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Follicular helper T cells (Tgy) have specialized properties in promoting normal B cell
activation but their role in chronic lymphocytic leukemia (CLL) is unknown. We find that Ty
cells are elevated in CLL patients and are phenotypically abnormal, expressing higher
levels of PD-1, TIGIT, CD40L, IFNy and IL-21, and exhibiting abnormal composition of
Ten1, Tew2 and Tey17 subsets. Frequencies of CD4-positive T cells expressing Tey1
markers and IL-21 were positively correlated with patient lymphocyte counts and RAI
stage, suggesting that accumulation of abnormal Tgy cells is concomitant with expansion
of the leukemic B cell clone. Treatment with ibrutinib led to normalization of Tgy
frequencies and phenotype. Try cells identified in CLL bone marrow display elevated
expression of several functional markers compared to blood Tgy cells. CLL T cell-B cell
co-culture experiments revealed a correlation of patient Ty frequencies with functional
ability of their CD4-positive T cells to promote CLL proliferation. Conversely, CLL cells can
preferentially activate the Try cell subset in co-culture. Together our results indicate that
CLL development is associated with expansion of abnormal Tg populations that produce
elevated levels of cytokines and costimulatory molecules which may help support
CLL proliferation.

Keywords: chronic lymphocytic leukemia (CLL), T follicular helper (Tfh) cell, interleukin 21 (IL-21), ibrutinib, TIGIT,
coculture assay, bone marrow

HIGHLIGHTS

1. Follicular helper T cells with altered cytokine and receptor profiles are progressively expanded
in CLL and normalized upon treatment.

2. CLL B cells can preferentially activate follicular helper T cells, promoting CD4" T cell-driven
CLL B cell proliferation in vitro.
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Wau et al.

Follicular-Helper-T-Cells in CLL Progression

INTRODUCTION

Monoclonal B cell lymphocytosis (MBL) and chronic
lymphocytic leukemia (CLL) are lymphoproliferative disorders
characterized by the presence of abnormal numbers of CD5+
monoclonal B lymphocytes in the blood or tissues (1). MBL is the
precursor to CLL, with approximately 1% of high-count cases
requiring therapy each year following progressing to CLL (2).
The clinical course of CLL patients is heterogeneous and
prognostic markers have been developed to predict which
patients may have aggressive disease (3). Independent
prognostic markers for CLL include Rai stage, age, IGVH
mutational status, f2-microglobulin level and TP53 loss-of-
function (1, 3), which are used to calculate the International
Prognostic Index (4). Within tissue microenvironments, CLL B
cells come into close contact with other cells such as stromal
cells, which provide signals that promote survival and drug
resistance (5). The lymphoid tissue environment also promotes
activation of B cell antigen receptor (BCR) signaling pathways
and CLL proliferation (6).

Although CLL has historically been characterized as a disease
of enhanced cell survival, active signaling and proliferation
within lymphoid tissue is now appreciated to be an important
factor determining disease prognosis (7, 8). Within bone
marrow, spleen and lymph nodes, CLL proliferation occurs in
“proliferation centers” where CLL cells interact directly with T
cells, myeloid cells and stromal cells and display markers of
active signaling (9). CLL patients showing highly active
proliferation centers exhibit aggressive disease and poor
prognosis (10). Inhibitors of Bruton’s Tyrosine Kinase (BTK)
have proven to be efficacious in treating CLL via interrupting
BCR signaling as well as the supportive cell:cell interactions
within the lymphoid tissue microenvironment (11). BTK
inhibitor treatment of CLL patients frequently results in a
transient increase in circulating malignant cells after treatment,
concomitant with dramatic loss of leukemic cells from lymph
nodes (12), suggesting that these treatments trigger a rapid
dissolution of proliferation centers.

Autologous human T cells were found to be required for CLL
proliferation in a mouse xenograft model (13), suggesting they
play an essential role distinct from stromal cells. Normal B cell
follicles, as well as germinal centers containing activated B cells,
are known to depend on a specialized subset of CD4+ T cells
called follicular helper T cells (Tgy). These CD4+ T cells express
the chemokine receptor CXCR5 (14, 15), that allows them to
migrate toward its ligand CXCL13, the B cell follicle chemokine
made by follicular dendritic cells (16, 17). Normal Tgy cells
produce a unique spectrum of cytokines and costimulatory
molecules and provide essential co-stimulatory signals to
sustain B cell survival and proliferation within germinal
centers (18). Functionally distinct Tyy subpopulations have
been identified based on their differential expression of CXCR3
and CCR6 (19, 20). Abnormalities in Try populations have been
observed in a number autoimmune diseases, where considerable
evidence implicates them as drivers of pathological B cell
responses (19). While substantial evidence indicates that T cell
populations are altered in CLL (21-23), a full assessment of Try

populations across the spectrum of MBL and CLL has not
previously been reported.

Here we report a comprehensive assessment of Tgy
populations and associations of their frequency and
phenotypes with CLL biomarkers, clinical stage and immune
dysfunction. We find evidence that CLL Ty exhibit an increased
functional capacity to produce co-stimulatory receptors and
cytokines linked to CLL survival and proliferation and skewing
to a Tgyl-like phenotype in advanced stage patients. Finally, we
find that CLL cells can preferentially activate Ty cells in vitro
and observe an association of Try frequencies with the ability of
activated CD4+ T cells to trigger CLL proliferation. These results
define alterations in Ty phenotype and function in CLL and
indicate a potential role for these cells as part of the dysfunctional
immune microenvironment in this disease.

METHODS

Patient Samples and Clinical Biomarkers
Peripheral blood and bone marrow aspirates were obtained from
CLL patients attending the CLL clinic at CancerCare Manitoba.
Informed consent of patients and control subjects was obtained
under a protocol approved the Research Ethics Board at the
University of Manitoba. Rai staging was determined using
standard clinical criteria. Clinical biomarkers including CD38,
IgM, IgG, IgA and lymphocyte count were determined using
standard protocols and obtained from the Manitoba Tumor
Bank and CAISIS database. Mononuclear cells were isolated
using Ficoll-Paque density gradient and cryopreserved in 10%
DMSO medium prior to analysis. Lymph node biopsies were
formalin-fixed and paraffin-embedded prior to sectioning.

T Cell Phenotyping

For assessment of Tgy; subpopulations, peripheral blood or bone
marrow mononuclear cells were stained for the markers CD3,
CD4, CD14, CD19, CXCRS5, PD-1, ICOS, CD45RA, CCR7,
CXCR3, CCR6, TIGIT (antibody details in Supplementary
Table 1) and LIVE/DEAD'" Fixable Aqua viability dye
(InvitrogenTM) at room temperature for 30 minutes. Stained
cells were run on a Beckman Coulter Cytoflex instrument. Ty
populations were quantified as percent of the singlet, CD4+,
Dump (CD19/CD14/LiveDead) negative population as
illustrated in Supplementary Figure 1.

Production of Costimulatory Molecules
and Cytokines

For assessment of cytokine production, cryopreserved peripheral
blood mononuclear cells (PBMC) were cultured overnight and
then stimulated for 6 hours with 50ng/ml PMA and 1pg/ml
ionomycin (Selleck Chemicals), with 10ug/ml Brefeldin A
(Selleck) added for the last 4 hours. Cells were then cell surface
stained for CD3, CD14, CD19, CXCR5, CCR6, CXCR3 as
described above, fixed and permeabilized using eBioscience
Fixation/Permeabilization buffer and stained intracellularly for
CD4, IFNy, IL-21 and CD40L at room temperature for 45
minutes. Intracellular CD4 staining was utilized to improve
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discrimination of CD4+ cells, as cell surface CD4 is
downmodulated upon treatment with PMA+ionomycin.
Antibody details are provided in Supplementary Table 1.

Immunofluorescence Microscopy

Lymph node tissue sections were deparaffinized, rehydrated and
boiled for 20 minutes in Target Retrieval Solution, Citrate pH 6.1
(Agilent). After washing, serial tissue sections were blocked with
1% BSA and 2% FBS in PBS followed by staining with
unconjugated primary antibodies at 4°C overnight. After
washing, sections were incubated with secondary antibodies for
4 hours at room temperature with shaking, washed and then
stained with directly conjugated primary antibodies at 4°C
overnight. Following a final wash, sections were air dried and
mounted with ProLong ' Gold antifade reagent (Invitrogen) and
kept at -20°C until analysis. Antibody details are provided in
Supplementary Table 2. Images were captured with a CSU-
X1M5000 spinning disc confocal microscope (Carl Zeiss)
equipped with 405/488/561/635nm lasers.

CD4 T Cell: CLL B Cell Co-Culture Assay
Autologous CD4 T cells and CLL B cells were purified from
PBMC using EasySepTM Human CD4+ T Cell Isolation Kit and
EasySepTM Human B Cell Enrichment Kit II without CD43
Depletion (both STEMCELL Technologies), respectively.
Purified CD4 T cells were suspended at 1x1076 cells/mL in
RPMI 1640 media (GE Healthcare) with 10% FBS (Life
Technologies). T cells were cultured overnight in 24-well plates
with/without addition of ImmunoCult'" Human CD3/CD28/
CD2 T Cell Activator (STEMCELL Technologies) at 25 pL
cocktail/mL of cells. B cells were cultured overnight in U-
bottom 96-well plates at 1x1076 cells/well, in the presence of
sCD40L+IL-4 (both 50ng/mL; R&D Systems). After 14-16 hours
incubation, cells were washed to remove stimuli. B cells were
stained with carboxyfluorescein succinimidyl ester (CFSE)
(Sigma-Aldrich) at 0.3 uM in PBS for 5min at room
temperature, then washed with culture media. T cells (with or
without pre-activation) were co-cultured together with CFSE-
labelled autologous CLL-B cells in U-bottom 96-well plates,
using 2x107A5 T and 1x1076 B cells per well. T and B cells
alone were included as controls. Starting at day 2 of co-culture,
100 pL of culture medium was gently taken out and fresh
medium added to each well daily. At indicated times, wells
were harvested and flow cytometry analyses were carried out
using the panel detailed in Supplementary Table 1. Briefly, cells
were stained for CD4, CD19, CXCR5, CXCR3, CCR6, CCR7,
CD69, CD25, CD134/0X40, PD-1, CD38 and LIVE/DEAD "™
Fixable Aqua viability dye (InvitrogenTM). Following wash, cells
were fixed and permeabilized as above and stained for Ki-67 at
room temperature for 45 min.

Data Analysis and Statistics

Flow data were analyzed by Flow]0® V10 (FlowJo, LLC).
Statistical analysis was performed with GraphPad Prism
(GraphPad Software Inc). Confocal images were processed by
Image] (V1.47). Box and whisker plots illustrate the median,
interquartile range and 10-90% percentile values. Statistical tests

used are indicated in figure legends and differences were
considered to be statistically significant at values of *(p<0.05),
*(p<0.01), **(p<0.001) and ****(p<0.0001).

RESULTS

Follicular Helper T Cells Are Expanded and
Phenotypically Distinct in CLL Patients
Peripheral blood mononuclear cells collected from CLL patients,
MBL patients or age-matched controls were analyzed by
multicolor flow cytometry to assess T follicular helper (Tgy)
cell populations. Gating on CD4+CXCR5+CD19-CD14- live
lymphocytes (Figure S1) revealed a significant elevation in
both Tyy frequencies and overall Try numbers in CLL but not
MBL patients (Figure 1A). CLL Tgy express higher levels of Try-
associated activation markers PD-1 and ICOS than
corresponding non-Try CD4 T cells and more PD-1 than
control Try (Figure 1B). Compared to control Try, CLL Tgy
populations contain a higher proportion of CD45RA-/CCR7-
effector memory cells and fewer CD45RA-CCR7+ central
memory cells (Figure S2). Within the Tpy population we
further examined Tgyl, Try2 and Tyyl7 subset composition
based on expression of chemokine receptors CXCR3 and CCR6
(24) and found that CLL patients demonstrate significant
skewing towards the CXCR3+CCR6- Tgyl population (Figure
1C). The increased Tyl skewing in CLL patients was
accompanied by significantly reduced frequencies of the Tgy2
population, whereas no significant change in Tggl7 cells was
observed (Figure 1C). Together these results indicate that Tgy
cells are expanded and phenotypically altered in CLL.

Association of Follicular Helper T Cells
With Disease Burden

Within the spectrum of CLL patients in the cohort analyzed, we
examined whether Try frequencies were associated with clinical
parameters or established biomarkers of disease. Strikingly, we
found that both frequency of Try among CD4+ T cells and Tyyl
skewing were positively correlated with blood lymphocyte counts
(Figure 2A). Tgy expression of PD-1 or ICOS were also
positively correlated with lymphocyte count (Figure S3).
Frequencies of Try and skewing to Tgyl were significantly
elevated in high risk CLL (Rai 3-4) relative to low risk CLL
(Rai 0) and CD38+ CLL patients showed more Tyl skewing
than CD38- patients (Figure 2B). The latter is consistent with a
report that CD38 expression is driven by the Tyl cytokine
IFNY”. Interestingly, Try frequency was inversely correlated
with plasma IgM and IgG levels (Figure 2C). Together these
results suggest that Ty accumulation and selective skewing to a
Trul phenotype occurs in parallel with expansion of the
leukemic B cell clone and decline in normal B cell function.

Impact of Ibrutinib Treatment on Tgy
Populations

To determine how CLL treatment impacts Ty populations, we
examined patients during the first year of ibrutinib treatment.
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Ibrutinib treatment led to a gradual decline in the frequency of
Try cells over time, in parallel with a decline in total lymphocyte
count (Figure 3A). In one patient who exhibited prolonged
lymphocytosis after treatment, there was a concurrent transient
increase in the Tyy population prior to normalization. Notably,
Ty composition changed post-ibrutinib treatment, with patients
exhibiting a gradual re-balancing of Tgyl, Tru2, and Tryl7
subsets (Figure 3A). Significant reductions in both Tgy
frequencies and Tryl skewing were observed after 40 weeks of
treatment (Figure 3B). This was accompanied by increased
frequencies of CXCR3-CCR6- Tgy2-like cells, while Tryl7
frequencies were not altered (Figure 3C). These results suggest

that ibrutinib treatment can normalize Tgy subsets concomitant
with reduction in disease burden.

CLL Tgy Cells Produce High Levels of
CD40L, TIGIT, IFNy and IL-21

We further examined expression of costimulatory molecules and
cytokines by CLL Tgy cells. We found that Tgy express higher
levels of CD40L than non-Tgy in both CLL patients and controls,
however CLL Ty exhibit a strikingly elevated expression of
CD40L (approximately 5-fold on average) relative to control
Try (Figure 4A). In addition, we found that CLL Ty express
high levels of TIGIT (Figure 4A), an inhibitory immunoreceptor
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previously thought to function in T:B cell interactions (25, 26). We
examined the ability of CLL Tgy to produce the canonical Type 1
cytokine IFNY and the Tgy-associated cytokine IL-21 (Figure 4B).
Remarkably, we observed a substantial increase in both the
frequency IL-21 producing and IL-21/IFNy double-producing
cells in CLL patients, with the CLL Tgy population containing
significantly more IL-21 and double-producing cells than control
Try cells (Figure 4B). Tryl cells produced significantly more IL-
21 and IFNy than other Tgy subsets, but interestingly produced
slightly less CD40L (Figure S4). We further assessed whether
levels of CD40L, TIGIT or IL-21 expression by Ty are associated
with disease burden or stage. Interestingly, while CD40L and
TIGIT expression did not show strong associations, IL-21
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for three representative patients are shown. (B) Graphs showing pre/post treatment (>40 wk) frequencies of Try or Tey1 subsets, with individual patient data connected by a
line (p<0.05, Wilcoxon test). (C) Stacked bar graph summarizing the average composition of four Tey subpopulations pre and post ibrutinib treatment (N=7).

expression by Ty was significantly associated with lymphocyte
count and Rai stage (Figure 4C). These results indicate that CLL
Try cells produce abnormally high levels of costimulatory
molecules and cytokines known to stimulate CLL survival and
proliferation and the expression of IL-21 by these cells is associated
with adverse biomarkers and disease burden.

Activated Tgy1-Like Cells Are Present in
CLL Lymphoid Tissues

CLL cells are present at varying levels in the bone marrow and
lymph nodes, and signals present in these microenvironments are
thought to drive CLL proliferation. To investigate whether
circulating Tgy cells may represent the counterpart of Tpy
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populations present within lymphoid tissues, paired blood and bone
marrow samples from CLL patients were analyzed. We found a
significant correlation between blood and marrow Tyy and Tgyl
cell frequencies from the same patients (Figure 5A). Interestingly,
Try populations in bone marrow showed increased activation
status relative to those in peripheral blood of the same patients,
expressing significantly more IL-21, IFNy and IL-21/IFNy double-
producing cells (Figure 5B). While levels of PD-1 was also elevated,
CD40L and TIGIT were similar in bone marrow and peripheral
blood Try (Figure 5C). We further examined lymph node tissue
sections from CLL patients using immunofluorescent staining and
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could identify T cells present within proliferation centers expressing
the Tyl markers CD3, CD4, CXCR5, CXCR3 and PD-1 (Figure
6). These results suggest that Tgy cells are present in both
circulation and within lymphoid tissues, with the latter showing
similar skewing to Try1 and a highly activated phenotype.

Autologous Activated CD4 T Cells Can
Promote CLL B Cell Survival, Activation
and Proliferation

We developed an in vitro system to study CLL B cell interaction
with autologous CD4+ T cells. CD4 T cells were isolated from
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patient PBMC, pre-cultured overnight with a T cell-activation
cocktail or medium alone, then washed and co-cultured with B
cells isolated from the same patient that were labeled with cell
division tracking dye CFSE. Resulting CLL-B cell division, and
expression of activation markers by B and T cells, were assessed
after 2 and 6 days of co-culture. At day 2, a significant increase in
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FIGURE 5 | CLL bone marrow contains high levels of activated Try1 cells. Mononuclear cells isolated from bone marrow aspirates (BM) and peripheral blood
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samples (B) Comparison of cytokine production in marrow versus blood Tey populations. (C) Comparison of activation/costimulatory markers in marrow versus
blood Ty populations. * denotes significance by Wilcoxon paired t test, *(p<0.05).

CLL B cell expression of CD69 and nuclear proliferation antigen
Ki-67 was observed in the presence of activated CD4 T cells,
compared to co-cultures with non-activated T cells or B cells
alone (Figure 7A). Activated CD4 T:B cell co-culture also
promoted an increase in CD25 activation marker expression
among B cells and increased CLL B cell survival at this time
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FIGURE 6 | CLL lymph nodes contains cells expressing activated Try1 markers. Lymph node sections from CLL patients were stained with the indicated labelled
antibodies and imaged by confocal microscopy. (A) Section stained for CLL B cell marker CD20, T cell marker CD3, proliferation marker Ki67 and CXCR5
(expressed on CLL B cells and Try). (B) Section stained for activation marker PD-1, T cell marker CD4, proliferation marker Ki67 and CXCR3 (expressed at low levels
on CLL B cells and high levels on Tey1 cells). Several magnifications are shown (Left panel scale bar = 100um, right panel scale bar = 25pm) to illustrate T cell
presence within CLL B cell clusters containing proliferating cells, and close contact between CLL cells and T cells expressing CD3, CD4, CXCR5, PD-1 and CXCRS3.

point, whereas increased CD38 expression or cell division (as
assessed by CFSE dilution) were not observed at day 2 (Figure
S5A). After 6 days of co-culture, CLL-B cell division was
observed (Figure 7B) and most divided cells also expressed Ki-
67 (Figure S5B). At day 6, CLL B cells also exhibited significant
upregulation of the activation marker CD25 (Figure 7B) as well
as CD38 and CD69 (Figure S5C) when co-cultured with
activated CD4 T cells. Notably, there was a positive correlation
between patient Try frequency and the frequency of divided, Ki-
67+ and CD25+ CLL B cells observed in co-cultures (Figure 7C),
consistent with a potential role for Ty cells in driving CLL-B cell
activation and proliferation.

CLL Cells Activate Tgy Cells in Co-Culture

During CLL:T cell interactions, CLL-B cells can also impact
CD4+ T cell activation (27), but it is unclear whether particular
cell subsets are preferentially targeted. In order to assess CLL B
cell-dependent activation of CD4+ T cell subsets in co-culture,
CD4 T cells untreated with activation cocktail were assessed for
their expression of various activation markers in the presence or

absence of autologous CLL cells. It was found that the presence of
CLL B cells led to an increase in expression of activation markers
in a small fraction (less than 15%) of autologous CD4 T cells
(Figure 8A). This upregulation was significant for CD25, CD69
and PD-1 within 2 days of co-culture (Figure 8A). The frequency
of CD4 T cells co-expressing both CD25 and OX40, associated
with antigen-specific T cell recall responses (28), was also
increased in the presence of the B cells at both timepoints
(Figure 8A). To determine whether Tpy cells were
preferentially activated by CLL-B cells, we assessed activation
marker expression on Try and non-Tgy fractions. The presence
of B cells provoked an increase in CD69+ cells in both
populations, however the fold increase in expression was
significantly higher for Tgy (Figure 8B). In addition to CD69,
Trx cells showed greater fold increases in expression of CD25,
CD25/0X40 and PD-1 than non-Tpy cells when co-cultured
with CLL (Figure 8B). Try cell expression of activation markers
CD25 and OX40 increased between day 2 and day 6 of culture,
while no further increase in CD69 or PD-1 were observed after
day 2 (Figure 8C). We noted that while the patient-specific
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frequencies of Tgy cells were very stable over the first two days of
culture, they began to decline by day 6 in cultures without B cells
but were well maintained in the presence of CLL B cells (Figure
8D). Taken together, these results indicate that in this co-culture
system, CLL-B cells can promote Tpy cell activation
and maintenance.

DISCUSSION

Abnormalities in T cell subsets and function in CLL have been
reported in a number of studies, including changes in CD4/CD8
ratios, expansion of the Treg population, loss of naive and
increased memory populations, and increased expression of
exhaustion markers (23, 29, 30). Here we report an in-depth
analysis of follicular helper T cell subsets and functional status as
well as their association with disease progression, immune status
and ibrutinib treatment. Our results are partially consistent with

studies from Asian and UK patients which also observed elevated
Try frequencies in CLL (31, 32). Our study reveals that elevation
in Ty cells is first observable in Rai 0 CLL patients, whereas no
increase was apparent in the MBL group. These previous studies
reported lack of association with IgVH mutation status (31, 32)
and we also found no association with either IgVH mutation
status or ZAP-70 status (data not shown). Our study
demonstrates a significant positive correlation between Tpy
frequencies and total lymphocyte counts, indicating that
increasing acquisition of the Tpy phenotype among CD4+ T
cells occurs in tandem with expansion of the malignant B cell
clone. A previous study found increased Ty frequencies in Binet
C versus A/B patients (32), consistent with our observed trends
of higher Try frequencies, in the Rai 3-4 group. Surprisingly, we
further find that expanded Tgy populations in advanced stage
CLL exhibit significant Tggl skewing. Strikingly, increased
expression of PD-1, ICOS and IL-21 by Tgy cells were
associated with disease burden, and CLL Ty cells were also
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found to over-express other stimulatory molecules such as IFNY,
TIGIT and CD40L.

Together our findings indicate that CLL Ty express more
PD-1 than either non-Tgy CD4+ T cells from CLL patients or
Try from controls. PD-1 is a marker for chronically-activated or
exhausted T cells, and was previously reported to be elevated in
CLL CD4+ T cells (33). Our results are consistent with this
finding, and further define the CD4 sub-populations abnormally
expressing this marker. In the context of the Ty literature, the
PD-1+ Tgy phenotype which we describe here (PD-1+CXCR5+
CCR7low) is not associated with functional exhaustion but
rather has been previously associated with recent Ty

).

Tey (% of CD4+T)
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Day 2 Day 6

FIGURE 8 | Impact of CLL B cells on activation of autologous CD4+ T cell subsets. Purified CLL cells were co-cultured with purified autologous CD4+ T cells that
were not pre-activated. (A) Expression of activation markers on CD4+ T cells after 2 days or 6 days of co-culture. (B) Example flow cytometry analysis showing
expression of CDB9 on Tgy or non-Tey CD4+ T cells. Data in right panel is expressed as fold change in activation marker expression among Tgy Or non-Tey
(calculated as percent expression in T+B cell co-culture/percent expression in T cell only culture). (C) CD25 and OX40 expression increase on Tgyy cells co-cultured
with CLL B cells between day 2 and day 6. (D) Patient-specific frequencies of Tg are maintained in CLL B cell co-culture. Individual patients are connected by lines.

activation in tissues and enhanced functional capacity for
providing B cell help (34, 35). However, we found evidence
that Ty frequencies are negatively correlated with IgM and IgG
levels. This finding is consistent with these Tgy cells being
dysfunctional in relation to their normal supportive roles for
antibody responses; or alternatively it may reflect the association
of Tgy expansion with expansion of the CLL clone, and
concomitant disruption of normal B cell niches within tissues.
Our results indicate that ibrutinib can normalize Ty
frequencies and activation gradually over several months of
treatment. These results are partially consistent with previous
studies which found that ibrutinib can reduce T cell expression of
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PD-1 as well as memory markers (36, 37). The effects of ibrutinib on
T cells may be due to inhibition of the kinase ITK expressed in T
cells, since treatment with acalabrutib, which does not inhibit ITK,
showed lesser impact on T cells (37). Patients with BTK mutations
were found to have severe deficiency in Tgyg cells (38), suggesting the
possibility that BTK itself may be required for Tgy development
and/or maintenance. Alternatively, ibrutinib may indirectly affect
Ty cell populations via depletion of the CLL B cell clone and/or its
other effects on the immune microenvironment.

Previous studies have provided considerable evidence that
blood Ty are clonally related to Tgy in lymphoid tissues. We
found cells expressing markers of activated Tgy cells within
proliferation centers in lymph nodes and in bone marrow,
suggesting they are in direct contact with CLL B cells within
these microenvironments. Try cells present in the bone marrow
expressed a more activated phenotype than peripheral blood
Trns including highly elevated PD-1 and IL-21/IFNYy expression
in some patients, indicating that lymphoid tissues are likely their
primary site of activation. Given that IFNYy can impair
hematopoietic stem cell function and contribute to bone
marrow failure (39), it is possible that the presence of these
activated T cells in marrow may directly participate in disruption
of marrow function in advanced stage disease.

CLL Ty cells exhibit elevated expression of B cell stimulatory
molecules CD40L and IL-21. Numerous studies have shown that
the culture with CD40L-expressing T or stromal cell lines
promotes CLL-B cell proliferation (40-42). The addition of IL-
21 to CD40L-stimulated CLL-B cells increases the frequency of
divided cells and the average number of divisions (31, 42). Our
study provides evidence that Try cells are the predominant T cell
subset producing these CLL stimulatory factors in vivo.
Additionally, we observed that CLL Tgy cells expressed high
levels of TIGIT, molecule that has been linked to CLL-B cell
survival (43). Tryl cells are reported to be relatively poor helpers
for normal B cell responses (24), however it is possible that the
abnormal Tpyl-like cells in CLL are adapted to support
malignant CLL B cells. A study using a mouse xenograft model
found that T cells driving CLL cell proliferation had a Tyl
phenotype (44), indicating the potential of these cells to serve as
supportive cells in the microenvironment. Some studies have
implicated IFNy as a supportive cytokine for human CLL cells
(27, 45). Together, our data demonstrate that abnormal Tgy
present in CLL patients over-produce multiple factors that could
potentially support CLL survival and proliferation in tissues.

Our in vitro co-culture studies revealed evidence that CLL
cells can preferentially activate Tgy and that Ty expansion is
associated with ability of activated CD4+ T cells to trigger CLL
proliferation in vitro. Activated autologous CD4 T cells
promoted CLL cell activation marker expression and division
in line with other studies showing that the expression of
activation markers by CLL cells is increased after 2-3 days of
co-culture with T cells (27, 45), while CLL division is only
observed after 4 days (27, 40, 46). To our knowledge, this is
the first study to report this functional activity of purified
autologous CD4 T cells in CLL, without addition of other
factors such as stromal cells or cytokines. We observe that
reactivation of CD4+ T cells using anti-CD3/28 is required to

observe affects on CLL B cells, which may reflect that blood Tgy,
like blood CLL cells, are relatively quiescent compared to their
counterparts in lymphoid tissues. Notably, the frequency of Ty
cells within the CD4 T cell pool positively correlated with CLL-B
cell division; however we were unable to purify sufficient
numbers of Tgy from CLL patient blood to carry out co-
culture studies. Thus, while our data are consistent with a role
of Ty cells in driving CLL proliferation, it remains possible that
increased frequency of Tyy could be associated with other
alterations in CD4 T cell or autologous CLL cell populations
that are critical for proliferation under these conditions.

Notably, the reciprocal activation of Tgy cells by CLL cells in
co-culture included induction of CD25/0X40 double positive
Try cells. Co-expression of these activation markers has been
shown to be dependent on antigen-specific stimulation (28).
Previous studies have raised the possibility of antigen-specific
cognate interactions between CLL and CD4+ T cells leading to
oligoclonal expansions (47), however the phenotype of these
oligoclonal T cells has not been determined. One study found
that CLL : CD4 T cell interactions in vitro can be abrogated by an
anti-pan-MHC II antibody (27), consistent with cognate
interaction. In addition to induction of activation marker
expression on Tgy, we found that CLL cells could maintain
Try frequencies during in vitro culture, resulting in significantly
higher Try frequencies in the presence of CLL after 6 days. These
results suggest that direct bi-directional interactions between
CLL cells and abnormal Tgy cells is a significant feature of the
dysfunctional CLL immune microenvironment.

Together, our findings suggest that alterations in Tgy
frequencies, activation status, subset distribution and
costimulatory molecule expression can serve as alternative
biomarkers in CLL reflective of lymphoid tissue involvement and
disease progression. Tgy cells may represent significant sources of
CLL stimulatory molecules and play roles in disrupting normal
immune function and promoting CLL proliferation.
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Adrenomedullin (ADM) is a hypotensive and vasodilator peptide belonging to the calcitonin
gene-related peptide family. It is secreted in vitro by endothelial cells and vascular smooth
muscle cells, and is significantly upregulated by a number of stimuli. Moreover, ADM
participates in the regulation of hematopoietic compartment, solid tumors and leukemias,
such as acute myeloid leukemia (AML). To better characterize ADM involvement in AML
pathogenesis, we investigated its expression during human hematopoiesis and in
leukemic subsets, based on a morphological, cytogenetic and molecular
characterization and in T cells from AML patients. In hematopoietic stem/progenitor
cells and T lymphocytes from healthy subjects, ADM transcript was barely detectable. It
was expressed at low levels by megakaryocytes and erythroblasts, while higher levels
were measured in neutrophils, monocytes and plasma cells. Moreover, cells populating
the hematopoietic niche, including mesenchymal stem cells, showed to express ADM.
ADM was overexpressed in AML cells versus normal CD34" cells and in the subset of
leukemia compared with hematopoietic stem cells. In parallel, we detected a significant
variation of ADM expression among cytogenetic subgroups, measuring the highest levels
in inv(16)/t(16;16) or complex karyotype AML. According to the mutational status of AML-
related genes, the analysis showed a lower expression of ADM in FLT3-ITD, NPM1-
mutated AML and FLT3-ITD/NPM1-mutated cases compared with wild-type ones.
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Moreover, ADM expression had a negative impact on overall survival within the favorable
risk class, while showing a potential positive impact within the subgroup receiving a not-
intensive treatment. The expression of 135 genes involved in leukemogenesis, regulation
of cell proliferation, ferroptosis, protection from apoptosis, HIF-1a signaling, JAK-STAT
pathway, immune and inflammatory responses was correlated with ADM levels in the
bone marrow cells of at least two AML cohorts. Moreover, ADM was upregulated in CD4*
Tand CD8" T cells from AML patients compared with healthy controls and some ADM co-
expressed genes participate in a signature of immune tolerance that characterizes CD4* T
cells from leukemic patients. Overall, our study shows that ADM expression in AML
associates with a stem cell phenotype, inflammatory signatures and genes related to
immunosuppression, all factors that contribute to therapy resistance and disease relapse.

Keywords: acute myeloid leukemia, adrenomedullin, hematopoiesis, inflammation, leukemia stem cells

INTRODUCTION

Adrenomedullin (ADM) is a 52-amino acid hormone belonging
to the amylin/calcitonin gene-related peptide (CGRP) super-
family, that has been originally identified in the extracts of
human pheochromocytoma (1). It is produced by cleavage of
an immature precursor that is synthesized by the ADM gene.
ADM binds to calcitonin receptor-like (CALCRL), associated
with modulating proteins with a single transmembrane domain,
named receptor activity-modifying protein 2 (RAMP-2) or
RAMP-3 (2).

ADM has been detected in many human tissues, including the
endothelium, the nervous, cardiovascular, digestive, excretory,
respiratory systems, the endocrine and reproductive organs (3).
Despite its original definition as a hypotensive and vasodilator
agent (1, 4), ADM is involved in a number of physiological
processes, including angiogenesis (5), cell proliferation,
migration (6), apoptosis (7, 8) and differentiation (9), with
potential promoting and inhibitory functions depending on the
cell type. Moreover, ADM production increases during infection,
since it acts as an anti-microbial peptide against Gram-positive
and Gram-negative bacteria (10), and during inflammation.
Indeed, inflammatory molecules, as lipopolysaccharide (LPS)
and 12-O-Tetradecanoylphorbol-13-acetate (TPA), and
cytokines, including TNF-o and IL-lo force ADM secretion
(11), and NF-xB binding sites have been identified on the ADM
promoter (12). Once released, ADM can exert local and systemic
anti-inflammatory actions by regulating cytokine secretion (13)
and immune system properties, with beneficial effects on
inflammatory conditions as gastric ulcers (14) and bowel
diseases (15). Additional stimuli, as cell-to-cell interaction (16),
growth factors, steroids, hormones, and physical factors,
including oxidative stress and hypoxia, can induce ADM
expression (3).

In the hematopoietic system, ADM is produced and secreted
by peripheral blood monocytes, monocyte-derived macrophages
and granulocytes (17). Moreover, mononuclear hematopoietic
cells of the cord blood express ADM transcript (18) and ADM, in
combination with growth-promoting cytokines, was able to

enhance clonal growth and expansion of cord blood
hematopoietic stem cells (18-20) and progenitor cells,
respectively (20).

In contrast with the protective and therapeutic activity
demonstrated in different diseases, ADM has pro-tumorigenic
functions. It is over-expressed in a number of malignancies,
including breast cancer, melanoma, tumors of the eye, of the
respiratory, nervous, urogenital and gastroenteric system (21).
Despite its relevance in hematopoietic stem cells and in the
myeloid lineage, little is known about ADM in acute myeloid
leukemia (AML). Previous studies on AML cellular models
showed that HL60 (22) and THP1 cells produce ADM, though
at low levels, and respond to a number of stimuli, including TPA,
LPS, TNF-a by increasing its expression (17, 23). The elevated
ADM production was associated with increased expression of
markers of monocyte/macrophage differentiation (17).
Conversely, exposure to exogenous ADM had no evident
effects on cell differentiation that was instead induced by
treatment with an ADM receptor antagonist. Exogenous ADM
promoted AML cell proliferation through the ERK/MAPK
pathway and induced CD31 upregulation, which could
enhance their transendothelial migration capacity.

Here we analyzed the expression of the ADM gene across
human hematopoietic cell differentiation and in AML, including
its morphological, cytogenetic and molecular subtypes, cell
subpopulations and T cell subsets from leukemic patients, and
we investigated ADM impact on prognosis and its related
transcriptional network.

MATERIALS AND METHODS

Sample Collection and Cell Preparation

Samples were obtained from AML and acute lymphoblastic
leukemia (ALL) patients after written informed consent, as
approved by the institutional ethics committees (Comitato
Etico Indipendente di Area Vasta Emilia Centro, protocol 112/
2014/U/Tess and Comitato Etico della Romagna, protocol 5805/
2019), in accordance with the Declaration of Helsinki.
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Mononuclear cells from bone marrow (n = 7) or peripheral blood
(n = 5) of adult (non-M3) AML patients at diagnosis were
collected by density gradient centrifugation using Lymphosep
(Biowest). CD34" leukemic blasts were enriched by
immunomagnetic separation (CD34 MicroBead Kit, Miltenyi
Biotec). Healthy hematopoietic stem-progenitor cells (CD34")
from bone marrow specimens (n = 3) were obtained by
STEMCELL Technologies Inc.

Gene Expression Datasets

Gene expression data were obtained from the BLUEPRINT
consortium (http://dcc.blueprint-epigenome.eu/#/home) (24)
and the Gene Expression Omnibus (GEO) repository [https://
www.ncbi.nlm.nih.gov/gds, GSE98791 (25), GSE24759 (26),
GSE24006 (27), GSE63270 (28), GSE158596 (29), GSE117090
(30), GSE14924 (31), GSE14468 (32), GSE6891 (33), GSE13159
(34)]. Array data from 61 AML bone marrow samples
(blasts 280%) and 29 Philadelphia-negative (Ph—) B-ALL have
been generated by the Next Generation Sequencing platform for
targeted Personalized Therapy of Leukemia (NGS-PTL) project,
as previously described (35, 36). The Beat AML (37) and The
Cancer Genome Atlas (TCGA) project on AML (38)
transcriptomic cohorts were obtained from https://portal.gdc.
cancer.gov (projects BEATAML1.0-COHORT and TCGA-
LAML), respectively. The datasets used in the manuscript are
described in Supplementary Table 1.

Transcriptomic Data Analysis

Data quality control and normalization (signal space
transformation robust multi-array average) of NGS-PTL data
(Affymetrix Human Transcriptome Array 2.0) were carried out
by Expression Console software (version 1.4.1, Affymetrix,
Thermo Fisher Scientific). Raw data from GSE24006,
GSE14468, GSE6891, GSE13159 (all Affymetrix U133 Plus 2.0
array), were normalized by Transcriptome Analysis Console
Software (version 4.0.1) using robust multi-array average
normalization. Normalized data from GSE98791 (Agilent-
021441 NCode Human Long Non-coding RNA), GSE117090
(Affymetrix Human Transcriptome Array 2.0), GSE14924,
GSE63270 (Aftymetrix U133 Plus 2.0 array) and GSE24759
(Affymetrix HT-HG-U133A Early Access) were retrieved from
GEO. BLUEPRINT RNA-seq data were normalized in
Transcript Per Million (TPM) by RSEM (39). RNA-Seq data
from TCGA-LAML and Beat AML are available in the form of
HTSeq read counts. Those were transformed into Counts Per
Million (CPM) with Trimmed Mean of M values (TMM), using
calcNormFactors (method = “TMM?”) function in edgeR (40)
(v3.24.1), then log2-transformed. RNA-seq data from
GSE158596 were normalized using the median of ratios
method of DESeq2 (41). Supervised gene expression analysis
was performed by Student’s t-test or Welch’s t-test [R package
stats, v3.4.1 (42)—python v3.6.5 (43) package scipy v1.5.2 (44)]
in order to compare expression of ADM, its co-expressed and
interacting genes. ADM interacting proteins were identified by
STRING (version 11.0). Pathway enrichment analysis was
carried out by Enrich R (45) on Gene Ontology Biological
Processes, KEGG and Reactome annotations. The ClueGO

package (version 2.5.7) from the Cytoscape software platform
(version 3.8.1) was used for functional network analysis. Gene set
enrichment analysis (GSEA) was performed with GSEA software
(Broad Institute) (46).

gRT-PCR

After TRIzol extraction, RNA was reverse transcribed into cDONA
(PrimeScript Reag Kit with gDNA Eraser, Takara). TagMan gene
expression for ADM mRNA (Hs00181605_m1, ThermoFisher
Scientific) was performed on CD34" cells from AML and control
samples, using HPRT1 (Hs02800695_m1) as reference gene, on
the Applied Biosystems 7500 Real-Time PCR System
(ThermoFisher Scientific). Gene expression was quantified by
the 274" method, using the average expression of healthy
CD34" cells as calibrator.

Statistical Analyses

Data were reported as median and minimum-to-maximum
values for continuous variables and as natural frequencies and
percentages for categorical ones. The Shapiro-Wilk test was used
to assess if continuous variables were normally distributed. The
association between one continuous and one categorical variable
was performed using the Student t-test or the Analysis of
Variance (ANOVA) or the analogous Wilcoxon-Mann-
Whitney test or Kruskal-Wallis test, as appropriate. In case of
a significant result (p-value <0.05) from an omnibus test for the
comparison of more than two categories, post-hoc test p-values
were adjusted using the Bonferroni method. The association
between two categorical variables was assessed by means of the
Chi-square test or the Fisher’s exact test, as appropriate.
Correlation among genes was studied through the Pearson
correlation coefficient. To investigate the association between
ADM expression and overall survival (OS), a Cox proportional
hazards model was used. Hazard ratios (HRs) and 95%
confidence intervals (ClIs) were reported. To assess the
presence of outliers or influential observations as well as the
functional form of ADM in relation to the hazard function, the
Deviance and the Martingale residuals were used, respectively.
Opverall survival analysis was performed firstly on each cohort
separately and then on an integrated dataset to explore the
prognostic role of ADM in specific subgroups otherwise
characterized by very low frequency. Such integrated dataset
was obtained applying the Blom transformation to the
normalized expression data of ADM (47). Such rank-based
transformation backtransforms the uniformly distributed ranks
to a standard normal distribution. Statistical analyses were
performed using R statistical language version 3.6.1 and
STATA 12.0 (College Station).

RESULTS

ADM Expression Is a Characteristic of the
Myeloid Differentiation Program

To deeply investigate ADM expression in the hematopoietic
system, we analyzed its mRNA levels at different stages of
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hematopoiesis and in the microenvironment in the BLUEPRINT
dataset. ADM transcript was barely detectable in hematopoietic
stem cells (HSC) and almost undetectable in hematopoietic
multipotent progenitor cells (MPP) (Figure 1A). In the
myeloid differentiation program, ADM was not expressed by
common myeloid progenitor cells (CMP) and granulocyte-
monocyte progenitor cells (GMP). It was barely detectable in
megakaryocytes and erythroblasts, while increasing in dendritic
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FIGURE 1 | ADM expression in HSC and in the hematopoietic system.
Transcriptional analysis of ADM expression in hematopoietic cells from the
BLUEPRINT (A), the GSE98791 (B) and the GSE24759 (C) datasets. Scatter
plots were generated with the R package ggplot2 (48) (version 3.3.1). Each
dot indicates one sample and the bar represents the median value (HSC,
hematopoietic stem cells; MPP, hematopoietic multipotent progenitor cells;
CMP, common myeloid progenitors; GMP, granulocyte-monocyte
progenitors; DC, conventional dendritic cells, CLP, common lymphoid
progenitors; NK, natural killer; T reg, regulatory T cells; GC, germinal center;
EPC, endothelial progenitor cells; MSC, mesenchymal stem cells; MEP,
megakaryocyte-erythroid progenitors; CS, class-switched; TPM, Transcripts
Per Million).

cells (DC) and, especially, during neutrophilic differentiation and
in monocytes (Figure 1A). Monocyte-derived macrophages
showed low ADM levels. However, ADM expression was
significantly enhanced by LPS stimulation (Supplementary
Figure 1), in line with previous reports (49). In the lymphoid
lineage, ADM was not expressed by common lymphoid
progenitors (CLP) and by T cells at any stage of differentiation
(thymocytes, memory T cells and regulatory T cells, Figure 1A).
ADM expression remained close to undetectable during B
lymphocyte differentiation (naive, germinal center and memory
B cells), while increasing in terminally-differentiated plasma cells
(Figure 1A). Of note, ADM was highly expressed by cells
populating the hematopoietic niche and/or interacting with the
hematopoietic system, including endothelial progenitor and
mature cells, bone marrow mesenchymal stem cells (MSC) and
osteoclasts (Figure 1A).

To validate these data in independent cohorts, we analyzed
the GSE98791 and GSE24759 datasets, containing hematopoietic
and immune cell populations. The results were largely
overlapping, showing very low ADM levels in CMP, GMP, B
cells, CD4" and CD8" T lymphocytes (naive, mature
and memory), low expression in HSC, erythroid cells and
megakaryocytes and higher ADM transcript in monocytes and
granulocytes (Figures 1B, C).

Taken together, these data indicate that in the normal
hematopoietic system, ADM expression is a hallmark of
mature myeloid cells.

Leukemia Stem Cells Express ADM

It was previously reported that the expression of the ADM
binding receptor CALCRL is a prognostic marker in AML
(50). However, both CGRP and ADM bind to the same
receptor. To understand whether ADM may be involved in
CALCRL signaling in AML, we analyzed its expression in three
different datasets of leukemic and hematopoietic cells at different
stages of differentiation, including stem and progenitor cells,
defined on a surface phenotype base (GSE24006, GSE117190
and GSE63270).

ADM was overexpressed in leukemic stem cells (LSC)
compared with HSC (GSE24006, p = 0.017; GSE117190, p =
0.023, GSE63270, p = 0.052) or MPP (GSE24006, p = 0.018;
GSE63270, p = 0.002, Figures 2A-C). Elevated levels were also
detected in leukemic compared with hematopoietic progenitor
cells (GSE24006, p = 0.051; GSE117190, p <0.001, GSE63270, p =
0.003; Figures 2A-C). Moreover, ADM expression was
maintained in AML blast cells that showed similar levels
compared with more undifferentiated AML cells (GSE24006,
Figure 2A). The elevated ADM expression in AML was
confirmed in our qRT-PCR analysis of CD34" AML cells
versus bone marrow hematopoietic stem-progenitor cells
(HSPC, p = 0.017, Figure 2D) and in the GSE158596 dataset,
by comparing leukemic blasts with G-CSF mobilized HSPC
(p <0.001, Figure 2E).

We then asked whether ADM expression differs between AML
and ALL. We observed higher ADM expression in AML versus
ALL (GSE13159, p <0.001, Figure 2F). This result was confirmed
by comparing AML with T-ALL (p <0.001, Figure 2G) or B-ALL
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(p = 0.018, Figure 2G), separately. When analyzing the NGS-PTL
B-ALL cohort, we observed that ADM expression was increased in
AML compared with Ph-negative (Ph—) B-ALL (NGS-PTL, p =
0.041, Figure 2H). Overall, these data suggest that ADM is
generally higher in AML compared with ALL.

High ADM Expression Associates With
Specific Cytogenetic Features in AML

We then asked whether ADM expression levels changed among
AML molecular and biological subgroups and investigated the
association between ADM levels and disease features, including
age, morphology, cytogenetics, and genomic lesions. To this aim,
we analyzed six independent datasets of newly-diagnosed AML
(excluding M3 cases, age 218 years) and focused on bone
marrow samples (GSE6891, n = 68; Beat AML, n = 142;
TCGA-LAML, n = 135, GSE13159, n = 458, NGS-PTL, n =
61), except for GSE14468 cohort that included mixed bone
marrow and peripheral blood samples (n = 459, tissue not
specified, Table 1 and Supplementary Table 2).

Elderly patients (aged =60 years) expressed significantly
higher ADM transcript in the GSE14468 cohort (p = 0.034)
and this comparison was close to significance in the TCGA-
LAML dataset (p = 0.056). ADM expression showed a significant
variation according to French-American-British classification
(GSE6891, p = 0.001, GSE14468, p <0.001), with high levels in
the immature MO cytomorphology, in the monocytic types (FAB
M4/M5) and in erythroid leukemia (M6). Moreover, we observed
a significant variation among cytogenetic subgroups (Beat AML,
p = 0.001; TCGA-LAML, p = 0.001, GSE14468, p <0.001;
GSE13159, p <0.001), with elevated levels in complex
karyotype and inv(16)/t(16;16) AML and low expression in
t(8;21) cases.

The analysis of ADM expression according to genetic
alteration of AML-related genes revealed no association with
the mutational status of IDHI, IDH2, KRAS/NRAS, RUNXI,
ASXL1, DNMT3A and TP53. Moreover, no significant
differences were observed among ELN 2010 risk categories
(Table 1). Conversely, we detected lower expression in FLT3-
ITD AML (GSE6891, p = 0.023; TCGA-LAML, p = 0.001;
GSE144468, p = 0.009) compared with FLT3-ITD-negative
AML and in NPMI-mutated versus wild-type cases in the
TCGA-LAML dataset (p = 0.034). Accordingly, when
considering FLT3-ITD and NPMI mutation simultaneously,
we observed a significant difference among the subgroups, with
the wild-type cases expressing the highest ADM levels and the
FLT3-ITD/NPMI-mutated ones expressing the lowest ones
(GSE6891, p = 0.004; TCGA-LAML, p = 0.009).

We then asked whether ADM may have a prognostic role in
terms of OS, but no statistically significant association was
observed. This analysis was performed on the Beat AML,
TCGA-LAML, GSE6891 and NGS-PTL cohorts that had the
information related to the OS. Bone marrow and peripheral
blood samples were included in order to increase the cohort size
and allow subgroup analyses. Considering the integrated dataset,
the associations between ADM and AML molecular and

biological features observed on the single cohorts were
confirmed (Table 2). Moreover, the integrated dataset
suggested the association with ELN 2010 risk classification (p =
0.006, Table 2). In details, ADM expression was elevated in the
favorable and adverse risk categories, compared with the
intermediate ones, in line with the cytogenetic features.
Additional analyses showed that high ADM expression had a
negative impact on OS within the patients’ subgroup
characterized by favorable ELN 2010 risk (HR for a one-unit
increase in ADM = 1.28; 95% CI: 1.02-1.61, p = 0.031,
Figure 3A). Adjusting for age (<60, 260 years) that resulted
either significantly associated to ADM and to affect the OS, the
HR for a one-unit increase in ADM was equal to 1.22 (95% CI:
0.97-1.53, p = 0.083). Conversely, high ADM expression seemed
to have a positive impact on OS within the subgroup receiving a
not-intensive treatment (azacytidine, decitabine, targeted
therapies; HR = 0.65, 95% CI: 0.43-0.97 p = 0.037, Figure 3A).
In this cohort, the prognostic role of ADM was independent from
other biological and clinical factors.

The ADM Gene Network Is Enriched of
Inflammatory Signatures in Leukemic Cells
and of Immunomodulatory Genes in T
Cells From AML Patients

To understand the biological features associated with ADM
expression in AML, we analyzed genes co-expressed and
interacting with it. We defined 135 genes whose expression
positively correlated with ADM (absolute value of Pearson
correlation coefficient 0.5 and p value <0.05) in at least two
out of the five cohorts of bone marrow samples (Figure 3B and
Supplementary Table 3). Moreover, we identified the top-
scoring ADM interactors (protein-protein interaction
enrichment p <1.0e-16, Supplementary Figure 2), that are
mainly involved in G protein-coupled receptor signaling.

Genes co-expressed with ADM were involved in regulation of
cell growth and proliferation (e.g. CDKN2D, SDCBP, BTGlI,
PTPR], SGK1), ferroptosis (FTHI, CYBB, SATI, FTL),
protection from apoptosis (e.g. HCK, RNFI144B, BCL2A1I,
BIRC3), HIF-1a. signaling (e.g. CDKNIA, EDNI1, PFKFB3,
CYBB), JAK-STAT pathway (SOCS3, IL6, CDKNIA, IL10RA,
IL2IR) and response to stimuli, including lipids, LPS, cytokines
and chemokines (Supplementary Table 4). Three of these genes
were confirmed in four out of five cohorts, thus representing
high-fidelity ADM co-expressed genes. They were the p53
transcriptional target SATI, that is involved in polyamine
metabolism and functions as a metabolic mediator of
ferroptotic cell death (51), the BCL2 family member BCL2A1,
that has been recently shown to confer resistance to Venetoclax
treatment (52, 53), and IERS5, that regulates LPC proliferation
(54) (Figure 3B and Supplementary Table 3).

Four ADM co-expressed genes were also upregulated in LSC
compared with HSC in two analyzed datasets (GSE24006, Figure
3C and GSE117090, Figure 3D). The Src family kinase HCK is
strongly expressed in a significant proportion of AML patients
(55), is known to be upregulated in leukemic compared to
normal stem cells and is a potential therapeutic target (56, 57).
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TABLE 1 | Association between ADM expression levels and clinical/molecular data across public datasets.

Variable GSE6891 (n=68) GSE14468 (n=459) Beat AML (n=142) TCGA-LAML (n=135)
n (%) median [min-max] p n (%) median [min-max] p n (%) median [min-max] P n (%) median [min-max] p

Age - 0.034 0.653 0.056
<B60-years - - 383 (83.8) 159.8 [67.7-3848.3] 60 (42.3) 9.5 [0.2-313.9] 72 (53.9) 1.3[0.0-23.1]

>60-years 63 (100.0) 196.7 [93.4-4451.3] 74 (16.2) 238.2 [98.4-442.9] 82 (57.7) 11.4[0.3-151.7] 63 (46.7) 2.0 [0.0-57.1]

missing 5 2 - -

FAB 0.001 <0.001 0.057 0.591
MO 2(3.6) 229.7 [188.7-270.6] 18 (4.1) 135.3 [80.5-477.7] 4(7.8) 4.0 [1.2-6.1] 14 (10.5) 2.1 [0.0-5.5]

M1 11 (19.6) 122.7 [97.0-206.5] 97 (22.2) 134.8 [67.7-3396.9] 6(11.8) 1.3[1.0-118.2] 35 (26.1) 1.2[0.0-12.4]

M2 23 (41.1) 148.1 [92.4-1024.0] 123 (28.2) 147.0 [71.0-2936.7] 5(9.8) 6.4 [0.9-63.6] 38 (28.4) 1.3[0.1-17.2]

M4 9 (16.1) 221.3 [172.4-4451.3] 83 (19.0) 205.1 [84.5-3848.3] 16 (31.4) 19.0 [38.5-159.1] 29 (21.6) 2.0[0.1-12.8]

M5 10 (17.9) 448.6 [166.6-4451.3] 109 (24.9) 183.6 [83.9-4482.2] 19 (37.3) 4.3[0.3-151.7] 15 (11.2) 1.1[0.0-57.1]

M6 1(1.8) 843.4 7(1.6) 171.3 [123.6-849.2] - - 2(1.5) 2.3[1.9-2.7]

M7 - - - - 1(2.0) 5.9 1(0.8) 1.4 [1.4-1.4]

missing 12 22 91 1

Cytogenetic group 0.063 <0.001 0.001 0.001
(8;21) 3 (5.0 104.0 [96.3-126.2] 32 (9.8) 137.2 [92.4-451.9] 3(2.1) 7.3[0.9-15.1] 7 (5.9) 0.2[0.1-1.0]
inv(16)/t(16;16) 46.7) 516.6 [182.3-2256.7] 33 (10.1) 210.1 [125.4-2164.8] 9 (6.4) 18.9 [5.1-98.7] 10 (7.6) 1.91.2-7.0]

NK 23 (38.9) 188.7 [96.3-4451.3] 139 (42.4) 149.1 [67.7-3848.3] 75 (53.6) 7.5[0.2-313.9] 60 (45.5) 1.2[0.0-57.1]

CK 46.7) 178.1 [92.4-4451.3] 27 (8.2) 133.4 [95.7-2740.1] 19 (13.6) 35.6 [1.2-130.8] 18 (13.6) 3.4[0.3-17.2]

KMT2A-r 1(1.7) 179.8 15 (4.6) 116.2 [84.5-1782.9] 8(5.7) 2.0[0.3-39.3] 8(6.1) 0.5[0.0-1.8]

Other 25 (41.7) 229.1 [114.6-2019.8] 82 (25.0) 169.5 [74.5-3304.0] 26 (18.6) 13.8[0.4-159.1] 29 (22.0) 1.9[0.0-12.8]

missing 8 131 2 3

FLT3-ITD 0.023 0.009 0.062 0.001
FLT3-ITD* 18 (26.5 145.5[96.3-1024.0] 112 (28.3) 144.5 [57.7-2091.0] 27 (20.3) 4.2[0.4-118.2] 27 (20.5) 0.4 [0.0-23.1]

FLT3-ITD™ 50 (73.5 247.3 [92.4-4451.3] 283 (71.7) 167.7 [68.1-3848.3] 106 (79.7) 14.5[0.2-313.9] 105 (79.6) 1.91[0.0-57.1]

missing - 64 9 3

NPM1 status 0.127 0.249 0.064 0.034
NPM1-mut 20 (29.4 151.2 [96.3-2019.8] 135 (34.2) 313.9 [67.7-3743.1] 37 (27.8 4.2 [0.6-313.9] 38 (28.8 0.6 [0.0-57.1]

NPM1T-wt 48 (70.6 244.0 [92.4-4451.3] 260 (65.8) 164.9 [68.1-3848.3] 96 (72.2) 13.8 [0.2-159.1] 94 (71.2) 1.8[0.0-16.8]

missing - 64 9 3

FLT3-ITD/NPM1 0.004 0.070 0.086 0.009
—/wt 40 (58.8) 244.7 [92.4-4451.3] 218 (65.2) 168.9 [68.1-3848.3] 81 (60.9) 15.1 [0.2-159.1] 84 (63.6) 2.0 [0.0-16.8]

+/wt 8(11.8) 281.9[97.0-1024.0] 42 (10.6) 147.5 [83.3-2091.0] 15 (11.3) 8.9[0.4-118.2] 10 (7.6) 0.8 [0.2-12.4]

—/mut 10 (14.7) 305.0 [120.3-2019.8] 65 (16.5) 163.2 [71.0-3743.1] 25 (18.8) 9.4 [0.6-313.9] 21 (15.9) 1.5[0.0-57.1]

+/mut 10 (14.7) 123.8 [96.3-166.6] 70 (17.7) 140.6 [67.7-1758.3] 12 (9.0 2.7 [0.8-46.5] 17 (12.9) 0.3 [0.0-23.1]

missing - 64 9 3

ELN 2010 0.448 0.255 0.104 0.114
Favorable 11 (18.3) 221.3 [96.3-2256.7] 115 (35.3) 172.4 [67.2-2179.8] 38 (27.1) 10.8 [0.5-313.9] 40 (30.8) 1.3 [0.0-57.1]

Int-I 19 (31.7) 148.1 [96.3-4451.3] 89 (27.9) 140.1 [67.3-3875.1] 49 (35.0) 7.7[0.2-151.7] 37 (28.5) 1.2 [0.1-23.1]

Int-1l 18 (30.0) 201.6 [117.8-2019.8] 74 (22.7) 160.9 [70.0-3327.0] 26 (18.6) 10.2 [0.3-159.1] 22 (16.9) 1.5[0.0-12.8]

Adverse 12 (20.0) 237.3 [92.4-4451.3] 48 (14.7) 150.1 [83.7-2019.8] 27 (19.3) 21.8 [0.4-130.8] 31 (23.9) 2.8[0.3-17.2]

missing 8 133 2 5

CK, complex karyotype; Int, Intermediate; ITD, internal tandem duplication; KMT2A-r, KMT2A-rearranged; min-max, minimum-to-maximum value; mut, mutated; n, number; NK, normal karyotype; p, p value; wt, wild-type.
p < 0.05 are highlighted as bold text.
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TABLE 2 | Association between ADM expression levels and clinical/molecular
data in the overall AML cohort after normalization.

Variable Beat AML+TCGA-LAML+GSE6891+NGS-PTL (n=903)
n (%) median [min-max] p

Age <0.001

<60-years 578 (64.9) -0.1 [-3.0-2.6]

>60-years 313 (35.1) 0.2 [-2.8-2.9]

missing 12

FAB <0.001

MO 40 (6.0) -0.4 [-2.2-1.1]

M1 147 (21.9) -0.4 [-3.0-2.4]

M2 175 (26.1) -0.2 [-2.6-2.2]

M4 143 (21.3) 0.2 [-1.9-2.9]

M5 154 (23.0) 0.02 [-2.3-2.9]

M6 9(1.3 0.1 [-0.6-1.4]

M7 3(0.5) -0.1 [-0.4-0.4]

missing 232

Cytogenetic group <0.001

1(8;21) 50 (6.2) -0.5 [-1.6-1.1]

inv(16)/t(16;16) 68 (8.4) 0.3 [-0.6-2.3]

NK 360 (44.4) -0.2 [-3.0-2.9]

CK 89 (11.0) 0.4 [-1.7-2.9]

KMT2A-r 38 (4.7) -0.9[-2.8-1.9]

Other 205 (25.3) 0.1[-2.6-2.8]

missing 93

FLT3-ITD <0.001

FLT3-ITD* 200 (24.9) -0.4 [-3.0-2.3]

FLT3-ITD™ 622 (75.7) 0.1[-2.8-2.9]

missing 81

NPM1 status <0.001

NPM1-mut 241 (30.4) -0.3 [-3.0-2.6]

NPM1-wt 572 (69.6) 0.1 [-2.8-2.9]

missing 81

FLT3-ITD/NPM1 <0.001

—/wt 486 (59.1) 0.2 [-2.8-2.9]

+/wt 86 (10.5) -0.2 [-2.1-1.7]

—/mut 136 (16.6) -0.01 [-2.6-2.6]

+/mut 114 (13.9) -0.6 [-3.0-2.3]

missing 81

ELN 2010 0.006

Favorable 224 (30.1) 0.1 [-2.7-2.6]

Int-| 218 (29.9) -0.2 [-3.0-2.9]

Int-Il 162 (21.7) 0.02 [-2.6-2.9]

Adverse 141 (18.9) 0.4 [-2.8-2.9]

missing 158

CK, complex karyotype; ITD, internal tandem duplication; KMT2A-r, KMT2A-rearranged;
min-max, minimum-to-maximum value; mut, mutated; n, number; NK, normal karyotype;
p, p value; wt, wild-type.

p < 0.05 are highlighted as bold text.

Along with the metabolic mediator SAT1, an additional gene
functions as regulator of cell homeostasis, namely the lysosomal
thiol reductase IFI30, that facilitates degradation of unfolded
proteins, thus controlling endoplasmic-reticulum stress. IFI130 is
also a predictor of response to combined Mitoxantrone,
Etoposide, Cytarabine and the proteasome inhibitor Ixazomib
in relapsed/refractory AML (58). Moreover, FCERIG is an
immune regulator. Indeed, it is an adapter protein that
transduces activation signals from various immunoreceptors
and has been shown to prime T cells toward T-helper 2 and T-
helper 17 cell subtypes (59).

Remarkably, network analysis of the ADM co-expressed
genes across AML datasets highlighted the enrichment of

transcripts involved in immune and inflammatory response,
including myeloid leukocyte activation, regulation of their
differentiation, neutrophil migration, toll-like receptor
signaling, mononuclear cell migration, regulation of leukocyte
proliferation (Figure 4 and Supplementary Table 4), suggesting
an association between high ADM levels and an inflammatory
status in leukemic cells.

Since ADM has been previously linked with immune response
under physiological and pathological conditions (60-63), we
compared its expression in T cell subsets from AML patients
and healthy controls. We observed increased ADM expression in
CD4" T cells (GSE14924, p <0.001, Figure 5A) and in CD8" T
lymphocytes (GSE117090, p <0.001, Figure 5B) from AML
patients. Moreover, 40 and six ADM co-expressed genes were
upregulated in CD4" T (Figure 5C) and CD8" T cells
(Figure 5D) from AML patients compared with cells from
healthy controls, respectively. When studied by GSEA, CD4" T
cells from AML patients were enriched of signatures related to
regulatory T (Treg) cells (Figure 5E). Of note, some ADM co-
expressed genes, including JUNB, CDKNI1A, ANXA5, CYBB,
NFKBIZ, that were upregulated in CD4" T cells from AML
patients compared with cells from healthy controls (Figure 5B),
are known to participate to the Treg phenotype (65-69).

DISCUSSION

ADM is a circulating hormone that also functions as a local
paracrine and autocrine mediator, with involvement in a number
of different cellular responses. We here studied ADM expression
in the hematopoietic system and in AML and analyzed the
transcriptional program associated with it both in leukemic
cells and the immune microenvironment.

ADM is upregulated in a variety of human cancers compared
with normal tissues and its mRNA expression correlated with
high protein expression in the majority of them (21). In AML, we
observed elevated levels in cell subpopulation defined, on the
basis of their surface phenotype, as LSC and LPC compared with
their normal counterparts that showed undetectable-to-barely-
detectable levels.

ADM expression is also elevated in AML compared with ALL,
in line with the observation that ADM expression is a main
feature of the myeloid differentiation program. Accordingly,
among AML FAB subtypes, monocytic (M4/M5) and erythroid
(M6) leukemia had the highest expression, together with the
immature MO phenotype. These data reflect the distribution
of ADM expression across the cytogenetic subgroups, with
complex karyotypes, that frequently have an undifferentiated
phenotype and inv(16)/t(16;16) AML, that characterizes the
myelomonocytic cytomorphology, showing the strongest ADM
positivity. This feature may also explain the lack of prognostic
relevance of ADM in AML in general, that has been reported in
other solid tumors (70-76). Conversely, high ADM levels showed
a potential negative impact on overall survival in the favorable
ELN 2010 risk class, that also includes inv(16)/t(16;16) cases. In
AML, ADM expression is related to the disease molecular
features, both in terms of genomic rearrangements and
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FIGURE 3 | ADM prognostic role and co-expressed genes in AML. (A) Results from two separate Cox regression models within the subgroup with 2010 ELN
favorable risk (adjusting for age, n = 214) and within the subgroup receiving a not-intensive treatment (n = 64, HR, Hazard ratio, Cl, confidence interval, trt,
treatment). (B) Correlation analysis between ADM expression and the AML transcriptome across bone marrow samples from five AML datasets (GSE6891,
GSE13159, Beat AML, TCGA-LAML, NGS-PTL). Genes showing an absolute value of Pearson correlation coefficient >0.50 and a p value <0.05 in at least two
cohorts were reported. Genes are represented according to the weighted arithmetic mean of the correlation coefficient and p value across the datasets. The scatter
plot was generated with the R package ggplot2 (48) (version 3.3.1). (C) Transcriptional analysis of ADM co-expressed genes in LSC compared with HSC in the
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mutational status. Indeed, FLT3-ITD or NPMI-mutated cases
displayed lower ADM levels compared with the wild-type ones
and the expression was particularly low when the two alterations
co-occurred. Several lines of evidence may explain this
observation. First, two tyrosine kinases, namely LYN and HCK,
show a positive correlation with ADM, suggesting alternative
ways of signaling activation. Moreover, ADM 1is co-expressed
with SLAP, that binds to FLT3 and modulates receptor stability
and downstream signaling (77), likely favoring its activation even
in the absence of the internal tandem duplication. Regarding
NPM]I-mutated AML, an inflammatory transcriptional program,
characterized by enrichment of genes belonging to IFN-y
response, IL6 signaling and complement cascade (78) has been
already associated with this genomic subgroup, and PRDM16
upregulation contributes to it (79). Functional studies on AML
genomic subtypes will clarify in the future the role of ADM in
specific leukemic cell contexts, thus overcoming the limitation of
the currently available studies that analyzed generic AML
models. Moreover, some of the identified associations and
ADM function in AML cells under the pressure of not-
intensive treatment regimens (e.g. hypomethylating agents),
deserve further validation and investigation.

Our data suggest that the ADM-related transcriptional
network has a role in cell proliferation, it negatively regulates
apoptosis and, remarkably, it is involved in the inflammatory
response. Moreover, some of the ADM co-expressed genes are
already known for their leukemia-related role, including the anti-
apoptotic gene BIRC3, the signaling molecules HCK, LYN
(tyrosine kinases), SLA (Src kinase-like-adapter protein) and
PLAUR (urokinase plasminogen activator surface receptor), the
transcriptional regulators TCF7L2 (WNT pathway) and ID2, the
metabolism-related genes FTHI, FTL (ferritin heavy and light
chain, respectively), PFKFB3 (glycolytic regulator), NAMPT
(NAD biosynthesis pathway), SLCI5A3 (solute carriers
transporting histidine) and FFAR2 (free fatty acid receptor).
Among ADM interacting genes, EDNI, that mediates VEGF-C-
induced proliferation and chemoresistance in AML (80), showed
a positive correlation with ADM expression. Several co-expressed
genes and enriched pathways point towards an AML
inflammatory phenotype, characterized by expression of IL6,
ILIORA, CXCL10, THEMIS2, TNFAIP3, LILRA5, LILRB2. ADM
was also upregulated in the CD4" and CD8" T cell subsets from
AML patients compared with healthy controls and ADM
correlating genes that were identified in AML, participate in a
signature of immune tolerance in CD4" T cells. We could not
perform the correlation analysis on the CD4" and CD8" T cells
due to the low number of samples, which would have hampered
data significance and robustness.

In our analysis, none of the genes belonging to the ADM
receptor complex (CALCRL, RAMP2, RAMP3) showed a
correlation with endogenous ADM expression. However, it has
been recently reported that CALCRL, the receptor of ADM and
CGRP, is also overexpressed in LSC and its genomic ablation
impaired the clonogenic capacity of AML cell lines (50) and the
frequency of chemotherapy-resistant cells able to initiate
leukemia relapse in preclinical models (81). In contrast to

ADM, CALCRL was highly expressed in NPMI1-mutated cases
also carrying the FLT3-ITD (50). This difference reinforces the
notion that the receptor expression is not controlled by the basal
ADM levels, rather by changes in the extracellular ADM
availability (22). We can therefore hypothesize an intrinsic
capacity of leukemic cells to respond to ADM-mediated
microenvironmental and self-stimulation, as also supported by
the high level of ADM expression observed in MSC
and osteoclasts.

Opverall, our results suggest multiple biological roles of ADM
in AML. Indeed, it may support LSC and may be involved in the
maintenance of a leukemic cell inflammatory phenotype via
autocrine and paracrine signaling, thus contributing to drug
resistance and relapse. Moreover, ADM may exert an anti-
inflammatory action when released in the blood and may
promote immune tolerance by direct expression in the CD4" T
cell subset and by uptake from the tumor microenvironment, as
indicated by data from murine models of autoimmune disorders
(63). This evidence, along with the observation that an
antagonistic ADM peptide induced differentiation of leukemic
cell lines (22), suggest that targeting ADM may carry therapeutic
potentials in AML. However, given the pleiotropic effects of
ADM, a therapeutic strategy to deplete it may have serious side
effects and toxicities. Therefore, encapsulated formulations
aimed to deliver ADM neutralizing antibodies in targeted cells
may be required. Alternatively, combination strategies blocking
the ADM-related network (e.g. HCK, LYN, NAMPT inhibitors)
may be investigated for their effect on AML cases expressing high
ADM levels.
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and Andrea Mengarelli?

7 Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome,
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Cerebrospinal fluid (CSF) flow cytometry has a crucial role in the diagnosis of
leptomeningeal disease in onco-hematology. This report describes the flow cytometry
characterization of 138 CSF samples from patients affected by non-Hodgkin lymphoma,
negative for disease infiltration. The aim was to focus on the CSF non-neoplastic
population, to compare the cellular composition of the CSF with paired peripheral
blood samples and to document the feasibility of flow cytometry in hypocellular
samples. Despite the extremely low cell count (1 cell/ul, range 1.0-35) the study was
successfully conducted in 95% of the samples. T lymphocytes were the most abundant
subset in CSF (77%; range 20-100%) with a predominance of CD4-positive over
CD8-positive T cells (CD4/CD8 ratio = 2) together with a minority of monocytes (15%;
range 0-70%). No B cells were identified in 90% of samples. Of relevance, a normal,
non-clonal B-cell population was documented in 5/7 (71%) patients with primary central
nervous system lymphoma at diagnosis (p<0.0001), suggesting a possible involvement of
blood-brain barrier cell permeability in the pathogenesis of cerebral B-cell lymphomas.
The highly significant differences between CSF and paired peripheral blood lymphoid
phenotype (p<0.0001) confirms the existence of an active mechanism of lymphoid
migration through the meninges.

Keywords: cerebrospinal fluid, lymphocytes, flow cytometry, NHL, cerebral lymphatic system
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CSF Lymphocytes Immunophenotype in NHL

INTRODUCTION

Neoplastic meningitis is a dramatic complication in cancer
patients and the diagnosis of leptomeningeal metastasis
represents one of the greatest challenges in neuro-oncology.
Cerebrospinal fluid (CSF) analysis has a key role in routine
clinical practice however conventional cytology, the gold
standard for cell type identification, has considerable
limitations regarding sensitivity and specificity, with a reported
false-negative rate of up to 40% (1, 2).

In recent years, several studies have demonstrated that CSF
flow cytometry is superior to conventional cytology for detection
of CNS involvement in non-Hodgkin lymphomas, acute
leukemia and multiple myeloma (3-11). Thereafter, flow
cytometry is recognized among the basic elements for the
diagnosis of leptomeningeal metastasis in hematologic cancers
(12, 13), although the low cell count of CSF samples, combined
with the rapidly declining leukocyte viability, makes CSF flow
cytometry challenging (14). More recently, flow cytometry
application and efficiency in diagnosis of solid tumors
leptomeningeal metastasis is gaining more evidence (15-18).

However, cancer cells represent only a proportion, often a
minority, of the CSF population in neoplastic meningitis. A
significant presence of lymphocytes has been documented,
together with floating malignant cells, in CSF samples from
patients with non-Hodgkin lymphomas and breast cancer
leptomeningeal metastasis (18, 19); an active mechanism of
reactive CD8 T-lymphocyte migration has been observed in
primary central nervous system lymphomas (PCNSL) of B-cell
type (20, 21). These findings suggest an active role of the central
nervous system (CNS) lymphatic system in both lymphoid and
tumor cells migration into and out of the meninges.

Focusing on non-neoplastic populations, we report here the
immunophenotype of the CSF leukocytes of patients affected by
non-Hodgkin lymphomas without leptomeningeal involvement.
The aim was to document the feasibility of flow cytometry in
normal, thereafter, extremely hypocellular samples, to document
the immunophenotype of CSF non-neoplastic population in non-
Hodgkin lymphoma, to compare the cellular composition of the
CSF with paired peripheral blood samples. Moreover, a possible
correlation between the CSF lymphocyte subpopulations and
diagnosis was evaluated.

MATERIALS AND METHODS

Patients
From March 2010 to December 2015 a cohort of 138 samples
with non-Hodgkin lymphoma who underwent diagnostic
lumbar puncture according to the routine clinical practice
entered the study (22). All PCNSL cases diagnosed until
December 2019 were also included. Lymphomas were classified
according to the World Health Organization (WHO)
classification (23).

All CSF samples were analyzed by cytology and flow
cytometry and had no evidence of infiltration. Patients with a
positive diagnostic lumbar puncture due to CSF infiltration by

pathological cells were excluded from this analysis. The Central
Ethical Committee IRCCS Lazio, Section L.F.O. approved this
retrospective study. Protocol n°® 0009524, July 27 2020.

CSF Collection and Cell Count

CSF was collected in a tube without any transport medium or
anticoagulant and processed within 1 to 3 h to minimize cell loss.
To avoid peripheral blood contamination, the first 0.2 to 0.4 ml
(four to eight drops) of CSF were discarded before sample
collection. A standard cell count was performed using the Turk
reagent and a Nageotte chamber. CSF was spun at 1,400 rpm for
5 min, the supernatant fluid was discarded and the cell pellet was
suspended in 500 ul of phosphate buffered saline (PBS): 100 pl of
cell suspension was used for cytomorphology and 100 ul/tube for
the flow cytometric study.

CSF Morphological Evaluation

Cytospins were prepared using a Shandon CytoSpin
cytocentrifuge. Morphological examination was performed by
expert cytopathologists using May-Griinwald-Giemsa staining.
All cases were morphologically negative for CNS localization.

CSF Flow Cytometry Assay and Analysis
CSF samples were processed and stained using a 6-color
monoclonal antibodies panel, 5 pl of each, and the “Duo-lyse”
program of the Becton Dickinson Bioscience (BDB) Lyse-Wash-
Assistant according to the following combinations: tube 1) CD3Fitc
(BD Biosciences Cat# 345763, RRID : AB_2811220), CD56Pe (BD
Biosciences Cat# 345812, RRID : AB_2629216), CD45PerCP-Cy5.5
(BD Biosciences Cat# 332784, RRID : AB_2868632), CD4PE-
Cy7 (BD Biosciences Cat# 348809, RRID : AB_2783789),
CD19APC (BD Biosciences Cat# 345791, RRID : AB_2868817)
and CD8APC-Cy7 (BD Biosciences Cat# 348813, RRID :
AB_2868857); tube 2) CD5Fitc (BD Biosciences Cat# 345781,
RRID : AB_2868807), CD10Pe (BD Biosciences Cat# 332776,
RRID : AB_2868625), CD45PerCP-Cy5.5, CD2PE-Cy7 (BD
Biosciences Cat# 335821, RRID : AB_2868684), CD79bAPC
(BD Biosciences Cat# 335834, RRID : AB_2868695) and
CD20APC-Cy7 (BD Biosciences Cat# 335829, RRID :
AB_2868690); tube 3) anti-Lambda Fitc (BD Biosciences Cat#
347247, RRID : AB_2868845, anti-Kappa Pe (BD Biosciences Cat#
347246, RRID : AB_2868844), CD45PerCP-Cy5.5, CD34PE-Cy7
(BD Biosciences Cat# 348811, RRID : AB_2868855), CD22APC
(BD Biosciences Cat# 333145, RRID : AB_2868646) and
CD14APC-Cy7 (BD Biosciences Cat# 333951, RRID :
AB_2868679). All antibodies were from BDB. Prior to sample
acquisition, a flow cell cleaning with FACS flow (for 1 to 2 min
run) was performed to avoid any event carry over. The whole
volume of sample was acquired and analyzed using the
FACSCanto II 2L flow cytometer and the FACSDiva software
Version 6.1.3 (BDB). Single-stained cellular controls, BD FACS™
7-color setup beads and BD FACSDiva CS&T IVD Beads have
been used to adjust detector voltage, to set fluorescence
compensation and to monitor instrument performance.

Data are presented as the percentage of positive cells
evaluated on the CD45-positive population. Lymphocytes were
identified by CD45-strong/side scatter (SSC)-low. The CD4 and
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CD8 subsets were evaluated as a percentage of CD3-positive T
lymphocytes. Monocytes were identified using the CD4-weak or
CD14 staining. Neutrophils as CD45/SSC-high. Surface
immunoglobulins (Ig) kappa and lambda light chain
expression was evaluated on CD22-positive B cells. In
agreement with the recommendations for the analysis of rare
events, a cluster of 10 events was considered to define a positive
result and identify a leukocyte subpopulation (10). Disease
infiltration of the CSF was excluded, being negative for the
lymphoma-associated phenotype identified by histopathology.
We defined as CSF negative all sample negative by cytology and
flow cytometry.

The peripheral blood lymphocyte characterization, using the
CD3 CD56 CD45 CD4 CD19 and CD8 combination (tube n°1),
was conducted in 104 paired cases.

Statistical Analysis

Qualitative items were reported as absolute and percentage
counts, while quantitative variables were summarized using
mean and standard deviation, median and range. The
difference in distribution between CSF and PB lymphoid
subpopulations was assessed by Wilcoxon rank-sum test.
Association between variables was evaluated with the
Spearman’s p coefficient. The test was two-sided with a p-value
of <0.05 indicating a statistically significant difference. All
statistical analyses were performed using SPSS (version 21.0).

RESULTS

Patients
A cohort of 138 samples from 127 non-Hodgkin lymphoma
patients, all negative for CNS disease involvement, entered the
study (Table 1). Eighty-three patients (65%) were male and
median age was 60 years (range 18-84). The lumbar puncture for
analysis was performed at diagnosis (n=108), at follow up
(n=11), at relapse (n=12), or with progressive disease (n=7).
The study focuses on 107 cases; 24 cases (17%) were not
included in analysis due to peripheral blood contamination of
the CSF documented by the identification of red blood cells in
the cytospin assessed morphologically as well as a population of
CD45/SSC high (46%; range 30-89%) positive neutrophils. In
seven cases the flow cytometry analysis was not evaluable due to
the absence of clustered events.

Immunophenotype of CSF Sample
A median volume of 4.0 ml (range 2.0-12.0) of CSF was available
for flow cytometry analysis. The CSF cell count was extremely
low (1 cell/pl, range 1.0-35); in 9 cases (8%) the CSF cell count
was higher than the normal reference value of 4 cell/pl, with a
median value of 22 cells/pl (5.0-35). Despite the low absolute cell
number, flow cytometry characterization was successfully
conducted in 95% of cases (131/138).

Gating on the CD45-positive population in combination with
the side scatter, a median of 384 (range 49-23649; mean 1518 +
3772) events were acquired and analyzed. A positive correlation

TABLE 1 | Diagnostic distribution of 127 non-Hodgkin lymphoma patients who
underwent diagnostic lumbar puncture according to the routine clinical practice
and were negative for leptomeningeal involvement.

Diagnosis Number of cases
DLBCL 90

MCL 14
PCNSL 11

FL 5
Anaplastic large cell lymphoma 2
Peripheral T-NHL 2

Burkitt lymphoma 1

LBL 1

T-cell rich B-cell lymphoma 1

DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma,; PCNSL, primary central
nervous system lymphoma; FL, follicular lymphoma; LBL, lymphoblastic lymphoma.

was found between the volume (ml) of CSF and the number of
events analyzed by flow cytometry (A 0.36; p<0.001) (Figure 1).

The CSF population was represented by lymphocytes (77%;
range 20-100%) together with a minor population of monocytes
(CD4-weak or CD14-positive 15%; range 0-70%).

The CSF lymphoid population was represented by CD2
CD3 CD5-positive T cells (94%; range 62-100%) with a
prevalence of CD4-positive lymphocytes (CD4/CD8 ratio = 2).
A minority of CD56-positive cells were also documented (5%;
range 0-47%). No B cells (< 10 clustered events) were identified
in 90% of cases (Table 2).

In 11 patients a subpopulation of CD19 CD20 CD22 CD79b-
positive B lymphocytes (4%; range 1-22%), with a normal/balanced
Ig kappa/lambda ratio evaluated on the CD22-positive population,
was identified: 5 PCNSL, 5 diffuse large B-cell lymphoma (DLBCL),
1 follicular lymphoma (Table 3) (Figures 2A-C). All 11 patients
were at diagnosis. Non-clonal B lymphocytes were documented in
45.5% (5/11) of PCNSL, in 5.5% (5/90) DLBCL and 1/5 FL cases.
Seven PCNSL were at diagnosis and 4 in disease progression;
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FIGURE 1 | Positive correlation between the ml of cerebrospinal fluid and the
number of cells (events) analyzed by flow cytometry (p 0.36; P < 0.001).
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TABLE 2 | Cerebrospinal fluid (CSF) and corresponding peripheral blood (PB) lymphoid immunophenotype comparison in 104 non-Hodgkin lymphoma patients

negative for leptomeningeal involvement.

% CSF median CSF mean PB median PB mean p CSF vs PB
Lymphocytes 78 (20-100) 71.1+19.8 19 (2-76) 20.9+12.0 <0.0001
CD19+ 0(0-22) 04+25 4.5 (0-29) 6.5+6.6 <0.0001
CD3+ 94 (62-100) 92.3 +6.9 72 (27-98) 71.8+127 <0.0001
CD3+/CD4+ 65 (3-95) 62.6 + 16.0 55 (2-86) 53.9 +14.8 <0.0001
CD3+/CD8+ 32 (4-81) 335+ 14.9 38 (15-96) 401 +14.7 <0.0001
CD4/CD8 ratio 2(0.04-23.7) - 1.4 (0.02-5.7) - <0.0001
CD56+ 5(0-47) 78+89 21(1-61) 23.1+12.8 <0.0001

Values are expresses as a percentage of CD45-positive lymphocytes. Wilcoxon rank-sum test was conducted to evaluate the different distribution between CSF and PB lymphoid subpopulations.

TABLE 3 | Analysis of the cerebrospinal fluid (CSF) and corresponding peripheral blood (PB) lymphocytes of 11/107 non-Hodgkin lymphoma patients, negative for
leptomeningeal involvement, where a subpopulation of B cells has been identified at diagnosis by flow cytometry of the CSF sample.

Diagnosis Case number PCNSL1 PCNSL2 PCNSL3 PCNSL4 PCNSL5 DLBCL1 DLBCL2 DLBCL3 DLBCL4 DLBCL5 FL
CSF ml of sample 5 5 5 12 4 4 3.5 7.5 4 7 55
Cell count/ pl 1 16 1 3 35 2 nd 1 5 24 30
Number of events 412 8583 1286 8285 21000 521 1105 6049 3647 23649 14072
Lymphocyte % 70 80 7 85 95 80 75 91 90 82 92
Monocytes % 15 16 17 11 5 19 14 6 8 17 5
CD2% 86 98 95 95 93 94 95 97 98 76 89
CD3% 82 91 93 91 90 94 91 97 96 77 87
CD5% 73 90 95 89 87 90 90 95 96 75 86
CD56% 3 9 2 4 5 7 7 3 3 1 1
CD3/CD4% 79 62 47 78 75 66 69 73 79 81 65
CD3/CD8% 21 32 48 21 24 32 32 25 20 15 31
T4/T8 ratio 3.7 1.9 1 3.7 3.1 21 21 2.9 3.9 5.4 21
CD19% 8 1 5 3 6 3 4 1 2 20 12
CD20% 9 1 4 4 6 4 2 1 3 22 11
CD79%b % 9 1 3 3 5 4 2 1 3 21 11
PB  Lymphocyte count/ pi 2300 1120 1350 730 nd 1500 1700 2100 1780 2100 900
Lymphocyte % 16 11 13 8 nd 20 30 25 37 14 1
CD3% 71 68 72 88 nd 70 75 64 77 57 64
CD56% 7 18 13 9 nd 21 11 28 7 55 16
CD3/CD4% 62 64 40 62 nd 64 54 47 65 38 66
CD3/CD8% 36 33 55 34 nd 31 45 44 32 60 33
T4/T8 ratio 1.7 1.9 0.7 1.8 nd 2.0 1.2 1.1 2.0 0.6 2
CD19% 22 13 17 9 nd 12 11 9 ihl 2 21

PCNSL, primary central nervous system lymphoma, DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; nd, not done.
The bold value highlights the percentage of B cells, whose relevance is described in the text.

normal B cells were present in 5/7 (71%) PCNSL at diagnosis,
identifying a significant correlation between a non-clonal B-cell
subpopulation in the CSF and a diagnosis of cerebral B-cell
lymphoma (p<0.0001).

Immunophenotype of Peripheral

Blood Lymphocytes

The peripheral blood lymphocyte subset was evaluated in 104
cases (97%) and compared to the corresponding CSF lymphoid
subpopulations. The absolute number of lymphocytes was 1100
cell/ul (range 70-3300), the median percentage was 19% (range
2-76). The analysis documented a population of CD3-positive
cells (72%, range 27-98) with a CD4/CD8 ratio of 1.4, CD56-
positive (21%; range 1-61) and CD19-positive (5%; range 0-29)
lymphocytes. A different distribution of CD3 CD56 and CD19

lymphoid subpopulations was observed between CSF and
corresponding peripheral blood samples (p<0.0001) (Table 2)
(Figure 3).

DISCUSSION

Leptomeningeal metastasis represents one of the greatest
challenges in neuro-oncology and CSF is one of the most
promising diagnostic tissues utilized in routine clinical practice
(13, 24). In addition to cytology, the diagnostic use of flow
cytometry is strongly recommended for CSF samples of patients
clinically suspected of neoplastic meningitis (12). This report
describes the flow cytometry characterization of 138 CSF
samples of non-Hodgkin lymphoma patients who underwent
diagnostic lumbar puncture according to the routine clinical
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FIGURE 2 | Cerebrospinal fluid (CSF) flow cytometry characterization in a case of diffuse large B-cell lymphoma negative for disease infiltration. Cell count: 24
cells/pl. The CSF lymphocyte immunophenotype is reported as percentage of positive cells within the lymphoid population, identified as CD45-strong/low SSC.
(A) Tube number 1: Green color has been utilized to mark CD3 CD4 CD8-positive T lymphocytes; purple for CD56-positive cells, blue for CD19-positive B
lymphocytes and dark yellow for CD4-weak monocytes. (B) Tube number 2: Green color has been utilized to mark CD2 CD5-positive T lymphocytes; blue for
CD79b CD20-positive B cells. (C) Tube number 3: Blue color has been utilized to mark CD22-positive B lymphocytes. The Ig light chain expression shows a normal
kappa/lambda ratio. Dark yellow marks CD14-positive monocytes.
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practice and who were negative for disease infiltration.
Knowledge of normal values is essential for diagnostic and
research interpretation and, to the best of our knowledge, this
is the first, single-institution, report on the flow cytometry
characterization of CSF non-neoplastic leukocytes in a large
cohort of onco-hematology patients.

The normal cell count of the CSF in adults is up to 4 cells/uL
and CSF cell count is a diagnostic criterion for leptomeningeal
infiltration. The median cellularity in this cohort of patients was
extremely low (1 cell/pl, range 1.0-35), but nevertheless flow
cytometry was successfully conducted in 95% of cases,
confirming its role of a highly sensitive and specific technique
for detection of rare cell sub-populations, even in samples with as
few as 1 leukocyte per pl of sample. Of note, in 8% of samples
(n=9) the CSF cell count was significantly higher than the normal
reference value (median 22 cell/pl). In these cases, unequivocal
identification of the cell population was mandatory to exclude
false positive interpretation: therefore, in addition to cytology,
flow cytometry becomes essential. Moreover, the role of an
increased number of lymphocytes in the CSF of non-Hodgkin
lymphomas patients deserves to be investigated.

High sensitivity has been reported utilizing a volume of 2.0 ml
of CSF for flow cytometry characterization (6). The present study
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FIGURE 3 | Flow cytometry characterization of cerebrospinal fluid (CSF) and peripheral blood (PB) lymphocytes in 107 non-Hodgkin lymphoma patients negative for
leptomeningeal involvement. Wilcoxon rank-sum test documents a significant different distribution between CSF and PB lymphoid subpopulations.

was conducted on a median volume of 4 ml of CSF (<2 ml being
withdrawn in six cases only) with a median of 384 (mean 1518 +
3772) events analyzed. This number is appreciably higher than
the minimum number of events, 10 dots, required for minimal
disease identification in CSF flow cytometry (6, 25), confirming
the feasibility of comprehensive leukocyte characterization in
low volume/low count samples. In this series only 7 cases were
not evaluable due to the lack of clustered events. However, cancer
cells represent only a proportion, often a minority, of the CSF
population in neoplastic meningitis (18, 19, 26). Since there is a
positive correlation between the volume of CSF (ml) and the
number of events available for flow cytometric analysis (A 0.36;
p <0.001) and taking into account the potentially extremely low
cell count of the CSF, as well as some cell loss related to the
staining technique, we recommend the withdrawal of not less
than 4 ml of sample to ensure an adequate number of events for a
reliable identification of minimally represented sub-populations.
Moreover, peripheral blood contamination of the CSF, due to
difficulty in the execution of the lumbar puncture, can occur.
False positive results represent the major pitfall in all cases with
peripheral blood infiltration by leukemic/lymphoma cells and
blood contamination of the CSF (author statement manuscript in
preparation) (12). Thereafter, discarding the first drops of
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sample must represent the reference standard in all CSF samples
collected for flow cytometry analysis. Moreover, the different
distribution of lymphocyte subsets between CSF and peripheral
blood can potentially represent a new, useful tool to discriminate
between primary and peripheral blood derived populations,
particularly at diagnosis or in neutropenic patients.

Studies conducted on normal CSF observed that the vast
majority of leucocytes is represented by central memory T
lymphocytes with significantly higher percentage compared to
blood. The proportion of CD56-positive cells is low while B cells
are almost absent (<1%) (27-30). This indicates a selective
recruitment of memory T cells into normal CSF. Our study
confirms, in a large cohort of samples, that CSF is a tissue rich
in CD2 CD3 CD5-positive T lymphocytes with a predominance of
CD4-positive over CD8-positive T cells (CD4/CD8 ratio = 2),
together with a minority of CD56-positive cells in patients with B-
cell non-Hodgkin lymphomas negative for leptomeningeal
involvement. The presence of normal T cells in the CSF sample
represents not only a strong, reliable internal quality control of the
technique but also documents a selective recruitment of T-cell into
CSF. The CNS is an immunological sanctuary with restricted
access and a unique microenvironment however scientific
evidences have recently documented that CNS is no longer an
immune-privileged site, but rather a virtual secondary lymphoid
organ (31, 32). The tumor inflammatory response is involved in
both cancer growth inhibitions as well as in cancer invasiveness
(33-37). A relevant proportion of infiltrating T lymphocytes and
monocytes beside cancer cells has been documented in patient
with breast cancer neoplastic meningitis, with a significant
difference in the lymphoid immunophenotype between CSF and
peripheral blood (18). Likewise, a sub-population of T cells has
been identified in CSF samples positive for B non-Hodgkin
lymphoma infiltration (7, 19). Moreover, an active mechanism
of reactive CD8 T-lymphocyte migration through the blood-brain
barrier has been consistently shown in PCNSL (20, 21). In this
study, the ratio between CD4/CD8-positive T cells was shifted
significantly in favor of CD4-positive T cells in CSF compared to
corresponding peripheral blood (ratio = 2 versus ratio=1.4
respectively; p < 0.0001). This different distribution documents
that the brain barrier actively selects a sub-population of T
lymphocytes, supporting the involvement of the meningeal
lymphatic network in lymphoid cell migration into the
meninges as a potential alternative route to the cardiovascular
system. This finding documents the existence of an active
mechanism of lymphocyte localization and provides a promising
rationale for the investigation of cellular immunotherapy in
brain diseases.

B cells were by far the smallest subset in the CSF of this cohort of
B non-Hodgkin lymphoma patients without CNS involvement.
The number of B cells is hardly above detection limit in normal
CSF (27-29). By contrast, in patients with paraneoplastic
neurological syndrome CSF B cell counts showed significantly
elevated numbers compared to normal control, suggesting that B
lymphocytes are recruited to CSF in certain pathological conditions
(38). In the present study, sporadic/no B cells (<10 clustered events)
were identified in 90% of the samples and represented a minority

(4%) of the lymphoid population in eleven cases (Table 3). The
normal kappa/lambda ratio, evaluated on the CD22-positive
population, was crucial for reporting the flow cytometry as
negative for infiltration by clonal B cells. A possible correlation
between the CSF lymphocyte subpopulations and diagnosis was
evaluated. A normal, non-clonal B-cell subpopulation was
identified at diagnosis in 71% (5/7) CSF samples of patients with
PCNSL (p < 0.0001). In contrast with its low frequency in normal
CSF and systemic non-Hodgkin lymphomas, the identification of a
subpopulation of B cells in the CSF samples of PCNSL cases raises
the question of a possible role of blood-brain barrier cell
permeability in the pathogenesis of cerebral B-cell lymphomas.
Due to the small number of PCNSL cases evaluated, validation on a
larger cohort of patients is warranted to confirm this finding and to
investigate the role of the CSF B cells in the pathogenesis and
diagnosis of the B-cell lymphomas of the brain. A small clonal B-
cell population has been described in the CSF of patients with B-cell
lymphoproliferative disorders and multiple sclerosis suggesting that
this finding is not diagnostic of clinically significant involvement of
the CNS by lymphoid malignancy (39, 40). Although a larger
prospective study with a long follow-up is required to validate this
finding, the identification of a minority of clonal B cells by flow
cytometry at diagnosis deserves a careful clinical and instrumental
evaluation and more definitive evidence of CNS lymphoid
malignancy before a potentially toxic treatment is given (41).

Finally, after (CD4-positive) T lymphocytes, monocytes
represent the second most common leukocyte population of
the CSF (15%; range 0-70%). Origin and turnover of this
medium-size population, well represented in the CSF, is still
largely unexplored. The role of monocytes regarding the CNS
cellular immune surveillance and their involvement in
onco-hematological meningitis deserves in-depth studies
and attention.

CONCLUSIONS

The cellular composition of the CSF in non-Hodgkin lymphoma
patients negative for leptomeningeal involvement differs
profoundly from peripheral blood regarding all major
lymphocyte subpopulation. CSF cells are represented by T
lymphocytes, in prevalence CD4-positive, and monocytes. B
cells are rare and this analysis reveals a possible link with
PCNSL. This real-life study confirms the critical role of flow
cytometry in routine clinical practice for unequivocal
characterization of CSF populations, even in samples with an
extremely low cell count. The identification of clusters of normal
T cells in the CSF represent a reliable internal quality control of
the technique and the significant difference between CSF and
paired peripheral blood lymphoid phenotype provides evidence
of an independent cerebral lymphatic system. CSF is not an
immune-privileged site anymore but a virtual secondary
lymphoid organ. An in-depth knowledge of the function and
role of the CSF immunological sanctuary is highly needed and
has the potential to revolutionize the management of
CNS diseases.
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Case Report: Very Late, Atypical
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Free Approach
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Relapses of acute promyelocytic leukemia (APL) beyond 7 years from the first molecular
remission are exceptional, and it is unclear whether these relapses represent a new,
therapy-related leukemia rather than a delayed relapse of the original leukemic clone. The
increase extra-medullary relapses (ER) in the era of all-trans retinoic acid (ATRA) therapy
suggests a potential correlation between ATRA therapy and ER, and several potential
explanations have been proposed. The gold standard post-remission approach,
particularly for patients in late relapse, has not yet been established. The benefit of a
transplant approach has been questioned in this setting because continuing ATRA-
arsenic trioxide (ATO) might be curative. Here we report on the case of an APL patient who
relapsed 9 years after achieving her first molecular complete remission (MCR) and who
showed an atypical isolated localization at nodal sites, including the into- and peri-parotid
glands. Genomic PML/RARa breakpoint analysis detected the same bcr3 PVIL/RARa
hybrid gene in DNA purified from bone marrow and lymph nodes, suggesting that the
relapse was because of the reemergence of the initial clone. This case shows that APL,
treated with ATRA and cytotoxic drugs, may still emerge in extra-medullary sites even after
a very prolonged mCR and could be salvaged with an ATO-based protocol, not including
a transplant approach.

Keywords: acute promyelocitic leukemia, transplant free approach, bcr3 variant, all-trans retinoic acid and arsenic
trioxide combination treatment, very late relapse

CASE REPORT

Late relapses in acute promyelocytic leukemia (APL) patients that occur three or more years from
the achievement of complete remission (CR) are very rare, and relapses beyond 7 years from the
initial diagnosis are exceptional. A few cases of late APL relapses treated with all-trans retinoic acid
(ATRA) in combination with other approaches have been reported (1-10). Most late relapses are
the result of the identical immunophenotypic, cytogenetic, and molecular features already present at
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diagnosis, suggesting that relapse emerged through the initial
leukemic clone (3-5). Approximately 3% to 5% of adult APL
presents an extra-medullary relapse (ER) (11, 12). The incidence
of ER, which has risen in the era of ATRA therapy, suggests a
potential correlation between ATRA therapy and ER (13). Two
possible speculative reasons have been contemplated: 1) an
increased infiltration of APL leukemic blasts into sanctuary
sites because of the effect of ATRA on adhesion molecules and
2) prolonged disease-free survival in treated APL patients (13).
However, the main reason is that, in ATRA era, the rate of long-
term survivors has increased exponentially, giving far more
opportunities to develop late relapses than in the pre-ATRA
era. Here we report on the case of an APL patient, treated using
the GIMEMA AIDA 2000 protocol, who relapsed 9 years after
achieving her first molecular complete remission (mCR) and
who showed an atypical presentation at nodal sites into- and
peri-parotid gland.

A 43-year-old female was diagnosed with classic APL in
March 2011. At diagnosis, peripheral blood count showed
WBC 3.6 x 10°/1 with 70% atypical promyelocytes, platelets
15 x 10°/1, and Hb 12.1 g/dl. The immunophenotypic pattern
(CD13+, CD33+, HLA-DR~], karyotypic evaluation [t(15;17) as

unique abnormality), and molecular analysis (positivity for PML/
RARa ber3) were consistent with APL. The patient was enrolled
into the AIDA 2000 protocol and achieved CR following
induction with ATRA plus idarubicin (IDA). Molecular
remission was achieved after the first consolidation course, and
treatment was discontinued in October 2013, after three
consolidation cycles and 2 years of maintenance therapy based
on oral 6-mercaptopurine (50 mg/m?) and intramuscular
methotrexate (15 mg/mz) alternating with oral ATRA for 15
days every 3 months. The patient remained in CR™*P~ for 9
years. In May 2020, the patient presented with a solid mass in the
parotid region: an ultrasound and a computed tomography (CT)
scan of the neck showed the presence of four right intra-parotid
lymph nodes (maximum diameter 2.5 cm) associated with sub-
centimetric peri-parotid, sub-maxillary, and retropharyngeal
lymph nodes. The bone marrow was morphologically in CR;
however, a molecular relapse of the original bcr3 PML/RARa
rearrangement was detectable by RT-PCR.

A biopsy of an intra-parotid lymph node was performed.
Histopathological examination revealed a lymph node
architecture totally effaced by a massive population of atypical
promyelocytes with kidney-shaped and/or irregular lobed nuclei,

FIGURE 1 | (A) low magnification shows a blastic population with diffuse pattern of growth admixed with a lot of tingible body macrophages and apoptotic debris.
(B) High magnification reveals blastic immature promyelocytes with hypergranular eosinophilic cytoplasm, kidney-shaped or lobed nuclei and prominent central
nucleoli. Immunohistochemistry shows a diffuse and strong expression of both MPO (C) and CD33 (D) along with very high proliferation index Ki67 (E).
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prominent central nucleoli, and an eosinophilic cytoplasm that
was hypergranulated. Immunohistochemistry revealed a diffuse
and strong expression of both MPO and CD33, whereas
expression of CD117, CD34, CD68RPGM1, CD14, CD13,
CD163, CD56, PAX5, CD3, and large-spectrum cytokeratin
AE1/AE3 was absent. Molecular analysis of embedded paraffin
tissue showed the presence of the t(15;17) PML-RARa fusion
gene, confirming the final diagnosis of APL, also defined as a
granulocytic sarcoma promyelocytic type, because of its own
extramedullary nodal localization (Figure 1). To determine the
exact chromosomal breakpoint position in the PML and RARa
genes, long-range PCR was performed on DNA samples derived
from bone marrow (BM) MNC and the lymph node biopsy. The
PML/RARa ber3 isoform was detected using nested real-time
polymerase chain reaction (RT-PCR) on the BM sample
collected at relapse. DNA extracted from BM-MNC and the
lymph node biopsy was also analyzed using long-range PCR.
Using different primers combinations, we confirmed the
presence of the PML/RARa hybrid that was detected in DNA
purified from the lymph node sections (Figure 2). Sanger
sequencing of both PCR products showed the same
breakpoints locations in the PML and RARa genes, at
nucleotide position 996 of the PML intron 3 and position
14392 of the RARa intron 2 (Figure 2). The breakpoint
locations were the same as in the original samples harvested at
the time of initial APL diagnosis, in 2011.

The patient was treated with an induction treatment based on
the following drugs combination: IDA 12 mg/m” on days 1 and
3, arsenic trioxide (ATO) 0.15 mg/kg from day 5 to day 28, and
ATRA 45 mg/m2 from day 1 to day 28). A second mCR, assessed
by RT-PCR of the PML/RARa hybrid, and the complete
disappearance of lymph node involvement from a CT-scan

were determined after the induction course. According to the
radiological response after induction, located radiotherapy on
lymph nodes, which was contemplated among potential
treatments at relapse, was not performed. ATO and ATRA
treatments were continued with three further consolidation
courses given at monthly and bi-weekly intervals, respectively.
Four doses of intrathecal cytarabine were administered during
consolidation. She was closely monitored by RT-PCR
throughout the treatment and she will continue to be assessed
every two months for at least two years. The patient remains in
continuous second mCR until last follow up (May 2021) leading
a normal life. To our knowledge, this is one of the latest relapses
observed in an APL patient treated with ATRA plus
chemotherapy (1, 3, 7). The unusual aspects of this case appear
to be due to two main reasons: a relapse after a prolonged period
of documented mCR (9 years), and the atypical site of extra-
medullary disease. Molecular relapse in this patient was
associated with an intra-parotid lymph node involvement, a
site infrequently reported in APL relapse and usually present
in earlier disease recurrence (3, 14). Genomic PML/RARa
breakpoint analysis by RT-PCR detected the same bcr3 PML/
RARa hybrid gene in DNA purified from BM and lymph nodes,
suggesting that the relapse was due to reemergence of the initial
clone. Whereas central nervous system and skin involvement in
APL relapse have been associated with mechanisms mediated by
cellular adhesion molecules (CD56, LFA-1, and VLA-4) probably
over-expressed in response to ATRA-driven differentiation (15, 16),
the issue as to whether ATRA promotes nodal involvement in
APL relapses is still unknown. Because patients affected by
ATRA syndrome have APL cells that have infiltrated multiple
tissues and organs, it has been hypothesized that ATRA could
promote the migration of differentiating blasts into several tissues.

LN

g

LT
Hil

the long-range PCR products purified from gel.

FIGURE 2 | Genomic PML/RARA breakpoint analysis by long-range nested PCR. (A) Agarose gel electrophoresis of long-range PCR products from bone marrow
and lymph node section DNA analysis. (B) Sanger sequencing result of long-range PCR product of PML/RARA genomic amplification derived from BM analysis.
Sequence was aligned to the intronic sequences of PML and RARa genes. M, GenlLadder 1kb DNA Ladder; BM, bone marrow; LN, lymph node. Arrows indicated
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These blasts could form a reservoir of viable leukemic cells that
might later proliferate and result in an extra-medullary
recurrence (17, 18). Our patient achieved a second mCR and
extra-medullary response after the induction course and three
further consolidation courses based on ATO and ATRA
combination. Because of the prolonged mCR achieved after the
initial treatment, no hematopoietic stem cell transplant (HSCT)
option was offered to the patient. The gold standard post-
remission approach, especially for late relapse patients, is not
yet well established. A registry study of the European Leukemia
Net, which analyzed 155 APL relapsed patients showed the
efficacy of allogenic and autologous HSCT as a consolidation
treatment for patients with early and late relapses who did not
achieve a mCR (19).

Based on recent studies (19-23), autologous HSCT should be
considered the first choice for eligible patients achieving second
molecular remission. However, a recent NCRI report questions
the role of transplantation, at least in patients achieving
molecular remission with ATO and ATRA who do not have
CNS disease at relapse and who have received a full course of
consolidation with ATO (24).

However, the benefit of a transplant approach could be
questioned in patients relapsing after a very prolonged first CR
because continuing ATRA-ATO might in fact be curative.
Limited data have been reported for patients who received
prolonged ATRA/ATO therapy after a first relapse without a
final consolidation with a stem cell transplant. A recent update of
22 patients indicated that only two patients underwent
transplant and the rest received additional cycles of ATRA/
ATO. The four-year overall survival probability was 85% with
a disease-free survival rate of 74%, supporting the potentially
curative effect of prolonged ATO treatment especially in patients
with a long first mCR (25). In conclusion, this case shows that
APL, treated with modern combination therapies including
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Reveals Inflammatory and
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Acute myeloid leukemia (AML) is a heterogeneous disease with variable responses to
therapy. Cytogenetic and genomic features are used to classify AML patients into
prognostic and treatment groups. However, these molecular characteristics harbor
significant patient-to-patient variability and do not fully account for AML heterogeneity.
RNA-based classifications have also been applied in AML as an alternative approach, but
transcriptomic grouping is strongly associated with AML morphologic lineages. We used a
training cohort of newly diagnosed AML patients and conducted unsupervised RNA-
based classification after excluding lineage-associated genes. We identified three AML
patient groups that have distinct biological pathways associated with outcomes.
Enrichment of inflammatory pathways and downregulation of HOX pathways were
associated with improved outcomes, and this was validated in 2 independent cohorts.
We also identified a group of AML patients who harbored high metabolic and mTOR
pathway activity, and this was associated with worse clinical outcomes. Using a
comprehensive reverse phase protein array, we identified higher mTOR protein
expression in the highly metabolic group. We also identified a positive correlation
between degree of resistance to venetoclax and mTOR activation in myeloid and
lymphoid cell lines. Our approach of integrating RNA, protein, and genomic data
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uncovered lineage-independent AML patient groups that share biologic mechanisms and can
inform outcomes independent of commonly used clinical and demographic variables; these
groups could be used to guide therapeutic strategies.

Keywords: acute myeloid leukemia, lineage, metabolism, inflammation, multiplatform analysis

INTRODUCTION

Acute myeloid leukemia (AML) is a clinically and
morphologically heterogeneous disease with significant
variability in treatment responses and outcomes (1-3).
Although almost 60-70% of AML patients achieve remission
with standard anthracycline (idarubicin or daunorubicin) and
cytarabine-based induction chemotherapy, almost 50% of these
patients eventually experience relapse within 1 year of diagnosis
(2-4). Revealing the underlying biologic processes that
contribute to AML heterogeneity and drive outcomes may
guide therapeutic strategies.

The French American British (FAB) classification was
traditionally used to categorize AML into 8 different
morphologic subtypes (MO to M7) that reflected lineage
commitment (2, 5-7). With the advent of cytogenetic and
genomic assessments, the European Leukemia Network (ELN)
recommendations were widely adopted as it proposed a risk
stratification for patients that based on cytogenetics and
genomics (2, 8, 9). However, cytogenetic and molecular
alterations do not fully account for the heterogeneity of AML
because not all patients harbor ELN-pre-defined aberrations (2,
10, 11). Also, there is considerable patient-to-patient variability
in response to treatment and clinical outcomes within genomic
and ELN subgroups (11). Therefore, there is a need to uncover
underlying biologic pathways that are underrepresented in
genomic and cytogenetic profiling of AML and may
inform outcomes.

To fill this gap, researchers have identified several
transcriptomic signatures associated with AML clinical
outcomes (10, 12-17). However, RNA-based profiling revealed
that this method of grouping AML patients was highly associated
with FAB classifications, i.e., related to AML morphology and
lineages (15, 16, 18). Yet, the FAB-associated clustering was not
accounted for in previous transcriptome-based studies,
suggesting that the morphology and lineage of AML were
driving patient grouping. Furthermore, although mutations
were associated with some transcriptomic-based clustering,
there was significant overlap for these mutations in multiple
clusters (15, 16). We hypothesized that by decoupling the
lineage-related genes from the transcriptomic profiles of AML,
we could unmask biologically relevant pathways that are
inherent to AML independent of cell of origin and that could
inform clinical outcomes. Furthermore, such an approach could
identify biologic pathways associated with cluster-
specific mutations.

In the current study, we decoupled FAB-associated genes to
decipher lineage-independent biologic pathways in 81 newly
diagnosed and previously untreated AML patients. We

identified distinct biologic AML patient groups and assessed
the outcome of patients according to their group membership.
To provide further molecular orthogonal characterization of
defined groups, we applied a reverse phase protein array
(RPPA) in all patient samples and extended panel DNA
sequencing in 73 of 81 patients (90%). Using this approach, we
identified inflammatory and metabolic pathways associated with
outcomes and validated our findings in 2 independent AML
cohorts. The findings from this work demonstrate that RNA-
based classification could reveal important potentially targetable
biologic pathways.

METHODS

Patient Population

A total of 81 newly diagnosed AML patients evaluated at The
University of Texas MD Anderson Cancer Center were included
in the current study. All patients had bone marrow samples
collected and analyzed prior to treatment initiation. Patients
provided written informed consent that was approved by the MD
Anderson Institutional Review Board. The study was conducted
in accordance with the Declaration of Helsinki.

RNA Sequencing and Processing

RNA was isolated and purified from bone marrow mononuclear
cells using Qiagen’s RNAEasy preparation kits. The purified
RNA was used to create cDNA libraries that were assayed
using TruSeq (Illumina) RNAAccess. For each sample, 40M
50-bp paired-end reads were sequenced using the Illumina
HiSeq sequencer. RNA sequencing (RNA-seq) FASTQ files
were processed through FastQC (v0.11.5) and RNA-SeQC
(v1.1.8) (1) to generate a series of RNA-seq-related quality
control metrics. STAR 2-pass alignment (v2.5.3) (2) was
performed with default parameters to generate RNA-seq BAM
files. Normalized counts were generated using DESEq2, then
log,-transformed.

Differential Expression and

Pathway Analysis

In our cohort and TCGA cohort, gene-level read counts were
used to perform differential expression analysis using DESeq2
(3). The T-statistic from the differential expression analysis was
used to perform gene set enrichment analysis (GSEA) using the
Bioconductor package gage (4), and significantly dysregulated
pathways were identified at q < 0.1. For the Valk et al. validation
cohort, we used single-sample GSEA (ssGSEA) (5, 6) implemented
in the Bioconductor package GSVA (7) to convert microarray gene
expression into pathway activity scores. Pathway activity scores
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were compared between groups using the Wilcox Rank Sum test,
and p-values were corrected for multiple hypothesis testing using
false discovery rate (FDR). Significantly dysregulated pathways
were identified at q < 0.05. The Hallmark pathways (8) were used
in GSEA and ssGSEA.

Unsupervised Clustering Prior to

Excluding FAB-Associated Genes

The R package pheatmap was used to generate heatmaps and
dendrograms for samples from a matrix of variably expressed
genes. Euclidian distance and complete clustering were used to
perform hierarchical clustering of the data. We used a dynamic
tree cutting algorithm implemented in the cutreeDynamic()
function from the WGCNA package (9) to identify optimal
clustering of patients. The strength of association between
cluster membership and FAB status (M1/M2 and M4/M5) was
tested using Fisher’s test. Clustering analysis in our dataset was
performed using an increasing number of top variably expressed
genes (1000, 1500, 2000, 2500, and 3000 genes). Clustering
analysis in TCGA cohort was performed as above using the
top 1000 variably expressed genes, including only samples with
corresponding FAB status (M1/M2 and M4/M5).

Unsupervised Clustering to Identify Patient
Clusters Independent of FAB Status

To identify genes with expression associated with FAB status, we
excluded genes associated with FAB and lineage commitment.
Specifically, for each gene, a p-value was obtained for each of the
FAB groups M2, M4, and M5 relative to M1 from the regression
analysis. p-values for each of the groups (M2, M4, and M5) were
corrected for multiple testing using FDR. A gene’s expression
was considered associated with FAB status if expression of the
gene was significantly different in at least one of the FAB groups
M2, M4, and M5 relative to M1 (q < 0.05). A total of 4743 genes
were found to have expression associated with FAB status.
Enrichment of these genes in cell type-specific signatures was
quantified using Enricher (10, 11). FAB-associated genes were
excluded, and the top variably expressed genes (variance > 5, 735
genes) were used to identify clusters (as described above). Three
distinct expression clusters were identified using this approach,
Group_1, Group_2 and Group_3 (Figure 1A)

Survival Analysis

Survival analysis of patient clusters identified from our
expression data (Figures 1D-F) was performed using
multivariant Cox regression implemented in the R package
survival. First, clinical variables important for survival were
identified using univariate Cox regression. The multivariate
survival model was built using all variables that were
significantly associated with survival in the univariate analysis
(p < 0.05). Survival analysis reported in Figures 3A-C and
Supplementary Figure 4 was performed using the survminer R
package. p-values for the KM-plots were computed using log-
rank test implemented in the function surv_pvalue(). All KM-
plots in the study were plotted using the function ggsurplot().

HOX Gene Survival Analysis

Activity of HOXA and HOXB gene clusters were scored in all
datasets using ssGSEA (5, 6) implemented in GSVA (7). In each
cohort, for each HOX gene cluster, the samples were split into 2
groups (the top and bottom 50" percentile) based on the activity
scores obtained from ssGSEA. Survival differences between the
groups were quantified as described above.

Estimation and Comparison of Metabolic
Activity Between Patient Groups

Pathway activity scores were calculated using 91 gene sets,
including 85 KEGG (12) metabolic pathways and 5 literature-
curated gene sets: glucose deprivation, glycolysis, hypoxia,
mTOR, and oxidative phosphorylation. The pathway activity
score was calculated using ssGSEA using GSVA (7). Differential
activity of pathways among clusters was identified using the
Wilcoxon rank-sum test based on each cell’s pathway activity
scores. p-values were adjusted using the Benjamini-Hochberg
method, and the threshold of significance was set to q < 0.05.

Foundation Medicine Assay

Samples were submitted to a Clinical Laboratory Improvement
Amendments—certified, New York State-accredited, and College
of American Pathologists—accredited laboratory (Foundation
Medicine, Cambridge, MA) for next-generation sequencing-
based genomic profiling. Samples were processed in the
protocol defined by hematologic cancers as previously
described (13). Briefly, after DNA and RNA extraction from
bone marrow aspirate, adaptor-ligated DNA underwent hybrid
capture for all coding exons of 465 cancer-related genes. cDNA
libraries prepared from RNA underwent hybrid capture for 265
genes known to be rearranged in cancer. Captured libraries were
sequenced to a median exon coverage depth of >500x (DNA)
or ~3M unique reads (RNA) using Illumina sequencing, and
resultant sequences were analyzed for base substitutions, small
insertions and deletions (indels), copy number alterations (focal
amplifications and homozygous deletions), and gene fusions/
rearrangements, as previously described (13, 14). Frequent
germline variants from the 1000 Genomes Project (dbSNP142)
were removed. To maximize mutation-detection accuracy
(sensitivity and specificity) in impure clinical specimens, the
test was previously optimized and validated to detect base
substitutions at >5% mutant allele frequency, indels at >10%
mutant allele frequency with 299% accuracy, and fusions
occurring within baited introns/exons with >99% sensitivity
(14). Known confirmed somatic alterations deposited in the
Catalog of Somatic Mutations in Cancer (COSMIC v62) were
called at allele frequencies 21% (15). Patients did not provide
consent for raw data release. Therefore, associated raw sequence
data is not shared. However, variants from a subset of the
samples used in this analysis (>18,000) have been deposited in
the Genomic Data Commons (accession #phs001179).

Mutational Analysis
Mutation data were binarized to indicate the presence or absence
of a mutation. Genes mutated in less than 10% of the samples
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FIGURE 1 | Identifying acute myeloid leukemia patient groups independent of French American British (FAB) classification: (A) Clustered gene expression heatmap of top
variably expressed genes (variance > 5,735 genes) whose expression was not associated with FAB classification (Fisher p = 0.251). ELN = European Leukemia Network;
CR = complete remission. (B) Oncoplot of frequently mutated genes in the cohort. (C) (left) Barplot of —log+o Fisher test g values testing the association of mutations with
sample groups. ASXL1, GATA2, and FLT3 mutations were associated with groups 1, 2, and 3, respectively (g < 0.1). (right) Heatmap showing mutation status of ASXL7,
GATA2, and FLT3 among patients. WT = wild type; MUT = mutated. (D) Overall survival, (E) event-free survival, and (F) remission duration of patients in groups 1, 2, and
3. p values for (D-F) were calculated using a multivariable Cox regression model relative to cluster 1.

were excluded from the analysis. Fisher’s test was used to
quantify the association between the presence of a gene
mutation and cluster membership. p-values were corrected
using FDR and mutations significantly associated with a cluster
were identified at q < 0.1. Oncoplot was generated using R
package maftools (16). Gene Mutations that showed significant
association with FLT3 mutation were identified using Fisher’s
test, p-values were corrected for multiple testing using FDR and
significant associations were identified at q < 0.1. An odds ratio
(OR) > 1 indicates co-occurrence and OR < 1 indicates
mutual exclusivity.

Validation Cohorts

Data for the 2 validation datasets TCGA (n= 173) and Valk et al.
(n= 293) (17, 18) were downloaded from GEO database
(GSE1159) and UCSC Xena (https://xenabrowser.net/
datapages/). Clinical data were also available on GEO for the
Valk et al. cohort, and from Firehose (https://gdac.
broadinstitute.org/) for The Cancer Genome Atlas (TCGA)
cohort. To validate survival and pathway patterns observed in
Group 2 we performed differential expression analysis between
group 2 and groups 1 and 3 combined. Upregulated and

downregulated genes were identified as fold-change >2 and
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<-2, respectively, at q < 0.05. The activity of these gene sets was
scored in each of the validation cohorts using ssGSEA, and each
sample was then assigned a score indicating the difference
between the activity of the upregulated and downregulated
gene sets. In each of the validation cohorts, samples were
stratified into 2 groups indicating more Group 2 like (top 50™
percentile) and less Group 2 like (bottom 50™ percentile). These
2 groups were then used to perform survival analysis as described
above. Differential expression between the groups was
determined and pathway analysis performed as described above.

Differential Expression of Proteins

RPPA data used in the study were previously published and
generated by our group for the cohort of 81 patients (19). To
identify differentially expressed proteins between 2 groups, we
computed the difference in mean expression of each protein with
a p-value using the Wilcoxon rank-sum test. p-values were
corrected using FDR. Upregulated and downregulated proteins
were identified as difference in mean >75th percentile and <25th
percentile, respectively, at q < 0.1.

Cell Line Molecular and Drug

Response Data

Cancer cell line drug response data were obtained from Rees et al.
(20). The response of each cell to a drug was quantified as the
area under the drug response curve (AUC). High AUC indicated
poor response and low AUC indicated better response. Protein
expression from RPPA for these cell lines was obtained from
Cancer Cell Line Encyclopedia (21) using the DepMap portal
(https://depmap.org/portal/download/). Correlations between
expression data and drug response were computed using
Spearman correlation.

RESULTS

Clinical and Demographic Characteristics

A total of 81 newly diagnosed AML patients (58% male and 42%
female) with a median age of 67.0 years (range 17.4-85.2 years)
were included in the study. All patients had whole transcriptome
sequencing and RPPA profiling at the time of diagnosis, and 73
of 81 patients had targeted sequencing of 465 genes using
Foundation Medicine’s FoundationOne Heme assay. Patient
clinical and demographic characteristics are summarized in
Table 1. Briefly, 46 patients (57%) had intermediate
cytogenetic risk per ELN risk assessment (22), 30 (37%) had
unfavorable risk, and 5 (6%) had favorable risk. A total of 36
patients (44%) were classified as M1/M2 and 45 patients (56%)
were classified as M4/M5 by FAB classification. Thirty-three
patients (41%) had antecedent hematologic disorder. Eleven
patients were alive at the time of this analysis, with a median
follow-up period of 388.1 weeks (range 0-559.5 weeks). Eighty
percent of patients (56/70 for whom data were available) were
treated with cytarabine-based regimens, 13% were treated with
hypomethylating agents (9/70), and 7% with investigational
treatments (5/70). Eleven patients had no treatment records at

MD Anderson. Of those evaluable for response, 35/63 (56%) had
complete remission or a partial response (complete remission:
33/35, 94%; partial response: 2/35, 6%), and 28/63 (44%) had
primary refractory disease. Among the patients who had
complete remission or a partial response, 20/35 patients (57%)
eventually had a relapse. The median overall survival, event free
survival, and remission duration for all evaluable patients were
25.4 weeks (range 0-559.6 weeks), 22.4 weeks (range 0-393
weeks), and 42.4 weeks (range 3.3-538.7 weeks), respectively
(Supplementary Figures 1A-C).

Unsupervised Clustering to Identify
Prognostic Clusters Independent of

FAB and ELN Classification

Unsupervised clustering of the 81 newly diagnosed AML patients
based on the top 1000 variably expressed genes initially revealed
two distinct patient clusters. The clustering was highly associated
with FAB morphologic classification (Fisher p = 9.2¢7,
Supplementary Figure 2A). The FAB-associated clustering of
patients persisted even when more genes were added to the
unsupervised clustering, suggesting a significant impact of
lineage and morphology on transcriptomic-based clustering
(Supplementary Figure 2B). To assess whether this
observation was also relevant in other AML cohorts, we
conducted unsupervised clustering of expression profiles in
MI1/M2 and M4/M5 patients from TCGA AML cohort (18).
Indeed, unsupervised clustering of TCGA AML cohort revealed
similar high dependency on FAB dlassification (Fisher p = 2.24¢™'°,
Supplementary Figure 2C). These findings suggested that the genes
associated with lineage morphology in AML were contributing to
AML transcriptomic-based clustering, and hence could be masking
AML subgroups that share similar underlying biology but
different lineages.

To address this concern, we used linear regression models and
identified genes whose expression profiles were associated with
FAB classification (q < 0.05; see Methods). Using enrichment
analysis in cell lineage and morphology signatures (10, 11), we
found that these genes were highly enriched for myeloid and
monocytic lineage differentiation (Supplementary Figure 3A).
To decouple lineage-associated genes from AML patient
clustering and to identify biologically similar AML patients
independent of lineage, we excluded the lineage-associated
genes and re-clustered AML patients based on the expression
of top variable genes (735 genes, variance > 5). This approach led
us to identify 3 distinct patient clusters (hereafter referred to as
group 1, group 2, and group 3) that clustered independently of
FAB classification (Fisher p = 0.251; Figure 1A and
Supplementary Figure 2B). The clinical and demographic
characteristics of these 3 clusters are summarized in Table 1.
Briefly, after correction for multiple hypothesis testing, there
were no significant differences in distribution for FAB
classification, ELN classification, sex, antecedent hematologic
disease, or treatment group. Group 1 patients were the oldest
(mean age 68.9 + 9.9 years), followed by group 2 patients (64.4 £
15.1 years) and group 3 patients (57.3 + 15.6 years; p = 0.030, q =
0.073). These findings suggested that the patient grouping was
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inherently driven by the transcriptomic signatures independent
of lineage or clinical characteristics.

Targeted DNA sequencing of 465 genes using the
FoundationOne Heme assay in 73 patients (90%) revealed
FLT3 (37%), TET2 (30%), ASXL1 (25%), NPM1 (22%), and
NRAS (22%) as the most commonly mutated genes in the
cohort (Figure 1B). ASXLI (q = 0.006), GATA2 (q = 0.029),
and FLT3 (q = 0.006) mutations were significantly enriched in
groups 1, 2, and 3, respectively (Figure 1C), but these mutations
were not associated with FAB classification (q > 0.4 for all). FLT3
expression was highest in Group 3, but it was significantly different
only when compared to Group 2 (q= 0.018) (Supplementary
Figure 3B). We found significant association between mutations
in FLT3 and mutations in NPM1 (q = 0.094, OR: 3.82) and
ASXL1 (q = 0.094, OR: 0.3) mutations (Supplementary
Figure 3C). Of note, while a significant fraction of NPM1
mutations co-occur with FLT3, mutations in AXSL1 were
largely mutually exclusive. We included this data as
Supplementary Figure 3B. These findings suggested that
mutation profiles were associated with transcriptomic
signatures, but not with lineage.

Outcomes of AML Patient Groups

We next evaluated whether the 3 AML groups had distinct
clinical outcomes. Univariate Cox survival analysis indicated
that sample clustering was associated with differential overall
survival, event-free survival, and remission duration (p < 0.05).
To control for other confounding clinical factors, we first used
univariate survival analysis to identify clinical variables
associated with survival (p < 0.05; Supplementary Table 1)
and then built a multivariable Cox survival model with these
variables. Survival trends observed in the clusters in univariate
analysis were re-captured after controlling for other confounding
variables associated with survival (see Methods). Group 2 was
characterized by improved overall survival (median 55.86 weeks;
p = 0.037), event-free survival (median 55.85 weeks; p = 0.006),
and remission duration (median 111.71 weeks; p = 0.03 relative
to group 1, whereas no significant difference was observed
between group 1 and group 3 (Figures 1D-F).

Inflammatory and Immune Pathways
Enriched in Group 2 Patients

To explore transcriptomic signatures that were associated with
improved outcomes in group 2, we conducted differential gene
expression profiling comparing group 2 with groups 1 and 3,
revealing 70 upregulated genes and 322 downregulated genes (q <
0.05, absolute log, fold change > 2; Figure 2A and
Supplementary Table 1). GSEA of hallmarks pathways
demonstrated significant activation of immune signaling in
group 2 compared with groups 1 and 3 (Figure 2B). To
determine whether the signal was confounded by a single
group, we next compared group 2 with group 1 and 3 each
separately. Indeed, we saw that patients in group 2 consistently
had activation of immune and inflammatory pathways, including
interferon-alpha and interferon-gamma, compared with each of
the other groups, suggesting that intrinsic immune activation in

group 2 was associated with improved outcomes (Figures 2C, D).
HOXA and HOXB gene clusters were significantly downregulated
in group 2 compared with groups 1 and 3 (Supplementary
Table 1). Furthermore, lower expression of HOXA and HOXB
gene clusters was associated with better outcomes across all
patients in our cohort (Supplementary Figure 4A).

Validation of Immune Signatures in
Independent Cohorts

To validate the finding that immune signatures were associated
with improved outcomes in AML, we used 2 independent AML
cohorts (17, 18) with available transcriptomic and clinical data
(Supplementary Table 1; see Methods). We then compared
outcomes based on median scores derived from ssGSEA (7)
from genes differentially expressed in group 2 relative to groups 1
and 3 (see Methods). Higher-scoring patients (i.e., more similar
to group 2) had improved survival in both validation cohorts
(Figures 3A-C). Differential pathway activity analysis between
these groups revealed activation of immune-associated pathways,
consistent with observations in group 2 in our cohort and further
validating our finding that immune activity was the main
differential factor in outcomes (Figures 3D, E). Similarly,
patients with lower HOXA and HOXB gene scores had
improved outcomes (Supplementary Figures 4B, C). These
data indicate that activation of immune-associated pathways
and suppression of HOX genes in AML are associated with
improved outcomes in patients.

Pairwise GSEA Comparisons Revealing
Metabolic Signatures in Group 3

To further characterize the biologic pathways that distinguished
patient groups, we conducted pairwise GSEA between individual
groups of patients. Group 3 patients had significant activation of
metabolic activity compared with group 1 and with group 2
patients (Figures 4A, B). Although patients in group 3 and group
1 had similarly worse outcomes, activity of metabolic pathways
was significantly higher in group 3 patients, especially for
oxidative phosphorylation and fatty acid metabolism
(Figure 4B), suggesting that metabolism was a distinguishing
feature between these groups. Furthermore, activity in the
mTOR pathway, a major regulator of cancer metabolism (23),
was significantly higher in group 3 than in group 1.

To further characterize metabolic activity in group 3, we
compared the metabolic pathway activity scores between group 3
and groups 2 and 1. Relative to group 2, group 3 showed
significant activation of energy metabolism pathways such as
glycolysis, TCA cycle, biosynthesis of unsaturated fatty acids, and
gluconeogenesis. Relative to group 1, group 3 was characterized
by activation of oxidative phosphorylation, lipid metabolism
(ether lipid metabolism, steroid hormone biosynthesis), and
pyrimidine metabolism. Group 3 also showed activation of
galactose metabolism and linoleic acid metabolism relative
to both group 1 and group 2. These findings indicate that
patients in group 3 may be characterized by augmented
activation of pathways involved in energy production and
metabolism (Figure 4C).
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FIGURE 2 | Characterizing transcriptomic features of acute myeloid leukemia patients in group 2: (A) Volcano plot corresponding to differential expression analysis
comparing the transcriptome of group 2 with that of group 1 and 3 combined (significance based on log, fold change > 2 and g < 0.05, in red). (B) Pathways
identified via gene set enrichment analysis (GSEA) of significantly differentially expressed genes from (A). Negative mean T-statistic (blue) indicates downregulation
and positive mean T-statistic (red) indicates upregulation of the pathway. (C) GSEA mean T-statistic heatmap based on pairwise differential expression comparing
group 2 with group 1 and with group 3. Pathways significantly dysregulated (g < 0.1) in at least one comparison are included in the heatmap. Red and blue indicate
upregulation and downregulation, respectively. Numbers in the heatmap correspond to g values. (D) Barcode plots illustrating upregulation of interferon-alpha and

Proteomic Assessment to Distinguish
Group 3 and Group 1

All 81 AML patients had previously reported RPPA profiling
(19) at the same time point of RNA and genomic sequencing. We
therefore used this orthogonal molecular platform to delineate
protein-based molecular pathways that could differentiate these 3
AML patient groups (Supplementary Figure 5). Group 2 had
downregulation (q = 0.057 and difference in mean = -0.832) of
only CTNNBI when compared with group 1 (Supplementary
Figure 5A) and downregulation of MTOR and MTOR.pS2448
compared with group 3 (Supplementary Figure 5B). These
findings suggested that unlike RNA, RPPA was not able to
delineate many proteomic differences between group 2 and
groups 1 and 3, most likely owing to the smaller number of
genes assayed.

We next evaluated differences in RPPA signatures between
group 1 and group 3 patients who had similar outcomes,
compared with group 2 patients. We identified 28 upregulated
proteins and 19 downregulated proteins (q < 0.1, see Methods) in
group 3 relative to group 1 (Figure 5A). MTOR.pS2448, which
signals for activation of both mTOR and PI3K pathways (23-25),
was over-expressed in group 3. This was consistent with the
mTOR upregulation in the group 3 transcriptomic signature and
suggested an active PI3K-AKT-mTOR signaling axis in group 3
patients. In addition, we found over-expression of proteins in the
MAPK signaling cascade (MAP2K1_2pS217_211, MAPKY9),
apoptosis (BAX, CASP8, MCL1, BAK1, BAD.pS155), and
BRAF in group 3 compared with group 1 (Figure 5A).
Overexpression of MCLI1, accumulation of total (un-cleaved)
CASP8, and lower expression of cleaved caspase-3
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FIGURE 3 | Validating survival and pathway trends observed in group 2 in independent cohorts: Samples in The Cancer Genome Atlas (TCGA) and Valk et al.
cohorts were stratified on the basis of their similarity to group 2 (see Methods). (A) Overall survival and (B) event-free survival in TCGA cohort. (C) Overall survival in
the Valk et al. cohort. (D, E) Gene set enrichment analysis barplots of TCGA (D) and Valk et al. (E) validation cohorts.

(CASP3.cI175) suggested inhibition of apoptosis in group 3
patients (Figure 5A), consistent with the higher absolute blast
count observed in group 3 (Table 1).

MCLI1 overexpression is associated with venetoclax resistance
and can be seen in FLT3-mutated AML (26). We therefore checked
for a correlation between mTOR and MCL1 expression. Indeed,
MTOR.pS2448 expression was positively correlated with MCL1
expression in RPPA across all patients (Figure 5B and
Supplementary Figure 5B). This is significant because resistance
to venetoclax can be mediated via MCL1 (26). We therefore
evaluated whether resistance to venetoclax in myeloid and
lymphoid cell lines is also associated with mTOR overexpression.
Phosphorylated S6 p235-236 and p240-244, which are surrogate
markers for mTOR activation, were positively correlated with
venetoclax AUC (p = 0.36, p = 0.001 and p = 0.32, p = 0.003,
respectively), suggesting that mTOR activation was associated with
resistance to venetoclax (Figures 5C, D).

DISCUSSION

Clinical outcomes of AML patients are largely determined by
patient characteristics such as age, performance status, and the
underlying cause of the AML (27). ELN classification categorizes
AML patients on the basis of cytogenetic and mutational profiles
(22, 28). However, almost one-third of AML patients lack

prognostic genomic features (29). Also, one-third of AML
patients have survival outcomes that deviate more than 20%
from their ELN risk category (29). Therefore, identifying
orthogonal molecular approaches contributing to AML
heterogeneity independent of clinical and genomic features
may reveal biologic processes impacting outcomes and identify
novel therapeutic strategies.

In previous studies using RNA profiling to classify AML patients
(17, 30), gene expression clustering was strongly correlated with
mutational and cytogenetic profiles, as well as lineage and
morphologic groups as classified by FAB. Similarly, we identified
cluster correlation with FAB classification in TCGA and in our
cohort. We therefore hypothesized that by excluding the expression
profiles of genes associated with lineage and morphologic
characteristics in AML, we can potentially uncover AML patient
groups that share biologic pathways independent of morphology
and lineage. In the current study, we undertook a comprehensive
and unique approach to decouple lineage-related genes, combined
with RPPA and targeted mutation analysis, and we identified
immune and metabolic signatures that contributed to AML
heterogeneity and impacted outcomes.

Our analysis identified a group of AML patients (group 2) who
had significantly improved overall survival, event-free survival, and
remission duration. This patient group was characterized by
increased frequency of GATA2 mutations and an inflammatory
and immune phenotype indicated by enrichment for interferon-
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TABLE 1 | Clinical and demographic characteristics of patients.

Characteristic No. (%)
Overall, n = 81 Group 1, n = 31 Group 2, n = 29 Group 3, n =21 p’ 9
Mean + SD age, years 64.3+14.1 68.9+9.9 64.4+15.1 57.3+15.6 0.030 0.073
Sex 0.250 0.370
Female 34/81 (42) 12/31 (39) 10/29 (34) 12/21 (57)
Male 47/81 (58) 19/31 (61) 19/29 (66) 9/21 (43)
FAB 0.230 0.370
M1/M2 36/81 (44) 16/31 (52) 14/29 (48) 6/21 (29)
M4/M5 45/81 (56) 15/31 (48) 15/29 (52) 15/21 (71)
ELN genetic group 0.019 0.073
Favorable 5/81 (6) 0/31 (0) 5/29 (17) 0/21 (0)
Intermediate 46/81 (57) 15/31 (48) 17/29 (59) 14/21 (67)
Unfavorable 30/81 (37) 16/31 (52) 7/29 (24) 7/21 (33)
Recent AHD 0.180 0.360
No 48/81 (59) 16/31 (52) 16/29 (55) 16/21 (76)
Yes 33/81 (41) 15/31 (48) 13/29 (45) 5/21 (24)
Treatment 0.280 0.370
AraC-based 56/70 (80) 17/24 (71) 21/25 (84) 18/21 (86)
HMA-based 9/70 (13) 4/24 (17) 4/25 (16) 1/21 (5)
Investigational 5/70 (7) 3/24 (13) 0/25 (0) 2/21 (10)
(Missing) 11 7 4 0
Response >0.99 >0.99
CR 33/70 (47) 10/24 (42) 12/25 (48) 11/21 (52)
Not Evaluable 7/70 (10) 3/24 (13) 2/25 (8) 2/21 (10)
Partial remission 2/70 (3) 1/24 (4) 1/25 (4) 0/21 (0)
Resistant 28/70 (40) 10/24 (42) 10/25 (40) 8/21 (38)
(Missing) 11 7 4 0
Relapse 20/35 (57) 8/11 (73) 6/13 (46) 6/11 (55) 0.480 0.530
(Missing) 46 20 16 10
Vital status 0.028 0.073
Alive 11/81 (14) 2/31 (6) 8/29 (28) 1/21 (5)
Dead 70/81 (86) 29/31 (94) 21/29 (72) 20/21 (95)
AlloSCT 7/81(9) 1/31 (3) 4/29 (14) 2/21 (10) 0.370 0.440
Mean + SD bone marrow blast percentage 60.0+23.1 55.2+22.9 51.9+£22.2 79.1+£12.2 <0.001 <0.001
(Missing) 1 0 0 1

"Statistical tests performed: Kruskal-Wallis test; chi-square test of independence; Fisher exact test.

2False discovery rate correction for multiple testing.

FAB, French-American-British classification; ELN, European Leukemia Network; AHD, antecedent hematologic disorder; AraC, ara-cytarabine; HMA, hypomethylating agents; CR,

complete remission; alloSCT, allogeneic stem cell transplantation.

alpha and interferon-gamma, tumor necrosis factor-alpha, and
interleukin-6/JAK/STAT3 signaling pathways. Interestingly,
germline deficiencies in GATA2 leads to myeloid malignancies
with an immunodeficient phenotype (31). However, the exact
mechanism by which GATA2 mutations could confer a
remodeled immunologic phenotype in AML remains unclear and
warrants further investigation. Supported by previous studies
demonstrating distinct immune cell activity among AML patients
with different outcomes (32). Our findings suggested that the
intrinsic inflammatory and immune microenvironment in AML
was associated with better outcomes and responses to therapy.
Recent work demonstrated the complex immunologic landscape of
hematologic malignancies with a subset of AML patients having a
distinctively high NK/T cell cytotoxic activity {Dufva:2020bg}.
Further, recent work demonstrated that an immune-infiltrated
signal was associated with improved outcomes in AML patients
but not associated with ELN (33). However, in our results, which
were validated in 2 independent cohorts, patients could be grouped
by shared biologic characteristics independent of ELN classification
or clinical variables such as age.

AML patients in group 2 also had significant downregulation of
HOX genes, which corresponded with improved outcomes,
consistent with previous studies (30, 34, 35). Inflammation and
cytokine production in a canine model was associated with reduced
HOXA gene expression (36), and restoring HOX gene expression
may oppose inflammation (37) or hamper innate immunity by
inhibiting granulopoiesis (38). These studies, although not
conducted in a leukemia or cancer model, suggested that
inflammation and HOX genes may be co-regulated, but the exact
mechanism linking these two pathways is still unclear.

Our analysis also revealed 2 distinct patient groups (groups 1
and 3) that had similarly worse outcomes compared with group 2
but distinct underlying biology. Our orthogonal RPPA and genomic
analysis coupled with transcriptomic profiling revealed that these 2
groups can be distinguished by increased metabolic activity and
overexpression of mTOR and MCLL1 proteins in group 3. However,
only group 3 had FLT3 enrichment, contrary to previous
transcriptomic studies (17), demonstrating that multiple
transcriptional clusters may harbor FLT3 mutations. Therefore,
our approach of decoupling the lineage-associated genes generated
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a better representation of the transcriptomic profile associated with
FLT3 mutations. This is also consistent with the proliferative
phenotype conferred by FLT3 mutations in AML (39). FLT3
activates downstream mTOR signaling (40, 41), and this signaling
isinvolved in metabolic reprogramming (42). InhibitingmTOR can
also lead to inhibition of MCLI, but the exact mechanism is not
clear, although it is thought to involve AKT-dependent regulation
of MCLL1 (43, 44). mTOR inhibition also has antitumor activity in
AML (45-47), and our data suggest that mTOR activation is
associated with venetoclax resistance. The finding is of high
importance because it suggests an alternative therapeutic target to
overcome venetoclax resistance (26). Furthermore, mTOR
inhibition could be a surrogate for inhibiting MCL1, especially
given that direct MCL1 inhibitors have cardiac and gastrointestinal
toxicities that have hampered their recent clinical development.

Our dataset comprised 81 samples from patients mostly treated
with intensive chemotherapeutic regimens (80% with cytarabine-
based regimens). Given the relatively small sample size, it is likely
that we missed subtle transcriptomic and proteomic perturbations
that might be biologically important. Furthermore, we used
targeted sequencing of AML-associated genes to study DNA
lesions in the cohort. Although this approach allowed us to
study important AML-associated mutations in these patients, it
precluded analysis of the full spectrum of mutations in these
patients or the associated mutational processes, although most if
not all of the myeloid mutations can be captured by this assay.
Outcomes in patients with FLT3 mutations (primarily group 3)
would have been improved had FLT3 inhibitors been used.
However, at the time of sample collection and AML diagnosis,
none of the FLT3 inhibitors were approved or under investigation
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FIGURE 5 | Proteomic analysis: (A) Differential protein expression analysis comparing group 3 with group 1. Upregulated proteins (g < 0.1 and difference in mean

> 0.32) are shown in red and downregulated proteins (g < 0.1 and difference in mean > -0.188) in blue. (B) Scatterplot illustrating the correlation between expression
of MTOR.pS2448 (activating phosphorylation) and MCL1 (spearman correlation = 0.322, p = 0.003). (C, D) Scatterplot illustrating the expression of phosphorylated
S6 (marker of mTOR activation) with venetoclax (higher area under the curve [AUC] indicates more resistance to treatment). Statistics computed using Spearman

in a trial. Nevertheless, our study, which combined RPPA,
genomic profiling, and transcriptomic profiling with extensive
and long clinical follow-up data, provided a unique clinical dataset
for further interrogation.

Our approach to decouple morphology from lineage-
associated genes in AML revealed distinct groups of AML
patients that share biologic pathways independent of ELN
classification, antecedent hematologic disorders, or other
clinical and molecular variables that are known to impact
outcomes. We also used orthogonal RPPA analysis to
differentiate patients with similarly worse outcomes in groups
1 and 3, revealing an mTOR-associated metabolic profile that
can be potentially targeted. Our findings demonstrate that
employing alternative classifications for AML patients can
provide insight into AML heterogeneity.
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Supplementary Table 1 | List of French American British (FAB)-associated
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Supplementary Figure 1 | Kaplan-Meier curves for (A) overall survival, (B) event-
free survival, and (C) remission duration for all 81 patients in the cohort.
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Supplementary Figure 2 | (A) Clustered heatmap of top 1000 variably
expressed genes in our cohort. Two patient groups were identified that showed
strong association with French American British (FAB) status (Fisher p = 9.2¢79).
(B) Clustering of samples performed as in Supplementary Figure 1A for various
numbers of top variably expressed genes and their association with FAB status,
inferred using the Fisher test. The analysis was also performed for clusters
corresponding to Figure 1A (corrected_clusters). The barplot is the —logyo p values
obtained from the Fisher test. (C) Transcriptome clustering analysis in The Cancer
Genome Atlas (TCGA) acute myeloid leukemia cohort using the top 1000 variably
expressed genes. Consistent with observations in our data (A, B), identified clusters
showed a strong association with FAB status (Fisher p = 2.24e-10).

Supplementary Figure 3 | (A) Enrichment of cell type markers in genes
associated with French American Biritish classification. Strong enrichment was
observed for genes associated with myeloid and monocytic lineage. (B) boxplot of
expression of FLT3 between groups (ANOVA p = 0.025), Tuckey post-hoc test is
used to compute g-values for pairwise comparisons. (C) Heatmap of mutations that
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PD-1 and TIGIT Are Highly
Co-Expressed on CD8" T Cells
in AML Patient Bone Marrow
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" The Clinical Medicine Postdoctoral Research Station, Department of Hematology, First Affiliated Hospital; Jinan University,
Guangzhou, China, 2 Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of
Medicine; Jinan University, Guangzhou, China, S Laboratory Center, Tianhe Nuoya Bio-Engineering Co. Ltd, Guangzhou,
China, # Department of Clinical Laboratory, First Affiiated Hospital, Jinan University, Guangzhou, China Guangzhou, China,
5 Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China, China,

6 Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences,
Guangzhou, China

Despite the great success of immune-checkpoint inhibitor (ICl) treatment for multiple
cancers, evidence for the clinical use of ICls in acute myeloid leukemia (AML) remains
inadequate. Further exploration of the causes of immune evasion in the bone marrow (BM)
environment, the primary leukemia site, and peripheral blood (PB) and understanding how
T cells are affected by AML induction chemotherapy or the influence of age may help to
select patients who may benefit from ICI treatment. In this study, we comprehensively
compared the distribution of PD-1 and TIGIT, two of the most well-studied IC proteins, in
PB and BM T cells from AML patients at the stages of initial diagnosis, complete remission
(CR), and relapse-refractory (R/R) disease after chemotherapy. Our results show that
PD-1 was generally expressed higher in PB and BM T cells from de novo (DN) and R/R
patients, while it was partially recovered in CR patients. The expression of TIGIT was
increased in the BM of CD8™ T cells from DN and R/R patients, but it did not recover with
CR. In addition, according to age correlation analysis, we found that elderly AML patients
possess an even higher percentage of PD-1 and TIGIT single-positive CD8* T cells in PB
and BM, which indicate greater impairment of T cell function in elderly patients. In addition,
we found that both DN and R/R patients accumulate a higher frequency of PD-1* and
TIGIT® CD8" T cells in BM than in corresponding PB, indicating that a more
immunosuppressive microenvironment in leukemia BM may promote disease
progression. Collectively, our study may help guide the combined use of anti-PD-1 and
anti-TIGIT antibodies for treating elderly AML patients and pave the way for the exploration
of strategies for reviving the immunosuppressive BM microenvironment to improve the
survival of AML patients.

Keywords: PD-1, TIGIT, acute myeloid leukemia, immune-checkpoints, T cell, bone marrow
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INTRODUCTION

In the last few decades, immunotherapy has emerged as the
fourth pillar following surgery, radiation/chemotherapy and
targeted therapy for solid tumor and leukemia therapy. One of
the most effective immunotherapies includes resolving T cell
dysfunction with immune checkpoint (IC) inhibitors (ICIs),
such as programmed death receptor-1 (PD-1) and its ligand
(PD-L1), cytotoxic T lymphocyte-associated antigen-4 (CTLA-
4), and T cell immunoglobulin mucin-3 (Tim-3) (1-5). IC
proteins are co-inhibitory receptors that distributed on the
surface of several immune cells. After ligand binding, these
regulators can transducing inhibitory signals to avoid immune
injury under physiological conditions. However, under
pathological conditions, such as chronic inflamation and
cancer, continuous antigen stimulation and several
immunosupressive factors could drive T cells to develop into a
“unfitness” state called T cell exhaustion. One of the features of T
cell exhaustion is the occurrence of elevated expession of several
IC proteins. When these proteins bind their ligands, they reduce
the anti-virus or anti-tumor effects of T cells, ultimately resulting
in the immune escape of pathogens or tumors (3, 6-8).

Acute myeloid leukemia (AML) is a genetically, epigenetically,
and clinically heterogeneous disease characterized by a failure in
normal hematopoiesis and the accumulation of immature
myeloid cells in the bone marrow (BM) and peripheral blood
(PB) (9). For all AML patients (except for those with acute
promyelocytic leukemia) who are medically able to tolerate
chemotherapy, treatment with a 7-day infusion of cytarabine
and a 3-day infusion of daunorubicin (“7%3”), has not changed in
the past 50 years. Additionally, post-remission therapy aimed to
prevent relapse of the disease. Additional cytotoxic
chemotherapies (such as high or intermediate dose cytarabine),
with or without targeted therapies, and allogenic hematopoietic
stem cell transplantation (Allo-SCT) are the two commonly
employed strategies. Several targeted therapies have been
developed and approved for AML patients with special
molecular and cytogenetic alterations, including venetoclax to
target B-cell lymphoma 2, midostaurin, and gilteritinib to target
FLT3, and ivosidenib and enasidenib to target mutant isocitrate
dehydrogenase 1 and 2 (IDH1 and IDH2). The outcomes of AML
patients who have a favorable or intermediate risk prognostic
classification have improved with the addition of various targeted
drugs; however, longer-term overall survival (OS) beyond 3-5
years remains low for adverse risk patients, particularly older
AML patients (9-14). In recent studies, ICIs have demonstrated
encouraging results when combined with hypomethylating agents
(HMAs) in relapsed/refractory AML patients, particularly for
those who were not exposed to HMA treatment, but most of
the other clinical trials did not achieve a satisfactory response
when using ICIs alone (15-19). One of the reasons for this
discrepancy may be that the patients involved in those trials
often experienced failure with multiple lines of conventional
therapy, which could have a long-term impact on
immunological fitness and clinical responses (20, 21).
Therefore, comparing the immune status of T cells in AML
patients before and after chemotherapy may help determine

which type of patient could benefit from novel immune
therapies. Additionally, cancer cells can orchestrate surrounding
cells, such as regulatory T cells (Tregs), myeloid-derived
suppressor cells (MDSCs), and plasmacytoid dendritic cells
(pDCs), to construct an immunosuppressive tumor
microenvironment (TME), enabling immune evasion and
immunotherapy resistance (22, 23). In the BM, which is the nest
of the leukemia progenitors generated and output in AML, the
environment is quite complicated and resembles that of the TME
in solid tumors to some degree. For example, the BM of AML
patients also accumulates Treg, MDSC, and pDC cells that could
inhibit the anti-leukemia immune response of T cells (24-27).
Increasing evidence has shown that the BM immune environment
of AML patients is profoundly altered, contributing to the severity
of the disease; however, there have been limited studies comparing
differences in T cell dysfunction between PB and BM. Thus,
further elucidating the characteristics of the immune
microenvironment in the BM of AML patients may help guide
the use of immunotherapy drugs and facilitate the exploration of
new immune targets.

PD-1, CTLA-4, and Tim-3 are the most well-studied IC
proteins, and multiple other IC proteins are also targeted by
immune checkpoint blockades or agonists in clinical research,
such as lymphocyte activation Gene-3 (LAG-3), T cell
immunoreceptor with immunoglobulin, and ITIM domain
(TIGIT), and tumor necrosis factor receptor (0X40) (28-31).
TIGIT, which is express on activated T cells, Treg cells, and NK
cells, has been identified as a promising new target for cancer
immunotherapy in recent years (2, 3, 7, 28, 32-34). Previously,
high expression of PD-1 and TIGIT on PB T cells from AML
patients has been reported (33, 35, 36), and higher PD-1
expression also detected on BM T cells in our previous study
(37); however, how the expression of TIGIT and its co-
expression with PD-1 changes in the BM of de novo (DN)
AML patients remains unknown. Thus, we comprehensively
compared the single and dual expression of PD-1 and TIGIT
in both PB and BM T cells from AML patients at initial diagnosis.
In addition, since ICI treatment typically used for patients with
relapsed-refractory (R/R) disease, it is necessary to check the
fitness of T cells from patients who have received chemotherapy.
Thus, we also analyzed the expression of PD-1 and TIGIT in the
PB and BM of AML patients at completed remission (CR) and
disease relapse after chemotherapy.

MATERIALS AND METHODS

Sample Collection and Preparation

A total of 38 PB samples and 32 BM samples from de novo AML
patients [(median age, range), (PB: 54.5, 11-88; BM: 57.5, 14-80)]
were collected, including 26 paired samples. A total of 17 PB
samples and 21 BM samples from AML patients who achieved
CR (PB: 46, 13-80; BM: 47, 13-73) were collected, including 16
paired samples. A total of 10 PB samples and 8 BM samples from
AML patients with relapsed-refractory disease (PB: 51, 23-80;
BM: 49, 23-67) were collected, including 6 paired samples. All of
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the patients included in our CR and R/R cohorts are transplant-
naive patients. In addition, 36 PB samples from healthy donors
(53, 13-65), and 14 unpaired BM samples from hematopoietic
stem cell transplantation donors or iron deficiency anemia
patients (47, 17-68) underwent bone marrow aspiration served
as the control group. Sample details shown in Table 1. All
samples collected with informed consent. Ethical approval for
the study was obtained from the Ethics Committee of the First
Affiliated Hospital of Jinan University. All procedures were
conducted according to the guidelines of the Medical Ethics
Committees of the Health Bureau of the Guangdong Province in
China. All samples were freshly obtained and subjected to
immediate preparation.

Flow Cytometry Analysis

Cell surface staining for flow cytometry was performed using the
following antibodies: CD45-BUV395 (clone HI30, BD),
CD3-AF700 (clone UCHT1, BD), CD4-APC-H7 (clone RPA-
T4, BD), CD8-APC-H7 (clone SK1, BD), TIGIT-PE/Dazzle"™
594 (clone A15153G, Biolegend), TIGIT-BV421 (clone
A15153G, Biolegend), and PD1-BV421 (clone EH12.2H7,
Biolegend). These antibodies were used to analyze surface
receptors in two different panels. Isotype-matched antibodies,
labeled with the proper fluorochromes, were used as negative
controls. Extracellular staining was performed according to the
manufacturer’s instructions. Briefly, an antibody cocktail was
added to whole blood or BM samples, which were then incubated
at room temperature for 15 minutes in the dark, followed by red
cell lysis with lysis buffer (BD; Cat: 555899). The lysed cells were
washed twice with phosphate buffer saline (PBS), and then 350 ul
stain buffer was added for further flow cytometer analysis.
Twenty microliters of absolute count microsphere (Thermo;
Cat: C36950) were added to the samples for absolute number
analysis. Cells were analyzed using a BD Fortessa flow cytometer
(BD Biosciences), and data analysis performed with Flowjo
10.6 software.

TABLE 1 | Clinical characteristics of His and AML patients.

Statistical Analysis

Data were analyzed by correlation, linear regression,
independent t-test, or paired t-test depending on the
experimental design. Calculations were performed using
GraphPad Prism, version 8.02 software. Significance is
indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001.
Values of p < 0.05 were considered significant.

RESULTS

The Distribution of PD-1 and TIGIT in the
PB and BM of AML Patients During
Diagnosis, Complete Remission, and in
Relapsed-Refractory Patients

We first compared the PD-1 and TIGIT expression frequency on
CptD4" and CD8" T cells from the PB and BM of AML patients in
the DN, CR, and R/R stages. The results demonstrated that PD-1
expression increased on both PB CD4" (20.63% vs 15.86%, p=0.029)
and CD8" (24.77% vs 17.49%, p=0.011) T cells in DN patients when
compared with healthy individuls (HIs), while the same result was
found when comparing the BM CD4" (26.17% vs 18.48%, p=0.010)
and CD8" (41.17% vs 21.68%, p=0.0003) T cell populations. When
patients achieved CR, we found that PD-1 expression recovered in
most T cell populations except for the PB CD8" population (27.00%
vs 17.49%, p=0.014). In addition, we also detected higher PD-1
expression on PB CD4" (23.22% vs 15.86%, p=0.023) and CD8"
(26.84% vs 17.49%, p=0.021) T cells as well as BM CD8" (37.14% vs
21.68%, p=0.018) T cells from R/R patients when compared with
HIs (Figure 1A). Unlike the high expression of PD-1 on both PB
and BM T cells in DN AML patients, TIGIT expression was
increased only in the BM CD8" (59.18% vs 38.69%, p=0.003) T
cell population. Interestingly, the expression of TIGIT was also
higher in the BM CD8" population from CR (55.08% vs 38.69%,
p=0.002) and R/R (65.94% vs 38.69%, p<0.0001) patients compared

Variables His DN AML CR AML R/R AML

PB BM PB PB BM PB BM
Number 36 14 38 17 21 10 8
Age (years) 53 47 54.5 57.5 46 a7 50 49
median, range (13-84) (17-68) (11-88) (14-80) (13-80) (13-73) (23-80) (23-67)
Gender, M/F 19/17 6/8 17/21 18/14 10/7 10/11 5/5 5/3
WBC (x10%L), mean + SD / / 54.92 + 135.16 4.60 +1.77 / 9.29 + 16.37 /
PLT (x10%L), mean + SD / / 81.95 + 143.85 193.69 + 133.46 / 71.00 + 58.68 /
Blasts (%) mean + SD, / / / 63.15 + 20.038 / 1.64 +2.09 / 25.59 + 27.32
Paired sample (n) 2 27 16 6
Subtype(n, %)
MDS-T 3 (7.9%) 2 (6.3%) 1(5.9%) 1(4.8%) 2 (20%) 3 (37.5%)
M1 1(2.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
M2 13 (34.2%) 11 (34.4%) 5 (29.4%) 8 (38.1%) 1 (10%) 0 (0.0%)
M3 2 (56.3%) 4 (12.5%) 4 (23.5%) 4 (19.0%) 0 (0.0%) 0 (0.0%)
M4 6 (15.8%) 5 (15.6%) 1(5.9%) 1(4.8%) 3 (30%) 3 (37.5%)
M5 11 (28.9%) 9 (28.1%) 5 (29.4%) 4 (23.8%) 2 (20%) 3 (37.5%)
Unclassified 2 (5.3%) 1(3.1%) 1(5.9%) 2 (9.52%) 2 (20%) 3 (37.5%)

M/F, male/female; WBC, white blood cell; PLT, platelets; n, number; MDS-T, myelodysplastic syndrome transformed.
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FIGURE 1 | T cells from the PB and BM of DN AML and R/R AML patients generally have high expression of PD-1, and BM CD8" T cells from DN, CR, and R/R
patients have increased TIGIT expression. (A) The top figure shows the gating strategy for PD-1 in the CD4* and CD8" populations by flow cytometry. The
frequency of PD-1 by subset in the PB of HIs (CD4, n=33; CD8, n=36) and patients in the AML-DN (CD4, n=34; CD8, n=38), AML-CR (n=17), and AML-R/R (n=10)
cohorts (Upper); The frequency of PD-1 by subset in the BM of His (n=14), and patients in the AML-DN (CD4, n=29; CD8, n=32), AML-CR (n=21), and AML-R/R
(CD4, n=7; CD8, n=8) cohorts (Lower). The PD-1 expression frequency generally increased in T cells from DN and R/R patients. (B) The top figure shows the gating
strategy for TIGIT in the CD4* and CD8* populations by flow cytometry. The frequency of TIGIT by subset in the PB (Upper) and BM of Hls, and patients in the
AML-DN, AML-CR, and AML-R/R cohorts (Lower); The TIGIT expression frequency increased in BM CD8* T cells from DN, CR, and R/R patients compared with
Hls. The p values shown are from independent t-tests between groups. *p < 0.05, **p < 0.01, **p < 0.001, ns denotes not significant.

with HIs (Figure 1B). The above results indicated that higher
expression of PD-1 in PB and BM T cells is a characteristic of
patients with DN AML and might be a sign of disease relapse, while
PD-1 expression recovery might be a favorable signal of disease
remisson. Whether PD-1 expression could predict the prognosis or
survival of AML patients needs to be confirmed in a future study.

Age Correlation of PD-1 and TIGIT
Expression on PB and BM T Cells

TIGIT was previously reported to have increased expression in blood
T cells of elderly healthy individuals (38); thus, we analyzed the
correlation between age and the expression frequency of PD-1 and
TIGIT on PB and BM CD4" and CD8" T cells in each group. We
found that PD-1 had no age correlation with any T cell subset in the
HI group; however, in the DN group, the expression of PD-1 on PB
and BM CD8" T cells was positively correlated with age. In addition,
the expression of PD-1 on BM CD4" T cells also demonstrated a
trend toward a positive correlation (Figure 2A). These results suggest
that the expression of PD-1 in elderly AML patients may be even
higher than that in young patients, which may weaken the anti-
leukemia T cell response of elderly patients. Elderly AML generally
defined as AML in a patient who is greater than 60 years of age.

Hence, we further compared the expression of PD-1 on CD4" and
CD8" T cells in the PB and BM of young (< 60 years) and elderly (>=
60 years) AML patients. The results demonstrated that PD-1 is
expressed higher on all T cell subsets except for the CD4" subset in
the PB of elderly AML patients (Figure 2B). As shown in Figure 2A,
there was also no correlation between age and PD-1 expression for
any of the T cell subsets in the CR and R/R groups.

Regarding the expression of TIGIT, we found the exact age
correlation for its expression on CD4" and CD8" T cells in HI PB,
which was dramatically evident in the CD8" population.
Additionally, we found that the positive correlation between
TIGIT and age in the PB CD4" T cell population lost in the DN,
CR, and R/R groups. In contrast, in the PB CD8" T cell population,
it was diminished in the DN group but recovered in the CR group.
Considering the strong age correlation of TIGIT in the PB of HIs,
we further dissected the HI, DN, and CR groups into young and
elderly cohorts and compared the expression of TIGIT on each
subset. The results demonstrated that in the cohorts under age 60,
the frequency of TIGIT on the CD4" T cells of DN AML patients
was higher than that on HIs (26.31% vs 20.14%, p=0.038); however,
there was no difference in other comparisons between AML and HIs
in the same age cohorts (Supplementary Figure 1). Regarding the

Frontiers in Oncology | www.frontiersin.org

66

August 2021 | Volume 11 | Article 686156


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Xu et al.

T Cell Dysfunction in AML

PB
HI DN CR R/R PR -
3 507 3
20 S0
(=027, p=0476 . s w0702 0004, - - PDA 2 =
)20z -0 0= 00%. posez b [ 0%, 5-oee TiGH 3 30 3 30
r=oaiz. p=ooto + o703 P ~ TG S 3
3 » E B 0- . 5 . g
o & o & 2 w . E 204 I_—l - E 20
S w. o 5w R 5 ﬂx/tt S g0 | & 40
= LI ® Attty x B —— s s
s . : w] phlacE O 5 "
] et K 1 = ol Ll =
% 4w s s o 2 o @ w@ % 4 @ 2 0 DNy  DNo
PB Age Age Age & 801 5 100
2 * 2
. B S — S
w00 120405, p=ootz 1007 0131, p= 0616 w0 (0% po 020 3 6o-| . 3 80
TZ040s, pmoott oo, o 120297 p-0s1g 4 K . 2
w0 - - . 3 3 6o
2 @ 6 S . . S
a £ 40 e I3
o« 9w < . S a0
S 4. 5 3 50 - N &
= R 5 =7 S 20
2 5 I I . 5
= =
T T
n w w W P D 6 % m W oNy DN
Age Age Age
DN CR R/R c PB
ns o
E 50 8
2
- - £=0337, p=00%9 120019, p=0937 = 0301, p= 0460 - P k- E]
0212, p=0446 P S 40
w0y 1200 o4t 60 120252 p=0224 a0 10038, p=0872 a0+ 120314, p=0450 -+ TiaT é"“ g
. 3 304 S
3« 3® 5 5
o o = 204 =3
k3 5 R I} o
[ g £
= S T 5" 5
s 4% M =
A A A ) E A S S S
Age Age Age 5 100 100
20220, p=0451 r=0468, p=0.007 10457, p=0255 » 80 @ 8o
07 r=0227, p=0435 1007 r=0386, p=0.029 100 1=-0.004, p= 0,687 1009 =050, p=0.198 8 8
A 120295, p=0.104 S eo S e
. 80 80- 80- A
« @ . © ‘A Ao 5 H
§o 8. 8. ol £ 2w
- < N e <]
s S« 5 4w B w. - £ 20 £ 20
R = = = T 5 s
P » » ; S s
0 4 s 8 o2 40 e s 100 o 20 40 e 80 o 2 4 @ 8

expression of TIGIT on HI BM T cells, there was no age correlation
found in either the CD4" or CD8" population, but a significant age
correlation was found for the DN AML group (Figure 2A). Further
analysis revealed that the frequency of TIGIT in the CD8"
population in BM was higher in elderly vs. younger DN AML
patients (Figure 2C).

In summary, we found that the frequency of PD-1 expression
on T cells in HIs had no age correlation in PB or BM; however,
strikingly, there was higher PD-1 expression in elderly AML
patients. Moreover, the above results confirmed that the
expression of TIGIT on T cells is closely correlated with age in
PB but not BM. However, higher TIGIT expression is still
detected in the CD4" population of DN patients under 60
years. In addition, relatively higher TIGIT expression was also
detected in the BM CD8" T cell subset of elderly DN patients.

Higher PD-1 and TIGIT Expression
Detected in the BM of DN and R/R

AML Patients

Previous studies have found that the leukemia BM micro-
environment possesses several immune suppressive factors that
may protect malignant hematopoietic stem cells from
immunological surveillance. We and others have also reported

Age

FIGURE 2 | PD-1* and TIGIT* CD8* T cells increase in the BM of older DN-AML patients. (A) The upper panel shows the correlation between the frequency of PD-
1 (red dots) or TIGIT (blue triangles) and age in the PB CD4" and CD8* T cell populations in His (CD4, n=33; CD8, n=36) and patients in the AML-DN (CD4, n=34;
CD8, n=38), AML-CR (n=17), and AML-R/R (n=10) cohorts; the lower panel shows the correlation between the frequency of PD-1 (the red dots) or TIGIT (blue
triangles) and age in the BM CD4* and CD8" T cell populations in His (n=14) and patients in the AML-DN (CD4, n=29; CD8, n=32), AML-CR (n=21), and AML-R/R
(CD4, n=7; CD8, n=8) cohorts. Spearman’s nonparametric test used to test for correlations between each group. (B) Comparison of the expression of PD-1 on
CD4* and CD8" T cells from the PB of DNy (CD4, n=19; CD8, n=21) and DNo (CD4, n=15; CD8, n=17) (younger and older than 60 years) patients (Left) from the
BM of DNy (CD4, n=16; CD8, n=17) and DNo (CD4, n=13; CD8, n=15) patients (Right). (C) Comparison of the expression of TIGIT on CD4* and CD8" T cell
subsets from the PB and BM of DNy and DNo AML patients. The sample cases used for TIGIT are the same as those used for the PD-1 comparison. The p values
shown in B and C are from the independent student’s t-test. *p < 0.05, ns denotes not significant.

that PD-1 increased in BM CD8" T cells from DN AML patients,
which may promote immune evasion for leukemia cells in the BM
(36, 37, 39, 40). In this study, we further compared the expression
of PD-1 and TIGIT in paired PB and BM from DN, CR, and R/R
patients. The results demonstrated that both the CD4" and CD8"
T cell subsets in the BM of DN AML patients possessed a higher
percentage of PD-1 (Figure 3A) and TIGIT (Figure 3B) when
compared with corresponding PB, and the increase in the CD8"
population was most apparent. In addition, the above differences
did not exist for CR patients and remained in the CD8"
population for R/R patients. These results indicate that the BM
microenviroment of AML patients possesses an increased number
of immunosupressive factors compared with PB, and reviving the
immunosupressive microenviroment might be a key factor for
treating AML and preventing relapse.

Higher Co-Expression of PD-1 and TIGIT
was Detected in the DN and R/R AML
Cohorts, and DN-AML Patients
Accumulated More PD-1"TIGIT* CD8* T
Cells in BM Than PB

Co-expression of several IC proteins is a characteristic of
exhausted T cells. A high percentage of PD-1"TIGIT"CD8"
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T cells was found in the PB of DN AML patients with the
exhaustion phenotype; however, it remains unknown whether
they change in the BM and in patients who achieve CR or those
with R/R disease. Thus, we further examined the co-expression
of PD-1 and TIGIT in the PB and BM of each cohort. As shown
in Figure 4A, higher co-expression of PD-1 and TIGIT only
detected on PB CD4+ T cells from DN patients, while, as shown
in Figure 4B, higher co-expression detected on PB CD8" T cells
from DN and R/R AML patients but not on the cells in the CR
group. However, increased co-expression was also found in the
BM CD8" T cell population of AML patients in all disease
conditions. However, statistical significance was found only for
DN patients based on the limited CR and R/R patient samples
analyzed (Figure 4B). We further compared the co-expression of
PD-1 and TIGIT between PB and BM in AML patients at
different disease stages. We found no significant co-expression
difference in the CD4" population in any of the AML sub-groups
(Figure 4C, left). In terms of the CD8" population, higher co-
expression was detected in the DN and CR cohorts (Figure 4C,
right). These results further suggest a more immunosupressive
BM microenvironment in AML patients at initial diagnosis
and relapse.

DISCUSSION

Previous studies have reported the expression of PD-1 and
TIGIT in AML patients at diagnosis and after hematopoietic
stem cell transplantation (33, 35-37, 41, 42); however, most of
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FIGURE 3 | BM CD4" and CD8" T cells from DN-AML and R/R-AML patients have a higher percentage of PD-1- and TIGIT-expressing T cells than matched PB.
(A) The flow-cytometry analysis detected an increase in the frequency of PD-1-expressing CD4* and CD8" T cells in the BM of DN-AML patients compared with
matched PB (CD4, n=24; CD8, n=27); the expression of PD-1 on CD4* and CD8" T cells between PB and BM was not different in the CR-AML cohort (CD4, n=15;
CD8, n=16). Increased PD-1 expression was also detected in BM CD8" T cells from R/R patients (n=6). (B) Flow-cytometry analysis detected an increased frequency of
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these studies were only concerned about T cells in the PB. Some
of these studies ignored the impact of patient age; thus,
controversial results exist. In this study, we comprehensively
compared the distribution of PD-1 and TIGIT, two of the most
well-studied IC proteins in PB and BM T cells from AML
patients at different disease stages. The results demonstrated
that PD-1 is highly expressed in almost all CD4" and CD8" T
cells in the PB and BM of DN AML patients and demonstrates
higher expression in the elderly than younger patients.
Expression in the BM was higher than that in PB. When
patients achieve CR after induction chemotherapy, most of T
cells can restore the average expression level of PD-1 except for
the CD8" T cells in PB. In addition, patients who were not
response to or relapsed from chemotherapy maintained a high
expression of PD-1 in most of the T cell subsets except for CD4"
T cells in BM. These results indicated that the function of T cells
in elderly patients at first diagnosis might be worse than that in
younger patients, which may be a reason for their
chemotherapy intolerance, but this may be an advantage for
receiving ICI therapy. Although most of the clinical trials using
PD-1/PD-L1 inhibitors have been administered to R/R AML
patients who experienced intensive induction chemotherapy at
least twice (16, 32, 43, 44), a multi-center phase 2 study
(NCT02845297) of pembrolizumab (PD-1-blocking antibody)
and azacitidine (AZA) in patients with R/R AML and a small
cohort of newly diagnosed AML patients (median age and
range: 75, 67-83 years) suggested a favorable overall response
rate (ORR; 71%) and survival for newly diagnosed and unfit
older AML patients.
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Moreover, this study also found that the AZA/pembro
combination is safe, feasible, and well tolerated by these elderly
patients (45). Moreover, a higher survival rate when using drugs
targeting PD-1 in metastatic melanoma patients between the ages
of 70 and 80 was reported in a large population-based Danish
patient cohort (1,082 cases) (46). In addition to age, cytogenetic
abnormalities are another critical prognostic factor for AML. Thus,
analyzing changes in T cell status in patients with different
karyotypes and gene mutations is also essential. Previously
Williams et al. reported that PD-L1 is higher expressed in BM
blasts from patients with TP53 mutation and also have a higher
expression trend in patients with adverse cytogenetics; however,
they did not find any correlation between cytogenetic
abnormalities and the expression of IC proteins in T cells (36).
We also analyzed the expression of PD-1 and TIGIT in patients
with or without FLT3-ITD mutation and complex karyotype.
However, there was no difference to be found in either group
(data not shown). To explore the relationship of PD1 and TIGIT
expression on T cells with other gene mutations, such as TP-53 and
IDH1/2, would require a larger cohort study in the future.

The high expression of PD-1/PD-L1 is an essential indicator for
effective ICI therapy; however, whether sufficient tumor-infiltrating

T cells in the tumor microenvironment is also a prerequisite (32).
We also analyzed the absolute numbers of T cells in the PB and BM
samples included in this study. We found increased numbers of
infiltrating T cells in the BM of DN patients, and CR and R/R
patients had a lower T cell count in the PB and comparable
numbers of T cells in the BM compared with HIs (Supplementary
Figure 2). These results suggest that the T cells were activated and
responded to leukemia antigen stimulation in DN patients.
However, most of them may be functionally impaired by
expressing IC proteins and other immunosuppressive factors.
When receiving induction chemotherapy, most of the T cells
were killed simultaneously by the unspecific cytotoxicity of the
chemotherapy drugs; thus, there might not be sufficient numbers of
T cells to respond to ICI treatment. This reason may be one of the
causes for anti-PD-1 treatment without satisfactory effects in R/R
patients; however, whether a single anti-PD-1 agent would affect
the overall survival (OS) of untreated younger AML patients
remains unknown. Recently, a phase 2 study (NCT02464657)
using nivolumab combined with induction cytarabine plus
idarubicin produced an ORR of 80% and a median OS of 18.54
months in untreated, younger AML patients. Interestingly,
responding patients who continued idarubicin, cytarabine, and
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nivolumab beyond remission had similar overall survival and
event-free survival compared with those bridged to allogeneic
stem cell transplantation, suggesting the possibility of nivolumab
efficacy in restoring host antitumor immune surveillance.
Moreover, the authors also found that a higher prevalence of
CD3-positive T cells in the bone marrow before the therapy
administration appeared to predict the response (47). This study,
combined with our findings here, may shed light on using anti-PD-
1 as a single agent or in combination with other drugs for treating
DN AML patients, particularly elderly DN AML patients.
Previously, two studies also compared the absolute number of T
cells in AML patients; one used flow-cytometry and found a higher
CD3" T cell number in the PB of DN AML patients compared with
age-matched HIs. The different results reported here may be
because we used anti-CD45 to exclude the impact of many
leukemia cells in the samples (48). In another study, the authors
used immunochemistry to compare the CD3" T cell number in the
BM and found a comparable amount of CD3" T cells between DN
patients and HIs (36). Considering the high sensitivity of flow
cytometry in minimal residual disease detection and the greater
number of samples analyzed in our study (31 vs 14), we believe that
our results have higher accuracy. Whether the increased absolute
count of T cells in the PB and BM of DN AML patients would
predict the outcome and survival of DN AML patients is worth
further exploration with a large cohort.

With regards to the expression of TIGIT, we confirmed Yangzi
Song’s result that the TIGIT" cell frequencies among PB CD8" T
cells were significant age correlated, whereas CD4" T cells exhibited
exhibited a weak correlation (38). Based on this age-induced change
in PB T cells, the different expression of TIGIT in PB T cells between
AMLy and AMLo patients is most likely to be a distinction that also
exists in the HIy and Hlo groups. In 2016, Yaxian Kong had
reported that TIGIT expression elevated in the PB CD8" T cells of
AML patients, and high TIGIT was associated with poor clinical
outcome in AML (49); however, we only found higher expression of
TIGIT on PB CD4" T cells of DN AML patients compared with HIs
in the younger age group and on PB CD8" T cells in both young and
older patients. This inconsistency may arise from the average age of
their healthy cohort appears to be younger than that of the AML
cohort (51 vs. 60). Interestingly, the expression of TIGIT on BM T
cells demonstrated no age correlation for HIs. Thus, we speculate
that TIGIT function in BM T cells might be different from that in
PB. Thus, the elevated TIGIT expression on the BM CD8" T cells of
DN, CR, and R/R patients may be mainly impacted by the leukemia
microenvironment itself, while the BM microenvironment of elderly
patients may further exacerbate the high expression of TIGIT.
Although the immunosupressive functions of TIGIT have been
demonstrated many times, whether its high expression on the BM
CD8" T cells of AML patients correlates with prognosis and survival
remains to be seen in the future. In addition, further studies should
elucidate the functional heterogeneity of TIGIT" T cells co-
expressed with other IC proteins and with its competitive
activation receptor CD226, considering the complex mechanisms
of TIGIT in suppressing T cell function.

Co-expression of several IC proteins is usually thought to be
one of the characteristics of T cell exhaustion. Two previous

studies have reported higher dual expression of PD-1 and TIGIT
in PB T cells from DN AML patients, and functional
experiments supported that PD-1"TIGIT" CD8" T cells were
functionally exhausted (35, 50). In this study, we further found
that the percentage of PD-1 and TIGIT double-positive T cells
not only increased in PB but also in BM CD8" T cells from DN
AML patients. In addition, it was shown that there was an
increase in PB and a trend toward an increase in BM CD8" T
cells in R/R AML patients. All these results indicated that a more
immunosuppressive microenvironment might exist in the BM
of AML patients. Previously Jia’s study found that intracellular
expression of Granzyme B in BM CD8" T cells was significantly
lower compared with that of PB, which supports our results
(51); however, a study from Lamble et al. reported that there was
no significant proliferation difference between BM and PB CD8"
T cells from AML patients (52), which may be due to the high
patient-to-patient variability when looking into their data. Such
individual differences also existed in our study; thus, to precisely
understand the dysfunctional status of BM T cells in each AML
patient, a comprehensive assessment of the immune
checkpoints expression, cytokine secretion, and proliferation
capacity of paired PB and BM samples is needed. In addition,
whether these results support the combined use of anti-PD-1
and anti-TIGIT ICIs for treating DN and R/R patients remains
to be seen.

Taken together, in addition to the previously reported high
expression of PD-1 and co-expression of PD-1 and TIGIT in the
PB of DN AML patients and increased PD-1 expression in the
BM of DN AML patients, we further identified the accumulation
of TIGIT" CD8" T cells in the BM of DN, CR, and R/R patients.
Moreover, we found a higher percentage of PD-1 and TIGIT co-
expressing CD8" T cells in the BM of DN AML patients. These
results support the idea that the BM microenvironment of AML
patients possesses many more immunosupressive factors than
PB. Future treatment strategies focused on reviving the
immunosuppressive BM microenvironment may improve AML
patients’ survival. Moreover, we also found that increased PD-1
and TIGIT single-positive T cells exist in the PB and BM of older
AML patients compared with younger patients, suggesting that T
cell function in elderly patients might be even worse than that in
younger patients. This finding may partially explain the
chemotherapy intolerance of older AML patients, which brings
hope for using ICIs to treat DN elderly AML patients who may
have sufficient T cells to respond.
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Promotes Myeloid Differentiation in
TP53-Mutant Leukemia

Carlos C. Smith-Diaz’, Nicholas J. Magon, Judith L. McKenzie?, Mark B. Hampton,
Margreet C. M. Vissers and Andrew B. Das’™"

' Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch,
New Zealand, 2 Haematology Research Group, Christchurch Hospital and Department of Pathology and Biomedical Science,
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Loss-of-function mutations in the DNA demethylase TET2 are associated with the
dysregulation of hematopoietic stem cell differentiation and arise in approximately 10%
of de novo acute myeloid leukemia (AML). TET2 mutations coexist with other mutations in
AML, including TP53 mutations, which can indicate a particularly poor prognosis.
Ascorbate can function as an epigenetic therapeutic in pathological contexts involving
heterozygous TET2 mutations by restoring TET2 activity. How this response is affected
when myeloid leukemia cells harbor mutations in both TET2 and TP53 is unknown.
Therefore, we examined the effects of ascorbate on the SKM-1 AML cell line that has
mutated TET2 and TP53. Sustained treatment with ascorbate inhibited proliferation and
promoted the differentiation of these cells. Furthermore, ascorbate treatment significantly
increased 5-hydroxymethylcytosine, suggesting increased TET activity as the likely
mechanism. We also investigated whether ascorbate affected the cytotoxicity of Prima-
1Met 3 drug that reactivates some p53 mutants and is currently in clinical trials for AML.
We found that the addition of ascorbate had a minimal effect on Prima-1™®-induced
cytotoxicity, with small increases or decreases in cytotoxicity being observed depending
on the timing of treatment. Collectively, these data suggest that ascorbate could exert a
beneficial anti-proliferative effect on AML cells harboring both TET2 and TP53 mutations
whilst not interfering with targeted cytotoxic therapies such as Prima-1"¢',

Keywords: epigenetic therapy, differentiation, ascorbate, TET2, Prima-1Met, APR-246, vitamin C, leukemia

INTRODUCTION

Acute myeloid leukemia (AML) is a hematological cancer that harbors a poor prognosis. The disease
is highly heterogeneous at the genetic level, with at least 11 distinct subgroups comprising driver
mutations in over 100 different genes (1). Epigenetic dysregulation is a key feature of many of these
AML subgroups (2, 3). Consequently, therapeutic strategies targeting the mutations that lead to
epigenetic dysregulation offer hope for novel forms of treatment.
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Ascorbate is an emerging epigenetic therapeutic. This
property arises from its co-factor activity for the Fe-containing
2-oxoglutarate-dependent dioxygenases, a large family that
includes prolyl hydroxylases (4, 5) numerous histone
demethylases (2, 6) and the ten-eleven translocation (TET)
enzymes (6-8). The TET proteins are responsible for the active
demethylation of DNA via the oxidation of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC) (9-11). Ascorbate sustains
and promotes TET activity, most likely by reducing Fe’* to Fe**
during the catalytic cycle (8). TET2 activity and cellular levels of
5hmC increase with intracellular ascorbate availability in a dose-
dependent manner (12-14). Therefore, ascorbate has the potential
to act as an epigenetic therapeutic via the stimulation of TET2
activity. This has been demonstrated in vitro and using mouse
models (3, 15, 16). Furthermore, we have previously reported that
supplementation with ascorbate resulted in clinical remission in a
patient with AML harboring a TET2 mutation (17).

TET2 is a major regulator of hematopoiesis, regulating the
differentiation and self-renewal of hematopoietic stem cells
(HSC) (15). This has been demonstrated in murine studies
showing that Tet2 knockout results in the expansion of the
HSC population and skews the peripheral erythrocyte-to-
monocyte ratio in favor of increased peripheral monocytes
(18). The role of TET2 in hematopoiesis is also evident from
the observation that loss-of-function mutations are frequently
found in blood disorders such as AML, clonal hematopoiesis of
indeterminate potential, chronic myelomonocytic leukemia and
myelodysplastic syndrome (19, 20).

TET2 mutations in AML are associated with a significant
decrease in 5hmC (21), highlighting the role that this enzyme
plays as an epigenetic regulator in hematopoiesis. Emerging
insights also suggest that ascorbate supplementation could be
beneficial in AML cases associated with decreased TET2 activity
(15, 16). However, TET2 mutations occur in conjunction with
numerous combinations of other mutations (1, 2) and we know
relatively little about how other mutations might affect the
ascorbate-mediated up-regulation of TET2 activity and
subsequent effects on cell differentiation and survival. The
epigenetic effects of ascorbate have been explored in some
models of leukemia (15, 16, 22-24), but have not been
considered in the context of TP53 and TET2 mutated AML.

TP53 loss-of-function mutations are of clinical interest as
they confer an exceedingly poor prognosis in AML. Three-year
survival rates are between 0 - 15% (25) and new treatment
options are desperately required. Therefore, we investigated the
effects of ascorbate on growth and differentiation using SKM-1
cells - a model of leukemia where both TET2 and TP53 mutations
co-exist (26). We also investigated the effects of ascorbate in
conjunction with Prima-1"*" (APR-246), a compound which
reactivates some p53 mutants and promotes oxidative stress in
cancer cells (27-30). Prima-1™¢' has been shown to act
synergistically with azacitidine to inhibit the proliferation of a
number of TP53-mutant cell lines, including SKM-1 (31). Given
the importance of combination therapy in AML treatment, we
investigated the interplay between ascorbate and Prima-1™' to

determine whether the antioxidant activity of ascorbate
interfered with the cytotoxicity of Prima-1™,

METHODS

General Cell Culture Methods

SKM-1 cells were provided by the Dawson Lab at the Peter
MacCallum Cancer Institute, Melbourne, Australia. These cells
were grown in RPMI-1640 medium with penicillin, streptomycin
and 10% heat-inactivated fetal bovine serum. Cells were cultured
at 37°C with a humidified atmosphere of 5% CO,. A complete
refresh of the media was carried out prior to commencing
experiments by centrifugation of the cell suspension, aspiration
of media and resuspension in new media.

Validation

SKM-1 DNA was sent for analysis to CellBank Australia,
confirming a 98% match between the sample DNA and a
reference SKM-1 genome. PCR was used to amplify regions of
DNA at the sites of the known TET2 and TP53 mutations in the
SKM-1 cells. Primers were designed using the Benchling
bioinformatics platform. Sanger sequencing at the University of
Otago, Dunedin confirmed the presence of a hemizygous TP53
mutation (c.743G>A, Supplementary Figure 1) and a heterozygous
TET2 mutation (c.4253_4254insTT, Supplementary Figure 2),
consistent with other reports in the literature (26, 31). The
743G>A mutation in TP53 is a hotspot mutation in patients,
translating to a R248Q substitution in the DNA binding domain
and is predicted to result in loss-of-function (1). Some studies also
suggest that R248Q results in TP53 gain-of-function attributes (32).
The TET2 mutation results in a frameshift at p.1419 with the
truncation of ~600 amino acids. Given that the fundamental 2-OG-
dependent dioxygenase domain of TET?2 is located at amino acids
1322-2002, this frameshift most likely results in complete loss-of-
function (33). Flow cytometry was used to show that the SKM-1
cells were CD11b*, CD117%, CD13", CD33", CD45RA", CD15%,
CD19" and CD3". The observed cell surface marker data is
consistent with data from Deutsche Sammlung von
Mikroorganismen und Zellkulturen and reports in the literature
(34). In house PCR testing was used to confirm that the SKM-1 cell
line was negative for mycoplasma contamination.

Ascorbate and Phosphoascorbate Uptake

Ascorbate or phosphoascorbate was added to SKM-1 cells in a
12-well plate in a final volume of 2 ml containing 0.2 x 10° cells/
ml and incubated for periods up to 48 hours. At the end of the
incubation period, the cells were pelleted by centrifugation at
1000 g for 5 minutes at room temperature and resuspended in
PBS. An equal volume of ice cold 0.54 M perchloric acid (PCA)
containing 50 uM diethylenetriaminepentaacetic acid (DTPA)
was added to supernatant and cell samples. The samples were
then mixed by vortex and centrifuged at 12,000 g for 2 minutes at
4°C to remove the protein precipitate. Extracted cell lysate and
supernatant samples were stored at —20°C and the ascorbate
levels were measured using HPLC with electrochemical detection
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as previously described (35, 36). Extracts were pre-treated with
Tris(2-carboxyethyl)phosphine (TCEP) to reduce any
dehydroascorbic acid (DHA) present and the DHA content
was determined from the difference between the two
measures (35).

Effects of Ascorbate on Cell Proliferation,
Cell Cycle and Apoptosis

SKM-1 cells were cultured for 6 days with the addition of sodium
ascorbate, bovine liver catalase, and phosphoascorbate (2-
phospho-L-ascorbic acid trisodium salt) where indicated. Cells
were seeded at 0.2 x 10° cells/ml in a volume of 1 ml in a 24-well
plate. Ascorbate and phosphoascorbate were added at 0 - 500
UM and catalase at 20 pig/ml. The media was refreshed with a 1:5
dilution at days 2 and 4, with the addition of ascorbate, catalase
and phosphoascorbate at the original concentration. The number
of cells was recorded after 6 days with a hemocytometer and
viability assessed by trypan blue dye exclusion. PI/Annexin V
and PI DNA staining were used to assess cell viability/apoptosis
and cell cycle status via flow cytometry after 6 days with 300 uM
ascorbate, with data analysis using CXP Software from Beckman
Coulter (Brea, CA, USA).

Analysis of Cell Surface Markers

To assess ascorbate-mediated changes on differentiation, SKM-1
cells were grown for up to 36 days +/- 300 UM phosphoascorbate
or ascorbate. Every 2-3 days the medium was refreshed by
diluting 1:5 with fresh media and adding phosphoascorbate or
ascorbate at the original concentration. At 7, 12/13 days, 22 days
and 36 days, cell surface marker expression was analyzed using
flow cytometry for CD15, CD33, CD45RA, CD117, CD13, and
CD11b. The percentage change in mean fluorescence intensity
(MFI) was calculated by taking the ratio of the MFI for the
treated cells relative to the control, subtracting 1 and then
converting to a percentage. The data was exported using CXP
Software. Isotype controls were used to confirm the binding
specificity of the antibodies.

Mass Spectrometry Analysis of

5hmC Levels

SKM-1 cells were cultured with 300 uM ascorbate or
phosphoascorbate in 12-well plates at 0.4 x 10° cells/ml in 2 ml
per well for periods up to 4 days. The medium was refreshed by
diluting 1:5 in fresh media with the addition of 300 uM ascorbate
or phosphoascorbate after 2 days. At the end of the incubation

period, the cells were harvested and the DNA was extracted using
a DNA extraction kit (DNeasy Blood and Tissue Kit Cat No.
69504, Qiagen, Hilden, Germany).

A stable isotope dilution LC-MS/MS method was used for the
detection and quantification of 2’-deoxycytidine, 5-methyl-2’-
deoxycytidine and 5-hydroxymethyl-2’-deoxycytidine.
Isotopically labeled standards [2’-deoxycytidine (°C, '°N,), 5-
methyl-2’-deoxycytidine (*>C, '°N,) and 5-hydroxy-methyl-2’-
deoxycytidine (d;)] were used to control for experimental
variations such as recovery, matrix effect, and ionization.
Standard calibration curves using the ratio of light to heavy
isotopes were used for quantification. One pg of SKM-1 DNA
was hydrolyzed using a nucleoside digestion kit M0649S (New
England Biolabs, Ipswich, MA, USA) in the presence of internal
standards [130 fmoles 2’-deoxycytidine (13C, ®N,), 5 fmoles 5-
methyl-2’-deoxycytidine (**C, '°N,) and 0.013 fmoles 5-
hydroxy-methyl-2’-deoxycytidine (ds)].

Standards and digested SKM-1 DNA samples were analyzed
using a 6500 QTrap mass spectrometer (Sciex, Framingham, MA,
USA) coupled to an Infinity 1290 LC system (Agilent, Santa Clara,
CA, USA). Standards and samples were stored on the autosampler
tray at 5°C. An Acclaim RSLC Polar Advantage I 120A column
(150 x 2.1 mm, Thermo Fisher Scientific Inc., Waltham, MA,
USA) was used for chromatographic separation using 100% water
(0.1% formic acid) as Solvent A and 100% acetonitrile (0.1%
formic acid) as Solvent B. A flow rate of 0.2 mL/minute was used.
The column temperature was set to 40°C. The analytes were eluted
during the initial isocratic phase with 100% Solvent A over 3.5
minutes. The column was then flushed with 5% Solvent A and
95% Solvent B for 2.5 minutes, and then re-equilibrated at initial
conditions for 5 minutes. Data were analyzed using Analyst 1.7.1
(Sciex, Framingham, MA, USA). All species were quantified by
fragmenting the singly-charged parent ion [M+H]", monitoring the
fragment ion resulting from the loss of the deoxyribose sugar in
positive-ion mode (Table 1), and measuring the area under the
curve of the resulting peak (Fit: Linear, Weighting: None,
Regression Parameter: Area). The concentration of deoxycytidine,
5mC and 5hmC in each sample was calculated by relating the peak
area ratio of the light to the heavy isotope to standard calibration
curves, and then converted to a percentage of the total cytidine
species. The assay was validated by measuring the relative
composition of cytidine species in frontal cortex and liver tissues
(Dunkin Hartley guinea pigs) for comparison. For guinea pig tissue
samples, one pg of DNA was hydrolyzed in the presence of 340
fmoles 2’-deoxycytidine ("<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>