et al. (2019) designed an operation
quality monitoring system of a small particle size seeder based
on a photoelectric sensor for rectangular infrared detection and
a complementary metal-oxide semiconductor (CMOS) image
sensor. Visualization of this seeding operation monitoring
was realized by seed image acquisition and a photoelectric
sensor. Technology based on multisensor information fusion
can greatly improve the effective monitoring of seeding
quality under multiple working conditions, but the installation
positions, configuration forms and monitoring objects of
multisensors are not universal. The problem of multisensor
configuration and development for specific crop monitoring
needs to be solved.

To solve problems such as the poor seeding process stability in
the conventional finger-clip precision seed metering device used
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FIGURE 1 | Overall structure. (A) Overall structure of conventional finger-clip precision corn seed metering device. (B) Overall structure of long-belt finger-clip
precision corn seed metering device.

for corn and the inability to monitor the seeding effect, the long-
belt finger-clip precision seed metering device used for corn was
optimized and designed. The mechanism of smooth transport
and delivery was analyzed. A diffuse reflection photoelectric
sensor and a rectangular optical fiber sensor were used to monitor
the seeding state information. Based on these sensors, a quality
monitoring system for precision corn seed metering devices was
developed. The effectiveness of the long-belt finger-clip precision
corn seed metering device for smooth migration and the
reliability of the monitoring system were verified by comparative
experiments, single factor experiments and variance analysis.
This study provides an optimized scheme for smooth delivery and
movement in conventional seed metering devices and provides
a technical reference for monitoring system development and
design with multiple index and the miss-seeding index of seed
metering devices.

MATERIALS AND METHODS

Overall Structure and Working Principle
of the Long-Belt Finger-Clip Precision
Corn Seed Metering Device and
Monitoring System
Conventional finger-clip precision corn seed metering device is
mainly composed of a seed pick finger clip, seed guide pulley, seed

metering tray, finger pressure plate, seed filling cover, seed guide
belt, seed metering shaft, seed guide end cap, shield housing.
The overall structure is shown in Figure 1A. The conventional
finger-clip precision corn seed metering device is equipped with
a seed guide tube under it, so it is unable to sowing at zero
speed, resulting in the reduction of seed metering performance
when the seeds bounce and collide. In addition, the structural
configuration cannot meet the layout requirements of sensors.
In this study, the seed guide tube structure was replaced by
the lengthened seed guide belt, which simplified the overall
structure. At the same time, the research was carried out from
the aspect of stable delivery mechanism to achieve the effect
of zero speed seed delivery. A long-belt finger-clip precision
corn seed metering device is designed. It is mainly composed
of a seed guide pulley, seed guide belt, seed filling cover, finger
pressure plate, seed metering tray, seed cleaning brush, seed-
pick finger-clip, seed feeding monitoring device, shield housing,
seed guide end cap, seed guide monitoring device, regulating
cam and seed metering shaft. The overall structure is shown
in Figure 1B. The parameters of long-belt finger-clip precision
corn seed metering device is shown in Table 1. Among these
components, the finger pressure plate and the regulating cam
are two of the key working components in the seed metering
device, and the rationality of the structure configuration directly
affects the working quality of the seed metering device. The finger
pressure plate is a combination of 12 finger clips connected by
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TABLE 1 | Parameters of long-belt finger-clip precision corn seed metering device.

Item Value Unit

Number of finger clips 0−12 /

Diameter of seed guide pulley 50 mm

Diameter of seed guide pulley I 200 mm

Seed guide belt spacing 40 mm

Seed metering disk speed 0−65 r/min

fine-tuning springs (the number of finger clips can be adjusted
freely, and up to 12). The finger pressure plate and regulating cam
are installed on the inside of the finger clamping plate in turn.
The seed metering tray is made of galvanized steel to increase
the friction characteristics of the corn seeds. The seed guide belt
is made of rubber, and its circumference is equipped with 12
inclined blades. The 12 seed guide rooms are formed with the
seed guide end cap and the machine shell. The seed cleaning
brush is made of bristles, and the angle of the brush can be
artificially adjusted to control the seed cleaning degree. The seed
guide monitoring device is situated at the seed guide port, and
a diffuse reflection photoelectric sensor is used to monitor the
number of theoretical seeds (the number of seed-pick finger-
clips is monitored through the diffuse reflection photoelectric
sensor, were a seed-pick finger-clip carries a corn seed in theory).
The seed feeding monitoring device is arranged under the seed
feeding port, and a rectangular optical fiber sensor is used to
monitor the number of seed guide belts delivered to the soil.

The working area of the seed metering device can be divided
into four stages: the seed filling area, the seed holding area, the
seed cleaning area and the seed feeding area. During operation,
the seed filling room is filled with the corn seeds from the
seed box. The walking wheel of the machine transmits the
power to the seed metering shaft through chain transmission
and drives the finger pressure plate and the seed-pick finger-
clip to rotate. The fixed cam and the fine-tuning spring work
together to control the timing of the finger clip opening and
closing. When the seed-pick finger-clip is opened, the seed is
filled and clamped in the seed filling area. When the seed-
pick finger-clip is closed, multiple seeds are withheld from the
seed filling area to complete the seed filling process. The seed-
pick finger-clip rotates and moves smoothly in the seed holding
area. When the seed is moved to the seed cleaning area, the
seed cleaning brush removes the multiple seeds and completes
the seed cleaning process. A single grain of corn is placed in
the seed guide room on the back of the seed metering device
from the seed guide mouth, and the seed guide belt rotates
synchronously with the finger pressure plate. A single seed
is smoothly deposited into the soil to complete the process
of seeding, and precision seeding is achieved. To realize the
quality monitoring of a precision seed metering device, a diffuse
reflection photoelectric sensor and a rectangular optical fiber
sensor are set up under the seed guide port and the seed feeding
port, respectively. When the seed is transported and delivered,
the sensor is shielded to return a low-level signal. According
to the pulse signal returns by the sensor and processes by
the single-chip microcomputer, the seed falling time interval

is counted and compared to the set theoretical time interval.
The reseeding index and miss-seeding index in the process of
precision seeding are calculated.

Analysis of the Mechanism for Stable
Transport and Delivery
The lengthened seed guide belt of the long-belt finger-clip
precision corn seed metering device can reduce the delivery
height of the seed to the soil and slow down the bouncing
collision frequency between the seed and the soil in the process of
high-speed precision seeding. The seeding accuracy, uniformity
and horizontal and vertical straightness are improved. In the
seeding process, the seed metering shaft drives the seed metering
tray to rotate, and the seed-pick finger-clip rotates the single seed
counterclockwise; the single seed is then smoothly transported to
the seed guide mouth for seeding. The first migration operation
is realized. The seed is thrown onto the seed guide belt, which
rotates synchronously with the seed metering tray through the
seed guide mouth and moves smoothly to the seed delivery point
under the action of gravity and the supporting force. The zero
speed in low position of the seed to the soil is realized. The
second migration operation is realized. The relative speed of the
seeds falling into the seed ditch is offset by secondary delivery,
and smooth seed transport and delivery is realized, as shown in
Figure 2.

To study the stationarity of the seeds in the transport and
delivery stage, the motion state of the seeds is mechanically
analyzed and the critical conditions of the relative balance
between the seeds and the seed guide blade are studied (Wang
et al., 2017). Taking the rotating center of the seed metering
shaft as the coordinate origin O1, the spatial Cartesian coordinate
system XYZ is established, as shown in Figure 3. When a single
seed enters the seed guide room through the seed guide port, the
force of the seed is analyzed when it rotates counterclockwise with

FIGURE 2 | Schematic diagram of smooth transport and delivery. D is the
corn seed spacing, mm; V0 is the working speed of the machines, mm/s; ω is
the angular velocity of the seed metering shaft, rad/s.
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FIGURE 3 | Force analysis diagram of the stable transport and delivery
process.

the seed guide belt. The seeds are affected by the spatial force
system composed of the centrifugal force Fc, the supporting force
of the blade Fn, the friction force of the blade Fs and the seed
gravity G.

If the relative balance between the seed and the seed guide
blade is ensured and the seed is not thrown away from the seed
guide blade, the force along the slip direction of the seed relative
to the blade should be satisfied in the rotating plane XO1Z of the
seed guide belt.

Fc + G cos φ+ Fn cos(π− β− φ) ≤ Fs cos β (1)

Among these values,


Fc = mω2R1
Fn = mg sin β

Fs = µFn
(2)

where m is the mass of the corn seed, mg; φ is the relative rotation
angle of the seed guide blade, (◦); β is the structural inclination
angle of the seed guide blade, (◦); µ is the friction coefficient
between the corn seed and the seed guide blade, set to 0.15; R1 is
the radius of the seed guide pulley I, mm; and Fc is the centrifugal
force of the corn seeds, N.

Equation (3) is obtained by the combination of Equation (1)
and Equation (2).

mω2R1 +mg cos φ ≤ mg sin β(µ cos β+ cos(β+ φ)) (3)

To solve the limiting value of the seed metering speed under
the critical slip state, Equation (3) is arranged as follows:

ω ≤

√
g sin β(µ cos β+ cos(β+ φ))− g cos φ

R1
(4)

When the speed of the seed metering tray satisfies Equation
(4), the corn seed and the seed guide belt remain relatively static
and relative slip does not occur. Equation (4) shows that the
factors affecting the speed limit of the smooth seed movement
and delivery are related to the relative rotation angle of the seed
guide blade, the structural inclination angle of the seed guide
blade and the radius of the seed guide pulley I. Moreover, this
limit is related to the friction coefficient between the corn seeds
and the seed guide blade but has nothing to do with the mass
of the corn seeds.

Design of the Seeding Monitoring
System
The hardware system and software system of the seeding
monitoring system were designed to accurately monitor the
important seed metering indexes, such as the qualified index,
reseeding index and miss-seeding index, in the metering process
of a long-belt finger-clip precision corn seed metering device.

Hardware System Design
The hardware system is mainly composed of a STM32F103
single-chip microcomputer, universal serial bus (USB)
to transistor-transistor logic (TTL) chip, upper computer,
integrated operational amplifier, diffuse reflection photoelectric
sensor, rectangular grating sensor and fixed device, as shown
in Figure 4. Each part is electrically connected through the
communication lines, the signal lines and the power lines to
complete the information exchange. Among these components,
the power lines are used for the power supply and connection
between each piece of equipment, where the power supply is the
direct current (DC) 12 V vehicle battery. The communication
line adopts the RS232 serial communication network, as designed
according to the communication protocol, which was beneficial
to the expansion of the system. A rectangular grating sensor
adopts the principle of infrared radiation, which changes the
incident light path in the seeding state and changes the light
intensity received by the infrared receiver. The signal is processed
into a pulse signal by the signal amplifier. The single-chip timer
(time 4, time 5) is configured to input capture mode, and
the corresponding input/output (IO) port is set as the input
mode. Thus, the pulse signal was obtained, and the planting
parameters were calculated. At the same time, this system
cooperated with the diffuse reflection photoelectric sensor
installed on the seed guide port, the times of the seed-pick
finger-clip passing through the seed guide port were monitored
and the rotating speed was calculated according to the reflection
principle of light. Based on the times and rotating speed of
the seed-pick finger-clip monitored by the diffuse reflection
photoelectric sensor, multiple seeding occurred when the data
monitored by the rectangular grating sensor were larger than
those monitored by the diffuse reflection photoelectric sensor.
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FIGURE 4 | Hardware system.

FIGURE 5 | Schematic diagram of multiple seeding. (A) Rseeding in high-speed camera observation. (B) Principle of reseeding monitoring.

When the data monitored by the rectangular grating sensor
were smaller than those monitored by the diffuse reflection
photoelectric sensor, miss seeding occurred. The data detected
by the sensor were transmitted to the STM32F103 single-
chip microcomputer through the signal line for control and
calculation, and the serial port signal was collected by the
upper computer through the USB to TTL chip to obtain the
seeding information.

Software System Design
Seed metering monitoring was mainly realized by monitoring the
number of input seeds, the number of rotations and the rotating

speed of the seed-pick finger-clip through the seed guide port.
Then, a diffuse reflection photoelectric sensor and a rectangular
grating sensor converted this information into a pulse signal,
and the system counted the number of seeds and the number
of times the seed-pick finger-clip (theoretical planting number)
was placed in the seed guide port by monitoring the falling edge
of the pulse signal. Timing was determined by monitoring the
rising edge and falling edge of a pair of pulse signals. The seeding
monitoring sensor time was recorded as TA. The interval time of
the seed guide monitoring sensor was recorded as TB.

According to the high-speed camera experiment, the
rectangular grating sensor received two pairs of pulse signals in
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FIGURE 6 | Program flow chart. L is the miss-seeding amount; C is the
reseeding amount; H is the theoretical seeding amount; and Z is the total
amount of seeding.

succession when multiple seeding events occurred. However, the
diffuse reflection photoelectric sensor received a pair of pulse
signals only once, and the number of multiple seedings was
increased by one. The end-to-end connection occurred in the
vertical plane during the fall of the multiple seeding, as shown
in Figure 5. The interval time of the rectangular grating sensor
TA increased, which resulted in the omission of multiple seeding
counts. Therefore, the number of multiple seedings was increased
by one when Equation (5) was satisfied. The system program flow
chart is shown in Figure 6. Firstly, enable the logic pins of single

chip PA0 and PB5, and the corresponding timers (Time4 and
Time5) are configured to enable the single chip microcomputer
to receive external signals and have timing ability. In order to
determine the sequence of receiving or transmitting signals,
the priority of receiving interrupt and transmitting interrupt is
set. At this time, PA0 and PB5 wait for the external signal to
trigger. When any pin voltage becomes high, the timer register
stores the current time TA1 or TB1. When the external signal
disappears, the pin voltage becomes low, and the timer register
stores the current time TA2 or TB2. The CPU calculates the signal
receiving time TA or TB, and the theoretical sowing amount is
increased by one grain. The CPU determines whether there is a
multiple seeding amount and miss seeding amount according
to the discrimination relationship. Finally, the CPU determines
whether the stop signal is received. If the stop signal is received,
the program stops, otherwise it enters the next cycle.

TA >
2πlR1

αR2 TB (5)

where TA is the total time of the seed occlusion rectangular
grating sensor, s; TB is the total time based on the finger clip
occlusion diffuse reflection photoelectric sensor, s; l is the length
of the seed, mm, the vernier caliper was used to measure the
length of 1,000 "Demeiya No. 1" maize seeds widely planted
in Northeast China, and the average value was taken, taking
9.35mm; and α is the rotation angle of the seed-pick finger-
clip, (◦).

In this study, a Windows-form application program was
developed and designed based on the C# language; this program
can display the monitoring seeding parameters in real time.
Additionally, when the phenomena of multiple seeding and miss
seeding occurred, a seeding fault alarm occurred in the software
interface. The software interface is shown in Figure 7.

According to the seeding function, the software interface can
be divided into four areas: the communication string number
setting, seed parameter setting, operation parameter monitoring
and miss seeding alarm. Among these areas, the communication
string number setting area is used for the selection and opening
and closing of the working string number for the equipment
communication. The parameter setting area is used to design the
relevant parameters, such as the length of the finger clip. After the
parameter design is completed, it is saved to the running memory,
and the corresponding parameters are read when the program
is running. The monitoring area of the operation parameters
includes the number of seedlings, the theoretical number of
seedlings, the interval seeding time and the rotation speed of
the seed metering tray. Among these parameters, the number
of seedlings is used to display the seeding number of each
row for the seed metering device. The theoretical number of
seedlings is used to determine the number of seedlings in each
row under normal operating conditions (without miss seeding
and multiple seedlings). The phenomenon of multiple seeding
is determined through the rotational speed of the seed metering
tray and the seeding time interval. When miss seeding occurs
continuously, the miss seeding alarm displays a flashing red light
to inform the user. Through the abovementioned method, the
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FIGURE 7 | Software interface.

online monitoring of the qualified index, the reseeding index and
the miss index can be realized.

Experiment
To compare the seeding performances of the long-belt finger-clip
precision corn seed metering device and conventional finger-
clip precision corn seed metering device and to detect the
accuracy of the designed monitoring system, a bench experiment
was carried out on seeding performance. The experimental
site was the Seeding Performance Laboratory of Northeast
Agricultural University. Demeya No. 1 corn seed was selected
as the experimental variety. The corresponding 1,000-grain
mass was 281.12 g, the average density was 1.154 g/cm3, and
the average length was 9.27 mm, width was 7.40 mm, and
thickness was 4.11 mm (the average values were measured based
on 100 seeds). The experimental device was the JPS-12 seed
metering device performance experiment bench developed by
the Heilongjiang Agricultural Machinery Engineering Research
Institute. According to GB/T6973-2005 "Experiment method
of single seed (Precision) seeder," the experiment factors were
selected as the rotating speed of seed metering tray, which
were 15 r/min, 25 r/min, 35 r/min, 45 r/min, 55 r/min, and
65 r/min, respectively. The experimental indexes included the
qualified index, the reseeding index, the miss-seeding index
and the coefficient of variation to evaluate the seeding stability
of the seed metering device. Additionally, the accuracy of the
monitoring sensor was evaluated based on the relative deviation
of the qualified index, the reseeding index, the miss-seeding
index and seeding amount. The greater the relative deviation,
the lower the monitoring accuracy of the seed metering device.

There were 1,000 seeds measured in each group, the experiment
was repeated three times, and the results were averaged. During
the experiment, the spacing between adjacent corn seeds was
measured, and the number of seeds was counted to calculate each
index. The calculation equation of each index was as follows:



Q =
n0

N
× 100%

M =
n1

N
× 100%

E =
n2

N
× 100%

V =

√∑
(x− x)

(n′ − 1) x2 × 100%

Q′ =

∣∣∣n′0 − n0

∣∣∣
n0

× 100%

M′ =

∣∣∣n′1 − n1

∣∣∣
n1

× 100%

E′ =

∣∣∣n′2 − n2

∣∣∣
n2

× 100%

S =
na − nb

na
× 100%

(6)

where Q is the qualified index, %; M is the reseeding index, %; E
is the miss-seeding index, %; V is the coefficient of variation, %;
Q′ is the relative error of the qualified index, %; M′ is the relative
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error of the reseeding index, %; E′ is the relative error of the miss-
seeding index, %; n0 is the manual hole count in one seed; n1 is
the manual hole count for more than one seed; n2 is the manual
hole count without seeds; N is the manual hole count of the total
number of holes; n

′

0 is the monitoring result for the holes in one
seed; n

′

1 is the monitoring result for the holes in more than one
seed; n

′

2 is the monitoring result for holes without seeds; n
′

is the
total number of sample-seeds spacings; x is the theoretical seed-
spacing of seeding, mm; x is the average distance between sample
points, mm; S is the relative error of the seeding numbers; na is
the result of manually counting the total number of holes; and nb
is the monitoring result for the total number of holes.

The seed metering device was fixed on the mounting frame
in the experimental process. The bed belt moved in the opposite
direction relative to the seed metering device. The forward
motion state of the seeder was simulated. The fuel injection
pump sprayed oil on the bed belt. The corn seed fell from the
seeding mouth to the seed bed belt. Real-time detection and
data acquisition were carried out through the camera processing
device to accurately measure the seeding performance index, as
shown in Figure 8.

In May 2021, a field validation experiment was carried out in
Acheng District, Harbin City, Heilongjiang Province (127.30 East
longitude and 45.33 North latitude). Field environment: straw
coverage is (2.08 - 3.16) kg/m2, straw stubble height is (130 - 150)
mm, soil moisture content is 18 - 22%, and soil firmness is (16.05 -
20.41) MPa. Based on the long-belt finger-clip precision corn seed
metering device and the developed monitoring system, the no
tillage sowing device was integrated, as shown in Figure 8B. The
power unit is John Deere 454 tractor. During the test, the rotation
speed of the seed metering plate shall be consistent with the bench
test, so the forward speed of the tractor shall be calibrated before
the test. When the forward speed is 3, 5, 7, 9, 11, 13 km/h, the
corresponding seed metering disk speed is 15, 25, 35, 45, 55,
65 r/min. The seed spacing is 220 mm. After sowing, the soil
layer shall be removed manually to determine the spacing of corn
seeds, and errors caused by human factors shall be avoided as far
as possible. Each group of experiments was repeated 3 times, and
the results were taken as the average value.

The influence of the seed metering tray rotating speed on the
sensor monitoring accuracy can be comprehensively analyzed,
in essence, as the influence of the sensed frequency and speed
of the seed on the sensor monitoring accuracy (Maleki et al.,
2006). As the seed metering tray rotated coaxially with seed guide
pulley I, seed guide pulley I and the seed guide pulley rotated
through the seed guide belt. The speed and frequency of the seeds
passing over the two sensors were the same. To further explore
the relationship between these two factors, the corresponding
values were controlled by adjusting the number of finger clips and
the rotation speed of the seed metering tray.

The sensed seed frequency can be obtained based on the
rotating speed of the seed metering tray as follows:

f =
1
5
n (7)

where f is the seed frequency over the sensor, seeds/s; and n is the
rotating speed of the seed metering tray, r/min.

The seed speed over the sensor was calculated (ignoring the
distance between the rectangular optical fiber sensor and the
bottom of the seeding guide pulley II) as follows:

v =
πR1n
30000

(8)

where v is the seed speed through the sensor, m/s.

RESULTS

Comparative Analysis of the Seeding
Performances Between Long-Belt
Finger-Clip and Conventional Finger-Clip
Precision Corn Seed Metering Devices
The comparison of the seeding performance between the
long-belt finger-clip precision corn metering device and the
conventional finger-clip precision corn seed metering device is
shown in Figure 9. The regression equation in Figure 9 is used
to analyze and predict the relationship between performance and
seed metering tray speed. The greater the slope of regression
equation, the greater the change of seed metering performance
index with factors. R2 represents the overall fit of the regression
equation. The maximum value of R2 is 1. The greater R2, the
better the fitting degree of the regression equation. Figure 9
shows that the seeding performances of the long-belt finger-
clip precision corn seed metering device and the conventional
finger-clip precision corn seed metering device decreased with
increasing speed for the seed metering tray. When the rotational
speed of the seed metering tray was 15-25 r/min, the slope
of the coefficient of variation for the conventional finger-clip
precision corn seed metering device is greater than that of the
long-belt finger-clip precision corn seed metering device. The
results showed that with the increase in the rotational speed
of the seed plate, the stability of the conventional finger clip
precision corn seed metering device and the consistency between
the seed spacing were poor. When the rotational speed of the
seed metering tray was 25-65 r/min, the qualified index of
the conventional finger-clip precision metering device decreased
greatly, from 90.83 to 75.75%. The reseeding index, the miss-
seeding index and coefficient of variation increased greatly. The
reseeding index increased from 4.52 to 13.66%, the miss-seeding
index increased from 4.65 to 10.59%, and the coefficient of
variation increased from 7.88 to 20.69%. However, the qualified
index, the reseeding index, the miss-seeding index and coefficient
of variation in the long-belt finger-clip precision corn seed
metering device changed, and the overall change was relatively
stable. When the rotation speed of seed metering disk is 65 r/min,
the qualification index, reseeding index, miss-seeding index and
variation coefficient are 84.70, 8.49, 6.81, and 6.83%, respectively.
The results showed that the long-belt finger-clip precision seed
metering device can smoothly transport and deliver corn seeds
and effectively reduce the reseeding index, miss-seeding index
and coefficient of variation compared to the conventional finger-
clip precision seed metering device.

Frontiers in Plant Science | www.frontiersin.org 9 January 2022 | Volume 13 | Article 814747114

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-814747 January 24, 2022 Time: 15:2 # 10

Tang et al. Seed Metering Monitoring System

FIGURE 8 | Experiment. (A) Bench experiment. (B) Field experiment.

FIGURE 9 | Comparative analysis of the seeding performances for the long-belt finger-clip and conventional finger-clip precision corn seed metering devices.
(A) Influence of the rotating speed of the seed metering tray on the qualified index. (B) Influence of the rotating speed of the seed metering tray on the reseeding
index. (C) Influence of the rotating speed of the seed metering tray on the miss-seeding index. (D) Influence of the rotating speed of the seed metering tray on the
coefficient of variation.

Influence of the Rotation Speed of the
Seed Metering Tray on the Monitoring
Accuracy of the Sensor
To explore the influence of the rotating speed of the seed
metering tray on the monitoring accuracy of the sensor, the
qualified number, the multiple seeding number, the miss seeding

number and the seeding number monitored by the sensor were
compared to the data obtained by manual measurement. The
variation rules for the relative errors of the qualified index, the
reseeding index, the miss-seeding index and seeding amount
with the rotating speed of the seed metering tray are shown in
Figure 10.
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FIGURE 10 | Influence of the rotating speed of the seed metering tray on the monitoring accuracy of the sensor. (A) Qualified number in bench experiment.
(B) Reseeding number in bench experiment. (C) Miss-seeding number in bench experiment. (D) Seeding amount in bench experiment. (E) Qualified number in field
experiment. (F) Reseeding number in field experiment. (G) Miss-seeding number in field experiment. (H) Seeding amount in field experiment.

TABLE 2 | Comparison results between bench experiment and field experiment of long-belt finger-clip precision corn seed metering device and monitoring system.

Speed of seed metering tray (r/min) 15 25 35 45 55 65

Performance of long-belt finger-clip
precision corn seed metering device

Qualified index in bench experiment (%) 92.34 90.99 89.72 88.6 86.35 84.7

Qualified index in field experiment (%) 91.46 90.38 89.24 87.65 84.33 81.26

Reseeding index in bench experiment (%) 3.26 4.38 6.35 6.77 7.54 8.49

Reseeding index in field experiment (%) 3.11 5.02 7.12 7.65 7.61 9.23

Miss-seeding index in bench experiment (%) 4.40 4.63 3.93 4.63 6.11 6.81

Miss-seeding index in field experiment (%) 5.43 4.60 3.64 4.70 8.06 9.51

Coefficient of variation in bench experiment (%) 2.46 3.15 3.93 5.63 6.87 6.83

Coefficient of variation in field experiment (%) 2.39 3.27 4.02 5.54 6.96 7.8

Performance of monitoring system The relative error of qualified index in bench experiment (%) 0.31 1.71 1.2 1.24 1.63 4.55

The relative error of qualified index in field experiment (%) 0.28 1.68 1.25 2.36 2.03 4.67

The relative error of reseeding index in bench experiment (%) 8.57 6.67 13.85 11.76 12.94 13.19

The relative error of reseeding index in field experiment (%) 6.45 6.52 6.89 7.5 11.67 13.15

The relative error of miss-seeding index in bench experiment (%) 0 2.08 7.5 10.87 11.59 15.07

The relative error of miss-seeding index in field experiment (%) 3.13 3.03 7.31 7.14 13.46 15.71

The relative error of seeding numbers in bench experiment (%) 0 0.78 1.47 1.4 1.68 3.94

The relative error of seeding numbers in field experiment (%) 2.58 1.31 1.26 2.32 1.52 3.52

Figure 10A shows that the relative errors of the qualification
index, the reseeding index, the miss-seeding index and seeding
amount increased gradually with increasing speed for the seed
metering tray in the bench experiment. The results showed
that the monitoring accuracy of the sensor decreased with the
increasing rotation speed of the seed metering tray. The relative
error of the reseeding index and the miss-seeding index was larger
than that of the qualified index and seeding amount, mainly due
to the small number of multiple seeding holes, and the miss
seeding holes were larger as a whole when compared with the
manually measured data. However, the overall trend reflected the
changing law of the sensor monitoring accuracy.

Figure 10B shows that the relative errors of the qualification
index, the reseeding index, the miss-seeding index increased
gradually with increasing speed for the seed metering tray in the
field experiment. It is verified that the monitoring accuracy of

the sensor decreases gradually with the increase of the rotation
speed of the seed metering disk. Table 2 is the comparison results
between bench experiment and field experiment of long-belt
finger-clip precision corn seed metering device and monitoring
system. The performance of the seed metering device in the field
experiment is slightly lower than that in the bench experiment,
but the data obtained by the monitoring system is less different
from that in the bench experiment, and the performance is
relatively stable.

The seeding frequency, seeding speed and speed of the seed
metering tray are shown in Table 3.

To further explore the influences of the seeding frequency
and seeding speed on the monitoring accuracy of the sensor, the
relative errors of the qualified index, the reseeding index, the
miss-seeding index and seeding amount were used as evaluation
parameters. Through the value of fixed level 4 (Wang et al., 2017),
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TABLE 3 | Seeding frequency and speed corresponding to the rotating speed of
the seed metering tray.

Level Speed of seed
metering tray

(r/min)

Seeding
frequency
(seeds/s)

Seeding
speed (m/s)

1 15 3 0.09

2 25 5 0.15

3 35 7 0.22

4 45 9 0.28

5 55 11 0.35

6 65 13 0.41

single factor experiments were carried out on the seeding
frequency and seeding speed.

First, linear regression analysis of the metering frequency was
carried out. Figure 11 shows the linear regression analysis of
the seeding frequency to the evaluation parameters. As shown
in Figure 11, the relative errors of the qualified index, multiple
seeding, miss-seeding index and seeding amount all increased
gradually with increasing seeding frequency. At the same time,
the relative measurement error was relatively scattered, and the
overlap points decreased with increasing seeding frequency. The
monitoring stability of the sensor decreased gradually. This may
have occurred because under the condition of a fixed seeding
speed, the greater the seeding frequency was, the smaller the

time interval between the two seeds was. This, in turn, led to the
increase in the seed state and the connection between the seeds
in the state of the multiple seeding. The probability of multiple
seeding and missed seeding increased, and the probability of
sensor misjudgment increased.

To clarify the significance of the sensor monitoring accuracy
under different seeding frequencies, Design-Expert 8.0.6 software
was used to analyze the frequencies of the seeds passing over
the sensor, as shown in Table 4. The P values of the qualified
index relative error, the multiple seeding relative error, the miss-
seeding index relative error and the seeding amount relative
error were all less than 0.0001. The results showed that the
influence of the seeding frequency on the evaluation parameters
was very significant.

Linear regression analysis of the seeding speed was carried
out. Figure 12 shows the linear regression analysis of the seeding
speed to the evaluation parameters. As shown in Figure 12, the
relative errors of the qualified index, multiple seeding, miss-
seeding index and seeding amount all increased gradually with
increasing seeding speed. At the same time, the relative error
of measurement was relatively concentrated, and there were
more overlap points with increasing seeding speed. Although
the monitoring accuracy of the sensor had a downward trend,
the stability did not fluctuate greatly with increasing seeding
speed. This may be because under the condition of fixed seeding
frequency, the greater the seed metering speed was, the faster the
opening and closing speed of the seed-pick finger-clip was. This,

FIGURE 11 | Influence of the seeding frequency on the monitoring accuracy of the sensor. (A) Relative error of the qualified index. (B) Relative error of the reseeding
index. (C) Relative error of the miss-seeding index. (D) Relative error of the seeding amount.
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TABLE 4 | Analysis of seeding frequency variance based on the
evaluation parameters.

Evaluation
parameters

Source of
variation

Sum of
squares

df Mean
square

F-value P-value

The relative
error of the
qualified index

Seeding
frequency

18.41 5 3.68 312.15 < 0.0001

Pure Error 0.14 12 0.012

Total variation 18.55 17

The relative
error of the
reseeding index

Seeding
frequency

103.21 5 20.64 23.36 < 0.0001

Pure Error 10.60 12 0.88

Total variation 113.81 17

The relative
error of the
miss-seeding
index

Seeding
frequency

342.12 5 68.42 76.94 < 0.0001

Pure Error 10.67 12 0.89

Total variation 352.79 17

The relative
error of the
seeding
numbers

Seeding
frequency

23.94 5 4.79 163.43 < 0.0001

Pure Error 0.35 12 0.029

Total variation 24.29 17

in turn, led to a decrease in the stability of the seed from the
seed-pick finger-clip to the seed guide belt. The counting accuracy
of the diffuse reflection photoelectric sensor and rectangular

optical fiber sensor was reduced. This was closely related to
the structure and working principle of the finger-clip corn seed
metering device.

To clarify the significance of the sensor monitoring accuracies
under different seeding speeds, Design-Expert 8.0.6 software was
used to analyze the single factor variance in the speed of seeds
passing over the sensor, as shown in Table 5. The P values of the
qualified index relative error, the multiple seeding relative error,
the miss-seeding index relative error and the seeding amount
relative error were all less than 0.0001. The results showed that
the influence of the seeding speed on the evaluation parameters
was very significant.

DISCUSSION

As the most widely used mechanical seed metering device, the
improvement and effective monitoring of the sowing quality of
finger-clip precision corn seed metering device is of great value
to promote the development of the sowing link of precision
agriculture. The conventional finger-clip precision corn seed
metering device is equipped with a seed guide tube under
it, so it is unable to sowing at zero speed, resulting in the
reduction of seed metering performance when the seeds bounce
and collide. In addition, the structural configuration cannot
meet the layout requirements of sensors. In this study, the seed
guide tube structure was replaced by the lengthened seed guide
belt, which simplified the overall structure. At the same time,
the research was carried out from the aspect of stable delivery
mechanism to achieve the effect of zero speed seed delivery. Due

FIGURE 12 | Influence of the seeding speed on the monitoring accuracy of the sensor. (A) Relative error of the qualified index. (B) Relative error of the reseeding
index. (C) Relative error of the miss-seeding index. (D) Relative error of the seeding amount.
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TABLE 5 | Analysis of the seeding speed variance based on the
evaluation parameters.

Evaluation
parameters

Source of
variation

Sum of
squares

df Mean
square

F-value P-value

The relative
error of the
qualified index

Seeding speed 12.15 5 2.43 256.43 < 0.0001

Pure Error 0.11 12 0.009472

Total variation 12.26 17

The relative
error of the
reseeding index

Seeding speed 170.83 5 34.17 203.29 < 0.0001

Pure Error 2.02 12 0.17

Total variation 172.85 17

The relative
error of the
miss-seeding
index

Seeding speed 414.15 5 82.83 407.54 < 0.0001

Pure Error 2.44 12 0.20

Total variation 416.59 17

The relative
error of the
seeding
numbers

Seeding speed 20.79 5 4.16 262.90 < 0.0001

Pure Error 0.19 12 0.016

Total variation 20.98 17

to the limitation of the structure and metering mode of finger-
clip precision corn seed metering device, the traditional single
sensor monitoring cannot meet its monitoring requirements.
Based on multi-sensor information fusion, a diffuse reflection
photoelectric sensor and a rectangular grating sensor were
configured at the seed guide and seed feeding positions,
respectively, which solved the problem that the traditional
single seed metering device cannot judge the seed overlap,
and effectively improved the monitoring accuracy. In addition,
based on C#, a software interactive interface which was easy
for secondary development was designed. Comprehensive bench
test and field test verified the effectiveness and accuracy of seed
metering quality and monitoring system. This study provides
ideas for the optimal design scheme of zero speed seeding at
a low position, and provides reference for the development of
multi-sensor fusion monitoring system in sowing link.

The performance of mechanical seed metering device
is determined by its seed metering mode, seed guiding
characteristics and inherent properties. Kocher et al. (2011)
pointed out that the uniformity index of seeds is determined
by the seed guide tube. The convention finger-clip precision
corn seed metering device is equipped with a seed guide tube
under it, so it is unable to seed at zero speed, resulting in
the reduction of seed metering performance when the seeds
bounce and collide. When the rotation speed of the conventional
finger-clip precision corn seed metering device was 45r/min, the
coefficient of variation was 17.97% (Wang et al., 2017). In this
study, the bench test of conventional finger-clip precision corn
seed metering device was carried out, and the research results
were basically the same, which was 15.51%. The seed guide tube

structure was replaced by the lengthened seed guide belt, which
simplified the overall structure. At the same time, the research
was carried out from the aspect of stable delivery mechanism to
achieve the effect of zero speed seed delivery. The coefficient of
variation decreased to 5.63% when the speed of seed metering
disk was 45 r/min. In addition, the rotation speed of the seed
metering disk was increased. When the rotation speed of the
seed metering disk was 65 r/min, the qualificated index was
84.7%, the reseeding index was 8.49%, the miss-seeding index
was 6.81%, and the coefficient of variation was 6.83%. If the
seed metering performance needs to be further improved, the
seed metering mode needs to be changed or the reseeding device
needs to be added.

If a single sensor is used for monitoring, the partially
overlapped adjacent seeds cannot generate photoelectric signal
interval pulse, and the system cannot monitor the seed falling
time difference, resulting in missed judgment of overlapped
seeds. When the rotation speed of seed metering disk was
36 r/min, the monitoring accuracy of missed sowing was
85.6% (Ji et al., 2016). In this study, a seed metering quality
monitoring system is developed based on multi-sensor fusion.
The high seed metering speed leads to the decline of sensor
monitoring accuracy, which is consistent with the change trend
of using infrared sensor developed by Karimi et al. (2019).
When the rotation speed of seed metering disk was 35r/min,
the monitoring accuracy of missed sowing was 92.50%, which
effectively improved the monitoring accuracy of missed sowing.
In addition, in order to facilitate debugging, the monitoring
system collects data through the USB to TTL chip on the
upper computer. With the promotion and popularization of
precision agriculture, more and more on-board computers will
be configured on tractors. Later, this study will be transplanted to
on-board computers for practical operation.

The speed of the planter has an important influence on
the sowing performance. With the increase of speed, the grain
spacing increases, the qualified index decreases and the miss-
seeding index increases (Cay et al., 2018; Yang et al., 2019). The
speed of planter directly determines the speed of seed tray, which
is consistent with the results of this study. The speed of seed
tray not only has an impact on seed metering performance, but
also has a certain impact on seeds. The higher the speed of the
seed tray, the greater the impact on the seed when clamping
the seed, which is easy to cause seed damage. Staggenborg et al.
(2004) pointed out that the increase of operation speed will
also reduce the corn yield. In addition, bench experiment and
field experiment was conducted, and the comparison results
was shown in Table 2. The field experiment has little influence
on the accuracy of the monitoring system and has a great
influence on the performance of the seed metering device.
Under the same rotating speed, the seed metering performance
of field experiment was lower than that of bench experiment.
This is mainly due to the uneven field ground, complex and
uncontrollable vibration, which leads to the change of seed
posture in the clamping process, resulting in the phenomenon
of reseeding and miss-seeding. In the later stage, we will focus on
the in-depth research from the corn seed posture as the starting
point to explore the seed damage mechanism under different seed
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metering disk speed and the seed falling posture under different
vibration frequency. In addition, the growth state of maize from
sowing to harvest will be tracked to explore the corn yield under
different working conditions.

CONCLUSION

Through the optimization of the conventional finger-clip
precision corn seed metering device, a long-belt structure was
incorporated in this study. The overall structure and working
principle of the long-belt finger-clip precision corn seed metering
device were described, the mechanism of stable transportation
and delivery was analyzed, and a corn seeding quality monitoring
system was designed. The conclusions were as follows:

(1). The seeding performance of the long-belt finger-clip
precision corn seed metering device and the conventional
finger-clip precision corn seed metering device decreased with
increasing speed for the seed metering tray. Compared with
the conventional finger clip precision corn metering device,
when the rotation speed of the seed metering disk was 65r/min,
the qualified index of the long-belt finger-clip precision corn
seed metering device increased from 75.75 to 84.70%, the
reseeding index decreased from 13.66 to 8.49%, the miss-seeding
index decreased from 10.59 to 6.81%, and the coefficient of
variation decreased from 20.69 to 6.83%. The long-belt finger-
clip precision corn seed metering device can transport and deliver
corn seeds smoothly and effectively to reduce the reseeding index,
the miss-seeding index and the coefficient of variation.

(2). The relative error of the qualified index, the reseeding
index, the miss-seeding index increased with increasing seed
metering tray speed. In the field experiment, the relative deviation
of qualified index increased from 0.28 to 4.67%, the relative
deviation of reseeding index increased from 6.45 to 13.15%,
and the relative deviation of miss-seeding index increased
from 3.13 to 15.71%. The monitoring accuracy of the sensor
decreased gradually.

(3). The effects of the seeding frequency and seeding speed
on the four evaluation parameters were very significant. With

increasing seeding frequency, the relative errors of the qualified
index, the reseeding index, the miss-seeding index and seeding
amount all increased gradually, and the monitoring stability
of the sensor decreased gradually. With increasing seeding
speed, the relative errors of the qualified index, the reseeding
index, the miss-seeding index and seeding amount all increased
gradually, but the monitoring stability of the sensor was
basically unchanged.
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As an emerging cash crop, industrial hemp (Cannabis sativa L.) grown for cannabidiol
(CBD) has spurred a surge of interest in the United States. Cultivar selection and
harvest timing are important to produce CBD hemp profitably and avoid economic
loss resulting from the tetrahydrocannabinol (THC) concentration in the crop exceeding
regulatory limits. Hence there is a need for differentiating CBD hemp cultivars and growth
stages to aid in cultivar and genotype selection and optimization of harvest timing.
Current methods that rely on visual assessment of plant phenotypes and chemical
procedures are limited because of its subjective and destructive nature. In this study,
hyperspectral imaging was proposed as a novel, objective, and non-destructive method
for differentiating hemp cultivars, growth stages as well as plant organs (leaves and
flowers). Five cultivars of CBD hemp were grown greenhouse conditions and leaves and
flowers were sampled at five growth stages 2–10 weeks in 2-week intervals after flower
initiation and scanned by a benchtop hyperspectral imaging system in the spectral
range of 400–1000 nm. The acquired images were subjected to image processing
procedures to extract the spectra of hemp samples. The spectral profiles and scatter
plots of principal component analysis of the spectral data revealed a certain degree of
separation between hemp cultivars, growth stages, and plant organs. Machine learning
based on regularized linear discriminant analysis achieved the accuracy of up to 99.6%
in differentiating the five hemp cultivars. Plant organ and growth stage need to be
factored into model development for hemp cultivar classification. The classification
models achieved 100% accuracy in differentiating the five growth stages and two
plant organs. This study demonstrates the effectiveness of hyperspectral imaging for
differentiating cultivars, growth stages and plant organs of CBD hemp, which is a
potentially useful tool for growers and breeders of CBD hemp.

Keywords: industrial hemp, classification, hyperspectral imaging, image processing, machine learning
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INTRODUCTION

Industrial hemp, or briefly known as hemp, is a crop cultivated
for producing a wide range of industrial and consumer products
(Renée, 2018). Hemp belongs to the same plant species (Cannabis
sativa L.) as marijuana that is mainly used recreationally for
its intoxicating properties. In the United States, hemp is legally
defined as Cannabis sativa L. that contains no more than
0.3% total tetrahydrocannabinol (THC), the compound that is
responsible for getting a person high and more abundant in
marijuana. Because of its association with marijuana, commercial
production of hemp in the United States has been long restricted
until the passage of the 2018 Farm Bill (Schluttenhofer and
Yuan, 2019). As of 2021, all the states in the United States have
legalized hemp production for commercial or research purposes.
There are three main types of hemp that are grown for different
markets, i.e., fiber, oilseed, and cannabidiol (CBD) (Cherney and
Small, 2016; Adesina et al., 2020), among which CBD demand
is currently the driving force for hemp growth (Carpenter and
Peroutek, 2019). While the medicinal uses of CBD are still being
researched, market opportunities for CBD hemp are expected to
be significant, with CBD sales in the United States projected to
reach $23.7 billion by 2023 (Brightfield Group, 2019).

Due to the potential of CBD hemp as an economically viable
crop, many farmers are turning to hemp as an alternative
crop to fit into their current production system and utilize
established farm infrastructure. In a recent survey conducted
among North Carolina organic farmers, 85% of the growers
expressed interest in growing hemp on their farms and the vast
majority intended to grow hemp primarily for CBD (Dingha
et al., 2019). As an emerging cash crop, many uncertainties
surround producing hemp profitably (Adesina et al., 2020),
such as cultivar selection, transplanting dates, planting densities,
fertilization, pest management, and harvest dates. Confounding
these uncertainties is the federal regulatory limit of THC.
Production of hemp with THC levels above 0.3% in the
United States can mean the destruction of hundreds of acres and
loss of thousands of dollars (USDA-AMS, 2021), which could
have been avoided through proper cultivar/variety selection and
improved production practices. Hence there is a practical need
to identify and discriminate hemp phenotypes and cultivars to
facilitate crop management as well as serving forensic purposes.
The growth stage of hemp at harvest time, in addition to
genetics and environmental factors of seed stocks (Campbell
et al., 2019; Glivar et al., 2020), is also an important factor
influencing chemical profiles (e.g., THC and CBD) of the plant
(De Backer et al., 2012; Stack et al., 2021). It is thus also
important to determine growth stages and establish harvest
timing recommendations to maximize CBD contents in hemp.

Hemp cultivars and growth stages can be determined
by agronomic experts who visually inspect morphological
characteristics (e.g., shape, color, and texture) of the plant
organs (e.g., leaves and flowers). Visual inspection is affected by
inconsistency and variability associated with the perception of
inspectors, which is further complicated by significant biological
variations within and among hemp cultivars. Some hemp
cultivars may not be visually distinct and readily differentiated

from each other. Thus, analytical methods, such as gas/liquid
chromatography and mass spectrometry (Capriotti et al., 2021),
have been proposed for differentiating hemp cultivars based on
the chemical fingerprints of the plants (Jin et al., 2017; Wang
et al., 2018; Dong et al., 2019). Although accurate and reliable,
these methods are slow, costly, require sample preparation and
destructive wet-chemistry procedures, and thus are not suitable
for rapid, on-site testing applications. Therefore, it would be
beneficial if a rapid, non-destructive, and objective method
is developed for the differentiation of hemp cultivars as well
as growth stages.

Optical sensing technology, which interrogates biological
materials non-destructively, is considered an attractive means
for addressing the shortcomings of human inspection and
analytical testing. Numerous studies have been conducted on
using spectroscopic techniques for cultivar/variety differentiation
of plants and agricultural products (Cozzolino et al., 2003; Luo
et al., 2011; Lu et al., 2014). Recently, Sanchez et al. (2020)
used Raman spectroscopy for differentiating hemp, cannabis,
and CBD-rich hemp with 100% accuracy. Raman measurements,
however, require direct contact of samples with the spectrometer
to obtain high-quality signals (Sanchez et al., 2020). Duchateau
et al. (2020) used near-infrared spectroscopy for discriminating
legal and illegal hemp, defined by a cut-off concentration of
0.2% THC in European Union countries, obtaining classification
accuracies of 91–95%. Crushing dried hemp plants was required
prior to the spectroscopic measurements (Duchateau et al., 2020).
Cirrincione et al. (2021) reported on using attenuated total
reflectance infrared spectroscopy for the discrimination between
fiber-type and drug-type cannabis samples. Spectroscopic
sensing, however, only measures small portions of plant tissues
and often requires sample treatments (e.g., drying and grinding)
(Duchateau et al., 2020) and direct contact between samples and
the detector (Sanchez et al., 2020).

Hyperspectral imaging is a power modality for measuring
spectral and spatial information of samples simultaneously
(Lu et al., 2020). Compared to spectroscopic techniques that
are used for point measurements, hyperspectral imaging is
advantageous in delivering reliable and comprehensive analysis
of characteristics or properties of plant materials with minimal
sample preparation, requiring no sample contact, and thus is
potentially more suitable for high-throughput, on-site testing.
Pereira et al. (2020) investigated hyperspectral imaging for
identifying hemp leaves under natural conditions, achieving
sensitivity, and specificity values of 89.45% and 97.60%,
respectively. A similar study was conducted by Holmes et al.
(2020) on classifying flowers, stems and leaves of hemp using
hyperspectral imaging. So far, to the best of our knowledge, no
research has been carried out on using hyperspectral imaging for
classifying for cultivars and growth stages of CBD hemp.

Given the limitations of existing methods using visual
assessment and chemical analysis for phenotyping and
characterization of hemp plant materials, the objective of this
research is therefore to present a proof-of-concept validation of a
novel hyperspectral imaging-based approach for non-destructive,
fast, and objective differentiation of cultivars, growth stages and
plant organs (i.e., leaves and flowers) of CBD hemp. Specifically,
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in this research we acquired hyperspectral images from freshly
harvested leaf and flower materials of five cultivars of CBD hemp
at five growth stages using a benchtop hyperspectral reflectance
imaging system, developed an image processing pipeline for
segmenting the plant parts from background and extracting
spectra from sample segments, performed exploratory analysis of
spectral features of hemp samples, and built classification models
to differentiate the cultivars, growth stages, and plant parts.
This study demonstrates the efficacy of hyperspectral imaging
technology as a tool to differentiate cultivars, growth stages and
plant parts of CBD hemp, which will be beneficial for hemp
cultivation and breeding programs.

MATERIALS AND METHODS

Hemp Samples
Five CBD hemp cultivars were used in this study, including
Cherry Wine (CW), BaOx (BX), First Light 58 (FL58), First
Light 70 (FL70), and TJ’s (TJ). These cultivars were chosen as
they were used in a complimentary field trial to determine the
optimum harvest date, and particularly BX and CW represent the
majority of CBD hemp cultivars planted in North Carolina. The
hemp plants were grown in a greenhouse, as shown in Figure 1
(left), at the NC State University Horticulture Field Laboratory
(Raleigh, NC, United States). The trial was arranged in a complete
randomized design containing four replicates. A total of 20 plants
(5 harvest dates × 4 replicates) per cultivar were randomly placed
on greenhouse benches (total 100 plants for five cultivars).

Hemp harvests took place during September to November
of 2020, at 2, 4, 6, 8, and 10 weeks after flower initiation,
corresponding to five plant growth stages. At the time of harvest
or growth stage, four plants were randomly chosen per cultivar
row, corresponding to four replications, and both leaves and
flowers, as shown in Figure 1 (right), were sampled for the
differentiation of hemp cultivars and growing stages. For each
plant, 4 leaves were sampled from its main apical meristem, and
4–6 flowers were sampled depending on the size and number
of flowers on the plant. The details of sample numbers are
summarized in Table 1. The freshly harvested samples were
immediately scanned by a hyperspectral imaging system as
described below.

Hyperspectral Image Acquisition
A portable, benchtop hyperspectral reflectance imaging system
(Figure 2) under controlled lighting was assembled for acquiring
images from hemp samples. The system mainly consisted
of a line-scan hyperspectral camera (Pika XC2, Resonon
Inc., Bozeman, MT, United States), attached with a focusing
lens (Xenoplan 1.4/17, Schneider Kreuznach, Bad Kreuznach,
Germany), a four-fixture, 140-W halogen lamp assembly
(symmetrically oriented with respect to the camera) for providing
illumination over samples, a motorized stage (Resonon Inc.,
Bozeman, MT, United States) and a Spectralon reference target
(SRT-20-020, Labsphere, Inc., North Sutton, NH, United States)
with nominal reflectance of 20%. Synchronized with the camera,
the stage moved a flat sample-holding tray (at a speed of 1 cm/s)

for hyperspectral line scanning. The reference, which was placed
on the tray and scanned along with samples, as shown in Figure 2
(right), was used for standardizing the spectral responses of
the camera. The imaging system was operated in an enclosed
chamber to prevent interference from ambient light.

Image acquisitions were conducted on five harvest occasions
as indicated above. The hemp leaves and flowers were imaged
separately for individual plants. The software SpectrononPro
(Resonon Inc., Bozeman, MT, United States) was used for
controlling the camera and motorized stage during imaging. The
acquired hyperspectral datacube consisted of 462 wavelengths
over a wavelength range of 400–1000 nm (at a spectra resolution
of 1.3 nm), and spatially each scanning line consisted of 1,600
pixels (at a spatial resolution about 0.5 mm2 per pixel for
hemp samples), and the number of scanning lines per datacube
depended on the actual scanning duration.

Image Processing
The acquired hyperspectral images were processed to segment the
reference and hemp samples from the background. Thresholding
is a simple and effective technique for image segmentation,
provided that the image histogram has well-defined modes
corresponding to regions of interests. While a flat, uniformly
colored tray (Figure 3) was used as the background for hemp
imaging, there was still noticeable illumination unevenness in
acquired images (Figure 3), restricting using a global threshold
for object segmentation. To facilitate the segmentation, a robust
algorithm was developed by obtaining a contrast-optimized,
normalized band difference (NBD) image, followed by applying
an INTERMODE thresholding technique (Glasbey, 1993; Lu
and Lu, 2017). NBD is calculated as vegetation indices in
hyperspectral sensing to improve feature discrimination; it
can be defined as in a general form (Ferwerda et al., 2005).
I = (R@λ1 − R@λ2)

/
(R@λ1 + R@λ2), where, R@λ1 and R@λ 1

denote the reflectance images at wavelengths λ1 and λ2
(λ1 > λ2), respectively.

In this study, the best wavelength pair was determined,
as illustrated in Figure 3, by calculating NBD images for all
waveband pairs and choosing the one at which the maximum
image contrast is obtained (Lu et al., 2021). The image contrast
was defined as the ratio of among-class (plant pixels vs. non-
plant pixels) variance to the total variance of an image, following
the principle of the Otsu’s thresholding (Otsu, 1979). As such
two wavelengths 898 nm and 474 nm, in near-infrared and blue
regions, respectively, were identified for calculating NBD images.
It is noted that the algorithm was applied to a single hyperspectral
image and the identified wavelength pair was then generalized to
all other images. As shown in Figure 3, the NDB image is highly
contrasted between hemp samples and the background.

The contrast-optimized NBD images enable the segmentation
of hemp samples and reference by global thresholding. The
histogram of the NBD image, as showed in Figure 4 (left), has
two distinct peaks, and the one at the lower end of the histogram
corresponds to the background and the other corresponds to
hemp samples and the edge of the reference. The INTERMODE
thresholding technique finds the optimal threshold by taking the
average of the two peaks of a bimodal histogram (Glasbey, 1993;
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FIGURE 1 | Hemp plants grown in a greenhouse (left), and flower and leaf for sampling (right).

TABLE 1 | Sample numbers for five hemp cultivars at different growth stages (sampling dates).

Sampling date Cherry Wine BaOx First light 58 First light 70 TJ’s

Leaf Flower Leaf Flower Leaf Flower Leaf Flower Leaf Flower

09/24/2020 16 24 16 22 16 16 16 16 16 16

10/08/2020 16 24 16 21 16 17 16 16 16 16

10/22/2020 16 24 16 21 16 16 16 16 16 16

11/05/2020 16 24 16 22 16 16 16 16 16 16

11/19/2020 16 24 16 21 16 16 16 16 16 16

FIGURE 2 | Schematic (left) and photograph (right) of a hyperspectral imaging system for acquiring images from hemp samples.

Lu and Lu, 2017). Since the raw histogram might not be ideally
bimodal, it was subjected to average smoothing iteratively using
a three-point window, before determining the optimal threshold,
until the smoothed histogram became bimodal. The thresholding
was then followed by routine morphological operations to refine
the initial segmentation. Figure 4 (right) shows an example of the
segmented hemp leaves and reference.

Furthermore, given a hyperspectral datacube for each scan,
mean spectra were extracted for the reference and individual
hemp leaves/flower samples, respectively, by averaging the
spectra of all the pixels in the corresponding region of interest.
Thereafter, ratio spectra were obtained by dividing the spectra of
hemp samples by the spectrum of the reference in the same scan,

to standardize the spectral responses of the camera, and used
for building discriminative models as described below. While
morphological or texture features can also be extracted and fused
with the mean spectra for modeling tasks, only the latter were
used for the modeling tasks and found adequate for yielding high
classification accuracies.

Model Development
Machine learning models were developed to differentiate five
hemp cultivars, five growth stages (corresponding to five
sampling dates) and two plant organs (i.e., leaves and flowers),
respectively. For cultivar differentiation, the models were built
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FIGURE 3 | (Top) Algorithmic procedures of finding a contrast-optimized, normalized band difference image from a hyperspectral datacube. (Bottom) The images
at 898 nm and 474 nm and the corresponding normalized band difference image that exhibits the optimal contrast.

FIGURE 4 | (Left) Raw histogram and bimodal histogram of a contrast-optimized normalized band difference image (Figure 3). The blue downward arrow indicates
the optimal threshold that corresponds to the mean position of the two peaks of the bimodal histogram that is obtained by iteratively smoothing the raw histogram
until it is bimodal. (Right) Segmentation of hemp leaves and a reference using the optimal threshold.

using the spectra of hemp leaves and flowers, respectively, as
well as using the ensemble of hemp leaf and flower samples, at
each growth stage. Furthermore, the ensemble of the samples
from different stages is also examined for model development.
For growth stage differentiation, similarly, classification models
were built using hemp leaves and flowers, respectively, for each
cultivar. Moreover, models were built for discriminating hemp
leaves and flowers for each cultivar at each growth stage. In each
modeling scenario, the spectral dataset was randomly partitioned
into training and test sets according to a ratio of 3 to 1 (Figure 5),
for model training and testing, respectively, and wavelength-wise
data normalization was performed so that the reflectance values
at each wavelength had a zero mean and a unit variance.

Regularized linear discriminant (rLDA) proposed by Guo
et al. (2007) is an extension to the classic LDA specifically for
solving classification problems with high-dimensional data. By
regularizing the covariance matrix and thresholding (shrinking)
the linear coefficients, rLDA is sufficiently robust for modeling
high-dimensional data and also very competitive to other
far more computation-expensive classifiers such as support
vector machine (Guo et al., 2007). Hence, rLDA was chosen
for the modeling tasks in this study. There are two tunable
hyperparameters in rLDA, i.e., the regularization parameter γ

(0 < γ < 1) and threshold (or shrinkage) parameter δ (δ > 0).
When there are more predictors (variables) than samples, which
typically holds true for high-dimensional data, the optimal
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FIGURE 5 | Discriminative modeling of hyperspectral data using regularized
linear discriminant analysis (rLDA) for classifying hemp cultivars, growth
stages, and plant organs (leaves vs. flowers). For rLDA, two hyperparameters
γ and δ are optimized through Bayesian optimization based on 10-fold cross
validations during model training.

value of γ is shifted toward 0 (Guo et al., 2007); a higher
value of δ implies fewer variables incorporated into the model,
which has the effect of variable selection for modeling. Here
the two hyperparameters were determined through Bayesian
optimization (Snoek et al., 2012) in the context of 10-fold cross
validations on the training data, over a range of [0, 0.01] and
[1e-3, 1e3] for γ and δ, respectively. The search ranges were
chosen based on preliminary testing. Because of the randomness
of the spectral data partition, it would be desirable to repeat
the modeling procedures multiple times with random dataset
partition for obtaining a reliable estimate of model performance.
In this study, a repeated holdout validation strategy (also referred
to as Monte Carlo cross validation) was performed to avoid
potential pitfalls of single data partition (Raschka, 2018). Given
the efficiency of rLDA, a relative high number of 30 modeling
replications were conducted (Figure 5), and the resultant mean
value of the classification accuracies (the percentages of the
number of correctly classified samples of the total sample
number) on the test data was computed for model evaluation.
Further, statistical comparisons were conducted on the mean
classification accuracies among different models using Fisher’s
least significant procedure at the 5% significance level.

All the analyses for image preprocessing, feature extraction
and model development were performed in Matlab R2020b (The
Mathworks, Inc., Natick, MA, United States).

RESULTS AND DISCUSSION

Exploratory Analysis
Figure 6 shows the spectra of hemp samples of the five different
cultivars harvested 4 weeks after flower initiation and the spectra
of one cultivar at all the growth stages (2–10 weeks after flower
initiation). Like other green plants, the spectra of hemp leaves

and flowers are characterized by low reflectance in the visible
range due to absorption of plant pigments, and reflectance
rising rapidly at wavelengths around 700 nm and plateauing
in the NIR region, due to reduced absorption and increased
scattering of plant tissues in the region (Horler et al., 1983).
The major reflectance valley (i.e., the absorption peak) occurring
around 670 nm is attributed to the absorption of chlorophylls.
Large spectra variations are observed in the visible (450–650 nm
around the green band) and NIR regions, among the samples
harvested at different plant growth stages. These variations are
associated with the dynamics in the chemical profiles (e.g.,
pigments and water) of plant organs as the plant matures. It
seems more apparent that spectral reflectance of hemp leaves
increased with the plant age, which is probably due to leaf
senescence-induced degradation of chlorophylls (Merzlyak et al.,
1999). Water loss accompanying senescence of plant tissues also
contributes to increased reflectance in the NIR range (Hunt and
Rock, 1989), which may explain high NIR reflectance of hemp
flowers in the last scan.

The hemp samples cannot be directly distinguished for the five
cultivars from the spectral profiles, because of strong overlapping
(Figure 6 top); whereas there are more noticeable differences
in the spectral profiles among the five growth stages (Figure 6
bottom), and between hemp leaves and flowers. To visualize
the distribution of hemp samples of different cultivars, principal
component analysis (PCA) was performed on the spectral data.
Figure 7 shows an example of the scatter plots for the hemp
samples shown in Figure 6. The first two principal components
(PCs) account for 87.0% and 91.3% of the total variance of the
spectral data of leaf and flower samples, respectively. The scatter
plots allow visualizing the unsupervised separation of samples
of different classes. Clearly, the samples of five cultivars do not
form distinct, well-separated clusters in the PC space, which is
also true in the plots by the top three PCs that explain over
96% of the total variance (3D scatter plots are not presented).
Similar findings are also observed for the samples harvested
at other growth stages. In contrast, the hemp samples among
the different growth stages, and especially between plant organs
(leaves and flowers) form better-resolved separated groups in the
PC space as shown in Figure 8. Despite the qualitative analysis,
this result suggests that hemp cultivars would not be readily
discriminated though unsupervised analysis, highlighting the
need for potent supervised classification techniques to distinguish
hemp cultivars, and that high accuracies would be achieved in
classifying the growth stages and plant organs.

Classification
The machine learning models based on rLDA were first
developed for differentiating the hemp cultivars using the spectral
data of leaf and flower samples separately as well as their
combination, at each growth stage (harvest dates). In each
scenario, discriminative models were built and tested over 30
replications with random dataset partition for each replication,
and the mean overall classification accuracy on test data was
calculated and used as the metric of classification performance.

Figure 9 shows the classification accuracy, with statistical
comparisons made between the accuracies at each growth stage.
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FIGURE 6 | (Top) Mean spectra of five cultivars (i.e., BX, TJ, CW, FL58, and FL70) of hemp flowers and leaves harvested 4 weeks after flower initiation and
(Bottom) mean spectra of the cultivar Cherry Wine harvested at all the five growth stages. The reflectance (a.u.) is a relative quantity obtained by diving a sample
spectrum by that of the standard reference (section “Hyperspectral Image Acquisition”) with nominal reflectance of 20%.

FIGURE 7 | Scatter plots in the space spanned by the first two principal components (PCs) for five cultivars of hemp flowers and leaves 4 weeks after flower initiation
(Figure 6). The percentage value in parentheses indicates the variance portion explained by the corresponding PC.

FIGURE 8 | (Left) Scatter plots in the space spanned by the first two principal components (PCs) for hemp sample at five growth stages (2–10 weeks after flower
initiation). (Right) Scatter plots of the first two PCs for hemp flowers and leaves harvested week 4 after flower initiation. The percentage value in parentheses
indicates the variance portion explained by the corresponding PC.

Although the PCA of leaf and flower spectra could not reveal
a good separation among different hemp cultivars, the rLDA
models based on the leaf or flower samples achieved high

classification accuracies ranging 96.8% to 99.6%, with standard
errors of less than 1%. The classification accuracies vary with
plant organ and growth stage. The leaf samples yielded a
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FIGURE 9 | Classification accuracies in differentiating hemp cultivars based on the samples at each growth stage. The classification accuracy is obtained by
averaging the accuracies in 30 modeling replicates, and the error bar indicates the corresponding to the (positive/negative) standard error. At each growth stage, the
two accuracies with different letters are statistically different at the 5% significance level.

FIGURE 10 | Confusion matrices (rows and columns correspond to true and predicted labels, respectively) for hemp cultivar classification based on the
hyperspectral data of flower samples. Each confusion matrix is obtained by pooling and row-wise normalizing classification results over 30 modeling replications.

significantly (+2.6%) better accuracy than that obtained by the
flowers at the first growth stage, but a significantly (−2.7%) lower
accuracy at the last stage. At the three intermediate stages, the
accuracies by the leaves and flowers were similar. It is interesting
to note that the accuracy obtained by the leaf samples exhibited a
decreasing trend with growth stage, as opposed to an increasing
trend for the accuracy by the flowers. The reason underlying
this phenomenon has not been fully understood. At week 2,
the earliest harvest stage (2 weeks after flower initiation), the
flower buds were tiny (3–5 mm) and sticky, which could cause
sampling errors. The chemical components (e.g., cannabinoids
and cellulose) that are found to be indicative of hemp cultivars
(Sanchez et al., 2020) may have low concentrations at this stage,
which remains to be validated by a further study on chemical

analysis of hemp samples. At later growth stages (8–10 weeks
after flower initiation), a few hemp plants had minor spider mite
(Tetranychus urticae) infestation on the leaves, which could also
confound the discrimination of hemp cultivars.

Figure 10 shows confusion matrices for cultivar classification
based on the hyperspectral data of flower samples. Each of the
matrices is obtained by pooling and row-wise normalizing the
classification results on test data for 30 modeling replications.
The overall classification accuracies are similar among hemp
cultivars, and there is no consistent pattern of the most or least
correctly classified cultivars over the five growth stages. Similar
findings were also observed for models based on the data of hemp
leaves and the ensemble of flower and leaf samples (confusion
matrices not presented). Compared to the results attained using
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FIGURE 11 | Classification accuracies in differentiating hemp cultivars by
pooling samples at all the growth stages. The classification accuracy is
obtained by averaging the accuracies in 30 modeling replicates, and the error
bar indicates the corresponding to the (positive/negative) standard error. The
two accuracies with different letters are statistically different at the 5%
significance level.

the leaf and flower samples separately, the combined data of
yielded statistically diminished or similar accuracy with the
lowest and highest values of 95.8% and 99.3% at week 2 and 8,
respectively (Figure 9).

In addition to modeling the samples at individual growth
stages, the samples collected from different growth stages were
also pooled together to build models for cultivar classification.
Here, three types of models were built by pooling all the leaf
samples, the flower samples and their combination at the five
growth stages, resulting in the accuracies of 91.9%, 91.8%, and
82.8%, respectively, as shown in Figure 11. The combination of
leaf and flower samples led to a significantly lower accuracy than
modeling them separately. Compared to the results of models
for individual growth stages (Figure 9), the accuracies obtained
from pooling the samples across growth stages resulted in a
marked accuracy reduction of 5.03% to 16.4%. This is likely
because of the added variations or complexities (e.g., in flower
morphology and chemical constituents, and pest infections in
leaves) that could not be well modeled by the rLDA classifier
using existing datasets. Upon examination of the corresponding
confusion matrices (Figure 12), the misclassification between the
cultivars BaOx (BX) and Cherry Wine (CW) contributed the
most to the overall accuracy deterioration, while comparable,
noticeably higher accuracies were obtained for the other three
cultivars. Although modeling the leaf or flower samples alone at
similar growth stages led to better accuracy in classifying hemp
cultivars, it would be desirable to have models that are robust to
variations associated with plant organs and growth stages. Hence
it is worthy of further investigations to exploit more advanced
pattern classification algorithms, on a larger, more diverse set of
hemp samples, to improve the accuracy of cultivar classification
regardless of growth stages or plant organs.

Overall, these classification results demonstrate that
hyperspectral imaging coupled with supervised modeling is
a viable means for differentiating hemp cultivars with high
accuracy, and that the growth stage and plant organ need to be
factored in developing cultivar classification models.

Furthermore, rLDA models were built for discriminating the
five growth stages and plant organs (leaf and flower) for each

of the five hemp cultivars. The classification accuracies of 100%
with zero standard error in 30 modeling replications (Figure 13)
were obtained in all the scenarios. The superior results are not
unexpected given the clear separation of different categories
observed in the PCA space (Figure 8). The results are also in
good agreement with the findings in literature. Borille et al. (2017)
achieved 100% accuracy in discriminating three growth stages
of Cannabis sativa using NIRS combined with support vector
machine. Holmes et al. (2020) applied hyperspectral imaging
in 900–1700 nm for discriminating flowers, stems and leaves
of Cannabis sativa and achieved near 100% precision based on
decision tree modeling. All these findings conceivably verify the
prowess of hyperspectral imaging for accurately discriminating
plant growth stages and organs (leaf and flower). Moreover, the
perfect classification of growth stages can be potentially beneficial
for improving the classification of hemp cultivars at varying
growth stages by deploying cascade classifiers for classifying both
hemp growth stages and cultivars.

Discussion
It is important to point out potential areas for further
improvements. Although the standard reference (2” × 2” in size)
was scanned along with hemp samples for spectral correction,
it was not still sufficient for accounting for the spatial non-
uniformity of illumination over the scanning line. It is more
desirable to use a larger reference for imaging so that the spectral
correction of samples can be performed at a pixel level along the
scanning line. An alternative solution is to improve the lighting
design to provide uniform illumination over samples. Using two
line-light illuminators positioned symmetrically to the camera
axis (Ariana and Lu, 2010), instead of the four-lamp setup in this
study (Figure 2), may improve the illumination uniformity. This
research and other previous studies on hyperspectral imaging
for cannabis plants or hemp (Duchateau et al., 2020; Holmes
et al., 2020; Pereira et al., 2020) did not consider spatial or
textural features for modeling. Arguably these features are also
useful for plant classification tasks such as cultivar differentiation,
since different cultivars of hemp leaves and flowers are likely
to have different morphological features, regardless of growth
stages, based on which experienced agronomic experts tell apart
different crop cultivars. Further research is hence warranted
to extract textural features and exploit strategies of fusing
them with spectral features for improving the differentiation of
hemp cultivars. Meanwhile, wavelength selection or dimension
reduction (e.g., PCA) can be conducted to facilitate texture
feature extraction.

The present study only conducted hyperspectral scanning for
sampled plant organs (e.g., leaves and flowers) in controlled-light
settings. For high-throughput testing and a further validation of
the hyperspectral imaging approach, further studies are needed
to perform in-situ scanning of hemp plants under natural light
conditions, requiring no sampling of plant parts. Harvesting
hemp for maximum CBD yield while avoiding THC exceeding
legal thresholds requires quantification of these chemical
compounds in plant organs (especially flowers). Investigations
are underway to determine the feasibility of using hyperspectral
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FIGURE 12 | Confusion matrices for hemp cultivar classification using the samples from all the growth stages. Each confusion matrix is obtained by pooling and
row-wise normalizing classification results over 30 modeling replications.

FIGURE 13 | Classification accuracies in differentiating plant growth stages (left) for each hemp cultivar (i.e., BX, TJ, CW, FL58, and FL70) and plant organs (right)
at each growth stage. 100% accuracy is obtained in all the modeling scenarios with zero standard deviation for 30 replications.

imaging for screening hemp genotypes based on CBD and THC
concentrations in plant tissues at different growth stages.

CONCLUSION

In this study we propose a new methodology of using
hyperspectral imaging for differentiating cultivars, growth stages,
and plant organs (leaves and flowers) of CBD hemp. Fresh leaves
and flowers of five hemp cultivars, harvested at five growth stages
2–10 weeks after flower initiation, were scanned by a benchtop
hyperspectral reflectance imaging system in the wavelength
range of 400–1000 nm. An image processing algorithm was
developed for segmenting samples from background. The
spectral profiles and PC score scatter plots of hemp samples,
to a varying degree, revealed the separation among the hemp
cultivars, growth stages and plant organs. The rLDA models,
using leaf or flower samples at individual growth stages,
achieved the classification accuracies of 96.8%-99.6% in the
differentiation of hemp cultivars. Pooling leaf and flower
samples at all growth stages resulted in deteriorated accuracies
compared to modeling samples at individual growth stages.
Both growth stages and plant organs need to be factored in
model development for hemp cultivar classification. In contrast,
in the differentiation of growth stages and plant organs, the
rLDA models achieved 100% accuracies consistently. This study

shows that hyperspectral imaging can be used for non-destructive
and accurate differentiation between hemp cultivars, growth
stages and plant organs, and it is a potentially valuable tool
for phenotyping, cultivar selection and optimization of harvest
timing in CBD hemp production. Extensive research is still
needed to develop and deploy hyperspectral imaging technology
for field-scale, in-situ applications.
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Precise segmentation of wheat spikes from a complex background is necessary for
obtaining image-based phenotypic information of wheat traits such as yield estimation
and spike morphology. A new instance segmentation method based on a Hybrid
Task Cascade model was proposed to solve the wheat spike detection problem
with improved detection results. In this study, wheat images were collected from
fields where the environment varied both spatially and temporally. Res2Net50 was
adopted as a backbone network, combined with multi-scale training, deformable
convolutional networks, and Generic ROI Extractor for rich feature learning. The
proposed methods were trained and validated, and the average precision (AP) obtained
for the bounding box and mask was 0.904 and 0.907, respectively, and the accuracy
for wheat spike counting was 99.29%. Comprehensive empirical analyses revealed
that our method (Wheat-Net) performed well on challenging field-based datasets
with mixed qualities, particularly those with various backgrounds and wheat spike
adjacence/occlusion. These results provide evidence for dense wheat spike detection
capabilities with masking, which is useful for not only wheat yield estimation but also
spike morphology assessments.

Keywords: wheat spike, instance segmentation, Hybrid Task Cascade model, challenging dataset, non-structural
field

INTRODUCTION

Wheat is the most widely cultivated cereal crop and also one of the most important food sources
for humans in the world. The spike is the most important component of the wheat plant because
it contains the seeds that are harvested and ultimately consumed. Therefore, in-field automated
wheat spike detection based on remote sensing is an important step toward yield estimation and
spike morphology assessments.
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To detect wheat spikes, the remote sensing imaging devices
are useful tools to replace traditional artificial detection (Aparicio
et al., 2000). Hyperspectral imaging cameras can provide rich
spectral information for wheat detection (Shen et al., 2021), but
the cost of hyperspectral imaging is expensive, which restricts
the application in various fields (Zhang et al., 2020). Thus, the
cheaper RGB imaging camera is a realistic alternative to achieve
effective wheat detection. Deep learning (DL) with strong feature
learning abilities has spawned a multitude of applications in RGB
images. It encodes the composition of lower-level features into
more discriminative higher-level features (Ni et al., 2019). DL
can solve more complex problems with higher precision and has
been successfully used in plant classification (Sun et al., 2019;
Yang et al., 2019; Khaki et al., 2020), yield prediction (Pound
et al., 2017; de Luna et al., 2020; Zhuang et al., 2020), growth
monitoring (Kovalchuk et al., 2017; Qiongyan et al., 2017),
and disease/pest detection (Senthilkumar et al., 2017; da Silva
et al., 2019; Desai et al., 2019). Thus, DL, with its advantages
of high precision and intelligence, is an attractive alternative to
conventional wheat spike detection methods (Germain et al.,
1995; Cointault et al., 2008a,b).

Recently, DL has been shown to perform well in a wide
variety of wheat spike detection studies. Some previous works
involving wheat detection have been conducted under laboratory
conditions and controlled environments (Hasan et al., 2018;
Sadeghi-Tehran et al., 2019; Chandra et al., 2020; Misra
et al., 2020). Laboratory-based experiments have good lighting
conditions and a clean background, which is not the case for field-
based research, which is more complicated and yields images
where the background usually contains a lot of disturbances
(including soil and weeds). The complicated background greatly
increases the difficulty of resolving individual wheat spikes but
represents the actual growing environment of wheat. Thus,
models developed from the field are more realistic of real-world
conditions for wheat cultivation. Several in-field spike detection
and counting studies have been conducted (David et al., 2020,
2021; Xu et al., 2020; Wang et al., 2021). Among them, David
et al. (2021) constructed a more diverse and less noisy Global
Wheat Head Detection (GWHD) dataset, which promoted the
development of wheat spike detection. The detection results
from these studies were based on bounding boxes, which can
be used for counting wheat spikes. However, the precise pixel
areas of wheat are often required in wheat management (such
as evaluation of spikes disease and accurate yield prediction),
which cannot be achieved by detecting the bounding box only
by segmentation. Segmentation provides information such as
size, shape, and relative location of the segments in the image,
which can be used for phenotypic traits such as spike size, shape,
distribution, and wheat yield potential. Therefore, it is necessary
to explore an approach of segmenting wheat spikes to meet the
needs for precise spike areas in wheat management.

There are some researchers who have used semantic
segmentation algorithms to segment wheat spikes in the field
with a simpler environment by controlling some factors in the
experiment. For example, in implementing a Fully Convolutional
Network (FCN) segmentation model of individual wheat spikes,
Zhang et al. (2019) positioned spikes to avoid occlusion–an

intervention that does not simulate the actual growing conditions
of wheat in the field. Alkhudaydi et al. (2019) employed FCN to
segment multiple wheat spikes, which achieved a Mean Accuracy
(MA) of classification of > 76%. However, their model performed
poorly under challenging conditions caused by variable lighting
and weather (Alkhudaydi et al., 2019). Tan et al. (2020)
performed simple linear iterative clustering (SLIC) for superpixel
segmentation of digital wheat images, which resulted in a high
accuracy (94.01%) under high nitrogen fertilizer level and a lower
accuracy (80.8%) under no nitrogen fertilizer application. Ma
et al. (2020) developed EarSegNet to segment multiple wheat
spikes from canopy images captured under field conditions and
realized a precision of 79.41%. However, semantic segmentation
algorithms cannot segment wheat spikes out individually when
they are obstructed by other spikes, which is a common situation
under field conditions.

Instance segmentation can effectively segment partially
obstructed wheat spikes. This method localizes objects of interest
in an image at the pixel level, which achieves both object detection
and semantic segmentation (Li et al., 2017; Chen et al., 2019).
With instance segmentation, the segmented objects are generally
represented by masks and a bounding box (bbox); however,
few studies have been advanced using instance segmentation for
detecting wheat spikes under field settings. Qiu et al. (2019) used a
Mask RCNN model to reliably detect wheat spikes (mean average
precision is 0.9201) with different shapes and features in the field.
However, to achieve these results, they used a background plate
to block complex backgrounds and also a shade shed to provide
even lighting, which reduced the complexities of image capture
and subsequent annotation. They also divided the original image
into many smaller images, which resulted in image distortion.
This, in turn, resulted in images with only partial objects or no
objects at all, which would destroy the integrity of the wheat
spikes. In our previous research (Su et al., 2021), we basically
realized the instance segmentation of wheat in a complex field
environment, but its low accuracy cannot meet the needs of
practical applications and further research is necessary to achieve
high-precision instance segmentation.

In summary, the object detection of wheat is insufficient for
accurate phenotype study and semantic segmentation cannot
segment common occlusive wheat spikes. Instance segmentation
methods can solve the above problems, but the conventional
instance segmentation methods of wheat are either in laboratory
conditions or controlled environments or have low accuracy,
etc., which may not be suitable for phenotyping spikes under
complex field environment. Therefore, it is necessary to explore
a more applicable and accurate approach for segmenting
wheat spikes under field conditions. Therefore, the specific
objectives of this study were to: construct a new instance
segmentation model (called Wheat-Net) based on a multi-task
Hybrid Task Cascade (HTC) model (Chen et al., 2019) that
can precisely instance segment wheat spikes in high densities
in the field. Comprehensive empirical analyses reveal that
Wheat-Net achieved excellent performance on a challenging
dataset with various complex backgrounds and a high level
of obstruction. In a complex, unstructured environment, our
method not only accurately detected the wheat spikes with
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bounding boxes but also extracted spike regions from the
background at the pixel level.

MATERIALS AND METHODS

Data Collection
Wheat genotypes were sown in field plots on the St. Paul
campus of the University of Minnesota (UMN) in 2019. These
genotypes included mostly breeding lines from the UMN hard
red spring wheat breeding program, which can vary for different
spike morphology traits such as color, shape types as well as
spike density. The images at the late flowering stage (July 11)
to the milk stage of maturity (August 2) were collected from
the field including 20 wheat genotypes, which can enhance the
adaptability of the model to different wheat genotypes. In the
complex field environment, we used the camera of Canon EOS
Rebel T7i (autofocus single-lens reflex, pixels: 6,000 × 4,000) to
collect image data under different weather conditions (including
sunny and cloudy days). The exposure time, white balance, and
ISO speed were automatically set based on the automatic mode
of camera. The distance from the object is about 1–2 m. The
wheat images collected had complex backgrounds, including
weeds, soil, blurred wheat, blue sky, and white clouds. We expect
that users take images of the wheat/barley trial plots with very
loose image acquisition requirements (e.g., imaging angle and
distance). Therefore, we acquired the current dataset with various
angles and distances, which also can increase the diversity of data
and enhance the adaptability and robustness of the model.

Wheat is typically a dense crop and the images (Figure 1A)
collected contained as many as 124 spikes per image. In
addition, it was common that portions of images had insufficient
illumination (blue box with zoom-in shown in Figure 1B).
Moreover, the above factors also resulted in many problems such
as spike adjacence (Red box with zoom-in shown in Figure 1C),
occlusion, variation in spike size, and partial spikes on the image
edge (Yellow box with zoom-in shown in Figure 1D). The spike
occlusion problem was the most serious problem and included
various scenarios such as spikes over spikes (Figure 2A), leaves
over spikes (Figure 2B), stems over spikes (Figure 2C), and
awns over spikes (Figure 2D). Although the above factors greatly

increase the segmentation difficulty, they encompass the true field
environment and are helpful to improve the robustness of the
spike segmentation model.

The high complexity of the images brings great challenges
to artificial annotation. The artificial image annotation software,
Labelme (Russell et al., 2008), was used to label the ground truth
for wheat spikes using polygons. Figure 3 shows the annotation
of the images in this paper. To obtain high-quality annotated
datasets, we enlarged the image about 200% or larger and selected
the dense points along the outside edge of every spike to form an
accurate spike region. However, there are still several very blurred
spikes in the enlarged picture, which cannot be distinguished
by the humans and are not annotated. Our group put a lot of
effort in annotation and we believe this dataset can promote
further wheat phenotypic studies. These annotated images were
used to calculate the loss and optimize the model parameters
during model training. In machine learning, about 2/3 to 4/5
of the datasets are usually used for training, and the remaining
images are used for testing. Therefore, there are 524 images in the
training set (12,591 spikes) and 166 images in the test set (4,934
spikes) in this paper.

Methods of Wheat Instance
Segmentation
Architecture of Wheat-Net
In this study, instance segmentation was the key protocol
implemented to reliably detect and segment wheat spikes in
a complex non-structural environment. We built the wheat
spike instance segmentation model, Wheat-Net, for our high-
complexity dataset based on the HTC model (Chen et al., 2019),
which is a novel cascade architecture for instance segmentation.
The HTC model has a powerful cascade structure that enhanced
performance on various tasks. It solved the problem of
insufficient information flow between mask branches at different
stages in Cascade Mask RCNN, which is a direct combination
of Cascade RCNN (Cai and Vasconcelos, 2021) and Mask
RCNN (He et al., 2017). The HTC model effectively integrated
cascade into instance segmentation by interweaving detection
and segmentation for joint multi-stage processing, achieving
outstanding performance on COCO (Common Objects in

FIGURE 1 | (A) An example of an original image of a wheat plot indicating sections (blue, red, and yellow boxes) enlarged to show (B) an area with incomplete
illumination, (C) adjacent spikes in close proximity, and (D) partial spikes on the edge of the images.
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FIGURE 2 | Examples of various spike occlusion scenarios: (A) spike over spike, (B) leaf over spike, (C) stem over spike, and (D) awns over spike.

FIGURE 3 | Annotation of wheat spikes: (A) the original image of a wheat plot, (B) the image with annotated wheat spikes, and (C) details of a single annotated
spike.

FIGURE 4 | The architectures of Wheat-Net. “POOL” region-wise feature extraction, “B” bounding box, and “M” mask. “S” is semantic segmentation branch.

Context) test-dev and test-challenge (Lin et al., 2014). We
cascaded three Mask RCNN networks to build the Wheat-
Net (Figure 4). The advantages of this model can be ascribed
to three key aspects. (1) It interleaved the box and mask
branches (the green lines in Figure 4) based on Cascade Mask
RCNN. This improvement allowed the mask branch to take
advantage of the updated bbox. For instance segmentation of

wheat spikes, the bbox information is very important for wheat
mask segmentation. If bbox detects two adjacent spikes as the
same object, the model will difficult to segment them. Therefore,
the interleaving of box and mask branches can help to achieve
more accurate wheat spike segmentation. (2) It made full use
of the mask feature of the preceding stage by adding a direct
information flow between mask branches (the blue lines in

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 13 | Article 834938137

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-834938 February 5, 2022 Time: 15:14 # 5

Zhang et al. Instance Segmentation of Wheat Spikes

Figure 4). The direct information flow can learn more abundant
multi-scale information of wheat from complex images, which
further improved the accuracy of wheat segmentation. (3) It
explored more contextual information by adding a semantic
segmentation branch (the red lines in Figure 4), which can help
the wheat spikes to be segmented accurately from the complex
background. The above optimizations are combined (Equations
1–5) for better predictions, which effectively improved the
utilization of information and enhanced performance.

rt = Bt(xboxt ) (1)

xboxt = p (x, rt−1)+ p(S (x) , rt−1) (2)

xmask
t = p (x, rt)+ p(S (x) , rt) (3)

mt = Mt(F(xmask
t , m−t−1)) (4)

F
(

xmask
t , m−t−1

)
= xmask

t + gt(m−t−1) (5)

Where x is the feature of the backbone network, xbox
t and

xmask
t denote box and mask features of x and the input Region

of Interest (RoI). S indicates the semantic segmentation head.
The box and mask heads of each stage take the RoI features
extracted from the backbone as input. p (·) is a pooling operator,
Bt and Mt indicate the box and mask head at the t-th stage.rt
and mt represent predictions of box and mask, respectively. m−t−1
indicates the intermediate feature of Mt−1. F is a function that
combines the features of the current stage and the preceding one.
gt denotes a 1× 1 convolutional layer.

Optimization of Wheat-Net
Different backbones have an important effect on the performance
of the model because of their differences in feature extraction
ability. Res2Net50 (Gao et al., 2021; Figure 5B) represents multi-
scale features at a granular level and increases the range of
receptive fields for each network layer, which is different from
the concurrent bottleneck structure shown in Figure 5A, such as
ResNet (He et al., 2016). Specifically, it replaces the 3× 3 filters of
n channels with a set of smaller filter groups, which are connected
in a hierarchical residual-like style to increase the number of
scales that the output features can represent. It can capture
more details and global features of wheat without increasing
calculations for wheat segmentation. ResNeXt (Xie et al., 2017)
is an improved model of ResNet (Figure 5C), and is constructed
by repeating a building block and the transformations to be
aggregated, all of the same topology. It is a simple, homogeneous,
and multi-branch architecture, which can extend to any large
number of transformations without specialized designs. In the
experimental part of this paper, we compare the performance of
the above-mentioned backbones in our dataset.

Deformable convolutional networks (DCN) (Dai et al., 2017)
were integrated into our model because they provide a solution
to model dense spatial transformations and are effective for

sophisticated vision tasks. DCN allowed free deformation of
the sampling grid as shown in Figure 6, which added offsets
learned from target tasks to the regular sampling grid of
standard convolution without additional supervision. DCN can
help to solve the geometric deformation and enhance the
robustness of the model for segmenting various sizes and angles
of wheat spikes.

In our model, feature pyramid networks (FPN) (He et al.,
2017) extracted RoI features from different levels of the feature
pyramid by using a top-down architecture. These different
features, generated and fused by FPN, comprised the inputs of
the Region Proposal Network (RPN) (Ren et al., 2017). RPN
predicted object bounds and objectness scores to efficiently
generate region proposals with a wide range of scales and
aspect ratios. Generic RoI Extractor (GRoIE) (Rossi et al., 2020)
was used to extract the RoI. Since all layers of FPN retain
useful information of wheat spikes, non-local building blocks
and attention mechanisms were introduced to extract more
information of wheat and overcome the limitations of existing
RoI extractors, which select only one (the best) layer from
FPN. They also can be integrated seamlessly with the two-
stage architectures for instance segmentation tasks for superior
performance compared to traditional RoI extractors (Pont-Tuset
et al., 2017). Multi-task learning (Caruana, 1997) combined all
tasks into a single model: that is, what is learned for each task
can help other tasks be learned better. In this paper, we used
multi-task learning to achieve both target detection and semantic
segmentation of wheat spikes. Hence, Multi-task learning can
improve learning efficiency and prediction accuracy by learning
multiple objectives from a shared representation.

As an important part of the object detection pipeline, non-
maximum suppression (NMS) could sort the detection bbox
based on their scores (Rosenfeld and Thurston, 1971), select the
detection bbox with the highest score and suppress all other bbox
that had significant overlap (using a predefined threshold) with
it. However, NMS might lose the objects that are within the
predefined overlap threshold. Due to wheat is dense plant, there
are a lot of overlap wheat spikes in the images. NMS might only
detect one spike between two overlap spikes. Bodla et al. (2017)
proposed a Soft-NMS algorithm to prevent objects from being
eliminated. It decayed the detection scores of all other objects as
a continuous function of their overlap. In the experimental part
of this paper, we conducted a comparative experiment between
NMS and Soft-NMS.

The size of the input image had a significant impact on model
performance. Because we collected images with various shooting
distances and angles, the dataset contained many small spikes. In
our paper, small and big spikes are labeled as ground truth, which
is more in line with the actual field of wheat. Because the feature
map generated by the network was much smaller than the original
image, the model may lose features of small spikes and unable
to detect small spikes. Therefore, if the model fails to detect
small wheat spikes, the performance of the model will be affected.
Multi-scale training (He et al., 2015), which defines several fixed
scales in advance and randomly selects a scale for training in each
epoch, can effectively improve this limitation. Therefore, we used
images of multiple scales for training to improve the robustness

Frontiers in Plant Science | www.frontiersin.org 5 February 2022 | Volume 13 | Article 834938138

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-834938 February 5, 2022 Time: 15:14 # 6

Zhang et al. Instance Segmentation of Wheat Spikes

FIGURE 5 | Comparison between different backbones for Wheat-Net. (A–C) Are the block of ResNet, Res2Net, and ResNeXt, respectively.

FIGURE 6 | Different calculation positions under: (A) standard convolution (blue points); (B) deformable convolution (with green points). (C,D) Are special cases of
(B), showing that the deformable convolution generalizes scale and rotation transformations.

and accuracy of our model. Due to memory constraints, the
short-side of the input images was randomly selected from 416
to 1,184, and another side’s size was calculated according to the
aspect ratio of the original image’s size.

Learning rate (LR) was one of the most important
hyperparameters in training. If the LR is large at the beginning of
training, the model may become unstable, making it difficult to
reach the optimal solution. To address this, we used warm-up LR
(He et al., 2016) to improve the training situation. Warm-up LR
allows the LR to gradually increase from a small value in the first
few epochs until the initial LR is reached. In this way, the model
can gradually stabilize, and the convergence speed becomes faster
after stabilization.

As an important hyperparameter in deep learning, LR could
determine whether and when the model can converge. A large LR
will make the model fluctuate greatly, and it is difficult to reach
the optimal solution. In addition, as the number of iterations
increases, the LR will continue to decay to reduce fluctuations of
model. We chose two popular LR decay methods and compared
them in the experimental chapter: one was MultiStepLR, which
used the dynamic step to update the LR, and the other was
CosineAnnealingLR, which decayed the LR periodically based on

the cosine function. Hyperparameters of the model were adjusted
and optimized based on multiple experiments. Finally, the initial
LR was set to 0.0025 and adjusted every 20 epochs with a decay
factor of 0.5. The other hyperparameters of the model are shown
in Table 1.

Eventually, a new wheat spike segmentation method based
on the HTC model combined with the backbone of Res2Net50,
deformable convolutional networks, and Generic RoI Extractor
was constructed (Figure 4). During the model training, each
image was augmented using multiple methods (including

TABLE 1 | Hyperparameter values which optimized through training.

Parameter Value

Optimization algorithm SGD

Momentum 0.9

Initial learning rate 0.0025

Warmup_iterations warmup_ratio = 0.001 500

Warmup_ratio 0.001

Optimal epoch 38

Batch size 1
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FIGURE 7 | The curve of precision and recall.

VerticalFlip, RandomBrightnessContrast, RGBShift RGB,
HueSaturationValue, ChannelShuffle, Blur, and MedianBlur) and
the Res2Net50 backbone was pretrained based on the ImageNet
dataset (Deng et al., 2009) using transfer learning, which was
suitable for solving the problem of a small training dataset. The
overall loss function takes the form of multi-task learning and
was defined as Equation (6).

L =
T∑
t=1

at
(
Ltbbox + Ltmask

)
+ βLseg (6)

Where: Lt
bbox is the loss of the bounding box predictions at

stage t. Lt
mask is the loss of mask prediction at stage t. Lsegis

the semantic segmentation loss in the form of cross-entropy.
Because we cascade 3 Mask RCNN networks to build the Wheat-
Net architectures, T was set to 3. In addition, to balance the
contributions of different stages and tasks, we set α = [1, 0.5, 0.25]
and β = 1 by default [31].

Evaluation Metric
The performance of Wheat-Net was evaluated by average
precision (AP), which is the area under the curve of precision-
recall (PR) (Equations 7–9). A high AP value indicates that a
model has both high precision and high recall. AP stood out as the
most-used metric due to its representativeness and simplicity. AP
was calculated (Equation 10) by using the method of the COCO
dataset, which interpolated through all points. In this research,
we evaluated the performance of Wheat-Net based on the IOU
(Equation 11) threshold of 0.5, which is commonly used for
instance segmentation model. The evaluation metrics are defined
as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

pinterp (rn+1) = max
r̃:̃r≥rn+1

p (̃r) (9)

AP =
∑
n=0

(rn+1−rn)pinterp(rn+1) (10)

IoU (A,B) =

∣∣∣∣A⋂B
A
⋃

B

∣∣∣∣ (11)

Where TP indicates the correct detection of wheat spikes, FP
is the wrong detection of wheat spikes, and FN represents the
ground truth of wheat spikes not detected. Precision indicates
how many wheat spikes detected by the model are real wheat
spikes. Recall indicates how many real wheat spikes are detected
by model in all real spikes. p (r∼) is the measured precision
at recall (r.)∼ IOU is the intersection over union between two
bboxes. A represents the bbox labeled manually and B represents
the bbox generated based on Wheat-Net.

RESULTS

The data analysis was performed with the deep learning
development framework of PyTorch. An Intel (R) Core (TM)
i7-6700 processor, a 16GB random-access memory card, and a
graphic card (NVIDIA GeForce GTX1080Ti 11GB) were used for
the modeling process.

To determine the appropriateness of the model, the test set was
used to assess the model. The AP of bbox and mask reached 0.904
and 0.907, respectively. In the case of dense wheat spike detection
from complex backgrounds, false positives tended to happen
more often than false negatives. Therefore, we used the PR curve
(Figure 7), which emphasized the evaluation of the prediction
model on positive examples to evaluate the performance of the
model. This step confirmed the effectiveness of Wheat-Net for
detecting wheat spikes in the complex field environment.

In addition, we visualized the detection results of the
complex image shown in Figure 8A. As shown in Figure 8,
in the non-structural field, the model showed outstanding
performance for complex backgrounds, dense spikes, adjacency,
and occlusion (Figure 8B), insufficient illumination (Figure 8D),
and incomplete spikes on the edge of images (Figure 8C).

The model can effectively solve the problem of various
occlusion scenarios, which is one of the most challenging areas in
the field of object detection. Figure 9 demonstrated the detection
results of various occlusion scenarios including: when a spike is
obstructed by another spike; when a spike is occluded by a leaf;
when a spike is occluded by a stem; and when a spike is occluded
by awns from another spike. Comparing the total number of
spikes (4,899) detected by the model with the actual number of
spikes manually labeled (4,934), 99.29% of the manually labeled
wheat spikes (clearly visible to humans) are detected. It should be
noted that the main goal of this paper is to accurately segment
wheat spikes in complex environments, so the datasets and
scenarios may different from pure wheat counting studies. This
demonstrates that Wheat-Net was effective for automatic wheat
spike detection under complex field conditions. In addition, the
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FIGURE 8 | Annotation images vs. detection results. (A) Overall detection results, (B) detail 1—area of adjacence and occlusion, (C) detail 2—area of incomplete
spikes in image, (D) detail 3—area of insufficient illumination of spikes.

instant segmentation algorithm is used to segment wheat spikes
out of plot images. Segmentation provides information such as
size, shape, and relative location of the segments in the image,
which can be used for phenotypic traits such as spike size, shape,
distribution, and wheat yield potential.

Ablation Study
Ablation study is an effective way to see how a method
affects the performance of the entire model by removing that
specific method from the model. To perform this analysis,
we used multi-scale training, DCN, and GRoIE methods to
improve the performance of the model. To more accurately
evaluate the effect of each method, we conducted the ablation
study experiments with the Wheat-Net based on Res2net50
(LR = 0.0025, batch size = 1, image scale = 2,100∗1,184) and
compared the performances on the test set.

The experimental results (Table 2) showed that multi-
scale training, DCN, and GRoIE had various effects on the
performance of Wheat-Net. Specifically, the AP (both IOU = 0.5
and IOU = 0.75) were significantly improved by multi-scale
training, although it increased some test times. The improvement
of DCN for IOU = 0.75 was greater than that for IOU = 0.5, which
showed that DCN had a more significant effect on a large IOU
threshold. In addition, GRoIE increased AP with IOU = 0.5 and
decreased AP with IOU = 0.75. The experimental results showed
that GRoIE did not work for our dataset when using a larger
threshold of IOU.

Comparative Evaluation
To make full use of the advantages of the Wheat-Net to achieve
better performance, we conducted experiments to select the
best backbone to build the Wheat-Net. As shown in Table 3,
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FIGURE 9 | Detection results of various occlusions. (A) One spike (under purple mask) is occluded by another spike, (B) one spike (under red mask) is occluded by
a wheat leaf, (C) one spike is occluded by a wheat stem, (D) One spike (under orange mask) is occluded by awns from another spike.

TABLE 2 | The results of ablation study.

Multi-scale DCN GRoIE AP (IOU = 0.5) AP (IOU = 0.75) Epoch Train time/h Test time/s

Bbox Mask Bbox Mask

− − − 0.868 0.872 0.722 0.677 20 7.5 2,988
√

− − 0.891 0.899 0.772 0.745 40 14 4,775
√ √

− 0.897 0.904 0.794 0.768 40 14 4,791
√ √ √

0.904 0.907 0.790 0.747 38 16 2,560

TABLE 3 | Comparative experimental results.

Type AP (IOU = 0.5) AP (IOU = 0.75) Epoch Train time/h Test time/s

Bbox Mask Bbox Mask

ResNet50 0.894 0.897 0.761 0.693 60 17 2,393

ResNet101 0.871 0.876 0.696 0.632 20 7 3,302

ResNeXt50 0.893 0.897 0.788 0.733 66 18 2,299

ResNeXt101 0.872 0.875 0.706 0.624 40 14 2,251

Res2Net50 0.904 0.907 0.790 0.747 38 16 2,560

NMS 0.904 0.907 0.790 0.747 38 16 2,560

Soft-NMS 0.903 0.906 0.795 0.750 38 16 3,385

CosineAnnealingLR 0.891 0.895 0.786 0.753 70 18 3,134

MultiStepLR 0.904 0.907 0.790 0.747 38 16 2,560

Wheat-Net 0.904 0.907 0.790 0.747 38 16 2,560

Optimized mask RCNN 0.884 0.884 0.755 0.690 60 10 3,186

Optimized cascade mask RCNN 0.899 0.900 0.785 0.754 40 14 2,673

we selected ResNet50, ResNet101, ResNeXt50, ResNeXt101,
and Res2Net50 for comparative experiments. By comparing
the results of ResNet50 and ResNet101 (or ResNeXt50 and
ResNeXt101), we found that increasing the depth of the backbone
could not improve the performance of wheat spike detection.
In general, the more layers the deep neural network has, the

stronger the fitting ability of the model will be. In practice,
there is not only ground truth but also noise in the image.
The stronger the fitting ability of the model, the stronger the
ability to learn noise. In particular, the noise in this paper
(such as blurry spikes, leaf, stem, and awns) is similar to the
ground truth in color and texture, which makes it more difficult
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FIGURE 10 | The Demonstration of experimental error. (A) The error of spike bottom. (B) The error at the junction of different spikes.

for the model to distinguish between noise and ground truth.
Therefore, in the situation of this paper, just increasing the
depth of the backbone may not represent a better effect. The test
results (Table 3) showed that Res2Net50 and ResNeXt50 have
more outstanding performance than other backbone networks.
Furthermore, ResNeXt50 required a shorter test time, while
Res2Net50 had higher AP values. Both of the two networks
can be used as the backbone of our model based on different
criteria. In this paper, based on the requirement of precision,
we chose Res2Net50 as the backbone network of Wheat-Net
for segmenting wheat spikes in the complex field. In practical
applications, if there is a higher requirement for the model speed,
ResNeXt50 will be suitable to be the backbone network.

In object detection, the model will generate a lot of region
proposals, and the suppression algorithm is needed to remove
redundant region proposals to reduce the number of parameters
in the model. In this paper, we conducted a comparative
experiment between NMS and Soft-NMS to achieve the better
performance of Wheat-Net. As shown in Table 3, the Wheat-Net
with NMS achieved a higher AP with IOU = 0.5 within a much
shorter test time compared to Soft-NMS. Therefore, although
Soft-NMS could help the Wheat-Net to achieve slightly higher AP
with IOU = 0.75, we chose to use NMS based on the best balance
between precision and speed.

In the training process, if the LR is too large, the model will
be difficult to converge, if the LR is too small, the convergence
speed will be slow. Therefore, the dynamic decay of LR is
extremely important to make the model faster and more stable
to convergence. In order to choose a more suitable method
of LR decay, we conducted a comparative experiment between
MultiStepLR and CosineAnnealingLR to select the suitable LR
decay method for Wheat-Net. From Table 3, we can see
that the MultiStepLR was superior to CosineAnnealingLR in
terms of AP. In addition, MultiStepLR converged faster and

required a shorter test time than CosineAnnealingLR. Therefore,
MultiStepLR was better than CosineAnnealingLR in terms of
accuracy and speed for our model of wheat spike detection, so we
chose MultiStepLR to decay the learning rate and further improve
the performance of our model.

In order to evaluate the advantages of the hybrid cascade
structure of Wheat-Net, we first used the same optimization
method (including multi-scale training, DCN, and GRoIE) to
optimize the Mask RCNN and Cascade Mask RCNN, and then
conducted a comparative experiment. As shown in Table 3, we
can seen that the box AP and mask AP of the Wheat-Net are
better than the other two models. In addition, although the
train time of the Wheat-Net was slightly longer, the Wheat-Net
was more satisfactory in terms of test time and converged in
the lowest number of epochs. The above analysis proves that
the hybrid cascade structure of Wheat-Net is very effective for
segmenting wheat spikes in the field environment.

DISCUSSION

Analysis of Experimental Error
Although Wheat-Net showed excellent performance for wheat
segmentation in the complex environment, there were still errors,
which we subsequently analyzed. As shown in Figure 10A, the

TABLE 4 | Comparison of the AP of Wheat-Net vs. other models in
wheat detection.

Model AP (IOU = 0.5)

Bbox Mask

Su et al. (2021) 0.567 0.572

Wheat-Net 0.904 (↑0.337) 0.907 (↑0.335)
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FIGURE 11 | The visualization results of barley detection. (A,B) The two examples of barley detection.

model had some segmentation errors at the bottom of the wheat
spikes. The sparse florets at the bottom of the spike led to some
differences between the texture characteristics of the bottom and
other parts. This in turn caused inaccurate segmentation for the
bottom of the spikes.

Due to the complexity of our dataset, the problem of adjacence
and occlusion of wheat was very common in most images.
Segmentation of adjacent objects was one of the most challenging
tasks in the field of crop phenotyping. From Figure 10B, we
can see that the two spikes were adhesive and the lower one
was occluded by a wheat stem. Our method achieved a good
segmentation result in such a complex situation, but there were
still errors at the junction. The color, texture, and shape of the
adherent spikes were very similar, which made the dividing line
unclear. As a result, this made the positive objects at the junction
annotated as negative, which increased the number of False
Negatives (FN) and reduced Recall. When multi-scale training
and DCN were used (GROIE was not used), the AP value with
IOU of 0.75 was the highest (Table 3). We chose this model for
visual testing (shown in Figure 10) and found that it could greatly
reduce the above-mentioned experimental errors (including the
bottom and junction errors) compared to when IOU = 0.5.
Regardless of the ability to detect wheat spikes, it achieved better
performance for accurately segmenting the wheat spike.

Evaluation of Wheat-Net on Barley Spike
Detection
The phenotypic characteristics of wheat and barley are quite
different in both the shape and size of the kernel and the length
of the awn. In order to verify the generalized applicability of
the model, we constructed a test set containing 29 barley images
to test the detection ability of the model to barley spikes. The
experimental results showed that the AP of bbox and mask for
barley detection achieved 0.799 and 0.812, respectively. From
Figure 11, we can see that the model achieved acceptable
visualization results for barley, especially for the detection
of adjacence and occlusion (red boxes in Figure 11). Thus,
our model has the potential to segment barley spikes as well
demonstrating strong robustness to a variety of spike shapes and
colors. However, due to the similar phenotypic characteristics of
adhesive spikes, there were still errors at the junction of spikes.
In addition, similar to the errors encountered with wheat spike

detection, there were also some errors at the top and bottom of
barley spikes. It is expected that the performance of segmenting
barley spikes will be improved by retraining our model using a
barley training dataset. This study also established the protocol of
a pretraining model for the detection of other inflorescences of
small grain cereal crops such as the panicles of oat and rice.

Comparison of Wheat Detection
Methods
Compared with the conventional wheat detection methods
(Alkhudaydi et al., 2019; Qiu et al., 2019; Zhang et al., 2019;
Ma et al., 2020; Tan et al., 2020; Su et al., 2021), the proposed
Wheat-Net in this paper showed a preferable performance for
instance segmentation in various complex scenes, including
complex backgrounds, insufficient illumination, dense wheat
spikes, spike adjacency, and occlusion. In our previous research
(Su et al., 2021), we basically realized the instance segmentation
of wheat in a complex field by using only a single Mask RCNN.
However, since the method with a single Mask RCNN cannot
learn sufficient features from our complex datasets, it had a poor
effect (especially for segmentation of partial spikes of the image
edge and occlusive spikes). Therefore, we spent a year devoted
to improving the performance of previous study. Eventually,
compare with only a single Mask RCNN of Su et al. (2021),
we cascaded three Mask RCNN to construct the Wheat-Net of
hybrid cascade structure, and with Res2Net50 as the backbone
network, multi-scale training, DCN, and GRoIE were used to
learn abundant features of different scales. From the bold values
in Table 4, we can see that the AP of bbox is increased by 0.337
(from 0.567 to 0.904), and the AP of mask is increased by 0.335
(from 0.572 to 0.907). In addition, we can see from Figures 8, 9
that Wheat-Net achieved excellent performance for partial spikes
of the image edge and occlusive spikes, which had a poor effect
on the method of Su et al. (2021). The above experiment shows
that our method can overcome various challenges in the complex
field and achieve accurate and efficient instance segmentation
of wheat spikes.

CONCLUSION

Due to the high complex dataset (complex backgrounds, serious
occlusion), an effective instance segmentation method based on
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the HTC model was established to automatically segment wheat
spikes in the fields. The proposed method with a hybrid cascade
structure to make full use of rich mask and box information.
With Res2Net50 as the backbone network, multi-scale training
was used to learn features of different scales, and deformable
convolutional networks (DCN) and Generic RoI Extractor
(GRoIE) were trained to improve model accuracy. Based on the
methodology, the difficulties of complex backgrounds, serious
occlusion, and incomplete spikes on the edge were solved with AP
of 0.904 and 0.907 for bbox and mask, respectively. The accuracy
rate for wheat spike counting was 99.29%. Comprehensive
empirical analyses revealed that the proposed method was
particularly effective for the detection of wheat spikes with
frequent adjacence, overlapping, occlusion, and other complex
growth states. This study achieved excellent performance for
dense wheat spike segmentation with complex field, which is
conducive to promoting production and management of wheat.
However, field data collection is limited to only the crop season,
which is 3 months per year in Minnesota. One solution is to
expand the data collection window by conducting multi-site data
collection across regions. In addition, we will study the method of
data augmentation based on the Generative Adversarial Network
(GAN). Our models will also be used in the large-scale wheat field
trials. We expect that our proposed method will be expanded to
the broader agricultural research area, including detection of the
seed-bearing inflorescences of other crops.
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Accurate identification of crop varieties is an important aspect of smart agriculture,
which is not only essential for the management of later crop differences, but also
has a significant effect on unmanned operations in planting scenarios such as facility
greenhouses. In this study, five kinds of lettuce under the cultivation conditions of
greenhouses were used as the research object, and a classification model of lettuce
varieties with multiple growth stages was established. First of all, we used the-state-
of-the-art method VOLO-D1 to establish a variety classification model for the 7 growth
stages of the entire growth process. The results found that the performance of the
lettuce variety classification model in the SP stage needs to be improved, but the
classification effect of the model at other stages is close to 100%; Secondly, based
on the challenges of the SP stage dataset, we combined the advantages of the target
detection mechanism and the target classification mechanism, innovatively proposed a
new method of variety identification for the SP stage, called YOLO-VOLO-LS. Finally,
we used this method to model and analyze the classification of lettuce varieties in
the SP stage. The result shows that the method can achieve excellent results of
95.961, 93.452, 96.059, 96.014, 96.039 in Val-acc, Test-acc, Recall, Precision, F1-
score, respectively. Therefore, the method proposed in this study has a certain reference
value for the accurate identification of varieties in the early growth stage of crops.

Keywords: hydroponic crops, greenhouse, deep learning, detection, classification, multiple growth stages

INTRODUCTION

With the integration of modern information technology such as artificial intelligence, big data, and
the Internet of Things with agricultural development, smart agriculture has become the inevitable
direction of agricultural development (Kussul et al., 2017; Mei et al., 2018). As one of the important
contents of the development of smart agriculture, the intelligent identification and classification of
crop varieties is crucial to the management of the differences in later crop production (Suh et al.,
2018; Khamparia et al., 2020). In addition, there are certain differences between different varieties of
the same crop in terms of growth cycle, fertilizer requirements, light requirements, heat resistance,
cold resistance, etc. (Yalcin and Razavi, 2016). If they are not distinguished and identified, they will
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face many problems in later production management. The
traditional crop variety identification process mostly relies
on human identification by experts and planters, which is
time-consuming, laborious and inefficient (Sun et al., 2017),
and it is difficult to automatically connect tasks such as
intelligent irrigation, fertilization, grading, sorting, packaging,
and harvesting in the planting process. Therefore, there is
an urgent need for an intelligent identification method to
automate the identification of crop varieties in order to
realize the unmanned connection of related tasks in the whole
production process.

The advent of artificial intelligence provides a strong technical
support for the intelligent identification of crop varieties (Tan
et al., 2020). Image processing, machine learning, and deep
learning have been continuously integrated and applied with
agricultural research (Kim et al., 2018; Kaya et al., 2019). As
far as crop varieties recognition is concerned, traditional image
processing methods have been applied earlier (Dharwadkar
et al., 2017; Tiwari, 2020). However, traditional image processing
methods require researchers to manually design and extract
features, such as the color, shape, and texture of crop leaves.
There is a certain degree of blindness in this process (Bhosle
and Musande, 2019). At the same time, based on the manually
extracted feature data, neural networks composed of neurons,
such as multi-layer perceptron, are used for model construction
(Zhang et al., 2020). Many parameters need to be manually
adjusted in the modeling process, and the model is easy to
over fit, which increases the difficulty of model construction
(Yoosefzadeh-Najafabadi et al., 2021). With the rise of artificial
intelligence algorithms such as deep learning, it has gradually
made breakthroughs in progress in the fields of computer vision,
image classification, target detection, target segmentation, and
speech recognition (Yalcin and Razavi, 2016). Deep learning is
a new field of machine learning, which automatically analyzes
data and extracts features by simulating the brain (Tóth et al.,
2016; Khamparia et al., 2020). In data processing, a neural
network for the target task is established through the basic
CNN network, and the characteristics of the input data (such
as color, texture, shape, etc.) are extracted layer by layer, and
a good mapping relationship from the underlying signal to the
high-level semantics is established (Dileep and Pournami, 2019).
Therefore, deep learning may have more advantages in crop
varieties identification.

In recent years, research on the recognition of crop varieties or
types based on deep learning methods are mostly in field planting
scenarios (Grinblat et al., 2016; Teimouri et al., 2019). On the one
hand, for agronomists and agricultural institutions specializing
in land management, it is very important to fully understand the
specific conditions of land use and dynamically monitor crop
planting within a certain period of time. For example, Mazzia
et al. (2020) used remote sensing technology to obtain multi-
temporal sentinel-2 images in central and northern Italy and
combined recurrent neural network (RNN) and convolutional
neural network (CNN) to propose a pixel-based LC&CC deep
learning model for the region’s type identification of agricultural
crops. By comparing traditional support vector machine, random
forest, and other methods, the accuracy of the proposed LC&CC

deep learning method can reach 96.5%. In order to achieve
accurate, automatic, and rapid crop mapping, Sun et al. (2020)
built a deep neural network classification model based on
historical crop maps and ground measurement data in North
Dakota, and a high-quality map of seasonal crops was generated
from Landsat images of North Dakota. At the same time, when
the model was applied to new images, accurate results were
obtained on major crops such as corn, soybeans, barley, spring
wheat, dried beans, sugar beets, and alfalfa. For the problem
of spectral similarity between different plants in the same
family and genus, Zhang et al. (2020) used an improved three-
dimensional CNN to build a tree species classification model
based on a remote sensing data set with rich spectral and spatial
characteristics. The results show that this method can reach
93.14% accuracy. In order to better capture the temporal and
spatial characteristics of crop classification, Gadiraju et al. (2020)
proposed a multi-modal deep learning method that combines
spatial spectrum and phenological characteristics. Among them,
the spatial characteristics of the image are obtained through
CNN, and the phenological characteristics of the image are
obtained through LSTM. The results show that this method can
reduce the error by 60%. In addition, the accurate identification
of agricultural products varieties is not only an urgent need of
dealers, but also an urgent need of product processing enterprises
and consumers. Rong et al. (2020) collected the visible and
near-infrared spectrum data of five peach varieties between
350 and 820 nm, and then constructed a one-dimensional
CNN to identify peach varieties with an accuracy of 94.4%.
Liu et al. (2020) used machine learning and computer vision
technology to classify 7 kinds of chrysanthemum tea. Compared
with traditional morphological feature extraction (90%), the
classification performance of deep neural network is better
(96%). Liu et al. (2019) used VGG16 and ResNet50 to identify
chrysanthemum varieties, which further proved that the deep
learning method applied to variety recognition research has
the advantages of strong recognition performance and fast
recognition speed, which is a breakthrough in horticultural
science. Van Hieu and Hien (2020) obtained images of 109
Vietnamese plants through the Vietnam Encyclopedia, and then
used MobileNetV2, VGG16 and other methods to construct
classification models. The results showed that MobilenetV2 has
the highest recognition rate of 83.9%. Bisen (2021) built a
recognition and classification system for different crops based on
leaves, and extracted leaf features through a CNN, and finally
got an accuracy of 93.75%. Nkemelu et al. (2018) compared the
classification performance of two traditional methods and CNNs
based on image data sets of 960 plant species at 12 different
growth stages. The results show that reasonable use of CNNs can
achieve ideal classification results. Grinblat et al. (2016) used a
deep CNN to build a crop classification model based on the leaf
vein patterns of three bean crops, and the results showed that the
effect of the leaf vein-based crop classification model has been
significantly improved. At the same time, it has been proved that
increasing the network depth can further improve the effect of
the model. Tan et al. (2020) also constructed a crop model based
on the vein characteristics of plants, and achieved good results. At
the same time, the effectiveness of leaf vein characteristics in the
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process of plant classification was also proved by Lee et al. (2017).
In large-scale plant species identification and classification, in
order to improve the accuracy and computational efficiency of
plant species identification, Zhang H. et al. (2018) proposed a
path-based tree classifier deep learning method. The classification
is carried out in a detailed hierarchical structure, and the effect
is significantly improved. Similarly, some researchers have used
MaskRCNN, AlexNet, CNN and other methods to identify each
varieties of bananas (Le et al., 2019), grapes (Pereira et al., 2019),
lemons (Alzamily et al., 2019) and medicinal materials (Dileep
and Pournami, 2019; Duong-Trung et al., 2019), and achieved
good results. On the other hand, in some countries where
small farms are the main planting model, there are more small-
scale land, dense intercropping, and diverse crop types. Chew
et al. (2020) obtained image data through drones and built a
recognition model for bananas, corn, beans and other crops based
on VGG, and achieved good results. However, in the case of crop
intercropping, there are certain limitations in the recognition
accuracy of different crops. Synthetic aperture radar data also has
certain advantages in remote sensing crop recognition. Teimouri
et al. (2019) proposed a new method—FCN-LSTM by combining
full convolutional network (FCN) and long short-term memory
network (LSTM). This method has been applied to radar data
to construct a remote sensing crop classification model, and the
results show that the accuracy of the method in the classification
of 8 crops based on pixel recognition exceeds 86%.

Based on the results of the above research, although there
have been studies on species or type identification for some
crops, most of the application scenarios are field planting,
and a small number of application scenarios are gardening,
and there are few scenarios such as greenhouses (Zhang H.
et al., 2018; Teimouri et al., 2019; Gadiraju et al., 2020). The
devices used mainly include spectroscopy and digital cameras
(Zhang et al., 2020; Bisen, 2021). Among them, spectroscopy
equipment is expensive, and it is mostly used in large-scale
planting scenarios (Zhang et al., 2020). Digital cameras are
relatively cheap, and can meet the needs of low-altitude remote
sensing and greenhouse scenes (Bisen, 2021). However, due to
the limitations of the greenhouse space and structure, there are
certain risks in carrying the camera on the drone equipment,
but carrying the camera on the mobile robot can achieve most
of the greenhouse agricultural production tasks (Zhang et al.,
2019). In addition, most of the above studies directly use deep
learning classification methods (such as AlexNet, VGG, ResNet,
etc.) to identify the varieties or types of different crops (Ghazi
et al., 2016). In the greenhouse scenario, the initial growth of most
crops is relatively small and the background features account for
a large proportion. In this case, the direct classification of varieties
or types of crops may cause a certain loss of accuracy. However,
by combining target detection and classification, there may be
unexpected results.

Therefore, this study conducted the identification of
lettuce varieties at different growth stages for 5 kinds of
greenhouse hydroponic lettuce under 6 nitrogen treatments.
The classification method and target detection method are
used for crop variety recognition, and the two are combined
for lettuce variety recognition to explore the improvement of

model performance. The novel contributions of this article are
concluded as follows: (1) We constructed 7 lettuce classification
datasets under different growth stages and different nitrogen
treatments, and used the dataset to study the classification of
lettuce varieties under the influence of multiple factors. (2)
We used classification-based and detection-based methods for
lettuce variety recognition, and compared the performance of
lettuce variety recognition models at different growth stages.
(3) We propose a lettuce variety recognition method called
YOLO-VOLO-LS, which combines classification mechanism
and detection mechanism, and discuss its challenges and
opportunities in future application.

MATERIALS AND METHODS

Experimental Field
This experiment was conducted in the glass greenhouse of
the Factory Agricultural Research and Development Center of
Chongqing Academy of Agricultural Sciences from March to
May of 2021 (Figure 1). Five varieties of lettuce were selected
for the experiment, namely, Selected Italian (V1), Small cream
green (V2), Rosa green (V3), Badawiya (V4), and Boston cream
(V5). In the seedling stage, we selected the full-grained lettuce
seeds and placed them in the seedling cotton with 100 grooves
for seeding, with one seed in each groove. The temperature
was controlled at 23–26◦C, the air humidity was 60–70%, the
seedling cotton was kept moist, and the halogen lamp was used to
supplement the light after germination. After 20 days of seedlings,
we transplanted 5 varieties of lettuce to 6 cyclically rotating
stereoscopic cultivation racks. Each cultivation rack was set to 0,
33, 66, 99, 132, and 165% according to the nitrogen concentration
in the standard nutrient solution. Five slots were designated on
both sides of each cultivating rack to cultivate a specific variety of
lettuce. Each slot can grow 81 lettuces, and the two sides of the
stereoscopic cultivating rack are correspondingly placed with the
same variety of lettuce (Figure 2). The growth process of lettuce
adopted the way of hanging roots, and the nutrient solution
was changed every 3 days. Normal greenhouse cultivation and
management of lettuce were conducted, and no pesticides and
hormones were applied.

Image Data Acquisition
The whole process from seedling to transplanting of lettuce in this
experiment mainly included three stages: seedling (SL), separate
planting (SP), and transplanting (TP), as shown in Figure 3.

First, after we separated the five varieties of lettuce from the
seeding cotton, we collected data every other day for the next
12 days. We conducted collections six times in total, and 160
images of each lettuce are collected each time. Second, after the
five varieties of lettuce seedlings were transplanted to the stereo
cultivation rack, we carried out image data acquisition every 5
days. Each data collection mainly acquired 50 lettuce images
of different varieties and different nitrogen nutrient gradient
treatments, each of which had six nitrogen treatments, for a total
of 300 images. The data collection time was 9:00–17:00, and in
order to ensure the consistency of data collection, the camera
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FIGURE 1 | Greenhouse cultivation environment. (A) Represents the cultivation environment under daytime conditions, and (B) represents the cultivation
environment under night conditions.

FIGURE 2 | Distribution of lettuce in stereoscopic cultivation racks of 5 varieties. There were a total of 6 cultivation racks, and each cultivation rack was equipped
with a nitrogen concentration treatment, and the same variety of lettuce was symmetrically transplanted at the same position on both sides of each cultivation rack.

was kept perpendicular to the plane of the planting slots and at
a distance of 40 cm during the collection process.

Data Pre-processing
Based on the aforementioned data acquisition process, the
number of data acquired on Days 1, 6, 12, 18, 24, and 30 was
only 300, which cannot meet the data volume requirements
for deep learning training. Based on the principle of cross-
validation, we first randomly divided the lettuce data set
of each variety according to the ratio of 6:2:2. Second, we
performed data enhancement through rotation, flipping, and
contrast adjustment, 23 times. Finally, the dataset volume of
the training, validation and test for each growth stage of
each variety after data enhancement was 4,140, 1,380, and
1,380, respectively.

In addition, in order to ensure that our model can achieve
accurate classification of lettuce varieties in various greenhouse
scenarios, we used a contrast adjustment method in data
enhancement to improve the richness of data. Specifically, this
is as shown in Figure 4.

YOLO-VOLO
In this study, the recognition of the five lettuce varieties in SP
had problems of strong background interference, high similarity,
and difficulty in classification (Figure 5). We propose a new
method called YOLO-VOLO to identify lettuce varieties in the
SP stage by combining target detection and target classification
mechanisms (Figure 6), so as to achieve a relatively ideal
classification effect.

YOLO-v5 for Target Cutting
First, we use the LabelImg software to set the label for the five
lettuce datasets of SP as Plant. Then, YOLO-v5 (Jia et al., 2021;
Kasper-eulaers et al., 2021; Liu W. et al., 2021), the most advanced
algorithm of Yolo series, was used to detect the lettuce plant
in SP, namely separating from seedling cotton. After training
an object detection model independently in SP, we cut the
lettuce plants according to the coordinates of the location of
each plant predicted by the target detection model. Due to the
differences in the growth of each lettuce plant, the cropped
objects are of different sizes. In order to ensure that each object
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FIGURE 3 | The whole process from seedling to transplanting of the lettuce. The whole process mainly included 3 stages, namely seedling, separating from seedling
cotton, and transplanting.

FIGURE 4 | Data enhancement based on contrast adjustment. The adjustment of the image contrast is realized by the gamma adjustment method. When
gamma > 1, the new image is darker than the original image. If gamma < 1, the new image is brighter than the original image.

maintains the original image aspect ratio during the later model
training, we used the boundary padding method to perform data
preprocessing (Figure 6A), according to the characteristics of the
image datasets of SP of lettuce, and considering the requirements
of image resolution, GPU memory and accurate detection. We
put the image datasets of the Stage two into the neural network
for training (the image resolution is 384 ∗ 384), where three
different sizes of detection head, 52∗52, 26∗26, and 13∗13 are used

to output the results including the lettuce’s position information,
category information and confidence.

VOLO for Target Classification
Based on the lettuce images obtained from the processing in
Section “YOLO-v5 for target cutting,” we used the current state-
of-the-art target recognition algorithm VOLO to classify the
five lettuce images. VOLO is a network structure with two
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FIGURE 5 | Five kinds of lettuce involved in this study. Among them, Italian (V1), Small cream green (V2), Rosa green (V3), Badawiya (V4), and Boston cream (V5).

FIGURE 6 | Data processing process of the YOLO-VOLO model. The input RGB image is first detected and cropped by the YOLO algorithm, and then input into the
VOLO algorithm for lettuce species identification after boundary padding, and finally the category of the lettuce species is output.

independent stage (Yuan et al., 2021). First, a stack of Outlookers
that generates a fine-grained token representation constitutes the
first independent stage. Secondly, a second independent stage
is formed to aggregate global information by deploying a series
of transformer blocks. At the beginning of each stage, a patch
embedding module is used to map the input to the marked
representation of the design shape.

Outlooker is a newest simple and lightweight attention
mechanism module, which can effectively use fine-level
information to enrich token representation. In addition,
Outlooker has made certain innovations in generating attention
for token aggregation, allowing the model to efficiently
encode fine-level information. In particular, an effective linear
mapping method can directly infer the mechanism of gathering
surrounding tokens from the characteristics of anchored tokens,
thereby avoiding expensive point product attention calculations.
The Outlooker is composed of the outlook attention layer used
for spatial information encoding and the multi-layer perceptron
(MLP) used for information interaction between channels.

Given a sequence of input C − dim token representations
X ∈ RH×W×C, Outlooker can be represent as follows:

∼

X = OutlookAtt(LN(X))+ X (1)

Z = MLP(LN(
∼

X))+
∼

X (2)

Where LN refer to LayerNorm (Liu F. et al., 2021).
Among them, Outlook attention is efficient, easy, and simple

to implement. The main characteristics are: (1) The features at
each spatial location are sufficiently representative to generate
attention weights for local aggregation of neighboring features;
(2) Dense local spatial aggregation can effectively encode fine-
level information.

As we can see from Figure 7, for a partial window with a size
of K × K, a linear layer can be simply generated from the central
token, and a reshaping operation (highlighted by the green box)
can then be performed. Since the attention weight is generated
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FIGURE 7 | Illustration of outlook attention. The outlook attention matrix for a local window of size K*K can be simply generated from the center token with a linear
layer followed by a reshape operation. The attention weights are generated from the center token within the window and act on the neighbor tokens and itself.

by the center mark in the window and acts on the adjacent mark
and itself (highlighted by the black box), we call these operations
Outlook attention. For each spatial location (i, j), Outlook
attention calculates the similarity between it and all neighboring
features in a local window of size K∗K centered on (i, j). Unlike
self-attention, which requires query key matrix multiplication to
calculate attention (i.e., Softmax(QTK/

√
d)), Outlook attention

simplifies this process through a reshaping operation.
Normally, when we give inputX, we first project each C − dim

token, and then use two linear weights WA ∈ RC×K
4

and
WV ∈ RC×C, respectively, and the projection is the outlook
weight A ∈ RH×W×K

4
and the value represents V ∈ RH×W×C.

V1i,j ∈ RC×K
2

denotes all the values in the local window centered
on (i, j), i.e.,

V1i,j = {V
i+p−|

K
2
|, j+ q− |

K
2
|

}, 0 ≤ p, q < K (3)

Outlook attention: The outlook weight of location (i, j) is
directly used as the attention weight of value aggregation, which

is reshaped into
∧

A
i,j
∈ MatMul(Softmax(

∧

A
i,j
),V1i,j), and then the

Softmax function is used. Therefore, the value projection process
can be written as:

Y1i,j =

∑
0≤m,n<K

Y i,j
1

i+m−|
K
2
|, j+ n− |

K
2
|

(4)

Dense aggregation: Outlook attention intensively gathers the
expected value representatives, summing up weighted values
from the same position of different local windows to get the
output:

∼

Y
i,j
=

∑
0≤m,n<K

Y i,j
1

i+m−|
K
2
|, j+ n− |

K
2
|

(5)

The implementation of the multi-head outlook attention
mechanism is as follows: Assuming that the number of heads

is set to N, we only need to adjust the weight shape of
WA to makeWA ∈ RC×N•K

4
. Then the foreground weight and

value embedding are evenly divided into N segments to obtain
An ∈ RH×W×K

4
and Vn ∈ RH×W×CN , {n = 1, 2,..., N}, where the

size of each head of CN satisfies CN × N = C. For each (An, Vn)
pair, the foreground attention is calculated separately, and then
connected as the output of the multi-head foreground attention.
In our study, due to the limitation of computer hardware (GPU
memory only supports VOLO-D1), we mainly used VOLO-D1
to conduct the lettuce variety identification of SP with 384-size
input images. For detailed information about several variants of
the VOLO algorithm (see Table 1).

After constructing the lettuce variety identification model
at the SP stage by using classification and detection methods,
respectively, we thought about how to avoid background

TABLE 1 | Architecture information of different variants of VOLO.

Specification VOLO-D1 VOLO-D2 VOLO-D3 VOLO-D4 VOLO-D5

Patch
embedding

8 × 8 8 × 8 8 × 8 8 × 8 8 × 8

Stage 1
(28 × 28)

[Head:6,
stide:2
Kernel:
3 × 3
Mlp:3,

dim:192]
× 4

[Head:8,
stide:2
Kernel:
3 × 3
Mlp:3,

dim:256]
× 6

[Head:8,
stide:2
Kernel:
3 × 3
Mlp:3,

dim:256]
× 8

[Head:12,
stide:2
Kernel:
3 × 3
Mlp:3,

dim:384]
× 8

[Head:12,
stide:2
Kernel:
3 × 3
Mlp:4,

dim:384]
× 12

Patch
embedding

2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Stage 2
(14 × 14)

[#heads:12,
Mlp:3,

dim:384]
× 14

[#heads:16,
Mlp:3,

dim:512]
× 18

[#heads:16,
Mlp:3,

dim:512]
× 28

[#heads:16,
Mlp:3,

dim:768]
× 28

[#heads:16,
Mlp:4,

dim:768]
× 36

Total layers 18 24 36 36 48

Parameters 26.6M 58.7M 86.3M 193M 296M

Bold highlights the specific method used in the manuscript.
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interference and the similarity between plants at the same
time. Finally, we propose a method, namely YOLO-VOLO.
The core idea of this method is to combine the advantages
of detection and classification methods to simplify the
problem of plant population classification into an individual
classification problem.

Step 1: we take advantage of the strong detection ability of
YOLO-V5 to cut out different varieties of lettuce plants. Because
there are individual growth differences between different plants,
we use border filling to ensure that each picture maintains the
original horizontal and vertical ratio.

Step 2: we take advantage of the strong classification ability of
VOLO-D1 to construct a classification model for the individual
plant images obtained in the Step 1.

Result Evaluation
The verification of model performance is very important. When
the data amount of various samples in the training dataset
is evenly distributed, the commonly used Accuracy is used to
evaluate the performance of the model; when the data amount
of various samples in the training dataset is not uniformly
distributed, it is necessary to refer to other indicators to evaluate
the model performance, such as Precision, Recall, and F1-Score.
The specific definitions are as follows:

Accuracy: This is defined as the ratio of correctly classified
images to the total number of lettuce images.

Accuracy =
TP + TN

TP + FN + FP + TN
× 100% (6)

Precision: This is defined as the average of the total number
of images of correctly identified lettuce varieties and the total
number of images of correctly and incorrectly identified lettuce
varieties.

Precision =
TP

TP + FP
× 100% (7)

Recall: This is defined as the average of the images of correctly
identified varieties of lettuce and the total number of correct and
undetected images.

Recall =
TP

TP + FN
(8)

F1-score: This is defined as the weighted average of Precision
and Recall.

F1− Score =
2× Recall× Precision
Recall+ Precision

(9)

where TP, FP, FN, and TN represent true positive, false positive,
false negative and true negative, respectively.

RESULTS

Variety Recognition of Lettuce in Multiple
Growth Stages Based on VOLO-D1
In order to explore the changing laws of lettuce variety
identification at different growth stages, the state-of-the-art

target recognition method VOLO was used to conduct a
study on the variety identification of five lettuce at different
growth stages. After trying different VOLO pre-training models,
VOLO-D1 was finally selected as the main research method
due to the limitation of computer hardware (insufficient GPU
memory). The Accuracy, Recall, Precision, and F1-score are used
as validation indicators to compare the classification models
between different growth stages. The specific results are shown
in Table 2.

The results show that the performance of the VOLO-D1
method in the growth stage model, except the SP stage, is close
to 100%, while the model accuracy in the SP stage is only
78.381. After analysis, it is found that the dataset at the SP stage
has problems such as small plant targets and large background
interference, which is not conducive to accurate identification of
lettuce varieties. Therefore, the classification performance of the
SP stage model needs to be further improved and optimized.

Variety Recognition of Lettuce During SP
Period Based on YOLO-v5
Aiming at the challenges of the SP stage dataset, the feasibility of
identifying lettuce varieties through the target detection method
was explored. The most advanced algorithm YOLO-v5 of the
current YOLO series was used to detect and classify 5 lettuce
varieties in the SP stage (as shown in Figure 8), the input
image size remains consistent with the VOLO-D1(384∗384). The
specific results are shown in Table 3.

By comparing the result of YOLO-v5 and VOLO-D1, the
results show that the F1-score of the two are relatively close
(0.879 and 0.844). At the same time, YOLO-v5 is better than
VOLO-D1 on the F1-score, which to a certain extent shows
that the classification performance of lettuce varieties can be
improved by removing background interference or increasing
the number of training targets.

As we can see from Figure 8, the results show that in the
training and verification process of the model, all the curves have
converged, eliminating the possibility of model overfitting.

Variety Recognition of Lettuce During SP
Period With a Fusion of YOLO and VOLO
Based on the foregoing attempts, the results prove that a
single target classification and target detection method is not
the best choice. Therefore, we explore the feasibility of the
YOLO-VOLO-LS method proposed in this study by trying
to combine the advantages of target detection and target
classification algorithms.

The first step is to use the powerful detection capabilities of
YOLO-V5 to uniformly modify the individual labels of the five
varieties of lettuce plants to “plant,” and then train the lettuce
detection model. According to the lettuce coordinates output by
the trained model, the lettuce plants of different varieties are cut,
respectively. Due to the individual growth differences between
different plants, we use border padding to ensure that each image
maintains the original aspect ratio. The specific results are shown
in Table 4 and Figure 9.
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TABLE 2 | Classification model results of different growth stages of lettuce based on VOLO-D1.

Class Image-size Train-acc Val-acc Test-acc Recall Precision F1-score

SP 384 99.661 81.970 78.381 82.946 85.902 84.398

Day 1 384 99.999 100 100 100 100 100

Day 6 384 99.999 100 100 100 100 100

Day 12 384 99.920 100 100 100 100 100

Day 18 384 99.981 100 100 99.783 100 99.889

Day 24 384 99.999 100 100 100 100 100

Day 30 384 99.999 100 100 100 100 100

Bold highlights the results of model comparison.

FIGURE 8 | Classification model training process based on YOLO-V5. (A) Mainly reflects the Loss, Precision, Recall, mAP curves in the training process and the
Loss curve in the verification process. (B) Mainly reflects the P-R curve of training, testing and verification to judge the pros and cons of the model.

By comparing Table 4 with Table 3, the result shows that
when the 5-class detection task is simplified to a single-class
detection task, the Recall, Precision, F1-score, mAP@0.5 are
significantly improved. Among them, Recall, Precision, F1-
score, and Map@0.5 have improved 0.103, 0.197, 0.157, and
0.065, respectively. Compared with the 5-class detection problem,

the single-class detection task does not have the influence of
problems such as the similarity between classes, so the model
performance is excellent.

As shown in Figure 9A, all the curves in the training process
have good convergence (faster convergence), and the curve is
smooth, with almost no oscillations. As shown in Figure 9B,
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TABLE 3 | Classification model results of SP stage of lettuce based on YOLO-v5.

Class Image-size Recall Precision F1-score mAP@0.5 mAP@0.5:0.95

Train 384 0.976 0.799 0.879 0.974 0.719

Val 384 0.971 0.760 0.853 0.980 0.740

Test 384 0.892 0.737 0.807 0.931 0.709

Bold highlights the results of model comparison.

TABLE 4 | Detection model results of SP stage of lettuce based on YOLO-v5.

Class Image-size Recall Precision F1-score mAP@0.5 mAP@0.5:0.95

Train 384 0.999 0.919 0.957 0.997 0.821

Val 384 0.997 0.936 0.966 0.997 0.743

Test 384 0.995 0.934 0.964 0.996 0.694

Bold highlights the results of model comparison.

the result shows that mAP@0.5 has a significant performance
improvement, and all reach more than 0.99. Therefore, the lettuce
target detection model based on YOLO-V5 can accurately detect
the location of the plant, provide accurate coordinate information
for the cutting process, and obtain the lettuce individual plant
dataset required by the subsequent classification model.

In the second step, using the individual lettuce dataset
obtained from the first steps, we further explore the classification
performance of the VOLO-D1 method on this dataset. Because
in the SP stage there are certain similarities between different
varieties of lettuce plants, and in order to further improve the
performance of the model, we used the label smoothing (LS)
trick to further optimize the YOLO-VOLO model. In addition,
in order to prove that reducing background interference has a
greater contribution to the model than increasing the amount of
data, we performed a 5∗5 slicing operation on the original dataset
to ensure that the amount of data in the method proposed in
this study is consistent, and then use the VOLO-LS method to
perform Model training. The specific results are shown in Table 5.

By comparing Tables 4–6, the F1-score was selected as
the indicator to comprehensively evaluate the performance of
the model. The results show that YOLO-VOLO-LS is better
than VOLO-D1 and YOLO-V5 by 11.641, 15.339 on F1-score,
respectively. In addition, compared with YOLO-VOLO, the
results show that YOLO-VOLO-LS has increased 1.451, 3.274,
2.982, and 3.131 in terms of Test-acc, Recall, Precision, and
F1-score, respectively. Compared with Slice-VOLO-LS, YOLO-
VOLO-LS has increased 5.77, 8.134, 7.69, and 7.915 in terms
of Test-acc, Recall, Precision, and F1-score, respectively. After
analysis, by combining the advantages of target detection and
target classification, not only the background interference is
reduced, but also the amount of training target data is increased.
Therefore, YOLO-VOLO performed well.

Comparison of Modeling Methods for
Lettuce Variety Recognition
In order to further prove the performance of our proposed
method YOLO-VOLO-LS, we compared the model results
with mainstream classification methods such as VGG, ResNet,

DenseNet, MobileNet, ShuffleNet, EfficientNet, etc. The specific
results are shown in Table 7.

VGGNet (Simonyan and Zisserman, 2018): VGGNet is a deep
CNN proposed in the early stage. Its author is a researcher
from Oxford University Computer Vision Group and Google
Debug. This method explores the relationship between network
depth and model performance by repeatedly stacking 3∗3 small
convolution kernels and 2∗2 maximum pooling layers, and a
volume of 16–19 layer CNN is constructed. VGGNet won the
runner-up of the ILSVRC 2014 competition and is the champion
of the positioning project, with an error rate of 7.5% on the
top 5. So far, VGGNet is still used by downstream tasks such as
detection and segmentation to extract image features.

ResNet (He et al., 2016): The ResNet network is formed
by adding residual units through a short-circuit mechanism on
the basis of the VGG19 network. Compared with the VGG19
network, the main change of the ResNet network is to directly
use the convolution of stride = 2 for downsampling, and use
the global average pool layer to replace the fully connected layer.
The key design principle of ResNet is that the number of feature
maps is doubled when the size of the feature map is reduced
by half, which maintains the complexity of the network layer.
On the basis of the ResNet 18 network, ResNet 34, ResNet 50,
ResNet 101, and ResNet 152 have also been proposed.

DenseNet (Huang et al., 2017): DenseNet is a CNN with
dense connections between any two layers. The input of any
layer of the network is the union of the outputs of all the
previous layers. Unlike VGG and Inception, which improve the
model in depth and width, respectively, this method starts with
features and makes full use of the features of each layer in the
network to achieve better model effect and fewer parameters.
Therefore, the network not only strengthens the delivery and
utilization of features, but also alleviates the influence of gradient
disappearance during training process.

MobileNet (Howard et al., 2017): MobileNet is a lightweight
CNN for embedded intelligent devices. The basic module of
the network is the depthwise separable CNN, and then the
lightweight network is designed based on the streamlined
architecture. Among these, different convolution kernels are used
for feature extraction for each input channel through depthwise
revolution, and then 1 ∗ 1 convolution check input is used for
feature extraction through pointwise revolution, and then the
features of the above two steps are fused. In essence, it is similar to
the operation process of a standard convolution, but the amount
of parameters is greatly reduced. Compared with other popular
network models on ImageNet classification, MobileNet shows
strong performance.

ShuffleNet (Zhang X. et al., 2018): ShuffleNet is a highly
efficient CNN architecture specially applied to computer
equipment with limited computing power. The architecture
uses point-by-point group convolution and channel shuffling
operations to use more feature mapping channels within a given
computational complexity budget, so as to greatly reduce the
amount of calculation while maintaining similar accuracy to the
existing advanced models.

EfficientNet (Tan and Le, 2019): EfficientNet is a kind of
network similar to VGG11-19, ResNet 18–101, wide-resnet 50,

Frontiers in Plant Science | www.frontiersin.org 10 February 2022 | Volume 13 | Article 806878156

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-806878 February 24, 2022 Time: 9:58 # 11

Zhang and Li Identification of Early Lettuce Seedlings

FIGURE 9 | Detection model training process based on YOLO-V5. (A) Mainly reflects the Loss, Precision, Recall, mAP curves in the training process and the Loss
curve in the verification process. (B) Mainly reflects the P-R curve of training, testing and verification to judge the pros and cons of the model.

101 networks but different from those proposed by Tan and
Le (2019) This network does not arbitrarily scale network
dimensions such as depth, width, and resolution like traditional
methods, but uses a new model scaling method that uses
a series of fixed scale scaling factors to uniformly scale the
network dimensions. Through the author’s unremitting efforts
and innovation, there are 8 types of networks: EfficentNet-b0,
EfficentNet-b1, EfficentNet-b2, EfficentNet-b3, EfficentNet-b4,
EfficentNet-b5, EfficentNet-b6, and EfficentNet-b7.

By comparing and analyzing the method proposed by
this research with the current mainstream target classification
methods, the result shows that the method proposed by this study
has significant advantages in Val-acc, Test-acc, Recall, Precision,
F1-score, and can effectively solve the problem of classification

of lettuce varieties in the SP stage. Based on the similarity
between different varieties of lettuce plants in the SP stage, the
use of the LS trick also significantly improves the recognition
performance of the model.

DISCUSSION

Differences in Identification of Lettuce
Varieties at Different Growth Stages
In the research process of crop classification, most research
mainly focuses on field crop planting scenarios, such as region
type, corn, soybeans, barley, spring wheat, dried beans, sugar
beets, and alfalfa, mostly supported by remote sensing technology
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TABLE 5 | Classification model results of SP stage of lettuce based on YOLO-VOLO.

Class Image-size Train-acc Val-acc Test-acc Recall Precision F1-score

YOLO-VOLO 384 99.184 92.547 92.001 92.785 93.032 92.908

Slice-VOLO-LS 384 99.365 87.695 87.682 87.925 88.324 88.124

YOLO-VOLO-LS 384 99.654 95.961 93.452 96.059 96.014 96.039

Bold highlights the results of model comparison.

(Zhang H. et al., 2018; Teimouri et al., 2019; Gadiraju et al., 2020;
Mazzia et al., 2020; Sun et al., 2020). A few studies have explored
crop identification methods from the perspective of leaves or
veins, and most of them are supported by visual technology
(Grinblat et al., 2016; Bisen, 2021). This research mainly uses the
facility greenhouse as the main research scene, combined with
deep learning and visual technology to explore the classification
methods of small groups of crops near the ground. Therefore,
we took 5 kinds of hydroponic lettuce as the research object, the
VOLO-D1 method was used to construct a variety classification
model for lettuce in different growth stages (see section “Variety
Recognition of Lettuce in Multiple Growth Stages Based on
VOLO-D1”). The results show that the recognition effect in the
SP stage needs to be improved, and the recognition effect in the
growth stage after transplanting is very good. In order to further
analyze the reasons for this difference, we randomly obtained an
image for the lettuce dataset of different growth stages to generate
a Class Activation Map for analysis, and the specific results are
shown in Table 6.

The result shows that in the SP stage, lettuce plants are
small and background interference is large, and most of the

TABLE 6 | The class activation map (CAM) of VOLO-D1.

Class V1 V2 V3 V4 V5

SP

Day 1

Day 6

Day 12

Day 18

Day 24

Day 30

attention in the model learning process is background features.
After the lettuce is transplanted, during the growth stage, the
plants gradually grow, and the individual differences between
different varieties are gradually obvious. In addition, as the plant
grows, the learning focus of the model gradually shifts from
the background to the leaves of the plant, and the interference
of the background on the identification of different varieties of
lettuce is gradually reduced. The stronger the ability to learn
key features, the better the performance of the model phenotype.
Facts have proved that the crop recognition classification model
with leaves as input is more effective, and this has also been
indirectly proved in previous studies (Lee et al., 2017). Therefore,
in view of the difficulties in the precise identification of lettuce
in the SP stage, we combined the advantages of the target
detection mechanism and the target classification mechanism,
and we propose a new method of YOLO-VOLO-LS to solve
this key problem.

Selection of Identification Methods for
Lettuce Varieties
In the process of constructing the classification model, different
methods have different advantages. By comparing the current
mainstream target classification methods, the results prove that
the method we propose has obvious advantages regardless of
the performance of the model itself or the learning focus
of the model. In order to further analyze the difference in
model performance between different methods, we use the Class
Activation Map method to analyze the learning focus of different
models, and the specific results are shown in Table 8. The result
shows that different methods focus on different points in the
model training process. Some methods can only extract part
of the image features during the training process. For example,
VGG and ResNet mainly extract the edge features of the image.
Among them, VGG16 replaces the larger convolution kernel
with a continuous 3 ∗ 3 convolution kernel while increasing
the network depth (e.g., 11 ∗ 11, 7 ∗ 7, 5 ∗ 5), under the
given receptive field conditions, the stacking effect of small
convolution kernel is better than that of large convolution kernel
(Simonyan and Zisserman, 2018). ResNet adds a direct channel
between layers of the network, which effectively avoids the
loss of information transmission between layers and reduces
the possibility of gradient disappearance or gradient explosion
(He et al., 2016). Therefore, ResNet is better than VGG in
feature information extraction and retention. Some methods
can only extract the central and local features of the image
during the training process, such as DenseNet169, MobileNet_v2,
ShuffleNet_v2, EfficientNet-B4 mainly focus on the central area
of the image, and the edge feature information is lost. Among
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TABLE 7 | Comparison of modeling methods for lettuce variety recognition.

Class Image-size Train-acc Val-acc Test-acc Recall Precision F1-score

VGG16 384 99.863 85.861 77.562 86.580 87.685 87.129

ResNet50 384 99.782 73.872 73.846 72.124 74.137 73.117

DenseNet169 384 99.736 81.975 77.254 81.973 85.387 83.645

MobileNet_v2 384 99.936 74.395 70.872 72.108 80.921 76.261

ShuffleNet_v2 384 97.826 72.414 72.441 73.631 78.675 76.069

EfficientNet-B4 384 99.563 73.128 72.340 74.123 85.348 79.341

YOLO-VOLO 384 99.181 92.542 92.001 92.785 93.032 92.908

YOLO-VOLO-LS 384 99.652 95.961 93.453 96.059 96.014 96.039

Bold highlights the results of model comparison.

them, DenseNet169 is different from the previous improvements
in network length and width, and in order to make maximum use
of the characteristic information between layers, DenseNet169
connects all layers on the premise of ensuring the maximum
information transmission between layers, making the network
narrower, making fewer parameters and producing a better
effect (Huang et al., 2017). ShuffleNet_v2 uses channel splitting
to achieve the effect of feature reuse, so as to improve the
computational efficiency of the model (Zhang X. et al., 2018).
EfficientNet-B4 improves the performance of the model mainly
through a synergy coefficient in terms of network depth, width
and resolution (. MobileNet_v2 based on the residual block,
first uses 1 × 1 lower channel to pass through ReLu, then
uses 3 × 3 space convolution to pass through ReLu, and then
uses 1 × 1 convolution to recover the channel, which reduces
the amount of calculation and improves the performance of
the model (Howard et al., 2017). Therefore, MobileNet_v2 is
superior to other methods in feature extraction. However, due
to the different emphasis of each method, the performance
effect of the model may be different. In the actual use process,
a method suitable for your own data set is selected through
comparative analysis.

In this study, a method called YOLO-VOLO-LS is proposed
based on analyzing the characteristics of the lettuce dataset in
the SP stage, and aimed at solving the problems of small target
detection, large background interference, and high individual
similarity by combining the advantages of target detection and
target classification. Considering the cost of data labeling and the
performance of the model, based on the respective advantages
of target detection and target classification, we adopted the
strategy of first detection and then classification to classify the
lettuce in the SP stage. Through this process, we simplified
the group target classification problem into an individual target
classification problem. While minimizing the influence of the
background on the classification of lettuce varieties, the model
can learn more leaf details to improve the recognition ability of
the model. By observing the Class Activation Maps of YOLO-
VOLO-LS and other methods, we can clearly find that our
proposed method can almost completely extract the characteristic
information of lettuce plants, which is why this method has
obvious advantages in accuracy. Similar studies have also proved
that crop classification based on the characteristics of leaves or
veins has a significant improvement in the model effect (Lee

et al., 2017; Tan et al., 2020; Bisen, 2021). This is why our study
uses first detection and then classification when classifying lettuce
in the SP stage.

In addition, the method we propose plays a role of data
enhancement to a certain extent. In order to verify the
contribution of increasing the amount of data and reducing
the background interference to the SP stage lettuce variety
recognition model, we compare the results in section “Variety
Recognition of Lettuce During SP Period With a Fusion of
YOLO and VOLO.” By slicing the original data set with
5 rows and 5 columns, the data volume can be consistent
with the YOLO-VOLO-LS method, and then the VOLO-LS
method is used for training verification, and it is found that
the improvement of the model performance is very limited.

TABLE 8 | The class activation map (CAM) of different methods.

Class V1 V2 V3 V4 V5

VGG16

ResNet50

DenseNet169

MobileNet_v2

ShuffleNet_v2

EfficientNet-B4

YOLO-VOLO-LS
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Therefore, we found that removing the background interference
to the maximum extent contributes the most to the model, which
further verifies the effectiveness of the method proposed in this
study. At the same time, during the image slicing process, there is
no guarantee that the target in the image is completely segmented,
which may cause some plants to be damaged during the slicing
process. This may also be the reason for the general performance
of the sliced dataset.

Although the method proposed in this study is effective, it
still has certain limitations. First, the method proposed in this
research is more suitable for the variety identification of small
target crops in low-altitude and high-density scenarios such as
facility greenhouses. The early variety identification of field crops
obtained from high-altitude scenes such as remote sensing has
yet to be tried and verified. Second, although the method of first
detection and then classification can significantly improve the
early variety recognition effect of lettuce seedlings, the specific
calculation process may take a long time. Finally, in the follow-
up research process, on the one hand, we plan to build a set of
software and hardware intelligent detection systems suitable for
different growth periods for greenhouse crops based on existing
research, and on the other hand, in order to further improve the
applicability of this method, we want to apply this method to early
crops in field scenarios.

CONCLUSION

In this study, a variety identification model was constructed
for hydroponic lettuce grown in a greenhouse under the
conditions of different growth periods. The results found that
the performance of the lettuce variety classification model
at the SP stage before the lettuce transplantation still needs
to be improved. By combining the respective advantages of
the target detection mechanism and the target classification
mechanism, we innovatively propose a classification method
for lettuce varieties at the SP stage, called YOLO-VOLO-LS.
This method has achieved excellent results of 95,961, 93,452,
96,059, 96,014, 96,039 in Val-acc, Test-acc, Recall, Precision,
and F1-score, respectively. In addition, we have achieved nearly
100% of the lettuce classification effect in the growth stages
of Days 1, 6, 12, 18, 24, and 30 by adopting the VOLO-D1
method. In view of the characteristics of lettuce seedlings in the
SP stage, we simplified the group classification problem to an
individual classification problem by adopting the strategy of first
detection and then classification, which significantly improved
the performance of the model. Of course, this method may
be more suitable for research on the variety identification of

high-density small target crops in a low-altitude environment.
The small target image of the group can be cropped through
the detection method, which not only increases the amount of
data, but also reduces the background interference. Therefore,
through the combination of detection and classification methods,
on the one hand, the problems of small target crop similarity and
background interference can be overcome, and on the other hand,
the problem of small samples can be solved to a certain extent,
which has a certain contribution in data preprocessing.
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Since the assessment of wheat diseases (e.g., leaf rust and tan spot) via visual
observation is subjective and inefficient, this study focused on developing an automatic,
objective, and efficient diagnosis approach. For each plant, color, and color-infrared
(CIR) images were collected in a paired mode. An automatic approach based on the
image processing technique was developed to crop the paired images to have the
same region, after which a developed semiautomatic webtool was used to expedite
the dataset creation. The webtool generated the dataset from either image and
automatically built the corresponding dataset from the other image. Each image was
manually categorized into one of the three groups: control (disease-free), disease light,
and disease severity. After the image segmentation, handcrafted features (HFs) were
extracted from each format of images, and disease diagnosis results demonstrated
that the parallel feature fusion had higher accuracy over features from either type of
image. Performance of deep features (DFs) extracted through different deep learning
(DL) models (e.g., AlexNet, VGG16, ResNet101, GoogLeNet, and Xception) on wheat
disease detection was compared, and those extracted by ResNet101 resulted in the
highest accuracy, perhaps because deep layers extracted finer features. In addition,
parallel deep feature fusion generated a higher accuracy over DFs from a single-source
image. DFs outperformed HFs in wheat disease detection, and the DFs coupled with
parallel feature fusion resulted in diagnosis accuracies of 75, 84, and 71% for leaf rust,
tan spot, and leaf rust + tan spot, respectively. The methodology developed directly
for greenhouse applications, to be used by plant pathologists, breeders, and other
users, can be extended to field applications with future tests on field data and model
fine-tuning.

Keywords: wheat disease, plant pathology, deep features, handcrafted features, data fusion
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HIGHLIGHTS

- Parallel feature fusion of different types of images improved
the accuracy of wheat disease diagnosis.

- Deep features outperformed handcrafted features in wheat
disease detection.

- Deep features extracted by deep-layered models produced
higher accuracy.

- A free semiautomatic webtool for expedited paired dataset
creation was developed and made available.

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the world’s most
productive and important crops, which plays a crucial role
in food security (Curtis and Halford, 2014; Shewry and Hey,
2015). Currently, wheat production faces a number of challenges,
among which diseases are ranked among the top (Bolton et al.,
2008). In addition to reducing yield, wheat diseases could lower
the grain quality or even result in grain contamination due to
toxins produced by pathogens (Lu et al., 2017; Qiu et al., 2019).
Leaf rust and tan spot are common diseases that affect wheat
production in the United States and worldwide, which can cause
wheat yield losses of 10–40% (De Wolf, 2008; Sharma et al., 2016).

The two main approaches to manage wheat diseases
are breeding disease-resistant varieties and through chemical
applications (Kolmer, 1996; Ransom and McMullen, 2008; Figlan
et al., 2020). For both approaches, researchers conduct extensive
greenhouse work before transferring the most promising
materials or treatments to the field for further evaluation. Hence,
it is critical for researchers to obtain accurate information on the
disease conditions in the greenhouse (Abdulridha et al., 2020).
The current approach of wheat disease diagnosis relies on visual
observations by well-trained graders. This approach potentially
suffers from subjectivity (grader bias), inefficiency (slow speed of
observation), inter-grader variation (inconsistent results among
different graders), and fatigue (tiresome operation) (Lehmann
et al., 2015). Therefore, an automated, efficient, and objective
approach to accurately and quickly diagnose wheat diseases is
needed (Luvisi et al., 2016).

Leaf rust is characterized by the presence of rust-colored
pustules erupting at the crop leaves (Salgado et al., 2016).
Tan spot symptoms are oval or diamond-shaped to elongated
irregular spots on the leaf, and these spots enlarge and turn
tan with a yellow border and a small dark brown spot near the
center (McMullen and Adhikari, 2009). Many studies have taken
advantage of these visible symptoms and used color [red, green,
blue (RGB)] images, coupled with different classifiers, for disease
detection (Johannes et al., 2017; Lu et al., 2017; Saleem et al.,
2019; Su et al., 2020). Color images are the dominant type of
images used for crop disease detection because of their low cost
and easiness to acquire and handle (Gaikwad and Musande, 2017;
Barbedo, 2018; Qiu et al., 2019; Wiesner-Hanks et al., 2019). In
addition to color images, color-infrared (CIR) images have been
extensively used in crop disease detection (Lehmann et al., 2015).
Different from the color images consisting of RGB, CIR images

include three bands, namely, near-infrared (NIR), red, and green
bands. The CIR images take advantage of the fact that disease
lesions (chlorotic or necrotic) cause biochemical changes on the
plant tissue, which can significantly affect the energy reflection
on NIR of the electromagnetic spectrum (Roberts et al., 1993;
Franke and Menz, 2007; Azadbakht et al., 2019). Healthy plants
on the CIR images usually display high reflectance on the NIR
band and low reflectance on the red band, while an opposite band
reflectance pattern is observed on the unhealthy plants (Carlson
and Ripley, 1997). Based on this principle, vegetation indices can
be calculated from CIR images. Among them, the Normalized
Difference Vegetation Index (NDVI) has been extensively used
for monitoring the crop health condition (Bravo et al., 2003;
Franke and Menz, 2007; Su et al., 2018; Yang, 2020). CIR
images were utilized for wheat and cotton disease detection, with
practical application of the results (Bajwa and Tian, 2001, 2002;
Moshou et al., 2004; Yang, 2020). Although both RGB and CIR
images have been extensively used for crop disease detection,
few studies were conducted to compare their performance on
wheat disease detection and further improve the methodology
and detection accuracy.

After collecting color or CIR images, handcrafted features
(HFs), which are extracted from images using algorithms to
represent the physical characteristics of the plants, would serve
as the basis for classification purposes (Zhang et al., 2016, 2020b;
Jahan et al., 2020). Numerous studies associated with crop disease
diagnosis have been carried out based on the HFs, including
vegetation indices (Ashourloo et al., 2014; Chen et al., 2018),
texture (Wood et al., 2012; Sun et al., 2019; Wan et al., 2020),
and color (Patil and Kumar, 2011; Gaikwad and Musande, 2017).
The HFs-based classification requires domain knowledge on
feature selection, as the classification accuracy mainly determines
whether the selected features have a good representation of the
diseases (Zhang et al., 2020a). One approach to get rid of the
domain knowledge required by the HFs-based classification is
through deep learning (DL).

During the last decade, DL has experienced significant
progress regarding image classification, with the convolutional
neural networks (CNNs) having been the core (Zhang et al.,
2020b). The CNNs enabled the implementation of algorithms
for automatic feature extraction, which does not require
domain knowledge. Very recently, deep features (DFs; features
automatically extracted by CNNs) have been used in crop disease
detection, and the literature in this field is limited. Lu et al.
(2017) extracted DFs and applied them to discriminate wheat
diseases, such as leaf blotch, smut, stripe rust, and black chaff,
but the algorithms’ performance on disease severity diagnosis was
not reported. In addition, DFs have been used for the detection
of apple scab disease (Khan et al., 2018) and rice leaf disease
(Sethy et al., 2020). However, few studies have reported the
application of DFs to differentiate and assess the severity of
wheat leaf rust and tan spot diseases. Furthermore, the diagnosis
accuracies based on selected features (HFs and DFs), which
influence classification performance, were unavailable.

Features (usually from a single-source image) were extracted
and then fed into classifiers for classification (Yang et al., 2003;
Sethy et al., 2020). Features extracted from color images were
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used to detect tomato leaf diseases (Patil and Kumar, 2011) and
corn diseases (Wiesner-Hanks et al., 2019), while CIR images
were used for assessing cotton rot disease (Yang, 2020). Since
a certain type of image might only provide partial information
to aid plant diseases classification, researchers (Bulanon et al.,
2009; Castanedo, 2013) had been experimenting with data fusion
techniques by combining features from different types of images
to improve the model accuracy. Color image blended with
NIR image detected the freshness level of food products and
demonstrated an improved classification accuracy over either
single-source image (Huang et al., 2016). Integration of color
and thermal images improved the field orange detection accuracy
(Bulanon et al., 2009). In the color images, oranges were not
well differentiated from leaves because of similarities between
them. However, they had different temperatures, which were
obtained via thermal images. Thus, the fusion of the features
from color and thermal images led to a higher accuracy. Even
though the use of data fusion techniques has resulted in higher
classification accuracy, few studies have fused color and CIR
images information for wheat disease diagnosis.

With an overall goal of developing and implementing an
automated solution to assess greenhouse wheat diseases (e.g., leaf
rust, tan spot, and leaf rust + tan spot), this study proposes an
innovative methodology of using deep features and their parallel
fusion from color and CIR images. Specific objectives of this study
were: (1) to compare the performance of features from color and
CIR images, and their parallel fusion in wheat disease diagnosis;
(2) to compare the accuracies of DFs extracted from different DL
models on wheat disease diagnosis and select the one generating
the highest accuracy; and (3) to compare the accuracies of HFs
and DFs in wheat disease detection.

MATERIALS AND METHODS

The various process steps followed in this study to improve
wheat disease diagnosis accuracy using feature fusion and DFs
are illustrated in Figure 1. After collecting color and CIR
images for the same plants in a paired mode, the region
of interest (ROI) was automatically determined using image
processing techniques. We developed a webtool to expedite
the dataset generation—while manually cropping either type of
images (color or CIR), the corresponding image of the other
type would be generated automatically (paired dataset). After
generating the dataset, features (HFs and DFs) extracted from
single-source images (color or CIR) and their fusion were fed
into a support vector machine (SVM) for accuracy comparison.
Finally, the methodology yielding the highest accuracy would
be recommended for future application. The following sections
describe the processes in detail.

Image Acquisition
The experiment was conducted at the North Dakota State
University, Agricultural Experiment Station Research
Greenhouse Complex (Fargo, ND, United States). Since the
greenhouse is enclosed with a transparent roof and windows, the
crop growing light conditions can be considered as semi-natural

illumination. Two wheat varieties (Prosper for leaf rust disease
and Jerry for tan spot disease) were planted in pots (Deepot D40:
6.4 × 25.4 cm; Stuewe and Sons, Inc., Tangent, Oregon). For the
two disease groups, crops were properly inoculated and then kept
in the incubation chamber for 24 h for expedited development of
the diseases. The control group was kept in another incubation
chamber with the same conditions and time as the disease group.
After inoculation, the two diseases required different amounts of
time to display symptoms—about 10 days for leaf rust and 6 days
for a tan spot. Immediately after the initial observation of disease
symptoms, the data collection started and continued for the next
12 consecutive days, with images being collected between 10:00
a.m. and 12:00 p.m.

Two off-the-shelf cameras were used for data collection—
a Canon EOS Rebel T7i camera (Ota City, Tokyo, Japan) for
color images (6,000 × 4,000 pixel resolution) and a multi-
band camera (LDP LLC, Carlstadt, NJ, United States) for CIR
images (5,184 × 3,456 pixel resolution) (Figure 2). A frame
(60× 60× 90 cm) built to facilitate image collection was used as
a reference for image collection for both cameras—the diameter
of the hole at the top sheet of the frame was a little wider than
the diameter of the camera lens, allowing them to go through to
capture the images. A rack that could hold 8 pots was placed at
the center of the frame bottom for the collection of both color
and CIR images, after which the rack was replaced. That process
was repeated until all plants were imaged. There were 10 racks for
each variety of plants, for a total of 160 pots of plants (8 pots× 10
racks× 2 varieties).

Color and Color-Infrared Image Datasets
Creation
Automatic Raw Image Cropping
After collecting color and CIR images, the next step was to
prepare the paired datasets (the same portion of plants shown
in both color and CIR images). A critical requirement during
the paired dataset preparation was to have the color image to
be corresponding to the CIR image. Since the two cameras had
different field of views and resolutions, as well as the image
collection positions were not exactly the same for the two
cameras, the views of the two images were different, as shown
in Figures 2C,E. It is thus necessary to keep the views of the
two images the same for further paired dataset generation by
proper cropping. Previous research used a manual approach
for image cropping (Bulanon et al., 2009), which is inefficient
and inaccurate. In this study, an automatic raw image cropping
approach was developed and applied, which used the aluminum
square base of the experimental frame as a reference. The frame
was first detected using color thresholding, and then, the mask
was generated (after noise removal) for each type of image. Only
the image section within the square base was kept, and detailed
procedures and parameters for image processing are shown in
Figure 3.

Webtool for Paired Image Dataset Creation
After the paired images were automatically cropped, they covered
the same view. While creating the paired dataset, it required
certain plant regions to be present in the paired color and CIR
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FIGURE 1 | Overall process flowchart of wheat disease diagnosis. ROI, CIR, DL, HFs, DFs, and SVM represent the region of interest, color-infrared, deep learning,
handcrafted features, deep features, and support vector machine, respectively.

FIGURE 2 | Experimental setup for image collection. A fabricated frame (A; 60 × 60 × 90 cm) to hold cameras on the top at the same locations and hold rack of
pots at the bottom; a color camera (B) with a sample collected image (C); and a color-infrared camera (D) with a sample collected image (E).

images. Manually processing the images to create the paired
dataset presents many issues: (i) manually cropping both the
color image and the CIR image can be a laborious process; (ii)

users’ manual switching between the two images is inefficient;
and (iii) manual cropping method is inaccurate since it is very
difficult to replicate the same ROI onto the corresponding image.
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FIGURE 3 | Automatic procedures of using image process techniques to generate the corresponding two types of images with the same view. NIR, near-infrared; R,
red; G, green; B, blue.

To address these issues, we developed a webtool that can expedite
the workflow and improve the process accuracy. The graphical
user interface (GUI) of the developed webtool is shown in
Figure 4A and can be accessed via this webpage.1 Following the
GUI instructions, users needed to upload a pair of images (auto-
cropped color and CIR image; Figure 3). The webtool would then
automatically resize the two images to make their dimensions
similar (image size; Figure 4B). Then, users can draw the ROI
(any closed polygonal or irregular shape) at the top image (red
irregular shape in Figure 4C), after which the corresponding
image of the other type would be generated and saved (a sample
pair shown in Figure 4D). This free webtool can be accessed by
users for a similar image processing workflow.

Visual Disease Classification
After the image dataset for each type of disease was generated,
each pair of the image was visually classified into one of
the three following classes: control (disease-free), disease light
(light infection), and disease severe (severe infection). The
standards used for classifying leaf rust disease grade are shown
in Supplementary Appendix I: If no disease symbol was shown,
it was classified as control; if the rust severity level was below 10
of the modified Cobb Scale B, it was classified as disease light;
otherwise, it was classified as disease severe (Peterson et al.,
1948; Gebremariam et al., 2016). Samples of visually graded
leaf rust diseases with different severity levels are shown in
Supplementary Appendix I. For the tan spot visual grading,
the following protocols were followed: If no disease symbol was
shown, it was classified as control; if the disease area (discolored
portion) was less than 30% of the total leaf area, it was classified as
disease light; otherwise, it was classified as disease severe. Samples

1https://github.com/jithin8mathew/RGB_CIR_imageCropping_tool

of visually graded tan spot diseases with different severity levels
are shown in Supplementary Appendix II. Since visual disease
classification requires domain knowledge, in this study, three
individual graders were trained by professional plant pathologists
and then voted for the classification of each image. For each
image, the grade with more than two votes was assigned as the
final grade. There were no cases that the three graders assigned
three different grades for the same image.

Segmentation of Color and Color-Infrared Images
After creating and grading the datasets, the segmentation of the
plant from the noisy background, including fertilizer, peat, plastic
grid, and aluminum frame, was performed. Color images were
first converted to Lab (L for lightness and a and b for the color
dimensions) format, and then, proper thresholding was applied
to generate a binary image. After removing small area noises, a
binary mask was generated, which was applied to the original
image to obtain the segmented color image (Figure 5).

Since the paired color and CIR images are of the same size, the
easiest approach to segment the CIR image was to directly apply
the binary mask generated during the color image segmentation
to the corresponding CIR image. However, considering that most
studies used the raw CIR images for disease detection (Bajwa
and Tian, 2002; Yang, 2020) and few studies reported CIR image
segmentation methods, our interest was to develop a general
approach for CIR image segmentation that could be referred by
other researchers. After preliminarily testing several approaches,
the K-means clustering algorithm was selected. A key parameter
while applying this algorithm was the selection of proper number
of clusters. In this study, “3” was applied as pixels can be
categorized into three clusters, namely, plant, background, and
noise (Figure 5). Since three images (clusters) were randomly
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FIGURE 4 | Introduction to the webtool developed to expedite the paired dataset generation accurately. (A) Graphical user interface, (B) uploaded a pair of images
with different formats (color and color-infrared), (C) manual image cropping on color image (red irregular shape), and (D) sample of a paired dataset.

FIGURE 5 | Image segmentation procedures of the color and color-infrared paired images. ∗ refers to the auto-generated image from the webtool (Figure 4).

generated after implementing the algorithm, it was necessary to
develop a solution that would automatically select the proper
cluster with plants (not background or noise). In the NIR
channel, plants had a stronger signal over the background and
noise, which made it a good parameter to differentiate the plant
cluster from noise and background clusters. The average intensity
for the NIR channel of each image was calculated, and the image
with the highest value was selected as the plant cluster. After
small objects as noises were removed, the leaf in the CIR image

was segmented, and then, the dataset was prepared for further
analysis. The dataset size is shown in Table 1.

Handcrafted Features Extraction
Based on domain knowledge and reported results (Lu and Lu,
2018; Wang et al., 2019), color, vegetation fraction, and texture
were the extracted HFs features in this study. Although both color
and CIR images contain red and green channels, based on our
preliminary comparisons of the same channel images from two
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TABLE 1 | Datasets (region of interest) of paired images and their sizes.

Leaf rust disease dataset Number of
images

Tan spot
disease
dataset

Number of
images

Free color 226 Free color 237

Free color-infrared 226 Free
color-infrared

237

Light color 171 Light color 182

Light color-infrared 171 Light
color-infrared

182

Severe color 200 Severe color 200

Severe color-infrared 200 Severe
color-infrared

200

cameras, they were not exactly the same (probably due to slight
differences in band center and width of the two cameras).

For the color images in RGB format, they were also converted
into HSI (hue, saturation, intensity) and Lab formats, and the
normalized average intensity of each channel was calculated (a
total of 9 HFs). For the CIR images, since the original image
consists of 3 channels (e.g., R, G, and NIR), the normalized
average intensity of each channel was calculated. Then, the CIR
image was converted into HSI and Lab formats, with another 6
color features obtained (a total of 9 HFs).

After extracting the color features, the vegetation fraction
features were extracted. For the color image, it included
Normalized Difference Index (NDI), Excess Green (E × G),
Excess Red (E × R), Color Index of Vegetation Extraction
(CIVE), Modified Excess Green (ME × G), and Normalized
Excess Green (NE × G). For the CIR image, due to the lack
of blue channel information, the features of E × G, CIVE,
ME × G, and NE × G could not be extracted. However, with
the NIR channel information, NDVI and Green Normalized
Difference Vegetation Index (GNDVI) features were obtained.
For the texture features, they were extracted using the gray-level
co-occurrence matrix (GLCM), including correlation, contrast,
dissimilarity, energy, entropy, and homogeneity. Details of all the
features extracted, as well as their calculation formulas, have been
described in Wood et al. (2012); Wang et al. (2019), and Aballa
et al. (2020).

Deep Features Extraction
In contrast to HFs that require domain knowledge to decide
which type of features to extract, the extraction of DFs is domain
knowledge-free. Although different trained CNNs can be used to
extract DFs, it was unknown which one could extract appropriate
DFs that can better represent crop diseases. Hence, several DL
models, including AlexNet, VGG16, ResNet101, GoogLeNet, and
Xception, were used to extract DFs, which were then fed into a
classifier to select the one with the highest accuracy. Since model
training is time-consuming, this study took advantage of these
trained models for DFs extraction (Aballa et al., 2020). Since
each model has many deep layers (consisting of CNNs and fully
connected layers), it was necessary to decide which layer to use for
DFs extraction. Since previous studies demonstrated that shallow
layers mainly reserved spatial and general shape information

TABLE 2 | Information of deep learning models used for extracting deep features.

Model
information

AlexNet VGG16 ResNet101 GoogLeNet Xception

Number of deep
layers

8 16 101 22 71

Feature pooling
layer name

drop7 drop7 pool5 pool5-
drop_7 × 7_s1

avg_pool

Number of features
extracted

4,096 4,096 2,048 1,024 2,048

(might not be significantly related to disease detection) (Jiang
and Li, 2020), this study extracted DFs using the layer before the
last fully connected layer of each model. The layer name and the
number of extracted DFs for each model are presented in Table 2.

Parallel Feature Fusion
Many data fusion techniques have been used to improve model
accuracy. One approach is to first register images from different
sources and then fuse them using the Laplacian Pyramid
Transform (LPT) or Fuzzy Logic into one composite image
(Bulanon et al., 2009). Then, the extracted features from the
composite images are fed into classifiers. In another approach,
on a first step decisions based on different feature sets (from
different types of images) are made, after which the decisions are
reconciled or combined to generate a global decision (decision
fusion) (Peli et al., 1999; Yang et al., 2003). In yet another
approach, features from different types of images are fused
parallelly (concatenated) and then fed into classifiers (Yang
et al., 2003; Khan et al., 2018). In our case, preliminary tests
revealed that the first method resulted in a poor performance,
which was probably caused by the loss of color information
during the fusion process. Since the second approach has not
been extensively used and the performance is unavailable, we
decided to use the third method for its robustness and proved
performance, which included all the information from both types
of images (Khan et al., 2018).

Feature Selection and Classifier
The relevance of extracted features (HFs or DFs) for the
classification is unknown beforehand. Feeding irrelevant features
to the model would decrease the accuracy, as well as increase the
computation load. To select relevant features, ReliefF algorithm
was applied to calculate the weights of individual features
(Kononenko et al., 1997). The ReliefF algorithm uses K nearest
neighbors (KNN) for the weight calculation (the study used
k = 3). The higher the weight of a feature, the more relevant
it is to the classification. Since a negative weight indicates an
insignificant role, this study used only features with positive
weights for modeling.

A large number of classifiers have been used in addressing
classification issues, including SVM, neural network (NN),
random forest (RF), and KNN. Among these classifiers, an SVM
classifier (multi-class) (Aballa et al., 2020; Zhang et al., 2020a) was
selected because many studies have shown that it outperformed
others (Sajedi et al., 2019; Jahan et al., 2020). For the diagnosis
of different types of diseases (e.g., leaf rust, tan spot, and leaf
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rust + tan spot), the dataset was randomly partitioned into
training (80%) and testing (20%) for model development.

In this study, Python language (V3.8) was used to develop the
semiautomatic webtool (see text footnote 1) to assist paired image
dataset creation (Figure 4). For all other data processing (e.g.,
image segmentation, feature extraction, and model development
and execution), MATLAB R© 2019a (The Mathworks, Inc., Natick,
MA, United States) was used. A desktop computer was used for
data processing, which was configured with Windows 10 OS,
Intel(R) Core(TM) i7-8700 CPU, 32 GB RAM, Intel(R) UHD
Graphics 630, and 16 G GPU memory.

RESULTS AND DISCUSSION

Diagnosis Accuracies Based on
Handcrafted Features
Disease detection accuracies based on HFs from different types
of images (color and CIR) and their parallel fusion are shown
in Figure 6. For the statistical analysis and visualization of the
whole data, the effects of features from different types of images
for the same disease (Figure 6A) and the effects of disease type for
the features extracted from a certain type of image (Figure 6B)
are presented. For leaf rust and leaf rust + tan spot (Figure 6A)
disease diagnosis, the CIR (accuracy about 53%) did not perform
as satisfactorily as the color images (accuracy about 60%).
One possible reason was that the leaf rust disease’s symptoms
were relatively small in size, and the difference between the
diseased and healthy regions was unobvious of the CIR images.
This assumption is supported by the results regarding tan spot
disease, where the performance of CIR and color images was not
significantly different (Figure 6A), as the tan spot symptoms were
large and more obvious, hence identified with a better accuracy
(about 75%). Compared with the single-source features from CIR
or color images, for all the three types of diseases, the parallelly
fused features resulted in the highest accuracies. Since one type
of image can only represent partial information, the parallel
fused features from images collected by both cameras provided
more meaningful information and features that best described
the diseases. For the leaf rust, tan spot, and leaf rust + tan
spot, the accuracy improvement using parallelly fused features
over CIR image features was 21, 8, and 27%, respectively, and
over color image features was 9, 10, and 4%, respectively. Such
good accuracy improvements indicate the superiority of applying
parallel feature fusion techniques for disease diagnosis.

Regarding detection accuracy for different diseases
(Figure 6B) with the same type of features, it can be observed
that tan spot was consistently the disease detected with the
highest accuracy across the three types of features. The obvious
difference of the tan spot symptoms from the healthy portion of
the leaves and large area of discolored tissues might be the reason
for the more accurate detection. On the contrary, the symptoms
of leaf rust are usually small in discolored area (not significant).
The overall accuracy for the leaf rust + tan spot is a little higher
than that of the leaf rust alone, which is because the combined
dataset contained the tan spot disease sub-dataset as well. For the
CIR features, color features, and parallelly fused features, the tan

spot detection accuracies were 46, 28, and 31% higher over leaf
rust, respectively, and 47, 18, and 25% higher over leaf rust+ tan
spot, respectively.

The confusion matrices presented in Figure 7 provide
more detailed information on the classification/misclassification
results. For the leaf rust disease severity detection, the model had
difficulties in classifying the leaf rust light (light disease) correctly.
A total of 31 cases (8, 12, and 11 from Figures 7A–C, respectively)
of leaf rust light were misclassified as leaf rust control (disease-
free), and a total of 33 cases (10, 18, and 5 from Figures 7A–C,
respectively) of leaf rust light were miscategorized as leaf rust
severe. The light condition may have played a big role on those
results, making it very difficult to accurately assess the disease
occurrence and severity. Our findings further demonstrated
that disease detection on its early stages of development is
challenging, which is supported by previous literature reports
(Singh and Misra, 2017). For the tan spot disease detection, the
major misclassifications occurred as light disease predicted as
severe (30 cases; 12, 6, and 12 from Figures 7D–F, respectively).
The difficulties can further support the previous assessment
that it is a challenge to accurately detect and assess severity
on its early stage of infection. The results (Figures 7G–I)
showed a good performance in identifying the disease type
(tan spot or leaf rust). For the CIR features, color features,
and parallelly fused features, the disease misclassification rates
(leaf rust classified as a tan spot or tan spot classified as leaf
rust) were 19% (28 cases in Figure 7G), 11% (16 cases in
Figure 7H), and 9% (14 cases in Figure 7I), respectively. Thus,
the parallelly fused features have a more satisfactory performance
in disease type identification. This piece of information is critical
for researchers and farmers to select proper chemicals for
disease management.

Model Selection for Deep Features
Extraction
The diagnosis accuracies based on DFs from five DL models are
shown in Figure 8. For all the 15 settings (5 DL models× 3 types
of diseases), the fused features resulted in the highest accuracy
in eight settings (e.g., AlexNet TS and LR + TS, GoogLeNet TS
and LR + TS, ResNet101 LR + TS, VGG16 TS, and Xception
TS and LR + TS, where TS and LR are tan spot and leaf rust,
respectively), while for the other seven settings, fused features
together with color image features lead to the highest accuracies.
The results indicate that, similar to the HFs, parallelly fused deep
features could increase the model accuracy over deep features
from a single type of image.

To assist decision-making on which DL model should be
selected for DFs extraction, the experimental results of Figure 8
were rearranged as shown in Figure 9 for better comparison
of different models and statistical analysis. In each of the
nine settings (3 diseases × 3 types of features), DFs extracted
by ResNet101 consistently resulted in the highest accuracy
(letter a in all 9 settings). The high diagnosis accuracy was
due to the extracted features that were good representations
of the crop diseases. A potential reason that the DFs by
ResNet101 outperformed the DFs extracted by AlexNet, VGG16,
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FIGURE 6 | Accuracy performance of features from color and color-infrared image, and their parallel fusion on leaf rust (LR), tan spot (TS), and LR + TS (two
diseases combination) detection in terms of different image types (A) and diseases (B). Whiskers on bars represent two standard deviations calculated from 20
replicates. Bars with different letters are significantly different by Tukey’s test at a significance level of 0.05.

FIGURE 7 | Confusion matrices of color-infrared (CIR) image features, color image features, and parallelly fused features on leaf rust (LR), tan spot (TS), and LR + TS
(their combination) disease detection based on handcrafted features. (A–I) Represent a subset of three confusion matrices for CIR image features, color image
features, and parallelly fused features on LR, TS, and LR + TS disease detection, respectively.

GoogLeNet, and Xception was because the ResNet101 has more
deep layers—ResNet101, AlexNet, VGG16, GoogLeNet, and
Xception consist of 101, 8, 16, 22, and 71 deep layers, respectively
(Table 1). With more layers, the extracted DFs could represent
more detailed (fine) information of the plant diseases, while
the features from shallow layers mainly reserved spatial and
general information (Jiang and Li, 2020). Hence, the ResNet101

should be used for DFs extraction to serve the purpose of wheat
disease diagnosis.

Since DFs extracted by ResNet101 would lead to the
highest diagnosis accuracy compared with other DL models,
its performance was further studied in the form of confusion
matrices to reveal the detailed classification/misclassification
results (Figure 10). For the leaf rust disease diagnosis, a majority
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FIGURE 8 | Performance of deep features (DFs) from different types of images and their parallel fusion on different wheat diseases detection. DFs were extracted by
five different models. CIR, color-infrared images; LR, leaf rust; TS, tan spot; and LR + TS, combined disease datasets (without the control datasets). Whiskers on
bars represent two standard deviations calculated from 20 replicates. Bars with different letters are significantly different by Tukey’s test at a 0.05 significance level.

FIGURE 9 | Accuracies of deep features (DFs) extracted by different deep learning models on different wheat disease diagnoses. Fusion means the parallelly fused
features of color-infrared (CIR) and color images. LR, leaf rust; TS, tan spot; and LR + TS, combined disease dataset (without the control datasets). Whiskers on bars
represent two standard deviations calculated from 20 replicates. Bars with different letters are significantly different by Tukey’s test at a significance level of 0.05.

of the misclassification cases occurred as the severe infection
cases predicted as light (33 cases consisting of 14, 13, and
6 cases from Figures 10A–C, respectively). The pattern of
misclassification was different from the HFs as mentioned in
Figure 7, where light infection cases were misclassified as severe
or free of infection. The different types of misclassification
indicate that the DFs represented the images differently from the
HFs. For the tan spot disease diagnosis, most misclassifications
that happened as severe infections were predicted as light
(34 cases consisting of 13, 10, and 11 from Figures 10D–F,
respectively). This type of misclassification was also different
from the HFs (Figure 7), supporting the previous assessment that
DFs represented the images differently from the HFs. The DF
had a satisfactory performance in distinguishing the combined
scenario of two diseases, and the misclassification ratios were only
6.6% (10 cases in Figure 10G), 5.3% (8 cases in Figure 10H), and
4.6% (7 cases in Figure 10I) for the CIR image DFs, color image
DFs, and the parallelly fused DFs, respectively.

Accuracy Comparison Between
Handcrafted and Deep Features
Results shown so far have demonstrated that parallel feature
fusion could improve the model accuracy for wheat disease
diagnosis for both HFs and DFs, and the DFs extracted by
ResNet101 resulted in higher accuracy over the other four
models, namely, AlexNet, GoogLeNet, VGG16, and Xception.
To make a better assessment of that, we did a side-by-side
comparison of HFs and DFs (extracted by ResNet101) on
the detection of diseases using the parallelly fused features

(Figure 11). For the leaf rust and leaf rust + tan spot disease
diagnosis, DFs resulted in higher accuracies of 19 and 8% over
HFs, respectively. A potential explanation for those results is that
the symptoms for leaf rust were not very obvious (could not be
manually selected), and DFs were able to extract fine features
that could better represent the diseases. For the tan spot disease
diagnosis, the accuracies by DFs were not significantly different
from HFs, which might be because the TS symptoms were clear
and obvious. Overall, it is recommended to use the DFs, instead of
HFs, for wheat disease detection, coupled with the parallel feature
fusion technique.

The accuracies of several wheat disease detection (e.g., smut,
leaf blotch, and black chaff) studies varied greatly from 50 to 99%
(Lu et al., 2017; Su et al., 2018, 2019; Wiesner-Hanks et al., 2019;
Abdulridha et al., 2020; Mi et al., 2020). From this study, the
recommended application of parallel fusion of CIR image DFs
and color image DFs extracted from ResNet 101 resulted in the
accuracies of 75, 84, and 72% for wheat leaf rust, tan spot, and leaf
rust + tan spot disease detection, respectively (Figure 11). Due
to the differences in the datasets applied and models employed
in this study as compared with other published studies, it is
nearly impossible to make a direct and objective comparison.
However, the accuracy of the methodologies by Chen et al.
(2018); Su et al. (2018), and Wiesner-Hanks et al. (2019) might
be improved by incorporating the outcomes of this research—
DFs (from ResNet101) coupled with parallel feature fusion for
diagnosis accuracy improvement.

This study developed the methodology specifically for
greenhouse applications. However, it also has the potential to
be applied for field use in real-time mode, which can help
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FIGURE 10 | Confusion matrices of color-infrared (CIR) image deep features (DFs), color image DFs, and their parallelly fused DFs on leaf rust (LR), tan spot (TS),
and LR + TS (their combination) disease detection. DFs extracted by ResNet101 and sub-figures (A–I) represent three confusion matrices of CIR HFs, color HFs,
and fusion for LR, TS, and LR + TS, respectively.
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FIGURE 11 | Comparison of handcrafted features (HFs) and deep features (DFs; extracted from ResNet101) on different wheat diseases detection with parallel
feature fusion. Whiskers on bars represent two standard deviations calculated from 20 replicates. Bars with different letters are significantly different by Tukey’s test at
a significance level of 0.05.
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breeders, plant scientists, and growers to obtain the wheat disease
conditions. Thus, the current methodology should be tested
using field data. Considering the variable lighting conditions
during infield use, a color calibration/adjustment procedure at
the beginning of the data process should be added to improve the
model’s robustness (Sunoj et al., 2018). Furthermore, a desktop
was used for the data process in this study, which should be
replaced by an embedded system for infield use. Thus, a trade-
off between model size, computation time, and model accuracy
should be made, instead of using one parameter (accuracy) to
judge the model performance.

CONCLUSION

A methodology for the diagnosis of leaf rust, tan spot, and leaf
rust+ tan spot diseases with handcrafted and deep features from
the color image, color-infrared (CIR) image, and their parallel
fusion along with SVM classifier was successfully developed and
compared. A webtool was developed, hosted (see text footnote
1), and used in this study for paired datasets (the same view
for color and CIR images) creation. Fused features (parallel
mode in this study obtained via concatenating) resulted in
a higher disease detection accuracy over the features from a
single type image (either color or CIR). It was found that
deep features (automatically selected by DL algorithms with
free domain knowledge) generated higher diagnosis accuracies
over handcrafted features (manually selected using domain
knowledge), due to extraction of fine features by DFs that would
be missed by HFs. In addition, while selecting DL models for
DFs extraction, it is recommended to use the efficient ResNet101
DL model generating more deep layers, as shallow features can
only reserve spatial and general information. The developed
methodology based on DFs and parallel feature fusion efficiently
detected wheat disease conditions with accuracies of 74, 84, and
72% for leaf rust, tan spot, and leaf rust + tan spot, respectively.
This methodology, which can be readily used in greenhouse
applications by plant pathologists, breeders, and other users,
presents a pathway toward the development of automatic and
objective wheat disease diagnosis applications. Furthermore, the
field application of the methodology can be achieved with further
tests of field data and fine-tuning of model parameters.

This study successfully and satisfactorily segmented color and
CIR images using the developed general algorithms. However,
the segmentation results between color and CIR images were
not compared. Future studies, such as comparing overlapping
ratio, should be conducted in this field. Furthermore, the
mask generated for segmentation color images should be
tested on the CIR image, and vice versa. This study took
advantage of ReliefF for the feature section, and under some

conditions, the elimination of features may not improve the
model accuracy. Therefore, future studies should compare the
model accuracy between the feature selection and non-selection.
This study mainly focuses on the model accuracy, and it lacks
a comprehensive comparison among different models, such as
training time and model size. Future research should compare the
models more comprehensively. This study took advantage of the
SVM as the classifier for its proven performance. Further studies
should be conducted to compare the performance of different
classifiers, such as neural network and random forest.
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The precision detection of dense small targets in orchards is critical for the visual
perception of agricultural picking robots. At present, the visual detection algorithms
for plums still have a poor recognition effect due to the characteristics of small plum
shapes and dense growth. Thus, this paper proposed a lightweight model based
on the improved You Only Look Once version 4 (YOLOv4) to detect dense plums
in orchards. First, we employed a data augmentation method based on category
balance to alleviate the imbalance in the number of plums of different maturity levels
and insufficient data quantity. Second, we abandoned Center and Scale Prediction
Darknet53 (CSPDarknet53) and chose a lighter MobilenetV3 on selecting backbone
feature extraction networks. In the feature fusion stage, we used depthwise separable
convolution (DSC) instead of standard convolution to achieve the purpose of reducing
model parameters. To solve the insufficient feature extraction problem of dense targets,
this model achieved fine-grained detection by introducing a 152 × 152 feature layer.
The Focal loss and complete intersection over union (CIOU) loss were joined to balance
the contribution of hard-to-classify and easy-to-classify samples to the total loss. Then,
the improved model was trained through transfer learning at different stages. Finally,
several groups of detection experiments were designed to evaluate the performance
of the improved model. The results showed that the improved YOLOv4 model had
the best mean average precision (mAP) performance than YOLOv4, YOLOv4-tiny,
and MobileNet-Single Shot Multibox Detector (MobileNet-SSD). Compared with some
results from the YOLOv4 model, the model size of the improved model is compressed
by 77.85%, the parameters are only 17.92% of the original model parameters, and the
detection speed is accelerated by 112%. In addition, the influence of the automatic data
balance algorithm on the accuracy of the model and the detection effect of the improved
model under different illumination angles, different intensity levels, and different types of
occlusions were discussed in this paper. It is indicated that the improved detection
model has strong robustness and high accuracy under the real natural environment,
which can provide data reference for the subsequent orchard yield estimation and
engineering applications of robot picking work.

Keywords: object detection, YOLOv4, MobileNetV3, data balance, plum
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INTRODUCTION

Plum is a characteristic fruit in South China. Its fruit is small,
densely distributed, and easily blocked by other plums or
branches and leaves. Plum maturity identification and picking
tasks are completed manually in the current plum orchards. At
present, labor costs have unprecedentedly increased, and the
proportion of labor costs in total costs is also increasing, with
the increase reaching up to 12–15% in 2019 (Fu et al., 2020a). In
precision agriculture, labor shortage and aging labor have posed
barriers to the development of the fruit industry. Considering the
above, mechanized and intelligent intensive plum picking is an
indispensable part of the development of the whole fruit industry.

In recent years, relevant scholars have carried out a series of
research on recognizing and detecting fruits, such as apples and
citrus in precision orchards (Liao et al., 2017; Wajid et al., 2018;
Gurubelli et al., 2019; Mo et al., 2021). Lin G. et al. (2020) adopted
partial shape matching and probabilistic Hough transform to
detect fruits in the natural environment. Fu et al. (2019) achieved
the fine detection of bananas by combining color, texture features,
and Support Vector Machine classifier. He et al. (2020) put
forward a green citrus detection method based on the deep
boundary box regression forest by fusing multiscale features of
color, shape, and texture. Zhao et al. (2016) combined AdaBoost
classifier and color analysis to detect tomatoes in the greenhouse
scene. In summary, these studies discussed previously mainly
combined the traditional image processing methods and the
basic characteristics of fruit color and texture. However, the
data processing required a comprehensive analysis of multiple
features, complex processing procedures, and poor real-time
detection, which were difficult to meet the requirements of
orchard information management and robotic picking.

With the rapid development of machine learning, the deep
convolutional neural network (CNN) has shown excellent
performance in fruits detection. Its high extraction of high-
dimensional targets features makes it possible to recognize in
complex environments. There are two-stage detection methods,
such as Fast RCNN (Girshick, 2015) and Faster R-CNN (Ren
et al., 2016). These target detection models based on the region
suggestion method adopt the final layer of the CNN to predict.
Xiong et al. (2018) employed the Faster R-CNN method to
detect green citrus under different illumination and sizes, and
the accuracy rate reached 77.45%. Zhang et al. (2020) developed
three apple recognition algorithms based on Faster R-CNN,
with mean average precision (mAP) of up to 82.4%. Fu et al.
(2020b) established an algorithm that is composed of ZFNet and
VGG16 of Faster R-CNN architecture to detect apples in dense-
leaf fruit wall trees, and the results showed that the removal of

Abbreviations: YOLO, you only look once; CSP, center and scale prediction;
DSC, depthwise separable convolution; PWC, pointwise convolution; PANet, path
aggregation network; SPP, spatial pyramid pooling; FPN, feature pyramid network;
F1, the harmonic mean of the precision and recall; AP, average precision of A
category; mAP, average precision of multiple categories; IOU, intersection over
union; CIOU loss, complete intersection over union loss; FIOU loss, focal IOU
loss; FPS, frame per second; SSD, single shot multibox detector; MobileNet-SSD,
MobileNet-single shot multibox detector; UAV, unmanned aerial vehicle.

background trees with a depth filter improved fruit detection
accuracy by 2.5%.

In addition, single-stage target detection methods, such as SSD
(Liu et al., 2016) and YOLO (Redmon et al., 2016; Redmon and
Farhadi, 2017, 2018), have been widely used because of their high
accuracy and detection efficiency. Xue et al. (2018) adopted the
YOLOv2 network to identify immature mango, which improved
the detection rate while maintaining accuracy and generalization
capability. Some researchers (Liu and Wang, 2020; Wang and Liu,
2021a,b) proposed the improved network models of YOLOv3
to detect the diseases and pests of greenhouse tomatoes. The
proposed detection algorithm had strong robustness and high
accuracy in complex orchard scenes. Tian et al. (2019) designed
an improved YOLOv3 model to detect apple at different growth
stages in the orchard. Kuznetsova et al. (2020) proposed a
YOLOv3 apple detection algorithm with special pre-processing
and post-processing. Li et al. (2020) employed the MobileNet-
YOLOv3 model to detect dragon fruit in the orchard. Wu
et al. (2021) proposed an improved YOLOv3 model based on
clustering optimization. Liu et al. (2021) proposed a YOLOv3-
SE improved method for winter jujube fruit recognition under
natural environment. The mAP of the improved model increased
by 2.38∼4.81% through the analysis of detection effects under
different lighting conditions, occlusion, and maturity. Ji et al.
(2021) proposed an apple detection method based on the
improved YOLOv4, which could accurately locate and detect
apples in various complex environments. Although the YOLO
series networks have shown excellent performance in fruit
recognition, it is difficult to detect small targets in deep feature
maps due to the loss of spatial and detailed feature information.
Due to the large number of model parameters, it is a very
challenging task to deploy on the devices with limited resources
and achieve the goal of real-time reasoning.

Compared with apple, citrus, mango, and other fruits, plum
trees are mostly planted on hillsides, and their fruit growth
environment is full of complexity and uncertainty. In modern
precision orchards, it is more difficult to detect small targets
owing to the presence of complex noise disturbance, such as
changing illumination and branch and leaf occlusion. In addition,
the cluster growth of the plum itself and the mixing of different
maturity lead to the poor performance of existing algorithms
in plum detection (Gao X. et al., 2021). Jang et al. (2021) tried
to use 3D images and MATLAB R2018a to detect plums and
size estimation, and this method achieved an average recognition
rate of 61.9%. Pourdarbani et al. (2019) established different
classifiers and majority voting rules to compare the effects of
12 different light intensities on plum images segmentation in
the natural environment, and the experimental results showed
that the correct classification results of the majority voting
method excluding LDA were better than those of the composition
method. Brown and Sukkarieh (2021) presented two datasets
gathered during a robotic harvesting trial on 2D trellis plums
and used them to benchmark on the four deep learning object
detection architectures. Although many researchers have done
extensive work on the detection of plums, the accuracy and
robustness in different scenes still need to be further improved.
So far, no study has been conducted on deep learning methods
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to detect dense plums in natural environments. The resources
that fruit-picking robots can use in the orchard are limited.
Therefore, it is necessary to explore an efficient and accurate plum
recognition algorithm according to actual needs.

Aiming at the growth characteristics of plum fruit, this paper
took advantage of the YOLOv4 network in target detection
and combined it with the MobileNetV3 lightweight network.
In the feature fusion structure, deep separable convolution
was introduced to replace standard convolution, and a new
convolution layer was introduced to increase the recognition
performance of the model for dense small targets. Meanwhile,
the Focal loss function was added to balance the contribution
of different samples to the total loss. The proposed method is
compared and evaluated with the other three target detection
networks in different scenes to provide a reference for the yield
estimation of plum and the rapid recognition of picking robots.

MATERIALS AND METHODS

Materials
Image and Data Acquisition
The experimental collection site is located in a plum orchard
(23.55N, 113.59E) in Conghua District, Guangzhou City,
Guangdong Province, China. The geographical location of
the image acquisition is shown in Figure 1. The sampling
device in this study is a high-resolution smartphone with
a camera parameter of 40 million pixels, the exposure
parameter is automatic, and the objective focus system is set
to autofocus mode.

The sampling objects were plums. To collect as much
information about plums in the natural environment as possible,
the experimenter simulated the image capture module of the
picking robot, and the handheld collection device continuously
changed the shooting angle and shooting distance, hoping
to collect RGB images of different colors, postures, sizes,
backgrounds, and density. The experimental samples were
obtained in two batches. The photographs were taken on April
24, 2021, which was a sunny day. The weather changed from

light rain to cloudy from May 3 to 4, 2021. The plums were
in the middle of maturity during these sessions. Most mature
plums’ color is red, and some immature plums’ color is cyan. In
total, 1,890 original images were collected under different scenes.
Mature and immature plums were included in the photographs.
The overall quality of the image could meet the requirements
of target detection by making a visual quality assessment on the
collected image data.

Dataset Production
The collected plum images have 3, 968 × 2, 976 pixels. However,
the high pixel will prolong the training and processing time. This
study adopted a bicubic scaling algorithm to scale image pixels
to 1, 920 × 1, 440.

The Label Img, an image annotation tool, was used for manual
annotation to obtain the ground truth for subsequent training.
As shown in Figure 2, the wholly exposed plums are marked
by cutting the outer part to the inside of the rectangular frame.
For occluded or conglutinated plums, only the exposed parts of
the image are marked. The unmarked processing was performed
when the part of the image boundary or the degree of occluded
plums was less than 10%. The annotation information was saved
in the format of the PASCAL VOC dataset. The maturity was
manually judged and marked as two types of plums, mature
(plum) and immature (raw_plum).

For the marked 1,890 plum images, the original dataset was
divided into the training set, validation set, and test set, where
the ratio of training set to test set is 8:2. The validation set
is randomly selected from 10% of the training set and does
not participate in training. The training set was divided into
three sub-datasets according to different collection times. Among
them, sub-dataset 1 was composed of 368 image data collected
on April 24, 2021, sub-dataset 2 was composed of 400 images
collected on May 2, 2021, and sub-dataset 3 was composed of
744 image data collected on May 3, 2021. Table 1 shows the data
before data balance.

According to the number of plums in 1,890 labeled images,
there are 10,441 mature and 4,754 immature plums labels. The
proportion between the two is close to 2.2:1. It can be found

FIGURE 1 | Location of images acquisition site.
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that there is a larger data imbalance between the number of
mature plums and immature plums. If the network model is
trained directly, it will have poor recognition performance for
immature plums, resulting in the degradation of model detection
ability. Therefore, it is necessary to take some measures to balance
the dataset to improve the recognition ability of the model
for immature plums.

Data Augmentation Method Based on Category
Balance
Automatic Data Balancing Method Based on Category
Aiming at the imbalance mentioned above, this paper proposed
an automatic data balancing method based on category to
optimize the dataset so that the number of categories before the
network model training is the same as possible (Gao J. et al.,
2021). This method needs to obtain the quantitative values of all
categories first, compare and select the category with the largest
amount of data, and then sequentially expand the quantitative
values of other categories to approach the largest category. The
specific steps are as follows:

i. Suppose there is a dataset
S = [M1,M2, ,Mi] [N1,N2, ...,Nj]

T , where Mi denotes
the number of types of samples in the dataset, and
Nj denotes the number of samples in each category;

ii. Compare the sample quantity values of all categories in the
dataset MiN j and find the maximum value MiN jmax;

iii. Use MiN jmax to divide by the sample quantity value MiN j
of the remaining category in turn, and then division C is
obtained. The calculation is given in Equation 1:

C =
MiN jmax

MiN j
= [{c1, c2, ..., ci−1}] (1)

iv. Choose a data quantity expansion method, and the data
quantity of residual categories become large according to
division C so that the number of samples of all categories is
expanded to the maximum value, and MiN

′

j is obtained,
and finally, the quantity proportion of each category is
close to 1;

v. The final output is the expanded dataset
T = [M1,M2, ,Mi] [N

′

1,N
′

2, ,N
′

jmax]T.

According to the automatic data balancing algorithm, the
number of mature groups is divided by the number of immature
groups in the whole dataset, and the remainder is rounded down
to get 2. Since there are different proportions of mature plum
and immature plum labels in each sub-dataset, it is necessary
to balance the whole sub-dataset in data balancing. Therefore,
only one data amplification of sub-dataset 1 can ensure that
the overall proportion of immature and mature plums in the
dataset is close to 1.

Data Augmentation
To prevent overfitting or non-convergence phenomenon caused
by too little training data, this study randomly combines common
data augmentation methods and performs data augmentation
processing on the train set, such as Gaussian blur, random

FIGURE 2 | Data annotation example: the blue box represents mature plums,
and the purple box represents immature plums.

rotation, random cutting off part of the image, histogram
equalization, random brightness adjustment, salt, and pepper
noise (Huang et al., 2020; Wu et al., 2020). The dataset is
enhanced five times through the multiple random combinations
of the above methods. The enhanced dataset is shown in Table 1.
At the same time, thanks to the data balance method adopted,
the proportion of mature and immature plums in the training set
has changed from 2.2:1 to 1.2:1 so that the number of different
categories of the dataset is similar.

Methodologies
YOLOv4 Model
The YOLO series target detection models are widely used in
industry and scientific research due to their excellent speed
and detection accuracy performance. Bochkovskiy et al. (2020)
proposed the YOLOv4 model based on YOLOv3, which has
better recognition performance and faster speed. It can carry
out end-to-end object prediction and classification. It is one of
the most high-performance target detection methods at present.
Compared with the YOLOv3 network, the main improvements
of YOLOv4 include: (1) The Mosaic data augmentation method
is designed, and the input images are merged by random clipping,
scaling, and spatial arrangement. At the same time, training
techniques, such as the learning rate cosine annealing attenuation
method are used. (2) The new backbone network and activation
function are used to enhance the feature learning ability of
the network. Meanwhile, DropBlock regularization is used to
alleviate the overfitting problem. (3) The Spatial Pyramid Pooling
(SPP) module and Path Aggregation Network (PANet) structure
are introduced. The PANet structure is used to transfer semantic
features from top to bottom, and the feature pyramid is designed
to transfer location features from bottom to top and aggregated
through the backbone layer to improve the ability of network
feature extraction. (4) The CIOU loss function is introduced to
increase the width-to-height ratio information of the bounding
box and enhance the robustness. The DIOU_nms prediction
box screening mechanism is used to improve the screening
performance of overlapping targets.

Frontiers in Plant Science | www.frontiersin.org 4 March 2022 | Volume 13 | Article 839269180

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-839269 March 7, 2022 Time: 12:23 # 5

Wang et al. Dense Plum Recognition

TABLE 1 | The number of datasets before and after augmentation.

Collection date Dataset Processing method Number of
pictures

Mature labels Immature
labels

April 24, 2021 Sub-dataset 1 Before augmentation 368 1,353 3,287

After augmentation 4,416 16,236 39,444

May 2, 2021 Sub-dataset 2 Before augmentation 400 2,347 258

After augmentation 2,400 9,388 1,548

May 3, 2021 Sub-dataset 3 Before augmentation 744 4,634 317

After augmentation 4,464 27,804 1,902

Total Before augmentation 1,512 8,334 3,862

After augmentation 11,280 53,428 42,894

A YOLOv4 network model mainly consists of the backbone,
neck, and head networks. The backbone network is the
CSPDarknet53 network, composed of 5 modules from Center
and Scale Prediction 1 (CSP1) to CSP5, and each module
is alternately stacked with CSPX and synthesis module of
convolution, batch regularization, and Mish activation function
(CBM) modules. After the input picture passes through the
backbone network, the feature maps with three scales of
52 × 52 × 256, 26 × 26 × 512, and 13 × 13 × 1, 024 are
obtained. The feature maps of different scales contain semantic
information of different dimensions. For the 13 × 13 × 1, 024
feature layer, the maximum pooling of different scales is
performed in the SPP structure to increase the receptive field of
the network. After that, the three feature layers obtained are input
into the PANet for a series of feature fusion, and finally, three
detection heads of 13 × 13, 26 × 26, and 52 × 52 are output,
respectively. Through decoding and non-maximum suppression
of the detection head, the final prediction box is generated to
detect the objects of different scales.

Depthwise Separable Convolution
Depthwise separable convolution is a lightweight convolution
method, which can effectively reduce the amount of calculation
compared with standard convolution. For the feature map with
an input size of (Dx,Dy,M), the principle of depthwise separable
convolution is to first separate Channel-by-channel convolve M
convolution kernels of size (Dk,Dk) and each channel of the
input feature map, and then, obtain a feature map where the input
channel is equal to the output channel. Finally, N convolution
kernels with size (1, 1) are used to pointwise convolution the
feature map, and a new feature map (Dw,Dh,N) is obtained.
Under the premise that the convolution characteristics are similar
to the standard convolution performance, depthwise separable
convolution can effectively reduce the network model’s parameter
amount and calculation amount. Furthermore, the speed of
model training and reasoning is significantly accelerated.

Backbone Network
To pursue the model’s high accuracy and better performance,
many scholars have deepen the number of layers of the network
model. However, this scheme has some drawbacks, such as
increasing the number of parameters of the model, aggravating
the calculation of the model, and reducing the operation
efficiency of the model, which make it difficult to deploy on
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FIGURE 3 | Structure diagram of Bneck.

devices with limited computing resources. In picking robot
operation, real-time performance is one of the most critical
performance indicators, so it is necessary to lightweight the
network reduce the calculation amount of the model. Although
the CSPDarknet53 network used in the YOLOv4 model has
strong feature extraction performance, the model is complicated
and requires more computation.

The MobileNetV3 network (Howard et al., 2019) combines
deep separable convolution, MobileNetV2’s inverted residual
structure with linear bottleneck (Howard et al., 2018), and
MnasNet’s lightweight attention model based on the squeeze and
excitation structure (Hu et al., 2018). MobileNetV3 constructs
the network by combining these layers as construction Bneck,
which successively passes through 1 × 1 ascending convolution,
3 × 3 depthwise separable convolution, and 1 × 1 dimension
reduction convolution. The structure is shown in Figure 3.
Moreover, the lightweight attention mechanism of the SE
structure is introduced further to improve the feature extraction
ability of the model. Eventually, the whole network structure is
composed of Bneck stacks. Wherein CBL and CBH represent
the synthesis modules of convolution, batch regularization, and
LekeyReLU or h-swish activation functions; BN represents Batch
Normalization; FC represents Full Connection; SE represents
squeeze-and-excitation.

The Proposed Algorithm
To effectively identify dense plums, this paper chose 608 × 608 as
the input size of the YOLOv4 model, and MobileNetV3 was used
to replace the CSPDarknet53 backbone network of the original
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model, which could effectively reduce the number of parameters
of the model backbone network. The depthwise separable
convolution was employed to replace the standard convolution
in the original PANet to further reduce the number of model
parameters. The model convolution module can obtain higher
feature information through multiple down-sampling. However,
when the feature layer with higher semantic information in the
feature fusion network is up-sampled and fused, the convolution
module will lose a certain amount of information, so the
detection accuracy of small targets will be reduced. Therefore,
this paper introduced the 152 × 152 × 24 layer to obtain more
abundant shallow information to achieve fine-grained detection
of small target objects. Due to the small pixels of plums in the
whole image, the model will pay too much attention to the simple
training samples and ignore the samples that are difficult to
classify. Therefore, this paper introduced the Focal loss function
to measure the contribution of difficult classification and easy
classification to the total loss. The combined loss function of
Focal loss and CIOU loss was designed as the loss function
of the improved model. On this basis, this paper used transfer
learning to train the model. Through the two-stage learning, the
model’s generalization performance can be further improved, and
the dense plums can be identified quickly and accurately. The
improved YOLOv4 model structure is shown in Figure 4. Among
them, Conv means convolution, and DSC means depthwise
separable convolution. DSC × 5 indicates that five depthwise
separable convolution operations are required.

Multiscale Fusion Network Structure
In this study, the YOLOv4 algorithm was improved to solve
the problem of insufficient feature extraction in dense plums
recognition. When the input image size selected by the YOLOv4
model is 608 × 608, the feature layer responsible for predicting
dense small targets is 76 × 76, and each feature grid’s
corresponding receptive field size is 8 × 8. When the input
picture resolution is 1, 920 × 1, 080, the corresponding long
edge is 25 through YOLO grid compression. That is to say; when
the target feature size is less than 25 × 25 pixels, the target
feature information cannot be effectively learned.

To extract the feature information of dense plums as much
as possible, this study improved the network model of YOLOv4.
Four feature layers were output from the backbone network
MobileNetV3, namely P1 (152 × 152), P2 (76 × 76), P3
(38 × 38), and P4 (19 × 19). Among them, the P4 feature
layer has the largest receptive field, which is suitable for large-
scale target detection, and the receptive field of the P3 feature
layer is suitable for medium-scale target detection. P2 is up-
sampled and fused with the P1 feature layer, a relatively rich
shallow layer can be obtained, which enables to achieve the fine-
grained detection of small target objects. In the process of feature
propagation, P4 is still obtained through the SPP structure.
This study combines the feature layers P4, P3, P2, and P1 with
different pyramid-level feature maps through up-sampling in the
feature pyramid network (FPN) structure. Each feature layer is
transformed by convolution and up-sampling to obtain the same
scale and channel number as the previous feature layer and then
stacked and fused with the previous feature layer to obtain a

feature map with more abundant information. The improved
network structure is shown in Figure 4.

The four feature layers from the FPN feature fusion output
were pruned to prevent the network from being too redundant.
The specific operation was that the 152 × 152 scale feature layer
output by FPN is no longer the predicted output and directly
up-sampled in the PANet structure. Therefore, the improved
algorithm maintains the prediction YOLO head of three scales,
namely P2’ (76 × 76), P3’ (38 × 38), and P4’ (19 × 19).

Furthermore, the depthwise separable convolution was
introduced into the PANet structure to replace the partial
convolution of the original network. The improvement can
effectively compress the number of network parameters and the
amount of calculation.

Improvement of the Loss Function
The loss function of YOLOv4 consists of CIOU bounding box
loss, classification loss, and confidence loss. The calculation
method is shown in Formula (2)–(6):

L = LCIOU + Lclass + Lconf (2)

LCIOU = 1− IOU (A,B)+
ρ2 (Actr,Bctr)

c2 + αν (3)

ν =
4
π2

(
tan−1 w

gt

hgt
− tan−1 w

h

)2
(4)

α =
ν

(1− IOU)+ ν
(5)

IOU =
|A
⋂

B|
|A
⋃

B|
(6)

Among them, A and B represent the area of the prediction frame
and the actual frame, and the range of IOU is [0,1]; wgt represents
the width and height of the actual frame; w and h represent the
width and height of the prediction frame; Actr and Bctr represent
the coordinates of the predicted box’s center points and the
actual box; ρ represents the Euclidean distance; c is the diagonal
length of the smallest bounding box C composed of A and B; ν

represents the penalty term.
Owing to the small physical size of plums and fewer pixels

occupied in the image, when there are single, occluded, and
densely stacked plums in an image, the model will automatically
pay attention to and train single or easy-to-recognize simple
samples, ignoring adhesion, and other difficult to classify
samples. Therefore, it is necessary to find an appropriate loss
function to balance the contribution of hard-to-classify and easy-
to-classify samples to the total loss.

The Focal loss focused on hard-to-classify samples during the
training process without affecting the original detection speed.
Formula (7) of this function is as follows (Li et al., 2020; Long
et al., 2021; Zhao et al., 2021):

FL(pt) =
{
−αt

(
1−pt

)γln
(
pt
)
, if y = 1

− (1−αt) ptγln
(
1−pt)

}
, otherwise

(7)
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FIGURE 4 | The structure diagram of improved YOLOv4.

Where y is the number of sample labels; pt represents the
probability of belonging to the plum category; αt is the
coefficient of balancing the weight of positive and negative
samples, 0 < αt < 1; γ is the modulation parameter for
complex samples.

This paper employed Focal Loss to replace class loss in the
original loss function. Taking the prediction of simple mature
plum as an example, when the pt value is small, and the

(
1−pt

)γ
value is close to 1, and its loss is almost unaffected. When pt is
large and close to 1, it indicates that the classification prediction
result is better. If it is not corrected, it will easily interfere with
the optimization direction of the model. After introducing Focal
Loss, when pt is larger,

(
1−pt

)γ is smaller. With the increase of
γ, the faster the rate of simple sample reduction is adjusted, and
the lower the proportion of simple samples in the total loss value.
Therefore, the network model can focus more on hard-to-classify
samples by introducing Focal Loss.

Plum Model Training Based on Transfer Learning
The hardware and software platform for model training was
configured as follows: CPU is AMD R5-5600X 3.7 GHz, memory
is 32 GB, storage SSD is 512 GB, display card is NVIDIA
RTX2060S, display memory is 8 GB, the operating system is

Windows10, CUDA version is 10.1, Python version is 3.7, and the
PyTorch version is 1.6.

In this experiment, the input image pixels are 1, 920 × 1, 440.
The K-means algorithm was used to generate the anchors’
coordinate frame iteratively, and the Adam optimizer was used.
The improved loss function was used to train the model.
In addition to offline augmentation methods, Mosaic data
augmentation was used in the training process to enrich the
background of the detected objects further, strengthen the
cognition of the network model on plum characteristics, and
enhance the robustness and generalization performance of the
model. The initial value of the learning rate was set to 10−4, and
the cosine annealing learning rate was optimized and updated
during the training process.

To speed up the convergence of the model, this paper adopted
the transfer learning method for training. The training was
divided into two stages, and the whole stage was trained for 100
epochs. For the first half of the stage, the pre-training weight
of the MobileNetV3 network was loaded, and the backbone
feature extraction network of the model was trained 50 epochs
by freezing. The initial value of the learning rate was set to
1 × 10−3, and the batch size was set to 16. This operation can
accelerate the convergence speed and prevent the pre-training
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FIGURE 5 | Loss curve during training process.

weight from being destroyed. For the second half of the stage, the
backbone feature extraction network was unfrozen, and the entire
model was further trained for 50 epochs with an initial learning
rate of 1 × 10−4, and the batch size was set to 8. The convergence
of the entire model was accelerated through two stages, and the
training time of the model was shortened. In the training process,
validation is performed after each epoch of training, and there is
no overlap of the validation and test set. The weight file of each
round of training was saved, and the loss values of the training set
and validation set were saved. The loss value curves of the training
set and validation set of the improved model in this paper are
shown in Figure 5.

EXPERIMENTAL RESULTS AND
COMPARATIVE ANALYSIS

Model Evaluation Indicators
To objectively measure the target detection effect of the model on
dense plums, the precision (P), recall (R), harmonic average F1
value (F1), average precision (AP), mAP, the number of network
parameters, the size of the weight, and the detection speed were
used to evaluate the trained model. The Intersection over Union
(IoU) value was 0.5 in the experiment. The calculation formulas
of P, R, F1, AP, and mAP are shown in formulas (8–12).

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F1 =
2PR
P + R

(10)

AP =
∫ 1

0
P(R)dR (11)

TABLE 2 | Comparison of recognition effect of the improved model before and
after data balance.

Dataset types Types Name Plum AP Raw_plum AP mAP

Unbalanced data A dataset 91.77% 80.23% 86.00%

Balanced data B dataset 91.10% 86.34% 88.72%

mAP =

∫ Q
q = 1 AP(q)

Q
(12)

Among them, TP represents the number of correctly detected
plums; FP represents the number of misclassified plums; FN
represents the number of missed plums; F1 represents the
harmonic average of accuracy and recall. When F1 is closer to 1,
the model is better optimized. AP represents the area composed
of the PR curve and the coordinate axis. The higher the AP value
is, the better the performance of the target detection algorithm
is. The mAP represents the AP average of multiple categories,
and its value represents the general detection performance of the
algorithm for different categories.

Detection speed refers to the length of the model detection
time, which was used to evaluate the real-time performance of
the detection models. It is usually measured by the number of
frames per second (FPS). The larger the FPS, the faster the model
detection speed. FPS refers to the number of images processed per
second in this paper.

Data Balance Comparison Experiments
This study selected the improved model based on YOLOv4 to
train the plum data before and after the data balance. The
same test set was selected to detect, and the evaluation index
results are shown in Table 2. The data balance had little effect
on the recognition rate of mature plums, which were both
remained above 90%. Compared with the recognition rate of
plums before data balance, the recognition rate of immature
plums after balance increased by 6.11%, and the mAP of the test
set also increased from 86 to 88.72%, with an increase of 2.72
percentage points. Overall, the recognition gap of plums with
different maturity levels is alleviated, and the robustness of the
model is enhanced.

Figure 6 shows the comparison of detection results before
and after data balancing in different scenes, where A dataset
represents the plum detection effect before data augmentation
and B dataset represents the plum detection effect after data
augmentation. By comparing the detection results before and
after the data augmentation, we used the yellow frames to find
out the missing plums in the (B, E, and H) image and marked
the specific area in the original and the two types of detection
images. Similarly, we used the blue frames to mark the specific
areas where the plum was mistakenly detected.

A comprehensive comparison shows that the model after
data balance has significantly improved the detection accuracy
of immature plums, which indicates that the model’s ability
to identify small sample features has been strengthened by
improving the ratio of mature and immature plums. Meanwhile,
the data-balanced model has improved the misdetection
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FIGURE 6 | The comparison of detection effect of plum images before and after improved data balance.

TABLE 3 | Comparison of detection results of different architectures.

Architecture Plum AP Raw_plum AP mAP Model size Parameters FPS

YOLOv4 88.99% 83.95% 86.47% 244 MB 61.38 M 20.03

YOLOv4-tiny 87.51% 81.71% 84.61% 22.4 MB 5.77 M 112

MobileNet-SSD 87.12% 79.23% 83.18% 24.7 MB 5.98 M 82.84

Improved YOLOv4 90.58% 86.54% 88.56% 54.05 MB 11.00 M 42.55

detection and missed detection of plums in scenes occluded by
leaves and branches. In conclusion, the experimental results show
the effectiveness of the data balance method.

TABLE 4 | Evaluation results of plum test set under different light conditions.

Light conditions Classes P R F1 mAP

Natural light plum 90.32% 88.19% 0.89 94.53%

raw_plum 89.41% 91.69% 0.91

mean value 89.87% 89.94% 0.9

Side light plum 88.29% 89.09% 0.89 94.86%

raw_plum 93.07% 92.61% 0.93

mean value 90.68% 90.85% 0.91

Back light plum 90.14% 80.33% 0.85 86.75%

raw_plum 92.36% 81.46% 0.87

mean value 91.25% 80.90% 0.86

Comparative Experiments of Different
Detection Methods
To evaluate the detection superiority of the improved model,
the dataset made in this paper was trained by different target
detection algorithms. After the training was completed, the test
work was performed on the same testing sample sets. The AP,
mAP value, model size, and detection speed of the four methods
are shown in Table 3. Overall, the four models all had higher
mAP for plums. Significantly, the improved YOLOv4 model was
1.59, 3.07, and 3.46 percentage points higher than the original
YOLOv4, YOLOv4-tiny, and MobileNet-SSD, respectively, in the
detection results of mature plums. Compared with the other
three models, the improved YOLOv4 model increased by 2.59,
4.83, and 7.31 percentage points in the detection results of
immature plums. Compared with the original YOLOv4 model,
the improved YOLOv4 network model has a relatively simple
structure, the model size of the improved YOLOv4 is compressed
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FIGURE 7 | Plum detection effect pictures under different light conditions.

by 77.85%, which is only slightly more than two times the
combined model size of the YOLOv4-tiny and MobileNet-
SSD. Moreover, the parameters is only 17.92% of the original
YOLOv4’s. The improved YOLOv4 network model is 112%
faster than the original one in the terms of detection speed. In
summary, the improved method presented in this paper shows
the optimal detection performance for dense plums among the
compared methods.

Comparative Experiment Under Different
Light Conditions
The visual system of the fruit picking robot is susceptible to
the influence of different lighting conditions in the natural
environment when it collects videos or images, which affects
the change of recognition accuracy. Under natural lighting
conditions, the image is bright and dark, and plum contours

are clear. Under backlight conditions, the overall image is dark,
and plum contours are not evident. Under sidelight conditions,
plums have uneven brightness. Therefore, 40 additional plum
images were randomly selected under natural light, side light, and
backlight to form a new test set C. The evaluation performance
index results are shown in Table 4, and the detection results are
shown in Figure 7.

TABLE 5 | The detection results of different density in four architectures.

Evaluation
indicator

YOLOv4 YOLOv4-tiny MobileNet-SSD Improved
YOLOv4

Moderately dense
mAP value

89.19% 87.12% 87.28% 89.30%

Highly dense mAP
value

83.01% 80.03% 77.16% 84.75%
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FIGURE 8 | Plum detection effect pictures under different dense conditions.

FIGURE 9 | The detection effect of unmanned aerial vehicle (UAV) images.

It can be seen from Table 4 that the improved model
maintains a high accuracy rate for plum detection results under
different light, but the detection results are discrepant under
different angle light conditions. Among them, the model has
a slight decrease in performance under backlight conditions.
Compared with natural light and side light conditions, the mAP
value of the backlight is lower by 7.78 and 8.11%, respectively.
Thanks to the clear texture of the plum under the conditions
of natural and sidelight, the improved model can obtain higher
recognition accuracy. However, the backlight condition has a
certain interference effect on image feature extraction.

Figure 7 shows the comparison of the detection effects of
plum images under different lighting conditions. It can be seen
from Figures 7A,D,B,E that the plum has clear texture and
uniform surface light intensity under natural light and sidelight.
The difficulty of image detection is relatively small. Even the
plum target at a distance can be detected. In the backlight, the
image clarity is insufficient, and the color of mature plum fruit is

dark red. Moreover, the color discrimination between immature
plum and background (such as, branches or leaves) decreases,
so a small amount of missing detection occurs. Overall, the
improved model still maintains a high recognition accuracy in
natural orchards.

Results and Analysis Under Dense
Occlusion in Orchards
A Comparison Experiment of Plum Images With
Different Density
We randomly selected some images with different densities
for comparative experimental detection. If an image contains
10–20 plums, it is considered a moderately dense image. If
there are more than 20 plums in the image, it is highly dense.
Four architectures methods were used to test and compare the
experimental results and detection results.

As can be known from Table 5, the accuracy of moderately
dense plum images is higher than that of highly dense plum
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FIGURE 10 | The comparison of plum detection effect under different occlusions.

images, mainly due to the severe occlusion of highly dense plums,
unclear fruit edges, and lack of texture features. By comparing the
mAP of the four target detection models, the improved YOLOv4
has the highest mAP, the moderately dense recognition mAP
reaches 89.30%, and the highly dense recognition mAP reaches
84.75%. The mAP gap between the two densities when compared
showed that MobileNet-SSD has the largest mAP gap, exceeding
10%. The mAP gap of the improved model in the paper is the
smallest, with a gap of only 4.55%. This shows that the improved
model has a better detection effect for plums with different
densities, and the improved model can narrow the detection gap
of plums with different densities. Compared with other models,
the improved model has a lower missed recognition rate and can
recognize more plums, as shown in Figure 8. The experimental
results show that the improved method in this paper has better
detection accuracy, which indicates that the improved multiscale
fusion structure can extract more valuable features under dense
occlusion conditions.

To further explore the generalization ability of the improved
model for image detection in a wide field of view, this study
discussed the plum images from unmanned aerial vehicle (UAV)
(DJI Yu2, zoom version) at a distance of 2–3 m from the tree
canopy and 1–2 m parallel to the plum tree. Then, the improved
model was employed to detect and evaluate the collected samples.
The detection effect is shown in Figure 9. For the case of dense
plums in a large field of view, plums can still be effectively
identified by the improved model, indicating that the model has
good generalization performance. The conclusion provides the
possibility for further research on cooperative picking by UAV
and ground fruit-picking robots.

A Comparative Experiment of Different Occlusion
Situations
There may be some scenes obscured by branches, leaves,
and other plums in the natural orchard. These occlusions
may affect the detection accuracy of the model. For
this reason, we also discussed the detection effect of
the improved model on plum images with different
occlusion categories.

The detection effect of the improved model for
different occlusions is shown in Figure 10. The purple
frame represents the partially enlarged image, and the
yellow frame indicates the missed plums. As shown in
Figures 10A–C, the model can efficiently recognize simple
occlusion in the image. As shown in Figure 10D, when
there is severe occlusion, plums with large area contour
hidden or severely missing texture feature information
will be missed. Nevertheless, on the whole, the improved
model still has a good recognition effect, which indicates
that the introduced Focal Loss function has a certain
effect, making the model pay more attention to the
occluded and difficult-to-recognize targets during the
training process.

CONCLUSION

This study focused on dense plums in a real and complex orchard
environment and proposed an improved YOLOv4 lightweight
model. At first, the plums image data were collected, and the
dataset was made using the automatic balancing method based
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on category and the hybrid offline augmentation method. Then,
MobileNetV3 and deep separable convolution were designed
to improve the YOLOv4 model, and 152 × 152 feature
layers were introduced to deal with the problem of insufficient
feature extraction of the dense plums. Withal, the multiscale
fusion and the joint loss function of Focal loss and CIOU
loss were added to enhance the performance of the model
against difficult-to-recognize plums. Finally, the improved model
was trained by transfer learning. The main conclusions are as
follows:

i. The accuracy of the data automatic balance algorithm
proposed in this study for the detection of immature
plum reached 86.34%, which is 6.11 percentage points
higher than before the imbalance. The mAP increased
from 86 to 88.72%, increasing 2.72 percentage points.
Overall, the recognition gap of plums with different
maturity levels is alleviated, and the robustness of the
model is enhanced.

ii. Compared with the other three target detection models,
the improved model based on YOLOv4 had the highest
mAP result. By comparing with some results from
the YOLOv4 model, the model size of the improved
model is compressed by 77.85%, the total amount
of parameters is only 17.92% of the original model
parameters, and the detection speed is accelerated
by 112%. The above data show that the improved
model has achieved better performance in recognition
accuracy and efficiency.

iii. This study discusses the detection performance of the
improved model in natural scenes, such as different
illuminations, different densities, images collected by UAV,
and different occlusion conditions. The experimental

results show that the improved model has excellent
robustness and generalization performance.
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A high resolution dataset is one of the prerequisites for tea chrysanthemum detection
with deep learning algorithms. This is crucial for further developing a selective
chrysanthemum harvesting robot. However, generating high resolution datasets of the
tea chrysanthemum with complex unstructured environments is a challenge. In this
context, we propose a novel tea chrysanthemum – generative adversarial network
(TC-GAN) that attempts to deal with this challenge. First, we designed a non-linear
mapping network for untangling the features of the underlying code. Then, a customized
regularization method was used to provide fine-grained control over the image details.
Finally, a gradient diversion design with multi-scale feature extraction capability was
adopted to optimize the training process. The proposed TC-GAN was compared with
12 state-of-the-art generative adversarial networks, showing that an optimal average
precision (AP) of 90.09% was achieved with the generated images (512 × 512) on
the developed TC-YOLO object detection model under the NVIDIA Tesla P100 GPU
environment. Moreover, the detection model was deployed into the embedded NVIDIA
Jetson TX2 platform with 0.1 s inference time, and this edge computing device could be
further developed into a perception system for selective chrysanthemum picking robots
in the future.

Keywords: tea chrysanthemum, generative adversarial network, deep learning, edge computing, NVIDIA Jetson
TX2

INTRODUCTION

Some researches indicated that tea chrysanthemum has great commercial value (Liu et al., 2019).
Besides, tea chrysanthemums offers a range of health benefits (Yue et al., 2018). For instance, it
can considerably suppress carcinogenic activity and has significant anti-aging effects (Zheng et al.,
2021). In the field, a tea chrysanthemum plant could present multiple flower heads, varying in
different growth stages and sizes. Normally, tea chrysanthemums at the early flowering stage hold
the best commercial value and health benefits, so they are mainly manually harvested at the early
flowering stage, and this is a labor-intensive and time-consuming process.

Rapid developments in artificial intelligence and robotics offer a new opportunity to automate
this harvesting task, dealing with the current scarcity of the skilled laborers (Dhaka et al., 2021;
Kundu et al., 2021; Liu et al., 2021; Wieczorek et al., 2021). Hence, it is urgent to develop a
selective harvesting robot. The perception system and manipulator are the two key components
for developing selective harvesting robot. Many studies have shown that a high resolution image
dataset has a profound impact on detection performance as it contains fine-grained features
for object recognition (Zhou et al., 2021). However, collecting a dataset of tea chrysanthemums
presents inherent difficulties. Tea chrysanthemums normally mature once a year and have to be
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picked at the early flowering stage to maximize commercial
values. Moreover, the early flowering stage is incredibly short,
typically from only 2 days to 1 week. Currently, there is no
publicly available dataset on tea chrysanthemums worldwide for
developing a detection algorithm, which is a hindrance to build
an intelligent selective harvesting robot and other intelligent
phytoprotection equipment (Ansari et al., 2020; Alsamhi et al.,
2021, 2022), e.g., Internet of Things based solar insecticidal
lamps. Therefore, it is important to have a good dataset of
tea chrysanthemums.

Using classical data augmentation to expand datasets and
balance categories were reported in Tran et al. (2021).
Nevertheless, classical data enhancement methods (rotation,
translation, flipping, and scaling, etc.) only allow for restricted
feature diversity, prompting the utilization of generated data.
Generated samples provide more variation and further enrich
the dataset to improve training accuracy. Recent approaches
address the data generation issues through utilizing generative
adversarial networks (GANs) (Wang et al., 2019). These methods
use an encoder-decoder strategy to generate fake images that
can be used to enrich the original dataset. GANs have shown
the impressive results by generating stunning fake images such
as human faces (Zhao et al., 2019). However, GANs still suffer
from non-negligible flaws. In our case, three issues need to be
further investigated.

Issue 1: In the current agricultural field, GAN generates
images with a maximum resolution of 256 × 256 pixels. This
is not suitable for the chrysanthemum detection task as the
low resolution images contain restricted information about
the environment related features, which somewhat affects the
robustness of the whole model. How to generate images that can
meet the detection task resolution of the tea chrysanthemum is
an issue requiring further exploration.

Issue 2: The traditional GAN directly provides the latent
code to the generative network, resulting in a massive feature
entanglement, thus directly influencing the diversity of the
generated chrysanthemum images. How to design a network
structure that could improve the diversity of the generated
chrysanthemum images is an issue to be further explored.

Issue 3: The alternating optimization of generators and
discriminators makes the GAN prone to pattern collapse and
gradient vanishing during training, so how to achieve stable
training is an issue to be further explored.

Based on these three issues, we propose a tea
chrysanthemum – generative adversarial network (TC-GAN)
that can generate images with diversity at 512 × 512 resolution,
as well as stable training. We decouple the latent code into
intermediate vectors via a Mapping Network, resulting in
controlling the diversity of chrysanthemum features. Also,
we apply path length regularization in the Mapping Network,
leading to more reliable and consistent behavior of the model
and making architectural exploration easier. In the generative
network, we add Stochastic variation after each convolutional
layer to increase the diversity of the chrysanthemum images.
Finally, we embed Res2Net into the generative network so that
we can better guide the gradient flow to alleviate pattern collapse
and gradient vanishing during the training process.

In this article, our goal is to generate datasets that can be used
for the tea chrysanthemum detection task. We tested the images
generated by TC-GAN on some state-of-the-art object detection
models, as well as our own proposed detection model (TC-
YOLO) (Qi et al., 2022). Moreover, for subsequent development
work on an automated selective chrysanthemum picking robot,
we chose to test the images generated by TC-GAN on a low-
power embedded GPU platform, the NVIDIA Jetson TX2, as
shown in Figure 1.

The contributions of this article are as follows:

1. High resolution (512 × 512) images of tea
chrysanthemums with complex unstructured
environments (illumination variations, occlusions,
overlaps) were generated using the proposed TC-
GAN model.

2. The images generated with TC-YOLO quantified the
impact of five aspects, i.e., (1) dataset size, (2) epoch
number, (3) different data enhancement methods,
(4) various object detection models, and (5) complex
unstructured environments on the TC-YOLO model,
and verified the superiority of the TC-GAN model by
comparing with some state-of-the-art GANs.

3. TC-YOLO, developed from images generated by TC-GAN,
was successfully deployed and tested in the edge device
NVIDIA Jetson TX2.

The rest of this article is organized as follows. Section “Related
Work” describes the research background. Section “Materials
and Methods” depicts the proposed TC-GAN structure. Section
“Results” presents the experimental details. Section “Discussion”
describes the contribution of this article and the limitations of the
research, as well as pointing out possible future solutions. Section
“Conclusion” gives a concise summary of this article.

RELATED WORK

Some GANs emerged to response the aforementioned Issue
3. Conditional Generative Adversarial Net (CGAN) (Liu
et al., 2020) can strengthen the robustness of the model by
applying conditional variables to the generator and discriminator
that alleviate pattern collapse. Deep convolutional generative
adversarial networks (DCGAN) (Jeon and Lee, 2021), the first
GAN architecture based on convolutional neural networks,
demonstrates a stable training process that effectively mitigates
pattern collapse and gradient vanishing, but suffers from low
quality and inadequate diversity of the generated images.
Wasserstein GAN (WGAN) (Zhou et al., 2022) uses Wasserstein
as an alternative to Jensen-Shannon (JS) divergence for
comparing distributions, producing better gradients and
improving training stability. Nevertheless, WGAN has difficulty
converging due to the use of weight clipping, which can lead to
sub-optimal performance.

Conditional Generative Adversarial Net, DCGAN, and
WGAN had a profound impact on the development of GAN.
Moreover, with the development of deep learning techniques,
some high-performance GANs emerged to mitigate pattern
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FIGURE 1 | The results of testing tea chrysanthemum – generative adversarial network (TC-GAN) on NVIDIA Jetson TX2. First, we used an HDMI cable to connect
the laptop with the Jetson TX2, and ensure that the laptop and Jetson TX2 were under the same wireless network. Then, the TC-YOLO model and the tea
chrysanthemum dataset were embedded in the flashed Jetson TX2 for testing.

TABLE 1 | Details of the twelve latest generative adversarial networks.

Algorithm Published year Characteristic Resolution

Progressive GAN (Collier et al., 2018) 2017 Grow the generator and discriminator progressively 64 × 64

LSGAN (Mao et al., 2019) 2017 Applying the least squares loss function 112 × 112

SN-GAN (Mufti et al., 2019) 2018 Applying spectral normalization 32 × 32

MGAN (He et al., 2019) 2018 Applying multi-channel gait templates 64 × 64

Dist-GAN (Tran et al., 2018) 2018 Applying a latent-data distance constraint 64 × 64

Rob-GAN (Liu and Hsieh, 2019) 2019 Jointly optimize generator and discriminator 128 × 128

AutoGAN (Gong et al., 2019) 2019 Applying NAS algorithm 64 × 64

BigGAN (Qiao et al., 2020) 2018 Applying orthogonal regularization 512 × 512

Improved WGAN (Yang et al., 2020) 2020 Injecting an instance noise 128 × 128

Improved WGAN-GP (Kim et al., 2021) 2021 Wasserstein GAN with gradient penalty 28 × 28

Improved DCGAN (Chao et al., 2021) 2021 Applying batch normalization 64 × 64

DAG (Tran et al., 2021) 2021 Improve learning of the original distribution 48 × 48

collapse and gradient vanishing, resulting in stable training.
Specific details are shown in Table 1. We will compare these
models with the proposed TC-GAN in section “Results.”

We collated the available literature on image recognition
using GANs in agriculture, with a particular focus on the
generated image resolution and the complex unstructured
environment in the generated images, as shown in Table 2. High-
resolution images contain better fine-grained features and more
complex unstructured environments, facilitating the extraction
of abundant image features for robust detection results. Also,
high resolution images make transfer learning easier, and current
object detection frameworks typically require datasets with a
resolution higher than 416 × 416 (Liu and Wang, 2020). Not
only that, to summarize the GANs in Tables 1, 2, several
structural improvements are needed. First, the latent codes (input
vectors) in the GANs in Tables 1, 2 are directly fed into the
generator network. Nevertheless, the design of using latent codes
to generate specific visual features is somewhat restricted so that
it has to consider the probability density of the input data. This
design can prevent some latent codes from being mapped to
features, resulting in feature entanglement. The proposed model
structure allows vectors to be generated without considering

the input data distribution through a custom mapping network,
as well as reducing the correlation between different features.
Second, multi-scale extraction and feature fusion can effectively
guide the gradient flow, but in the GANs in Tables 1, 2, the
structure is designed mainly for normalization approaches, loss
functions, control variables and mapping relationships between
generators and discriminators. Currently, the structure of GANs
lacks design for multi-scale extraction and feature fusion. The
generator structure of the proposed model focuses on the
combination of multi-scale extraction and feature fusion.

MATERIALS AND METHODS

Datasets
The tea chrysanthemum dataset utilized in this article was
collected from October 2019 to October 2020 in Sheyang County,
Dongzhi County and Nanjing Agricultural University, China.
The datasets were all collected using an Apple X phone with an
image resolution of 1080 × 1920. The datasets were captured in
natural light under three environments, including illumination
variation, overlap and occlusion. The chrysanthemums in the
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TABLE 2 | Available literature using GAN for image recognition in agriculture.

Algorithm Published year Task Accuracy (%) Resolution Test environment

DCGAN (Gandhi et al., 2018) 2018 Plant disease detection 88.6 64 × 64 Illumination

C-DCGAN (Hu et al., 2019) 2019 Tea leaf’s disease identification 90 64 × 64 Illumination

DCGAN (Douarre et al., 2019) 2019 Apple scab segmentation 60 28 × 28 Ideal

CycleGAN (Padilla-Medina et al., 2019) 2019 Detection of apple lesions in orchards 95.57 64 × 64 Ideal

DCGAN (Bian et al., 2019) 2019 Tea clones identifications 76 64 × 64 Ideal

Deep CORAL (Marino et al., 2020) 2020 Potato defects classification 90 64 × 64 Ideal

CAAE (Zhong et al., 2020) 2020 Citrus plant diseases recognition 53.4 64 × 64 Illumination

DCGAN (Nafi and Hsu, 2020) 2020 Plant disease detection 86.63 64 × 64 Ideal

BEGAN (Luo et al., 2020) 2020 Pine cone detection 95.3 64 × 64 Ideal

CGAN (Olatunji et al., 2020) 2020 Kiwi geometry reconstruction 75 28 × 28 Ideal

DCGAN (Talukdar, 2020) 2020 Plant disease classification 95.88 64 × 64 Ideal

DCGAN (Hu et al., 2020) 2020 Recognition of diseased pinus trees 78.6 64 × 64 Ideal

TasselGAN (Shete et al., 2020) 2020 Plant traits detection 94 128 × 128 Illumination

CycleGAN (Zhao et al., 2021a) 2021 Bale detection 93 64 × 64 Ideal

DCGAN (Espejo-Garcia et al., 2021) 2021 Weeds identification 93.23 64 × 64 Ideal

DoubleGAN (Zhao et al., 2021b) 2021 Plant disease detection 99.06 64 × 64 Ideal

AR-GAN (Nazki et al., 2020) 2020 Plant disease recognition 86.1 256 × 256 Illumination

FIGURE 2 | Examples of the collected original images.

dataset comprise three flowering stages: the bud stage, the early
flowering stage and the full bloom stage. The bud stage refers
to when the petals are not yet open. The early flowering stage
means when the petals are not fully open and the full bloom stage
denotes when the petals are fully open. The three examples of the
original images are shown in Figure 2.

NVIDIA Jetson TX2
There is no need to transmit all gathered image data back
to cloud for further processing since the communication
environment in countryside is generally not stable and the
long time delay for smart equipment, i.e., chrysanthemum
picking robot, is not acceptable. The NVIDIA Jetson TX2

has a 6-core ARMv8 64-bit CPU complex and a 256-core
NVIDIA Pascal architecture GPU. The CPU complex consists
of a dual-core Denver2 processor and a quad-core ARM
Cortex-A57, as well as 8 GB LPDDR4 memory and a 128-bit
interface, making it ideal for low power and high computational
performance applications. Thus, this edge computing device
was chosen to design and implement a real-time object
detection system. We introduced the NVIDIA Jetson TX2 in
Figure 3.

Architecture
The proposed TC-GAN comprises a generator and a
discriminator. In the generator, the non-linear mapping network
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FIGURE 3 | NVIDIA Jetson TX2 parameters.

f is implemented with a 4-layer multilayer perceptron (MLP),
as well as applying path length regularization to decorrelate
neighboring features for more fine-grained control of the
generated images. The learned affine transform then specializes
w to the style y = (ys, yb), controlling the Adaptive Instance
Normalization (AdaIN) operation after each convolutional layer
of the synthetic network g, followed by Res2Net to better guide
the gradient flow without increasing the network computational
workload. Finally, we introduce noisy inputs that enable the
generator to provide random detail. We inject a specialized noise
image into each layer (42–5122) of the generator network, these
are single channel images composed of Gaussian noise. The
noise images are used with a feature scaling factor broadcast
to all feature maps, and subsequently applied to the output
of the corresponding convolution. Leaky ReLU is employed
as the activation function throughout the generator. In the
discriminator, the generated 512 × 512 resolution image and the
real image of the same resolution are fed into the discriminator
network simultaneously and mapped to 4 × 4 via convolution.
In the whole convolution process, some diverse modules are
inserted, including CL (Convolution + Leaky ReLU) and CBL
(Convolution + Batch Normalization + Leaky ReLU). It is
worth noting that the GAN training tends to be unstable, and no
extra modules are inserted to guide the gradient flow and make
the overall discriminator network look as simple as possible.
Also, due to the lack of gradient flow in the underlying layer,
the BN module was not inserted in the convolution process.
Leaky ReLU is utilized as the activation function throughout the
discriminator. Moreover, the generator and discriminator both

employ the Wasserstein distance with gradient penalty as the loss
function. The structure of TC-GAN is shown in Figure 4.

Mapping Network
The mapping network consists of four fully connected layers
that map the latent space z to the intermediate latent space w
via affine transformations. Figure 4 depicts the structure of the
mapping network. To capture the location of latent codes with
rich features, this network encourages feature-based localization.
A mixed regularization strategy is adopted, where two random
latent codes are used instead of one latent code to generate
some images during the training process. When generating an
image, we simply switch from one latent code to another at a
randomly picked point in the generative network. Specifically,
the two latent codes z1, z2 are under control in the mapping
network, and the corresponding w1, w2 are allowed to fix
the features so that w1 works before the intersection point
and w2 works after the intersection point. This regularization
strategy prevents neighboring features from being correlated.
Furthermore, extracting potential vectors in a truncated or
reduced sample space helps to improve the quality of the
generated images, although a certain degree of diversity in the
generated images would be lost. Based on this, we can consider
a similar approach. First, after training, intermediate vectors
are generated in the mapping network by randomly selecting
different inputs and calculating the center of mass in these
vectors:

w̄ = Ez∼P(z) (1)
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FIGURE 4 | Structure of the proposed TC-GAN network. Mapping network can effectively capture the location of potential codes with rich features, benefiting the
generator network to accurately extract complex unstructured features. A represents the learned affine transformation. B denotes the learned per-channel scaling
factor applied to the noisy input. Discriminator network is designed to guide the training of the generator network, which is continuously confronted by alternating
training between the two networks, ultimately enabling the generator network to better execute the generation task.

where w̄ stands for the center of mass and z denotes
the latent space.

We can then scale the deviation of a given w from the center
as:

w
′

= w̄+ψ(w− w̄) (2)

where w
′

refers to the truncated w and ψ defines the
difference coefficient between the intermediate vector and
the center of mass.

Stochastic Variation
The sole input of traditional networks is through the input
layer, which generates spatially varying pseudo-random numbers
from earlier activations. This method consumes the capacity of
the network and thus makes it difficult to hide the periodicity
of the generated signal, causing the whole generation process
unstable. To address this challenge, we embed noise along
each convolutional layer. In a feature-based generator network,
the entire feature map is scaled and biased with the same
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values. As a result, global effects like shape, illumination or
background style could be controlled consistently. Moreover,
noise is applied to each pixel individually and thus is eminently
suitable for controlling random variations. Once the generative
network attempts to control the noise, this leads to spatially
inconsistent decisions that will be penalized by the discriminator.
Accordingly, TC-GAN can learn to use global and local channels
properly without clear guidance.

Path Length Regularization
Path length regularization makes the network more reliable and
makes architectural exploration easier. Specifically, we stimulate
fixed-size steps of W to generate non-zero fixed-size variations in
the image. The bias is measured by observing the corresponding
gradient of W in the random direction, which should have a
similar length regardless of w or the image space direction.
This indicates that the mapping from potential space to image
space is conditional.

At a single w ∈ W, the local metric scaling properties of the
generator mapping g (w): W → Y are fixed by the Jacobian
matrix Jw = ∂g (w) /∂w. Since we wish to preserve the expected
length of the vector regardless of its direction, we formulate the
regularizer as:

Ew,y∼N (0,I)(‖ JT
wy ‖2 −a)2 (3)

where y is a random image with normally distributed pixel
intensities, and w ∼ f (z), where z are normally distributed. In
higher dimensions, this prior is minimized when Jw is orthogonal
at any w. An orthogonal matrix retains length and does not
introduce squeezing across any dimension.

This prior is minimized when the expected value of y reaches
the minimum at each latent space point w, respectively, and we
start from the internal expectation:

Lw : = Ey

(
‖ JT

wy ‖2 −a
)2

(4)

We use the single-valued decomposition JT
w = U6̃VT

for analysis. Where U ∈ RL ×L and V ∈ RM ×M represent
orthogonal matrices. Since rotating a unit normal random
variable by an orthogonal matrix will make its distribution
invariant, the equation simplifies to:

Lw = Ey

(
‖ U6̃VTy ‖2 −a

)2
= Ey

(
‖ Ẽy ‖2 −a

)2 (5)

Moreover, the zero matrix effectively marginalizes its distribution
in dimension. Then, we simply consider the minimization of the
expression:

Lw = Eỹ
(
‖ 6ỹ ‖2 −a

)2 (6)

where ỹ is a unit-normal distribution in dimension L. All matrices
JT
W that share the same singular values as 6 generate the same raw

loss values. When each diagonal entry of the diagonal matrix 6
is given the specific same value, thus writing the expectation into
the integral of the probability density over ỹ:

Lw = ∫
(
‖ 6ỹ ‖2 −a

)2 pỹ(ỹ)dỹ

= (2π)−
L
2 ∫

(
‖ 6ỹ ‖2 −a

)2 exp

(
−

ỹT ỹ
2

)
dỹ (7)

To observe the radially symmetric form of the density, we alter to
polar coordinates ỹ = rφ. Such a variable change is replaced by
the Jacobian factor rL−1:

L̃w = (2π)−
L
2 ∫
S

∞

∫
0

(r ‖ 6φ ‖2 −a)2 rL−1exp
(
−

r2

2

)
drdφ (8)

where r represents the distance from the origin, and φ stands
for a unit vector. Thus, the (2π)−L/2rL−1exp

(
−

r2

2

)
denotes

the L-dimensional unit average density expressed in polar
coordinates. The Taylor approximation argument indicates that
when L is high, the density is well-approximated by density
(2πe/L)−

L
2 exp

(
−

1
2 (r − µ)2/σ2)for any φ. Replacing the density

into the integral, the loss is given by approximately:

Lw ≈ (2πe/L)−L/2
∫
S

∞

∫
0

(r ‖ 6φ ‖2 −a)2 exp

(
−

(r −
√

L)2

2σ2

)
drdφ

(9)

where the approximation turns out to be exact in the limit of
infinite dimension L.

By minimizing this loss, we set 6 to obtain a minimum of
the function (r ‖ 6φ ‖2 −a)2 over a spherical shell of radius

√
L.

According to this function becoming constant in φ, the equation
reducing to:

Lw ≈ (2πe/L)−L/2A(S)a2L−1∞
∫
0
(r −
√

L)2exp

(
−

(r −
√

L)2

2σ2

)
dr

(10)

where A(S) indicates the surface area of the unit sphere.
To summarize, we proved that, supposing a high

dimensionality L of the latent space, the path length prior
at each latent space point w is minimal if all the singular values
of the Jacobian matrix for the generator are equal to a global
constant, that is, they are orthogonal up to a global constant.
We avoid the explicit computation of the Jacobian matrix by
using the same JT

wy = ∇w (g (w) · y), and this could be efficiently
computed by standard back-propagation. The constant a is
dynamically set to a long-term exponential moving average
of length ‖ JT

wy ‖2, enabling the optimization to discover the
appropriate global scale on its own.

Res2Net
To alleviate pattern collapse and gradient vanishing, we use a
gradient diversion approach (Res2Net) with stronger multi-scale
feature extraction capabilities. In essence, a set of 3× 3 filters are
substituted with smaller filter groups, connected in a similar way
to the residual mechanism. Figure 5 illustrates Res2Net, we split
the feature map uniformly into s subsets of feature maps after
1 × 1 convolution, denoted by xi, where i ∈{1, 2, . . . s} . Each
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FIGURE 5 | Impact of dataset size and epoch time on TC-GAN.

subset of features xi has the same spatial size compared to the
input feature map, but with 1/s number of channels. Besides x1,
each xi has a corresponding 3 × 3 convolution, denoted by Ki ().
We denote the output of Ki () by yi. This feature subset is summed
with the output of Ki−1 () and fed into Ki (). To minimize the
parameters and increase s simultaneously, we skip the 3 × 3
convolution of x1. Hence, yi could be written as:

yi =


xi i = 1;
Ki (xi) i = 2;

Ki
(
xi + yi−1

)
2 < i ≤ s

(11)

Each 3 × 3 convolutional operator Ki () has the potential
to capture feature information from feature splits

{
xj, j ≤ i

}
.

When the feature slice xj is passed through the 3× 3 convolution
operator, the output may have a larger receptive field than xj . Due
to the combinatorial explosion effect, the output of the Res2Net
module contains varying amounts and various combinations of
receptive field sizes.

In Res2Net, the global and local information of the
chrysanthemum image is extracted through processing the splits
in a multi-scale approach. To better fuse feature information
at different scales, we tandem all the splits and compute them
by 1 × 1 convolution. The segmentation and tandem approach
allow for efficient convolution operations and feature processing.
To minimize the parameter capacity, we skip the convolution
of the first segmentation. In this article, we employ s to control
parameters for the scale dimension. Larger s has the potential to
allow learning features with richer perceptual field dimensions,
with negligible computation of tandem.

Evaluation Metrics
Average precision (AP) is a common evaluation metric in object
detection tasks. In this article, we calculate the average precision

(IoU = 0.5) of the tea chrysanthemum to test the performance of
the model. The equation is as follows:

AP =
N∑

k=1

P
(
k
)
1recall (k) (12)

where N represents the size of the test dataset, P(k) stands for
the precision value of the k tea chrysanthemum images, and
recall (k) denotes the change in recall between k and k-1 tea
chrysanthemum images.

In addition, error and miss rates were introduced in section
“Impact of Different Unstructured Environments on the TC-
YOLO” to investigate the ability of TC-GAN to generate
unstructured environments. error rate indicates a ratio of
the number of falsely detected samples to the total samples.
miss rate refers to the ratio of undetected samples to the
total samples.

Experimental Setup
The experiments were conducted on a server with an NVIDIA
Tesla P100, CUDA 11.2. We built the proposed model using
python with the pytorch framework. During training, the key
hyperparameters were set as follows: epoch = 500; learning
rate = 0.001; and the optimizer used was Adam.

RESULTS

Performance of Tea Chrysanthemum –
Generative Adversarial Network in
Datasets of Different Sizes
To verify the effect of the generated dataset size and the
number of training epochs on the chrysanthemum detection
task, we randomly selected the datasets with 10 different number
of training samples (100, 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, and 4500) and corresponding ten different training
epochs at 100, 200, 250, 300, 350, 400, 450, 500, 550, and 600,
respectively, from the generated chrysanthemum dataset and
tested them on the proposed TC-YOLO, the results are shown
in Figure 5.

It can be seen that the performance of TC-YOLO improves
with the increase of the dataset size and training epochs.
When the dataset size is less than 1500 and the training
epoch is less than 300, the AP value increases rapidly as the
dataset size and the training epochs increase (13.54–80.53%,
improved by 494.76%). When the dataset size reached 2500,
and the training epoch reached 400, the AP values only slightly
improved and finally converged (from 87.29 to 90.09%) with
the increase of the number of samples and the training epochs.
After the dataset size reached 4000 and the training epoch
reached 550, the detection performance AP value decreased
slightly to 89.51%. Combining these results, we set the optimal
dataset size to 3500 and the optimal training epoch to 500 for
the test experiments in Sections B, C, and D, as it achieved
the highest AP values with the smallest dataset size and the
least training epoch.
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Study on the Performance of Traditional
Data Enhancement Methods and Tea
Chrysanthemum – Generative
Adversarial Network
To investigate the performance of classical data enhancement
methods and TC-GAN, we selected nine classical data
enhancement methods and TC-GAN (Table 3). These data
enhancement methods were configured and tested in the TC-
YOLO object detection model. The results are shown in Table 3.
TC-GAN shows the best performance with an AP value of
90.09%. It was surprising that the advanced data enhancement
methods, such as Mixup, Cutout and Mosaic, had a disappointing
performance with AP values of only 80.33, 81.86, and 84.31%,
respectively. This may be due to the fact that a large amount
of redundant gradient flow would greatly reduce the learning
capacity of the network. We also found that the performance of
Flip and Rotation was second only to TC-GAN, with AP values
of 86.33 and 86.96%. The performance of the model improves
slightly, with an AP value of 87.39% when Flip and Rotation
are both configured on TC-YOLO. Even so, its AP is still 2.7%
lower than TC-GAN.

Comparisons With State-of-the-Art
Detection Models
To verify the superiority of the proposed model, tea
chrysanthemum dataset generated by TC-GAN was used to
compare TC-YOLO with nine state-of-the-art object detection
frameworks (Kim et al., 2018; Zhang et al., 2018; Cao et al., 2020;
Zhang and Li, 2020), and the results are shown in Table 4.

Table 4 shows that TC-GAN not only achieves excellent
performance on the TC-YOLO object detection model with a
mAP of 90.09%, but also performs well on other state-of-the-
art object detection frameworks. TC-GAN is a general data
enhancement method and not constrained to the specific object
detectors. Generally speaking, large image sizes benefit model
training by providing more local feature information, however,
large image sizes (>512 × 512) do not always result in improved
performance. In Table 4, all the models with large image sizes

TABLE 4 | Comparisons with state-of-the-art detection methods.

Method Backbone Size FPS mAP

RetinaNet ResNet101 800 × 800 4.54 82.62

RetinaNet ResNet50 800 × 800 5.31 80.59

RetinaNet ResNet101 500 × 500 7.23 79.13

RetinaNet ResNet50 500 × 500 7.87 83.68

EfficientDetD6 EfficientB6 1280 × 1280 5.29 81.23

EfficientDetD5 EfficientB5 1280 × 1280 6.21 83.51

EfficientDetD4 EfficientB4 1024 × 1024 7.93 83.19

EfficientDetD3 EfficientB3 896 × 896 9.28 84.83

EfficientDetD2 EfficientB2 768 × 768 11.66 84.22

EfficientDetD1 EfficientB1 640 × 640 15.26 82.93

EfficientDetD0 EfficientB0 512 × 512 37.61 82.81

M2Det VGG16 800 × 800 7.08 80.63

M2Det ResNet101 320 × 320 16.89 85.16

M2Det VGG16 512 × 512 21.22 80.88

M2Det VGG16 300 × 300 42.53 78.24

YOLOv3 DarkNet53 608 × 608 12.14 86.52

YOLOv3 (SPP) DarkNet53 608 × 608 15.66 83.89

YOLOv3 DarkNet53 416 × 416 43.25 84.13

PFPNet (R) VGG16 512 × 512 24.35 82.41

RFBNetE VGG16 512 × 512 21.54 77.37

RFBNet VGG16 512 × 512 45.46 85.53

RefineDet VGG16 512 × 512 31.33 81.12

RefineDet VGG16 448 × 448 43.31 79.66

YOLOv4 CSPDarknet53 608 × 608 19.22 85.11

YOLOv4 CSPDarknet53 512 × 512 24.63 84.34

YOLOv5l CSPDenseNet 416 × 416 42.24 88.83

YOLOv5m CSPDenseNet 416 × 416 36.91 86.68

YOLOv5x CSPDenseNet 416 × 416 32.28 84.02

YOLOv5s CSPDenseNet 416 × 416 47.88 88.29

TC-YOLO CSPDenseNet 416 × 416 47.53 90.09

(>512 × 512) were unable to achieve a performance above 87%.
The main reason for this may be that the image size generated
in this article is 512 × 512, which would affect the performance
of models requiring a large input size. To match the input size,
the images could only be artificially resized to the smaller images,

TABLE 3 | Performance comparison of different data enhancement methods.

Flip Shear Crop Rotation Grayscale Blur Mixup Cutout Mosaic TC-GAN AP

√
86.33

√
84.21

√
83.99

√
86.96

√
82.09

√
80.13

√
80.33

√
81.86

√
84.31

√ √
87.39

√
90.09

√
means that this data enhancement method has been adopted.
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resulting in a reduction in image resolution, and this would
considerably affect the final test performance of the models.
Also, transfer learning ability varies between models, and this
may account for some models with over 512 × 512 resolutions
performing poorly. Given the above two reasons, TC-YOLO
has relatively better transfer learning ability compared to other
object detection models. Therefore, TC-YOLO is used as the
test model for generating chrysanthemum images in this article.
Besides, TC-YOLO requires the image input size of 416 × 416,
making the image resolution a relatively minor impact on the
final performance. Furthermore, we deployed the trained TC-
YOLO in the NVIDIA Jetson TX2 embedded platform to evaluate
its performance for robotics and solar insecticidal lamps systems
development. Figure 6 shows the detection results.

Impact of Different Unstructured
Environments on the TC-YOLO
Datasets with complex unstructured environments can effectively
improve the robustness of detection models. This study
investigated the ability of the proposed TC-GAN to generate
complex unstructured environments, including strong light,
weak light, normal light, high overlap, moderate overlap,

normal overlap, high occlusion, moderate occlusion and
normal occlusion, as shown in Figure 7. A total of 26,432
chrysanthemums were at the early flowering stage in the nine
unstructured environments. Since there are no mature standards
to define these different environments, we set the criteria based
on empirical inspection. Strong light is defined as when sunlight
obscures more than fifty percent of the petal area. Weak light
is defined as when the shadows cover less than fifty percent of
the pedal area. Normal light is defined as when the sunlight
covers between zero and fifty percent of the petal area. High
overlap is defined as when the overlapping area between petals is
greater than sixty percent. Moderate overlap is defined when the
overlapping area between petals is between thirty to sixty percent.
Normal overlap is defined when the overlapping area between
petals is between zero to thirty percent. High occlusion is defined
as more than sixty percent of the petal area is obscured. Moderate
is defined as when thirty to sixty percent of the petal area is
obscured. Normal occlusion is defined as when zero to thirty
percent of the petal area is obscured. The chrysanthemums are
counted separately in different environments. For example, when
chrysanthemums in normal light, normal overlap and normal
occlusion appear in one image simultaneously, their numbers
increase by one in the calculation.

FIGURE 6 | Qualitative results of our method. The red box indicates the recognised tea chrysanthemum.
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FIGURE 7 | Example of nine unstructured scenarios.

TABLE 5 | Impact of different unstructured scenarios on the TC-YOLO.

Environment Count Correctly identified Falsely identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Strong light 6511 5021 77.12 686 10.54 804 7.25

Weak light 10162 8786 86.46 857 8.43 519 5.11

Normal light 18686 17458 93.43 988 5.29 240 1.28

High overlap 5249 4167 79.39 379 7.22 703 13.39

Moderate overlap 11892 10420 87.62 659 5.54 813 6.84

Normal overlap 17443 16499 94.59 419 2.4 525 3.01

High occlusion 7811 6284 80.45 729 9.33 798 10.22

Moderate occlusion 12162 10661 87.66 630 5.18 890 7.16

Normal occlusion 19299 18147 94.03 648 3.36 504 2.61

Table 5 shows that under normal conditions, with normal
light, normal overlap and normal shading, the AP values
reached at 93.43, 94.59, and 94.03%, respectively. When
the unstructured environment became complicated, the AP
values dropped significantly, especially under the strong light
environment, with only 77.12%. AP value. Intriguingly, the
error rate (10.54%) was highest under the strong light, probably
because the light added shadows to the chrysanthemums.
It also may be due to the poor ability of TC-GAN to
generate high quality images under light environment. The
high overlap had the highest miss rate of 13.39%. Furthermore,
overall, overlap had the least influence on the detection of
chrysanthemums at the early flowering stage. Under high
overlap, the AP, error and miss rates were 79.39, 7.22, and
13.39%, respectively. Illumination had the biggest effect on
chrysanthemum detection at the early flowering stage. Under
high light, the accuracy, error and miss rates were 77.12, 10.54,
and 7.25%, respectively.

Comparison of the Latest Generative
Adversarial Neural Networks
To fully investigate the performance of TC-GAN, TC-GAN and
12 state-of-the-art generative adversarial neural networks were
tested on the chrysanthemum dataset using the TC-YOLO model.
The proposed TC-GAN generated chrysanthemum images with
a resolution of 512 × 512. However, there is variability in the
resolution of the generated images from different generative
adversarial neural networks. Therefore, to facilitate testing of
the TC-YOLO model and to ensure a fair competition between
TC-GAN and these generative adversarial neural networks, we
modified the output resolution of the latest generative adversarial
neural networks. According to the original output resolution
of these neural networks, we modified the output resolution
of LSGAN, Improved WGAN-GP to 448 × 448, BigGAN kept
the original resolution unchanged, and the output resolution of
the remaining generative adversarial neural networks were all
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TABLE 6 | Comparison between tea chrysanthemum – generative adversarial
network (TC-GAN) and state-of-the-art GANs.

Method Size Times/min AP

Improved SN-GAN 32 × 32 1290 80.61

BigGAN 512 × 512 1610 86.45

Dist-GAN 64 × 64 1322 80.68

Progressive GAN 64 × 64 1256 81.11

LSGAN 112 × 112 1410 84.03

Rob-GAN 128 × 128 1293 85.28

MGAN 64 × 64 1151 82.39

AutoGAN 64 × 64 1340 83.25

Improved DCGAN 64 × 64 1280 84.38

DAG 48 × 48 1768 83.29

Improved WGAN-GP 28 × 28 1640 76.16

Improved WGAN 128 × 128 1501 87.16

TC-GAN 512 × 512 1460 90.09

adjusted to 512 × 512, while other parameters were kept fixed.
The performance is shown in Table 6.

Table 6 shows some experimental details. TC-GAN has the
best performance among the latest 12 generative adversarial
neural networks, with an AP value of 90.09%. It is worth noting
that TC-GAN does not have an advantage in training time
among all the latest generative adversarial neural networks, with
all nine models training faster than TC-GAN. Only BigGAN,
Improved WGAN-GP and Improved WGAN are slower than
TC-GAN, with training times of 50, 180, and 241 min slower
than TC-GAN, respectively. This may be due to the design
of the network structure, which increases the depth of the
network and adds a gradient penalty mechanism. In contrast to
most convolutional neural networks, deepening the structure of
generative adversarial neural networks tends to make training
unstable. Also, the gradient penalty mechanism is very sensitive
to the choice of parameters, and this helps training initially,
but subsequently becomes difficult to optimize. Furthermore,
in general, the smaller the original generated image size, the
worse the performance of the generative adversarial neural
network in the detection task. This is because, firstly, current
mainstream adversarial neural networks generate images with
low resolution, and artificially enlarging the resolution would
blur the image, thus affecting the detection accuracy. Then, some
latest models, such as Progressive GAN, Improved DCGAN
and so on, are designed for better faces, and these models are
not robust in terms of transfer ability. Interestingly, among
the 12 latest generative adversarial neural networks, most of
the network structures are unconditional. Nevertheless, from
a comprehensive performance perspective, network structures
with conditional mechanisms, such as the improved WGAN,
have surprisingly good performance. Its training time is only
41 min slower than TC-GAN, while the AP value is only
slightly lower by 2.93%. Network structures with conditional
mechanisms are undoubtedly valuable to learn from, and adding
conditional mechanisms could be a future direction to improve
the performance of TC-GAN. To visualize the performance
of TC-GAN, the images generated by TC-GAN are shown in
Table 7.

TABLE 7 | Generation results of different GANs.

Methods Result

Improved
WGAN-GP

SN-GAN

Dist-GAN

Progressive
GAN

MGAN

AutoGAN

DAG

LSGAN

Improved
DCGAN

Rob-GAN

BigGAN

Improved
WGAN

TC-GAN
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FIGURE 8 | (A) Visualization results and (B,C) training process.

DISCUSSION

To investigate the three issues summarized in the section
“Introduction,” we proposed the TC-YOLO and compared
its results with the related work in Table 2. Our proposed

TC-GAN generates high resolution images (512 × 512), and
the E section of the experimental results shows that high
resolution images can significantly enrich environmental features
and thus improve the robustness of the model. GAN is
prone to pattern collapse and gradient vanishing during the
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training process, resulting in the lack of diversity in the
generated image features (Wang et al., 2021). TC-GAN is able to
generate images containing complex unstructured environments
including illumination, overlap and occlusion to gain the benefit
for detection under field environments, whereas most of synthetic
images generated from other GANs listed in Table 2 provide
limited diversity and clear backgrounds. To intuitively view
the image features through the generation process, we show
the visualization process and training process in TC-YOLO
(Figure 8). It can be seen that the important part (flower heads)
of the plants is clearly activated and captured with the TC-YOLO.

There are several points to be optimized for TC-GAN despite
its good detection performance. First, currently, there are no
suitable metrics to evaluate synthetic images. FID is a widely
recognized metric for evaluating synthetic images, but the FID
metric is dedicated to evaluating several specific datasets and
is not applicable to customized datasets. We can only evaluate
the quality of synthetic images by their detection results in an
object detection model. Therefore, establishing a standard set
of evaluation metrics is an urgent issue to be addressed. Next,
the training cost of TC-GAN is expensive. As can be seen from
Table 6, the training of the whole model takes 1460 min under
the 16 GB video memory of Tesla P100, and an ordinary device
is difficult to train effectively. Thus, the light weight of TC-
GAN is beneficial to the promotion of the technology. Besides,
according to the experimental results in section “Impact of
Different Unstructured Environments on the TC-YOLO” of the
experimental results, TC-GAN can not fully construct images
well for the illumination environmental setting. Note that the
lack of efficient interaction between the generator network and
the discriminator network leads to constant oscillation in the
gradient and difficulty in convergence, as shown in Figure 8B.
This is still a challenge without fully addressed in generative
adversarial networks, and we suggest more attention should be
paid to solve this challenge. Finally, our proposed model was
deployed in NVIDIA Jetson TX2 with approximately 0.1 s per
chrysanthemum inference time (the image size is 416 × 416).
It is not real-time performance, and this deserves further
optimization for network architecture such as network pruning
and quantization.

CONCLUSION

This article presents a novel generative adversarial network
architecture TC-GAN for generating tea chrysanthemum

images under unstructured environments (illumination, overlap,
occlusion). The TC-YOLO model is able to generate images
with a resolution of 512 × 512 and achieves the AP of 90.09%,
showing supreme results with other state-of-the-art generative
adversarial networks. Finally, we deployed and tested the TC-
YOLO model in the NVIDIA Jetson TX2 for robotic harvesting
and solar insecticidal lamps systems development, achieving
approximately 0.1 s per image (512 × 512). The proposed TC-
GAN has the potential to be integrated into selective picking
robots and solar insecticide lamp systems via the NVIDIA Jetson
TX2 in the future.
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The effect of root anchorage on corn stalk is the main cause of difficulties in stalk
lifting and ear picking of lodged corn. To quantify the forces on the stalks caused by
root anchorage in corn harvesting, a root force measurement system was designed
and applied in this study. The bending moment and torsional moment on the upright
and lodged corn stalks were measured in corn harvesting with the designed system
and the results were compared with the manually measured failure boundaries. The
manually measured results showed bending moments to push down the upright stalks,
to lift the lodged corn stalks, and to slip the lodged corn stalks were 35.12, 23.33, and
40.36 Nm, respectively, whereas the torsional moments needed to twist off the upright
and lodged corn stalks were 4.02 and 3.33 Nm, respectively. The bending moments
that the corn header applied to the upright, forward lodged, reverse lodged, and lateral
lodged corn stalks were 10.68, 22.24, 16.56, and 20.42 Nm, respectively, whereas
the torsional moments on them were 1.32, 1.59, 1.55, and 1.77 Nm, respectively. The
bending force was the main factor that broke the root anchorage and influenced the
stalk movement of lodged corn in harvesting. By analyzing the bending moment curves
on the lodged corn stalks, it was proposed that for the harvesting of corn lodged in the
forward, reverse, and lateral direction, the corresponding harvester header improvement
suggestions are enlarging the size of pins on the gathering chains, reducing the speed of
gathering chains, and lengthening the snouts with a sleeker surface, respectively. This
study provides base data for the root anchorage effect on lodged corn and provides
references for the improved design of the corn harvester header.

Keywords: root anchorage, lodged corn, corn harvest, harvester header, bending moment, static torque sensor

INTRODUCTION

Corn lodging is usually caused by excessive planting density, improper use of fertilizer,
unreasonable irrigation or diseases, and pests during the growth period (Echezona, 2007; Shelby
et al., 2018; Liu et al., 2021). The bending strength and rind puncture resistance of stalks are usually
taken as the indices for lodging resistance in variety breeding (Albrecht et al., 1986; Robertson et al.,
2016; Seegmiller et al., 2020). The main effect of lodging is to reduce crop yield (Ma et al., 2014). The
lodging area statistics and yield reduction prediction are usually carried out with satellite remote
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sensing and UAV images (Han et al., 2018; Chauhana et al., 2019;
Wilke et al., 2019). Lodging in the corn mature period such as
the late milky ripeness stage and the wax ripeness stage is usually
caused by extreme weather such as heavy rains and rainstorms.
This kind of lodging is characterized as whole plant inclination
because of the loosening of root-soil (Martinez-Vazquez, 2016).
Lodging in the corn maturation period causes severe ear loss in
harvesting (Wang et al., 2021) because the harvester would not
be able to pick corn ears lower than the working height of the
corn header (Paulsen et al., 2014; Xue et al., 2020a). Sugarcane
has the same lodging morphology as corn stalk. The lodged
sugarcane is lifted with the spiral dividers in the harvest (Bai et al.,
2021). Short-stem crops such as wheat and rice are harvested with
lowered headers to cut off the crop and feed the whole plant to the
threshing part (Paulsen et al., 2014; Phetmanyseng et al., 2019).

Different from the harvest of sugarcane and the short-stem
crops, the stalk is not cut in corn harvesting. Lowering header
height and applying headers with narrow row spacing units are
the main compromise means in the lodged corn harvesting (Yang
et al., 2016; Wang et al., 2021). In the harvesting, the snouts of
the header are extended into the bottom of the stalks to lift them
with the travel of the harvester. The stalks are fed into the gap
between the snapping plates and pulled down by the stalk rolls
under the snapping plates. Then the corn ears are picked by the
blocking effect of the snapping plates, as shown in Figure 1. In
this process, the corn stalk is not only subjected to forces by the
stalk rolls and the pins on the gathering chains but also influenced
by the root anchorage (Fu et al., 2019). In the previous studies,
Donovan et al. (1982) measured the pulling force of the corn
root with a sensor connected to the three-point linkage of the
tractor. Reneau et al. (2020) tested the contribution of brace roots
on anchorage by measuring the deflection forces after removing
them. However, there is still a lack of reliable data about the root
anchorage effect on the lodged corn stalks in corn harvesting.
The technical difficulties such as stalk lifting, stalk feeding, and
header blockage could not be solved without reliable analysis. It
is also impossible to make a reasonably improved design on corn
harvester header in dealing with lodged corn.

Bending failure and torsional failure are the main forms of
stalk failure in lodged corn harvesting. The bending moment and
torsional moment on the stalks could be taken as the indices for
the root anchorage in corn harvesting (Francisco et al., 2018;
Stubbs et al., 2019). This study focused on the forces acting on
upright and lodged corn stalks affected by the root anchorage
in the lodged corn harvesting. It starts with the measurement
of the bending moment and torsional moment to cause stalk
failure on the upright and lodged corn stalks. Then the bending
moment and torsional moment on the upright and lodged corn
stalks exerted by the corn header were measured in the field
test with a designed measurement system. The force analysis was
made on the stalks by comparing the test results with the failure
boundaries. The action laws of corn header on the upright stalks,
forward lodged corn stalks, reverse lodged corn stalks, and lateral
lodged corn stalks were obtained with the analysis of bending
moment curves on corn stalks. The causes of ear miss picking and
header blockage were discussed, and suggestions for corn header
improved design in lodged corn harvest were propounded. The

results of this study will give base data for the root anchorage
effect on lodged corn and provide references for the improved
design of the corn harvester header.

MATERIALS AND METHODS

Mechanical Properties of Corn Stalks
The mechanical properties of corn stalk are the physical basis for
the stress analysis of stalk in corn harvesting. The parameters
measured in this test were the force required to push down
the upright stalks, the lifting force of the lodged corn stalks,
the slipping force of the lodged corn stalks, and the torsional
moments to twist off of upright and lodged corn stalks. The tested
variety in this study was Xianyu 335, which was widely planted
in Northeast China. The test was made in Changpaozi Village,
Yitong Manchu Autonomous County, Siping City, Jilin Province.
The corn lodged in 3 typhoons between Aug 27 and Sep 8, 2020,
about 30–40 days before the test.

Pushing Down Force of the Upright Corn
A hand-held dynamometer was used to measure the forces. The
dynamometer was an HP-300 model with a relative error of
0.5%, which was manufactured by Yueqing Handpi Instruments
Co., Ltd. A horizontal force was applied to the upright corn
stalks with the dynamometer until the corn was pushed down
to the ground. This maximum force value in pushing down the
upright corn stalk was recorded. The stalk failure might occur
at the root of corn when the soil loosened or at any position
below the force application position when the stalk broke. The
measurement method is shown in Figure 2A. To compare the
measured force with the forces in corn harvesting, the force Fbend
was applied at the height of 400 mm above the ground, which
was approximately equal to the minimum working height of the
corn header according to the harvester operating instructions.
The height was approximate to the force application height of the
corn header to corn stalks. So were the heights Hmeasure in the
measurement of Flift and Fslip in the following tests. The bending
moments on the stalks were obtained with the product of the
force and the height.

Lifting Force of Lodged Stalk
In the harvest of lodged corn, the snout tips of the corn
header extend into the stalks’ bottom, the pins on the gathering
chains lift the stalks with corn ear to the corn header’s working
height. Therefore, the stalk lifting force of lodged corn stalks
was measured. The measurement method is shown as Flift in
Figure 2B. The maximum force was recorded until the ear was
lifted to the height of 500 mm. This height was determined
according to the working height of the applied corn harvester
header, which was 400 mm. The bending moments were obtained
with the product of Flift and Hmeasure.

The Slipping Force of Lodged Corn Stalks
When the lodged corn stalk is subjected to a lateral force, it may
slide on the ground. Since the corn root is fixed by the soil, and
the top of the corn stalk can be regarded as a free end, when
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FIGURE 1 | Process of ear picking on the corn header.

FIGURE 2 | Measurement method of the mechanical properties of upright and lodged corn stalk. (A) Fbend and Tfailure on the upright stalks; (B) Flift, Fslip, and Tfailure

on the lodged corn stalks.

the lodged corn stalk is subjected to a horizontal force, the corn
stalk would slide around the root on the ground. This sliding will
cause the stacking of stalks in front of the corn header and cause
corn header blockage eventually. It should be avoided in corn
harvesting. Therefore, the critical condition for the occurrence
of stalk slipping was measured. The measurement method of this
force is shown as Fslip in Figure 2B.

Torsional Moment Boundaries of Corn Stalk Failure
Torsion is also considered an important reason for stalk failure
(Faisal et al., 2017). In this test, a torsional force was applied to
the upright and lodged corn stalks to get the failure boundary

of the stalks under the torsional moment. The torsional moment
was recorded as Tmeasure when the stalk was twisted off or the
root is ripped out from the soil. The measurement method on
the upright and lodged corn stalks is shown in Figures 2A,B.
The torsional moment was applied and measured with a torque
wrench (PLARZ-30 Nm by Suzhou Duotong Hardware Electrical
Co., Ltd.). The stalks were clamped with a fixture on the top
of the torque wrench. The abrasive cloth was wrapped around
the corn stalk to increase friction force because the friction
between the stalk and the steel clamping fixture was too small to
prevent relative sliding. When the stalks got lodged, the torsional
forces could be applied to any position of the stalks by the
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FIGURE 3 | An experiment of forces on stalks in corn harvesting. (A) Experiment on the upright corn; (B) experiment on the lodged corn; (C) the experiment scene
of corn harvest.

FIGURE 4 | Measurement of forces on corn stalks in harvesting.

harvester header snouts. To reduce the interference of stalk elastic
deformation on the measurement results, and avoid the influence
of brace roots on stalk clamping, the measurement was made at
the height of 150 mm above the ground.

Forces on the Stalks in Corn Harvesting
In this section, the torsional moment and bending moment on
the upright and lodged corn stalks in harvesting were measured.
According to the relationship between corn lodging direction and
harvester travel direction, the lodged corn stalks were classified
into forward, reverse, and lateral, corresponding to the harvester
traveling in the same, opposite, and vertical direction with
stalk lodging. The harvester applied in the experiment was the
4YZP-4Y corn harvester manufactured by Juming Company in
Shandong, China. The speed of the harvester was reduced to
0.5 m/s to meet the operation requirements of lodged corn, as
its standard working speed was 0.55–1.1 m/s according to the
operating instructions. In the measurement, the measured corn
plant was fixed on the mounting frame. The mounting frame was
placed in an installation pit. It ensured that the measured corn
plant was at the same height with natural growth and avoided

the collision between the harvester and the mounting frame in
harvesting. Figure 3 shows the scene of the field experiment.

Measurement System
Figure 4 shows the measurement system for the forces on the
stalk in corn harvesting. The system consisted of a corn harvester,
an installation pit to place the mounting frame, a mounting
frame with a torsional moment transducer and bending moment
transducer, a whole corn plant fixed on the mounting frame,
a signal amplifier, a data conversion connector with USB, a
computer with acquisition software, and a 12 V power source.
The power of the sensors and the signal amplifier were supplied
by a 12 V power source. The data were displayed on the
acquisition software of the computer after format transformation.

The structure of the mounting frame is shown in Figure 5.
It was assembled from profiles. The upper part of the mounting
frame was a stalk clamp to fix the stalk. At the bottom of the
stalk clamp was the torsional moment transducer (ZNNF-5 Nm
static torque sensor by Bengbu Zhongnuo Sensor Co., Ltd.).
When the stalk was twisted, the torque signal would be collected
by the torsional moment transducer. The torsional moment
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transducer was fixed on the horizontal shaft with U-bolts. It could
rotate around the horizontal shaft to simulate the morphology
of the upright and lodged corn stalks at different angles. The
horizontal shaft was installed on the frame through bearings
with the seat. The bending moment transducer (ZNNF-100 Nm
static torque sensor by Bengbu Zhongnuo Sensor Co., Ltd.) was
connected with the horizontal shaft at one end and fixed with
the frame at the other end. When the stalk was subjected to
forces by the harvester, the bending moments would be collected
in the form of static torque. There were four fixing wedges at
the bottom of the frame. They could be stuck into the soil to
prevent frame movement.

Measurement Method
The tests were conducted on upright and lodged corn. The
bending moments in the harvester traveling direction and the
torsional moments were measured on the upright corn, as shown
in Figure 6A. In the harvest of forward and reverse lodged corn,
the bending moments in the harvester traveling direction and
the torsional moments on the stalks were collected, as shown
in Figures 6B,C. When the harvesting was lateral to the corn
lodging direction as Figure 6D, the bending moments in the stalk
lifting direction and the torsional moments on the stalks were
measured. Each measurement was repeated 60 times.

RESULTS AND DISCUSSION

Properties of the Upright and Lodged
Corn Stalks
Force Bearing Capacities
Figure 7 shows the maximum forces that the upright and
lodged corn stalks could bear under different force conditions.

The average force to push down the upright corn stalks was
87.80± 29.89 N, the average lifting force of the lodged corn stalks
was 58.33 ± 10.76 N, and the average slipping force of lodged
corn stalks was 100.91 ± 28.79 N. The bending moments on the
stalks under the three situations were 35.12, 23.33, and 40.36 Nm,
respectively, supposing the effects of the adjacent stalks not
considered. The failure bending moment of the upright stalks was
larger than Sekhon et al. (2020) measured with the equipment of
DARLING on corn 40 days after anthesis, but it was close to Xue
et al. (2020b)’s result measured at the ear position after physical
maturity. The difference might result from the varieties, growth
stages, and the stalk conditions caused by planting patterns. The
upright stalks usually broke at the bottom internodes. It showed
that the anchoring effect of the root was strong, just as Donovan
et al. (1982) verified in the test. It was measured that the pulling
force of the root varied between 836 and 1767 N. However, it
was much easier to lift the lodged corn stalks than push down
the upright stalks. Because the soil structure was destroyed in
lodging and the fixation of soil on the root decreased greatly in
the lodging direction. The force to slip the lodged corn stalks
was much larger. It could be ascribed to the anchorage of root
in the slipping direction, even though it was weakened in the
lifting direction. This phenomenon was proved in the anchorage
of brace roots by Reneau et al. (2020). The force to slip lodged
stalk was a little larger than that to push down the upright stalk
because the stacking of lodged stalks restricts the slipping.

Failure Torsional Moment of Corn Stalks
The torsional moment required to twist the upright and lodged
corn stalks is shown in Figure 8. The average failure torsional
moment of the upright stalks was 4.02 ± 0.84 Nm, and that of
lodged corn stalks was 3.33 ± 0.92 Nm. The weaker torsional
bearing capacity of lodged corn stalks might be attributed to

FIGURE 5 | Structural diagram of the mounting frame.

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 852375211

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-852375 April 6, 2022 Time: 17:9 # 6

Fu et al. Forces in Lodged Corn Harvesting

FIGURE 6 | Measurement methods of forces on upright and lodged corn stalks. (A) Upright stalks; (B) forward lodged stalks; (C) reverse lodged stalks; (D) lateral
lodged stalks.

the decreasing of moisture content because of the insufficient
supply of water after lodging, just like the declining of stalk
strength after corn maturity (Xue et al., 2020b). Additionally,

FIGURE 7 | Force-bearing capacities of upright and lodged corn stalks. Error
bars indicate standard deviations.

the destruction of soil also made the root easier to rotate under
torsional force. Windsor-Collins et al. (2007) and Faisal et al.
(2017) had measured the torsional force of palm petals and plant
petioles similarly in the previous studies. But a few data were
recorded on the torsional moment of corn stalks, which may be
because the clamping devices could not apply sufficient friction
on the sleek surface of the corn stalk. The problem was solved
with the wound abrasive cloth between the clamping device and
the corn stalks in this experiment.

Effect of Root Anchorage on the Stalk in
Corn Harvesting
Bending Moment and Torsional Moment on Corn
Stalk
The maximum and minimum values of bending moments and
torsional moments on the stalks in corn harvesting are shown
in Table 1, and the distributions of maximums are plotted in
Figure 9. For the bending moment on the upright stalks and
the torsional moments on all stalks, the direction in which the
maximum bending moments appeared was specified as positive.
But for the lodged corn stalks, the stalk lifting direction was
specified as positive.
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FIGURE 8 | Failure torsional moment of upright and lodged corn stalks. Error
bars indicate standard deviations.

The bending moments on the lodged corn stalks were greater
than that on the upright stalks, which indicated larger forces on
the lodged corn. If the bending force was in the same direction
with corn lodging, it would push the stalks to the ground. If it
was opposite to the lodging direction, it would lift the stalks.

The maximum bending moments and torsional moments on
the upright stalks were approximately 30% to the stalks’ failure
boundaries. Figure 9A shows that the bending moments of the
upright stalks varied in a small range. The speed calculations
in corn header design ensured that the upright stalks would
not be pushed down by the harvester header in harvesting
(Wang et al., 2016).

When the harvester traveled in the same direction with corn
lodging, the stalks were forced backward by the pins on the
gathering chains of the corn header. Table 1 shows that the
average bending moment on the stalks was 22.24 Nm, which
was near to the bending moment calculated with the lifting force
of the lodged corn stalks. When the harvester traveled opposite
to the corn lodging direction, the average bending moment on
the corn stalks was 16.56 Nm, which was at approximately two-
thirds to the lifting moment of the lodged corn stalks. Figure 9A
indicates many of the tested stalks were not lifted. When the
harvester traveled lateral to the corn lodging direction, the
average bending moment on the stalks was 20.42 Nm. It can be
inferred that most of the stalks were lifted when the header snouts
extended into the stalk bottom.

It can be seen from Figure 9B that the bending moments on
lodged corn stalks did not show a definitive increase compared

to the upright stalks. These bending moments were around half
of the stalk failure torsional moment and could not fracture the
stalks in corn harvesting. But the stalks were more susceptible
to failure when the bending load was combined with torsional
moment (Stubbs et al., 2019).

Bending Moment Curves Analysis
The bending was the main cause of stalk failure in corn
harvesting. The typical bending moment curves on the stalks
under the tested working conditions are shown in Figure 10.

In the harvest of upright corn (Figure 10A), the ear picking
was completed in a short time. The bending moments reached
the maximum shortly after the harvest began. For the forward
lodged corn stalks (Figure 10B), the bending moment peak
values were larger than that of the upright corn. The bending
moments reached the maximum in a short time and declined with
fluctuations with the ear picking. Contrarily, in the harvesting
of reverse lodged corn stalks, the bending moments were small
at the beginning and got larger gradually with fluctuations
(Figure 10C). Figure 10D shows the bending moments on the
lateral lodged corn stalks in harvesting. The stalks were lifted
by the inclined surface of snouts with harvester traveling. The
bending moments increased gradually at the beginning and
fluctuated later.

The bending moment curves on the harvested corn
stalks showed that the corn header has different operation
characteristics for corn in upright and different lodging states.
The operation characteristics depended on the structural and
kinematic parameters of the corn header. The harvesting capacity
of the corn header on lodged corn can be improved by optimizing
the parameters of the harvester header.

Inspirations From the Bending Moment Curves
The contrast between the bending moment curves on the forward
and reverse lodged corn stalks reflected the differences in force
applied by the corn header. For the forward lodged corn, the
forces were first applied to the lower part of a stalk, then the whole
stalk was lifted by the pins on the gathering chain, as Figure 11A.
The stalk was pulled upright in a short time. The stalk pulling
and ear picking could be completed smoothly (Figure 11B). To
improve the efficiency of stalk lifting and avoid ear loss caused
by miss-lifting, the size of pins on the gathering chains should
be enlarged. And the pins on both sides had better be arranged
symmetrically rather than misplaced.

Forces on the reverse lodged corn were applied from the top
of the stalks. Due to the stalk deformation and the anchorage of
the root, the stalks could not be lifted and fed into the feeding
space of the corn header rapidly as shown in Figure 11C. The

TABLE 1 | Bending moments and torsional moments on stalks in corn harvesting (Nm).

Maximum bending moment Minimum bending moment Maximum torsional moment Minimum torsional moment

Upright stalks 10.68 ± 2.35 −3.01 ± 2.87 1.32 ± 0.61 −0.26 ± 0.15

Forward lodged stalks 22.24 ± 5.27 −6.25 ± 4.16 1.59 ± 0.56 −0.37 ± 0.20

Reverse lodged stalks 16.56 ± 4.75 −4.82 ± 4.30 1.55 ± 0.55 −0.32 ± 0.25

Lateral lodged stalks 20.42 ± 4.96 −4.40 ± 3.65 1.77 ± 0.74 −0.50 ± 0.39
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FIGURE 9 | Frequency distribution of bending moments and torsional moments on stalks in harvesting. (A) Bending moments; (B), torsional moments; I upright
stalks; II forward lodged stalks; III, reverse lodged stalks; IV, lateral lodged stalks.

FIGURE 10 | Typical stalk bending moment curves under tested harvesting conditions. (A) Upright stalks; (B) forward lodged stalks; (C) reverse lodged stalks;
(D) lateral lodged stalks.

ear was prone to be miss picked, and the header was prone to
be blocked, as shown in Figure 11D. This result differed from
the conclusions of Xue et al. (2020a) that the lowest loss occurred
when the corn was harvested in the reverse direction of lodging.

The above difference may be caused by the simultaneous presence
of stalk breaking and root lodging in their test, which disturbed
stalk feeding in the forward and lateral directions caused severe
header blockage.
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FIGURE 11 | Corn harvested in the forward and reverse directions of lodging. (A) Motion relationship between corn header and forward lodged corn stalks; (B) corn
harvested smoothly in the forward direction; (C) motion relationship between corn header and reverse lodged corn stalks; (D) header blockage in the harvesting of
reverse lodged corn.

In fact, in the feeding of upright corn, the velocity of the stalks
could be regarded as equal to the absolute horizontal velocity of
pins on the gathering chains. To avoid the stalks being pushed
forward by the corn header, the absolute velocity of the pins on
the gathering chains should be in the opposite direction with
harvester traveling, as shown in the following formula:

Vpinah = Vharvester − Vpin cos ε < 0 (1)

FIGURE 12 | Forces on the lateral lodged corn stalks in the lifting.

Where Vpinah was the absolute horizontal velocity of the pin,
Vharvester was the travel velocity of the harvester, vpin was the
linear motion velocity of pins driven by the gathering chains, and
ε was the inclination angle of corn header.

But in the ear picking of reverse lodged corn, it needs to push
the stalks forward to lift them. The forces on the stalks should be
applied in the forward direction of the harvester. The absolute
velocities of the pins on the gathering chains should be in the
same direction with the harvester traveling:

Vpinah = Vharvester − Vpin cos ε > 0 (2)

The formulas (1) and (2) revealed why the corn header
blockage and severe losses occurred when the harvester worked
in the opposite direction with stalk lodging. In the harvest of
sugarcane, the highest loss rate occurred when it was harvested
opposite to the lodging direction (Tamaki et al., 2009). Because
corn is harvested for the ears rather than the stalks, the corn stalks
need to be pulled down by the stalk rolls after feeding. Therefore,
the forces applied to the stalks on the corn header have a greater
impact on corn harvesting (Zhang et al., 2021). Theoretically, to
improve the corn header’s ear picking adaptability for the reverse
lodged corn, the velocity of pins on the gathering chains should
be largely reduced to help with the lifting and feeding of stalks.
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The speed-adjustable gathering chains on the corn header would
be a feasible method for reverse lodged corn harvest.

In the harvesting of the lateral lodged corn stalks, a forward
component force was applied to the stalk to slip it horizontally.
Stalk slipping in front of the corn header may cause stalk stacking
and header blockage. The component forces on a stalk are shown
in Figure 12. The forces satisfied the following relationship:

Fforward = Fupward tan θ (3)

Where Fforward was the component force in the harvester forward
direction, Fupward was the component force to lift the stalk, θ was
the inclination angle of the snout surface, which was smaller than
30◦ (Chinese Academy of Agricultural Mechanization Sciences,
2007). It could be calculated that the Fforward was smaller than
half of the Fupward, and smaller than the stalk’s slipping force. The
stalk would not slide on the ground as long as it is not stuck on
the snout surface.

Therefore, to reduce header blockage caused by stalk stacking
in lateral lodged corn harvesting, the following requirements
should be satisfied in the header improved design. The inclination
angle of the snouts should be less than the friction angle between
snouts and the stalks; the tips of the snouts should be tapering and
long enough to help it enter the stalk’s bottom; irregular shapes
should be removed from the snout surface to avoid stalk stacking.

CONCLUSION

In corn harvesting, the torsional moments applied to the upright
and lodged corn stalks in the forward, reverse, and lateral
directions by the corn harvester header were 1.32, 1.59, 1.55, and
1.77 Nm, respectively, much smaller than the torsional failure
boundaries 4.02 and 3.33 Nm of the upright stalks and lodged
corn stalks, respectively. The bending moments applied to the
upright stalks and lodged corn stalks in the forward, reverse,
and lateral directions were 10.68, 22.24, 16.56, and 20.42 Nm,
respectively, while the moments to push down the upright stalks,
to lift the lodged stalks, and to slip the lodged stalks were 35.12,
23.33, and 40.36 Nm, respectively. The bending force was the
main factor that broke the root anchorage on the corn stalks and
influenced stalk lifting.

Enough bending moment applied to the stalk was an
important prerequisite for lodged corn stalks lifting and corn ear
picking. To improve the ability of the corn header in lifting the
lodged corn stalks by applying bending moments, suggestions for

improvement were made corresponding to the stalks lodged in
the forward, reverse, and lateral directions. In the harvesting of
forward lodged corn, the size of pins on the gathering chains
needed to be enlarged to improve the corn header feeding
efficiency. For the reverse lodged corn, to avoid gathering chains
applying forces opposite to the stalk lifting direction, it was
necessary to slow down the speed of the gathering chains to
accelerate stalk lifting. In the harvesting of lateral lodged corn,
lengthening and tapering the snouts and sleeking the snouts
surface could help them enter the stalk bottom smoothly and
avoid header blockage.
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With the arrival of aging society and the development of modern agriculture, the use of
agricultural robots for large-scale agricultural production activities will become a major
trend in the future. Therefore, it is necessary to develop suitable robots and autonomous
navigation technology for agricultural production. However, there is still a problem of
external noise and other factors causing the failure of the navigation system. To solve
this problem, we propose an agricultural scene-based multi-sensor fusion method via
a loosely coupled extended Kalman filter algorithm to reduce interference from external
environment. Specifically, the proposed method fuses inertial measurement unit (IMU),
robot odometer (ODOM), global navigation and positioning system (GPS), and visual
inertial odometry (VIO), and uses visualization tools to simulate and analyze the robot
trajectory and error. In experiments, we verify the high accuracy and the robustness
of the proposed algorithm when sensors fail. The experimental results show that the
proposed algorithm has better accuracy and robustness on the agricultural dataset than
other algorithms.

Keywords: loosely coupling, extended Kalman filter algorithm, multi-sensor fusion, robustness, agricultural robot

INTRODUCTION

In recent years, with the development of artificial intelligence technology, agricultural robots such
as drones and ground mobile carts (Katsigiannis et al., 2016; Tang et al., 2020; Atefi et al., 2021;
Qin et al., 2021) have been gradually applied to modern agriculture. Their ability to sense the
environment and navigate on their own is a more critical influencing factor. And multi-sensor
fusion technology provides an effective method for agricultural robots to enhance their ability to
work in complex and uncertain environments (Noguchi et al., 1998; Viacheslav et al., 2011).

Multi-sensor fusion technology is a multi-level complementary. It optimally processes the
information from different types of sensors to form a reasonable interpretation of the observed
environment. Compared with the traditional single-sensor technology, it is fault-tolerant,
complementary, real-time, economical, and can solve the defects caused by single sensor, such as
fuzzy points and so on. And all of these allow it a more accurate observation of the environment.
Therefore, multi-sensor fusion technology has received wide attention in various fields such as
military, control, and signal processing (Abidi and González, 1992; Hall and Llinas, 1997; Varshney,
2000).

Visual inertial odometry (VIO) is an application of multi-sensor fusion technology. At
present, the mainstream VIOs includes VINS_MONO (Tong et al., 2018), VINS_FUSION
(Tong et al., 2018) and MSCKF_VIO (Mourikis and Roumeliotis, 2007). They are used to
accomplish map construction, navigation and positioning functions by fusing visual sensors
and inertial measurement units (IMUs). According to the difference of fusion framework,
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vision inertial odometry can be further divided into two types:
tightly coupled and loosely coupled. In the loosely coupled
(Faessler et al., 2015, 2016; Delmerico and Scaramuzza, 2018), the
visual motion and inertial navigation system has two independent
modules. In addition, the filter is used to decouple and fuse
the visual and IMU information, which has the characteristic
of simplicity and speed. VINS-MONO is an open source VIO
algorithm, which is realized by tight coupling method and
restores the scale through Monocular and IMU. VINS-FUSION
is an optimization-based multi-sensor state estimator, it achieves
accurate self-localization for autonomous applications (drones,
cars, and AR/VR). VINS-FUSION is an extension of VINS-
MONO, which supports multiple visual-inertial sensor types
(MONO camera + IMU, stereo cameras + IMU, even stereo
cameras only). MSCKF_VIO is a binocular visual odometry
based on multi-state constraint Kalman filter. Multi-state
constraint refers to adding the camera pose of multi-frame images
to the Kalman state vector by using least square optimization and
estimating 53 the spatial position of feature points through the
constraints between multi frame images. Then the state vector
is constrained based on the spatial position of the optimized
feature points. In the field of agricultural robots, the research on
machine vision and trajectory navigation is gradually deepening,
and visual-inertial navigation combined with other methods is
constantly evolving.

The core of VIO algorithm is based on the state optimization
of filtering methods (Scaramuzza et al., 2014), where the
filtering methods are mainly based on Bayesian estimation
theory, including Kalman filter (KF) algorithm (Gao et al.,
2017) and particle filtering algorithm (Leutenegger et al.,
2015), etc. Among these, the KF algorithm is used more
widely in practical applications. Since SLAM methods are
generally non-linear when performing system observations and
measurements, KF algorithms need to be extended to the non-
linear domain. Accordingly, researchers propose the Extended
Kalman Filter (EKF) (Kalman, 1960), a linear approximation
method in ignoring higher-order terms for non-linearity, which
can estimate the state of a dynamic system from a series of
measurements that do not exactly contain noise. Though it is a
suboptimal filtering algorithm, it solves the problem of nonlinear
systems in the KF algorithm. EKF is widely used in the field of
robotics. An improved covariance Intersection EKF data fusion
algorithm is proposed for multi-sensor time-delay system (Lee
and Gao, 2019). A slam method with extended Kalman filter
(EKF) is introduced to locate landmark robots and mobile robots
(Inam et al., 2020).

Many studies on multi-sensor fusion algorithms for
agricultural robots have been conducted by reasearchers. At
the end of last century, many scholars proposed vision based
automatic agricultural machine perception, navigation obstacle
avoidance and other related methods (Ollis and Stentz, 1997;
Sharma and Borse, 2016; Reina and Messina, 2019). Recently,
research has developed rapidly, including developed modular
structured robots that use GPS for navigation and positioning,
and multi-sensor fusion for robot obstacle avoidance (Liu et al.,
2011). A multi-sensor data fusion algorithm has been presented
based on the fusion set, it is mainly used for data collection in
agricultural systems (Hu and Yan, 2018). A multi-sensor fusion

approach has been developed for autonomous navigation of
agricultural vehicles, which is applied for crop row tracking
and traversable operations (Benet and Lenain, 2017). Along
with the great improvement in integrated navigation and sensor
fusion, a class of autonomous driving control algorithms has
been proposed in order to achieve high-precision autonomous
navigation of tracked agricultural vehicles, which includes GNSS-
RTK sensor integration algorithm and path tracking algorithm
(Han et al., 2020). A LiDAR-based autonomous navigation
system is developed for agricultural robots, which fuses LiDAR
and IMU to solve the problem of agricultural navigation when
the tree canopy is obscured (Velasquez et al., 2021). At present,
the research of agricultural robots combined with multi-sensor
fusion technology is in a rapid development stage. However,
the sensor technology generally relies too heavily on GNSS
or GPS navigation system, and the sensor fusion category
is single, generally using only two sensors for fusion, which
may lead to a failure of the whole system when the navigation
system has problems.

This paper presents a multi-sensor fusion algorithm based on
a loosely coupled extended Kalman filter, the proposed method
reincorporates the robot odometer (ODOM), global navigation
and positioning system (GPS), and the inertial measurement
unit (IMU) on the top of the visual odometer for agricultural
robots. And due to the favorable features of GPS navigation
such as wide coverage, strong resistance to climate influence and
real-time dynamics (RTK), we introduce a loosely coupled and
extended Kalman filtering algorithm to fuse the GPS and VINS-
MSCKF, ODOM, and IMU. In addition, the effects of GPS or
sensors failure on the system are also analyzed. Based on the
analysis, it is obvious that the proposed algorithm can better solve
the problem for the system downtime situation caused by the
failures of GPS and VIO sensors. Based on these experimental
results, we can conclude that the proposed algorithm can
effectively improve navigation accuracy and system robustness
under agricultural scenes.

EXTENDED KALMAN FILTERING AND
MULTI-SENSOR FUSION REVIEW

Extended Kalman Filter
As a linearized approximation method, extended Kalman filtering
(Sastry, 1971) is a class of extended form of standard Kalman
filtering in nonlinear systems.{

xk+1 = f (xk)+ wk
zk = h (xk)+ vk

(1.1)

where xk and zk are the state vector and the measurement vector,
wk and vk are system noise and measurement noise, respectively,
with covariance Qk,Rk. The system state equation is:

xk+1 = f
(
x̂k∨k

)
+ Fk

(
xk − x̂k∨k

)
+ wk (1.2)

where, Fk = ∂f /∂xk|xk=x̂k|k
One-step state prediction equation:

x̂k+1∨k = E
[
xk+1 + wk

]
= f

(
x̂k+|k

)
(1.3)

Frontiers in Plant Science | www.frontiersin.org 2 April 2022 | Volume 13 | Article 849260219

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-849260 April 15, 2022 Time: 13:11 # 3

Lv et al. LCEKF for Agricultural Scene-Based MSF

The one-step state prediction covariance is:

Pk+1∨k = FkPk|kFTk + Qk (1.4)

One-step measurement prediction equation:

ẑk+1|k = E
[
hk+1 + vk

]
= h

(
x̂k+1|k

)
(1.5)

Measurement prediction error covariance array:

Pzz,k+1|k = Hk+1Pk+1|kHT
k+1 + Rk+1 (1.6)

The reciprocal covariance matrix between the state and the
measurement equations:

Pxz,k+1|k = Pk+1|kHT
k+1 (1.7)

State gain matrix:

Kk+1 = Pk+1HT
k+1

(
Hk+1Pk1|kHT

k+1 + Rk+1

)−1
(1.8)

The state estimates at moment k+1 is:

x̂k+1|k+1 = x̂k+1|1 + Kk+1(zk+1 − ẑk+1|k (1.9)

State estimation error covariance matrix is:

Pk+1∨k+1 =
(
I − Kk+1Hk+1

)
Pk+1|k

(
I − Kk+1Hk+1

)T
+ Kk+1Rk+1Kk+1

T (1.10)

Eqs. (1.2) to (1.10) form the extended Kalman filter algorithm.
In this paper, we define the failure state of GPS and VIO. When

there is no GPS signal, it is defined as GPS failure. When the
distance between the two adjacent VIO frames is greater than
a given threshold, it is defined as the VIO failure. During the
GPS or VIO fails, we perform sensor fusion by discarding the
GPS or VIO state variable values, and replace the failed GPS
or VIO values by the wheel odometer’s position, quaternion,
and covariance values. Compared with the traditional Kalman
filter algorithm, the proposed loosely coupled extended Kalman
filter algorithm can perform tasks when the GPS or VIO fails,
since the fusion mechanism includes the failure judgment of GPS
and VIO. Therefore, the judgment of the fusion mechanism can
remove the influence of the failed GPS or the invalid VIO on
the whole system, and thus replace the state variables of a failed

GPS or a failed VIO with the wheel odometer’s position, attitude,
quaternion, and covariance values. Therefore, the system can still
operate normally even when GPS or VIO fails.

The mathematical description of this paper is based on the
extended Kalman filter theory, and the state variables involved
are the position and attitude of GPS, wheel odometer, VIO, and
the attitude of IMU. From a mathematical point of view, the
proposed method is to switch the state variable to the value of the
wheel odometer by judging the GPS signal state and the position
change of VIO, in order to achieve system stability.

Multi-Sensor Fusion
Multi-sensor fusion (MSF) currently completes the required
measurement estimates for subsequent information processing
by using computer technology. In this way, automatically analyze
and synthesize data from multiple sensors or multiple sources
with certain criteria.

The multi-sensor fusion is characterized by complexity and
multi-level, and its basic requirements for algorithms are
robustness, parallel processing capability, speed and accuracy of
operations, etc. It is also necessary to consider the performance
of the connection with the previous pre-processing (information
input) and subsequent information processing system (system
output), etc. In general, mathematical methods based on non-
linearity and with features such as fault tolerance and adaptability
can be used as fusion algorithms. At present, most of the research
on sensor fusion algorithms based on Kalman filter include
adaptive Kalman filter, extended Kalman filter, volumetric
Kalman filter and unscented Kalman filter. In these studies,
the model parameters and the system noise characteristics can
be estimated and updated only when the sensor is working
normally. When the sensor fails, the whole system collapse. In
this paper, the failure judgment is added on the basis of the past,
and a loosely coupled EKF algorithm is proposed to make the
system run normally.

MATERIALS AND METHODS

Algorithm Framework
The proposed algorithm framework is shown in Figure 1. The
input of algorithm are images captured by the binocular camera
and the measurement from the IMU. And the information about

FIGURE 1 | (A) Overall algorithm framework and (B) multi-sensor signal fusion module.
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FIGURE 2 | (A) Data set–repeated scenes and (B) example of dataset tracking.

FIGURE 3 | (A) Weeding mobile robot equipped with sensors and (B) dataset coordinate system definition.

the farming system, i.e, the farming data set, is obtained from
the input binocular image. At the same time, the position pose
estimation of the farming robot is completed based on the
proposed fusion algorithm.

The extended Kalman filter fusion algorithm cannot obtain
stable data since GPS and VIO are greatly affected by the
environment. For example, GPS basically cannot receive satellite
signals after being blocked, and VIO is too sensitive to ambient
light. To solve this problem, the proposed algorithm fuses four
sensors, among which the data from GPS and VIO need to
be evaluated. The algorithm can perform decision-level fusion
by adding a condition to determine whether the sensor fails.
The algorithm judges whether the GPS is invalid through the
differential state. When the output of the differential positioning
state is 2, the GPS works normally. Otherwise, the algorithm will
replace the GPS data with the ODOM data. The same goes for
VIO. The algorithm determines whether the distance between
the two adjacent VIO frames is greater than a given threshold.
If the VIO fails, the proposed algorithm will use the ODOM data
instead of the VIO data. When the sensor returns to normal, the

data of GPS and VIO are re-added to the fusion system for fusion
to correct the system error. After synchronizing the time of each
sensor, the algorithm uses the EKF filtering formula to process the
data, and outputs the attitude estimation value of the whole robot.

The data fused in the algorithm contain the odometer
information converted by GPS through coordinates, including
the covariance and coordinate values for x and y axes of the
GPS; the covariance and coordinate values for x and y axes of
the ODOM; the quaternion and covariance of the IMU; the
covariance and coordinate values for x, y, and z axes of the VIO
and the quaternion output by the tight coupling between the IMU
and the camera. And all these data are obtained in the carrier
coordinate system (ObXbYbZb). In addition, the coordinate
systems considered in this paper include: Geographic Coordinate
System (OgXgYgZg), Camera Coordinate System (OcXcYcZc),
Navigation Coordinate System (OnXnYnZn), Inertial Coordinate
System (OiXiYiZi) and Pixel Coordinate System (Opuv).

The proposed fusion of sensor information framework is
shown in Figure 1, it can improve the navigation accuracy
while enhancing the robustness of the system effectively. The

Frontiers in Plant Science | www.frontiersin.org 4 April 2022 | Volume 13 | Article 849260221

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-849260 April 15, 2022 Time: 13:11 # 5

Lv et al. LCEKF for Agricultural Scene-Based MSF

FIGURE 4 | Comparison of the overall trajectory of the fusion algorithm with
the MSCKF_VIO algorithm in the x-axis.

data analysis and final results are given in the experiments and
results section.

Signal Fusion
In the signal fusion stage, we fuse the signals from IMU,
ODOM, VIO, and GPS inputs based on the extended
Kalman filtering algorithm in a loosely coupled manner.
Then the fusion algorithm is used to estimate the real position
and attitude information of the ground farm robot, and
outputs the fused and filtered combined odometer (ODOM
combined) information. The update of the positional attitude
information, covariance information, and timing update are
introduced as follows.

(1) Position-attitude update.
All sensor sources have their own reference coordinate
system and may drift with time. To solve this problem,
we replace the absolute position pose information with the
relative position pose difference.

(2) Covariance update.
As the robot moves over a larger and larger range,
the uncertainty of its position pose gradually increases,
the covariance increases accordingly, and the absolute
covariance of position pose become less meaningful;
therefore, the sensors release a period of covariance change
to update the covariance, i.e., the covariance of velocity.

(3) Timing update.
It is assumed that the initial update moment of the
farm robot to the filter is t_0. In this case, the filter
subscribes to the fused position information at t_1, IMU
information at t_2, ODOM information at t_3, GPS
information at t_4, etc. Then the IMU, ODOM, and GPS
information are interpolated at t_0 and t_1, t_0 and t_2,
and t_0 and t_3, respectively. The EKF filter will use the
information obtained from these linear interpolations to

calculate the integrated odometer data updated by the
filter at time t_1.

Algorithm Input
The Rosario Dataset (Pire et al., 2019) is a class of publicly
available datasets in agriculture (Figure 2), this dataset is
used for mobile robots in agricultural scenarios in terms of
agricultural sensor fusion, SLAM, etc. This dataset is provided
by a weeding mobile robot equipped with a stereo camera,
GPS-RTK sensor, and IMU (Figure 3A) for agricultural field.
Figure 3B represents the dataset coordinate system, which
means that the world coordinate system completes the pose
transformation and turns to the map coordinate system. It is
assumed that the initial update moment of the farm robot
to the filter is t_0. In this case, the filter subscribes to the
fused position information at t_1, IMU information at t_2,
ODOM information at t_3, GPS information at t_4, etc. The
collected information is fused with odometry, inertial, and visual
information for further processing. Consequently, the results
are generated by deriving environmental data covering highly
repetitive scenes, reflection and burn images, direct sunlight
scenes, and rough terrain scenes.

This dataset has a relatively universal character, including
a range of different farmland scenes, and is suitable for the
study of this paper. For this reason, the dataset is used as the
initial input dataset for the proposed algorithm. In the dataset,
Ground Truth is the real motion trajectory of the robot, i.e., the
standard trajectory.

EXPERIMENTAL RESULTS AND
ANALYSIS

In this paper, the Rosario Dataset is used to simulate the trajectory
of the robot in the spatial Cartesian coordinate system by using
the starting position of the robot as the zero point. All the data
mentioned in the paper are obtained by running the proposed
algorithm for the farming scenario.

Based on the unified dataset, the proposed approach analysis
can be divided into the following three aspects.

(1) Judging the algorithm accuracy by comparing the
trajectories of the fusion algorithm proposed in this paper
with other algorithms.

(2) Judging the robustness of the proposed fusion algorithm
based on the output trajectory by introducing Gaussian
distribution noise to disable specific sensors.

(3) Changing the fusion judgment condition of VIO
algorithm, output trajectory and observe the influence
of different judgment conditions on the proposed
fusion algorithm.

It should be noted that in the following simulation diagrams,
the X direction represents the left and right transverse direction
of the vehicle body, Y represents the front and rear longitudinal
direction of the vehicle body.
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FIGURE 5 | Comparison of the fusion algorithm with the MSCKF_VIO
algorithm for zooming in on the x-axis local trajectory.

FIGURE 6 | Comparison of the overall trajectory in y-axis between the fusion
algorithm and the MSCKF_VIO algorithm.

Experimental Simulation and Analysis for
Trajectory Accuracy
Comparison of the Proposed Loosely Coupled
Extended Kalman Filter Multi-Sensor Fusion
Algorithm With the MSCKF_VIO Algorithm
There are three trajectories in the following figures. From
Figures 4–9, the trajectory of loosely coupled extended Kalman
filter algorithm is represented by Fusion, the trajectory of
MSCKF_VIO is represented by MSCKF_VIO, and the standard
trajectory is represented by ground truth, respectively. Where the
Figures 5, 7, 9 intercept the part of t-axis coordinates from 0 to
150 s in Figures 4, 6, 8.

(1) Comparison of trajectories in the x-axis direction.

FIGURE 7 | Zoomed-in comparison of the y-axis local trajectories of the
fusion algorithm and the MSCKF_VIO algorithm.

FIGURE 8 | Comparison of the overall trajectory in z-axis between the fusion
algorithm and MSCKF_VIO algorithm.

(2) Comparison of trajectories in the y-axis direction.
(3) Comparison of trajectories in the z-axis direction.
(4) Analysis of the figures.

By analyzing Figures 4–9, it can be found that when the
robot first starts to run, the difference of the three trajectories
is not large and the error is within the acceptable range.
However, with the increase of running time, the trajectory error
between the MSCKF_VIO algorithm and the standard trajectory
is increasing. Furthermore, the speed of error increase is also
improving. In contrast, the fusion algorithm proposed in this
paper reflects its superior stability and higher accuracy in the
overall trajectory.
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FIGURE 9 | Zoomed-in comparison of the z-axis local trajectories of the
fusion algorithm and the MSCKF_VIO algorithm.

FIGURE 10 | Overall trajectory comparison of fusion algorithm with IMU and
ODOM fusion algorithm in x-axis.

Comparison of the Proposed Loosely Coupled
Extended Kalman Filter Based Multi-Sensor Fusion
Algorithm With Inertial Measurement Unit and ODOM
Fusion Algorithm
There are three trajectories in the following figures.
Figures 10–16 show the trajectory of the proposed loosely
coupled EKF algorithm (denoted as Fusion), IMU-ODOM, and
the standard trajectory (denoted as ground truth), respectively
by IMU-ODOM. By comparing the trajectories of the Fusion
algorithm, MSCKF_VIO algorithm and IMU and ODOM fusion
algorithm proposed in this paper with the standard trajectories,
the accuracy of the two algorithms can be judged.

FIGURE 11 | Overall trajectory comparison of fusion algorithm with IMU and
ODOM fusion algorithm in y-axis.

FIGURE 12 | Comparison of y-axis local trajectory of fusion algorithm with
IMU and ODOM fusion algorithm.

(1) To make a more accurate analysis of the results, Figure 12
intercept the part of t-axis coordinates from 200 to 300 s in
Figures 11, 14 remove the standard trajectory and intercept
the part of t-axis coordinates from 400 to 500 s.

(2) Comparison of the trajectory in the y-axis direction.
(3) Comparison of trajectories in z-axis direction.
(4) Analysis of the figures.

By analyzing from Figures 10–13, in the x-axis trajectory, the
accuracy of fusion algorithm of IMU and ODOM is obviously
lower than the accuracy of the proposed fusion algorithm; in the
y-axis trajectory, the difference in accuracy between the two is not
significant. Since the car body moves in the plane, this paper only
considers the x and y axes of the two-dimensional plane in the
IMU-ODOM fusion simulation, and its value is zero compared
to the real value in the z-axis trajectory.
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FIGURE 13 | Overall trajectory in z-axis of fusion algorithm with IMU and
ODOM fusion algorithm.

FIGURE 14 | Comparison of z-axis local trajectory of fusion algorithm with
IMU and ODOM fusion algorithm.

Analysis of the Tables
In this paper, the results of different sensor fusion methods are
quantitatively compared with standard trajectories, the average
value and mean square deviation of the absolute value are shown
in Tables 1, 2.

According to the conclusions drawn from the previous
analysis with Tables 1, 2, it is concluded that the stability and
robustness of proposed fusion algorithm are significantly
superior to the MSCKF-VIO algorithm and the IMU-
ODOM fusion algorithm, and it can be found that the
trajectory of fusion is closer to the real trajectory than those
obtained by other algorithms, and thus the accuracy of the
proposed fusion algorithm is better than IMU and ODOM
fusion algorithm.

FIGURE 15 | Comparison of the overall trajectory in the x-axis after VIO failure
and when all sensors are working normally.

FIGURE 16 | Comparison of local trajectory in x-axis after VIO failure and
when all sensors are working normally.

Experiments for the Robustness of the
System
The robustness of the system reflects its characteristic of
maintaining certain performance under certain parameter
uptake. In this paper, the robustness of the system
is verified by adding Gaussian distribution noise to
disable a specific sensor, and then the trajectory with
sensor disablement is compared to the trajectory without
the disturbance.

In this part, we disable the sensors GPS and VIO respectively
when t ∈ [200, 300].
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TABLE 1 | Average of absolute value of errors in x, y, and z directions.

Comparison

Axis Fusion-
groundtruth

MSCKF-
groundtruth

IMU-
groundtruth

x/m 4.5948 20.9995 45.2532

y/m 14.9209 75.3966 75.0033

z/m 4.7763 54.2210 0.8808

TABLE 2 | Mean square deviation of errors in x, y, and z directions.

Comparison

Axis Fusion-
groundtruth

MSCKF-
groundtruth

IMU-
groundtruth

x/m 2.6959 35.0502 25.8619

y/m 2.2211 96.6908 44.9099

z/m 2.2949 77.0708 0.2860

Visual Inertial Odometry Is Disturbed by
Continuous Noise, While Other Sensors
Operate Normally
In the following Figures 15–18, the Fusion trajectory represents
the trajectory when all sensors are working normally, the
VIO inference trajectory represents the trajectory when the
VIO is disabled by noise interference, while Figure 16 is the
trajectories for Figure 15 t ∈ [200, 210] and t ∈ [200, 300]
sections and enlarged to allow a more accurate judgment of the
results.

(1) Trajectory comparison in x-axis direction.
(2) Comparison of the trajectory in the y-axis direction.
(3) Comparison of trajectory in z-axis direction.

FIGURE 17 | Comparison of the overall trajectory in y-axis after VIO failure
and when the sensor is working normally.

FIGURE 18 | Comparison of the overall trajectory in z-axis after VIO failure
and when all sensors are working normally.

FIGURE 19 | Comparison of overall trajectory in x-axis after GPS failure and
when all sensors are working normally.

Global Positioning Navigation System Is
Continuously Disturbed by Noise, Other Sensors Are
Working Normally
From Figures 19–22, the Fusion trajectory represents the
trajectory when all sensors are working normally, the
GPS represents the trajectory when the GPS is disabled by
interference, while Figure 20 are the trajectories of Figure 19
t ∈ [200, 300] sections and enlarged to allow a more accurate
judgment of the results.

(1) Comparison of trajectory in x-axis direction.
(2) Comparison of the trajectory in the y-axis direction.
(3) Comparison of trajectory in z-axis direction.
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FIGURE 20 | Comparison of the local trajectory in x-axis after GPS failure and
when all sensors are working normally.

FIGURE 21 | Comparison of the overall trajectory in y-axis after GPS failure
and when the sensor is working normally.

Analysis of the Results
In this paper, we disable the sensors GPS and VIO respectively
when t ∈ [210, 300], and enlarged the section of figure when t ∈
[200, 300]. In this way, we compare the two output trajectories
and find that the robustness of the fusion algorithm proposed in
this paper is better.

The above analysis of Figures 15–22 shows that the GPS
or VIO failure does not have much effects on the proposed
algorithm results, and it can be thus concluded that the proposed
algorithm has excellent robustness ability to remain stable under
a continuous disturbance.

FIGURE 22 | Comparison of the overall trajectory in z-axis after GPS failure
and when the sensor is working normally.

FIGURE 23 | Comparison of the overall trajectory of the output x-axis with
different thresholds.

Effects of Different Judgment Conditions
of Visual Inertial Odometry Algorithm
Fusion on the System
Comparison of the Trajectories of the Fusion
Algorithm Under Different Judgment Conditions
In the process of sensor fusion, this paper defines a threshold
value for VIO sensors and sets judgment conditions based on
this threshold value. If the VIO signal greater than this value, it is
judged that the VIO data is not suitable for fusion, and the fusion
algorithm of the VIO data is terminated.

In this paper, by changing the threshold value and observing
the output trajectory, we study the influence of different
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FIGURE 24 | Comparison of output x-axis local trajectories under different
thresholds.

FIGURE 25 | Comparison of the overall trajectory of the output y-axis under
different thresholds.

thresholds judgment conditions on the trajectory results of the
proposed fusion algorithm.

In the following Figures 23–27, the Fusion trajectory
represents the output trajectory when the threshold value is
not changed, which is also the Fusion trajectory in all previous
simulations with a threshold value of 0.3. VIO-3 represents the
output trajectory with a threshold value of 3. VIO-7 represents
the output trajectory with a threshold value of 7. VIO-15
represents the output trajectory with a threshold value of 15. And
VIO-30 represents the output trajectory with a threshold of 30.
Figures 24, 27 are the local trajectory results of t ∈ [100,200]
sections from Figures 23, 26, respectively.

(1) Comparison of trajectories in the x-axis direction.
(2) Comparison of trajectories in the y-axis direction.
(3) Comparison of trajectories in z-axis direction.

FIGURE 26 | Comparison of the overall trajectory of the output z-axis under
different thresholds.

FIGURE 27 | Comparison of output z-axis local trajectories under different
thresholds.

Analysis of Results
In this paper, by changing the defined threshold value of
VIO in the proposed algorithm and thus changing the fusion
judgment condition, we observe the output trajectory results
and analyze the effects of different thresholds on the overall
algorithm outputs.

It can be seen from Figures 23–27 that, as the threshold value
increases, the range of judging the VIO data to meet the fusion
condition also increases. Based on the comparison between the
output trajectories corresponding to different threshold values
and the Fusion trajectories, it is observed that the trajectories on
the x-axis and z-axis gradually approach the standard trajectories.
It is thus inferred that the accuracy of the proposed fusion
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algorithm is improved with the increase of the threshold value
within a certain range.

From the above experimental results, it can be concluded
that the proposed multi-sensor fusion algorithm has a higher
stability compared with traditional VIO algorithms such as
MSCKF_VIO and the fusion algorithm of IMU and ODOM
fusion algorithm. In addition, it also has excellent robustness.
As the working time of the robot increases, the algorithm
can still maintain a relatively stable trajectory, make up
for the shortcomings of a single VIO, and thus solves the
possible target loss and trajectory drift. It should be noted
that, although the accuracy of the proposed algorithm has
been greatly improved compared with the traditional VIO
algorithm, there is still much room for accuracy improvement.
Based on the relationship between the accuracy of the
algorithm output trajectory and different threshold values, it
is meaningful to find an optimal threshold values, in order
to stabilize the trajectory errors in a small interval and
make the algorithm output trajectory close to the standard
trajectory.

CONCLUSION

This paper proposes a loosely coupled EKF MSF algorithm for
designing navigation systems. A series of experiments verified
that the proposed algorithm has favorable robustness and stability
against other methods. The proposed method provide reference
significance for tasks such as navigation, localization, and path
planning of agricultural robots.

In the future, we will establish a more extensive and complex
dataset that are closer to practical applications, in order to further

improve the robustness and accuracy of the algorithm under fast
motion and more complex random scenarios. It is also interesting
to find an optimal threshold values, in order to stabilize the
trajectory errors in a small interval and make the algorithm
output trajectory close to the standard trajectory.
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Estimation of cotton yield before harvest offers many benefits to breeding programs,

researchers and producers. Remote sensing enables efficient and consistent estimation

of cotton yields, as opposed to traditional field measurements and surveys. The overall

goal of this study was to develop a data processing pipeline to perform fast and accurate

pre-harvest yield predictions of cotton breeding fields from aerial imagery using machine

learning techniques. By using only a single plot image extracted from an orthomosaic

map, a Support Vector Machine (SVM) classifier with four selected features was trained

to identify the cotton pixels present in each plot image. The SVM classifier achieved

an accuracy of 89%, a precision of 86%, a recall of 75%, and an F1-score of 80% at

recognizing cotton pixels. After performing morphological image processing operations

and applying a connected components algorithm, the classified cotton pixels were

clustered to predict the number of cotton bolls at the plot level. Our model fitted the

ground truth counts with an R2 value of 0.93, a normalized root mean squared error of

0.07, and a mean absolute percentage error of 13.7%. This study demonstrates that

aerial imagery with machine learning techniques can be a reliable, efficient, and effective

tool for pre-harvest cotton yield prediction.

Keywords: cotton yield estimation, machine learning, UAS, SVM, remote sensing

1. INTRODUCTION

Cotton is a major industrial crop in the United States (U.S.), especially in the southern and western
U.S. Cotton fiber is one of the principal natural textile fibers worldwide (Townsend and Sette, 2016),
and the U.S. is the third leading cotton producer with an expected production of 22.5 million bales
for 2019/20, just after China (27.5 million bales) and India (27 million bales). Cotton is a soft staple
fiber that grows from the surface of seeds, enclosed in pods known as bolls. Primary components
of economic yield, cotton boll number and boll weight are agronomic traits that help to define
cotton crop performance in its last stages of growth. These traits can be used as indicators of fiber
production, which ultimately play a key role in breeding programs and may also provide valuable
information for farmers to plan hedging strategies.

Lint yield is one of the most important criteria for selecting new lines in breeding programs
(Bourland and Myers, 2015), but it is costly to obtain reliable data. Visual estimation of yield
performance is often used by cotton breeders to select promising cotton genotypes, but it can be
challenging. Morphological characteristics of cotton plants such as general shape, branch density,
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or leaf area change during the growth cycle of the crop and they
may mislead visual ratings of yield (Bourland and Myers, 2015).
Moreover, boll size can vary by year, breeding line, and position
on each fruiting branch, which canmake it difficult to standardize
visual cotton yield quantification methods. Physical harvesting
of the bolls, either manually or by using mechanical pickers, to
reduce the estimation bias is labor intensive and time-consuming,
limiting the number of plots that can be quantified (Bowman
et al., 2004). Thus, the development of tools for effectively
automating plant phenotyping tasks is of great potential value for
breeding programs.

In recent years, the applications of unmanned aerial systems
(UAS) in agriculture have grown rapidly and have transformed
modern farming. UAS are relatively inexpensive and can be
equipped with a variety of sensors, which makes them a valuable
tool for large crop field monitoring. These systems can be
programmed easily to navigate pre-defined paths with a specific
velocity while retaining a specific distance from the crop. This
means that they can be used to collect data remotely from the
field at optimal resolutions quickly and easily. UAS surveying
has been widely used for monitoring different crops (Barbedo,
2019), but only a few studies have addressed the use of these
systems to estimate cotton yield, and only two have investigated
their use for cotton genotype selection. The methodologies used
to estimate cotton yield from UAS imagery can be classified in
two main groups: approaches based on the use of only 3-channel
RGB (Red, Green, Blue) color images, and approaches that utilize
a combination of different sensor data to indirectly calculate
lint yield.

To estimate cotton yield from RGB imagery, one of the main
techniques is color thresholding segmentation, which has been
applied either to a single color channel or to multiple channels
at the same time. For instance, Dodge (2019) applied a global
thresholding method (using a fixed threshold value) to the B
channel alone on RGB aerial images to isolate cotton-related
pixels. Their methodology achieved an R2 of 0.817 for the first
year’s experimental data. However, this relationship was not
consistent, and they needed to include additional postprocessing
to improve their model generalization for the next year’s data (R2

= 0.736). Yeom et al. (2018) analyzed the spatial and spectral
characteristics of open cotton bolls on RGB images during the
harvest period. They established a global automatic threshold
based on Otsu’s method to separate cotton bolls from other non-
target objects. They achieved R2 values of 0.63–0.65 at estimating
yield using the cotton boll area as the input variable. However,
they assumed that cotton bolls have higher spectral values than
the other elements of the crop, which can be a limiting factor
with changing illumination conditions when the range of image
intensities of the color channels for the cotton bolls can resemble
other crop elements. Huang et al. (2016) found that a global RGB
threshold could not extract the cotton pixels from the images
accurately because the range of image intensities in the R, G,
and B channels of the cotton bolls overlapped with that of the
soil and other crop elements. Alternatively, they proposed the
application of the thresholding technique on Laplacian images
obtained from the divergence of the gradient of each image
with respect to pixel intensity. They were able to establish a

ratio—cotton unit coverage (CUC)—of the number of cotton
boll pixels detected to the number of pixels in a particular area.
They achieved their best results (R2 = 0.83) after introducing
additional postprocessing steps to detect and remove poorly
illuminated plot images because their method was affected by
shadowing and changing illumination conditions.

Additional approaches based only on RGB images have also
been proposed. Maja et al. (2016) estimated cotton yield of
small field plots from a cotton breeding program using K-means
clustering algorithm with 4 classes. They clustered the cotton
pixels on the image based on their color and found a linear
relationship (R2 = 0.782) between the ratio of cotton pixels with
respect to the total image area and the actual yield. However, they
needed to introduce a fixed cluster size constraint to avoid large
clusters and reduce misclassification of highly reflective areas of
the scene such as the bare soil. This additional constraint can
limit the generalization of their methodology for highly dense
cotton crops where the cotton bolls tend to form large groups.
Chu et al. (2016) estimated additional crop information (plant
height and canopy cover) from aerial RGB images and were able
to model cotton yield (R2 = 0.529) before maturation and boll
opening. However, their study of yield was limited to the stages
of the crop before defoliation such that the canopy cover could be
computed correctly.

In addition to RGB cameras for lint yield estimation,
multispectral and thermal cameras have been used. Huang
et al. (2013) used various vegetation indices obtained from
multispectral aerial images in conjunction with soil properties
to estimate yield variation. Their model based on the ratio
of vegetation index (RVI) and soil electrical conductivity (EC)
measurements performed well for non-irrigated fields (R2 =

0.718) but was unable to estimate yield accurately for irrigated
fields (R2 = 0.033). Feng et al. (2020) modeled cotton yield using
multiple features derived from RGB, multispectral, and thermal
cameras. They applied a global threshold in all three channels
R, G, and NIR (near infrared radiation) to discriminate open
cotton bolls from the soil and leaves. They found that the ratio
of the number of cotton pixels to the overall number of pixels
in a specific area of a multispectral image (cotton fiber index,
CFI) could be used to estimate yield at the pre-harvest stage
(R2 = 0.90). Moreover, by using a combination of plant height,
CFI, canopy temperature and the a∗ component of the CIELAB
color space, they obtained an even better result (R2 = 0.94).
However, this sophisticated approach required the simultaneous
use of color, multispectral and thermal cameras, which is costly
and may require more computation capacity, time, and labor for
data collection and processing.

Methods based on machine learning (ML) techniques have
been explored recently. Support vector machines (SVM) are
one of the most widely used machine learning algorithms for
supervised data classification and regression analysis. Based on
statistical learning, SVMs aim to identify a decision boundary to
partition data in a high-dimension feature space into two sets.
This decision hyperplane can be then used for data classification
or regression analysis. There are two basic SVM formulations
to perform these tasks. For data classification, support vector
classification (SVC) models (Cortes and Vapnik, 1995) try to
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find the hyperplane to separate the input data belonging to
two different classes with the maximum margin. The learning
process for an SVC aims to maximize that margin and minimize
classification errors between the two classes. These classification
models return for each input data a class label and its probability
of belonging to each class. The second type of SVM is for
regression problems. Support vector regression (SVR) is a
regression function that can predict dependent variable by using
independent variables as continuous values instead of class labels.
The SVR works with the similar principle as SVM: to find the
hyperplane that best fits the data inside a decision boundary
delimited by a predefined error margin (Drucker et al., 1996;
Vapnik et al., 1997). The models can be optimized using the
regularization parameter C and themargin of tolerance ǫ. During
the last decade, SVMs and its variants have been successfully
applied in agricultural remote sensing for crop classification
(Song et al., 2014; Liu and Whitty, 2015) and plant disease
identification (Rumpf et al., 2010; Garcia-Ruiz et al., 2013; Raza
et al., 2015). For cotton crops, SVMs have been successfully used
to identify cotton flowers from multispectral imagery (Xu et al.,
2019) and for budding rate monitoring from aerial RGB imagery
(Xia et al., 2019). Regarding cotton yield estimation, other ML
methods have also been used. By using RGB and multispectral
aerial imagery, Ashapure et al. (2020) implemented an artificial
neural network (ANN) to estimate cotton yield throughout the
season based on crop canopy attributes. They were able to predict
cotton yield at early stages of the crop with an average R2 = 0.861
using features that included canopy information, multispectral
vegetation indices, cotton boll information (obtained by using
a color-based threshold method, Jung et al., 2018), and crop
irrigation status. This advanced methodology required the use
of color and multispectral imaging systems, which increases
platform costs andwould entail additional time and labor for data
collection and processing.

Methods for cotton yield estimation based on remote
sensing techniques have various limitations. Traditional image
processing techniques, such as thresholding, are not flexible
enough to adapt to variable conditions present in the scene,
resulting in relatively low performance. Some studies rely upon
additional sensors to retrieve new features, which ultimately
increases platform cost and usage and processing complexity.
In this article, we present a simple and easy-to-implement
methodology for estimating pre-harvest cotton yield at the plot
level. By using RGB airborne imagery and a SVM algorithm,
this new methodology could benefit cotton breeders by allowing
them to acquire accurate information about different crop
plots for their selection experiments in a timely manner.
Moreover, it also may provide farmers an inexpensive, quick,
and precise estimation of the yield in their cotton fields
before harvesting. The specific objectives of this study were
to (1) implement a support vector machine model to classify
cotton boll pixels in aerial images; (2) develop a predictor
to estimate the number of cotton bolls at the plot level;
(3) evaluate the performance of the proposed method against
ground truth yield measurements; and (4) apply the proposed
method to identify differences between genotypes in a cotton
breeding trial.

2. MATERIALS AND METHODS

2.1. Experimental Field
The field under study was located at the Iron Horse Farm (IHF)
in Greene County, Georgia, U.S. (33◦43′01.3′′N 83◦18′29.1′′W)
(Figure 1). The dimensions of the field were 200 × 12m (length
× width), and it comprised a total of 488 plots. These plots were
arranged into 10 rows with 46 plots per row and 1 additional
row of 28 plots. A total of 220 different cotton genotypes were
planted in plots of approximately 3-meters wide, with a final
plant density dependent on the germination rate of the seeds.
Six of the genotypes were commercial cultivars (TAM94L25,
Acala1517-98, UA48, FM832, DeltaPine393, and GA230) with 10
replications per cultivar. The rest were 214 breeding lines from
10 different cotton populations (J, K, L, M, N, O, P, Q, R, S) with
two replicates.

2.2. Data Collection
2.2.1. Aerial Imagery
Original RGB color images were captured on February 1, 2020 on
a single flight using a quadcopter DJI Matrice M100 (Shenzhen
DJI Sciences and Technologies Ltd., Shenzhen, China), equipped
with a Lumix G7 digital single-lens reflex (DSLR) camera
(Panasonic Corporation, Osaka, Japan). This camera has a 17.3
× 13 mm CMOS image sensor with 16.0 megapixels (4592 ×

3448 pixels) resolution and stores captured images using the
sRGB color space. The camera was mounted on the bottom of
the drone using a custom 3D-printed bracket, which ensured that
the camera lens was aligned to a 90 degree angle relative to the
ground. Figure 2 shows the system used for data collection. The
flight was controlled internally by the M100’s N1 flight controller
and was carried out at a height of 15 m above ground level, and
at a speed of 1.9 m/s. With this configuration, the ground pixel
size was 0.26 cm/pixel. The camera was configured automatically
according to the light conditions of the field. Different white
balance configurations were tested for color balancing before
the flight, and the “Auto White Balance” compensation (AWB)
was found adequate for the weather conditions on the collection
day. A Manifold onboard computer (Shenzhen DJI Sciences and
Technologies Ltd., Shenzhen, China) was in charge of triggering
the camera at a constant rate of 1 frame per second. The forward
overlap between images in the same flight line was configured
to 80%, while the side-by-side overlap between adjacent flight
lines was set to 60%. A total of 447 images were collected during
the flight.

A set of 12 ground control points (GCP) with circular patterns
were generated using Agisoft Metashape software (Metashape
Professional 1.5.5, Agisoft LLC, Russia) and deployed along the
field’s border for geo-referencing the UAS images (Figure 3). The
patterns were cut off from matte black adhesive-backed vinyl
sheet and pasted onto a white acrylic 60 cm square sheet. The
GCPs were surveyed in the field using an RTK-GPS system.

2.2.2. Ground Truth Data
A digital method was used to provide the ground truth
data to evaluate the remote sensing predictions. Since manual
harvesting of cotton bolls is time consuming, labor intensive, and
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FIGURE 1 | Experimental field location. The experiment was conducted in the Iron Horse Farm, Greene County, GA, U.S. (A) Location map of Georgia, marked in red,

in the U.S., (B) General map of Georgia, the experiment location is marked with a red star, (C) Iron Horse Farm aerial view (Greene County, GA), the specific location of

the experimental field is delimited by a red rectangle, (D) Field layout.

FIGURE 2 | Equipment used for image collection. Unmanned Aerial Vehicle,

DJI Matrice M100 Pro, equipped with a Manifold onboard computer and a

Panasonic Lumix DMC-G7 DSLR camera as imaging device.

destructive, we employed high resolution 3D point clouds and
a virtual reality (VR) annotation tool to count number of bolls
digitally. The field was scanned on February 2nd using terrestrial
laser scanning (TLS) techniques. A FARO Focus S70 3D laser
scanner (FARO Technologies Inc., Florida, U.S.) was used to
collect high resolution 3D point cloud data (PCD) from multiple
locations through the field. The scanner was configured to 1

2

resolution, and 2× quality. With these parameters a full scan can
collect up to 174.8 megapoints with a point distance of 3.1 mm
in a scan distance of 10 meters. The LiDAR data was captured
from the ground at a distance ranging between 1 and 2 m from
the plants, to enable the visual identification and counting of
the cotton bolls. Individual scans were registered as a single
PCD using FARO SCENE 2019 software (FARO Technologies
Inc., Florida, U.S.). A set of 10 coded planar markers obtained
from SCENE software were deployed around the field to facilitate
the coregistration of multiple PCDs. SCENE was configured to
automatically detect the registration markers and align the scans.
After registration, individual plots were manually segmented
and extracted from the 3D reconstructed PCD as .PTS files
using SCENE clipping box tool. Each individual plot was then
processed using CloudCompare software (version 2.11.2). A
statistical outlier removal using 2 points for mean distance
estimation and 1.0 as the standard deviation multiplier threshold
was applied to the individual point clouds to reduce noise
and clean spurious points. From the 488 plots that composed
the field, a set of 45 plots (Figure 3) were selected for digital
ground truth counting. A VR annotation tool developed by
the Virtual Experience Laboratory at the University of Georgia
was leveraged to count the cotton bolls from the clean PCDs
using an Oculus Quest 2 VR set (Facebook Technologies Inc.,
California, U.S.) and a desktop computer. More details of this
VR tool will be covered in a future manuscript. These counts
were considered as the ground truth measurements (GTVR) for
further analysis.
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FIGURE 3 | General orthomosaic map of the experimental field. Ground Control Points (GCP) used for image geo-referencing are identified as yellow circles; a total of

12 GCPs were used around the field. The red square at the bottom-left corner shows a zoom-in view of one of the 60 × 60 cm square GCPs with the 12-bit circular

coded pattern. Ground truth plots measured on February 2, 2020 using digital approaches are identified with green boxes (45 plots). Plots harvested on February 3,

2020 are identified with boxes filled in red (15 plots); ground truth plots harvested on February 27, 2020 are identified with boxes filled in blue (10 plots).

TABLE 1 | Ground truth data summary.

Samples no. Min (boll

number)

Max (boll

number)

Mean (boll

number)

Digital ground truth 45 14 362 160.933

Manual ground truth 25 61 367 184.680

Manual ground truth counts include the cotton boll number measured by destructive

sampling of 25 plots randomly selected from the field. Digital ground truth counts include

the cotton boll number of 45 ground truth plots measured using digital approaches.

The plots used as the ground truth included a representative
subset of the plots in the field: from plots with a small number
of cotton bolls (<20 cotton bolls) to highly dense cotton plots
(>350 cotton bolls). A summary of the ground truth values for
both the manual and digital sampling is presented in Table 1.
To calibrate this approach, the digital ground truth counts were
regressed against the actual number of cotton bolls in a subset
of manually harvested plots. The manual ground truth subset
was composed of 25 plots that were randomly selected from
the 45 plots in the digital ground truth set. In these plots, only
the open cotton bolls were harvested, counted, and weighted
manually. These manual ground truth measurements (GTmanual)
were performed in two different batches: 15 plots were harvested
on February 3rd, 2020 and 10 plots were harvested on February
27th, 2020 (Figure 3). A strong linear relationship (R2 = 0.996)
was found between GTVR and GTmanual for the 25 manually
harvested plots.

2.3. Data Processing Pipeline
The data processing pipeline for cotton yield estimation
presented in this article (Figure 4) involved four main
steps: (A) generation of an orthomosaic map of the entire
field from the aerial images collected, (B) individual plot
images extraction and pre-processing using image processing
techniques, (C) development of an image pixel classifier
based on SVM for cotton pixels segmentation at the plot
level, and (D) cotton boll number estimation for each
individual plot.

2.3.1. Orthomosaic Map Generation and Individual

Plot Image Extraction
An orthomosaic map was created from the RGB images using
AgisoftMetashape software. A generic pair preselectionwith high
accuracy setting was selected for photo alignment on Metashape
software. By using the “detect markers” tool, all GCP markers
were identified to georeference the images.

After applying a mild depth filtering and enabling
interpolation, a digital elevation model (DEM) was generated
using the dense point cloud from the estimated camera positions.
Finally, using the DEM and mosaic as the blending mode, the
orthomosaic map was obtained. To extract plot images from
the orthomosaic map we used the open-source geographic
information system (GIS) software Quantum GIS, version
3.8.2-Zanzibar (Open Source Geospatial Foundation, Beaverton,
OR, U.S.). A vector layer with the boundaries of each plot was
created manually and then clipped to the orthomosaic map to
obtain an individual GeoTIF image file for each plot.

2.3.2. Individual Plot Image Preprocessing
To reduce computation time and speed up the processing of
individual plot images, preprocessing was implemented. Each
individual plot image contains around 500,000 pixels. However,
just a small portion of these pixels are meaningful for yield
estimation, i.e., cotton-related pixels. As a general example, an
image of a typical cotton crop plot will include plant leaves,
weeds, and other plant matter (green to yellow color pixels); soil
and other mineral matter with near-neutral hues (gray, brown,
and tan color pixels); branches and other woody elements (light
brown color pixels); and cotton pixels (shades of white color
pixels). Hence, using traditional image processing techniques,
all vegetation and soil-related pixels from the images could be
potentially removed prior to pixel classification. A modified
version of the Excess Green minus Excess Red Index (ExG-ExR)
(Meyer and Neto, 2008) provided good results for removing
vegetation pixels. To compute themodified index ExGRmod index
for the cotton plots, the following equation was used:

ExGRmod = 2.5 × Gnorm − 3 × Rnorm − Bnorm (1)
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FIGURE 4 | Data processing pipeline. The process pipeline includes 4 main steps: (A) Orthomosaic map generation, (B) Individual plot extraction, (C) Image pixel

classifier development, and (D) Cotton yield estimation at plot level. Green arrows indicate the flow of data/information between processes.

where Rnorm, Gnorm, and Bnorm are the normalized R, G, and B
color channel values respectively that were computed as inMeyer
and Neto (2008).

Similarly, a new index that we called SoilIdx based on the
CIELAB color space was found useful to remove soil pixels
without having any visible impact on the pixels associated to
the cotton bolls. To compute this index the following equation
was used:

SoilIdx = 0.5 × Lnorm − 2 × anorm + bnorm (2)

where Lnorm, anorm, and bnorm are respectively the normalized L*,
a*, and b* components of the CIELAB color space.

2.3.3. SVM Classification Model Development
Cotton color is significantly different from most other elements
in the field. Hence, pixel color can be used intuitively as
a descriptor for cotton pixel segmentation. However, after a
preliminary analysis of the RGB color component values of the
image pixels, we found that some branches and woody elements
in the background were almost indistinguishable from the cotton
boll pixels, mainly because of shades and other light-blocking
effects. This suggests that RGB color space information alone was
not a robust enough descriptor to properly extract the cotton
pixels, as previous studies have noted. Other color spaces, in
particular HSV and CIELAB color models, increase invariance
with respect to luminosity and lighting changes and are more
robust than the RGB color space in relation to the presence of
shadows (Hdioud et al., 2018). In this study, we applied an SVM
model to classify image pixels using RGB, HSV, and CIELAB
color spaces information. This information was used as feature

descriptors to discriminate between cotton boll pixels and the rest
of background pixels.

The SVM model was developed using the Scikit-learn library
(Pedregosa et al., 2011) on the Jupyter Notebook interactive
computing platform, version 6.1.4. To reduce the annotation
burden, only a single plot image was used to extract features and
create the dataset for model training. Initially, an 11-dimensional
feature vector was extracted from each pixel. These vectors
contained the location of the point in the image (row, col); and
the values of the RGB, HSV and CIELAB color space components
of the point (R, G, B, H, S, V, L*, a*, b*) for each pixel in the image.
The Matlab Image Labeler app (The Math Works Inc., Natick,
MA, U.S.) was used to annotate the image. This annotation tool
enables the user to interactively draw pixel ROIs to label the
boundaries of the visible cotton bolls to classify every image
pixel into one of two target classes: cotton and non-cotton. The
class of each pixel—1 for cotton pixels, and 0 for non-cotton
pixels—was added to the features vector as the target column.
Tominimize the complexity of the model, a dimension reduction
step was introduced to identify the best set of features. A recursive
feature elimination (RFE) algorithm was applied for best features
selection. The resulting dataset was divided into training and
validation subsets with a ratio of 4:1. For model training, a radial
basis function (RBF) kernel was used, the hyperparameter C was
configured to be 1.0, and the hyperparameter γ was selected as
“scale”.

To evaluate the performance of the SVM model for cotton
pixels classification, accuracy, precision, recall, and Type I and
Type II error rates were calculated. In addition, to provide a more
comparable metric with other similar studies, the F1 score metric
was also computed. The accuracy can be defined as the percentage
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of correct predicted pixels for the total number of pixels analyzed
and can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (3)

where TP and TN—true positives and true negatives,
respectively—are the number of pixels correctly classified
for each class, and FP and FN—false positives and false negatives,
respectively—are the number of misclassified pixels.

The precision metric measured the proportion of pixels
classified as cotton pixels that were classified correctly. This
metric accounts for the ability of the classifier to not label a pixel
that is not cotton as cotton. In contrast, the Type I error rate
indicates the probability of misclassifying an non-cotton object
as cotton using the classifier. The precision and the Type I error
rate can be calculated as follows:

precision =
TP

TP + FP
× 100 (4)

Type I error rate =
FP

TP + FP
× 100 (5)

The recall measured the proportion of cotton pixels that were
classified correctly by the SVMmodel among all the actual cotton
pixels in the image. This metric describes the ability of the
classifier to find all cotton pixels. The Type II rate, in contrast,
indicates the probability of misclassifying a cotton pixel as a
non-cotton pixel. These metrics can be calculated as follows:

recall =
TP

TP + TN
× 100 (6)

Type II error rate =
TN

TP + FP
× 100 (7)

Finally, F1 score, as a function of precision and recall, conveyed
the balance between those two metrics by taking their weighted
average. It can be calculated using the following equation:

F1-Score = 2×
precision× recall

precision+ recall
× 100 (8)

All these metrics ranged from 0% to 100%, 100% being related to
the best performance.

2.3.4. Yield Prediction Model Development and

Evaluation Metrics
The developed SVM classifier was used to classify the cotton
pixels presented on the unseen 45 plot images corresponding
to the ground truth plots. After each image pixel was classified
as a cotton or non-cotton point, a morphological erosion
operation using a 3 × 3 elliptic structuring element, followed
by a morphological dilation operation with a 5 × 5 rectangular
structuring element were applied to eliminate noisy points and
reduce the effect of pixels misclassification. Then, connected
components labeling was applied to the binary image to count

number of bolls. The connected components were computed
using an 8-way pixel connectivity, where pixels are considered
connected if they share any of the pixels that compose
their respective Moore Neighborhood. These post-processing
operations were performed using the OpenCV library (Bradski,
2000), version 4.5.3.

To evaluate the performance of the cotton yield prediction
model, a linear regression analysis was performed between the
estimated cotton boll numbers and the ground truth values. The
coefficient of determination (R2) was used to check how closely
the estimations mirrored the actual boll number at the individual
plot level. Additionally, to facilitate performance comparison
with other yield prediction studies that may use different
scales, the normalized root mean squared error (NRMSE)
was computed over the range of observed values—maximum
cotton boll number minus minimum cotton boll number for
the ground truth plots. The residuals were also computed to
observe the difference between the ground truth data and the
predicted values. Furthermore, to validate the performance of the
yield prediction algorithm, the mean absolute percentage error
(MAPE) was computed between the predicted number of cotton
bolls and the ground truth measurements. These performance
indices were computed using the following equations:

NRMSE =

√

1
N ×

∑N
i=1(yi − ŷi)2

ymax − ymin
(9)

MAPE(%) =
1

N
×

N
∑

i=1

|
yi − ŷi

yi
| × 100 (10)

where N is the total number of data points used for the linear
regression analysis (N = 45), yi is the actual number of cotton
bolls for the ith ground truth plot, ŷi is the number of cotton
bolls predicted by the SVM model for the image plot associated
to the ith ground truth plot, and y is the average number of cotton
bolls per plot calculated from the ground truth values of all the 45
ground truth plots.

2.4. Genotype Analysis
The average number of predicted cotton bolls and the standard
error (SE) for each genotype and population were calculated
to evaluate the statistical accuracy of the yield estimations.
To evaluate the effectiveness of the yield estimations, the null
hypothesis of equal mean value of yield across all the commercial
cultivars and breeding lines was tested using the one-way analysis
of variance (ANOVA) at the significance level of 0.05. The
statistical computing and graphics software R (R Core Team,
2020), version 4.0.3, was used for this test. After testing the
effects due to genotype and its significance, the Fisher’s Least
Significant Difference (LSD) test was used to judge the likelihood
that the observed differences between genotypes and populations
comprised non-zero differences in yield performance. The LSD
test was performed using the R package agricolae (de Mendiburu
and Yaseen, 2020), version 1.3-5, to test differences among means
of yield for all the genotypes.
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FIGURE 5 | Individual plot image preprocessing results, (A) Raw RGB image

extracted from the orthomosaic map, (B) Preprocessing results for the same

plot image after removing vegetation pixels using the ExGRmod index

(Equation 1), (C) Preprocessing results for the same plot image after removing

also bare soil pixels using the SoilIdx index (Equation 2), (D) Binary mask used

for SVM pixel classifier training. White color identifies cotton pixels. Black color

identifies non-cotton pixels.

3. RESULTS

3.1. Individual Plot Image Extraction and
Preprocessing
A total of 408 valid aerial images were used to generate the
orthomosaic map (Figure 3). The 45 plots with the associated
ground truth data were extractedmanually from the orthomosaic
map and saved as individual GeoTIF files. Figure 5 shows one
of the extracted plot images. Specifically, this image was used
for training the SVM classifier. The raw RGB image (Figure 5A)
had 523,092 pixels. After removing the vegetation pixels using
the EXGRmod index (Equation 1), the new processed image
(Figure 5B) had 231,447 pixels, which means that the total
number of points to analyze was reduced to 44.25%. Finally, after
removing the bare soil pixels using our SoilIdx index (Equation 2),
the processed image (Figure 5C) was down to 34,212 pixels,
6.54% of the raw image.

3.2. SVM Classification Model
Development
A single image plot was used to train the SVMmodel. The image
selected for developing the classifier included not only the cotton
plants and the cotton bolls, but also other objects typically found
in the crop such as old branches and other woody objects from
previous crops, weeds, and soil (Figure 5A). The result of the
annotation process was a binarized image mask in TIF file format
(Figure 5D).

For feature selection, just the 9 color channels (R, G, B, H, S,
V, L*, a*, b*) were analyzed. The RFE algorithm was configured

FIGURE 6 | Feature selection analysis. Feature importances obtained using

random forest algorithm for feature selection. Blue bars represent the

importance of each feature in the classifier model. L*, a*, and b* refer to the

CIELAB color space components.

to select the 4 best features, by removing one feature at each
iteration using a Random Forest (RF) classifier as the estimator.
Results from the RF classifier (Figure 6) showed that the 4 most
important features were S, B, b*, and H color components. These
features were then used to create the training dataset, implying
a reduction from the original 11-dimensional feature vector to
a 4-dimensional vector. The resulting dataset, which contained
34,212 pixels of the preprocessed training image, was then split
into the training subset (27,369 pixels) and the testing subset
(6,843 pixels). By reducing the number of features from 11 to 4,
the average time needed to classify the pixels of the training image
plot was reduced a 13.3%, from 8.42 to 7.3 s.

To analyze qualitatively the results of our cotton pixel
classifier, a color code was used to identify image pixels. Figure 7
shows the inference results of the cotton classifier on the training
plot image compared to the annotated mask. As can be seen,
most of the cotton pixels are marked with cyan color, which
indicates that they were correctly classified by the SVM model,
i.e., true positives (Figures 7B–D). However, the classifier missed
some of the cotton pixels presented in the image. A small
portion of real cotton pixels were wrongly classified as non-
cotton pixels, comprising false negatives or Type II errors and can
be seen as pure blue pixels in Figures 7B,D. A smaller portion of
non-cotton pixels were misclassified as cotton, comprising false
positives or Type I errors and can be identified as pure red pixels
in Figures 7A,D.

Quantitatively, the classification results of the trained SVM
model on the testing subset are summarized in Figure 8. The
column and row shown in gray indicate the classifier’s overall
performance. The cell in the bottom right of the plot shows
the overall accuracy—correct predictions—of the pixel classifier.
The model achieved an accuracy of 88.7%; 22.9% of the 6843
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FIGURE 7 | Inference results of the SVM classifier on the training plot image. Blue pixels were missed by the classifier (Type II errors); red pixels were misclassified as

cotton by the classifier (Type I errors); cyan were correctly classified cotton pixels, (A) Training plot image classification results, (B) Non-cotton pixels misclassified as

cotton (Type I errors), (C) Cotton boll pixels not fully detected (Type II errors), (D) Cotton boll pixels fully correctly detected, (E) Type I and Type II errors mixed together.

testing pixels were correctly classified as cotton and 65.8% of
all testing pixels were correctly classified as non-cotton. Only
11.3% of predictions were wrong; 7.5% of the cotton pixels were
incorrectly classified as non-cotton and 3.8% of non-cotton pixels
were incorrectly classified as cotton. The column on the far
right of the plot shows the percentages of all pixels predicted to
belong to each class that were correctly and incorrectly classified.
Accounting only for the positive class identification, the upper
right cell indicates the precision and the rate of Type I errors of
our model. With 1564 out of 1821 cotton pixels being correctly
predicted, the SVM classifier achieved a precision of 85.8%, and
a Type I error rate of 14.2%. The row at the bottom of the plot
shows the percentages of all the pixels that belonging to each
class were correctly and incorrectly classified. The bottom left cell
indicates the recall and the rate of Type II errors of our classifier.
Out of 2079 actual cotton pixels, the model achieved a recall of
75.2% and a Type II error rate of 24.8%. Finally, the image pixel
classifier achieved an F1 score of 80.2% at detecting cotton pixels
on the testing subset.

3.3. Plot-Level Cotton Yield Estimation
Model Development
The pixel classifier we developed was then used to extract the
cotton pixels from the 45 individual images associated with the
digital ground truth plots. It was able to detect subtle color
changes, and was robust enough to avoid misclassifying most
of the woody elements and the soil (Figure 9A). After applying
the image post-processing steps and the clustering algorithm, we
obtained an estimation of the number of cotton bolls for each
image. Figure 9B shows the clustering results of a sample image
plot extracted from the orthomosaic map. A total of 344 different
cotton bolls (pixel clusters) were identified on this particular
image plot. Each one of these clusters are identified by a unique
color to facilitate the visual analysis.

The number of cotton bolls estimated for the 45 individual
image plots analyzed was regressed against its ground truth

FIGURE 8 | Confusion matrix chart. Green cells show the number of correct

classifications by the SVM model. Red cells show the number of classification

errors. Gray cells show overall performance of the model.

measurement (Figure 10). The estimations of number of cotton
bolls at the plot level shows a strong linear relationship (R2

= 0.932) with the ground truth measurements. This trend is
consistent at different numbers of cotton bolls, which indicates
that our pixel classifier and clustering algorithm adapted to the
changing scenes and was able to segment properly the cotton
bolls from both low yielding plots and high yielding plots. The
analysis of residuals showed randomly dispersed points around
the horizontal axis with no apparent pattern, which indicates that
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FIGURE 9 | Cotton boll inference results. Cotton pixels segmentation and clustering results for a representative plot (Plot ID 45003), (A) SVM classifier inference

results. Red pixels represent the cotton pixels detected by the SVM classifier as cotton, (B) Cotton boll clustering results. Each cluster is identified by a unique color.

the linear model was a good fit for the input data. Only one data
point does not follow the regular distribution (red circled point
on Figure 10) and given its value is more than three standard
deviations from the mean, it was identified as an outlier. Our
model achieved a MAPE of 13.672% at detecting cotton bolls and
a normalized RMSE value of 0.066 over the range of observed
cotton bolls.

3.4. Web API Deployment
A web-based API (web app) was developed to integrate the
developed pipeline into a more usable interface with the aim
of improving automation and usability (Figure 11). The web
app consisted of three basic functions to process each input
plot image: the preprocessing steps (vegetation and soil pixels
removal), the SVM classifier deployment (creation of features
and SVM pixel classification), and the final cotton boll number
estimation (morphological image processing operations and
connected components labeling algorithm). The SVM classifier
and the clustering algorithm were deployed using Flask as
the core of the API, in a dockerized environment. A Docker
container image of the web app is available on Docker Hub in the
repository https://hub.docker.com/r/javirodsan/yieldestimation.
Additionally, we will provide the code and some sample
images for testing at https://github.com/Javi-RS/Cotton_Yield_
Estimation.

3.5. Genotype Analysis Results
The mean number of predicted cotton bolls and the SE for each
genotype are summarized inTable 2. Results show that the cotton
yield estimations produced by the proposedmethod has relatively
low SEs for each cultivar and breeding line, which indicates that
the means of the yield for the different genotypes are centered
around the population mean, and hence, the sampled plots are
representative of the population.

FIGURE 10 | Estimated vs. actual number of cotton bolls per ground truth plot

(GTVR). Blue dots represent inference results of our model. Red line represents

the linear fit. Red dotted lines represent the 95% confidence interval for the fit.

One outlier is marked with a circle surrounding the data point.

The ANOVA test identified significant differences between the
means of estimated yield for cotton genotypes, with F(15, 472) =
1.874 and p< 0.05. Thus, the null hypothesis of equal mean value
of yield across all the genotypes can be rejected, which suggests
that our methodology was effective in identifying differences in
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FIGURE 11 | Web API for automatic image analysis.

TABLE 2 | Statistical analysis summary of predicted yield for commercial cultivars

and breeding lines.

Genotype Sample size Mean (boll number) SE Groups

UA48 10 237.300 26.755 a

Acala1517-98 10 211.500 25.937 ab

GA230 10 199.100 21.969 abc

DeltaPine393 10 198.300 23.137 abc

L† 16 179.625 15.264 abcd

N† 20 178.800 32.627 bcd

FM832 10 176.800 19.960 bcd

Q† 40 172.525 11.224 bcd

S† 184 166.576 5.380 bcd

O† 22 163.591 18.585 bcd

M† 8 158.875 32.627 bcd

K† 44 158.364 10.682 cd

TAM94L25 10 156.300 18.049 cd

R† 44 151.614 10.072 cd

J† 18 143.889 14.703 cd

P† 32 137.594 11.275 d

Data are sorted from higher to lower yield by genotype. Genotypes are grouped according

to the probability of means differences and alpha level (0.05). Cultivars and breeding lines

with the same letter are not significantly different. † Indicates breeding line populations,

comprised of samples of progeny from crosses between different mutant lines described

in Patel et al. (2014).

yield. The Fisher’s LSD identified statistical differences between
the estimation of average yield for the cultivars, with UA48
and Acala1517-98 being significantly higher than TAM94L25,
while FM832 being significantly lower than UA48. Regarding
the mutant-derived populations, L and N populations had the
highest yielding, and P had the lowest yielding, with other
groups in-between. While the LSD test was able to identify
significant differences of means of yield among the commercial
cultivars, individual breeding lines had only two replications
which provided insufficient evidence for definitive ranking.

4. DISCUSSION

Estimating cotton yield before harvesting would assist breeders to
identify highly productive genotypes without incurring the time
and cost of actually harvesting the field. Our study demonstrated
that the number of cotton bolls present on each individual plot of
a field can be estimated accurately by using RGB images captured
from a drone flight at a low altitude. This approach can be
used to quickly estimate yield at the plot level and would allow
cotton breeders analyze large variety trials efficiently, especially
with higher levels of replication as were used for the cultivars.
However, additional data would be needed to confirm its usability
on experimental breeding lines.

4.1. Comparison With Other Studies
As opposed to previous methods, our method used a supervised
machine learning model to classify the pixels in the image instead
of using traditional global thresholding techniques. Approaches
for cotton yield estimation based on traditional image processing
techniques (Huang et al., 2016; Yeom et al., 2018; Dodge, 2019)
usually assume that cotton has a distinctive spectral response
that enables the easy discrimination of cotton bolls from the
rest of the elements of the crop just by using a threshold value
in one or more of the RGB channels. However, in a real-case
scenario the illumination conditions can change considerably
during data collection, and often the range of image intensities
of the color channels for the cotton bolls are similar to other
crop elements. Although some studies have applied adaptive
threshold techniques or have included prior preprocessing steps
to minimize the limitations of global thresholding techniques
(Maja et al., 2016), these approaches are not flexible enough
to cope with the variability of reflectance across a field, and
hence their accuracy is limited. Our method uses an SVM model
based on 4 image channels to segment cotton-related pixels.
Machine learning techniques are more flexible than traditional
image processing methods at finding patterns on data with non-
obvious relationships. A recent study (Ashapure et al., 2020) has
already investigated the use of machine learning techniques to
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FIGURE 12 | Qualitative analysis of the yield estimator. (A) Original image plot (Plot ID 45003), (B) Zoomed-in view to Type I and Type II errors at segmenting cotton

pixels. Red represents the pixels segmented by the SVM classifier as cotton pixels, (C) Zoomed-in view to the same zones as (B) to visualize the clustering results.

Different colors identify different clusters (cotton bolls).

estimate cotton yield. However, the focus of their study was to
find the relationship between cotton yield and the parameters
of the crop during the course of the season, not near harvest.
Therefore, the potential of this approach for later growth stages
might be limited because it includes crop features related to the
canopy status. Our approach was developed to be applied after
crop defoliation (which commonly precedes cotton harvest) to
reduce the effects of occlusions by leaves and maximize cotton
boll visibility. Although this limits the applicability of ourmethod
to the pre-harvesting time frame, this is the period during which
breeders evaluate the overall performance of new breeding lines,
so it can be considered one of the key stages in the selection trials.

4.2. Type I and II Errors Analysis
Our SVM classifier was able to segment the cotton pixels
accurately from the input images, showing a promising overall
performance for the training image (Figure 7). As we have
commented in section 3.2, the classifier made some Type I errors
(false positives), and Type II errors (false negatives). In our
context we tried to minimize the Type I errors, i.e., the number of
background pixels wrongly classified as cotton pixels. We aimed
to detect all the cotton pixels in the image, but we did not want
to overestimate them. Usually, the number of cotton boll pixels
in a plot image is much lower than the number of pixels from
other parts of the plants and background. Hence, the chances
of misclassifying non-cotton pixels are higher. Figure 12 shows
the performance of the SVM classifier model on an unseen plot
image. Type I errors were mainly caused by elements of the scene

with a spectral response similar to the cotton bolls. As shown in
Figure 12B, some branches and other foreign objects in the field
were highly reflective and they were misclassified as cotton pixels.

Type II errors were caused primarily by dark cotton pixels
in the image that were not properly detected by the classifier.
Bolls from the lower parts of the canopy were less reflective
than those from the top parts with more light. Therefore, the
image pixels were usually darker on these parts, and the SVM
classifier was not able to detect completely all the cotton pixels
of some cotton bolls (Figure 12B). These zones are usually small,
and the image post-processing operations tend to remove them
before clustering (Figure 12C). Even though there were some
obvious classification errors, most of the cotton bolls detected
by our algorithms were true cotton bolls. These errors do not
necessarily have a substantial effect on our estimations of yield
because it was expected that not all the cotton bolls can be seen
from downward images.

Themorphological operations enhanced the appearance of the
cotton bolls in the binarized images and reduced the influence
of the SVM Type I errors on the cotton boll estimation. The
small elliptic structuring element used for the erosion operation
contributed to removing isolate pixels and small pixel clusters
associated to branches and other wrongly classified elements,
and hence the pixel clustering step performed relatively well at
isolating cotton bolls and correcting Type I errors (Figure 12C).
A larger element for the dilation operation aided to extend the
boundaries of the rest of cotton pixels to eliminate gaps between
close pixels and consolidate cotton bolls (Figure 12C).
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FIGURE 13 | Outlier analysis: 2D vs. 3D comparison. (A) Original image plot (Plot ID 41028), (B) Cotton boll clustering results; each cluster is identified by a unique

color, (C) TLS reconstructed 3D point cloud: Top view, (D) TLS reconstructed 3D point cloud: Frontal view.

4.3. Limitations
We used a digital RGB camera to collect the aerial images, which
internally processes the data from the image sensor and performs
the JPEG compression to save the image in a removable storage
media. These images are stored without a previous radiometric
correction. We tried to minimize the effect of the illumination
on the data collection day by using an automatic color balance
compensation. Although the AWB compensation was adequate
for our data analysis, it might not be a universal solution for
all the possible illumination conditions in the field. Therefore,
the use of our model directly to images collected at different
timesmay be limited if the atmosphere and solar radiation greatly
differ from those on our data collection day. However, since the
method we proposed is relatively fast and easy to use, retraining
the SVM model with new data from the specific collection day
can be feasible.

Additionally, as we noted in section 3.3, one of the points
in the data set was identified as an outlier during the linear
regression analysis (red circled point in Figure 10). By further
analyzing this particular data point and the associated plot
(Figure 13), we can determine that these kind of errors are
caused by one of the main limitations of 2D image analysis:
lose of depth information. The SVM classifier detected the
cotton pixels in the orthomosaic image fairly well. Moreover, the

clustering algorithm was able to find and segment properly some
of the cotton bolls (Figure 13B). However, the high density of
cotton bolls in this plot made the cotton pixels to appear close
together on the 2D aerial image (Figure 13A), which prevented
our clustering algorithm from segmenting all the cotton bolls
properly. Therefore, the estimation of number of cotton bolls
for this plot was not accurate—only 154 out of 253 cotton bolls
were detected. If we compare this image with its 3D point cloud
counterpart, we can see that a substantial number of the cotton
bolls were located in almost vertical branches (Figure 13D),
which made the lower cotton bolls to be heavily occluded by the
rest when looking from the top (Figure 13C). In a 2D image all
the pixels are contained in the same plane. This lack of depth
information impeded our algorithm to identify cotton pixels at
different height levels and led to underestimating the number of
cotton bolls.

4.4. Future Work
Most of the image processing can be performed automatically
without any supervision. However, the extraction of plot
images from the orthomosaic map was carried out manually.
A future research direction could investigate the feasibility
of automatically separating the plots from the orthomosaic
map using only geographic information. This would improve
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the efficiency of this methodology and would contribute to
improving the throughput for breeding purposes. Additional
research could also be performed to improve cotton pixel
classification, including the use of more advanced deep learning
methods such convolutional neural networks (CNN) that
could discriminate cotton pixels from the rest of elements by
automatically integrating spatial and morphological information
as additional features without needing to design them manually.
Even though the methodology presented here was developed
and tested using individual plot images, it could be modified
easily to perform yield estimations on production fields because
of its ease of use. Some minor modifications on the processing
pipeline would make it suitable for production fields. Instead of
extracting entire plots, the orthomosaic map could be divided
into several sections or cells using grids with fixed dimensions.
Then, our method could be used to estimate the yield from each
cell and then aggregate the estimations to have an estimation
of the total production of the entire field. However, further
studies will need to be carried out to validate this approach on
different crop densities. Additionally, our model was able to
detect cotton bolls consistently from almost all the plots of the
field. However, we didn’t correct the images atmospherically,
which may affect the direct application of our model to images
collected under different conditions. We will investigate how
to further improve our pipeline by including a preprocessing
step to correct radiometrically the images and make our method
agnostic to illumination lighting conditions and imaging sensors.
Finally, we were able to use digital ground truth techniques based
on 3D information to demonstrate some of the limitations of
2D approaches for estimating yield from aerial imagery. We will
investigate the feasibility of using 3D crop analysis to overcome
these limitations and its viability to estimate other crop traits.

5. CONCLUSIONS

This study presents a cost-effective approach for estimating
cotton yield production from images collected using a drone
and a conventional RGB camera. A supervised machine learning
classifier based on an SVMmodel was trained using only a single
plot image. Since this approach requires the annotation of only
one RGB image, it reduces the complexity and time needed for
model deployment. The classifier demonstrated to be robust to
changing scenes and discriminated accurately the cotton pixels
in individual plot images with different number of cotton bolls.
Consequently, reliable cotton boll counting was obtained. In

addition, themethodology was found to be effective in identifying
the differences in yield among different commercial cultivars and
breeding lines. Overall, the proposed method can help improve
the efficiency of decision making for breeding programs and
optimize the use of resources by speeding up the analysis of entire
field trials. Future work will focus on automating the extraction of
plot images, as well as on the application of 3D-based approaches
andmore advancedmachine learningmethods to improve cotton
boll detection.
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Wheat ears in unmanned aerial vehicles (UAV) orthophotos are characterized by occlusion, 
small targets, dense distribution, and complex backgrounds. Rapid identification of wheat 
ears in UAV orthophotos in a field environment is critical for wheat yield prediction. Three 
improvements were achieved based on YOLOX-m: mosaic optimized, using BiFPN 
structure, and attention mechanism, then ablation experiments were performed to verify 
the effect of each improvement. Three scene datasets were established: images were 
acquired during three different growing periods, at three planting densities, and under 
three scenarios of UAV flight heights. In ablation experiments, three improvements had 
increased recognition accuracies on the experimental dataset. Compared the accuracy 
of the standard model with our improved model on three scene datasets. Our improved 
model during three different periods, at three planting densities, and under three scenarios 
of the UAV flight height, obtaining 88.03%, 87.59%, and 87.93% accuracies, which were, 
respectively, 2.54%, 1.89%, and 2.15% better than the original model. The results of this 
study showed that the improved YOLOX-m model can achieve UAV orthophoto wheat 
recognition under different practical scenarios in large fields, and that the best combination 
were obtained images from the wheat milk stage, low planting density, and low flight altitude.

Keywords: small target, spike, YOLOX, UAV, Orthophoto, BiFPN

INTRODUCTION

Wheat yield is calculated from the number of spikes per unit area, the number of grains per 
spike, and the weight of grains. In agricultural production, especially in wheat cultivation and 
breeding, determination of the number of spikes per unit area still relies on manual work, 
which introduces human error during prolonged, intensive work. Therefore, a fast, accurate 
method for counting wheat spikes in a large field environment is essential.

Compared with the time-consuming and laborious manual counting, modern information 
tools such as machine-learning methods, image analysis techniques, and artificial intelligence 
technologies can significantly improve the efficiency of wheat spike counting (Xu et  al., 2020). 
Research on wheat-ear recognition has developed considerably in the last decade and can 
be broadly classified into traditional image processing methods, deep-learning network methods, 
and other methods. Using first-order and high-order methods, Frdric et  al. (2012) attempted 

246

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.851245﻿&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.851245
https://creativecommons.org/licenses/by/4.0/
mailto:dx120200098@stu.yzu.edu.cn
https://doi.org/10.3389/fpls.2022.851245
https://www.frontiersin.org/articles/10.3389/fpls.2022.851245/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.851245/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.851245/full


Frontiers in Plant Science | www.frontiersin.org	 2	 April 2022 | Volume 13 | Article 851245

Zhaosheng et al.	 Detection Spike Based on YOLOX

to extract wheat-ear texture features and used the K-means 
algorithm for ear segmentation and wheat-ear counting by 
setting thresholds. Cointault and Gouton (2007) combined color 
features based on texture features for wheat-ear segmentation 
and used the skeleton method to solve the problem of overlapping 
wheat ears during counting to improve the accuracy of wheat-ear 
recognition. Tao et al. (2014) used image processing techniques 
to complete the segmentation of wheat ears in a large field, 
and added the corner-point detection method to achieve 
automatic counting of wheat ears. Fernandez-Gallego et  al. 
(2020) utilized a drone to collect images of wheat fields and 
compared the effectiveness of eight machine learning methods 
on wheat-ear recognition. Their results showed that the random 
forest method had the highest accuracy.

Owing to broad applicability and high accuracy, deep-learning 
methods have become a new means to address the challenges 
encountered in wheat counting. Sadeghi-Tehran et  al. (2019) 
constructed wheat feature models and fed the models into 
convolutional neural networks to achieve semantic segmentation 
and automatic counting of wheat. In addition, TasselNetv2 
(Xiong et al., 2019), mobileNetV2 (Khaki et al., 2021), YOLOV4 
(Yang et  al., 2021), EfficientDet (Wang et  al., 2021), LPNet 
(Misra et  al., 2020), and other deep-learning networks have 
shown advantages in wheat counting.

The challenges to effective wheat detection have promoted 
the rapid development of machine learning algorithms in wheat-
head detection. Many wheat datasets have emerged, among 
which the most popular one is the Global Wheat Head Detection 
(GWHD) dataset (David et al., 2021). These developments have 
played a significant role in advancing wheat-detection algorithms. 
The equipment used to acquire wheat pictures in this dataset 
was a digital camera, shooting from a height between 1.8 and 
3 m above the ground and a ground sampling distance (GSD) 
of 0.10–0.62 mm/px.

Relative size is mainly used to define small targets in target 
detection. The relative size is defined according to the Society 
of Photo-Optical Instrumentation Engineers (SPIE), and a small 
target is defined as a target area of fewer than 80 pixels in 
a 256 × 256 image, i.e., less than 0.12% of 256 × 256 is a small 
target (Yang et  al., 2016). Most current research vehicles for 
wheat-ear detection are far beyond the small target range: 
high-definition images are obtained by high-definition cameras 
hand-held or mounted on a shelf and photographed at a closer 
distance, which makes the features of wheat ears clear and 
easy to be  extracted to more features by deep networks, and 
the recognition accuracy can reach 98% (Zhou et  al., 2018; 
Xiong et  al., 2019; Li et  al., 2021). However, this method does 
not apply to actual production practices and does not achieve 
field-wide or larger-scale wheat-ear detection. After wheat 
heading completed, clear images need to be  captured using 
unmanned aerial vehicles (UAV) and using orthophoto stitching 
technology, then detect wheat ears.

The ground sampling distance of wheat-ear images obtained 
by UAV is greatly affected by the flight height of the UAV. Taking 
DJI Inspire2 as an example, the experiment showed that after 
wheat head was presented, visible, and fully emerged. The 
UAV flight height was below 10 m, the wind generated by the 

propeller blew the ears of wheat about, making them shake 
and thus affecting the clarity of shooting and multi-photograph 
synthesis of orthophoto images. Flying the UAV too high made 
it impossible to extract wheat-ear features by a deep-learning 
network, yielding poor results. Therefore, a better method was 
needed for large-scale UAV orthophoto detection of small 
wheat-ear scenes with low GSD, high density, and small targets.

YOLOX is a series of YOLO improvement algorithms 
introduced by Kuang-Shi Technology (MEGVII) in 2021 (Ge 
et  al., 2021). YOLOX provides the following improvements 
over YOLOv3: (1) decoupled head (by decoupling the prediction 
branches, the convergence speed improves, as does AP by 4.2%, 
over the non-decoupled end-to-end method); (2) data 
augmentation (using Mosaic and Mixup and turning off data 
augmentation for the last 15 epochs to prevent excessive data 
augmentation); and (3) anchor improvement (using Anchor-
free, improving multi-positives and SimOTA, reducing training 
time, and improving prediction accuracy). This is a good new 
model. Currently it is not used much in articles. Panboonyuen 
et  al. (2021) utilizing pre-training Vision Transformer (ViT) 
as a backbone, apply Feature Pyramid Network (FPN) decoder 
detection of Road Assets, It significantly outperforms other 
state-of-the-art (SOTA) detectors. Zhang et  al. (2021) used the 
YOLOX algorithm to detect vehicle targets in UAV images, 
and through a self-made dataset, the detection results surpassed 
traditional algorithms. At present, there is no article using 
YOLOX to detect wheat ears.

In this paper, we  propose a method to obtain large-scale 
orthophotos of wheat fields using UAVs with telephoto lenses. 
We validate the algorithm for wheat-spike detection performance 
phenotypes under three periods, three densities, and three flight 
height scenarios using the improved You  Only Look Once 
(YOLOX) deep-learning network algorithm. The improved 
YOLOX-m model achieves a good effect on low-resolution 
images. Realize the identification of dense small target wheat 
ears in large size (1,280pixels × 1,280pixels) images, it’s favorable 
to the identification of wheat ears in large field orthophotos. 
And the best UAV orthophoto recognition is obtained from 
the wheat milky stage, low planting density, and low flight 
altitude. The improved YOLOX model exhibits the higher 
classification accuracy and the different scene adaptation capability.

MATERIALS AND METHODS

Experimental Designs
This study was conducted at the Fengling Experimental Base of 
Yangzhou University in Yangzhou City, Jiangsu Province, China 
(32° 30′ 7″, 119° 13′ 54″) using a 75 m × 25 m field size, with 
each plot measuring approximately 20 m2. Wheat plant 
conformation and spike morphology are influenced by variety. 
Yangmai 23, which has a large planting area, was selected as 
the experimental variety, with three densities: 1.2 × 106/ha (D1), 
1.8 × 106/ha (D2), and 2.7 × 106/ha (D3), and replicated three times 
(Figure  1). The sowing date was October 11, 2020, the planting 
method was mechanical strip sowing, fertilization was consistent, 
and other cultivation measures were consistent with local customs.
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Image Acquisition
This study used a DJI insprire2 (inspire2, from SZ DJI Technology 
Co. Ltd., Shenzhen, China) multi-rotor UAV equipped with a 
Zenmuse X5S (SZ DJI Technology Co. Ltd., Shenzhen, China) 
camera, an Olympus M. Zuiko 45 mm/1.8 (Olympus Co. Ltd., 
Tokyo, Japan) lens (Figure  2A), and DJI GS Pro (SZ DJI 
Technology Co. Ltd., Shenzhen, China) ground station software 
to conduct one UAV mission at the flowering (P1), milking 
(P2), and maturity (P3) stages of wheat. The flight parameters 
were set at 78% heading overlap, 80% bypass overlap, the flight 
height at 20 m (H1), 25 m (H2), and 30 m (H3). The orthophoto 
reconstruction of the acquired flight data was performed using 
DJI Terra (SZ DJI Technology Co. Ltd., Shenzhen, China), 
and orthophotos were exported for the next step (Figure  2B).

Scene Dataset Production
According to the experimental design, three wheat scenes were 
divided into different periods of wheat scenes (P series), different 

densities of wheat scenes (D series), and different resolutions 
of wheat scenes (H series):

P series: D2 image region orthophotos of three periods 
from P1 to P3 were selected as the image source,

D series: P2 period image orthophotos under three density 
treatments from D1 to D3 are selected as the image source,

H series: P2 period image orthophotos of three flight heights 
from H1 to H3 are selected as the image source.

To improve the efficiency of image cropping, a software 
“Crop Assistant” (Figure  2C) was developed to quickly crop 
the image to a specified size. The mouse is used to let the 
cross-auxiliary line move to the image area to be  cropped, 
followed by clicking at the center point. The image size of 
200 × 200 pixels can be  intercepted with the cross as the center 
point, and the image is automatically named and saved to a 
preselected folder according to the rules (Figure 2D). The user 
then manually labels the cropped images with wheat ears and 
generates the corresponding xml file, which contains information 

FIGURE 1  |  Distribution of test sites and test fields.
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such as image size, label name, and target location (Figure 2E). 
The number of statistical images (Nimg) and the total number 
of labeled boxes (Nlab) are shown in Table 1. There were 3,171 
images labeled in three series of nine-scene datasets, with a 
total number of wheat ears of 82,873. The amount of data 
met the number of datasets required by a deep-learning network. 
Each dataset is randomly divided into a training set, a validation 
set, and a test set in a 7:2:1 ratio for model training.

YOLOX-m MODEL IMPROVEMENT AND 
EVALUATION METRICS

YOLOX has a good recognition effect on target in the existing 
model, but there is still room for improvement. Sun et  al. 
(2021) compared the performance of YOLOX and Deformable 
DETR (Deformable transformers for end-to-end object detection) 

models in the identification of bok choy seedlings from Weeds. 
The results showed that YOLOX was the optimal model, and 
got better average precision and identification speed. In order 
to better apply YOLOX to wheat ear detection, we  have made 
three improvements: (1) data augment: optimized mosaic, added 
image random brightness processing, and limited the scaling 
ratio to 1–3. (2) Added a channel attention mechanism in 
backbone. Extract information that is more important to the 
task objective from numerous feature information. The efficiency 
and accuracy of model processing can be improved. The channel 
attention mechanism has been proven to use more attention 
resources to acquire high-value information and compress 
useless information (Woo et  al., 2018). (3) The neck adopts 
the BiFPN (Bi-directional Convolutional Block Attention Module) 
structure. It uses learnable weights to learn the importance of 
different input features, repeatedly applying top-down and 
bottom-up multi-scale feature fusion (Tan et  al., 2020).

A B C

D E

FIGURE 2  |  Image acquisition and dataset creation methods: (A) unmanned aerial vehicle (UAV) and sensor, (B) orthophoto, (C) image cropping, (D) image library, 
and (E) image annotations.

TABLE 1  |  Dataset base information.

Dataset
P Series D Series H Series

Total
P1 P2 P3 D1 D2 D3 H1 H2 H3

Nimg 370 395 390 368 355 350 302 327 314 3,171

Nlab 8,547 9,717 9,321 7,544 8,591 10,640 7,399 9,810 11,304 82,873

Nimg , total number of images and Nlab , total number of label boxes.
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The YOLOX series includes YOLOX-s, YOLOX-m, YOLOX-l, 
YOLO-x and YOLOX-Darknet53, the model size (parameters) 
and accuracy (usually expressed in mean average precision, 
mAP) increase in turn under the same conditions. Larger size 
model, greater arithmetic power required. Floating point 
operations (FLOPs) can be  used to measure the complexity 
of the model, the larger FLOPs need more arithmetic power. 
The mAP (0.5) of YOLOX-m is 15.80% higher than that of 
YOLOX-s. YOLOX-l, YOLOX-x and YOLOX-Darknet53’ mAP 
are only 5.97%, 8.96%, and 1.71% higher than YOLOX-m, 
respectively, but the FLOPs and the parameters of them are 
much higher than YOLOX-m (Figure  3). Considering the task 
scenario and hardware requirements, combined with the 
determination of YOLOX accuracy, the number of parameters, 
and arithmetic power of each model, YOLOX-m has high 
prediction accuracy, small parameters, and low computational 
overhead compared with other YOLOX series model. Finally, 
we selected the YOLOX-m model for optimization and testing.

Based on YOLOX-m, this paper proposes the following 
improvements for low-resolution, dense target scenes (the 
improved YOLOX-m network framework is shown in Figure 4).

Data Augmentation and Mosaic 
Optimization
This paper describes a modified mosaic method for data 
augmentation and expansion. A mosaic is four images stitched 
together into a new image after random changes, such as 
flipping and scaling while processing the labels corresponding 
to the target objects (Yun et  al., 2019; Figure  5). Experiments 
have shown that mosaic enhancement in model training is 
easier to detect in small targets, such as wheat ears (Kisantal 
et  al., 2019). Considering the low resolution of our dataset 
and the small, dense nature of wheat targets, a light random 
variation code and a restricted mosaic scaling index were added 
to improve the network learning. We  made the following 
improvements to the algorithm: (1) by converting RGB to 
HSV, setting the boosted V-segment value, and then converting 
the result to RGB, we changed the image’s brightness to simulate 
random changes in lighting; and (2) we  limited the scale 
parameter for the mosaic in 1:3, i.e., instead of shrinking the 
image, we  randomly zoomed-in up to 3x. For low-resolution 
and small target objects, the input network improved considerably 
over the original image after zooming-in.

In addition, the mixup algorithm was also used, which first 
read an image to scale up to a 640 × 640 image while calculating 
the scaled annotation frame. Next, a randomly selected image 
was also filled and scaled to 640 × 640 pix, and the scaled 
label box was calculated. The fusion factor was set, and the 
two images after the change were weighted and fused to finally 
obtain a mixup image (Zhang et al., 2017), where the annotation 
frames of the two images exist superimposed.

Backbone Added the Channel Attention 
Mechanism
The innovation of the Squeeze-and-Excitation Layer (SElayer) 
network focuses on the relationship between channels, with the 

FIGURE 3  |  Accuracy, number of parameters, and computational overhead 
of each YOLOX model.

FIGURE 4  |  Improved YOLOX-m framework diagram.
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aim for the model to automatically learn the importance of 
different channel features (Hu et al., 2018). In essence, convolution 
is the fusion of features over a local region, including the spatial 
(H and W dimensions) and inter-channel (C dimension) fusion 
of features. Small targets have weak feature representation on 
their own, and detection in which more feature information 
needs to be  learned requires deepening the network structure. 
The channel attention mechanism allows the neural network 
to focus on the channels more relevant to the target task and 
achieve a reasonable weight distribution. Extract information 
that is more important to the task objective from numerous 
feature information, it can improve the efficiency and accuracy 
of model processing. The channel attention mechanism has been 
proven to use more attention resources to obtain high-value 
information and compress useless information.

Figure  4 shows the SElayer structure, which uses global 
average pooling. The feature map of c channels, H × W, is 
compressed into C channels, 1 × 1, by Equation (7); 1 × 1 × C 
contains global spatial information and is compressed into a 
channel descriptor (channel descriptor).
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The result of the global pooling of squeezed channels (which 
can be  considered a C-dimensional vector) is fully connected 
to obtain a C/r-dimensional vector, which Relu activates. It is 
then fully connected again to change the C/r-dimensional vector 
back to a C-dimensional vector and is finally activated by a 
sigmoid function so that values lie between 0 and 1. This is 
the obtained weight matrix.

	 F z W g z W W W zex , ,( ) = ( )( ) = ( )( )s s d2 1 	 (2)

The SElayer is added to layers 1, 2, 3, and 4 after 
Conv + Bn + Leaky_relu (CBL). The SE module is designed 

mainly to improve the model’s sensitivity to channel features. 
The module is lightweight and can be  applied to existing 
network structures to improve performance, with only a small 
increase in computation.

The Neck Adopts the BiFPN Structure
YOLOX uses YOLOv3 with added SPP components as the 
benchmark network and Neck as the FPN structure. We added 
the BiFPN structure to the network, as shown in Figure  4. 
The target detection task for small objects is difficult because 
large objects occupy many pixel points, but small objects have 
few. In the convolution process, as the convolution goes deeper, 
the features of large objects are readily retained, while the 
features of small objects are easily ignored after multiple 
convolutions. Therefore, the FPN structure is generated, which 
fuses the detailed information of the lower layers and the 
semantic information of the higher layers, thus increasing the 
perceptual field of the lower layers and enabling the lower 
layers to obtain more contextual information when performing 
small object detection (Tan et  al., 2020). BiFPN is a weighted 
bi-directional feature pyramid network that allows fast, 
straightforward multi-scale feature fusion to pursue a more 
efficient multi-scale fusion.

Evaluation of the Model Performance
The validation set in the respective dataset is used as a reference 
to evaluate the accuracy of the model prediction. The following 
metrics are selected in this paper to measure the accuracy of 
the model.

IOU Loss
In the IOU evaluation criteria, the L1 loss and L2 loss are 
obtained by summing the four coordinates of the bounding 
box after finding the losses separately, which ignores any 
correlation between the coordinates. However, the evaluation 
does need to consider the correlation between the coordinates. 
The calculation formula is as follows:

FIGURE 5  |  Schematic diagram of mosaic and mixup processing.
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where Ground truth is the true frame consisting of 
   , , ,andt b l rx x x x , and Prediction is the prediction frame consisting 

of x x x xt b l r, , ,and . The IOU loss is obtained by evaluating 
- ( )ln IOU  after determining the IOU. Relative to L2 loss, the 
IOU loss increases with the number of iterations with lower 
loss, and the prediction frame is more accurate (Yu et al., 2016).

Average Precision (AP50)
To assess the accuracy of the network, we  tested AP50. AP50 
is the average precision when the IOU of the prediction frame 
and that of the real frame are greater than 0.5. A higher AP 
means that the accuracy of the network is higher. The formula 
for AP is as follows:
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where P is the accuracy rate (Equation 5), and Re is the recall 
rate (Equation 6).
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True positive (TP) represents that the samples are predicted 
correctly and are actually positive. False-positive (FP) represents 
that the samples are predicted to be  positive but are actually 
negative. In addition, False-negative (FN) represents that the 
samples are predicted to be  negative but are actually positive.

Frame Per Second
The number of frames per second (FPS) is an important 
indicator to examine the real-time performance of the model. 
An adequate FPS can meet the demand in practical applications.

RMSE and R2

In addition, metrics such as root mean square error (RMSE) 
and coefficient of determination (R2) are used to evaluate the 
wheat head counting performances. The lower RMSE and higher 
R2, the better performance of the model. Their counting equations 
are as follows:
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For the improved model, we  conducted ablation tests and 
performed statistical analysis on three series of datasets. 
Performance tests were conducted using the improved YOLOX-m 
model for different periods of wheat-ear scenes (P1–P3), different 
density wheat-ear scenes (D1–D3), and different resolution 
scenes (H1–H3).

RESULTS AND ANALYSIS

Ablation Experiments With Improved 
YOLOX-m Model
We randomly selected 350 annotated datasets from all annotated 
images for the mixed dataset test and divided the training 
and validation sets in the ratio of 8:2. Using the original 
YOLOX version of YOLOX-m as the baseline, we  tested three 
optimization schemes: data augmentation to improve mosaic, 
adding SElayer, and using BiFPN. The platform configuration 
used for the ablation experiments used the Intel(R) Xeon(R) 
CPU E7-8880 v4 (2.20Ghz) × 4, RAM: 256 GB, GPU: Quadro 
RTX 5000 with 16 GB of video memory, CUDA version 10.0, 
and cudnn version 7.4. Other experiments in the following 
are also based on this platform. The training epoch for all 
models was 300 iterations, and the batch size was 6.

Compared with the standard YOLOX-m, the improved YOLOX-
m-based method had the highest accuracy with an AP50 of 
86.34% (Table  2), which was 2.74% higher than that of the 
standard YOLOX-m, and a speed of 40.16 FPS, which could 
achieve the task of wheat spike detection accurately. The standard 
YOLOX-m reached a high point and converged faster in the 
early stage. The model emerged with a larger fluctuation early 
after the data enhancement optimization was turned on. The 
fluctuation enhanced sequentially after the Attention and BiFPN 
were turned on, and both gradually converged after the 150th 
epoch (Figure  6). Finally, the models with standard YOLOX-m 
and data-enhanced optimization enabled maintained a flat trend 
until the end of the training. In contrast, the model with Attention 
enabled showed an upward change and then a downward change 
after the 250th epoch, and the model with BiFPN enabled 
showed a continuous upward trend after the 250th epoch.

Performance of the Improved Model on 
Different Scenario Datasets
The training results of the improved model on three series of 
datasets are shown in Figure  7. Comparing the test results 
on the original YOLOX-m network for a total of nine datasets 

TABLE 2  |  Accuracy and performance of ablation experiments with the 
improved YOLOX-m model.

Model improvement AP50 (%) FPS

YOLOX-m 84.04 39.86
+AUG 84.69 (+0.65) 40.37
+Attention 85.89 (+1.20) 40.53
+BiFPN 86.34 (+0.45) 40.16

The bold values means the difference between this value and the previous value.
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in three series, the accuracy (AP50) of the improved model 
were all improved to different degrees (Table  3). The highest 
increase on the D2 dataset, which increased by 3.1%. P2 dataset 
increase 2.54% and the lowest increase on the H3 dataset, 
which increased by 0.78%. The improved YOLOX-m model 
can increase wheat recognition accuracy of UAV orthophotos 
under different practical scenarios in large fields. The following 
is a detailed analysis of three scenarios:

Scenario P: As shown in Figures 8A,D, the model performed 
best on the P2 dataset, with the AP50 quickly reaching the 
highest level and converging at the 180th epoch with a maximum 
AP of 88.03%. This is related to the strong contrast displayed 

by the wheat ears and leaves in the field during the P2 lactation 
period when the ears were grayish-white, differing significantly 
from the light green color presented by the leaves. Although 
slightly weaker than in the P1 flowering period, the P2 wheat-ear 
texture characteristics were significantly stronger than in the 
P3 maturity period (Figure  7A). The model showed a lower 
AP than P2  in the P1 flowering period, with a maximum AP 
of 80.70%, and the training curve was low at the beginning 
and then gradually increased, leveling off at 210 epochs, 7.33% 
lower than the best AP of P2. The color of wheat ears in the 
P1 flowering period was similar to that of the leaves, and the 
stacking of labeled boxes was slightly higher, indicating that 
the stacking of wheat ears in this period was more serious 
than in P2, which had an impact on the recognition of the 
model. The worst performance of the model was in the maturity 
period of P3, with the highest AP of 77.79%, 10.24% lower 
than the best AP of P2. The training curve started moderately, 
and the subsequent growth was slow, converging at 160 epochs 
and improving slightly, slowing down at the 270th epoch. The 
dataset statistics show that the wheat ears and leaves were 
green in this period. They are more similar, and the labeling 
frame stacking degree was up to 9.86%. The wheat ears are 
stacked to a high degree. These are the main reasons for the 
poor training accuracy of the model.

Scenario D: The higher the planting density, the denser the 
wheat ears in the same field of view of the camera, and the 
more severe the overlap. The model achieved 87.59% AP on 
the D1 dataset (Figures 8B,E), and the training curve converged 
early and fast. The D1 dataset had the lowest labeled frame 
overlap among all the datasets, at 2.98%, which is a more 
desirable dataset. Model training AP on the D2 dataset was 
84.94%. With the increase of wheat planting density, the overlap 
between wheat ears and leaf shading gradually increased 
(Figure  7B), 2.65% compared with D1. The highest AP was FIGURE 6  |  Ablation test of YOLOX-m improved model on mixed dataset.

A B C

FIGURE 7  |  Prediction effect of the improved model on the three series datasets: (A) P series, (B) D series, and (C) H series.
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only 76.23% in the D3 dataset with the highest test density, 
11.36% lower than D1. Thus, the difficulty of wheat-ear 
recognition by UAV images increased sharply in wheat fields 
planted at high density.

Scenario H: The different flying heights of the UAVs affected 
the resolution of the images and the size of the target. And 
the size of the images intercepted in the three datasets in the 
H series experiment was 200 × 200 pixels (Figure  7C). The 
difference in the target object size in the H series dataset affects 
the model’s accuracy for wheat ear’s feature extraction and 
recognition. The larger target object, the more pronounced the 
target features extracted by the model and the higher the training 

and recognition accuracy. As shown in Figures 8C,F, the accuracy 
of the training curves of H1, H2, and H3 decreases in order, 
and the model performs best on the H1 dataset with the highest 
AP50 of 87.93% and the smallest fluctuation of the pre-training 
curve among the three periods and starts to converge first 
(about the 150th epoch); H2 has the second-highest training 
accuracy with the highest AP of 73.35% and starts to converge 
at the 180th epoch attachment. H3 has the worst effect, with 
the highest AP50 of only 63.43% and the most drastic fluctuations, 
there is a decline at 210 epochs. Then a slight upturn, and 
more wheat sheaves failed to be  recognized by the model, as 
can be  seen in the prediction effect graph.

TABLE 3  |  Comparison of accuracy and IOU loss between original and improved networks.

Dataset
Origin model Improved model

AP50 (%) IOU loss AP50 (%) IOU loss

P1 78.58 2.25 80.70 (+2.12) 1.18
P2 85.49 2.25 88.03 (+2.54) 1.24
P3 75.93 2.31 77.79 (+1.86) 1.33
D1 85.70 2.29 87.59 (+1.89) 1.42
D2 81.83 2.33 84.94 (+3.11) 1.59
D3 73.51 2.68 76.23 (+2.72) 1.26
H1 85.78 2.23 87.93 (+2.15) 1.28
H2 72.16 2.36 74.35 (+2.19) 1.27
H3 62.65 2.48 63.43 (+0.78) 1.33

A B C

D E F

FIGURE 8  |  Performance of the improved model on the three series datasets: (A–C) are AP50 curves for the three series datasets; (D–F) are IOU loss curves for 
the three series datasets.
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Overall, combining the results of the three scenarios, the 
best UAV orthophoto recognition can be  obtained from the 
wheat milk stage (P2), low planting density (D2), and low 
flight altitude (H1).

Model Counting Accuracy Validation
In each validation set, 30 images were randomly selected for 
manual recognition of wheat ears and counting. The results 
of manual observation of wheat-ear number and the recognition 
of wheat-ear number by the improved model were compared. 
The R2 and RMSE were calculated by linear fitting (Figure  9). 
Our model showed excellent wheat-ear recognition ability on 
all except H2 and H3 datasets, with R2 greater than 0.8446 
and RMSE less than 1.4491. The best performance on the P2 
dataset with an R2 of 0.9249 and an RMSE of 0.6583. And 

the model performed poorly on the H2 and H3 datasets due 
to the effect of the UAV flight height on the image GSD, 
which resulted in the wheat ears occupying too few pixels in 
the image; the features were difficult to be  captured by the 
network, which also verifies that low GSD and small targets 
are difficult to identify with deep networks (Zhang et al., 2020).

DISCUSSION

Analysis of Dataset Metrics
We counted and compared several metrics of the P, D, and 
H series datasets, including the average number of labeled 
boxes per figure (Vlab), the stacking degree of labeled boxes 
(Dlab), the average pixel of labeled boxes (Vpix). Dlab can 

A B C

D E F

G H I

FIGURE 9  |  Performance of the improved model on three wheat scenes datasets: (A–C) correspond to P1, P2, and P3; (D–F) correspond to D1, D2, and D3; 
(G–I) correspond to H1, H2, and H3.
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approximate the degree of wheat stacking in the dataset. The 
equations of Vlab, Dlab, and Vpix  are as follows:
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Nlab
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img

N
=

	
(9)

	
Dlab

i j

i j

lab lab
lab lab

=
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È 	
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Vpix

pix

lab
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N

=
å

	
(11)

where labi and labj are any two annotation frames, and Spix 
is the sum of pixels occupied by all annotation frames.

Overall, as shown in Table  4, the number of images in 
each segmented scene dataset ranged from 255 to 395. The 
number of annotated boxes in each dataset was counted, with 
the least number of annotated boxes in the D1 dataset and 
the most in the P2 dataset. The average number of annotations 
reached a maximum of 36.0 and a minimum of 20.5.

In the P series scenes, the average number of labeled frames 
per image in the P1 dataset was 23.1, with 5.22% of the 
frames having a stacking degree greater than 0.25 and an 
overall dark green color. Labeled frames per image in the P2 
dataset were 24.6, with 3.97% of the frames having a stacking 
degree greater than 0.25 and an overall light green color. The 
average number of annotated frames per image in the P3 
dataset was 23.9, with 6.86% of the annotated frames having 
a stacking degree greater than 0.25; they too were yellow 
overall. To make the network more successful in detecting 
wheat ears, it was necessary to expose the ears fully. Hence, 
they were visible in the images, with minimal leaf shading 
and overlap between ears. For different genotypes and 
environmental conditions, we observed wheat ears with different 
morphologies, sizes, and strain distributions. For example, in 
the case of Yangmai23, we  observed that the wheat tended 
to bend during the seed filling stage, which increased the 
overlap between heads. However, in the stage between tasseling 
and flowering, some wheat spikes were not yet fully grown 
and were difficult to see. The wheat fertility stage affected the 
wheat plant morphology and thus the differences in the angle, 
overlap, and color of the wheat ears in the images taken by 
the UAV, and P2 was a period where better identification 

could be obtained. Therefore, we recommend acquiring images 
after flowering when the wheat ears are fully emerged and 
still upright.

Among the D series scenes, the average number of labeled 
frames per image in the low-density D1 scene was 20.5, 
and 2.68% of the labeled frames have a stacking degree 
greater than 0.25, with few labeled frames stacked. The 
average number of labeled frames per image in the D2 
dataset was 24.2, and 5.95% of the labeled frames have a 
stacking degree greater than 0.25. The D3 dataset was the 
densest, and the overlap of labeled frames greater than 0.25 
reached 7.47%. The density of wheat crop planting affected 
the recognition accuracy of the deep network; excessive 
density, serious stacking occurred, and the recognition 
effect decreased.

In the H series scenes, the average number of annotation 
frames per image increased with height, and the average size 
of wheat-ear annotation frames decreased with height, with 
1123.6 pixels for H1, 638.2 pixels for H2, and 357.6 pixels 
for H3. Thus, the too-small size of wheat-ear annotation frames, 
i.e., the size of the pixels occupied by wheat ears, affected the 
recognition accuracy of the depth network.

Constraint of Drone Flight Height
UAV orthophoto stitching needs to meet the synergy between 
parameters such as flight altitude, heading overlap rate, and 
side overlap rate. The UAV flight altitude is often set very 
low to obtain higher ground resolution (GSD) images. At too 
low a flight altitude, the strong wind from the UAV propeller 
blows the wheat plants about, making the wheat-ear tilt and 
swing and resulting in blurred photos and failed orthophoto 
stitching. This can prolong the mission time, and the data 
to be  stored grow exponentially, requiring high UAV range 
and storage space. From the formula for GSD (Equation 12), 
it can be  seen that the only condition that determines the 
GSD on a fixed focal length UAV is the UAV flight altitude, 
and too high a UAV flight altitude makes the GSD of the 
target object wheat ears too small for accurate identification. 
We  tested the flight time, the number of photos, and data 
size required for different UAV flight heights and measured 
the GSD at different heights, as shown in Table  5. Taking 
Insprie2 with X5S and 45 mm fixed focal length lens as an 
example, setting the same heading overlap rate and side overlap 
rate, the lowest height that can achieve the route shooting 
task is 16 m, the flight time required for this task is 1.5 times 
as much as that of 20 m flight height task. A higher flight 

TABLE 4  |  Statistical table of dataset indicators.

Dataset
P Series D Series H Series

P1 P2 P3 D1 D2 D3 H1 H2 H3

Average number of annotations (pcs) 23.1 24.6 23.9 20.5 24.2 30.4 24.5 30.0 36.0
>0.25 Stacking degree share (%) 5.22 3.97 6.68 2.68 5.95 7.47 3.42 3.15 3.67
Average annotation frame pixels (pixels) 984.5 1096.4 1164.3 930.4 1013.5 1087.1 1123.6 638.2 357.6
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FIGURE 10  |  Orthophoto cropping recognition effect.

altitude can significantly reduce the number of photos and 
data size, and shorten the task execution time, while reducing 
the GSD.

	
GSD =

´H a
f 	

(12)

where H is the relative altitude, f is the focal length of the 
lens, and a is the image element size.

The experiment found that the ground station software 
could not generate operational tasks at 15 m altitudes. 
Combining the completed three height scenarios GSD, and 
the results in sections “Ablation Experiments With Improved 
YOLOX-m Model, Performance of the Improved Model 
on Different Scenario Datasets, and Model Counting 
Accuracy Validation” shows that the UAV flight height 
has a significant impact on the model results, and it is 
necessary to ensure that the wheat is not affected by the 
wind while maximizing the shooting of a large target of 
small wheat ears under the limitations of UAV hardware. 
Using a 45 mm telephoto lens, a clear image (H1) was 
captured at a UAV altitude of 20 m, and a better model 
effect was achieved. Optimizing the UAV image acquisition 

method in balancing the relationship between flight altitude, 
mission time, and GSD, we  found the best solution for 
the current hardware equipment conditions to improve the 
quality of UAV orthoimages, improve the characteristics 
of small wheat targets, and eliminate the imbalance of 
data by exhausting the construction of large-scale datasets 
and testing different sample distributions.

Improving the Efficiency of UAV 
Recognition of Wheat Ears Using Larger 
Size Images
Finally, we  tried to crop a random image of 1,280 × 1,280 
pix on the UAV orthophoto and feed it into the improved 
model for prediction, as shown in Figure  10. The wheat 
ears could be  recognized more accurately at this resolution, 
which indicates that the optimized network had a stronger 
perceptual ability and adapted to recognition at larger 
resolutions. The number of wheat ears in the manual statistics 
image was 1,689, and the network recognized 1,597, with 
an error of 5.45%. This method can reduce the segmentation 
of the UAV orthophoto processing into too many small images, 
which is very helpful in reducing the computation and image-
processing times.

TABLE 5  |  Parameters corresponding to different flight altitudes of UAVs.

Flight altitude (m)
Heading overlap 

rate (%)
Sideways overlap 

rate (%)
GSD (cm) Flight time (s)

Number of photos 
(pcs)

Data size (Mb)

15 78 80 - - - -
20 78 80 0.3 569 241 2048.5
25 78 80 0.4 367 155 1317.3
30 78 80 0.5 263 110   935.7
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Future Trends
Recent years have seen the research on UAV detection of 
wheat sheaves develop rapidly. However, it is still in the research 
stage, and more cost is needed to make this technology applicable 
to practical production. In addition, it has been found that 
thermal infrared images have better contrast than RGB images. 
The difference in temperature between wheat ears and other 
parts of the plant is used to segment the ears and delineate 
the color threshold for counting (Fernandez-Gallego et  al., 
2019). With the development of 3D technology and the popularity 
of 3D devices, 3D technology has also been applied to wheat-ear 
identification (Velumani, 2017; Ghahremani et al., 2021), using 
3D laser point cloud segmentation technology to achieve 
wheat-ear identification, which provides another new idea for 
wheat-ear counting.

CONCLUSION

This paper improved the YOLOX network by optimizing mosaics, 
adopting the BiFPN structure, and adding an attention 
mechanism. The ablation test showed that the change improved 
the network performance. Tests in three periods, at three 
densities, and for three height scenarios showed that our model 
had excellent wheat ear recognition on P1–P3, D1–D3, and 
H1 datasets, with R2 greater than 0.8446 and RMSE less than 
1.4491, and the best performance on the P2 dataset with an 
R2 of 0.9249 and an RMSE of 0.6583. In comparison, H2 and 
H3 indicate that deep network recognition is difficult under 
the condition of low GSD. We  suggest acquiring images after 
flowering when the wheat ears have fully emerged and are 
still upright. This sets up the best UAV flight plan with hardware 

devices to improve the quality of UAV orthoimages for the 
best training and recognition results.
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Enzyme-Free Electrochemical 
Sensors for in situ Quantification of 
Reducing Sugars Based on 
Carboxylated Graphene–
Carboxylated Multiwalled Carbon 
Nanotubes–Gold Nanoparticle–
Modified Electrode
Ke Liu 1,2,3†, Xiaodong Wang 1,2†, Bin Luo 2, Cheng Wang 2, Peichen Hou 2, Hongtu Dong 2, 
Aixue Li 1,2* and Chunjiang Zhao 1,2*

1 Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, China, 2 Research Center of Intelligent 
Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China, 3 College of Landscape and Ecological 
Engineering, Hebei University of Engineering, Handan, China

The reducing sugars of plants, including glucose, fructose, arabinose, galactose, xylose, 
and mannose, are not only the energy source of plants, but also have the messenger 
function of hormones in signal transduction. Moreover, they also determine the quality 
and flavor of agricultural products. Therefore, the in situ quantification of reducing sugars 
in plants or agriculture products is very important in precision agriculture. However, the 
upper detection limit of the currently developed sugar sensor is not high enough for in 
situ detection. In this study, an enzyme-free electrochemical sensor for in situ detection 
of reducing sugars was developed. Three-dimensional composite materials based on 
carboxylated graphene–carboxylated multi-walled carbon nanotubes attaching with gold 
nanoparticles (COOH-GR–COOH-MWNT–AuNPs) were formed and applied for the 
non-enzymatic determination of glucose, fructose, arabinose, mannose, xylose, and 
galactose. It was demonstrated that the COOH-GR–COOH-MWNT–AuNP-modified 
electrode exhibited a good catalysis behavior to these reducing sugars due to the 
synergistic effect of the COOH-GR, COOH-MWNT, and AuNPs. The detection range of 
the sensor for glucose, fructose, arabinose, mannose, xylose, and galactose is 5–80, 
2–20, 2–50, 5–60, 2–40, and 5–40 mM, respectively. To our knowledge, the upper 
detection limit of our enzyme-free sugar sensor is the highest compared to previous 
studies, which is more suitable for in situ detection of sugars in agricultural products and 
plants. In addition, this sensor is simple and portable, with good reproducibility and 
accuracy; it will have broad practical application value in precision agriculture.

Keywords: in situ, enzyme-free, reducing sugars, carboxylated graphene, carboxylated multi-walled carbon 
nanotubes, screen-printed electrode
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INTRODUCTION

Sugars play an important role in plant growth and development. 
They are not only the energy source of plants, but also have 
the messenger function of hormones in the process of signal 
transduction (Li and Sheen, 2016). They also determine the 
quality and flavor of agricultural products. Moreover, sugar-
related materials, such as cellulose, can be  developed into 
eco-friendly and economically favorable biosorbents and 
biocomposites for removing some toxic substances, such as 
acid dye (Kamran et al., 2022), CO2 (Kamran and Park, 2021a,b), 
Li+ (Kamran and Park, 2020, 2022), and bacteria (Kamran 
et al., 2019a). Therefore, quantitative analysis of sugar in plants 
and agricultural products is very important. The traditional 
methods for determining sugar content include chromatography 
(Wahjudi et  al., 2010), fluorescence method (Pablos et  al., 
2015), spectrophotometry (Biscay et al., 2012), and colorimetry 
(Ayyub et  al., 2013). However, most of these methods need 
to be  equipped with large-scale instruments and have poor 
portability (Li et  al., 2017). With the development of precision 
agriculture, researchers often need to conduct in situ and on-site 
detection of the sugar content in plants or agricultural products. 
Therefore, there is an urgent need to develop new detection 
methods to achieve in situ and on-site detection of sugars in 
plants or agricultural products.

Electrochemical biosensor has the advantages of high 
sensitivity, good selectivity, good portability, fast response, and 
easy integration. Its development provides an effective solution 
for in situ and on-site measurement. In recent years, researchers 
have developed a variety of sugar sensors, such as glucose 
sensors (Gao et  al., 2016; Strakosas et  al., 2019) and fructose 
sensors (Gota et  al., 2017; Xu et  al., 2018). Compared with 
enzyme biosensors, enzyme-free biosensors have the advantages 
of independent of enzyme, less affected by environmental factors, 
low cost, good stability, and simple preparation (Xu et  al., 
2014a). For example, Shekarchizadeh et  al. (2013) developed 
an enzyme-free sensor modified with copper oxide nanoparticles 
and multi-walled carbon nanotubes to improve its electrical 
activity and selectivity for the detection of glucose and fructose. 
de Sá et al. (2016) modified glassy carbon electrode with carbon 
nanotubes and metal hydroxyl oxides to detect and quantitatively 
analyze carbohydrates (glucose, xylose, galactose, and mannose) 
in sugarcane. In plants or agricultural products, the content 
of sugars is very high, ranging from a few millimoles to 
thousands of millimoles (Zhou et  al., 2019). However, most 
developed glucose sensors are mainly used to detect glucose 
in humans and animals; their detection range is not suitable 
for plants. In addition, the highest upper detection limit of 
the developed sugar sensor is only more than 10 millimoles 
(Jeong et  al., 2018), which is not high enough for in situ 
detection. Therefore, it is necessary to develop new 
electrochemical sensors for in situ detecting sugars in plants 
or agricultural products.

Carbon-based nanomaterials, such as graphene (GR; Hernaez, 
2020), multi-walled carbon nanotubes (MWNT), carbon spherical 
shells (Campos et  al., 2018), and carbon black (Raymundo-
Pereira et al., 2017), have received extensive attention in sensor 

construction due to their extraordinary physical and chemical 
properties (Kamran et  al., 2019b). GR can be  obtained by 
chemical reduction after graphite oxidation, but it is prone to 
aggregate due to π–π interaction (Shim, 2019). As a special 
allotrope of GR, MWNT has a unique structure and performance, 
such as good conductivity, perfect chemical stability, acceleration 
ability of electron transfer on electrode surface, and large surface 
area (Özcan et  al., 2020a,b). MWCNT- and MWCNT-based 
nanocomposites have a wide range of applications in the 
electrochemical field, such as nanosensors (Yola et  al., 2021; 
Yola and Atar, 2021) and fuel cell (Gizem Güneştekin et  al., 
2020). However, if MWNT cannot be  sufficiently dispersed to 
form a network to meet the electrical conductivity, it will not 
be able to get a better performance (Zhang et al., 2017). Recent 
studies have shown that the above problems can be  effectively 
avoided by introducing MWNT between GR nanosheets (Su 
et al., 2017; Wang et al., 2018). The good dispersion of MWNT 
can avoid the aggregation of GR flakes. As a surfactant, GR 
nanoflakes can also directly disperse MWNT to form a three-
dimensional (3D) network structure with large specific surface 
area and excellent electrical conductivity (Cui et  al., 2015; 
Tourani et  al., 2015). Moreover, the carboxylated graphene 
(COOH-GR) and carboxylated multi-walled carbon nanotubes 
(COOH-MWNT) have better hydrophilicity, biocompatibility, 
and carboxyl functional groups, which will further improve 
the sensor performance. Gold (Au) catalysts are attractive 
nanomaterials due to their excellent photoelectric properties 
and catalytic activity. Therefore, they are widely used in sensor 
field, such as glucose oxidation and vitamin detection (Sharma 
et al., 2020). This catalysis also occurs in other reducing sugars, 
such as fructose, arabinose, galactose, xylose, and mannose. 
All these reducing sugars have very similar structures, so the 
catalytic reaction of Au to them is similar.

Screen-printed electrode (SPE) is widely used because of 
its low cost, small size, mature manufacturing technology, and 
good electrochemical performance (Pohanka, 2020). In this 
study, SPE was used as the basic electrode, and COOH-GR 
and COOH-MWNT were used to construct a 3D network 
structure to immobilize AuNPs. Then, this COOH-GR–COOH-
MWNT–AuNPs composite material-modified SPE was used to 
catalyze six reducing sugars (glucose, fructose, arabinose, 
galactose, xylose, and mannose), and an enzyme-free 
electrochemical sensor for these six reducing sugars was 
developed. The upper detection limit of our sensor was improved 
to 80 millimoles (for glucose), which will have broad application 
prospect in the in situ detection of reducing sugars in plants 
and agricultural products.

MATERIALS AND METHODS

Chemicals
Carboxyl graphene (GR-COOH) and carboxyl multi-walled 
carbon nanotube (MWNT-COOH) were purchased from 
Xianfeng Nanomaterials Technology Co., Ltd. (Nanjing, China). 
D-glucose, D-fructose, D-galactose, trisodium citrate 
(C6H5Na3O7), citric acid, and anhydrous malic acid were 
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purchased from Sinopharm Chemical Reagent Co., Ltd. Company 
(Shanghai China). Chloroauric acid (HAuCl4), nafion solution 
(5wt%), D-xylose (xylose), L-arabinose (arabinose), mannose 
(mannose), D-leucine, DL-tryptophan, lysine, magnesium 
chloride, sucrose, Betaine, 3-indoleacetic acid, abscisic acid, 
gibberellins, and ascorbic acid were purchased from Sigma 
Reagent Co., Ltd. (St. Louis, Missouri, United  States). The rest 
of the reagents are of analytical grade, and ultrapure water 
was used to prepare the solution throughout the experiment.

Instruments
Equipped with X-ray energy spectrum analysis (EDS), field 
emission scanning electron microscopy (FESEM) system (ZEISS 
SEM 500, Germany), Fourier infrared spectrometer (Thermo 
Nicolet IS5) were used to study the different modification steps 
SPE morphology. Glassy carbon sheets were used for SEM, 
EDS-mapping, and FTIR characterization. The detection of 
sugars was performed on CHI760E electrochemical workstation 
(Shanghai Chenhua Instrument Co., Ltd., China). Three-electrode 
SPEs was used, in which the working electrode and counter 
electrode are carbon-based and the reference electrode is silver/
silver chloride. The diameter of the working electrode is 2.5 mm.

Preparation of COOH-GR–COOH-MWNT–
AuNPs Composite
First, 0.5 mg/ml of COOH-GR and 1.5 mg/ml of COOH-MWNT 
were mixed. Fifteen milliliters of 23.6 mM HAuCl4 solution 
was added to 20 ml of COOH-GR–COOH-MWNT mixture 
and stirred magnetically for 60 min. Subsequently, 20 ml of 
68 mM trisodium citrate solution was added to the mixture, 
and the mixture was stirred magnetically for 30 min. Then, 
this mixture was heated at 80°C for 30 min. The resulting 
solution was centrifuged at 17,000 rpm for 10 min. Then the 
precipitate was collected and dried at 60°C for 12 h. 2.5 ml 
ethanol and 55 μl nafion solution were added to 55 mg dried 
material. Then, the COOH-GR–COOH-MWNT–AuNPs’ 
composite was obtained. Four microliters of the COOH-GR–
COOH-MWNT–AuNPs solution was used to modify the SPE 
electrode by dropping method. The modification process is 
shown in Figure  1.

Measurement Procedure
Cyclic voltammetry (CV) was used to study the catalytic effect 
of the modified electrode toward different sugars, the scanning 
range was −0.6 to 0.6 V, and the scanning speed was 0.05 V/s. 
The concentration of sugars was detected by chronoamperometry 
(i-t); the working voltage is 0.3 V. All electrochemical tests 
were carried out in 0.1 M NaOH solution.

Sugars Determination in Apple Juice by 
Traditional Analytical Methods
Reference control measurement of glucose and fructose 
concentration in apple juice was carried out by high-pressure 
liquid chromatography (HPLC). For arabinose, mannose, xylose, 
and galactose, they cannot be  separated by the HPLC method. 
So the ion chromatography (IC) method was used to measure 

these sugars. The apple juice was bought from local supermarket. 
The apple juice was filtered through a nylon filter (aperture 
0.45 μm). Glucose and fructose were determined by Agilent 
chromatograph. Arabinose, mannose, xylose, and galactose were 
determined by the ICS-3000 chromatograph. They were separated 
on an amino column and eluted with 78% acetonitrile solution. 
Glucose and fructose were detected by PA1 differential refractive 
index detector, and the other four sugars were detected by 
amperometric pulse detector.

RESULTS AND DISCUSSION

Morphology and Structure 
Characterization of the Sensor
Figure 2 shows the result of SEM. It can be seen from Figure 2A 
that the surface of the bare SPE is smooth without any impurities. 
Figure  2B shows the modified SPE. The lamellar wrinkled 
COOH-GR structure can be observed, tubular COOH-MWNT 
intersperse between COOH-GR nanosheets, and gold 
nanoparticles are distributed in the COOH-GR–COOH-
MWNT. The size of gold nanoparticles is about 30–50 nm. 
Figures 2C–F shows the EDS mapping spectrum after the SPE 
was modified with COOH-GR–COOH-MWNT–AuNPs, and 
the signals of C, F, Au, and O elements are obtained. The 
existence of C element is attributed to the C element in 
COOH-GR, COOH-MWNT, and glassy carbon sheet. Since 
nafion contains a large amount of F element, it leads to the 
emergence of F element. The O elements are derived from 
graphene, and the Au in COOH-GR–COOH-MWNT–AuNPs 
is the reason for the appearance of Au element. The results 
of SEM and EDS proved that COOH-GR–COOH-MWNT–AuNP 
materials have been successfully modified on the electrode surface.

Supplementary Figure S1 shows the bare and COOH-GR–
COOH-MWNT–AuNP images by FTIR. Both C=O at 1,720 cm−1 
and O-H at 3,346 cm−1 are characteristic peaks of carboxyl groups, 
which attribute to the COOH-GR and COOH-MWNT. Glassy 
carbon sheet was used as the substrate for this experiment. It 
is well known that glassy carbon sheet comprises thin, tangled 
ribbons of cross-linked graphite-like sheets that share sp2 bonding 
and the basic structure of a six-member ring (Shi and Shiu, 
2002). But the cross-linked six-member rings are possibly broken 
up at the surface in the polishing process. Moieties containing 
alcohol, phenol, aldehyde, ketone (or quinine), and carboxylic 
acid (or anhydride) are appeared to connect to the skeleton of 
glassy carbon sheet (Wu et  al., 2008). Therefore, there was no 
significant difference between the bare and COOH-GR–COOH-
MWNT–AuNP images. The effect of Au nanoparticles in FTIR 
spectrum cannot be observed, since they do not have molecular 
bonds. Similar results were also observed by Tabatabaie and 
Dorranian (2016) and Najafianpour and Dorranian (2018).

Electrochemical Characterization of the 
Sensor Preparation Process
First, the preparation process of the sensor was characterized 
by the CV method (Supplementary Figure S2A). The CV 
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scan was performed in a 5 mM [Fe(CN)6]3−/4− solution 
(containing 0.1 M KCL). When the COOH-GR–COOH-MWNT–
AuNPs material was modified on the electrode, the redox 
peak current increased and the peak-to-peak potential difference 
decreased. This is due to that the high conductivity and catalytic 
performance of COOH-GR, COOH-MWNT, and AuNPs 
increase the electron transfer rate and enhance the reversibility 
of the electrode. Consistent with that of CV, the Nyquist 
curve (Supplementary Figure S2B) of the bare electrode has 

a smaller half arc, while there is almost no half arc after the 
electrode was modified with COOH-GR–COOH-MWNT–
AuNPs nanocomposite. After fitting with a simple equivalent 
circuit model (inset in Figure  3B), the interfacial electron 
transfer resistance Rct can be  obtained. The Rct value of 
GR-MWNT-Au/SPE (1,038 Ω) is lower than that of bare 
electrode (508.4 Ω), which also attributes to the high conductivity 
and catalytic performance of GR and MWNT. The results of 
CV and EIS both prove that the preparation of the sensor 

FIGURE 1  |  Schematic diagram of preparation process of the enzyme-free sugar sensor.

FIGURE 2  |  SEM images of (A) bare SPE, (B) COOH-GR–COOH-MWNT–AuNPs/SPE, (C–F) are the EDS mapping images of COOH-GR–COOH-MWNT–AuNPs/
SPE.
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is successful and effective. Supplementary Figure S2C shows 
the CV graph of COOH-GR–COOH-MWNT–AuNPs/SPE in 
5 mM [Fe(CN)6]3−/4− solution (containing 0.1 M KCL) at various 
scan rates. The effective surface area of the different modified 
SPE was evaluated based on the Randles–Sevcik equation (Xu 
et  al., 2014b):

	 I n AD CvP = × ×2 69 10
5 3 2

0
1 2 1 2

.
/ / /

where D0 is the diffusion coefficient of the molecule in solution 
(cm2  s−1), A is the effective area of the electrode (cm2), v is 
the scan rate (V s−1), n is the number of electrons including 
in the redox reaction, and C0 is the concentration of the probe 
in the solution (mol cm−3). For [Fe(CN)6]3−/[Fe(CN)6]4−, n = 1, 
C0 = 5 × 10−6 mol cm−3, D0 = 1 × 10−5  cm2  s−1 (Wang et  al., 2012). 
The effective surface area was 0.1041 cm2 for the COOH-GR–
COOH-MWNT–AuNPs/SPE, respectively, which was much 
higher than that of bare SPE (0.030 cm2).

Electrochemical Performance of 
COOH-GR–COOH-MWNT–AuNP 
Nanomaterials
In order to test the electrochemical performance of COOH-GR–
COOH-MWNT–AuNP nanomaterials, the electrochemical 
behaviors of bare SPE, COOH-GR–AuNPs/SPE, COOH-
MWNT–AuNPs/SPE and COOH-GR–COOH-MWNT–AuNPs/
SPE in the range of −0.6 to 0.6 V were investigated. Taking 
glucose as an example, the CV scan in Figure  3A was 
performed in 20 mM glucose (containing 0.1 M NaOH). The 
bare SPE electrode (curve a) does not show any oxidation 
peak in the range of −0.6 to 0.6 V. Because COOH-GR, 
COOH-MWNT, and AuNPs are all highly conductive, which 
can improved the electrochemical catalytic behavior of the 
sensor, an oxidation peak was appeared at about 0.3 V in 
GR-Au/SPE (curve b) and MWNT-Au/SPE (curve c), which 
was due to the oxidation of glucose. The highest oxidation 
peak was obtained on COOH-GR–COOH-MWNT–AuNPs/

SPE at about 0.3 V (curve d), which indicates the synergistic 
effect of the COOH-GR, COOH-MWNT, and AuNPs in the 
catalysis of glucose. Therefore, COOH-GR–COOH-MWNT–
AuNPs material was chosen for subsequent experiments. 
Figure 3B shows that there is no oxidation peak in COOH-GR–
COOH-MWNT–AuNPs/SPE without the addition of glucose 
(curve a), while an obvious oxidation peak was observed at 
about 0.3 V after adding 20 mM glucose (b). This result also 
confirms that the appearance of oxidation peak is due to 
the oxidation of glucose, not the COOH-GR, COOH-MWNT, 
or Au nanoparticles. This catalysis also occurs in other sugars. 
In the presence of fructose, galactose, arabinose, mannose, 
or xylose, respectively, similar signals to glucose can 
be  observed. Since these sugars have very similar structures, 
they are monosaccharides containing aldehyde or ketone 
groups, the COOH-GR–COOH-MWNT–AuNP nanomaterials 
have similar catalytic effect to these sugars (Xu et  al., 2014a). 
The modified electrode can catalyze the oxidation of these 
sugars to form corresponding esters, which are hydrolyzed 
to form acids (Wang et  al., 2020).

Optimization of Sensor Preparation 
Conditions
In order to achieve the best performance of the sensor, the 
conditions for preparing the sensor were optimized. In this 
study, the total amount of immobilized carbon nanomaterials 
was 2 mg/ml. The effect of single COOH-GR, COOH-MWNT, 
and COOH-GR-COOH-MWNT composite materials with 
different ratios (3:1, 2:2, 1:3) on the response current was 
investigated. The i-t response was measured using a glucose 
concentration of 20 mM. As shown in Figure 4A, in the various 
ratios of COOH-GR–COOH-MWNT composites, the maximum 
current response is obtained when COOH-GR: COOH-MWNT 
is 1:3, which shows that COOH-GR and COOH-MWNT have 
the best synergistic effect at this ratio. Therefore, the optimal 
content of COOH-GR and COOH-MWNT in this study is 
0.5 and 1.5 mg/ml, respectively.

A B

FIGURE 3  |  (A) CV behavior of bare SPE (a), COOH-GR/SPE (b), COOH-MWNT/SPE (c), and COOH-GR–COOH-MWNT–AuNPs/SPE (d) in 20 mM glucose.  
(B) CV behavior of COOH-GR–COOH-MWNT–AuNPs/SPE with and without 20 mM glucose.
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Gold nanoparticles are one of the important components 
of the composite material, so it is necessary to optimize the 
concentration of HAuCl4 (13.6, 18.6, 23.6, 28.6, 33.6 mM). The 
optimization results are shown in Figure  4B. It can be  seen 
that when the HAuCl4 content is from 13.6 to 23.6 mM, the 
current response gradually increases. When the HAuCl4 content 
continues to increase, the response current no longer increases, 
so 23.6 mM was selected for HAuCl4 concentration for the 
subsequent experiments.

The total weight of the dropped composite material affects 
the performance of the modified electrode, which also requires 
optimization (40, 45, 50, 55, and 60 mg). The results are shown 
in Figure  4C. When the total weight of the material is 55 mg, 
the response current is highest. Therefore, the total weight of 
the composite material is determined to be  55 mg.

Finally, the influence of different voltages (0.1, 0.2, 0.3, 0.4, 
and 0.5 V) on the response current was examined. As shown 
in Figure  4D, when the voltage increases from 0.1 to 0.3 V, 
the response current gradually increases. When the voltage 
continued to increase, the current dropped. So 0.3 V is the 
best voltage for the catalytic reaction of glucose.

Performance of the Enzyme-Free Sugar 
Sensor
Under the optimal experimental conditions, the prepared enzyme-
free sugars sensor was used to measure a series of concentrations 
of glucose, fructose, arabinose, mannose, xylose, or galactose solutions, 
respectively. The i-t curve for the detection of different concentrations 
of glucose is shown in Figure  5A. The results of linear fitting are 
shown in the inset of Figure 5A. The sensor has a linear relationship 
between glucose concentration and response current in the range 
of 5–80 mM. The linear equation is I(μA) = 7.268 + 0.507C (mM), 
the correlation coefficient R2 = 0.9911, and the detection limit (LOD) 
is 0.537 μM (S/N = 3). As for fructose (Figure  5B), the detection 
range of the sensor is 2–20 mM, the linear equation is 
I(μA) = 0.720 + 1.936C (mM), and the LOD is 1.630 μM. The sensor 
also showed similar current response to arabinose, galactose, mannose, 
and xylose (Supplementary Figures S3–S6). Table  1 shows the 
analysis characteristics of the sensor to all sugars. In plants or 
agricultural products, the content of sugars is very high, ranging 
from a few millimoles to thousands of millimoles (Zhou et  al., 
2019). Therefore, for in situ detection of sugars in plants or 
agricultural products, the lower detection limit does not need to 

A B

C D

FIGURE 4  |  Effect of COOH-GR–COOH-MWNT content ratio (A), HAuCl4 concentration (B), total weight of dropped composite material (C), working voltage 
(D) on the current response.
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be  as low as micromolar level, while the upper detection limit 
needs to be  as high as tens or even thousands of millimol level. 
Table  2 shows the analytical performance of different enzyme-free 
glucose sensors reported previously. From Table  2, we  can see 
that the highest upper detection limit of the developed enzyme-
free glucose sensor is 19.6 mM (Jeong et  al., 2018). The detection 
range for glucose of our sensor is 5–80 mM. Clearly, our sensor 
can be  used for in situ detection of glucose in more plants and 
agricultural products. Supplementary Table S1 shows the comparison 
of analytical performance of different enzyme-free fructose sensors. 
Our sensor shows the highest upper detection limit for fructose. 

Supplementary Table S2 shows the analytical performance of 
enzyme-free sensors for arabinose, mannose, xylose, and galactose. 
The upper detection limit of our sensor (Table  1) for these four 
sugars is all higher than the corresponding reported sensors. 
Therefore, our sensor is also more suitable for in situ detection 
of fructose, arabinose, mannose, xylose, and galactose in agricultural 
products and plants.

In order to test the selectivity of the sensor, the prepared 
sensor was used to detect different interferences (20 mM), 
including malic acid, citric acid, tryptophan, leucine, lysine, 
magnesium chloride, sucrose, betaine, 3-indoleacetic acid, abscisic 

A B

C

FIGURE 5  |  I–t curves and calibration curves of the COOH-GR–COOH-MWNT–AuNPs/SPE sensor for the detection of different concentrations of glucose (A) and 
fructose (B). Selectivity of the prepared the sugar sensor (C). a-glucose, b-malic acid, c-citric acid, d-tryptophan, e-leucine, f-lysine, g-magnesium chloride, 
h-sucrose, i-Betaine, j-3-indoleacetic acid, k-abscisic acid, l-gibberellins, m-ascorbic acid.

TABLE 1  |  Analytical characteristics of different sugars detected by the sugar sensor.

Sugar
Lineal range 

(mM)
Intercept Slope Calibration R2 LOD (mM)

Glucose 5–80 7.268 ± 0.635 0.507 ± 0.018 7.268 + 0.507C 0.9911 0.537
Fructose 2–20 0.720 ± 0.872 1.936 ± 0.112 0.720 + 1.936C 0.9901 1.630
Arabinose 2–50 3.905 ± 2.792 2.019 ± 0.086 3.905 + 2.019C 0.9910 1.811
Mannose 5–60 −13.812 ± 2.020 30.924 ± 1.542 −13.812 + 30.924lgC 0.9853 4.903
Xylose 2–40 1.270 ± 0.385 8.979 ± 0.390 1.270 + 8.979C 0.9888 0.693
Galactose 5–40 −16.943 ± 4.239 74.263 ± 3.360 −16.943 + 74.263lgC 0.9919 2.105
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Acid, gibberellins, and ascorbic acid. The results are shown 
in Figure 5C, and the current response of the sensor to glucose 
is significantly higher than other interfering substances, which 
proves that the sensor has good selectivity.

Under the same experimental conditions, the same SPE 
electrode was used to continuously measure the glucose solution 
of the same concentration (20 mM) for five times, and it can 
be seen (Supplementary Figure S7A) that the current response 
is relatively consistent (RSD = 7.36%). Five electrodes were 
used to measure the same concentration of glucose 
(Supplementary Figure S7B), and the RSD of the response 
current was 7.49%. These results show that the sensor has 
excellent reproducibility and high stability.

Detection in Real Samples
The standard addition method was adopted to detect glucose in 
apple juice. After 20 times of dilution, different concentrations 
of glucose were added. The results are shown in Table  3. The 
recovery results of other sugar are shown in 
Supplementary Tables S3–S7. The spiked recovery rate of glucose, 
fructose, arabinose, mannose, xylose, and galactose is 97.40–
100.85%, 101.28–105.42%, 96.69–105.28%, 97.73–105.12%, 99.91–
104.78%, and 98.42–104.89%, respectively, which show that our 
sensor has good practicality. Moreover, the results were also 
compared with those obtained by other methods. The initial 
concentration of glucose and fructose in the apple juice was also 
detected by the HPLC methods. The relative error of the results 
obtained by the as-prepared sensor and HPLC methods was 
11.81 and 14.70%. The relative error between these two methods 
was smaller than 15%, which is considered acceptable (Artigues 
et  al., 2021). For arabinose, mannose, xylose, and galactose, they 

cannot be  separated by HPLC method. So the IC method was 
used to measure these sugars. As their content is very low, which 
has exceeded the detection range of IC, so the comparison result 
cannot be  obtained. But the initial concentration of arabinose 
and mannose can be  detected by our sensor, indicating that the 
as-prepared sensor has more potential in practical applications.

CONCLUSION

In summary, the developed enzyme-free reducing sugar sensor 
catalyzes the oxidation reaction of six sugars through the synergistic 
effect of graphene, carbon nanotubes, and gold nanoparticles. 
The detection range of the sensor for glucose, fructose, arabinose, 
mannose, xylose, and galactose is 5–80, 2–20, 2–50, 5–60, 2–40, 
and 5–40 mM, respectively. To our knowledge, the upper detection 
limit of our enzyme-free sugar sensor is the highest compared 
to previous studies, which is more suitable for in-situ detection 
of sugars in agricultural products and plants. This sensor is 
simple and portable and has good reproducibility and stability. 
Therefore, it will have broad practical application value in precision 
agriculture. With the introduction of various new nanomaterials, 
sensors with wider detection range, higher upper detection limit 
and better selection performance are expected to be  developed, 
which is more suitable for the in situ quantification of sugars 
in plants and agricultural products.
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TABLE 2  |  Comparison of analytical performance of different enzyme-free 
glucose sensors.

Electrode Linear range (mM)
Detection 
limit (μM)

References

CNTs/AuNPs/GCE 0.002–19.6 0.5 Jeong et al., 2018
Cu/Ni/graphene/Ta 5 × 10−6–2.174 0.0027 Cui et al., 2019
CuO/Nafion/GC 0.001–10 0.57 Pérez-Fernández 

et al., 2017
SPE/NiCo/C 5 × 10−4–4.38 0.2 Wang et al., 2020
CuO/Ni(OH)2/CC 0.05–8.50 0.31 Sun et al., 2020
MOF/CuO 0–6.535 0.15 Luo et al., 2020
Cu/Ni/Au 5 × 10−4–3.0, 3.0–7.0 0.1 Liu et al., 2020
CuO NWs/GC 0.0125–4.29 4.17 Zhang, 2019
Au/CQDs 0.05–3 20 Han et al., 2020
COOH-GR-COOH-
MWNT-AuNPs/SPE

5–80 540 This work

TABLE 3  |  Recovery rate of glucose in apple juice (n = 3).

Glucose initial 
(mM)

Added (mM) Found (mM) RSD (%)
Recovery 

(%)

12.075 (sensor) 10 22.092 3.45 100.17
10.800 (HPLC) 20 32.244 6.99 100.85

30 41.294 5.69 97.40
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The center coordinate and radius of the spherical hedges are the basic phenotypic
features for automatic pruning. A binocular vision-based shape reconstruction and
measurement system for front-end vision information gaining are built in this paper.
Parallel binocular cameras are used as the detectors. The 2D coordinate sequence
of target spherical hedges is obtained by region segmentation and object extraction
process. Then, a stereo correcting algorithm is conducted to keep two cameras to be
parallel. Also, an improved semi-global block matching (SGBM) algorithm is studied
to get a disparity map. According to the disparity map and parallel structure of the
binocular vision system, the 3D point cloud of the target is obtained. Based on this,
the center coordinate and radius of the spherical hedges can be measured. Laboratory
and outdoor tests on shape reconstruction and measurement are conducted. In the
detection range of 2,000–2,600 mm, laboratory test shows that the average error and
average relative error of standard spherical hedges radius are 1.58 mm and 0.53%,
respectively; the average location deviation of the center coordinate of spherical hedges
is 15.92 mm. The outdoor test shows that the average error and average relative error of
spherical hedges radius by the proposed system are 4.02 mm and 0.44%, respectively;
the average location deviation of the center coordinate of spherical hedges is 18.29 mm.
This study provides important technical support for phenotypic feature detection in the
study of automatic trimming.

Keywords: spherical hedges, shape reconstruction, binocular vision, dimension measurement, 3D point cloud

INTRODUCTION

With the vigorous development of urban greening, trimming or pruning hedges to desired shape
regulars is one of the major tasks in urban plant landscape construction. Manual trimming using
large scissors or power tools causes a significant load on the person executing this task. The semi-
automated trimmer, however, also needs a driver operating, consumes most time, and is difficult to
control working accuracy. Therefore, the development of automatic and intelligent pruning robots
has drawn increasing attention.

To automatically trim hedges, finding the basic phenotypic information of hedges is the
key. In a complex outdoor environment, an adaptive hedge horizontal cross-section center
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detection algorithm was proposed to obtain the hedge’s
horizontal cross-section center in real time by inputting the top
view image of the hedge. This detection algorithm could be
truly applied in the vehicle-mounted system (Li et al., 2022).
A TrimBot2020 robotic platform equipped with a pentagon-
shaped rig of five pairs of stereo cameras was developed for
navigation and 3D reconstruction, which can build the model
of bush or hedges and be used as the input for the trimming
operation (Strisciuglio et al., 2018). An arm-mounted vision
approach was studied to scan a specified shape and fit it
into the reconstructed point cloud, and then, a co-mounted
trimming tool could cut the bush using an automatically planned
trajectory, which ensured flexibility via a vision-based shape
fitting module that allows fitting an arbitrary mesh into a
bush at hand (Kaljaca et al., 2019a,b). Besides, the binocular
vision system has great application in picking robots for object
recognition and orientation. A litchi-picking robot based on
binocular vision was developed to identify and locate the target
and then provide information for collision-free motion planning.
The results show that the success rate of path determination is
100% for the laboratory’s picking scene (Ye et al., 2021). Herein,
vision sensing technology was widely used in characteristic
recognition of fruits and vegetables and movement navigation of
picking robots, such as tomatoes, apples, and Hangzhou White
Chrysanthemums (Ji et al., 2017; Lili et al., 2017; Yang et al., 2018;
Jin et al., 2020). From the above research, it can be concluded
that binocular stereo vision technology has been widely used in
agricultural robotics for three-dimensional (3D) reconstruction,
measurement, navigation, etc. As the “eye” of the pruning
robot, the shape reconstruction and dimension measurement
of target objects provide a crucial information for the
follow-up operation.

In this paper, a parallel binocular vision is constructed
to complete the 3D reconstruction of spherical hedges, and
high accuracy is achieved in both spherical center positioning
and radius measurement. The 3D reconstruction contains two-
dimensional (2D) image extraction, binocular camera calibration,
stereo correcting, stereo matching, and sharp reconstruction.
Herein, in this paper, stereo matching is a key technology of shape
reconstruction, and an improved semi-global block matching
(SGBM) algorithm was proposed in this study to get a good
disparity map. Based on this, the center coordinate of spherical
hedges and their radius is finally realized by processing the
point cloud data.

MATERIALS AND METHODS

Description of the Measurement System
To obtain point cloud information and reshape spherical hedges,
a binocular vision system is used for measurement. The binocular
vision system consists of two RMONCAM G200 cameras and
a supporting platform. The cameras are mounted on the slider,
and the positions of the cameras can be moved on the slider
rail. The distance between two cameras can be set to 80,
100, 120, 140, and 160 mm. All experiments are involved
in this paper, and the distance between the two cameras is

FIGURE 1 | Schematic diagram of the binocular vision system.

set to 140 mm. The shape reconstruction and measurement
system are programmed using Microsoft Visual Studio 2015,
OpenCV3.4.10, and MATLAB2018a. The focus length, maximum
frame rate, pixel size, and image resolution of a utilized camera
are 2.8 mm, 60 fps, 3.0 µm × 3.0 µm, and 1,920 × 1,200
pixels, respectively. Figure 1 shows the schematic diagram of the
binocular vision system.

When conducting experiments, the spherical hedges are
placed in front of the cameras. Then, the system captures the
current images. Next, the images are transmitted to the computer.
Afterward, image processing is called to obtain the point cloud
data of spherical hedges. Based on this, the shape reconstruction
graph is obtained. Finally, the radius and center coordinate of
spherical hedges are calculated. Figure 2 shows the flowchart of
the measurement system.

Camera Calibration and Image
Processing
Monocular Vision Calibration
Camera calibration is an important task because it directly
determines the accuracy of 3D reconstruction (Long and Dongri,
2019). According to Zhang’s camera plane calibration method,
the calibration test of a monocular camera is carried out
first. Figure 3 presents the schematic diagram of pinhole
imaging, OC − XCYCZC is the camera coordinate system and
OW − XWYWZW is the world coordinate system; O1 − UVis the
pixel coordinate system and O2 − XY is the image coordinate
system. P(xw, yw, zw) is the world coordinate of point P, and its
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FIGURE 2 | Flow chart of the measurement system.

corresponding camera coordinate in camera is P(xc, yc, zc) and
its pixel coordinate is p(u, v).

Converting from world coordinate system to pixel coordinate
system needs to follow several transformations: transformation
between world coordinate system and camera coordinate
system; transformation between camera coordinate system and
image coordinate system; and transformation between image
coordinate system and pixel coordinate system.

The transformation between pixel coordinate system and
image coordinate system is expressed as

u
v
1

 =
 sx 0 u0

0 sy v0
0 0 1

 x
y
1

 (1)

where sx is the pixel size of 1 mm in the x-direction of O2 − XY
and sy is the pixel size of 1 mm in the y-direction of O2 − XY .

FIGURE 3 | Schematic diagram of pinhole imaging.

FIGURE 4 | The parallel structure of the binocular vision system.

The transformation between the camera coordinate system
and image coordinate can be obtained from the pinhole imaging
theory. It is formularized as

zc

 x
y
1

 =
 f 0 0 0

0 f 0 0
0 0 1 0



xc
yc
zc
1

 (2)

where f is the focal length of the camera.
The transformation between the camera coordinate system

and the world coordinate system can be obtained through
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FIGURE 5 | The Image-1 and Image-2.

FIGURE 6 | RGB color histogram of Image-2.

rotation and translation. The transformation relationships are
expressed as 

xc
yc
zc
1

 = ( R T
0T 1

)
xw
yw
zw
1

 (3)

where Rand T represent the rotation matrix and the
horizontal movable matrix.

Herein, the transformation between world coordinate system
to pixel coordinate system can be determined by

zc

u
v
1

 =
 sx 0 u0

0 sy v0
0 0 1

 f 0 0 0
0 f 0 0
0 0 1 0



xc
yc
zc
1

 = M1M2


xw
yw
zw
1



= M


xw
yw
zw
1

 (4)

where M1 =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

, M2 =

(
R T
0T 1

)
, M = M1 •M2 ,

fx = f • sx , fy = f • sy . The fx , fy , u0 , and v0 are camera
intrinsic parameters, and thus, M1 represents the camera’s

intrinsic parameter matrix. The M2 represents the camera’s
extrinsic parameter matrix; hence, M represents the projection
matrix of the camera.

Moreover, a high-order polynomial model is adopted to
correct the image distortion. The high-order polynomial model
is expressed as [

xc − x0
yc − y0

]
= L (r)

[
x− x0
y− y0

]
(5)

where L (r) = 1+ k1r + k2r2
+ k3r3

+ . . ., r =
√

(x− x0)
2
+
(
y− y0

)2 , x and
y refer to the horizontal and vertical coordinate values before
correction, respectively, xc and yc refer to the horizontal and
vertical coordinate values after correction, respectively, x0 and y0
refer to coordinate values of the center of the distorted image.
Herein, a polynomial distortion correction model of the camera
can be expressed as

{
xc = x

(
1+ k1r2

+ k2r4
+ k3r6

+ . . .
)
+ 2p1xy+ p2

(
r2
+ 2x2)

yc = y
(
1+ k1r2

+ k2r4
+ k3r6

+ . . .
)
+ 2p2xy+ p1

(
r2
+ 2y2) (6)

where k1, k2, and k3 are radial distortion coefficients, p1 and p2
are tangential distortion coefficients. Herein, k1, k2, k3, p1, and p2
are also camera intrinsic parameters.

Herein, the camera calibration toolbox (Toolbox_Calib)
in MATLAB is used for monocular vision calibration. The
calibration process of a monocular vision camera is as follows:
image calibration, calibration chessboard extraction, corner
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FIGURE 7 | (A) The gray image of Image-2 obtained after the Ultra-green
algorithm. (B) The bilateral filtered image of Image-2.

FIGURE 8 | The gamma transform graph at different γ values.

FIGURE 9 | The enhanced contrast results of spherical hedge images in weak
light and strong light.

points extraction, intrinsic and extrinsic parameters calculation,
and calibration error analysis.

Binocular Vision Calibration
The binocular vision calibration is conducted based on the
monocular vision calibration; through calibration test, the
intrinsic matrix and extrinsic matrix of a camera can be obtained.

FIGURE 10 | The Image-2 after binarization.

FIGURE 11 | Schematic diagram of Bouguet’s algorithm.

In this paper, a parallel binocular stereo vision system is built.
The two cameras are the same and mounted at the same height,
and its front end is parallel and level. The parallel structure of
the binocular vision system is shown in Figure 4. The left camera
is called the Camera-1 and the left camera is called the Camera-
2. Set the camera coordinate of Camera-1 as the reference world
coordinate system. As indicated above, P(xw, yw, zw)is the world
coordinate of point P. Its corresponding image coordinate in
Camera-1 is pl(xl, yl) and its corresponding image coordinate in
Camera-2 is pr(xr, yr).

According to the principle of similar triangles, it can be
obtained as 

xw
yw
zw

 =


z
f xl
z
f yl
bf

xl−xr

 (7)

where b is the baseline distance of Camera-1 and Camera-2, f is
the focal length of the camera, and xl − xr is the disparity value.

As in Equation 3, the transformation between the camera
coordinate system of Camera-1 and world coordinate can be
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obtained through rotating vector Rl and translation vector Tl,
and the transformation between camera coordinate system of
Camera-2 and world coordinate can be obtained through rotating
vectorRr and translation vectorTr . Therefore, the transformation
between camera coordinate systems of Camera-1 and Camera-2
can be represented as{

R = RlR−1
r

T = Tl − RlR−1
r Tr

(8)

The pixel coordinates of point P in Camera-1 and Camera-2
are pl(ul, vl) and pr(ur, vr), respectively. According to Equation
4, the transformation between world coordinate system to pixel
coordinate system can be represented as

zcl

ul
vl
1

 =
 fxl 0 u0l 0

0 fyl v0l 0
0 0 1 0

(Rl Tl
0 1

)
xw
yw
zw
1



=

 a1
11 a1

12 a1
13 a1

14
a1

21 a1
22 a1

23 a1
24

a1
31 a1

32 a1
33 a1

34



xw
yw
zw
1

 (9)

zcr

ur
vr
1

 =
 fxr 0 u0r 0

0 fyr v0r 0
0 0 1 0

(Rr Tr
0 1

)
xw
yw
zw
1



=

 a2
11 a2

12 a2
13 a2

14
a2

21 a2
22 a2

23 a2
24

a2
31 a2

32 a2
33 a2

34



xw
yw
zw
1

 (10)

To solve the world coordinate
[
xw, yw, zw

]T of point P,
taking the optical central position of Camera-1 as origin, an
inhomogeneous linear equation is obtained through getting rid
of Zcl and Zcr in Equations 9, 10.



(
ula1

31 − a1
11
)
xW +

(
ula1

32 − a1
12
)
yW +

(
ula1

33 − a1
13
)
zW = a1

14 − ula1
34(

vla1
31 − a1

21
)
xW +

(
vla1

32 − a1
22
)
yW +

(
vla1

33 − a1
23
)
zW = a1

24 − vla1
34(

ura2
31 − a2

11
)
xW +

(
ura2

32 − a2
12
)
yW +

(
ura2

33 − a2
13
)
zW = a2

14 − ura2
34(

vra2
31 − a2

21
)
xW +

(
vra2

32 − a2
22
)
yW +

(
vra2

33 − a2
23
)
zW = a2

24 − vra2
34

(11)

Up to now, for one point in space, as long as we obtain its pixel
coordinates in Camera-1 and Camera-2, its world coordinates
can be solved by Equation 11.

Region Segmentation and Object Extraction
After calibration, the binocular vision system can be used to
capture images. The images captured by Camera-1 and Camera-
2 are called Image-1 and Image-2, respectively. Figure 5 shows
Image-1 and Image-2.

Take Image-2 as an example to introduce the hedges extraction
process. The RGB color histogram of Image-2 is shown in

Figure 6, which shows that green color accounts for the largest
proportion. Ultra-green extraction of green plant images has
a good effect on distinguishing the green plants from the
surrounding environment, and it is the most commonly used
grayscale method for crop recognition or weed recognition.
The excess green index (ExG) of ultra-green algorithm is set to
E xG = 2G− R− B.

Figure 7A is the 2G-R-B gray image of Image-2. The bilateral
filtering for image denoising is used for image noise removal.
Figure 7B is the bilateral filtered image of Image-2, which shows
that the image boundary features can be most reserved.

Then, gamma correction was studied to enhance the contrast
between the target hedges and the surrounding environment
under strong light and weak light. The gamma formula can be
expressed as

y =
(
x+ esp

)γ (12)

where, x ∈ [0, 1] , y ∈ [0, 1], esp is the compensation factor, and
γ is the gamma coefficient.

Figure 8 shows the grayscale mapping relationship between
the output image and the input image with different γ values.

From Figure 8, it can be seen that different γ values should be
used when performing gamma transformations for images with
different grayscale distributions. In this paper, the contrast has
been enhanced to some extent after gamma correction as shown
in Figure 9, when γ equals 1.5.

At last, the image binarization best treatment threshold is
obtained using the maximum between-class variance method
(OTSU), hereafter, the 2D coordinate sequence of spherical
hedges can be obtained from Image-2 (Caraffa et al., 2015).
Figure 10 shows the binary image of Image-2.

Shape Reconstruction and Measurement
Stereo Image Rectification
It is difficult to align the two cameras in this binocular vision
system to be perfectly parallel (Wu et al., 2017). After binocular
vision calibration, the stereo image rectification is used based on
Bouguet’s algorithm to ensure that the cameras are completely
parallel. Figure 11 shows the algorithmic principles of Bouguet’s
algorithm. The plane 5l and plane 5r are the image planes of
Camera-1 and Camera-2 before polar correction, and the plane
5
′

l and plane 5
′

r are the image planes of Camera-1 and Camera-
2 after polar correction. The p

′

l and p
′

r are the pixel coordinates of
point P in the plane 5

′

l and plane5
′

r . The rotating vector R and
translation vector T of the camera coordinate systems of Camera-
1 and Camera-2 are obtained from camera calibration results.

In Figure 11, the practical binocular vision system can be
corrected to a parallel binocular parallel system by multiplying
the coordinate systems of Camera-1 and Camera-2 with their
respective stereo correction matrices (Rrect) as follows

{
R
′

l = Rrect · Rl
R
′

r = Rrect · Rr
(13)
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FIGURE 12 | Flow chart of the improved SGBM algorithm.

FIGURE 13 | Corner extraction results.

where
{

Rl = R1/2

Rr = R−1/2 , Rrect =
(

T
||T||

)T (
[−Ty,Tx,0]√

T2
x+T2

y

)T

(
T
||T|| ×

[−Ty,Tx,0]√
T2
x+T2

y

)T

,T =
[
Tx,Ty,Tz

]T .

Shape Reconstruction
According to the morphological characteristics of spherical
hedges, the surface fitting model is established by the SGBM
algorithm. The SGBM algorithm is a classic semi-global matching
algorithm, and this method has the advantages of both stereo
matching quality and processing rates.

In the study of Romaniuk and Roszkowski (2014), the energy
function of the SGBM algorithm can be represented as

E(D) =
∑
P

(C(p,Dp))+
∑
q∈Np

P1I
[∣∣Dp − Dq

∣∣ = 1
]

+

∑
q∈Np

P2I
[∣∣Dp − Dq

∣∣ > 1
]

(14)

where C(p,Dp) indicates matching cost value, Np indicates pixels
adjacent to point P, and P1 and P2 are penalty coefficient.

Considering operating efficiency, Np is set to 8. The 2D
search problem is divided into eight one-dimensional problems,
thus using dynamic programming to treat each one-dimensional
problem separately. When disparity is d, the matching cost value
of point P in the r direction can be represented as

Lr(p, d) = C(p, d)+min(Lr(p− r, d), Lr(p− r, d − 1)

+P1, Lr(p− r, d + 1)+ P1, min
i

Lr(p− r, i)+ P2)

−min
k

Lr(p− r, k)

(15)
where C(p, d) is the matching cost value when disparity is equal
to d, min(Lr(p− r, d), Lr(p− r, d − 1)+ P1, Lr(p− r, d + 1)
indicates the minimum matching cost value of previous
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TABLE 1 | The intrinsic parameters and distortion coefficients of Camera-1 and Camera-2.

No. fx (pixel) fy (pixel) u0 (pixel) v0 (pixel) k1 k2 p1 p2

Camera-1 510.2063 510.0911 331.6530 243.6460 0.0678 −0.0615 0.0017 0.0004103

Camera-2 505.7195 505.9684 329.6185 248.7792 0.0884 −0.0980 0.002834 0.0007345

FIGURE 14 | Binocular calibration errors of each image pairs.

FIGURE 15 | The position and attitude relationship between cameras and calibration chessboard.

matching point pixel of point P in r direction, and
P1, min

i
Lr(p− r, i)+ P2)−min

k
Lr(p− r, k) is the constraint.

Then, the matching cost values on each path were calculated
and the total sum according to the SGBM algorithm was taken.
The sum of matching cost value can be expressed by

S
(
p, d

)
=

∑
r

Lr(p, d) (16)

In the study of Hong and Ahn (2020), the optimal disparity d is
corresponding to the minimum sum of matching cost value.

This study improves the SGBM algorithm by the following
two main areas: occlusion detection and disparity optimization.
The left-right consistency (LRC) method is used to remove the
mismatch points, and the bilateral filtering algorithm is used to
fill the holes in the disparity map. Then, the corresponding point
cloud coordinates of the parallax map are calculated. Figure 12
shows the flowchart of the improved SGBM algorithm.
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FIGURE 16 | Comparison of before and after stereo correction.

FIGURE 17 | Schematic diagram of laboratory test.

Occlusion detection based on the LRC is used to detect the
disparity of all pixels in an image. When the disparity in the
left and right imaging planes is inconformity, the pixels are
regarded as the occluded points. To figure out occluded points,
the disparity error is defined as

d(q) 6= −d(q+ d(q)) (17)

where d(q) is the disparity of pixel q in the left imaging plane
(Camera-1), d(q+ d(q)) is the disparity of the corresponding
pixel in the right imaging plane (Camera-2) when the disparity
of pixel q is d.

Disparity optimization refers to filling the holes in the
disparity map. After the occlusion detection, mismatch points
or occluded points are removed, and thus, some pixels have
no disparity value. Meanwhile, the depth of occluded points
removed by the LRC detection is greater than the depth of the
object that occludes it. Therefore, the disparity of occluded points
can be estimated according to the non-occluded pixels and then
fill it to the disparity map. Since disparity map-based hole filling
is easily led to creating stripes, an edge keeping filter is used
to reduce noise and save edge information of image well. The
disparity processed by bilateral filtering can be expressed as

Ibfp =

∑
q∈S

Gσs(
∣∣∣∣p-q

∣∣∣∣)Gσr (
∣∣Ip − Iq

∣∣)Iq
Wbf

p

(18)

where, σs and σr are smooth parameters in the spatial domain and
pixel range, Ip and Iq are input disparities of pixel p and pixel q,
and Wbf

p is the bilateral filtering weight.
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TABLE 2 | Laboratory test results of center coordinate and its radius.

No. AR (mm) MR (mm) AER (mm) RER (%) AL (mm) ML (mm) LD (mm)

1 300 301.10 1.10 0.37 (100, −300, 2,000) (101.54, −299.03, 2,018.79) 18.88

2 300 301.24 1.24 0.41 (100, −300, 2,100) (102.17, −302.5, 2,111.72) 12.17

3 300 301.71 1.71 0.57 (100, −300, 2,200) (103.3, −303.7, 2,211.05) 12.03

4 300 302.24 2.24 0.75 (100, −300, 2,300) (103.25, −305.21, 2,318.11) 19.12

5 300 300.67 0.67 0.22 (100, −300, 2,400) (104.03, −305.67, 2,414.41) 16.00

6 300 301.08 1.08 0.36 (100, −300, 2,500) (104.36, −306.59, 2,514.02) 16.10

7 300 297.00 3.00 1.00 (100, −300, 2,600) (105.27, −308.54, 2,613.91) 17.15

AR, actual radius; MR, measured radius; AER, absolute error of radius; RER, relative error of radius; AL, actual location; ML, measured location; LD, location deviation. The
average absolute error of radius is 1.58 mm. The average relative error of radius is 0.52%. The RMSE of radius is 1.59 mm. The average location deviation is 15.92 mm.
The RMSE of location deviation is 2.66 mm.

FIGURE 18 | 3D reconstruction result of outdoor test.
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The pixel coordinates of p and q are marked as p(x, y) and
q(k, l), respectively. Then, Gσs(

∣∣∣∣p-q
∣∣∣∣) and Gσr (Ip − Iq) can be

expressed as

Gσs (
∣∣∣∣p-q

∣∣∣∣) = Gσs (x, y, k, l) = exp
(
−

(i− k)2
+ (j− l)2

2σ2
s

)
(19)

Gσr (Ip − Iq) = Gσr (x, y, k, l) = exp

(
−

∣∣∣∣I(i, j)− I(k, l)
∣∣∣∣2

2σ2
r

)
(20)

where I(i, j) and I(k, l) are the disparity values of corresponding
pixels in the disparity map.

Dimension Measurement of Spherical Hedges
According to the morphological characteristics of spherical
hedges, the surface fitting model is established by the SGBM
algorithm. The SGBM algorithm is a classic semi-global matching
algorithm, which has the advantages of both stereo matching
quality and processing rates.

After obtaining the disparity map through stereo matching,
3D point cloud coordinates of detected spherical hedges can
be calculated by Equation 7. Then, the deformed shape of the
spherical hedges is mapped and the error of coordinate and fitted
coordinate of each 3D point is calculated. Finally, the coordinate
of spherical hedges’ center and its radius are obtained when the
sum of error is minimal.

In the calculation process, O(x0, y0, y0) is the center of a
fitting sphere, its corresponding radius is r, and (xi, yi, zi) is
the coordinate of a point cloud. The error formula of the
actual coordinate and fitted coordinate of each 3D point can be
expressed as (Guo et al., 2020)

ei(x0, y0, z0, r) = (xi − x0)
2
+ (yi − y0)

2
+ (zi − z0)

2
− r2 (21)

Then, the sum of error is demonstrated as

E(x0, y0, z0, r) =
N∑
i=1

ei(x0, y0, z0, r) (22)

where N is the number of 3D point clouds, and E is
the sum of errors.

In Equation 21, Eshows a function relation to x0, y0, z0, and r.
Thus, all the partial derivatives with respect to E are set to zero,
and then, a minimum value of E can be obtained. The extreme
value of partial derivative with respect to E can be expressed as

∂E
∂x0
= 0,

∂E
∂y0
= 0,

∂E
∂z0
= 0,

∂E
∂r
= 0 (23)

With Equations 20–22 can be demonstrated as

N∑
i=1

ei(xi − x0) = 0

N∑
i=1

ei(yi − y0) = 0

N∑
i=1

ei(zi − z0) = 0

N∑
i=1

eir = 0

(24)

To solve out x0, y0, and z0, Equation 23 can be transformed into x2 − x2 xy− x · y xz − x · z
xy− x · y y2 − y2 yz − y · z
xz − x · z yz − y · z z2 − z2


 x0
y0
z0



=
1
2

 (x3 − x · x2)+ (xy2 − x · y2)+ (xz2 − x · z2)

(x2y− x2 · y)+ (y3 − y · y2)+ (yz2 − y · z2)

(x2z − x2 · z)+ (zy2 − z · y2)+ (z3 − z · z2)

 (25)

where,

x =
1
N

N∑
i=1

xi, y =
1
N

N∑
i=1

yi, z =
1
N

N∑
i=1

zi, xy =
1
N

N∑
i=1

xiyi, xz =
1
N

N∑
i=1

xizi,

yz =
1
N

N∑
i=1

yizi, x2 =
1
N

N∑
i=1

x2
i , y2 =

1
N

N∑
i=1

y2
i , z2 =

1
N

N∑
i=1

z2
i , x2y =

1
N

N∑
i=1

x2
i yi,

x2z =
1
N

N∑
i=1

x2
i zi, xy2 =

1
N

N∑
i=1

xiy2
i , y2z =

1
N

N∑
i=1

y2
i zi, xz2 =

1
N

N∑
i=1

xiz2
i ,

yz2 =
1
N

N∑
i=1

yiz2
i , x3 =

1
N

N∑
i=1

x3
i , y3 =

1
N

N∑
i=1

y3
i , z3 =

1
N

N∑
i=1

z3
i .

Then, the radius of spherical hedges is obtained by
x2 − 2x0x+ x2

0 + y2 − 2y0y+ y2
0 + z2 − 2z0z + z2

0 = r2 (26)

RESULTS

Binocular Vision Calibration Test and
Results
A calibration chessboard is applied in the experiment. The
chessboard is placed in front of Camera-1 and Camera-2 with
different positions and attitudes, and sixteen groups of images
for calibration are captured. Then, the camera calibration toolbox
(Toolbox_Calib) in MATLAB is used to extract corners in the
chessboard. The detailed features of the chessboard are as follows:
the material is armored glass; board size is 500 mm2

× 500 mm2;
chessboard size is 390 mm2

× 360 mm2; check array is 13 × 12;
check size is 30 × 30 mm2; and the precision is ± 0.01 mm. In
the captured calibration images, the number of corners that can
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TABLE 3 | Outdoor test results of center coordinate and its radius.

No. AR (mm) MR (mm) AER (mm) RER (%) AL (mm) ML (mm) LD (mm)

1 962.42 957.28 −5.14 0.53 (50, −80, 2,000) (41.36, −67.50, 1,988.91) 18.84

2 881.92 877.89 −4.03 0.46 (150, −20, 2,150) (152.35, −18.37, 2,165.26) 15.53

3 887.25 884.85 −2.4 0.27 (110, −150, 2,000) (108.24, −145.38, 2,018.63) 19.27

4 932.75 937.26 4.51 0.48 (120, −80, 2,050) (116.88, −73.21, 2,168.02) 19.51

AR, actual radius; MR, measured radius; AER, absolute error of radius; RER, relative error of radius; AL, actual location; ML, measured location; LD, location deviation. The
average absolute error of radius is 4.02 mm. The average relative error of radius is 0.44%. The RMSE of radius is 1.01 mm. The average location deviation is 18.29 mm.
The RMSE of location deviation is 1.61 mm.

be extracted from each image is 12 × 11. Figure 13 shows one of
the corner extraction results of Camera-2.

Taking the first corner in the lower left (marked in yellow
square in Figure 13 as the origin), the “X”-“Y” co-ordinate
system is set up in a chessboard plane. The pixel coordinates
of each corner can be obtained (Qiu and Huang, 2021). The
world coordinates of corners are obtained based on the pixel
coordinates of corners and check size. Then, the transformation
matrix can be calculated by linear calculation. Additionally, by
matrix decomposition, the intrinsic matrix (fx, fy, u0 and v0)
of Camera-1 and Camera-2 can be obtained. In addition, a
polynomial distortion correction model is built to correct the
distortion, and the radial distortion coefficients and tangential
distortion coefficients (k1, k2, p1, and p2) are given. The intrinsic
parameters and distortion coefficients of Camera-1 and Camera-
2 are listed in Table 1.

To test the calibration accuracy results listed in Table 1, the
calibration errors of captured calibration images are analyzed,
respectively. The coordinates of the corners in the “X”-“Y” co-
ordinate system are obtained after back-projection and compared
with the corresponding actual pixels of corners in the chessboard
to obtain calibration errors. The binocular calibration errors of
each image pair are shown in Figure 14. As can be seen in
Figure 14, the binocular calibration errors for each pair of images
are less than 0.05 pixels, and the average errors of Camera-1 and
Camera-2 are both 0.04 pixels.

Then, the binocular vision calibration proceeds by using
the binocular calibration toolbox in MATLAB. The installation
of the two cameras is close to the coplanar and row
alignment. As shown in Figure 15, the “1” and “2” represent
the position and placing attitude of Camera-1 and Camera-
2, respectively. The sixteen colored squares represent the
positions and placing attitudes of the sixteen images of the
calibration chessboard. In addition, the relative position between
Camera-1 and Camera-2 can be obtained. Iterate over the
intrinsic parameters and distortion coefficients of Camera-
1 and Camera-2 obtained by monocular vision calibration.
The transformation matrix and vector between Camera-1 and
Camera-2 are given as T =

[
−119.2486 0.3206 3.3474

]T and

R =

 0.9998 0.0104 −0.0111
−0.0106 0.9998 −0.0165
0.0109 0.0166 0.9998

.

The binocular calibration errors are also obtained by reverse
projection of spatial coordinates of the corners, the binocular
calibration errors for each pair of images are less than 0.07 pixels,

and the average error of binocular calibration is less than 0.04
pixels. The calibration accuracy meets the requirements of the
binocular vision system in this study.

Afterward, the images collected by this binocular vision
system outdoor are used for stereo correcting, and the result
is shown in Figure 16. The pixels of red dots from the top
of the image are marked on the images. The pixels from the
top of the original image of Camera-1 are 41, 267, and 428,
whereas the values of Camera-2 are 39, 261, and 419, respectively.
Herein, after stereo correction, the pixels of the same object in
images of Camera-1 and Camera-2 are in the same row, and
the pixels of makers after stereo correction are all 28, 264, and
428, respectively.

Laboratory Test and Results
To better reflect the 3D reconstruction effect of spherical hedges,
a standard spherical hedge with a diameter of 60 mm was used to
conduct a laboratory test first. The different test data sets could be
obtained by changing the distances between the spherical hedges
and the binocular vision system. Then, the stability and accuracy
of this measurement system were verified according to the errors
of the measured value and actual value. In the laboratory test, a
straight line was marked in front of the binocular vision system,
and seven different positions were set at the direction of Z by
every 100 mm in range of 2,000–2,600 mm, described as red
dots in Figure 17. Seven groups of images were captured, and
the test values of the spherical center and its radius are shown in
Table 2.

According to Table 2, the maximum and average error of
radius of standard spherical hedges by the proposed system were
3.00 mm and 1.58 mm, respectively; maximum and average
relative errors of radius were 1.00% and 0.52%, respectively; the
root mean square error (RMSE) of the radius was 1.59 mm.
Moreover, the relative error and error of radius increase with
the distance in direction of Z, and the maximum relative
error was 1.00% at the distance of 2,600 mm in direction
of Z, which indicated the high monitoring accuracy and
stability of the proposed system for radius measurement.
The minimum, maximum, and average location deviations
were 12.03, 19.12, and 15.92 mm in the range of 2,000–
2,600 mm, and the RMSE of the center coordinate of spherical
hedges was 2.66 mm. It showed that the proposed system
had high accuracy in positioning and dimension measurement
and had stability and applicability for different distances in
a certain range.
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Outdoor Test and Results
An outdoor test was conducted at China Agricultural University
East Campus (Beijing, China). During the test, the weather was
overcast and the leaves of spherical hedges were slightly yellow
and sparse. A number of four spherical hedges were randomly
selected on the campus; therefore, the results have a certain
generality. The spherical hedges were non-standard spheres and
their radius was unknown; therefore, for each spherical hedge,
six groups of images were captured at different positions. The
distances between the proposed system and spherical hedges were
all around 2,000 mm. The outdoor scene image acquired by the
left camera, the disparity map obtained by stereo matching, and
the 3D shape reconstruction image of the proposed system are
shown in Figure 18.

In the outdoor test, the actual center position and radius of
spherical hedges were measured manually using a tap. In each
test, the actual radius was collected manually by six different
positions, and the average value was determined. The results of
the center coordinate and its radius in Figure 18 are shown in
Table 3.

According to Table 3, the maximum and average errors of
the radius of measured spherical hedges in the outdoor test were
5.14 and 4.02 mm, respectively; maximum and average relative
errors of radius were 0.53% and 0.44%; the and RMSE of the
radius was 1.01 mm, respectively. At the distance of around
2,000 mm in direction of Z, the maximum and average location
deviation were 19.51 and 18.29 mm, respectively. It indicated a
high measurement accuracy and stability of the proposed system
for outdoor sphere center positioning and radius detection.

DISCUSSION

A binocular vision system for spherical hedge reconstruction
and measurement was proposed in this work to provide front-
end visual information for pruning robots. Through theoretical
analysis and experimental verification, this shape reconstruction
and dimension measurement method showed high accuracy in
both spherical center positioning and radius measurement. The
conclusions of this study were as follows:

(1) The binocular vision platform was built based on the theory
of binocular parallel structure. After binocular camera
calibration, stereo image correcting was used based on
Bouguet’s algorithm to improve the accuracy of shape
reconstruction. Meanwhile, the captured 2D images were
processed through filtering algorithm, segmentation, edge
extraction, etc. Then, an improved SGBM algorithm was
applied to obtain a good disparity map.

(2) The sharp reconstruction and measurement method were
tested in a laboratory and outdoors in the detection

range of 2,000–2,600 mm. The laboratory test result
showed that the average error and average relative error
of standard spherical hedges radius were 1.58 mm and
0.53%, respectively; the average location deviation of the
center coordinate of spherical hedges was 15.92 mm in
range of 2,000–2,600 mm. The outdoor test showed that the
average error and average relative error of spherical hedges
radius by the proposed system were 4.02 mm and 0.44%,
respectively; the average location deviation of the center
coordinate of spherical hedges was 18.29 mm. Therefore,
the proposed system could be employed for the visual
information acquisition of various trimming robots due to
its excellent applicability.

Future studies may involve expanded tests on different shapes
of hedges to clarify the accuracy and stability of the proposed
system further. This study provides key technical support for
visual detection in studies of trimming robots.
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A near-infrared (NIR) spectrometer can perceive the change in characteristics of the grain 
reflectance spectrum quickly and nondestructively, which can be used to determine grain 
quality information. The full-band spectral information of samples of multiple physical 
states can be measured using existing instruments, yet it is difficult for the full-band 
instrument to be widely used in grain quality detection due to its high price, large size, 
non-portability, and inability to directly output the grain quality information. Because of 
the above problems, a phenotypic sensor about grain quality was developed for wheat, 
and four wavelengths were chosen. The interference of noise signals such as ambient 
light was eliminated by the phenotypic sensor using the modulated light signal and closed 
sample pool, the shape and size of the incident light spot of the light source were 
determined according to the requirement for collecting the reflectance spectrum of the 
grain, and the luminous units of the light source with stable light intensity and balanced 
luminescence were developed. Moreover, the sensor extracted the reflectance spectrum 
information using a weak optical signal conditioning circuit, which improved the resolution 
of the reflectance signal. A grain quality prediction model was created based on the actual 
moisture and protein content of grain obtained through Physico-chemical analyses. The 
calibration test showed that the R2 of the relative diffuse reflectance (RDR) of all four 
wavelengths of the phenotypic sensor and the reflectance of the diffusion fabrics were 
higher than 0.99. In the noise level and repeatability tests, the standard deviations of the 
RDR of two types of wheat measured by the sensor were much lower than 1.0%, indicating 
that the sensor could accurately collect the RDR of wheat. In the calibration test, the root 
mean square errors (RMSE) of protein and moisture content of wheat in the Test set were 
0.4866 and 0.2161%, the mean absolute errors (MAEs) were 0.6515 and 0.3078%, 
respectively. The results showed that the NIR phenotypic sensor about grain quality 
developed in this study could be used to collect the diffuse reflectance of grains and the 
moisture and protein content in real-time.

Keywords: sensor, quality phenotype, near-infrared, multi-source circular structure, Fresnel reflectance 
concentrator, optical simulation, feedback driver, neural network modeling
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INTRODUCTION

Real-time non-destructive testing of grain quality can lower 
the cost of field management by providing reference information 
for fertilization in the grain production process. It can also 
provide information for quality-based pricing during trade and 
provide data for grain classification to improve the efficiency 
of grain processing. However, traditional grain quality detection 
methods mainly rely on indoor Physico-chemical analysis. For 
instance, the grain moisture content was determined by the 
direct drying method (The National Health and Family Planning 
Commission of the People’s Republic of China, 2016), and the 
protein content was determined by the Kjeldahl method (The 
National Health and Family Planning Commission of the People’s 
Republic of China and State Food and Drug Administration, 
2010). These methods cannot be  applied to real-time quality 
detection in the process of grain circulation due to destructive 
sample preparation, complex analysis process, and poor timeliness 
(El-Mesery et  al., 2019; Hussain et  al., 2019).

Near-infrared (NIR) spectroscopy has developed rapidly as 
an efficient, green, and nondestructive analysis and detection 
method in recent years. The response characteristics of the NIR 
reflectance spectrum of grain are closely related to grain quality. 
The quality of grains can be  described quantitatively using the 
NIR wavelength that is sensitive to the quality content (Wang, 
2010; Santos et  al., 2013; Zhu et  al., 2015; Caporaso et  al., 
2018). By collecting the NIR transmitted spectrum of six types 
of single-grain wheat, a prediction model for NIR transmitted 
spectrum and the protein content of corresponding single-grain 
wheat was proposed by Delwiche (1995) based on partial least 
square. Using the Foss InfraXact™ Lab/Pro spectrometer (570–
1850 nm), Arazuri et  al. (2012) collected the spectrum of wheat 
in the NIR area, analyzed the relationships of rheological parameters 
between spectrum and tenacity, extensibility, deformation energy 
of wheat, which provided technical support for obtaining the 
rheological parameters of wheat during harvest and transportation 
of wheat. In a study by Li et  al. (2013). a spectrometer was 
used to collect the transmitted spectrum (840–1,048 nm) of brown 
rice. This information was used to accurately determine the 
moisture and protein content of brown rice in the grain elevator. 
In summary, the above studies on NIR of grain showed that 
the quality information, e.g., moisture, starch, and protein content 
of grains (e.g., wheat and rice) can be  obtained quantitatively.

Based on the NIR spectroscopy technology, grain quality 
detection devices have been developed. Zhang et  al. designed 
a NIR analysis system with a wavelength of 800–1,100 nm based 
on a charge-coupled device and fixed optical grating, and a 
wheat moisture and protein model was created using the PLS 
method. However, this system was complex and large, it could 
not be  used for real-time on-site detection (Zhang et  al., 2009). 
Hidaka et  al. developed a NIR reflectance spectrometer of 
740–1,140 nm using the halogen lamp and grating dispersion, 
which was integrated with the harvester to determine the protein 
content of brown rice. However, when tested in the field, the 

correlation coefficient R of the detection value and the real 
value of protein was only 0.65 since the system did not take 
into account the influence of complex environment factors (Hidaka 
et  al., 2011). In a study by Wen et  al. light-emitting diodes 
(LEDs) and 14 narrow-band interference filters with a wavelength 
between 800 and 1,100 nm were used to develop a single-grain 
wheat composition analyzer, which realized the real-time detection 
of wheat protein content. However, the luminous efficiency of 
the LED of 950 nm was very low, at 1,020–1,050 nm, and the 
measurement error under repeated sample loading conditions 
was largely due to the light spot difference caused by the position 
of the light source (Wen and Ji, 2004). Wu et al. used a 6-row-8-
column full-enclosed LED structure, combined with a FLAME-NIR 
spectrometer (900–1,700 nm) manufactured by Ocean Insight 
(Orlando, FL, United States), to design an instrument for detecting 
the protein content of single-grain wheat. This instrument requires 
a large number of light sources and has large power consumption, 
and it can only be used after the light source has been preheated 
for 30 min, thus the timeliness of the instrument was not ideal 
(Wu et  al., 2018).

Studies on the analytical techniques based on NIR spectroscopy 
have played an important role in grain quality detection. 
However, current studies are still facing the following problems.

	1.	 Commercial instruments mostly consist of spectrometers 
operating in the full spectral band. They are complex, bulky, 
expensive to produce, difficult to adapt to different detection 
requirements, and do not have a grain quality detection 
model; thus, they are incapable of outputting grain quality 
information in real-time.

	2.	 Most instruments made in-house consist of spectrometers 
operating in characteristic spectral bands. The incident light 
spots of multiple wavelength light sources suffer from the 
problem of inconsistent detection regions. For grains with 
uneven distributions of nutritional quality, inconsistent 
detection regions will result in systematic errors, thereby 
rendering the instrument unsuitable for grain quality detection.

In this study, a NIR phenotypic sensor about protein and 
moisture in wheat grain (PSPMWG) was developed. Compared 
with previous studies, this study made contributions in the 
following aspects.

	1.	 A NIR PSAGQ was developed, which had a simple structure, 
was lightweight and was able to detect the grain quality 
rapidly, nondestructively in real-time. The sensor collects 
the diffuse reflectance spectrum in real-time and couples 
the quality detection model to generate grain quality data 
immediately. In addition, this study expounds on the optical 
system design and control system development process of 
the phenotypic sensor in detail, which lays a good foundation 
for the secondary development of the phenotypic sensor 
and the application of online detection.

	2.	 A circular structure of multiple light sources was proposed, 
where the incident light spots of the multiple light sources 
were consistent, which reduced the measurement error under 
repeated sample loading conditions caused by the differences 
in incident light spots. Different incident light spots could 

Abbreviations: PSPMWG, phenotypic sensor about protein and moisture in wheat 
grain; RDR, relative diffuse reflectance.
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be  formed by multiple light sources on the detection plane. 
The overlapping circular part was intercepted to ensure the 
consistency of incident light spots from multiple light sources 
and to improve the spectral accuracy of the sensor.

	3.	 A detection model of wheat protein and moisture was built, 
which was able to output the grain quality information in 
real-time after obtaining the grain spectrum. The model 
could be  directly used in multiple instruments through the 
self-correcting luminous state by correcting the reflectance 
of the sensor through the diffusion fabric and correcting 
the sample pool. The instrument could be used during grain 
production, trading, and grain processing.

MEASUREMENT PRINCIPLES OF THE 
SENSOR

There are two methods for measuring the NIR: the transmission 
method (Delwiche et al., 1996; Li et al., 2013) and the reflection 
method (Hidaka et al., 2011; Priya et al., 2015). The transmission 
method applies to uniform or transparent samples, and the 
NIR absorbs the same proportion of light on each equivalent 
thickness medium on the optical path, that is, the absorbed 
amount of light is in direct proportion to the number of 
molecules that generate light absorption on the optical path. 
The reflection method is mostly used for solid samples, and 
the NIR passes through a tortuous and irregular optical path 
in the solid body. The absorbance is related to the scattering 
coefficient and absorption coefficient of the sample.

Wheat grain is the research object of this study. Its nutritional 
components are unevenly distributed in the grain. The PSPMWG 
can obtain the nutritional quality information of the wheat 
through the grain spectrum measured using the diffuse 
reflection method.

The relative diffuse reflectance (RDR) is defined as:

	 R I I= / 0	 (1)

where I is the diffuse reflection light intensity of the measured 
sample, and I0 is the diffuse reflection light intensity of 
the background.

Diffuse reflectance spectral signals can also be characterized 
by absorbance, as defined by

	
A

R
= log 1

	
(2)

This work used RDR to characterize the diffuse reflectance 
spectrum. When measuring the diffuse reflectance spectrum, 
each measurement result of the sample is affected by the 
loading conditions. Because the internal arrangement and 
distribution of the samples loaded each time are different, 
the optical path will change, which will lead to spectral changes 
and poor spectral repeatability. With the design of a closed 
sample cell and annular light sources at multiple spectral 
bands, a NIR PSPMWG could reduce the influence of sample 

loading conditions on spectral measurement and improve 
spectral repeatability.

Due to the low manufacturing cost and strong environmental 
adaptability of spectrometers working in the shortwave infrared 
and NIR regions (780–1,100 nm; Risius et al., 2014), we  used 
a NIR light source with wavelengths sensitive to grain quality 
in the shortwave infrared and NIR regions. Figure  1 shows 
the NIR spectra (570–1,100 nm) of 300 winter wheat samples 
collected by a Foss InfraXact™ Lab/Pro spectrometer (Bec 
et al., 2020). The regions where the NIR spectral characteristics 
of the wheat varied were marked by red boxes in the figure. 
In addition, according to previous studies, (Zhang et  al., 2009; 
Hidaka et  al., 2011; Arazuri et  al., 2012; Li et  al., 2013) on 
the wavelengths sensitive to grain moisture and protein content, 
four NIR LEDs with wavelengths of 780, 910, 980, and 1,050 nm 
were used as the light sources for portable quality detection.

DESIGN OF THE SENSOR

Overall Design
The NIR PSPMWG is composed of an optical system (including 
a light-emitting unit and a spectral collection unit) and a 
control system (including hardware circuits and software). The 
light-emitting unit generates incident spectra, the spectral 
collection unit obtains the RDR of the grain, and the hardware 
circuit is used to drive the light-emitting unit and the spectral 
collection unit. The software couples the RDR with the grain 
quality detection model to determine the quality content values, 
which are then displayed on the liquid-crystal display (LCD) 
with an audible output. The overall structure of the sensor is 
shown in Figure  2.

Optical System
Overall Design of the Optical System
A stable and reliable optical system is very important for the 
NIR PSPMWG to obtain the diffuse reflectance spectrum 
accurately. The light-emitting unit provides a stable and reliable 
incident spectrum through NIR light sources, and the spectral 
collection unit collects the diffuse reflectance spectrum of the 
grain accurately via the photoelectric detector.

Design of the Light-Emitting Unit
To obtain stable reflectance spectrum signals during grain 
quality detection, the sensor needs to have light sources with 
large luminous intensity and stability. Common NIR light 
sources include a halogen lamp and LED. The halogen lamp 
is bright and has a long service life, yet it is large and has 
high power consumption and poor stability of luminous intensity. 
In addition, the halogen lamp has poor timeliness because it 
has to be  preheated for 30 min before use (Liu et  al., 2019). 
The LED has a long service life, low power consumption, 
compact dimension, and affordability (Bec et  al., 2020). In 
this study, after comparing the advantages and disadvantages 
of the two types of light sources, the LED was chosen as the 
light source for the NIR PSPMWG, with a half-value angle of 12°.
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The light-emitting unit was designed based on the selected 
NIR LEDs, the light-emitting path of the light source is shown 
in Figure  3A. A circular spot was formed on the vertical 
plane. The farther away from the light-emitting point, the 
weaker the light intensity of the spot. Therefore, under a given 
power consumption, the efficiency of the emission spot could 
be maximized when the light-emitting point of the light source, 
the light-sensitive surface center point of the photoelectric 
detector, and the center point of the detection window plane 
was on the same plane. In this way, the photoelectric detector 
could accurately detect the diffuse reflectance spectrum. Moreover, 
to reduce the influence of the specular reflection light on the 
collection of reflectance spectrum and to ensure that the specular 
reflection light is not collected by the photoelectric detector, 
the incident angle of the LED light was 45°. The design of 
the light-emitting unit is shown in Figure  3B.

According to the above design, the incident light spots of 
the four light sources are formed in different areas of the 
detection plane, leading to system errors. Thus, a circumferential 
layout with even distribution of four LEDs was used (Figure 4A). 
The incident light spots generated by the four light sources 
on the detection plane are shown in Figure  4B. The incident 
light spot areas formed by the four LEDs were different, yet 
there were some overlapping areas. The overlapping areas of 
the four incident light spots were chosen as the detection 
window to ensure consistency in the detection area of the 
four light sources and to reduce system error. The nutritional 
components of wheat were distributed unevenly, thus there 
might be random errors in the detection of single-grain wheat. 
There should be  multiple wheat grains in the detection area 
so that the diffuse reflectance spectrum can effectively lower 
random errors. The dimensions of the detection window are 
shown in Figure  4C. When the detection window is a circle 

FIGURE 2  |  The overall design of the NIR PSPMWG. 1. liquid crystal display 
(LCD) 2. battery 3. voice broadcast module 4. photoelectric detector 5. 
button 6. NIR LED 7. Fresnel lens 8. beam shaping diffusion film 9. detection 
window plane 10. sample pool.

A

B

FIGURE 3  |  (A) Emission light spot of a single LED, (B) Emission light spot 
of LED in the light-emitting unit.

FIGURE 1  |  The NIR spectrum of the wheat.

287

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al.	 Phenotypic Sensor About Grain Quality

Frontiers in Plant Science | www.frontiersin.org	 5	 May 2022 | Volume 13 | Article 881560

with a diameter of 10 mm and there was only one single grain 
of wheat, there might be  a random error. When the detection 
window was a circle with a diameter of 20 mm and there 
were 10 grains in the window, the random error seen in single-
grain wheat detection was lowered effectively. Therefore, the 
detection window was set to a circle with a diameter of 20 mm, 
and the optical path and grain were separated by quartz glass. 
The specific design parameters of the light-emitting unit are 
shown in Figure  5.

The light-emitting unit was simulated and analyzed by the 
TracePro optical simulation software to verify the consistency 
of the incident light spots by the four light sources. First, 
four light sources with an incident angle of 45° and a half-
value angle of 12° were constructed, and a light beam blocking 
plate was placed at the appropriate location to substitute the 
detection plane in the actual design. The simulation results 
of the light-emitting system are shown in Figure  6A, where 
the bottom view showed that the elliptical light spots of the 
four light sources formed a circular light coincidence area on 
the detection surface (the same sample area detected with the 
four light sources). This circular area was used as the detection 
window to ensure the consistency of the incident light spots 
from the four light sources. The irradiance analysis diagram 

A

B

C

FIGURE 4  |  (A) The circular layout of four LED light sources, (B) Incident 
light spots and detection window plane, (C) Size of the detection window.

A

B

FIGURE 5  |  (A) Design parameters of the light-emitting unit, (B) Outer 
dimension of LEDs.
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FIGURE 7  |  Direct spectrum acquisition of diffuse reflection tube.

from the light beam blocking plate (detection plane) is shown 
in Figure  6B, where the location of the detection window is 
marked by a red circle in the figure.

Design of the Spectral Collection Unit
A photoelectric detector is an electronic component that converts 
optical signals to electric signals (Yang et  al., 2005), which 
ensures the accurate collection of the diffuse reflectance spectrum. 
The selection of a NIR photoelectric detector is mainly determined 
by three factors: response scope, response speed, and sensitivity. 
In this study, the spectral response of the silicon photoelectric 
detector ranged from 320 to 1,100 nm, the response time was 
3.6 μs, and the sensitivity for the four wavelengths was above 
0.4 A/W. These parameters satisfied the requirement of the 
NIR PSPMWG. The light emitted from the four LEDs could 
be  converted into current by the photodiode quickly 
and accurately.

The spectral collection unit was designed based on the 
selected photoelectric detector. The diffuse reflectance spectrum 
emitted from the detection window was a circle with a diameter 

of 20 mm, while the photosensitive area of the selected 
photoelectric detector was a 3.6 × 3.6 mm2. The collection of 
diffuse reflectance spectrum by the photoelectric detector is 
shown in Figure  7. The photoelectric detector only collects 
the diffuse reflectance spectrum that is received by the 
photosensitive area; it does not collect the other diffuse reflectance 
spectrum, leading to low accuracy in the diffuse 
reflectance spectrum.

To improve the collection accuracy in the diffuse reflectance 
spectrum, all diffuse reflectance spectrum of grain has to 
be  received by the photoelectric detector, that is, the circular 
diffuse reflectance spectrum with a diameter of 20 mm needs 
to be  reflected on the square photosensitive area. Therefore, 
it is necessary to add a condenser between the detection window 
and the photoelectric detector. The Fresnel lens is developed 
based on the Fresnel theory (Wu et  al., 2018), it is small and 
light and is suitable for the application of the sensor. The 
diffuse reflectance spectrum is condensed as much as possible 
without blocking the incident light, and the Fresnel lens has 
the same dimensions as the detection window, i.e., a circle 
with a diameter of 20 mm. The schematic diagram of the 
photosensitive optical path is shown in Figure  8.

The calculation of the focal length of the lens is as follows:

	
f
d

H
D

=
	

(3)

where D is the dimension of the reflection spot, d is the 
dimension of the photosensitive element, and H is the distance 
from the light spot to the lens.

Based on the dimensions of the spectrum collection unit, 
the focal length of the Fresnel lens was 15 mm, and the diameter 
was 20 mm, with a thickness of 2 mm. The above parameters 
were substituted to the calculation formula (Yao et al., 2020) 
of Fresnel lens to calculate the intersection angle between the 
lens sawtooth and the vertical direction, which was 2.67°. The 
spectral collection unit is shown in Figure  9.

The spectrum acquisition unit was simulated and analyzed 
by the TracePro optical simulation software to verify the light-
condensing performance of the Fresnel lens used in the system. 

A

B

FIGURE 6  |  (A) TracePro simulation of the light-emitting unit, (B) Irradiance 
analysis of the detection plane.
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The Fresnel lens was constructed based on a theoretical design, 
and a light-blocking plate was placed at an appropriate location 
to replace the photosensitive plane in the actual design. Then, 
the light-condensing performance of the lens was assessed by 
a parallel light beam source. The simulation results of the 
spectrum acquisition unit are shown in Figure 10A. The parallel 
light beam was converged by the lens onto the light-blocking 
plate (photosensitive plane), with most of the light falling 

within an area of 3.6 × 3.6 mm2. The photodetector placed in 
this area could accurately collect the convergent diffuse reflection 
spectrum. The irradiance analysis diagram of the light-blocking 
plate (photosensitive plane) is shown in Figure  10B, where 
the position of the photosensitive plane of the photosensitive 
element is marked by a red box in the figure.

Control System
Overall Design of the Control System
The control system consisted of hardware circuitry and a 
software system. The hardware circuit is composed of the light 
source driver circuit, the spectral collection circuit, and the 
signal conditioning circuit. The hardware circuit is mainly used 
to ensure stable luminescence of the light source and accurate 
collection of the diffuse reflectance spectrum of grain. The 
software system mainly achieves the collection of the diffuse 
reflectance spectrum of grain, couples that data with the grain 
quality prediction model, and outputs the grain quality results.

Hardware Circuit Design
The luminous intensity of the light-emitting unit needs to 
be  stable for the PSPMWG to accurately collect the diffuse 

FIGURE 8  |  Inductive light.

FIGURE 9  |  Spectral acquisition unit design.

A

B

FIGURE 10  |  (A) TracePro simulation of the spectrum acquisition unit, 
(B) Irradiance analysis diagram of the photosensitive plane.
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FIGURE 11  |  Optical power feedback drive circuit.

reflectance spectrum. The luminous intensity of the light-emitting 
unit is affected by its factors (e.g., light source loss and heat 
dissipation) and driver factors such as drive current. The light 
source is driven by the optical power feedback circuit. The 
light source driver circuit based on optical power feedback 
mainly consists of four parts: optical power feedback, comparative 
amplification, constant current drive, and compensation filter. 
The circuit diagram is shown in Figure  11.

When the luminous power of the light source under constant 
current reduces, the feedback voltage in the optical power 
feedback circuit decreases, the drive voltage in the comparative 
amplification part increases, the drive current in the constant 
current driving part increases, and the luminous power of the 
driving light source increases, and vice versa. In the compensation 
filter part, the light source drive signal is stabilized by reducing 
the ringing and overshoot driven by the modulation signal 
through the resistive–capacitive compensation filter circuit. The 
drive current and luminous power of the light source can 
be  balanced through the optical power feedback to achieve 
stable luminous power of the light source.

The accuracy of the grain diffuse reflectance spectrum 
obtained by the spectrum collection circuit directly affects the 
accuracy of grain quality data. In the spectrum collection 
circuit, the diffuse reflectance spectrum is first converted into 
light current through the photoelectric detector, which is 
converted into a voltage signal using the current–voltage 
conversion circuit, then the noise signal is filtered. Lastly, the 
voltage signal is amplified to the collection range of the 
microprocessor for further processing and output.

The spectrum collection circuit mainly consists of three 
parts: current–voltage conversion, filtering, and amplification. 
The current–voltage conversion circuit is shown in 
Figure  12A. The resistance, capacitance, and integrated 
operational amplifier constitute the photodiode transimpedance 
amplifier. The resistances RV2 and RV3 and capacitance CV2 

constitute the bias voltage with a positive power supply, which 
is connected to the positive phase input end of the integrated 
operational amplifier to avoid circuit instability resulting from 
the saturation of the negative power supply rail when there 
is no current. The filter circuit is shown in Figure  12B. The 
active filter circuit online design tool Filter Design Tool of 
the Texas Instruments Company was used to implement circuit 
design (Duff and Kalb, 2015).

Software System Design
The software system is composed of two modules: initialization 
and functional control. The initialization module is used for 
microprocessor initialization, pulse width modulation (PWM) 
signal initialization, digital-to-analog conversion initialization, 
keyboard input, and LCD initialization. The functional control 
module is used for light source time-sharing drive, diffuse 
reflectance spectrum collection, diffuse reflectance spectrum 
correction, grain quality detection, keyboard input control, 
LCD output, and audible output. Light source time-sharing 
driving means that the digital input/output ports of the 
microprocessor generate PWM signal and light source control 
signals, and then the PWM signals make the LEDs generate 
the modulated light signals. Diffuse reflectance spectrum 
collection is the collection of modulated light signals through 
a spectrum collection circuit. Diffuse reflectance spectrum 
correction is performed by correcting the luminous state of 
the LEDs in real-time through the correction sample cell 
(Figure  13). Grain quality detection is the coupling of diffuse 
reflectance spectrum and grain quality detection model to 
calculate quality components in real-time. And, the grain quality 
detection model is converted into the quality detection library 
file in c format through MATLAB coder, and the quality 
detection library file is called in the microprocessor program 
to realize real-time detection.
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As shown in Figure  13, the NIR PSPMWG has three 
functions: “correction,” “spectrum” and “quality.” In the 
“correction” mode, the function of correcting the diffuse 
reflectance spectrum is realized. In the “spectrum” mode, the 
light source is first driven by time-sharing, and then the diffuse 

reflectance spectrum is acquired in real-time through the diffuse 
reflectance spectrum collection; In the “quality” mode, the 
grain quality information is generated in real-time through 
the grain quality detection model, and then displayed through 
the LCD and output through speech synthesis.

TESTS AND RESULTS

Tests
Three types of tests were conducted: correction, performance, 
and calibration. In the correction test, multiple PSPMWGs 
were used to measure the relationship between the RDR and 
the standard diffuse reflectance of the diffusion fabric. The 
purpose is to ensure the universal application of the grain 
quality detection model in multiple PSPMWGs. Diffusion fabrics 
with standard diffuse reflectance of 6.5, 25, and 48% were 
used as the test material in the correction test. The RDR of 
the diffusion fabrics was measured by the PSPMWG, and the 
mean value of each diffusion fabric measured five times was 
taken as its RDR. Then, the linear relationship between the 
RDR and the standard diffuse reflectance of the diffusion fabric 
was established.

In the performance test, the RDR of the same grain was 
measured several times to verify the stability of the NIR 
PSPMWG. Two wheat grain samples (sample 1: Yangmai 23, 
sample 2: Ningmai 13) were selected in the performance test. 
The PSPMWG was used to collect the noise level of the RDR 
instrument five times, and the repeatability performance of 
the RDR instrument was accessed under the repeated 
sample condition.

In the calibration test, a relational model between the RDR 
and the physicochemical analyses values was built such that 
the moisture and protein contents could be  directly obtained 
once the RDR was measured by the PSPMWG. Twenty-four 
types of wheat grain samples (a total of 48 samples, each 
variety had two grains, and each sample weighed 250 g) were 
selected in the calibration test. The PSPMWG was used to 
collect the RDR of wheat grain; the mean value of each sample 
measured five times was taken as the RDR, and the moisture 
and protein contents of 48 samples were measured via 
physicochemical analyses. Then, the relational model between 
RDR and physicochemical analyses values was created using 
the chemometrics method, i.e., the wheat grain quality 
detection model.

Materials
The test equipment includes PSPMWG and diffusion fabrics. 
A physical image of the NIR PSPMWG is shown in Figure 13. 
The phenotypic sensor can obtain the RDR of four wavelengths 
in real-time, i.e., 780, 910, 980, and 1,050 nm. The diffuse 
reflectance of the three diffusion fabrics was 6.5, 25, and 48%. 
A physical image is shown in Figure  14.

Determination of Quality Parameters
In the physicochemical analyses of moisture and protein contents 
of wheat, the conventional ISO method (ISO, 2010) was used 

A

B

FIGURE 12  |  (A) Current–voltage conversion circuit, (B) MFB-type second-
order band-pass filter circuit.

FIGURE 13  |  The physical image of the NIR PSPMWG.
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to determine the moisture of wheat. Specifically, the sample 
was weighed on a dried aluminum container with constant 
weight and dried at (130 ± 3) °C for 90 min. Then, the sample 
was taken out and cooled to air temperature in the dryer, 
which was weighed again. The protein content of wheat was 
determined by the semi-micro Kjeldahl method (ISO 
International Standard, 2006), and the protein content was 
calculated by multiplying the nitrogen content by 5.7. The 
moisture and protein contents of each sample were measured 
twice, and the mean value was taken as the final data.

Modeling Methods
There was a nonlinear relationship between the RDR of wheat 
grain and its physicochemical analyses values. Due to the 
interaction between the moisture of wheat grain and the 
components such as protein, the noise of the sensor and other 
factors can also cause nonlinearity, and the ideal model cannot 
be  obtained by the linear correction method. The artificial 
neural network method has high nonlinear expression ability 
and is widely used to establish nonlinear NIR analysis models. 
In the PSPMWG, the Neural Fitting (nftool) app in MATLAB 
was used to establish the grain quality, detection model. The 
nftool is a two-layer feed-forward network with sigmoid hidden 
neurons and linear output neurons, that can fit multi-dimensional 
mapping problems arbitrarily well， neural network is shown 
in Figure 15. 48 samples were randomly divided into a Training 
set (28 samples), Validation set (10 samples), and Test set (10 
samples). In the nftool, the Training set is presented to the 
network during training, and the network is adjusted according 
to its error; the Validation set is used to measure network 
generalization, and to halt training when generalization stops 
improving, and the Test set provides an independent measure 
of network performance during and after training. The RDR 
of wheat grain was used as the input, and the moisture and 
protein content were used as the output. The model was 

evaluated using the coefficient of determination (R2), RMSE, 
and MAE.
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where yi _ true  is the physicochemical value of sample i, yi _ predict  
is the predicted value of sample i, ytrue  is the average 
physicochemical value of all samples, and n is the number of 
samples. With the same real value range, the closer R2 is to 
1, the better the regression or prediction of the model.

(2) RMSE
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where yi _ true  is the physicochemical value of sample i, yi _ predict  
is the prediction value of sample i, and n is the number of 
samples. The smaller RMSE, the better predictability of the 
model (Hussain et  al., 2019).

(3) MAE
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where yi _ true  is the physicochemical value of sample i, yi _ predict  
is the prediction value of sample i, and n is the number of 
samples. The smaller MAE, the better predictability of the 
model. MAE can reflect the actual situation of the predicted 
value error. The smaller MAE, the smaller the prediction  
error.

Results and Discussion
Correction Test
The diffuse reflectance correction of the NIR PSPMWG is 
shown in Figure  16. Here, 780, 910, 980, and 1,050 refer to 
the diffuse reflectance corresponding to the wavelengths of 
780, 910, 980, and 1,050 nm, respectively. The RDR of the 
diffuse fabrics collected by the phenotypic sensor was used as 
the independent variable and the standard reflectance of the 
diffuse fabrics was used as the dependent variable; then, the 
diffuse reflectance correction equation was established. The 
values of R2 were all above 0.99. The diffuse reflectance correction 
equations of 780, 910, 980, and 1,050 nm were 
y = 0.2560 × −0.1227, y = 0.1515 × −0.0541, y = 0.1911 × −0.0845, 
and y = 0.196 × −0.1042.

Performance Test
The noise level and repeatability of the NIR PSPMWG are shown 
in Figure  17. Here, 780–1, 910–1, 980–1, and 1,050–1 refer to 
the RDR of sample #1 at the wavelengths of 780, 910, 980, and 
1,050 nm, respectively. 780–2, 910–2, 980–2, and 1,050–2 are 
the RDR of sample #2 for the corresponding series of wavelengths. 

FIGURE 14  |  Three diffusion fabrics.
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In the noise level test, the standard deviations of RDR of sample 
#1 were 0.11, 0.08, 0.09, and 0.11%. The standard deviations 
of RDR of sample #2 were 0.11, 0.17, 0.16, and 0.11%. In the 
repeatability test, the standard deviations of RDR of sample #1 
were 0.33, 0.51, 0.16, and 0.38%. The standard deviations of 
RDR of sample #2 were 0.29, 0.33, 0.23, and 0.11%. In summary, 
the NIR PSPMWG can accurately collect the RDR of wheat grains.

Calibration Test
The relationship between the detection values obtained by the 
NIR PSPMWG through the quality detection model and the 
physicochemical values is shown in Figure  18. In the figure, 
Target represents the physicochemical values of protein and moisture, 
Output represents the detection values. In the prediction of protein, 
the RMSE of the Training set was 0.7981% and MAE was 0.6060%; 
the RMSE of Validation set was 0.4218% and MAE% was 0.6229; the 
RMSE of the Test set was 0.4866% and MAE was 0.6515%. In 
the prediction of moisture, the RMSE of the Training set was 
0.4598% and MAE was 0.3634%; the RMSE of Validation set 
was 0.4295% and MAE was 0.6468%; the RMSE of the Test set 
was 0.2161% and MAE was 0.3078%. Thus, the established quality 
detection model can effectively detect the moisture and protein 
content of wheat grains. The NIR PSPMWG can obtain the 
moisture and protein content of wheat grains in real-time.

DISCUSSION

The NIR PSPMWG based on NIR spectroscopy can quickly, 
efficiently, and nondestructively obtain grain quality information. 
Currently, full-band NIR commercial instruments such as NIR 
Systems 5,000 spectrometer and FOSS Infratec 1,241 spectrometer 
have achieved good results in the application of grain quality 
detection (Bao et  al., 2010; Hexiao et  al., 2011; Lin et  al., 
2014; Chen et  al., 2019). Liu et  al. (Hexiao et  al., 2011) 
established a neural network model for wheat protein detection. 
The MSE of the calculated values and actual values of wheat 
protein content ranged from 0.799 to 0.09, and the average 
MSE of 0.178 transformed into RMSE of 0.4219%. This result 
is similar to the detection effect of our phenotypic sensors. 
However, these instruments are complex, bulky, non-portable, 
and expensive. Moreover, since only spectrum information was 
collected, and there was no quality detection model, these 
devices cannot be  used for real-time on-site detection of grain 
quality. Given the above problems, in this study, we  developed 
a NIR PSPMWG. Compared with existing full-band commercial 
instruments, the phenotypic sensor uses four wavelengths that 
are sensitive to grain quality and an optical system with a 
multi-source circular structure. The dimensions of the optical 
system were greatly reduced while ensuring that the diffuse 
reflectance spectrum of multi-grain wheat was collected. In 
existing commercial spectrometers, one needs to customize 
the function or manually calculate the quality information 
through the collected spectral information to realize grain 
quality detection the customization is costly and the manual 
calculation leads to poor real-time performance; thus, it is 

FIGURE 15  |  Neural network diagram.

FIGURE 16  |  Diffuse reflectance correction of the PSPMWG.

A

B

FIGURE 17  |  Performance test of the PSPMWG. (A) Noise level, 
(B) Repeatability.
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A B

C D

FIGURE 18  |  Scatter plot of the detection values and the physicochemical values. (A) Training set, (B) Validation set, (C) Test set, (D) All values.

difficult to implement these instruments in actual applications. 
However, by collecting the RDR of wheat grain using the 
designed sensor, and coupling it with the quality detection 
model, the grain quality information was obtained in real-time.

Due to the different sensitive wavelengths of different grain 
quality components, the PSPMWG needs to change the 
wavelength of its light source for specific detection objects. 
In addition, the shape, size, and size distribution of different 
varieties of wheat grains affect the scattering coefficient, which 
can lead to measurement error in the RDR. Further studies 
are needed to explore the methods that can reduce the difference 
of scattering coefficient and improve the accuracy of RDR and 
ultimately the detection accuracy of the PSPMWG.

CONCLUSION

	 (1)	 A NIR PSPMWG was developed. An optical system with 
a multi-source circular structure was used to avoid the 
difference of incident light spots of multiple light sources. 
The light source drive circuit based on optical power 
feedback and the weak optical signal conditioning spectral 
acquisition circuit was designed to improve the luminous 
stability and signal-to-noise ratio of the sensor. The 
standard deviation of RDR at four wavelengths was less 
than 0.17 and 0.51% in noise level and repeatability test, 
indicating that the sensor developed in this study can 
accurately collect RDR of wheat grain.
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	 (2)	�The quality detection model of wheat grains was established. 
The RDR of wheat grains was collected by the phenotypic 
sensor, and the physicochemical values of moisture and 
protein were obtained by physicochemical analyses. In 
the Test set, the RMSEs of protein and moisture content 
of wheat were 0.4866 and 0.2161%, the MAEs were 0.6515 
and 0.3078%, indicating that the phenotypic sensor can 
achieve real-time, on-site acquisition of RDR and quality 
information of wheat grains.
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The number of wheat spikelets is an important phenotypic trait and can be used to

assess the grain yield of the wheat crop. However, manual counting of spikelets is

time-consuming and labor-intensive. To develop a cost-effective and highly efficient

phenotyping system for counting the number of spikelets under laboratory conditions,

methods based on imaging processing techniques and deep learning were proposed

to accurately detect and count spikelets from color images of wheat spikes captured at

the grain filling stage. An unsupervised learning-based method was first developed to

automatically detect and label spikelets from spike color images and build the datasets

for the model training. Based on the constructed datasets, a deep convolutional neural

network model was retrained using transfer learning to detect the spikelets. Testing

results showed that the root mean squared errors, relative root mean squared errors, and

the coefficients of determination between the automatic and manual counted spikelets

for four wheat lines were 0.62, 0.58, 0.54, and 0.77; 3.96, 3.73, 3.34, and 4.94%; and

0.73, 0.78, 0.84, and 0.67, respectively. We demonstrated that the proposed methods

can effectively estimate the number of wheat spikelets, which improves the counting

efficiency of wheat spikelets and contributes to the analysis of the developmental

characteristics of wheat spikes.

Keywords: wheat spikelet, spike, annotation, deep learning, computer vision

INTRODUCTION

Breeding of high-yield wheat (Triticum aestivum L.) cultivars is crucial for ensuring food safety, as
wheat is a staple food in the world. Researchers have reported that wheat yield is highly associated
with several phenotypic traits, such as spike number per unit area (SNA), grain number per spike
(GNS), and thousand-grain weights. It is broadly agreed that improving the SNA and GNS of
wheat is important to increase the wheat yield (Vahamidis et al., 2019). A wheat spike consists
of many spikelets and a rachis, and each spikelet contains two or more florets. In general, only 1–3
florets can become fertile florets and develop into grains. Improvements in spikelet and floret (floret
primordia and fertile floret) numbers contribute significantly to an increment in GNS (García et al.,
2014). In addition, the number of spikelets, fertile florets, and grains would enable the calculation
of the spikelet fertility, fertile floret proportion, and grain/fertile floret ratio to further assess the
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spike characteristics (Guo et al., 2018). Therefore, counting the
number of spikes, spikelets, and florets during the breeding
process is of great importance for screening high-yield wheat
cultivars. However, conventional methods for the manual
phenotyping of wheat spike traits are time-consuming and labor-
intensive, which in turn delays progress in breeding programs.
Consequently, it is urgent to develop an efficient method
to accurately and quickly acquire phenotypic traits of wheat
spikes. Recent advances in computer vision technology provide
innovative ways to assess phenotypic traits of wheat spikes, and
techniques like color, X-ray, and computed tomography (CT)
imaging have been investigated.

Color imaging has been widely applied to measure the
phenotypic traits of crops (Qiu et al., 2018).With respect to wheat
spikes, many researchers focused on the automatic detection and
counting of spikes. The color features (e.g., red, green, and blue),
texture features (e.g., gray level co-occurrence matrix), and image
features (e.g., contour and edge) were selected or combined to
train a model (e.g., support vector machine and neural network
models) using supervised learning, to facilitate the detection of
wheat spikes (Li et al., 2017; Zhou et al., 2018; Xu et al., 2020).
In addition, Genaev et al. (2019) analyzed wheat spike images in
the laboratory and estimated the morphometric traits of spikes,
such as spike length, width, and circularity. Liu et al. (2017),
Kaya and Saritas (2019) developed a real-time sorting system and
an application program, respectively, to identify each grain and
count the number of wheat grains. However, color imaging has
not been adequately exploited for the detection and counting of
wheat spikelets. Researchers have also explored the usefulness of
deep learning techniques for measuring spike phenotypic traits.
Concerning target detection, deep convolutional neural network
(DCNN) models have been widely implemented. The Faster
Region-based Convolutional Network (RCNN) model (Madec
et al., 2019) and Mask RCNN model (Qiu et al., 2019) were
retrained to detect wheat spikes from color images captured in
field conditions. Pound et al. (2017) developed a DCNN model
and presented the Annotated Crop Image Dataset (ACID) to
count wheat spikes and spikelets. Besides, Khoroshevsky et al.
(2021) developed a deep neural network to detect and count
the number of spikelets per spike in a field. Chen et al. (2021)
proposed a method to train deep networks on data with reduced
numbers of annotations to count wheat spikelets. TasselNetv2
(Xiong et al., 2019b), SpikeletFCN (Alkhudaydi et al., 2019),
SpikeSegNet (Misra et al., 2020), and DeepCount (Sadeghi-
Tehran et al., 2019) were also developed to detect and count
wheat spikes or spikelets in the field and laboratory. These
studies revealed that deep learning techniques are promising for
detecting and counting wheat spikes and spikelets. However, one
of the current challenges is to obtain a large number of labeled
datasets to train the deep learning models. Manual labeling is a
heavy burden. Furthermore, some researchers applied adversarial
learning to leaf and spikelet countings with unsupervised training
(Giuffrida et al., 2019; Hu et al., 2019; Ayalew et al., 2020), but the
models are difficult to train.

Furthermore, X-ray and CT imaging have been explored to
non-destructively measure phenotypic traits of wheat spikes.
Both X-ray and CT imaging can measure the inner structures

of spikes and acquire information on grains (Duan et al., 2011;
Xiong et al., 2019a; Yu et al., 2021), which can be further used to
distinguish and count the filled spikelets (Zhou et al., 2021). As
for CT imaging, it can reconstruct spikes in three dimensions as
well. Thus, wheat spike and grain traits, including spike height,
grain number, grain width, height, and depth, can be extracted
andmeasured (Hughes et al., 2017; Xiong et al., 2019a). Although
X-ray and CT imaging can provide considerable inner and spatial
information about wheat spikes, they are expensive and the
imaging systems are complicated, which limits their application.

Currently, color images are easily acquired at a low cost, and
most studies focus on the automatic measurement and counting
of wheat spikes using color imaging. But studies regarding
the automatic detection of wheat spikelets have not been well
reported, and the usefulness of color imaging for counting
spikelets needs to be further investigated. Deep learning has
been proved very helpful for the phenotyping of wheat spikes.
However, manual annotation is a laborious and tedious process.
Therefore, this study focuses on detecting and counting spikelets
using color imaging and deep learning techniques. Four common
wheat lines were selected as the objects of this study, and the
color images of their spikes were collected in the laboratory.
The objectives of this study were to (1) develop an unsupervised
learning-based method to automatically detect and label spikelets
from spike color images and build the datasets for DCNN
model training and (2) train a DCNN model that can detect
and count spikelets. The counting results of spikelets will be
compared with manual countings to evaluate the performance of
the proposed methods.

MATERIALS AND METHODS

The counting system mainly included the following steps: image
collection, image annotation, spikelet detection and counting,
and performance evaluation. Several algorithms were used and
developed to detect spikelets and build datasets in the section
of image annotation, and a DCNN model was trained using a
deep learning method to detect spikelets in the section of spikelet
detection and counting. Each step is described in detail in the
following sections. A desktop computer with AMD R5-2600
CPU, NVIDIA GeForce GTX 1070, 8G RAM, and Windows 10
64-bit system was utilized to process the images of wheat spikes
and test the proposed methods. Image annotation and spikelet
detection and counting were conducted using Matlab R2021b
software and Tensorflow, respectively.

Image Collection
The experiment was conducted in a field station in the city of

Hengshui (38◦21
′
N, 115◦65

′
E), Hebei Province, China. The

cultivated wheat lines were Shiyou 20, Shannong 25, Liangxing
99, and Shenmai 818, which were largely cultivated in the North
China Plain. Their wheat spikes with awns have different shapes
and colors. Wheat spike samples for each wheat line were
randomly selected and collected on May 18, 2021, and most of
the wheat spikes were at the grain filling stage of development.
At this stage, the wheat spikelets have basically been formed,
wheat awns and glumes have not begun to senesce, and the
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FIGURE 1 | Schematic diagram of wheat spike image capturing system and

captured images. (A) Image capturing system and (B) a spike image. A spike

example of Shiyou 20 was used in Figures 1–4 to explain our work.

FIGURE 2 | Schematic diagram of region of interest.

color contrast of spikelet and awn is great (Qiu et al., 2019).
The collected wheat spikes were transferred to the laboratory on
the same day. Wheat spikes were placed on a flat board, and a
HUAWEI Honor 9X PRO smartphone was used to capture spike
images, as illustrated in Figure 1A. A spike was captured twice
by rolling 180◦ to acquire its images on two sides. The captured
spike images (Figure 1B) have a 4,000× 3,000 pixel resolution in
a JPEG (Joint Photographic Experts Group) compressed format.
In the image, the apical spikelet is located on the top of the spike,
other spikelets are located on both sides of the spike rachis, and
the glumes of spikelets are clear. Spikelets can be counted by
detecting the glumes in the spike image. Finally, more than 300
spike images for each wheat line were collected.

FIGURE 3 | Spike segmentation. (A) Gray (S component) image of wheat

spike and (B) segmentation results of wheat spike.

Image Annotation
In this study, an unsupervised learning method based on
the watershed algorithm was developed to annotate the spike
images. In addition, a DCNN model was trained to optimize
the annotation. The method contains several steps, which are
described in detail in the following sections. The proposed
labeling method was implemented to process the collected spike
images of four wheat lines.

Image Preprocessing
The color images of raw spike have high resolution, which is
not conducive to the subsequent image processing. Therefore, a
region of interest (ROI) was set to the color images of the wheat
spike, to reduce the computation. The ROI is shown in Figure 2,
and the whole spike was extracted following the steps depicted
in the figure. Moreover, the extracted images were downsampled
using the bicubic method to reduce image resolutions. The scale
factor was set to 0.3, and the spike images were reshaped to 256
× 1,021 pixel resolution.

Spike Extraction
It is of significance to segment spikes from the spike images
in advance, to minimize detection areas and improve the
detection efficiencies and precision of spikelets. Although the
color characteristics of the spike and background in the spike
images are different, the color characteristics of spikes for
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FIGURE 4 | Spikelet annotation. (A) Gray (Cb component) image of wheat spike, (B) segmentation results of watershed algorithm, (C) MER for all candidate spikelet

regions, and (D) optimized MER for candidate spikelet regions.

TABLE 1 | The number of spikelets labeled by the watershed algorithm for training

and validation datasets.

Wheat line Training Validation SUM

Shiyou 20 1,097 267 1,364

Shannong 25 1,142 265 1,407

Liangxing 99 1,095 269 1,364

Shenmai 818 1,304 333 1,637

SUM 4,638 1,134 5,772

different wheat lines are not uniform in RGB (Red, Green, and
Blue) color space, which makes it difficult to apply RGB color
features to segment and extract spikes. After tests, HSV (Hue,
Saturation, and Value) color space was applied to process the
reshaped images after image preprocessing. S component of
the spike in the color image was calculated using the function
“rgb2hsv” provided by Matlab to generate the gray image to
represent the color characteristics of the spike, as shown in
Figure 3A. The contrast between spike and background is stark
so that the spike can be detected and extracted accurately. Otsu’s
algorithmwas implemented to process the gray image of the spike
and generate its binary image (Figure 3B). In the binary image,
the pixel values of spike and background are 1 and 0, respectively.
As shown in Figure 3B, the spike was successfully extracted.

Spikelet Segmentation and Annotation
The color characteristics of spikelets are different from the
other parts of spikes, which contributes to the detection and

segmentation of spikelets. Specifically, some parts of glumes are
prominent in the color images.

The color images of the spike were transformed into several
color spaces, such as RGB, HSV, and YCbCr, to find suitable
features for spikelet segmentation. Testing results showed that
the color features of spikelets and their boundaries were
significant in YCbCr color space. Cb component of the spike in
the color image was calculated using the function “rgb2ycbcr”
provided by Matlab to generate the gray image to represent
the color characteristics of spikelets. Then, a bilateral filter
was used to enhance the contrast between the spikelets and
their boundaries in the gray image, as shown in Figure 4A. By
performing a per-pixel dot product between Figures 4A, 3B, the
spike gray image was extracted, and the gray values of ground
pixels were set to 0.

In the spike gray image, the values of glumes are lower than
that of their surrounding pixels. Based on this characteristic,
the watershed algorithm can be used to segment the spikelets
from spikes. However, the watershed algorithm usually produces
over-segmentation. To improve the segmentation accuracy, a
watershed algorithm, marked by a local minimum threshold, was
applied to process the extracted gray image of the spike. Tests
showed that when the local minimum threshold was set to 3,
the obtained results can remove some local minimums and avoid
over-segmentation. The segmented boundaries generated by the
watershed algorithm can divide the spike into many regions
(Figure 4B), which contained many candidate spikelets. After
the initial segmentation of the spikelet, the areas and minimum
enclosed rectangles (MER) for all the candidate spikelet regions
were calculated (Figure 4C). According to the sizes and shapes of
spikelets, the regions whose areas were between 1,000 and 5,000
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FIGURE 5 | Loss and AP@0.5IOU of the Faster RCNN model for validation.

TABLE 2 | The number of labeled spikelets for training and validation datasets.

Wheat line Labeled by the DCNN model After manual correction

Training Validation SUM Training Validation SUM

Shiyou 20 982 224 1,206 1,272 297 1,569

Shannong 25 986 232 1,218 1,238 293 1,531

Liangxing 99 954 227 1,181 1,263 312 1,575

Shenmai 818 1,051 272 1,323 1,251 302 1,553

SUM 3,973 955 4,928 5,024 1,204 6,228

and ratios of length to width for the corresponding MER were
in the range of 1–2.5 were reserved, as displayed in Figure 4D.
After that, the upper-left coordinates, widths, and lengths ofMER
were saved to obtain the bounding boxes for the initial labeling
of spikelets.

Three hundred spike images of each wheat line were randomly
selected from their captured images and initially labeled using
the described method. As shown in Figure 4D, there were some
mislabeled or unlabeled spikelets. To acquire better labels, the
labeling results were manually checked, and 100 spike images of
each wheat line annotated with high accuracy were selected to
generate the dataset. XML files for all labeled spike images were
generated based on the coordinates of MER, which were used for
the subsequent dataset construction and DCNNmodel training.

DCNN Model Training
In recent years, some DCNN models were developed and widely
implemented for object detection. In the present study, Faster
RCNN, proposed by Ren et al. (2017), was selected to detect
the spikelets given its high detection accuracy, which can classify
objects and realize semantic segmentation of spikelets. A Faster
RCNN has two main parts, a regional proposal network (RPN)

and a Fast RCNN. The RPN is a type of fully convolutional
network and generates many anchor regions as candidate
bounding boxes. Each anchor is assessed and scored based on
its intersection over union (IOU) ratio with the ground truth.
The anchors are classified as positive and negative using a
Softmax function, and the bounding box regressions of positive
anchors are conducted to obtain corrected region proposals,
which are used by Fast RCNN for object detection training. In
addition, some proposals may overlap with each other, and non-
maximum suppression (NMS) is adopted to reduce the number
of proposals. The loss function (L) was defined as a function (1).

L = Lrpn_cls + Lrpn_reg + Lrcnn_cls + Lrcnn_reg (1)

where Lrpn_cls and Lrpn_reg , and Lrcnn_cls and Lrcnn_reg represent the
classification and bounding box regression losses for RPN and
Fast RCNN, respectively.

In this study, Faster RCNN was implemented using
Tensorflow object detection API (Huang et al., 2017). The
model was pre-trained using the COCO dataset. The Inception-
V2 model was used to extract features because of its high speed.
The scales (i.e., 0.25, 0.5, 1.0, and 2.0) and ratios (i.e., 0.5, 1.0, and
2.0) were set for the anchors. If the values of the IOU ratio with
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the labeled bounding box were higher than 0.6, the anchors were
considered to contain a wheat spikelet. The batch size was set
to 1 because it saves memory and computation time. The IOU
threshold for NMS was set to 0.6. The momentum was fixed to 1.
The initial learning rate (LR) was 0.0005. After 4,000 and 8,000
iterations, the LR dropped to 0.0003 and 0.0001, respectively.
The training results were recorded once every 60 s.

Before training, 80 spike images were randomly selected from
the annotated images (100 images) for each wheat line to generate
the training dataset, and the remaining 20 spike images were used
as the validation dataset. One hundred seventy spike images for
each wheat line that were not annotated were used to build the
testing dataset.

The model was retrained and fine-tuned using transfer
learning on the desktop computer with Tensorflow 1.10.0,
Anaconda 3.5.2, CUDA 9.0, and Python 3.6.7.

If the IOU between a predicted bounding box and a labeled
bounding box is higher than a set threshold, the predicted
bounding box is considered as a true positive (TP). Otherwise,
it is considered as a false positive (FP). If a labeled spikelet cannot
be detected, it is considered as a false negative (FN). Then, the
recall and precision can be calculated by functions (2) and (3).

recall =
TP

TP + FN
(2)

precision =
TP

TP + FP
(3)

The average precision (AP), which is the area under the
precision-recall curve, was applied as an indicator to quantify
the performance of the trained Faster RCNN model. In this
study, the standard IOU threshold value of 0.5 was used, and the
AP@0.5IOU was calculated (Madec et al., 2019).

Dataset Optimization
After training, the spike images in the training and validation
datasets were processed again using the trained DCNN model
to detect and label the spikelets. The coordinates and confidence
scores of detected bounding boxes were saved. The high
confidence scores (up to 1) indicated that the detected boxes
most probably contain spikelets. The bounding boxes of detected
spikelets whose confidence scores were higher than 0.75 were
reserved, which were used to update the image annotation and
the training and validation datasets.

As the performance of the watershed algorithm for spikelet
segmentation and labeling in Section Spikelet Segmentation
and Annotation was not perfect, the training and validation
datasets used for DCNNmodel training containmanymislabeled
or unlabeled spikelets, and the bounding boxes of spikelet
samples generated by the trained DCNNmodel were incomplete.
Therefore, manual corrections were conducted by removing
mislabeled regions and adding new spikelet labels to the updated
training and validation datasets.

Spikelet Detection and Counting
The ultimate goal of this study was to detect and count the wheat
spikelets in spike images. The Faster RCNN model was retrained

again using the optimized training and validation datasets in
Section Dataset Optimization. The batch size was set to 2, and the
momentum was adjusted to 0.8, to prevent overfitting. The initial
LR was set to 0.0005. After 6,000 and 10,000 iterations, the LR
dropped to 0.0001 and 0.00001, respectively. The training results
were recorded once every 15 s.

The retrained model was implemented to detect the spikelets
in the spike images of the testing dataset. The confidence score
threshold of the detected bounding box was set to 0.75. The
final results were counted to obtain the spikelet numbers for all
wheat lines.

Performance Evaluation
One hundred seventy spike images of each wheat line in the
testing dataset were used to assess the performance of the
proposed detection and counting methods for wheat spikelets,
which were evaluated using several statistical parameters,
including the root mean squared error (RMSE), relative RMSE
(rRMSE), and the coefficient of determination (R2), as described
in the following equations.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ti − di
)2

(4)

rRMSE =

√

√

√

√

1

n

n
∑

i=1

(

ti − di

ti

)2

(5)

R2 = 1−

∑n
i=1 (ti − di)

2

∑n
i=1 (ti − ti)

2
(6)

where n indicates the number of testing images, ti is the manually
counted number of spikelets, di is the automatically counted
number of spikelets, and ti is the mean value of ti.

RESULTS

Image Annotation Results
Spikelet Segmentation and Annotation Results
Although the bounding boxes generated by the water algorithm
contain some non-spikelet areas and their boundaries show
errors, they incorporate the main parts of spikelets. Some
unsatisfactory MER were removed in Section Spikelet
Segmentation and Annotation, so that many spikelets were
inevitably skipped and not annotated. A manual check was
performed only to estimate the labeling results, and the
boundaries of bounding boxes were not adjusted during the
manual check process.

After manual check and selection, the labeled spikelet
numbers of 100 spike images (80 images for the training dataset
and 20 images for the validation dataset) for each wheat line are
summarized in Table 1. The results indicated that the proposed
method can realize the segmentation and detection of spikelets in
spike images, even though the color characteristics of wheat lines
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are different. Also, it is effective for the initial spikelet labeling
of different wheat lines. Finally, a total of 5,772 spikelets were
roughly labeled. All the labeled spike images are provided in the
Supplementary Material.

Model Training and Dataset Optimization Results
The Faster RCNN model was trained using the initial labeled
spikelet samples. As presented in Table 1, the training and
validation datasets contain 320 (80 images × 4 lines) and 80
(20 images × 4 lines) spike images, and 4,638 and 1,134 labeled
spikelets, respectively. The loss for the validation dataset was
calculated, and the precision (AP@0.5IOU) was selected after
each iteration tomonitor the training process of the Faster RCNN
model. The validation loss and AP@0.5IOU are summarized in
Figure 5.

The AP@0.5IOU of the obtained model was not high due to
the inaccuracy and imperfection of the initial labeling datasets;
therefore, the training was stopped early when the AP@0.5IOU
was essentially unchanged, which was about 0.7479 at iteration
5,393. The final loss of the model for the validation dataset
was∼0.9886.

The training and validation datasets were processed using
the obtained model to detect their spikelets. The labeled
spikelet numbers for the wheat lines using the model are also
summarized in Table 2. After the DCNN model labeling, the
number of labeled spikelets for the training and validation
datasets were 3,973 and 955, respectively. Although the number
of labeled spikelets declined, the labeling qualities of spikelets
were improved. The boundaries of spikelets were flagged more
accurately. In the Supplementary Material, the labeled spikelets
for each wheat line are detailed.

According to the detection results, we found that the
robustness of the obtained model for the spikelets at the bottoms
of wheat spikes (as the lowest spikelet in Figure 4D) is poor. In
practice, these spikelets are sterile and not taken into account.
A manual correction was conducted to remove the mislabeled
samples. Besides, the model cannot detect all spikelets because
some spikelets in the initial datasets were not labeled. Bounding
boxes were manually added to handle this situation. The final
labeled spikelet samples after manual correction are summarized
in Table 2, and the training and validation datasets contain 5,024
and 1,204 labeled spikelets, respectively.

Spikelet Detection and Counting Results
Model Training for Spikelet Detection
The Faster RCNN model was retrained using the corrected
training and validation datasets. The recorded losses and
AP@0.5IOU are summarized in Figure 6. Results showed that
the training and validation losses of the model decreased slowly
with increasing iterations. AP@0.5IOU reached a high value after
a few hundred iterations and basically kept stable. Combing
AP@0.5IOU with the training and validation losses as the
indicators, the model saved at iteration 8,026 was selected as
the reference model, which was used to detect and count the
spikelets in spike images. At this iteration, the training loss,
validation loss, and AP@0.5IOU were about 0.5389, 0.9108, and
0.9582, respectively.

Spikelet Detection and Counting Results
To evaluate the performance of the retrained Faster RCNN
model, the testing dataset consisting of 170 spike images for
each wheat line that were not selected to generate the training
and validation datasets was used to assess the detection and
counting methods. The spikelets for each wheat line were
detected (Figure 7) and counted using the retrained model. The
results were summarized and compared with manual counting,
as shown in Figures 8, 9. The average processing time of
spike images required for spikelet counting was ∼0.4 s. Most
absolute errors for all wheat lines were not more than 1. The
RMSE, rRMSE, and R2 between the automatically and manually
counted results for Shiyou 20, Shannong 25, Liangxing 99, and
Shenmai 818 varieties were 0.62, 0.58, 0.54, and 0.77; 3.96, 3.73,
3.34, and 4.94%; and 0.73, 0.78, 0.84, and 0.67, respectively.
The detection results for all wheat lines are provided in the
Supplementary Material.

DISCUSSION

Image Annotation
Amethod based on a watershed algorithm was proposed to assist
in the labeling of spikelet samples. Cb component of the spike in
the color image was applied to obtain the gray image of the spike.
The color componentmakes full use of the color characteristics of
wheat glumes. On this basis, the watershed algorithm can roughly
segment the spike into many regions that contain spikelets. To a
certain extent, the application of MER reduces the segmentation
errors produced by the watershed algorithm. In addition, the
effect of wheat awns on spikelet labeling is small. The areas and
ratio of length to width were set for MER, which can eliminate
the regions that contain wheat awns. Although the proposed
method successfully labeled many spikelets, it can achieve better
performance on the wheat line whose color distribution is
relatively uniform, such as Liangxing 99.

Manual corrections were conducted twice. For the first time,
labeled spike images with higher annotation accuracy were
manually selected. For the second time, more work was done
to supplement unlabeled spikelets, modify some bounding boxes
that were with small errors, and remove the labels for the sterile
spikelets at the bottom of wheat spikes. Manual corrections assist
us to improve the accuracy of annotation.

In the ACID dataset, Pound et al. (2017) annotated each
spikelet by placing a dot in its center. In the present study, the
spikelets were labeled using bounding boxes. The bounding boxes
cannot only help in the detection and counting of the spikelets,
but also facilitate the calculation of the length, width, and area of
the spikelet in the present study.

Labeling the datasets by integrating machine learning
algorithms and deep learning techniques can effectively reduce
the labor cost and obtain high-quality datasets. The annotated
datasets can be used for DCNNmodel training.

Spikelet Detection and Counting
In this study, a Faster RCNN model was applied to detect
and count the spikelets of the wheat spike. In the image
detection field, image resolution has an impact on the detection
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FIGURE 6 | Losses and AP@0.5IOU of the Faster RCNN model during the training process.

FIGURE 7 | Examples to show the detection results of spikelets for different wheat lines. (A) Detection results of Shiyou 20, (B) detection results of Shannong 25, (C)

detection results of Liangxing 99, and (D) detection results of Shenmai 818.

performance of the model. During the training process, high
image resolution requires expensive processes and higher
hardware specifications. To detect the spikes in color images with
high resolution, Madec et al. (2019) split the spike images into
multiple sub-images and kept a 50% overlap between the sub-
images to develop datasets for model training. The sub-images
were processed, and spikes were detected to generate bounding
boxes for spikes. The overlapped ratios of bounding boxes for

neighbored sub-images were judged to remove some repeated
detections. An object can be easily detected more than once
using this strategy, and the detection results are highly dependent
on the sub-images and overlapped ratio setting. Therefore, we
prefer to reduce the image resolution to get satisfactory images.
Although the ratio of length to width for the image is not 1:1 and
is nearly 4:1, which is limited by the spike shape, the performance
of our model for spikelet detection and counting shows that
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FIGURE 8 | Distribution of the spikelet counting errors for all wheat lines.

FIGURE 9 | Comparison between the automatically and manually counted spikelet results. (A) Comparison and correlation for Shiyou 20, (B) comparison and

correlation for Shannong 25, (C) comparison and correlation for Liangxing 99, and (D) comparison and correlation for Shenmai 818. The red lines indicate the least

squares linear regression lines. The dashed lines are 1:1 lines.
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this strategy is appropriate for processing the color image that
contains a single spike.

Pound et al. (2017) conducted similar work to develop models
for spikelet counting using manually labeled samples. Their
spikelet counting errors ranged from 0.06 to 3.81%. In our study,
the spikelet counting and absolute errors were found to be 0.23
and 2.00%, respectively. There were no significant differences
between our studies. Therefore, the proposed labeling method
and developed model are practical for spikelet counting.

The spikelet detection and counting accuracy of our system
is negatively affected by some factors. First and foremost, the
testing results demonstrate that the sterile spikelets at the bottom
of wheat spikes weremistakenly taken into account. Although the
spikelet datasets were manually corrected and the sterile spikelet
labels were removed, the sterile spikelets are not uniform for
different wheat lines. First, some wheat lines hardly produce
sterile spikelets. Second, even for the same wheat line, the sterile
spikelets are missing in different spike samples. Third, there are
great differences in the locations of the sterile spikelets. Many
of them lay next to the spikelets that need to be counted, while
others are independent. The performance of the final DCNN
model for the sterile spikelet discrimination has been significantly
improved compared to the model trained using the initial image
annotation. Further work can be conducted to improve the
sterile spikelet detection by combing its location and shapes
(e.g., area, width, and the ratio of length to width). Another
potential problem is that many spikelets are too big to be counted
twice. Some grains inside the spikelets are plump, which makes
the lateral florets prominent, due to which the lateral florets
were incorrectly identified as spikelets. Finally, the effects of
wheat awns on spikelet detection should be considered. Some
spikelets were covered by awns in some spikes, particularly the
upper spikelets, which were hard to be detected. In the following
work, the covered spikelets may be estimated according to the
symmetrical characteristics of spikelets.

CONCLUSION

In this study, novel methods using color component selection
and image processing techniques, combined with deep learning,
were proposed to detect and count wheat spikelets in color
images. Cb component and a watershed algorithm were
implemented to process the color images of the spike and
automatically label the spikelets. A DCNN model that was
trained using the initially labeled datasets can further enlarge
and optimize the datasets. The proposed labeling method can
improve the efficiency and accuracy of dataset annotation. Then,
a Faster RCNN model, retrained through the transfer learning

technique and the obtained datasets, was capable of detecting
and counting the spikelets in a spike image. For four wheat lines,
RMSE, rRMSE, and R2 for the automatic and manual countings
of spikelets were 0.62, 0.58, 0.54, and 0.77; 3.96, 3.73, 3.34, and
4.94%; and 0.73, 0.78, 0.84, and 0.67, respectively. These results
demonstrated that the proposed methods can effectively detect
and count spikelets, which will help breeders collect sufficient
data to analyze the developmental characteristics of wheat spikes.

In future work, color images of spikes of other wheat lines
will be collected to further test the applicability of the proposed
methods. The detected spikelets contained several sterile spikelets
at times. Hence, a model that can recognize sterile spikelets needs
to be developed. The results of this study can also be combined
with other wheat spike properties (e.g., GNS) to evaluate more
wheat traits, such as spikelet fertilities. In addition, an app for
smartphones can be developed to acquire the number of spikelet
samples for field observation.
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Grape downy mildew (GDM) disease is a common plant leaf disease, and it causes

serious damage to grape production, reducing yield and fruit quality. Traditional manual

disease detection relies on farm experts and is often time-consuming. Computer vision

technologies and artificial intelligence could provide automatic disease detection for

real-time controlling the spread of disease on the grapevine in precision viticulture. To

achieve the best trade-off between GDM detection accuracy and speed under natural

environments, a deep learning based approach named YOLOv5-CA is proposed in

this study. Here coordinate attention (CA) mechanism is integrated into YOLOv5, which

highlights the downy mildew disease-related visual features to enhance the detection

performance. A challenging GDM dataset was acquired in a vineyard under a nature

scene (consisting of different illuminations, shadows, and backgrounds) to test the

proposed approach. Experimental results show that the proposed YOLOv5-CA achieved

a detection precision of 85.59%, a recall of 83.70%, and a mAP@0.5 of 89.55%,

which is superior to the popular methods, including Faster R-CNN, YOLOv3, and

YOLOv5. Furthermore, our proposed approach with inference occurring at 58.82 frames

per second, could be deployed for the real-time disease control requirement. In addition,

the proposed YOLOv5-CA based approach could effectively capture leaf disease related

visual features resulting in higher GDE detection accuracy. Overall, this study provides a

favorable deep learning based approach for the rapid and accurate diagnosis of grape

leaf diseases in the field of automatic disease detection.

Keywords: grape downy mildew, disease detection, deep learning, attention mechanism, data augmentation,

digital agriculture

1. INTRODUCTION

Grape as an important fruit crop makes a large economic income contribution in many countries
(Liu et al., 2020; Zhou et al., 2021). As the grape grows in a natural condition, diseases will
often appear on the leaves due to the complex weather condition and changing surrounding
environments. Grape downy mildew (GDM) is one of the serious diseases caused by the oomycete
pathogen Plamopara viticola, which seriously affects the growth of the grapes, causes a decrease
in quality and yield, and results in huge economic losses in the grape industry (Chen et al.,
2020; Ji et al., 2020). Downy mildew often happened in wet and rainy areas in spring and
summer, it is initiated at the stomata on the underside of the leaf, and then on the whole leaf
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(Chen et al., 2020). Monitoring grape leaf health and detecting
pathogen are essential to reduce disease spread and facilitate
effective management practices. Grape leaf diseases are currently
controlled by repetitive fungicide treatments throughout the
season. Reducing the treatment costs is a major challenge from
both environmental and economic views. Timely detection and
treatment at the initial stage of downy mildew infection (Adeel
et al., 2019) is a good solution to control and cut down the spread
of downy mildew in a large area. Therefore, if an automatic
detection method can be achieved when the spots appear, the
leaf disease control plan can be made to control the diseases,
guarantee the grape plant health, and improve the quality and
yield of the grapes. Vision based detection approaches have
been developed to detect plant diseases, which is performed
by extracting visual features (e.g., texture, shape, and color of
leaf lesions) of leaf images and using models (e.g., support
vector machine, linear regression) to recognize and detect the
diseases (Tang et al., 2020; Hernández et al., 2021). Zhu et al.
(2020) identified grape diseases using image analysis and BP
neural networks. Chen et al. (2020) developed and compared
several generalized linear models to predict the probability of
high incidence and severity in the Bordeaux vineyard region.
Abdelghafour et al. (2020) detected downy mildew symptoms
using proximal color imaging and achieved 83% pixel-wise
precision. However, the traditional image processing technology
needs to manually extract the leaf disease characteristics, which
is often time-consuming, and easy to miss the best disease
prevention time. In addition, under the nature scene (e.g.,
different illumination, symptoms, camera viewpoints), classical
algorithms or models lack robustness and cannot achieve stable
detect performance.

Many scholars have proposed approaches for earlier plant
disease detection and monitoring of the disease symptoms
(Mutka and Bart, 2015). At the earlier stage, the human-
crafted features such as texture, color, or shape characteristics
are extracted from RGB or hyper-spectral plant leaf images
for identifying the plant diseases (Mahlein, 2016). For
example, Atanassova et al. (2019) proposed spectral data based
classification models to predict the infection in plants, which
achieved over 78% accuracy. Waghmare et al. (2016) proposed
an automatic grape diseases detection system using the extracted
color Local Binary Pattern (LBP) features. Mohammadpoor et al.
(2020) proposed a support vector machine for grape fanleaf virus
detection and achieved 98.6% average accuracy. However, this
kind of method mostly depends on selected features and their
extraction is easy to be influenced by the camera viewpoints,
shadows, and lighting.

In recent years, deep learning methods such as convolutional
neural networks (CNN) have been widely implemented in
leaf disease detection, scene perception, and smart agriculture.
Variates CNN based detection methods have been proposed
for leaf disease recognition and monitoring (Liu et al., 2020).
Ferentinos (2018) proposed convolutional neural network
architectures to identify healthy or diseased plants. Arsenovic
et al. (2019) developed a two-stage architecture of neural
networks to classify plant disease and achieved an accuracy
of 93.67%. Zhang et al. (2019a) proposed an AlexNet based

cucumber disease identification approach, achieving 94.65%
recognition accuracy. Ji et al. (2020) proposed CNN based
approach to classify common grape leaf diseases and obtained
average classification accuracy of 98.57%. Liu et al. (2020)
proposed Inception convolutional neural network (DICNN) for
identifying grape leaf diseases and realized an overall accuracy
of 97.22% on single-leaf datasets. Thet et al. (2020) used an
improved VGG16 model that achieved 98.4% classification
accuracy for five different leaf diseases. Tang et al. (2020)
classified grape disease types using lightweight convolution
neural networks and channel-wise attention, which achieved
99.14% accuracy. Liu and Wang (2020) improved the YOLOv3
model to directly generate the bounding box coordinates for
tomato diseases and pests detection, which achieved a detection
accuracy of 92.39%. According to these studies, CNNs can
learn advanced robust features of leaf diseases directly from
original images, outperforming the traditional feature extraction
approaches. Yu and Son (2020) proposed a leaf spot attention
mechanism to increase apple leaf disease discriminative power
and enhance the identification performance. Hernández and
Lopez (2020) developed Bayesian deep learning techniques and
an uncertainty probabilistic programming approach for plant
disease detection.

With the continuous development of smart sensors, big data,
and cloud computing, many automatic approaches have been
proposed to identify and detect plant leaf diseases (Vishnoi et al.,
2021). The rapid development of artificial intelligence and the
Internet of Things (IoT) has significantly facilitated automatic
disease detection (Zhang et al., 2020). Using deep learning
models and noninvasive sensors to identify plant diseases has
drawn more attention in the field of precision agriculture
and plant phenotyping (Nagaraju and Chawla, 2020; Singh
et al., 2020). Hernández et al. (2021) investigated hyperspectral
sensing technologies and artificial intelligence applications
for assessing downy mildew in grapevine under laboratory
conditions. Gutiérrez et al. (2021) differentiated downy mildew
and spider mite in grapevine under field conditions using the
CNN model. Liu et al. (2021) proposed Hierarchical Multi-
Scale Attention Semantic Segmentation (HMASS) to identify
GDM infected regions, and the calculated infection severity
percentage was highly correlated (R = 0.96) with the human
field assessment.

Choi and Hsiao (2021) classified Cassava leaf diseases using
the Residual Network. Zhang et al. (2021) developed a multi-
feature fusion Faster R-CNN model and achieved 83.34%
detection accuracy for soybean leaf disease. Dinata et al. (2021)
proposed CNN based approach for 6 types of strawberry disease
classification and achieved 63.7% accuracy. Abbas et al. (2021)
detected tomato plant disease using transfer learning and C-
GAN synthetic images, which achieved 99.51% accuracy. Cristin
et al. (2020) proposed a deep neural network based Rider-Cuckoo
Search Algorithm and achieved 87.7% plant disease detection
accuracy. Roy and Bhaduri (2021) proposed deep learning-
based multi-class plant disease and achieved 91.2% mean average
precision. However, most of these methods are only tested in
experimental situations, which need to be verified on the complex
background situation.
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Despite deep learning based approaches demonstrating its
facilitate in GDM detection, the detection accuracy and speed
restricted its application in autonomous viticulture management.
Plant leaf disease detection in the real vineyard is facing many
challenges, such as the small difference between the lesion area
and the background, different scales of the spots, variation of
symptoms, and camera viewpoints (Liu and Wang, 2021). Also,
light changing in a real complex natural environment further
increased the difficulty to achieve high detection accuracy.
Therefore, real-time and accurate detection of grape downy
mildew is of great significance for the scientific management and
control of grape diseases in precision vineyard farming.

Recently, the attention mechanisms such as Squeeze-and-
Excitation Networks (SE) (Hu et al., 2018), Convolutional block
attention module (CBAM) (Woo et al., 2018), and CA (Hou
et al., 2021) have been widely used to enhance the deep learning
model performances. SE simply squeezes each 2D feature map
to efficiently build interdependencies among channels (Hu
et al., 2018). CBAM introduces spatial information encoding via
convolutions with large-size kernels and gathers channel-wise
and spatial-wise attention sequentially. The recently proposed
CA adopts different spatial attention mechanisms and designs
advanced attention blocks. Zhang et al. (2019b) applied an
attention mechanism to object detection networks, enhancing
the impact of significant features and weakening background
interference. Experimental results show that the proposed
approach achieved an object detection accuracy of 75.9% on
PASCAL VOC 2007, which is 6% higher than Faster R-CNN.
Liu et al. (2019) presented a deep neural network architecture
based on information transmission and attention mechanisms.
Zhao et al. (2021) diagnosed tomato leaf disease using an
attention module improved network, which achieved 96.81%
average identification accuracy on the tomato leaf diseases
dataset. Ravi et al. (2021) integrated the attention module into
the EfficientNet model to locate and identify the tiny infected
regions in the Cassava leaf. The proposed method achieved
better performance than non-attention-based CNN pre-trained
models. Wang et al. (2021b) proposed a Fine-Grained grape
leaf disease recognition method using a lightweight attention
network, which can efficiently diagnose orchard grape leaf
diseases with low computing cost. The above studies have
demonstrated that attention mechanisms could enhance feature
extraction ability for leaf disease detection and identification.

In this study, to improve GDM detection accuracy in the
natural grape farm environment, we proposed YOLOv5-CA
based GDM detection approach by combing YOLOv5 and CA
mechanism. Different scales of image features were extracted
through CNN layers of YOLOv5, and these features were
weighted by CA for GDM detection. By using CA, the features’
effectiveness for GDM detection is highlighted and those less
effective features are suppressed. The proposed YOLOv5-CA
based GDM detection is tested on our acquired grape leaf image
dataset.

The remaining part of the article is organized as follows.
Section 2 illustrates the used datasets, the proposed approaches,
and evaluation indicators. Experimental results are presented
in Section 3. Discussions of the performance are presented in

Section 4. Finally, conclusions and future areas for research are
given in Section 5.

2. MATERIAL AND METHODOLOGY

2.1. Plant Material and Image Acquisition
Grape leaf image data were acquired in a commercial vineyard
located in the college of Enology, Northwest A&F University,
north of China (Yangling, Shaanxi Province). The vineyard
manifested downy mildew (Plasmopara viticola) in many plants.
Images were taken manually for several days (each day is from
8:00 a.m. to 16:00 p.m.) in early August on a partly cloudy day
(Figure 1). The used camera is a Canon EDS 1200D (a field
of view of approximately 504 mm horizontally and 360 mm
vertically), and the external conditions for shooting are automatic
mode. There is approximately 30 cm between the camera lens and
the grape leaves.

A total of 820 leaf samples were collected from different
lights, leaf overlapping, and disease severity. The dataset is
challenging considering the complex background, occlusions,
different disease spot-areas, and shadow influence. Figure 1

shows images of diseased leaves in a typical complex environment
in the dataset. Downy mildew first appears as brown patches.
These patches gradually spread and a leaf that is severely affected
may have a reduced yield with a shorter lifetime and fruits with a
small size.

To validate the proposed YOLOv5-CA based GDM detection
approach, the randomly selected 500 leaf images were used as
training datasets, while the remaining 320 images were used as
testing data. For experiment testing, the LabelImg annotation
tool (Tzutalin, 2015) was used to manually label the leaf
disease areas.

2.2. YOLOv5-CA Based GDM Detection
In order to make YOLOv5 more suitable for GDM detection
in complex natural scenarios such as complex background,
occlusions, different disease spot-areas, and shadow influence,
YOLOv5-CA based GDM detection approach is proposed to
improve the GDM detection performance for real farming
applications. Grape leaves’ RGB images were acquired
under field conditions from a commercial vineyard. These
collected images contain healthy and downy mildew infected
leaves. Then detection model YOLOv5-CA was trained to
identify the GDM infected regions. As shown in Figure 2,
the proposed YOLOv5-CA approach extracted features
using YOLOv5 and learned key features through CA,
enhancing the feature extraction ability and improving the
leaf disease detection performance. As YOLOv5 could adjust
the width and depth of the backbone network according to
application requirements, for GDM detection, moderate model
parameters (i.e., width and depth parameters are 0.75 and
0.67, respectively) were used to achieve reasonable detection
speed.

YOLOv5-CA network is mainly composed of backbone part,
neck network, and head part: 1) The backbone of YOLOv5 is
responsible for extracting image features, which includes several
different layers types such as Focus, Conv, C3, CA, and Spatial

Frontiers in Plant Science | www.frontiersin.org 3 June 2022 | Volume 13 | Article 872107311

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Automatic Grape Downy Mildew Detection

FIGURE 1 | Commercial vineyard and acquired images under natural light conditions.

FIGURE 2 | The architecture of the proposed YOLOv5-CA based GDM detection.

Pyramid Pooling (SPP) layer. 2) The neck module generates a
feature pyramid based on the PANet (Path Aggregation Network)
(Liu et al., 2018). It is a series of feature aggregation layers of
mixed and combined image features, enhancing the ability to
detect objects with different scales by fusing low-level spatial
features and high-level semantic features. 3) The head module
generates detection boxes, indicating the category, coordinates,
and confidence by applying anchor boxes to multi-scale feature
maps from the neck module. The proposed YOLOv5-CA
boosts the detection ability of different GDM infection regions

through an attentionmechanism, which provides a feasible GDM
detection and monitoring solution for automatic disease control.

2.2.1. Backbone of YOLOv5-CA
The backbone of the YOLOV5-CA object detector mainly
contains Focus, Conv, C3, CA, and Spatial Pyramid Pooling
(SPP) layer. The features from deeper layers are more abstract
and semantic, while the low-layer features contain spatial
information and fine-grained features. For an input image, the
Focus module rearranged it through stridden slice operations
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in both width and height dimensions, which reduces model
calculation time. C3 module contains three convolutions and is
used to extract the deep features of the image. The following
SPP is used to improve the receptive field of the network by
converting any size of the feature map into a fixed-size feature
vector. SPP (He et al., 2015) concatenates layer outputs with
different kernel sizes (e.g., 13×13, 9×9, 5×5) to boost multi-scale
image feature representation ability. All the convolutions utilize
Swish activation:

Swish(x) = x× σ (x) (1)

where σ denotes the sigmoid function.
In our study, we integrated the CA layer into the YOLOv5

backbone, CA layer factorizes channel attention into two 1D
feature encoding processes and preserves the precise positional
information, which augments the representations of the leaf
disease regions.

2.2.2. Neck of YOLOv5-CA
The neck structure used in YOLOv5-CA is a PANet (Liu et al.,
2018), which fuses the information of all layers to aggregate
features by combing bottom-up pyramid and element-wise max
operations. PANet combines convolution features of different
layers for images, thus the useful information in each feature
layer can be directly propagated to the following subnetwork.
By this, PANet can not only realize the abstract description of
large objects but also retains the feature details of small objects.
In addition, C3 modules are also added at this stage to enhance
the feature fusion capability. Through the neck part, the features
of infected areas can be extracted to maintain the detection
performance.

2.2.3. CA Layer
In terms of GDM detection, because the GDM is randomly
distributed in the grape leaf, there is inevitably a mix of
overlapping occlusion, and the GDM infection regions account
for a relatively small percentage of the images, resulting in missed
and mis-detected. In our study, a plug-and-play CA layer was
introduced to assist YOLOv5 focused on key disease-related
features, and improve the detection accuracy.

The CA layer embeds the location-aware information into
the channel attention simultaneously, which increases the
spatial range of attention and avoids a lot of computational
overhead (Hou et al., 2021). CA layer can be regarded as
a computational unit that enhances the representation ability
of the learned features. For any intermediate feature X =

[x1, x2, · · · xc] ∈ R
C×H×W , CA could outputs a transformed

feature with augmented representations Y = [y1, y2, · · · , yc] of
the same size to X.

As shown in Figure 3, the CA mechanism can be divided
into two parts: the coordinate information embedding part
(encodes the information of the channels in the horizontal and
vertical coordinates) and the coordinate attention generation
part (captures the positional information and generates the
weight values).

2.2.4. Coordinate Information Embedding
Attention mechanisms have been demonstrated helpful to
enhance the overall performance of deep learning models
(Chorowski et al., 2015). The attention mechanism can be
regarded as a feature weighting scheme, which helps the
deep learning model to pay more attention to the task-
related information, and suppress or ignore the less-contribution
features (Li et al., 2020; Mi et al., 2020). Through this, the
attention mechanism strengthens the deep learning model’s
learning ability and boosts performance (Niu et al., 2021). In
recent years, attention mechanisms based on deep learning
networks have been applied to a wide variety of computer vision
tasks such as image classification, object detection, and image
segmentation (Qiao et al., 2019, 2021). Wang et al. (2021a)
developed a deep attention module for vegetable and fruit
leaf plant disease detection. Kerkech et al. (2020) used a fully
convolutional neural network approach to classify Unmanned
Aerial Vehicle (UAV) image pixels for detecting mildew disease.

It is known that channel attention could increase the value
of the important channel while punishing the non-significant
channels, however, channel attention is difficult to preserve
positional information (Zhang et al., 2018). To capture precise
positional information, the global average pooling was factorized
into the average pooling from two directions of each channel.
Specifically, given the input X, two spatial extents of pooling
kernels (H, 1) and (W, 1) were used to encode each channel
along the horizontal coordinate and the vertical dimensions,
respectively. The output of the c-th channel along height h and
width w dimensions can be formulated as:

zhc (h) =
1

W

∑

0≤i<W

xc(h, i),

zwc (w) =
1

H

∑

0≤j<H

xc(w, j).

(2)

where zh and zw are the outputs of the transform at h direction
width w, respectively; xc is the feature map at c-th channel;
W and H are the width and height dimensions of the feature
map separately.

The Equation (2) encodes each channel along with the
horizontal and vertical coordinates, preserving the positional
information of each channel of feature maps, which facilitates the
network to locate the GDM-related visual features precisely.

2.2.5. Coordinate Attention Generation
To further exploit resulting expressive representations, a simple
and effective coordinate attention generation was used as the
second transformation. Here, the obtained feature maps from the
coordinate information embedding stage were concatenated and
then sent to a shared 1×1 convolution layer. The relevant process
is defined as:

f = Relu(F([zh, zw])) (3)

where [, ] indicates concatenate operation, F is 1×1 convolution

operation; f ∈ R
C
r ×(W+H) is the output feature map of the ReLU

layer, r is reduction rate.
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FIGURE 3 | Schematic of coordinate attention module.

Next, the feature map f was decomposed into two separate

tensors: f h ∈ R
C
r ×H and f w ∈ R

C
r ×W . Then the following two

1×1 convolution layers for f h and f w, respectively, are recovered
to the same shape as zh and zw. The operation is formulated as:

gh = σ (Fh(f
h)),

gw = σ (Fw(f
w)).

(4)

where σ is the sigmoid activation function, and Fh and Fw are the
convolution manipulation for f h and f ω separately.

The obtained feature maps gh and gw are then expanded
and used as attention weights for the horizontal and vertical
coordinates, respectively. This operation can enhance the
effective leaf disease related features and reduce the influence
of less important information. The reweighing process of the
original input feature map can be defined as:

yc(i, j) = xc(i, j)× ghc (i)× gwc (j). (5)

where yc is the c-th channel in the generated feature map y of the
attention block.

2.3. YOLOv5-CA Model Training for GDM
Detection
2.3.1. Network Training Parameters
In our study, the experimental platform is based on a computer
equipped with an NVIDIA RTX 1080Ti GPU, Ryzen 7 3600
CPU@3.6 GHz. The proposed GDM detection approach was
implemented using Pytorch.

In addition, to verify the effectiveness of the YOLOv5-CA
based GDM detection approach, Faster R-CNN (Ren et al., 2015),
YOLOv4 (Bochkovskiy et al., 2020), and YOLOv5 (Tzutalin,
2015) were also used for comparison. Faster R-CNN generates
regions of interest (RoIs) candidates and then classifies them into
objects (and background) and refines the boundaries of those
regions. YOLOv4 and YOLOv5 are the two widely used detection
methods from the YOLO series (Redmon et al., 2016).

For network training, the network’s input size was set to
416×416×3, the training epoch was set to 1000, batch size was
set to 16, and the learning rate was 0.0013. The momentum

factor (momentum) was set to 0.937, the initial learning rate was
1 × 10−5 and the decay rate of weight was set to 0.001. The
other parameters of each network are their default settings. In the
training process, the network predicts the bounding box based
on the initial anchor box. The gap between the prediction and
ground truth was calculated to update the network in reverse and
adjusts the network parameters. After training, the weight file of
the detection model obtained was saved.

2.3.2. Network Loss Function
YOLOV5-CA automatically updates the best bounding box
for GDM detection during the training process. The default
optimization method of the model is the gradient descent
method. The loss function Lloss used in YOLOv5-CA includes
bounding box location loss LCiou, confidence loss Lconf and
classification loss Lcls:

Lloss = Lcls + Lconf + LCIoU (6)

Classification loss Lcls computes the loss of class probability using
Cross Entropy:

Lcls =

s2
∑

i=0

ℓ
obj
i,j

∑

c∈classes

[

∧
pi(c)log(pi (c))+ (1−

∧
pi(c))log(1− pi(c))

]

(7)

where ℓ
obj
i is used to judge whether there is an object center. p̂i(c)

is the probability of class c; pi(c) is the probability of predicted
box that belongs to class c.

Confidence loss Lconf penalizes object confidence error if
that predictor is responsible for the ground truth box, which is
computed using mean squared error:

Lconf =

s2
∑

i=0

B
∑

j=0

ℓ
obj
i,j

[

∧
Ci log(Ci)+ (1−

∧
Ci)log(1− Ci)

]

+λnoobj

s2
∑

i=0

B
∑

j=0

ℓ
noobj
i

[

∧
Ci log(Ci)+ (1− Ci)log(1−

∧
Ci)

]

(8)

where λnoobj represents the weight of the classification error, S is
the number of grids, and B is the number of prior boxes in each
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grid;Ci is the confidence of the predicted box; Ĉi is the confidence
of the ground-truth (Ĉi is always 1).

The LCiou computes the loss related to the predicted bounding
box and ground truth, it can be defined as follows:







LCIoU = 1− IoU +
ρ2(b,bgt)

e2
+ ν2

(1−IoU)+ν

IoU =
|b∩bgt|
|b∪bgt|

(9)

where v represents the coincidence degree of the two frame aspect
ratios, b and bgt are the center coordinates of the prediction box
and the real box respectively; ρ is the Euclidean distance between
the two center points, and e represents the diagonal distance of
the smallest closed area containing both the prediction and real
boxes. IoU means the ratio of the intersection and union of the
prediction bounding box and the actual bounding box.

2.3.3. Performance Evaluation
The used performance evaluation indicators for GDM detection
include precision, recall, F1-score, mAP (mean average
precision), and FPS (frame per second). Precision shows the
ability of the model to accurately identify targets; recall reflects
the ability of the model to detect targets; the F1-score is a
harmonic mean of the precision and recall; FPS is the average
inference speed. The F1-score is the reconciled mean of precision
and recall, taking into account both the precision and recall of
the classification model. Based on tp (the number of hlcorrectly
detected downy mildew areas), fp (the number of incorrectly
detected downy mildew areas), and fn (the number of disease
regions that are incorrectly identified as background), the
relevant calculation equations are as follows:

Precision =
tp

tp+ fp
× 100% (10)

Recall =
tp

tp+ fn
× 100% (11)

F1 = 2×
Precision× Recall

Precision+ Recall
× 100% (12)

From the values of precision and recall, a precision-recall curve
can be plotted to observe their distribution. The value of AP
is the area under the precision-recall curve, and a larger value
means better model performance. mAP@0.5 is the average value
of precision under different recall values when the intersection
over union (IoU) is 0.5. The calculation of mAP is as follows:

mAP =
1

n

N
∑

k=1

APk (13)

where N denotes the number of disease types (N is 1 in
our study).

TABLE 1 | Comparison of different GDM methods.

Method
Precision

(%)

Recall

(%)

F1

(%)

mAP@0.5

(%)
FPS (Frame/s)

Faster R-CNN 79.97 87.80 83.70 80.65 35.90

YOLOv4 82.69 83.63 83.15 82.65 75.20

YOLOv5 85.35 81.45 83.36 87.41 84.74

YOLOv5-CA 85.59 83.70 84.63 89.55 58.82

3. EXPERIMENTAL RESULTS

3.1. Comparison of Different Object
Detection Algorithms
There are varieties of deep learning based detection methods, in
order to verify the effectiveness of the proposedmethod for GDM
detection, three popular detection algorithms—Faster R-CNN,
YOLOv4, and YOLOv5 were compared. The GDM detection
results were presented in Table 1.

In Table 1, the proposed YOLOv5-CA based approach
achieved 85.59% precision, 83.70% recall and 84.63% F1, and
89.55% mAP, respectively. Compared with the other methods,
the proposed YOLOv5-CA GDM detection method is better
than that of Faster R-CNN (80.65% mAP), YOLOv4 (82.65 %
mAP), and YOLOv5 (87.41%mAP). From these results, it is clear
that the CA mechanism of YOLOv5-CA improves the feature
representation ability, enhancing the final detection accuracy
for identifying the leaf disease areas. Meanwhile, the proposed
approach could detect the GDM with a speed of 58.82 frames
per second. These results illustrated that the proposed method
could achieve high precision with a fast speed to meet real-time
requirements, which is favorable for the deployment of the GDM
detection model in spraying robots for the plant diseases control
in smart vineyard farming.

3.2. Qualitative GDM Detection
Comparison
Figure 4 demonstrates the comparison of different methods’
qualitative results on our acquired grape leaf dataset. It can
be seen that the proposed YOLOv5-CA could detect GDM
at different leaf parts (e.g., leaf edge, the leaf central parts).
Especially, the proposed YOLOv5-CA method could detect less
obvious GDM lesions on the leaves, which outperformed the
other methods such as Faster R-CNN, YOLOv4, and YOLOv5.
The main reason could be that the CA mechanism strengthens
the feature representation ability, which enhances the GDM
detection performance.

Additionally, more examples of YOLOv5-CA based GDM
detection are presented in Figure 5. It can be seen that the
GDM infected regions are well detected (blue bounding box)
under complex background, especially, YOLOv5-CA could well
detect the GDM regions nearby the leaf edge and petioles. It
also can be noted that the YOLOv5-CA could detect both large
and small GDM regions. The main reason is that the YOLOv5-
CA makes the network pay more attention to the GDM-related
visual features, reducing the false or mis-detection cases. The
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FIGURE 4 | Examples of different GDM detection attention methods. (A) Faster R-CNN, (B) YOLOv4, (C) YOLOv5, and (D) YOLOV5-CA.

good detection performance of YOLOv5-CA provides valuable
information for automatic disease control.

3.3. Influence of Different Network
Input-Sizes on GDM Detection
The network input size is one factor that would influence the
GDM detection performance. Here, we also investigate different
input-sizes’ influence on YOLOv5-CA based GDM detection. In
Table 2, five typical network input sizes, namely, 112 × 112,

224× 224, 320× 320, 416× 416, and 512× 512 were compared
in terms of GDM detection performance.

According to Table 2, the network input with 416×416
size achieved 85.59% precision, 83.70% recall, 84.63% F1-score,
and 89.55% mAP@0.5, which outperformed the performance
of input size with 112×112, 224×224, and 512×512. This
means the proposed YOLOv5-CA could extract and learn the
more useful information from the large input size. However,
when the network input-size increases to 512×512, there is
not much performance improvement but significantly increased

Frontiers in Plant Science | www.frontiersin.org 8 June 2022 | Volume 13 | Article 872107316

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Automatic Grape Downy Mildew Detection

FIGURE 5 | Examples of YOLOv5-CA based GDM detection results.

TABLE 2 | Grape downy mildew Detection performance with different network

input sizes.

Network input size
Precision

(%)

Recall

(%)

F1

(%)
mAP@0.5 FPS (Frame/s)

112 × 112 80.32 72.76 76.35 76.71 102.04

224 × 224 83.73 79.32 81.47 82.63 92.63

320 × 320 84.75 84.32 84.53 85.25 76.92

416 × 416 85.59 83.70 84.63 89.55 58.82

512 × 512 86.71 82.80 84.71 87.89 45.45

the processing time and calculating memory size, which is not
favorable for fast detection and real applications. By balancing
the speed and accuracy, the input size of 416×416 was selected in
our work for real-time GDM detection.

3.4. Data Augmentation for YOLOv5-CA
Detection
Offline data augmentation could increase the dataset diversity,
explore the network hyperparameters, and finally enhance
the accuracy and robustness of the trained model (Zoph
et al., 2020; Su et al., 2021). To further improve the GDM
detection performance, in our study, bounding box based data
augmentation was used. The augmentation technique was only
applied to disease areas within the manually labeled bounding
boxes. The transformations for data augmentation implemented
include: flipping horizontally and vertically, randomly cropping
between 0 and 20% of the bounding box, random rotation,
random shear of between −15◦ to +15◦ horizontally and
vertically, random brightness adjustment (between 0 and +10%),
and Gaussian blur (between 0 and 5 pixels). The original 500
training images were expanded to 2000 images, and then they
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FIGURE 6 | Examples of Bounding box based data augmentation. (A) Manual label, (B) Flip (vertical), (C) Flip (horizontal), (D) Crop, (E) Rotation, (F) Shear, (G)

Brightness, and (H) Gaussian blur.

TABLE 3 | Comparison of different GDM methods.

Method
Precision

(%)

Recall

(%)

F1

(%)

mAP@0.5

(%)

YOLOv5-CA 85.59 83.70 84.63 89.55

YOLOv5-CA

(with data augmentation)

88.82 83.63 86.15 90.02

were used to train the YOLOv5-CA network, which forces neural
nets to optimize hyperparameters and generate a high-robust
model. Some augmented bounding boxes on grape leaves can be
seen in Figure 6.

As illustrated in Table 3, the data augmentation based
YOLOv5-CA detection achieved a precision of 88.82%, a recall
of 83.63%, and an F1-score of 86.15%, which is slightly
higher than those without data augmentation. The data
augmentation positively influences the model’s performance
by increasing the size of the dataset and mitigating the
over-fitting. The overall improvements demonstrated that the
data augmentation module is helpful in the GDM detection,
enlarging model learning ability and significantly improving
detection performance.

4. DISCUSSIONS

This study presents a deep learning-based pipeline for automatic
GDM detection in the vineyard. The grape leaf images acquired
directly from the plants under field conditions were used to
verify our proposed YOLOv5-CA approach. According to our
experimental results presented in Table 1, a precision of 85.59%,

a recall of 83.70%, an F1-score of 84.63%, and a mAP@0.5 of
89.55% with the inference speed of 58.82 frames per second
(FPS) was obtained for GDM detection. The detection accuracy
of the proposed YOLOv5-CA is superior to that of state-of-
the-art methods such as Faster R-CNN, YOLOv4, and YOLOv5.
This high accuracy demonstrates the effectiveness of YOLOv5-
CA for GDM detection of grapevine leaf images taken under
field conditions. There yield results show that it is feasible to
model visual symptoms for automatic GDM detection using
a combination of the YOLOv5 and the CA mechanism. The
proposed YOLOv5-CA automatically finds complex features
capable of differentiating leaves with downy mildew symptoms
and without any, which provides a precise and effective method
for automatic disease detection.

On the other hand, the results presented in Table 2 reveal
the appropriate network input size in our experiments is
416×416. Additionally, Table 3 compared the GDM detection
performance with and without data augmentation, it shows that
data augmentation enhances the GDM detection performance.
The possible reason is that data augmentation increases the size
of the dataset and brings more diversity to leverage the model
training.

Although this study mainly focuses on GDM detection,
it is suitable for multi-diseases detection (e.g., black spot,
powdery mildew) after the model was re-trained with the dataset
containing these diseases. As our approach uses RGB images,
it would be a restriction for detecting GDM in the very earlier
stage (i.e., non-visible symptoms) detection. However, if the
multi-spectral images were acquired and used, our proposed
YOLOv5-CA could be a potential tool to distinguish downy
mildew from other leaf diseases/damage.
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5. CONCLUSIONS AND FUTURE STUDY

To achieve an accurate and real-time intelligent detection of
GDM under natural environments, an automatic YOLOv5-CA
based detection method was proposed in this study. By combing
YOLOv5 and coordinate attention, the GDM related visual
features are well focused on and extracted, which boosts the GDM
detection performance. Our proposed YOLOv5-CA achieved
85.59% detection precision, 89.55% mAP@0.5 with 58.82 FPS,
which outperformed Faster R-CNN, YOLOv4, and YOLOv5.
Moreover, the test results showed that the different disease levels
of GDM and the illumination influence would not have a great
impact on the GDM detection results, indicating the proposed
method is feasible for the rapid and accurate detection of GDM.
Ablation studies show that a network input size of 416×416 is
favorable for fast GDM detection, and bounding box-based data
augmentation boosts the GDM detection precision by 3.23%.
The results exposed in this work indicate that downy mildew
in grapevine can be automatically evaluated using artificial
intelligence technology.

Overall, our approach achieved a good trade-off between
speed and accuracy for GDM, and can be adapted to
applications with autonomous-based smart farming. For future
study, the multi-spectral information and edge computing will

be exploited to further improve detection performance and
computational efficiency.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

ZZ: investigation, methodology, writing-review, and editing.
YQ: data curation, methodology, formal analysis, and
writing-original draft. YG: writing-review and editing.
DH: resources and article revising. All authors contributed
to the article and approved the submitted version.

FUNDING

This research was funded by the National Key Research and
Development Program of China (2019YFD1002500), Ningxia
Hui Autonomous Region Key Research and Development
Program (2021BEF02015), and Ningxia Hui Autonomous
Region Flexible Introduction Team Project (2020RXTDLX08).

REFERENCES

Abbas, A., Jain, S., Gour, M., and Vankudothu, S. (2021). Tomato plant disease

detection using transfer learning with c-gan synthetic images. Comput.

Electron. Agric. 187, 1106279. doi: 10.1016/j.compag.2021.106279

Abdelghafour, F., Keresztes, B., Germain, C., and Da Costa, J.-P. (2020). In field

detection of downy mildew symptoms with proximal colour imaging. Sensors

20, 4380. doi: 10.3390/s20164380

Adeel, A., Khan, M. A., Sharif, M., Azam, F., Shah, J. H., Umer, T., et al.

(2019). Diagnosis and recognition of grape leaf diseases: An automated

system based on a novel saliency approach and canonical correlation

analysis based multiple features fusion. Sustainable Comput. 24, 1100349.

doi: 10.1016/j.suscom.2019.08.002

Arsenovic,M., Karanovic, M., Sladojevic, S., Anderla, A., and Stefanovic, D. (2019).

Solving current limitations of deep learning based approaches for plant disease

detection. Symmetry 11, 939. doi: 10.3390/sym11070939

Atanassova, S., Nikolov, P., Valchev, N., Masheva, S., and Yorgov, D. (2019).

Early detection of powdery mildew (podosphaera xanthii) on cucumber leaves

based on visible and near-infrared spectroscopy. AIP Conf. Proc. 2075, 160014.

doi: 10.1063/1.5091341

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). Yolov4: optimal

speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

doi: 10.48550/arXiv.2004.10934

Chen, M., Brun, F., Raynal, M., and Makowski, D. (2020). Forecasting severe

grape downy mildew attacks using machine learning. PLoS ONE 15, e0230254.

doi: 10.1371/journal.pone.0230254

Choi, H. C., and Hsiao, T.-C. (2021). “Image classification of cassava leaf disease

based on residual network,” in 2021 IEEE 3rd Eurasia Conference on Biomedical

Engineering, Healthcare and Sustainability (ECBIOS) (Tainan: IEEE), 185–186.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y.

(2015). Attention-based models for speech recognition. arXiv preprint

arXiv:1506.07503. doi: 10.48550/arXiv.1506.07503

Cristin, R., Kumar, B. S., Priya, C., and Karthick, K. (2020). Deep neural network

based rider-cuckoo search algorithm for plant disease detection. Artif. Intell.

Rev. 53, 4993–5018. doi: 10.1007/s10462-020-09813-w

Dinata, M. I., Nugroho, S. M. S., and Rachmadi, R. F. (2021). “Classification of

strawberry plant diseases with leaf image using CNN,” in 2021 International

Conference on Artificial Intelligence and Computer Science Technology

(ICAICST) (Yogyakarta: IEEE), 68–72.

Ferentinos, K. P. (2018). Deep learning models for plant disease

detection and diagnosis. Comput. Electron. Agric. 145, 3111–3318.

doi: 10.1016/j.compag.2018.01.009

Gutiérrez, S., Hernández, I., Ceballos, S., Barrio, I., Díez-Navajas, A. M., and

Tardaguila, J. (2021). Deep learning for the differentiation of downy mildew

and spider mite in grapevine under field conditions. Comput. Electron. Agric.

182, 1105991. doi: 10.1016/j.compag.2021.105991

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep

convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 37, 1904–1916. doi: 10.1109/TPAMI.2015.2389824

Hernández, I., Gutiérrez, S., Ceballos, S., Iñíguez, R., Barrio, I., and

Tardaguila, J. (2021). Artificial intelligence and novel sensing technologies

for assessing downy mildew in grapevine. Horticulturae 7, 103.

doi: 10.3390/horticulturae7050103

Hernández, S., and Lopez, J. L. (2020). Uncertainty quantification for plant disease

detection using bayesian deep learning. Appl. Soft. Comput. 96, 1106597.

doi: 10.1016/j.asoc.2020.106597

Hou, Q., Zhou, D., and Feng, J. (2021). “Coordinate attention for efficient mobile

network design,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (Nashville, TN: IEEE), 13713–13722.

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(Salt Lake City, UT: IEEE), 7132–7141.

Ji, M., Zhang, L., and Wu, Q. (2020). Automatic grape leaf diseases identification

via unitedmodel based on multiple convolutional neural networks. Inf. Process.

Agric. 7, 418–426. doi: 10.1016/j.inpa.2019.10.003

Kerkech, M., Hafiane, A., and Canals, R. (2020). Vine disease detection in

uav multispectral images using optimized image registration and deep

learning segmentation approach. Comput. Electron. Agric. 174, 1105446.

doi: 10.1016/j.compag.2020.105446

Li, W., Liu, K., Zhang, L., and Cheng, F. (2020). Object detection

based on an adaptive attention mechanism. Sci Rep. 10, 1–13.

doi: 10.1038/s41598-020-67529-x

Liu, B., Ding, Z., Tian, L., He, D., Li, S., and Wang, H. (2020).

Grape leaf disease identification using improved deep convolutional

Frontiers in Plant Science | www.frontiersin.org 11 June 2022 | Volume 13 | Article 872107319

https://doi.org/10.1016/j.compag.2021.106279
https://doi.org/10.3390/s20164380
https://doi.org/10.1016/j.suscom.2019.08.002
https://doi.org/10.3390/sym11070939
https://doi.org/10.1063/1.5091341
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1371/journal.pone.0230254
https://doi.org/10.48550/arXiv.1506.07503
https://doi.org/10.1007/s10462-020-09813-w
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.1016/j.compag.2021.105991
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.3390/horticulturae7050103
https://doi.org/10.1016/j.asoc.2020.106597
https://doi.org/10.1016/j.inpa.2019.10.003
https://doi.org/10.1016/j.compag.2020.105446
https://doi.org/10.1038/s41598-020-67529-x
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Automatic Grape Downy Mildew Detection

neural networks. Front. Plant. Sci. 11, 11082. doi: 10.3389/fpls.2020.

01082

Liu, E., Gold, K. M., Combs, D., Cadle-Davidson, L., and Jiang, Y. (2021). “Deep

learning-based autonomous downy mildew detection and severity estimation

in vineyards,” in 2021 ASABE Annual International Virtual Meeting (American

Society of Agricultural and Biological Engineers).

Liu, J., and Wang, X. (2020). Tomato diseases and pests detection based on

improved yolo v3 convolutional neural network. Front. Plant Sci. 11, 8198.

doi: 10.3389/fpls.2020.00898

Liu, J., and Wang, X. (2021). Plant diseases and pests detection based on deep

learning: a review. Plant Methods 17, 1–18. doi: 10.1186/s13007-021-00722-9

Liu, R., Cheng, Z., Zhang, L., and Li, J. (2019). Remote sensing image change

detection based on information transmission and attention mechanism. IEEE

Access 7, 1156349–1156359. doi: 10.1109/ACCESS.2019.2947286

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). “Path aggregation network for

instance segmentation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (Salt Lake City, UT: IEEE), 8759–8768.

Mahlein, A.-K. (2016). Plant disease detection by imaging sensors-parallels and

specific demands for precision agriculture and plant phenotyping. Plant Dis.

100, 241–251. doi: 10.1094/PDIS-03-15-0340-FE

Mi, Z., Zhang, X., Su, J., Han, D., and Su, B. (2020). Wheat stripe rust grading

by deep learning with attention mechanism and images from mobile devices.

Front. Plant Sci. 11, 558126. doi: 10.3389/fpls.2020.558126

Mohammadpoor, M., Nooghabi, M. G., and Ahmedi, Z. (2020). An intelligent

technique for grape fanleaf virus detection. Int. J. Interact. Multim. Artif. Intell.

6, 62–67. doi: 10.9781/ijimai.2020.02.001

Mutka, A. M., and Bart, R. S. (2015). Image-based phenotyping of plant disease

symptoms. Front. Plant Sci. 5, 7134. doi: 10.3389/fpls.2014.00734

Nagaraju,M., and Chawla, P. (2020). Systematic review of deep learning techniques

in plant disease detection. Int. J. Syst Assurance Eng. Manag. 11, 547–560.

doi: 10.1007/s13198-020-00972-1

Niu, Z., Zhong, G., and Yu, H. (2021). A review on the attention

mechanism of deep learning. Neurocomputing 452, 418–462.

doi: 10.1016/j.neucom.2021.03.091

Qiao, Y., Kong, H., Clark, C., Lomax, S., Su, D., Eiffert, S., et al. (2021). Intelligent

perception-based cattle lameness detection and behaviour recognition: a

review. Animals 11, 3033. doi: 10.3390/ani11113033

Qiao, Y., Truman, M., and Sukkarieh, S. (2019). Cattle segmentation and contour

extraction based on mask r-cnn for precision livestock farming. Comput.

Electron. Agric. 165, 1104958. doi: 10.1016/j.compag.2019.104958

Ravi, V., Acharya, V., and Pham, T. D. (2021). Attention deep learning-based large-

scale learning classifier for cassava leaf disease classification. Expert. Syst. 39,

e12862. doi: 10.1111/exsy.12862

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:

Unified, real-time object detection,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Las Vegas, NV: IEEE), 779–788.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: towards real-time

object detection with region proposal networks. Adv. Neural Inf. Process. Syst.

28, 911–999. doi: 10.48550/arXiv.1506.01497

Roy, A. M., and Bhaduri, J. (2021). A deep learning enabled multi-class

plant disease detection model based on computer vision. AI 2, 413–428.

doi: 10.3390/ai2030026

Singh, V., Sharma, N., and Singh, S. (2020). A review of imaging

techniques for plant disease detection. Artif Intell Agric. 4, 229–242.

doi: 10.1016/j.aiia.2020.10.002

Su, D., Kong, H., Qiao, Y., and Sukkarieh, S. (2021). Data augmentation for

deep learning based semantic segmentation and crop-weed classification

in agricultural robotics. Comput. Electron. Agric. 190, 1106418.

doi: 10.1016/j.compag.2021.106418

Tang, Z., Yang, J., Li, Z., and Qi, F. (2020). Grape disease image classification

based on lightweight convolution neural networks and channelwise

attention. Comput. Electron. Agric. 178, 1105735. doi: 10.1016/j.compag.2020.

105735

Thet, K. Z., Htwe, K. K., and Thein,M.M. (2020). “Grape leaf diseases classification

using convolutional neural network,” in 2020 International Conference on

Advanced Information Technologies (ICAIT) (Yangon: IEEE), 147–152.

Tzutalin (2015). Labelimg. git code (2015). Available online at: https://github.com/

tzutalin/labelImg

Vishnoi, V. K., Kumar, K., and Kumar, B. (2021). Plant disease detection using

computational intelligence and image processing. J. Plant Dis. Protect. 128,

19–53. doi: 10.1007/s41348-020-00368-0

Waghmare, H., Kokare, R., and Dandawate, Y. (2016). “Detection and

classification of diseases of grape plant using opposite colour local binary

pattern feature and machine learning for automated decision support system,”

in 2016 3rd International Conference on Signal Processing and Integrated

Networks (SPIN) (Noida: IEEE), 513–518.

Wang, J., Yang, J., Yu, L., Dong, H., Yun, K., and Wang, Y. (2021a). Dba_ssd:

a novel end-to-end object detection using deep attention module for helping

smart device with vegetable and fruit leaf plant disease detection. Information

12, 474. doi: 10.21203/rs.3.rs-166579/v1

Wang, P., Niu, T., Mao, Y., Liu, B., Yang, S., He, D., et al. (2021b). Fine-

grained grape leaf diseases recognition method based on improved lightweight

attention network. Front. Plant Sci. 12, 738042. doi: 10.3389/fpls.2021.738042

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “Cbam: convolutional block

attention module,” in Proceedings of the European Conference on Computer

Vision (ECCV) (Munich), 3–19.

Yu, H.-J., and Son, C.-H. (2020). “Leaf spot attention network for apple leaf disease

identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops (Seattle, WA: IEEE), 52–53.

Zhang, K., Wu, Q., and Chen, Y. (2021). Detecting soybean leaf disease from

synthetic image using multi-feature fusion faster r-cnn. Comput. Electron.

Agric. 183, 1106064. doi: 10.1016/j.compag.2021.106064

Zhang, N., Yang, G., Pan, Y., Yang, X., Chen, L., and Zhao, C. (2020). A

review of advanced technologies and development for hyperspectral-based

plant disease detection in the past three decades. Remote Sens. 12, 3188.

doi: 10.3390/rs12193188

Zhang, S., Zhang, S., Zhang, C., Wang, X., and Shi, Y. (2019a). Cucumber leaf

disease identification with global pooling dilated convolutional neural network.

Comput. Electron. Agric. 162, 4122–4430. doi: 10.1016/j.compag.2019.03.012

Zhang, Y., Chen, Y., Huang, C., and Gao, M. (2019b). Object detection network

based on feature fusion and attention mechanism. Future Internet 11, 9.

doi: 10.3390/fi11010009

Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., and Fu, Y. (2018). “Image super-

resolution using very deep residual channel attention networks,” in Proceedings

of the European Conference on Computer Vision (ECCV) (Munich), 286–301.

Zhao, S., Peng, Y., Liu, J., and Wu, S. (2021). Tomato leaf disease diagnosis based

on improved convolution neural network by attention module. Agriculture 11,

651. doi: 10.3390/agriculture11070651

Zhou, C., Zhang, Z., Zhou, S., Xing, J., Wu, Q., and Song, J. (2021). Grape leaf

spot identification under limited samples by fine grained-gan. IEEE Access 9,

1100480–1100489. doi: 10.1109/ACCESS.2021.3097050

Zhu, J., Wu, A., Wang, X., and Zhang, H. (2020). Identification of grape diseases

using image analysis and bp neural networks. Multimed Tools Appl. 79,

14539–14551. doi: 10.1007/s11042-018-7092-0

Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T.-Y., Shlens, J., and Le, Q. V. (2020).

“Learning data augmentation strategies for object detection,” in European

Conference on Computer Vision (Springer), 566–583.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhang, Qiao, Guo and He. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Plant Science | www.frontiersin.org 12 June 2022 | Volume 13 | Article 872107320

https://doi.org/10.3389/fpls.2020.01082
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.1109/ACCESS.2019.2947286
https://doi.org/10.1094/PDIS-03-15-0340-FE
https://doi.org/10.3389/fpls.2020.558126
https://doi.org/10.9781/ijimai.2020.02.001
https://doi.org/10.3389/fpls.2014.00734
https://doi.org/10.1007/s13198-020-00972-1
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.3390/ani11113033
https://doi.org/10.1016/j.compag.2019.104958
https://doi.org/10.1111/exsy.12862
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.3390/ai2030026
https://doi.org/10.1016/j.aiia.2020.10.002
https://doi.org/10.1016/j.compag.2021.106418
https://doi.org/10.1016/j.compag.2020.105735
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://doi.org/10.1007/s41348-020-00368-0
https://doi.org/10.21203/rs.3.rs-166579/v1
https://doi.org/10.3389/fpls.2021.738042
https://doi.org/10.1016/j.compag.2021.106064
https://doi.org/10.3390/rs12193188
https://doi.org/10.1016/j.compag.2019.03.012
https://doi.org/10.3390/fi11010009
https://doi.org/10.3390/agriculture11070651
https://doi.org/10.1109/ACCESS.2021.3097050
https://doi.org/10.1007/s11042-018-7092-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-892388 August 4, 2022 Time: 7:2 # 1

TYPE Original Research
PUBLISHED 04 August 2022
DOI 10.3389/fpls.2022.892388

OPEN ACCESS

EDITED BY

Yongliang Qiao,
The University of Sydney, Australia

REVIEWED BY

Fuyang Tian,
Shandong Agricultural University,
China
Xuewei Zhang,
Xi’an Technological University, China
Rashad Hegazy,
Kafrelsheikh University, Egypt

*CORRESPONDENCE

Jizhan Liu
1000002048@ujs.edu.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 09 March 2022
ACCEPTED 01 July 2022
PUBLISHED 04 August 2022

CITATION

Xie B, Liu J, Jiang H, Cai L, Liu L and
Li Y (2022) Development and
experimental analysis of a small
integrated edge navigation sensor
based on principle of circular arc array.
Front. Plant Sci. 13:892388.
doi: 10.3389/fpls.2022.892388

COPYRIGHT

© 2022 Xie, Liu, Jiang, Cai, Liu and Li.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Development and experimental
analysis of a small integrated
edge navigation sensor based
on principle of circular arc array
Binbin Xie1, Jizhan Liu1*, Houkang Jiang1, Lianjiang Cai1,
Lu Liu2 and Yuanxiang Li3

1Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang,
China, 2Institute of Technology, Anhui Agricultural University, Hefei, China, 3Intelligent Equipment
Company of Hunan Xiangyuan Golden Spike, Loudi, China

Signal, accuracy, and real-time performance of satellite, radar, and machine

vision is a subject of concern in various complex agricultural environments.

Therefore, the demand for a robust navigation sensor for indoor and vertical

agricultural environment remains crucial, and it is a significant subject. In view

of this, the relative edge pose detection method based on the ideal target band

principle of the lateral center arc array, in this research, a small integrated arc

array navigation sensor module based on adaptive detection arc technology,

is developed, which costs about $100, autonomous edge navigation position,

and attitude detection is realized in facility agriculture environment with

continuous structured corridor or roadside features. In this research, a

coupling method of reducing the radius of distance sensor arrangement,

adjusting the unequal center angle, and increasing the detection distance is

used to realize the miniaturization of the arc array arrangement. A semicircular

modular rocket was designed to slide and adjust the center angle of the

distance sensor, and the longitudinal installation position of the modularized

sensor was adjusted by translating the circular arc of the detection; the

convenient moving arrangement under different vehicle width and detection

arc characteristics is realized. An adaptive construction method of detecting a

circular arc based on self-calibrating detection distance of a distance sensor

is proposed, which effectively reduces the difficulty of arranging the lateral

central circular arc array; the fast construction of lateral detection arc is

realized. In addition, in order to improve the accuracy and stability of the pose

detection, the Mahalanobis distance algorithm and the standard Kalman filter

are used to optimize the estimation of the ranging information and the relative

pose of the edge. The experimental results show that the small integrated arc

array navigation sensor module can independently construct photoelectric

detection arcs with different characteristics to detect the position and attitude

of the relative edge. When the road surface is concave and convex, the

small integrated arc array navigation sensor module can still maintain the

stable position and attitude detection of the relative edge for more than

30 s. In addition, when the walking speed of the autonomous navigation
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platform is 0.15 m/s to 0.35 m/s, the detection errors of lateral deviation and

heading deviation relative to the road edge are less than 40 mm and 4.5◦,

respectively. The small integrated arc array navigation sensor module is less

affected by the change of operating speed, and still has good accuracy and

stability. The results show that the modularized edge navigation sensor has

the advantages of fast and convenient use, high accuracy, and low cost; it can

be applied to autonomous edge navigation control in greenhouse and plant

and animal factories.

KEYWORDS

facility agriculture, corridor environment, edge walking, navigation sensors,
miniaturization, integration, modularization

Introduction

Motivation and background

Facility agriculture planting makes crops unaffected by
geographical environment, climate, and seasonal changes,
guarantees crop yield, saves planting costs, and improves
economic income benefits. Therefore, facility agriculture has
received extensive attention and high-tech applications in
countries around the world (Ferentinos et al., 2017; Soiket et al.,
2019). Under the background that the world’s facility agriculture
continues to develop toward high and new technologies, such
as informatization, intelligence, and automation, by 2021, the
total area of global facility agriculture has exceeded 4.6 million
hm2, facility agriculture has developed rapidly, and the total
planting area has continued to grow rapidly in China; the scale
of facility agriculture has exceeded 4 million hm2, accounting for
85% of the global total. The autonomous navigation operation
platform in the agricultural facility environment is mainly
responsible for a large number of mobile operations, such as
frequent handling, spraying, transplanting, harvesting, etc. Due
to the complex, changeable, and more interference agricultural
environment of the facility, mainstream autonomous navigation
methods, such as satellite, radar, and machine vision, have the
problems of weak signals, poor accuracy, and lagged real-time,
which are difficult to meet operational requirements. Therefore,
combining the characteristics of agricultural scenes, researching
intelligent navigation technology and special sensors suitable
for the facility agricultural environment is the key to realizing
efficient autonomous navigation operations, and it is also a
necessary condition for the development of unmanned facility
agriculture (Liang et al., 2018; Soiket et al., 2019).

Autonomous navigation is the basis for the implementation
of unmanned precision agriculture, which can effectively reduce
labor intensity and improve operation accuracy and efficiency.
In recent years, the rapid development of satellite autonomous
navigation technology has been widely used in the field of
agricultural environment. For example, Han et al. (2020)

developed an agricultural machinery automatic driving system
with multi-sensor data fusion algorithm based on GNSS, RTK,
and motion sensors, etc.; the root mean square error of the path
following navigation test is less than 9 cm. Takai et al. (2014)
designed an autonomous navigation system for agricultural
machinery with adaptive control algorithm based on RTK-GPS
and inertial sensors, and the lateral deviation control error was
less than 5 cm. Li et al. (2019) used the Kalman filter algorithm
to fuse information from sensors, such as GPS, gyroscope,
and electronic compass, to obtain accurate navigation data,
and carried out experimental tests on the Tieniu 654 tractor
and Lovol TG1254 tractor produced in China. Yunpeng
et al. (2019) developed an automatic navigation system for
agricultural machinery based on real-time dynamic positioning
technology, and differential GPS technology, which can achieve
continuous high-precision positioning and navigation under the
condition of GPS signal stability. With the rapid development
of differential RTK technology, satellite positioning technology
represented by GPS and BDS has been widely used in
agriculture, road transportation, and ship transportation for
precise navigation, but the indoor environment of facility
agriculture will seriously block satellite signals. The signal is
discontinuous, and the satellite navigation fails.

In order to realize autonomous navigation in unstructured
agricultural environment, radar and machine vision
autonomous navigation technology has become the main
research direction of agricultural autonomous navigation
technology. For example, Jia et al. (2015) realized the edge
detection of a flat greenhouse road based on a two-dimensional
lidar, which has a poor adaptability to the flat slope and uneven
road on both sides of the road. Wang et al. (2012) used machine
vision to extract the sensitive area of the heating tube in the
greenhouse ridge-planted tomato environment, and realized
the autonomous navigation through the center baseline fitting
between the ridges. Gao and Ming (2014) used K-means
algorithm and the morphological erosion method to cluster
and segment the collected greenhouse environment images,
eliminate redundant interference information, and reduce
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the impact of illumination on machine vision recognition
navigation paths. In the orchard tree row environment, corn
and other high-stalk crops are planted in rows; lidar is often used
to detect crop stalks to complete the line center baseline fitting
and to achieve autonomous path perception and navigation
in unstructured agricultural environments (Hiremath et al.,
2014; Malavazi et al., 2018). In order to solve the problem of
incorrectly fitting the navigation path and identifying obstacles
in the unstructured environment where the distribution of
path features is seriously uneven, the image features of the
operating environment are recognized by machine vision
to improve the accuracy of the navigation path fitting in
complex environments, and can achieve rapid identification
and classification of static and dynamic obstacles to improve
autonomous navigation safety in unstructured environments
(Yang et al., 2018; Inoue et al., 2019; Xu et al., 2021). Although
radar and machine vision autonomous navigation technology
has carried out many studies and achieved certain results in
complex unstructured greenhouse environment and semi-
natural interference conditions, such methods need to establish
complex algorithms and are rich in information in facility
agricultural environment. It is easy to be disturbed during the
operation, and has not yet reached the point of application in
actual production.

Recently, facility agriculture uses engineering technology
and industrial production methods to provide a good growth
environment for crops or animals. The environment of
standardized greenhouse and plant-animal factory is usually
equipped with furrows and cultivation troughs to form three-
dimensional cultivation devices, presenting the characteristics
of continuous structured corridors or roadsides, as shown in
Figure 1. During the cultivation of fruits, vegetables, flowers
and other plants, as well as the breeding of poultry and
other animals, numbers of automatic operations, such as
transporting, applying chemicals, transplanting and harvesting,
should be accomplished by autonomous navigation platform
in the corridor. So it is the current trend to use corridor or
road-edge features to conduct curb line navigation technology
research according to these features. The curbside characteristics
of the environment of facility agriculture corridor, as shown
in Figure 2. So, it is the current trend to use corridor or
road edge features to conduct curb line navigation technology
research according to these features. The curbside characteristics
of the environment of facility agriculture corridor, as shown
in Figure 2. The premise of autonomous edge navigation is to
obtain the position information of the autonomous navigation
platform along the relative road by using photoelectric switch.
The photoelectric switch was installed on the side of the
autonomous mobile platform walking along the edge, and
judge the relative relationship between the autonomous mobile
platform and the road edge based on the high-level and low-
level changes of the photoelectric switch. In order to realize
the detection of different road edge features, Ju (2017) adjusted

the installation inclination of the photoelectric switch according
to Figure 3, in combination with the geometric relationship
between the convex edge and the sunken edge in Figure 2.
During the operation of the autonomous mobile platform, when
the horizontal distance to the curb is greater than or less than
the safe distance, the high-level and low-level triggering states
of the photoelectric switch will be changed to achieve real-time
detection of the curb.

The realization of distance or collision perception based on
mechanical contact, infrared photoelectric or ultrasonic sensors
has been applied on many hair surfaces such as home and social
service robots. However, they can only complete edge anti-
collision or anti-drop control, and cannot accurately determine
the relative position and posture of the autonomous navigation
platform and edge, and cannot meet the requirements of
high precision operation in facility agriculture (Zhao et al.,
2012; Wang and Liang, 2015). In order to solve the above
problems, many researchers have carried out the design of
autonomous curb line navigation methods based on the road
edge characteristics of the facility corridor environment. An
ultrasonic or infrared photoelectric sensor is arranged laterally
on the autonomous navigation platform to complete the
distance measurement of the road edge to avoid collision, but
the inclination state of the relative wall cannot be calculated
and judged, causing the front or rear of the autonomous mobile
platform to easily collide with the road edge, which is difficult to
guarantee safe, efficient, and reliable autonomous driving along
the road edge (Feng et al., 2012; Zhou, 2014).

For the problem that the single ultrasonic or infrared
photoelectric sensor cannot obtain the heading deviation and
transverse deviation accurately, multiple photoelectric switches
are arranged in front of the autonomous mobile platform to
measure the distance along the road, and multiple distance
signals are used to construct fuzzy logic fusion to complete the
curb line navigation. However, the calculation of this method is
complicated, and the experimental results show that the walking
posture is not stable enough (Xu et al., 2010; Yuan and Li,
2013). Du (2010) arranged several photoelectric switches in
parallel lines on the side of the autonomous navigation platform
to achieve autonomous walking along the road edge, but this
method can only achieve a rough determination of the deviation
state, and cannot complete the measurement of specific position
and orientation, so it is difficult to ensure the smoothness of the
curb line navigation and control accuracy.

In order to improve the smoothness and control accuracy
of edge navigation, Ju (2017) analyzed the arrangement of a
photoelectric switch array, as shown in Figure 4. As shown in
Figure 4A, due to the fixed lateral position of the photoelectric
switch, the local horizontal discrete distance of the mobile
platform relative to the road edge can be obtained from
the photoelectric switch state. But, in the same photoelectric
switch state, the heading angle of the mobile platform can
change greatly, so the effective heading angle (γ) cannot be
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FIGURE 1

Modern standardized facility agricultural corridor environment.
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FIGURE 2

Characteristics of two types of curbs: (1) An autonomous moving platform, (2) A raised curb, and (3) A sinking curb.
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FIGURE 3

A layout principle of a photoelectric switch to identify the road edge: (1) A photoelectric switch, (2) A raised road edge, (3) A sunken road
edge, e. A safety distance between the autonomous navigation platform and the curb line during driving (mm), H0. Height of the photoelectric
switch installed on the mobile platform (mm), H1. Height of the raised curb (mm), HL. A range set by the photoelectric switch (mm), ψ. An
inclination angle between a photoelectric switch and a road edge (◦).

FIGURE 4

A linear arrangement scheme of a photoelectric switch array: γ. The heading angle of the autonomous mobile platform relative to the road
along.

directly obtained from the current state of the photoelectric
switch group. The information can only be obtained from
the installation position of the photoelectric switch group, the
time of state change before and after the photoelectric switch
group, and the motion state of the mobile platform, and then

derive the heading angle (γ) of the mobile platform through
a certain algorithm, so it is difficult to provide more complete
and effective information for the curb line navigation control
of the autonomous mobile platform. As shown in Figure 4B,
the horizontal discrete distance of the mobile platform relative
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FIGURE 5

Seven principle of autonomous curb line navigation of a
photoelectric switch arc array: (1) An ideal target belt, (2) A road
edge, (3) An autonomous mobile platform, A1∼A7.
A photoelectric switch, A1

′
∼A7

′. A detection point of
photoelectric switch, θ. The central angle of the photoelectric
switch arc array.

to the road edge can be obtained, but it is difficult to obtain a
more accurate heading angle, which cannot provide complete
and effective information for the control of the autonomous
mobile platform’s curb line navigation, As shown in Figure 4C,
the horizontal discrete distance of the mobile platform relative
to the road edge can also be obtained, but it is also difficult to
obtain a more accurate heading angle, which cannot provide
complete and effective information for the control of curb line
navigation. To sum up, it is difficult to obtain the precise lateral
deviation and heading deviation of an autonomous mobile
platform relative to the road edge at the same time with the
linear arrangement of photoelectric switches.

In order to solve the problem that the precision lateral
deviation and the course deviation from the autonomous mobile
platform cannot be obtained with the linear arrangement of
photoelectric switches, Ju et al. (2017) proposed an autonomous
curb line navigation method based on seven photoelectric
switches, took the trigger number of a photoelectric arc array
signal and the number of the trigger center as dual indicators.
The position and orientation detection model is established,
and divides nine relative road edge position and orientation
states according to the values of the dual indicators, and uses
the fuzzy control method to realize real-time control of curb
line navigation. As shown in Figure 5, under the detection arc
of the photoelectric switch array set in the test, the control
accuracy of the lateral deviation and the heading deviation
between the autonomous mobile platform and the road edge
were stable within the range of -35 mm∼15 mm and ±5◦,
respectively. The experimental results confirmed the feasibility
of the method. However, this method needs to install and debug
the photoelectric switch according to the actual vehicle body
length and navigation accuracy requirements before use, which
makes the use process cumbersome, and has not been deduced

and verified for generalization and small integration, and has not
yet entered the actual production operation. Therefore, building
a small and integrated photoelectric switch arc array module
can bring many conveniences into production practice, and
can promote the development of low-cost and fast curb line
navigation technology.

In response to this problem, this research developed a small
integrated photoelectric arc array switch navigation sensor for
facility corridor environment. The central photoelectric arc
array based on the principle of the ideal target band, the system
establishes a real-time position and an orientation detection
method with unknown number of sensors. By adjusting the
vertical installation position of the modular sensor through the
shift detection arc method, the convenient mobile layout under
different vehicle widths and detection arc characteristics can be
achieved, which effectively reduces the difficulty of the lateral
central arc array placement. Therefore, the small integrated
circular arc array navigation sensor module can be widely used
in many autonomous navigation platforms in the market, and
can provide high-precision position detection. Specifically, the
main features of the sensor are that it can realize convenient
and fast curb line navigation with low cost and high precision.
Specifically, the main features of the sensor are that it can
realize convenient and fast curb line navigation with low cost
and high precision.

Scope and contribution

The overall goal of this research is to develop an
intelligent navigation sensor suitable for the facility agricultural
environment. Based on the ideal target principle of the lateral
center arc array, we propose a relative edge pose detection
method. We have developed a small integrated edge navigation
module that adaptively constructs and detects arcs, and can
realize low cost and fast edge navigation in the a facility
agricultural corridor environment. The main contributions of
this paper are as follows:

(1) In the early stage, it was verified the feasibility of a
circular array edge-navigation method. In this paper, the
edge pose state judgment rules and the pose deviation
calculation method of an unknown sensor number were
established, which can realize the autonomous edge pose
detection under the configuration of different sensor
numbers, arc center angles, and arc radiuses, and improve
the universality of the arc array edge navigation method.
(2) In this article, a miniaturization scheme is proposed
to reduce the sensor layout radius, adjust the non-
equidistant center angle, and increase the detection
distance. Under the condition of accurately reflecting the
relative pose relationship between the head and the tail
of the autonomous navigation platform and the road
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edge, and ensuring the resolution of edge pose detection
and recognition, we realized the miniaturization of the
arc array sensors.
(3) In order to realize the rapid adjustment and convenient
arrangement of the navigation sensors along the edge,
we propose an adaptive construction method of the
detection arc based on the detection distance of the self-
calibration sensor. According to geometric composition of
the detection arc, a self-calibration equation of detection
distance of sensors for each position and a calculation
program of rapid arrangement of the arc center angle
are established. The longitudinal installation position of
the modularized sensor is adjusted by the method of
the translation detection arc to match the installation
position under different vehicle widths and detection arc
characteristics.
(4) In order to improve the accuracy and stability of a
relative edge position pose and enhance the performance
of restraining the interference of environmental factors,
we used the improved Mahalanobis distance algorithm to
eliminate the abnormal ranging noise and environmental
sudden change interference, and use the Kalman filter
algorithm to optimally estimate the relative edge position
and attitude state so as to achieve the purpose of weakening
the relative edge position and attitude state detection error.
(5) Finally, we developed a low-cost small integrated arc
array edge navigation sensor module by using embedded
microcontroller and carried out experimental verification.

Article structure

The rest of the research is organized as follows: the
second part introduces the design scheme of the miniaturized
optimized integrated arc array edge navigation sensor proposed
in this study. The third part introduces the system design
of a small optimized integrated arc array edge navigation
sensor. The test design and results are presented in section
“Experiment.” Finally, a summary of the study is provided in
section “Results.”

Materials and methods

In this section, we successively introduce the design
architecture of the arc array edge navigation sensor module,
the arc array edge navigation principle and universal modeling,
the photoelectric arc array miniaturization integration scheme,
the arc array adaptive self-calibration construction method,
and the relative edge position and orientation detection error
reduction method.

Design architecture of a small
integrated arc array edge navigation
sensor module

The essence of edge navigation is that the controller
detects the relative pose deviation between the autonomous
mobile platform and the continuous structured corridor or
curb features in real time to correct the path. In order to
solve the problems of a weak signal, poor accuracy and
insufficient real-time performance of the current autonomous
navigation technologies, such as satellite, radar, and machine
vision in the facility agricultural environment, small integrated
modules are used to achieve the purpose of accurate acquisition
of the relative position and attitude along the edge of the
autonomous mobile platform. In this paper, a general pose
state detection model is built based on the relative edge pose
detection method based on the ideal target band principle of
the lateral central arc array in the author’s (Ju et al., 2017)
previous research. A small integrated edge navigation sensor
model is built by using the coupling method of reducing
the sensor layout radius, adjusting the center angle of the
non-bisection circle, increasing the detection distance. The
active self-calibration sensor detection distance method is
used to adaptively construct the edge pose detection arc,
and the relative edge pose detection accuracy is improved by
improving the Mahalanobis distance algorithm and Kalman
filter algorithm. As shown in Figure 6, the development of a
small integrated edge navigation sensor based on the principle
of arc array is realized.

The principle and universal modeling
of arc array edge navigation

The principle of arc array edge navigation
The edge position and attitude detection of the arc

array is to install an odd number of distance measuring
sensors (2N + 1) on one side of the autonomous navigation
platform in a centrosymmetric manner, and construct the
edge position and attitude detection arc, as shown in
Figure 7. The center position distance measuring sensor
(N + 1, sensor detection point AN+1

′) is aligned with
the horizontal centerline of the autonomous navigation
platform. In addition, the arc array edge navigation takes
the width formed between the connecting line between the
sensor detection point A2

′A2N
′ and the detection point

A2N−1
′A2N+1

′ as the ideal target band for position and
attitude adjustment, and controls the autonomous navigation
platform to always move smoothly within the attitude range
relatively stable with the edge of the road. At the same
time, we can see that the position distribution of the
detection points of each sensor determines the characteristics of
different detection arcs.
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FIGURE 6

An overall architecture of a small integrated arc array edge navigation sensor module.

FIGURE 7

An autonomous edgewise navigation model of an N (odd)
photoelectric switch lateral arc array: (1) A road edge, (2) An
ideal target band, (3) A detection arc, (4) An autonomous mobile
platform, (5) A transverse centerline.

TABLE 1 Generalized position and orientation state classification
rules for unknown number of photoelectric switches.

Orientation Position

1 ≤ Nd<3 Nd = 3 3<Nd ≤ 2N-
1

N<Nf <N+1 A: Far away
roadside to the
outside yaw

B: Outside yaw C: Near roadside
to the outside

Nf = N+1 D: Far away
roadside

E: Normal F: Near roadside

N+1<Nf <(4N+3)/2 G: Far away
roadside to the
inside yaw

H: Inside yaw I: Near roadside
to the inside yaw

Position and pose detection along the edge of
the generalized arc array

In order to realize the universal edge pose detection of
the arc array, establish the geometric relationship when the

y

x

Aa′

Ab′

LC

FIGURE 8

Calculation and analysis of pose deviation based on a
photoelectric switch state.

autonomous navigation platform has position and attitude
deviation; as shown in Figure 8, the green dot represents the
non-triggered ranging sensor, and the red dot represents the
triggered ranging sensor. The edge pose state detection and
judgment rules of unknown sensor number are established
according to the previous research of the author (Ju et al.,
2017), as shown in formula (1). The tolerance range of the
calculation error of the heading deviation and transverse
deviation of the autonomous navigation platform relative
to the road edge can be further simplified, as shown in
Formula (2). As shown in Table 1, the two parameters,
signal trigger number Nd and trigger center serial number
Nf , are used to judge the relative pose state type of the
autonomous navigation platform along the road. The larger
the Nd is, the closer the autonomous navigation platform is
to the road edge; on the contrary, the smaller the Nd is,
the farther the autonomous navigation platform is from the
road edge. Nf is the average value of the serial numbers
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of the photoelectric switches that are triggered when the
road edge is detected outside the range of the photoelectric
switch. The larger the Nf is, the more the head of the
autonomous navigation platform deviates from the road edge;
on the contrary, the smaller the Nf , it means that the
head of the autonomous navigation platform moves more
toward the road edge.

τ = θ
2N

Nd=b−a+1
Nf=

b+a
2

(3+2N−b−a)θ
4N < γ <

(1+2N−b−a)θ
4N

D = R cos β2 −
(
R cos θ2 − LC

)
cos γ

β =
(b−a+1)θ

2N

(1)

In the formula: τ—The angle between adjacent sensor
detection points; θ—The central angle of the circular arc;
N—The total number of unilateral ranging sensors; a—
Minimum serial number of the triggered ranging sensor; b—
Maximum serial number of the range sensor; Nd—Number of
triggered ranging sensors; Nf —Average value of serial number
of triggered ranging sensor; γ—The heading deviation of
the autonomous navigation platform relative to the road, ◦;
D—Lateral deviation of the center point of the autonomous
navigation platform relative to the road edge, mm; R—The
detection radius of the photoelectric array switch, mm; LC—An
autonomous navigation platform width half, mm.


(
3+2N−2Nf

)
θ

4N < γ <

(
1+2N−2Nf

)
θ

4N
R cos Ndθ

4N −
(
R cos θ2 − LC

)
cos (2+2N−Nd)

4N < D < R cos Ndθ
4N

−
(
R cos θ2 − LC

)
cos (2N−Nd)

4N
(2)

A miniaturization scheme of the arc
array edge navigation sensor

The relative edge position and orientation detection method
based on the ideal target band principle of the lateral
central arc array has been proved to be feasible by the
author’s previous research. However, the arc array occupies a
large proportion of space and the installation and layout of
sensors are cumbersome. At present, the small-scale integrated
system has not been developed, and the user-friendliness
and practicality are insufficient. In this section, we carry
out small-scale integrated scheme design for the purpose
of convenient use.

Analysis and determination of a miniaturization
scheme

In essence, the miniaturization of the arc array is to reduce
the plane layout size of the distance measuring sensor and

realize the accurate acquisition of the position and attitude
along the edge of the autonomous navigation platform. Through
mathematical and geometric analysis, scaling the detection
arc with an equal ratio column and scaling the detection arc
with a variable center angle can reduce the layout size of
the ranging sensor, as shown in Figure 9. The proportional
column scaling arc in Figure 9A is to shrink ALi

′ and ARi
′

inward to BLi
′ and BRi

′ along the original radius direction
without changing the center angle so as to reduce the arc radius
and chord length of the proportional column so as to reduce
the detection arc and achieve the purpose of miniaturization.
When the longitudinal length of the autonomous mobile
platform is large, the detection arc cannot reflect the relative
position and orientation relationship between the head and
the tail of the autonomous navigation platform and the road
edge, resulting in a blind area along the curb line navigation,
which cannot realize omni-directional detection and is not
feasible. Figure 9B – the variable central angle scaling of
the arc is to arrange the photoelectric switches ALi

′ and
ARi
′ on the original detection arc to the central position

of the photoelectric switch under the condition that the
radius of the detection arc remains unchanged. By changing
the center-angle evenly distributed sensors, the layout chord
length and the center angle of the photoelectric array are
reduced so as to reduce the detection arc and achieve the
purpose of miniaturization. The principle of this method
is to move the detection point closer to the center of the
detection arc, without changing the relative position and
orientation relationship between the detection arc and the
head and the tail of the autonomous navigation platform
and the road edge, and there will be no blind area of curb
line navigation.

According to Figure 8, it is found that the detection arc
is formed by a series of curves connected by fixed points.
In order to solve the problems in the sensor layout scheme
of scaling, the detection arc with an equal ratio column and
scaling the detection arc with a variable center angle, the two
schemes are fused. The coupling adjustment layout method
of reducing the ranging sensor layout radius - adjusting the
unequal center angle - increasing the detection distance is
adopted to realize the miniaturized layout design of the arc
array, as shown in Figure 10. The semicircular shell with
an arc chute (the green part in the figure) is designed. By
adjusting the center angle and detection distance of different
sensors, the original detection arc (the purple arc in the
figure) is constructed by matching the detection points on
the original detection arc to realize the miniaturization of the
integrated arc array configuration. The pink part in Figure 10
is the embedded system integrated shell, and the green line
is the semicircular shell radius of the arc chute, the blue
line is the distance from the detection point of each position
sensor, the horizontal red line is to detect the arc chord
length, and the vertical red line is to detect the distance
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FIGURE 9

A schematic diagram of reducing the detection arc.

FIGURE 10

A coupling adjustment method of reducing the layout radius of ranging sensors, adjusting the center angle of non-equidistant circles and
increasing the detection distance: x0. Distance detected by sensors at center positions, xLi. Distance detected by sensors at different positions
on the left, xRi. Distance detected by sensors at different positions on the right, aLi. The center angle of the sensor at different positions on the
left, aRi. The center angle of the sensor at different positions on the right, Rm. A miniaturized arc array module original radius, Ro. An original
detection arc radius, A1

′
∼ A2N+1

′. An ultrasonic sensor detection point.

from the arc chord length to the side of the autonomous
navigation platform.

Modular design of a circular arc array edge
navigation sensor

According to the arc array miniaturization integration
scheme of reducing the distance measuring sensor layout
radius – non-equidistant center angle adjustment – increasing

the detection distance in Figure 10, the arc array edge navigation
sensor module is designed. As shown in Figure 11, it consists of
an arc chute semicircular shell, an embedded system integration
shell, a center-angle adjustment calibration scale plate, an
angle-sliding adjustment plate, an upper cover plate, a power
input port, a navigation signal output port, and an installation
positioning hole. In order to realize the matching of sensor
detection points, fix the ranging sensor on the angle sliding
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FIGURE 11

A structure of a circular arc array edge navigation sensor module: (1) An upper cover, (1-1) A man-machine interaction display mounting port, (2)
A ranging sensor, (3) An arc chute half-round shell, upper part, (4) A lower part of an arc chute semicircular shell, (5) A calibration plate for
central angle adjustment, (6) An angle-sliding adjustment plate, (6-1) A range sensor, (6-2) A bottom positioning bolt hole, (6-3) A chute, (7)
Embedded System-integrated housing, (7-1) A power input port, (7-2) A navigation signal output port, (7-3) A range finder through a slot, (8)
Embedded-controller housing, (9) A man-machine interaction display screen.

FIGURE 12

An analysis diagram of distance adjustment of a photoelectric
switch detection point at each position.

adjusting plate to cooperate with the center angle adjusting
calibration plate to slide freely to any angle alignment on the
arc chute semicircular shell, lock the position of the sensor on

the arc chute semicircular shell through the bottom positioning
bolt, and adjust the sensor detection distance to complete the
detection point setting. At the same time, the controller is
installed in the embedded system integrated shell, and the
arc surface of the shell is connected with the concave surface
inside the semicircular shell of the arc chute to form a whole,
which is conducive to the integrated sensor module design. In
order to realize the human-computer interaction friendliness
of the arc array edge navigation sensor module and facilitate
the detection of arc parameters self-regulation, the upper cover
plate with a serial port touch screen is designed, which can
improve the power safety and water resistance. In addition,
in order to reduce the interference of the power signal to
the navigation signal transmission, the power line and the
signal line are branched independently. The power input port
and the navigation signal output port are placed at the tail
of the embedded system-integrated shell and led out by the
waterproof connector.

Modeling the detection distance and the
central angle of sensors in different positions

It can be seen from Figure 11 that the arc array
miniaturization integration scheme based on reducing the
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layout radius of the ranging sensors - adjusting the unequal
center angle – increasing the detection distance is to match
the detection points of the sensors by adjusting the center
angle and detection distance of the sensors at different positions
to complete the detection arc structure. Therefore, the center
angle layout and detection distance adjustment modeling are
carried out for the ranging sensors at different positions.
Since there is an odd number of ranging sensors on the edge
navigation sensor module of the circular arc array, and the
N + 1 sensors about the central position are symmetrically
distributed and equal in number. Therefore, only one side
needs to be considered when modeling the center angle
arrangement and detection distance adjustment of distance
sensors at different positions. As shown in Figure 12, the
center angle arrangement and the detection distance adjustment
model are established with different position sensors on the
left. Point B is the original position of the detection point
of the i-th ranging sensor, point F is the position of the
i-th ranging sensor on the side of the autonomous navigation
platform, and Oo is the central position ranging sensor. The
cosine value of 6 BOF of 1BOF is solved by using the cosine
formula of two-angle difference, and then the BF distance is
solved by using the cosine theorem, as shown in Equation
(3). Then, according to Figure 10, the detection distance
of distance sensors at different positions is solved by using
the Pythagorean theorem of the right triangle, and then the
center angle of the layout of distance sensors at different
positions is solved by using the cosine theorem, as shown
in Equation (4).



θi = i • θ
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)
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=

√
R2
o−d

2
i

Ro
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R2
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)
(3)

In the formula: θ—Detects the central angle of the arc,
◦; α—The reference calculation angle, ◦; i—Ranging serial
number; N—Total number of unilateral ranging sensors; θi—
The original central angle of the unilateral i-th-ranging sensor, ◦;
di—The horizontal and vertical distance between the detection

point of the i-th ranging sensor and the center position (the
N + 1) ranging sensor, mm; L—The length of the autonomous
navigation platform is half, mm; Ro—An original detection
radius, mm; Xi—The vertical distance of the detection point of
the i-th-ranging sensor, mm.


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√(
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) (
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Lx = 2Ro sin θ
2

X0 =
1

tan
(

90− θ2
)Lx

xi =

 xi =
√(

LC + d + Xi
)2
+
(
di
)2
− Rm i0

x0 = LC + d + X0 − Rm i = 0

ai = 90− arctan LC+d+Xi
di

(4)

In the formula: Rm—The original radius of the miniaturized
circular arc array module, mm; d—The vertical distance between
the original detected arc chord length and the side of the
autonomous navigation platform, mm; LC—Half width of the
autonomous navigation platform, mm;x0.Distance detected by
sensors at center positions, mm; xi. Detection distance of
different position sensors.

Installation position under different vehicle
width and test arc characteristics match

According to the modular design scheme of the arc
array edge navigation sensor shown in Figure 11, the lateral
installation position of the edge navigation sensor module is
the only one, and the longitudinal center line of the N + 1
sensor at the center position is always installed coincidently
with the horizontal center line of the autonomous navigation
platform. However, the relative position between the detection
arc and the side of the autonomous navigation platform, the
width of the autonomous navigation platform, and the distance
between the detection arc chord length and the side of the
autonomous navigation platform determine the longitudinal
installation position of the edge navigation sensor module,
but the bottom straight line of the edge navigation sensor
module should always coincide with or be installed in parallel
with the longitudinal centerline of the autonomous navigation
platform. As shown in Figure 13, the arc array edge navigation
sensor module is made with 600 mm as the original vehicle
width and 30 mm as the distance from the original detection
arc chord length to the side of the autonomous navigation
platform. In Figure 13, the longitudinal centerline of the
n + 1 sensor at the center of the arc array edge navigation
sensor module coincides with the horizontal centerline of the
autonomous navigation platform. To cope with the installation
position matching of autonomous navigation platforms with
different widths and detection arcs with different features, a
method for adjusting the longitudinal installation position of
the edge navigation sensor module is established, as shown
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FIGURE 13

Physical drawing of a developed sensor.

in Equation (5). When dL < 0, the arc array moves along
the edge navigation sensor module toward the direction of
detecting the center of the arc; when dL > 0, the arc array
moves along the edge navigation sensor module toward the
detection arc direction.

dL =
(
wh + dh

)
−
(
LC + d

) 
dL > 0 Adjust in the direction of arc

dL < 0 Adjust towards the center of

the circle
(5)

In the formula: dL—distance to be adjusted, mm; wh—
actual width of the autonomous navigation platform, mm;
dh—actual chord length vertical distance from the side of
the autonomous navigation platform, mm; d—Original chord
length vertical distance from the side of the autonomous
navigation platform, mm; LC—Half the width of the original
autonomous navigation platform, mm.

Adaptive calibration and the
construction method of detecting
an arc

It can be seen from Figure 10 that the coupling adjustment
layout method based on reducing the layout radius of the
ranging sensor – adjusting the unequal center angle – increasing
the detection distance is to realize the miniaturization design
by adjusting the center angle and detection distance of the
sensors at different positions. The angle of the circle center angle
is quickly adjusted by sliding the angle-sliding adjusting plate
equipped with the distance-measuring sensor at the position
of the semicircular shell of the arc chute. Ju et al. (2017)
used a switch type photoelectric switch to manually calibrate
the detection distance, realizing the detection arc structure,

FIGURE 14

Physical drawing of a developed sensor.

resulting in cumbersome use, and the distance detection of the
photoelectric switch is easily affected by environmental factors.
In order to improve the convenience of using the arc array
edge navigation sensor module, as shown in Figure 14, the
PWM wave ultrasonic distance sensor (Dianyingpu DYP-A19-
V1.0, Guangdong, China) is selected to detect the distance
from the edge of the road. Based on the detection distance
adjustment equation model of different position sensors, the
trigger thresholds of different position sensors are automatically
set to complete the automatic calibration of the detection points
so as to realize the adaptive structure of the detection arc, as
shown in Figure 15.

Error analysis and reduction of
edge-relative pose detection

Error analysis of edge-relative pose detection
The relative pose detection performance of the arc array

edge navigation sensor module directly affects the operation
accuracy of the autonomous navigation platform. In order
to improve the edge operation accuracy of the autonomous
navigation platform, the edge relative pose detection error
must be reduced. In view of this, it is necessary to detect
the source of the relative pose error of the arc array edge
navigation sensor module, and take corresponding measures
to reduce the error impact. According to the edge navigation
principle of the circular arc array and the coupling adjustment
arrangement method of reducing the layout radius of ranging
sensors – adjusting the center angle of non-equidistant circles –
increasing the detection distance, it can be seen that the
relative pose detection errors are mainly caused by two
reasons. On the one hand, it is caused by the distance
detection error of the ranging sensor and the uneven road
edge plane; on the other hand, it is caused by the position
and attitude solution model error of the arc array navigation
along the edge, the too fast operation speed and the sudden
change of the road edge plane position. It can be seen that
the relative pose detection error along the edge is affected
by multi-factor coupling. In order to further improve the
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FIGURE 15

A schematic diagram of the construction method for detecting arc-adaptive calibration.

FIGURE 16

Multi-factor detection error compensation and a weakening scheme for an edge-relative pose.

smoothness and stability of the arc array edge navigation
sensor module, as shown in Figure 16, a multi-factor error
comprehensive compensation scheme is adopted. First, the
Mahalanobis distance algorithm is used to weaken the influence
of the distance detection error of the ranging sensor and
improve the accuracy and stability of the determination of the
relative edge position and attitude. Then, the Kalman filter
algorithm is used to estimate the relative position and attitude
along the edge to improve the detection accuracy and anti-
interference performance.

Reduction of sensor-ranging error based on
Mahalanobis distance algorithm

Because of the distance detection error and the uneven road
edge plane, the ultrasonic distance sensor will have significant
abnormal values in the distance measurement values, which
will lead to the decline of the accuracy and stability of the
determination of the relative position and attitude along the
edge. In the process of ultrasonic sensor ranging, all ranging
mean and covariance matrices are stable values calculated in the
minimum covariance determinant estimation. Therefore, there
is a significant difference between the Mahalanobis distance
of abnormal values and the normal values in the calculated
samples. Therefore, the Mahalanobis distance algorithm can
be used to eliminate the interference of abnormal values of

ultrasonic ranging sensors. In order to weaken the influence of
environmental factors and the ultrasonic ranging sensor’s own
factors on ranging error, the arc array edge navigation sensor
module uses Markov distance algorithm to detect and eliminate
the abnormal ranging value of the ultrasonic ranging sensor.
However, in the standard Mahalanobis distance algorithm,
Mahalanobis distance is removed by calculating the mean sum
and covariance matrix of the original ranging data. When the
sample size of the distance measurement data is small and there
are many outliers in the ranging, the standard Mahalanobis
distance algorithm will make the calculated mean value and the
covariance matrix of the original ranging data deviates from the
outliers, resulting in the outliers being detected as normal values,
which will lead to the incomplete elimination of the outliers.
In view of this, the fast minimum covariance determinant
algorithm is adopted to obtain a stable covariance matrix and a
stable average vector, and then the stable Mahalanobis distance
is calculated according to the standard Mahalanobis distance
equation to eliminate the outliers of distance detection, as shown
in Figure 17, in which we set the threshold of Mahalanobis
distance approximated to the chi-square distribution, ranging
numerical sample data as a constant. When the Mahalanobis
distance of the calculated ranging value is greater than the set
threshold, it will be regarded as an abnormal value and will be
discarded immediately.
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FIGURE 17

A flow chart of abnormal value Mahalanobis distance detection
and the elimination method of the ultrasonic distance sensor: d,
the Mahalanobis distance, hi, the sample size, T, the mean value
of the sample data, and S, the covariance matrix of the sample
data.

Optimal estimation of a pose state based on
the Kalman filter

The model error of pose solving for circular arc array edge
navigation, too fast operating speed, and abrupt position along
the road plane will further affect the position and attitude state
detection accuracy. In order to ensure the operation accuracy
of the autonomous navigation platform, the original position
and attitude state detection information needs to be optimally
estimated. Kalman filter algorithm is a recursive estimation
algorithm in essence. It does not need to record observations
and estimated historical data. It estimates the optimal value of
the current state according to the estimated value of the last time
state and the observed value of the current state in the system. It
is widely used in the field of autonomous navigation and control.
In view of this, the standard Kalman filter algorithm is used to
smooth the relative position and attitude state information along
the edge, improve the position and attitude detection accuracy
and anti-interference performance, and weaken the influence of
system error and environmental error, as shown in Figure 18.
The specific steps are as follows: the first step is to detect
the relative wayside pose data of the autonomous navigation
platform; the second step is to establish the optimal estimation
model of the relative heading deviation of the autonomous
navigation platform and the relative lateral deviation of the

center point of the autonomous navigation platform; Step 3:
calculate the Kalman gain coefficient Kγ of the relative wayside
heading deviation γ and the Kalman gain coefficient KD of
the lateral deviation of the relative path edge; the fourth step
is to measure and predict the relative wayside pose of the
autonomous navigation platform at time k (the current time)
according to the original autonomous navigation platform’s
relative wayside pose at time k-1 (the previous time); the
fifth step is to update the current time relative wayside lateral
deviation estimation error and the current time relative wayside
heading deviation estimation error for the next time relative
wayside position and attitude information prediction of the
autonomous navigation platform.

Integrated embedded module
design

The arc array edge navigation sensor is designed to realize
the real-time detection of the relative position and attitude of the
autonomous navigation platform and the output of navigation
control information through modular packaging. Therefore, on
the basis of the miniaturization scheme of reducing the radius
of the ranging sensor, adjusting the non-equal center angle and
increasing the detection distance, it is necessary to design the
hardware circuit and software program of the sensor system. In
this section, we introduce the sensor module hardware system
design and the sensor software program design, in turn.

Hardware design of a sensor module

In this paper, the arc array edge navigation sensor module is
designed to accommodate up to 9 ultrasonic ranging sensors, as
shown in Figure 19. In order to improve the anti-interference
performance of environmental factors and realize the adaptive
calibration structure of the detection arc, a PWM wave
ultrasonic ranging sensor (Dianyingpu DYP-A19-V1.0, with the
optimal accuracy of 1 mm, Guangdong, China) is selected to
detect the distance from the road edge. The sensor uses the pulse
width change time to measure the distance. It needs to use a
microsecond timer to measure the pulse width time to complete
the distance detection. At present, the commonly used PLC logic
controller can only achieve millisecond timing. The number of
timers of a 51 single-chip microcomputer controller is small
and cannot support more than three ultrasonic distance sensors.
However, there are more than eight timers in the STM32 MCU
controller. In order to accommodate the distance measurement
of nine ultrasonic ranging sensors at the same time, and increase
the expansion performance of the arc array edge navigation
sensor module. In this paper, stm32f407 embedded controller
(punctual atomic core board, Guangdong, China) is selected
to develop the hardware system of the sensor module. The
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FIGURE 18

Kalman filter optimal estimation flow of a relative wayside pose: Dk. The observed lateral deviation of the current autonomous navigation
platform relative to the road edge. Dk̂, the estimated lateral deviation of the current autonomous navigation platform relative to the road edge.
Dk̂−1, estimated value of the lateral deviation of the autonomous navigation platform relative to the road edge at the last moment. KX, Kalman
gain coefficient of relative lateral deviation of the autonomous navigation platform. γk, the observed heading deviation of the current
autonomous navigation platform relative to the road. γ̂k, estimated heading deviation of the current autonomous navigation platform relative to
the road edge. γ̂k−1, estimated value of the heading deviation of the autonomous navigation platform relative to the road edge at the last time.
K, Kalman gain coefficient of relative heading deviation of the autonomous navigation platform. Destk−1, the estimation error of the lateral
deviation of the autonomous navigation platform relative to the road edge at the last moment. Dmeak, the current autonomous navigation
platform-relative lateral deviation measurement error along the road. γestk−1, the estimation error of the heading deviation of the autonomous
navigation platform relative to the road at the last moment. γmeak, the current autonomous navigation platform relative along the road heading
deviation measurement error. Destk, estimation error of lateral deviation of the autonomous navigation platform relative to the road edge at the
current time. γestk, the estimated error of the relative heading deviation of the autonomous navigation platform at the current time.

controller built in 14 timers. In order to improve the user-
friendliness of the arc array edge navigation sensor module and
realize the adaptive structure of detecting arcs, an HMI serial
port display screen (4.3-inch, four-wire system, Guangdong,
China) is added to the sensor module hardware system. The
center angle, arc radius, and photoelectric switch number of
the original detected arcs can be input by touch, as well as
the length and width of the autonomous navigation platform,

and complete the automatic calculation of the adjustment
parameters of the center angle arrangement of different position
sensors and the independent calibration of the distance between
detection points. The output of relative path edge position and
attitude state of the autonomous navigation platform is the key
to the design of the arc array edge navigation sensor module.
The TTL serial port circuit is set on the hardware system of the
sensor module, which can realize the position and attitude state
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FIGURE 19

Hardware system composition of an arc array edge navigation sensor module.

TABLE 2 Manufacturing cost of an arc array edge navigation sensor module.

Type of sensors

Arc array edge navigation sensor module Lidar Visual camera

Part name Unit cost/$ Price range/$ Price range/$ Price range/$

Plastic shell 30 <100 >300 >400

STM32 controller 25

HMI serial port screen 30

Ultra sonic distance sensor 5

Power conversion module 10

and position and attitude deviation value in the form of RS232
or RS485 serial ports through different external modules so as to
meet the control requirements of different lower computers. The
cost of the arc array edge navigation sensor module designed in
this paper is about US $100. As shown in Table 2, compared with
the current laser radar and a visual camera, its price is relatively
lower and its use is simpler.

Software design of the sensor module

In this paper, the arc array edge navigation sensor module
completes the detection and output of the relative position
and attitude of the autonomous navigation platform through

integrated packaging. It is necessary to carry out a complete
process packaging design for the software program of the sensor
system, as shown in Figure 20. The sensor system software
program follows the sequence of key parameter setting, manual
adjustment of the center angle of sensors in different positions,
synchronous ranging of multiple ultrasonic sensors, calculation
of relative roadside position and attitude state and output
of position and attitude state signal execution. Finally, the
modular design of the autonomous edge navigation sensor is
realized. The edge-navigation method based on the principle
of the circular array can be controlled according to the lateral
deviation and heading deviation of the autonomous navigation
platform relative to the road edge, and, also, according to the
nine position and attitude states of the autonomous navigation
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FIGURE 20

A software program flow of arc array edge navigation sensor module.

TABLE 3 A relative wayside pose information data format.

Name Identifier Lateral deviation of
relative road edge

Course deviation of
relative road edge

Pose type Checksum

Bytes 0 1 2 3 4 5 6 7 8

Definition 0× 01 sx xx yy sx xx yy xx CRC
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FIGURE 21

Performance testing.

platform relative to the road edge in Table 1. In order to ensure
the safety of navigation along the border, the conditions not
within the scope of Table 1 are considered as invalid conditions,
which are used as the judgment of alarm signal output. In
order to facilitate the user to detect the control signal output
from the edge navigation sensor module of the arc array, the
establishment data communication format shown in Table 3 is
established. The data format uniformly adopts the hexadecimal
compressed BCD code. The specific design is as follows: sxxxyy,
sx is the symbol bit (sx = 00 indicates that the lateral deviation
and heading deviation of the autonomous navigation platform
relative to the edge of the road are positive, sx = 10 indicates that
the lateral deviation and heading deviation of the autonomous
navigation platform relative to the edge of the road are negative),
xx represents integer digits, yy represents decimal digits, and the
data content is the horizontal deviation and heading deviation
of the autonomous navigation platform relative to the wayside.
Where the 0th byte is 0 × 01 represents the frame identifier
of the pose parameter message, the 1st, 2nd, and 3rd bytes
represent the lateral deviation of the autonomous navigation
platform relative to the curb, the 4th, 5th, and 6th bytes represent
the heading deviation of the autonomous navigation platform
relative to the curb, the 7th byte represents the status of the
autonomous navigation platform relative to the curb, and the
8th byte is the checksum, which is used to verify the integrity
and accuracy of the data.

Experiment

In order to verify the rationality and effectiveness of the arc
array edge navigation sensor module, a detection arc (Ju et al.,
2017) was built on the autonomous navigation platform with a
length of 1,200 mm and a width of 600 mm to carry out different
feature detection arc impact tests, environmental factor impact
and comparison tests, bump obstacle impact and comparison
tests, and dynamic detection performance and comparison tests

so as to detect the error of heading deviation. The horizontal
deviation detection error and variation coefficient are analyzed
as evaluation indicators, as shown in Figure 21.

An arc influence test with different
features

According to Equations (1) and (2) in this article, the
position and orientation detection accuracy of autonomous curb
line navigation is related to the setting parameters of the number
of ultrasonic distance sensors (NC), the detection arc radius
(R), and the central angle (θ). In order to clarify the influence
of key layout parameters on the accuracy of the position and
orientation detection, furtherly, the number of photoelectric
switches is selected as 5, 7, and 9, the detection arc radius is
3,300, 4,300, and 5,300 mm, and the central angle is 5◦, 10◦,
and 15◦ as the test levels; under the setting conditions that the
detection arc radius is 3,300 mm and the central angle is 5◦, the
number of photoelectric switches is 7 and the central angle is
5◦, the number of photoelectric switches is 7 and the detection
arc radius is 3,300 mm. The forward normal condition (lateral
deviation D = 0 mm, heading deviation γ = 0◦) in Table 1 is
used to test the detection accuracy of the edge pose affected
by a single factor in the stationary state of the autonomous
navigation platform.

In order to meet different accuracy requirements of
autonomous navigation along edges, and to facilitate users
to choose a circular arc array layout that meets the actual
requirements. The number of ultrasonic ranging sensors, the
radius of circle arc and the central angle of circle are taken as
test factors. Similarly, under normal working conditions, the
number of ultrasonic ranging sensors is 5, 7 and 9. The radius
of the detected arc is 330 mm, 4300 mm and 5300 mm, and
the central angle is 5 degrees, 10 degrees and 15 degrees as the
test level. The multi-factor coupling influences the accuracy of
position detection along the edge.

A test on abrupt change of a concave
convex along the road surface

Aiming at the problem that the photoelectric ranging
sensor is easy to suffer from poor accuracy caused by
environmental factors, such as light, reflecting surface color,
and wall material, and to ensure that the detection distance of
sensors at different positions can be independently calibrated
to construct the detection arc requirements, the system selects
the ultrasonic ranging sensor to develop the circular arc
array edge navigation sensor. Because the ultrasonic distance
sensor is a non-contact and wear-free detection of the
detected object by using the acoustic medium, it has the
characteristics of high frequency, short wavelength, and a
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FIGURE 22

A single factor affects the accuracy of heading deviation detection.

FIGURE 23

A single factor affects the accuracy of lateral deviation detection.

small diffraction phenomenon. It can detect transparent or
colored objects, metallic or non-metallic objects, solid, liquid,
powdery substances, especially objects through which light
cannot pass; the detection performance is hardly affected
by any environmental conditions. Therefore, environmental
factors, such as illumination, reflector color, and wall material
are not considered to affect the performance of the circular
arc array edge navigation sensor. However, there will be
bump changes in the actual road edge plane. At this time,
the effective pose reflected by the arc array edge navigation
sensor deviates from the actual situation. In order to verify
the influence of bump mutation along the road plane on
the detection effect of the autonomous navigation platform
on the edge position and attitude state, a detection arc
with radius R = 3,291 mm and the center angle θ = 20◦

and chord length L = 1,200 mm (Ju et al., 2017) was
constructed with seven ultrasonic ranging sensors. The position

and attitude detection performance of concave and convex
changes along the road was tested respectively according to
the positive normal condition in Table 1 as the initial position
and attitude state.

Dynamic detection performance test

In order to verify the dynamic pose detection performance
of the small integrated arc array edge navigation sensor
module designed in this study, a detection arc with radius
R = 3,291 mm and the center angle θ = 20◦ and chord
length L = 1,200 mm (Ju et al., 2017) was constructed
with seven ultrasonic ranging sensors. The test is carried
out according to the independent position and attitude
detection along the edge by walking in a straight line at
the speed of 0.15, 0.25, and 0.35 m/s under the positive

Frontiers in Plant Science 19 frontiersin.org

339

https://doi.org/10.3389/fpls.2022.892388
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-892388 August 4, 2022 Time: 7:2 # 20

Xie et al. 10.3389/fpls.2022.892388

TABLE 4 Multi-factor coupling affects the accuracy of heading
deviation detection.

Serial
number

Influence factor Course
deviationγ/◦

Coefficient
of

variation/%
Total number
of ultrasonic

distance
sensor/pcs

Central
angle /◦

1 5 5 0.63 4.0

2 10 1.25 5.5

3 15 1.90 4.5

4 7 5 0.40 9.5

5 10 0.80 8.0

6 15 1.25 9.0

7 9 5 0.32 9.0

8 10 0.63 9.5

9 15 0.94 9.5

position and normal condition in Table 1. According to the
triangular geometric relationship between the detection arc
and the autonomous navigation platform, it can be known
that the distance from the center point of the autonomous
navigation platform to the edge under the positive position
and normal condition is 300 mm. In order to ensure the
repeated measurement accuracy and eliminate the random
error in the measurement process, repeat the test for
five times, take the average value of the test results, and
analyze the stability.

Results

A test of the influence of the arc on
different features

It can be seen from Equations (1) and (2) that only
the number of ultrasonic distance measuring sensors and
the influence of the center angle are analyzed for the
course deviation detection performance relative to the road
edge. Figure 22 shows the influence of ultrasonic ranging
sensor number and the center angle on the detection
performance of heading deviation with a relative road edge.
It can be seen from Figure 22A that the detection error
of relative wayside heading deviation is not more than 1◦,
and the coefficient of variation is less than 10%. When
the center angle is fixed, the detection error of relative
wayside heading deviation decreases with the increase of
the number of ultrasonic-ranging sensors, and the minimum
detection error of relative wayside heading deviation is 0.4◦.
It can be seen from Figure 22B that the detection error
of the relative wayside heading deviation is less than 3◦,

and the coefficient of variation is not greater than 8%.
When the number of ultrasonic ranging sensors is fixed,
the detection error of the relative wayside heading deviation
increases with the increase of the center angle. When the
center angle is 15◦, the maximum detection error is 2.3◦.
To sum up, the number of ultrasonic ranging sensors is
negatively correlated with the detection error of relative
wayside heading deviation, and the center angle is positively
correlated with the detection error of relative wayside heading
deviation, which is consistent with the change of position
and attitude detection deviation accuracy reflected in formulas
(1) and (2). Therefore, under the condition of meeting
the travel control time response, the number of ultrasonic
ranging sensors should be increased and a small center
angle should be set.

As shown in Figure 23, it is the result of the influence
of the number of ultrasonic distance measuring sensors, arc
radius, center angle, and the transverse deviation detection
performance of the relative edge. It can be seen from Figure 23A
that the transverse deviation detection error of the relative
road edge is less than 3 mm, and the coefficient of variation
is not greater than 9%. When the arc radius and the center
angle are fixed, the transverse deviation detection error of the
relative road edge decreases with the increase of the number
of ultrasonic distance-measuring sensors, and the minimum
transverse deviation detection error is 1.4 mm. It can be seen
from Figure 23B that the detection error of the transverse
deviation of the relative path is not more than 4 mm, and
the coefficient of variation is less than 8%. When the number
of ultrasonic distance-measuring sensors and the center angle
is fixed, the detection error of the transverse deviation of
the relative path edge increases, with the increase of the arc
radius. When the arc radius is 5,300 mm, the maximum
detection error has reached 3.8 mm. It can be seen from
Figure 23C that the transverse deviation detection error of
the relative road edge is not more than 30 mm, and the
coefficient of variation is less than 10%. When the number
of ultrasonic distance-measuring sensors and the arc radius is
fixed, the transverse deviation detection error of the relative
road edge increases, with the increase of the center angle.
When the center angle is 15◦, the maximum detection error is
21.5 mm. To sum up, on the premise of meeting the response
accuracy requirements of autonomous navigation walking
control, the ultrasonic ranging sensor should be appropriately
increased, and the smaller arc radius and the center angle
should be selected.

The performance of relative wayside heading deviation
detection is related to the number of ultrasonic distance
sensors and the center angle, while the performance of relative
wayside lateral deviation detection is related to the number
of ultrasonic distance sensors, arc radius, and center angle.
Therefore, firstly, the influence of the number of ultrasonic
distance-measuring sensors, the center angle, and the relative
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TABLE 5 Multi-factor coupling affects the accuracy of lateral deviation detection.

Serial
number

Influence factor Lateral deviation γ/mm Coefficient of variation/%

Total number of
ultrasonic distance

sensor/pcs

Central
angle/◦

Arc
radius/mm

1 5 5 3300 2.77 5.50

2 4300 3.61 4.35

3 5300 4.45 5.00

4 10 3300 10.86 6.50

5 4300 14.15 4.85

6 5300 17.44 7.00

7 15 3300 24.32 6.00

8 4300 31.70 4.85

9 5300 39.07 5.00

10 7 5 3300 2.41 7.40

11 4300 3.14 8.00

12 5300 3.87 7.00

13 10 3300 9.47 7.50

14 4300 12.34 6.95

15 5300 15.21 7.25

16 15 3300 21.22 8.35

17 4300 27.65 9.00

18 5300 39.07 8.50

19 9 5 3300 1.41 6.35

20 4300 1.84 6.00

21 5300 2.26 5.95

22 10 3300 5.53 6.50

23 4300 7.20 7.00

24 5300 8.88 7.50

25 15 3300 12.40 6.25

26 4300 16.13 6.00

27 5300 34.10 6.00

wayside heading deviation detection performance is analyzed,
and then the influence of the number of ultrasonic distance-
measuring sensors, the arc radius, the center angle, and the
relative wayside lateral deviation detection performance is
analyzed. As shown in Table 4, in order to further analyze
the effect of the number of ultrasonic ranging sensors and
the center angle coupling on the detection performance
of the relative wayside heading deviation, SPSS software is
used to fit the performance equation of relative wayside
deviation detection affected by two factors. As shown in
Equation (6), R2 after linear fitting of relative wayside
deviation detection error and wayside deviation variation
coefficient is 0.905 and 0.708, respectively. The fitting of
relative wayside deviation variation coefficient is not significant,
but the regression of relative wayside deviation detection
error fitting model is significant, which can better describe
the test results.

Further analyze the effect of the number of ultrasonic
distance-measuring sensors, arc radius, and center angle
coupling on the detection performance of the lateral deviation
of the relative road edge, as shown in Table 5. SPSS
software is used to fit the performance equation of three
factors affecting the detection of the lateral deviation of the
relative road edge, as shown in Equation (7). After linear
fitting, R2 of the detection error of the lateral deviation
of the relative road edge and the variation coefficient
of the course deviation are 0.935 and 0.373, respectively.
The regression of the fitting model of the measurement
error of the lateral deviation of the relative road edge is
significant, indicating that it is consistent with the actual
situation and can better describe the test results, but the
fitting of the variation coefficient of the lateral deviation
of the relative road edge is not significant, The reason for
this result is that the lateral deviation detected by the arc
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TABLE 6 Test results of detection performance of a normal road edge plane turning to a concave road edge plane.

Serial
number

Normal road edge plane Normal road edge plane turning to concave road edge plane

Accuracy of lateral
deviation

Accuracy of
heading deviation

Accuracy of lateral
deviation

Accuracy of
heading deviation

Time of
duration

Error
mean/mm

Coefficient
of

variation
/%

Error
mean/◦

Coefficient
of

variation
/%

Error
mean/mm

Coefficient
of

variation
/%

Error
mean/◦

Coefficient
of

variation
/%

Time of
mean/s

Coefficient
of

variation
/%

1 30 6.50 3.5 9.46 40 9.30 4.5 8.50 40 7.90

2 28 2.8 45 4.0 45

3 28 2.8 40 5.0 40

4 30 2.5 50 4.0 35

5 25 3.0 40 4.5 40

Mean 28.20 / 3.03 / 43 / 4.4 / 40 /

TABLE 7 Test results of detection performance of a normal road edge plane turning to a convex road edge plane.

Serial
number

Normal road edge plane Normal road edge plane turning to convex road edge plane

Accuracy of lateral
deviation

Accuracy of
heading deviation

Accuracy of lateral
deviation

Accuracy of
heading deviation

Time of
duration

Error
mean/mm

Coefficient
of

variation
/%

Error
mean/◦

Coefficient
of

variation
/%

Error
mean/mm

Coefficient
of

variation
/%

Error
mean/◦

Coefficient
of

variation
/%

Time of
mean/s

Coefficient
of

variation
/%

1 30 7.63 3.5 9.08 45 4.41 4.0 8.53 45 8.45

2 28 3.5 40 5.0 38

3 28 3 42 4.3 35

4 30 2.8 45 4.5 38

5 25 3 43 4.0 40

Mean 31 / 3.16 / 43 / 4.36 / 39.2 /

TABLE 8 Test results of detection performance of a concave road edge plane turning to a normal road edge plane.

Serial number Concave road edge plane turning to normal road edge plane

Accuracy of lateral deviation Accuracy of heading deviation Time of recovery

Error
mean/mm

Coefficient
of

variation/%

Error
mean/◦

Coefficient
of

variation/%

Time of
mean/s

Coefficient
of

variation/%

1 35 8.48 3.0 8.13 3.0 8.13

2 28 2.8 2.5

3 28 2.5 3.0

4 30 3.0 2.5

5 30 2.5 2.8

Mean 30.20 / 2.76 / 2.76 /
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TABLE 9 Test results of detection performance of a convex road edge plane turning to a normal road edge plane.

Serial number Convex road edge plane turning to normal road edge plane

Accuracy of lateral deviation Accuracy of heading deviation Time of recovery

Error
mean/mm

Coefficient
of

variation/%

Error
mean/◦

Coefficient
of

variation/%

Time of
mean/s

Coefficient
of

variation/%

1 35 9.08 3.5 8.48 2.5 6.50

2 30 3.0 3.0

3 35 2.8 2.8

4 28 3.0 3.0

5 30 2.8 2.8

Mean 31.6 / 3.02 / 2.82 /

FIGURE 24

Dynamic test results.

array edge navigation method is a fluctuation range, but
it will not affect the actual navigation effect. To sum up,
we can predict the autonomous edge navigation detection
accuracy of different feature detection arcs according to
Equations (6) and (7). Users can meet the needs of different
autonomous edge navigation accuracy by arranging different
feature detection arcs.

1γ = −158× 10−3Nt + 91× 10−3θ + 1.091
R2
= 0.905

1γCV = 1167× 10−3Nt + 17× 10−3θ − 0.722
R2
= 0.708

(6)

In the formula: 1γ— relative along the road heading
deviation detection error, ◦; Nt—The number of ultrasonic
ranging sensors; θ—Central Angle, ◦; 1γCV—The

variation coefficient of relative roadside heading deviation
detection error, %.

1D = −1628× 10−3Nt + 2443× 10−3θ + 4× 10−2R− 16.907

R2
= 0.935

1DCV = 236× 10−3Nt + 49× 10−3θ − 6.339× 10−5R− 4.02

R2
= 0.373

(7)

In the formula:1D—Lateral deviation detection error, mm;
R—Radius of an arc, mm; 1DCV— Lateral deviation detection
error variation coefficient, %.

A test on abrupt change of a concave
convex along the road surface

Tables 6, 7 show the testing performance test of a normal
road edge plane turning to a concave or a convex road edge
plane. It can be seen from Table 6 that, when the normal road
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edge plane turns to the concave road edge plane, the transverse
deviation detection error relative to the road edge increases by
about 10 mm and stabilizes at about 45 mm, and the heading
deviation detection error relative to the road edge increases by
1◦ and stabilizes at about 5◦. It can be seen from Table 7 that,
when the normal road edge plane turns to the convex road edge
plane, the transverse deviation detection error of the relative
road edge increases by about 8 mm, which is stable at about
40 mm, and the heading deviation detection error of the relative
road edge increases by 0.5◦, which is stable at about 4.5◦. It can
be seen from Tables 6, 7 that, when the normal path edge plane
turns to the concave or convex path edge plane, the relative
path edge attitude can maintain high-precision stable output
for more than 30 s.

Tables 8, 9 show the testing performance test of a concave
or convex road edge plane turning to a normal road edge
plane. It can be seen from Table 8 that, when the concave
changed road turns to the normal road edge plane, the transverse
deviation detection error of the relative road edge recovers to
about 35 mm, and the heading deviation detection error of
the relative road edge recovers to about 3.5◦. It can be seen
from Table 9 that, when the convex changed road turns to
the normal road edge plane, the transverse deviation detection
error of the relative road edge recovers to about 30 mm, and
the heading deviation detection error of the relative road edge
recovers to about 3◦. From Tables 8, 9, it can be seen that,
when the concave or convex road changes from the plane to the
normal road edge plane, the relative road edge attitude can be
restored to the detection state of the normal road edge plane
within 5 s. To sum up, the arc array edge navigation sensor
module can stably output high-precision position and attitude
data for more than 30 s after turning from the normal road
edge plane to the concave or convex road edge plane, which
ensures the safety of autonomous edge navigation, effectively
reduces the probability of collision accidents, and has certain
fault tolerance and good anti-interference performance. The arc
array edge navigation sensor module can quickly restore the
normal position and attitude detection state after changing from
the concave or convex path edge plane to the normal path edge
plane, which has good real-time performance.

A dynamic detection performance test

Figure 24 shows the dynamic detection performance results
of the small integrated arc array edge navigation sensor. The
detection error of relative course deviation along the road
is less than 4.5◦, the coefficient of variation is less than
10%, the maximum coefficient of variation is 9.94%, and
the minimum coefficient of variation is 5.59%. The detection
error of lateral deviation of a relative road edge is less than
40 mm, the coefficient of variation is not more than 9%, the
maximum coefficient of variation is 8.67%, and the minimum

coefficient of variation is 6.64%. When the moving speed of
the autonomous navigation platform increases from 0.15 to
0.35 m/s, the average detection error of the relative wayside
heading deviation increases by 0.38◦, and the average detection
error of the relative wayside lateral deviation increases by
10 mm. As the walking speed of the autonomous navigation
platform increases, the detection error of the relative wayside
lateral deviation heading deviation increases slightly, but the
variation coefficient of the relative wayside lateral deviation
heading deviation is less than 10%. The performance of pose
state detection is stable and real-time, which is not easily
affected by the walking speed change of the autonomous
navigation platform.

In addition, compared with Jia et al. (2015), to realize
the edge detection method of a flat greenhouse road based
on two-dimensional laser radar, the small integrated arc array
edge navigation sensor is only affected by the unevenness
and position mutation of the road edge plane, and has good
adaptability to the gentle slope and uneven road surface on both
sides of the road. Compared with the method of using machine
vision to realize autonomous navigation path extraction (Wang
et al., 2012; Hiremath et al., 2014; Malavazi et al., 2018; Yang
et al., 2018; Inoue et al., 2019; Xu et al., 2021), the small
integrated arc array edge navigation sensor uses ultrasonic
distance sensor to detect the edge on the basis of the relative edge
pose detection method based on the principle of the ideal target
zone of the lateral center arc array. It avoids the influence of
environmental factors, such as light, color of a reflecting surface,
and wall material, and has good anti-interference ability. At
present, the edge navigation method of a single ultrasonic or
infrared photoelectric sensor (Feng et al., 2012; Zhao et al., 2012;
Zhou, 2014; Wang and Liang, 2015) and linear arrangement of
multiple ranging sensors to form an array module (Du, 2010;
Xu et al., 2010; Yuan and Li, 2013) cannot realize the accurate
position and attitude feedback of the autonomous navigation
platform, and it is difficult to ensure the smoothness and control
accuracy of the edge navigation. However, a small integrated
arc array edge navigation sensor based on the principle of ideal
target zone of lateral central arc array – the construction of the
relative edge pose detection method can realize accurate pose
state detection, and can improve the smoothness and stability of
an autonomous navigation platform.

Conclusion

Based on the ideal target band principle of the lateral central
arc array, this paper studies the relative edge pose detection
method, and constructs a universal relative edge pose detection
model with unknown number of sensors. Aiming at the sore
point that the current arc array is too large to be integrated, a
small integrated arc array navigation sensor module is designed
by reducing the layout radius of the ranging sensor, adjusting the
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center angle of the non-equal circle and increasing the detection
distance. The main conclusions are as follows:

(1) This research has developed a small integrated arc array
navigation sensor module with a cost of about US $100,
which can accommodate at least nine ultrasonic ranging
sensor groups, and proposed an autonomous construction
method for detecting arcs with different characteristic
parameters based on adaptive calibration of detection
distance so as to improve the convenience and friendliness
of users, and, at the same time, it can meet different
requirements for autonomous edge navigation. It can also
meet the requirements of low-cost, high-precision, and
fast border navigation in greenhouse, animal, and plant
factories and other environments.

(2) The experimental results of arc detection with different
features show that the accuracy of the edge position and
orientation navigation method based on the arc array is
related to the key layout parameters of the detected arc.
With the increase of the number of ultrasonic distance-
measuring sensors, the detection errors of the heading
deviation and the lateral deviation of the relative road
edge are reduced. The detection accuracy of the heading
deviation of the relative road edge is increased to 0.4◦,
and the detection accuracy of the lateral deviation of
the relative road edge is increased to 3 mm. With
the reduction of the center angle, both the heading
deviation and the lateral deviation detection error of
the relative curb decrease. When the center angle is 5◦,
the heading deviation detection accuracy of the relative
curb reaches 0.38◦ and the lateral deviation detection
accuracy of the relative curb reaches 2.4 mm. With
the reduction of the arc radius, when the arc radius
is 3,300 mm, the lateral deviation detection accuracy
of the relative curb reaches 2.4 mm, and the heading
deviation detection accuracy of the relative curb is not
affected. Therefore, when setting the detection arc, the
number of ultrasonic distance-measuring sensors should
be appropriately increased, and the smaller arc radius
and the center angle should be selected. In addition, the
number of ultrasonic distance sensors, arc radius, and
center angle significantly affects the detection accuracy
of lateral deviation and heading deviation relative to the
curb. Through the linear fitting equation, the prediction
regression equation of the number of ultrasonic distance-
measuring sensors and the heading deviation detection
accuracy of the center angle and the relative edge
is obtained. The prediction regression equation of the
number of ultrasonic distance-measuring sensors, the
circular arc radius, and the horizontal deviation detection
accuracy of the center angle and the relative edge is
obtained. The R2 factor of the linear fitting is 0.905 and
0.935, respectively, which has a high fitting reality; this

equation can be used to predict the detection accuracy
of the detection arc along the edge with different layout
feature parameters so as to quickly select the layout scheme
suitable for the actual needs.

(3) The experiment on abrupt change of a bump on the
road edge plane: when facing the operation environment
of concave change and convex change on the road edge
plane, when turning from the normal road edge plane to
the concave change road edge plane or convex change
edge plane, the transverse deviation detection error relative
to the road edge increases by 10 mm, which is stable
at about 45 mm; the heading deviation detection error
relative to the road edge increases by 1◦, which is stable
at about 5◦; and the relative road edge attitude can
maintain high-precision and stable output for 30 s. The
arc array edge navigation sensor module has certain
fault tolerance.

(4) The dynamic detection performance test results show
that, when the arc radius is 3,291 mm and the center
angle of the circle is 20◦, and the traveling speed of the
autonomous navigation platform is 0.15 to 0.35 m/s, the
detection errors of the lateral deviation and the heading
deviation relative to the road edge are less than 40 mm
and 4.5◦, respectively. As the traveling speed of the
autonomous navigation platform increases, the average
detection error of the relative road edge heading deviation
increases by 0.38◦, and the average detection error of the
relative road edge lateral deviation increases by 10 mm.
However, the coefficient of variation is less than 10%. The
dynamic position and attitude detection performance of
the arc array edge navigation sensor module is relatively
stable and has good real-time performance. It is less
affected by the walking speed change of the autonomous
navigation platform, and can be used for autonomous edge
navigation control.

The small-scale integrated photoelectric arc array edge
navigation sensor studied in this paper uses the ultrasonic
distance sensor to establish the detection arc. Because the
transmitted signal of the ultrasonic distance sensor is a divergent
conical detection surface, the reflected signals of the adjacent
ultrasonic distance sensors will interfere with each other,
resulting in large errors in the detection process. The plane
position of the ultrasonic distance sensor can be reasonably
arranged to solve the problem of mutual interference between
adjacent ultrasonic distance sensors. In addition, the ultrasonic
ranging sensor will be affected by temperature, humidity, air
pressure, air flow, and other factors, which will reduce the
ranging accuracy and cause large errors in the position and
attitude of the relative roadside. Subsequently, the influence of
the above environmental factors can be weakened through the
temperature and humidity compensation algorithm to further
improve the adaptability of multi agricultural scenarios.
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Development of a dual-arm
rapid grape-harvesting robot for
horizontal trellis cultivation
Yingxing Jiang, Jizhan Liu*, Jie Wang, Wuhao Li, Yun Peng
and Haiyong Shan

Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang,
China

It is extremely necessary to achieve the rapid harvesting of table grapes

planted with a standard trellis in the grape industry. The design and

experimental analysis of a dual-arm high-speed grape-harvesting robot were

carried out to address the limitations of low picking efficiency and high grape

breakage rate of multijoint robotic arms. Based on the characteristics of

the harvesting environment, such as the small gap between grape clusters,

standard trellis, and vertical suspension of clusters, the configuration of the

dual-arm harvesting robot is reasonably designed and analyzed, and the

overall configuration of the machine and the installation position of key

components are derived. Robotic arm and camera view analysis of the

workspace harvesting process was performed using MATLAB, and it can be

concluded that the structural design of this robot meets the grape harvesting

requirements with a standard trellis. To improve the harvesting efficiency,

some key high-speed harvesting technologies were adopted, such as the

harvesting sequence decision based on the “sequential mirroring method” of

grape cluster depth information, “one-eye and dual-arm” high-speed visual

servo, dual arm action sequence decision, and optimization of the “visual end

effector” large tolerance combination in a natural environment. The indoor

accuracy experiment shows that when the degree of obscuration of grape

clusters by leaves increases, the vision algorithm based on the geometric

contours of grape clusters can still meet the demands of harvesting tasks.

The motion positioning average errors of the left and right robotic arms were

(X: 2.885 mm, Y: 3.972 mm, Z: 2.715 mm) and (X: 2.471 mm, Y: 3.289 mm,

Z: 3.775 mm), respectively, and the average dual-arm harvesting time in one

grape cluster was 8.45 s. The field performance test verifies that the average

harvesting cycle of the robot with both arms reached 9 s/bunch, and the

success rate of bunch identification and harvesting success rate reached 88

and 83%, respectively, which were significantly better than those of existing

harvesting robots worldwide.

KEYWORDS

grape, standard trellis, sequential mirroring, depth threshold segmentation, one-eye
and dual-hands visual servo
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Introduction

Grapes are soft-skinned, juicy berries that occupy an
important position in the world of fruit production. In 2020,
the total area of vineyard cultivation worldwide was 7.3 million
hectares, there were 50 million tons of grapes produced in
the world, and China produced approximately 20 million
tons, creating substantial economic value for people worldwide
(Organisation internationale de la vigne et du vin [OIV], 2020;
Isrigova et al., 2021). Due to growing labor shortages, the need
for harvesting robots for fresh grapes has become increasingly
urgent.

Trellis grapes are mainly used for fresh fruit consumption
and are extremely difficult to harvest because of the need
to ensure the integrity of grape clusters and soundness of
grapes for transportation and marketing requirements (Ozkan
et al., 2007; Jianying et al., 2014; Zhu et al., 2014). Traditional
trellis grape harvesting operations rely mainly on manual work
performed by two hands to finish working together, one hand
to support and the other to cut grape stems, to complete one
grape harvesting process (Piazzolla et al., 2016; Wang et al.,
2017). This harvesting model is both inefficient and has high
labor costs and will not meet the rapid harvesting standard
of the future grape industry. Grape trellis configurations are
mostly horizontal in Asia, the planting height is as high as
2 m, and the harvesting point of grape stems is usually 1.8 m
above the ground. Traditional single-arm harvesting robots
have deficiencies such as long harvesting cycles, poor moving
flexibility, and inaccurate fruit harvesting accuracy, and they
cannot meet the requirements of grape harvesting in standard
trellises (Possingham, 2006; Suvoéarev et al., 2013; Williams
and Fidelibus, 2016). Therefore, a highly efficient harvesting
robot must be designed for standard trellis grapes to address the
embarrassing gap of a lack of reliable harvesting machines in the
grape-growing industry.

At present, researchers worldwide are still in the exploratory
stage of research on harvesting machinery for grapes on trellises,
and their research methods mainly revolve around visual
positioning identification of grape clusters and the design of
end-effector configurations (Luo et al., 2016; Liu et al., 2019;
Tang et al., 2020; Kalampokas et al., 2021; Majeed et al., 2021;
Peng et al., 2021). Facing the growth characteristics of different
types of fruits and vegetables, researchers have developed
multiple types of picking equipment. Mehta et al. (2014)
proposed a cooperative vision servo controller for autonomous
harvesting to adjust the position of the end effector according to
the real-time position of fruit and, to a certain extent, to weaken
the interference of the complex environment in the harvesting
process. Levin and Degani (2019) proposed a modular design
of an agricultural robot structure by examining the phenomena
of low reusability and narrow applicability of the harvesting
robot structure, which has resulted in a large improvement in
harvesting time and fruit-harvesting success rate. Wang et al.

(2019) proposed an optimization method of harvesting posture
to address the randomness of the citrus growth direction on
stalks and designed an occluding end effector with a success
rate of fruit stalk-shearing up to 89% and a harvesting success
rate of the best posture up to 74%. Kurtser and Edan (2020)
used a TSP approach to plan a work sequence and path of
sensing and harvesting tasks for a bell pepper-harvesting robot
and concluded that planning a series of tasks can reduce costs by
12%. These equipments and methods were only commissioned
in the laboratory and not in a realistic agricultural environment
(Kurtser and Edan, 2020).

Compared to single-arm robots, harvesting robots that
use a two-armed operational strategy are more advantageous
in grape trellises. The dual-arm robot extends up to 2.5 m
and can cover all grape-growing areas of a standard trellis,
and the harvesting efficiency is much higher than that of
traditional robots. Zhao et al. (2016b) designed and tested a
dual-arm frame equipped with two 3 DoF (degree of freedom)
manipulators and two different types of end effectors used to
pick tomatoes and exchanged the operator’s commands and
displayed the state information of the robot. Ling et al. (2019)
developed a dual-arm cooperative approach for a tomato-
harvesting robot using a binocular vision sensor, and with
vacuum cup grasping and wide-range cutting, the success rate
of robotic harvesting reached 87.5%, while the harvesting cycle
time was more than 30 s. Yu et al. (2021) used an autonomous
humanoid robot for apple harvesting. It shows success rates
of 82.5 and 72% for the apple recognition and harvesting
functions, respectively; however, the apple-harvesting time is
more than 30 s, and it has a rough structure and end effector.
The authors concluded that although some progress has been
made in the development of current grape-harvesting robots,
further research is essential. Dual-arm harvesting robots can
substantially improve operational efficiency, but there is still a
lack of integrated harvesting robots in grape harvest production.

Grape clusters planted with trellises are mostly suspended
on top of trellises, and the distance range from the cutting point
of the fruit stalk to the top of the trellis is 30–100 mm, resulting
in a small space for the upper limit activity of the robotic
arm, which makes harvesting difficult and requires higher
precision in identifying fruit clusters (Vrochidou et al., 2021).
To accomplish efficient grape harvesting in standard trellis
complex environments, our research group invented a dual-arm
grape-harvesting robot for high standard trellis environments.
Its harvesting structure used an RGB-D camera for the
environmental field of view scanning and obtained the spatial
information of grape-harvesting points and transmitted it to a
dual robotic arm control system. The robot is a modular design.
Facing different fruit and vegetable harvesting requirements,
it only changes the structure of end effectors and adjusts
the parameters of the vision recognition algorithm to quickly
achieve a variety of fruit-harvesting tasks. Robotic harvesting
operations through unmanned control have high harvesting
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quality and harvesting efficiency. They can significantly reduce
the labor burden in grape harvesting and improve the efficiency
of grape-harvesting operations (Zhao et al., 2016a; Ling et al.,
2019; Seol et al., 2020).

Therefore, a dual-arm rapid grape-harvesting robot for
the horizontal trellis was designed and analyzed in this
article. This robot is integrated with a variety of sensors
and actuators to enable unmanned operation processes. In
section “Parameters of the horizontal trellis environment,”
the horizontal trellis environment is introduced. In section
“Overall structure of the dual-arm rapid harvesting robot,”
the hardware and software architecture design of the robot
for rapid harvesting is described. In section “Key technologies
of dual arm rapid grape-harvesting robot,” we introduced
the key technologies of the robot. First, we propose a “one
eye-dual-arm” high-speed parallel harvesting strategy based
on the structural parameters of the horizontal trellis. The
position of the camera in relation to the two arms was also
determined. Then end effectors and the vision algorithm
were optimized for rapid recognition and harvesting process
implementation. The combination of end effectors and a
vision algorithm substantially improves the tolerance for
errors. Finally, a dual-arm harvesting strategy based on
depth values is proposed to achieve a harvesting sequence
and the division of operation space by spatially symmetrical
segmentation. For the area where the two arms are prone
to collision, we established the danger area and safety area.
In the danger area, the two arms will use an asynchronous
master–slave dual-robotic arm anticollision harvesting
strategy. In section “Experiments,” we present indoor
accuracy experiments and field performance experiments.
In section “Conclusion,” some conclusions are provided.
Meanwhile, the existing work deficiencies and future research
work are discussed.

Materials and methods

Parameters of the horizontal trellis
environment

The viticulture mode in horizontal trellises is the grape tree-
planting method, in which the bottom of the trellis is supported
by pillars, and the top is pulled by cross bars or lead wires
to form a net-like shelf surface, and branches and vines grow
on the shelf (Figure 1). A horizontal trellis has the advantages
of ventilation, light penetration, easy branch management and
high production. It has become one of the main modes of fresh
grape cultivation.

The horizontal trellis is divided into two upper and lower
layers by pulling a wire mesh at the top. The upper layer allows
vine branches to grow and spread, confining a large number
of branches and leaves to the upper area, while grapes grow

by gravity and hang vertically downward, achieving separation
between fruit, branches, and leaves. After several measurements,
the height of grape clusters to the top of the trellis is usually 20–
120 mm, and the height of the bottom of grape clusters to the
ground is 1,700–1,900 mm.

Fresh grapes, as ready-to-eat fruit, need to meet the integrity
and aesthetics of the bunches for later sale and eating, so
there are higher operational standards for harvesting fresh
grapes. Grape-harvesting methods with traditional trellises
rely on manual hand harvesting, with one hand supporting
grape bunches and the other hand shearing the fruit stem,
which is harmful to health because of the long hours spent
harvesting with a head-up posture. Based on this horizontal
trellis, there is an urgent need to design an intelligent grape-
harvesting robot for standard trellises to replace manual
labor to complete tedious tasks. Most traditional fruit- and
vegetable-harvesting robots use a single mechanical arm as
the harvesting servo mechanism, resulting in extremely low
single-cycle harvesting efficiency that is much lower than the
manual operation efficiency and cannot meet the requirements
of the grape industry.

We completed a study of horizontal trellises for fresh
grapes in different vineyards in Jurong City, Jiangsu Province,
China (119.25852◦E, 31.88404◦N). Standard grape trellises
have many unique structural characteristics that harvesting
robots need to adapt. In this particular working environment,
the harvesting robot is required to meet the following
design requirements.

(1) Based on the horizontal trellis structure and the vertical
growth of grapes, the harvesting width, depth value of
recognition range, walking step length and another factors
as key parameters of this robot. Hand-eye combination
configuration and the harvesting posture determine the
range of this robot and the end-effector.For these special
requirements from the environment structure, the analysis
of robot construct with multi-parameters fusion becomes
the central issue.

(2) The position of the camera relative to the robotic arms was
determined to ensure that all grape-harvesting targets were
fully integrated into the field of view in the camera and
robotic arm harvesting range.The combined relationship
between the camera and dual arms becomes the key point.

(3) The distribution of grape growth was random in the
standard trellis. The harvesting robot needs to quickly
identify grape targets and assign harvesting tasks to the
two robotic arms to accomplish rapid and accurate visual
servoing. Harvesting task assignment is an important
prerequisite for visual servo.

(4) The robot needs a reasonable harvesting strategy. It can
respond to unstructured environments in real time. It is
a crucial technology for the robot to make the harvesting
motion smoothly, accurately and at high speed.
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FIGURE 1

Vineyard in Jurong City.

Overall structure of the dual-arm rapid
harvesting robot

Hardware structure
Single-arm harvesting robots have some shortcomings,

including a small operating width (1–1.5 m) and low
harvesting efficiency (average of 25 s/cycle). Most robots
rely on tractors for towing or rail transport (Kootstra
et al., 2021). They are unable to navigate autonomously in
response to agricultural environment changes. Therefore, it is
extremely important to develop a robot with high harvesting
performance, multisensor integration, and real-time sensing of
environmental changes.

Figure 2 shows the developed dual-arm rapid grape-
harvesting robot. Its structure includes a RealSense D435i
depth camera, two 6 DoF robotic arms, and mobile tracked
chassis. The RealSense D435i depth camera is mounted on
top of the robot. This ensures that the camera obtains as
much of the field of view as soon as possible. The RealSense
D435i depth camera acquires the spatial coordinates of grape
clusters by shooting a standard trellis environment. The
two robotic arms are distributed with the camera mounting
position as the center of symmetry. To ensure that the dual-
arm working space covers the grape-growing space within
the standard trellis, two robotic arms are mounted on both
sides of the robot. Many sensors are integrated into the
control box (Jetson Nano, STM32, robotic arm controllers).
The camera and two robotic arms are mounted via steel
to a mobile tracked chassis. To acquire a point cloud of
grape trees in a reasonable view, a SICK 2D radar system
is mounted on the front of the tracked chassis. Multiple
electrical systems are integrated into a robot, and this
robot can handle various requirements in a nonstructural
agricultural environment.

System architecture
A Nvida Jetson Nano developer kit is used as the center

of the decision system. Its small size and powerful computing

FIGURE 2

Dual-arm rapid grape-harvesting robot.

power meet the needs of running programs in harvesting
(GPU: 128-core NVIDIA Maxwall, CPU: Quad-CoreARM
Cortex-A57 MPCore). RealSense D435i depth camera is used
as the main sensor to obtain environmental information
(RGB images 1,920 × 1,080 in resolution, depth images
1,280 × 720 in resolution, with a FOV of 69◦ × 42◦). It
is manufactured by Intel, United States. It is able to cover
a wider area and reduce more blind spots. The robotic
arms use Techsoft TB6-R5 (Techsoft, Shenzhen, China).
TB6-R5 has a payload of 5 kg and repeatable position
accuracy of up to ±0.05 mm. Each robotic arm has its own
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controllers, and controllers receive their respective harvesting
tasks and control independently. Each arm is equipped
with a cut-clip end effector. They hold grape clusters while
cutting grape stems. The chassis is manufactured by Sangpu
Agricultural Machinery Co., Changzhou, China. This robot
uses a 2D radar (LMS-111, Sick, Germany) with TOF distance
detection and enables accurate measurements in a complex
field environment.

The dual-arm grape-harvesting robot consists of four main
units: (1) a visual recognition system, (2) a decision system, (3)
a servo harvesting system, and (4) a walking chassis system. The
four units communicate with each other and work together to
harvest the target fruit based on visual information.

To adapt to the field environment in agriculture, agricultural
robotic systems are often required to have strong integration.
Figure 3 illustrates the details of the control system for
the whole robot. In the hardware section, Jetson Nano is
responsible for key aspects such as image processing, motion
information transmission, and communication between each
hardware unit. RealSense D435i is connected to Jetson Nano
via USB and sends the 3D information acquired to Jetson
Nano in real time. These images are segmented, and the
algorithm extracts contour information within ROS (robot
operating system). The robotic arm (Techsoft, TB6-R5, CHN)
communicates with the controller in real time via an EtherCAT
bus. After the robotic arm moves to the target coordinate,
it sends a signal to Jetson Nano. Jetson Nano sends control
commands to STM32 through serial ports. STM32 controls the
opening and closing of the electric gripper. When there are no
harvesting targets in the camera field of view, the chassis moves
forward some distance. Until the camera requires harvesting
targets again, the chassis stops moving, and then, the next
harvesting cycle begins.

In the software part, ROS is currently the most popular
control system in robots. It is able to manage and transmit
multiple sensor data. The data of the camera, robotic arms,
grippers, and chassis are defined as nodes. These nodes subscribe
to each other through topics for data delivery. The overall
software component allows for a rapid response to agricultural
environmental changes (Figure 4).

Key technologies of dual arm rapid
grape-harvesting robot

“One eye-dual hand” structure based on
horizontal trellises

A hand-eye structure is the basis of robot vision servo
control. At the same time, “eye-in-hand” usually requires a
camera at the end of the arm. This results in a small camera
field of view and cannot capture all the harvesting targets in
the horizontal trellis. As shown in Figures 5A–C, three kinds
of “eye-in-hand” structure occurs in different scenes.

Therefore, the special “one eye-dual hand” structure is
proposed. This structure ideally ensures full coverage of all
grape clusters in grape-growing space under a horizontal trellis.
The rational arrangement of the mounting position relationship
between the two arms and camera becomes the core of the
robot harvesting structure. To obtain as many grape clusters as
possible, the camera field of view needs to match the dual-arm
working space (Figure 6; Barth et al., 2016; Seyyedhasani et al.,
2020; Chen et al., 2021).

A robotic arm working space is usually defined as a
spherical space to simplify the problem in traditional research.
However, the 6 DoFs robotic arm consists of motors and
links. It does not have an ideal spherical shape of a robotic
arm because of the difference in length and orientation of
links. It looks more like a rugby ball in a working space.
Therefore, it would be more reasonable to analyze robotic arm
working space using the ellipsoidal spherical space equation.

V = Vl + Vr − Vk (1)

Vl = Vr =
y

(
x2

b2 +
y2

a2 +
z2

c2 )dydxdz (2)

As shown in Figure 6A, the left robotic arm working
space Vl and right robotic arm working space Vr are
added and subtracted from the overlapping space Vk,
which is the actual working space of the two arms V .

X =
x
b
,Y =

y
a
,Z =

z
c

(3)

Vl = Vr = abc
y

(X2
+ Y2

+ Z2)dXdYdZ =
∫ L

0

dz
x

f (X,Y,Z)dXdY (4)

lk =
4a − Lw

2
(5)

Vk = 2
∫ a

4a − Lw
dx

x
f (X,Y,Z)dYdZ (6)

V = 2
∫ L

0
dz

x
f (X,Y,Z)dXdY − 2

∫ a

4a − Lw
dx

x
f (X,Y,Z)dYdZ

(7)
where V is the overlapping part of the dual-arm working

space and grape-growing space, W is the grape-growing space
length, K is the grape-growing space width, L is the grape-
growing space height, lT is the dual-arm mounting horizontal
spacing, H is the height of the arm from the ground, ha
is the height of the arm from the grape-growing space, Slt
is the top area of the left arm working space and grape-
growing space, Slb is the bottom area of the left arm working
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FIGURE 3

Hardware communication method.

FIGURE 4

Control system of the dual-arm rapid harvesting robot.
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FIGURE 5

(A) Camera placed a short distance below. (B) Camera placed below at a distance. (C) Camera mounted above.

FIGURE 6

(A) Analysis of the “one eye-dual arm” working space and camera field of view. (B) Dual-arm working space and robot harvesting step.
(C) Operating effect in the XOZ coordinate system. (D) Operating effect in the XOY coordinate system.

space and grape-growing space, Srt is the top area of the
right arm working space and grape-growing space, Srb is the
bottom area of the right arm working space and grape-growing
space, and Lw is the working width of the two arms. Ov

is the camera mounting position, h is the camera mounting
height.

The area where the dual-arm workspace and camera field
of view overlap is the area of harvesting that the robot
can identify and harvest. Unreasonable arrangement of robot
harvesting steps can effectively reduce the harvesting efficiency
in grape-growing space and increase the number of missed

grape targets. As shown in Figure 6B, the width of the
camera field of view needs to be greater than the width
of harvesting space W. The camera field of view takes the
camera as the vertex. The directions of the FOV angle are
extended. The shape of view is similar to a quadrilateral cone.
By calculating the camera FOV angle, the camera field of view
equation is derived. Threshold segmentation of the camera field
of view effectively limits the range of the camera shot and
filters interference.

From Figures 6B–D, we established the camera field-of-
view equations. Relevant parameter constraints were established
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based on the horizontal trellis, camera field-of-view range, and
dual-arm working space.

Camera field of view space:

±
xo

tan ∅2
±

zo
tanω

2
− 2yo = 0 (8)

where ∅ is the camera shooting horizontal field-of-view angle, ω
is the camera shooting vertical field-of-view angle, (xo, yo, zo) is
the coordinate of the target point.

200mm ≤ dview ≤ h1St
lr + Rlb + Rrb ≥ W

H + h + dheight ≥ 2000mm
(9)

where dview is the camera depth threshold range, dheight is the
height of the camera field, St is the harvesting step of the robot,
h1 is the distance between the camera and robotic arms in the
y direction, lr is the mounting distance between dual arms, Rlb
is the minimum working width of the left robotic arm in grape
growing space, Rrb is the minimum working width of the right
robotic arm in grape growing space.

By combining the characteristics of the horizontal trellis,
camera field of view, and dual-arm working space, we obtain a
reasonable installation position relationship between the camera
and two arms: 

St = 800mm
H = 1400mm
h = 300mm
lr = 1100mm
h1 = 250mm

(10)

As shown in Figure 7, after MATLAB with Solidworks
simulation, the “one eye-dual arm” structure ensures that the
ends of the robot arm have sufficient space to move the
trellis boundary so that the ends of the robot arm can reach
the farthest end of the horizontal scaffolding in a flexible
posture to complete harvesting operations, and the robot can
be made in a harmonious proportion similar to the human form
configuration without a lack of design aesthetics.

Large error tolerance of the “hand-eye”
combination
(1) Rapid identification of multiple targets in one image.

The images of grapes inside a horizontal trellis obtained by
RealSense D435i often exhibit multiple clusters of grapes. If each
bunch of grapes needs to be identified once by the camera, it
would greatly increase the harvesting time. To achieve rapid
harvesting of multiple bunches of grapes in a horizontal trellis, it
is necessary to achieve rapid identification of multiple bunches
of grapes within an image.

Multiple bunches of grape bunches were often targeted in
the images of grapes inside the horizontal trellis obtained by
RealSense D435i. The camera directly acquires the depth values

of all grapes in the image. According to Figure 8, we can
calculate the camera depth threshold range as follows:

100mm < d < St + h1 (11)

When grape clusters are less than 100 mm from the
camera, the camera cannot focus on the grapes. When grape
clusters exceed the depth threshold, grape targets are beyond the
working space of the two arms. As shown in Figure 8, four grape
clusters were present in the image. The fourth grape cluster was
cleared as background because the depth value exceeded the
depth threshold. The other three grape clusters were harvested
based on the depth value from smallest to largest.

(2) Fuzzy prediction of grape stem-cutting points based on
grape contours.

Grape leaves, stems that are non-grapes, and grape clusters
in trellises can interfere with the target stem identification in
traditional algorithms. However, this fuzzy algorithm does not
rely on the precise identification of grape stems. The algorithm
constructs an external rectangle of grapes by HSV thresholds
acquiring their geometric contours. The center of the external
rectangle is the center of the grape profile in this algorithm
and moves upward to speculate the coordinates of grape stems.
When there is a small amount of cover in grape clusters, this
algorithm can still quickly determine the inference of grape stem
coordinates (Figure 9).

Grape contours were bounded to obtain parameter spike
length and width values, and the center of grape coordinates O
(x0, y0, z0) was calculated based on the distribution area. z0 is
the depth value of the center of the grape coordinate from the
camera and can be obtained directly through the depth camera.
The spatial coordinates of the grape-harvesting point K (xk, yk,
zk) are calculated as follows:

xk = x0

yk = y0 +
H
2 + h

zk = z0

(12)

(3) “Cut-clip” end effector for grape horizontal trellises.

Traditional finger end effectors often damage grapes at the
finger end during the grape harvesting process. For Kyoho
grapes, the stalks can reach 15 mm in diameter, and the weight
of a single cluster can reach 400 g. RealSense D435i extracts the
geometric contours of grape clusters to infer the calculation of
grape stem-cutting points with visual recognition errors. Due to
hand-eye calibration and coordinate conversion, the movement
of the robotic arm has some motion errors. Both of these errors
are generated by the design principle and algorithm. They are
difficult to reduce or minimize. The end effector must grip
the whole grape cluster when cutting the stem. It needs to be
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FIGURE 7

Operating space point cloud of the dual-arm harvesting robot.

FIGURE 8

Identification of multiple bunches of grape clusters within one image.

FIGURE 9

Calculation of the stem-cutting point.

transported from the standard trellis to the fruit box smoothly
to ensure no damage.

Facing these requirements in grape harvesting, our research
group has designed an end effector for rapid grape harvesting.
The finger of the end effector is designed with certain curved
angles. When the end effector begins to harvest, the finger with
curved angles can reduce the negative effect of visual recognition

errors and arm motion errors (Figures 10A,B). This structure
enhances error tolerance in the x and y directions. It turns a
harvesting point into a harvesting range.

Motors are used to control the fingers to open and close.
Three sets of blades are mounted on the fingers. When the
fingers are closed, the blades finish cutting the grape stems.
At the same time, the lower part of the fingers is fitted
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FIGURE 10

(A) Construction of the end effector; (B) error tolerance in the end effector; (C) end effector opening; and (D) end effector closing.

with a rubber block to hold grape clusters to cut the stems
(Figure 10C). The end effector is simple in structure and only
requires± signals to complete the control process (Figure 10D).
It enables the integration of cut-clip multitasking in rapid
grape-harvesting tasks and significantly improves the harvesting
efficiency and success rate.

(4) Error tolerant combination of the end effector and vision
algorithms.

Nonstructural features exist within the horizontal trellis.
Images contain not only grape clusters but also branches,
leaves, the trellis, and another environment. It is a challenge
to quickly acquire grape-harvesting points from complex
backgrounds. When grape stems are obscured, interlaced, or
overlapped, the stem-cutting point error is large. This leads to
chaotic robotic arm movements, harvesting failures, and serious
collision problems.

Faced with the special grape-harvesting requirement, our
group obtained the coordinates of the center of the external
rectangle based on the grape geometric profile and thus achieved
the vertical upward prediction of grape stem-cutting points.
By using the external rectangle of the grape cluster to predict
stem-cutting points, even if grapes are partially obscured by the
outline, the stem-cutting points can be predicted by the external
rectangle with little error (Figure 11).

By the fuzzy prediction method for the grape stem-cutting
points, grape clusters in horizontal trellises can be quickly
recognized. When grape clusters were partially shaded, the
external rectangle of grape clusters did not change significantly.
Stem-cutting points were predicted by the external rectangle
of grapes to reduce the errors of grape clusters in images.
When the fingers of the end effectors have curved angles, the
error of the stem-cutting points in the horizontal direction
can be enhanced. As shown in Figure 10B, the design of
the end effector produces some horizontal error tolerance
degree Lt and depth error tolerance degree Dt . It expands the
original visually identified point into an area and improves the
harvesting success rate.

It guides the stem to the area where the blade will cut.
By the end effector mechanism, the point of the grape stem
can be converted into an area range. This tolerable error
method that combines software and hardware has significantly
increased the success rate and harvesting efficiency of grapes in
horizontal trellises.

Dual-arm harvesting strategies in the
horizontal trellis
(1) Based on depth value “symmetric space segmentation”

harvesting sequence.

Dual arms are not just a superposition of the operational
efficiency of two robotic arms. The disorderly and random
distribution of grapes on horizontal trellises means that the
harvesting sequence and path for robotic arm harvesting
operations need to be planned (Takano et al., 2019). Grape
clusters captured by the camera view become harvesting
targets, and the center axis plane of the camera field is
used as the operation space segmentation reference plane. We
divided the camera view into left working space and right
working space based on the “symmetric space segmentation”
method. Finally, the coordinating information of target grapes
is sorted based on the depth values and transferred to the
Cartesian coordinate system. When the target grape coordinate
x < 0, the harvesting task is divided into the left arm
workspace, and when x > 0, it is assigned to the right
arm workspace. This ensures independent parallel operation
between two robotic arms without interference and joint
collision (Figure 12).

From Figure 12, multiple bunches of grapes L1−L3 and
R1−R3 were found in the field of view of the camera in
harvesting cycle 1. Dual arms harvest the target grape in their
respective areas until all of them are harvested. When there are
no grape targets in the camera field of view, the chassis will
automatically run into harvesting cycle 2 and will harvest grape
clusters L4–L6 and R4−R6.

(2) Danger and safety areas for dual-arm operation.
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FIGURE 11

Error tolerance combinations of the end effector and vision algorithms.

FIGURE 12

Dual-arm harvesting sequence in a horizontal trellis.

Robotic arms are used as electrical devices with independent
control centers. Dual arms may be prone to collision and even
serious damage. Therefore, we defined a dual-arm operating
space and established a danger area and safe area in the working

FIGURE 13

Danger area and safe area in dual-arm operating space.

space. The fixed area in yellow shown in Figure 13 can be
named the danger area. This means that we need to perform two
scenario analyses:

(1) When grape targets are present in the safe area, the two
arms do not collide. Therefore, the two arms can harvest
independently and speedily without the need to restrict
harvesting movement. Therefore, in this case, there is no
need to change the strategy.

(2) If multiple bunches of grapes are present in the danger area,
how to ensure that robotic arms can still complete the rapid
harvesting process without collision must be determined.
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TABLE 1 Different strategies for grape targets in different areas.

Scene Use this
strategy

Harvesting path

The two arms are out of the danger area × There is no risk of collision of the two arms, and independent and rapid harvesting can be achieved.

One arm in the danger area, the other arm
in the safety area

√
The one arm in the danger area is treated as the master arm and has the priority of harvesting. The other
arm needs to wait to complete its harvesting action before it starts moving.

The two arms are in the danger area
√

When grape targets are in the danger area, the harvesting priority of the arm needs to be determined based
on the grape-harvesting order. The robotic arm with the priority will become the master arm. It will enter
the danger area to harvest first.

(3) Asynchronous master–slave dual-robotic arm anticollision
harvesting strategy in the danger area.

The danger area is a smaller part of the operating space of the
dual arms. When multiple bunches of grape clusters are growing
in the danger area, the movement of the two arms requires
very careful planning. Otherwise, arm joints or end effectors
are prone to collision. Our group proposes an asynchronous
master–slave dual-robotic arm anticollision harvesting strategy
in the danger area. This strategy is based on the conditional
judgment of the grape cluster distribution location, as shown in
Table 1.

The danger area occupies only a small part of the working
space of the two arms. Therefore, the probability of this strategy
being employed by two arms tends to be small, which does
ensure the safety of robotic arms in harvesting work. As shown
in Figure 14A, when multiple bunches of grapes are present in
the danger area, the dual-arm strategy will be used for safe and
rapid harvesting.

From Figure 14B, three bunches of grapes are in the danger
area. Grape-harvesting tasks are divided into the left arm for
bunches 1 and 3 and the right arm for bunch 2. At this time, the
left arm acts as the master robotic arm, and it has the priority
of harvesting the danger area. The right arm is a slave arm, and
it needs to wait for the signal that the master arm has finished
harvesting tasks. Then, it starts its harvesting mission.

From Figure 14C, there was a shift in the master–slave
relationship between the two arms. The left arm moved down
and out of the danger area. It was transformed from a master
robot to a slave arm. Meanwhile, the right arm moved toward
bunch 2 of the grape cluster in the danger area. It had priority
access to the danger area for harvesting. The two arms entered
the danger area for harvesting at different times. There is a time
gap between the two arms in harvesting work.

Figures 14D–G show that converting the master–slave
relationship between the two arms can ensure that the two
arms work independently and smoothly in the danger area.
When the robot adopts this strategy, it can reasonably use the
time difference and robotic arm movement motion position
in space. The high-speed harvesting work of the two arms in
the danger area is an extremely difficult and complex task. In

agricultural non-structural environments, a reasonable motion
strategy for two arms often leads to great safety and efficiency
improvements in the robot.

As shown in Figure 14H, if there is no harvesting target
in the camera field of view, the robot will move some distance
forward. A new harvesting cycle will start.

Experiments

Materials and methods

To verify the accuracy of large tolerance of the “hand-
eye” combination and robot performance, both trellis and lab
experiments were carried out:

(1) To test the accuracy and efficiency of the robotic arm
in harvesting operations, we acquired the experimental
errors in the harvesting process. An experimental platform
was designed and built to finish grape cluster harvesting
in a room. The grape-harvesting accuracy experimental
platform is designed and produced, and two scale
plates (0.5 m × 0.5 m) with a 2 mm grid size are
combined and matched to form a coordinate experimental
platform in Cartesian coordinates. The accuracy and
performance of large error tolerance of the “hand-
eye” combination were verified by every 30 harvesting
experiments with shading grape clusters to different
degrees (0–5, 6–20, and 21–40%). This platform can
measure the coordinates of grape stem cutting point A
by converting the robotic arm base coordinate system O1

to the platform coordinate system O2, and compare it
with the visual recognition point and robotic arm motion
point to derive a visual recognition accuracy error(mm)
and arm positioning accuracy error(mm). Meanwhile, it
needs to record harvesting time(s) and harvesting success
rate (Figures 15A–D).

(2) Trellis performance experiments.

The experiments were conducted in September 2021 at the
ErYa Vineyard in Jurong City, Jiangsu Province, China, where
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FIGURE 14

Asynchronous master–slave dual-robotic arm anticollision harvesting strategy in the danger area.

grapes were grown with a horizontal trellis type of cultivation.
In this vineyard, grapes grew in good conditions, with most
of the clusters hanging vertically below the trellis. The grape

variety was Kyoho, which has large clusters, large grains, and
purple–black fruits at maturity and is the main variety grown
in grape production in China.With a horizontal trellis height
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FIGURE 15

Figures of the indoor experiment: (A) harvesting point coordinate transformation, (B) indoor experimental schematic, (C) experimental original
image, and (D) binarized image of grapes.

FIGURE 16

Dual-arm robot performing grape-harvesting operations.

of 2.0 m, a width of 2.5 m, and a trellis length of 30 m,
this robot can meet the full range of coverage for harvesting
in a single cycle inter row grape environment. There are no

other obstacles around the grape-harvesting area, which can
ensure that no exogenous emergency stopping occurs during
the operation of the robot. The robotic harvesting process was
captured in real time by the camera, recording the recognition
success rate, harvesting success rate, and harvesting time of one
grape cluster (Figure 16).

Results and discussion

(1) Lab experiments.

From Table 2, we know that the maximum visual
recognition accuracy errors in the x, y, and z directions from
the robotic arm base were 15.147, 13.689, and 16.330 mm,
respectively, as the degree of obscuration of the grape bunches
by the leaves increased, thus showing that the integrity of
grape bunches’ contours accounted for a great deal of the
impact on the visual recognition accuracy of the camera.
The motion positioning errors of the left and right robotic
arms were 2.885, 3.972, and 2.715 mm and 2.471, 3.289, and
3.775 mm, respectively, indicating that these robotic arms were
well positioned and could support end effectors in reaching
the grape-harvesting point accurately. The above errors were
adjusted by the structure and design of the end effector, which
can be applied to the grape-harvesting accuracy requirements
under the operating conditions of a horizontal trellis. The
average single-cycle completion time is 8.45 s. To explore and
optimize the visual recognition capability of this robot, harvest
failure tests were analyzed.

From harvesting failure tests, the binarized images show
grape cluster contours, and the grapes not obscured by the
leaves are easily obtained as complete contours, allowing
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TABLE 2 Accuracy experiment results.

Degree of leaf
shade (%)

Visual recognition
accuracy error (mm)

Arm positioning accuracy
error (left arm) (mm)

Arm positioning accuracy
error (right arm) (mm)

Grape harvesting
time (s)

Success
rate (%)

0–5 (10.899, 8.552, 6.337) (2.098, 3.003, 3.539) (2.964, 2.363, 2.086) 8.47 93.3

6–20 (11.502, 10.141, 12.639) (3.497, 3.551, 2.314) (3.443, 3.605, 5.203) 8.23 86.7

21–40 (15.147, 13.689, 16.330) (3.060, 5.363, 2.292) (3.414, 3.901, 4.036) 8.66 73.3

TABLE 3 Trellis performance experiment results.

Grape cluster ID/
number

Successful visual
recognition

Successful harvest One grape cluster
harvesting time/s

Damaged grains/
number

Grape damage rate

1
√ √

8.14 0 0

2
√ √

8.76 0 0

3
√ √

8.60 0 0

4
√ √

8.93 0 0

5
√ √

9.43 0 0

6 × × –

7
√ √

8.72 0 0

8
√ √

8.10 2 4.39%

9 × × –

10
√ √

8.98 0

11
√ √

9.25 1 2.02%

12
√ √

8.78 0 0

13
√ √

9.34 0 0

14
√ √

8.64 0 0

15
√ √

8.19 0 0

Average 86.7% 86.7% 8.76 0.23

FIGURE 17

Robotic arm harvesting postures: (A) initial position; (B) harvesting preparation; position (C) harvesting position; and (D) putting position.

accurate calculation of the stem-cutting location. However, the
grape area shrinks with increasing leaf occlusion resulting in
many deviations in the center of the grape contour and the
stem-cutting point coordinates. This affected the success rate
of subsequent harvesting by robotic arms. After subsequent
iterations and changes in test conditions, the factors affecting
this phenomenon were identified.

• Uneven light distribution.

Influenced by the sunlight irradiation direction and grape
growth contour, the images captured by the camera were

incomplete, with abnormalities such as mutilation, deformation,
and overlap of grape clusters within the images, resulting
in deviations in the generated grape stem-harvesting points.
However, in a normal horizontal trellis, grape leaves and
branches grow at the top of the trellis, and the sunlight intensity
generally does not interfere greatly with camera recognition.

• Shaking of the grape model.

The selected grape model was made of plastic, with
low weight and weak resistance to external interference,
resulting in slight shaking during photography. Before the

Frontiers in Plant Science 15 frontiersin.org

362

https://doi.org/10.3389/fpls.2022.881904
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-881904 September 14, 2022 Time: 14:36 # 16

Jiang et al. 10.3389/fpls.2022.881904

TABLE 4 Comparison between dual arms robots.

References Products Harvesting type Harvesting
success
rate (%)

Harvesting
efficiency
(amount/hour)

Scenes

Arad et al., 2020 Sweet pepper 61 24 Greenhouse

Yu et al., 2021 Apple 72 14.6 Indoor

Ling et al., 2019 Tomato 87.5 30 Greenhouse

SepúLveda et al., 2020 Aubergine 91.67 26 Indoor

Yoshida et al., 2022 Apple / 10 Field

This research Grape 86.7 8.76 Field

trellis performance test, lighting was installed on the head
of this robot to reduce the interference of natural light on
camera recognition. The grapes planted in the trellis were hung
vertically from the top, and the average weight of each grape
cluster was close to 400 g. Thus, they were highly resistant to
external interference and therefore only slightly swayed, with
minimal effect on camera recognition.

(2) Trellis experiments.

This grape-harvesting robot advanced to the horizontal
trellis and started harvesting above this trellis with the
“sequential mirroring” strategy based on the depth information.
The grape damage rate is the mass of grape clusters from falls,
breaks, and bruises as a percentage of the mass of all harvested
grape clusters. The number of harvesting successes, single-cycle
dual-arm harvesting time, and grape damage rate was used as
the main indicators to measure the quality of the dual-arm
grape-harvesting robot in the tests (Table 3).

• Results of visual identification.

The visual images of the dual-arm grape-harvesting robot
show the fruit shape contour, segmented depth threshold, and
grape target binarization image. The vision system calculates the
image center of the grape-based on the binarization recognition
image and derives the Cartesian spatial coordinate information
of the grape stem-harvesting points. Among the 15 sets of
experiments, 13 sets of experiments were completed. The
fusion of depth information and color information determines
the harvesting order arrangement, and the visual localization
accuracy reaches 86.7% without neural network training, which
can realize fast localization recognition in normal agricultural
harvesting work.

• Continuous grape-harvesting test.

By analyzing the dynamics of each harvesting process
and stem separation points of robotic arms, we analyzed the
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displacement change relationship between the stem and grapes
during the grape-harvesting process and verified the single
journey continuous harvesting method from the initial position,
harvesting preparation point, harvesting point, and grape-
putting point. The data in Table 3 show that the success rate
of harvesting is 86.7%, and the main reason for the failure is the
small size of the grape, which affects the correct conversion of
the final harvesting coordinates. After 13 successful harvesting
tests, the average harvesting time of one grape cluster is
8.76 s. The operating speed of the robotic arm was only set to
40% of the maximum speed of joint motion, and the single-
cycle operating efficiency was still greatly improved after the
subsequent structural stabilization of the robot (Figures 17A–
D).

And we compared it with some currently used fruit and
vegetables harvesting dual arms robots as shown in Table 4.

By comparing these advanced harvesting dual arms
robots, our robot has a faster harvesting efficiency, and
reliable harvesting success rate and can be adapted to the
complex vineyard.

Conclusion

As a multipurpose fruit that easily falls off or break, how to
achieve rapid and undamaged harvesting of grapes has become
an urgent problem for the current grape industry worldwide.
In this study, a dual-arm grape-harvesting robot is developed
based on grape-harvesting demand in the special growing
environment of horizontal trellises. This robot accomplishes
the fusion and extraction of spatial multitarget information
by a single depth camera and simplifies the calculation of 3D
graphic information into spatial point coordinates. A “one eye-
to-dual hands” vision servo system is built, and a single RGB-D
camera is used to divide the field of view into equal tasks for
two robotic arms, to locate multiple grape targets quickly and
continuously, and transmit the spatial information of grape
harvesting to the corresponding two robotic arms based on
the corresponding spatial growth position distribution. The
whole process of rapidly harvesting grapes was completed by
transforming visual information and digital information into
robotic machine signals.

To simulate the real environment of grape harvesting in
the horizontal trellis, 30 sets of positioning accuracy tests
were conducted with different degrees of leaf shading. Without
neural network training, when the degree of leaf shading
was 0–5%, the harvesting success rate was 93.3%, and one
grape cluster harvesting time was 8.47 s. When the degree
of leaf shading was 6–20%, the harvesting success rate was
86.7%, and one grape cluster harvesting time was 8.23 s.
When the degree of leaf shading was 21–40%, the harvesting
success rate was 73.3%, and one grape cluster harvesting time
was 8.66 s, which met the requirements of rapid location

identification and low-loss harvesting of grape clusters in a
real horizontal trellis environment. After the trellis performance
harvesting test, out of the 15 sets of experiments, 13 sets of
experiments were completed with accurate identification, the
visual positioning accuracy reached 86.7%, and the average
harvesting time of one grape cluster was 8.76 s without neural
network training, so fast positioning identification and rapid
low-loss harvesting of grape clusters were achieved in a real
horizontal scaffolding environment.

In the next step, because grape harvesting is still not faster
than human harvesting, we will continue to work on optimizing
all aspects of the robotic arm harvesting motion process. At
the same time, we will conduct research on the minimization
of robotic arm motion paths in nonstructural environments.
The work of two arms in grape harvesting still holds great
promise for research. All the technical details will be reported
in the next study.
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